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Abstract  I 

Abstract 
 
Resistin is a cytokine involved in insulin resistance, inflammation, and immunity.  

Evidence suggests that resistin expression is elevated in diabetes and inflammatory 

diseases.  Diabetes and periodontitis are associated with each other; however, the 

pathogenic links between these two diseases are not completely understood.  Both 

diseases are deemed to be inflammatory conditions and, therefore, resistin may 

possibly play a pathogenic role in the two diseases. Therefore, the objective of this 

study was to investigate the possible relationship between resistin levels in saliva and 

serum, and periodontal disease in patients with or without type 2 diabetes mellitus 

(T2DM).  The regulation of resistin expression and release from human monocytes 

and macrophages by LPS, as well as the impact of resistin on cytokine expression and 

secretion in vitro were also investigated. 

The present study demonstrated that salivary resistin was significantly elevated in 

periodontitis subjects as compared to gingivitis and periodontally healthy subjects in 

both T2DM and non-diabetic groups.  However, there were no significant differences 

in salivary resistin between T2DM and non-diabetic groups irrespective of periodontal 

status.  These data suggest that there is an association between salivary resistin and 

periodontitis rather than diabetic status.  This hypothesis is supported by the finding 

that salivary resistin was significantly associated with bleeding on probing (BOP), 

mean probing depth (PD), mean loss of attachment (LOA) and periodontal inflamed 

surface area (PISA).  Furthermore, saliva samples from both T2DM and non-diabetic 

subjects showed significant reductions in resistin levels at 3, 6 and 12 months after 

non-surgical periodontal management, which suggests that salivary resistin, may 

reflect improvements in periodontal inflammation following periodontal treatment.  

Serum levels of resistin were significantly higher in T2DM subjects compared to non-



Abstract  II 

diabetic controls, confirming the association between serum resistin and diabetes.  

This hypothesis is supported by the finding that serum resistin positively correlated 

with HbA1c, BMI and hsCRP.  There were no significant differences in serum resistin 

between subjects with healthy periodontal tissues, gingivitis and periodontitis within 

both the T2DM and non-diabetic groups.  However, serum resistin was positively 

correlated with BOP, mean PD and PISA.  The relationship of serum resistin to 

periodontal disease therefore remains unclear.  In vitro, LPS from both P.gingivalis 

and E.coli significantly enhanced resistin expression and secretion in human 

monocytes and macrophages, suggesting that resistin is induced by inflammatory 

stimuli and probably involved in inflammatory responses. Resistin displays potent 

proinflammatory properties itself as it upregulated the expression and secretion of 

several proinflammatory mediators such as TNF-α, IL-1β, IL-6, MIP-1α and CXCL10 

in THP-1 monocytes. 

In conclusion, salivary resistin could provide a novel local biomarker for periodontal 

disease.  The upregulation of serum resistin in T2DM could influence periodontitis 

through the induction of inflammatory mediators that are responsible for exacerbating 

inflammation in periodontal tissues, and this process could contribute to the shared 

susceptibility between periodontal disease and T2DM. 
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Chapter 1 Introduction  

 

The link between periodontal disease and type 2 diabetes Mellitus (T2DM) has been 

suggested through a number of clinical and epidemiological studies (Preshaw et al., 

2007; Preshaw, 2008b).  Several studies have shown that the prevalence, incidence 

and severity of periodontitis is increased in the presence of diabetes (Soskolne and 

Klinger, 2001; Novak et al., 2008; Fernandes et al., 2009; Matu et al., 2009; Um et 

al., 2010).  Thus, diabetes is considered to be a risk factor for gingivitis and 

periodontitis (Mealey and Oates, 2006; Preshaw et al., 2007).  In fact, periodontal 

disease has been described as the sixth complication of diabetes (Loe, 1993).  The 

affiliation of periodontal disease and diabetes has been examined through a wide 

range of research over the past 20 years (Mealey and Oates, 2006), however, the exact 

mechanisms by which diabetes is associated with increased risk for periodontal 

disease are not clearly comprehended. 

There is a large volume of published studies describing the key role of cytokines for 

regulation of innate and adaptive immune responses.  The term cytokines has come to 

be used to refer to a multifarious group of small protein molecules, classic examples 

of which are interleukins, interferons, tumour necrosis factor family, chemokines, 

growth factors and adipokines (Amano, 2010).  A dysregulated immune response 

stemming from an inappropriate cytokine production may act as a possible 

mechanism underpinning the cross-susceptibility between periodontal disease and 

diabetes (Barksby et al., 2007; Preshaw et al., 2007; Preshaw, 2008b; Preshaw, 2009).  

Although, numerous studies have attempted to explain the pathogenesis of diabetes, 

the exact series of events leading to diabetes is still not fully understood.  It has been 
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suggested that the development of diabetes mellitus stems from cellular and molecular 

defects in both insulin action and insulin secretion (Cusi, 2010; Tripathy and Chavez, 

2010) which is influenced to a large extent by inflammation and the perturbation of 

immune responses (Goossens, 2008).  Interestingly, monocytes from diabetic patients 

are hyperactive, showing a profound production of a proinflammatory cytokines such 

as TNF-α, IL-1β and IL-6 (Giulietti et al., 2007).  On the other hand, an impairment 

of neutrophil (polymorphonuclear leukocytes PMNLs) function has been reported in 

patients with diabetes (Alba-Loureiro et al., 2007).  It has been suggested that many 

cytokines could possibly contribute to inflammation-mediated insulin resistance such 

as TNF-α, IL-6, leptin, adiponectin, visfatin, resistin and IL-1 (Wellen and 

Hotamisligil, 2005). 

Resistin is a cytokine which may play an essential role in insulin resistance (Steppan 

et al., 2001a) and promote inflammation (Lehrke et al., 2004; Bokarewa et al., 2005).   

Many studies have reported a resistin up-regulation in obesity, insulin resistance and 

diabetes (Azuma et al., 2003; Lu et al., 2006; Tokuyama et al., 2007; Hivert et al., 

2008; Chen et al., 2009).  Furthermore, resistin is significantly elevated in serum in 

both rheumatoid arthritis (Migita et al., 2006) and periodontal diseases (Furugen et 

al., 2008; Saito et al., 2008).  Taken together, these findings suggest a role for this 

cytokine in linking periodontal disease and diabetes.  Consequently, this study is 

aimed at investigating the immunological activity of resistin in periodontal disease 

associated with diabetes. 
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1.1 The‎pathogenesis‎of‎periodontal‎disease‎ 

 

Periodontal disease is considered to be one of the most economically significant and 

widely spread health problems.  In the UK, 54% of the dentate adults had pocketing 

of 4 mm or more, while deep pocketing of over 6 mm affected 5% of the dentate 

population (Kelly et al., 1998; Morris et al., 2001).  Periodontal disease represents a 

heterogeneous multifactorial group of infectious diseases with a destructive 

inflammatory pathogenesis.  These diseases affect the supporting and surrounding 

structures of the teeth (Kornman, 2008). 

Gingivitis and periodontitis are the most prevalent forms of periodontal disease found 

in humans (Kinane, 2001; Williams, 2008).  The occurrence of both forms is reliant 

on the existence and persistence of microbial plaque which is assumed to be the 

primary etiological factor for these diseases (Page et al., 1997; Kinane, 2001; Nunn, 

2003; Kornman, 2008). Indeed, periodontal disease represents the inflammatory and 

immune responses to local microbial attack (Page and Kornman, 1997; Kinane, 2001). 

The inflammatory response in the gingival tissues (gingivitis) (Nanci and Bosshardt, 

2006) which is induced as a result of plaque accumulation is actually a reversible state 

that can be cured by efficient plaque control measures (Kinane, 2001).  On the other 

hand, periodontitis occurs when the inflammatory processes extend to involve the 

hard tissue structures of the attachment apparatus e.g. periodontal ligament and 

alveolar bone.  This irreversible condition (periodontitis) is characterised by a 

pathological deepening of gingival sulcus concomitant with apical migration of the 

epithelial attachment and destruction of underlying connective tissue and alveolar 

bone (Kinane, 2001).  Periodontal disease is deemed to be one of the most 
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considerable health problems of mankind because periodontitis leads ultimately in its 

terminal stages to loss of teeth (Kinane, 2001; Nanci and Bosshardt, 2006). 

Gingivitis was formerly deemed unavoidable following the accumulation of bacterial 

plaque on teeth.  However, it is now acknowledged that specific patients will be more 

susceptible than others to gingivitis and certainly periodontitis (Kinane and Mark 

Bartold, 2007).  In 1965, Loe et al. published a paper in which they described the role 

of the plaque bacteria in the development of gingivitis for the first time.  Within four 

days following the build-up of microbial plaque, the gingivitis lesion develops.  The 

microbial mass in the dental plaque delivers substances provoke tissue inflammation 

(by both direct and indirect means), which is manifested by oedema, an increase in 

gingival crevicular fluid, polymorphonuclear leukocytes aggregation and connective 

tissue loss (Page and Schroeder, 1976).  The clinical symptoms of gingivitis grow into 

more conspicuous forms when the plaque is allowed to build up on teeth and gingiva, 

however, it can be resolved by resuming adequate oral hygiene measures. 

Gingivitis and periodontitis can thus be viewed as a continuum of the same 

pathogenic process.  That is, periodontitis is clinically differentiated from gingivitis 

by the destruction of the connective tissue attachment.  However, not all patients with 

gingivitis will progress to periodontitis; a susceptible host is a necessary prerequisite 

for the disease to evolve.  Suffice to say that only a fraction of population (10-15%) 

exhibited advanced/sever forms of periodontitis (Kinane and Mark Bartold, 2007). 

Periodontitis has been deemed as a complex bacteria-induced infection, characterised 

by inflammatory host response to plaque microbiota and their by-products.  Socransky 

et al. (1998) examined over 13,000 subgingival plaque samples from 185 adults, and 

identified five specific microbial groups of bacterial species; depending on their 

relationship to clinical parameters of inflammation and periodontal destruction.  The 
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first group comprised of Porphyromonas gingivalis, Bacteroides forsythus (now 

Tannarella Forsythia), and Treponema denticola.  The second group composed of 

closely related core group including members of Fusobacterium 

nucleatum/periodonticum subspecies, Prevotella intermedia, Prevotella nigrescens, 

and Peptostreptococcus micros.  The species affiliated with this group included 

Eubacterium nodatum, Campylobacter rectus, Campylobacter  showae, Streptococcus 

constellatus and Campylobacter  gracilis.  The third group comprised of 

Streptococcus species including S. mitus, S. oralis, S. sanguis, S. gordonii and S. 

intermedius.  The fourth group consisted of three Capnocytophaga species, 

Campylobacter concisus, Eikenella Corrodens, Actinobacillus  

Actinomycetmcomitans serotype-a.  The fifth group included Veillonella parvula and 

Actinomyces  odontolyticus.  Finally, Actinomycetmcomitans serotype-b, Selenomonas  

noxia, Actinomyces Naeslundii genospecies 2 (A.viscosus) were outliers with 

insignificant relationship to each other and the five major groups.  It is noteworthy 

that the first group related remarkably to clinical measures of periodontal disease; in 

particular, pocket depth and bleeding on probing (Socransky et al., 1998). 

Therefore, periodontitis regarded as a polymicrobial infection associated with a 

specific group of primarily Gram-negative, anaerobic or microaerophilic bacteria that 

populate the root surface in the subgingival area (Page and Kornman, 1997).   

  



1   Introduction  6 

Gram-negative bacteria such as Porphyromonas gingivalis, Aggregatibacter  

(formerly termed Actinobacillus) actinomycetemcomitans (Slots and Ting, 1999; 

Kinane, 2001; Silva et al., 2008) and Tannerella Forsythia are the most prevelant 

periodontopathic microorganisms contributing to periodontal disease pathogenesis 

(Page et al., 1997; Kinane, 2001; Nunn, 2003; Van Dyke and Serhan, 2003; Silva et 

al., 2008). 

Although the bacterial plaque is fundamental for periodontal disease initiation and 

propagation, the host defensive responses represented by inflammatory and immune 

reactions are the essential determinants of disease occurrence (Page and Kornman, 

1997; Kinane, 2001; Van Dyke and Serhan, 2003).  Host based risk factors such as 

smoking, diabetes, systemic disease, genetics, bacterial composition of microbial 

plaque and socioeconomic factors, all could alter host innate susceptibility to 

periodontal disease (Page et al., 1997; Kinane, 2001; Nunn, 2003; Kinane et al., 2007; 

Kinane and Mark Bartold, 2007).  These risk factors may exacerbate the host 

protective mechanisms against bacterial challenge and thereby increasing the 

destructive nature of these processes (Page and Kornman, 1997). 

The periodontium represents those tissues supporting and investing the tooth, 

encompasses root cementum, periodontal ligament, alveolar bone and that part of the 

gingiva facing the tooth (dento-gingival unit).    The dento-gingival unit comprises 

epithelial and connective tissue compartments, which are separated from and attached 

to each other by the basement lamina.  Based on their architecture, the gingival 

epithelium is divided into oral, sulcular and junctional epithelia (Nanci and Bosshardt, 

2006).  The sulcular epithelium lines the gingival sulcus and extends from the 

keratinized oral epithelium to the junctional epithelium, which mediates the 

attachment of the tooth to the gingiva.  Both the sulcular epithelium and the coronal 
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part of the junctional epithelium are in direct contact with periodontal bacteria in the 

gingival sulcus and seem to be pivotal site with regard to the development of 

periodontal disease.  The location of the junctional epithelium is crucially important 

because it interfaces between the gingival sulcus, populated with bacteria, and the 

tooth attachment apparatus that needs protection from becoming exposed to bacteria 

and their products.  In fact, it is the structural and functional characteristics of 

junctional epithelium which enables it to control for the constant microbial challenge.  

However, the antibacterial defence mechanisms of the junctional epithelium do not 

prohibit the development of gingival and periodontal lesion.  The junctional 

epithelium provides a route for fluid and transmigrating leukocytes into the oral 

cavity.  The tissue fluids exudate (GCF) conveys a wide array of molecules via the 

junctional epithelium to the bottom of the gingival sulcus, which together with the 

migrating leukocytes represent a host defence system against the bacterial challenge 

(Bosshardt and Lang, 2005; Andrian et al., 2006).  With an increasing degree of 

inflammation in the gingiva, both the migration of PMNs and the rate GCF traverses 

via the intercellular spaces of the junctional epithelium increase.  An enhanced 

number of mononuclear leukocytes, i.e. T- and B- lymphocytes, and 

monocytes/macrophages, together with PMNs, are deemed as factors that are partly 

responsible for the focal disintegration of the junctional epithelium.  Additionally, 

pocket formation is possibly the result of subgingival spreading of virulent bacteria 

under impaired defence conditions.  Therefore, microbial products infiltrating the 

junctional epithelium at the bottom of the sulcus may directly disturb the structural 

and functional integrity of the junctional epithelium.  The proteolytic perturbation of 

the epithelial integrity may not only be a crucial factor in the initiation of pocket 

formation, but also facilitate microbial invasion into the sub-epithelial connective 
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tissue in advanced stages of the lesion.  When the epithelial defence mechanisms are 

overwhelmed by bacterial virulence factors, the gingival lesion could progress to 

periodontitis.  Indeed, the transformation of junctional epithelium to pocket 

epithelium is deemed as a hallmark in the progression of gingivitis to periodontitis 

(Bosshardt and Lang, 2005).   

When the periodontal microbes colonize the subgingival environment, they start to 

express various structural and metabolic substances, for instance, lipopolysaccharides 

(LPS) which are a surface component and a well-known virulence factor of these 

Gram negative subgingival bacteria (Teng, 2006).  LPS plays a key role in activation 

and perpetuation of tissue destruction in periodontal disease.  These 

lipopolysaccharides have the ability to trigger the host cells to release cytokines and 

other mediators of inflammation, in an attempt to eliminate the infectious agents and 

initiate a defence mechanism (Jain and Darveau, 2010).  This occurs when the 

bacterial LPS binds with the receptors (e.g. TLR and CD14) on the surface of host 

cells in periodontal tissues, including resident cells and immune cells such as 

fibroblasts, osteoblasts/osteoclasts, macrophages, lymphocytes and dendritic cells 

(Bascones-Martinez et al., 2009; Jain and Darveau, 2010; Hans and Hans, 2011).  

This binding stimulates the host cells to release inflammatory mediators and 

cytokines, and thereby localized periodontal inflammatory reaction ensues (Bascones-

Martinez et al., 2009; Jain and Darveau, 2010; Hans and Hans, 2011). 

In addition to lipopolysaccharides, periodontal bacteria possess an array of other 

virulence factors that enhance their infectivity and provide the ability for the 

organisms to multiply and persist in the periodontium and to express immunogenicity 

and cytotoxicity.  For instance, gingipains; a potent virulence factors expressed by P. 

gingivalis, consist of three cysteine proteases that are responsible for at least 85% of 
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the total proteolytic activity exerted by this pathogen (Amano, 2010; Guo et al., 

2010).  Moreover, P. gingivalis possesses hemagglutinin which mediates bacterial 

adherence to host cells as well as bacterial acquisition from erythrocytes and platelet 

aggregation (Amano, 2010).  Furthermore, bacteria evolved a range of adhesins, 

ranging from fimbriae and flagella to fibrils and curli.   Fimbriae, adhesins and 

leukotoxins are among the important virulence strategies of A.  

actinomycetemcomitans which helps the bacteria to survive harmoniously with its 

host, and to evade the host defence mechanisms (Henderson et al., 2010). 

The host immune response in periodontal disease is initiated by the innate host 

recognition of LPS, which actively modulates host-microbe interactions and the 

inflammatory response (Jain and Darveau, 2010).  The innate immune system 

identifies microbial attackers by recognizing molecular patterns that are common to a 

diversity of different microbes.  These common conserved structures expressed by 

microbes are termed pathogen-associated molecular patterns (PAMPs).  The phrase 

pattern recognition receptor (PRRs) has been applied to host receptors which have the 

ability to identify PAMPs, these include cell surface Toll-like receptor (TLRs) and 

intracellular NOD-like receptors (NLRs).  The notion of pattern recognition suggested 

that host PRRs recognize PAMPs (i.e. LPS) and that lead to immediate activation of 

the efficient and nonspecific innate immune response.  Although substantial research 

has been carried out to investigate the recognition and signalling of periodontal 

pathogens (e.g. P. gingivalis) via TLRs (Pathirana et al., 2010; Taylor, 2010), only a 

limited number of studies of NLRs and oral bacteria have been reported (Bostanci et 

al., 2009).  It has been shown that P.gingivalis culture supernatants up-regulates 

NLRP3 gene expression in Mono-Mac-6 monocytic cell lines (Bostanci et al., 2009).  
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Furthermore, the mRNA expression of both NLRP3 and NLRP2 were significantly 

higher in inflamed periodontal tissues compared to health (Bostanci et al., 2009). 

Toll-like receptors provide a first line innate defence against infection through its 

recognition of LPS.  The interaction of LPS with TLRs in the gingival epithelium 

leads to the release of cytokines and chemokines which in turn result in the expression 

of adhesion molecules, an enhancement the gingival vascular permeability and 

chemotaxis of polymorphonuclear neutrophils (PMNs) via the junctional epithelium 

into the gingival sulcus to eliminate microbes by phagocytosis (Teng, 2006; 

Dumitrescu, 2010; Liu et al., 2010; Hans and Hans, 2011).   

In addition to lipopolysaccharides, Toll like receptors sense and respond to various 

other microbial structures, such as lipopeptides, lipoproteins, peptidoglycan, 

lipoteichoic acid, zymosan, fimbriae, and flagellin.  The activation of TLR which 

launch by the binding of TLR to its ligand initiate a cascade of intracellular events 

which take place via two separate pathways: the myeloid differentiation primary 

response protein 88 (MyD88)-dependent pathway and the (MyD88)-independent 

pathway.  The end products of these intracellular events will lead to activation of two 

distinct signalling pathways.  One pathway results in activation of activator protein-1 

(AP-1) through activation of mitogen-activated protein kinase (MAPK), whereas the 

other pathway activates transforming growth factor-β-activated kinase 1 (TAK1), 

which in turn enhances the activity of inhibitor of the nuclear factor-κB kinase 

complex.  This gives rise to degradation of the inhibitor of nuclear factor-κB; and 

release of nuclear factor-κB (NF-κB), which translocate to the nucleus.  In the 

nucleus, NF-κB binds to specific sequences in the promoter regions of target genes for 

inflammatory proteins such as cytokines, thereby control the transcription of genetic 

information from DNA to mRNA; the mRNA molecule is responsible for protein 
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synthesis in the cytoplasm (Kawai and Akira, 2006; Hans and Hans, 2011).  

Neutrophils forms the first line of host defence against periodontal bacteria, and, by 

their capability to phagocytize microbes, they can protect the host from infection.  

However, in addition to the pivotal role of neutrophils in combating the invading 

bacteria, it also plays a significant role mediating tissue destruction in the 

pathogenesis of inflammatory disease.  In the gingival sulcus, activated neutrophils 

attempt bacterial elimination by phagocytosis; however, some virulent microbes are 

able to evade neutrophils, leading to continuous accumulation of these phagocytes in 

the gingival pocket (Van Dyke and Serhan, 2003; Bascones-Martinez et al., 2009).  

Activated neutrophils release oxygen radicals and proteolytic enzymes which can 

directly instigate tissue damage (Entman and Smith, 1994; Hansen, 1995).  Oxygen 

radical species can strike every biologically relevant molecule, such as proteins, 

lipids, carbohydrates, and nucleic acids (Badwey and Karnovsky, 1980).  These 

molecules encompass superoxide, hydrogen peroxide, and hydroxyl radicals.  

Interestingly, recent studies of localized aggressive periodontitis have shown that 

peripheral neutrophils are hyper-responsive in respect of reactive oxygen species 

(ROS) generation after exposure to leukotriene B4 (LTB4) and interleukin (IL)-8 due 

to reduced gene and protein expression of diacylglycerol (DAG) kinase (Gronert et 

al., 2004), inhibition of which is known to amplify the respiratory burst in normal 

neutrophils (Topham and Prescott, 1999).  What’s more, it has been shown that 

peripheral neutrophils from chronic periodontitis patients exhibit hyper-reactivity 

following stimulation with (Fcγreceptor and F. nucleatum) and hyperactivity in terms 

of excess ROS release in the absence of exogenous stimulation (Matthews et al., 

2007). The exacerbated neutrophilic inflammation, in terms of reactive oxygen 
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species (ROS) and proteolytic enzyme production, in response to periodontal 

pathogens is possibly a factor underpin the tissue destruction found in periodontitis. 

Interestingly, monocytes are a substantial component of innate immunity that plays a 

pivotal role in periodontal disease (Jain and Darveau, 2010).  These cells migrate 

rapidly to the site of infection in a response to inflammatory stimuli and differentiate 

in the tissues into macrophages which can efficiently capture the attacking bacteria.  

Macrophages engulf and digest microbes resulting in cytokine release and antigen 

presentation which in turn drive a more efficient adaptive immune response (Teng, 

2006; Liu et al., 2010). 

The chronic inflammation in periodontal tissues stems from inappropriate host-

microbial interaction, in which chronic stimulation of host cells by bacterial PAMPs 

can result in excessive production of proinflammatory cytokines (e.g. IL-1β, TNF-α, 

IFN-γ and IL-6), leading to tissue destruction (Okada and Murakami, 1998; Preshaw, 

2008a; Liu et al., 2010; Hans and Hans, 2011).  As a consequence of the disease 

development, propagation and perpetuation, the cytokines and chemokines released 

by innate immune reactions drive the host response toward a vigorous cell-mediated 

adaptive immunity.  Hence, the formation of the inflammatory cell infiltrates in the 

connective tissues comprising predominantly of T-lymphocytes and macrophages 

ensue.  If the T-cell response does not restrain the microbial challenge, the pathologic 

lesion progress to B-cell/plasma predominant one.  The antibodies produced by B-

cell/plasma are either protective and therefore control the infection, or non-protective 

resulting in connective tissue destruction and bone loss (Gemmell et al., 2002; 

Gemmell et al., 2007).  The mononuclear infiltrate predominate the established 

periodontal lesion consist mainly of monocytes/macrophages, dendritic cells, T-cells, 

B-cells and plasma cells (Liu et al., 2010).  However, the key distinguishing feature of 
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chronic periodontitis is the predominance of B-cell/plasma infiltrate which is a 

declarative of B-cell/ plasma response (Kinane and Mark Bartold, 2007; Ohlrich et 

al., 2009).  Histologically, chronic periodontitis is characterized by the breakdown of 

connective tissue attachment and apical migration of junctional epithelium 

concomitant with plaque accumulation on root surface and subgingival calculus 

formation.  At this phase, the cell infiltrate predominates with plasma cells, while only 

few macrophages are noted in connective tissue.  In addition, fibroblasts undergo 

disfiguration and a reduction in number accompanied with encapsulation of the 

progression lesion by non-infiltrated fibrous band.  The infiltrating cells produce high 

levels of IL-1 and IL-6, these cytokines trigger the production of matrix 

metalloproteinases (MMPs), particularly by fibroblasts which, in turn cause a 

degradation in extracellular matrix and lead to attachment loss (Gemmell and 

Seymour, 1998; Nishikawa et al., 2002; Ohlrich et al., 2009; Smith et al., 2010).  

Chronic inflammatory processes in the neighbourhood of bone tissues influence the 

bone remodelling, and in most occasions resulting in a clinically osteolytic lesion.  Of 

note, both bone resorption and formation are enhanced in chronic inflammatory 

periodontitis and it is the proportional enhancement that will decide if the osteolytic 

lesion or sclerotic lesion will appear clinically.  The infiltrating leukocytes and 

resident fibroblasts release a number of stimulatory and inhibitory cytokines that 

influence the amount of osteoclast formation (osteoclastogenesis) in the 

inflammation-induced periodontal bone loss lesion (Liu et al., 2010). 

All in all, periodontal disease is a multi-factorial malady.  Dental plaque bacteria in 

the oral cavity have a causal influence on periodontal disease, and a wide variety of 

determinants and factors also paly important roles in its manifestation and progression 

(Nunn, 2003).  The oral microorganisms posses numerous potent virulence factors 
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that enhance their infectivity, provide the ability for the organism to multiply and 

persist in the periodontium (Van Dyke and Serhan, 2003), and also provoke a series of 

aberrant immune-inflammatory response in periodontal tissues (Amano, 2010).  The 

intricate interactions of the biofilm with the host immune-inflammatory response and 

subsequent alterations in bone and connective tissue homeostasis represent the actual 

cause for the most of the tissue damage that characterises periodontal disease 

(Kornman, 2008).  In short, bacterial plaque deposit is the primary factor initiating 

periodontal disease, however, the progression and perpetuation of this disease is 

mediated by the host-response to infection.  The host response to microbial challenge 

is influenced by a wide array of determinants and  factors which may be hereditary or 

environmental factors; these including subject characteristics, social and behavioural 

factors, genetic factors, and some systemic factors such as diabetes mellitus (Nunn, 

2003; Kornman, 2008).  Indeed, diabetes mellitus is deemed to be a genuine risk 

factor for periodontitis (Page et al., 1997; Kinane, 2001; Nunn, 2003; Kornman, 2008; 

Preshaw, 2008b). 

Therefore, a fuller understanding of the possible mechanisms for shared susceptibility 

between periodontal disease and diabetes could be crucial to identify novel 

therapeutic targets that are relevant in the management of these common conditions. 
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Figure ‎1.1 Schematic representation for the pathogenesis of human periodontitis 

Invading bacteria, antigens and numerous other virulence factors constitute the 

microbial challenge, and the host responds with an instant inflammatory and immune 

response to confront the challenge.  The host response drives the production of 

cytokines, eicosanoids and other inflammatory mediators and matrix 

metalloproteinases, which sustain the response and also orchestrate connective tissue 

and bone destruction.  All of these incidents are affected by both genetic and 

environmental or acquired factors which act as disease modifiers.  The clinical 

manifestation observed is a result of the aggregate of these events.  Taken and 

modified from (Page and Kornman, 1997; Kornman, 2008). 
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1.2 The‎pathogenesis‎of‎diabetes‎mellitus‎ 

 

It is becoming increasingly difficult to ignore the importance of diabetes mellitus as 

one of the major threats to human health in the 21st century (Passa, 2002; King, 2008; 

Levitt, 2008; Preshaw, 2008).  Diabetes Mellitus is a heterogeneous group of 

metabolic disorders, in which hyperglycemia accompanied with a disturbance in 

carbohydrate, fat, and protein metabolism.  The chronic elevation of blood glucose 

levels stems from either defects in insulin secretion or insulin action or both (Mealey 

and Oates, 2006; Tripathy and Chavez, 2010).  The most likely cause of insulin 

secretion deficiency is the dysfunction in the pancreatic β-cells (Mealey and Oates, 

2006), whilst the hypo responsiveness of the tissues to insulin action (termed Insulin 

Resistance IR) may represent one of the main complications of obesity (Rasouli and 

Kern, 2008).  Indeed, the regulation of insulin sensitivity and resistance depends on a 

number of factors including adipokines, inflammatory mediators, genetic factors and 

environmental stresses (Mealey and Oates, 2006; Preshaw et al., 2007). 

Body glucose homeostasis is mainly reliant on insulin (a hormone secreted by 

pancreatic β-cells).  Consequently, it seems that the reduction in insulin secretion 

and/or action can result in lowering the capability of glucose transport from blood 

stream into the tissue cells which give rise to hyperglycemia (Soskolne and Klinger, 

2001; Preshaw et al., 2007).  Polydpsia, polyphagia, and polyuria are the central 

symptoms of diabetes mellitus.  In fact, elevated blood glucose level and the resultant 

disturbance in osmotic homeostasis is the principal causes of these symptoms 

(Soskolne and Klinger, 2001).  Diabetes complications have a significant detrimental 

influences to human health, these complications are numerous and serious, it 

encompass retinopathy, nephropathy, neuropathy, atherosclerosis and delayed wound 
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healing (Soskolne and Klinger, 2001; Preshaw et al., 2007; King, 2008; Preshaw, 

2008b).  Indeed, periodontal disease has been considered as the sixth complication of 

diabetes (Loe, 1993).  

Diabetes mellitus is correlated with diminished life expectancy, escalated morbidity 

and escalated mortality.  T2DM patients in the UK have a mortality rate nearly 

twofold as high as those without diabetes (Mulnier et al., 2006). Diabetes has a 

deleterious irreversible impact on the micro- and macro-vasculature, with 

cardiovascular disease (CVD), myocardial infarction and stroke being the 

fundamental cause of mortality in patients with T2DM (Dale et al., 2008). What's 

more, diabetic nephropathy, retinopathy and neuropathy are principal causes of renal 

failure, blindness and sensory loss (Frank, 2004; Gilbertson et al., 2005).  Type 2 

diabetes probably plays a major part in escalating the risk for cardiovascular disorders 

which is manifested clinically as myocardial infarctions, angina, peripheral artery 

disease (leg claudication, gangrene), and carotid artery disease (strokes, dementia) 

(NICE, 2008).  Both the duration of diabetes and the degree of glycaemic control are 

leading factors for all diabetic complications (UKPDS, 1998). 

Therefore, diabetes mellitus and its affiliated complications constitute a substantial 

health-care burden globally.  It is associated with a high morbidity and mortality 

worldwide (King, 2008).  Diabetes has amounted to epidemic level; the international 

Diabetes Federation (IDF) estimates that currently diabetes affects more than 246 

million of the world population and this is anticipated to increase to 380 million 

people by 2025 (IDF, 2006). Between 2007 and 2025, the predicted growth 

worldwide is 55%, with the greatest raises in the developing countries of Africa, Asia 

and South America (IDF, 2006). Within Europe, it is estimated that 53.2 million or 

8.4% of the adult population have diabetes and this is predicted to increase by 21% to 



1   Introduction  18 

64.1 million or 9.8% in 2025, with the highest increase being seen in the older age 

group (IDF, 2006).  A plethora of recent research within the UK has indicated an 

increase in the prevalence (Newnham et al., 2002; Fleming et al., 2005; Lusignan et 

al., 2005; Gonzalez et al., 2009) and incidence (Ryan et al., 2005; Forouhi et al., 

2007; Gonzalez et al., 2009) of diabetes cases.  Furthermore, the World Health 

Organization (WHO) predicts that there will be around 366 million people in the 

United States who have diabetes by 2030 (Smyth and Heron, 2006). 

The idiom ‘diabetes mellitus’ embraces a group of metabolic disorders, characterised 

by hyperglycaemia, ensuing from defects in insulin secretion, insulin action, or both.  

Diabetes is classified based on the underlying aetiological factor into four main 

categories includes; type 1, type 2, gestational and other specific types of diabetes.  In 

effect, the two broad categories; type 1 and type 2 represent the vast majority of cases 

with diabetes mellitus.  According to the classification by the American Diabetes 

Association (ADA) diabetes is generally divided on the basis of pathophysiology 

involved into Type 1 Diabetes Mellitus (formerly insulin dependent Diabetes 

Mellitus) and Type 2 Diabetes Mellitus (formerly non-insulin dependent Diabetes 

Mellitus) (2003).  Type 1 stems from the autoimmune destruction of insulin 

producing islet cells which in turn stops the insulin secretion (Soskolne and Klinger, 

2001; Mealey and Oates, 2006).  On the other hand, a combination of insulin 

resistance in peripheral tissues with a defect in insulin secretion is responsible for type 

2 diabetes mellitus (Mealey and Oates, 2006).  Clearly, type 2 diabetes accounts for 

almost 90-95% of the total number of diabetic cases whilst around 5-10% of diabetic 

patients have type 1 (ADA, 2003).  Moreover, type 1 diabetes occurs mainly in 

children and adolescents while type 2 usually found in adults (Mealey and Oates, 

2006; King, 2008).  The former term for type 2 diabetes mellitus (T2DM) was non-
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insulin dependent diabetes mellitus (NIDDM).  The origin of this term comes from 

the fact that the patient suffers from this disease can remain alive without the 

necessity for insulin treatment.  The initial event of type 2 diabetes is a defect in 

insulin action at the target cells which is named insulin resistance.  During the initial 

stages in the natural history of T2DM, the body increases insulin output which results 

in hyperinsulinaemia to compensate for the reduction in insulin action and maintain 

normal glucose tolerance.  As the insulin resistance worsens, the body is not being 

able to control any further rise in metabolic load.  There is a decline in insulin 

production affiliated with peripheral insulin resistance and diminished β-cell function.  

Ultimately, insulin secretions become diminished and inadequate to recompense for 

the insulin resistance, thereby driving to impaired glucose tolerance and overt type 2 

diabetes.  Subjects with diabetes can endure undiagnosed for several years since the 

hyperglycemia occur progressively and often without symptoms (Rhodes, 2005; 

Mealey and Ocampo, 2007; Tripathy and Chavez, 2010).  There are several 

environmental risk factors for the pathogenesis of T2DM, among these are age, diet, 

lack of physical activity and obesity (Mealey and Ocampo, 2007). Indeed, obesity is 

considered as one of the most significantly important risk factors of this disease 

(Passa, 2002; Sethi and Vidal-Puig, 2005; Pischon et al., 2007; Saito and Shimazaki, 

2007).  Alternatively, recent studies counted diabetes as one of the important 

metabolic complications of obesity (Rasouli and Kern, 2008).  The role of obesity in 

the development of T2DM is now widely accepted.  A body mass index (BMI) above 

25 kg/m
2
 is characterized as overweight, and a BMI above 30 kg/m

2 
is characterized 

as obese.  According to the World Health Organisation (WHO), there are more than 

one billion adults who are overweight world wide, at least 300 million of them being 

clinically obese.  A sedentary lifestyle owing to high calorie and fat food consumption 
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combined with reduced physical activity represent the main reason of high obesity 

prevalence world wide (WHO, 2005).   

A large and growing body of literature has discussed the notion of obesity as a 

proinflammatory condition implicated in the development of insulin resistance and 

type 2 diabetes (Shoelson et al., 2007; Shoelson and Goldfine, 2009; Kim, 2010).  

Adipose tissue is an active contributor to whole body energy homeostasis; it has been 

granted multifarious functions involving the assimilation, preservation and synthesis 

of lipid, and the synthesis and secretion of a diverse range of adipokines.  Apart from 

being the main energy depot of the body, adipose tissue is also a source of 

proinflammatory mediators that regulate the immune-inflammatory response and 

thence be partly responsible for the development of obesity associated with type 2 

diabetes (Trayhurn and Wood, 2004; Lago et al., 2007).  Interestingly, heterogeneous 

types of cells constitute the adipose tissue; this encompasses adipocytes, pre-

adipocytes, endothelial cells, fibroblasts, and immune-competent cells (macrophages 

and lymphocytes) (Juge-Aubry et al., 2005; Wozniak et al., 2009).  Adipocytes 

secrete various proteins such as leptin and adiponectin which are potentially important 

in glucose homeostasis and lipid metabolism (Zhang et al., 1994; Scherer et al., 

1995).  The theory that obesity mediates inflammation became tangible with the 

discovery of the fact that an increased body mass index is positively correlated with 

an increase in adipose tissue mass, numbers of adipocytes and infiltrating 

macrophages (Weisberg et al., 2003).  Adipose tissue macrophages (ATMs) emerged 

as pivotal sources of proinflammatory mediators (Olefsky and Glass, 2010).  In fact, 

activation of ATMs triggers the release of a diversity of chemokines, this in turn 

attract additional macrophages which boot to develop chronic inflammatory state.  

Obese individuals are well known to be associated with chronic low grade 



1   Introduction  21 

inflammation (Zeyda and Stulnig, 2009).  This can be illustrated by the elevated 

levels of lipids, free fatty acids, various proinflammatory mediators and acute phase 

proteins in the circulation of obese individual (Bergman and Ader, 2000; Das, 2001; 

Bullo et al., 2003; Trayhurn and Wood, 2004).  Exposure of various organs to free 

fatty acids could be partly responsible for insulin resistance by suppressing glucose 

uptake, glycogen synthesis, and glycolysis, and by liver glucose overproduction 

(Bergman and Ader, 2000).  Many lines of evidence have shown that ATMs and 

adipocytes exhibit a pro-inflammatory activity by the production of large amounts of 

proinflammatory mediators such as TNF-α, IL-1β, IL-6 and resistin, also chemokines 

such as monocyte chemoattractant protein (MCP)-1 and IL-8 (Hotamisligil et al., 

1995; Mohamed-Ali et al., 1997; Trayhurn and Wood, 2004; Zeyda and Stulnig, 

2009).  Furthermore, a significant elevation in inflammatory markers such as IL-6 and 

C-reactive protein (CRP) correlated with various components of insulin resistance in 

obese individuals (Pickup et al., 1997; Festa et al., 2000).  It has become increasingly 

evident that proinflammatory mediators exaggerate the inflammatory reaction and 

subsidize the establishment of insulin resistance and type 2 diabetes.  More 

specifically, it is believed that TNF-α plays a pivotal role in insulin resistance 

development at the receptor level.  That is, TNF-α triggers serine phosphorylation of 

insulin receptor substrate 1 (IRS-1), blocks autophosphorylation of (IRS-1), and also, 

it reduces tyrosine kinase activity of the insulin receptor (Hotamisligil et al., 1996; 

Hirosumi et al., 2002).  Alternatively, IL-6 provokes inhibition of the glucose 

stimulated insulin release.  Escalated levels of IL-6 also drive to increased production 

of TNF-α and CRP, which in turn, may also have indirect effect on insulin resistance 

(Fernandez-Real and Ricart, 2003).  In the last few years, inflammatory reaction was 

increasingly recognized as an important effector mechanism of obesity, insulin 
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resistance and type 2 diabetes.  Given the crucial importance of inflammation in type 

2 diabetes, the study of the interactions of these important pathophysiological 

reactions may shed light on the possible underpinning mechanism by which T2DM is 

linked to periodontal disease. 

 

1.3 Periodontal‎disease‎and‎Diabetes‎Mellitus:‎the‎cross-

susceptibility 

 

In recent years, there has been an increasing amount of literature on the relationship 

between periodontal disease and diabetes (Soskolne and Klinger, 2001; Nishimura et 

al., 2003; Mealey and Oates, 2006; Preshaw et al., 2007; Preshaw, 2008).  Diabetes 

mellitus has long been reported to act as an influential risk factor for gingivitis and 

periodontitis (Soskolne and Klinger, 2001; Nishimura et al., 2003; Mealey and Oates, 

2006; Preshaw et al., 2007; Preshaw, 2008).  The prevalence and severity of gingival 

inflammation have been demonstrated to be higher in type 1 diabetic children when 

compared with the non-diabetic control group (Mealey and Oates, 2006; Lalla et al., 

2007).  In addition, an increased severity (Lalla et al., 2007) and prevalence for 

periodontitis have been noted in children with type 1 diabetes in comparison with 

control non-diabetic subjects (Mealey and Oates, 2006).  Likewise, type 2 diabetes 

has been associated with higher prevalence, incidence and severity of periodontitis 

when compared with non-diabetic adults.  In fact, the risk for periodontal disease is 

considerable in diabetes (both type 1 and 2), and it increases whenever the glycaemic 

control is getting worse (Preshaw, 2008).  Many authors have found a significant 

association between diabetes and gingival inflammation.  The prevalence, incidence 
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and severity of gingivitis have been illustrated to be greater in subjects with diabetes.  

For instance, the prevalence of gingivitis was higher in children with type 1 diabetes 

when compared with non-diabetic controls with similar plaque levels (Cianciola et al., 

1982).  Moreover, in children with similar plaque levels, the number of site with 

gingival inflammation was twice in diabetics comparing to non-diabetic controls (de 

Pommereau et al., 1992).  Indeed, poor glycaemic control can boost the severity of 

gingivitis in diabetic children (Gusberti et al., 1983), whereas improvement in 

glycaemic control is associated with diminished gingival inflammation (Sastrowijoto 

et al., 1990; Karjalainen and Knuuttila, 1996).  In adults with type 1 diabetes, gingival 

bleeding was substantially greater in diabetic subjects with poor glycaemic control 

compared to either good controlled diabetic individuals or non-diabetics.  However, 

when the glycaemic control was improved, the number of bleeding sites diminished 

(Ervasti et al., 1985).  In adults with type 2 diabetes, the gingival inflammation was 

much higher than non-diabetics, with the greatest degree of inflammation in 

individuals with poor glycaemic controls (Cutler et al., 1999).  In an experimental 

gingivitis study, it has been demonstrated that the development of gingival 

inflammation was earlier and more conspicuous in well-controlled adult type 1 

diabetic subjects than non-diabetic controls, in spite of comparable levels of plaque 

accumulation and comparable bacterial composition of the plaque, suggesting a 

hyper-inflammatory gingival response in diabetes (Salvi et al., 2005).  These studies 

points out that the presence of diabetes is frequently, but not consistently, affiliated 

with increased gingival inflammation.  Moreover, the level of glycaemic control can 

be influential in the gingival response to bacterial challenge in individuals with 

diabetes.   
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In a similar pattern, sufficient evidence exists that the risk for periodontitis is 

increased in the presence of diabetes.  Several epidemiological studies have identified 

an increase in the extent and severity of periodontitis in diabetic adults (Bacic et al., 

1988; Shlossman et al., 1990; Emrich et al., 1991; Tervonen and Oliver, 1993).  For 

instance, in a study of periodontal disease in Pima Indian of Arizona, a population 

with a remarkably high prevalence of type 2 diabetes, researchers concluded that the 

prevalence and severity of attachment loss and bone loss was much greater among 

diabetic individuals when compared to non-diabetic controls in all age groups 

(Shlossman et al., 1990; Emrich et al., 1991).  Likewise, comparable results 

indicating a greater risk of attachment loss and bone loss in diabetic adults were 

reported in other cross-sectional and case-control studies (Bridges et al., 1996; Collin 

et al., 1998; Cutler et al., 1999; Moore et al., 1999; Tervonen et al., 2000; Campus et 

al., 2005).  Furthermore, it was demonstrated that the risk of having periodontitis 

increased by nearly threefold in patient with type 2 diabetes compared with subjects 

without diabetes (Shlossman et al., 1990; Emrich et al., 1991).  An increased risk of 

progressive periodontal destruction in subjects with diabetes has also been 

demonstrated in longitudinal studies of periodontal disease (Nelson et al., 1990; 

Taylor et al., 1998).  It has been argued that the association between glycaemic 

control of diabetes and periodontal status is difficult to characterize definitely 

(Mealey and Moritz, 2003).  The reason for that is the considerable heterogeneity 

found in diabetic community, that is to say, although many poorly controlled diabetics 

suffer extensive periodontal destruction (Tsai et al., 2002), others do not (Barnett et 

al., 1984).  In general, therefore, it seems that glycaemic control of diabetes is a 

pivotal factor contributes to the onset and progression of periodontal disease.  Several 

studies have confirmed that poor glycaemic control promotes the development and 
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progression of periodontitis (Tervonen et al., 2000; Tsai et al., 2002; Lu and Yang, 

2004; Campus et al., 2005; Jansson et al., 2006; Peck et al., 2006).  In fact, data from 

the National Health and Nutrition examination Survey (NHANES) III were analysed 

to evaluate the relationship between glycaemic control of T2DM and severe 

periodontal disease in US adult population ages 45 years and above.  From the 4343 

persons in the NHANES III database, the poorly controlled diabetic subjects had a 

significantly greater prevalence of sever periodontitis when compared with non-

diabetics (odds ratio=2.90); on the contrary, diabetics with good glycaemic control 

had no significant increase in the risk of periodontitis (Tsai et al., 2002).  Moreover, 

diabetics with poor glycaemic control had significantly greater risk for advanced 

attachment loss, progressive bone loss and deeper periodontal pockets than well 

controlled diabetics (Tervonen and Knuuttila, 1986; Safkan-Seppala and Ainamo, 

1992; Seppala et al., 1993; Tervonen and Oliver, 1993; Seppala and Ainamo, 1994; 

Taylor et al., 1998; Guzman et al., 2003). 

Taken together, it can be established that people with diabetes have increased risk to 

develop periodontal diseases, both gingivitis and periodontitis.  Also, the potential 

impact of glycaemic control on periodontal health is tremendous.  That is to say, a 

poorer glycaemic control underpinning a poorer periodontal health; nonetheless, well-

controlled diabetics seem to have a comparable risk of periodontal disease as the non-

diabetics. 

A better comprehension of the mechanisms underpinning the accelerated periodontal 

disease associated with diabetes is fundamental to certify the relationship between 

diabetes and periodontal disease.  Notwithstanding, the considerable amount of 

studies describing the pathobiological interactions linking between diabetes and 

periodontal disease, the precise mechanism have yet to be fully recognized.  The 



1   Introduction  26 

potential disparities in the subgingival microflora between diabetics and non-diabetics 

have been investigated by previous research as a possible motive for the greater 

prevalence, incidence and severity of periodontal destruction in subjects with 

diabetes.  Nevertheless, most studies demonstrated few variations in the subgingival 

microbiota between periodontitis patients with and without diabetes (Zambon et al., 

1988; Sastrowijoto et al., 1989; Sbordone et al., 1998).  The evident deficiency of 

significant differences in existing periodontal pathogens between people with or 

without diabetes, suggests that alterations in the host immune-inflammatory response 

may be essentially responsible for the more aggressive periodontal destruction noted 

in patients with diabetes.   

As described earlier in this review, it is now clearly recognized that the immune-

inflammatory response perform a pivotal role in the pathogenesis of periodontal 

disease.  Periodontal disease occurrence depends on the interaction between microbial 

stimulation and the host response which seems to be orchestrated by complex webs of 

cytokines working in synergy (Preshaw and Taylor, 2011).  It has been demonstrated 

that chronic inflammatory process contributes to the pathology associated with both 

diabetes and periodontal disease. It is also suggested that diabetes modifies 

periodontitis principally through its effect on the normal immune and inflammatory 

defences (Kinane and Marshall, 2001; Southerland et al., 2006).  It is likely that 

modulations in inflammatory processes stemming from diabetes can give rise to a 

further dysregulation of immune-inflammatory responses in the periodontium, 

resulting in increased periodontal destruction (Nishimura et al., 1998; Salvi et al., 

1998; Ryan et al., 2003; Mealey and Oates, 2006; Preshaw, 2009; Santos et al., 2010; 

Venza et al., 2010).  There is growing evidence that diabetes is a state of chronic 

inflammation, characterised by abnormal cytokine production, elevated 
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concentrations of acute-phase reactants in plasma, sialic acid and other stress-induced 

molecules (Crook et al., 1993; Pickup et al., 1997; Sethi and Hotamisligil, 1999).  For 

instance, elevated levels of IL-6 and TNF-α were recorded in plasma of obese patients 

and those with type 2 diabetes (Dandona et al., 2004).  Hyperglycemia also results in 

elevated circulating concentrations of IL-6, IL-18, and TNF-α (Esposito et al., 2002).  

It has been shown that a close relationship presents among periodontitis, obesity and 

diabetes with adipose tissue and chronic inflammation being the common 

denominators (Genco et al., 2005; Saito and Shimazaki, 2007).  Therefore, adipose 

tissue may be deemed as a pivotal contributor in mechanism that links diabetes and 

periodontal disease.  Several biologically active molecules are secreted by adipose 

tissue; these include cytokines such as IL-6 and TNF-α, and adipokines such as 

resistin, leptin and adiponectin (Bastard et al., 2006).  The cytokines have a direct 

proinflammatory effects on inflammatory cells, involving those in periodontal tissues.  

On the other hand, adipokines are important regulators of inflammatory responses, 

such as leptin which act as a stimulator of neutrophil chemotaxis and cytokines 

releases by monocytes (Sanchez-Margalet et al., 2003).  Furthermore, a variety of 

immune-competent cells are infiltrating adipose tissue such as macrophages and 

lymphocytes, which are responsible for an important part of the locally produced 

cytokines and adipokines.  It is noteworthy that the number of macrophages is much 

higher in adipose tissue of obese individuals than in that of lean subjects, and seems to 

be a pivotal source of cytokines (Weisberg et al., 2003).  In recent years, there has 

been a large and growing body of research exploring the role of adipokines in 

periodontal disease associated with diabetes (Johnson and Serio, 2001; Bozkurt et al., 

2006; Barksby et al., 2007; Karthikeyan and Pradeep, 2007; Yamaguchi et al., 2007; 

Preshaw, 2009; Shimada et al., 2010). 
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Another mechanism may be responsible for the linkage between diabetes and 

periodontal disease is the significant detrimental influences of diabetes on the immune 

cell function including polymorphonuclear leukocytes (PMNs or neutrophils), 

monocytes and macrophages (Mealey, 1999; Lalla et al., 2001; Mealey and Oates, 

2006).  Indeed, a fundamental component for establishment and maintenance of 

periodontal health is an intact host immune-inflammatory response.  PMNs represent 

the first-line of nonspecific defence against the invading bacteria and are responsible 

for killing periodontopathic microorganisms within periodontal pocket (Van Dyke 

and Serhan, 2003).  In diabetes, the adherence, chemotaxis and phagocytosis of 

neutrophil is diminished and this inhibits their essential function in bacterial killing 

and allowing proliferation of periodontopathic bacteria which in turn cause further 

periodontal destruction (Mowat and Baum, 1971; Bagdade et al., 1978; Manouchehr-

Pour et al., 1981; Bissada et al., 1982; Marhoffer et al., 1992; Mealey and Oates, 

2006).  On the other hand, the behaviour of monocytes and macrophages in diabetes is 

the opposite from that of neutrophil.  These cells show hyperactivity in diabetes, it 

produces significantly higher levels of proinflammatory cytokines and mediators in an 

attempt to combat the bacterial antigens (Salvi et al., 1997a; Salvi et al., 1997b; 

Naguib et al., 2004; Mealey and Oates, 2006).  In diabetic patients, the peripheral 

blood monocytes produce higher levels of tumour necrosis factor α (TNF-α) in 

response to Porphyromonas gingivalis antigen compared to monocytes from subjects 

without diabetes (Salvi et al., 1997a; Mealey and Oates, 2006).   

The formation of advanced glycation end-products (AGEs) possibly contributes to the 

link between the pathogenesis of diabetes and periodontal disease.  As a consequence 

of a prolonged exposure to hyperglycaemic state owing to diabetes, circulated and 

immobilized proteins become glycated, resulting in irreversible formation of altered 
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protein molecules known as advanced glycation end-products (AGEs) (Brownlee et 

al., 1988; Brownlee, 1994; Monnier et al., 1996).  Therefore, in people with diabetes 

and under the influence of hyperglycaemia, the levels of AGEs are elevated, and as a 

result of this, the expression of high affinity cell surface receptor (RAGEs) for 

advanced glycation end-products remarkably raise as well (Mealey and Ocampo, 

2007).  Intriguingly, the formation of AGEs also happens in the periodontium, and 

greater levels of periodontal AGEs accumulation was detected in those with diabetes 

than in non-diabetic controls.  Furthermore, the expression of the RAGEs in gingival 

tissues was much higher in diabetic patients when compared with subjects without 

diabetes (Schmidt et al., 1996b; Katz et al., 2005).  Receptor for AGEs (RAGEs) is 

present on the surface of a diversity of cells such as smooth muscle cells, endothelial 

cells, neurons, monocytes and macrophages (Schmidt et al., 1994; Pietropaoli et al., 

2010).  In fact, AGEs-RAGE interaction could well be involved in many cellular and 

connective tissue alterations occur in gingival tissues of diabetics, which contribute 

ultimately to increased susceptibility to infection, vascular changed and impaired 

healing frequently associated with diabetes (Seppala et al., 1997; Soskolne and 

Klinger, 2001).  For instance, the AGEs-RAGE binding on endothelial cells resulting 

in increase in vascular permeability, hyper-expression of adhesion molecules and 

thrombus formation (Schmidt et al., 1996a; Wautier and Guillausseau, 1998; Schmidt 

et al., 1999).  Furthermore, the engagement of AGEs to RAGE on 

monocytes/macrophages increases cellular oxidant stress and provokes the 

transcription factor nuclear kappa B (NF-κB), which transforms the phenotype of 

monocytes/macrophages and results in hyper-production of proinflammatory 

cytokines such as IL-1β, TNF-α and IL-6 (Schmidt et al., 1996a; Schmidt et al., 

1999).  Therefore, the remarkable elevation in gingival crevicular fluids levels of IL-
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1β, TNF-α and IL-6 found in diabetics compared to non-diabetics may be partly 

explained by the interaction between AGEs and RAGE in periodontal tissues 

(Engebretson et al., 2004; Mealey and Oates, 2006).  Of note, both AGEs and RAGE 

are elevated in diabetes.  The enhanced cellular oxidant stress stemming from 

AGEs/RAGE interaction drive an altered cellular phenotype and cellular dysfunction 

which contribute to the pathogenesis of periodontitis in diabetics (Lalla et al., 1998). 

All in all, it can be concluded that diabetes is a complex disease characterized by 

multiple variables that can impact on the development of complications, including 

periodontitis.  Although, the precise mechanism of action is not yet fully 

comprehended, poor glycaemic control as well as prolonged duration of 

hyperglycaemic state, are risk factors for periodontitis and dysregulated host function.  

Most likely, a combination of several factors eventually leads to the elevated 

prevalence and severity of periodontitis in people with diabetes.  These factors may 

function individually or synergistically to be instrumental in the development of 

periodontal disease.  Continued scientific investigation is fundamentally important for 

improving our knowledge of the pathological processes that link diabetes and 

periodontal disease, and thereby to determine the primary target for the treatment of 

periodontitis in diabetic population. 
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Figure ‎1.2 Schematic representation of the proposed bi-directional relationship 

between periodontal disease and diabetes 

The exacerbation and dysregulation in the inflammatory responses play a central role 

in interrelationship between periodontal disease and diabetes.  Hyperglycaemia drives 

numerous proinflammatory effects that influence various body tissues including the 

periodontium, leading to localized dysregulated immuno-inflammatory reactions.  

Inappropriate immune-inflammatory responses develop in the periodontium in 

response to perpetual challenge by subgingival bacteria, which are further aggravated 

by smoking.  Taken from (Preshaw et al., 2012). 
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1.4 Adipose‎tissue‎and‎adipokines‎in‎inflammation‎and‎

immunity 

 

In recent years there has been an increasing interest of obesity as a major global 

health problem (Beltowski, 2006; Guzik et al., 2006; Rasouli and Kern, 2008).  In 

fact, a remarkable increase in the prevalence (Rasouli and Kern, 2008) and incidence 

(Fantuzzi, 2005; Tilg and Moschen, 2006) of obesity has been reported worldwide.  

Obesity is a chronic metabolic disorder associated with a substantially increasing risk 

for numerous diseases.  These diseases are termed metabolic syndrome which 

including insulin resistance, diabetes, dyslipidemia, hypertension and cardiovascular 

disease (Rasouli and Kern, 2008; Catalan et al., 2009). In fact, it is becoming 

increasingly difficult to ignore the importance of obesity as a crucial risk factor of 

insulin resistance and type 2 diabetes mellitus (Bloomgarden, 2002).    Indeed, there is 

a large volume of published studies describing the tremendous global increase in adult 

and children obesity and associated pathologies, specifically cardiovascular disease 

and type 2 diabetes mellitus (Trayhurn and Wood, 2004; Tilg and Moschen, 2006; 

Zavalza-Gomez et al., 2008).  Obesity is characterized by a pathological accumulation 

of body fat in an expanded adipose tissue mass.  It stems from an imbalance between 

energy (food) intake and total energy expenditure; in other words, it occurs when the 

energy intake is in surplus of total energy consumption (Trayhurn, 2007).   

There are various methods for appraising overweight, obesity and fat distribution such 

as measurements of weight, height, waist, hip, and calculations of waist-to-hip ratio 

(WHR), waist to height ratio (WHtR), and body mass index (BMI) (Al-Odat, 2012; 

Al-Odat et al., 2012).  For several years, the waist-hip ratio (WHR) was used for 

evaluation of the body fat distribution.  But in some studies, it was reported that waist 
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circumference is more closely associated with the central fat distribution than WHR 

(Pouliot et al., 1994; Fredriks et al., 2005).  Recently, another anthropometric index, 

waist-to-height ratio (WHtR), was shown to be better correlated with metabolic risk 

factors (Hsieh and Yoshinaga, 1995; Ashwell and Gibson, 2009). Nevertheless, BMI 

represent the most widely used measure in definition of adult obesity (Al-Odat, 2012; 

Al-Odat et al., 2012). 

Due to the extraordinary rise in the occurrence of obesity and its metabolic 

consequences during recent decades, adipose tissue is now the focus of much research 

effort.  Indeed, a large body of evidence has described adipose tissue as an active 

contributor to whole body homeostasis, through its participation in regulating a 

variety of physiological and pathological processes in the body  (Berg and Scherer, 

2005; Matarese et al., 2005; Fonseca-Alaniz et al., 2007; Kralisch et al., 2007; Lago 

et al., 2007; Wannamethee et al., 2007; Ahima and Osei, 2008; Antuna-Puente et al., 

2008; Fernandez-Riejos et al., 2008; Wozniak et al., 2009; Fernandez-Riejos et al., 

2010).  Over the past few years, the belief that adipose tissue is a passive depot of fat 

and a layer of insulation has been altered dramatically.  Recently, adipose tissue has 

been recognised as representing an essential and effective endocrine organ, posting 

and receiving signals that orchestrate appetite, energy consumption, insulin 

sensitivity, endocrine and reproductive systems, bone metabolism, in addition to 

inflammatory and immune responses (Fantuzzi, 2005; Tilg and Moschen, 2006; 

Catalan et al., 2009).  The mechanism by which adipose tissue regulates these 

processes is by expressing and releasing a bioactive messenger molecules such as 

‘adipokines’, including leptin, adiponectin, visfatin and resistin, as well as cytokines 

and chemokines such as TNF-α, IL-6, MCP-1 and PAI.  These molecules are secreted 

either by adipocytes or non-adipocyte fraction of adipose tissue such as the infiltrated 
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macrophages (Fain et al., 2004; Juge-Aubry et al., 2005; Guzik et al., 2006; Gesta et 

al., 2007).  In fact, adipokines have a considerable physiological effects on various 

body organs including CNS, liver, bone, reproductive organs, adipose tissues, skeletal 

muscles, immune cells and vascular system (Hill et al., 2009).  Ultimately, the 

alterations in the production of adipokines stemming from excessive fat accumulation 

in obesity can lead to a dramatic adverse effect on the health by creating a state of low 

grade inflammation which could contribute to the development of insulin resistance 

and type 2 diabetes, may act as a possible linkage between diabetes and periodontal 

disease (Pischon et al., 2007; Saito and Shimazaki, 2007; Preshaw, 2009; Shimada et 

al., 2010).  This section of the review will concentrate chiefly on discussing the role 

of adipose tissue and related adipokines in orchestrating inflammation and immunity. 

1.4.1 The cellular subtypes of adipose tissue 

 

There are two main forms of adipose tissue, white adipose tissue and brown adipose 

tissue.  The white adipose tissue represents most of the adipose tissue in mammals 

and is deemed to be an energy depot for the body.  On the other hand, brown adipose 

tissue occurs basically in human neonates and is responsible for body temperature 

modulation.  It is well known that adipocytes represent the vast majority of cells in 

white adipose tissue, though; white adipose tissue also contains other cell types 

including pre-adipocytes, endothelial cells, fibroblasts, leukocytes and most 

significantly macrophages which play a central role in obesity.  Mounting evidence 

highlights the considerable role of resident macrophages in adipose tissue in immune 

system modulations (Weisberg et al., 2003; Xu et al., 2003; Curat et al., 2004; 

Fantuzzi, 2005; Tilg and Moschen, 2006; Fonseca-Alaniz et al., 2007; Olefsky and 

Glass, 2010; Wentworth et al., 2010).  For instance, it has been shown that 11% of 
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cells in stromal-vascular fraction of human adipose tissues are composed of resident 

macrophages (Curat et al., 2004).  Indeed, an elevated numbers of adipose tissue 

macrophages have been observed in obesity, and is directly proportional to both body 

mass and adipocyte size (Weisberg et al., 2003).  The adipose tissue of obese human 

and rodents embraces elevated numbers of macrophages, and once activated, 

macrophages release a host cytokines such as IL1, IL-6 and TNF-α (Wellen and 

Hotamisligil, 2003).  In subjects with obesity and insulin resistance, a high expression 

of macrophages marker was observed, and was also associated with the expression of 

IL-6 and TNF-α (Weisberg et al., 2003; Di Gregorio et al., 2005).  It is now broadly 

accepted that the expansion in adipose tissue mass in obesity is correlated with an 

increased infiltration of a classically activated macrophages phenotype from the 

circulation (Coenen et al., 2007).  These macrophages are commonly recruited to sites 

of tissue injury and have been shown to be transformed into a pro-inflammatory state 

with elevated expression of TNF-α (Lumeng et al., 2007).  Taken together, increased 

adipose tissue mass in obese individuals is associated with increased number of 

activated macrophages in adipose tissue, which seems to be responsible for the low 

grade chronic inflammatory response observed in obesity. 
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Figure ‎1.3 Cellular components of adipose tissue 

Adipose tissue composed mainly of adipocytes, precursor cells (pre-adipocytes), 

fibroblasts, vascular cells (such as endothelial cells and smooth muscle cells) and 

immune cells.  It also contains blood vessels and extracellular matrix.  Macrophages 

and T cells represent an active components because of it pivotal role in determining 

the immune status of the adipose tissue.  Taken from (Ouchi et al., 2011). 
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1.4.2 Visfatin/PBEF/Nampt 

 

Visfatin is a recently discovered adipokine, synthesized and secreted primarily by 

visceral fat (Fukuhara et al., 2005).  It is 52-kDa protein encoding a polypeptide of 

491 amino acids (Moschen et al., 2007; Adeghate, 2008; Sommer et al., 2008).  

Visfatin was originally identified as a cytokine-like secreted protein that synergizes 

the effect of IL-7 and stem cell factor in promoting the growth and differentiation of 

B-cell lineage precursors.  It was originally called Pre-B cell colony enhancing factor 

(PBEF) (Samal et al., 1994).  This protein has enzymatic activity and acts as a 

nicotinamide phosphoribosyltransferase (Nampt) (Revollo et al., 2007).  In fact, it 

was demonstrated that visfatin has insulin mimetic properties (Fukuhara et al., 2005),  

It functions by binding to a distinct site on insulin receptors which differs from the 

insulin binding sites (Adeghate, 2008).  Although Fukuhara et al (2005) study has 

been retracted, the authors continued to stand by their conclusions (Fukuhara et al., 

2007) and other studies suggest an insulin mimetic effect of visfatin on cultured 

osteoblasts (Xie et al., 2007) and a correlation between plasma visfatin levels with 

obesity and diabetes (Chen et al., 2006; Sandeep et al., 2007).    Despite the fact that 

visfatin is a visceral adipokine, it has been found in skeletal muscle, liver, bone 

marrow and lymphocytes, in addition it occurs as a secreted protein in the circulation.  

In brief, visfatin/PBEF/Nampt may be considered as a multifunctional protein (Luk et 

al., 2008) acting as a hormone (Fukuhara et al., 2005), cytokine (Samal et al., 1994) 

and/or enzyme (Revollo et al., 2007). In other words, visfatin, PBEF, and Nampt are 

different terms representing an identical protein with multiple biological functions. 

One of the fundamental functions of visfatin/PBEF/Nampt is the modulation of 

immune and inflammatory processes.  Moschen et al (2007) has revealed that human 
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leukocytes can be activated by visfatin/PBEF/Nampt to produce several pro and anti-

inflammatory cytokines.  On the one hand, visfatin/PBEF/Nampt stimulates CD14+ 

monocytes to produce IL-1β, TNF-α and IL-6.  On the other hand, anti-inflammatory 

cytokines such as IL-1Ra and IL-10 might be produced by monocytes as a result of 

visfatin stimulation.  Moreover, this adipokine enhanced the surface expression of the 

co-stimulatory molecules CD54, CD40 and CD80 in CD14+ monocytes (Moschen et 

al., 2007).  Furthermore, it has been noted that visfatin/PBEF/Nampt was able to 

activate antigen presenting cells (APCs) and enhance phagocytosis in monocytes 

(Moschen et al., 2007).  In addition, trafficking CD14+ monocytes and CD19+ B-

cells into sites of inflammation is another important function of visfatin which is 

deemed to be a strong chemotactic factor for these cells (Tilg and Moschen, 2008b). 

Moreover, it has been reported that visfatin activated nuclear factor-kappaB (NF-κB) 

which have a crucial role in regulating immune responses (Moschen et al., 2007; 

Adya et al., 2008). 

Indeed, it has been illustrated that serum visfatin levels were positively correlated 

with IL-6 and CRP levels in human serum, which in turn corroborate the significance 

of visfatin as inflammatory cytokine (Oki et al., 2007). Up-regulation in the 

visfatin/PBEF/Nampt has been also identified in a variety of pathophysiological 

conditions of the immune system including rheumatoid arthritis (Nowell et al., 2006; 

Otero et al., 2006), psoriasis (Koczan et al., 2005), clinical sepsis (Jia et al., 2004), 

and acute lung injury (Garcia and Moreno Vinasco, 2006).  Moschen et al (2007) have 

been indicated that APCs like dendritic cells and macrophages as well as epithelial 

cells might be potential cellular sources of visfatin besides the adipose cells.  In 

conclusion, it seems plausible that visfatin/PBEF/Nampt could be deemed as a 

potentially important immunomodulating regulator. 
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In regard to visfatin action on the  development of insulin resistance and type 2 

diabetes mellitus, visceral adiposity is deemed to be more pernicious than 

subcutaneous obesity (Wajchenberg, 2000).  It has been clearly stated that 

visfatin/PBEF/Nampt was predominantly found in visceral (abdominal) adipose tissue 

(from which the name visfatin was derived) (Fukuhara et al., 2005).  Interestingly, a 

positive correlation between circulating visfatin/PBEF/Nampt levels and the amount 

of visceral fat have been reported by Fukuhara et al (2005) in 101 female and male 

subjects; on the other hand, there was merely a weak correlation between 

visfatin/PBEF/Nampt concentrations and the amount of subcutaneous fat. 

It has been shown that plasma visfatin/PBEF/Nampt levels correlated positively with 

body mass index (BMI) and percentage of body fat, as well as visceral adipose tissue 

visfatin gene expression.  In short, it has been concluded that serum concentration of 

visfatin is increased in obesity (Berndt et al., 2005). 

Dogru et al (2007) have investigated the plasma visfatin levels in 22 subjects with 

newly diagnosed and untreated type 2 diabetes mellitus (T2DM), 18 subjects with 

impaired glucose tolerance (IGT) and 40 controls with normal glucose tolerance 

(NGT).  Interestingly, there was no significant difference in visfatin levels between 

diabetic and IGT group and also between IGT group and healthy controls, even 

though, visfatin levels were higher in T2DM group than the controls (Dogru et al., 

2007).  Furthermore, a significant increase in circulating visfatin/PBEF/Nampt levels 

in type 2 diabetic patients compared with controls has been shown by Chen et al 

(2006) in a study carried out on 61 type-2 diabetic patients and 59 gender and age 

matched controls (Chen et al., 2006).  Taken together, in the vast majority of studies, 

visfatin/PBEF/Nampt values were elevated in diabetic and obese subjects. 
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Recently, there has been mounting body of studies investigating the association of 

visfatin with periodontal disease.  A pilot study exploring the gene expression 

signature in pathological gingival tissues has revealed Visfatin/PBEF/Nampt as one of 

the top 20 genes that have been distinguished in periodontitis lesions (Papapanou et 

al., 2004).  Moreover, stimulating monocytic cell line (THP-1) with P.gingivalis and 

E.coli LPS has yielded a differential up-regulation in Visfatin/PBEF/Nampt gene 

expression by E.coli LPS compared with P.gingivalis LPS (Barksby et al., 2009).  

Interestingly, visfatin levels were higher in GCF compared to serum and levels of 

visfatin in both GCF and serum were elevated in patients with periodontitis, and were 

positively associated with all periodontal parameters (Pradeep et al., 2011a; Pradeep 

et al., 2011b).  Therefore, visfatin in both GCF and serum may act as a potential 

marker of inflammation in periodontal disease. 

 

1.4.3 Leptin 

 

Leptin, a 16 kDa protein, is produced and secreted from adipocytes in response to 

changes in body fat mass.  It is encoded by the obese gene named ob (also known as 

Lep) (Zhang et al., 1994).  Leptin controls feeding behaviour through the central 

nervous system (CNS).  It exerts its biological actions through the activation of leptin 

receptor (ObR), which is primarily located in the CNS, and in other tissues including 

adipocytes and endothelial cells.  The binding of leptin to its receptor in the 

hypothalamus lead to the suppression of lipogenesis in adipose tissue through 

activation of phosphoinositide-3 kinase pathway, sympathetic nervous system and the 

engagement of adipose tissue endocannabinoid system (Ahima et al., 2000; Buettner 
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et al., 2006; Buettner et al., 2008).  In the CNS, leptin functions to diminish food 

intake and to increase energy expenditure.  Leptin reduces intracellular lipid levels 

and prevents fat deposition in non-adipose tissue such as skeletal muscle, liver, and 

pancreatic β-cells, and thereby improving insulin sensitivity and prohibiting 

lipotoxicity of pancreatic β-cells (Hamilton et al., 1995; Wang et al., 1999; 

Minokoshi et al., 2002).  The lack of leptin or a mutation in leptin receptor genes 

drives an enormous hyperphagia (abnormally increased appetite) and obesity in 

animal models (Friedman and Halaas, 1998).  Furthermore, it has been reported that 

ObR mutation and the congenital deficiency in the production of leptin contribute to 

hyperphagia and severe early onset obesity in human (Montague et al., 1997; Farooqi 

et al., 2007), nevertheless, the occurrence of these mutations in obese human is 

scarce.  Leptin levels are markedly elevated in obesity (Myers et al., 2008), and are 

correlated the fat mass and declines with weight reduction (Considine et al., 1996).  It 

has become increasingly evident that leptin plays an important role in modulating the 

immune response and inflammation.  In effect, leptin is deemed to be a 

proinflammatory cytokine; it increases the production of TNF-α and IL-6 by 

monocytes and induces the production of CC-chemokine ligands (namely CCL3, 

CCL4 and CCL5) by macrophages (Santos-Alvarez et al., 1999; Kiguchi et al., 2009).  

In monocytes, leptin also promotes cell proliferation and migratory responses (Santos-

Alvarez et al., 1999; Zarkesh-Esfahani et al., 2004).  In addition, leptin levels are 

elevated in serum and adipose tissue in response to a proinflammatory stimuli, such as 

TNF-α and LPS (Grunfeld et al., 1996).  Moreover, leptin play an important role in 

regulating the reproductive system and the onset of puberty, and is correlated with 

hypogonadism (Rasouli and Kern, 2008).  In summary, leptin serves as a fundamental 
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mediator in a constellation of pivotal processes including growth, metabolic control, 

immune regulation, insulin sensitivity regulation and reproduction. 

 

1.4.4 Adiponectin 

 

Adiponectin is a 30-kDa protein synthesized exclusively by adipocytes (Scherer et al., 

1995).  It exists at relatively high levels (3-30 µg/ml) in the blood (Ouchi et al., 

2003).  Serum adiponectin levels markedly diminished in obesity and escalate after 

weight loss in human and rats, and an increase in adiponectin levels are correlated 

with a lower incidence of diabetes (Milan et al., 2002; Lin et al., 2007).  Also, 

adiponectin levels are associated inversely with insulin resistance (Arita et al., 1999).  

In fact, adiponectin has been deemed as an insulin sensitizer and also has anti-diabetic 

characteristics (Berg et al., 2001; Maeda et al., 2002).  Interestingly, it has been 

suggested that subjects with high adiponectin levels are less likely to develop type 2-

diabetes than those with low levels (Lindsay et al., 2002; Spranger et al., 2003).  

Adiponectin is present in serum in several different isoforms including trimer, 

hexamer and low molecular weight isoform (Ouchi et al., 2003).  Different 

adiponectin isoforms possess discrete biological functions.  Nearly all insulin-

sensitizing effects of adiponectin has been contributed to high molecular weight 

isoform, while the central effect of adiponectin  have been linked to hexamer and 

trimer isoforms (Wang et al., 2008).  Weight loss, caloric limitation, and 

thiazolidinedione (TZD) could elevate circulating adiponectin levels and gene 

expression in white adipose tissue (Bruun et al., 2003).  Furthermore, it has been 

recently reported that adiponectin has a central effect in the regulation of energy 

homeostasis (Kadowaki et al., 2008); it enhances energy expenditure and food intake 
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when it acts on the central nervous system (Kubota et al., 2007).  The close 

association between adiponectin levels and obesity linked metabolic dysfunction has 

been confirmed through various clinical observations: first, plasma adiponectin 

concentration inversely associated with visceral fat accumulation (Ryo et al., 2004); 

second plasma adiponectin concentrations are reduced in patients with type 2 

diabetes; and third, elevated levels of adiponectin are correlated with a lower risk for 

developing type 2 diabetes (Ouchi et al., 2003; Li et al., 2009c). 

Expression of adiponectin is also regulated by a proinflammatory mediators such as 

TNF-α and IL-6 which inhibits the synthesis of adiponectin in adipocyte cell line, this 

might explain the lower concentration of serum adiponectin in obese individuals, 

compared with lean individuals (Fasshauer et al., 2003).  Mounting evidence suggests 

that adiponectin interfered with the function of macrophages, contributes to its role in 

regulating inflammation.  Adiponectin abolishes LPS stimulated TNF-α production by 

macrophages (Yokota et al., 2000), and supresses Toll-like receptor-mediated NF-κB 

activation in mouse macrophages (Yamaguchi et al., 2005).  Moreover, adiponectin 

induces the production of the anti-inflammatory cytokine IL-10 by human 

macrophages (Kumada et al., 2004), and inhibits the production of interferon γ by 

LPS-stimulated human macrophages (Wolf et al., 2004).  Also, it has been shown that 

adiponectin had an anti-inflammatory action on endothelial cells through suppression 

of TNF-α induced adhesion molecules expression (Ouchi et al., 1999).  Furthermore, 

adiponectin-deficient mice have greater levels of TNF-α gene expression in adipose 

tissue and TNF-α levels in plasma compare with adiponectin-sufficient mice (Maeda 

et al., 2002).  In contrast, there might be some situations in which adiponectin have 

proinflammatory effects.  In the existence of LPS, high molecular weight adiponectin 

was shown to increase the synthesis of CXC-chemokine ligand 8 (CXCL8 also known 
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as IL-8) by human macrophages (Saijo et al., 2005).  High molecular weight 

adiponectin also stimulated the release of IL-6 by human monocytes, while only the 

low molecular weight isoform had anti-inflammatory effects by reducing the 

production of IL-6 in response to LPS besides stimulating IL-10 synthesis (Neumeier 

et al., 2006). 

 

1.5 Resistin‎and‎periodontal‎disease 

 

1.5.1 The discovery, structure and tissue distribution of resistin 

 

Resistin is a recently identified adipocyte-derived hormone that has been shown to 

play a substantial role in the development of insulin resistance (Steppan et al., 2001a).  

Resistin was originally identified by three independent groups using a variety of 

techniques (Holcomb et al., 2000; Kim et al., 2001; Steppan et al., 2001a).  A study 

by Steppan et al.(2001) attempted to screen for genes that are induced during fat cell 

differentiation but down-regulated in mature adipocytes exposed to thiazolidinediones 

(TZDs) led to the discovery of a polypeptide, the investigators named resistin (for 

resistance to insulin) (Steppan et al., 2001a). 

Resistin is one amongst a family of three proteins, known as resistin-like molecules 

(RELMs),  which share a conserved pattern of 11 cystien residues at the C-terminal 

end of the structure (Steppan et al., 2001b). 

Recently a new gene family called FIZZ (found in inflammatory zone) has been 

identified as part of an investigation of molecules associated with allergic 
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inflammation and airway hyper-responsiveness (AWH) (Holcomb et al., 2000).  The 

described novel gene family comprises of 3 murine genes and two human homologs 

(mFIZZ1, mFIZZ2, mFIZZ3, hFIZZ1 and hFIZZ3).  Interestingly, it was found that 

mFIZZ3 polypeptide was uniquely expressed in white adipose tissue (Holcomb et al., 

2000).  Current nomenclature refers to the protein as resistin (Steppan and Lazar, 

2002), but adipocyte-specific secreted factor (ADSF) (Kim et al., 2001) and found in 

inflammatory zone (FIZZ3) (Holcomb et al., 2000) are used synonymously. 

Resistin is a 12.5 kDa cysteine rich peptide with a mature sequence consisting of 108 

amino acids in humans and 114 amino acids in mice.  It includes a 17-amino acid 

signal peptide, a variable region of 37 amino acids, and a conserved C terminus 

(Steppan et al., 2001b; Strausberg et al., 2002; Ghosh et al., 2003).  The human 

resistin gene (Retn) is sited on chromosome 19, while the mouse resistin gene is 

located on chromosome 8.  The human and mouse resistins share 46.7% analogy at 

the genomic DNA level, 64.4% sequence similarity at the mRNA levels, and 59% 

identity at the amino acids levels (Ghosh et al., 2003).   It has been postulated that the 

mature protein constituted of oligomerized resistin molecules that circulates in human 

peripheral blood in several different low molecular weight and high molecular weight 

isoforms (Gerber et al., 2005).  However, it has been proposed that the inflammatory 

influence of resistin is independent of its conformation (Silswal et al., 2005), because 

both the oligomeric and dimeric forms of resistin are able to activate TNF-α and IL-

12 in macrophages and monocytes (Silswal et al., 2005).   

Adipocytes are the main source of resistin in rodents (Kim et al., 2001; Steppan et al., 

2001a; Rajala et al., 2004).  Its gene expression and protein secretion is significantly 

down-regulated by anti-diabetic drugs (TZDs) (Steppan et al., 2001a). 
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On the other hand, it was found that human resistin is mainly synthesized by non-

adipocytes inflammatory resident cells such as peripheral blood mononuclear cells 

(PBMCs), bone marrow cells, monocytes and most predominantly by macrophages 

(Savage et al., 2001; McTernan et al., 2002a; Fain et al., 2003; Kaser et al., 2003; 

Patel et al., 2003; Curat et al., 2006; Jung et al., 2006; Nagaev et al., 2006; Kunnari et 

al., 2009).  Interestingly, the proportion of adipose tissue macrophages is found to be 

increased with obesity and this may explain the enhanced production of this hormone 

in obese individuals (Curat et al., 2006).  In effect, mounting evidence has identified 

neutrophils as dominant sources of resistin at the site of inflammation and even 

systemically during severe bacterial infections (Bostrom et al., 2009; Johansson et al., 

2009; Kunnari et al., 2009).  In addition, human resistin is expressed in inflamed, 

fibrotic and damaged liver tissues and also in pancreatic islets (Minn et al., 2003; 

Bertolani et al., 2006).  Paradoxically, some studies have stated that human pre-

adipocytes can express resistin, while mature fat cells can not (Janke et al., 2002; Fain 

et al., 2003).  Other studies revealed that resistin can be synthesized by mature human 

adipocytes (Degawa-Yamauchi et al., 2003).   

An attempt have been made by Szalowska et al (2009) to assess the expression of 

resistin in organs involved in regulation of total body energy metabolism such as liver 

and adipose tissues. It has been shown that resistin gene and protein expression was 

significantly higher in liver compared to adipose tissues which may suggest that 

resistin has other roles in addition to that of adipokine in humans (Szalowska et al., 

2009). 

It was suggested that resistin maybe one link between obesity, insulin resistance and 

diabetes in rodents (Steppan et al., 2001a).  For instance, the circulating resistin levels 

were found to be increased in diet induced and genetic forms of obesity in mice and 
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this was neutralized by administration of anti-resistin which in turn improves blood 

glucose and insulin action (Steppan et al., 2001a).  In addition, impairment of glucose 

tolerance and insulin action can be obtained by recombinant resistin administration in 

normal mice (Steppan et al., 2001a).  Moreover, the ability of anti-diabetic drugs 

(TZDs) to down-regulate resistin level support the potential role of resistin in as a link 

between obesity and diabetes (Steppan et al., 2001a).  

 A causal role of resistin in glucose homeostasis was demonstrated through animal 

model studies with altered serum resistin levels in which resistin gene deleted mice 

showed low blood glucose level after fasting due to reduced hepatic glucose 

production.  This suggests that resistin may play a role in mediating hyperglycaemia 

associated with obesity (Banerjee et al., 2004).    

Several attempts have been made to clarify the importance of resistin in humans.  

However, the exact role of resistin in human disease is still controversial. Many 

studies have revealed that elevated human resistin levels were associated with obesity, 

insulin resistance or diabetes (Azuma et al., 2003; Lu et al., 2006; Tokuyama et al., 

2007; Heidemann et al., 2008; Hivert et al., 2008; Chen et al., 2009; Li et al., 2009b).  

On the other hand, these results differ from some published studies which failed to 

find this kind of association (Savage et al., 2001; Lee et al., 2003; Heilbronn et al., 

2004; Farvid et al., 2005; Dominguez Coello et al., 2008).  Interestingly, serum 

resistin levels were significantly increased in patients with rheumatoid arthritis 

(Migita et al., 2006) and this may be explained by the fact that resistin acts as an 

inflammatogenic cytokine have a potent proinflammatory properties as it triggers the 

release of TNF-α, IL-1 and  IL-6 (Bokarewa et al., 2005).  Moreover, 

proinflammatory cytokines such as IL-1, IL-6 and TNF-α have the ability to 

upregulate resistin mRNA expression in human PBMCs (Kaser et al., 2003; Kunnari 
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et al., 2009).  In addition, LPS dramatically increases resistin expression in human 

PBMCs (Lu et al., 2002; Kaser et al., 2003; Kunnari et al., 2009) and adipose (Lu et 

al., 2002; Anderson et al., 2007). 

In summary, there is still an on-going debate regarding the precise role of human 

resistin in obesity, insulin resistance and the development of diabetes.  

So far, no previous study has investigated the role of resistin in cross-susceptibility 

between periodontal disease and diabetes, therefore our research aimed to shine new 

light on this subject.  

 

1.5.2 Resistin in immunity and inflammation 

 

1.5.2.1 Resistin regulation in immunity and inflammation  

 

Although resistin was firstly postulated to contribute to insulin resistance, it is 

becoming increasingly difficult to ignore its importance in triggering a 

proinflammatory state both in vitro as well as in vivo (Bokarewa et al., 2005).  It has 

been shown that resistin expression was up-regulated during the stimulated 

differentiation of monocytes to macrophages, which potentially indicates a possible 

role of resistin in macrophage function (Patel et al., 2003). 

Furthermore, proinflammatory cytokines such as TNF-α, IL-1 and IL-6 or endotoxin 

(LPS) can significantly up-regulate the expression of resistin in human macrophages, 

PBMCs and neutrophils indicating a role of resistin in the inflammatory process 

(Kaser et al., 2003; Lehrke et al., 2004; Bokarewa et al., 2005; Kunnari et al., 2009; 
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Shyu et al., 2009).  By contrast, in adipocytes and pre-adipocytes, TNF-α treatment 

markedly reduce resistin mRNA expression and secretion (Fasshauer et al., 2001; Li 

et al., 2003).  Intriguingly, LPS induced resistin gene and protein up-regulation in  a 

variety of blood cells (e.g. rat white blood cells, human PBMCs, human primary 

macrophages, U937 monocytes, human primary neutrophil) and adipocytes, both in 

vivo and in vitro (Lu et al., 2002; Lehrke et al., 2004; Kusminski et al., 2007; Kunnari 

et al., 2009) and the activation of NF-κB is essential prerequisite for LPS induction of 

resistin in human macrophages, with MAPK activation boosting the magnitude of the 

response (Lehrke et al., 2004).  Also, it has been shown that a dramatic elevation in 

the circulating resistin levels occurs as a result of endotoxin administration to human 

volunteers (Lehrke et al., 2004).  On contrary, other studies demonstrated that 

lipopolysaccharide (LPS) have no impact on resistin expression neither in human liver 

and adipose tissues nor in human U937 monocytes (Yang et al., 2003; Szalowska et 

al., 2009).  Recently, it has been reported that the highly leukotoxic strains of 

Aggregatibacter actinomycetemcomitans induces the release of high levels of resistin 

in culture supernatants of human neutrophils (Furugen et al., 2011). 

Intriguingly, it has been demonstrated that both high glucose and insulin have a 

substantial impact on resistin expression in human monocytes (Stan et al., 2011).  In 

effect, exposure of human monocytes to high glucose induced a significant up-

regulation of resistin on both protein and gene levels, via mechanisms involving 

MAPKs and transcription factor NF-κB.  In addition, insulin decreased high glucose-

induced resistin expression (Stan et al., 2011).  In 2007, Hu and co-workers 

demonstrated that CRP could significantly increase resistin mRNA expression and 

protein secretion in cultured human PBMC, and in a dose-and-time dependent manner 

(Hu et al., 2007b). 
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In summary, the regulation of resistin by these regulators is intriguing, however, the 

underlying physiological and pathophysiological significance remain to be 

determined. 

 

1.5.2.2 Resistin action in immunity and inflammation 

 

Although, resistin has been thought of as a key factor contribute to insulin resistance, 

there is increasing body of evidence indicating that it may also be involved in 

inflammation and immunity.  Resistin, per se, serves as a pro-inflammatory mediator.  

As such, treatment of human PBMCs with recombinant resistin drive to a remarkable 

up-regulation of gene expression for IL-6, IL-1β and TNF-α, and resistin itself, 

illustrating that resistin stimulate a positive feedback mechanism on its own 

expression.  The proinflammatory properties of resistin were revoked by NF-κB 

inhibitor implying the significance of NF-κB signalling pathway for resistin-incited 

inflammation    (Bokarewa et al., 2005).  Also, in both human and murine 

macrophages, resistin boosted the secretion of pro-inflammatory cytokines, IL-12 and 

TNF-α, and was able to provoke the nuclear translocation of NF-κB transcription 

factor (Silswal et al., 2005).  Notably, resistin-induced TNF-α up-regulation was 

significantly reduced in the presence of NF-κB inhibitor (Silswal et al., 2005).  

Similarly, Nagaev et al (2006) have shown that the exposure of white adipose tissue 

cultures and PBMCs to human resistin induces the inflammatory cytokines IL-6, IL-8 

and TNF-α (Nagaev et al., 2006) and that the same induction was found in adipocytes 

in response to resistin stimulation (Kusminski et al., 2007). 

Indeed, the resistin induced inflammation is mediated by NF-ĸB signalling pathway.  

This was explained by the marked suppression of resistin proinflammatory activity 
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following the addition of NF-ĸB inhibitor to the PBMCs culture (Bokarewa et al., 

2005).   Up to the present there has been only one published paper where the authors 

reveal that resistin competes with lipopolysaccharide for binding to TLR4 receptor in 

human myeloid cells and epithelial cells (Tarkowski et al., 2010).  The activation of 

TLR initiates a cascade of intracellular events resulting in alterations in transcription 

and signalling pathways including NFκB signalling, hence, antibody blocking of 

TLR4 was used to manifest that the binding of resistin to human leukocytes and 

cytokine production by PBMCs in response to resistin induction were inhibited.  

Likewise, resistin binding was detected in TLR4-transfected human epithelial kidney 

cell line HEK293, but not with myeloid differentiation factor 2/CD14-transfected, 

TLR2-transfected or HEK null cells.  Since TLR4 bind to exogenous bacterial and 

viral structures and modulates the protective inflammatory responses of the host, the 

authors appraised the role of intracellular signalling pathways in resistin-elicited 

proinflammatory effects in PBMCs.  Cells were pre-treated with inhibitors specific for 

NFκB and MAPKs and then stimulated with resistin.  Inhibition of NFκB and 

MAPKs drove blockage of resistin-induced expression of IL-6, IL-1β and TNF-α at 

both mRNA and protein levels.  These results point out that the proinflammatory 

intracellular signals induced by resistin are mediated via NFκB and MAPKs 

signalling mechanisms and are possibly initiated by resistin binding to the TLR4 

(Tarkowski et al., 2010).  Resistin also suppressed chemotaxis of neutrophils and 

reduced the oxidative burst provoked by Escherichia coli (E.coli) and by phorbol 

myristate acetate (PMA), but it did not impact on neutrophils phagocytosis (Cohen et 

al., 2008; Cohen and Horl, 2009).  On the other hand, resistin induced CD4-positive 

cell chemotaxis in a concentration-dependent manner (Walcher et al., 2010).  

Furthermore, It has been suggested that resistin decreases the antigen-uptake process 



1   Introduction  52 

and the endocytic capacity of lipoteichoic acid (LTA)-stimulated dendritic cells, and 

thereby interferes with the effectiveness of immune responses induced by Gram 

positive bacterial infection in human dendritic cells (Son et al., 2008).  Incubation of 

RAW264.7 mouse macrophage cells with resistin resulted in an up-regulation in 

COX-2 expression, a key enzyme regulating the production of prostaglandin, through 

NF-κB route. Also an up-regulation in NF-κB subunit p65 was recorded in response 

to resistin stimulation indicating that resistin possibly activates NF-κB via up-

regulation of p65 (Zhang et al., 2010a).  In effect, it has been shown that resistin 

stimulates the expression of cytokines and chemokines in human articular 

chondrocytes (Zhang et al., 2010b).  Resistin has been revealed to stimulate the gene 

expression of 20 tested cytokines and chemokines in chondrocytes from both normal 

and osteoarthritic cartilage, these encompassed TNF-α, IL-1β, IL-1α, CCL2, CCL3, 

CCL3L1, CCL4, CCL5, CCL8, CXCL1, CXCL2, and CXCL3 (Zhang et al., 2010b).  

It has been suggested that NFκB and C/EBPβ signalling pathways contributes to the 

resistin-induced up-regulation of these cytokines and chemokines in chondrocytes in 

response to resistin stimulation (Zhang et al., 2010b).  Furthermore, treatment of 

mouse cartilage cultures with recombinant resistin provoked proinflammatory 

cytokines and PGE(2) production (Lee et al., 2009).  In 3T3-L1 adipocytes, resistin 

enhanced the production of TNF-α, IL-6 and monocyte chemoattractant protein 1 

(MCP-1) (Fu et al., 2006).  Furthermore, treatment of cultured human stellate cells 

with recombinant resistin resulted in an enhanced expression of MCP-1 and IL-8 

through activation of Ca
2+

/NFκB dependent pathway (Bertolani et al., 2006).  In mice, 

resistin remarkably boosted hepatic inflammation and necrosis in LPS-stimulated 

liver damage (Beier et al., 2008).  This impact of resistin was possibly mediated 
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through activation of mechanisms comprising the coagulation cascade and fibrin 

accumulation (Beier et al., 2008). 

Mounting evidence suggests that the pathogenesis of atherosclerosis is significantly 

linked with resistin-stimulated inflammatory process.  It has conclusively been shown 

that resistin provokes the expression of VCAM-1, ICAM-1 and MCP-1, and 

concomitantly decreases TNF-receptor associated factor-3 (TRAF-3) expression on 

endothelial cells (Verma et al., 2003; Kawanami et al., 2004).  It has been reported 

that resistin up-regulates both the P-selectin and fractalkine (fk) gene and protein 

expression in human endothelial cells, and the resulting augmented monocytes 

adhesion by a mechanisms involving a rise in NADPH oxidase activity and reactive 

oxygen species (ROS) production and activation of NF-κB and AP-1 (Manduteanu et 

al., 2009a; Manduteanu et al., 2009b; Pirvulescu et al., 2011).  Moreover, elevated 

concentrations of resistin released in conditional media from epicardial adipose tissue 

of patients with acute coronary syndrome greatly affect in vitro endothelial function 

by significantly increasing endothelial cell permeability.  These results suggest that 

epicardial adipose tissue-produced resistin is a pivotal stimulator of endothelial 

damage via the stimulation of hyper-permeability in human umbilical vein endothelial 

cells (HUVECs) (Langheim et al., 2010).  Recently, in vitro study has shown that 

resistin caused a remarkable increase in monocyte adhesion to HUVECs and also up-

regulated the expression of ICAM-1 and VCAM-1 by endothelial cells (Hsu et al., 

2010).  Also, resistin enhanced monocyte infiltration into collagen by direct 

chemoattractive effect as well as by augmenting migration toward monocyte 

chemoattractant protein-1 (Cho et al., 2011).  In human coronary artery endothelial 

cells (HCAECs), resistin provoked both endothelial proliferation and migration, and 

markedly up-regulate the gene expression of vascular endothelial growth factor 
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receptors (VEGFR-1 and VEGFR-2) and matrix metalloproteinases (MMP-1 MMP-2) 

at both gene and protein levels (Mu et al., 2006), and resistin also up-regulates tissue 

factor expression in these cells and thereby potentially contributing to 

atherothrombosis (Calabro et al., 2011).  In addition, treating human vascular smooth 

muscle cells (VSMCs) with recombinant human resistin stimulated MMP-2 and 

MMP-9 protein and gene expression and induced smooth muscle migration in vitro 

(Ding et al., 2011).   

Overall, these observations provide the evidence that resistin was unquestionably 

involved in inflammation, although more studies are needed to clarify its precise role 

in these conditions. 

 

1.5.2.3 Role of resistin in inflammation-related diseases 

 

There is a large volume of published studies describing the important role of resistin 

in chronic inflammatory disease.  In inflammatory bowel disease, it has been revealed 

that circulating resistin levels were raised and directly associated with white blood 

cell count, CRP levels and disease activity (Konrad et al., 2007).  Elevated circulating 

resistin levels were also recorded in patients with chronic pancreatitis indicating its 

influence on pancreatic fibrosis development (Adrych et al., 2009).  In patients with 

systemic lupus erythematosus, comparable serum resistin levels to those in controls 

were recorded (Almehed et al., 2008).  Nonetheless, circulating resistin levels were 

clearly associated with general inflammation, renal disease, treatment with 

glucocorticoids, and bone loss in Systemic lupus erythematosus patients (Almehed et 

al., 2008).   
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Interestingly, resistin levels correlated positively with levels of inflammatory markers 

including CRP, TNF-α receptor 2 and IL-6 in both healthy subjects with family 

history of atherosclerosis and in middle aged and older Chinese population (Reilly et 

al., 2005; Qi et al., 2008).  By contrast, in another study, serum resistin levels were 

not significantly correlated with TNF-α and IL-6 in elderly Japanese (Furugen et al., 

2008). 

Recently, several groups have directed their efforts toward the elucidation of the pro-

inflammatory influence of resistin in the pathogenesis of arthritis.   Healthy mice 

injected intra-articularly with recombinant mouse resistin in the knee joints developed 

arthritis compared with mice injected with albumin (Bokarewa et al., 2005).  These 

mice revealed infiltration of synovial tissue with leukocytes associated with 

hyperatrophy of synovial lining layer and panus formation (Bokarewa et al., 2005).  

In human, synovial fluid from patients with rheumatoid arthritis revealed significantly 

higher level of resistin compared with control samples.  Furthermore, resistin level in 

synovial fluid of rheumatoid arthritis patients was positively correlated with synovial 

leukocyte count and IL-6 synovial fluid level (Bokarewa et al., 2005; Senolt et al., 

2007).  However, contradictory results on circulating resistin levels in rheumatoid 

arthritis patients have been reported.  While some studies revealed unaltered resistin 

serum levels in rheumatoid arthritis patients compared to healthy counterparts 

(Bokarewa et al., 2005; Otero et al., 2006; Forsblad d'Elia et al., 2008), Migita et al 

(2006) identified greater serum resistin levels, associated with  rheumatoid arthritis 

disease activity markers, CRP, TNF-α and erythrocyte sedimentation rate (Migita et 

al., 2006). 

Furthermore, severe streptococcal infectious conditions such as toxic shock syndrome 

and necrotizing fasciitis are characterized by hyperresistinemia in circulation as well 
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as at the local site of infection (Johansson et al., 2009).  There is a plethora of 

pleotropic diseases which are associated with elevated circulating resistin levels, some 

of them are listed in Table  1.1.  

Taken together, although elevated levels of resistin have been correlated with these 

inflammation-related diseases, further studies should be conducted to clarify the exact 

role of resistin in these pathophysiological conditions. 
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Table ‎1.1 Summary of diseases that have been associated with increased 

circulating resistin levels 

Type of disease Author Resistin levels 

(ng/ml)  

P value 

Inflammatory arthritis 

 

(Kontunen et al., 2011)  17.4 (case) 

10.8 (control) 

<0.001 

Blood hypertension 

 

(Thomopoulos et al., 2011)  11.9 (7.8-16.8) (case) 

6.8 (4-9) (control) 

<0.008 

Obesity   (Azuma et al., 2003)  24.6± 12.9 (case) 

12.8 ±8.3 (control) 

<0.01 

Non-alcoholic fatty liver 

disease 

 

(Pagano et al., 2006) 5.87±0.49 (case) 

4.3±0.2 (control) 

<0.01 

Alcoholic acute 

pancreatitis 
(Daniel et al., 2010) 12.9±6.38 (case)       

4.06±2.63 (control) 

<0.05 

Chronic kidney disease (Kawamura et al., 2010) 9.5 (normal&CKD1) 

10.2 (CKD level 2) 

11.8 (CKD level 3) 

21.1 (CKD level 4) 

<0.001 

Ankylosing spondylitis (Kocabas et al., 2012) 1.58±0.52 (case)       

1.13±0.46 (control) 

<0.01 

Acute appendicitis (Kisacik et al., 2012)* 26.3±11.9 (case)       

13.8±5.7 (control) 

<0.001 

Critically ill patients   

with/without sepsis  

(Koch et al., 2009) 18 (3.22-50) (all ICU) 

4.7 (2.2-12.7) (control)  

24.2 (3.22-50) (sepsis) 

10.5 (3.33-41.1) (Non-

sepsis) 

<0.001 

Bahҫet’s disease  (Kim et al., 2010) 36.8±29.7 (case) 

19.5±8.3 (control) 

<0.001 

Postburn insulin 

dysfunction 

(Duffy et al., 2009) 31.04 (case) 

11.02 (control) 

<0.05 

*The unit for resistin levels (U/L) 
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1.5.3 Resistin in obesity, insulin resistance and diabetes 

 

1.5.3.1 Biological mechanisms of resistin regulation and resistin action 

 

Notwithstanding that resistin was first reported as a factor implicating in the 

development of insulin resistance and diabetes in humans, controversy is still 

persistent with regard the precise role it plays in obesity, insulin resistance and the 

pathogenesis of type 2 diabetes mellitus.  When resistin was first described by 

Steppan and co-workers in 2001, a number of momentous discoveries were stated.  

First, resistin levels were elevated in genetic and diet-induced forms of obesity in 

rodents.  In addition, administration of anti-resistin antibody augmented insulin 

sensitivity in obese and insulin-resistant animals.  Also, treatment with recombinant 

resistin impaired glucose tolerance and insulin action in healthy mice.  And lastly, 

resistin administration impaired insulin-induced glucose up-take in adipocytes.  From 

these findings, it was concluded that resistin plays a pivotal role in obesity and insulin 

resistance in the diabetic mouse model (Steppan et al., 2001a), however, to which 

extent these observations can be applied to human studies is difficult to be 

determined. 

Recently, an abundance of evidence has emerged corroborating the pivotal role of 

resistin in obesity and insulin resistance.  It has been demonstrated that resistin is 

expressed in human hepatocytes and hepatic tissues and provokes insulin resistance 

(Sheng et al., 2008).  Furthermore, resistin mRNA levels were easily detectable in 

human PBMCs and revealed to be higher in female patients with type 2 diabetes 

compared to healthy women, suggesting that resistin might contribute to the 

pathogenesis of human type 2 diabetes (Tsiotra et al., 2008).  Resistin is potentially 
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implicated in sensing the nutritional status as its mRNA level is reducing during 

fasting and elevating after food consumption (Kim et al., 2001; Steppan et al., 2001a; 

Nogueiras et al., 2003; Valsamakis et al., 2004).  Intriguingly, a remarkable induction 

of resistin was found during 3T3-L1 and pre-adipocyte differentiation into adipocytes, 

therefore, this protein was considered to be adipose sensor through its function as a 

feedback regulator of adipogenesis (Holcomb et al., 2000; Kim et al., 2001; Liu et al., 

2008a).  Furthermore, some studies have revealed that resistin gene expression was 

significantly up-regulated by glucose and mediators acknowledged to increase plasma 

glucose levels such as glucocorticoids (Haugen et al., 2001; Shojima et al., 2002; Stan 

et al., 2011).  It has been reported that resistin mRNA and protein levels decrease in 

parallel to glucose and insulin during fasting and are restored after re-feeding.  In 

effect, both adipose resistin expression and serum resistin levels are enhanced in 

response to hyperinsulinemia and hyperglycemia (Rajala et al., 2004).  Numerous 

studies have investigated the effects of insulin in the regulation of resistin production, 

but the results were rather incompatible.  Kim et al (2001) demonstrated that resistin 

mRNA expression in adipose tissue of streptozotocin-diabetic mice was significantly 

up-regulated upon insulin administration (Kim et al., 2001).  Similarly, insulin 

instigated resistin protein secretion in a concentration-dependant manner in 

adipocytes (McTernan et al., 2003).  Conversely, other studies have shown that 

insulin administration caused inhibition in resistin gene expression (Haugen et al., 

2001; Shojima et al., 2002; Kawashima et al., 2003; Liu et al., 2008a).  Moreover, the 

ability of anti-diabetic drugs thiazolidinediones (TZDs); which lower blood glucose 

by activating Peroxisome proliferator-activated receptor γ (PPARγ); to modulate 

resistin expression has been demonstrated in a number of studies.  Some studies 

showed a significant down-regulation of resistin gene expression in response to TDZs 
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treatment (Haugen et al., 2001; Steppan et al., 2001a; Shojima et al., 2002; McTernan 

et al., 2003).  On contrary, an up-regulation of resistin gene expression in response to 

TZDs treatment has been reported in several other studies (Way et al., 2001; Fukui 

and Motojima, 2002).  Accordingly, the modulation of resistin levels is apparently 

unrelated to the anti-diabetic effects of TZDs. 

One of the most conspicuous biological influences of resistin which has been widely 

studied is the regulation of glucose homeostasis and insulin sensitivity.  Some studies 

reported impaired glucose tolerance and insulin action in response to resistin as well 

as a positive association of elevated circulating resistin levels with hyperinsulinemia 

and hyperglycemia (Steppan et al., 2001a; Rajala et al., 2004), nevertheless, these 

findings are not without debate.  A data from several sources have identified the 

reduced resistin mRNA expression in adipose tissue of rodent model with obesity 

associated with impaired insulin sensitivity (Juan et al., 2001; Way et al., 2001; Fukui 

and Motojima, 2002; Milan et al., 2002; Maebuchi et al., 2003; Haluzik et al., 2006).  

Furthermore, remarkable attenuation in glucose uptake was detected in differentiated 

pre-adipocytes treated with recombinant resistin (McTernan et al., 2003). 

One of the prominent influences of resistin is the induction of insulin resistance in 

rodent pancreatic islets.  This could be attributable to the action of resistin in reducing 

the expression of insulin receptor on both gene and protein levels.  Notably, low 

concentration of resistin enhanced pancreatic beta-cell viability.  However, resistin 

did not influence insulin secretion (Brown et al., 2007).  In effect, resistin induces 

insulin resistance in pancreatic islet β-cell at least partially via up-regulation of 

SOCS-3 and decrease of Akt phosphorylation and impairs glucose-induced insulin 

secretion (Nakata et al., 2007).  It has been hypothesised that  resistin serve as a 

putative regulator of insulin in diurnal feeding/fasting rhythm via a negative feed back 



1   Introduction  61 

regulation of its action (Oliver et al., 2006).  Moreover, in vivo study done by Liu et 

al (2008) have shown that over-expressing resistin in mice by intramuscular injection 

of a recombinant eukaryotic expression vector encoding resistin gene increases serum 

glucose levels, and might be responsible for insulin resistance (Liu et al., 2008c). 

The liver is the chief metabolic organ of glucose metabolism.  Hepatic insulin 

resistance is deemed to be the principal cause leading to the development of type 2 

diabetes mellitus (Taniguchi et al., 2005).  Muse et al (2004) demonstrated that the 

plasma resistin level is increased after high-fat feeding in rodents, and that this 

increase is the main cause of hepatic insulin resistance (Muse et al., 2004).  Data from 

several animal studies have spotlighted the ability of resistin to stimulate glucose 

production and provoke hepatic insulin resistance after both acute and chronic 

administration (Steppan et al., 2001a; Rajala et al., 2003; Banerjee et al., 2004; 

Rangwala et al., 2004).  It has also been shown that the upregulation of human resistin 

inhibited significantly insulin-stimulated glucose uptake and glycogen synthesis in 

HepG2 cells (Sheng et al., 2008).  In 2007, Muse and co-workers published a paper in 

which they demonstrated that the central (hypothalamus) administration of resistin 

stimulated glucose production and diminished hepatic insulin action on glucose 

homeostasis independent of circulating levels of glucoregulatory hormones.  

Reciprocally, central antagonism of resistin action remarkably reduced the ability of 

circulating resistin to augment glucose production in the presence of physiological 

hyperinsulinemia.  Furthermore, following central infusion of resistin, hepatic gene 

expression analysis revealed an increase in IL-6, TNF-α and SOCS-3 mRNA which 

was partly due to centrally mediated actions of resistin.  Thus, it is plausible that the 

central resistin action can contribute to hyperglycaemia in type 2 diabetes mellitus 

(Muse et al., 2007).  Similarly, central infusion of resistin in normal mice enhanced 
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endogenous hepatic glucose production, consistent with induction of hepatic insulin 

resistance.  Centrally administered resistin also supressed insulin mediated 

phosphorylation of Akt, enhanced the expression of glucose-6-phosphatase; the 

enzyme regulating glucose output in the liver; and induced the expression of 

proinflammatory cytokines and SOCS-3 in liver.  Central administration of resistin 

was associated with neuronal activation in the nuclei and enhanced neuropeptide Y 

(NPY) expression in the hypothalamus which is considered to be an important 

regulator of hepatic insulin sensitivity (Singhal et al., 2007).  Strikingly, resistin has 

also been shown to provoke insulin resistance in HepG2 cells partially through the 

induction of SOCS-3 expression and the inhibition of Akt phosphorylation via an 

AMPK-independent mechanism.  Resistin also enhances hepatic glucose production 

by increasing the expression of genes encoding the hepatic gluconeogenic enzymes 

glucose-6-phosphatase (G6Pase) and PEPCK, which are mediated by AMPK (Zhou et 

al., 2007; Luo et al., 2009).  Also, treatment of rat hepatoma cell line H2IIE with 

resistin provoked insulin resistance but did not influence glucose output.  Indeed, 

resistin diminished various actions of insulin including insulin-induced glycogen 

synthesis and phosphorylation of IRS, protein kinase B/Akt, as well as GSK-3β.  On 

the other hand, resistin exposure remarkably stimulates the gene and protein 

expression of SOCS-3 which may contribute to the resistin-mediated suppression of 

insulin signalling in H2IIE hepatocytes (Liu et al., 2008b).   

The effect of resistin on the glycogen metabolism in the liver was discussed 

thoroughly by Yang et al (2009).  A reduction in insulin-stimulated glycogen content 

was detected in hepatocytes exposed to resistin in the presence of insulin.  Also, 

treatment of hepatocytes with resistin reduced insulin receptor expression and 

glycogen synthase (GS) activity and increased glycogen phosphorylase (GP) activity.  
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In other words, a high concentration of resistin decreases the sensitivity of the liver to 

insulin, enhancing glycogenolysis (by boosting GP activity) and reducing 

glyconeogenesis (by minimizing the level of insulin receptor and minimizing GS 

activity), which causes a reduction in the glycogen content of the cells and an elevated 

blood glucose levels.  Hyperglycemia stimulates pancreatic beta cells to release 

insulin and give rise to hyperinsulinemia.  Hyperinsulinemia then drives to insulin 

resistance in insulin target tissues such as liver (Yang et al., 2009). A recent study by 

Park et al (2011) involved generating a mouse model of humanized resistin expression 

to explore the impact of human resistin on glucose homeostasis in inflammatory state.  

In the generated mouse model, the circulating resistin levels was within normal 

human range, and similar to human, was elevated in response to lipopolysaccharides.  

Human resistin was incited in response to inflammation.  Resistin reduced 

endotoxemia-stimulated hypoglycaemia by provoking insulin resistance in liver and 

adipose tissues, and boosted hepatic insulin resistance by aggravating inflammatory 

responses in chronic endotoxemia.  Thus, in this mouse model resistin regulates 

glucose homeostasis under inflammatory state (Park et al., 2011).  

The most pivotal site for insulin-stimulated glucose uptake is skeletal muscle, and this 

could be attributable to its mass.   Numerous studies have demonstrated that resistin 

impairs insulin-stimulated glucose uptake in L6 muscle cells by a mechanism 

including diminished plasma membrane GLUT4 translocation (Palanivel et al., 2006; 

Fan et al., 2007; Jorgensen et al., 2009), or by reducing the intrinsic activity of cell 

surface glucose transporter (Moon et al., 2003) and thereby inducing skeletal muscle 

insulin resistance. 

An attempt has been made by Li et al (2010) to explore the influences of resistin on 

skeletal glucose metabolism, and was performed by constructing a recombinant 
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plasmid which express resistin and transfecting it into C2C12 monocytes.  It has been 

shown that resistin diminished insulin-induced glucose uptake in C2C12 monocytes 

by inhibiting the expression of GLUT4 gene, still had no observable impacts on 

glucose oxidation or glycogen synthesis (Li et al., 2010).   

Summarising the currently available evidence, the pro-diabetic effects of resistin 

could be attributable to one of the following mechanisms: (1) stimulation of hepatic 

glucose production presumably via reduced activity of AMP-activated protein kinase 

and enhanced expression of gluconeogenic enzymes in liver (Banerjee et al., 2004); 

(2) enhancement of free fatty acid release from adipose tissue (Pravenec et al., 2006); 

(3) blockage of insulin signal transduction pathways (Sheng et al., 2008);  (4) 

reductions of the intrinsic activity of cell surface glucose transporters (Moon et al., 

2003); (5) inhibition of GLUT4 translocation (Palanivel et al., 2006) or its gene 

expression (Fu et al., 2006); and (6) induction of suppressor of cytokine signalling 3 

(SOCS-3), a known inhibitor of insulin signalling (Steppan et al., 2005).  

Nonetheless, identification of the receptor system for resistin and their downstream 

signalling pathways is required for complete evaluation of the role of resistin system 

in human physiology. 
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Figure ‎1.4 The cellular source and the potential effect of human resistin on 

different cell types 

Weight gain is associated with an expansion of adipose tissue accompanied with 

recruitment of macrophages within these tissues.  These macrophages might 

contribute to local and systemic inflammation, insulin resistance and cardiac 

pathology via the synthesis of resistin, which might stimulate multiple cell types to 

regulate various mediators. 
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1.5.3.2 Clinical evidence for resistin in human obesity, insulin resistance and 

diabetes 

 

A considerable amount of literature has been published on the contribution of resistin 

in obesity, insulin resistance and diabetes in human.  Although some studies revealed 

an association links resistin with obesity, insulin resistance or diabetes in humans 

(Azuma et al., 2003; Silha et al., 2003; Lu et al., 2006; Osawa et al., 2007; Tokuyama 

et al., 2007; Heidemann et al., 2008; Hivert et al., 2008; Chen et al., 2009; Li et al., 

2009b).  Other published studies (Savage et al., 2001; Lee et al., 2003; Heilbronn et 

al., 2004; Farvid et al., 2005; Utzschneider et al., 2005; Dominguez Coello et al., 

2008) failed to find this kind of association.  Ultimately, there has been little 

agreement on what is the actual role of resistin in those human pathologies.   

Emerging evidence suggests that diabetes is accompanied by changes in serum 

resistin levels.  For instance, one recent study investigated the relationship between 

circulating resistin levels and diabetes and found that for both women and men, 

resistin levels were significantly higher in case patients than in control subjects (Chen 

et al., 2009). 

In 2005, Hasegawa and co-workers have investigated the significance of resistin in 

the pathophysiology of diabetes.  A significant increase in resistin levels was recorded 

in patients with type 2 diabetes compared with non-diabetic subjects.  However, no 

correlation was observed between serum resistin levels and markers of insulin 

resistance, obesity or hyperlipidaemia (Hasegawa et al., 2005). 

Lau and Muniandy (2011) proposed a novel adiponectin-resistin (AR) index, by 

taking into consideration both adiponectin and resistin levels to produce a better 

indicator of the metabolic homeostasis and metabolic disorders.  Moreover, by 
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integrating the AR index into an existing insulin resistance index, a novel insulin 

resistance index (IRAR) was proposed to provide improved diagnostic biomarkers of 

insulin sensitivity.  In this case control study, anthropometric clinical and metabolic 

parameters encompassing fasting serum total adiponectin and resistin levels were 

measured.  It has been conclusively shown that the AR index was more robustly 

correlated with increased risk of T2DM and metabolic syndrome (MS) than 

hypoadiponectinemia and hyperresistinemia alone.  Notably, hyperresistinemia was 

correlated with increased risk of T2DM and MS in Malaysian men.  Also, resistin 

levels were significantly greater in T2DM (without MS) as compared to healthy 

individuals (Lau and Muniandy, 2011). 

A number of studies have found that serum resistin level was significantly higher in 

obese individuals than in lean subjects (Azuma et al., 2003; Al-Harithy and Al-

Ghamdi, 2005).  Conversely, other studies have failed to find a significant difference 

in serum resistin levels between lean healthy and obese individuals (Lee et al., 2003; 

Silha et al., 2003; Utzschneider et al., 2005).  

It has been shown that serum resistin levels were positively correlated with BMI, 

waist circumference, WHR, HOMA-IR index, serum insulin, plasma glucose and 

HbA1c levels (Azuma et al., 2003; Al-Harithy and Al-Ghamdi, 2005; Utzschneider et 

al., 2005; Lu et al., 2006; Mojiminiyi and Abdella, 2007; Norata et al., 2007; Osawa 

et al., 2007; Li et al., 2009b; Lau and Muniandy, 2011).  On the other hand, a 

negative or no association between resistin levels and BMI, waist circumference, 

waist-to-hip ratio, HOMA-IR, fasting plasma glucose or insulin levels was reported 

by other studies (Lee et al., 2003; Heilbronn et al., 2004; Pagano et al., 2006; Won et 

al., 2009).   
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The results of the various efforts to determine the circulating levels of resistin and its 

association with T2DM, insulin resistance and obesity were conflicting, with some, 

but not all studies demonstrating a significant correlation between serum resistin 

levels and T2DM, insulin resistance and obesity.  Different explanations could 

account to these discrepancies including different demographic of study groups, the 

low number of patients enrolled in different studies, and the use of different assay 

methods.  To date, there is substantial evidence regarding the role of resistin in 

diabetes, IR and obesity (see Table 1.1 and 1.2). 
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Table ‎1.2 Summary of studies examining resistin levels in T2DM, insulin 

resistance and obesity 

Author Study population Resistin levels 

(ng/ml) mean±SD 

Main findings 

(Chen et al., 2009) 

 

T2DM women 359 

Control women 359  

T2DM men 170 

Control men 170                               

13.0±1.9 

10.8 ±1.7                                             

10.9±2.0 

9.6±1.8 

 

In both women and 

men T2DM patients 

had significantly higher 

levels of resistin than 

controls  

Resistin levels were 

higher in women than 

men in case subjects 

and control 

(Heilbronn et al., 2004) 

 

Non-obese 38 

Obese 12 

Obese with T2DM 22      

4.1±1.7 

4.2±1.6 

3.7±1.2 

Serum resistin 

concentrations  were 

not different among the 

three groups 

 
(Al-Harithy and Al-

Ghamdi, 2005)  
Diab women 44   

OW/OB non-diab 21 

24 lean women                                               

19.42± 3.60 

16.29±2.29 

11.59±2.08 

Fasting serum resistin 

showed a significant 

increase from lean to 

overweight/obese non-

diabetics to diabetic 

women 

(Hasegawa et al., 2005) 

 

T2DM 111                      

Without T2DM 98 

24.7±2.6 

15.0±1.2  

Resistin levels were 

increased significantly 

in T2DM patients 

compared to non-

diabetic controls 

 
(Lu et al., 2006) 

 

Obese diab 30 

Non-obese diab 30 

Healthy controls 28 

 

24.05±9.07          

18.64±4.65 

14.16±5.25 

 

The levels of plasma 

resistin were 

significantly increased 

in diabetes compared to 

control and in obese 

diabetics compared to 

non-obese diabetics 

(Won et al., 2009) With metabolic 

syndrome 54 

Without  metabolic 

syndrome 222 

8.5±3.6 

 

8.3±4.3 

The levels of plasma 

resistin were  not 

significantly increased 

in subjects with 

metabolic syndrome 

(MetS) compared to 

those without MetS 

Also, Resistin levels 

were significantly  

higher in women than 

men .  Plasma resistin 

not associated with 

markers of  IR, obesity 
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Table ‎1.3 Summary of studies examining resistin levels in T2DM, insulin 

resistance and obesity (continued) 

Author Study population Resistin levels 

(ng/ml) mean±SD 

Main findings 

(Norata et al., 2007) With MetS  

Without MetS  

Women 641 

Men 449 

4.85±2.30 

4.15±2.24 

4.2±2.5 

4.5±2.2 

Plasma resistin levels 

were significantly 

increased in the 

presence of MetS 

Plasma resistin levels 

were significantly 

higher in men 

compared to women 

 

(Dominguez Coello et 

al., 2008) 

T2DM 71 

Without T2DM 642 

Obese 225 

Non-obese 488 

3.1±0.2 

3.2±0.1 

3.1±0.1 

3.2±0.1 

 

no significant 

differences were found 

in serum resistin levels 

between subjects with 

and without T2DM and 

also in subjects with 

and without obesity 

Resistin was inversely 

associated with insulin 

resistance and obesity 

(Hivert et al., 2008) With MetS  983 

Without MetS 1373 

13.6±1.50 

12.8±1.49 

Plasma resistin levels 

were significantly 

increased in the 

presence of MetS also 

increased levels of 

resistin are associated 

with insulin resistance 

in subjects at high or 

low diabetes risk 

(Utzschneider et al., 

2005) 

lean,insulin sensit 53 

lean,insulin resist 67 

obese,insulin resist 48 

 

5.36±0.3 

5.70±0.4 

5.94±0.4 

No significant 

difference was 

recorded in resistin 

levels between the 

three groups 

Resistin is unlikely to 

be a major mediator of 

IR or the MetS 

(Azuma et al., 2003) Ob/OW nondiabetic 64 

Lean subjects 15 

 

24.58±12.93 

12.83±8.30 

Serum resistin was 

significantly higher in 

obese than in lean 

Also, resistin is a 

possible candidate in 

human insulin 

resistance 

(Kuzmicki et al., 2009) women  with GDM 81 

women  with NGT 82 

Healthy non-pregnant 

women 25 

Median 21.9 

Median 19.03 

Median 14.8 

Resistin levels were 

significantly higher in 

women with gestational 

diabetes than in normal 

glucose tolerance, and 

in non-pregnant women 
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1.5.4 Resistin in periodontal disease 

 

Although a considerable amount of studies have reported an unambiguous association 

among obesity, type 2 diabetes and periodontal disease (Soskolne and Klinger, 2001; 

Mealey and Oates, 2006; Preshaw et al., 2007; Saito and Shimazaki, 2007; Preshaw, 

2008b), few studies have attempted to examine the possible relationship between 

periodontal condition and serum levels of resistin (Furugen et al., 2008; Saito et al., 

2008). 

There is no doubt that adipokines influence insulin resistance and play a role in 

inflammation and immune responses (Fantuzzi, 2005).  However, in human the role 

of resistin in the development of insulin resistance is still debated.  Macrophages and 

neutrophils are the main source of resistin in human (Patel et al., 2003; Bostrom et al., 

2009).  Human resistin acts as a proinflammatory molecule and stimulates the 

production and release of TNF-α and IL-12 (Silswal et al., 2005).  Also, inflammatory 

endotoxins induce resistin in human macrophages via a cascade involving the release 

of inflammatory cytokines such as TNF-α and IL-6 (Lehrke et al., 2004).  

Consequently, resistin is thought to be linked to inflammatory process (Bokarewa et 

al., 2005; Fantuzzi, 2005).  Furthermore, the modulating function of resistin in 

inflammation (Bokarewa et al., 2005) suggesting a probable role in the development 

of periodontal disease.   

Furugen et al. (2008) investigated the relationship between periodontal conditions and 

serum levels of resistin and adiponectin in elderly Japanese (Furugen et al., 2008). It 

has been demonstrated that both circulating resistin levels and total leukocytes and 

neutrophil counts are significantly elevated in subjects with periodontitis when 

compared with controls (Furugen et al., 2008).  Also, resistin levels were significantly 
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correlated with bleeding on probing and average probing pocket depth but not average 

attachment loss, suggesting an association of resistin with inflammatory variables 

rather than periodontal destruction.  Furthermore, a significant association of 

increased serum resistin with periodontal condition was revealed independent with 

sex, smoking, fasting glucose and BMI.  Intriguingly, periodontitis patients with at 

least one tooth with a probing depth greater than 6 mm have a two fold higher serum 

resistin levels than subjects without periodontitis (Furugen et al., 2008).  A second 

study by Saito et al (2008) confirms the findings of the previous study, as it showed 

that having periodontitis was significantly associated with increased serum resistin 

levels in middle aged Japanese women.  This study has reported that women with 

periodontitis have a three fold greater serum resistin levels than periodontally healthy 

women (Saito et al., 2008).  On the other hand, a recent study aimed to determine the 

serum resistin levels in periodontally healthy and chronic periodontitis subjects and 

also, to determine the effect of nonsurgical periodontal therapy on its levels, failed to 

demonstrate any significant difference in serum resistin levels between the cases and 

the controls.  Additionally, the reduction in serum resistin levels following non-

surgical periodontal therapy did not show any statistical significance (Devanoorkar et 

al., 2012).  Furthermore, a pilot study performed by Davies et al (2011) to investigate 

glycaemic control and systemic levels of inflammatory mediators, lipids and 

adipokines in patients with aggressive periodontitis, provided no evidence to suggest 

that serum levels of resistin altered in non-diabetic patients with aggressive 

periodontitis compared with periodontally healthy control subjects (Davies et al., 

2011).  While the occurrence of hyperresistinemia in subjects with T2DM and 

periodontal disease is well-established, the knowledge regarding the potential role of 

resistin in linking between these two disorders is unexplored.  Accordingly, the 
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present project will investigate the presumptive role of resistin in mediating the 

relationship between type 2 diabetes and periodontal disease. 
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1.6 Aims 

 

1. To investigate the possible relationship between resistin in saliva and GCF and 

periodontal disease in patients with and without T2DM. 

2. To investigate the possible relationship between serum resistin and periodontal 

disease in patients with and without T2DM 

3. To investigate the effect of LPS and IL-1β on resistin expression and secretion 

in monocytes, macrophages and oral keratinocytes 

4. To investigate the effect of resistin on cytokine expression in monocytes in 

vitro 

 

The following experiments were conducted to investigate the aims of the present 

study: 

1. Determination of serum, saliva and GCF concentrations of resistin in 

periodontal disease with and without T2DM, before and after treatment of 

periodontitis (Chapter 3 and Chapter 4). 

2. Stimulation of OKF6 (oral keratinocytes) with IL-1β and investigation of 

resistin mRNA expression and protein secretion (Chapter 5). 

3. Stimulation of THP-1 monocytes/macrophages, U937 monocyte/macrophages 

and primary human monocytes with different concentrations of LPS and 

investigation of resistin mRNA expression and protein secretion (Chapter 5). 
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4. Stimulation of THP-1 monocytes with resistin, and characterization/ 

investigation of differential cytokine/chemokine mRNA expression (Chapter 

6). 
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Chapter 2 Materials‎and‎Methods 

2.1 Cell‎culture 

All experiments were carried out within an Astecair Biological Safety Cabinet Class II BHA 

Series (Astec Environmental Systems Limited, UK).  All sterilized plasticware such as tissue 

culture flasks, pipette tips and plastic tubes were obtained from Greiner Bio-one (Stonehouse, 

UK).  Unless specified otherwise, all laboratory media and reagents were purchased from 

Sigma-Aldrich (Poole, UK).  All equipment used for experiments were sprayed with 70% 

ethanol for sterilization purposes.  The cells were incubated over the course of the growing 

and experimental period in an incubator set to 37 
ο
C, 5% CO2 (Model MCO-17/20 AIC 

Sanyo, Loughbourgh, UK).  The incubator was cleaned on a monthly basis to help prevent 

infection of the cultures.  The cells were stored in liquid nitrogen in liquid nitrogen storage 

tank. 

2.1.1 THP-1 monocytes 

The term THP-1 has come to be used to refer to a human monocytic cell line that was 

originally derived from the blood of a boy with acute monocytic leukaemia (Tsuchiya et al., 

1980).  Since then THP-1 cells have been used as a monocyte cell model in immunology 

research.  THP-1 cell lines are non-adherent cells; indeed, it is in a pro-monocyte state during 

culture. 

THP-1 monocytes were purchased as frozen vials from the European Collection of Cell 

Cultures (Salisbury, UK).  The cells vials were shaken carefully in a water bath at 37
ο
C to 

allow cells to thaw swiftly, and then 4-5 x 10
6
 cells were conveyed to a 75 cm

2
 tissue culture 

flask.  Cell culture medium (RPMI 1640 medium, supplemented with FCS (10% v/v), L-

glutamine (2mM), penicillin (100 U/ml) and streptomycin (100 μg/ml)) were added gradually 

to the cells, then the cells were maintained at 37
ο
C and 5% CO2.  On the following day, 
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medium was substituted entirely by a fresh medium.  The cells were spun for 5 minutes at 

2000 rpm, 20
ο
C in a centrifuge, then supernatant was discarded and the cell pellet was re-

suspended in new medium. 

THP-1 cultures were maintained at a concentration of 3-8 x 10
5
 cells/ml in cell culture 

medium at 37
ο
C, 5% CO2.  Every two days the medium was replaced.  The cells were 

counted at regular intervals under a microscope using a haemocytometer (Bright-Line, 

Improved Neubauer, Hausser Scientific, PA, USA) in order to ensure optimum cells 

concentration.  To prepare the hemacytometer, the mirror-like polished surface was carefully 

cleaned with lens paper and ethanol. The coverslip was also be cleaned. The coverslip was 

placed over the counting surface prior to adding the cell suspension mixture. 10 μl of the cell 

suspension was mixed with 10 μl of trypan blue solution.  Then, 10 μl of the mixture was 

introduced into the edge of the V-shaped chamber under the coverslip using 10 μl pipette tip, 

and the area under the coverslip was allowed to be filled with the cell suspension mixture 

filled by capillary action.  The counting chamber was then placed on the microscope stage 

and the counting grid is brought into focus at low power.  Under the microscope, the grid 

consists of 25 square (each of the squares contains 16 smaller squares).  The counting grid is 

bordered by 3 lines.  Cells were counted at the four large corner squares and the one in the 

middle.  The number of the cells per ml of cell suspension was counted as follows: 

No. of cells in 5 square x 5 x 2 (dilution factor) x 10,000 (because 10 μl used). 

Cell passaging or splitting was performed to maintain cells in exponential growth, alive and 

growing under cultured conditions for extended periods of time.  In order to ensure optimal 

cell density in culture (which is 3-8 x 10
5
 cell/ml), the cells were passaged whenever their 

density exceeded 8 x 10
5
 cell/ml.  Therefore, the cells were passaged once every week.  After 

reviving, cells were passaged at least one time before being used for an experiment.  Passage 

nine is the maximum passage which was used for any experiment. 
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During routine culture, cell viability was monitored on a regular basis using trypan blue 

exclusion.  Trypan blue is a blue dye which only enters a damaged cell membrane, and 

thereby staining only dead cells.  A 10μl cell suspension was diluted 1:1 (v/v) with a trypan 

blue solution.  The number of dead cells (blue stained) and viable cells (unstained) was 

determined using a haemocytometer.  The number of viable cells was considered as 100% 

and the percent of the dead cells was deducted.  During routine cell culture cell viability was 

found to be >99%. 

To enable continuous culture, THP-1 monocytes were frozen in liquid nitrogen.  4-5 x 10
6
 

cells/ml were resuspended in freezing medium (RPMI-1640 medium supplemented with FCS 

(20 % v/v), L-glutamine (2mM) and 10% glycerol).  Cells were conveyed to cryovials and 

kept in a freezing container (Nalgene, Cryo 1 
ο
C, Hereford, UK) with propan-2-ol (VWR 

International, Poole, UK) at -80
ο
C in a freezer over night.  On the next day, the cells were 

stored in liquid nitrogen. 

2.1.1.1 Vitamin D3 treatment of THP-1 monocytes 

Unless stated otherwise, THP-1 monocytes (1 x 10
6 

cells/ml) were treated with 0.1 µM 

Vitamin D3 (1α, 25-dihydroxy-vitamin D3, Calbiochem, Merck Chemicals, Nottingham, UK) 

for 24 or 48 hours previous to  use in stimulation experiments.  Moreover, unless otherwise 

specified, all experiments were performed as two replicates, and on three independent 

occasions. 

As a consequence  of treatment with vitamin D3, it appears that THP-1 pro-monocyte cells 

differentiate along the monocytic lineage to mature monocyte-like cells which is similar to 

the natural phenotype of primary human monocytes (Kitchens et al., 1992; Schwende et al., 

1996).  Once monocytic THP-1 cells mature they become adherent to the plate and, show an 

upregulation in the expression of the monocyte marker CD14 (Foster et al., 2005). 
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2.1.1.2 PMA treatment of THP-1 monocytes 

In order to differentiate THP-1 monocytes into macrophages , PMA (phorbol 12-myristate 

13-acetate, Source BioScience LifeSciences, Nottingham, UK) at a final concentration of 50 

ng/ml was used to treat 1 x 10
6
 THP-1 monocytes (Schwende et al., 1996).  This treatment 

was continued for 5 days, during which, the medium were renewed on alternate days, and 

changed with a fresh medium before the experiment was performed. 

2.1.2 U937 monocytes 

The term U937 is generally understood to mean a human hematopoietic cell line that was 

originally derived from the a patient with diffuse histiocytic lymphoma (Sundstrom and 

Nilsson, 1976).  Since then U937 have made important contributions to many disciplines 

such as immunology and cancer research.  U937 cell lines are immature cells of 

myelomonocytic lineage (Sundstrom and Nilsson, 1976).  These cells are non-adherent 

during culture.   

U937 cells were a kind gift from Dr. Lee Borthwick, Respiratory Research Group, Institute of 

Cellular Medicine, Newcastle University, UK.  The cell vials were shaken carefully in a 

water bath at 37
ο
C to allow cells to thaw swiftly, and then a 5 ml of pre-warmed medium 

(RPMI 1640 medium, supplemented with FCS (10% v/v), L-glutamine (2mM), penicillin 

(100 U/ml) and streptomycin (100 μg/ml)) were added gradually to the 4-5 x 10
6
 cells. 

Afterwards, the cells were spun for 4 minutes at 250 g, 20
ο
C in a centrifuge, and then the cell 

pellet was re-suspended in a fresh medium at a concentration of 0.5 x 10
6 

cells/ml.  Only after 

48 hours the medium was substituted entirely by a fresh medium.  The cells were spun for 4 

minutes at 1300 rpm, 20
ο
C in a centrifuge, then supernatant was discarded and the cell pellet 

was re-suspended in new medium.  Cell culture was continued as described in 2.1.2.2. 

U937 monocytes were maintained in culture at a concentration of 3-8 x 10
5
 cells/ml in cell 

culture medium at 37
ο
C, 5% CO2 and the medium was changed three times a week.  The cells 
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were counted at regular intervals under a microscope using a haemocytometer (see Section 

2.1.1 above) in order to ensure optimum cell concentration recommended by manufacturer’s 

instructions (3-8 x 10
5
 cells/ml).  Consequently, the cells were passaged steadily once or 

twice a week.  After reviving, cells were passaged at least one time before being used for an 

experiment.  All experiments were conducted from cells in passages from 3-16. 

Cell viability for U937 monocytes was determined using the method described for THP-1 

monocyte viability, using trypan blue exclusion (see Section 2.1.1 above).  

To ensure continuous culture, U937 monocytes were frozen in liquid nitrogen.  4-5 x 10
6
 

cells/ml were re-suspended in freezing medium (DMEM supplemented with 10% FCS, 10% 

DMSO).  Cells were transferred to cryovials and placed in a feezing container (Nalgene, Cryo 

1 
ο
C, Hereford, UK) with propan-2-ol (VWR international, Poole, UK) at -80

ο
C in a Sanyo 

Ultra Low freezer (MDF-U30865) over night.  On the next day, the cells were stored in liquid 

nitrogen. 

2.1.2.1 Vitamin D3 treatment of U937 monocytes 

Treatment of U937 moncytes with Vitamin D3 was performed using the same protocol that 

was described for THP-1 monocytes (see Section 2.1.1.1 above). 

2.1.2.2 PMA treatment of U937 monocytes 

In order to differentiate U937 monocytes into macrophages, PMA (Phorbol 12-Myristate 13-

Acetate, Source BioScience LifeSciences) at a final concentration of 50 ng/ml or 100 ng/ml 

was used to treat 5x10
5
 U937 monocytes.  For the 50 ng/ml PMA, treatment lasted for 48 

hours then the medium was changed before the experiment was performed.  For the 100 

ng/ml PMA, treatment lasted for 72 hours, during which, the medium were renewed on 

alternate days and then changed with fresh medium before the experiment was performed.  
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2.1.3 Isolation and culture of primary human monocytes 

Primary human monocytes were prepared from leukocytes (buffy coat) donated by healthy 

individuals.  Buffy coats were obtained from the National Blood Service (Newcastle upon 

Tyne, UK).  Monocytes were isolated using magnetic beads coated with anti-CD14 

antibodies for positive or negative monocytes.  Each buffy coat was taken from different 

individual donor for each individual experiment.  To date, various methods have been 

developed and introduced to isolate primary human monocytes, however, in this research 

monocyte isolation were carried out using the magnetic bead method. 

The buffy coat was diluted 1:1 ratio in isolation buffer (phosphate-buffered saline 

(PBS)/ethylenediamine tetra-acetic acid (EDTA) (1mM), supplemented with 2% FCS), then 

layered on top of an equal volume of a Histopaque gradient (Sigma) at room temperature.  

Following centrifugation at 800 g, 20
ο
C for 20 minutes, the buffy coat layer was collected 

and then diluted into 40ml of isolation buffer (PBS/ EDTA 1mM with 2% FCS).  The cells 

were pelleted at 600g, 4
ο
C for 7 minutes and the supernatant was discarded.  Cells were re-

suspended in 50 ml isolation buffer and spun for 7 minutes at 250g, 4
ο
C.  Cells were re-

suspended again in 50 ml isolation buffer and then filtrated through a 30 μm cell mesh.  

Leukocytes were counted on a haemocytometer, and then centrifuged once more for 5 

minutes at 150g, 4
ο
C.  Afterwards, leukocytes were re-suspended to a concentration of 1 x 

10
8
 cells/ml for positive selection or to a 5 x 10

7 
cells/ml for negative selection of monocytes 

in RoboSep buffer (StemCell Technologies, Grenoble, France).  Subsequently monocytes 

isolation were achieved using a positive or negative CD14 selection kit (StemCell 

Technologies) on the fully automated cell separator RoboSep (StemCell Technologies) 

adopting the manufacturer’s instructions.  On the RoboSep, the cell suspension was incubated 

with an antibody mixtures (positive selection: monoclonal CD14; negative selection: 

monoclonal CD2, CD3, CD16, CD19, CD20, CD56, CD66b, CD123, glycophorin A, FcR 
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blocker) and magnetic beads.  The beads with the affixed cells were assembled automatically 

with a magnet and purified monocytes were re-suspended in RoboSep buffer.  After isolation, 

monocytes were counted on a haemocytometer, then re-suspended in cell culture medium 

(RPMI 1640 medium, supplemented with FCS (10% v/v), L-glutamine (2mM), penicillin 

(100 U/ml) and streptomycin (100 μg/ml)).  Then 4 x 10
6 

cells were seeded per well of a 6-

well tissue culture plate.  Cells in the plate were brooded at 37
ο
C, 5% CO2 overnight, and 

afterwards used for stimulation experiments. 

2.1.4 Treatment of monocytes with LPS 

Ultra pure LPS from both Porphyromonas gingivalis (P.gingivalis) and  Escherichia coli 

(E.coli) were purchased from Invivogen (via Autogen Bioclear).  All the working 

concentrations of LPS were prepared in cell culture medium and used to stimulate 

monocytes.  In a variety of experiments, THP-1, U937 and primary human monocytes were 

stimulated with different concentrations of LPS (P.gingivalis and E.coli) (100ng/ml, 1μg/ml) 

at different time points (1 hours, 3 hours, 6 hours, 24 hours, 48 hours and 72 hours).  Our 

laboratory has shown that 100 ng/ml E.coli LPS is an optimal concentration used in 

stimulation experiments (Foster et al., 2005).  However, because this concentration was 

insufficient to drive U937 toward resistin up-regulation a higher concentration (1 µg/ml) was 

used; which was still lower than that used by a previous study (Yang et al., 2003). 

2.1.5 Treatment of THP-1 monocytes with recombinant resistin 

Human recombinant resistin (endotoxin concentration below 0.1 ng/µg) was purchased from 

PeproTech, Inc (London, UK) and reconstituted to a stock solution of 1mg/ml with 

endotoxin-free water (Sigma) according to manufacturer’s instructions.  Working dilutions at 

50μg/ml were prepared in cell culture medium.  Reconstituted resistin was stored at -80
ο
C.  A 

pilot study using different concentrations of resistin (100ng/ml, 250ng/ml and 500ng/ml) was 
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carried out and the optimal concentration 500ng/ml was chosen for the subsequent 

stimulation experiments (see Figure 6.1). 

2.1.6 OKF6 Oral keratinocytes 

OKF6 cells are keratinocyte cell lines derived originally from normal gingival mucosal cells 

taken from the floor of the mouth.  OKF6 cells were obtained from BWH Cell Culture and 

Microscopy Core, Harvard University.  These cells were maintained in Gibco Keratinocyte 

SFM medium (Invitrogen, UK) augmented with bovine pituitary extract (BPE) at a final 

concentration of 30 μg/ml, penicillin 100(U/ml), streptomycin (100 μg/ml) diluted in 

phosphate buffered saline (PBS), epidermal growth factor (EGF) to a final concentration of 

0.1 ng/ml, and 0.6 mM calcium chloride (CaCl2).  Cells were cultured at 37
ο
C, 5% CO2 in 

5ml supplemented Gibco Keratinocyte-SFM medium at a density of approximately 0.5 x 10
6
 

cells per 25cm
2
 flask.  Fresh medium was added to the cultures every other day until the cells 

reached 80% confluence which was usually required approximately 5 days.   

Since the keratinocytes are adherent cells, and in order to release them from the flask walls, 

first the cells were washed with 5ml of trypsin/EDTA for just 30 seconds.  Then a fresh 5ml 

aliquot of the same reagent was added to the cells and maintained for 10 minutes at 37
ο
C and 

5% CO2.  Once the cells become non-adherent, the trypsin action was stopped by adding 15 

ml of 1:1 DMEM / F12 (Ham mixture) medium supplemented with foetal calf serum (10% 

v/v) and L-glutamine (2mM).  The cells were centrifuged at 2000 rpm for 10 minutes and 

then re-suspended in fresh keratinocyte medium.  Using a haemocytometer, the cells were 

counted (with the same method as previously described for counting THP-1 and U937 cells) 

and then seeded in 25 cm
2
 flasks.  On the following day, the medium was replaced with a 5ml 

of fresh medium that was then renewed every other day. 
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 To ensure continuous culture, OKF6 keratinocytes were frozen in liquid nitrogen.  Typically, 

2-3 x 10
6
 cells/ml were suspended in keratinocytes medium, then 2X freezing medium 

(DMEM/F12 (1:1), supplemented with FCS 10% and 20% DMSO) were added to the cells in 

1:1 ratio.  Cells were transferred to cryovials and placed in a freezing container (Nalgene, 

Cryo 1s
ο
C, Hereford, UK) with propan-2-ol (VWR international, Poole, UK) at -80

ο
C in a 

Sanyo Ultra Low freezer (MDF-U30865) over night.  On the next day, the cells were stored 

in liquid nitrogen. 

In order to revive the frozen OKF6 cells, the vial of cells was shaken carefully in a water bath 

at 37
ο
C to allow cells to thaw quickly, and then transfer the thawed cells to a tube and add a 

quenshing medium (DMEM/F12 (1:1) supplemented with 10% FCS) to it.  The cells were 

then centrifuged for 10 minutes at 2000 rpm and then counted using haemocytometer and re-

suspended in fresh keratinocyte medium. 

2.1.6.1 Treatment of OKF6 keratinocytes with IL-1β 

Human recombinant IL-1β was purchased from R&D Systems (Abingdon, UK).  This 

cytokine was reconstituted according to the manufacturer’s instructions as a stock solution at 

a concentration of 5μg/ml by dissolving the powder in sterile distilled water and stored at -

80
ο
C until it was used for experiments.  Recombinant IL-1β used in experiments at a 

concentration of 100pg/ml.  This concentration was adopted as previous research in our lab 

and had found it to be the optimum concentration to stimulate immune responses in these 

cells (Areibi et al Unpublished).  Stimulation of the keratinocytes with IL-1β was carried out 

in individual experiments and repeated two times. 

The OKF6 keratinocytes were obtained by trypsinization of the cells as detailed previously 

(section 2.1.2) and were seeded in duplicate wells (2 x 10
5
 cells/well) in three 6 well plates 

and left to adhere and reach sub-confluence.  In order to stimulate the cells, a fresh medium 

containing IL-1β (100pg/ml) was added (4ml/well) and other cells were incubated with a 
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plain fresh medium to serve as a control.  All treatments and controls were performed in 

duplicates within two independent cell culture experiments.  The cells stimulation period was 

4 hours, 24 hours and 48 hours.  For extracellular release of resistin supernatants were 

collected and  aliquoted in Eppendorf tubes (1ml), while for assessment of gene expression 

the cells were scraped and total mRNA was prepared (see section 2.3).  Both samples were 

stored at -80
ο
C until further use.  

2.2 Enzyme‎Linked‎Immunosorbant‎Assay‎(ELISA) 

The concentration of resistin and other cytokines in cell culture supernatants were examined 

using Duoset ELISA kits (R&D systems, UK).  However, resistin levels in serum, saliva and 

GCF were measured using Quantikine ELISA kits (R&D systems).  The concentration of 

MIP-1α in cell culture supernatants were examined using Duoset ELISA kits (R&D systems, 

UK).  The visfatin ELISA was developed from first principles, using individual antibodies 

rather than a kit.  The ELISA technique is built on the antibody sandwich principle.  This 

method involves coating the plate with a analyte-specific capture antibody (primary 

antibody), removing unbound antibody by washing, blocking all unbound sites, adding 

antigen (in the standard and samples), adding detection antibody (secondary antibody), 

adding detection reagent (e.g. streptavidin-HRP) and, lastly, adding a substrate to react with 

the enzyme and develop a colour in proportion to the amount of bound analyte.  Antibody 

concentrations and standard curve detection range for each ELISA are listed in Table  2.1.  
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Table ‎2.1 Antibody working concentrations and standard curve detection ranges for 

ELISAs 

ELISA Capture antibody Detection antibody Standard curve 

range 

Resistin (Quantikine)   10 – 0.16 ng/ml 

Resistin (DuoSet kit) 4μg/ml 0.25 μg/ml 2000 – 31.25 pg/ml 

MIP-1α  

TNF-α 

4μg/ml 

4μg/ml 

200 ng/ml 

350 ng/ml 

500 – 7.8 pg/ml 

1000 – 15.6 pg/ml 

Visfatin  

IL-12 

2μg/ml 

4μg/ml 

0.8μg/ml 

100 ng/ml 

320 – 5 ng/ml 

2000 – 31.25 pg/ml 
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For the Duoset ELISAs, the 96-well microtiter plate was coated with 100 μl capture antibody 

which is diluted in PBS, covered with adhesive strip, and incubated overnight at room 

temperature.  On the next day, the plate was washed three times with wash buffer (0.05% 

Tween 20 in PBS, v/v), and for complete removal of any remaining washing buffer the plate 

was inverted and blotted against a clean paper towels.  300 μl of reagent diluent (RD, 1% 

BSA in PBS, w/v) was added for one hour to block the non-specific binding and then the 

plate was washed (as detailed above) and the wells were drained.  Then 100 μl of standard (in 

triplicates, prepared with serial dilutions in reagent diluent), samples (in duplicates) and a 

reagent diluent as a negative control (in triplicates) were added and incubated for two hours 

(one hour on a shaker at room temperature, and the next hour in incubator at 37
ο
C).  The 

wells were washed again and 100 μl of detection antibody (diluted in reagent diluent) was 

incubated for 2 hours (on a shaker at room temperature).  After washing three times, the 

ELISA plate was incubated with 100 μl of Streptavidin horse-radish peroxidise (HRP) diluted 

in reagent diluent (1/200) for 20 minutes.  The plate was protected from direct light during 

this step by wrapping the plate in aluminium foil.  The plate was washed again and then 100 

μl of tetramethylbenzidine (TMB) substrate solution (solution A and solution B (1:1), v/v) 

was added to each well and the plate incubated away from direct light for 20 minutes.  The 

reaction was stopped with 50 μl 2N H2SO4.  The absorbance was read at 450 nm, using a Bio 

Tek FL 600 microplate fluorescence reader.  A reading at 550 nm was subtracted to correct 

for optical imperfections in the plate.  The specific concentrations of samples were computed 

from the standard curve using a 4-parameter logistic curve fit.  The standard curve for each 

ELISA used in the study are presented in Figure ‎2.1, Figure ‎2.2, Figure ‎2.3, Figure ‎2.4, 

Figure ‎2.5 and Figure ‎2.6. 

To measure resistin levels in clinical samples, a Quantikine resistin ELISA protocol was 

used.  Quantikine kit is designed to eliminate the interference by binding proteins and other 
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factors in clinical samples; consequently, it was the best assay for the quantitative 

determination of resistin concentrations in human serum, saliva and GCF.  The protocol for 

the Quantikine kits was slightly different from the commercial DuoSet ELISAs.  Briefly, all 

reagents, samples, and standards were prepared according to the manufacturer’s instructions.  

The Quantikine kit  96 well polystyrene microplate have been already coated (from the 

manufacturer)  with a mouse monoclonal antibody against resistin, for that reason, a 100 μl of 

assay diluent (buffered protein base) was added directly  to the plate  and overlaid with 100 μl 

of standard, control, or samples.  The plate was then covered with adhesive strip and 

incubated for 2 hours at room temperature.  Then each well was washed with 400 μl wash 

buffer using multichannel pipette.  This was repeated three times for a total of four washes, 

after each wash the plate was blotted against a clean paper towel, and at the end of the 

washing step all the remaining liquid was removed by aspirating each well using aspirator.  A 

200 μl resistin conjugate (monoclonal antibody against resistin conjugated to horseradish 

peroxidise) was added and incubated for 2 hours at room temperature.  The washing step was 

performed as detailed previously.  Then 200 μl of substrate solution was added to each well 

and protected from direct light for 30 minutes.  The reaction was stopped by adding a 50 μl of 

stop solution to each well.  Determination of the optical density and measurement of protein 

concentrations was done following the same method used for the other ELISAs (as described 

before).   

Examples of a standard curve for each ELISA are shown in Figure  2.1, Figure  2.2, Figure  2.3, 

Figure  2.4, Figure  2.5 and Figure  2.6. 
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Figure ‎2.1 Standard curve for the Resistin ELISA (Quantikine) 

The unknown concentrations of resistin were calculated using a 4-parameter curve fit, which 

was created to produce the 7-point standard curve for the resistin ELISA.  In the 4-parameter 

curve fit formula, “a” represents a theoretical response at a concentration equal to zero, “b” 

the measure of the slope of curve at its inflection point, “c” the value of response at inflection 

point, “d” the theoretical response at infinite concentration, “x” the concentration, and “y” the 

response (OD).  Consequently, the Δ OD was plotted against different resistin concentrations.  

Δ OD symbolizes “OD 450 nm – OD 550 nm”.  450 nm represents the wavelength in 

nanometres at which maximum absorption of light by the plate background occurs, while 550 

nm represents the wavelength in nanometres at which maximum absorption of light by 

Resistin occurs.  The subtraction of 550 readings from the readings at 450 aims to correct for 

the optical imperfections in the plate.   
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Figure ‎2.2 Standard curve for the resistin ELISA (Duo Set) 

The unknown concentrations of resistin were calculated using a 4-parameter curve fit, which 

was created to produce the 7-point standard curve for the resistin ELISA.  For details see 

legend to Figure ‎2.1.   
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Figure ‎2.3 Standard curve for the MIP-1α‎(CCL3)‎ELISA 

The unknown concentrations of MIP-1α were calculated using a 4-parameter curve fit, which 

was created to produce the 7-point standard curve for the MIP-1α ELISA.  For details see 

legend to Figure ‎2.1.   
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Figure ‎2.4 Standard curve for the TNF-alpha ELISA 

The unknown concentrations of TNF-α were calculated using a 4-parameter curve fit, which 

was created to produce the 7-point standard curve for TNF-α ELISA.  For details see legend 

to Figure ‎2.1. 
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Figure ‎2.5 Standard curve for the visfatin ELISA 

The unknown concentrations of visfatin were calculated using a 4-parameter curve fit, which 

was created to produce the 7-point standard curve for the visfatin ELISA.  For details see 

legend to Figure ‎2.1.   
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IL-12 (pg/ml)

0 500 1000 1500 2000 2500


O

D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 

Figure ‎2.6 Standard curve for IL-12 ELISA 

The unknown concentrations of IL-12 were calculated using a 4-parameter curve fit, which 

was created to produce the 7-point standard curve for the IL-12 ELISA.  For details see 

legend to Figure ‎2.1.   
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2.2.1 Resistin ELISA 

2.2.1.1 Validation of the resistin Duo Set ELISA for human samples 

2.2.1.1.1 Spike recovery assay 

The resistin Duo Set ELISA (R&D Systems) was developed for the analysis of cell culture 

supernatants, but because serum contains many components and factors which may impact 

the ELISA results, it was necessary to validate the resistin ELISA for the analysis of human 

serum samples.  This was performed by measuring the recovery and linearity for the resistin 

ELISA.  Throughout the study, serum samples were diluted (1:16) in reagent diluent to yield 

a value within the range of the standard curve.  The dilution (1:16) was treated as a new 

“neat” sample in spike/recovery experiments.  In the spike/recovery experiment, a known 

amount (1200 pg/ml) of recombinant resistin was spiked into a serum sample with a known 

resistin concentration (the spiked sample), the same amount of recombinant resistin was also 

spiked into a reagent diluent (spike control), while un-spiked sample represent the neat 

sample.  The spiked, un-spiked samples and the control spike were serially diluted into 1:2, 

1:4 and 1:8 dilutions to explore for linearity of the dilutions.  The recovery of spiked sample, 

the control spike and the serial dilutions were calculated as follows: 

Spiked sample recovery:   
                         

             
       

Spiked control recovery:   
              

             
       

Recovery for 1:2 dilution:  
             

                 
       

The resulting concentration “recovery of the sample” is then measured to indicate whether a 

component in the sample interferes in the ELISA.  Furthermore, spiked and un-spiked 

samples were also serially diluted to explore for linearity of the dilutions.  According to R&D 
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Systems recommendations, the spike/recovery should be in the range of 80-120 % to indicate 

that the assay is suitable for use with the tested sample.  The validation assays for resistin 

have been repeated several times and the results of some of these attempts are shown in tables 

2.2.  In the first two validation assays the spiked sample recovery was 77 and 87 respectively.  

The linearity was relatively good for the control spike in both experiments which indicates 

that there was no error in the preparation of dilutions.  However, a poor linearity was 

observed for the spiked and un-spiked samples.  When another validation was attempted 

using a different reagent diluent (20% FCS instead of 1% PBS) in BSA different results were 

obtained. Thus, the spike recovery was poor while the linearity was good (Table  2.2).  
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Table ‎2.2 Spike/recovery and linearity of resistin Duo Set ELISA for human serum 

samples (Three independent assays) 

Samples Resistin 

(pg/ml) 

1
st
 Exp 

% 

Recovery 

1
st
 Exp 

 

 

 

Resistin 

(pg/ml) 

2
nd

 Exp 

% 

Recovery 

2
nd

  Exp 

Resistin 

(pg/ml) 

3
rd

  Exp 

% 

Recovery 

3
rd

 Exp 

Spiked sample 1247.4 77 1772.8 86.7 1454.5 65 

1:2 spiked sample 1137.6 109.7 1514.7 117 1418.1 102.6 

1:4 spiked sample 995.6 125.3 1294.5 137 1451.4 100.2 

1:8 spiked sample 992.8 125.7 991.3 178.8 1616.9 90 

Neat sample 323.4 … 731.9 … 674.8 … 

1:2 neat sample 267.3 121 531.7 137.7 740.5 91.1 

1:4 neat sample 220.2 146.9 378 193.6 815.5 82.7 

1:8 neat sample 208.1 155.4 613.4 119.3 803.1 84 

Spiked control 1111.1 92.6 1118 93.2 992 82.7 

1:2 spiked control 1045.4 106.3 1198.2 93.3 996.4 99.6 

1:4 spiked control 1033 107.6 1186.6 94.2 1032 96.1 

1:8 spiked control 1035.2 107.3 1244.2 89.9 1015.1 97.7 

 

The table illustrates the obtained resistin concentrations in human serum samples and the % 

recovery.  The human serum samples were spiked 1200 pg/ml human recombinant resistin.  

Spiked controls (reagent diluent) were spiked with the same amount.  2-fold serial dilutions 

were prepared for spiked samples, neat samples and spiked controls. 
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The inconsistency in recovery and linearity was a feature of the validation assays carried out 

for resistin Duo set ELISAs.  Consequently, it was decided that the resistin Dou Set ELISA 

assay could not be reliably used for monitoring resistin concentrations in human serum 

samples, and its use was restricted to the analysis of cell culture supernatants. 

2.2.1.1.2 Intra-and-inter-assay reproducibility and assay sensitivity 

In order to assess the reproducibility of the resistin Duo Set ELISA assays, both the intra- 

and- inter assay coefficient of variability (CV) was measured.  Intra-assay reproducibility for 

resistin Duo set ELISA for serum samples was assessed in 8 replicates in one assay, while the 

inter-assay reproducibility for the resistin Duo set ELISA for serum samples was assessed in 

six independent assays.  Results are shown in Table  2.3 and Table  2.4.  The intra-and-inter-

assay reproducibility was calculated as follows: 

  

    
       

Intra- and inter-assay precision for resistin Duo set ELISA for serum samples was 7% and 

11% respectively.  The 11% inter-assay CV expressed an acceptable plate to plate 

consistency and a high repeatability of resistin Duo set ELISAs for human serum samples. 

The assay sensitivity for the resistin Duo set ELISA was determined by adding two standard 

deviations to the mean optical density (OD) value of the zero standard replicates, and 

calculating the corresponding concentration in the 4 parameter curve fit using “Sigma plot” 

solve function.  The minimum detectable concentration for resistin was 60.4pg/ml. 
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Table ‎2.3 Intra-assay reproducibility of Resistin Duo set ELISAs for human serum 

samples 

Replicate Number Serum Resistin (pg/ml) 

1 

2 

1085.1 

1267.3 

3 

4 

1185.6 

1173.9 

5 1345.7 

6 

7 

1181.7 

1286.9 

8 1314.3 

Mean 

Standard Deviation 

1230.1 

87.5 

Intra-assay variation (%) 7.1 

 

Human serum sample was analysed in replicates for resistin in one assay and  intra-assay 

variation was calculated. 
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Table ‎2.4 Inter-assay reproducibility of Resistin Duo set ELISAs for human serum 

samples 

Assay  Number Serum Resistin (pg/ml) 

I 

II 

607.6 

731.9 

III 674.8 

IV 

V 

VI 

784.1 

822 

787.7 

Mean 

Standard Deviation 

734.7 

80.8 

Intra-assay variation (%) 11 

  

Human serum sample was analysed for resistin in six independent assays and the inter-assay 

variation was calculated.  
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2.2.1.2 Resistin Quantikine ELISA for human samples 

2.2.1.2.1 Intra- and- inter-assay reproducibility and assay sensitivity 

The concentration of two serum samples were tested six times on one plate to determine the 

intra-assay reproducibility, while the inter-assay reproducibility of resistin Quantikine ELISA 

for serum samples was assessed in fives independent assays for one sample and four separate 

assays in a second sample.  Results are shown in Table  2.5 and Table  2.6.  The intra-and-

inter-assay precision was calculated as follows: 

  

    
       

Intra-assay variation for resistin Quantikine ELISA for serum samples was 17.2% for the first 

sample and 10.8% for the second sample.  The inter-assay variation was 17.8% for the first 

sample and 8.9% for the second sample and this expressed a good plate to plate consistency 

and repeatability of resistin Quantikine ELISAs for human serum samples. 

The assay sensitivity for the resistin Quantikine ELISA was determined by adding two 

standard deviations to the mean optical density (OD) value of the zero standard replicates, 

and calculating the corresponding concentration in the 4 parameter curve fit using “Sigma 

plot” solve function.  The minimum detectable concentration for resistin was 0.014ng/ml. 
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Table ‎2.5 Intra-assay reproducibility of Resistin Quantikine ELISAs for human serum 

samples 

Replicate Number Serum Resistin 

(ng/ml)     Sample I 

Serum Resistin 

(ng/ml) Sample II 

1  

2 

3 

4 

5 

6 

5.7 

6.5 

4.3  

6.3  

4.8 

6.7 

8.9  

11.9 

11.8  

11.8 

10.5 

11.9 

Mean 

Standard Deviation 

5.7  

0.98 

11.1  

1.2 

Intra-assay variation 

(%) 

17.2 10.8 

 

Two human serum samples were analysed in six replicates for resistin in one assay and intra-

assay variation was calculated. 
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Table ‎2.6 Inter-assay reproducibility of resistin Quantikine ELISAs for human serum 

samples 

Assay  Number Serum Resistin 

(ng/ml)Sample I 

Serum Resistin 

(ng/ml) Sample II 

1  

2 

3 

4 

5 

6 

6.3  

3.6  

4.8  

4.9  

4.6 

4.6 

5.6 

6 

5.6  

4.9 

4.9 

… 

Mean 

Standard Deviation 

4.8 

0.9 

5. 4 

0.5 

Inter-assay variation 

(%) 

17.8 8.9 

 

Two human serum samples were analysed “one in five and the second in six” independent 

assays and inter-assay variation was calculated. 
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The concentration of two saliva samples were tested eight times on one plate to determine the 

intra-assay reproducibility, while the inter-assay reproducibility of resistin Quantikine ELISA 

for saliva samples was assessed for two samples in fives independent assays.  Results are 

shown in Table  2.7 and Table  2.8.  The intra-and-inter-assay precision was calculated as 

follows: 

  

    
       

Intra-assay variation for resistin Quantikine ELISA for saliva samples was 6.5% for the first 

sample and 6.9% for the second sample.  The inter-assay variation was 9.1% for the first 

sample and 7.0% for the second sample and this expressed a good plate to plate consistency 

and repeatability of resistin Quantikine ELISAs for human saliva samples. 

The assay sensitivity for the resistin Quantikine ELISA was determined by adding two 

standard deviations to the mean optical density (OD) value of the zero standard replicates, 

and calculating the corresponding concentration in the 4 parameter curve fit using “Sigma 

plot” solve function.  The minimum detectable concentration for resistin was 0.09 ng/ml. 
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Table ‎2.7 Intra-assay reproducibility of Resistin Quantikine ELISAs for human saliva 

samples 

Replicate Number Saliva Resistin 

(ng/ml)     Sample I 

Saliva Resistin 

(ng/ml) Sample II 

1  

2 

3 

4 

5 

6 

7 

8 

3.9 

4.4 

4.6 

4.5 

4.2 

4.1 

4.2 

3.8 

4.2 

4.3 

4.3 

4.6 

3.9 

4.1 

4.0 

4.7 

Mean 

Standard Deviation 

4.2 

0.3 

4.3 

0.3 

Intra-assay variation 

(%) 

6.5 

 

6.9 

 

 

Two human saliva samples were analysed in eight replicates for resistin in one assay and 

intra-assay variation was calculated. 

  



2   Materials and Methods      106 

Table ‎2.8 Inter-assay reproducibility of Resistin Quantikine ELISAs for human saliva 

samples 

Assay  Number Saliva Resistin 

(ng/ml)Sample I 

Saliva Resistin 

(ng/ml) Sample II 

1  

2 

3 

4 

5 

15.4 

14.1 

14.4 

17.9 

14.1 

3.4 

2.9 

3.4 

3.4 

3.2 

Mean 

Standard Deviation 

15.2 

1.4 

3.3 

0.2 

Inter-assay variation 

(%) 

9.1 

 

7.0 

 

 

Two human saliva samples were analysed in five independent assays and inter-assay 

variation was calculated. 
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2.2.2 Development and characterization of specific ELISA for visfatin 

Because of the limited availability and prohibitive prices of commercial ELISA kits for 

visfatin, it was decided to develop a visfatin ELISA from first principles.  We have used a 

monoclonal anti-human/mouse PBEF1 antibody (capture antibody) (R&D Systems), a 

recombinant visfatin (Enzo Life Sciences, UK) and a biotinylated anti-human PBEF antibody 

(detection antibody) (R&D Systems).  In addition 1/200 streptavidin-HRP (R&D Systems) 

and a stabilized hydrogen peroxide substrate solution were used as a detection system and 

then 2N H2SO4 as a stop solution. 

2.2.2.1 Optimization of concentrations and conditions 

The development of visfatin ELISA requires an optimization of the assay through the use of 

different concentrations of capture antibody (CAb), detection antibody (DAb) and 

recombinant visfatin standard.   The reason for the optimization of the assay is to create an 

assay capable of detecting the lowest concentrations of the protein in the samples. The assay 

optimization was carried out through a series of grid experiments in which different 

conditions and concentrations have been used.  In this experiment, one capture antibody 

concentration (4 µg/ml), four detection antibody concentrations (400, 800, 1600, 3200 ng/ml) 

and three concentrations for the standard (10, 20, 40 ng/ml) were used.  The use of lower 

concentration of detection antibody (400ng/ml) gave a poor signal (the highest signal equal to 

0.27 dOD) which lead us to exclude the use of this concentration in the next trials.  On the 

other hand, the highest signal obtained by the use of the other three concentrations of 

detection antibody (800, 1600, 3200 ng/ml) was relatively comparable (the highest signal was 

equal to 0.39, 0.51 and 0.68 dOD respectively).  Hence we concluded that the 800ng/ml is the 

optimal concentration for detection antibody because it gave a relatively comparable signal to 

the higher concentrations and saving material in the same time. 
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 As a result of these trials, a standard curve was produced with the optimum conditions and 

concentrations of capture antibody, detection antibody and standards, determined using a 

capture antibody concentration of 2µg/ml and a detection antibody concentration of 

800ng/ml.  A serial twofold dilution of the recombinant human visfatin starting from 

320ng/ml down to 5ng/ml was performed.  Trial and error resulted in the following changes 

to the standard protocol which gave optimal standard curve for the visfatin ELISA: increasing 

the number of washes between reagents to five, aspirating each well after each wash, 

incubating the standard for 30 minutes on a shaker followed by 1.5 hours incubation (at 

37
o
C), incubating the detection antibody for two hours (at 37

o
C) and incubating the 

streptavidin-HRP and the substrate solution for 30 minutes.  The standard curve for the 

visfatin ELISA was shown in figure 2.5.  The sensitivity of the ELISA was calculated as 3 

standard deviations above the mean value of the zero standards, and the minimum detectable 

dose of visfatin (the sensitivity) in the experiment was 0.17ng/ml. 

2.2.2.2 Spike/recovery assay 

Serum contains many components and factors which may affect the ELISA.  Hence, it was 

necessary to validate the visfatin ELISA for the analysis of serum samples.  This was 

performed by measuring the recovery and linearity measurements for visfatin ELISA in 

spike/recovery experiment.  In this experiment a known amount of recombinant visfatin 

(100ng/ml) was spiked into serum sample with a known visfatin concentration (the spiked 

sample), the same amount of recombinant visfatin was also spiked into a reagent diluent 

(spike control), while the un-spiked sample represented the neat sample.  The spiked, un-

spiked samples and the control spike were serially diluted into 1:2, 1:4 and 1:8 dilutions to 

explore for linearity of the dilutions.  The recovery of spiked sample, the control spike and 

the serial dilutions were calculated as follows: 
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Spiked sample recovery:   
                         

             
       

Spiked control recovery:   
              

             
       

Recovery for 1:2 dilution:  
             

                 
       

According to R&D Systems recommendations, the spike/recovery should be in the range of 

80-120%.  In addition the recovery values for the control spike should be within 80-120%.  

As illustrated in Table  2.9, the percentage of the spiked sample recovery for visfatin was only 

2.5% which indicates a poor recovery.  Furthermore, vast discrepancies have been found in 

the percentage recovery for the control spike, spiked sample and un-spiked sample dilutions 

which indicates a poor linearity.  Also, the reproducibility of the assay was poor because we 

could not repeat a consistent standard curve in all ELISAs.  Hence, this assay was not used to 

analyse cell culture samples or clinical samples.  On the other hand, the commercial ELISA 

kits for visfatin were not widely available and were prohibitively expensive. 
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Table ‎2.9 Spike/recovery and linearity of the visfatin ELISA for human serum samples 

Sample Visfatin (ng/ml) % Recovery 

Spiked sample 

1:2 spiked sample 

1:4 spiked sample 

507.255 

551.695 

507.705 

2.5 

92 

100 

1:8 spiked sample 382.19 132.7 

Neat sample 504.78   ---- 

1:2 neat sample 498.495 101.3 

1:4 neat sample 

1:8 neat sample 

445.885 

303.29 

113.2 

166.4 

Spiked control 

1:2 spiked control 

73.537 

37.252 

73.5 

197.4 

1:4 spiked control 

1:8 spiked control 

13.402 

7.1802 

548.7 

1024.2 

 

The table illustrates the visfatin concentrations in human serum samples and the % recovery.  

The human serum samples were spiked 100 ng/ml human recombinant visfatin.  Spiked 

controls (reagent diluent) were spiked with the same amount.  2-fold serial dilutions were 

prepared for spiked samples, neat samples and spiked controls. 
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2.3 RNA‎analysis 

2.3.1 RNA extraction  

In order to isolate total RNA from the THP-1, U937, primary monocytes, and keratinocytes 

the GenElute
TM

 Mammalian Total RNA Miniprep kit (Sigma) was used according to the 

manufacturer’s instructions.  Cells were lysed in 350μl/well lysis buffer comprising of β-

mercaptoethanol and lysis solution in 1:100 (v/v) mixture, filtered through a GenElute 

filtration column (blue column inside a 2 ml receiving tube).  The tubes were centrifuged at 

13000 rpm for 2 minutes at room temperature (Biofuge Pico, Heraeus, DJB labcare).  Then 

the filtration column was discarded and the lysate was stored at -80
ο
C pending further 

processing.  Once samples all the lysates from an individual experiment had been collected 

and stored, RNA was prepared from the various lysates in a single procedure.  Thus, 350μl  

ethanol (70%) was added to the filtered lysate (kept on ice), and the mixture was transferred 

into a GenElute binding column (red column inserted in a 2ml collection tube) and 

centrifuged for 15 seconds at 12000 rpm.  The filtrate was discarded and 500μl of wash 

solution I was added to the column which was then centrifuged for 15 seconds.  The columns 

were placed into 2ml collection tubes then wash solution II (500μl) was added into the 

column and centrifuged for 15 seconds.  A second wash with 500μl wash solution II was 

carried out and centrifuged at 13000 rpm for 2 minutes.  The columns were then transferred 

into a new collection tubes.  Subsequently the RNA was eluted from the column with elution 

solution (30μl).  Finally, the concentration of RNA in each sample was determined on a 

spectrophotometer (see below) and reserved at -80
ο
C pending further processing. 

2.3.2 RNA quantification 

A NanoDrop spectrophotometer ND-1000 (Nanodrop Technologies Inc., USA) was used to 

quantify RNA samples.  The machine measured a ratio for absorbance at 260 and 280 nm and 
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RNA was considered to be acceptably pure if the ratio was 1.8-2.0.  The RNA concentrations 

were computed in 1μl of each sample in ng/μl. 

2.3.3 Complementary DNA (cDNA) synthesis by reverse Transcription 

In order to transcribe the extracted RNA into cDNA, a High-Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, Warrington, UK) was used according to the 

manufacturer’s instructions.  The cDNA was generated from 1μg of total RNA.  A reaction 

mixture was prepared on ice and included the following reagents (the volumes quoted are 

those for a single reverse transcription reaction): 

2μl 10X reverse transcription buffer 

0.8μl 10X Random Primers 

2μl 25X dNTP mix 

1μl Multiscribe Reverse Transcriptase 

1μl RNase Inhibitor 

3.2μl Nuclease-free H2O 

First, 6.8μl of the reaction mixture was added to the PCR tubes, and then a total RNA 

(equivalent to 1μg) was added with nuclease-free water (13.2μl RNA volume).  The reverse 

transcription was carried out by placing the tubes in thermocycler (Gene Amp PCR System 

9700, Applied Biosystems, Warrington, UK) for 10 minutes at 25
ο
C, 120 minutes at 37

ο
C, 

and 5 seconds at 85
ο
C.  The cDNA was preserved at 4

ο
C pending further processing. 

2.3.4 Reverse Transcriptase-Polymerase Chain Reaction for resistin 

The mRNA expression of resistin gene was analysed using a conventional PCR method.  The 

resistin primer used in this study was purchased from Sigma.  The primer sequences design 
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was quoted from a paper (Silswal et al., 2005).  The oligonucleotides sequences for resistin 

gene primers used for the assay were as follows:  

Forward: 5`-CGAGATCTATGAAAGCTCTCTGTCTCCTCCTCG 

Reverse: 5`-GGAATTCCCTCAGGGCTGCACACGACA 

A PCR analysis was carried out using the complementary DNA (cDNA).  In order to confirm 

successful reverse transcription and PCR, β2-microglobulin was used as a control gene.  The 

sequences for oligonucleotides of β2-microglobulin gene primers were 

5`acccccactgaaaaagatga (forward) and 5`atcttcaaacctccatgatg (reverse) with a melting 

temperature (Tm) of 60
ο
C.   

The PCR assay was carried out in 25μl volumes.  The reaction mix was prepared on ice and 

included the following: 

12.5μl BioMix
TM

 red (Bioline, UK) 

1.25μl of each primer 

7.5μl nuclease-free H2O 

A reaction Mix of 22.5μl was added to each well in the PCR multiwall plate, then 2.5μl of 

cDNA (or water as a negative control) was added per well, then on completion of the thermal 

cycle which was conducted for 35 cycles (annealing temperature 69
ο
C) the samples were 

analysed on 3% agarose gel. 

2.3.5 PCR product analysis 

In order to analyse PCR samples, 3% agarose gel was used.  Agarose gel was prepared by 

adding 0.9g of agarose (Sigma) to 30ml 1xTAE buffer (0.4 M Tris base, 50mM EDTA and 

1.14% (v/v) acetic acid).  Using the microwave oven, the agarose mixture was dissolved by 

heat, and then 5μl of ethidium bromide (0.5mg/ml) was added to the cool agarose.  The 
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resulting mixture was gently mixed by shaking the flask manually and then poured into a cast 

with a 10 well comb, and left to set.  Once the gel was set, the comb was removed to create 

lanes in the gel.  Following this, the gel was transferred into a hybaid electrophoresis tank 

filled with 1XTAE buffer.  Then a 5μl of Hyperladdaer marker IV containinng nine different 

sized nucleotides from 100 to 1000 bp was carefully injected into the first lane.  Also, 10μl of 

each sample was added in the other lanes, and the gel was run for 40-50 minutes at 100 volts 

using a Bio-Rad power PAC 300 which allowed the ethidium bromide in the gel to 

interpolate into the DNA and fluoresces under the UV light.  The ultraviolet transilluminator 

(UVP Life Sciences) was used to visualize the DNA bands and the Image Store 5000 system 

(UVP Life Sciences) was used to take the photographs. 

2.3.6 Quantitative Real Time RT-PCR 

In traditional PCR, DNA is detected at the final phase or endpoint of PCR reaction.  On the 

other hand, real time PCR measures DNA amplification during the exponential phase of the 

reaction, which is the optimal point for analysing data.  In this study, TaqMan Probes were 

used in real time PCR to measure the quantitative differences in mRNA expression levels.  

The TaqMan probes are a combination of a fluorescent probe and the forward and reverse 

PCR primers for the gene of interest.  The probe has a high energy dye termed a reporter 

(FAM-6) at the 5` end a non-fluorescent quencher dye at the 3` end attached, which 

suppresses the reporter dye emission unless activated.  During DNA amplification, the probe 

is cleaved by the 5`-3` nuclease activity of the DNA polymerase, resulting in separation of 

the quencher dye from the reporter dye.  The fluorescent emission of the reporter increases 

and recorded with a detection system.  The probe attaches itself only to the DNA between the 

forward and reverse primer sequences; hence unspecific fluorescence does not occur during 

the replication process.  A positive reaction in the real time PCR assay is detected by 

accumulation of the fluorescent signal.  The Ct value represents the cycle threshold at which 
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an increase in the fluorescence signal is detectable exceeding the background levels. The Ct 

values are inversely proportional to the amount of target RNA in each sample, thus, the fewer 

cycles taken to reach the threshold, the greater the amount of target RNA in the sample.  In 

order to determine the relative amount of cDNA for the target gene, the cDNA of a reference 

gene of the same sample was amplified at the same time.  The reference gene is expressed at 

a constant level and relative fold changes in the mRNA level were calculated with the 

comparative Ct (2
-δδCt

) method (Livak and Schmittgen, 2001) as follows: 

δCt = Ct (target gene) – Ct (reference gene) 

δδCt = δCt (stimulation) – Ct (control) 

2
-δδCt

  

For quantification of cDNA, TaqMan Gene Expression assays (Applied Biosystems) with a 

Real time PCR kit (Sensi MixedT, Quantace, London) were used.  The assays were carried 

out according to the manufacturer’s instructions.  Each sample was analysed in duplicate and 

nuclease-free water was used as a negative control. 

For PCR amplification, a master mix was prepared on ice and included the following:  

12.5μl 2X SensiMix 

1.25μl Taqman probe 

8.75μl Nuclease-free water 

Then 2.5μl of cDNA for each sample was added.  In order to run the assay, a real time 

thermal cycler (ABI Prism, 7000 Sequence Detection System, Applied Biosystems) was set at 

the following cycle: 

50
ο
C 2 minutes ¬ 95

ο
C 10 minutes – 40 X │95

 ο
C 15 seconds ¬ 60

ο
C 1 minute│ 
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In order to calculate the relative fold changes between stimulations, the comparative Ct 

approach ( 2
-δδCt

 )was used.  

2.3.7 Gene Expression Assays (Cytokines Low Density Arrays) 

To characterize different genes expressed by THP-1 monocytes in response to resistin 

stimulation, ready-made Taqman low-density arrays (TLDAs) (Applied Biosystems) were 

used.  The expression profiling using these arrays was based on real-time quantitative reverse 

transcription-polymerase chain reaction (RT-PCR).  Ready-made Taqman low-density arrays 

embraced pre-designed primers and Taqman probes to appraise from one to four cDNA 

samples generated from total RNA samples in a two step RT-PCR.  These arrays contained 

primers and probes for 96 different cytokine related genes which modulate inflammatory 

process (see Table   2.10, Table  2.11 and Table  2.12).  Each array plate incorporate eight 

samples loading ports and 2 µl of each 20 µl cDNA reaction was loaded into each port of the 

array.  GAPDH was used as endogenous control.  Amplification and real time analysis of 

cDNA samples loaded onto TLDLAs were carried out by employing 7900HT real time PCR 

machine (Applied Biosystems).  The results were interpreted using SDS software. 
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Table  ‎2.10 Primers and probes for the quantification of gene expression using ready-

made Taqman low-density arrays (TLDAs) 

Mediators Primers and probes 

assay ID 

18S 

ACE 

ACTB 

AGTR1 

AGTR2 

BAX 

BCL2 

BCL2L1 

C3 

CCL19 

CCL2 

CCL3 

CCL5 

CCR2 

CCR4 

CCR5 

CCR7 

CD19 

CD28 

CD34 

CD38 

CD3E 

CD4 

CD40 

CD40LG 

CD68 

CD80 

CD86 

CD8A 

COL4A5 

CSF1 

CSF2 

CSF3 

CTLA4 

CXCL10 

CXCL11 

CXCR3 

CYP1A2 

CYP7A1 

ECE1 

EDN1 

FAS 

FASLG 

FN1 

GAPDH 

GNLY 

Hs99999901_s1 

Hs00174179_m1 

Hs99999903_m1 

Hs00241341_m1 

Hs00169126_m1 

Hs00180269_m1 

Hs00153350_m1 

Hs00169141_m1 

Hs00163811_m1 

Hs00171149_m1 

Hs00234140_m1 

Hs00234142_m1 

Hs00174575_m1 

Hs00174150_m1 

Hs99999919_m1 

Hs00152917_m1 

Hs00171054_m1 

Hs00174333_m1 

Hs00174796_m1 

Hs00156373_m1 

Hs00233552_m1 

Hs00167894_m1 

Hs00181217_m1 

Hs00374176_m1 

Hs00163934_m1 

Hs00154355_m1 

Hs00175478_m1 

Hs00199349_m1 

Hs00233520_m1 

Hs00166712_m1 

Hs00174164_m1 

Hs00171266_m1 

Hs00357085_g1 

Hs00175480_m1 

Hs00171042_m1 

Hs00171138_m1 

Hs00171041_m1 

Hs00167927_m1 

Hs00167982_m1 

Hs00154837_m1 

Hs00174961_m1 

Hs00163653_m1 

Hs00181225_m1 

Hs00365052_m1 

Hs99999905_m1 

Hs00246266_m1 
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Table ‎2.11 Primers and probes for the quantification of gene expression using Taqman 

low-density arrays (TLDAs) (continued) 

Mediators Primers and probe assay 

ID 

GUSB 

GZMB 

HLA-DRA 

HLA-DRB1 

Hs99999908_m1 

Hs00188051_m1 

Hs00219575_m1 

Hs99999917_m1 

HMOX1 

ICAM1 

ICOS 

IFNG 

IKBKB 

IL10 

IL12A 

IL12B 

IL13 

IL15 

IL17 

Hs00157965_m1 

Hs00164932_m1 

Hs00359999_m1 

Hs00174143_m1 

Hs00395088_m1 

Hs00174086_m1 

Hs00168405_m1 

Hs00233688_m1 

Hs00174379_m1 

Hs00174106_m1 

Hs00174383_m1 

IL18 

IL1A 

IL1B 

IL2 

IL2RA 

IL3 

IL4 

IL5 

IL6 

IL7 

IL8 

IL9 

LRP2 

LTA 

MYH6 

NFKB2 

NOS2A 

PGK1 

PRF1 

PTGS2 

PTPRC 

REN 

RPL3L 

SELE 

SELP 

SKI 

SMAD3 

SMAD7 

STAT3 

TBX21 

Hs00155517_m1 

Hs00174092_m1 

Hs00174097_m1 

Hs00174114_m1 

Hs00166229_m1 

Hs00174117_m1 

Hs00174122_m1 

Hs00174200_m1 

Hs00174131_m1 

Hs00174202_m1 

Hs00174103_m1 

Hs00174125_m1 

Hs00189742_m1 

Hs00236874_m1 

Hs00411908_m1 

Hs00174517_m1 

Hs00167248_m1 

Hs99999906_m1 

Hs00169473_m1 

Hs00153133_m1 

Hs00365634_g1 

Hs00166915_m1 

Hs00192564_m1 

Hs00174057_m1 

Hs00174583_m1 

Hs00161707_m1 

Hs00232219_m1 

Hs00178696_m1 

Hs00234174_m1 

Hs00203436_m1 
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Table ‎2.12 Primers and probes for the quantification of gene expression using Taqman 

low-density arrays (TLDAs) (continued) 

Mediators Primers and probe assay 

ID 

TFRC 

TGFB1 

TNF 

TNFRSF18 

VEGF 

Hs99999911_m1 

Hs00171257_m1 

Hs00174128_m1 

Hs00188346_m1 

Hs00173626_m1 
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2.4 Study‎population 

The measurement of resistin levels in clinical samples from T2DM and non-diabetic control 

subjects was explored.  Two groups of subjects were recruited, namely diabetic and non 

diabetics. The first group were recruited from the GP practices and secondary care diabetes 

clinics (Newcastle, UK).  On the other hand, the non-diabetic controls were invited from the 

staff of the Dental school, Newcastle University or from consultant clinics at Newcastle 

Dental Hospital.  The clinical aspect of this study was conducted by a team led by Prof. 

Philip Preshaw and which included Dr Rebecca Wassall (Lecturer in Restorative Dentistry), 

Susan Bissett (Research Dental Hygienist), Hannah Fraser (Research Dental Hygienist), 

Kerry Stone (research dental Nurse), (School of Dental Sciences, Newcastle University and 

Newcastle Dental Hospital) who were responsible for the recruitment, enrolment, screening, 

diagnosis and treatment of patients.  All participants were examined in a 

periodontitis/diabetic clinic at School of Dental Sciences, Newcastle University.  This study 

was reviewed and approved by the Sunderland Research Ethics Committee (ref 06/Q0904/8), 

and each study participants provided written informed consent before participating in this 

study. 

The study sample consisted of 184 subjects of whom 101 were diabetics and 83 were non-

diabetic controls.  All of the participants were aged between 30 and 55 years old, male or 

female, with minimum of 20 natural teeth and in a good general health.  Subjects were 

excluded from the study if they were pregnant, had any bleeding disorder, were taking drugs 

that provoke gingival hyperplasia, were taking immunosuppressant drugs, had any condition 

requiring prophylactic antibiotics before dental management, or if they had scaling or root 

planning in the last six months.  The general characteristics of the study population are 

outlined in table 4.1.  There was no significant difference between the T2DM and non-
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diabetic control groups regarding the number of subjects, smoking status and age.  The 

participants were aged 30-55 years age. 
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2.4.1 Clinical screening and periodontal treatment 

All participants were assessed clinically at the first visit (pre-treatment screening).  A full 

periodontal examination included plaque index, modified gingival index, probing depths 

(PD), clinical attachment loss (CAL), bleeding on probing (BOP) and recession was 

performed.  The University of North Carolina (UNC) 15 probe (Dentsply, Addlestone, UK) 

was used for doing measurements.  Radiographs were secured as clinically indicated, and 

clinical and radiographical examinations were used to assert the periodontal diagnosis.   

In accordance with the method proposed by the 2005 European Workshop on Periodontology 

and the 2007 Centre for Disease Control  and Prevention-American Academy of 

Periodontology collaboration (Tonetti and Claffey, 2005; Page and Eke, 2007), the 

periodontal diagnosis was performed based on specific diagnostic criteria illustrated on 

Table  2.13. 

Inter- and intra-examiner reproducibility for the measurements of PD, recession, plaque and 

gingival inflammation were performed.  The two clinicians responsible for carrying out the 

periodontal examination underwent calibration training to appraise examiner reproducibility.   

Each clinician independently made the first estimation to provide measurements of mGI, PI, 

PD and recession at 6 sites per tooth.  Then, after 30 minute break, measurements were 

repeated for each examiner.  During the repeated assessments, the examiners were blind to 

both the first measurements and the measurements of the other examiner.  A variety of 

patients were used to appraise reproducibility, including those with healthy periodontal 

tissues, gingivitis and periodontitis, in order to reflect the diversity of patients. 

 PESA (periodontal epithelium surface area) quantifies the surface area of pocket epithelium 

that includes both healthy and inflamed pocket epithelium.  However, PISA (periodontal 

inflamed surface area) was calculated to represent the surface area of bleeding pocket 

epithelium which quantifies the amount of inflamed periodontal tissue and thereby the 
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inflammatory burden posed by periodontitis.  In order to calculate PESA (mm
2
) and PISA 

(mm
2
) for each subject, a previously published Microsoft excel spread sheet was used (Nesse 

et al., 2008).  First of all, CAL and recession values at 6 sites per tooth were entered, from 

which PESA value was calculated for each tooth.  Then the PESA for every tooth was 

multiplied by the proportion of sites around the tooth that was affected by BOP, which 

provide the PISA for that particular tooth.  The sum of all individual PISAs around individual 

teeth is calculated which equivalent to the total PISA within a patient’s mouth. 
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Table ‎2.13 Diagnostic criteria for periodontal status 

 

Periodontal status 

 

Criteria 

 

Healthy 

Periodontium 

 

BOP ≤ 15% 

No probing depth sites >4mm 

No attachment loss-ignoring localised recession (e.g. due to 

tooth brushing trauma) 

No bone loss  

 

Gingivitis 

 

 

BOP > 15% 

No sites with probing depths >4mm, except for up to 5 sites 

with 5mm probing depths (e.g. at distal surface of last standing 

molars) 

No attachment loss-ignoring localised recession (e.g. due to 

tooth brushing trauma) 

No bone loss 

 

Periodontitis 

 

 

≥ 6 sites with probing depths of  ≥ 5mm 

Loss of attachment and / or bone loss 

 

The table demonstrates the case definitions used in the current study to determine 

periodontitis, gingivitis, and healthy periodontium. 
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Furthermore, at screening, serum, saliva and GCF samples were collected for each 

participant.  Then non-surgical periodontal treatment was performed for patients with 

periodontal disease, including oral hygiene instructions and a full mouth instrumentation 

approach (Quirynen et al., 2000).    Afterward, the patients were followed up at 3 (month 3), 

6 (month 6) and 12 months (month 12), with another clinical examination, serum, saliva and 

GCF samples collection were carried out and periodontal treatment was performed as 

necessary.  Treatment of gingivitis patients included oral hygiene instructions and a full 

mouth prophylaxis at the time of screening.  An overview of the study deeds are shown in 

Figure  2.7. 
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Figure ‎2.7 The study overview 
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At the screening appointment consent application, demographic data, history of smoking and 

diabetes, physical examination, clinical periodontal examination and collection of serum, 

saliva and GCF samples were performed.  The first periodontal treatment was done in the 

treatment appointment within 2 weeks during initial screening.  Follow up appointments (at 

3, 6, and 12 months) were carried out for participants with periodontal disease, and at which 

further serum, saliva and GCF samples were obtained. 

2.4.2 GCF collection 

The GCF samples were collected at initial screening appointment, month 3, 6 and 12 from 4 

teeth per patient.  The samples were obtained from the mesiobuccal aspect of the four first 

molars.  If the first molar was missing in a quadrant, the second molar was selected, then the 

second premolar, then the first premolar, then the canine.  To collect the samples, the site was 

isolated with the use of cotton rolls and a saliva ejector to evade contamination with saliva.  

Also, a curette was used to remove the supra-gingival plaque prior to sampling, and the tooth 

was dried with air.  Next, a PerioPaper strip was carefully inserted into the sulcus and kept 

for 30 seconds.  A calibrated Periotron 6000 machine was used to determine GCF volume.  

Then the PerioPaper strip was immediately conveyed into an individual sterile cryovial 

containing 150μl PBS and left on ice, then transported to the laboratory where it was stored 

in -80
ο
C until analysed.  In order to elute GCF from the PerioPaper strip, the samples were 

thawed and 50 μl of 1% PBS in BSA was added to it, centrifuged for 60 minutes at 300 rpm 

at 4
ο
C using Sigma 3K10 centrifuges.  Afterward, a second centrifugation was done for 2 

minutes at 12000 rpm at 4
ο
C.   After the elution, the GCF samples were ready for analysis. 

2.4.3 Saliva Collection 

Saliva sample was taken pre-treatment from all participants at the screening appointment and 

at month 3, month 6 and month 12 after periodontal treatment for patients with periodontitis.  
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To obtain saliva sample and with the patient sat upright in the dental chair, 10 ml of sterile 

saline was splashed with a syringe onto the upper gingival margins.  The patient was 

requested to retain the liquid and move it around for 30 seconds, and then expectorate into a 

polystyrene cup.  This expectorated saliva wash was transposed into sterile 15ml centrifuge 

tubes (Sarstedt, Leicester, UK).  The saliva wash samples were left on ice, and then 

transferred to the laboratory within 20 minutes.  The samples were centrifuge for 15 min at 

1500 g, 4 ºC.  Then, the fluid was transferred and aliquoted into four labelled 0.5ml micro 

tubes, to be frozen at -80ºC pending for analysis.  

2.4.4 Serum collection 

The serum samples were collected at initial screening appointment, month 3, 6 and 12.  Non-

fasting blood samples were obtained by venous puncture.  First part of the blood sample was 

sent to the Clinical Biochemistry Laboratory of the Royal Victoria Infirmary (Newcastle 

upon Tyne) for HbA1c, hsCRP, Cholesterol, HDL, LDL, and triglycerides analysis.  The 

second part was reserved for measurement of serum resistin concentrations.  Within 1 hour, 

blood samples were centrifuged for 15 minutes at 1500g and 4
ο
C, the serum was collected, 

and preserved at -80
ο
C pending further investigations by ELISA. 

In an attempt to combat potential causes of specimen variation and loss of sensitivity and 

reproducibility of analysis due to sample degradation on storage, a variety of methods were 

used including storing all samples (serum, saliva and GCF) at -80 ºC freezer rather than -20 

ºC freezer.  Also, in the current study the freeze/thaw cycle have been avoided as possible by 

distributing each sample into multiple aliquots.  Potentially, doing trial storage experiments to 

assess recovering standard concentrations of mediator from stored samples over a relatively 

long period of time is the best way to ascertain the extent to which the analysis is sensitive 

and reproducible.  However, it is noteworthy that the trial storage experiments were not 

performed in the current study. 
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2.5 Statistical‎analysis 

Statistical analysis was performed in SPSS 19.0.  Graphs were created in Sigma plot 11.0 or 

Microsoft Excel 2007.  Box and scatter plots were created in SPSS 19.0. 

2.5.1 Analysis of clinical data 

Clinical data includes demographic data such as ethnicity, clinical biochemistry data such as 

HbA1c, clinical periodontal data such as probing depth, as well as levels of local and 

systemic mediators, including resistin.   

Clinical data were presented as box plots, scatter plots or tables.  All variables were assessed 

for normality and homogeneity of variance using Shapiro-Wilk testing for normal distribution 

and Levene testing for homogeneity of variance.  Where there was no evidence to reject 

normality, means and standard deviations (SD) of these parametric variables were calculated.  

Where the assumption of normality was rejected, medians and interquartile ranges (IQR) of 

these non-parametric variables were calculated.  Non-parametric data were analysed with 

Kruskal-Wallis or Mann-Whitney U test.  One-way analysis of variance (ANOVA) and 

Student’s t-test were applied for parametric data.  Discrete variables were analysed using Chi-

squared tests.  Longitudinal non-parametric data were analysed with the Friedman test and 

Wilcoxon Mann-Whitney test.  At each time-point, for subjects with periodontitis only, data 

were analysed using Mann-Whitney tests for non-parametric data.  P-values were corrected 

for multiple comparisons with the Bonferroni-Holm test.  A p-value of < 0.05 was considered 

significant.  Spearman correlation analysis was used to determine possible associations 

between pairs of parameters. Spearman p values were considered to be significant when p < 

0.05. 
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2.5.2 Analysis of cell culture data 

Cell culture data (or in vitro data) represents all data obtained from ELISA assays and real-

time RT-PCR assays, which were carried out on samples (e.g. supernatants, and RNA) 

created via cell culture experiments. 

Unless otherwise stated, in vitro data were presented as the means ± S.D. of the results from 

three independent experiments.  Shapiro-Wilk testing for normal distribution and Levene 

testing for homogeneity of variance were performed.  Parametric data were analysed with 

ANOVA or Student’s t-test.  Non-parametric data were analysed with Kruskal-Wallis or 

Mann-Whitney U test.  P-values were corrected for multiple comparisons with the 

Bonferroni-Holm test.  A p-value of < 0.05 was considered significant.  Statistical analysis of 

Real time RT-PCR data was performed on δCt values as described by (Yuan et al., 2006). 
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Chapter 3 Investigation‎of‎salivary‎and‎GCF‎

resistin‎concentrations‎in‎patients‎with‎periodontal‎

disease‎with‎and‎without‎type‎2‎diabetes‎mellitus 

 

3.1 Introduction 

 

People with diabetes suffer increased prevalence and severity of periodontal 

destruction as compared to systemically healthy individuals (Duarte et al., 2007; 

Graves et al., 2007; Acharya et al., 2010).  In effect, pertinent studies have revealed a 

bidirectional relationship between periodontal disease and diabetes (Mealey, 2006; 

Mirza et al., 2010; Preshaw et al., 2012).  The exacerbation of the inflammatory 

response in the periodontal tissues of subjects with diabetes is potentially the reason 

behind the increased risk of periodontal disease in those cohorts (Lalla et al., 2007; 

Nishimura et al., 2007; Venza et al., 2010).  On the other hand, inflammatory 

mediators produced in the periodontium may gain access to the circulation, and these 

mediators can inhibit the signalling pathways downstream of insulin receptors, 

jeopardizing their function, thereby leading to resistance to insulin (Wellen and 

Hotamisligil, 2005; Gomes et al., 2006; Lamster et al., 2008; Acharya et al., 2010).  

Resistin is a protein with proinflammatory and immunomodulatory properties that is 

expressed both systemically and locally at the site of inflammation (Bokarewa et al., 

2005; Silswal et al., 2005; Nagaev et al., 2006; Bostrom et al., 2008).  A plethora of 

evidence is available demonstrating an association between higher circulating levels 

of resistin and the development of T2DM (Hasegawa et al., 2005; Lu et al., 2006; Al-

Sari et al., 2007; Chen et al., 2009; Gharibeh et al., 2010; Lau and Muniandy, 2011).  
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In the pathogenesis of periodontal disease, the significance of the host inflammatory 

response to the microbial challenge and the production of inflammatory mediators are 

well established (Graves, 2008; Preshaw and Taylor, 2011).  Emerging research has 

reported elevated resistin levels in serum and GCF samples from periodontitis 

subjects compared to health (Furugen et al., 2008; Saito et al., 2008; Hiroshima et al., 

2012).  The importance of T2DM as a risk factor for periodontitis is thought to be 

linked mainly to the nature and intensity of the inflammatory response in the 

periodontal tissues (Duarte et al., 2007; Graves et al., 2007; Venza et al., 2010).  

Clearly, it is difficult to quantify the inflammatory burden represented by periodontitis 

using clinical periodontal measures only, as these parameters merely provide a 

qualitative assessment of the inflammatory response.  Therefore, the analysis of 

inflammatory mediators in oral fluids such as GCF and saliva could be used as a 

reliable method to quantitatively assess the host response in periodontal disease 

(Lamster and Ahlo, 2007; Giannobile et al., 2009).  The analysis of inflammatory 

mediators in whole saliva potentially provides a comprehensive measure of oral 

inflammatory burden, including periodontitis (Kaufman and Lamster, 2002; 

Giannobile et al., 2009).  Whole saliva represents a combination of oral fluids that 

originate from secretions of the salivary glands, as well as gingival fluid, sloughed 

epithelial cells, bacteria and food debris (Lamster and Ahlo, 2007).  On the other 

hand, GCF is an inflammatory exudate collected from the gingival crevice or at the 

orifice of the crevice, and the fluid volume and constituents reflect a quantitative 

measure for the inflammatory response in that area (Lamster and Ahlo, 2007).  GCF 

contains substances derived from serum, the cellular response in the periodontium, 

and contributions from the gingival crevice (Lamster and Ahlo, 2007).  Although 

ample studies have revealed direct biological influences of various mediators on 
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periodontal destruction in diabetic subjects, the mechanisms are not fully 

comprehended and still remain debatable.  To my knowledge, there are no previous 

studies which have investigated resistin in saliva or investigated the saliva levels of 

resistin in periodontal disease subjects with or without T2DM.  Additionally, only one 

study has confirmed the existence of resistin in the GCF in subjects with and without 

periodontitis and diabetes mellitus-related periodontitis (Hiroshima et al., 2012).  

Therefore, the aim of this study was to investigate the role of salivary resistin as a 

potential local biomarker in periodontal disease subjects with and without T2DM.  

Furthermore, the salivary resistin levels were further evaluated at 3 months, 6 months 

and 12 months after non-surgical periodontal treatment.  Moreover, the possible 

relationship of salivary resistin with anthropometric and metabolic parameters, 

clinical periodontal parameters, inflammatory cytokines in saliva and resistin in serum 

was examined.  Finally, a pilot study was also undertaken to evaluate resistin levels in 

GCF in periodontal disease subjects with and without T2DM, and to explore the 

possible relationship of GCF resistin with saliva and serum resistin, clinical 

periodontal parameters and GCF cytokine levels.  To sum up, in this study we 

hypothesize that the concentration of resistin in saliva results from both the diabetes 

and periodontal disease, reflective of inflammation in the oral cavity (oral 

inflammatory burden). 
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3.2 Results 

3.2.1 Analysis of pre-treatment salivary resistin concentrations in 

type 2 diabetic patients and non-diabetic controls with or 

without periodontal disease  

 

As shown in Table  3.1 and Figure  3.1, the pre-treatment salivary resistin 

concentrations [median (IQR)] in the T2DM group and non-diabetic control group 

were [3.71 (1.89-8.17) ng/ml] and [3.63 (1.3-10.97) ng/ml], respectively.  The 

statistical analysis revealed no significant differences in salivary resistin levels 

between subjects with T2DM and the non-diabetic group. 

Table  3.2 and Figure  3.2 present salivary resistin concentrations before periodontal 

treatment following further categorisation of subjects based on their periodontal 

diagnosis.  When considering resistin levels in saliva, there were no significant 

differences found in any category of periodontal disease between patients with T2DM 

and the non-diabetic subjects.  In subjects with T2DM, salivary resistin levels [median 

(IQR)] were significantly higher in periodontitis patients [6.94 (2.94-14.14) ng/ml], 

compared to those with healthy periodontal tissues [2.35 (1.52-3.24) ng/ml] 

(p<0.001).  Similarly, in subjects with T2DM, saliva levels of resistin [median (IQR)] 

were significantly higher in periodontitis patients [6.94 (2.94-14.14) ng/ml], 

compared to those with gingivitis [2.93 (1.61-4.99) ng/ml] (p<0.001).  However, in 

subjects with T2DM, no significant differences in the salivary resistin levels were 

seen in those subjects with gingivitis [2.93 (1.61-4.99) ng/ml] compared to those with 

healthy periodontal tissues [2.35 (1.52-3.24) ng/ml].  In non-diabetic subjects, saliva 

resistin levels [median (IQR)] were significantly higher in periodontitis patients [8.27 

(3.59-15.32) ng/ml], compared to those with healthy periodontal tissues [1.53 (0.79-
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2.57) ng/ml] (p<0.001).  Likewise, in non-diabetic subjects, saliva levels of resistin 

[median (IQR)] were significantly higher in periodontitis patients [8.27 (3.59-15.32) 

ng/ml], compared to those with gingivitis [1.21 (0.39-3.67) ng/ml] (p<0.001).  

However, in non-diabetic subjects, no significant differences in the salivary resistin 

levels were seen in those with gingivitis [1.21 (0.39-3.67) ng/ml] compared to those 

with healthy periodontal tissues [1.53 (0.79-2.57) ng/ml].  Therefore, for both patients 

with T2DM and non-diabetic subjects, resistin levels in saliva increased as the 

periodontal status worsens (Table  3.2 and Figure  3.2). 
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Table ‎3.1 Pre-treatment salivary concentrations of resistin in patients with 

T2DM and non-diabetic controls 

 

 

Diabetic subjects 

(n=101) 

Non-diabetic subjects 

(n=82) 
p-value 

     

Resistin (ng/ml) 3.71 (1.89-8.17) 3.63 (1.3-10.97) NS 

    

P-values determined using Mann-Whitney U tests for continuous non-parametric 

variables and median (IQR) is presented for this non-parametric data. 
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Figure ‎3.1  Pre-treatment salivary concentrations of resistin in patients with 

T2DM and non-diabetic subjects 

 

Boxplots of pre-treatment salivary levels of resistin in 101 T2DM and 82 non-diabetic 

subjects. Statistics: Mann Whitney-U test. ○ outlier more than 3 times the IQR from 

the box boundaries, ● outlier more than 1.5 but less than 3 times the IQR from the 

boundaries. 
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Table ‎3.2 Pre-treatment salivary resistin data comparing groups based on diabetic status and periodontal diagnosis 

 

 
Diabetic subjects (n=101) Non-diabetic subjects (n=82) p-value 

 Healthy 

(n=14) 

Gingivitis 

(n=39) 

Periodontitis 

(n=48) 

Healthy 

(n=16) 

Gingivitis 

(n=19) 

Periodontitis 

(n=47) 

 

        

Resistin (ng/ml) 2.35 (1.52-3.24)
¶
 2.93 (1.61-4.99)

†
 6.94 (2.94-14.14) 1.53 (0.79-2.57)

¶
 1.21 (0.39-3.67)

†
 8.27 (3.59-15.32) ¶,† 

<0.001 

        

P-values were determined using Kruskal-Wallis test with Mann-Whitney U post hoc tests for continuous non-parametric variables.  Median 

(IQR) is presented for this non-parametric data.  

 
$
 indicates a comparison within row between diabetics and non-diabetic group with the same periodontal diagnosis 

#
 indicates a comparison within rows between periodontally healthy and gingivitis groups within either diabetes or non-diabetes groups 

¶
 indicates a comparison within rows between periodontally healthy and periodontitis groups within either diabetes or non-diabetes groups 

†
 indicates a comparison within rows between gingivitis and periodontitis groups within either diabetes or non-diabetes group 
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Figure ‎3.2 Pre-treatment salivary levels of resistin comparing groups based on 

diabetic status and periodontal diagnosis 

 

Boxplots of pre-treatment salivary resistin data in 101 T2DM subjects (healthy 

periodontal tissues n=14, gingivitis n=39, periodontitis n=48) and 82 non-diabetic 

subjects (healthy periodontal tissues n=16, gingivitis n=19, periodontitis n=47). 

Statistics: Kruskal-Wallis with Mann Whitney-U post hoc test *<0.05, **p<0.01, 

***p<0.001 (according to periodontal status within T2DM or non-diabetic group); 
§
 

p<0.05, 
§§

 p<0.01, 
§§§

p<0.001 (T2DM versus non-diabetic groups within the 

corresponding periodontal status). ○ outlier more that 3 times the IQR from the box 

boundaries, ● outlier more than 1.5 but less than 3 times the IQR from the box 

boundaries. 
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3.2.2 Exploration of the changes in salivary resistin data following 

non-surgical periodontal management 

 

Table  3.3 and Figure  3.3 summarise the salivary resistin levels following non-surgical 

periodontal management for patients with T2DM and periodontitis and non-diabetic 

patients with periodontitis. 

When considering salivary resistin levels, no significant differences were found 

between patients with T2DM and non-diabetic subjects at any of the four time points.  

When compared to pre-treatment levels [6.84 (2.1-10.99) ng/ml], salivary resistin 

levels in subjects with T2DM showed significant reductions following non-surgical 

periodontal management at 3 months [4.58 (2.17-9.22) ng/ml] (p<0.05), 6 months 

[3.71 (1.91-8.42) ng/ml] (p<0.01) and 12 months [2.66 (1.63-8.05) ng/ml] (p<0.05).  

Similarly, compared to pre-treatment levels [11.38 (3.75-16.6) ng/ml], salivary 

resistin levels in non-diabetic subjects showed significant reductions following non-

surgical periodontal management at 3 months [6.38 (4.04-10.66) ng/ml] (p<0.05), and 

6 months [4.95 (0.45-8.02) ng/ml] (p<0.01).  Moreover, compared to pre-treatment 

levels [11.38 (3.75-16.6) ng/ml], salivary resistin levels in non-diabetic subjects 

showed apparent reduction at month 12 [4.73 (0.61-13.45) ng/ml], however, this 

difference failed to reach statistical significance (Table  3.3 and Figure  3.3).  
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Table ‎3.3 Salivary resistin data in subjects with periodontitis pre- and post non-surgical periodontal management for both patients with 

T2DM and non-diabetic subjects 

 Pre-treatment Month 3 Month 6 Month 12 

 

P-value 

      

T2DM 

Resistin (ng/ml) 

(n=48) 

6.84 (2.1-10.99) 

 

(n=37) 

4.58 (2.17-9.22)
$
 

(n=36) 

3.71 (1.91-8.42)
#
 

(n=21) 

2.66 (1.63-8.05)
¶
 

 

$, ¶ 
<0.05, 

# 
<0.01 

 

 

Non-diabetics 

Resistin (ng/ml) 

(n=47) 

11.38 (3.75-16.6) 

(n=28) 

6.38 (4.04-10.66)
$
 

(n=19) 

4.95 (0.45-8.02)
#
 

(n=18) 

4.73 (0.61-13.45) 

 

$ 
<0.05, 

 # 
<0.01 

      

P-values were determined using Friedman test with Wilcoxon post hoc test for continuous non-parametric variables compared over time and 

Mann-Whitney U test for continuous non-parametric variables compared at each time point.  Median (IQR) is presented as all the data were non-

parametric.  

 
$ 

indicates a comparison within rows between pre-treatment and month 3 within either diabetes or non-diabetes groups 
#
 indicates a comparison within rows between pre-treatment and month 6 within either diabetes or non-diabetes groups 

¶
 indicates a comparison within rows between pre-treatment and month 12 within either diabetes or non-diabetes groups 
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Figure ‎3.3 Salivary resistin levels in subjects with periodontitis pre- and post 

non-surgical periodontal management for both T2DM and non-diabetic subjects 

 

Boxplots of salivary resistin levels pre- and post non surgical periodontal management 

in subjects with periodontitis in both T2DM subjects (pre-treatment n=48, month 3 

n=37, month 6 n=36, month 12 n=21) and non-diabetic subjects (pre-treatment n=47, 

month 3 n=28, month 6 n=19, month 12 n=18). Statistics: Friedman test with 

Wilcoxon post hoc test *<0.05, **p<0.01, ***p<0.001 (according to time within 

T2DM or non-diabetic group); Mann-Whitney U test (according to T2DM versus non-

diabetic group at each time point ○ outlier more than 3 times the IQR from the box 

boundaries, ● outlier more than 1.5 but less than 3 times the IQR from the box 

boundaries. 
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3.2.1 Exploration of the relationship between salivary resistin levels 

and anthropometric clinical and metabolic parameters 

 

To elucidate whether the salivary resistin is associated with systemic inflammation, 

glycaemic control, or risk factors for developing T2DM, the relationships between 

pre-treatment levels of resistin (ng/ml) in saliva and hsCRP (mg/L), HbA1c (%) and 

BMI (kg/m
2
) were explored using Spearman’s correlation test.  Correlations were 

undertaken for the whole study population (n=183).  A series of scatter plots were 

used to graphically display correlations of hsCRP (mg/L), HbA1c (%) and BMI 

(kg/m
2
) with resistin levels in saliva. 

Spearman’s correlations between salivary resistin levels and hsCRP (mg/L), HbA1c 

(%) and BMI (kg/m
2
) are shown in Figure  3.4, Figure  3.5 and Figure  3.6, respectively.  

Levels of salivary resistin were significantly and positively correlated with hsCRP 

(Spearman’s ρ=0.16, p<0.05).  However, there was no significant correlation between 

saliva resistin levels with HbA1c (%) and BMI. 
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Figure ‎3.4 The relationship of salivary resistin with hsCRP 

 

Figure shows Spearman correlation of salivary resistin concentrations with hsCRP in 

all subjects (n=183).  Levels of hsCRP in subjects with T2DM (●) and non-diabetic 

subjects (o) are illustrated.  The addition of a trend-line demonstrates the presence of a 

significant correlation, (Spearman’s ρ=0.16, P<0.05). 
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Figure ‎3.5 The relationship between salivary resistin with HbA1c 

 

Figure shows Spearman correlation of salivary resistin concentrations with percentage 

of HbA1c in all subjects (n=183).  Percentage of HbA1c in subjects with T2DM (●) 

and non-diabetic subjects (o) are illustrated.    
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Figure ‎3.6 The relationship of salivary resistin with BMI 

 

Figure shows Spearman correlation of salivary resistin concentrations with BMI in all 

subjects (n=183).  BMI (kg/m
2
) in subjects with T2DM (●) and non-diabetic subjects 

(o) are illustrated.   
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3.2.2 Exploration of the relationship between salivary resistin levels 

and clinical parameters of periodontal disease 

 

Pre-treatment levels of salivary resistin were investigated for correlations with clinical 

periodontal parameters including BOP%, mean PD (mm), mean LOA (mm), and 

PISA (mm).  Correlations were undertaken for the whole study population (n=183).  

A series of scatter plots were used to graphically display correlations of BOP%, mean 

PD (mm), mean LOA (mm), and PISA (mm) with resistin levels (ng/ml) in saliva.  

Levels of salivary resistin were significantly and positively correlated with percentage 

BOP (ρ=0.476, p<0.001), mean PD (mm) (ρ=0.594, p<0.001), mean LOA (mm) 

(ρ=0.598, p<0.001), and PISA (mm) (ρ=0.573, p<0.001) (Figure  3.7, Figure  3.8, 

Figure  3.9 and Figure  3.10). 
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Figure ‎3.7 The relationship of salivary resistin with %BOP 

 

Figure shows Spearman correlation of salivary resistin concentrations with %BOP in 

all subjects (n=183).  Percentage of BOP in subjects with T2DM (●) and non-diabetic 

subjects (o) are illustrated.  The addition of a trend-line demonstrates the presence of a 

significant correlation, (Spearman’s ρ=0.476, P<0.001). 
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Figure ‎3.8 The relationship of salivary resistin with mean PD 

 

Figure shows Spearman correlation of salivary resistin concentrations with 

mean PD in all subjects (n=183).  Mean PD in subjects with T2DM (●) and 

non-diabetic subjects (o) are illustrated.  The addition of a trend-line 

demonstrates the presence of a significant correlation, (Spearman’s ρ=0.594, 

P<0.001).  
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Figure ‎3.9 The relationship of salivary resistin with mean LOA 

 

Figure shows Spearman correlation of salivary resistin concentrations with mean 

LOA in all subjects (n=183).  Mean LOA in subjects with T2DM (●) and non-diabetic 

subjects (o) are illustrated.  The addition of a trend-line demonstrates the presence of a 

significant correlation, (Spearman’s ρ=0.598, P<0.001). 
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Figure ‎3.10 The relationship between salivary resistin with PISA 

 

Figure shows Spearman correlation of salivary resistin concentrations with PISA in all 

subjects (n=183).  PISA (mm) in subjects with T2DM (●) and non-diabetic subjects 

(o) are illustrated.  The addition of a trend-line demonstrates the presence of a 

significant correlation, (Spearman’s ρ=0.573, P<0.001). 
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3.2.3 Exploration of the relationship between salivary resistin levels 

and the levels of inflammatory cytokines in saliva 

 

Pre-treatment levels of salivary resistin were investigated for correlations with the 

pre-treatment levels of salivary TNF-α (pg/ml), salivary IL-1β (pg/ml), salivary IL-6 

(pg/ml), salivary IFN-γ (pg/ml), and serum resistin (ng/ml).  Correlations were 

undertaken for the whole study population (n=183).  A series of scatter plots were 

used to graphically display correlations of salivary TNF-α (pg/ml), salivary IL-1β 

(pg/ml), salivary IL-6 (pg/ml), salivary IFN-γ (pg/ml) and serum resistin (ng/ml) with 

resistin levels (ng/ml) in saliva.  Levels of salivary resistin were significantly and 

positively correlated with salivary IL-1β (pg/ml) (ρ=0.284, p<0.001), salivary IL-6 

(pg/ml) (ρ=0.195, p<0.01), and serum resistin (ng/ml) (ρ=0.19, p<0.01).  However, 

there was no significant correlation between resistin in saliva with salivary levels of 

TNF-α (pg/ml) and IFN-γ (pg/ml).  (See Figure  3.11, Figure  3.12, Figure  3.13, 

Figure  3.14 and Figure  3.15). 
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Figure ‎3.11 The relationship of salivary resistin with TNF-α‎level‎in‎saliva 

 

Figure shows Spearman correlation of salivary resistin concentrations with salivary 

TNF-α in all subjects (n=183).  Levels of salivary TNF-α in subjects with T2DM (●) 

and non-diabetic subjects (o) are illustrated.   

  



3   Results  154 

Figure ‎3.12 The relationship between salivary resistin and IL-1β‎levels‎in‎saliva 

 

Figure shows Spearman correlation of salivary resistin concentrations with salivary 

IL-1β in all subjects (n=183).  Levels of salivary IL-1β in subjects with T2DM (●) 

and non-diabetic subjects (o) are illustrated.  The addition of a trend-line demonstrates 

the presence of a significant correlation, (Spearman’s ρ=0.284, P<0.001). 
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Figure ‎3.13 The relationship between salivary resistin and IL-6 levels in saliva 

 

Figure shows Spearman correlation of salivary resistin concentrations with salivary 

IL-6 in all subjects (n=183).  Levels of salivary IL-6 in subjects with T2DM (●) and 

non-diabetic subjects (o) are illustrated.  The addition of a trend-line demonstrates the 

presence of a significant correlation, (Spearman’s ρ=0.195, P<0.01). 
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Figure ‎3.14 The relationship of salivary resistin and IFN-γ‎levels‎in‎saliva 

 

Figure shows Spearman correlation of salivary resistin concentrations with salivary 

IFN-γ in all subjects (n=183).  Levels of salivary IFN-γ in subjects with T2DM (●) 

and non-diabetic subjects (o) are illustrated.   
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Figure ‎3.15 The relationship between salivary resistin and resistin levels in 

serum

 

Figure shows Spearman correlation of salivary resistin concentrations with serum 

resistin in all subjects (n=183).  Levels of serum resistin in subjects with T2DM (●) 

and non-diabetic subjects (o) are illustrated.  The addition of a trend-line demonstrates 

the presence of a significant correlation, (Spearman’s ρ=0.19, P<0.01). 
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3.2.4 Analysis of pre-treatment GCF resistin levels in T2DM and 

non-diabetic subjects with or without periodontal disease 

 

Table  3.4 and Figure  3.16 shows that before periodontal treatment, no significant 

differences in the GCF levels of resistin were found in subjects with T2DM [2.81 

(0.99-5.44) ng/ml] compared to non-diabetic subjects [2.77 (0.87-6.25) ng/ml].  

However, caution must be used when interpreting these results because of the small 

sample size. 

Table  3.5 and Figure  3.17 present GCF resistin levels before periodontal treatment 

following further categorisation of subjects based on their periodontal diagnosis.  

When considering resistin levels in GCF, there were no significant differences found 

in any periodontal category between patients with T2DM and non-diabetic subjects.  

In T2DM subjects, resistin levels in GCF appeared to be higher in gingivitis patients 

[4.22 (0.68-8.45) ng/ml] compared to those with healthy periodontal tissues [2.17 

(0.0-5.84) ng/ml] and periodontitis [2.81 (1.14-3.39) ng/ml], however, these 

differences failed to reach statistical significance.  In non-diabetic subjects, resistin 

levels in GCF appeared to be higher in periodontitis patients [6.38 (1.69-24.46) ng/ml] 

compared to those with healthy periodontal tissues [1.41 (0.89-3.15) and gingivitis 

[0.94 (0.13-4.07) ng/ml], however, again these differences failed to reach statistical 

significance.  Nevertheless, caution must be used when interpreting these results as 

data were limited by small sample size. 

  



3   Results  159 

Table ‎3.4 Pre-treatment GCF resistin concentrations in T2DM patients and non-

diabetic subjects 

 

 

 

Diabetic subjects 

(n=21) 

Non-diabetic subjects 

(n=19) 
p-value 

     

Resistin (ng/ml) 2.81 (0.99-5.44) 2.77 (0.87-6.25) NS 

    

 

P-values determined using Mann-Whitney U tests for continuous non-parametric 

variables and median (IQR) is presented for this non-parametric data 
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Figure ‎3.16 Pre-treatment GCF concentrations of resistin in patients with T2DM 

and non-diabetic subjects 

 

Boxplots of pre-treatment GCF levels of resistin in 21 T2DM and 19 non-diabetic 

subjects. Statistics: Mann Whitney-U test ○ outlier more than 3 times the IQR from 

the box boundaries, ● outlier more than 1.5 but less than 3 times the IQR from the 

boundaries. 
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Table ‎3.5 Pre-treatment GCF resistin data comparing groups based on diabetic status and periodontal diagnosis 

 

 
Diabetic subjects (n=21) Non-diabetic subjects (n=19) p-value 

 Healthy 

(n=6) 

Gingivitis 

(n=8) 

Periodontitis 

(n=7) 

Healthy 

(n=5) 

Gingivitis 

(n=6) 

Periodontitis 

(n=8) 

 

        

Resistin (ng/ml) 2.17 (0.0-5.84) 4.22 (0.68-8.45) 2.81 (1.14-3.39) 1.41 (0.89-3.15) 0.94 (0.13-4.07) 6.38 (1.69-24.46) NS 

        

P-values were determined using Kruskal-Wallis test with Mann-Whitney U post hoc tests for continuous non-parametric variables.  Median 

(IQR) is presented for this non-parametric data.  

 
$
 indicates a comparison within row between diabetics and non-diabetic group with the same periodontal diagnosis 

#
 indicates a comparison within rows between periodontally healthy and gingivitis groups within either diabetes or non-diabetes groups 

¶
 indicates a comparison within rows between periodontally healthy and periodontitis groups within either diabetes or non-diabetes groups 

†
 indicates a comparison within rows between gingivitis and periodontitis groups within either diabetes or non-diabetes group 
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Figure ‎3.17 Pre-treatment GCF levels of resistin comparing groups based on 

diabetic status and periodontal diagnosis 

 

Boxplots of pre-treatment GCF resistin data in 21 T2DM subjects (healthy periodontal 

tissues n=6, gingivitis n=8, periodontitis n=7) and 19 non-diabetic subjects (healthy 

periodontal tissues n=5, gingivitis n=6, periodontitis n=8). Statistics: Kruskal-Wallis 

with Mann Whitney-U post hoc test (according to periodontal status within T2DM or 

non-diabetic group); (T2DM versus non-diabetic groups within the corresponding 

periodontal status). ○ outlier more that 3 times the IQR from the box boundaries, ● 

outlier more than 1.5 but less than 3 times the IQR from the box boundaries. 
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3.2.5 Exploration of the relationship of resistin levels in GCF with 

salivary and serum resistin levels, clinical periodontal 

parameters and GCF cytokine levels  

 

Pre-treatment levels of GCF resistin were investigated for correlations with resistin 

levels in saliva and serum, clinical periodontal parameters and GCF cytokine levels.  

Spearman’s correlations (correlation coefficient and P-values)  between GCF resistin 

levels and resistin levels in saliva and serum, clinical periodontal parameters and GCF 

cytokines levels are  presented in Table  3.6, Table  3.7 and Table  3.8.   

Interestingly, levels of GCF resistin were significantly and positively correlated with 

salivary resistin levels (Spearman’s ρ=0.422, p<0.01).  On the other hand, no 

significant association were found between GCF resistin levels and resistin levels in 

serum (Spearman’s ρ=0.076, p>0.05) (Table  3.6). 

When considering the correlation between GCF resistin levels and the clinical 

periodontal parameters, significant positive correlations were demonstrated between 

resistin levels in GCF and %BOP (Spearman’s ρ=0.435, p<0.01), mean PD 

(Spearman’s ρ=0.347, p<0.05), and PISA (Spearman’s ρ=0.49, p<0.01).  However, no 

significant associations were found between GCF resistin levels and mean LOA 

(Spearman’s ρ=0.295, p>0.05) (Table  3.7). 

When considering the correlation between GCF resistin levels and cytokine levels in 

GCF, significant positive correlations were demonstrated between resistin levels in 

GCF and GCF levels of TNF-α (Spearman’s ρ=0.525, p<0.001), IL-1β (Spearman’s 

ρ=0.462, p<0.01), IL-6 (Spearman’s ρ=0.563, p<0.001) and IFN-γ (Spearman’s 

ρ=0.526, p<0.001) (Table  3.8). 
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Table ‎3.6 Correlations between GCF resistin levels and resistin levels in saliva 

and serum  

 Correlation Coefficient P-value 

Saliva Resistin 0.422 0.007 

Serum Resistin 0.076 0.644 

 

Table ‎3.7 Correlations between GCF resistin levels and clinical periodontal 

parameters 

Clinical parameters Correlation Coefficient P-value 

BOP (%) 0.435 0.005 

Mean PD (mm) 0.347 0.028 

Mean LOA (mm) 0.295 0.065 

PISA (mm
2
) 0.49 0.002 

 

Table ‎3.8 Correlations between GCF resistin levels and cytokine levels in GCF 

GCF cytokines Correlation Coefficient P-value 

TNF-α 0.525 0.001 

IL-1β 0.462 0.003 

IL-6 0.563 0.000 

IFN-γ 0.526 0.000 

 

Tables show Spearman rank correlation coefficients  
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3.3 Discussion‎ 

 

Substantial evidence has linked periodontal disease with type 2 diabetes, but studies 

focusing on the possible role of resistin in this interrelationship are limited.  It is 

widely accepted that diabetes represents an established hyper-inflammatory state, and 

chronic inflammation has been deemed as an underlying cause for insulin resistance, 

with resulting hyperglycaemia (Dandona et al., 2003; Sjoholm and Nystrom, 2006).  

Particularly, mediators generated during the inflammatory process can suppress the 

signalling downstream of the insulin receptor, thereby resulting ultimately in insulin 

resistance (Wellen and Hotamisligil, 2005).  Periodontal disease is considered as a 

chronic local oral infection that triggers a local and systemic inflammatory response 

(Ebersole and Cappelli, 2000).  Numerous studies have suggested that periodontitis 

may induce and perpetuate a chronic systemic hyper-inflammatory state (Loos et al., 

2000; Noack et al., 2001; D'Aiuto et al., 2004).  Resistin is a proinflammatory 

cytokine which can be produced by macrophages, monocytes and neutrophils during 

the tissue inflammatory response to various stimuli including the microbial challenge 

(Lehrke et al., 2004; Bokarewa et al., 2005; Furugen et al., 2011). 

An abundance of studies have recently deliberated the potential diagnostic properties 

of saliva.  Emerging research is highlighting the importance of saliva not only as a 

tool help diagnose oral diseases, but also as a body's "mirror" that could be used to 

monitor general health and in the diagnosis of systemic conditions (Wong, 2006; Hu 

et al., 2007a; Giannobile et al., 2009).  Currently, the assessment of clinical 

parameters of tissue destruction and signs of tissue inflammation are the primary 

methods for clinical diagnosis of periodontal diseases.  Although these measures are 

easy to use to determine the periodontal status of patients, the time and expertise 
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required for a full periodontal examination presents serious limitations to 

epidemiological surveys.  Efficient and convenient methods for screening patients 

would be particularly useful for investigations designed to uncover risk factors and 

risk indicators of periodontal diseases with a large sample size.  Saliva could be 

utilized as a useful, non-invasive diagnostic body fluid to monitor biomarkers released 

during disease initiation and progression (Kaufman and Lamster, 2000; Taba et al., 

2005; Giannobile et al., 2009).  Identification of particular salivary biomarkers 

associated with periodontal disease extent and severity could have substantial 

influence on the diagnosis and monitoring of periodontal diseases.  A plethora of 

evidence has identified GCF as the primary source of cytokines in whole saliva (Ruhl 

et al., 2004; Rudrakshi et al., 2011).  It has been demonstrated that TNF-α, IL-1α, IL-

6 and IL-8 were present in whole saliva at concentrations significantly higher than in 

major salivary gland secretions, which suggested that the detected cytokines in whole 

saliva did not come from the secretions of major salivary glands, and that GCF was 

the likely source of these cytokines (Wozniak et al., 2002; Ruhl et al., 2004).   

Potentially, whole saliva contains GCF from all periodontal sites providing a useful 

assessment of periodontal disease status. 

In reviewing the literature, no published research was found investigating salivary 

resistin levels in subjects with healthy periodontal tissues, gingivitis and periodontitis 

with or without T2DM.  The present study showed for the first time the existence of 

resistin in saliva and compared resistin levels among saliva samples from 

periodontally healthy, gingivitis and periodontitis subjects with and without T2DM.  

The present study demonstrated that salivary resistin levels are elevated in subjects 

with periodontitis as compared to periodontally healthy controls and gingivitis 

subjects in both T2DM and non-diabetic groups.  On the other hand, salivary resistin 
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levels showed no significant difference between T2DM and non-diabetic groups 

irrespective of periodontal status.  Interestingly, the saliva resistin levels in 

periodontitis patients decreased after 3, 6 and 12 months of non-surgical periodontal 

management in both T2DM and non-diabetic groups.  Moreover, the present study 

revealed that the levels of salivary resistin are significantly and positively correlated 

with hsCRP, saliva IL-6, saliva IL-1β and serum resistin.  Additionally, salivary 

resistin also positively correlated with %BOP, mean PD, mean LOA and PISA.  

Furthermore, a pilot study was also undertaken to investigate resistin levels in GCF 

samples from subjects with healthy periodontal tissues, gingivitis and periodontitis 

with or without T2DM.  Resistin levels in GCF showed no significant difference 

between T2DM and non-diabetic groups irrespective of periodontal status.  In the 

non-diabetic group, periodontitis subjects appear to have a trend of higher GCF 

resistin levels than periodontally healthy subjects.  Finally, the present study revealed 

that the levels of GCF resistin are significantly and positively correlated with saliva 

resistin, GCF TNF-α, GCF IL-1β, GCF IL-6 and GCF INF-γ.  Additionally, GCF 

resistin also positively correlated with %BOP, mean PD, and PISA. 

Very little was found in the literature on the question of the existence of resistin in 

saliva.  One previous study detected resistin in saliva and found that salivary resistin 

levels were significantly higher (p=0.001) in patients with primary Sjögren’s 

syndrome compared to controls, suggesting a strong association of resistin with local 

inflammation in patients with primary Sjögren’s syndrome (Bostrom et al., 2008).  

Another study aimed to suggest methods of determining resistin, adiponectin and 

visfatin levels in saliva, and to evaluate their correlations with serum levels in healthy 

individuals.  This study reported that salivary resistin levels in healthy subjects were 
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1.69 (0.73-6.55) ng/ml, and correlated positively with serum resistin levels (Mamali et 

al., 2012). 

To the best of our knowledge, this is the first study to measure resistin concentrations 

in saliva in both healthy and periodontally diseased subjects with or without T2DM.  

In the present study, no significant difference was found between the T2DM [3.71 

(1.89-8.17) ng/ml] and non-diabetic control group [3.63 (1.3-10.97) ng/ml] 

irrespective of periodontal status. In general, therefore, it seems that diabetes had no 

impact on salivary resistin levels, and a possible explanation for this might be that 

resistin in saliva originates from immune cells in the local periodontal tissues rather 

than the body adipose tissues, and therefore salivary resistin was not associated with 

systemic inflammation represented by diabetes.  Interestingly, following further 

categorization of subjects based on their periodontal diagnosis, the current study 

demonstrated that subjects with T2DM and periodontitis have significantly higher 

levels of resistin in saliva [6.94 (2.94-14.14) ng/ml] compared to T2DM subjects with 

gingivitis [2.93 (1.61-4.99) ng/ml] and T2DM subjects with healthy periodontal 

tissues [2.35 (1.52-3.24) ng/ml].  The same pattern was replicated in the non-diabetic 

group, in which periodontitis subjects have significantly higher levels of resistin in 

saliva [8.27 (3.59-15.32) ng/ml] compared to those with gingivitis [1.21 (0.39-3.67) 

ng/ml]  and those with healthy periodontal tissues [1.53 (0.79-2.57) ng/ml].  Hence, it 

could conceivably be hypothesised that elevated salivary resistin is associated with the 

local inflammation in periodontitis, and that patients with extensive periodontal 

inflammation have the highest resistin levels.  One of the potential sources of resistin 

in saliva is the cellular response in the periodontium, this could be explained by the 

fact that GCF traverses through inflamed periodontal tissues en route to the sulcus, 

and mediators (such as resistin) are gathered from the surrounding areas and are 
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subsequently eluted into whole saliva.  It may be that the immune cells in the 

periodontium stimulated by the persistent microbial challenge produce high levels of 

resistin, which in turn congregates with other contributions from periodontium to 

form the gingival exudate that flows through the gingival sulcus into the oral fluid.  It 

can thus be suggested that the elevated levels of resistin in saliva reflect the intensity 

of local inflammation in the periodontium.  Interestingly, the levels of salivary resistin 

in periodontally healthy non-diabetic subjects in the current study [1.53 (0.79-2.57) 

ng/ml] were comparable to those in normal healthy individuals [1.69 (0.73-6.55) 

ng/ml] in a study performed by (Mamali et al., 2012), and this was in spite of  the 

difference in the saliva collection techniques implemented in the two studies.  Most 

studies that have investigated the role of resistin in periodontitis have only focussed 

on the levels of resistin in serum and GCF.  An increased serum resistin level 

associated with periodontitis was reported in two previous studies (Furugen et al., 

2008; Saito et al., 2008).  Additionally, Hiroshima et al. (2012) reported that GCF 

resistin levels from patients with periodontitis or diabetes-related periodontitis were 

significantly higher than those of healthy subjects (Hiroshima et al., 2012).  Although 

no previous study has investigated salivary resistin levels in periodontitis subjects 

with or without T2DM, the salivary levels of other inflammatory cytokines have been 

explored in periodontitis patients in a number of recent studies (Miller et al., 2006; 

Gursoy et al., 2009; Teles et al., 2009; Costa et al., 2010).  It has been suggested that 

salivary levels of IL-1β and IL-6 were significantly higher in subjects with 

periodontitis compared to those without periodontitis (Miller et al., 2006; Gursoy et 

al., 2009; Costa et al., 2010).  On the other hand, Teles et al. (2009) quantified a 

number of inflammatory cytokines in saliva using a multiple bead immunoassay, and 

found no significant differences between periodontitis and periodontally healthy 



3   Results  170 

groups with regards to levels of TNF-α, IL-1β, IL-6 and IFN-γ (Teles et al., 2009).  

This inconsistency between these studies might be attributed to the different levels of 

disease in the various study populations.  Presently, the published research data 

investigating the role of inflammatory cytokines in saliva in subjects with T2DM and 

periodontitis are very limited.  Costa et al. (2010) showed no significant difference in 

salivary IL-6 levels when subjects with T2DM with periodontitis (n=24) were 

compared to non-diabetic subjects with periodontitis (n=24) (Costa et al., 2010). 

Intriguingly, saliva samples used in the current study were saliva wash rather than 

whole saliva, which was obtained by oral rinse using 10ml of saline.  This 

consequently diluted the saliva sample and made the actual volume of whole saliva in 

each sample unknown.  Therefore, it is interesting to note that the current study was 

able to identify a significant difference in salivary resistin levels without any 

detectable variability in the data, and this substantiates the validity of investigating 

resistin levels in saliva. 

Overall, data from the current study confirm that salivary levels of resistin increase 

significantly with the development of periodontitis.  This would support the 

possibility of selecting salivary resistin as a biomarker that may reflect periodontal 

status.  The current study was the first research investigating salivary resistin levels in 

both healthy and periodontally diseased subjects with or without T2DM, thus further 

investigations on the current topic are therefore recommended to confirm these 

findings. 

No published data were found in the literature on the association of salivary levels of 

resistin with the degree of obesity, glycaemic control, systemic inflammation, salivary 

levels of inflammatory cytokines, and clinical periodontal parameters.  The results of 

the current study did not show any significant correlation of salivary resistin levels 
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with BMI and HbA1c.  On the other hand, salivary resistin levels were found to be 

significantly and positively correlated with hsCRP (Spearman’s ρ=0.16, p<0.05), 

albeit this correlation was relatively weak (Cohen, 1988).  These findings suggest that 

salivary resistin levels do not appear related to BMI and glycaemic control, and are 

only weakly correlated with systemic inflammation represented by hsCRP.  Within 

the current literature, there is no published study exploring the correlation between 

salivary cytokines levels and resistin levels in saliva.  The current study demonstrated 

a significant positive correlation between salivary levels of IL-1β (Spearman’s 

ρ=0.284, p<0.001), and IL-6 (Spearman’s ρ=0.195, p<0.01), and the salivary resistin 

levels.  On the other hand, no significant correlation was found between salivary 

resistin levels and the levels of TNF-α and IFN-γ in saliva.  Interestingly, salivary 

resistin levels correlated significantly and positively with resistin levels in serum 

(Spearman’s ρ=0.19, p<0.01), albeit this correlation was relatively small (Cohen, 

1988).  This finding corroborates the findings of Mamali et al (2012), who reported a 

significant correlation of salivary resistin levels with resistin levels in serum 

(Spearman’s ρ=0.441, p<0.01) in healthy individuals (Mamali et al., 2012). 

In reviewing the literature, no data were found on the relationship between the levels 

of resistin in saliva and the clinical periodontal parameters.  In the current study, 

significant positive correlations were determined between %BOP (Spearman’s 

ρ=0.476, p<0.001), mean PD (Spearman’s ρ=0.594, p<0.001), mean LOA 

(Spearman’s ρ=0.598, p<0.001), and PISA (Spearman’s ρ=0.573, p<0.001) and 

salivary levels of resistin.  These findings suggest that as the clinical periodontal 

measurements increase, the levels of resistin in saliva also increase.  It can therefore 

be assumed that the elevated resistin concentration in saliva may be one of the host-
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response components associated with the clinical manifestations of periodontal 

disease. 

In spite of the substantial evidence that testifies to the importance of saliva in 

providing adjunctive information in the diagnosis and monitoring of periodontal 

diseases (Miller et al., 2006; Miller et al., 2010), there are few published longitudinal 

studies evaluating the influence of non-surgical periodontal management on the levels 

of inflammatory mediators in saliva (Sexton et al., 2011).  Numerous studies have 

suggested that periodontal treatment, which reduces the intraoral bacterial bioburden 

and decreases periodontal inflammation, can have a significant effect on systemic 

inflammatory status (Christgau et al., 1998; Correa et al., 2008; Goncalves et al., 

2008; O'Connell et al., 2008).  It has been reported that periodontal treatment is 

associated with improved glycaemic control in subjects with both diabetes and 

periodontal diseases (Nishimura et al., 2007).  To the best of our knowledge, this is 

the first study to explore the changes in salivary resistin levels following non-surgical 

periodontal management.  In the current study, in subjects with T2DM, compared to 

pre-treatment levels [6.84 (2.1-10.99) ng/ml], salivary resistin levels showed 

significant reductions following non-surgical periodontal management at 3 months 

[4.58 (2.17-9.22) ng/ml], 6 months [3.71 (1.91-8.42) ng/ml] and 12 months [2.66 

(1.63-8.05) ng/ml].  Likewise, in non-diabetic subjects, compared to pre-treatment 

levels [11.38 (3.75-16.6) ng/ml], salivary resistin levels showed significant reductions 

following non-surgical periodontal management at 3 months [6.38 (4.04-10.66) 

ng/ml] and 6 months [4.95 (0.45-8.02) ng/ml].  Additionally, in non-diabetic subjects 

compared to pre-treatment levels [11.38 (3.75-16.6) ng/ml], saliva resistin showed an 

apparent reduction at month 12 [4.73 (0.61-13.45) ng/ml], but the difference did not 

reach the level of statistical significance.  Although there are currently no published 
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longitudinal data investigating the impact of non-surgical periodontal management on 

levels of resistin in saliva, it is encouraging to compare our data with research that 

explored the changes in levels of other salivary inflammatory mediators in response to 

non-surgical periodontal management.  Sexton et al (2011) reported significant 

reductions in salivary levels of TNF-α and IL-1β at 4 months in subjects receiving 

oral hygiene instruction alone, and in subjects receiving non-surgical periodontal 

management (Sexton et al., 2011).  According to the present findings, no significant 

differences in salivary resistin levels were found between T2DM patients and non-

diabetic subjects at any of the four time points.  Overall, this study is the first to 

examine the role of salivary resistin for monitoring periodontal status in a longitudinal 

study design.  In the present study, patients with T2DM and chronic periodontitis 

exhibited similar reductions in salivary resistin levels after periodontal therapy 

compared to their systemically healthy counterparts.  These findings provide further 

support for the hypothesis that although salivary resistin levels are not related to 

diabetic status, they reflected periodontal disease severity and response to therapy and 

this in turn suggests a potential utility of salivary resistin levels for monitoring 

periodontal disease status. 

Gingival crevicular fluid contains many constituents derived from the serum, the 

cellular response in the periodontium, degraded components of periodontal tissues, 

contributions from the gingival crevice and bacterial products (Ozmeric, 2004; Taba 

et al., 2005; Lamster and Ahlo, 2007; Newman et al., 2012).  Resistin in GCF is 

possibly derived from PBMCs, macrophages and neutrophils in periodontal tissues 

and blood.  In the current study, a pilot investigation was undertaken to measure 

resistin levels in GCF in both healthy and periodontally diseased subjects with or 

without T2DM.  The current study demonstrated no significant difference in the GCF 
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levels of resistin in subjects with T2DM [2.81 (0.99-5.44) ng/ml] compared to non-

diabetic subjects [2.77 (0.87-6.25) ng/ml].  When considering resistin levels in GCF 

following further categorisation of subjects based on their periodontal diagnosis there 

were no significant differences found in any periodontal status category between 

T2DM and non-diabetic subjects.  In T2DM subjects, resistin levels in GCF appeared 

to be higher in gingivitis patients [4.22 (0.68-8.45) ng/ml] compared to those with 

healthy periodontal tissues [2.17 (0.0-5.84) ng/ml] and periodontitis [2.81 (1.14-3.39) 

ng/ml], however, these differences failed to reach statistical significance.  In non-

diabetic subjects, resistin levels in GCF appeared to be higher in periodontitis patients 

[6.38 (1.69-24.46) ng/ml] compared to those with healthy periodontal tissues [1.41 

(0.89-3.15) and gingivitis [0.94 (0.13-4.07) ng/ml], however, again these differences 

failed to reach statistical significance.  Very little has been reported in the literature on 

the levels of resistin in GCF.  Only one published study has investigated the existence 

of resistin in GCF, and found that resistin levels in GCF samples from patients with 

periodontitis or diabetes mellitus-related periodontitis were significantly higher than 

those of healthy subjects (Hiroshima et al., 2012).  The findings of the current study 

do not support the previous research and this rather contradictory result may be due to 

the lack of adequate sample size in the present study, as the numbers of GCF samples 

available for analysis were very limited.  Accordingly, with such a small sample size, 

these data must be interpreted with caution. 

The correlations of GCF resistin levels with resistin levels in saliva and serum, GCF 

levels of inflammatory cytokines, and clinical periodontal parameters were 

investigated in the current study.  The results of this study indicated that the levels of 

GCF resistin were significantly and positively correlated with salivary resistin levels 

(Spearman’s ρ=0.422, p<0.01).  On the other hand, no significant association was 
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found between GCF resistin levels and resistin levels in serum (Spearman’s ρ=0.076, 

p>0.05).  In the present study, GCF resistin levels were found to correlate 

significantly and positively with GCF levels of TNF-α (Spearman’s ρ=0.525, 

p<0.001), IL-1β (Spearman’s ρ=0.462, p<0.01), IL-6 (Spearman’s ρ=0.563, p<0.001) 

and IFN-γ (Spearman’s ρ=0.526, p<0.001).  It is interesting to note that when 

considering the correlation between GCF resistin levels and the clinical periodontal 

parameters, significant positive correlations were demonstrated between resistin levels 

in GCF and %BOP (Spearman’s ρ=0.435, p<0.01), mean PD (Spearman’s ρ=0.347, 

p<0.05), and PISA (Spearman’s ρ=0.49, p<0.01).  It is encouraging to compare this 

result with that found by Hiroshima et al  (2012) who found a significant correlation 

between resistin levels in GCF and the gingival index score (Hiroshima et al., 2012).  

On the other hand, in the current study no significant association were found between 

GCF resistin levels and mean LOA (Spearman’s ρ=0.295, p>0.05).  Intriguingly, the 

association of GCF resistin levels with saliva and serum resistin levels, GCF levels of 

inflammatory cytokines, and the main clinical periodontal parameters have not 

previously been described. 

In conclusion, the present study demonstrated for the first time that salivary resistin 

levels were significantly elevated in subjects with periodontitis compared to gingivitis 

and periodontally healthy subjects in both T2DM and non-diabetic groups.  

Specifically, resistin levels in saliva were associated with periodontal disease, but not 

diabetes mellitus.  The levels of salivary resistin correlated significantly and 

positively with hsCRP, serum resistin, salivary levels of IL-1β and IL-6 and the four 

main clinical periodontal parameters (i.e. %BOP, mean PD, mean LOA and PISA).  

Interestingly, in both diabetic and non-diabetic subjects, significant reductions in 

salivary resistin levels were seen at 3, 6 and 12 months after non-surgical periodontal 



3   Results  176 

management.  With regard to the resistin levels in GCF and within the limitations of 

the pilot study, no significant differences were found in GCF levels of resistin 

between the three periodontal categories in both T2DM and non-diabetic groups.  

Finally, GCF resistin levels were correlated significantly and positively with salivary 

resistin, GCF levels of TNF-α, IL-1β, IL-6 and IFN-γ, %BOP, mean PD and PISA.  

Thus, this study suggested that salivary resistin might be involved in the tissue 

destruction process in the periodontium.  Additionally, resistin in saliva can be 

considered as a possible biomarker which reflects the inflammatory activity in 

periodontal disease.  Although further studies may be necessary to confirm the 

efficacy of measuring salivary resistin levels in the prediction, diagnosis and 

management of periodontal disease, our study certainly highlights the potential for 

salivary resistin to move one step closer to becoming an established biomarker for 

periodontal disease.  Therefore, addressing the clinical implications and pathological 

mechanisms of salivary and GCF resistin in periodontal disease progression are 

warranted. 
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Chapter 4 Investigation‎of‎serum‎resistin‎in‎

periodontal‎disease‎patients‎with‎and‎without‎type‎

2‎diabetes‎mellitus 

 

4.1 Introduction 

 

Periodontal diseases and diabetes are both common complex chronic diseases for 

which there is considerable evidence for a bidirectional relationship (Preshaw et al., 

2012).  Periodontitis has been described as the sixth complication of diabetes (Loe, 

1993).  It has long been accepted that the prevalence, severity and progression of 

periodontal diseases are higher in diabetic patients when compared with non-diabetic 

subjects (Mealey and Oates, 2006; Preshaw, 2008b; Taylor and Borgnakke, 2008), 

which confirm the notion of diabetes as a major risk factor for periodontitis (Kinane 

and Bouchard, 2008).  It is becoming increasingly difficult to ignore the importance 

of glycaemic control as a key determinant for the increased risk of periodontitis in 

diabetic individuals.  On the other hand, periodontal diseases have a significant 

negative impact on the glycaemic control in diabetes (i.e. having periodontitis 

increases the risk of poor glycaemic control over time) (Taylor et al., 1996).  In 

conclusion, it is clear from a large volume of published studies that diabetes is a major 

risk factor for periodontal disease, and that the risk for periodontitis is greater if 

glycaemic control is poor. 

Resistin is a cytokine which regulates pleiotropic activities in various biological 

processes including insulin resistance, inflammation and immunity.  Elevated 

systemic resistin levels were reported to be positively associated with several chronic 
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diseases including inflammatory bowel disease (Konrad et al., 2007), chronic kidney 

disease (Kawamura et al., 2010), rheumatoid arthritis (Migita et al., 2006), diabetes 

(Chen et al., 2009; Lau and Muniandy, 2011) and periodontal disease (Furugen et al., 

2008; Saito et al., 2008).  The existence of resistin was confirmed in GCF from 

chronic periodontitis patients, patients with diabetes and periodontitis, and healthy 

subjects, and this cytokine was significantly elevated in patients with periodontitis or 

diabetes mellitus-related periodontitis when compared with healthy subjects 

(Hiroshima et al., 2012).  In vitro, Hiroshima et al (2012) demonstrated that LPS from 

P. gingivalis enhanced resistin release from human neutrophils (Hiroshima et al., 

2012).  In effect, studies focusing on the levels of serum resistin in periodontitis 

patients are limited.  Recent studies failed to provide any evidence to suggest that 

serum levels of resistin are altered in periodontitis patients compared with 

periodontally healthy control subjects (Davies et al., 2011; Devanoorkar et al., 2012).  

However, in 2008, two studies documented that the serum resistin concentration of 

elderly Japanese people with periodontitis was significantly higher than that of 

healthy subjects and that the serum resistin level was associated with bleeding on 

probing “a clinical marker of periodontal inflammation” (Furugen et al., 2008; Saito 

et al., 2008).  The aforementioned studies have provided important insights about a 

potential role of resistin in periodontal disease. 

In diabetes, the levels of serum resistin were found to be elevated in gestational 

diabetes (Chen et al., 2007; Vitoratos et al., 2011) and type 2 diabetes patients 

(Hasegawa et al., 2005; Lu et al., 2006; Chen et al., 2009; Lau and Muniandy, 2011) 

compared to subjects without diabetes.  Current evidence documented that serum 

resistin levels were positively correlated with HOMA-IR index (the surrogate measure 

for assessing insulin resistance and β-cell function), serum insulin, plasma glucose 
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and whole blood HbA1c levels in a case control study (Lau and Muniandy, 2011).  

Furthermore, multivariate analysis revealed that circulating resistin levels were 

positively correlated with CRP in treatment naive diabetes obese patients (de Luis et 

al., 2010).  The relationship between resistin and BMI is controversial.  Some articles, 

reported that in humans resistin levels correlate with BMI (Li et al., 2009b; Lau and 

Muniandy, 2011), while other investigations failed to observe any correlation of BMI 

with resistin levels (Pagano et al., 2006; Won et al., 2009).  These provide compelling 

evidence that hyper-resistinemia may be an important determinant for increased risk 

of type 2 diabetes. 

Comprehensive evaluation of the literature indicates that hyper-resistinemia occurs in 

both periodontal disease and type 2 diabetes.  However, to my knowledge, there are 

no published studies which have investigated the serum levels of resistin in type 2 

diabetes subjects with periodontal disease.  Therefore, the aim of this study was to 

investigate the role of serum resistin as a potential systemic biomarker in periodontal 

disease subjects with and without type 2 diabetes.  Finally, the possible relationship of 

serum resistin levels with anthropometric clinical and metabolic parameters of 

diabetes, as well as with clinical parameters of periodontal disease and inflammatory 

cytokine levels in serum were also examined.  
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4.2 Results 

4.2.1 Characteristics of the study population 

 

The study population composed of two main groups; T2DM and non-diabetic 

controls.  T2DM subjects were recruited from both secondary care databases, and 

databases held within primary care settings, such as general medical practices.  The 

non-diabetic subjects were recruited from either those patients referred from general 

dental practice to the restorative department within the Newcastle Dental Hospital or 

patients attending student treatment clinics within the Newcastle Dental Hospital.  All 

subjects underwent full mouth clinical periodontal measurements, in addition to the 

physical examination.  Diabetes history, smoking history and demographic data were 

recorded for all participants.  Serum, saliva and GCF samples were collected from all 

subjects to be used subsequently for both clinical biochemistry, cytokines and 

adipokines analysis. 

The characteristics of the T2DM patients and non-diabetic subjects are summed up in 

Table  4.1. There were no significant differences between the groups in age, gender, 

ethnicity, smoking status, pack years smoked (relevant to current and ex-smokers 

only), and diastolic blood pressure. This reflects an appropriate matching in the 

present study for the T2DM and non-diabetic groups in terms of age, gender, 

ethnicity, and smoking status.  In both T2DM and non-diabetic groups, a 9% 

prevalence of current smokers was recorded.  

Subjects with T2DM had significantly higher systolic blood pressure [146.9 (±21.2) 

mmHg] compared to non-diabetic subjects [136.6 (±18.9) mmHg].  Likewise, case 

patients with T2DM had significantly higher values for BMI [32 (29-35) kg/m
2
] than 
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non-diabetic group [27.2 (23-29) kg/m
2
].  Moreover, it is apparent from Table  4.1 that 

the proportions of T2DM and non-diabetic subjects in each BMI rank were 

significantly different, with the T2DM group including a higher percentage of obese 

(47%) and morbidly obese (24%) subjects compared to the non-diabetic group in 

which the corresponding proportions were (10.8%) and (10.8%) respectively. 
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Table ‎4.1 Baseline characteristics of T2DM and non-diabetic groups  

 

 

T2DM patients 

(n=101) 

Non-diabetic patients 

(n=83) 
p-value 

Gender (n (%))    

Male 67 (66.3%) 50 (60.2%) NS 

Age (years) 49 (45-53) 48 (43-54) NS 

Ethnicity (n (%))    

Caucasian 96 (95%) 83 (100%) 

NS Black 1 (1%) 0 (0%) 

Asian 4 (4%) 0 (0%) 

Smoking    

Status (n (%))    

Current 9 (8.9%) 9 (10.8%) 

NS Ex 37 (36.6%) 25 (30.1%) 

Never 55 (54.5%) 49 (59%) 

Pack years 
* 16 (10-38.8) 15 (4.9-23.8) NS 

Systolic blood pressure (mmHg) 146.9 (±21.2) 136.64 (±18.9) 0.001 

Diastolic blood pressure (mmHg) 81 (74-90) 81 (74-88) NS 

 BMI (kg/m
2
) 32 (29-35) 27.2 (23-29) <0.001 

Status (n(%))    

normal weight 12 (12%) 27 (32.5%) 

<0.001 
overweight 16 (16%) 38 (45.8%) 

obese 47 (47%) 9 (10.8) 

morbidly  obese 24 (24%) 9 (10.8) 

 

P-values were determined using chi-squared test for discrete variables, Mann-Whitney 

U tests for continuous non-parametric variables (age, pack years, diastolic blood 

pressure and BMI) and independent t-test for continuous parametric variables 

(systolic blood pressure). 
*
 Applicable only to current and ex-smokers (n=45 diabetic 

subjects, n=33 non-diabetics subjects). Means (±SD) are presented for parametric data 

and medians (IQR) are presented for non-parametric data. 
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4.2.2 Baseline clinical biochemistry parameters 

 

The baseline clinical biochemistry data for the controls and subjects with T2DM are 

outlined in Table  4.2.  Among these parameters, hsCRP alone showed no significant 

difference between the T2DM and non-diabetic controls.  In contrast, there were a 

significant difference between the T2DM and non-diabetic groups for HbA1c, 

triglycerides, HDL, non-HDL, and total cholesterol.  Patients with diabetes had 

significantly lower levels of HDL [1.2 (1.0-1.4) mmol/L], non-HDL [3.2 (2.7-3.9) 

mmol/L], and total cholesterol [4.4 (3.9-5.3) mmol/L] compared to subjects without 

diabetes for whom the corresponding values were [1.5 (1.2-1.8) mmol/L] for HDL, 

[4.1 (3.4-4.6) mmol/L] for non- HDL and [5.5 (5.0-6.1) mmol/L] for total cholesterol.  

As anticipated, HbA1c was significantly higher (p<0.001) in diabetic subjects [7.2 

(6.5-8.9) %] compared to the non-diabetic controls [5.5 (5.3-5.7) %].  Although a 

higher levels of hsCRP was recorded in T2DM patients [2.3 (0.9-4.5) mg/L] 

compared to subjects without diabetes [1.9 (0.8-3.9) mg/L], this difference was not 

statistically significant. 
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Table ‎4.2 Baseline clinical biochemistry data comparing subjects with and 

without T2DM 

 

 

T2DM patients 

(n=101) 

Non-diabetic 

patients (n=83) 
p-value 

HbA1c (%) 7.2 (6.5-8.9) 5.5 (5.3-5.7) <0.001 

Triglycerides (mmol/L) 2.3 (1.5-3.5) 1.6 (1.1-2.4) <0.001 

HDL (mmol/L) 1.2 (1.0-1.4) 1.5 (1.2-1.8) <0.001 

Non-HDL (mmol/L) 3.2 (2.7-3.9) 4.1 (3.4-4.6) <0.001 

Total cholesterol (mmol/L) 4.4 (3.9-5.3) 5.5 (5.0-6.1) <0.001 

hsCRP (mg/L)
*
 2.3 (0.9-4.5) 1.9 (0.8-3.9) NS 

 

P-values determined using Mann Whitney-U tests as all variables are continuous non-

parametric. Median and IQR presented for this non-parametric data. 
*
(92 T2DM and 

72 non-diabetic subjects). 
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4.2.3 Pre-treatment clinical parameters of periodontal disease 

 

Table  4.3 outlines the basic clinical periodontal data for T2DM patients and the non-

diabetic control group before periodontal therapy.  Of note, when comparing the 

diabetic and non-diabetic groups there was a tendency for increased BOP in diabetic 

subjects [35.4 (18.2-49.9) %] compared to non-diabetic subjects [30.1 (14.9-48.8) %], 

however, this difference was not statistically significant.  Furthermore, no significant 

difference was recorded between the T2DM patients and non-diabetic control group 

in terms of mean probing depth, mean loss of attachment, and the periodontal 

inflamed surface area. 

Table  4.4 provides the clinical periodontal baseline data following classification of the 

study population according to periodontal diagnosis.  When appraising bleeding on 

probing, statistical tests revealed that %BOP was significantly higher in diabetic 

patients with healthy periodontal tissues [4.5 (0.7-13.1) %] and gingivitis [35.1 (25-

44.9) %] compared to non-diabetic subjects with healthy periodontal tissues [0.65 (0-

2.6) %] and gingivitis [22 (17.3-32.6) %].  Furthermore, the comparison was also 

performed between the three periodontal categories (healthy periodontal tissues, 

gingivitis and periodontitis) within the T2DM and non-diabetic groups.  In the T2DM 

group, %BOP was significantly higher in those with gingivitis [35.1 (25-44.9) %] in 

comparison to those with healthy periodontal tissues [4.5 (0.7-13.1) %] (p<0.001).  

Likewise, the %BOP was significantly higher in those with periodontitis [46 (30-60.7) 

%] in comparison to those with healthy periodontal tissues [4.5 (0.7-13.1) %] 

(p<0.001).  Moreover, the %BOP was significantly higher in those with periodontitis 

[46 (30-60.7) %] in comparison to those with gingivitis [35.1 (25-44.9) %] (p<0.05).  

In the non-diabetic group, the %BOP was significantly higher in those with gingivitis 
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[22 (17.3-32.6) %] in comparison to those with healthy periodontal tissues [0.65 (0-

2.6) %] (p<0.001).  Likewise, the %BOP was significantly higher in those with 

periodontitis [42.95 (29.5-56.7) %] in comparison to those with healthy periodontal 

tissues [0. 65 (0-2.6) %] (p<0.001).  Moreover, the %BOP was significantly higher in 

those with periodontitis [42.95 (29.5-56.7) %] in comparison to those with gingivitis 

[22 (17.3-32.6) %] (p<0.01).  The aforementioned results considering %BOP are 

presented in Table  4.4 and Figure  4.1. 

When appraising probing depth, statistical analysis showed that the mean PD was 

significantly higher in diabetic patients with healthy periodontal tissues [1.75 (1.6-

1.8) mm] and gingivitis [2.09 (1.96-2.2) mm] compared to non-diabetic subjects with 

healthy periodontal tissues [1.61 (1.5-1.7) mm] and gingivitis [1.9 (1.8-2.1) mm].  

Furthermore, a comparison was performed between the three periodontal categories 

(healthy periodontal tissues, gingivitis and periodontitis) within the T2DM and non-

diabetic groups.  In the T2DM group, the mean PD was significantly higher in those 

with gingivitis [2.09 (1.96-2.2) mm] in comparison to those healthy periodontal 

tissues [1.75 (1.6-1.8) mm] (p<0.001).  Likewise, the mean PD was significantly 

higher in those with periodontitis [2.82 (2.4-3.2) mm] in comparison to those with 

healthy periodontal tissues [1.75 (1.6-1.8) mm] (p<0.001).  Moreover, the mean PD 

was significantly higher in those with periodontitis [2.82 (2.4-3.2) mm] in comparison 

to those with gingivitis [2.09 (1.96-2.2) mm] (p<0.001).  In the non-diabetic group, 

the mean PD was significantly higher in those with gingivitis [1.9 (1.8-2.1) mm] in 

comparison to those with healthy periodontal tissues [1.6 (1.5-1.7) mm] (p<0.001).  

Likewise, the mean PD was significantly higher in those with periodontitis [2.9 (2.5-

3.5) mm] in comparison to those with healthy periodontal tissues [1.6 (1.5-1.7) mm] 

(p<0.001).  Furthermore, the mean PD was significantly higher in those with 
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periodontitis [2.9 (2.5-3.5) mm] in comparison to those with gingivitis [1.9 (1.8-2.1) 

mm] (p<0.001).  The aforementioned results considering mean PD are presented in 

Table  4.4 and Figure  4.2. 

When appraising loss of attachment, statistical analysis showed that the mean LOA 

was significantly higher in diabetic patients with gingivitis [2.3 (2.1-2.4) mm] 

compared to non-diabetic subjects with gingivitis [2.1 (2.0-2.3) mm].  Furthermore, 

the comparison was done between the three periodontal categories (healthy 

periodontal tissues, gingivitis and periodontitis) within T2DM and non-diabetic 

groups.  In T2DM group, mean LOA was significantly higher in those with gingivitis 

[2.3 (2.1-2.4) mm] in comparison to those healthy periodontal tissues [1.9 (1.8-2.1) 

mm] (p<0.001).  Likewise, mean LOA was significantly higher in those with 

periodontitis [3.1 (2.8-3.9) mm] in comparison to those with healthy periodontal 

tissues [1.9 (1.8-2.1) mm] (p<0.001).   Moreover, mean LOA was significantly higher 

in those with periodontitis [3.1 (2.8-3.9) mm] in comparison to those with gingivitis 

[2.3 (2.1-2.4) mm] (p<0.001).  In the non-diabetic group, mean LOA was 

significantly higher in those with gingivitis [2.1 (2.0-2.3) mm] in comparison to those 

with healthy periodontal tissues [1.8 (1.6-2.0) mm] (p<0.001).  Likewise, mean LOA 

was significantly higher in those with periodontitis [3.4 (2.9-4.2) mm] in comparison 

to those with healthy periodontal tissues [1.8 (1.6-2.0) mm] (p<0.001).  Moreover, 

mean LOA was significantly higher in those with periodontitis [3.4 (2.9-4.2) mm] in 

comparison to those with gingivitis [2.1 (2.0-2.3) mm] (p<0.001).  The 

aforementioned results considering mean LOA are presented in Table  4.4. 

When appraising the periodontal surface area which was deemed inflamed owing to 

the presence of bleeding on probing, statistical tests revealed no significant 

differences in PISA (periodontal inflamed surface area) between T2DM and non-
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diabetic groups.  Nonetheless, the comparison was done between the three periodontal 

categories (healthy periodontal tissues, gingivitis and periodontitis) within the T2DM 

and non-diabetic groups.  In the T2DM group, the PISA was significantly higher in 

those with gingivitis [342.4 (238.4-492.7) mm
2
] in comparison to those healthy 

periodontal tissues [24.7 (0.0-89.8) mm
2
] (p<0.001).  Likewise, the PISA was 

significantly higher in those with periodontitis [739.7 (456.5-1085.5) mm
2
] in 

comparison to those with healthy periodontal tissues [24.7 (0.0-89.8) mm
2
] (p<0.001).  

Moreover, the PISA was significantly higher in those with periodontitis [739.7 

(456.5-1085.5) mm2] in comparison to those with gingivitis [342.4 (238.4-492.7) 

mm
2
] (p<0.001).  In the non-diabetic group, the PISA was significantly higher in 

those with gingivitis [242.6 (195.6-353.3) mm
2
] in comparison to those with healthy 

periodontal tissues [4.5 (0.0-23.3) mm
2
] (p<0.001).  Likewise, the PISA was 

significantly higher in those with periodontitis [898.8 (702.2-1262.7) mm
2
] in 

comparison to those with healthy periodontal tissues [4.5 (0.0-23.3) mm
2
] (p<0.001).  

Moreover, the PISA was significantly higher in those with periodontitis [898.8 

(702.2-1262.7) mm
2
] in comparison to those with gingivitis [242.6 (195.6-353.3) 

mm
2
] (p<0.001).  The aforementioned results considering the PISA are presented in 

Table  4.1 and Figure  4.3.  In summary, the results of clinical analysis confirm 

previous findings with regard to periodontal parameters in subjects with or without 

T2DM. 
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Table ‎4.3 Pre-treatment clinical periodontal parameters comparing subjects with 

and without T2DM 

 

 

Diabetic subjects 

(n=101) 

Non-diabetic 

subjects 

(n=83) 

p-value 

    

Month 0 BOP (%)  35.4 (18.23-49.9) 30.1 (14.9-48.8) NS 

Month 0 mean PD (mm) 2.3 (2.0-2.8) 2.4 (1.8-3.1) NS 

Month 0 mean LOA (mm) 2.5 (2.2-3.1) 2.6 (2.0-3.5) NS 

Month 0 PISA (mm
2
) 431.3 (201.1-746.8) 557.3 (151.7-971.2) NS 

 

P-values determined using independent t-test for continuous parametric variables (% 

BOP) and Mann-Whitney U tests for the remaining continuous non-parametric 

variables. Medians (IQR) are presented for non-parametric data. 
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Table ‎4.4 Pre-treatment clinical periodontal parameters comparing groups based on diabetic status and periodontal diagnosis 

 Diabetic subjects (n=101) Non-diabetic subjects (n=83) p-value 

 Healthy 

(n=14) 

Gingivitis 

(n=39) 

Periodontitis 

(n=47) 

Healthy 

(n=16) 

Gingivitis 

(n=19) 

Periodontitis 

(n=48) 
 

        

Month 0 BOP (%) 4.5 (0.7-13.1) #,¶,$1 35.1 (25-44.9)  †1,$2 46 (30-60.7) 0.65 (0-2.6) #,¶ 22 (17.3-32.6)  †2 42.95 (29.5-56.7) #,¶
< 0.001, 

†1
< 0.05  

†2,$1
< 0.01, 

,$2
< 0.05 

Month 0 mean PD (mm) 1.75 (1.6-1.8) #,¶,$ 2.1 (1.96-2.2) †,$2 2.8 (2.4-3.2) 1.6 (1.5-1.7) #,¶ 1.9 (1.8-2.1) † 2.9 (2.5-3.5) #,¶,†
< 0.001 

$
< 0.05, ,$2

< 0.01 
Month 0 mean LOA (mm) 1.9 (1.8-2.1) #,¶ 2.3 (2.1-2.4) †,$ 3.1 (2.8-3.9) 1.8 (1.6-2.0) #,¶ 2.1 (2.0-2.3) † 3.4 (2.9-4.2) #,¶,†

< 0.001 
$
< 0.05 

Month 0 PISA (mm2) 24.7 (0.0-89.8) #,¶ 342.4 (238.4-492.7)† 739.7 (456.5-1085.5) 4.5 (0.0-23.3) #,¶ 242.6 (195.6-

353.3)† 

898.8 (702.2-

1262.7) 

#,†,¶
< 0.001

 

       

 

P-values were determined using Kruskal-Wallis test with Mann-Whitney U post hoc tests for continuous non-parametric variables.  Median (IQR) is presented for this non-parametric data. 
$ indicates a comparison within rows between diabetics and non-diabetic group with the same periodontal diagnosis 
# indicates a comparison within rows between periodontally healthy and gingivitis groups within either diabetes or non-diabetes groups 
¶ indicates a comparison within rows between periodontally healthy and periodontitis groups within either diabetes or non-diabetes groups 
† indicates a comparison within rows between gingivitis and periodontitis groups within either diabetes or non-diabetes groups 
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Figure ‎4.1 Baseline mean % BOP data comparing groups based on diabetic 

status and periodontal diagnosis 

 

 

Boxplots of baseline % BOP data in 100 T2DM subjects (healthy periodontal tissues 

n=14, gingivitis n=39, periodontitis n=47) and 83 non-diabetic subjects (healthy 

periodontal tissues n=16, gingivitis n=19, periodontitis n=48). Statistics: Kruskal-

Wallis with Mann Whitney-U post hoc test *<0.05, **p<0.01, ***p<0.001 (according 

to periodontal status within T2DM or non-diabetic group); 
§
 p<0.05, 

§§
 p<0.01, 

§§§
p<0.001 (T2DM versus non-diabetic groups within the corresponding periodontal 

status). ○ outlier more than 3 times the IQR from the box boundaries, ● outlier more 

than 1.5 but less than 3 times the IQR from the box boundaries. 
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Figure ‎4.2 Baseline mean probing depth data comparing groups based on 

diabetic status and periodontal diagnosis 

 

 

Boxplots of baseline mean PD data in 100 T2DM subjects (healthy periodontal tissues 

n=14, gingivitis n=39, periodontitis n=47) and 83 non-diabetic subjects (healthy 

periodontal tissues n=16, gingivitis n=19, periodontitis n=48). Statistics: Kruskal-

Wallis with Mann Whitney-U post hoc test *<0.05, **p<0.01, ***p<0.001 (according 

to periodontal status within T2DM or non-diabetic group); 
§
 p<0.05, 

§§
 p<0.01, 

§§§
p<0.001 (T2DM versus non-diabetic groups within the corresponding periodontal 

status). ○ outlier more than 3 times the IQR from the box boundaries, ● outlier more 

than 1.5 but less than 3 times the IQR from the box boundaries. 
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Figure ‎4.3 Baseline periodontal inflamed surface area data comparing groups 

based on diabetic status and periodontal diagnosis 

 

Boxplots of baseline PISA data in 100 T2DM subjects (healthy periodontal tissues 

n=14, gingivitis n=39, periodontitis n=47) and 83 non-diabetic subjects (healthy 

periodontal tissues n=16, gingivitis n=19, periodontitis n=48). Statistics: Kruskal-

Wallis with Mann Whitney-U post hoc test *<0.05, **p<0.01, ***p<0.001 (according 

to periodontal status within T2DM or non-diabetic group); 
§
 p<0.05, 

§§
 p<0.01, 

§§§
p<0.001 (T2DM versus non-diabetic groups within the corresponding periodontal 

status). ○ outlier more than 3 times the IQR from the box boundaries, ● outlier more 

than 1.5 but less than 3 times the IQR from the box boundaries. 
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4.2.4 Analysis of baseline serum resistin concentrations in T2DM 

patients and non-diabetic controls with and without 

periodontal disease  

 

As shown in Table  4.5 and Figure  4.4, the baseline serum resistin concentrations 

[median (IQR)] in the T2DM group and the non-diabetic control group were [6.42 

(4.99-7.85) ng/ml] and [5.58 (4.32-6.55) ng/ml], respectively.  The statistical analysis 

demonstrated that serum resistin levels were significantly higher in T2DM group than 

of those in non-diabetic control subjects (p <0.01). 

Table  4.6 and Figure  4.5 illustrate serum resistin concentrations before periodontal 

treatment following further categorisation of subjects based on their periodontal 

diagnosis.  Serum resistin levels appeared higher in diabetic subjects with healthy 

periodontal tissues [5.98 (4.83-7.13) ng/ml] compared to non-diabetic subjects with 

healthy periodontal tissues [4.3 (3.48-5.96) ng/ml].  However, the Bonferroni-Holm 

correction of p-values for multiple comparisons placed the critical p-value at 0.019, 

therefore, this difference was not statistically significant and might be considered as a 

trend (p=0.025).  Additionally, there were no significant differences found in 

gingivitis or periodontitis between T2DM and non-diabetic subjects. 

Furthermore, a comparison was done between the three periodontal categories 

(healthy periodontal tissues, gingivitis and periodontitis) within T2DM and non-

diabetic groups.  In the T2DM group, serum levels of resistin [median (IQR)] were 

not significantly different in those with healthy periodontal tissues [5.98 (4.83-7.13) 

ng/ml], gingivitis [6.83 (5.1-7.93) ng/ml], and periodontitis [6.42 (4.26-7.95) ng/ml].  

In the non-diabetic group, serum resistin levels appeared higher in subjects with 

periodontitis [5.75 (4.6-6.59) ng/ml] compared to those with healthy periodontal 
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tissues [4.3 (3.48-5.96) ng/ml].  However, the Bonferroni-Holm correction of p-values 

for multiple comparisons placed the critical p-value at 0.03, therefore, this difference 

was not statistically significant and might be considered as a trend (p=0.036).  

Additionally, statistical analysis showed no significant difference in serum resistin 

levels between subjects with healthy periodontal tissues [4.3 (3.48-5.96) ng/ml] and 

those with gingivitis [4.98 (4.37-7.45) ng/ml].  Similarly, no significant difference 

was found between subjects with gingivitis [4.98 (4.37-7.45) ng/ml] and those with 

periodontitis [5.75 (4.6-6.59) ng/ml].  The aforementioned results considering resistin 

levels according to periodontal status in T2DM subjects and non-diabetic controls are 

presented in Table  4.6 and Figure  4.5. 
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Table ‎4.5 Baseline serum resistin concentrations in T2DM patients and non-

diabetic subjects 

 

 

Diabetic subjects 

(n=97) 

Non-diabetic subjects 

(n=83) 
p-value 

     

Resistin (ng/ml) 6.42 (4.99-7.85) 5.58 (4.32-6.55) <0.01 

    

P-values determined using Mann-Whitney U tests for continuous non-parametric 

variables and median (IQR) is presented for this non-parametric data. 

  



4   Results  197 

 

Figure ‎4.4 Baseline serum concentrations of resistin in patients with T2DM and 

non-diabetic subjects 

 

Boxplots of pre-treatment serum levels of Resistin in 97 T2DM and 83 non-diabetic 

subjects. Statistics: Mann Whitney-U test * p<0.05, **p<0.01, ***p<0.001. ○ outlier 

more than 3 times the IQR from the box boundaries, ● outlier more than 1.5 but less 

than 3 times the IQR from the boundaries. 
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Table ‎4.6 Pre-treatment serum resistin comparing groups based on diabetic status and periodontal diagnosis 

 

 
Diabetic subjects (n=101) Non-diabetic subjects (n=83) p-value 

 Healthy 

(n=14) 

Gingivitis 

(n=38) 

Periodontitis 

(n=45) 

Healthy 

(n=16) 

Gingivitis 

(n=19) 

Periodontitis 

(n=48) 

 

        

Resistin (ng/ml) 5.98 (4.83-7.13)
  6.83 (5.1-7.93) 6.42 (4.26-7.95) 4.3 (3.48-5.96) 4.98 (4.37-7.45) 5.75 (4.6-6.59) NS 

        

P-values were determined using Kruskal-Wallis test with Mann-Whitney U post hoc tests for continuous non-parametric variables. Median (IQR) is presented for this non-

parametric data. 
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Figure ‎4.5 Pre-treatment serum levels of resistin comparing groups based 

diabetic status and periodontal diagnosis 

 

Boxplots of pre-treatment serum resistin data in 97 T2DM subjects (healthy 

periodontal tissues n=14, gingivitis n=38, periodontitis n=45) and 83 non-diabetic 

subjects (healthy periodontal tissues n=16, gingivitis n=19, periodontitis n=48). 

Statistics: Kruskal-Wallis with Mann Whitney-U post hoc test *<0.05, **p<0.01, 

***p<0.001 (according to periodontal status within T2DM or non-diabetic group); 
§
 

p<0.05, 
§§

 p<0.01, 
§§§

p<0.001 (T2DM versus non-diabetic groups within the 

corresponding periodontal status). ○ outlier more that 3 times the IQR from the box 

boundaries, ● outlier more than 1.5 but less than 3 times the IQR from the box 

boundaries. 
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4.2.5 The relationship between serum resistin levels and 

anthropometric clinical and metabolic parameters 

 

To elucidate whether the serum resistin levels are associated with glycaemic control, 

systemic inflammation, or risk factors for developing T2DM, the relationship between 

baseline serum resistin levels and HbA1c, hsCRP, BMI, total cholesterol, 

triglycerides, HDL,  or non-HDL were explored using the Spearman’s correlation test.  

Blood samples taken from T2DM patients and non-diabetic controls were analysed for 

HbA1c, hsCRP, total cholesterol, triglycerides, HDL, and non-HDL at the 

Haematology and Clinical Biochemistry labs of the Royal Victoria Infirmary 

(Newcastle).  Correlations of HbA1c, hsCRP, BMI, total cholesterol, triglycerides, 

HDL, and non-HDL with serum resistin were performed for the whole study 

population (n=180), and were displayed using a series of scatter plots (Figure  4.6 to 

Figure  4.12). 

Spearman correlations between serum resistin levels and HbA1c, hsCRP, BMI, total 

cholesterol, triglycerides, HDL, and non-HDL are shown in Figure  4.6, Figure  4.7, 

Figure  4.8, Figure  4.9, Figure  4.10, Figure  4.11 and Figure  4.12, respectively.  Levels 

of serum resistin were significantly and positively correlated with HbA1c 

(Spearman’s ρ=0.21, p <0.01), hsCRP (Spearman’s ρ=0.21, p <0.01), BMI 

(Spearman’s ρ=0.17, p <0.05).  However, there was no significant correlation between 

serum resistin and total cholesterol, triglycerides, HDL, and non-HDL. 
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Figure ‎4.6 The relationship of serum resistin with HbA1c 

 

Figure shows Spearman correlation of serum resistin concentrations with percentage 

of HbA1c in all subjects (n=180).  Percentage of HbA1c in subjects with T2DM (●) 

and non-diabetic subjects (o) are illustrated.  The addition of a trend-line demonstrates 

the presence of a significant correlation, (Spearman’s ρ=0.21, P<0.01). 
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Figure ‎4.7 The relationship of serum resistin with hsCRP 

 

Figure shows Spearman correlation of serum resistin concentrations with hsCRP 

levels in all subjects (n=180).  Levels of hsCRP in subjects with T2DM (●) and non-

diabetic subjects (o) are illustrated.  The addition of a trend-line demonstrates the 

presence of a significant correlation, (Spearman’s ρ=0.21, P<0.01). 
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Figure ‎4.8 The relationship of serum resistin with BMI 

 

Figure shows Spearman correlation of serum resistin concentrations with BMI in all 

subjects (n=180).  BMI in subjects with T2DM (●) and non-diabetic subjects (o) are 

illustrated.  The addition of a trend-line demonstrates the presence of a significant 

correlation, (Spearman’s ρ=0.17, P<0.05). 
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Figure ‎4.9 The relationship of serum resistin with total cholesterol 

 

Figure shows Spearman correlation of serum resistin concentrations with total 

cholesterol in all subjects (n=180).  Levels of total cholesterol in subjects with T2DM 

(●) and non-diabetic subjects (o) are illustrated.   
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Figure ‎4.10 The relationship of serum resistin with triglycerides 

 

Figure shows Spearman correlation of serum resistin concentrations with triglycerides 

in all subjects (n=180).  Levels of triglycerides in subjects with T2DM (●) and non-

diabetic subjects (o) are illustrated.   
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Figure ‎4.11 The relationship of serum resistin with HDL 

 

Figure shows Spearman correlation of serum resistin concentrations with HDL in all 

subjects (n=180).  Levels of HDL in subjects with T2DM (●) and non-diabetic 

subjects (o) are illustrated.   
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Figure ‎4.12 The relationship of serum resistin with non-HDL 

 

Figure shows Spearman correlation of serum resistin concentrations with non-HDL in 

all subjects (n=180).  Levels of non-HDL in subjects with T2DM (●) and non-diabetic 

subjects (o) are illustrated.   
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4.2.6 The relationship between serum resistin levels and clinical 

parameters of periodontal disease 

 

Pre-treatment levels of serum resistin were investigated for correlations with the basic 

clinical periodontal parameters including BOP, mean PD, mean LOA and PISA.  

Correlations were undertaken for the whole study population (n=180).  A series of 

scatter plots were used to graphically represent correlations of BOP, mean PD, mean 

LOA, and PISA with serum resistin (Figure  4.13, Figure  4.14, Figure  4.15 and 

Figure  4.16).  

Levels of serum resistin were significantly and positively correlated with percentage 

BOP (Spearman’s ρ=0.22, p <0.01), mean PD (Spearman’s ρ=0.18, p <0.05), and 

PISA (Spearman’s ρ=0.17, p <0.05).  However, there was no significant correlation 

between serum resistin and mean LOA (Figure  4.13, Figure  4.14, Figure  4.15 and 

Figure  4.16). 
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Figure ‎4.13 The relationship of serum resistin with %BOP 

 

Figure shows Spearman correlation of serum resistin concentrations with %BOP in all 

subjects (n=180).  Percentage of BOP in subjects with T2DM (●) and non-diabetic 

subjects (o) are illustrated.  The addition of a trend-line demonstrates the presence of a 

significant correlation, (Spearman’s ρ=0.22, P<0.01). 
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Figure ‎4.14 The relationship of serum resistin with mean probing depth 

 

Figure shows Spearman correlation of serum resistin concentrations with mean PD in 

all subjects (n=180).  Mean PD in subjects with T2DM (●) and non-diabetic subjects 

(o) are illustrated.  The addition of a trend-line demonstrates the presence of a 

significant correlation, (Spearman’s ρ=0.18, P<0.05). 

 

  



4   Results  211 

 

Figure ‎4.15 The relationship of serum resistin with mean LOA 

 

Figure shows Spearman correlation of serum resistin concentrations with mean LOA 

in all subjects (n=180).  Mean LOA in subjects with T2DM (●) and non-diabetic 

subjects (o) are illustrated.   
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Figure ‎4.16 The relationship of serum resistin with PISA 

 

Figure shows Spearman correlation of serum resistin concentrations with PISA in all 

subjects (n=180).  PISA in subjects with T2DM (●) and non-diabetic subjects (o) are 

illustrated.  The addition of a trend-line demonstrates the presence of a significant 

correlation, (Spearman’s ρ=0.17, P<0.05). 
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4.2.7 The relationship between serum resistin levels and 

inflammatory cytokines in serum 

 

Pre-treatment levels of resistin in serum were investigated for correlations with the 

baseline serum levels of TNF-α, IL-1β, IL-6 and IFN-γ.  Correlations were undertaken 

for the whole study population.  A series of scatter plots were used to graphically 

represent correlations of serum TNF-α, serum IL-1β, serum IL-6 and serum IFN-γ 

with resistin levels in serum (Figure  4.17, Figure  4.18, Figure  4.19 and Figure  4.20). 

Levels of serum resistin were significantly and positively correlated with serum TNF-

α (Spearman’s ρ=0.25, p <0.01), serum IL-6 (Spearman’s ρ=0.32, p <0.001), and 

serum IFN-γ (Spearman’s ρ=0.22, p <0.01).  However, there was no significant 

correlation between serum resistin and serum IL-1β (Figure  4.17, Figure  4.18, 

Figure  4.19 and Figure  4.20). 
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Figure ‎4.17 The relationship of serum resistin with TNF-α‎in‎serum 

 

Figure shows Spearman correlation of serum resistin concentrations with serum TNF-

α in all subjects (n=180).  Levels of serum TNF-α in subjects with T2DM (●) and 

non-diabetic subjects (o) are illustrated.  The addition of a trend-line demonstrates the 

presence of a significant correlation, (Spearman’s ρ=0.25, P<0.01). 
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Figure ‎4.18 The relationship of serum resistin with IL-1β‎in‎serum 

 

Figure shows Spearman correlation of serum resistin concentrations with serum IL-1β 

in all subjects (n=180).  Levels of serum IL-1β in subjects with T2DM (●) and non-

diabetic subjects (o) are illustrated.   
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Figure ‎4.19 The relationship of serum resistin with IL-6 in serum 

 

Figure shows Spearman correlation of serum resistin concentrations with serum IL-6 

in all subjects (n=180).  Levels of serum IL-6 in subjects with T2DM (●) and non-

diabetic subjects (o) are illustrated.  The addition of a trend-line demonstrates the 

presence of a significant correlation, (Spearman’s ρ=0.32, P<0.001). 

 

  



4   Results  217 

 

Figure ‎4.20 The relationship of serum resistin with IFN-γ‎in‎serum 

 

 

Figure shows Spearman correlation of serum resistin concentrations with serum IFN-γ 

in all subjects (n=180).  Levels of serum IFN-γ in subjects with T2DM (●) and non-

diabetic subjects (o) are illustrated.  The addition of a trend-line demonstrates the 

presence of a significant correlation, (Spearman’s ρ=0.22, P<0.01). 
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4.3 Discussion 

 

A strong relationship between periodontal disease and T2DM has been reported in the 

literature (Mirza et al., 2010; Preshaw et al., 2012).  There is substantial evidence that 

diabetes is a risk factor for periodontal disease (Kinane and Bouchard, 2008).  

Additionally, the influence of periodontitis as a risk factor for diabetes is documented 

(Taylor, 2001).  Studies by several investigators suggested that inflammation is a key 

player in the link between periodontal disease and diabetes (Dandona et al., 2004; 

Loos, 2005; Stumvoll et al., 2005; Santos et al., 2010).  Numerous cytokines and 

adipokines have been shown to be associated with T2DM and with periodontal 

disease (Salvi et al., 1998; Nishimura et al., 2003; Karthikeyan and Pradeep, 2007; 

Bertoni et al., 2010; Duarte et al., 2010; Pradeep et al., 2011a).  Because of its link 

with inflammation and insulin resistance and its potential association with periodontal 

disease and diabetes, resistin has been tagged as a potential useful marker for both 

diabetes and periodontal disease.  Supporting this theory, subjects with T2DM or 

periodontal disease tend to have higher serum resistin levels than their healthy 

counterparts (Furugen et al., 2008; Chen et al., 2009).  However, the correlation 

between T2DM and serum resistin in humans remains controversial, supported by 

some studies (Hasegawa et al., 2005; Lu et al., 2006; Chen et al., 2009) and not in 

others (Heilbronn et al., 2004; Dominguez Coello et al., 2008).  For instance, a recent 

study by Mirza et al (2012) reported no significant difference in serum resistin levels 

between diabetes and non-diabetes groups (Mirza et al., 2012). 

The demographic and baseline biochemistry findings of the current study are 

presented in Table  4.1 and Table  4.2.  An association between metabolic syndromes 

and abdominal obesity, dyslipidemia, inflammation, insulin resistance or diabetes and 
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increased risk of developing cardiovascular disease has been reported (Despres and 

Lemieux, 2006).  An abundance of evidence has demonstrated that all five single 

components of metabolic syndrome (BMI, blood pressure, serum HDL-cholesterol, 

serum triglycerides and impaired fasting glucose) predicted the occurrence of T2DM 

(Hanson et al., 2002; Cheung et al., 2007; Sattar et al., 2008; Laaksonen et al., 2010).  

It is well established that obesity is a dominant risk factor for T2DM (Chan et al., 

1994), with BMI being a strong risk predictor of T2DM (Wang et al., 2005).  Kahn et 

al (2006) reported that obesity is a principal cause for developing insulin resistance 

(Kahn et al., 2006).  In the current study, patients with T2DM had significantly higher 

BMI [32 (29-35) kg/m
2
] compared to non-diabetic controls [27.2 (23-29) kg/m2].  

Moreover, the T2DM group contained a higher proportion of obese (47%) and 

morbidly obese (24%) compared to (10.8%) and (10.8%) in the non-diabetic group, 

respectively.  This also fits with previous research which showed that patients with 

T2DM had significantly higher values of BMI than control subjects (Chen et al., 

2009; Mirza et al., 2012).   

Previous research has demonstrated that diabetes and hypertension share common 

pathways such as obesity, inflammation and insulin resistance (Cheung and Li, 2012).  

Indeed, both diabetes and hypertension represent the end result of the metabolic 

syndrome, for that reason they may develop one after the other in the same individual 

(Cheung et al., 2008).  In the present study, systolic blood pressure was significantly 

higher in subjects with T2DM compared to subjects without diabetes.  This finding 

was consistent with those of Lau and Muniandy (2011) who reported a significant 

elevation in systolic blood pressure in T2DM patients with and without metabolic 

syndrome compared to healthy controls (Lau and Muniandy, 2011). 
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The risk of diabetic complications is substantially correlated with hyperglycaemia in 

T2DM patients.  However, intensive glucose-control measures decrease the HbA1c 

levels which in turn considerably reduce the risk for developing diabetes 

complications (UKPDS, 1998).  There are ample reports which endorse the use of 

HbA1c as a diagnostic test for diabetes with HbA1c≥6.5 recommended as the cut-off 

point for diagnosing diabetes (Cavagnolli et al., 2012; Kim et al., 2012; Phillips, 

2012).  In agreement with previous research (Hasegawa et al., 2005; Chen et al., 

2009; Dag et al., 2009; Lau and Muniandy, 2011; Mirza et al., 2012), the current 

findings showed that glycated haemoglobin levels were significantly higher in 

diabetic patients [7.2 (6.5-8.9) %] compared to non-diabetic subjects [5.5 (5.3-5.7) 

%], suggesting a deterioration in glycaemic control in diabetic patients which may 

predispose those subjects to diabetic complications such as periodontitis.  

Interestingly, the present study showed significantly higher levels of triglycerides and 

lower levels of HDL cholesterol in diabetic subjects compared to non-diabetic 

controls.  This finding is in agreement with previous studies which demonstrated a 

high prevalence of elevated triglycerides and low HDL cholesterol in individuals with 

diabetes (Siegel et al., 1996; Bell et al., 2011; Mirza et al., 2012).  There is evidence 

which indicates that non-HDL cholesterol, which can be readily calculated from 

routine lipid indices by subtracting HDL cholesterol from total cholesterol, is a 

superior risk predictor for incident type 2 diabetes (Ley et al., 2012) and also for 

cardiovascular disease in subjects with diabetes (Lu et al., 2003).  In the present study 

diabetic subjects had significantly lower levels of both non-HDL cholesterol and total 

cholesterol compared to those without diabetes.  It is difficult to explain this result, 

but it might be related to the regular dietary advice directed to T2DM patients in the 

UK to optimise blood lipid profiles and the use of lipid lowering therapy to decrease 
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cardiovascular disease risk in those patients according to the UK management 

guidelines for T2DM (NICE, 2008).  In contrast to the present findings, a previous 

study reported significantly higher levels of non-HDL cholesterol and total cholesterol 

in incident type 2 diabetes compared to non-diabetic controls (Ley et al., 2012).  

Another study demonstrated a trend for increased levels of total cholesterol in subjects 

with T2DM compared to non-diabetic subjects (Mirza et al., 2012).  On the other 

hand, Kardesler et al (2010) found no significant differences in total cholesterol, 

triglycerides and low density lipoprotein levels between patients with T2DM and non-

diabetic subjects (Kardesler et al., 2010). 

Very little has been reported in the literature regarding levels of hsCRP in subjects 

with T2DM and periodontitis (Correa et al., 2010; Kardesler et al., 2010).  One study 

demonstrated comparable levels of hsCRP in patients with T2DM and non-diabetic 

subjects (Kardesler et al., 2010).  However, Mirza et al (2012) reported significantly 

higher levels of hsCRP in participants with diabetes compared to those subjects 

without diabetes (Mirza et al., 2012).  An abundance of evidence demonstrated that 

elevation of CRP concentrations is an independent predictive parameter of type 2 

diabetes mellitus (Barzilay et al., 2001; Pradhan et al., 2001; Freeman et al., 2002; 

Thorand et al., 2003).  In the present study, no significant difference was found in 

levels of hsCRP in patients with T2DM [2.3 (0.9-4.5) mg/L] compared to non-diabetic 

subjects [1.9 (0.8-3.9) mg/L]. 

Considerable epidemiological evidence relating to the association between diabetes 

and periodontal disease supports the concept of increased prevalence and severity of 

periodontal disease in patients with type 2 diabetes compared to non-diabetic subjects 

(Shlossman et al., 1990; Sandberg et al., 2000; Mattout et al., 2006; Moles, 2006; 

Novak et al., 2008; Susanto et al., 2011).  More recently, longitudinal interventional 
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studies appraising the impacts of periodontal treatment on clinical periodontal 

response indicated that clinical periodontal measurements (e.g. PD, CAL, BOP, and 

PI) were comparable at baseline in subjects with and without diabetes (Dag et al., 

2009; Kardesler et al., 2010; Chen et al., 2012).  On the other hand, Correa et al 

(2008) have demonstrated that people with diabetes had significantly worse clinical 

periodontal parameters (i.e. greater percentage of sites with PI, BOP, higher median 

PD and CAL) than the control group at baseline (Correa et al., 2008).  In the current 

study, no significant difference was found in %BOP, mean PD, mean LOA and PISA 

between patients with T2DM and non-diabetic subjects.  Additionally, when data 

were further categorised based on periodontal status, no significant difference was 

found in the mean PD for diabetic subjects with periodontitis [2.8 (2.4-3.2) mm] 

compared to non-diabetic subjects with periodontitis [2.9 (2.5-3.5) mm].  However, 

the mean PD values were significantly higher in diabetic subjects with healthy 

periodontal tissues [1.75 (1.6-1.8) mm] and gingivitis [2.1 (1.96-2.2) mm] when 

compared to non- diabetic subjects with healthy periodontal tissues [1.6 (1.5-1.7) mm] 

and gingivitis [1.9 (1.8-2.1) mm].  Intriguingly, the mean PD values found in the 

present study were similar to those reported in some former research (Kiran et al., 

2005; Dag et al., 2009; Chen et al., 2012), nevertheless lower than those exhibited by 

others (Correa et al., 2008; Kardesler et al., 2010; Auyeung et al., 2012), suggesting 

that the extent of periodontal disease may be dissimilar between different studies 

which make direct comparisons between studies difficult. 

In the current study, analysis of the data with regard to gingival inflammation showed 

significantly higher %BOP in subjects with T2DM and healthy periodontal tissues 

[4.5 (0.7-13.1) %] or gingivitis [35.1 (25-44.9) %] compared to non-diabetic subjects 

with healthy periodontal tissues [0.65 (0.0-2.6) %] or gingivitis [22 (17.3-32.6) %].  
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These results corroborate the findings of a great deal of the previous work in this field 

which reported significantly higher levels of gingival inflammation in subjects with 

T2DM compared to non-diabetic control (Lu and Yang, 2004; Campus et al., 2005; 

Mattout et al., 2006; Correa et al., 2008; Pan et al., 2010; Susanto et al., 2011).  The 

observed increase in gingival inflammation in subjects with T2DM could be attributed 

to the upregulated systemic inflammation that is recognised to be present in diabetes.  

The current study also showed a higher levels of %BOP in subjects with T2DM and 

periodontitis [46 (30-60.7) %] compared to non-diabetic subjects with periodontitis 

[42.95 (29.5-56.7) %], albeit this difference was not statistically significant.  It is 

difficult to explain this result, but it might be related to the more intense periodontal 

disease found in non-diabetic subjects compared to T2DM patients which may 

obscure the existence of high level of gingival inflammation in diabetic patients with 

periodontitis compared to non- diabetic subjects with periodontitis. 

In 2008, Nesse et al published a paper in which they developed a method to quantify 

the amount of inflamed periodontal tissues and thereby to create a new method to 

assess the extent of periodontitis which can be easily and broadly applied (Nesse et 

al., 2008).  Accordingly, the PISA parameter was proposed to represent the surface 

area of bleeding pocket epithelium in square millimeters, and therefore it is supposed 

that PISA quantifies the inflammatory burden posed by periodontitis (Nesse et al., 

2008).  In the present study, PISA was able to reflect crucial differences between 

subjects with different periodontal status.  For instance, when comparing subjects 

within the T2DM group, the PISA was significantly higher in those with gingivitis 

[342.4 (238.4-492.7) mm
2
] compared to those with healthy periodontal tissues [24.7 

(0.0-89.8) mm
2
] (p<0.001), the PISA was significantly higher in those with 

periodontitis [739.7 (456.5-1085.5) mm
2
] compared to those with gingivitis [342.4 
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(238.4-492.7) mm
2
] (p<0.001), and the PISA was significantly higher in those with 

periodontitis [739.7 (456.5-1085.5) mm
2
] compared to those with healthy periodontal 

tissues [24.7 (0.0-89.8) mm
2
] (p<0.001).  Likewise, within the non-diabetic group the 

PISA was significantly higher in those with gingivitis [242.6 (195.6-353.3) mm
2
] 

compared to those with healthy periodontal tissues [4.5 (0.0-23.3) mm
2
] (p<0.001), 

the PISA was significantly higher in those with periodontitis [898.8 (702.2-1262.7) 

mm
2
] compared to those with gingivitis [242.6 (195.6-353.3) mm

2
] (p<0.001) and the 

PISA was significantly higher in those with periodontitis  [898.8 (702.2-1262.7) mm
2
] 

compared to those with healthy periodontal tissues [4.5 (0.0-23.3) mm
2
] (p<0.001).  

Hence, it could conceivably that PISA may quantify the inflammatory burden posed 

by periodontitis. 

A dose-response relationship between control of blood glucose levels over time 

(HbA1c) and the amount of inflamed periodontal tissue (PISA) in type 2 diabetes has 

been reported (Nesse et al., 2009).  In the current study, PISA was lower in subjects 

with T2DM and periodontitis [739.7 (456.5-1085.5) mm2] compared to non-diabetic 

subjects with periodontitis [898.8 (702.2-1262.7) mm
2
], but this difference failed to 

reach statistical significance.  This finding was inconsistent with a previous research 

in which PISA was found to be significantly higher in T2DM subjects when compared 

to non-diabetic controls (p= 0.016) (Susanto et al., 2011). 

In reviewing the literature, no published research was found which alluded to the role 

of resistin in serum in subjects with T2DM and periodontitis.  The present study 

demonstrated that serum resistin concentrations in T2DM patients are significantly 

higher than non-diabetic controls.  In particular, this study showed a trend of elevated 

serum resistin levels in T2DM patients with healthy periodontal tissues as compared 

to periodontally healthy non-diabetic controls.  Moreover, non-diabetic subjects with 
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periodontitis seem to have a trend of higher serum resistin concentrations than non-

diabetic subjects with healthy periodontal tissues.  Finally, the present study revealed 

that the levels of serum resistin are significantly and positively correlated with 

HbA1c, hsCRP, BMI, serum TNF-α, serum IL-6 and serum INF-γ.  Additionally, 

serum resistin also positively correlated with %BOP, mean PD, and PISA. 

This study produced results which corroborate the findings of a great deal of the 

previous work in this field.  In agreement with previous studies (Al-Harithy and Al-

Ghamdi, 2005; Hasegawa et al., 2005; Lu et al., 2006; Chen et al., 2009; Lau and 

Muniandy, 2011), the results of the present study have shown that higher serum 

resistin levels were found in T2DM patients when compared with age, sex and 

smoking status- matched non-diabetic controls.   

The mechanisms responsible for the elevation of serum resistin in diabetic patients 

remain unclear.  It has been demonstrated that high glucose significantly increases 

resistin gene expression and protein production in human monocytes (Stan et al., 

2011), and therefore, it is reasonable to suggest that high blood glucose levels in 

diabetic patients may contribute to the hyper-resistinemia found in those patients.  

Additionally, the upregulating effect of insulin on resistin expression in mice adipose 

tissue has been reported by (Kim et al., 2001).  Previous research documented that 

resistin is expressed in pancreatic islets and up-regulated in insulin resistance (Minn et 

al., 2003).  This finding suggests that the increase of serum resistin levels may be a 

result of beta-cell deterioration, which is common in type 2 diabetes patients 

(Wajchenberg, 2010). 

However, along with the above-mentioned factors, some other phenomena may also 

be involved in the increase of resistin levels in type 2 diabetes.  Cytokines and 

adipokines are involved in subclinical inflammation accompanied by T2DM 
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(Fantuzzi, 2005; Bastard et al., 2006).  There is growing evidence regarding the role 

of resistin in inflammatory processes such as rheumatoid arthritis (Bokarewa et al., 

2005).  Therefore, it can be also possible to consider the increase in the serum level of 

resistin in T2DM patients as a manifestation of subclinical inflammation.  

Furthermore, the regulation of glucocorticoids is impaired in type 2 diabetes patients 

(Bruehl et al., 2007).  Since glucocorticoid treatment enhances resistin levels in serum 

(Almehed et al., 2008) and upregulates resistin gene levels in adipocytes (Haugen et 

al., 2001), they could also be responsible for this phenomenon, however it is 

important to mention that the subjects in the current study were not receiving 

glucocorticoid treatment. 

While hyperglycaemia appears likely to play a role in the increased serum levels of 

resistin in T2DM patients, conflicting findings were previously reported regarding the 

relationship between serum resistin levels and HbA1c or plasma glucose levels (Al-

Harithy and Al-Ghamdi, 2005; Mojiminiyi and Abdella, 2007; Tokuyama et al., 2007; 

Chen et al., 2009; Lau and Muniandy, 2011).  Several recently published studies, 

measuring resistin levels and various metabolic parameters in subjects with or without  

type 2 diabetes and undertaking correlation tests, reported no significant correlation 

between resistin levels with HbA1c and/or fasting glucose levels (Heilbronn et al., 

2004; Hasegawa et al., 2005; Mojiminiyi and Abdella, 2007; Tokuyama et al., 2007; 

Takata et al., 2008; Chen et al., 2009; de Luis et al., 2011; Mirza et al., 2012).  

Additionally, a study investigating the effect of glucose loading on serum resistin 

levels in human by using the oral glucose tolerance test has shown that serum resistin 

levels were significantly decreased at 60 and 120 minutes during the test compared to 

baseline, with a more pronounced reduction observed in subjects with greater baseline 

concentrations of resistin (Yamauchi et al., 2008).  Moreover, resistin levels 
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correlated negatively with glucose in pre-pubertal boys (Li et al., 2009b).  On the 

contrary, in recent studies a significant and positive correlation was reported between 

serum resistin levels with HbA1c and/or fasting glucose, indicating that 

hyperglycaemia may influence the levels of resistin in serum (Al-Harithy and Al-

Ghamdi, 2005; Lu et al., 2006; Lau and Muniandy, 2011).  The results of the current 

study are in accordance with the findings of the latter studies.  A significant positive 

relationship between serum resistin levels and hyperglycaemia reflected by HbA1c 

was detected.  Although the statistical analysis revealed a significant correlation, it is 

important to note that the correlation between serum resistin levels and HbA1c was 

relatively weak (spearman’s ρ=0.21).  Therefore, the biological importance of the 

correlation is questionable. 

C-reactive protein (CRP), a plasma protein synthesized by the liver, represents a 

sensitive and dynamic systemic biomarker of inflammation (Pepys and Hirschfield, 

2003).   Interestingly, the production of CRP is part of the non-specific acute-phase 

response to most forms of inflammation, infection, and tissue damage (Pepys and 

Hirschfield, 2003).  Compelling evidence has demonstrated that elevated CRP levels 

indicate a high inflammatory state in several disease pathologies such as 

cardiovascular disease, rheumatoid arthritis, periodontitis and diabetes (Jialal et al., 

2004; Nesto, 2004; Emery et al., 2007; Dasanayake, 2009; Mugabo et al., 2010).  A 

cross-sectional study evaluating the association between diabetes and inflammation in 

patients with diabetes has shown a significant correlation between CRP and resistin 

levels (Mirza et al., 2012).  In the present study, as in some previous studies (Ohmori 

et al., 2005; Reilly et al., 2005; Kunnari et al., 2006; Qi et al., 2008; de Luis et al., 

2011), the levels of serum resistin correlated positively and significantly with levels of 

hsCRP, and therefore it is reasonable to suggest that the concentration of this hormone 
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may reflect systemic inflammation.  This finding also corroborates the ideas of (Chen 

et al., 2009), who conducted two prospective type 2 diabetes-control studies and 

suggested that CRP was significantly correlated with plasma resistin, and this 

association remained positive even after adjustment for age and BMI.  Additionally, 

in line with this finding, (Mojiminiyi and Abdella, 2007) demonstrated a significant 

BMI-dependent association of resistin with CRP levels in type 2 diabetes patients, 

which supported the potential link between resistin and the degree of adiposity.  In 

addition, previous study have shown that CRP is a significant predictor of serum 

resistin levels and suggested a potential role of resistin as a pro-inflammatory factor 

(McTernan et al., 2003).  However, the findings of the current study do not support a 

previous study by (Takata et al., 2008), who reported that circulating resistin was not 

significantly correlated with CRP in subjects with T2DM.  Similarly, (Hasegawa et 

al., 2005) also reported no correlation between CRP adjusted by BMI and resistin.  

BMI is a widely used diagnostic measure in the current classification system for 

obesity (Gomez-Ambrosi et al., 2011).  It is deemed a pivotal indicator for the 

development of diabetes (Arnlov et al., 2011).  To date, the relationship between BMI 

and serum resistin has been controversial (Lee et al., 2003; Janowska et al., 2006; 

Mojiminiyi and Abdella, 2007; de Luis et al., 2009; de Luis et al., 2011).  It has been 

reported that resistin levels were not correlated with BMI in lean subjects, whereas 

there was a highly significant positive correlation between resistin and BMI in 

overweight/obese women with or without diabetes (Al-Harithy and Al-Ghamdi, 

2005).  Moreover, Chen et al (2009) demonstrated that BMI was not correlated with 

plasma resistin in men, however it was significantly correlated in women (Chen et al., 

2009).  Interestingly, a large number of studies failed to find a significant correlation 

between serum resistin and BMI (Stejskal et al., 2003; Hasegawa et al., 2005; Norata 
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et al., 2007; Takata et al., 2008; Won et al., 2009; de Luis et al., 2011; Lau and 

Muniandy, 2011).  In the present study, and consistent with a previously published 

reports (Lu et al., 2006; Mojiminiyi and Abdella, 2007; Tokuyama et al., 2007; de 

Luis et al., 2010; Thomopoulos et al., 2011), serum resistin levels were significantly 

and positively correlated with BMI.   Therefore, the current study supported the 

potential link between resistin and the degree of obesity, which probably is partly due 

to an indirect impact of obesity-induced elevation of inflammatory cytokines such as 

TNF-α and IL-6, which is produced by adipose tissue (Wisse, 2004).  The enhanced 

proinflammatory cytokines levels can stimulate resistin production (Kaser et al., 

2003; Lehrke et al., 2004).  Another explanation for the correlation with obesity is 

that the highest levels of resistin mRNA (Curat et al., 2006) and protein (McTernan et 

al., 2002b) were detected in human mononuclear cells (e.g. macrophages), a vital 

source of pro-inflammatory markers.  Macrophage infiltration into visceral adipose 

tissue is pivotal feature of obesity, and the infiltrated macrophages secrete cytokines 

which induce systemic insulin resistance (Weisberg et al., 2003; Xu et al., 2003).  

This fact could explain the relationship of resistin levels with obesity and type 2 

diabetes that we described in the current study.  Taken together, resistin showed a 

significant correlation with obesity and glycated haemoglobin and elevated levels in 

type 2 diabetes.  Resistin is also correlated with CRP, suggesting that the relationship 

between obesity and resistin in relation to type 2 diabetes may be via inflammatory 

mechanisms. 

In view of the findings in the current study with regard to the correlations of baseline 

serum resistin with the hyperglycaemia, degree of obesity, and systemic 

inflammation, further correlational analysis were investigated to determine whether 

the other metabolic and inflammatory factors were also associated with serum resistin.  
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The results of this study did not show any significant correlation of serum resistin 

with factors related to metabolic syndrome, namely, total cholesterol, triglycerides, 

HDL and non-HDL.   These findings concur with previous reports (Farvid et al., 

2005; Reilly et al., 2005; Mojiminiyi and Abdella, 2007; Tokuyama et al., 2007; Won 

et al., 2009; Thomopoulos et al., 2011) which failed to find significant correlations 

between circulating resistin levels and dyslipidaemia.  However, other studies 

reported a significant correlation of total cholesterol (Stejskal et al., 2003; Koch et al., 

2009), triglycerides (Norata et al., 2007; Qi et al., 2008), and HDL (Stejskal et al., 

2003; Qi et al., 2008; Koch et al., 2009; Lau and Muniandy, 2011) with circulating 

resistin levels.  These controversial data may be due to different comorbidities 

(diabetes mellitus, hypertension), or genetic backgrounds of the participants. 

There are a number of published data exploring the relationship between serum 

resistin and levels of inflammatory cytokines in the serum of subjects with type 2 

diabetes.  In one study evaluating relationship between resistin concentrations and 

laboratory markers of inflammation in subjects with type 2 diabetes mellitus, systemic 

inflammation and healthy subjects, a significant positive correlation was demonstrated 

between resistin concentrations with the values of IL-6 and TNF-α in the whole 

population study, however, these correlations was not found when only the T2DM 

group was considered (Stejskal et al., 2003).  In a further study of subjects with 

metabolic syndrome, the plasma resistin levels were not correlated with IL-6, 

however, but were significantly and negatively correlated with TNF-α only in subjects 

without metabolic syndrome (Won et al., 2009).  Furthermore, no significant 

correlation was observed between circulating resistin levels and IL-6 in treatment 

naїve patients with type 2 diabetes mellitus and obesity (de Luis et al., 2011).  On the 

other hand, in gestational diabetes mellitus, serum resistin correlated significantly 



4   Results  231 

 

with IL-6 in the case group, but not in the control group (Kuzmicki et al., 2009).  In a 

cross-sectional study assessing the association between diabetes and inflammation in 

patients with diabetes, a significant positive correlation was found between serum 

resistin and levels of IL-1β, IL-6, TNF-α, IL8 and leptin (Mirza et al., 2012).  In fact, 

serum resistin correlated significantly with IL-6 in several clinical studies of different 

comorbidities (Reilly et al., 2005; Qi et al., 2008; Koch et al., 2009; Fargnoli et al., 

2010; Kontunen et al., 2011).   

The results of the current study show that serum resistin levels correlated positively 

and significantly with serum levels of TNF-α (ρ=0.25, P<0.01), IL-6 (ρ=0.32, 

P<0.001) and IFN-γ (ρ=0.22, P<0.01).  Although, these results differ from some 

published studies (Won et al., 2009; de Luis et al., 2011), they are consistent with 

those of (Stejskal et al., 2003; Mirza et al., 2012).  Additionally, no significant 

correlation between serum resistin levels and serum levels of IL-1β was observed in 

the present study.  This finding is in contrast with those of (Mirza et al., 2012) who 

found a significant correlation between IL-1β and serum resistin levels.  However the 

significant correlation demonstrated in this one study by (Mirza et al., 2012) was 

relatively weak (ρ=0.12, P<0.01) (Cohen, 1988) and so it is not necessarily surprising 

that the data from the current study failed to corroborate this finding.  In reviewing the 

literature, no data were found on the association between serum resistin levels and 

serum levels of IFN-γ. 

Taken these findings together, serum resistin concentrations are elevated in T2DM 

patients.  The elevation of serum resistin is associated with HbA1c, BMI, hsCRP, 

TNF-α, IL-6 and IFN-γ.   These data suggest that the relationship between serum 

resistin and obesity in relation to T2DM may be via inflammatory mechanisms, and 

re-confirmed the systemic inflammatory state in type 2 diabetic patients.  However, 
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the role of systemic resistin in the progression of periodontitis in subjects with or 

without type 2 diabetes remains unclear.  A number of studies have demonstrated that 

serum resistin levels are elevated in various inflammation-related diseases (Migita et 

al., 2006; Konrad et al., 2007; Adrych et al., 2009), including diabetes mellitus 

(Hasegawa et al., 2005; Chen et al., 2009; Lau and Muniandy, 2011).  So far, only 

four studies have investigated serum resistin levels in periodontal disease (Furugen et 

al., 2008; Saito et al., 2008; Davies et al., 2011; Devanoorkar et al., 2012), and the 

results were relatively conflicting. 

Previous research has demonstrated an association between higher circulating levels 

of resistin and the development of periodontal disease, with significantly higher levels 

of resistin found in subjects with periodontitis compared to periodontally healthy 

subjects (Furugen et al., 2008; Saito et al., 2008).  Within the current literature, there 

is no published study exploring the role of serum resistin in T2DM associated with the 

development of periodontal disease.   In the present study, when the serum resistin 

data were categorized according to periodontal status within T2DM and non-diabetic 

groups, serum resistin levels appeared higher in diabetic subjects with healthy 

periodontal tissues [5.98 (4.83-7.13) ng/ml] compared to non-diabetic subjects with 

healthy periodontal tissues [4.3 (3.48-5.96) ng/ml], however, the Bonferroni-Holm 

correction of p-values for multiple comparisons placed the critical p-value at 0.019, 

therefore, this difference was not statistically significant and might be considered as a 

trend (p=0.025).  This finding does not support the previous research showing 

significantly higher circulating resistin levels in subjects with T2DM compared to 

non-diabetic controls (Hasegawa et al., 2005; Chen et al., 2009; Lau and Muniandy, 

2011).  The current study showed no significant difference in serum resistin levels 

between periodontally healthy, gingivitis and periodontitis subjects within the 



4   Results  233 

 

diabetes group.  In the non-diabetic group, serum resistin levels appeared higher in 

periodontitis subjects [5.75 (4.6-6.59) ng/ml] compared to subjects with healthy 

periodontal tissue [4.3 (3.48-5.96) ng/ml], however, the Bonferroni-Holm correction 

of p-values for multiple comparisons placed the critical p-value at 0.03, therefore, this 

difference was not statistically significant and might be considered as a trend 

(p=0.036).  These results are inconsistent with those of the two previously published 

studies which suggest that increased serum resistin levels are significantly associated 

with periodontal condition (Furugen et al., 2008; Saito et al., 2008).  In one study 

evaluating the relationship between serum resistin and periodontal condition in elderly 

Japanese people with or without periodontitis, a statistically non-significant tendency 

of increased resistin levels in periodontitis patients (with model 1 criterion; with or 

without ≥6 mm of probing pocket depth) was reported.  Furthermore, periodontitis 

patients with bleeding on probing (model 2 criterion; 10% of BOP was considered in 

addition to probing pocket depth) showed a significantly higher concentrations of 

resistin (Furugen et al., 2008).  Similarly, another study exploring circulating resistin 

levels in women with and without periodontitis demonstrated that serum resistin was 

significantly higher in the women with periodontitis (Saito et al., 2008).  On the 

contrary, in a pilot study by Davies et al (2011) investigating serum levels of various 

mediators and adipokines, no significant differences in serum resistin levels were 

found between aggressive periodontitis patients and periodontally healthy controls 

(Davies et al., 2011); however, with a small sample size, caution must be applied 

when interpreting the results of this study.  Furthermore, Devanoorkar and co-workers 

(2012) failed to demonstrate any significant differences in serum resistin levels 

between the chronic periodontitis patients and periodontally healthy controls 

(Devanoorkar et al., 2012). 
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Only one previous study has investigated the relationship of serum resistin levels with 

clinical periodontal parameters in subjects with or without periodontitis.  Furugen et al 

(2008) found a significant positive correlation between levels of resistin in serum and 

%BOP (ρ=0.198, p=0.003), but failed to find any significant correlation between 

average probing pocket depth and average attachment loss with resistin levels in 

serum (Furugen et al., 2008).  Additionally, logistic regression analysis showed that 

the association of serum resistin with the periodontal condition was promoted only in 

model 2 in which periodontitis with bleeding and control without bleeding was 

considered for the selection criteria of periodontal condition (Furugen et al., 2008).  

To the best of our knowledge, this is the first study to explore the relationship 

between clinical periodontal parameters and resistin levels in serum in subjects with 

or without periodontitis within T2DM and non-diabetic groups.  The current study 

reported a significant positive correlation between resistin levels in serum with %BOP 

(Spearman’s ρ=0.22, p<0.01), mean probing depth (Spearman’s ρ=0.18, p<0.05) and 

(for the first time with) PISA (Spearman’s ρ=0.17, p<0.05).  However, the results of 

this study did not show any significant correlation of serum resistin levels with mean 

loss of attachment.  In the present study, the significant correlation of serum resistin 

with %BOP, mean PD and PISA, and the absence of association with LOA may 

indicate that serum resistin is related to an existing active inflammation in the 

periodontal tissues. 

In conclusion, the present study demonstrated that serum resistin levels were 

significantly elevated in T2DM patients.  Furthermore, in the non-diabetic group, 

levels of resistin in serum were relatively higher in periodontitis patients compared to 

periodontally healthy subjects; but this difference was not statistically significant.  

The levels of serum resistin were positively correlated with HbA1c, hsCRP, BMI, the 
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serum pro-inflammatory cytokines TNF-α, IL-6, INF-γ, and the clinical periodontal 

parameters %BOP, mean PD, and PISA.  These findings suggest that the relationship 

between T2DM and resistin may be mediated by obesity-related inflammation, and 

that the role of resistin in the development of diabetes seems to be closely connected 

with an intensification of the systemic inflammatory state.  Additionally, the 

association of serum resistin with the clinical periodontal parameters suggests that the 

inflammatory cells (which are well known to be a major source of resistin in humans) 

such as monocytes and macrophages in inflamed periodontal tissues may contribute to 

the elevation of serum resistin levels in non-diabetic periodontitis patients, albeit this 

elevation was not statistically significant.  Further studies with a larger sample size 

and a comprehensive appraisal of potential confounding factors are necessary to 

elucidate the role of resistin in the two-way relationship between periodontal disease 

and T2DM. 
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Chapter 5 The‎effect‎of‎LPS‎and‎IL-1β‎on‎resistin‎

expression‎and‎secretion‎in‎monocytes,‎

macrophages‎and‎oral‎keratinocytes 

 

5.1 Introduction 

 

Periodontal diseases are an inflammatory processes initiated by bacteria of oral micro-

flora.  These microbes instigate tissue breakdown indirectly by activating host defence 

cells, which in turn produce and release inflammatory mediators that stimulate the 

effector mechanisms of connective tissue destruction (Williams, 2008).  Epithelial 

cells, monocytes and macrophages all have important roles in periodontal 

pathogenesis.  The epithelial cells represent the first line to confront the attacking 

bacteria and therefore it play important role in maintaining periodontal health (Dale, 

2002).  In effect, the pivotal role of epithelial cells in inflammation and in defence 

against microbes is attributed to its ability to respond robustly to exogenous factors, 

by migrating, proliferating and producing various cytokines and proteolytic enzymes 

(Uitto et al., 2003).  Gingival epithelial cells and macrophages have been identified as 

major sources of IL-1β in periodontium (Sfakianakis et al., 2001).  IL-1β, a 

multifunctional cytokine, provokes the production and expression of several important 

mediators, which in turn trigger a series of molecular and cellular responses, including 

tissue inflammation and adaptive immunity.  It has been demonstrated that 

proinflammatory cytokines such as IL-1β have a central role in the development of 

epithelial inflammation in periodontitis (Barksby et al., 2007). 
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The induced changes in the epithelium in response to bacterial challenge facilitate 

both vascular permeability and the recruitment of neutrophils, which represent the 

most important local defence in fending off periodontal bacteria.  The dilated vessels 

in the microcirculation become engorged with blood, and the leukocytes extravasated 

and inflammatory infiltrate formed (Kornman et al., 1997).  The migrated monocytes 

differentiate in the tissues into macrophages, which serve to enhance inflammatory 

reaction as well as initiate the immune response.  Intriguingly, the microbial 

components of periodontal bacteria such as LPS have stimulatory effect on cytokine 

production by monocytes and macrophages. (Teng, 2006; Liu et al., 2010).  In effect, 

macrophages play a central role in the initial sensing of the microbes.  It presents in 

the periodontium and shelter the requisite system receptors called pattern recognition 

receptors (PRRs) such as TLR.  The substantial importance of monocytes as 

circulating cells functional in microbe recognition comes from the fact that these cells 

are precursors of macrophages in tissues (Teng, 2006; Liu et al., 2010).   

LPS is one of a group of pathogen associated molecular patterns which are recognised 

by host cells and incite cytokine responses (Dixon et al., 2004; Jain and Darveau, 

2010).  Therefore, LPS is a robust activator of the innate immune system, which it 

accomplished by instigating the Toll like receptor (TLR), a cell surface protein that 

recognises bacterial products (Dixon et al., 2004).  In effect, the LPS receptor is a 

macromolecular complex composed of TLR4, MD-2 and CD14.  This complex is 

expressed on several cell types, involving immune cells, macrophages and dendritic 

cells (Schumann et al., 1990; Wright et al., 1990; Shimazu et al., 1999; Dixon et al., 

2004; Jain and Darveau, 2010).  The LPS of oral bacteria binds to receptors (TLR and 

CD14) on the surface of cells in the periodontium such as epithelial cells, fibroblasts, 

neutrophils, dendritic cells and monocytes/macrophages, which in turn instigate the 
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host cells to produce inflammatory mediators and cytokines and conduced to localized 

periodontal inflammatory reaction (Page et al., 1997; Slots and Ting, 1999; Nishihara 

and Koseki, 2004). 

In brief, a variety of pro-inflammatory mediators including pathogen-associated 

molecular patterns (PAMPs) such as lipopolysaccharide (LPS) and pro-inflammatory 

cytokines such as IL-1β activates proinflammatory responses in a wide range of host 

cells. 

Resistin is a 12.5 kDa polypeptide hormone, which was discovered 10 years ago as a 

fat cell secreted factor that modulate insulin resistance in mice (Steppan et al., 2001a).  

The principal cells that express resistin in human are monocytes, macrophages and 

neutrophils (Savage et al., 2001; Patel et al., 2003; Jung et al., 2006; Bostrom et al., 

2009; Johansson et al., 2009; Kunnari et al., 2009), which suggest a possible 

involvement of resistin in inflammatory processes (Nagaev et al., 2006).   

Several Studies illustrated that inflammatory stimuli may regulate resistin production 

in myeloid immune cells but the findings have been conflicting.  Also there is no data 

on the regulation of resistin secretion in epithelial cells.  The aim of the experiments 

in this chapter is therefore to investigate the in vitro effect of LPS on the expression 

and secretion of resistin in in monocytic and macrophagic cell line THP-1, monocytic 

and macrophagic cell line U937 and in primary monocytes.  In addition, this study 

investigated whether IL-1β stimulates resistin expression and secretion in OKF6 

keratinocyte cell line. 
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5.2 Results 

5.2.1 Investigation of the effect of IL-1β on resistin expression and 

secretion in OKF6 (oral keratinocytes) 

 

Resistin production by OKF6 cells in response to IL-1β was assessed.  OKF6 oral 

keratinocytes (2 x 10
5
) were stimulated with human recombinant IL-1β (0.1 ng/ml) 

for three different time points (4, 24, and 48 hours) as described previously (section 

2.1.6.1).  Un-stimulated cells served as a control.  The cells were collected for RNA 

extraction, quantification, reverse transcription and RT-PCR analysis as previously 

described in section 2.3.  Tissue culture supernatants for stimulated and un-stimulated 

cells were collected and assayed for resistin concentrations with ELISA as described 

in section 2.2.   

Figure  5.1  shows that the levels of resistin in control cultures were below detection at 

the three time points.  Also, IL-1β had no effect on resistin secretion in OKF6 oral 

keratinocytes after 4, 24, and 48 h incubation compared to control.  As shown in 

Figure  5.2, the resistin gene was not expressed by OKF6 oral keratinocytes neither in 

the control nor in the stimulated cultures at the three time points. 

  



5   Results  240 

 

 

 

Figure ‎5.1 The effect of IL-1β‎on‎resistin‎secretion‎in‎OKF6‎(oral‎keratinocytes)‎

at three different time points 

OKF6 oral keratinocytes (2 x 10
5
) were cultured for different periods of time in the 

absence (control) or presence of IL-β (0.1 ng/ml).  Resistin levels in supernatants was 

measured by ELISA.  Each value represents the mean and standard deviation of two 

independent cell culture experiments (duplicate cultures i.e. n=4 in total). 
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Figure ‎5.2 The effect of IL-1β‎on‎resistin‎gene‎expression‎in‎OKF6 at three 

different time points 

Sub-confluent OKF6 cells were co-cultured in the absence or presence of (0.1 ng/ml) 

IL-1β for 4, 24, 48 h.  Total cellular RNA was isolated and mRNA expression of 

resistin and β2 microglobulin were analysed by RT-PCR.  The products were 

analysed on 3% agarose gels and stained with ethidium bromide.    
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5.2.2  Analysis of the effect of LPS on resistin protein secretion in 

THP-1 monocytes and macrophages 

 

To study the effect of LPS on resistin release, THP-1 monocytes (2 x 10
6
) were 

stimulated with P.gingivalis LPS (100 ng/ml) or E.coli LPS (100 ng/ml) for 3 

different time points: 6, 24, and 48 h.  Un-stimulated cells served as a control.  

Supernatants were collected and assayed for resistin concentrations with ELISA as 

described in section 2.2.  Figure  5.3 shows that the levels of resistin in control cultures 

were below detection at the three time points.  Also, both P.gingivalis and E.coli had 

no effect on resistin secretion in THP-1 monocytes after 6, 24, and 48 h incubation 

compared to control. 

In order to assess the response of THP-1 monocytes to LPS stimulation, supernatants 

were also assayed for TNF-α concentrations with ELISA as described in section 2.2.   

Figure  5.4  shows that P.gingivalis and E.coli LPS strongly increased TNF-α secretion 

in THP-1 monocytes after 6, 24, and 48 h incubation compared to control.  The levels 

of TNF-α in control cultures were below detection at the 3 time points.  TNF-α 

concentrations in P.gingivalis LPS stimulated cultures were 5157±208 pg/ml, 

1533±37 pg/ml, 860±145 pg/ml at 6, 24, and 48 h stimulation, respectively.  The up-

regulation in TNF-α concentration in response to E.coli LPS was relatively lower than 

that seen in response to P.gingivalis LPS.  TNF-α concentrations in E.coli LPS 

stimulated cultures were 1799±113 pg/ml, 444±72 pg/ml, 374±24 pg/ml at 6, 24, and 

48 h stimulation, respectively. 

To examine the effect of LPS on resistin release from THP-1 macrophages (see 

differentiation in section 2.1.1.2) cells were stimulated with P.gingivalis LPS (100 

ng/ml) or E.coli LPS (100 ng/ml) for 3 different time points 6, 24, and 48 h.  Un-
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stimulated cells served as a control.  Supernatants were collected and assayed for 

resistin concentrations with ELISA as described in section 2.2.  Figure  5.5 illustrates 

that the levels of resistin in control cultures were below detection at the three time 

points.  Also, both P.gingivalis and E.coli had no effect on resistin secretion in THP-1 

macrophages after 6, 24, and 48 h incubation compared to control. 

In order to assess the response of THP-1 macrophages to LPS stimulation, 

supernatants were also analysed for TNF-α concentrations with ELISA as described in 

section 2.2.  Figure  5.6 shows that LPS remarkably enhanced TNF-α secretion in 

THP-1 macrophages after 6, 24, and 48 h incubation compared to control.  The levels 

of TNF-α in control cultures were below detection at the 3 time points.  TNF-α 

concentrations in P.gingivalis LPS stimulated cultures were 1968±709 pg/ml, 

879±111 pg/ml, 689±114 pg/ml at 6, 24, and 48 h stimulation, respectively.  The up-

regulation in TNF-α concentrations in response to E.coli LPS was relatively higher 

than that seen in response to P.gingivalis LPS.   TNF-α concentrations in E.coli LPS 

stimulated cultures were 2149±844 pg/ml, 1197±142 pg/ml, 855±46 pg/ml at 6, 24, 

and 48 h stimulation, respectively. 
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Figure ‎5.3 The effect of P.gingivalis and E.coli LPS on resistin secretion in THP-

1 monocytes at three different time points 

THP-1 (2 x 10
6
) were cultured for different periods of time in the absence (control) or 

presence of P.gingivalis LPS (100 ng/ml) or E.coli LPS (100 ng/ml).  Resistin levels 

in supernatants was measured by ELISA.  Each value represents the mean and 

standard deviation of a single cell culture experiment (duplicate cultures i.e. n=2 in 

total).   
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Figure ‎5.4 The effect of P.gingivalis and E.coli LPS on TNF-α‎secretion‎in‎THP-1 

monocytes at three different time points 

THP-1 (2 x 10
6
) were cultured for different periods of time in the absence (control) or 

presence of P.gingivalis LPS (100 ng/ml) or E.coli LPS (100 ng/ml).  TNF-α levels in 

supernatants was measured by ELISA.  Each value represents the mean and standard 

deviation of a single cell culture experiment (duplicate cultures i.e. n=2 in total).   
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Figure ‎5.5 The effect of P.gingivalis and E.coli LPS on resistin secretion in THP-

1 macrophages at three different time points 

THP-1 cells (2 x 10
6
) were differentiated with (50 ng/ml) PMA for 24 h.  Then THP-1 

macrophages were cultured for different periods of time in the absence (control) or 

presence of P.gingivalis LPS (100 ng/ml) or E.coli LPS (100 ng/ml).  Resistin levels 

in supernatants was measured by ELISA.  Each value represents the mean and 

standard deviation of 2 independent cell culture experiments (duplicate cultures i.e. 

n=4 in total). 
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Figure ‎5.6 The effect of P.gingivalis and E.coli LPS on TNF- secretion in THP-1 

macrophages at three different time points 

THP-1 cells (2 x 10
6
) were differentiated with (50 ng/ml) PMA for 24 h.  Then THP-1 

macrophages were cultured for different periods of time in the absence (control) or 

presence of P.gingivalis LPS (100 ng/ml) or E.coli LPS (100 ng/ml).  TNF-α levels in 

supernatants was measured by ELISA.  Each value represents the mean and standard 

deviation of 2 independent cell culture experiments (duplicate cultures i.e. n=4 in 

total). 
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5.2.3 Analysis of the effect of LPS on resistin expression and 

secretion in U937 monocytes 

 

To explore the effect of LPS on resistin production at the mRNA and protein levels, 

U937 monocytes (2 x 10
6
) were stimulated with P.gingivalis LPS (100 ng/ml) or 

E.coli LPS (100 ng/ml) for 3 different time points 4, 24, and 48 h.  Un-stimulated 

cells served as a control.  mRNA was analysed for resistin gene expression using RT-

PCR (section 2.3).  Supernatants were collected and assayed for resistin 

concentrations with ELISA as described in section 2.2.  As shown in  

Figure  5.7, U937 monocytes constitutively expressed resistin mRNA.  There is no 

evidence for an effect of P.gingivalis or E.coli LPS on resistin mRNA expression in 

U937 monocytes at 4, 24, and 48 h.  Similarly, Figure  5.8 illustrates that U937 

monocytes constitutively secreted resistin protein.  Stimulation with P.gingivalis and 

E.coli LPS did not alter resistin protein levels in tissue culture supernatants at 4, 24, 

and 48 h. 
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Figure ‎5.7 The effect of P.gingivalis and E.coli LPS on resistin expression in 

U937 monocytes at three different time points 

U937 monocytes (2 x 10
6
) were co-cultured in the absence or presence of either 

P.gingivalis LPS (100 ng/ml) and E.coli LPS (100 ng/ml) for 4, 24, and 48 h.  Total 

RNA was isolated and the mRNA expression of resistin and β2 microglobulin were 

analysed by RT-PCR.  The graph represent single cell culture experiments (duplicate 

cultures i.e. n=2). 

  



5   Results  250 

 

 

Figure ‎5.8 The effect of P.gingivalis and E.coli LPS on resistin secretion in U937 

monocytes at three different time points 

U937 monocytes (2 x 10
6
) were co-cultured in the absence or presence of either 

P.gingivalis LPS (100 ng/ml) and E.coli LPS (100 ng/ml) for 4, 24, and 48 h.  

Resistin levels in supernatants was measured by ELISA and compared with controls. 

Each value represents the mean and standard deviation of a single cell culture 

experiment (duplicate cultures i.e. n=2). 
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5.2.4 Analysis of the effect of LPS on resistin expression and 

secretion in U937 macrophages 

 

To study the effect of LPS on resistin expression and secretion in U937 macrophages, 

a series of pilot experiments were initially performed to establish optimal 

experimental conditions for investigating resistin expression in U937 macrophages.   

In order to determine the optimal conditions for differentiation of U937 into 

macrophages, U937 (2 x 10
6
) were treated with 50 ng/ml PMA for 48 h or 100 ng/ml 

PMA for 72 h.  Then, the resultant macrophages were stimulated with E.coli LPS 

(100 ng/ml) for 24 h.  Un-stimulated cells served as a control.  Supernatants were 

collected and assayed for resistin and TNF-α concentration with ELISA as described 

in section 2.2.  The results were derived from single stimulation experiment (pilot 

experiment in duplicate culture) and therefore no statistical analysis was performed.  

It is apparent from the data presented in Figure  5.9 that resistin secretion was 

enhanced in response to E.coli LPS in macrophages using both protocols in a 

comparable manner.  Similarly, Figure  5.10 shows a comparable elevation in TNF-α 

levels in response to E.coli LPS in macrophages using both protocols.  It was decided 

to prepare U937 macrophages by incubating U937 monocytes with 50 ng/ml PMA for 

48 h in subsequent experiments. 
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Figure ‎5.9 The effect of E.coli LPS on resistin secretion in U937 monocytes 

differentiated with 50 ng/ml PMA for 48 h or 100 ng/ml PMA for 72 h 

U937 (2 x 10
6
) were incubated with 50 ng/ml PMA for 48 h or 100 ng/ml PMA for 72 

h, then were cultured in the presence or absence of E.coli (100 ng/ml) for 24 h.  

Resistin levels in supernatants were measured by ELISA and compared with controls.  

Each value represents the mean and standard deviation of a single cell culture 

experiment (duplicate numbers i.e. n=2). 
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Figure ‎5.10 The effect of E.coli LPS on TNF-α‎secretion‎in‎U937‎monocytes‎

differentiated with 50 ng/ml PMA for 48 h or 100 ng/ml PMA for 72 h 

U937 (2 x 10
6
) were incubated with 50 ng/ml PMA for 48 h or 100 ng/ml PMA for 72 

h, then were cultured in the presence or absence of E.coli (100 ng/ml) for 24 h.  TNF-

α levels in supernatants were measured by ELISA and compared with controls.  Each 

value represents the mean and standard deviation of a single cell culture experiment 

(duplicate numbers i.e. n=2). 
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In order to determine the optimal time point at which U937 macrophages respond to 

LPS with the highest resistin up-regulation, two time point experiments were 

performed.  In both experiments, U937 (2 x 10
6
) were treated with 50 ng/ml for 48 h 

to be differentiated into macrophages, then were stimulated with E.coli LPS (100 

ng/ml) for different time points 30 min, 1, 3, 6, 24, 48, and 72 h.  In the second of 

these 2 experiments the PMA was washed away by changing the medium two times a 

day for 4 days before stimulation with LPS, also the 30 min time point was replaced 

by 24 h time point in the second experiment.  Un-stimulated cells served as a control.  

Supernatants were collected and assayed for resistin and TNF-α concentration with 

ELISA as described in section 2.2.  The results were derived from single stimulation 

experiment (in duplicate culture) and therefore no statistical analysis was performed.   

The results obtain from the first experiment is presented in Figure  5.11 and 

Figure  5.12.  As shown in Figure  5.11, E.coli LPS appears to induce increased levels 

of resistin secretion in U937 macrophages as compared to controls, in particular at 

longer time points (48 and 72 h).  Similarly, Figure  5.12 shows that there is a clear 

trend of increasing TNF-α secretion levels from U937 macrophages in response to 

E.coli LPS stimulation at all time points except the 30 min.  Figure  5.13 presents the 

results obtained from the second experiment which reveals that E.coli LPS seems to 

provoke enhanced levels of resistin secretion in U937 macrophages as compared to 

controls, in particular at longer time points.  Having no remarkable difference in 

resistin induction between the two experiments, it was decided to choose the protocol 

of the first experiment. 
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Figure ‎5.11 The effect of E.coli LPS on resistin secretion in U937 macrophages 

U937 monocytes (2 x 10
6
) were incubated with PMA (50 ng/ml) for 48 h, then were 

cultured for different times in the presence or absence of E.coli.  Resistin levels in 

supernatants were measured by ELISA and compared with controls.  Each value 

represents the mean and standard deviation of a single cell culture experiment 

(duplicate cultures i.e. n=2 in total). 
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Figure ‎5.12 The effect of E.coli LPS on TNF-α‎secretion‎in‎U937‎macrophages 

U937 monocytes (2 x 10
6
) were incubated with 50 ng/ml PMA for 48 h, then were 

cultured for different period of times in the presence or absence of E.coli (100 ng/ml).  

Resistin levels in supernatants were measured by ELISA and compared with controls.  

Each value represents the mean and standard deviation of a single cell culture 

experiment (duplicate cultures i.e. n=2 in total). 
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Figure ‎5.13 The effect of E.coli LPS on resistin secretion in U937 macrophages 

washed free of PMA 

U937 monocytes (2 x 10
6
) were incubated with PMA (50 ng/ml) for 48 h, PMA were 

washed away by changing the medium two times a day for 4 days, and then the cells 

were cultured for different period of times in the presence or absence of E.coli (100 

ng/ml).  Resistin levels in supernatants were measured by ELISA and compared with 

controls.  Each value represents the mean and standard deviation of a single cell 

culture experiment (duplicate culture i.e. n=2 in total).  
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To investigate the role of P.gingivalis LPS and E.coli LPS (100 ng/ml) on resistin 

production at the mRNA and protein levels, U937 macrophages (2 x 10
6
) were 

stimulated with  P.gingivalis and E.coli LPS (both at 100 ng/ml) for 48 h.  Un-

stimulated cells served as the control.  Supernatants were collected and assayed for 

resistin concentrations with ELISA as described in section 2.2.  Total cellular RNA 

was extracted and reverse transcribed to produce cDNA and the amount of resistin 

mRNA expression was quantified by Real-Time PCR as described in section 2.3.6.   

Figure  5.14 shows the results from Real-Time PCR.  Compared to control, both 

P.gingivalis and E.coli LPS (100 ng/ml) stimulated a very slight up-regulation of 

resistin mRNA expression, however, this was not statistically significant.  

Figure  5.15 shows that both P.gingivalis and E.coli LPS (100 ng/ml) had no 

significant effect on resistin secretion in U937 macrophages.  In effect, U937 

macrophages constitutively secreted resistin and the levels of resistin in supernatants 

were comparable from both control and stimulated groups.  Resistin concentrations in 

control cultures, P.gingivalis LPS and to E.coli LPS stimulated cultures (mean ± SD) 

were; 37709 ± 3812 pg/ml, 38682 ± 1158 pg/ml, 42113 ± 9649 pg/ml, respectively. 
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Figure ‎5.14 The effect of P.gingivalis (100 ng/ml) and E.coli (100 ng/ml) on 

resistin mRNA expression in U937 macrophages 

U937 macrophages (2 x 10
6
) were stimulated with P.gingivalis LPS (100 ng/ml) or 

E.coli LPS (100 ng/ml) for 48 h.  The amount of resistin mRNA was quantified by 

real time RT-PCR.  The data are expressed as mean fold-induction of 3 independent 

cell culture experiments (duplicate cultures i.e. n=6 in total).  Statistical analysis was 

performed on δCT values using ANOVA (p = 0.587). 
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Figure ‎5.15 The effect of P.gingivalis (100 ng/ml) and E.coli LPS (100 ng/ml) on 

resistin secretion in U937 macrophages 

U937 macrophages (2 x 10
6
) were stimulated with P.gingivalis LPS (100 ng/ml) and 

E.coli LPS (100 ng/ml) for 48 h.  Resistin Levels in supernatants were measured by 

ELISA and compared with un-stimulated controls.  Each value represents the mean 

and standard deviation of 3 independent cell culture experiments (duplicate cultures 

i.e. n=6 in total).  Statistics: ANOVA (p = 0.670). 
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To be able draw a concrete conclusion about whether or not LPS could drive U937 

macrophages to enhance resistin production it was important to carry out three 

independent experiments in which U937 macrophages (2 x 10
6
) were stimulated with 

either Pseudomonas aeruginosa whole cell lysate or E.coli LPS (100 ng/ml and 

1µg/ml) for two time points 24 h and 48 h.  Un-stimulated cells served as a control.  

Supernatants were collected and assayed for resistin concentrations with ELISA as 

described in section 2.2. 

As shown in Figure  5.16, P.aeruginosa whole cell lysate down-regulated resistin 

secretion from U937 macrophages at both 24 and 48 h. 

Figure  5.17 shows that treatment with E.coli LPS at a concentration of 100 ng/ml had 

no effect on resistin secretion in U937 macrophages at both 24 and 48 h. 

Figure  5.18 shows that E.coli LPS at a concentration of 1µg/ml seems to induce 

increased levels of resistin secretion in U937 macrophages after 24 and 48 h 

incubation compared to control. 
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Figure ‎5.16 The effect of Pseudomonas aeruginosa whole cell lysate on resistin 

secretion in U937 macrophages at 24 h and 48 h  

U937 macrophages (2 x 10
6
) were stimulated with Pseudomonas aeruginosa whole 

cell lysate for 24 and 48 h.  Resistin Levels in supernatants were measured by ELISA 

and compared with un-stimulated controls.  Each value represents the mean and 

standard deviation of a single experiment (triplicate cultures i.e. n=3 in total). 
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Figure ‎5.17 The effect of (100 ng/ml) E.coli LPS on resistin secretion in U937 

macrophages for 24 h and 48 h 

U937 macrophages (2 x 10
6
) were stimulated with E.coli LPS (100 ng/ml) for 24 and 

48 h.  Resistin Levels in supernatants were measured by ELISA and compared with 

un-stimulated controls.  Each value represents the mean and standard deviation of a 

single experiment (triplicate cultures i.e. n=3 in total). 
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Figure ‎5.18 The effect of (1 µg/ml) E.coli LPS on resistin secretion in U937 

macrophages at 24 h and 48 h 

U937 macrophages (2 x 10
6
) were stimulated with E.coli LPS (1µ/ml) for 24 and 48 

h.  Resistin Levels in supernatants were measured by ELISA and compared with un-

stimulated controls.  Each value represents the mean and standard deviation of a 

single experiment (triplicate cultures i.e. n=3 in total). 
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To evaluate the effect of LPS (1 µg/ml) on resistin production at mRNA and protein 

levels, U937 macrophages (2 x 10
6
) were stimulated with P.gingivalis and E.coli LPS 

(1 µg/ml) for 48 h.  Un-stimulated cells served as the control.  Supernatants were 

collected and assayed for resistin concentrations with ELISA as described in section 

2.2.  Total cellular RNA was extracted and reverse transcribed to produce cDNA and 

the amount of resistin mRNA expression was quantified by Real-Time PCR as 

described in section 2.3.6. 

Figure  5.19 shows that P.gingivalis and E.coli LPS significantly increased resistin 

secretion in U937 macrophages after 48 h incubation (p < 0.05) compared to control.  

In controls cultures, the levels of resistin (mean ± SD) were 21580 ± 4541 pg/ml 

which increased to 33947 ± 9450 pg/ml (p < 0.05, compared to control) in 

P.gingivalis LPS stimulated cultures and 32424 ± 8518 pg/ml (p < 0.05, compared to 

control) in E.coli LPS stimulated cultures. 

Figure  5.20 shows the results from Real-Time PCR.  Compared to control, both 

P.gingivalis and E.coli LPS (1 µg/ml) significantly up-regulated resistin mRNA 

expression (2.9 fold and 2.5 fold respectively) at 48 h (p < 0.05). 

Taken all together, the present study demonstrated that P.gingivalis and E.coli LPS 

(1µg/ml) up-regulates resistin production at the mRNA and protein levels in U937 

macrophages. 
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Figure ‎5.19 Resistin secretion in U937 macrophages is significantly enhanced by 

P.gingivalis and E.coli LPS (1 µg/ml) stimulation 

U937 macrophages (2 x 10
6
) were stimulated with P.gingivalis LPS (1µg/ml) and 

E.coli LPS (1µg/ml) for 48 h.  Resistin Levels in supernatants were measured by 

ELISA and compared with un-stimulated controls.  Each value represents the mean 

and standard deviation of 3 independent cell culture experiments (each comprising 

duplicate cultures i.e. n=6 in total).  Statistics: Kruskal-Wallis, Mann-Whitney U test 

*p <0.05 compared to control. 
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Figure ‎5.20 Resistin gene expression in U937 macrophages is significantly up-

regulated in response to P.gingivalis and E.coli LPS (1 µg/ml) stimulation 

U937 macrophages (2 x 10
6
) were stimulated with P.gingivalis LPS (1µg/ml) or 

E.coli LPS (1µg/ml) for 48 h.  The amount of resistin mRNA was quantified by real 

time RT-PCR.  The data are expressed as mean fold-induction of 3 independent 

experiments measured in 3 separate occasions (duplicate cultures i.e. n=6 in total).  

Statistical analysis was performed on δCT values using Kruskal-Wallis, Mann-

Whitney U test *p <0.05 compared to control. 
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5.2.5 Analysis of the effect of LPS on resistin expression and 

secretion in human primary monocytes 

 

To study the effect of LPS (1 µg/ml) on resistin production at mRNA and protein 

levels, primary human monocytes (4 x 10
6
) were stimulated with P.gingivalis and 

E.coli LPS (1 µg/ml) for 48 h.  Un-stimulated cells served as the control.  

Supernatants were collected and assayed for resistin concentrations with ELISA as 

described in section 2.2.  Total cellular RNA was extracted and reverse transcribed to 

produce cDNA and the amount of resistin mRNA expression was quantified by Real-

Time PCR as described in section 2.3.6.   

Compared to control, both P.gingivalis and E.coli LPS significantly enhanced resistin 

release in human primary monocytes (Figure  5.21).  The concentration of resistin 

(mean ± SD) were 228 ± 92 pg/ml for control cultures versus  889 ± 606 pg/ml and 

927 ± 153 pg/ml for P.gingivalis and E.coli LPS stimulated culture, respectively. 

Figure  5.22 shows the results from Real-Time PCR.  Compared to control, both 

P.gingivalis and E.coli LPS (1 µg/ml) significantly up-regulated resistin mRNA 

expression (15 fold and 54 fold respectively) in human primary monocytes at 48 h (p 

< 0.05). 
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Figure ‎5.21 Resistin secretion in primary monocytes is significantly enhanced in 

response to P.gingivalis and E.coli LPS (1 µg/ml) stimulation 

Primary monocytes (4 x 10
6
) were stimulated with P.gingivalis LPS (1µg/ml) and 

E.coli LPS (1µg/ml) for 48 h.  Resistin Levels in supernatants were measured by 

ELISA and compared with un-stimulated controls.  Each value represents the mean 

and standard deviation of 2 cell culture experiments (each comprising duplicate 

cultures i.e. n=4 in total).  Statistics: Kruskal-Wallis, Mann-Whitney U test *p <0.05 

compared to control. 
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Figure ‎5.22 Resistin gene expression in human primary monocytes is 

significantly up-regulated in response to P.gingivalis and E.coli LPS (1µg/ml) 

stimulation 

Primary monocytes (4 x 10
6
) were stimulated with P.gingivalis LPS (1µg/ml) or 

E.coli LPS (1µg/ml) for 48 h.  The amount of resistin mRNA was quantified by real 

time RT-PCR.  The data are expressed as mean fold-induction of 2 independent cell 

culture experiments measured in 2 separate occasions (duplicate cultures i.e. n=4 in 

total).  Statistical analysis was performed on δCT values using Kruskal-Wallis, Mann-

Whitney U test *p <0.05 compared to control. 
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5.3 Discussion 

Periodontal diseases are bacteria-induced destructive inflammatory processes 

affecting the tooth-supporting structures and leading to attachment loss, periodontal 

pocket formation and alveolar bone resorption (Williams, 1990; Williams, 2008).  The 

primary mechanisms involved in the local host response to bacterial aggression in 

periodontal tissues encompass leukocytes recruitment and release of inflammatory 

mediators and cytokines (Okada and Murakami, 1998).  IL-1β have been identified as 

an crucial mediator in the pathogenesis of periodontal disease (Sakai et al., 2006).  It 

has also been shown to be raised in GCF and is produced in patients with periodontal 

disease (Stashenko et al., 1991; Boch et al., 2001; Sakai et al., 2006).  Many cell 

types are responsible for IL-1β production, including lymphocytes, epithelial cells, 

fibroblasts and monocytes/macrophages (Kang et al., 1996; Sfakianakis et al., 2001).  

IL-1β instigates a variety of cell types to  produce pro-inflammatory mediators such 

as IL-6, TNF-α, IL-8, IL-1β itself, prostaglandin E2, and MMPs, which mediate tissue 

destruction in periodontal disease (MacNaul et al., 1990; Boch et al., 2001; 

Sfakianakis et al., 2001).   

Periodontal disease is driven by a variety of bacteria, which have different forms of 

LPS which robustly activate immunity and in subtly different pathways (Barksby et 

al., 2009; Hajishengallis, 2009).  Lipopolysaccharide (LPS) expresses the virulence 

factor of Gram-negative bacteria, and plays a pivotal role in the destruction of 

periodontal tissue driven by these microorganisms.  It has been shown that LPS 

induces a prominent pro-inflammatory cytokine response in several cell types such as 

epithelial cells, monocytes/macrophages, neutrophils and fibroblasts.  This was 

demonstrated via the up-regulation of pro-inflammatory cytokines such as IL-1β, 

TNF-α, IL-6, IL-8, and MCP-1 in response to LPS stimulation (Page and Kornman, 
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1997; Slots and Ting, 1999; Sandros et al., 2000; Nishihara and Koseki, 2004; Diya et 

al., 2008). 

The present study demonstrated that both P.gingivalis and E.coli LPS enhances 

resistin protein secretin and gene expression in human macrophages.  In effect, 

stimulation of human macrophagic cell line U937 with 1 µg/ml P.gingivalis and 

E.coli LPS significantly enhanced resistin expression and secretion.  However, 

treatment with P.gingivalis and E.coli LPS at a concentration of 100 ng/ml had no 

effect on resistin expression and secretion in human macrophagic cell line U937.  In 

addition, P.gingivalis and E.coli LPS (1 µg/ml) significantly enhanced resistin 

expression and secretion in cultured human primary monocytes.  This study also 

demonstrated that human oral epithelial cell line OKF6 neither secreted nor expressed 

resistin.  Also, stimulation of human monocytic/macrophagic cell line THP-1 with 

LPS did not give rise to resistin release. 

It is now well acknowledged that many of non-immune cells in the periodontium such 

as keratinocytes induce the production of cytokines in response to bacteria and other 

cytokines (Liu et al., 2010).  OKF6 cell lines were originally derived from normal 

gingival mucosal cells taken from the floor of the mouth, which were engineered to 

evade senescence and achieve immortality.  Two cellular alterations were carried out 

to immortalize these cells, the over-expression of telomerase and the deletion of 

P16
INK4a

 regulatory protein (Dickson et al., 2000).  The human telomerase reverse 

transcriptase (hTERT) symbolizes the catalytic protein subunit of the telomerase 

which is expressed in both germ cells and cancer cells (Meyerson et al., 1997; 

Nakamura et al., 1997).  The introduction of the active component of telomerase 

(hTERT) into many cell types allows infinite number of cell division and thereby 

unlimited production of these cells (Bodnar et al., 1998).  On the other hand, P16
INK4a
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protein which is important tumour suppressor has been found to be deficient or non-

functional in a several human cancers including oral carcinoma (Dickson et al., 2000). 

The present study was designed to determine if human oral epithelial cell line OKF6 

can produce resistin and be considered one of the cellular sources of this protein, and 

also to study the effect of IL-1β on resistin expression and secretion by these cells.  In 

reviewing the literature, no data was found on epithelial cells being a source of 

resistin or on the effect of IL-1β on resistin production by these cells.  The current 

study found that human oral epithelial cell line OKF6 do not appear to express resistin 

mRNA, or secrete resistin into the culture medium at any of the time points used.  

Also, IL-1β had no effect on resistin expression and secretion in human oral epithelial 

cell line OKF6.  Prior studies have noted the importance of gingival epithelial cells in 

cytokines production.  Using RT-PCR, Lundqvist and co-workers (1994) reported that 

gingival epithelial cells freshly isolated from normal and inflamed gingiva expressed 

IL-1β, IL-6, IL-8 and TNF-α (Lundqvist et al., 1994).  In addition, human oral 

keratinocytes produce IL-6, IL-8 and TNF-α at the protein and mRNA levels 

(Formanek et al., 1998).  It was also reported that IL-1β significantly enhanced the 

release of pro-inflammatory cytokines such as IL-8, IL-6 and TNF-α (Eskan et al., 

2008).  Intriguingly, resistin mRNA was significantly up-regulated in response to IL-

1β stimulation in PBMC (Kaser et al., 2003).  It is difficult to explain the inability of 

OKF6 to express resistin, but it might be related to the fact that OKF6 are engineered 

cells (not normal) and the cellular alterations happened in these cells to immortalize 

them might have changed their natural attributes.  Together, these findings suggest 

that human oral epithelial cell line OKF6 is incapable of specifically inducing resistin 

expression and secretion. 
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There is a growing interest in monocytes as circulating cells functional in bacterial 

recognition as these are the precursors of tissue macrophages that harbour the 

necessary array of receptors (PRRs) to recognise bacteria (Auffray et al., 2009).  

Macrophages have been identified as a primary source of human resistin in tissues 

(Patel et al., 2003; Yang et al., 2003).  We have therefore carried out experiments to 

test whether resistin was produced by human monocytic/macrophagic cell line THP-1, 

and to study the effect of LPS stimulation on resistin secretion by these cells.  The 

results from this study showed that both human monocytic and macrophagic cell line 

THP-1 do not appear to secrete resistin protein into the culture medium under any of 

the conditions and time points used in these experiments.  Moreover, neither the 

stimulation with P.gingivalis LPS nor with E.coli LPS gave rise to the release of 

resistin protein.  These results are consistent with those of other studies which suggest 

that human monocytic/macrophagic cell line THP-1 do not seem to express resistin 

gene or release resistin protein.  Previous research exploring the characteristics of 

human resistin gene and the various cells expressing it have reported that resistin gene 

was not expressed in THP-1 monocytes/macrophages (Nagaev et al., 2006; Xu et al., 

2006; Kunnari et al., 2009).  In addition, it was shown that neither stimulation with 

LPS nor with TNF-α drive the expression of resistin mRNA in THP-1 monocytes 

(Bokarewa et al., 2005).  In parallel, treatment of THP-1 macrophages with 

recombinant resistin or with glucose containing medium did not give rise to the 

expression of resistin gene (Rae and Graham, 2006).  In order to assess the response 

of both human monocytic and macrophagic cell line THP-1 to LPS stimulation, TNF-

α was measured in the same tissue culture supernatants in which resistin levels were 

measured.  It was interesting to note that P.gingivalis and E.coli LPS remarkably 

enhanced TNF-α secretion in culture medium of both human monocytic and 
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macrophagic cell line THP-1, and under all of the conditions used in these 

experiments.  This also accord with other research which found that TNF-α was up-

regulated markedly by both P.gingivalis and E.coli LPS at gene and protein levels 

(Lamont and Jenkinson, 1998; Bokarewa et al., 2005; Barksby et al., 2009).  The 

observed inability of monocytic/macrophagic THP-1 cells to express and secrete 

resistin could be attributed to the fact that THP-1 monocytes/macrophages are 

myeloid cell lines of blood leukemic origin (i.e. not primary cells) and the validity of 

these cells to express the natural biological functions and attributes of primary cells 

has never been fully verified.  Besides, how faithfully do these cell lines resemble 

primary cells is a question to be challenged with carefulness because behavioural 

pathways in THP-1 cell lines and primary cells may diverges to some degree 

considering the malignant origin of THP-1cell.  It can therefore be assumed that the 

up-regulation of TNF-α protein in response to LPS demonstrating that both human 

monocytic and macrophagic cell line THP-1 were responsive to LPS and were 

incapable of specifically inducing resistin secretion.  

As a consequence of incapability of human monocytic/macrophagic cell line THP-1 

to induce resistin production, it was necessary to look for another monocytic cell line 

to be used in the study.  Human monocytic/macrophagic cell line U937 was reported 

to be one of the most widely used models for investigating monocytic differentiation 

and ensuing biological functions of differentiated cell (Baek et al., 2009).  These cells 

have shown to express resistin in many previous studies (Yang et al., 2003; Xu et al., 

2006; Kunnari et al., 2009; Singh et al., 2010) and therefore it was used in the 

subsequent stimulation experiments.  Contrary to THP-1 cells at less mature stage 

owing to their blood leukemic origin, the origin of U937 cells are histocytic 

lymphoma and they are arrested at a more advanced stage of differentiation, this fact 
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may influence the expression of resistin and the response of these cells to stimuli such 

as LPS (Baek et al., 2009). 

The current study was carried out to test whether LPS functions as an inducer of the 

up-regulation of gene expression and protein production of resistin in human 

monocytic cell line U937.  Our results have shown that U937 monocytic cells 

constitutively and highly express resistin (gene and protein), and that LPS stimulation 

(both P.gingivalis and E.coli) at a concentration of 100 ng/ml was insufficient to 

induce any further up-regulation in resistin gene and protein at any of the three time 

point used in this experiment.  Although these results differ from a previous published 

research (Kunnari et al., 2009), they are in agreement with those of Yang et al (2003), 

who found that resistin is highly expressed in U937 macrophagic cells, and its 

expression is not up-regulated by LPS at a concentration of 5 µg/ml  (Yang et al., 

2003).  A possible explanation for this preliminary data might be that a very high 

level of resistin was produced constitutively by these cells and therefore it cannot 

produce any further in response to stimulation. The inability of LPS to drive U937 

monocytic cells to up-regulate resistin may indicate that resistin behave differently 

from a typical inflammatory mediator in these cells.   

As part of the present study, several pilot experiments were conducted to determine 

the optimal conditions for differentiation of U937 into macrophages to be stimulated 

later with LPS, and also to determine the optimal time point for LPS stimulation.  It is 

important to note that there was no remarkable difference in differentiation U937 cells 

into macrophages using PMA 50 ng/ml for 48 h and using PMA 100 ng/ml for 72 h 

for the same purpose.  In both protocols, PMA treatment resulted in a population of 

adherent macrophage-like cells as well as some non-adherent cell population that had 

yet to differentiate.  The differentiated cells by each protocol were then used for LPS 



5   Results  277 

 

stimulation.  The up-regulation in resistin levels and TNF-α levels in culture medium 

of the two experiments were comparable suggesting no difference in cells response by 

using the two protocols.  In the following experiments to explore the optimal time 

point at which LPS drives U937 macrophages for the highest enhancement of resistin 

production, we found that the up-regulation in resistin (and even TNF-α) levels were 

remarkable at 48 and 72 h, which entailed the use of 48 h time point in the subsequent 

experiments.  Of note, resistin levels were increased with time even in the control 

culture, and this might be attributed to cell proliferation that increases the cell 

numbers at the higher time points. 

Prior research has reported the contribution of LPS in the pathogenesis of periodontal 

disease (Jain and Darveau, 2010) and the role of macrophages as a main source of 

resistin in tissues (Patel et al., 2003).  We have therefore set out experiments to 

explore whether LPS at a concentration of 100 ng/ml can induce resistin (gene and 

protein) up-regulation in human macrophagic cell line U937.  In effect, the results of 

this study did not show any significant increase in resistin gene or resistin protein in 

response to both P.gingivalis and E.coli LPS stimulation at a concentration of 100 

ng/ml, and although a trend of up-regulation in resistin gene was observed in response 

to LPS, it was not statistically significant.  In agreement with this finding, Yang et al 

(2003) reported that LPS stimulation did not enhance resistin gene expression in U937 

macrophages (Yang et al., 2003).  The present finding seems also to be consistent 

with other research which found that LPS stimulation was unable to up-regulate 

resistin expression and secretion in human liver slices, and the LPS-induced 

inflammation does not influence resistin protein synthesis in human liver (Szalowska 

et al., 2009).  In contrast to our results, various investigations consistently revealed a 

significant up-regulation in resistin expression and secretion in response to LPS in a 
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wide range of cells including U937 monocytes, neutrophils and eosinophils, primary 

human macrophages and monocytes, human PBMCs, mouse adipocytes, and human 

adipocytes  (Lu et al., 2002; Kaser et al., 2003; Lehrke et al., 2004; Kusminski et al., 

2007; Kunnari et al., 2009; Bala et al., 2011).   

Baek et al (2009) have reported that the expression of CD14 in U937 cell line was 

enhanced only after vitamin D3 inducement, however no CD14 induction was 

observed after differentiation with PMA (Baek et al., 2009).  And, because CD14 play 

an essential role in LPS recognition (Pugin et al., 1994), its expression is certainly 

indicative of enhanced sensitivity of the cells to LPS stimulation and vice versa.  

Therefore; in the current study; the inability of LPS (100 ng/ml) to up-regulate resistin 

in U937 macrophages could be attributed to the proposed lack of CD14 expression in 

PMA-differentiated U937 cells which diminished the sensitivity of these cells to LPS 

induction. 

Most studies have tended to focus on the effect of individual molecular component 

such as LPS on the simulation of inflammatory cascades by host cells.  Because, the 

use of whole cell bacteria (which is recognized by numerous pattern recognition 

molecules) for stimulation may possibly drive a holistic response to all bacterial 

components, and in such case the identification of individual pathways is difficult to 

be measured.  A plethora of studies have demonstrated that several 

cytokines/chemokines were up-regulated by host cells following exposure to both live 

and non-viable P. gingivalis (Milward et al., 2007; Taylor, 2010); and clinically this 

is possibly significant, as the composition of the plaque biofilm, in terms of presence 

of both live and dead bacterial species, may be critical to periodontal disease 

progression. 
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As part of the current study, three pilot experiments were carried out to test the 

responsiveness of U937 macrophages to different stimuli; pseudomonas aeruginosa 

whole cell lysate, E.coli LPS (100 ng/ml and 1 µg/ml) at two time points (24 h and 48 

h).  Both the whole cell lysate and E.coli LPS (100 ng/ml) were unable to induce an 

up-regulation in resistin release from U937 macrophages.  However, only the high 

concentration of E.coli LPS (1 µg/ml) was able to enhance resistin production from 

these cells.  Considering the data from these experiments, it appears that the high 

concentration (1 µg/ml) is requisite for the LPS to drive U937 macrophages to 

enhance resistin production. 

In the present study, the effect of high concentration of LPS (1 µg/ml) on resistin 

production was assessed at both protein and mRNA levels.  Our results have shown 

that both, P.gingivalis and E.coli LPS at a concentration of 1 µg/ml enhance resistin 

release and expression in both U937 macrophages and primary monocytes as shown 

by the results from ELISA and Real-Time-PCR analysis.  The data are in good 

agreement with previous reports (Lu et al., 2002; Kaser et al., 2003; Lehrke et al., 

2004; Kusminski et al., 2007; Kunnari et al., 2009; Bala et al., 2011) which clearly 

demonstrated a significant up-regulation in resistin production in response to LPS 

stimulation  in a wide spectrum of cells encompassing U937 monocytes, human 

primary macrophages and monocytes, human PBMCs, neutrophils and eosinophils, 

mouse adipocytes, and human adipocytes.  Therefore, this study produced results 

which corroborate the findings of a great deal of the previous work in this field.  The 

enhancement of resistin expression and secretion by LPS might be attributed to the 

secondary induction by LPS-induced cytokines such as TNF-α and IL-1β. 

Together, these results show that a concentration of 100 ng/ml LPS, a dose that has 

previously been demonstrated to enhance resistin production in PBMC (Kaser et al., 
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2003), have no effect on resistin mRNA expression and protein secretion in U937 

macrophages.  Meanwhile, using a high concentration of LPS (1µg/ml) significantly 

enhance resistin expression and secretion in U937 macrophages.  It seems possible 

that the high LPS concentration helps the LPS signalling in U937 macrophages to 

bypass the necessity of CD14 component of receptor complex; which is deficient in 

these cells according to (Baek et al., 2009); and therefore to drive U937 macrophages 

to up-regulate resistin in response to LPS. 

In addition to the pivotal role of LPS in the pathogenesis of periodontal disease (Jain 

and Darveau, 2010), it has been shown that LPS induce insulin resistance in human 

(Agwunobi et al., 2000).  Moreover, type 2 diabetes is associated with elevated 

circulating serum LPS levels (Creely et al., 2007).  Here we report that resistin 

expression and secretion is enhanced in human monocytes and macrophages by LPS 

treatment, suggesting that insulin resistance provoked by LPS might at least be 

partially mediated by resistin. 

In conclusion, the present study supports that both monocytes and macrophages are 

important source of resistin in human, and showed a strong increase in resistin 

expression and secretion by LPS stimulation in these cells, also suggest that the 

concentrations of LPS that are required to elicit such a response are likely to be 

considerable.  This combination of findings provides some support for the conceptual 

premise that resistin may paly a role in the link between periodontitis and insulin 

resistance in diabetes. 
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Chapter 6 The‎effect‎of‎resistin‎on‎cytokine‎expression‎

in‎monocytes‎in‎Vitro 

 

6.1 Introduction 

 

Resistin is a 12.5 kDa cysteine-rich peptide hormone (Steppan et al., 2001b) which is 

primarily produced by macrophages, PBMCs and bone marrow cells (Fain et al., 2003; Patel 

et al., 2003).  Besides its actions on the regulation of glucose homeostasis and insulin 

sensitivity (Steppan et al., 2001a), resistin has also been implicated in the modulation of 

immune and inflammatory processes (Bokarewa et al., 2005; Fantuzzi, 2005).  Numerous 

studies have shown that resistin is a potential regulator of cytokine production.  Resistin 

regulates the production of several proinflammatory cytokines, chemokines and MMPs 

(Bokarewa et al., 2005; Silswal et al., 2005; Fu et al., 2006; Nagaev et al., 2006; Kusminski 

et al., 2007; Lee et al., 2009; Zhang et al., 2010b).  Also, proinflammatory cytokines (e.g. IL-

1β, TNF-α and IL-6) or LPS can enhance resistin production in human macrophages, PBMCs 

and neutrophils (Kaser et al., 2003; Lehrke et al., 2004; Bokarewa et al., 2005; Kunnari et al., 

2009; Shyu et al., 2009).  Resistin was found to upregulate the expression and secretion of 

IL-1β, TNF-α, IL-6, IL-8 and IL-12 in PBMCs and macrophages (Bokarewa et al., 2005; 

Silswal et al., 2005).  Likewise, in recent research human resistin induced the release of 

multiple cytokines and chemokines from human primary monocytes, these included IL-1α, 

IL-1β, IL-1Rα, IL-6, IL-7, CCL3/MIP-1α, CCL4/MIP-1β, CXCL8/IL-8, IL-10, CCL2/MCP-

1, G-SCF, and TNF-α (Lee et al., 2009).  In mouse macrophage cells, resistin enhances the 

expression of COX-2 (a key enzyme regulating the production of prostaglandins), and also 

up-regulated p65 (a subunit of NF-κB) at the mRNA and protein level (Zhang et al., 2010a).  
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Furthermore, resistin regulates the production of mediators and cytokines in non-immune 

cells such as adipocytes, chondrocytes, endothelial and smooth muscle cells (Kusminski et 

al., 2007; Zhang et al., 2010; Ding et al., 2011; Hsu et al., 2011).  In a recent study, resistin 

significantly induced the mRNA expression of some 20 proinflammatory cytokines and 

chemokines in chondrocytes from the preserved area of osteoarthritic cartilage as well as 

normal human chondrocytes (Zhang et al., 2010b).  Several studies indicate that resistin 

enhances the expression of various molecules in endothelial cells such as ICAM-1 and 

VCAM-1 (Verma et al., 2003; Kawanami et al., 2004; Hsu et al., 2011), P-Selectin  

(Manduteanu et al., 2010), fractalkine (Manduteanu et al., 2009a), VEGFR-1, VEGFR-2, 

MMP-1, MMP-2 (Mu et al., 2006) and tissue factor (TF) (Calabro et al., 2011), suggesting a 

direct proinflammatory effect of resistin on vascular endothelial cells.  These 

proinflammatory influences of resistin on various cell types, however, are based on a small 

number of studies and much more information is required to characterize resistin more 

comprehensively. 

Periodontal disease is initiated by periodontal bacteria that trigger an inflammatory cascade 

which induces host-mediated tissue destruction.  The production of different mediators and 

cytokines are responsible for the induction of inflammation in periodontal tissues.  These 

mediators act to enhance the adhesion molecule on the leukocytes and endothelial cells, 

which is a crucial phase for leukocytes to leave the vasculature and penetrate into the 

adjacent tissues.  The instigation of primary mediators such as TNF-α and IL-1 provokes the 

production of secondary mediators including chemokines and cyclooxygenases.  This results 

in exaggeration of inflammatory response, stimulation of enzymes that breakdown connective 

tissue (Graves and Cochran, 2003).  Diabetes is a possible risk factor for periodontal disease 

(Bascones-Martinez et al., 2011).  Serum resistin levels have been observed to be higher in 

diabetic individuals than in apparently healthy subjects (Tokuyama et al., 2007; Chen et al., 
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2009; Lau and Muniandy, 2011).  Moreover, having periodontitis was significantly associated 

with elevated serum levels of resistin (Furugen et al., 2008; Saito et al., 2008).  A recent 

study by Hiroshima and co-workers (2012) reported that the resistin level in gingival 

crevicular fluid from patients with periodontitis or diabetes mellitus-related periodontitis was 

significantly higher than that of healthy individuals, and that resistin level correlated with the 

intensity of periodontal inflammation as defined by gingival index score (Hiroshima et al., 

2012).  Since resistin has been shown to exhibit potent proinflammatory properties; it is 

tempting to suggest that the overproduction of resistin during type 2 diabetes could influence 

periodontitis through activation of various cytokines and mediators that are responsible for 

induction of inflammation in periodontal tissues.  Therefore, the aims of the present study 

were to investigate the in vitro effect of resistin on the regulation of cytokine-related genes in 

the human monocytic cell line THP-1 and to identify genes that are up-regulated in response 

to resistin stimulation.  In addition, this study investigated the effect of resistin on the 

expression and/or secretion of multiple cytokines and chemokines including MIP-1α, TNF-α, 

IL-12, CXCL10, IL-1β, and IL-6.  This investigation may be helpful in furthering our 

knowledge of cytokine expression in monocytes in response to resistin stimulation.   
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6.2 Results 

 

6.2.1 Characterization of differential cytokine mRNA expression in 

resistin-stimulated THP-1 monocytes 

 

To study the effect of resistin on the regulation of cytokine-related genes in THP-1 

monocytes, a pilot dose response experiment was first performed.  THP-1 monocytes (4 x 

10
6
) were stimulated with resistin at 3 different concentrations (100, 250 and 500 ng/ml) for 

48 h.  Un-stimulated cells served as a control.  Supernatants were collected and assayed for 

TNF-α concentrations with ELISA as described in section 2.2.  Figure  6.1 shows that resistin 

at doses of 100, 250 and 500 ng/ml induced increased TNF-α release in THP-1 monocytes 

compared to controls.  Statistical analysis was not performed due to the limited number of 

replicates in this pilot experiment.  As the most substantial response was obtained at resistin 

concentration of 500 ng/ml, this concentration was therefore used in all subsequent 

experiments. 

To study the temporal regulation of TNF-α secretion in THP-1 monocytes following resistin 

treatment and in order to determine the optimal time point for resistin stimulation, kinetic 

experiments were performed.  THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 

ng/ml) for 4 different time points; 1 h, 6 h, 24h and 48 h.  Un-stimulated cells served as a 

control.  Supernatants were collected and assayed for TNF-α concentrations with ELISA as 

described in section 2.2.  As shown in Figure  6.2 resistin induced increased TNF-α secretion 

in THP-1 monocytes after 1, 6, 24 and 48 h incubation compared to controls.  Again, 

Statistical analysis was not performed due to the limited number of replicates in this pilot 
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experiment.  As the most pronounced response was obtained at the early time points (1 and 6 

h), 2 h was therefore be chosen to be used in all subsequent experiments. 

To evaluate the effect of resistin on the regulation of different cytokine-related genes, THP-1 

monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  Un-stimulated cells 

served as a control.  Total cellular RNA was extracted and reverse transcribed to produce 

cDNA and the amount of different cytokines mRNA expression was quantified by Taqman 

low-density arrays (TLDA) as described in section 2.3.7.  As can be seen from Table  6.1 

twenty-eight of the 96 different genes (see Table 2.10) represented on the arrays were up-

regulated by resistin treatment compared with un-stimulated cells.  These genes involved 

those encoding mediators with well-documented and crucial roles in chronic inflammation 

and pathogenesis of periodontal disease such as IL-1β, IL-6 and TNF-α and also chemokines 

such as CCL3 (MIP-1α), CXCL10 (IP-10) and CXCL11. 
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Figure ‎6.1 Dose response of TNF-α‎secretion‎to‎resistin‎stimulation‎by‎THP-1 

monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with varying concentrations of resistin.  TNF-α 

levels in supernatants was measured by ELISA and compared with controls.  Each value 

represents the mean and standard deviation of a single experiment (duplicate cultures i.e. 

n=2).  
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Figure ‎6.2 Kinetics of TNF-α‎secretion‎in‎response‎to‎resistin 

THP-1 monocytes (4 x 10
6
) were cultured for different periods of time in the presence or 

absence of resistin (500 ng/ml).  TNF-α levels in supernatants was measured by ELISA and 

compared with controls.  Each value represents the mean and standard deviation of a single 

experiment (duplicate cultures i.e. n=2).  
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Table ‎6.1 Immune-regulatory genes those are up-regulated by resistin 

Gene  Fold change 

normalized to 

18S gene 

 

Fold change 

normalized to 

GAPDH gene 

 

CCL19 14.0 14.9 

CCL2 5.6 5.9 

CCL3 26.5 28.3 

CCR4 1.2 1.3 

CD40 2.5 2.7 

CD80 5.8 6.2 

CSF-1 6.5 6.9 

CSF-3 16.6 17.7 

CXCL10 161.4 172.3 

CXCL11 45.1 48.2 

CYP7A1 1.8 1.9 

EDN1 28.1 29.9 

ICAM-1 19.2 20.5 

IL-12β 72.9 77.9 

IL-13 2.9 3.0 

IL-15 1.7 1.8 

IL-1α 39.4 42.1 

IL-1β 31.2 33.4 

IL-6 21.9 23.5 

IL-8 3.7 3.9 

LRP-2 1.3 1.4 

LTA 2.7 2.9 

NFKB-2 6.1 6.5 

PTGS-2 5.4 5.8 

SMAD-7 1.8 1.9 

TBX21 2.4 2.6 

TNF-α 5.8 6.2 

VEGF 1.4 1.5 

 

THP-1 monocytes were treated with resistin (500 ng/ml) for 2 h.  Gene expression was 

quantified using Taqman low-density arrays by real-time polymerase chain reaction and 

normalised to either 18S or GAPDH genes.  The values shown are the mean fold change 

compared with untreated cells.  These data were obtained from single experiment in duplicate 

cultures (n=2). 

  



6   Results   289 

 

6.2.2 Investigation of the effect resistin on MIP-1α‎expression and 

secretion in THP-1 monocytes 

 

MIP-1α (CCL3) was one of the novel mediators which was most strongly upregulated in 

THP-1 monocytes by resistin and therefore this cytokine was selected for further 

investigation.  To study the effect of resistin on MIP-1α production at mRNA and protein 

levels, THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  Un-

stimulated cells served as a control.  Supernatants were collected and assayed for MIP-1α 

concentrations with ELISA as described in section 2.2.  Total cellular RNA was extracted and 

reverse transcribed to produce cDNA and the amount of MIP-1α mRNA expression was 

quantified by Real-Time PCR as described in section 2.3.6. 

Figure  6.3 shows the results from Real-Time PCR.  Resistin significantly up-regulated MIP-

1α mRNA expression (38 fold) in THP-1 monocytes at 2 h (p < 0.01) compared to control. 

As shown in Figure  6.4, resistin significantly enhanced MIP-1α secretion in THP-1 

monocytes after 2 h incubation (p < 0.001) compared to control.  In control cultures, the 

levels of MIP-1α (mean ± SD) were 1.6 ± 2.03 pg/ml and increased up to 24.6 ± 7.61 pg/ml 

in resistin stimulated cultures (p < 0.001 compared to control). 

Taken all together, the present study demonstrated that resistin not only up-regulates MIP-1α 

release but also enhances MIP-1α mRNA expression in THP-1 monocytes. 
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Figure ‎6.3 Resistin up-regulates MIP-1α‎mRNA‎expression‎in‎THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  The MIP-1α 

mRNA expression was quantified by Real-Time PCR.  The data are expressed as mean fold-

induction of three independent cell culture experiments (each experiment comprising 

duplicate cultures i.e. n=6 in total).  The mRNA expression was normalized to polymerase II 

RNA.  Statistical analysis was performed on δCt values using Mann-Whitney test. ** p<0.01 

compared with controls. 
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Figure ‎6.4 The effect of resistin on MIP-1α‎secretion‎in‎THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  MIP-1α levels 

in supernatants were measured by ELISA and compared with un-stimulated controls.  Each 

value represent a mean and standard deviation of 3 experiments (each comprising duplicate 

cultures i.e. n=6 in total).  These experiments were carried out on 3 different occasions.  

Statistics: Student’s t-test ***p <0.001 compared to control. 
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6.2.3 Investigation of the effect of resistin on TNF-α‎expression‎and‎

secretion in THP-1 monocytes 

 

As expected, the data from the TLDA experiment showed upregulation of TNF-α mRNA by 

resistin.  Therefore, to investigate the role of resistin on TNF-α production at both the mRNA 

and protein levels, THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 

h.  Un-stimulated cells served as a control.  Supernatants were collected and assayed for 

TNF-α concentrations with ELISA as described in section 2.2.  Total cellular RNA was 

extracted and reverse transcribed to produce cDNA and the amount of TNF-α mRNA 

expression was quantified by Real-Time PCR as described in section 2.3.6. 

Figure  6.5 presents the results from Real-Time PCR.  Resistin significantly up-regulated 

TNF-α mRNA expression (8.7 fold) in THP-1 monocytes at 2 h (p < 0.01) compared to 

control. 

As shown in Figure  6.6, resistin significantly increased TNF-α release in THP-1 monocytes 

after 2 h incubation (p < 0.01) compared to control.  In control cultures, the levels of TNF-α 

(mean ± SD) were 10.8 ± 10.78 pg/ml and increased up to 46.5 ± 9.96 pg/ml in resistin 

stimulated cultures (p < 0.01 compared to control). 

All in all, the present study demonstrated that resistin not only regulates TNF-α secretion but 

also enhances TNF-α mRNA expression in THP-1 monocytes. 
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Figure ‎6.5 Resistin up-regulates TNF-α‎mRNA‎expression‎in‎THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  The TNF-α 

mRNA expression was quantified by Real-Time PCR.  The data are expressed as mean fold-

induction of 3 independent cell culture experiments (each comprising duplicate cultures i.e. 

n=6 in total).  The mRNA expression was normalized to polymerase II RNA.  Statistical 

analysis was performed on δCt values using Mann-Whitney test. ** P<0.01 compared with 

controls. 
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Figure ‎6.6 The effect of resistin on TNF-α‎secretion‎in‎THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  TNF-α levels 

in supernatants were measured by ELISA and compared with un-stimulated controls.  Each 

value represents a mean and standard deviation of 3 experiments (each comprising duplicate 

cultures i.e. n=6 in total).  These experiments were carried out on 3 different occasions.  

Statistics: Mann-Whitney test. **p <0.01 compared to control. 
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6.2.4 Investigation of the effect of resistin on IL-12 expression and 

secretion in THP-1 monocytes 

 

IL-12 was another mediator identified as being strongly regulated by resistin in the TLDA 

experiment.  To assess the effect of resistin on the production of IL-12 at mRNA and protein 

levels, THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  Un-

stimulated cells served as a control.  Supernatants were collected and assayed for IL-12 

concentrations with ELISA as described in section 2.2.  Total cellular RNA was extracted and 

reverse transcribed to produce cDNA and the amount of IL-12 mRNA expression was 

quantified by Real-Time PCR as described in section 2.3.6. 

Figure  6.7 presents the results from Real-Time PCR.  Compared to control, resistin had no 

significant effect on IL-12 mRNA expression.  Although a trend of up-regulation (12.9 fold) 

can be observed after resistin stimulation, these changes were not statistically significant 

(p=0.055). 

Figure  6.8 shows that the levels of IL-12 in both control and resistin-stimulated cultures were 

below detection and that resistin had no effect on IL-12 secretion in THP-1 monocytes after 2 

h. 
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Figure ‎6.7 The effect of resistin on IL-12 mRNA expression in THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  The amount of 

IL-12 mRNA expression was quantified by Real-Time PCR.  The data are expressed as mean 

fold-induction of 3 independent cell culture experiments (each comprising duplicate cultures 

i.e. n=6 in total).  The mRNA expression was normalized to polymerase II RNA.   
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Figure ‎6.8 The effect of resistin on IL-12 secretion in THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  IL-12 levels in 

supernatants were measured by ELISA and compared with un-stimulated controls.  Each 

value represents a mean and standard deviation of 3 experiments (each comprising duplicate 

cultures i.e. n=6 in total).  These experiments were carried out on 3 different occasions.   
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6.2.5 Investigation of the effect of resistin on CXCL10 expression in THP-1 

monocytes 

 

TLDA experiments revealed that CXCL10 mRNA was strongly upregulated in THP-1 

monocytes by resistin.  To confirm the effect of resistin on the mRNA expression of CXCL10 

(IP-10), THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  Un-

stimulated cells served as a control.  Total cellular RNA was extracted and reverse 

transcribed to produce cDNA and the amount of CXCL10 (IP-10) mRNA expression was 

quantified by Real-Time PCR as described in section 2.3.6. 

Figure  6.9 presents the results from Real-Time PCR.  Compared to control, resistin 

significantly up-regulated CXCL10 (IP-10) mRNA expression (77.5 fold) at 2 h (p < 0.01). 
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Figure ‎6.9 The effect of resistin on CXCL10 mRNA expression in THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  The CXCL10 

mRNA expression was quantified by Real-Time PCR.  The data are expressed as mean fold-

induction of 3 independent cell culture experiments (each comprising duplicate cultures i.e. 

n=6 in total).  The mRNA expression was normalized to polymerase II RNA.  Statistical 

analysis was performed on δCt values using Mann-Whitney test. ** P<0.01 compared with 

controls. 
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6.2.6 Investigation of the effect of resistin on IL-1β‎expression in THP-1 

monocytes 

 

To evaluate the effect of resistin on the mRNA expression of IL-1β, THP-1 monocytes (4 x 

10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  Un-stimulated cells served as a 

control.  Total cellular RNA was extracted and reverse transcribed to produce cDNA and the 

amount of IL-1β mRNA expression was quantified by Real-Time PCR as described in section 

2.3.6. 

Figure  6.10 shows the results from Real-Time PCR.  Compared to control, resistin 

significantly up-regulated IL-1β mRNA expression (50.05 fold) at 2 h (p < 0.05) in THP-1 

monocytes. 
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Figure ‎6.10 The effect of resistin on IL-1β mRNA expression in THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  The IL-1β 

mRNA expression was quantified by Real-Time PCR.  The data are expressed as mean fold-

induction of 3 independent cell culture experiments (each comprising duplicate cultures i.e. 

n=6 in total).  The mRNA expression was normalized to polymerase II RNA.  Statistical 

analysis was performed on δCt values using Mann-Whitney test. * P<0.05 compared with 

controls. 
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6.2.7 Investigation of the effect of resistin on IL-6 mRNA expression in 

THP-1 monocytes 

 

To assess the effect of resistin on the mRNA expression of IL-6, THP-1 monocytes (4 x 10
6
) 

were stimulated with resistin (500 ng/ml) for 2 h.  Un-stimulated cells served as a control.  

Total cellular RNA was extracted and reverse transcribed to produce cDNA and the amount 

of IL-6 mRNA expression was quantified by Real-Time PCR as described in section 2.3.6. 

Figure  6.11 shows the results from Real-Time PCR.  Compared to control, resistin 

significantly up-regulated IL-6 mRNA expression (26.9 fold) at 2 h (p < 0.01) in THP-1 

monocytes. 
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Figure ‎6.11 The effect of resistin on IL-6 mRNA expression in THP-1 monocytes 

THP-1 monocytes (4 x 10
6
) were stimulated with resistin (500 ng/ml) for 2 h.  The IL-6 

mRNA expression was quantified by Real-Time PCR.  The data are expressed as mean fold-

induction of 3 independent cell culture experiments (each comprising duplicate cultures i.e. 

n=6 in total).  The mRNA expression was normalized to polymerase II RNA.  Statistical 

analysis was performed on δCt values using Mann-Whitney test. ** P<0.01 compared with 

controls. 
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6.3 Discussion 

 

A large and growing body of literature designate resistin as a significant local and systemic 

modulator of inflammation (Lehrke et al., 2004; Bokarewa et al., 2005; Nagaev et al., 2006).  

Resistin induces the synthesis of the pro-inflammatory cytokines TNF, IL-1, IL-6 and IL-12 

by various cell types through an NF-κB dependent pathway (Bokarewa et al., 2005; Silswal 

et al., 2005; Lee et al., 2009).  In particular, monocytes have recently been reported as 

resistin sensitive cells, responding to resistin stimulation with upregulation of multiple 

cytokines and chemokines (Lee et al., 2009), indicating that resistin sensitive cells may be 

broadly distributed throughout the body and that resistin can act to evoke inflammatory 

responses from primary monocytes.  Substantial evidence testifies to the importance of 

monocytes as circulating cells functional in pathogen recognition, since these cells are 

precursors of tissue macrophages and dendritic cells which play a pivotal role in the initial 

sensing of bacteria (Gordon and Taylor, 2005; Randolph et al., 2008).  Indeed, monocytes are 

important component of innate immunity in periodontal disease.  Inflammatory signals 

instigate monocytes to migrate to sites of infection in the tissues and differentiate into 

macrophages which can successfully combat invading microbes. The phagocytosis of 

bacteria by macrophages gives rise to cytokine release and antigen presentation which 

ultimately incite a more efficient adaptive immunity (Teng, 2006; Liu et al., 2010).  

Generally, individuals with diabetes are more susceptible to periodontal inflammation than 

non-diabetic (Bascones-Martinez et al., 2011).  Interestingly, higher levels of serum resistin 

are observed in diabetic patients (Tokuyama et al., 2007; Chen et al., 2009; Lau and 

Muniandy, 2011) as well as in periodontitis patients (Furugen et al., 2008; Saito et al., 2008) 

when compared with healthy controls.  Thus we hypothesized that human resistin, as an 

inflammatory mediator, might be a causal factor of periodontitis particularly in diabetic 
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patients, and here we report that human resistin can stimulate the synthesis of various 

cytokines and chemokines which may potentially aggravate inflammation in periodontium 

and modulate the clinical course of periodontal disease.    

The present study demonstrated for the first time that resistin enhances the expression of 28 

cytokine and chemokine genes in human monocytes.  In addition, new data are presented 

which reveal a significant upregulation in the gene expression and protein secretion of MIP-

1α in response to resistin.  Furthermore, resistin significantly enhanced CXCL10 expression 

in THP-1 monocytes.  Moreover, resistin significantly upregulated TNF-α on both gene and 

protein levels.  Besides, resistin enhanced IL-12 gene expression but not the protein secretion 

in THP-1 monocytes.  Finally, this study also demonstrated that resistin significantly 

upregulated the gene expression of IL-1β and IL-6 in THP-1 monocytes. 

In the current study we first carried out a preliminary experiment to determine the optimal 

concentration of resistin for inflammatory induction.  The results from this study showed that 

incubation of THP-1 monocytes with increasing concentration of resistin appears to stimulate 

the production of TNF-α, in particular, at a concentration of 500 ng/ml.  However, other 

studies demonstrated that resistin requires a higher concentration (30 µg/ml) in order to 

induce the secretion of TNF-α in U937 macrophages (Silswal et al., 2005), and (10 µg/ml) in 

primary monocytes (Lee et al., 2009).  The observed difference in results could be attributed 

to the differential sensitivity to resistin in different cell types.  Furthermore, the upregulation 

of TNF-α release was observed at all time points (1, 6, 24 and 48 h stimulation) compared 

with un-stimulated controls. 

To the best of our knowledge, this is the first study to investigate the effect of resistin on 

MIP-1α/CCL3 production in human monocytes.  The most interesting and novel finding in 

the current study was that resistin upregulates both the gene expression and protein secretion 

of MIP-1α/CCL3 in THP-1 monocytes, as revealed by ELISA data, Real-Time RT-PCR and 
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TLDA analysis.  It is encouraging to compare this figure with that found by Zhang et al 

(2010) who reported that MIP-1α gene is one of the genes that was upregulated by human 

chondrocytes in response to resistin treatment (Zhang et al., 2010).  This finding also 

corroborates the findings of Lee et al (2009), who demonstrated that resistin induced the 

release of MIP-1α from human primary monocytes (Lee et al., 2009).  There are several lines 

of evidence that implicate MIP-1α in the pathogenesis of periodontal disease, and therefore 

our data provides some support for the conceptual premise that resistin is possibly contribute 

to the inflammatory reaction in periodontium.  Previous research of chemokine expression in 

gingival biopsies identified that MIP-1α and its receptors were more prevalent in aggressive 

periodontitis and associated with higher INF-γ and lower IL-10 expression (Garlet et al., 

2003).  MIP-1α expression is also enhanced in epithelial cells and polymorphonuclear 

leukocytes by IL-1β, P.gingivalis and A.actinomycetemcomitans LPS (Ryu et al., 2007).  

Recent findings indicated that MIP-1α was expressed and produced by both human 

periodontal ligament and gingival fibroblasts challenged with lipopolysaccharide (LPS) from 

P.gingivalis (Morandini et al., 2010).  Furthermore, P.gingivalis enhanced the production of 

MIP-1α by DCs, monocytes, and THP-1 cells (Cohen et al., 2004).  MIP-1α was recognized 

to be the most abundantly expressed chemokine in periodontitis tissues, with its expression 

localized in the connective tissue subjacent to the pocket epithelium of inflamed gingival 

tissues (Gemmell et al., 2001; Kabashima et al., 2002).  It has also been demonstrated that 

MIP-1α positive cells increase in number with increasing severity of periodontal disease 

(Kabashima et al., 2002). Intriguingly, a multiplex analysis of GCF cytokine levels in patients 

with periodontitis undergoing initial periodontal therapy revealed that the levels of MIP-α at 

diseased sites reduced post-treatment (Thunell et al., 2010).  MIP-1α has a wide range of 

proinflammatory activities, for example Fahey et al. (1992) demonstrated that recombinant 

MIP-1α stimulates the secretion of proinflammatory cytokines TNF-α, IL-1β, and IL-6 by 
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peritoneal macrophages and act as an autocrine modulator of its cells of origin (Fahey et al., 

1992).  Additionally, MIP-1α orchestrates acute and chronic inflammatory host responses at 

the site of injury or infection mainly by recruiting a wide range of proinflammatory cells such 

as macrophages, neutrophils and lymphocytes (Schall et al., 1993; Maurer and von Stebut, 

2004; Silva et al., 2007; Hsieh et al., 2008), and hence may play a role in the recruitment of 

inflammatory leukocytes into the inflamed periodontal tissues.  Interestingly, MIP-1α can 

induce the chemotaxis and differentiation of osteoclast precursors into osteoclasts in 

periodontium, which could contribute to bone resorption and periodontal disease severity 

(Silva et al., 2007).  Considering this finding it can be expected that this high level increase in 

MIP-1α gene expression and protein secretion in response to resistin stimulation will have 

significant impact on the pathogenesis of periodontal disease. 

Another novel finding revealed in the current study, and shown by the results from Real-

Time RT-PCR and TLDAs analysis, was the significant upregulation in CXCL10/IP-10 gene 

expression by THP-1 monocytes in response to resistin treatment.  In reviewing the literature, 

no data was found on the influence of resistin on CXCL10 regulation.  However, the 

importance of CXCL10 stems from the fact that this chemokine is intensely expressed in 

diseased periodontal tissues (Kabashima et al., 2002; Garlet et al., 2003).  Previous studies of 

chemokines expression in gingival biopsies revealed that IP-10 and its receptors are more 

prevalent in aggressive periodontitis and correlates with higher levels of IFN-γ in these 

tissues (Garlet et al., 2003).  Indeed, CXCL10 has been associated with the development of 

Th1 cell responses; as it attracts activated Th1 cell into inflammatory sites through interaction 

with its receptor (CXCR3) (Kabashima et al., 2002; Silva et al., 2007).  Th1 cells synthesize 

and secrete IFN-γ which promotes the activation of macrophages to enhance their 

phagocytosis and secretion of cytokines (O'Garra, 1989).  Because IFN-γ-producing Th1 

lymphocytes are classically implicated in the activation of macrophages (Burger and Dayer, 
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2002; Ma et al., 2003), their chemotaxis could contribute to disease progression.  It can 

therefore be assumed that the resistin-induced upregulation of CXCL10 gene could contribute 

to enhanced severity of periodontal disease. 

A further intriguing observation in the current study (revealed by ELISA data, Real-Time 

RT-PCR and TLDAs analysis) is that resistin significantly enhanced TNF-α mRNA 

expression and protein secretion in THP-1 monocytes.  This finding supports previous 

research which reported a significant upregulation of TNF-α gene expression and/or protein 

release upon resistin stimulation in human PBMC, human primary monocytes, adipocytes, 

and in human chondrocytes (Bokarewa et al., 2005; Fu et al., 2006; Kusminski et al., 2007; 

Lee et al., 2009; Zhang et al., 2010).  In addition, it was found that resistin induced the 

secretion of TNF-α in human and mouse macrophages, and that the combination of resistin 

with LPS stimulation had an additive influence on TNF-α secretion by these cells (Silswal et 

al., 2005).  In contrast, the production of TNF-α was significantly decreased by resistin 

treatment of LTA- induced DCs, however, resistin alone had no effect on TNF-α production 

by mature DCs (Son et al., 2008). 

Interestingly, our data from both TLDAs and real Time RT-PCR analysis showed that resistin 

significantly upregulated IL-1β gene expression in THP-1 monocytes.  The data are in 

agreement and extending previous reports demonstrating that IL-1β mRNA expression and/or 

protein secretion was significantly enhanced by resistin stimulation in human PBMC 

(Bokarewa et al., 2005), human primary monocytes (Lee et al., 2009), and human 

chondrocytes (Zhang et al., 2010).  These data clearly support the potent proinflammatory 

regulatory functions of resistin.  

The effect of resistin on IL-6 expression was assessed at mRNA level by both Real-Time 

PCR and TLDAs analysis.  Intriguingly, stimulation of THP-1 monocytes with resistin in 

vitro led to significant upregulation in IL-6 mRNA levels.  This finding is broadly consistent 
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with earlier studies which demonstrated an enhancement of IL-6 gene expression and/or 

protein secretion in response to resistin stimulation by PBMCs (Bokarewa et al., 2005), 

human primary monocytes (Lee et al., 2009), human chondrocytes (Zhang et al., 2010), and 

in human adipocytes (Fu et al., 2006; Nagaev et al., 2006; Kusminski et al., 2007).  In 

contrast, Son et al (2010) reported that resistin supressed the expression of IL-6 in human 

monocyte-derived dendritic cells (Son et al., 2010).  Also, resistin has been reported to 

supress IL-6 production in DCs stimulated with LTA which support an immunomodulatory 

effect of resistin on DCs to suppress cell-mediated immunity (Son et al., 2008). 

In the present study, Real-Time RT-PCR and TLDAs analysis showed that IL-12 gene 

expression was upregulated in THP-1 monocytes upon resistin stimulation, however, this 

upregulation failed to reach statistical significance.  In contrast, Son et al (2010) reported that 

resistin supressed IL-12 p40 expression in human monocyte-derived dendritic cells (Son et 

al., 2010).  The current study also demonstrated that resistin had no effect on IL-12 release in 

THP-1 monocytes as shown by the results from ELISA.  Although, these results differ from 

an earlier observation which showed an enhancement in the secretion of IL-12 by 

macrophages in response to resistin (Silswal et al., 2005), they are consistent with other 

research which demonstrated that resistin alone had no direct effect on IL-12 p40 production 

in DCs, however it significantly attenuates the production of this cytokine in LTA- induced 

DCs (Son et al., 2008). 

To provide an overall view of the primary response of THP-1 monocytes to resistin, we 

carried out a large scale screening procedure where 96 different genes related to 

inflammatory cascade were analysed at once using Taqman Low Density Arrays (TLDAs).  

The present study is the first study to show that the gene expression profiling reveals a 

profound upregulation in a large set of inflammatory genes in THP-1 monocytes by exposure 

to resistin treatment, these genes including IL-1α, IL-1β, IL-6, TNF-α, IL-12β, IL-13, IL-15, 
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NFκB-2, ICAM-1, IL-8, CXCL10, CXCL11, CCL2, CCL3, CCL19, CCR4, CD40, CD80, 

CSF-1, CSF-3, CYP7A1, EDN1, LRP-2, LTA, PTGS-2, SMAD-7, TBX21, and VEGF.   

In inflamed periodontal tissues, cytokines and chemokines are produced by various cell types 

such as monocytes, macrophages, neutrophils, keratinocytes, lymphocytes, epithelial cells 

and fibroblasts, and they are thought to be key regulators of inflammatory process (Seymour 

and Gemmell, 2001; Preshaw and Taylor, 2011).  Cytokines enhanced the production of 

inflammatory mediators in the periodontium (e.g. prostaglandins, cytokines, chemokines and 

MMPs) driving tissue destruction (Preshaw and Taylor, 2011).  Manifold feedback loops 

generate; for instance, cytokines stimulate the release of prostaglandins and elevated 

prostaglandin concentrations result in enhanced cytokine secretion (Noguchi et al., 2007).  

Therefore, the production of chemokines and cytokines under the influence of resistin could 

exacerbate the inflammation in the periodontium.  Cytokines and chemokines that are highly 

upregulated by resistin in inflammation have not previously been shown to be regulated by 

resistin in human monocytes.  However, it is encouraging to compare the preliminary data 

obtained from TLDAs in the current study with that found by Zhang et al (2010), who 

demonstrated that resistin enhanced the expression of multiple cytokines and chemokines in 

human articular chondrocytes including TNF-α, IL-6, IL-1β, IL-1α, IL-8, CCL2, CCL3, 

CCL3L1, CCL4, CCL5, CCL8, CXCL1, CXCL2, CXCL3, CXCL6, MMP1, and MMP13 

(Zhang et al., 2010b).  Our results also confirm those of previous reports showing the 

proinflammatory effect of resistin and its ability to activate immune responses and to induce 

the local recruitment of immune cells in inflammatory lesion (Bokarewa et al., 2005; Silswal 

et al., 2005; Nagaev et al., 2006).   

Chemokines have been shown to play an important role in a variety of chronic inflammatory 

disease, including periodontitis and rheumatoid arthritis (Silva et al., 2007; Szekanecz et al., 

2010).  Chemokines are large family of small (7-15 kDa), structurally related proteins that 
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induce leukocytes chemotaxis in vitro.  These proteins are classified into four families 

depending on structural properties and primary amino acid sequence, it includes CXC, CC, C, 

CX3C (Zlotnik and Yoshie, 2000; Charo and Ransohoff, 2006).  In the present study several 

chemokines/receptors were upregulated in response to resistin stimulation. These include 

CXCL8, CXCL10, CXCL11, CCL2, CCL3, CCL19, and the chemokine receptor CCR4.  

Although the junctional epithelium of healthy periodontium shows a slight expression of 

CXCL8/IL-8, inflamed periodontal tissues reveal an elevated expression of this chemokine 

(Silva et al., 2007).  Moreover, a reduction in the GCF levels of IL-8 has been recorded after 

periodontal treatment for chronic periodontitis patients (Zhu and Liu, 2010), which suggest a 

close association between IL-8 and the development and severity of periodontitis.  The up-

regulation of IL-8 gene in response to resistin stimulation, revealed in the current study, is 

also accord with other earlier observations which showed that resistin stimulation enhanced 

the mRNA expression and/or protein secretion of IL-8 in human monocytes (Lee et al., 

2009), adipocytes (Nagaev et al., 2006), and in human chondrocytes (Zhang et al., 2010b).  

In reviewing the literature, no data was found on the effect of resistin on the expression of 

CXCL10, CXCL11, CCL19, and the chemokine receptor CCR4.  In effect, CXCL11 

production was enhanced both in (TNF-α)-treated human gingival fibroblasts (HGFs) 

stimulated with MDP (the NOD2 agonist) (Hosokawa et al., 2010a) and in (IFN-γ)-treated 

HGFs stimulated with TNFSF14 (tumor necrosis factor superfamily 14) (Hosokawa et al., 

2010b).   

The enhanced expression of CCL2 found in the present study also consistent with those of 

Zhang et al (2010) who reported that CCL2 expression was upregulated in human 

chondrocytes in response to resistin stimulation (Zhang et al., 2010b).  Moreover, recent 

study has shown that resistin induced the secretion of CCL2 in mouse cartilage (Lee et al., 

2009).  Interestingly, Scheres et al (2011) demonstrated that stimulating periodontal ligament 
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fibroblasts and gingival fibroblasts with viable P.gingivalis lead to the induction of CCL2 

(Scheres et al., 2011) suggesting a potential role in periodontal disease.   

As previously mentioned, no data was reported in reviewing the literature about the effect of 

resistin on CCL19 (also named MIP-3β) regulation.  It has been shown that the expression 

and secretion of CCL19 (a chemotactic factor for macrophages, T cells and dendritic cells) 

can be enhanced by stimulating human neutrophil with either  LPS, TNF-α, Gram positive or 

Gram negative bacteria (Scapini et al., 2001; Akahoshi et al., 2003).  Therefore, the ability of 

resistin to enhance CCL19 expression shown in the current study, while preliminary, suggests 

that resistin may contribute indirectly to the orchestrated recruitment of innate and adaptive 

immune cells to the inflamed periodontal lesion.   

In the present study, CCR4 gene expression was enhanced in response to resistin stimulation.  

Previous studies have reported that CCR4, which binds CCL17 and CCL22, is expressed on 

dendritic cells, T cells, and monocytes/macrophages, and particularly on the T cells and 

dendritic cell infiltrating the lung of asthmatics in response to allergen challenge (Panina-

Bordignon et al., 2001; Pilette et al., 2004).   

In the present study, resistin upregulated the expression of colony stimulating factors; CSF-1 

and CSF-3.  CSF-1 (macrophage-colony stimulating factor) and CSF-3 (granulocytes-colony 

stimulating factor) are hematopoietic growth factors that are involved in the proliferation, 

differentiation, function and survival of mononuclear phagocytes (Stanley et al., 1997; Chitu 

and Stanley, 2006; He et al., 2008).  In effect, CSF-1 plays vital roles in innate immunity, 

cancer and inflammatory diseases such as rheumatoid arthritis and obesity (Chitu and 

Stanley, 2006).  In mice, CSF-1 production enhanced in response to TNF-α, IFN-γ  (Satriano 

et al., 1993) and LPS stimulation (Roth et al., 1997).  Notably, it has been demonstrated that 

CSF-1 gene was significantly associated with aggressive periodontitis (Rabello et al., 2006).  
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On the other hand, CSF-3 provokes the production of TNF-α in vivo (Xu et al., 2000) and is 

thought to play a critical role in driving joint inflammation (Lawlor et al., 2004).  

The results from this study showed that resistin enhanced the expression of co-stimulatory 

molecules CD40 and CD80 in THP-1 monocytes, suggesting a possible “indirect” role of 

resistin in the regulation of effective adaptive immune response.  Our results concur with 

those of Fang et al (2011) who demonstrated that a dramatic increase in the expression levels 

of CD40 was found in human umbilical vein endothelial cells (HUVECs) treated with resistin 

(Fang et al., 2011).  In 2003, Verma et al demonstrated that incubation of endothelial cells 

with human recombinant resistin resulted in enhanced CD40 ligand-induced MCP-1 

production with a concomitant reductions in TRAF-3 (an inhibitor of CD40 ligand signalling) 

expression, however, it did not alter CD40 receptor expression in these cells (Verma et al., 

2003).  Recent evidence revealed that CD80 expression was upregulated by IFN-γ and GM-

CSF on both monocytes and T helper cells (Yokozeki et al., 1998; Liu et al., 1999).   

In addition, new data are presented in the current study which reveals that resistin is capable 

of upregulating a variety of genes possessing pleiotropic activities in THP-1 monocytes, these 

include CYP7A1, EDN1, LRP-2, LTA, PTGS-2, SMAD-7, TBX21 and VEGF.  Each of 

these genes encodes a protein that possess a critical function in regulating diverse cellular 

processes.  For instance, CYP7A1 gene encoding a microsomal enzyme that is tightly 

regulated to the pathway through which cholesterol is converted into bile acids, and thereby 

control bile acid synthesis and maintain lipid homeostasis (Song and Chiang, 2006).  

Therefore, the upregulation of this gene by resistin stimulation may suggest a possible 

contribution of resistin in lipid haemostasis.  Whereas EDN1 Gene encoding a peptide 

hormone (endothelin-1) with extremely potent biologically discrepant actions, and is 

apparently implicated in cardiovascular, neural, pulmonary, reproductive, and renal 

physiology as well as in immune functions and inflammation (Stow et al., 2011).  On the 
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other hand, LRP-2 gene encoding a membrane glycoprotein (also known as Megalin) that 

belongs to the low-density lipoprotein receptor (LDLR) family and it represents an endocytic 

receptor expressed on the apical surface of several epithelial cells and internalizes a variety of 

molecules.  Once internalized, these molecules are directed to the lysosomal degradation 

pathway or transported by transcytosis from one side of the cell to the opposite membrane.  

LRP-2 implicated in processes that are crucial during development and adult life and are 

impaired in several pathologic conditions that compromise the kidney and the central nervous 

system (Cabezas et al., 2011; Marzolo and Farfan, 2011).  SMAD7 gene encodes an 

inhibitory protein that blocks transforming growth factor-beta (TGF-β) signalling via 

multiple mechanisms in the cytoplasm and in the nucleus and therefore antagonizes various 

cellular processes regulated by TGF-β such as cell proliferation, differentiation, apoptosis, 

adhesion and migration.  Consequently, an alteration in SMAD7 expression is often 

associated with several human diseases such as cancer, tissue fibrosis and inflammatory 

diseases (Yan and Chen, 2011).  TBX21 gene encoding a transcription factor responsible for 

the differentiation of naïve Th cells into a Th1 lineage (Li et al., 2012), which may indicate a 

potential role of resistin in promoting Th progenitor cells differentiation.  VEGF gene 

encodes a Vascular endothelial growth factor which is a known to increase vascular 

permeability and vasodilatation (Ferrara, 2004).  In addition, there is evidence that VEGF is 

implicated in the pathogenesis of cancer, arteriosclerosis, obesity, and diabetes mellitus-

related complications such as diabetic retinopathy (Bates et al., 2002; Ferrara, 2004; Silha et 

al., 2005). 

Lymphotoxin alpha (LTA) (formerly known as TNF-β) have been identified as a member of 

the tumor necrosis factor cytokine superfamily, and is implicated as important regulator and 

developmental factor for the immune system and inflammation (Williams-Abbott et al., 

1997; Calmon-Hamaty et al., 2011). The results of this study demonstrated that THP-1 
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monocytes respond to exogenous resistin by upregulating the expression of LTA gene, which 

add a further evidence to confirm the proinflammatory features of resistin.  In this study, 

resistin was found to cause a raise in the expression of IL-13 gene, which is well known to 

posses an anti-inflammatory properties in vivo (de Vries, 1998). It is well established that IL-

13 is known to promote inflammation associated with allergic disorders and contribute in 

asthma pathology, and inhibit the production of proinflammatory mediators (Hershey, 2003).  

Interestingly, IL-13 suppressed CXCL10 production in (IFN-γ or TNF-α)-stimulated human 

gingival fibroblasts (Hosokawa et al., 2009). 

It is interesting to note that the stimulation of THP-1 monocyte with resistin in this study 

resulted in the upregulation of IL-15 gene expression.  A large body of evidence documented 

the importance of IL-15 in activating the proliferation and cytotoxicity of NK cell, 

stimulating the production of cytokines and chemokines by these cells and regulating the 

interaction between NK cell and macrophage.  In addition, IL-15 has the capacity to induce 

the production of proinflammatory cytokine in macrophages and phagocytosis in neutrophils 

and therefore contributing in innate immune responses and maintaining neutrophil-mediated 

inflammatory processes.  Accordingly, IL-15 is a pivotal cytokine with pleiotropic activity 

that drive immunoregulatory cross-talk between natural and specific immune cells and 

bridges the innate and adaptive immune systems (Fehniger and Caligiuri, 2001).  It is 

therefore likely that resistin participate in the orchestration of the innate immune response as 

well as influences the developing adaptive response. 

In this study resistin was also found to enhance the gene expression of PTGS-2 

(prostaglandin-endoperoxide synthase 2) that encodes an enzyme known as cyclooxygenase-

2 (COX-2), which plays a key role in regulating the production of prostaglandins. The 

prostaglandins produced by COX-2 are involved in inflammation and pain response in 
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diverse tissues in the body, and therefore, COX-2 is an inflammation-induced enzyme that 

remains undetectable in most tissues under normal conditions and is highly expressed at the 

sites of inflammation (Grosser et al., 2006; Mitchell and Warner, 2006).   The findings of the 

current study are consistent with those of Zhang et al (2010a) who found a significant 

upregulation in COX-2 gene expression in mouse macrophages upon exposure to resistin 

treatment (Zhang et al., 2010a).  It is therefore likely that the upregulation of COX-2 by 

resistin stimulation might amplify and enhance inflammatory reaction. 

Previously published research have shown that the expression of intercellular adhesion 

molecule-1 (ICAM) in endothelial cells was enhanced in response to resistin stimulation 

(Kawanami et al., 2004; Hsu et al., 2011).  Likewise, the current results indicate that resistin 

upregulates the gene expression of ICAM in THP-1 monocytes.  Interestingly, ICAM-1 plays 

a role in inflammatory processes and in the T-cell mediated immunity (van de Stolpe and van 

der Saag, 1996), therefore supporting the notion of resistin implication in inflammation. 

Emanating from studies of cytokines in chronic inflammatory diseases is the concept that the 

IL-1 family cytokines may be of fundamental importance in the pathogenesis of periodontal 

disease and rheumatoid arthritis (Graves and Cochran, 2003; Barksby et al., 2007; Dinarello, 

2007).  Interestingly, two principal members of IL-1 cytokine family (IL-1α and IL-1β) were 

upregulated by resistin stimulation in the current study.  Research has found that both IL-1α 

and IL-1β were upregulated in response to stimulation with whole periodontal bacteria as 

well as by P.gingivalis and E. coli LPS (Lindemann et al., 1988; Sandros et al., 2000; 

Kusumoto et al., 2004; Barksby et al., 2009).  In the present study, the upregulated 

expression of IL-1α gene in response to resistin treatment was consistent with those of Zhang 

et al (2010) who found that resistin enhanced IL-1α gene expression in human chondrocytes 

(Zhang et al., 2010b).  This finding is also accords with a previous observation, which 
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showed that resistin-treated human primary monocytes enhanced the release of IL-1α protein 

(Lee et al., 2009). 

An abundance of evidence has emerged suggested that the proinflammatory influences of 

resistin stems from the activation of several intracellular signalling pathways.  Interestingly, 

resistin activates NFκB, resulting in the translocation of both p65 and p50 subunits from the 

cytoplasm to the nucleus (Bokarewa et al., 2005); this occurs through resistin-mediated 

phosphorylation of the inhibitory protein IκBα and the p65 subunit of NFκB (Hu et al., 

2007b).  Also, resistin phosphorylate both MAPKs; such as Erk or p38; and Akt as a 

downstream substrate of PI3K in several cell lines (Calabro et al., 2004; Kushiyama et al., 

2005; Bertolani et al., 2006; Mu et al., 2006).  Moreover, resistin enhances the cytosolic 

calcium concentration through both the influx of calcium from the extracellular environment 

and the PLC activation resulting in the release of calcium from intracellular pools such as 

endoplasmic reticulum (Bertolani et al., 2006). 

Another interesting observation in the current study is that resistin upregulated the gene 

expression of NF-κB in THP-1 monocytes.  The present findings seem to be consistent with 

other research which reported a significant upregulation of NF-κB subunits p65 at both the 

mRNA and the protein levels in mouse macrophages in response to resistin treatment (Zhang 

et al., 2009).  Besides, resistin enhanced the DNA-protein complex of NF-κB subunits p50 

and p65 in the nuclear extracts derived from U937 macrophages and PBMCs treated with 

human resistin (Bokarewa et al., 2005; Silswal et al., 2005).  Moreover, the nuclear level of 

p65 (NF-κB subunit) in human endothelial cells was significantly increased upon exposure to 

resistin stimulation (Manduteanu et al., 2009).  Likewise, NF-κB protein expression in 

adipocytes was increased in response to resistin treatment (Kusminski et al., 2007).  Hence, it 

could conceivably be hypothesised that exogenous resistin stimulates the expression of a key 
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component of the innate immune pathway represented by NF-κB and its localization into the 

nucleus, which strongly affirm the proinflammatory regulatory properties of resistin. 

In conclusion, the present study supports that resistin functions as a pivotal inflammatogenic 

cytokine which exacerbates and triggers inflammatory response through the upregulation of a 

wide range of cytokines and chemokines.  The proinflammatory influence of resistin on the 

synthesis of MIP-1α, IP-10, TNF-α, IL-1β, and IL-6 may play a role on cross-susceptibility 

between periodontal disease and diabetes.  
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Chapter 7 General‎discussion 

 

The link between diabetes and periodontal disease has been widely discussed in 

literature.  Resistin is one of the important cytokines that may contribute to the 

inflammatory process (Bokarewa et al., 2005; Nagaev et al., 2006).  The serum levels 

of resistin have been reported to be increased in diabetes and were significantly 

correlated to increased risk of type 2 diabetes (Chen et al., 2009; Lau and Muniandy, 

2011).  Emerging research is highlighting the importance of cytokines as diagnostic 

markers and rational targets for therapy of immune-mediated diseases, including 

periodontal disease (Preshaw, 2008a; Giannobile et al., 2009). 

The present study demonstrated for the first time that salivary resistin is significantly 

elevated in periodontitis subjects as compared to gingivitis and periodontally healthy 

subjects in both T2DM and non-diabetic group.  However, there were no significant 

differences in salivary resistin levels between T2DM and non-diabetic groups 

irrespective of periodontal status.  Thence, it is reasonable to hypothesise that elevated 

salivary resistin is a mirror of the local inflammation in periodontitis, and that this, 

and not the diabetic status, has a profound impact on the salivary resistin levels.  The 

relationship between increasing levels of resistin in saliva and the presence of 

periodontal disease is further supported by significant positive correlations that were 

demonstrated for the first time in the current study between salivary resistin levels and 

the clinical periodontal parameters (%BOP, mean PD, mean LOA and PISA).  This 

also reflects the potential importance of salivary resistin as a diagnostic marker for 

periodontal disease.  The current study demonstrated for the first time that saliva 

samples from both T2DM and non-diabetic subjects showed significant reductions in 
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resistin levels at 3, 6 and 12 months after non-surgical periodontal management.  It 

seems possible that these reductions in salivary resistin levels mirror improvements in 

periodontal inflammation following non-surgical periodontal management.  

The current study has been unable to demonstrate a significant difference in GCF 

resistin levels between different periodontal categories within T2DM and non-diabetic 

groups, and even between T2DM and non-diabetic subjects irrespective of periodontal 

status.  However, the relationship between resistin levels in GCF and the presence of 

periodontal disease is evidenced by significant positive correlations that were 

demonstrated for the first time in the current study between the clinical periodontal 

parameters (%BOP, mean PD and PISA) and resistin levels in GCF.  This study 

provided the first direct evidence that GCF resistin levels were significantly and 

positively correlated with resistin levels in saliva.  Taken collectively, it is now 

possible to state that resistin in saliva and GCF is affiliated with the level of local 

inflammation in periodontal disease.  This permitted a broad and comprehensive 

portrayal of the utility of salivary resistin as indicator of inflammatory status in the 

periodontal tissues.   

In accord with prior research (Chen et al., 2009; Lau and Muniandy, 2011); the 

current study reported a significant increase in serum levels of resistin in T2DM 

subjects compared to non-diabetic controls.  The relation between increasing levels of 

resistin in serum and the presence of T2DM is further supported by significant 

positive correlations that were demonstrated in the current study between serum 

resistin levels and HbA1c, BMI, and hsCRP.  This combination of findings provides 

some support for the conceptual premise that resistin may be useful as biomarkers to 

reflect the increased risk of T2DM. 



7   General discussion  321 

 

Although, serum resistin levels showed no significant difference between various 

periodontal category within T2DM and non-diabetic groups in the current study, 

significant positive correlations were demonstrated between serum resistin levels and 

the clinical periodontal parameters (%BOP, mean PD and PISA), which suggest a 

possible relationship between increasing serum resistin levels and the presence of 

periodontal disease.  It is possible, therefore, to hypothesise that elevated levels of 

serum resistin related to increased risk of T2DM which was partially attributable to 

the inflammatory process.   

It is becoming apparent that periodontal disease is driven by various oral bacteria 

which have different forms of LPS, and it is the host inflammatory response to 

uncontrolled bacterial challenge that primarily mediates tissue damage (Barksby et 

al., 2009; Hajishengallis, 2009).  In the present study, LPS from both P.gingivalis and 

E.coli significantly enhanced resistin expression and secretion in human monocytes 

and macrophages.  Along with the principal role of LPS in the pathogenesis of 

periodontal disease (Jain and Darveau, 2010), LPS was also reported to induce insulin 

resistance in human (Agwunobi et al., 2000).  Furthermore, an association was found 

between elevated serum LPS levels and T2DM (Creely et al., 2007).  Additionally, 

the role of human resistin in the development of insulin resistance has been well 

established (Li et al., 2009a; Park et al., 2011).  Taking into consideration the 

upregulation of resistin expression and secretion by human monocytes and 

macrophages in response to LPS stimulation in the current study, it can be suggested 

that the insulin resistance provoked by LPS might at least be partially mediated by 

resistin. 

The current study demonstrated a direct role for resistin in upregulating the expression 

and secretion of a wide range of proinflammatory cytokines, chemokines, and other 
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inflammatory mediators in THP-1 monocytes.  It is possible; therefore, that resistin 

stimulation results in a hyper-inflammatory state in the local periodontal tissues.  

Cytokines, chemokines and inflammatory mediators secreted by monocytes in 

response to resistin induction drive the tissue destruction that results in the clinical 

manifestation of periodontitis.  

Evidence for a key role of pro-inflammatory cytokines such as TNF-α and IL-6 as 

being involved in the development of insulin resistance have been well established 

(Tilg and Moschen, 2008a).  It can therefore be assumed that the elevated circulating 

levels of cytokines stemming from continuous and/or excessive production of these 

mediators in periodontal tissues as a result of resistin stimulation may contribute to 

the proinflammatory milieu which is proposed to play a role in the development of 

insulin resistance.  This observation not only provides a new link how resistin might 

affect insulin resistance but also again demonstrates the possible role of the resistin in 

the relationship between periodontal disease and diabetes. 

This study represents a first attempt to study the effect of resistin in the modulation of 

T2DM and periodontal disease.  Our samples comprised mostly Caucasians from the 

UK population.  The covariates in term of ages, ethnicity, gender and smoking status 

were homogenous and were matched with the case-control groups.  Clinical 

measurements were taken using standardized protocols and resistin was measured 

using assay with good precision.  Nevertheless, this study had limitations.  The results 

of the analysis of resistin in serum were based on single cross-sectional 

measurements.  Further longitudinal analyses are, therefore, required to investigate 

further potential associations between circulating resistin and periodontal disease, and 

to provide novel insights into the pattern of response with regard to changes in serum 

resistin levels after non-surgical periodontal management.  The differences in the 
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recruitment pools used for subjects with T2DM and non-diabetic subjects represent 

another weakness in the current study, since the subjects with T2DM were recruited 

from medical databases of T2DM patients held in both primary and secondary care 

settings whereas the non-diabetic subjects were recruited from patients referred from 

general dental practice or from patients seen on student treatment clinics within the 

Newcastle Dental Hospital.  Suffice to say, diabetes was studied in diabetes cohort, 

and periodontal condition was appraised in subjects came to Dental Hospital seeking 

for dental treatment, therefore, to which extent those two cohorts are valid to be 

studied as a representative for community is difficult to be determined. 

In the current study, subjects with T2DM and non-diabetic subjects were matched 

based on their periodontal diagnosis; however, the extent and severity of periodontal 

disease were not considered in this process.  Therefore, it would be interesting to 

stratify periodontal case selection basing on extent and severity of disease in future 

studies in order to ensure more robust matching of groups with regards to periodontal 

status.  The groups examined in the current study were relatively small; hence it is 

likely that further investigation with a larger number of subjects would increase the 

power of analysis and therefore permitted a better portrayal of the resistin levels and 

its modulation in periodontal disease and T2DM.  Although matched for known 

confounding factors, residual confounders which are unmatched cannot be excluded.  

Consequently, it is recommended that case-controlled study matching other 

confounding factors such as BMI would provide more robust results in future 

research.  Another limitation in the current study is the technique used to sample 

saliva; it involved an oral rinse using 10ml of saline which consequently diluted the 

saliva sample. This dilution might have resulted in an underestimation of the actual 

salivary levels of the resistin tested.  Particularly because the actual volume of whole 
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saliva in each sample is not known; therefore, it is not possible to clarify the levels of 

dilution each sample underwent, and all this limits the diagnostic value of the 

introduced method.  Thus, further research is needed; implementing another technical 

procedure in saliva sampling, possibly by accumulating saliva in the mouth and 

expectorating into collection tubes and thereby obtaining autonomous production and 

secretion of saliva (un-stimulated whole saliva sample).  Further, other biomarkers 

associated with the development of periodontal diseases and diabetes mellitus not 

examined here might still be present in serum, saliva and GCF at levels that could be 

used to discriminate between health and disease; and also to correlate with the disease 

pathogenesis.  Therefore, it would be interesting to study the interaction effect of 

multiple adipokines and cytokines in the modulation of T2DM and periodontal 

disease.  This could be achieved in prospective research by quantifying a number of 

inflammatory mediators using a multiplex immunoassay.  By measuring the levels of 

different mediators in body fluids, the unidentifiable biomarkers can be explored and 

a novel index might be established to provide a better indicator of periodontal disease 

and T2DM. 

The current findings add substantially to our understanding of the proinflammatory 

cytokines and chemokines that are highly upregulated by resistin in inflammation, and 

which have not previously been shown to be regulated by resistin in human 

monocytes.  The fact that resistin activates monocytes for proinflammatory mediators 

production points to the importance of the monocytes/macrophage signal cascades in 

obesity, diabetes and periodontal disease.  Additionally, the present study suggests 

that resistin modulates inflammation in periodontitis and may be a new marker of 

periodontitis.   Further investigation of the actions of resistin on periodontal tissues, 

including gingival epithelial cells/fibroblasts, periodontal ligament fibroblasts, 
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osteoblasts/osteoclasts, endothelial cells and immune cells, is necessary to elucidate 

the role of resistin in periodontal diseases.  The data in the current study clearly 

indicate that resistin also plays a pivotal role in amplifying inflammation–resistin–

inflammation cascade thereby adding a new dimension to the physiological function 

of this important protein.  However, this project was limited in several ways.  First, 

the project was unable to analyse the events that follow the interaction of resistin with 

responsive cells and the intracellular signalling pathways of resistin was not 

evaluated.  Therefore, further experimental investigations are needed to explore the 

potential intracellular signalling pathways for resistin-induced inflammation.  The 

capability of monocyte in responding to resistin stimulation with cytokine release 

shown in the present study clearly indicates that monocytes express the, so far, 

unidentified receptor for resistin.  Consequently, further investigation and 

experimentation into the process of identification of resistin receptor(s) is strongly 

recommended.  In effect, it would be interesting to assess the detailed molecular 

pathways whereby resistin interacts with cells and specific molecules, such as 

receptors, proteins, transcription factors and target genes, as well as individual 

genomic variability within these mediators.  Detailed characterization of the signal 

transduction pathways involved in the proinflammatory cytokine induction by resistin 

represent an exciting field for future study and the translation of basic science 

discoveries to clinical application and therefore would be of great interest in the 

generation of pharmacological modulators in the treatment of inflammatory disorders 

such as periodontal disease. 

Inflammation in periodontitis is induced by a spectrum of cytokines which function in 

a complex networks; therefore, the identification of principal regulatory mediators in 

this complex may provide a logical target for therapeutic modalities.  Several studies 
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suggest that IL-1β and TNF-α could be a potential targets for therapeutic intervention 

in periodontal inflammation (Graves and Cochran, 2003; Liu et al., 2010).  Blocking 

of IL-1β and TNF-α in animal model of periodontitis has shown promising returns 

(Zhang et al., 2004).  For instance, exogenous IL-1β and TNF-α antagonists caused a 

significant improvement in periodontal healing as shown by a reduction in 

inflammatory cell infiltration, alveolar bone loss and connective tissue breakdown  

(Delima et al., 2001; Zhang et al., 2004).  Nonetheless, research into the use of anti-

cytokines in the therapeutic modalities of periodontitis is still at a very early stage, 

and its impact on periodontal disease has not yet investigated in humans. 

The immunopathological role of resistin has been well documented, but anti-resistin 

therapies (which may one day prove to be a powerful anti-inflammatory treatment for 

a spectrum of disorders) have not been studied yet.  Resistin represents an 

amplification signal for components of the innate and adaptive immune responses.  

Therefore, addressing the clinical implication and pathologic mechanism of resistin in 

periodontal disease progression are warranted.  The current study has found that 

generally resistin in saliva was linked to the intensity of periodontal inflammation, 

whereas serum resistin levels were associated with diabetes mellitus.  Although 

further studies may be necessary to confirm the efficacy of measuring salivary resistin 

levels in the prediction, diagnosis and management of periodontal disease, our study 

certainly highlights the potential for the salivary resistin to move one step closer to 

becoming an established biomarker of inflammatory activity in periodontal disease.  

Hence, periodontal disease progression might play a significant role in predicting high 

risk individuals for one of the most common diseases of the present era (i.e. diabetes 

mellitus).  Further, periodontal therapy might decrease the risk of severity of this 
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systemic disease because it reduces the inflammatory burden, not only in systemically 

compromised but also in otherwise healthy individuals.   

Consequently, information about host responses and modulation factors (such as 

resistin) in diabetes, periodontitis and diabetes-associated periodontitis may be used 

for therapeutic purposes.  As our comprehension of these diseases deepens, the focus 

is shifting from diagnosis and treatment to prevention and health promotion.  

Numerous cases of diabetes may stay un-diagnosed, and the profiteer screening for 

diabetes in the dental clinic (which depends on self-reported data and clinical 

periodontal parameters) might be efficient in identifying some of these cases.  Active 

and adjunctive therapy to improve insulin sensitivity and glycaemic control, such as 

preventing the recurrence of periodontal disease and tooth mortality in patients with 

diabetes, should be considered substantial components of treatment.  As proofs of the 

close liaison between inflammatory periodontal diseases and diabetes mellitus 

continue to accumulate; physicians, dentists and oral health professionals should 

interact to a greater extent, to improve general health care and glycaemic control and 

to prevent complications among subjects with diabetes. 

In conclusion, the findings of the present study contribute to the knowledge of the role 

of resistin as a potential mediator linking T2DM and periodontal disease.  The up-

regulation of serum resistin levels may be directly relevant to periodontal destruction 

in diabetic subjects.  The oral inflammatory burden, as assessed by elevated levels of 

inflammatory mediator resistin in saliva, is related to the intensity of local 

inflammation (periodontal disease), therefore, the current study demonstrate resistin 

as a novel local biomarker for periodontal disease.  Our results indicate that resistin is 

important member of the cytokine family with potent immune-regulatory functions; 

which may play a pivotal role in the exacerbation of periodontal inflammatory 
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response and the development of insulin resistance.  Resistin may therefore be crucial 

in the regulatory control of inflammatory responses in periodontal disease and may 

also contribute to the cross-susceptibility between type 2 diabetes and periodontal 

disease. 
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