
UNIVERSITY OF NEWCASTLE UPON TYNE

DEPARTMENT OF COMPUTING SCIENCE

NEWCASTLE

UN IVERS ITY OF

A Framework for Supporting Automatic
Simulation Generation from Design

by

Leonardus Budiman Arief

Ph.D. Thesis

July 2001

ii

Abstract
Building a new software system requires careful planning and investigation in

order to avoid any problems in the later stages of the development. By using a

universally accepted design notation such as the Unified Modeling Language (UML),

ambiguities in the system specification can be eliminated or minimised.

The aspect that frequently needs to be investigated before the implementation

stage can be commenced concerns the proposed system’s performance. It is necessary

to predict whether a particular design will meet the performance requirement - i.e. is it

worth implementing the system - or not. One way to obtain this performance

prediction is by using simulation programs to mimic the execution of the system.

Unfortunately, it is often difficult to transform the design into a simulation program

without some sound knowledge of simulation techniques. In addition, new simulation

programs need to be built each time for different systems - which can be tedious, time

consuming and error prone.

The currently available UML tools do not provide any facilities for generating

simulation programs automatically from UML specifications. This shortcoming is the

main motivation for this research. The work involved here includes an investigation of

which UML design notations can be used; the available simulation languages or

environments for running the simulation; and more importantly, a framework that can

capture the simulation information from UML design notation. Using this framework,

we have built tools that enable an automatic transformation of a UML design notation

into a simulation program. Two tools (parsers) that can perform such a transformation

have been constructed. We provide case studies to demonstrate the applicability of

these tools and the usefulness of our simulation framework in general.

iii

Acknowledgement
I would like to thank my supervisor, Dr. Neil Speirs for his guidance and useful

feedbacks throughout my Ph.D. work. A lot of people at Newcastle University have

also helped me towards the completion of this thesis, especially Prof. Isi Mitrani for

explaining everything I need to know about simulation, Prof. Santosh Shrivastava and

Dr. Mark Little for providing initial direction and one of the case studies, Prof. Cliff

Jones for letting me finish my thesis while working as a research associate on his

project, our librarian Ms. Shirley Craig for assisting me in finding references, and the

Department of Computing Science for funding my Ph.D.

I would also like to acknowledge my colleagues for many fruitful and interesting

discussions, in particular to Dr. Denis Besnard, Dr. Cristina Gacek, Mr. Tony Lawrie,

Dr. Graham Morgan, Mr. Thomas Rischbeck, and Dr. Arnaud Simon. I am grateful to

my friends, wherever they are now, for cheering me up and giving me comfort. Last

but certainly not least, I would like to express my special gratitude to my Mom,

without whose constant encouragement and prayer I would never finish this thesis.

iv

Table of Content

1. INTRODUCTION ..1

1.1. OVERVIEW..1

1.2. RELATED WORK ...2

1.2.1. Related Work outside UML...3

1.2.2. Related Work using UML ...7

1.2.3. Relevance to this thesis ...15

1.3. CHAPTERS PLAN...16

2. DESIGNING A SOFTWARE SYSTEM...18

2.1. INTRODUCTION...18

2.2. UNIFIED MODELING LANGUAGE ...19

2.3. UML AND SYSTEM PERFORMANCE ..25

3. SIMULATION TO PREDICT SYSTEM’S PERFORMANCE..27

3.1. INTRODUCTION...27

3.2. SIMULATION BASICS...29

3.2.1. What is simulation? ..29

3.2.2. Advantages and Disadvantages of Simulation ..31

3.2.3. Types of Simulation...32

3.3. SIMULATION LANGUAGES/PACKAGES...35

3.3.1. C++SIM..36

3.3.2. JavaSim...39

3.4. SIMULATION SUMMARY..41

4. FROM DESIGN TO SIMULATION ..42

4.1. INTRODUCTION...42

4.2. SIMML FRAMEWORK ...42

4.2.1. SimML Components ..43

4.2.2. SimML Actions ..46

4.3. USING THE SIMML FRAMEWORK TO GENERATE SIMULATION PROGRAM FROM DESIGN..................48

4.3.1. SimML Syntax ...49

4.3.2. Capturing SimML Notation from UML Design ..53

4.3.3. Transforming SimML Notation into Simulation ..54

5. UML-TO-SIMULATION TOOL IMPLEMENTATION ...55

5.1. INTRODUCTION...55

5.2. THE PARSER’S STRUCTURE ..57

v

5.3. PERL IMPLEMENTATION..58

5.3.1. PERL Basics ...59

5.3.2. From SimML to C++SIM using PERL ...67

5.4. JAVA IMPLEMENTATION ...82

5.4.1. Java Foundation Class (JFC) and Swing ...83

5.4.2. Our Approach in Building the UML/SimML Tool ...87

5.4.2.1. Formulating a solution ..87

5.4.2.2. Java package for SimML ..89

5.4.2.3. Deriving SimML information from UML diagrams ...91

5.4.2.4. Generating JavaSim code..94

5.4.2.5. Building the UML/SimML Tool...97

5.4.3. Using XML for storing SimML data ...106

5.5. SUMMARY ..110

6. CASE STUDIES..112

6.1. INTRODUCTION...112

6.2. SIMPLE QUEUEING SYSTEMS ..113

6.2.1. Description of the Queueing Systems ...114

6.2.2. Queueing Systems Specification using UML/SimML ..115

6.2.3. Simulation of the Queueing Systems ...119

6.2.4. Summary of the Queueing Systems case study ..124

6.3. BT INTELLIGENT NETWORK (IN) APPLICATION..125

6.3.1. Description of the BT IN Application ...125

6.3.2. BT specification using UML/SimML...127

6.3.3. Simulation of the makeCall operation ..131

6.3.4. Summary of BT case study ..135

6.4. VOLTAN..136

6.4.1. Description of the Voltan system ..136

6.4.2. Voltan system specification using the SimML framework ...138

6.4.3. Simulation of Voltan system..140

6.4.4. Summary of Voltan case study ..142

6.5. SOME REMARKS..142

7. CONCLUSION ...144

7.1. ANALYSIS OF THE SIMML TOOLS...144

7.2. FURTHER WORK ...146

vi

List of Figures
FIGURE 2-1: THE CLASS DIAGRAM NOTATIONS...20

FIGURE 2-2: THE USE CASE DIAGRAM NOTATION...21

FIGURE 2-3: THE SEQUENCE DIAGRAM NOTATION ...22

FIGURE 2-4: THE COLLABORATION DIAGRAM NOTATION ..22

FIGURE 2-5: THE STATE DIAGRAM NOTATION ..23

FIGURE 2-6: THE ACTIVITY DIAGRAM NOTATION...23

FIGURE 2-7: THE PACKAGE DIAGRAM NOTATION...24

FIGURE 2-8: OTHER USEFUL UML NOTATIONS ...24

FIGURE 3-1: THE CLASSIFICATION OF SIMULATION TYPE BASED ON EVENTS AND TIME33

FIGURE 3-2: SIMULATION QUEUE...37

FIGURE 3-3: SCHEDULER-PROCESS INTERACTION ..37

FIGURE 4-4: THE EBNF NOTATION FOR THE SIMML SYNTAX...52

FIGURE 5-1: UML TO SIMULATION PATH ..55

FIGURE 5-2: THE TWO STAGES IN PARSING TEXTUAL SIMML NOTATION INTO SIMULATION58

FIGURE 5-3: AN OUTLINE FOR READING, EVALUATING AND ORGANISING DATA64

FIGURE 5-4: THE DATA ARRAY ...69

FIGURE 5-5: THE PROCESS ARRAY ..70

FIGURE 5-6: THE QUEUE ARRAY ..71

FIGURE 5-7: THE OBJECT ARRAY ..71

FIGURE 5-8: THE RANDOMS ARRAY..71

FIGURE 5-9: THE STATISTICS ARRAY ...71

FIGURE 5-10: THE PATHS FOR GENERATING SIMULATION FROM UML..88

FIGURE 5-11: THE CLASS DIAGRAM FOR THE SIMML COMPONENTS AND ACTIONS91

FIGURE 5-12: MODULAR ORGANISATION OF THE SIMML COMPONENTS ..96

FIGURE 5-13: THE STRUCTURE OF OUR UML TOOL...99

FIGURE 5-14: THE PROPOSED LAYOUT OF THE UML/SIMML TOOL ..105

FIGURE 5-15: A SNAPSHOT OF THE SIMML DTD ..107

FIGURE 6-1: A SYSTEM WITH ONE ARRIVAL AND ONE SERVER...114

FIGURE 6-2: A SYSTEM WITH MULTIPLE SERVERS ..114

FIGURE 6-3: A SYSTEM WITH MULTIPLE ARRIVALS AND SERVERS...115

FIGURE 6-4: THE CLASS DIAGRAM FOR “ONE ARRIVAL, ONE SERVER” SYSTEM...........................116

FIGURE 6-5: THE SEQUENCE DIAGRAM FOR “ONE ARRIVAL, ONE SERVER” SYSTEM....................117

FIGURE 6-6: THE RANDOM VARIABLES VIEW FOR “ONE ARRIVAL, ONE SERVER” SYSTEM..........117

FIGURE 6-7: THE STATISTICS VARIABLES VIEW FOR “ONE ARRIVAL, ONE SERVER” SYSTEM......118

FIGURE 6-8: THE CLASS DIAGRAM FOR “ONE ARRIVAL, MULTIPLE SERVERS” SYSTEM...............119

FIGURE 6-9: THE ARCHITECTURE OF THE BT IN APPLICATION ..126

vii

FIGURE 6-10: THE CLASS DIAGRAM OF BT IN APPLICATION ..127

FIGURE 6-11: THE SEQUENCE DIAGRAM OF BT IN APPLICATION ...128

FIGURE 6-12: AN ACTIVITY DIAGRAM FOR MAKECALL ...129

FIGURE 6-13: THE CLASS DIAGRAM FOR THE MAKECALL OPERATION ...130

FIGURE 6-14: THE SEQUENCE DIAGRAM FOR THE MAKECALL OPERATION131

FIGURE 6-15: A SIMPLIFIED ARCHITECTURE OF A SINGLE VOLTAN NODE137

FIGURE 6-16: THE SIMML NOTATION OF THE VOLTAN SYSTEM..139

FIGURE 6-17: SCREEN DUMP OBTAINED FROM RUNNING RUNSIM PARSER..140

FIGURE 6-18: EFFECT OF NETDELAY ON PERFORMANCE DIFFERENCE BETWEEN LEADER AND

FOLLOWER...142

8

List of Tables
TABLE 4-1: RANDOM NUMBER DISTRIBUTIONS SUPPORTED BY SIMML ..46

TABLE 5-1: PERL VARIABLE INDICATORS...60

TABLE 5-2: THE FOUR VIEWS OF THE UML/SIMML TOOL...104

TABLE 6-1: SIMULATION RESULTS OF ONE ARRIVAL, MULTIPLE SERVERS SYSTEMS123

TABLE 6-2: SIMULATION RESULTS OF MULTIPLE ARRIVALS, MULTIPLE SERVERS SYSTEMS124

TABLE 6-3: THE RANDOM VARIABLES USED IN THE MAKECALL SIMULATION132

TABLE 6-4: SIMULATION RESULTS OF THE MAKECALL OPERATION...135

TABLE 6-5: VOLTAN SIMULATION RESULTS WITH INCREMENTING NETDELAY................................141

TABLE 7-1: COMPARISONS BETWEEN RUNSIM AND UML/SIMML TOOLS..145

viii

Chapter 1 - Introduction

1

Chapter 1

1. Introduction

1.1. Overview

The construction of a new computer system is an inherently complicated process,

hence it requires some careful planning and design. For example, in the area of

distributed systems, a computer application usually needs to satisfy quite stringent

requirements such as reliability, availability, security, etc. and the cost of building

such an application will be quite high. It is therefore desirable to be able to predict the

performance of the proposed system before the construction begins.

In order to solve this problem, it is important to evaluate the requirements of the

new system and translate them into a specification for design purpose. The design

process helps the system developers to understand the requirements better and to

avoid misconceptions about the system. From the specification, a simulation program

can be built to mimic the execution of the proposed system. The simulation run

provides some data about the states of the system and from these data, the

performance of the system can be predicted and analysed.

There is a drawback though as it is often difficult to transform the design

specification into a simulation program. The specification is normally quite complex

and different performance requirements (such as high availability, reliability, etc.),

connection between components (network delay, partition, etc.) and fault tolerance

(machine failures and repairs) require additional effort. On top of that, a new

Chapter 1 - Introduction

2

simulation program needs to be built each time for a different specification, and the

system developer must also be familiar with the simulation techniques - which is not

always the case.

The currently available design methods/tools (such as the Unified Modeling

Language or UML [18, 31, 63, 64]) do not provide a way to automatically generate

simulation programs from the specification. There has been some effort in eliminating

this shortcoming in areas outside UML, such as in the Rapide [53, 54] and DisCo [40]

projects, but at the time this Ph.D. project started, there was no tool available yet that

is able to transform a system specification in UML (with certain performance

requirements) into a simulation program. Since then, there have been some effort

trying to address the lack of performance prediction features in UML, such as the

work by the PERMABASE project [1-3, 72], Pooley and King [62] and Bondavalli et.

al [15].

The aim of this Ph.D. study was therefore to produce a tool or method that

allows software performance prediction to be incorporated into the UML design

specification. To achieve this goal, the tool should be able to generate simulation

programs from UML design specification without the necessity of the system

designers to know how to code a simulation program. This tool should be suitable for

a variety of system applications and will allow different performance requirements to

be incorporated in the simulation.

1.2. Related Work

There have been some projects trying to incorporate software performance prediction

into system design/specification by tackling the problems from many different angles.

In relevance to my Ph.D. work, these related projects can be divided into two main

Chapter 1 - Introduction

3

categories: those that do not use UML at all and those that use UML (to some degree)

for specifying a system. The second has only emerged recently (since around 1999)

and the number of projects that fall into this group has grown quite rapidly.

1.2.1. Related Work outside UML

Rapide

Rapide is a computer language for defining and executing models of system

architectures [53]. It introduces an interface connection architecture which means that

all communication between modules is explicitly by connections between interfaces.

Here, an architecture consists of a set of specification modules (interfaces), a set of

connection rules (for defining the communication between the interfaces), and a set of

formal constraints which determines whether a pattern of communication is legal or

illegal.

A component consists of a module and its interface. A module either

encapsulates an executable prototype of the component or it describes the hierarchical

architecture of the component (when a component is composed of other components).

An interface defines what a module requires-from or provides-to other modules and

connections are defined between the features in interfaces.

The Rapide language is accompanied by a set of tools which help in the

specification, design and testing of software modules and architectures. In general, the

Rapide language is composed of five sublanguages:

1. The Type Language: describes the interfaces of components. It supports object

oriented and abstract data type styles of defining interfaces as well as multiple

interface inheritance.

Chapter 1 - Introduction

4

2. The Pattern Language: provides a general language for defining event-based

reactive constructs or dynamic architectures.

3. The Executable Language: is used for writing executable modules which are

defined by a set of processes which observe and react to events.

4. The Architecture Language: models interface connection architecture and it

defines dataflow and synchronisation between modules.

5. The Constraint Language: provides features for specifying formal constraints on

the behaviour of components and architectures.

The feature provided by Rapide is very extensive and Rapide provides a

simulation tool using an event-based execution model or POSET (partially ordered set

of events).

DisCo

DisCo (Distributed Co-operation) is a formal specification method for reactive

systems which incorporates a specification language, a methodology for using this

language for building specifications, and a tool for supporting the methodology [40].

It focuses on the collective behaviour of the objects, i.e. how they cooperate

with each other. As well as supporting an object oriented approach, DisCo is based on

the joint action approach which concentrates on the interaction between different

components instead of the components themselves. This increases the level of

abstraction, i.e. the bias towards particular hardware and software architecture is

minimised.

The DisCo language supports modularisation (due to its object oriented

paradigm) and incremental specification (which means that the level of the

specification’s details can be gradually increased until the desired level is met). A

Chapter 1 - Introduction

5

DisCo specification consists of a set of layers (which are composed of classes and

actions). New layers can be constructed by composing two or more separate layers or

by refining existing layers (superposition).

The DisCo tool provides a way to validate a specification by using animated

simulations. Animation makes specifications much more understandable and

promotes communication between the people involved. The DisCo tool also supports

graphical representation of execution scenarios (Message Sequence Charts). A short

tutorial on DisCo is available at [46].

AUTOFOCUS

AUTOFOCUS is a tool prototype for the formally based development of reactive

systems [36] - mainly in the area of distributed systems. It supports system

development by offering integrated, comprehensive and mainly graphical description

techniques for specifying both different views and different abstraction levels of the

system. There are four different description techniques provided to cover the different

views on the system:

• System Structure Diagrams (SSDs): describe the static aspects of distributed

systems by viewing them as a network of interconnected components with an

ability to exchange messages over their communication channels.

• Data Type Definitions (DTDs): represent the types of the data processed by a

distributed system in a textual notation.

• State Transition Diagrams (STDs): describe the dynamic aspects, i.e. the

behaviour of a distributed system and its components.

• Extended Event Traces (EETs): provides extra behavioural view of a distributed

system (on top of STDs) through exemplary runs from a component-based view.

Chapter 1 - Introduction

6

AUTOFOCUS supports component-oriented development of systems, where a

component represents a structural part of the system, possibly described by different

views using the description techniques above, which allow different levels of system

granularity to be specified.

AUTOFOCUS uses prototyping and simulation approach for observing and

validating the properties of a system being developed. To support this approach,

AUTOFOCUS provides a tool component called “SIMCENTER” that facilitates:

• the generation of executable prototypes of systems or parts thereof,

• the execution of these prototypes in a simulation environment,

• the visualisation of the runs using the same description techniques as used for

designing the system, and

• an optional connection between the simulation environment and third-party front-

ends such as multimedia visualisation tools or external hardware systems.

Both AUTOFOCUS and SIMCENTER are written entirely in Java programming language.

Architectural Modelling Box (AMB)

AMB is a modelling and design language that provides a unified basis for the design

process as well as functional and quantitative analysis [44]. The aim of this project is

to bring together the worlds of system designers and performance modellers by

introducing a design language that includes quantitative properties of systems.

AMB is formed by a graphical language that models systems, their behaviour as

well as other relevant data. In general, AMB models consist of two parts:

• resource or entity model: describes the static aspects of the system, i.e. its

components, their physical properties and the way they can interact.

Chapter 1 - Introduction

7

• behaviour model: describes the dynamic aspects, i.e. the processes or actions

performed by the system, in terms of related activities.

Specifications written in the AMB design language can then be automatically

translated into models for performance analysis (such as graph models, timed Petri

nets or hybrid models) or for functional analysis. More “traditional” performance

modelling formalisms (such as regular queueing networks or quantitative simulations)

are not suitable for AMB’s purpose because their expressive power is too limited to

describe most of the aspects that AMB users are interested in.

1.2.2. Related Work using UML

PERMABASE

The Performance Modelling for ATM Based Applications and Services

(PERMABASE) project [1, 3, 72] was carried out by British Telecom and the

University of Kent at Canterbury. The aim of this project is to provide performance

feedback as part of the object-oriented design process for distributed systems through

an automatic generation of performance model directly from the system design model.

This project tries to address the lack of use of physical environment (hardware)

specification in distributed system designs. There are four model viewpoints identified

here:

1. Workload Specification: specifies the “work force” (human operators or other

systems) that drives the system; this includes classes of components considered as

external to the system.

2. Application Specification: specifies the classes of components that constitute the

software or logical behaviour of the system, i.e. the system logic components

(software, firmware or hardware logic).

Chapter 1 - Introduction

8

3. Execution Environment Specification: identifies classes of components that are

physical components providing the resources used by the application during

system operation, e.g. processors, networks and other resources that the system

operates over.

4. System Scenario: defines the instances of declared components (of the three

above) and the connections between them, which form a specific system

architecture or configuration.

By combining the specifications of each of the viewpoints above, a Composite Model

Data Structure (CMDS) of the entire system is obtained. The CMDS can then be

checked for consistency and translated into a discrete event simulation or performance

model of the system.

This project tried to use, and adapt if necessary, the UML notations for the

representation of the four domain specification areas. For example, the Execution

Environment Specification can be described using the class diagram, while the

System Scenario view can be represented using the deployment diagram.

As a follow on from the PERMABASE project, Akehurst and Waters propose a

list of UML deficiencies with respect to performance modelling [2].

Pooley and King

The goal of this work is to integrate performance estimation with the system design

process [62]. It was suggested that successful effort toward this goal most likely come

from projects that attempt to build performance analysis directly into accepted design

method such as UML.

The UML sequence diagrams were initially thought to have the potential to

generate and display useful information relating to performance. In the end, it was

Chapter 1 - Introduction

9

decided that the sequence diagrams are more suited to being a display format rather

than a detailed behavioural specification format. It is mentioned that the sequence

diagrams have been used as traces of events generated from a simple discrete event

simulator. The work have also found a mapping from the deployment diagram to

queuing models, and have built a simulation library around collaborations with state

machines.

The challenge lies in setting the foundation for an integrated performance

engineering approach on the whole UML notation. The use of collaboration diagrams

with embedded state machines seems very promising, as well as its extension to

incorporate collaborations within deployment diagrams.

In a follow on paper [48], King and Pooley describes how UML designs can be

transformed systematically into Petri nets. The UML diagrams of interest here are the

collaboration and statechart diagrams, and the target of the transformation is

Trivedi’s SPNP [24] tool’s variant of stochastic Petri nets. Further exploration of

systematic mappings from UML is undertaken by developing a graphical front end.

The possibility of employing layered queueing networks (on top of Petri nets) as the

targets of UML transformation is also being investigated.

In [60], Pooley outlines a roadmap that shows how software performance can be

integrated with software engineering process. Performance engineering is described as

an experimental approach to predicting the likely performance of systems. It can

involve building and monitoring the system under the workloads of interest, or using

models to represent the system. Modelling has many advantages over

building/monitoring, which makes it used in most of the work of interest to software

engineering.

Chapter 1 - Introduction

10

The challenge is to bring the worlds of software engineers and performance

analysts together, which can be achieved by embedding performance analysis

techniques into design methods and tools. As UML is rapidly being adopted as a

design standard, the focus of the work should be on expanding or augmenting UML to

allow performance related information to be incorporated into its design notation.

Bondavalli et.al.

This work aims to extend UML design toolkits with automatic dependability analysis

tools to evaluate the various dependability attributes of the system under design [15,

16]. It is part of a European ESPRIT project called HIDE (High-Level Integrated

Design Environment for Dependability) and one of the tools created in this project

deals with an automatic transformation of UML diagrams into Timed Petri Net (TPN)

models, which allow the modelling of activities whose duration is a random time.

The UML diagrams of interest here include mainly the structural diagrams, such

as the use case, class, object and deployment diagrams, as well as behavioural

diagrams, such as the statechart diagrams. Since standard UML does not include a

notation for dependability aspects, it is necessary to provide minor extensions through

standard extension mechanisms: tagged values and stereotypes. Tagged values are

pseudo attributes assigned in the form of a pair “tag = value”, while stereotypes

introduce a high-level classification (meaning/usage) of model elements. The

transformation of the relevant UML design diagrams into TPN models is performed in

two stages:

• from UML to the Intermediate Model

 First, the elements and relations of the UML design are projected into the

Intermediate Model (IM), which is used to capture the dependability related

Chapter 1 - Introduction

11

information. The IM is defined as a hypergraph, where each node represents an

entity described somewhere in the UML structural diagrams, and each hyperarc

represents a relation between the elements/nodes. IM nodes have a set of attributes

attached to them, which describe their fault activation and repair process as well as

the propagation process for a hyperarc. In other words, the IM is built by

projecting the UML entities into IM nodes, and the structural UML relations into

IM hyperarcs.

• from the Intermediate Model to TPN models

 The hypergraph representing the IM is examined, and from there, a set of subnets

for each IM element is generated. The TPN model can then be derived from all

these.

More details on this tool, especially on the generation of the TPN models and the

suitable Petri Net environments/tools can be found in [15].

Kähkipuro

In [45], Kähkipuro presents a framework for creating, using and maintaining

performance models of object-oriented distributed systems. The architecture of this

performance modelling framework consists of four main elements:

• The method of decomposition (MOD)

 It provides the foundation of the framework by defining an algorithm for finding

an approximate solution for performance models.

• UML based performance modelling techniques

 These techniques provide the means for modelling complex information systems

by using abstraction for separating application level issues from the use of

technical resources.

Chapter 1 - Introduction

12

• Performance modelling methodology

 This provides a link to the software engineering process by indicating how the

proposed UML modelling techniques can be used at different stages of system

development to produce useful performance models for the system.

• Object-oriented performance modelling and analysis tool (OAT)

 The purpose of this tool is to automate some of the tasks required by the

framework, such as:

− the transformation of UML based performance models into a format that is

solvable by the MOD algorithm,

− the implementation of the MOD algorithm to produce an approximate solution

for the performance model,

− the conversion of the solution into a set of relevant performance metrics that

will be used in the performance modelling methodology.

There are four performance model representations used, each with its own notation

and the mappings between them are defined by the framework architecture:

1. UML representation: describes the system with UML diagrams.

2. PML representation: provides an accurate textual notation for representing

performance related items in the UML diagrams. The purpose of this

representation is for filtering out the UML information that has no significance for

performance modelling.

3. AQN representation: describes the system in an augmented queueing networks

format that may contain simultaneous resource possessions and allows the MOD

algorithm to solve the model.

Chapter 1 - Introduction

13

4. QN representation: consists of separable queuing networks with mutual

dependencies that correlate them to the same overall system.

The UML notations employed in this work are the class diagrams (for deriving the

resources or queues), as well as the collaboration and sequence diagrams, which are

used in conjunction with one or more workload specifications to describe the

behaviour of the application and the infrastructure of the system. It is mentioned that

the state and activity diagrams could also be used for expressing the performance

related information conveniently.

Cortellessa and Mirandola

The work by Cortellessa and Mirandola [26] also attempts to provide an automatic

translation of UML diagrams into a queueing network based performance model. The

goal is to complement the UML notation with a methodology that encompasses the

performance validation task (which includes model generation and validation) as an

integrated activity within the development process.

The target performance model is based on the Software Performance

Engineering (SPE) methodology, and composed of two parts: the Software Model

(SM) based on Execution Graphs (EG); and the Machinery Model (MM), based on

Extended Queueing Network Models (EQNM). By combining SM and MM, a

complete (parameterised) EQNM based performance model is obtained, which is then

solved using some well-known techniques.

The methodology outlined in this paper uses three main UML diagrams for

extracting performance related aspects and integrating them into performance model:

• Use Case Diagram: for deriving the user profile and the software scenarios,

• Sequence Diagram: for deriving an Execution Graph,

Chapter 1 - Introduction

14

• Deployment Diagram: for deriving an EQNM and to identify the

hardware/software relationships that improve the accuracy of the performance

model.

This methodology is yet to be implemented as a tool, and to achieve this, the authors

believe that there are two steps to take:

• choosing an appropriate syntax to represent the UML diagrams involved (and

perhaps some supporting data structures),

• studying the underlying syntax of the existing SPE tools in order to ease the

translation from UML notation to a performance model representation.

Hoeben

This work developed a prototype tool that is able to translate a UML model of a

system into a queuing network representation, which is then used to calculate the

system’s response time and utilisation [33].

The UML use case diagrams are used for capturing the tasks that the system has

to complete (i.e. its workload), and the tool will calculate response times for each of

these tasks. The interaction diagrams (i.e. the sequence and collaboration diagrams)

provide the translation of user tasks to hardware resources. In order to avoid the

diagrams becoming too big, multiple interaction diagrams are used to get the entire

decomposition, where each diagram represents the behaviour of a single method. The

class and component diagrams are not of great importance for performance estimation,

but they are used to model information that is later used to understand the dynamics of

the system. The deployment diagram convey the properties of the processors and

network connections, which are useful in performance estimation. More information

needed for performance estimation can be supplied using the standard extension

Chapter 1 - Introduction

15

mechanisms, i.e. tagged values and stereotypes, but this only shows that there needs to

be a more robust way for incorporating performance related information into UML

design.

de Miguel et. al.

This paper introduces UML extensions for the representation of temporal

requirements and resource usage and their automatic evaluation [27]. The interest of

this work is on the specification of architecture and requirements of real-time systems,

which pays special attention to timeliness, performance and schedulability.

Standard UML extension techniques (constraints, stereotypes and tagged values)

are used for specifying a UML profile where they collectively specialise and tailor

UML for specific domain process. Constraints represent specific semantics of

modelling elements with linguistic notations, stereotypes define new metamodel

constructors, and tagged values identify new parameters or information associated

with the modelling elements.

UML diagrams are used as input for the automatic generation of scheduling and

simulation models. The diagrams employed include the class, collaboration and

activity diagrams. There are two tools used: Analysis Model Generator (AMG), which

implicitly defines a middleware model that affects the scheduling analysis; and

Simulation Model Generator (SMG), which allows an automatic generation of

OPNET model.

1.2.3. Relevance to this thesis

We believe that software performance can be predicted using simulation approach.

This belief is also shared by some of the related work above, and more discussion on

simulation concepts and methodology is given in Chapter 3.

Chapter 1 - Introduction

16

The work by Bondavalli et. al. [15, 16] shows that the transformation from

UML design notation into a performance model (in their case, it is a timed petri net)

can be done in two stages. The first stage gathers information that is relevant for

performance estimation from the UML notation, which is then stored into an

Intermediate Model. The second stage converts the Intermediate Model into the

desired performance model, which can then be evaluated and analysed to give the

performance prediction. We consider our SimML framework (see Chapter 4) to serve

the similar purposes as those of the Intermediate Model. The implementation of the

SimML tools also follows the two staged approach, as illustrated in Chapter 5.

The SimML framework is also comparable to the PML (Performance Modelling

Language) mentioned in [45]. The difference is that the goal of the SimML framework

is for building simulation programs, while the PML framework aims to produce a

performance model using queueing networks.

The importance of an ability to estimate the performance of a system (software)

during its design stage is highlighted by the existence of workshops dedicated

specifically for this topic, such as the one day workshop on Software Performance

Prediction extracted from Designs held at the Heriot-Watt University in Edinburgh

[47] and more recently, the International Workshop on Software and Performance

(WOSP 2000) held in Ottawa, Canada [76]. These indicate that research on the

approaches for incorporating software performance into software engineering/design

is still an ongoing process and deemed useful so that it may provide many benefits for

the software engineering community.

1.3. Chapters Plan

The rest of this thesis is arranged as follows:

Chapter 1 - Introduction

17

• Chapter 2 gives a brief introduction on software design, with the emphasis on the

Unified Modeling Language (UML), which has become the standard notation for

specifying software system.

• Chapter 3 presents the basics of stochastic simulation, which can be used in

predicting the performance of a system before its is being constructed. This

chapter also introduces two simulation languages/packages called C++SIM and

JavaSim, which provide the simulation environments for this project.

• Chapter 4 outlines a framework called the Simulation Modelling Language

(SimML) that has been constructed in this Ph.D. study and represents the core of

the work. The SimML framework serves as a bridge that enables an automatic

generation of a simulation program directly from a UML design specification.

• Chapter 5 discusses the implementation of two tools that can perform the

automatic construction of simulation programs from UML notations using the

SimML framework. The first tool is a PERL parser that is able to transform a

textual representation of UML using the SimML framework into C++SIM

programs; this tool serves as a pilot project to test whether the ideas presented in

the SimML framework are workable or not. The success of the first tool led to the

implementation of the second tool in Java that allows graphical UML notations to

be transformed into JavaSim programs.

• Chapter 6 shows some case studies that have been performed to evaluate the

usefulness of the tools described in Chapter 5, especially the second one.

• Chapter 7 provides some concluding remarks of the overall project and outlines

some areas into which the project could be extended or researched further.

Chapter 2 - Designing a Software System

18

Chapter 2

2. Designing a Software System

2.1. Introduction

The advancement of computer technology demands new systems to be built. New

requirements are discovered and new, more efficient methods are available. The

problem is that the requirements are usually presented in a plain language and hence

they may contain many ambiguities. This may lead to a mismatch between the

completed system and the proposed system as required by the customer.

It is therefore important to ensure that the system developer understands clearly

what the system requirements are. To do this, the requirements must be transformed

into a notation that can only be interpreted in one way and accepted universally. A

formal method, such as VDM [43] or Z [50] is one possible candidate, but it is often

too complicated and difficult to employ this method because it requires a good

mathematical skill and a thorough analysis.

An alternative way is to use one of the design methods available in the area of

Object Oriented Technology, such as the Coad/Yourdon [25], Booch [17], Object

Modeling Technique (OMT) and OOSE methods (all briefly mentioned in [29]). The

availability of several design methods brings the consequence that there is no standard

design notation, i.e. a specification written/drawn in one method might not be

understood by some system developers who normally use a different method.

Chapter 2 - Designing a Software System

19

In around 1995, a new design method was developed by the people behind the

Booch, OMT and OOSE methods with an aim to standardise the design notation. This

method is called the Unified Modeling Language (UML) [18, 28, 29, 31, 63, 64] and it

has been accepted as the standard modeling language by the Object Management

Group (OMG). The rest of this chapter introduces UML by discussing the design

notations available, why UML becomes popular and identifies things that are still

missing from UML.

2.2. Unified Modeling Language

Unified Modeling Language (UML) is a language for specifying, visualising,

constructing and documenting the artifacts of software [63]. It uses graphical notations

to illustrate a system specification, and since the specification is usually very complex,

there are several diagrams available to provide different views of the proposed system:

1. Class diagram

 A class diagram represents the static structure of a system which includes the static

elements (objects or classes) of the system and the static relationships between

them. A class represents a set of objects with similar structures (attributes) and

behaviour (operations). Two or more classes can have a relationship between them

and the relationship can be:

a) an association.

 An association indicates the role a class plays in the relationship. On top of that,

there are some additional notations available for the association, such as the

multiplicities (which indicates how many instances a class can have in the

association), aggregation (to show that one class is a collection of several

Chapter 2 - Designing a Software System

20

instances of the other class), composition (one class is a part of the other class)

and dependency (to indicate that one class depends on the other).

b) a generalisation.

 This captures the notion of inheritance; it shows the relationship between a

more general element (the supertype) and a more specific element (the subtype).

The subtype inherits the properties of its supertype and it may have some

additional (more specific) information.

 The notations for the class diagram can be seen in Figure 2-1.

2. Use Case diagram

 It is often important to investigate the relationships between a system and its users.

A use case diagram describes the functional requirements of a system and the

interaction between the actors, the system modelled and the use-case. The actors

could be human users or other computer systems, and they are the ones who carry

out the use cases. A use case is a set of sequences of actions performed by the

system that yield an observable result of value to a particular actor [29]. The use

attribute: Type = initialValue

operation(arg list): return type

Class Name

Class Name

Class Association

Generalisation

Supertype

Subtype 1 Subtype 2

Class A Class B
role A

role B

Multiplicities

Class 1

Class *

Class 0..1

Class m..n

exactly one

many (zero or more)

optional (zero or one)

numerically specified

Class aggregation

Class composition

Dependency

Class A Class B

Figure 2-1: The Class Diagram notations

Chapter 2 - Designing a Software System

21

cases can have some relationships among them. The two most common ones are

the extends and uses relationships: the extends relationship illustrates a use case

that is similar to another use case, but it does a bit more, while the uses relationship

indicates that one use case is using the features of the other use case (i.e. to avoid

repeating the description of a same behaviour). The UML notation for the Use Case

diagram is shown in Figure 2-2.

3. Interaction diagram

 Interaction diagrams show the pattern of interactions between objects in a system.

An interaction consists of messages that are exchanged among objects in order to

achieve the desired result of an operation. There are two types of interaction

diagrams:

a) Sequence diagrams: show the interactions in a time sequence.

 In the sequence diagram, the objects are arranged horizontally (on top of the

diagram) while the time line is shown vertically (normally proceeds down the

page), one for each object. A message is represented by an arrow between the

time lines of the objects, although in some occasion, an arrow can point to its

own time line to indicate self invocation. An asynchronous message is

Actor 1

Actor 2

Actor 3

Use Case 1

Use Case 2

Use Case 3

System

Use Case 4

«uses»

«extends»

Figure 2-2: The Use Case Diagram notation

Chapter 2 - Designing a Software System

22

represented by a half-arrowhead. Conditions can also be included to indicate

that the message is only sent if the conditions are satisfied. Figure 2-3 shows

how the sequence diagram can be represented.

b) Collaboration diagrams: show the interaction in term of links between the

objects.

 As in the sequence diagram, objects are represented as icons (boxes with the

objects’ name underlined) and they interact with each other by exchanging

messages. But there is no time line on the collaboration diagram, instead, the

messages are given numbers to indicate their ordering. This makes it more

difficult to see the sequence of messages, but on the other hand, the

collaboration diagram makes it easier to see how the objects are linked together

(Figure 2-4).

object 1 object 2 object 3

message1()

message2()

[condition 1] message3()

[condition 2] message4()

message5()

message6()

Figure 2-3: The Sequence Diagram notation

object 1 object 2

object 3

3: [condition 1] message3()

6: message6()

2: message2()

1: message1()

5: message5()

4: [condition 2] message4()

Figure 2-4: The Collaboration Diagram notation

Chapter 2 - Designing a Software System

23

4. State diagram

 Every object has a state which can change if something (an event) happens to it.

The state diagram describes the states that an object can get into and the

interactions (actions and activities) that are involved to change the state. An action

is associated with a transition (i.e. the changing from one state to another) while an

activity is associated with the states. Figure 2-5 shows how a state diagram is

represented in UML.

5. Activity diagram

 This diagram represent the activities that are triggered at the completion of an

operation. An activity diagram is a variant of a state diagram but it emphasises on

the actions, i.e. the activities that are performed to change the object states and the

results of those activities (see Figure 2-6).

State1

State4State3

State2

activity1

transition1

[condition 1]

Start

transition3 transition4

transition2

Figure 2-5: The State Diagram notation

Activity1

Activity5

Activity3Activity2

Activity4
[condition 1]

[condition 2]

[synchronisation
 condition]

Start

End

Figure 2-6: The Activity Diagram notation

Chapter 2 - Designing a Software System

24

6. Package diagram

 As systems get more complex, it becomes more difficult to understand their

structure, unless they are broken down into smaller manageable pieces or sub-

systems. A package diagram shows how system’s classes are grouped together,

along with the dependencies among them (Figure 2-7). This kind of diagram is

useful when there is a large number of classes that are closely linked or depend on

each other, so that they might be bundled together into higher level units.

There are also some additional diagrams that can be used to provide more detailed

explanation by adding notes or constraints (see Figure 2-8).

UML has gained a wide acceptance since its introduction in 1995 and it has

become a popular choice when it comes to selecting a design method. There are some

reasons for this:

• The notations employed by the UML are reasonably simple yet they are

powerful enough for complex specifications.

Package 1

Package 3

Package 4

Class 3

Package 2

Class 1

Class 2

Figure 2-7: The Package Diagram notation

Constraint
{description of constraint}

Note

text note

Object

object name: Class name

Figure 2-8: Other useful UML notations

Chapter 2 - Designing a Software System

25

• It is an industry standard, so its notation will be understood by many people.

There are several tools available that make the job of drawing the UML diagrams

easier, such as the Rational Rose tool [63], Together [59] and Argo/UML [71]. Each

of these tools has its own benefits and drawbacks, but there is one thing that these

tools - or UML in general - are still lacking, which is mentioned in the next section.

2.3. UML and System Performance

UML helps the system developer to understand the specification better through

multiple design diagrams. But UML cannot answer a question on how a particular

design will perform. This is because UML does not incorporate performance related

issues into its diagrams/notations. The problem is, it is often necessary to know

beforehand whether a design will deliver its performance requirement or not, or

whether one scenario will give a better performance than another.

There has been some work done in an attempt to predict a system’s performance

before the system is built. The PERMABASE project [1, 3, 72] puts the emphasis on

the UML Implementation diagrams, namely the Deployment and Component

diagrams to derive a system’s performance model. The performance model can then

be simulated using either using a discrete event simulation (DES) engine of

SES/Workbench, or Coloured Petri-nets.

The work by Pooley and King [62] addresses the need to integrate performance

engineering into software engineering. The general approach adopted in this work is to

use UML designs as directly as possible in performance evaluation. The performance

evaluation itself is obtainable using simulation methods or queuing network modelling

approaches.

Chapter 2 - Designing a Software System

26

In [15], Bondavalli et. al. describes a transformation from structural UML

specification (mainly the Use Case and Deployment diagrams) into Timed Petri Net

(TPN) models for the quantitative evaluation of dependability attributes.

These three are just some of the work attempting to incorporate software

performance prediction into UML, more work that has been done along the similar

line is outlined in Chapter 1.

The amount of related work done in the performance prediction area suggests

that it is a useful thing to do with regard to UML. Our approach in tackling this

problem is by using a simulation program to mimic the execution of the real system,

hence enabling the system’s performance to be analysed and calculated beforehand.

This involves the generation of a simulation program from UML design specification,

and this approach is discussed in the following three chapters. First though, it is

appropriate to introduce the concept of simulation, which is covered in the next

chapter.

Chapter 3 - Simulation to Predict System’s Performance

27

Chapter 3

3. Simulation to Predict System’s Performance

3.1. Introduction

Predicting the performance of a system that is yet to be built is not a trivial task. First,

it is necessary to determine which aspects of the performance are to be measured, such

as reliability, availability, response time, etc. This is important because different

system applications demand different performance requirements, for example, a

telephone system needs to be highly available while a flight control system has more

emphasis on its reliability. From there, a workload that the system will face can be

determined. A workload typically includes the operations that are needed to be

performed by the system, the time needed for each operation to be completed and the

frequency of each operation. This is not an exhaustible list as more aspects are often

considered depending on the system’s requirement.

A system’s workload specification needs to be analysed in order to obtain an

estimate for the system’s performance. There are several ways to predict the

performance of a system based on its workload specification. One way is through an

analytical method where the system’s workload is derived mathematically by

constructing a number of parameterised mathematical equations that approximate the

workload characteristics of the system’s components. This approach is often called

modelling and it is explained in great detail in [49, 56, 57]. An example of how

modelling is used for examining workload specification analytically is the MaStA

(Massachusetts St Andrews) cost model [65-67]. This was developed for modelling

Chapter 3 - Simulation to Predict System’s Performance

28

the recovery of database systems. The MaStA model is used for comparing the

performance (the cost) of several recovery mechanisms which are executed on

different platforms to ensure that the performance is platform specific. The workload

here is determined by the number of I/O operations involved in a particular recovery

mechanism. The I/O operations can be divided into constituent independent I/O

categories, such as data reads or commit writes, and the overall cost of a mechanism is

equal to the sum of the costs of each category.

The analytical method requires a good mathematical knowledge and calculation,

so it is valuable in a simple system but usually impractical or very difficult to use in a

complex system. Another way of predicting system’s performance is through

simulation. This approach requires the construction of programs that capture the

characteristics of the proposed system. Among other things, these characteristics

include the workload of the system, which determines the simulation’s results. The

workload specifications can then be considered as the simulation’s parameters, i.e.

they must be known before the simulation can be performed. As with the analytical

method, the simulation method requires some simplifying assumptions to make it

easier to employ.

One feature of the simulation method is that it allows probabilistic nature of

events or activities to be observed. This is a very important feature because a

computer system, especially a distributed one, involves a lot of events that can happen

at random, such as the system failures, the latency in the connections, job arrivals, the

response times, etc. By knowing its probability or distribution function, an event can

be modelled close to its real world counterpart.

Chapter 3 - Simulation to Predict System’s Performance

29

Running the simulation program with the parameters from the workload

specification provides some data about the states of the system. These data reflect how

the system cope against a particular load, and by performing further calculation and

analysis on the data, we can predict the performance of that system.

The rest of this chapter introduces the basic concepts of simulation, its benefits

and drawbacks - which motivate the work presented in this thesis, as well as the

different simulation types encountered. This is then followed by an overview of the

simulation environments (languages or packages) available, in particular those which

were used in this thesis.

3.2. Simulation Basics

3.2.1. What is simulation?

Simulation is “the imitation of the operation of a real-world process or system over

time” [13]. The aim of simulation is to describe and analyse the behaviour of a system

and explore the possible scenarios that can happen in the system (the “what-if“

questions). Simulation allows different system designs to be investigated, and by

analysing the simulation results, the performances of these systems can be compared.

Therefore, simulation can be used as a decision making aid in choosing which system

is to be implemented.

There are several underlying concepts in simulation, and in order to provide a

better simulation understanding, these concepts or terminology are explained below:

• model: is a representation of an actual system.

• system: is a collection of entities which interact with each other, within some

notional boundary, to produce a particular pattern of behaviour [14].

Chapter 3 - Simulation to Predict System’s Performance

30

• entity: represents an object/component (with its interactions) that are considered

important enough to be included in the model.

• attribute: a variable declared inside an entity/object, which describes the state of

that entity.

• system state variables: the collection of all attributes of all entities. It is used to

know what is happening within a system at a given point of time.

• sample or operation path: a realisation of system state variables. One simulation

run generates one sample path and another simulation run of same system with

different random numbers generates a different sample path of the same system.

• event: a change in the system state during the course of the sample path.

• event time: time at which an event occurs.

Simulating a system essentially means generating a sequence of event times

with their appropriate events. How these event times are organised leads to several

simulation types (see Section 3.2.3), but in general, the structure of a simulation run

can be divided into three separate stages [14]:

1. Initialisation.

 This stage sets up the simulation model by obtaining the simulation parameters

from the user. The system state variables (the variables for obtaining the simulation

statistics) are declared and initialised in this stage.

2. Dynamic stage.

 The dynamic stage sets the model in motion, where the model is allowed to

perform its dynamical behaviour until a fixed period of simulation time has elapsed

or until a particular condition has been met (which is set in advance). Here, the

system state variables are updated in a pre-determined way.

Chapter 3 - Simulation to Predict System’s Performance

31

3. Termination.

 After the simulation run is completed (i.e. after the second stage above is finished),

it is necessary to collect the system state variables, which are then analysed in order

to work out the simulated system’s performance.

These three stages serve as the skeleton for constructing simulation programs, whose

details differ one from another according to the type of simulation they are meant to

perform.

3.2.2. Advantages and Disadvantages of Simulation

Modelling a system through simulation means replacing that system with one that is

simpler and/or easier to study, yet equivalent in all important aspects. This is not an

easy task to do, so it is a good idea to compare the advantages and disadvantages of

simulation before we proceed any further.

Advantages

There are many advantages of using simulation, some of which are listed here:

1. It allows us to perform a controlled experiment upon the system by varying the

simulation parameters. We can therefore investigate how the system will react

under certain circumstances without committing the resources for implementing

that system (which in the end might not be suitable).

2. Time can be compressed or expanded within the simulation, which means that we

can thoroughly examine the states of the system in a suitable time frame.

3. There is a separation from the real system, i.e. the simulation will not disturb the

operation of a real system (if there is one already running).

4. It can serve as an effective training tool.

Chapter 3 - Simulation to Predict System’s Performance

32

5. Simulation can be used to diagnose problems that might occur in the system (e.g. a

bottle-neck in a particular stage of the operation), hence a remedial action can be

taken.

6. It helps other people to understand how the system works.

Disadvantages

Inevitably, there are some disadvantages that must be faced:

1. Building a simulation program is quite a difficult task and it often requires some

specialised skills.

2. Interpreting the simulation results is not easy either.

3. It could be a time consuming and expensive: a new simulation program needs to be

built for a different system.

4. Model parameters may be difficult to initialise. It is often necessary to obtain them

from some experimentations or time-extensive analysis.

There are efforts in eliminating these disadvantages, for example, there exist some

specialised software for simulation (simulators). Most of these tend to be commercial

software that come with output analysis and/or animation tools, so they are generally

expensive to purchase.

The work discussed in this thesis tries to solve the first and third disadvantages

above by providing a tool that can be used for transforming a design notation

automatically into simulation programs.

3.2.3. Types of Simulation

Based on the ways the system states change during the simulation run, it is possible to

categorise simulation model into three types:

Chapter 3 - Simulation to Predict System’s Performance

33

1. Discrete time: the system is only considered at selected moments of time, which

are usually evenly spaced. Only at these moments (called observation points) are

the changes of the state recorded.

2. Continuous time-continuous event: the system states vary continuously with time;

this kind of system is usually described by sets of differential equations.

3. Continuous time-discrete event (or more popularly termed just as discrete event

simulation): the time is continuous but the state variables change only at those

discrete observation points in time at which events occur. These observation points

do not need to be equally spaced and can be of arbitrary increment. This kind of

simulation is the one that is most commonly encountered.

The classification above takes into account the relation between the simulation events

and the simulation time, which can be seen diagrammatically in Figure 3-1.

 A simulation consists of a series of interacting events that constitute the sample

or operation path. Therefore, a simulator can be defined as a program that is devoted

to the generation of operation paths [58]. It permits the creation of events, whose

interactions are controlled in a timely manner using the internal clock. The simulator

keeps an event list - the list of events that are scheduled to be executed at certain times

during the simulation. Based on the approach on how the simulator schedules the

events in producing the operation path (i.e. how the event list is organised), there are

two types of simulation:

Figure 3-1: The classification of simulation type based on events and time

Discrete

Continuous

Discrete Continuous

Not Possible

1 3

2
event

s

time

Chapter 3 - Simulation to Predict System’s Performance

34

1. event-oriented simulation.

 Each event has an event notice which contains both the event’s type and time. Each

event type is in turn associated with a procedure which performs the actions

required to handle that particular type of event, which include the scheduling of the

next event of this type as well as the collection of the statistics. This procedure is

invoked every time an event of the relevant type occurs.

 There is also a clock procedure that controls the simulation by scanning the

event list, finding the event notice with the smallest time (which is executed next),

updating the simulation time and invoking the relevant event procedure. The event

manipulations are therefore explicit. The operation path is obtained by taking a

global view of everything that happens in the system.

2. process-oriented simulation

A process is defined as a sequence of events where each event is accompanied by a

set of actions. Each process is given an independent thread of control, so the

management of events is implicit in the management of the processes. Hidden from

us, there is still a clock that is advanced from event to event, as well as an event list

which shows what is scheduled to happen at a particular time. The difference is

that the event list now contains processes, ordered according to the time of the next

events in their respective sequences. Each process keeps track on which action of

its set is to be executed next.

Each time after the clock is advanced, the actions of the processes at the head of

the event list are executed. If there are more than one process scheduled at the same

time, the actions of all those processes are executed, in the order in which they appear

in the list. The operation path of a process-oriented simulation is therefore obtained by

Chapter 3 - Simulation to Predict System’s Performance

35

the interacting of a number of processes running in (pseudo) parallel. More

explanation on this kind of simulation is given in the discussion of the C++SIM

package (Section 3.3.1). The rest of this thesis refers to the process-based discrete-

event paradigm when discussing simulation.

3.3. Simulation Languages/Packages

A simulation program can essentially be built in any general purpose programming

languages but this usually requires more effort. A simulation language/package aims

to make the process of writing a simulation code easier by providing some of the

standard simulator components as its language primitives or types. Overall, there are

five facilities that a simulation language needs to provide [58]:

1. Entity manipulation.

 This allows the creation and destruction of entities, as well as placing/removing

them to/from their respective sets (stacks, queues, etc.).

2. Time and Event manipulation.

 The task involves the maintenance of a clock and an event list, plus all the

scheduling operations, such as finding the next event, removing current event and

inserting a new event.

3. Random Numbers.

 We talk about pseudo random numbers here, i.e. sequences of numbers that appear

to be independent and randomly distributed. The simulation language needs to

provide various discrete and continuous distributions and able to reproduce and

change the sequences for different runs of the same simulation program.

4. Collection of Statistics.

Chapter 3 - Simulation to Predict System’s Performance

36

 This deals with the collection of data that can be used to work out the quantities of

interest in the simulation.

5. Numerical computation.

 It is often necessary to be able to implement various numerical algorithm which is

useful for analysing the simulation results and generating specific random numbers.

The task of writing simulation programs can be made easier by using certain

languages or packages that support the essential simulation features outlined above.

There are several simulation environments that can be employed, but many are

commercial ones, which tend to be very complex and often come with some

animation tools. What is required for this project is just a simulation environment that

supports the process based, discrete event simulation paradigm, such as SIMULA

[61], Modsim [21], SimJava [34, 35], C++SIM [11, 52] or JavaSim [51]. The work

illustrated in this thesis uses C++SIM and JavaSim, so the basic concepts of these two

packages are given in the following sub-sections.

3.3.1. C++SIM

C++SIM provides a discrete-event, process-based simulation facilities similar to

SIMULA’s [61] simulation class and libraries. It is written in standard C++ and since

C++ compilers typically generate code which runs faster than similar SIMULA code,

C++SIM would produce more efficient simulation codes.

The C++SIM environment uses active objects as the units of simulation. An

active object is an object which has an independent thread of control associated with

it, and it is used to convey the notion of ‘activity’ to the processes involved in the

simulation. Active objects are created using threads (lightweight processes) and in

C++SIM, they are used for:

Chapter 3 - Simulation to Predict System’s Performance

37

1. Simulation Scheduler

 Simulation processes (see later) are managed by a scheduler and are placed on a

scheduler queue (the event list). Figure 3-2 shows how a tree structure is used to

organise the scheduler queue. Each node represents a process and the nodes at the

same level of the tree have the same simulation time. Here, the processes are

executed in a pseudo-parallel mode, i.e. only one process is activated at any

instance of real time, but the simulation clock is only advanced when all processes

have been executed for the current instance of simulation time.

 Inactive process are placed into the scheduler queue and when the currently

active process yields control to the scheduler (either because it has finished or been

placed back onto the scheduler queue), the scheduler removes the process at the

head of the queue and activates it (Figure 3-3). When there is no process left in the

scheduler queue, the simulation will terminate. Please note that every simulation

must start one scheduler before the simulation can begin.

 Head of Simulation Queue

time t1

time t2

time t3

time t4

Figure 3-2: Simulation Queue

Figure 3-3: Scheduler-Process Interaction

simulation
process 1

simulation
process 2

simulation
process 3

active
process

Scheduler

Scheduler Queue

Chapter 3 - Simulation to Predict System’s Performance

38

2. Simulation Processes

 C++SIM supports the process-oriented approach to simulation, i.e. each simulation

entity can be considered as a separate process. These entities are represented by

process objects: they are C++ objects which have an independent thread of control

associated with them when they are created. Each process has a state and at any

point during the simulation, a process can only be in one of the following states:

a) active: the process has been removed from the head of the scheduler queue and

its actions are currently being executed.

b) suspended: it is on the scheduler queue and is scheduled to be active at a

specified simulation time.

c) passive: it has been removed from the scheduler queue and if it is not brought

back to the queue by another process, it will not execute anymore.

d) terminated: it is not on the scheduler queue and will not take any further part in

the simulation.

 C++SIM uses the object-oriented approach for developing the process objects by

allowing classes to inherit the process functionality from a base class called

Process. This class provides all required operations for the simulation system to

control all of the processes in the simulation. The most important operations are:

(i) Activate: activates a process. This is invoked by the currently active

process which passes the control to the activated process.

(ii) Passivate: removes the currently active process from the scheduler queue.

Another process has to put this process back into the queue if it needs to be

scheduled again in the future.

Chapter 3 - Simulation to Predict System’s Performance

39

(iii) idle: returns true or false to indicate whether a process is actually on the

scheduler queue or not.

(iv) Hold: reschedules the currently active process to be active a fixed units of

time later.

(v) Cancel: removes a process from the simulation queue or suspends it

indefinitely if it is currently active.

(vi) CurrentTime: returns the current simulation time which is useful for

controlling action relative to a given time period.

 Other operations and further explanation on the ones above are available in [11].

 Any class derived from the Process class must supply a void Body()

member function, within which its actions must be defined. These actions

characterise the interactions among the processes in the simulation and these

actions will be executed when the process to which they belong to is activated.

3. Main System Thread

 This is a special thread which is used to initialise the threads used in the

simulation. It is invoked in the main body of the simulation code and since this

thread has the highest priority in the system, it is necessary to suspend it in order to

allow other threads to run.

A more detailed description and some examples of C++SIM programs can be found in

[11] and [52].

3.3.2. JavaSim

JavaSim is a Java implementation of the original C++SIM simulation toolkit, which

supports the discrete-event process-based simulation where each simulation entity can

be considered as a separate process [51]. The simulation entities are therefore

Chapter 3 - Simulation to Predict System’s Performance

40

represented by process objects, which are actually Java objects that possess an

independent thread of control associated with them when they are created. These

“active objects” then interact with each other through message passing and other

simulation primitives in order to realise the operation path of the simulation.

Like in the C++SIM environment, there is a JavaSim scheduler that manages the

simulation processes (the active objects) and places these processes onto a scheduler

queue (the event list). The processes are also executed in a pseudo-parallel mode.

The difference between the C++SIM and JavaSim environments lies on how the

processes are derived from its base class. JavaSim calls its base class

SimulationProcess while the C++SIM calls its Process class. There is also a

difference on where the processes’ behaviour is specified. In C++SIM, the user needs

to implement a void Body() member function on any classes derived from the

Process class. The JavaSim code on the other hand requires its process class to

implement a void run() member function. The rest of the syntax remains pretty

much the same for both environments. More details on the JavaSim processes can be

found in [51].

The advantage of JavaSim over C++SIM is that JavaSim is easier to install and

manage on any operating system (due to Java’s portability), and with the jar (Java

ARchive) facility, it is even possible to put the whole JavaSim package into one jar

file. The jar facility also allows more than one packages to be put into one jar file,

which means that the JavaSim package can be integrated with other packages to

provide more customised features.

Chapter 3 - Simulation to Predict System’s Performance

41

3.4. Simulation Summary

Simulation can be used as a means for predicting a system’s performance, but

building a simulation program is not a trivial task and system developers usually are

not familiar with the simulation concepts. It is therefore desirable to have a tool that

can build a simulation program automatically from a design notation (which is easier

to prepare and commonly understood by system developers).

The next chapter identifies a simulation framework that can serve as a bridge

between design notation and simulation program. It will be demonstrated later that

this framework can be used to build a tool that can automatically transform a design

notation into a simulation program.

Chapter 4 - From Design to Simulation

42

Chapter 4

4. From Design to Simulation

4.1. Introduction

It is often difficult to build a simulation program directly from a design specification.

The specification is normally quite complex and in the case of the distributed system,

different performance requirements (such as high availability over reliability, etc.),

connection between components (network delay, partition, etc.) and fault tolerance

(machine failures and repairs) require additional effort. On top of that, a new

simulation program needs to be built each time for a different specification, and the

system developer must also be familiar with the simulation techniques - which is not

always the case.

A tool that can automatically transform a design notation into a simulation

program is therefore desirable. Before such a tool could be built though, it is

important to first identify the common simulation components along with the actions

that can be performed among them. Based on these components and actions, a

simulation framework can be specified, and this framework provides a foundation for

an automatic generation of a simulation program from a design notation.

4.2. SimML Framework

We have constructed a framework called Simulation Modelling Language (SimML)

[6, 7, 9, 10, 69] that classifies the simulation components into two main groups: basic

type components and auxiliary components. The first group represents entities of a

Chapter 4 - From Design to Simulation

43

simulation and they correspond to the classes of a simulation program; these entities

are identified as PROCESS, DATA, QUEUE and CONTROLLER components. The

second group is useful for representing the instances of active objects (processes)

involved in the simulation - i.e. the instances of the simulation classes - as well as for

specifying the simulation parameters and collecting the simulation statistics. This

group includes the OBJECT, RANDOMS and STATISTICS components.

The PROCESS components are able to interact with each other, and in SimML

framework, these interactions are termed as actions. The behaviour of a PROCESS

component is therefore determined by its actions, where an action might involve an

instance of another PROCESS component. More details on the SimML components

and actions are described in the following section.

4.2.1. SimML Components

There are seven simulation components identified in the SimML framework. These

are divided into two main groups:

I. Basic type components

 These components are essential in constructing a simulation program as they

represent the classes or entities involved in the simulation. These components

can be subdivided into four categories:

A. PROCESS component

 A PROCESS component is used to represent the simulation process

and different processes can be characterised by assigning different

name, attributes and operations to them. The PROCESS’s name is used

as the name of the class constructed for the appropriate simulation

program to represent this process. This class may have member

Chapter 4 - From Design to Simulation

44

variables (with public or private visibility) as its attributes as well as

some member functions for defining its operations. Since the

PROCESS type inherits from the Process class (see Chapter 3,

Section 3.3), it must specify the actions of the Body() member

function (for C++Sim simulation) or the run() member function (for

JavaSim simulation) derived from the Process class in order to

provide interactions with other processes. A PROCESS class may also

have some constructors, through which the simulation parameters

specific for this process can be passed. The structure used for the

PROCESS type is very similar to the Class Diagram used in the UML

B. DATA component

 DATA is a simplified version of the PROCESS component, where it

acts just as a data storage. It is useful for representing certain

simulation entities which do not need to be active objects. This type

does not inherit from the Process class and hence it takes up a lot

less resources. DATA type has a name and attributes but it does not

have any operation.

C. QUEUE component

 A queueing mechanism is a very important concept in simulation,

hence a way of specifying queues (for different types of object) must be

provided. The queue ordering supported is First In First Out (FIFO),

but a non pre-emptive priority ordering is possible using a SEQUENCE

component where each queue object is given a sequence number - the

smaller the number the higher priority the object gets. The objects

Chapter 4 - From Design to Simulation

45

placed in a queue can either be a PROCESS or DATA component, and

the queue is served by one (or more) PROCESS component(s).

D. CONTROLLER component

 It acts as the main thread which initialises the simulation, obtains the

simulation parameters and summarises the simulation. This is a

standard component that must exist in any simulation, hence its

properties can be defined in a template.

II. Auxiliary components

A. OBJECT component

 It is an instance of a basic type component and during a simulation,

there will be several, if not many, of such OBJECTs being created.

Through these instances, the interactions among the simulation

components can be achieved.

B. RANDOMS component

 Many aspects of the real system that a simulation program tries to

model (passed as simulation parameters) have properties which

correspond to various distribution functions. C++SIM/JavaSim

provides several random number generators to accommodate most of

those distributions. The SimML framework therefore supports these

random number distributions, which are shown (with their parameters)

in Table 4-1.

C. STATISTICS component

 Statistics collection is also an important part of a simulation. It is

necessary to know beforehand what information is to be collected and

Chapter 4 - From Design to Simulation

46

where/when/how the collection should be done. This includes the

identification of the simulation statistics variables and their types, and

some mechanisms for updating their values appropriately. Each

statistics variable is given a name and a type; the types allowed are

numerical types (integer or double). There are two ways of updating the

statistics values: a simple increment/decrement (by a factor) or a

calculation (which might involve other statistics variables).

When/where the updates are to be performed is specified by the

PROCESS component (as update actions).

The seven components above serve as the foundation for designing simulation

programs in a generic term. The dynamic properties of the simulation is specified as

actions of the PROCESS components, and these are outlined in the next section.

4.2.2. SimML Actions

The behaviour of a PROCESS component is determined by its actions. These actions

must later be transformed into program code inside the C++SIM’s Body() member

function or JavaSim’s run() member function. There are 14 actions deemed

necessary to support the interactions among simulation processes:

 Table 4-1: Random Number Distributions supported by SimML

in SimML in C++SIM/JavaSim parameter 1 parameter 2

EXPONENTIAL ExponentialStream mean -

ERLANG ErlangStream mean standard deviation

HYPER HyperExponentialStream mean standard deviation

NORMAL NormalStream mean standard deviation

UNIFORM UniformStream bottom range top range

Chapter 4 - From Design to Simulation

47

1. create : declares a new instance of the basic type (either a PROCESS or

DATA component), which is to be used by the current process to perform the

interactions.

2. wait : reschedules the current process to be activated later after a delay.

3. activate : activates another process if that process is idle; otherwise this action

does not do anything (i.e. it will not interrupt the execution of that process).

4. sleep : passivates the currently active process.

5. enqueue : places an instance of a PROCESS or DATA object to the tail of a

queue.

6. dequeue : removes an object from the head of a queue.

7. check : passivates the process from which this action is invoked if there are

no more items in the queue.

8. record : sets the value of an object’s member variable to the current time (by

default) or to a specified value/variable (with extra parameters).

9. update : updates the value of a statistics variable. This action is used in

conjunction with the STATISTICS component (which specifies the statistics

variables and how they should be updated).

10. generate : produces a number randomly, using a particular random number

generator. A valid random number generator (as declared in the RANDOMS

component) must be used.

11. end : terminates the execution of the current process. This action must only

be invoked at the end of a process’s lifetime, otherwise the rest of the simulation

will not work properly.

Chapter 4 - From Design to Simulation

48

12. print : prints the specified simulation variables as well as any text strings

(enclosed in double quotes, without any white space). This is useful for

debugging purposes.

13. if : specifies a condition that must be satisfied before subsequent actions

can be performed (i.e. it simply guards the next actions). The condition must

follow the C++/Java syntax, which allows complex conditions to be achieved

using the and operator (&&) and the or operator (||). The if action is

complemented by the elsif and else action.

14. while : allows a loop to repeat the same action(s) until certain condition is

satisfied. It is very similar to the if action; the only difference is that the while

action provides a repetition feature while the if action provides the selection

feature of the simulation.

A PROCESS component may specify one or more actions, which are listed as a

sequence: one action is followed by another. Generally (and by default), the whole

sequence is repeated for the duration of the simulation. In some cases though, the

PROCESS component only exist for one instance, i.e. it must terminate after all

actions in its sequence has been executed. In that case, it is necessary to put an “end”

action as the last action of the sequence.

4.3. Using the SimML Framework to Generate Simulation
Program from Design

The SimML framework mentioned above can be used to bridge the transformation of

a design notation into a simulation program. Before that could happen though, it is

necessary to specify a syntax that must be followed in defining the components and

actions of the SimML framework. This syntax provides a better understanding on how

Chapter 4 - From Design to Simulation

49

the components and actions are grouped and interconnected. It also serves as the

intermediate language which stores the necessary information derived from a design

notation before this information is transformed into a simulation program.

4.3.1. SimML Syntax

We need a syntax which allows the SimML components and actions to be expressed

in a semi-formal way that makes it possible to transform them readily into a

simulation program. This syntax is represented in a textual format for an easy reading

and parsing of the SimML specification.

A simplified version of the syntax is outlined here; this provides a general view

on how such a notation can be specified. The syntax is shown in the courier font,

where a bold typeface indicates that the word is a reserved word, an ALL CAPS

typeface indicates a SimML component, and an italic typeface indicates a variable as

specified by the user. Things in square brackets are optional.

The SimML components serve as the founding blocks of this notation and based

on their granularity, the SimML components can be divided into two groups:

1. Simple Components: convey a simple/atomic information.

The components that belong to this group (with their notations) are:

QUEUE of object_type

OBJECT object_name of object_type

CONTROLLER controller_name

2. Container Components: contain a set of information which are necessary to be

incorporated into one entity.

DATA data_name
{

[attributes]
}

Chapter 4 - From Design to Simulation

50

PROCESS process_name
{

[attributes]
[member_functions]
+void Body()
{

<action_specifications ...>
}

}

RANDOMS
{

<random_type> random_name [parameters ...]
}

STATISTICS
{

<type> statistics_name [expression ...]
}

The SimML actions are defined only inside the Body() part of the PROCESS

component. Some of the actions require one or more parameters, as outlined below:

create object_name of object_type

wait delay

activate object_name

sleep [object_name]

enqueue object_name to queue_name

dequeue object_name from queue_name

check queue_name

record variable_name [as data]

update statistics_variable

generate random_number using random_generator

end

print variable_name ...

if conditions
{

<other actions ...>

Chapter 4 - From Design to Simulation

51

}
elsif conditions
{

<other actions ...>
}
else
{

<other actions ...>
}

while conditions
{

<other actions ...>
}

The syntax above is better represented in the Extended Backus-Naur Form (EBNF),

where ’*’ denotes an item with zero or more multiplicity, ’+’ denotes an item with

one or more multiplicity, and ’?’ denotes optional item (see Figure 4-4 below).

SIMML-SPEC ::= (DATA-COMPONENT)* (PROCESS-COMPONENT)+

 (QUEUE-COMPONENT)+ (OBJECT-COMPONENT)+

 RANDOMS-COMPONENT STATISTICS-COMPONENT

 CONTROLLER-COMPONENT

DATA-COMPONENT ::= DATA-HEADER DATA-DEFINITION

DATA-HEADER ::= “DATA ” data-name

DATA-DEFINITION ::= “{” (ATTR)* “}”

ATTR ::= ATTR-VIS ATTR-TYPE “ ” attr-name

ATTR-VIS ::= “+” | “-”

ATTR-TYPE ::= NUMERIC-TYPE | CHAR-TYPE

NUMERIC-TYPE ::= “int” | “double”

CHAR-TYPE ::= “char” | “Text”

PROCESS-COMPONENT ::= PROCESS-HEADER PROCESS-DEFINITION

PROCESS-HEADER ::= “PROCESS ” process-name

PROCESS-DEFINITION ::= “{” (ATTR)* ACTION-BLOCK “}”

ACTION-BLOCK ::= “{” (ACTION)* “}”

ACTION ::= (CREATE | WAIT | ACTIVATE | SLEEP | ENQUEUE | DEQUEUE

 | CHECK | RECORD | UPDATE | GENERATE | END | PRINT

 | IF | ELSIF | ELSE | WHILE)*

CREATE ::= “CREATE ” object-name “ of ” OBJECT-TYPE

Chapter 4 - From Design to Simulation

52

OBJECT-TYPE ::= data-name | process-name

WAIT ::= “WAIT ” DELAY

DELAY ::= numeric-value | random-name

ACTIVATE ::= “ACTIVATE ” object-name

SLEEP ::= “SLEEP ” (object-name)?

ENQUEUE ::= “ENQUEUE ” object-name “ to ” queue-name

CHECK ::= “CHECK ” queue-name

RECORD ::= “RECORD ” VAR-NAME (“ as ” VAR-VALUE)?

VAR-NAME ::= local-variable | stat-name

VAR-VALUE ::= numeric-value | VAR-NAME

UPDATE ::= “UPDATE ” stat-name

GENERATE ::= “GENERATE ” random-var “ using ” random-name

END ::= “END”

PRINT ::= “PRINT ” VAR-NAME

IF ::= “IF (” condition “)” ACTION-BLOCK

ELSIF ::= “ELSIF (” condition “)” ACTION-BLOCK

ELSE ::= “ELSE ” ACTION-BLOCK

WHILE ::= “WHILE (” condition “)” ACTION-BLOCK

QUEUE-COMPONENT ::= “QUEUE ” queue-name “ of ” OBJECT-TYPE

OBJECT-COMPONENT ::= “OBJECT ” object-name “ of ” OBJECT-TYPE

RANDOMS-COMPONENT ::= “{” (RANDOMS-VAR)+ “}”

RANDOMS-VAR ::= RANDOMS-TYPE random-name PARAM1 (PARAM2)?

RANDOMS-TYPE ::= “EXPONENTIAL” | “ERLANG” | “HYPER” | “NORMAL” |

 “UNIFORM”

PARAM1 ::= numeric-value

PARAM2 ::= numeric-value

STATISTICS-COMPONENT ::= “{” (STATISTICS-VAR)+ “}”

STATISTICS-VAR ::= STATISTICS-TYPE stat-name numeric-update

STATISTICS-TYPE ::= NUMERIC-TYPE

CONTROLLER-COMPONENT ::= “CONTROLLER ” controller-name

Figure 4-4: The EBNF notation for the SimML Syntax

Later on, this syntax is also represented as a Document Type Definition (DTD) which

enables the SimML specification to be written in the Extensible Markup Language

Chapter 4 - From Design to Simulation

53

(XML) format, which allows the SimML information to be interchanged easily. More

details on XML and the SimML DTD can be seen in Section 5.4.3 of Chapter 5.

4.3.2. Capturing SimML Notation from UML Design

The information needed for the SimML framework can be derived from some UML

diagrams. The class diagram is very similar to the PROCESS and DATA components,

while the sequence diagram can be used to capture the OBJECT and QUEUE

components. The CONTROLLER component has a standard characteristics in the

SimML, so it is not necessary to represent this in UML because its properties can be

specified as a template.

Two of the most important SimML components that cannot be directly derived

from any UML diagrams are the RANDOMS and STATISTICS component. They

could be represented as a UML note, but it is not specific enough to support the

characteristics of those components. The RANDOMS components need to know

which random distribution they correspond to (one of the five listed in Table 4-1) and

the STATISTICS components must know how they should be updated. It was

therefore decided that for these two SimML components, it is necessary to augment

the UML notation by adding two specific views which can capture the required

information.

It was quite difficult to decide which UML diagram to use for depicting the

SimML actions. UML provides some diagrams for capturing the dynamic aspects of

the system through the use case, activity and interaction diagrams. With respect to

SimML, we need to know which OBJECTs are involved with each action, so a UML

diagram that can convey both object reference and dynamic properties at the same

time is ideal. This suggests the interaction diagram as the best candidate to represent

Chapter 4 - From Design to Simulation

54

the SimML actions. Of the two types of the interaction diagrams, the sequence

diagram was chosen instead of the collaboration diagram because the former shows

the interaction in a time sequence, which is a very important concept in relation with

the simulation programs to be generated through the SimML framework. It is also

because a GUI tool that can interpret the sequence diagram is easier to built, compared

to that of the collaboration diagram (due to the more complex nature of the latter).

Note: At the time the decision on using the class and sequence diagrams was made,

the version of the UML notation used was version 1.1. Since then, the sequence

diagram notation has evolved to allow more elaborate execution control (e.g. better

looping mechanism and handling of conditional statements).

4.3.3. Transforming SimML Notation into Simulation

The task of transforming one notation into another can be done using a parser. A

parser must be able to read the information stored in the first notation and organise the

data into a particular data structure for further processing. Typically, this involves the

re-creation of the data into another form/notation. Therefore, the parser also needs to

understand the syntax of the second notation in order to convert the information stored

in the intermediate data structure into a valid representation.

In our case, the first notation is the SimML notation and the target notation is

the simulation code. There is a mapping between the SimML framework and

simulation programs, hence by using a suitable parser, simulation programs can be

created generically from the SimML notation. The implementation of a parser capable

of performing such a transformation is discussed in the next chapter.

Chapter 5 - UML-to-Simulation Tool Implementation

55

Chapter 5

5. UML-to-Simulation Tool Implementation

5.1. Introduction

The process of implementing a tool for generating a simulation program from a

(UML) design notation can be divided into two stages. One stage investigates the

possibilities of generating simulation source code from a textual SimML notation; this

stage is referred to as the back-end stage. The other stage (the front-end stage)

concerns more on how to capture the UML information into the SimML notation. This

stage includes the construction of a Graphical User Interface (GUI) tool for drawing

the relevant UML diagrams (i.e. the class and sequence diagrams) and a formulation

of a means for capturing the SimML information from those UML diagrams. The

whole picture on the automatic transformation of the UML design notation into a

simulation program can be seen in Figure 5-1 below.

The SimML framework (with its syntax - as illustrated in Chapter 4) makes it

possible to automatically generate a simulation program from the SimML notation,

therefore it can be used in implementing the back-end stage above. This back-end

Figure 5-1: UML to Simulation path

UML Design
Notation

Front-End
GUI Tool

Back-End
SimML Parser

SimML Notation

Simulation
Program

Chapter 5 - UML-to-Simulation Tool Implementation

56

stage can be achieved by writing a special parser that understands the SimML notation

and is able to transform the information conveyed into an appropriate simulation

program. During our research, we have developed two kinds of such a parser: one was

written in PERL (Practical Extraction and Report Language) while the other was

built in Java. The first parser is intended to generate simulation programs in the

C++SIM environment, while the later parser produces JavaSim programs and employs

XML (eXtensible Markup Language) as its intermediate language/notation. The

second parser also provides the foundation for the construction of the complete tool

that can transform a UML design notation directly into a JavaSim simulation program.

It is possible though, to generate the simulation programs in any simulation

language/environment. The components and actions identified in the SimML

framework provide the building blocks for the construction of discrete-event, process-

based simulation programs. Hence, the SimML framework can be used for generating

simulation programs in other simulation languages (such as SIMULA) by modifying

the program generator part of the SimML parser. The C++SIM was chosen because

C++ compilers typically generate code which runs faster than similar SIMULA code,

hence C++SIM would produce a more efficient simulation program. Since the second

parser was written in Java, it was decided to use JavaSim for the simulation code to

enable an easy interfacing task between the parser and the simulation program.

PERL was chosen for implementing the initial parser based on several reasons.

First, PERL program can be modified and tested quickly, hence it is suitable for

exploring the feasibility of implementing a SimML parser in the first place. Other

reasons are due to PERL’s features that allow an easy way to read data from file, to

Chapter 5 - UML-to-Simulation Tool Implementation

57

store those data into a simple yet efficient data structure and later to write out the

processed data into relevant (simulation source code) files.

The second (Java) parser was constructed after the first parser has been

implemented and tested. The first (PERL) parser demonstrates that the idea of

transforming the SimML framework (in a textual format) into a simulation program is

workable. Unfortunately, PERL does not provide a support for implementing a

graphical tool, therefore it can only be used in the construction of the back end stage

of the UML to simulation process. Java, on the other hand, provides a full support on

graphics, so the complete tool can be written in Java. Since the tool is built in Java, it

is only appropriate that the simulation program is generated in Java programming

language as well with the aid of the JavaSim package.

The rest of this chapter will discuss these two implementations in details, and

brief introductions on the packages/languages used are provided. But first, it is

important to outline the structure of a SimML parser along with its operations in

general, which is independent of any programming language.

5.2. The Parser’s Structure

A parser is “a computer program that breaks down text into recognized strings of

characters for further analysis” [Miriam Webster’s Dictionary]. For the SimML

framework, the task of the parser is to interpret a text-based SimML specification file

and discern the information conveyed into SimML components and actions. Some of

these components will be container components (see Chapter 4, Section 4.3.1), for

example, a PROCESS component will contain a list of PROCESS attributes (if any)

and a sequence of SimML actions that are to be performed. Hence it is necessary to

ensure that the SimML specification is read properly from file and the data are stored

Chapter 5 - UML-to-Simulation Tool Implementation

58

in the right order before they are processed further. This requires the parser to keep a

particular data structure to accommodate the SimML information. The two parser

implementations that have been built employ different data structures, the first

(written in PERL) uses a set of arrays while the second (in Java) uses a custom built

class hierarchy (see Figure 5-11 in Section 5.4.2). These will be explained further in

later sections. In general, the parser’s functionality can be divided into two course of

operations:

1. Reading the SimML information from a (textual) file and storing it into a

particular data structure (in the memory).

2. Generating a simulation program using the information stored in that data

structure (into files).

These two stages of operations convert a text-based representation of the SimML

framework into a simulation program (Figure 5-2). The two implementations of this

parser are explained in the following two sections.

5.3. PERL Implementation

The first implementation of a SimML parser was written in a scripting language called

PERL (Practical Extraction and Report Language) [68, 73, 74]. PERL has some

features which makes it an ideal language for retrieving data. Its array data structure

Figure 5-2: The two stages in parsing textual SimML notation into simulation

Textual
SimML
Notation

Simulation
Program

SimML Parser

Stage 1

Read the
SimML
Notation

from a file

Stage 2

Transform the
SimML data
structure into
a simulation

program

SimML data
structure

Chapter 5 - UML-to-Simulation Tool Implementation

59

is flexible and can be manipulated easily, hence it is suitable for storing information

of any arbitrary size. PERL also provides an easy way for reading and writing files.

This is a very important feature since the SimML parser has to read a SimML

specification from file, perform some transformation on the information read, and

later write out the simulation code for that SimML specification.

A brief introduction on PERL syntax and its capabilities is laid out to give a

flavour of the language. This is then followed by a discussion on how a SimML parser

was constructed in PERL.

5.3.1. PERL Basics

PERL is an interpreted language optimised for scanning arbitrary text files, extracting

information from those files, and printing reports based on that information [74]. It is

UNIX based (although some emulators have been built to allow PERL to run on a PC)

and its expression syntax corresponds quite closely to the C programming language’s

syntax. The most important part of PERL is its interpreter, which defines the syntax

and the data types available in PERL, as well as other built-in functions for pattern

matching, communication protocols, etc. Being a scripted language means that PERL

source code is interpreted as it runs, i.e. there is no need to compile the source code.

This can make a PERL program faster to debug, modify and test, but on the down

side, can be more difficult to maintain the program’s structure.

PERL Data Structure

PERL is not a strongly-typed language; unlike C++ or Java; there are no built-in types

such as int, double, char, etc. Instead, PERL classifies its variables by what sort

of data they can hold, whether the data is singular or plural. Based on that

classification, there are three built-in data types defined in PERL: scalars, arrays of

Chapter 5 - UML-to-Simulation Tool Implementation

60

scalars (or simply called “arrays”) and associative arrays of scalars (hash arrays). A

scalar stores a single, simple value that is either a number or a string. It can be used as

a building block for more complicated structures. An array is an ordered list of scalars

where each scalar value is stored in a numerically indexed location (starting at zero) in

the list. An array may contain numbers or strings, or a mixture of both, or even

references to subarrays or subhashes. A hash array is similar to an array, the

differences are that a hash array is not ordered and the scalars stored in it are indexed

by some string values, not numbers. Also, each item in the hash array needs to contain

both a key and a value, where the value is identified by its key.

As in other programming languages, PERL program stores its data in a set of

variables. A PERL variable is prefixed by a certain character which indicates what

kind of data structure it belongs to; this can be seen Table 5-1.

Table 5-1: PERL variable indicators

Type Character Explanation
Scalar $ An individual value (number or string)
Array @ A list of values, subscripted by number
Hash % A group of values, subscripted by string

Some examples on how PERL variables are declared and initialised are listed below:

$anInteger = 17;

$aRealNumber = 2.4342;

$aString = “Hello World”;

@anArray = (“value1”, “value2”, “value3”);

$anArray[0] = “value1”;

%aHashArray = (“key1”, “value1”, “key2”, “value2”);

$aHashArray{“key1”} = “value1”;

Sometimes it is necessary to have a more complex data structure. PERL

provides a third scalar type called reference for achieving this. A reference is a form

Chapter 5 - UML-to-Simulation Tool Implementation

61

of indirection where a variable refers to another variable, which can either be a scalar

or an array. Since an array is composed of scalars, it is possible to have an array of

references to other arrays, and this essentially constitutes a multi dimensional array.

This kind of array is useful for storing multi-levelled information, such as that of the

SimML components (this will be explained further in Section 5.3.2).

So, the data structures employed in the construction of the SimML parser are

scalars, arrays and custom-built multi dimensional arrays (arrays of references). Some

operations which are relevant for organising the information in those data structures

are laid out below:

1. Array operations.

 There are two operators that are needed by the SimML parser for adding and

removing data in an array:

a) push(@arrayName, $newValue);

 This operator allows a new value (or a list of new values separated by a comma)

to be added as the last element of the array. The first parameter of this operator

is therefore the name of the array upon which the new value(s) is to be stored.

Please note that in PERL, an array’s size is not fixed, i.e. the array will grow or

shrink as needed.

 The push operator is actually coupled with a pop operator, which takes the

last element out of an array and returns it as a scalar variable. The push and

pop operators enable a list to be represented as a stack, but this is not the data

structure required in implementing the SimML parser. Instead an array is treated

as a queue, which can be achieved by replacing the pop operator with a shift

operator.

Chapter 5 - UML-to-Simulation Tool Implementation

62

b) shift(@arrayName);

 This takes the first element out of the named array and returns it as a scalar

variable. It is therefore usual to have a variable name as a left hand side of this

operation, for example:

 $value = shift(@arrayName);

 There is also an unshift operator which adds a new element as the first

element of an array, but as with the pop operator, the unshift operator is not

relevant for the SimML parser.

 The two operators above facilitate a list that allows data to be added and removed

from an array in a First In First Out (FIFO) order. On top of these two operators,

there are two additional methods that are useful for accessing the values in an

array:

 • subscript

 PERL provides a subscripting operator (a pair of square brackets, i.e. “[]”) to

access an array element by its numeric index. An array element is treated as a

scalar variable, therefore it is necessary to replace the @ symbol before the array

name with the $ character for subscripting it, for example:

 @array = (1, 2, 3); # initialise the array

 $first = $array[0]; # obtain first array value

 $array[0] = 0; # set the value of the

 # first array element.

 Note: The hash character (#), used as above, indicates that the rest of that line is

a comment. This character is also used by the array syntax to obtain the last

index of the array, as explained below.

Chapter 5 - UML-to-Simulation Tool Implementation

63

 • index of last element

 Trying to access an element beyond the ends of an array (i.e. an index of less

than zero or greater than the last element’s index) will return an undefined

value. Therefore, it is necessary to know the length of the array before accessing

its elements. The last element index of a PERL array @array can be obtained

by using $#array, and since the array index starts with zero, this essentially

means that the array’s length is $#array + 1.

2. String Manipulation

 PERL has a built-in feature for regular expression or pattern matching, which

provides a great deal of help in searching and processing a large amount of data.

There are several operators/functions available, but the most important one is the

split operator. The split operator takes two parameters: a regular expression

and a string; and splits the string up by returning parts of the string that do not

match the regular expression into a list. It is also possible to store the values of this

list directly into a named array by combining the split operator with the push

operator. For example, to split a textual data into separate lines and store these

lines into an array called LINES, the following PERL statement can be used:

 push(@LINES, split(/^/, $data));

 Each line can then be processed or split further into words:

 $aLine = shift(@LINES);

 push(@WORDS, split(’ ’, $aLine));

 To process the whole data, it is necessary to employ two loops, one to go through

each line and the other to go through each word of one line. Relevant operations

are then performed based on each word; this could be storing the information into a

Chapter 5 - UML-to-Simulation Tool Implementation

64

data structure (with reading of more words during that process if necessary) or

validating that the information read follows a particular syntax. Figure 5-3 below

shows the outline of this operation in PERL.

 The code above actually represents the skeleton for the first stage of the SimML

parser, namely reading the SimML notation and storing the data into an array data

structure (Figure 5-2). However, it has not been mentioned how PERL reads data

from a file. An overview on how file input and output operations are performed is

given next.

 # obtain data first and store as “$data” variable.

 $data = ...;

 push(@LINES, split(/^/, $data)); # split into LINES.

 while (@LINES) # iterate for each line.

 {

 $line = shift(@LINES);

 @WORDS = (); # empty the WORDS array.

 # split line into WORDS (separated by a space).

 push (@WORDS, split(’ ’, $line));

 while (@WORDS) # iterate for each word.

 {

 $word = shift(@WORDS);

 # process each word by storing it in an

 # appropriate array (with a validation check)

 ...

 } # end of WORDS loop.

 } # end of LINES loop.

Figure 5-3: An outline for reading, evaluating and organising data

Chapter 5 - UML-to-Simulation Tool Implementation

65

File Input/Output Operations in PERL

PERL provides a “backquotes” facility which launches a (UNIX) shell command from

within a PERL script. This starts off the specified command, waits for its completion,

while obtaining the standard output as it goes along. Therefore, a file input operation

can be performed easily in PERL by utilising the UNIX more command, which

returns the content of a text file. All that is needed to do is to put the more command

(with a file name parameter) within a pair of backquotes (‘ ‘) and store the returned

result into a suitable variable, e.g.:

$content = ‘more data.txt‘;

The data (stored in a PERL variable called $content in the above case) can then be

processed as needed, which in SimML parser’s case, is already outlined in Figure 5-3.

The output operation requires another PERL feature called filehandle. A

filehandle is just a name that is given to a file, device, socket, or pipe, to hide the

complexities of buffering to that destination; it is comparable to stream in C++. To

create and attach a filehandle to a particular file, the open function is used. This

function takes two parameters: the filehandle and the name of the file that is to be

associated with it. Since the open function creates a filehandle that can be used for

different purposes (input, output, piping), it is necessary to specify which operation is

wanted. This is done by adding a special character in front of the filename, and for the

output operation, the character used is the right angular bracket (>). This character

signifies that a new file is to be created with the specified filename and the outputs are

to be written to that file. Writing to that file is performed through the print

command using the filehandler as the second parameter. When the output operation is

completed, the file can be closed using the close function. For example:

Chapter 5 - UML-to-Simulation Tool Implementation

66

open (MY_FILE, “>data.txt”);

 print MY_FILE “Hello World”;

 print ...

 close MY_FILE;

The file input operation can be performed using a filehandle as well, but it is a lot

simpler to use the backquote operation, especially in the UNIX environment.

Organising the code: Subroutines

Subroutines or functions provide a means for organising the source code into

managable chunks. This considerably helps the programmer to understand the code

better and provides efficiency by avoiding repeating the same code. In PERL, a

subroutine can be defined in this syntax:

sub SUB_NAME

{

 statements ...

}

A subroutine can be called in several ways; the one that is used here puts an

ampersand character (&) before the subroutine name, which is then followed by a list

of parameter (if any, within a pair of brackets), for example:

&SUB_NAME(@PARAM_LIST);

In the subroutine definition, the parameter list becomes a special list called @_, which

can be accessed in the same way as other lists. A PERL subroutine can also have a

return value, this is the value of the last expression evaluated within the body of the

subroutine on each invocation. For an example, let us consider a subroutine that

calculates the sum of the numbers passed as its parameters:

sub SUM

{

Chapter 5 - UML-to-Simulation Tool Implementation

67

 $sum = 0;

 while (@_)

 {

 $value = shift (@_);

 $sum = $sum + $value;

 }

 $sum;

}

invoking the subroutine

$result = SUM;

print $result; # This prints out 0.

$result = &SUM(5, 9, 16);

print $result; # This prints out 30.

$result = &SUM(9, 0, -7, 12, 4, -10);

print $result; # This prints out 8.

It can be seen that subroutines are essential in constructing a large program or a

program that contains many repeated parts. This is the case with the SimML parser,

where for example, several simulation program files are to be generated and each file

is to be written out in a similar manner.

The PERL features illustrated above provide the necessary means for

implementing the SimML parser. A more detailed explanation on how these features

are used in constructing this parser is given in the next section.

5.3.2. From SimML to C++SIM using PERL

First, it was necessary to design the data structure for storing the SimML information.

PERL’s array is suitable for this purpose because each array can accommodate an

arbitrary number of items, and based on the SimML framework, it is possible to work

Chapter 5 - UML-to-Simulation Tool Implementation

68

out how many arrays are needed. There is one array each for the DATA, PROCESS,

QUEUE, OBJECT, RANDOMS and STATISTICS components. Each array stores its

information in a particular manner, depending on what sort of information (how many

fields of data) is needed.

For example, the PROCESS array is required to store the information on all of

the PROCESS components. Each PROCESS component contains a distinct name

(through which the process is identified), a list of constructors (if any), a list of

member variables (both public and private) and its member functions (complete with

the action definitions for each function). Therefore, one PROCESS component will

occupy several slots of the PROCESS array. In comparison, the QUEUE array only

needs to store the information on all instances of the QUEUE component, which are

just the QUEUE name and the type of object this queue will contain. Hence, the

QUEUE array is a lot simpler compared to the PROCESS array. The list of the

SimML component related arrays are given below, along with their further details:

1. @DATA_VARS

This array stores the information for the DATA components, where each DATA

component has a name and may have some attributes. Therefore, a multi-

levelled array is used for storing the data. The root array will keep the DATA

component’s name, and this name can be used to point to another array which

stores the attributes of that DATA component. This can be seen diagramatically

in Figure 5-4.

Later, when the parser tries to generate the C++SIM code, the DATA

attributes are divided into two local arrays based on their visibility (public or

private). These local arrays are declared inside a subroutine called CLASS (see

Chapter 5 - UML-to-Simulation Tool Implementation

69

later) and they are used temporarily for storing the DATA attributes in a C++

syntax before being written into a file.

2. @PROC_VARS

 As with the DATA components array, the PROCESS components array retains a

multi-levelled array structure. Since a PROCESS component needs to have at

least one function (the +void Body() function, which stores the information

on its SimML actions), it is necessary to provide a slightly more complex array

structure. The root array keeps the name of the PROCESS components, and

each entry here points to another array that stores the PROCESS’s attributes and

function names. Each function name in turn points to another array which stores

the details of the SimML actions associated with this function (Figure 5-5).

The PROCESS attributes are arranged in the same way as the DATA

attributes. In fact, it could be said that the PROCESS component inherits from

the DATA component. The difference is that a PROCESS component has at

least one function defined, which contain some SimML actions specification.

This indicates that the PROCESS component is an active object i.e. has its own

thread of control, while the DATA component is only a passive data structure.

Figure 5-4: The DATA array

attribute1

attributeX

•
•
•dataName1

dataName2

dataName3

•
•
•

attribute1

attributeX

•
•
•

Chapter 5 - UML-to-Simulation Tool Implementation

70

Since the DATA and PROCESS components are quite similar, it is more

efficient to provide one subroutine to handle the generation of the C++SIM code

for both components. This is done by a subroutine called CLASS, which is

explained later in this section.

3. @QUE_VARS

 The QUEUE components are stored in a simple linear array, where each

QUEUE component takes two slots in that array. The first slot keeps the

QUEUE’s name while the second holds the information on what type of objects

are to be placed in this QUEUE. In other words, the first QUEUE component

occupies the array at index number 0 and 1, the second QUEUE component

takes slots number 2 and 3, etc. (see Figure 5-6).

4. @OBJ_VARS

 An object is an instance of a PROCESS component. The OBJECT array stores a

set of three values for each OBJECT component: the OBJECT’s type (which is

essentially a PROCESS’s name), its name and its multiplicity. The multiplicity

is used for specifying a set of objects with the same type and characteristics; this

Figure 5-5: The PROCESS array

procName1

procName2

•
•
•

attribute1

function1

•
•
•

function1

attribute1

•
•
•

SimML action

SimML action

•
•
•

SimML action

SimML action

•
•
•

Chapter 5 - UML-to-Simulation Tool Implementation

71

is a means of representing a multi-process. The arrangement of the OBJECT

array is similar to that of the QUEUE array, i.e. the first OBJECT component

occupies the array at index number 0, 1 and 2 (Figure 5-7).

5. @RANDOMS

 A RANDOMS component is composed of random variables. Each random

variable has a name and follows one of the five random distributions supported

(see Table 4-1 in Chapter 4). It also has one or two parameters depending on

what kind of distribution it belongs to. Sometimes, it also is necessary to specify

the seed for generating the random numbers. Therefore, each random variable

maintains up to five data values, which can be seen in Figure 5-8 (the elements

within a pair of square brackets are optional).

Figure 5-6: The QUEUE array

Figure 5-7: The OBJECT array

Figure 5-8: The RANDOMS array

Figure 5-9: The STATISTICS array

•
•
•

queueName1

queueType1

0

1

2

3

queueName2

queueType2

•
•
•

0

1

2

3

rndVarName

randomType

[seed]

[param2]

4

param1

•
•
•

0

1

2

3

statUpdate1

statType1

statVarName1

statUpdate2

statType2

statVarName24

5

•
•
•

0

1

2

3

objectMult1

objectType1

objectName1

objectMult2

objectType2

objectName24

5

Chapter 5 - UML-to-Simulation Tool Implementation

72

6. @STATS

Similar to the RANDOM component, a STATISTICS component is composed

of statistics variables. Each statistics variable consists of three values: the

statistics type (either an int or a double), its name and a description on how

this variable should be updated (Figure 5-9). The update can be one of the two

kinds:

a). A simple increment or decrement.

This kind of update is prefixed by a ‘+’ or ‘-’ sign (for increment or

decrement), followed by the increment/decrement value, which can either

be a numerical value or a C++ expression. This is useful for updating a

counter-type statistics variable.

b). A calculation involving other variables.

It is prefixed by a ‘=‘ sign and followed by a mathematical expression

involving other variables or literal values.

For the CONTROLLER component, there is no need to store the information in an

array since a CONTROLLER’s properties are well defined and a template can be

constructed for it. It is therefore sufficient to store the name of the CONTROLLER

component in a variable.

By using these array structures, the information obtained from the SimML

specification (read from a text file) can be arranged and used properly.

Stage 1: Reading the SimML specification from file.

The PERL parser is designed to read a valid SimML notation from a text (ASCII) file.

Any invalid syntax will be detected during the parsing and an error message will be

Chapter 5 - UML-to-Simulation Tool Implementation

73

reported including the line number of the SimML notation file that contains the

problem.

The parser initially reads all the content of the file into a PERL variable, which

is then split into lines and stored in a PERL array called @LINES. Each line is then

evaluated by splitting the words (separated by a white space) into an array called

@WORDS (see Figure 5-3). The first word is a keyword which corresponds to one of

the SimML components and it plays a major role in determining the organisation of

the subsequent arrays. Any invalid keyword will cause the parser to display an error

message and terminate. The valid keywords are:

i) PROCESS

This keyword indicates a SimML PROCESS component and is followed by a

name through which this PROCESS can be referred to. There is an optional

keyword after the name called “once”, which indicates whether the

PROCESS’s life-span is only for one execution (by default, the PROCESS’s life-

span is throughout the simulation).

Since PROCESS is a container component, it is followed by a block of

statements (within a pair of curly brackets) that contains the PROCESS’s

attributes and functions. There must exist a +void Body() function, which

contains the SimML action specifications. An example is given below:

PROCESS Server

{

+double delay

+void Body()

{

<SimML Action specification>

Chapter 5 - UML-to-Simulation Tool Implementation

74

...

}

}

ii) DATA

It is similar to the PROCESS keyword, but it does not have a life-span nor any

function, e.g.:

DATA Job

{

+int id

-double arrTime

}

iii) QUEUE or SEQUENCE

A QUEUE component is followed by the QUEUE’s name, a keyword (“of”) and

the type of elements to be stored in that QUEUE. More than one QUEUEs can be

specified for each SimML specification.

A SEQUENCE is a kind of queue that allows a simple priority ordering of

its elements. There is a number associated with each element (stored as the

element’s member variable usually called id); the lowest the number is, the

higher priority the corresponding element becomes. An element with the lowest

id value will be placed at the head of the queue. The value of the id variable is

assigned by a PROCESS component, usually an Arrival process.

The syntax for the SEQUENCE component is therfore slightly different:

The SEQUENCE keyword is followed by the SEQUENCE’s name, a keyword

(“of”), the elements type, a keyword (“using”) and the variable name that

stores the priority number (“id”). It is necessary to ensure that the variable name

Chapter 5 - UML-to-Simulation Tool Implementation

75

used for the priority number is actually declared as a public member variable

inside the DATA/PROCESS component that meant to be placed on the

SEQUENCE. An example is shown below:

QUEUE Queue of Job

SEQUENCE Seq of Job using id

iv) CONTROLLER

This component’s property is pretty much fixed, so the parser has provided a

template for its code. The only thing necessary to be supplied is the name by

which this CONTROLLER component is known. There is only one

CONTROLLER component per SimML specification. For example:

CONTROLLER MyController

v) OBJECT

An OBJECT keyword is followed by the name of the OBJECT, a keyword (“of”)

and the object type. Multiple objects (considered as a group) can be declared by

adding the object’s multiplicity after its name (surrounded by a pair of square

brackets), e.g.

OBJECT singleServer of Server

OBJECT multServer[3] of Server

vi) RANDOMS

RANDOMS is another container component. It is followed by a set of

RANDOMS variable, declared within a pair of curly brackets. Each RANDOMS

variable is composed of a name, the type (which must be one of the five

supported types as listed on Table 4-1), and its parameters:

RANDOMS

{

Chapter 5 - UML-to-Simulation Tool Implementation

76

randVar1 exponential 4

randVar2 uniform 1 5

}

vii) STATISTICS

This is also a container component and its structure is quite similar to that of the

RANDOMS component. The STATISTICS component is composed of

STATISTICS variables, each of which has a type (either int or double), a

name and an expression on how this variable is updated. For example, if we

would like to work out how long on average it takes to process a Job (which

stores the information on its arrival time), we could declare three STATISTICS

variables as follows:

STATISTICS

{

int totalJob +1

double totalTime +Time()-j->arrTime

double avgTime =totalTime/totalJob

}

The updates are performed by the update actions which are declared inside the

relevant SimML PROCESS(es).

After the SimML specification file has been read successfully, the information

obtained are stored in the PERL arrays before the second stage of the parser is

performed.

Stage 2: Generating the C++SIM program

The information stored in the SimML-customised arrays needs to be transferred

into several C++ classes (stored as the C++ .h and .cc files) in order to build a

Chapter 5 - UML-to-Simulation Tool Implementation

77

C++SIM program. There will be a class each for the DATA, PROCESS and QUEUE

components, one for the CONTROLLER component plus a Main.cc file that is later

compiled into an executable Main program.

Since PERL supports subroutines, several subroutines have been implemented

to convert the SimML components information from the PERL arrays into their

corresponding C++ code. These subroutines are:

1. ACTIONS

 This subroutine handles the transformation of SimML action notation into the

corresponding C++SIM code. Each SimML action notation begins with a keyword

that specifies which action is to be performed (one of the valid SimML actions

listed in Section SimML Actions). Depending on the action keyword, there are

some parameters that need to be specified. If the parameters do not match, the

parser will print an error message and terminate.

2. CLASS

 The construction of the C++SIM code corresponding to the SimML DATA and

PROCESS components is performed by this subroutine. This subroutine takes two

parameters: the first one is just a string variable for determining whether this

subroutine needs to construct a DATA or PROCESS component. This parameter is

used in conjunction with the second parameter, which is an array containing the

information of either the DATA or PROCESS component (through the

@DATA_VARS or @PROC_VARS array).

3. CONT

 Since the CONTROLLER component’s behaviour is relatively fixed, this

subroutine takes care of everything that corresponds to the generation of the

Chapter 5 - UML-to-Simulation Tool Implementation

78

C++SIM CONTROLLER class. This class organises the simulation run by

obtaining the simulation parameters, activating the appropriate processes, waiting

for the simulation time before terminating and summarising the simulation.

4. MAIN

 In order to run the C++SIM code, there needs to be a program that contains the

void main() function, which essentially starts up the simulation program by

initialising the threads and then passing the control to the CONTROLLER class.

The purpose of the MAIN subroutine is therefore to create a simple program that is

executable from the operating system.

5. QUE

 This subroutine creates the QUEUE classes that represent the SimML QUEUE

components. The QUEUE elements must be of a certain type, which is represented

by (associated to) the name of a DATA or PROCESS component. The QUEUE

class uses a Linked-List data structure for storing its elements and supports the

essential member functions, such as those for checking whether the queue is empty

or not, adding/removing an element and obtaining the queue size.

In addition to these, there are more subroutines which support the features of the

parser as well as for compiling and running the C++SIM program generated. Most of

these subroutines are invoked from within the ACTIONS subroutine and their

purposes are for the validation of the SimML actions’ parameters.

1. CLEAN

 The data read from file need to have their new line character (“\n”) as well as

their blank spaces removed, otherwise the information will not be interpreted

Chapter 5 - UML-to-Simulation Tool Implementation

79

correctly. The task of cleaning the “raw” data is therefore performed by this

subroutine.

2. VALID_OBJ

 It is used to determine whether a named object that participates in an action is

actually valid (stored inside the @OBJ_VARS array) or not. An invalid object will

cause the parser to display an error message and terminate.

3. VALID_STREAM

 The VALID_STREAM subroutine is used by the wait and generate actions. These

actions require a random variable name as their parameter, and only those already

declared inside the @RANDOMS array are allowed.

4. MULT

 If an object has a multiplicity that is greater than one (i.e. it is actually a group of

objects of the same class treated as one item), it is necessary to handle it in a

particular way by taking into account every member of the group. The notion of

multiplicity is associated with the PROCESS component and normally used on the

activate or terminate actions.

5. ONCE_ONLY

 In most cases, a PROCESS component’s life-span is throughout the simulation

length where it has a loop that repeats the same sequence of actions that needs to be

performed. In some cases though, it is necessary to have a PROCESS component

that executes its set of actions only once then terminates. The names of the

PROCESSes that belong to the second category are stored in a simple array called

@DYN_OBJS. This array is updated during the reading of the SimML

specification from file, based on whether the PROCESS declaration contains a

Chapter 5 - UML-to-Simulation Tool Implementation

80

“once” keyword or not. The purpose of the ONCE_ONLY subroutine is to make

it easier to check whether a named PROCESS component need to have a forever

loop inside its +void Body() method or not.

6. VALID_QUEUE

 The check, dequeue and enqueue actions use this subroutine to determine whether

the queue name supplied as their parameter is a valid one or not. In case of the

dequeue and enqueue actions, it is also necessary to verify whether the object to be

added to or removed from the queue is of the valid type (i.e. the object is an

instance of a valid DATA or PROCESS component and the queue stores elements

of the same type).

7. CREATE_IMAKE

 C++SIM environment uses a UNIX program called imake to automatically

generate the Makefiles (which are useful for building a group of programs like

those for our simulation) from a template. The imake program reads an

Imakefile configuration file that specifies the source and object files involved

in a particular group of compilation. The purpose of the CREATE_IMAKE

subroutine is therefore to generate the Imakefile based on the classes captured

from the SimML DATA, PROCESS, QUEUE and CONTROLLER components.

8. CREATE_MAKE

 After the creation of the Imakefile, it is necessary to generate the Makefile

that is used by the UNIX make command to build the final executable program.

This automatic Makefile generation is performed by the CREATE_MAKE

subroutine.

Chapter 5 - UML-to-Simulation Tool Implementation

81

The transformation of the SimML information (stored in the PERL arrays) into

C++SIM code is done by invoking the appropriate subroutines in a particular order

along with their parameters (if any) as listed below:

i) &QUE(@QUE_VARS)

ii) &CLASS(“DATA”, @DATA_VARS)

iii) &CLASS(“PROCESS”, @PROC_VARS)

iv) &CONT($controllerName)

v) &MAIN

vi) &CREATE_IMAKE

vii) &CREATE_MAKE

The above subroutine calls are then followed by a UNIX shell invocation that

executes the make command to generate the object (.o) files for the C++SIM code.

This is then followed by a PERL exec function to execute the Main program which

initialises the simulation run.

The execution of both the first and the second stage of the PERL SimML parser

allows a complete transformation of a textual SimML notation into C++SIM program.

After several name changes, it was decided to call this parser runsim and it is

runable on the UNIX/Linux platform.

This concludes the section that describes the implementation of a SimML parser

in the PERL scripting language. Some case studies on the application of this parser are

discussed later in Chapter 7. The next section explains the second implementation of

the SimML parser in Java, which has some added functionality for supporting a GUI

tool for capturing the UML design notation (class and sequence diagrams) and for

generating XML as well as JavaSim code.

Chapter 5 - UML-to-Simulation Tool Implementation

82

5.4. Java Implementation

Java has emerged as a very popular programming language since 1996 when Sun

Microsystems released their free Java compilers on the internet. Java is an object

oriented programming language whose syntax is very similar to that of C++ but

differs in many aspect to stand out as a language of its own. One major difference is

that Java does not support pointer - a powerful and useful feature, yet quite difficult to

understand and may lead to trouble - which might be missed by some C++

programmers. Java also provides an easier memory management by performing an

automatic garbage collection, which can minimise memory leaks.

There are many reasons why Java has dominated the programming world. Being

a free programming language helps Java’s popularity a lot, but the biggest reason is

probably due to Java’s high portability which means that it can be installed and run on

practically any machine. Java achieves this portability by compiling its source code

into a byte code that is executed on a Java Virtual Machine (JVM) instead of directly

on the host machine. JVM is Java’s own personal machine which runs on the host

machine and has been ported to a variety of platforms and operating systems. Java

byte code for one platform can therefore be run on another platform because it is

actually running on the same machine: the JVM.

Java also provides many features that allow programs with intensive Graphical

User Interface (GUI) to be constructed easily. This benefit is one of the main reasons

why Java was chosen as the language for building our UML tool (from now on, we

call it a UML/SimML tool for reference’s sake). As mentioned at the beginning of this

chapter, the aim of this tool is to transform (relevant) UML notations into (JavaSim)

Chapter 5 - UML-to-Simulation Tool Implementation

83

simulation programs. It consists of the front end GUI tool for drawing UML diagrams

and the back end SimML parser for generating JavaSim programs (see Figure 5-1).

The rest of this section explains how the UML/SimML tool was implemented,

and it begins with an introduction of the Java features necessary for building GUI

programs. This is then followed by the formulation of approach in building the

UML/SimML tool: the construction of the back end parser as well as the front end GUI

tool, and the amalgamation of these two ends. The use of the Extensible Markup

Language (XML) for storing SimML related information is also discussed. The XML

notation was actually used in testing the back end parser before the GUI front end was

developed. More detailed explanation on the Java language itself can be found in

many references such as [12], [22], [23], [30], [37], [42], [75] and [77].

5.4.1. Java Foundation Class (JFC) and Swing

Java provides a generic, platform-independent windowing system called Abstract

Window Toolkit (AWT) for writing Graphical User Interface (GUI) programs. AWT

was the only/main GUI library for older versions of Java (i.e. those prior to Java 2);

later versions support a new package called Swing, which is part of the Java

Foundation Classes (JFC) that provide a better GUI facilities.

Java Foundation Classes (JFC) encompass a group of features to help people

build graphical user interfaces (GUIs) [41]. This is achieved by providing standard

GUI components, such as buttons, lists, menus, and text areas, as well as some

container components for organising the GUI’s layout. Swing itself was the codename

of the project that developed these new components, which are subsequently called

Swing components. The basic concepts of Swing are outlined below, which were later

used in building the GUI part of the UML/SimML tool.

Chapter 5 - UML-to-Simulation Tool Implementation

84

Swing Components and the Containment Hierarchy

Swing provides a containment hierarchy for arranging its components in a GUI.

In order to appear on screen, every GUI component has to be part of a containment

hierarchy. Based on the containment hierarchy, it is possible to separate the Swing

components into three categories:

• Top Level-Container

 This kind of component exists mainly to provide a place for other Swing

components to paint themselves. The commonly used top-level containers are

frames (JFrame), dialogs (JDialog) and applets (JApplet).

• Intermediate Container

 Its only purpose is to simplify the positioning of the atomic components (see

below). There are a few intermediate Swing containers, such as panel (JPanel),

scroll panes (JScrollPane) and tabbed panes (JTabbedPane)

• Atomic component

 An atomic component is a component that exists as a self-sufficient entity that

presents bits of information to the user. Most of the Swing components belong to

this group, such as button (JButton), check box (JCheckBox), radio button

(JRadioButton), list (JList), menu (JMenu), label (JLabel), text field

(JTextField), text area (JTextArea), etc.

Each containment hierarchy has a top-level container as its root. In turn, each top-

level container has a content pane that contains the visible components in that top-

level container’s GUI. Intermediate containers and atomic components are placed

inside the content pane, which is accessible using the getContentPane() method

of the top-level container.

Chapter 5 - UML-to-Simulation Tool Implementation

85

Containers have a method called add, which has at least one parameter: the

component to be added into the container. In order to make a nice layout, the

components are ordered according to a particular arrangement, which is specified by

one or more layout managers (explained next). The layout managers dictate how the

components are added and placed inside a container. There are various forms of the

add method, and one of the forms also takes a layout manager as a parameter as well.

Layout Management

Layout management is the process of determining the size and position of

components. There is a layout manager for each container, whose task is to perform

the layout management for the components within that container. Java provides five

commonly used layout managers: BorderLayout, BoxLayout, FlowLayout,

GridBagLayout, and GridLayout (details on how they differ from one another

can be found in [41] or any Java books)

Components can provide their size and position information to layout managers,

but in the end, it is up to the layout managers to decide on the size and position of

those components. After the components have been added to the relevant containers,

the top-level container needs to invoke the following two lines in order to display the

GUI:

pack();

setVisible(true);

The pack() method causes the size of the top-level container to be determined and

its contents to be laid out using the layout managers. The setVisible(true)

method makes the window (where the top-level container resides) visible and usable

as a GUI.

Chapter 5 - UML-to-Simulation Tool Implementation

86

Event Handling

To make an interactive GUI, some of the components need to be able to respond to

external events, such as the user pressing a mouse button. These events are managed

by event handlers: they are Java classes that implement a listener interface (one of

those declared in the Swing library, such as ActionListener, MouseListener,

MouseMotionListener, KeyListener, ListSelectionListener, etc.)

and register one or more event listener on the appropriate event source (usually a

Swing component). For example, if we would like to handle a mouse-clicked event on

a button, the following skeleton code could be used (the bold typefont indicates the

event handling code):

public class MyHandler implements ActionListener

{

// declare a button component

JButton myButton = new Jbutton();

...

// register an action listener for this button

myButton.addActionListener(this);

...

public void actionPerformed(ActionEvent event)

 {

// ...code that reacts to the action

}

}

The event listeners are implemented by the GUI programmers to perform

whatever needs to be done in response to a particular event.

For more information on the Swing package, see [41] or [75].

Chapter 5 - UML-to-Simulation Tool Implementation

87

5.4.2. Our Approach in Building the UML/SimML Tool

Chapter 4 identifies a framework called SimML that can be used to bridge the

transformation of a UML design notation into a simulation program. So far we have

seen how this framework is applied in building a PERL parser (called runsim) that

can generate C++SIM simulation programs automatically from a SimML notation (see

Section 5.3).

We would like to extend this idea by adding some features that allow simulation

programs to be generated directly from graphical UML notations. To achieve this

goal, we split the overall task into several stages:

• investigating possible solutions or available tools,

• extracting SimML information from UML design,

• generating simulation programs from SimML information.

5.4.2.1. Formulating a solution

There were several possible lines of approach investigated before we came to one

solution. Since there already exists a parser that can transform a (textual) UML-like

notation into C++SIM program (see Section 5.3 and [6, 7, 10]), we could have

adapted one of the UML tools available (such as the Rational Rose tool [63] or

Argo/UML [71]) by extracting the UML information into a suitable textual format.

This textual notation can then be applied to the above parser in order to generate the

simulation program.

In the end though, it was decided to construct our own UML tool using Java’s

JFC/Swing package (see Section 5.4.1 above and [41]). One of the reasons for taking

this approach is because we need a tool that knows about simulation characteristics,

and none of the tools mentioned above meets this demand. It is also extremely

Chapter 5 - UML-to-Simulation Tool Implementation

88

difficult to augment an existing tool, especially if this tool is very complex and

extensive. By constructing our own tool, we aim to support the necessary design

notations, and at the same time allowing the simulation characteristics of a system to

be captured.

Figure 5-10 shows the possible paths that can be taken to generate a simulation

program from the UML design notation.

The first attempt is focused on how to represent the SimML framework in Java

environment. This is a very important task because we need the SimML framework to

act as a bridge that connects the UML design and the simulation program. In other

words, the SimML framework is used by both the front end (GUI) part and the back

end (simulation generator) part of the complete UML/SimML tool.

The SimML framework representation in Java was achieved by building a data

structure composed of several sub structures that represent the relevant SimML

components. The next section illustrates how this data structure is constructed as a

Java package.

UMLTool

SimML

Parser

Simulation

Program

Textual
notation

uses

generates

generates

uses

Figure 5-10: The paths for generating simulation from UML

Chapter 5 - UML-to-Simulation Tool Implementation

89

5.4.2.2. Java package for SimML

Java supports modularity by grouping related classes into one package. A package is a

compilation unit that encapsulates several classes, interfaces and sub-packages into

one file with an aim to improve the organisation of the program [37]. It also helps to

resolve naming problems and promotes software reuse.

The components and actions of the SimML framework can be represented as

Java classes and grouped into one Java package. We call this package

ncl.SML.Components; the structure of this package is represented as a UML

class diagram in Figure 5-11. (Note: Initially, our simulation framework was called

SML instead of SimML because we were not aware of a programming language with

the same name. Subsequently, we changed the framework’s name to SimML to avoid

name conflict, but the Java package’s name remains unchanged for simplicity).

The SimML data structure in Java offers a better and clearer organisation of

components compared to that of the PERL implementation. Every SimML component

is represented by a class and it inherits from a base class called SMLComponent. The

inheritance allows necessary methods (such as those for setting and getting the

component’s name and parameters as well as that for generating JavaSim) to be

declared uniformly (i.e. with consistent method signature). Each SimML component

then implements its own version of these method suited to its requirement.

As mentioned in Section 4.3.1, the SimML components can be classified into

simple (or atomic) components and container components. This is also the case with

the Java implementation of our SimML tool. This classification can seen clearly in the

UML class diagram representation of the SimML framework (Figure 5-11), where

container components are shown as aggregation of one or more simple components.

Chapter 5 - UML-to-Simulation Tool Implementation

90

There are three Java classes for the SimML simple components: SMLQueue,

SMLObject and SMLController. There is also an extra class that can be

considered as a simple component called SMLMainProg, which creates the part of

the simulation program that contains the executable “main” method.

The container classes are composed of sub-elements, and these sub-elements are

not any of the simple components above. There are four container classes defined:

• SMLData

 SMLData contains zero or more SMLAttr (a class that represents attributes of the

SimML DATA component), which are stored as elements of a Vector variable

inside the SMLData class called attrInfo. (Note: Vector is an

implementation of array data structure that allows dynamic size allocation).

• SMLProcess

 This class inherits from the SMLData class so it also contains zero or more

instance of SMLAttr. On top of that, SMLProcess also contains zero or more

SMLAction, which represents SimML actions. The instances of SMLAction are

stored in another Vector variable called actInfo.

• SMLRandom

 SMLRandom class is the container for the SMLRandComp instances, which store

the details of each random variable (including its name, numerical type and

distribution function). These instances are stored in a Vector called randInfo.

• SMLStatistics.

 This is very similar to the SMLRandom container, the only difference is it

contains instances of statistics variables (SMLStatComp), which are stored in

statInfo Vector.

Chapter 5 - UML-to-Simulation Tool Implementation

91

There is a special class called SMLStructure that holds the information on

all the SimML components (as well as the SimML actions in the case of the SimML

PROCESSes). As can be seen in Figure 5-11, this class is composed of instances of

the SMLComponent class, and these instances are stored either as elements of some

Vector member variables or just as simple member variables.

Simulation information (which is derivable from the UML diagrams - see

Section 5.4.2.3 below) is loaded into the SMLStructure before being transformed

into a simulation program. A member function can be added to the SMLStructure

class to perform this transformation for a particular simulation environment. The work

illustrated here uses JavaSim as the target simulation environment, therefore a

member function called generateJavaSim() has been added to the

SMLStructure class above. Details on this member function implementation can

be seen in Section 5.4.2.4.

5.4.2.3. Deriving SimML information from UML diagrams

 UML allows both static and dynamic characteristics of a system to be shown by using

the appropriate diagrams and notations. This is useful for the SimML framework

because simulation information can also be divided into static and dynamic properties

SMLComponent
1*

SMLController

SMLQueueSMLObject SMLMain

SMLProcess

SMLData

SMLStatComp

SMLStatistics

1

*

SMLRandom

SMLRandComp

1

*

SMLAction

1

*

SMLAttr

1 *

SMLStructure

+dataComp: Vector<SMLData>
+procComp: Vector<SMLProcess>
+queComp: Vector<SMLQueue>
+objComp: Vector<SMLObject>
+randComp: SMLRandom
+statComp: SMLStatistics
+controller: SMLController
+mainProg: SMLMainProg

+generateJavaSim()

Figure 5-11: The class diagram for the SimML Components and Actions

Chapter 5 - UML-to-Simulation Tool Implementation

92

amongst other things (the random and statistics properties are other points of interests

in simulation). Therefore, capturing SimML information from UML can be done as

follows:

• Static Properties

 The SimML framework specifies the static characteristics of simulation inside the

DATA and PROCESS component. These characteristics include a name through

which the DATA/PROCESS component can be referred to, as well as member

variables belonging to that component.

 The UML class diagram is an ideal place for capturing these static properties.

This is because the class diagram has a field for storing the class’s name (which is

comparable to the DATA/PROCESS name in the SimML framework) along with

a field for specifying its member variables.

• Dynamic Properties

SimML actions represent the dynamic characteristics of simulation. SimML

actions are invoked only from within PROCESS components but they might

involve instances/objects of DATA, QUEUE or other PROCESS component.

Each of these instances is given a name, through which the interactions are

specified. These SimML actions must also be executed in a particular sequence or

order (within one PROCESS component), since they affect the interactions of the

objects involved in the simulation.

There are many notations in UML that can be used to convey the dynamic

aspects of a system, but one notation that comes closest to the SimML requirement

is the sequence diagram. The sequence diagram allows objects to be specified (on

the top side of the diagram) and each object has a time-line associated to it. The

Chapter 5 - UML-to-Simulation Tool Implementation

93

interactions among the objects are achieved by passing messages (indicated as a

labeled arrow) from one time-line to another. The order of the messages is

determined by their position on the time-line: the lower down the diagram they

are, the later they are executed.

The 14 SimML action keywords (see Chapter 4, Section 4.2.2) can be

represented as the labels of the messages. These labels follow the notation of a

standard “function call”, which might include some values passed as its

parameters. For some of the SimML actions that need an interaction with another

object (such as activate, enqueue and dequeue), the message’s arrow points to the

time-line of the relevant object. Otherwise, the arrow can just point to its own

time-line to indicate a self-invocation.

The random and statistics simulation properties are not quite easy to derive from any

UML notations though. This is due to the fact that there is no UML notation that is

directly applicable to or sufficiently capable of conveying the characteristics of these

two properties. It is possible to attach the random and statistics properties as UML

notes, but this approach weakens their special case since UML notes tend to be too

expansive. It was therefore proposed to extend UML by adding two extra views that

allow the random and statistics properties to be specified consistently:

• Random Properties View

 This view consists of the random variable names along with their appropriate

types and parameters. To ensure that only a valid random distribution function is

used as the type, it is necessary to provide a list (represented as a pull-down menu)

showing the five supported random distribution functions (as specified in Table 4-

1) for the user to select. The number of parameter(s) is either one or two

Chapter 5 - UML-to-Simulation Tool Implementation

94

depending on the distribution function, so one or two field(s) should be given

accordingly to contain the values of the parameter(s). The user should also be able

to select a different distribution function from the first one selected if necessary,

and to modify the parameters (i.e. the random properties should be editable).

• Statistics Properties View

The statistics view contains the statistics variable names, each of which also

conveys its type (either an int or a double, shown as a pull-down list),

modification mode (either simple increment/decrement or calculation) and a

mathematical expression on how this variable is to be updated (which depends on

the modification mode). Similar to the Random properties, the Statistics properties

should be editable.

The four views above enable the components and actions of the SimML framework to

be captured in a pretty straightforward manner. Therefore, in order to derive SimML

information automatically from UML diagrams, it is necessary to provide a means for

supporting these views. Two of the views (static and dynamic properties) are already

supported by the standard UML notation through the class and sequence diagrams, but

the other two (random and statistics properties) are not. This lack of support from

UML notation was taken into account when we design and build the UML/SimML

tool, which aims to support all the four views in one tool. Another feature that this

tool also needs to support is the JavaSim program generator, and this is explained in

the following sub-section.

5.4.2.4. Generating JavaSim code

The SimML components and actions can be mapped directly into simulation entities

and interactions, and these mappings pave a way for building a parser that can

Chapter 5 - UML-to-Simulation Tool Implementation

95

automatically transform the information stored in the SimML framework into a

simulation program. The process of transforming the SimML data into simulation

program can be made easier by organising the data into a well-defined structure, for

example by using a modular approach. Each module knows how to write the

information stored in it into a relevant piece of JavaSim code (into a file), therefore a

complete JavaSim code can be obtained by performing the write operation on all the

modules.

As mentioned in Section 5.4.2.2, the SimML framework can be implemented as

a package in the Java programming language. The SimML components and actions

are represented as Java classes that inherit from a parent class called

SMLComponent (Figure 5-11). Both the SimML component classes and the SimML

action classes are referred to as the components of the ncl.SML.Components

package. Each component of the ncl.SML.Components package provides a

mapping from its data to a segment of JavaSim program.

Some of the SimML component classes (SMLData, SMLProcess,

SMLQueue, SMLController, and SMLMainProg) contain a write() member

function to perform the intended transformation. These classes are what we meant by

modules in the first paragraph above. Each write() member function attempts to

write out the information stored in this module into a file, which is named according

to the name associated to that module. Some of these modules must also take into

account the information stored in other SimML classes related to it. For example, the

SMLData and SMLProcess component need to incorporate the data from the

SMLAttr objects associated to them before writing out the file. On top of that, a

SMLProcess class also has to deal with its SMLAction instances, which in turn

Chapter 5 - UML-to-Simulation Tool Implementation

96

might need to obtain some information from the SMLRandom or SMLStatistics

classes. The modular arrangement of the SimML components can be seen in Figure 5-

12 below. The module classes are shown to be derived from an imaginary class called

SMLModule, which in reality is the same as the SMLComponent class. This alias is

necessary to illustrate how different classes are considered in our modular approach.

A module that needs to obtain further information from another class is denoted by a

dependency association to the relevant class. In Figure 5-12, we can also see that the

SMLAttr, SMLAction, SMLObject, SMLRandom and SMLStatistics are

not module classes, but they are used by the module classes to obtain the whole

information of the SimML framework.

The write() functions of all the modules are then invoked by the

generateJavaSim() function (of the SMLStructure class) in order to

generate the complete JavaSim program. These write() functions can be adapted to

generate simulation programs in other simulation environments, such as C++SIM or

SIMULA. The modifications to be made are limited to the language specific syntax as

the SimML framework is generic to almost all process-based simulation requirements.

Figure 5-12: Modular organisation of the SimML Components

SMLData SMLController SMLMainProg

SMLProcess

SMLQueue

SMLAttr SMLObject

SMLModule

 +name: String

 +void write()

SMLStatistics

SMLAction SMLRandom

Chapter 5 - UML-to-Simulation Tool Implementation

97

5.4.2.5. Building the UML/SimML Tool

A GUI tool that brings together the UML design and the SimML framework has been

created. This tool is called the UML/SimML tool, and it supports only the relevant

UML diagrams (the class and sequence diagrams) and allows simulation specific

information to be identified in an easy and generic way. As a recap, the four views

supported are:

1. Class Diagram view

 This view allows the user to draw class diagrams, specify their names and add the

attributes and operations for each class (if any).

2. Sequence Diagram view

 The sequence diagram identifies the objects that are involved in the interaction and

the messages that are sent between them. Only the SimML messages (i.e. those

which are listed as SimML actions in Section 4.2.2) are treated in a special manner

here. These SimML messages are used to construct the interactions between the

objects (which represent simulation processes) hence they can be used to capture

the dynamic aspects of the simulation.

3. Random Variables view

 The random variable names are automatically inferred from the wait and generate

messages of the sequence diagram. Each random variable is assigned to one of the

five random distribution functions (see Table 4-1), and each distribution needs

certain parameter(s) to be supplied, such as its mean and standard deviation. The

random variables view allows the user to see all of the random variables used and

to edit any of them to have the correct distribution function with the appropriate

parameter(s).

Chapter 5 - UML-to-Simulation Tool Implementation

98

4. Statistics Variables view

 The statistics variable names are created by the update messages of the sequence

diagram. A statistics variable’s type is either an integer or a double and the

operations allowed are either simple (increment or decrement) or calculation. A

parameter relevant to the statistics operation must also be defined, for example, the

parameter for an integer-increment-by-one operation is “+1”. As with the random

variables view, the user is allowed to see all of the statistics variables and to edit

them.

The UML/SimML tool is composed of several Java classes, with a core class called

UMLEditor. This class is supported by several Java classes, which can be divided

into two categories according to their functionality:

• The classes that provide GUI facilities.

 These classes allow the user to draw the class and sequence diagram notations, and

to specify the random and statistics properties. They also allow the user to select

one of the four supported views mentioned above to be displayed when necessary.

All of the classes shown in Figure 5-13 belong to this category.

• The classes that support the SimML framework.

 These are bundled together in the ncl.SML.Components package explained in

Section 5.4.2.2. The classes of this package is used to store the information of the

class and sequence diagrams, as well as the data contained in the random and

statistics views. The UMLEditor class has a member variable called

smlStruct (which is an instance of the SMLStructure class) for storing this

set of information.

Chapter 5 - UML-to-Simulation Tool Implementation

99

 The organisation of the classes used in the UML/SimML tool can be represented as a

UML class diagram as seen in Figure 5-13. By using the ncl.SML.Components

package for storing the information conveyed by the four views above, we are able to

generate a simulation program automatically from a UML design notation.

The design layout of the UML/SimML tool can be seen graphically in Figure 5-14. The

classes that support the GUI features of this tool are explained as follows:

• UMLEditor

 This is the top level container of the whole UML/SimML tool, so it inherits from

(or extends) the JFrame component. The UMLEditor maintains the layout of the

tool (which should look like that shown in Figure 5-14) by using a pair of

JSplitPanes, and keeps the information on the instances of other GUI

components as well as an instance of the SMLStructure (to enable an automatic

generation of a simulation program). This class also contains some useful member

functions that might be used by other GUI classes as well, such as those for

UMLEditor

+smlStruct: SMLStructure
UMLRandomDisplay

1 1

UMLStatDisplay
1 1

UMLMenuBar
1

1

UMLView

1

1

UMLToolBar

UMLToolBarClass

UMLToolBarSequence

UMLToolBarRandom

UMLToolBarStat

1 4

UMLDisplay

UMLObject

UMLObjectConnector UMLObjectSequence UMLObjectClass

UMLObjectJoint

1

2

1 *

1

*

1

2

1

*

ncl.SML.Components

Figure 5-13: The Structure of our UML Tool

Chapter 5 - UML-to-Simulation Tool Implementation

100

splitting a text into separate lines, removing the blank spaces of a text, and

preparing the SimML related information for further use.

• UMLDisplay

 This class serves as a whiteboard for drawing the UML class and sequence

diagrams. There is one UMLDisplay instance for each diagram (and they are

declared inside the UMLEditor class), so the characteristics of the UMLDisplay

class should be generic enough to be useable in both cases. The UMLDisplay

class extends the JLayeredPane class (to enable multiple diagrams to be

contained in the same area), implements the MouseListener interface (to

handle mouse events associated with drawing the diagrams) and also implements

the Printable interface (so that the diagrams can be printed either to a printer or

a postscript file).

• UMLObject

 This is the parent class for the classes that represent or draw the UML class and

sequence diagrams. It stores the identity, size and location (within the

UMLDisplay area) of the diagrams and implements the MouseListener and

MouseActionListener interfaces to enable the drawings to be moved,

modified, etc. Specific handling of these interfaces are performed by the derived

classes, which are as follows:

− UMLObjectClass

 The UMLObjectClass represents the UML class diagram and it needs to

provide three fields for the user to specify the name of the class diagram, its

attributes and member functions/operators. These fields are represented by

classes called UMLObjectClassName, UMLObjectClassAttr and

Chapter 5 - UML-to-Simulation Tool Implementation

101

UMLObjectClassOper respectively. They extend the standard JTextArea

class and implement the KeyListener interface (to handle the user input

from the keyboard). These three classes are encapsulated within a class derived

from the JPanel called UMLClassHolder which handles all the mouse

events, including those for clicking, moving and deleting the diagram.

− UMLObjectSequence

 The shape of the UML sequence diagram dictates a slightly different approach

in representing it from the UMLObjectClass above. A sequence diagram is

represented by a box with an object name on top and a vertical time-line (which

is expandable) below that box. The box can be represented using a similar

approach as the UMLObjectClassName, and in this case, it is called the

UMLObjectSequenceHead. The dashed time-line is used in conjunction

with arrowed messages (implemented as UMLObjectConnector below) to

represent the interactions among the objects in the sequence diagram. All in all,

the representation of the sequence diagram is encapsulated within a

UMLObjectSequenceHolder class, which also handles all the mouse

events similar to those of the class diagram. The messages involved in the

sequence diagram are represented using these two classes:

∗ UMLObjectConnector

 This class also extends the UMLObject class because it performs some

drawing as well. It draws an arrowed line from one sequence diagram time-

line to another (or to the same time-line for a self invocation message) and

contains a UMLObjectConnectorText class (which extends the

Chapter 5 - UML-to-Simulation Tool Implementation

102

JTextArea class and implements the KeyListener interface) for

denoting the message and its parameters (if any).

 An instance of the UMLObjectConnector is associated directly

with one sequence diagram (a UMLObjectSequence that performs as the

interaction source), but it may also be associated with another sequence

diagram (if it is not a self invocation message) through the

UMLObjectJoint (see Figure 5-13 for a clearer view on this relationship).

∗ UMLObjectJoint

 This class is used as a data structure for storing the relationships between the

messages and the objects of a sequence diagram. This class also provides

some member functions for processing the messages contents and translating

them into the corresponding SimML actions. Only messages that match the

SimML action keywords will be treated in this special manner, the rest will

just be ignored.

 A UMLObjectSequence instance keeps a Vector for storing the

UMLObjectJoints connected to it, hence all the SimML actions

performed by (or involving) that object (which is essentially an instance of a

SimML PROCESS component) can be captured from the diagram, and later

used to generate the dynamic characteristics of the simulation program.

• UMLRandomDisplay

 The random property of a specification is captured from the UML sequence

diagram through messages with wait or generate keywords. The

UMLRandomDisplay class automatically extracts the random variable names

(which are passed as parameters in the messages with the two keywords above)

Chapter 5 - UML-to-Simulation Tool Implementation

103

from the sequence diagram and displays them one at a time using a pull-down list.

This class also provides a pull-down list of the five random distribution functions

(those outlined in Table 4-1) to allow the user to indicate which distribution

function a random variable should belong to. Depending on the random

distribution function, there is one or two field(s) displayed for the user to specify

the parameters for this random variable. The UMLRandomDisplay inherits from

the JPanel class and implements the ItemListener interface.

• UMLStatDisplay

 The purpose of this class is very similar to that of the UMLRandomDisplay

class; it extracts the statistics variable names from the UML sequence diagram,

which are indicated by the messages that contain the keyword update. The

UMLStatDisplay class shows the list of statistics variable names in a pull-down

list, its numerical type (either an integer or a double), whether a simple

increment/decrement or a calculation operation is involved, and an expression for

the update operation.

• UMLView

 The four views of the UML/SimML tool are managed by this class, which inherits

from the JList class and implements the ListSelectionListener

interface. This interface detects if a particular view is selected and updates the main

display area to show the appropriate display or panel. Table 5-2 shows the four

UML/SimML views and the GUI classes that correspond to them.

• UMLToolBar

 Depending on the view selected, there are four kinds of toolbar that provide some

clickable buttons to enable more operations to be performed:

Chapter 5 - UML-to-Simulation Tool Implementation

104

− UMLToolBarClass

 This toolbar is shown when the UML Class Diagram view is selected. It

provides buttons to draw the basic class diagram shape, reset the display area

(i.e. remove all the class diagrams shown) and to exit the tool.

− UMLToolBarSequence

 When the Sequence Diagram view is chosen, the UMLToolBarSequence

will be shown on the ToolBar strip of the UML/SimML tool. This toolbar is

similar to the UMLToolBarClass above, but it has a button to draw the basic

sequence diagram shape instead.

− UMLToolBarRandom

 The Random Variables view is associated with the UMLToolBarRandom,

which displays two buttons: one for editing the random properties of a selected

random variable (the “Edit” button) and the other for quitting the tool. After the

“Edit” button is pressed, the random properties fields become editable (apart

from the random variable name, which is derived automatically from the

sequence diagram). This allows the user to change the parameters of the random

variable currently selected. The “Edit” button itself is then transformed into a

“Done” button, which upon pressing commits the changes made to the random

properties and transforms the button back into an “Edit” button.

 Table 5-2: The four views of the UML/SimML tool

UML/SimML view The corresponding GUI display class

UML Class Diagram view UMLDisplay, containing UMLObjectClass

UML Sequence Diagram view UMLDisplay, containing UMLObjectSequence
and UMLObjectConnector

Random Variables view UMLRandomDisplay

Statistics Variable view UMLStatDisplay

Chapter 5 - UML-to-Simulation Tool Implementation

105

− UMLToolBarStat

 This toolbar has very much the same features as those of the

UMLToolBarRandom class, bar its association with the Statistics Variables

view.

• UMLMenuBar

 The UMLMenuBar provides features related to “file operations” such as reading

from or writing to file (in XML format, see Section 5.4.3 later), printing the class

and sequence diagrams, as well as a feature for generating the simulation program.

These Java classes provide the implementation of the GUI features of the

UML/SimML tool. Used in conjunction with the ncl.SML.Components package,

these classes constitute the complete UML/SimML tool that allows an automatic

generation of JavaSim simulation program from UML design. Figure 5-14 below

shows how the this tool would look like.

The data captured from the UML diagrams needs to be stored into a physical

storage or file so that they can be retrieved again later. As demonstrated in Section

5.4.2.2, this information can be kept in a structured way by using the SimML

framework; therefore we need to find a proper way to store the SimML data into a

Menu

Tool Bar (depending on the View selected)

Four Supported

Views

Main Display Area

Figure 5-14: The proposed layout of the UML/SimML tool

Chapter 5 - UML-to-Simulation Tool Implementation

106

file. A widely used technique for filing a structured document is through the

Extensible Markup Language (XML). The following section discusses the

applicability of XML for storing UML and SimML related information, which can

then be used to supplement the UML/SimML tool.

5.4.3. Using XML for storing SimML data

The Extensible Markup Language (XML) is designed to make it easy to interchange

structured documents over different application programs [20]. XML is based on the

idea that a structured document is made of a series of entities where each entity can

contain one or more logical elements. Each element is distinguished by its name, and

may have a content and/or a list of attributes. XML clearly marks the start and the end

of each element by a pair of tags. The start tag is composed of the element name

followed by its attribute list (if any), enclosed in a pair of angle brackets (<…>). The

end tag is similar but the name is preceded by a forward slash character (‘/’) and it

does not include the attribute list. The content of the element is defined in between

these two tags, and it is possible for an element to have an empty content.

XML does not have a predefined set of tags; instead, it is up to the user to define

their own tags set in a formal model known as the Document Type Definition (DTD).

Since the XML tags are based on the logical structure (not presentational style) of the

document, it is easier for a computer application to understand and to process them.

DTD for SimML

In order to define a set of tags that can be used to capture the SimML structure, we

must create a DTD that formally identifies the relationships between the various

components of the SimML framework. These SimML component are therefore

Chapter 5 - UML-to-Simulation Tool Implementation

107

regarded as XML elements and some of these can be seen in Figure 5-15. The

complete SimML DTD is available at [4].

Note that the element names are case sensitive. An element is declared using the

<!ELEMENT...> construct that specifies the name of the element and its content.

The content of an element is either some other elements or a plain text (indicated as

#PCDATA). If an element needs to have some attributes, it must have an attribute list

declared using the <!ATTLIST...> syntax.

The SimML DTD dictates that a valid XML document must start with a

<SPEC> tag (and consequently end with a </SPEC> tag). A specification is

composed of DATA, PROCESS, QUEUE, OBJECT, RANDOM and STATISTICS

elements, which in turn are composed of smaller elements. XML provides a method to

indicate the multiplicities of each element. Element that may be present zero or more

times are marked by a star sign (‘*’), while a plus sign (‘+’) indicates those that can

occur for one or more times. Optional elements are indicated by a question mark (‘?’).

XML Parser for SimML using SAX

A suitable parser is required to read the information stored in an XML document. For

that purpose, we have built an application program that parses an XML document

<!ELEMENT SPEC (DATA*, PROCESS+, QUEUE+, OBJECT+, RANDOMS,
 STATISTICS)>
<!ELEMENT DATA (ATTR*)>
<!ATTLIST DATA name CDATA #REQUIRED>
<!ELEMENT PROCESS (ATTR*, ACTION)>
<!ATTLIST PROCESS name CDATA #REQUIRED
 span (ONCE | FOREVER)
 "FOREVER">
<!ELEMENT ATTR (#PCDATA)>
<!ATTLIST ATTR visibility (public | private | protected) "public"
 type CDATA #REQUIRED>
<!ELEMENT ACTION (CREATE | WAIT | ACTIVATE | SLEEP | ENQUEUE
 | DEQUEUE | CHECK | RECORD | UPDATE | GENERATE | END | IF | ELSIF
 | ELSE | WHILE)*>

...

Figure 5-15: A snapshot of the SimML DTD

Chapter 5 - UML-to-Simulation Tool Implementation

108

written to follow the SimML DTD. This program was written as a Java package

(ncl.SML.Parser) to allow other application programs (such as the UML tool

described in Section 5.4.2) to re-use its parsing features.

There is an Application Programming Interface (API) called SAX (Simple API

for XML) [55], which is essentially another Java package that provides a skeleton for

parsing any XML document. The parsing feature of this package is achieved through

yet another package called XML4J [38]. SAX is an event-based API, which means

that it reports parsing events (such as the start and end of elements) directly to the

application. The application must therefore implement a handler to deal with different

events; three of the most important ones are listed here:

• startElement event

 This event is raised by the parser when it detects the beginning of every element in

an XML document. The application handler must then obtain the element’s name

and if any, the list of its attribute. For the SimML handler, the information gathered

from this event is used to initialise the appropriate components of the SimML

structure.

• endElement event.

 When the end of an element is reached, the handler must update the named

element, which for SimML handler means updating the right component of the

SimML structure.

• character data event

 In between the startElement and the endElement events, the parser returns all

character data as a single chunk of information. This chunk actually represents the

Chapter 5 - UML-to-Simulation Tool Implementation

109

content of the element, therefore it must be stored by the corresponding SimML

component.

An application program based on the SAX approach has been built to read any XML

notation that conforms to the SimML DTD. The information read is then stored as a

SimML structure, which is transformable into a JavaSim simulation program.

A class called XMLReader has been added to the UML/SimML tool to support

the feature for reading the UML and SimML data from an XML document/file. The

XMLReader class does the following tasks:

• It reads the information related to the SimML DATA and PROCESS components

and prepares the corresponding UML class diagrams to be displayed on the

UML/SimML tool.

• For the SimML PROCESS components, the XMLReader also loads their SimML

actions specification and convert them into messages in the UML sequence

diagram. Together with the information from the SimML DATA, PROCESS and

QUEUE components, the complete sequence diagram can then be constructed.

• It reads the SimML RANDOMS and STATISTICS properties and upload the data

into the relevant views of the UML/SimML tool (i.e. the random and statistics

variables view).

XMLReader is incorporated into the UMLEditor class and provides the feature of

the UML/SimML tool to read the SimML specification from file, which also means to

regenerate the UML class and sequence diagrams from the SimML XML notation.

The complement of the “read from an XML file” feature is the “write to an

XML file” feature that allows the UML notation to be stored into an XML document.

The “write to an XML file” operation is more straightforward than the “read from an

Chapter 5 - UML-to-Simulation Tool Implementation

110

XML file” operation because it is very similar to the operation for generating the

JavaSim program. There are two steps taken to achieve this:

• As mentioned earlier in Section 5.4.2.4, the SMLStructure class has a member

function called generateJavaSim(), which transforms the information stored

in that class into a JavaSim program. A new member function similar to the

generateJavaSim()function can be created to perform the transformation

from the same set of data into an XML representation. This member function is

called generateXML(), and it is used in conjunction with the member

functions of some SimML component classes mentioned below.

• The SMLData, SMLProcess, SMLAction, SMLObject, SMLQueue,

SMLRandom, SMLRandComp, SMLStatistics and SMLStatComp classes

are modified by augmenting them with a member function called xmlRep(),

which translates the information stored in its respective class into a piece of XML

representation. The complete XML representation is obtained by invoking the

generateXML() function (of the SMLStructure class), which essentially

executes all of the xmlRep() member functions of these relevant classes.

The “read” and “write” features allow the UML/SimML tool to retain the necessary

information of a particular UML design into a stable storage, which means that the

same specification can be retrieved and recreated easily from file.

5.5. Summary

This chapter discussed the implementation of two tools that can automatically

transform UML design notation of some sort into simulation program. Both of these

tools use the SimML framework as the cornerstone for writing their implementation;

Chapter 5 - UML-to-Simulation Tool Implementation

111

this means that the SimML framework serves as a bridge that connect the UML

notation and simulation program.

The first tool is called runsim and it was built using a scripting language

called PERL. The runsim tool reads a textual UML notation (that follows the

SimML syntax) from a file, generates the C++SIM source code files from the

information read, compiles these files and runs the simulation. At this stage, this tool

only allows a textual representation of the UML to be used and it serves as a

feasibility study before we decided to build a graphical tool.

The second tool was implemented in Java with a main program called

UMLEditor. This tool allows graphical UML notations to be incorporated in the

forms of class and sequence diagrams, which represent the static and dynamic

properties of simulation. These properties are then stored in a structured way within

the SimML framework before being transformed into JavaSim simulation program.

This tool is subsequently called the UML/SimML tool and it was implemented by

several Java classes that support the Graphical User Interface (GUI) for drawing the

UML diagrams as well as a Java package called ncl.SML.Components that

supports the SimML framework.

The next chapter provides some case studies and results obtained from using the

UML/SimML and runsim tools for designing systems and predicting their

performance through simulation.

Chapter 6 - Case Studies

112

Chapter 6

6. Case Studies

6.1. Introduction

There are some case studies carried out in order to evaluate the usefulness of the

UML/SimML tool (as well as the SimML framework in general) as an aid in predicting

a system’s performance through process-based, discrete-event simulation. The kind of

simulation we are interested here involves processes and queues, in which the

performance time is one of the most important aspect we would like to measure. A

system is composed of several sub-systems which interact with each other and

constitute the behaviour of the whole system. In the simulation, a sub-system is

represented by a process which model the sub-system’s execution time (delay) as well

as its interactions with other sub-systems or processes. The queues are used to make

sure that the interactions are performed in a correct manner/order. Jobs (or requests)

arrive at the queue with a certain rate and the relevant process takes a job from the

head of the queue to be executed. It is the execution time of the process that is

normally of interest, together with the queueing mechanism used.

Three case studies are presented here. One is on a set of simple systems where

their performance can be easily predicted even without a simulation. The aim of this

exercise is to validate that the simulation results are close to the expected values. The

other two case studies represent more complex systems and their purpose is to prove

that the UML/SimML tool and the SimML framework can be used in helping system

Chapter 6 - Case Studies

113

designers to predict whether a particular system would deliver the required

performance or not.

Each case study is discussed in a separate section, and each section follows the

same structure: it begins with a description of the system being studied, followed by

the UML/SimML specification of the system, the simulation of that system (or a

particular part of the system that is of the greatest interest), and completed by a short

comment or analysis of that case study.

The first case study represents simple queuing systems where a determined

number of servers process the jobs delivered by a client (or several clients) [7, 10].

The second case study focuses on the makeCall operation of the British Telecom’s

Intelligent Network (IN) application [5, 8, 69], while the last case study investigates

the use of the SimML framework in predicting the performance of a fault tolerant

system called Voltan [19, 39, 70].

As mentioned in Chapter 3, we are interested in discrete-event, process-based

simulations, and the examples shown here represent this kind of approach.

6.2. Simple Queueing Systems

Queueing system is a classic topic in simulation studies, therefore it is appropriate to

start the case studies with some examples of this kind of system. Only simple queuing

systems are considered here, the purpose of this approach is to allow an easy and

straightforward validation effort on the simulation results: we can logically predict the

performance of the system based on the time delays at the server(s) and the arrival rate

of the jobs.

The performance of this kind of system depends on how quick the server can

process the jobs, but we must bear in mind that a faster server will cost more than a

Chapter 6 - Case Studies

114

slower one. The server takes a certain time or delay to complete each job, and by

altering the length of this delay (to simulate different servers), different results will be

obtained. These results reflect the performance of the system for each scenario, hence

we can choose one which satisfies the requirements with a minimal cost.

6.2.1. Description of the Queueing Systems

There are three examples considered here. The first one is a simple queueing system

with one arrival process and one server process. The arrival process generates jobs at a

certain rate and places them into a queue. The server process takes one job at the time

from (the head of) the queue, performs a time delay to simulate the execution of the

job and updates the statistics concerning the overall performance of the system. By

keeping track on how many jobs are completed and the total time spent by these jobs

in the system, we can work out the average response time. This queueing system can

be represented as a simulation diagram as seen in Figure 6-1.

The second queueing system builds on the first queueing system by considering

multiple Server processes to handle the requests. The rationale used here is that a

better performance can be obtained by adding more (slow but cheap) servers instead

of replacing it with a faster (yet more expensive) one. Figure 6-2 gives a

diagrammatical illustration of the second queueing system.

Arrival Server
Job

Queue

Figure 6-1: A system with one Arrival and one Server

Arrival
Job

Queue

Servers

•
•
•

Figure 6-2: A system with multiple Servers

Chapter 6 - Case Studies

115

The third queueing system builds on the second queuing system further by

having multiple Arrival process as well (Figure 6-3). The aim is to evaluate until what

point a fixed number of servers can handle the stream of jobs from an increased

number of arrival processes with a reasonable performance time.

In all cases, we are interested to know how a system fares under different

scenarios. This information can then help in making the decision on how to compose

the system (i.e. which scenario to pick) based on the tradeoff between performance

requirements and available resources. In order to obtain this information, the three

system scenarios above are specified using the UML/SimML tool, which is then able

to generate simulation programs for those systems automatically.

6.2.2. Queueing Systems Specification using UML/SimML

The static and dynamic characteristics of the three queueing systems outlined in

Section 6.2.1 (see Figure 6-1, Figure 6-2 and Figure 6-3) can be represented as UML

class and sequence diagrams using the UML/SimML tool. This tool also provides two

extra views for specifying the random and statistics variables.

The UML/SimML notation for these three queueing systems are given below.

Each system is covered separately, but since they are similar, only the incremental

changes are shown for the second and the third systems. The class diagram for each

system differs slightly, but the sequence diagram and the statistics variable view will

Job

Queue

Servers

•
•
•

Arrivals

•
•
•

Figure 6-3: A system with multiple Arrivals and Servers

Chapter 6 - Case Studies

116

be the same for all three. Only the first system will have a different random variables

view among the three.

One Arrival, One Server queueing system

This system represents the basic configuration, hence all of the four views of the

UML/SimML tool are given. Figure 6-4 shows the class diagram, which depicts the

entities of the system, namely the Job data structure, the Arrival process and the

Server process. We would like to know how long each Job spends in the system,

so we must store the information on its arrival time (as a member variable of the Job

class, in this case it is called arrTime).

The sequence diagram (Figure 6-5) shows the interaction of the system’s objects

(instances of the classes described in the class diagram). It also shows the Queue

object, which is used to marshal the instances of the Job class before they are being

processed by the Server. The messages shown here represent the SimML actions

that are required for generating the simulation program.

Figure 6-4: The Class Diagram for “One Arrival, One Server” system

Chapter 6 - Case Studies

117

The random variables view (Figure 6-6) allows the random variables for the

simulation to be specified. In the case of this simple queueing system, these are the

inter arrival time of the Jobs (interArr) and the processing time (i.e. delay) of the

Server (procTime), and both are exponentially distributed with mean 5.

Figure 6-5: The Sequence Diagram for “One Arrival, One Server” system

Figure 6-6: The Random Variables View for “One Arrival, One Server” system

Chapter 6 - Case Studies

118

The last view shows the statistics variables that we would like to collect (Figure

6-7). These variables are updated during the simulation run, and the updates include

incremental update (e.g. for totalJobs) as well as calculation (e.g. for avgTime).

These four screen dumps are some of the views available from the UML/SimML tool

for representing the first simple queueing system. For the other two queueing systems,

the views are very similar, so only the differences will be shown.

One Arrival, Multiple Servers queueing system

The multiplicity of the Server processes is denoted by a tagged value in the class

diagram. This tagged value is placed just under the class name in the format of

{mult=X}, where X is an integer value indicating how many instances of this class

should be created (Figure 6-8).

Changing the multiplicity of the Server is therefore very straightforward: one

just needs to replace the value of X by an integer literal; the SimML framework will

take care of the rest (for generating the appropriate simulation program later).

Figure 6-7: The Statistics Variables View for “One Arrival, One Server” system

Chapter 6 - Case Studies

119

Another change made here concerns the parameter of one of the two random

variables. The procTime variable now has a mean of 12, to represent a slower

Server used in this system. The rest is the same as the “One Arrival, One Server”

system scenario.

Multiple Arrivals, Multiple Servers queueing system

To obtain multiple Arrival processes, the only thing to do is to supply the

{mult=X} tagged value in the appropriate class diagram. The rest are the

specification is the same as the “One Arrival, Multiple Servers” one, so we do not

need to elaborate it further here.

6.2.3. Simulation of the Queueing Systems

From each of the specifications outlined in Section 6.2.2, a simulation program is

generated using the “Generate JavaSim” feature of the UML/SimML tool. Each

simulation is then executed with a long simulation time (say, 100,000 units) in order

to generate sufficient jobs for bona fide statistical data. The parameters of interest are

Figure 6-8: The Class Diagram for “One Arrival, Multiple Servers” system

Chapter 6 - Case Studies

120

the inter arrival time of the jobs (interArr), the processing time of the Server

process (procTime), as well as the multiplicity of each process. These parameters

are random variables that follow an exponentially distributed function.

One Arrival, One Server queueing system

The parameters represent the mean of the exponentially distributed random variables.

For the first queueing system, they are as follows:

interArr = 5

procTime = 5

Since interArr and procTime are the same (5 units), we expect that the system

will be saturated, since the offered load (ρ = procTime / interArr) is equal to 1.

The results obtained from the simulation are as follows:

$ java Main 100000

totalJobs: 19991

totalDone: 19968

totalTime: 5839619.843022785

avgTime: 292.44891040779174

Running the simulation for a longer time (1,000,000 units) highlights the build up of

the jobs waiting in the queue as the system becomes more saturated. As a

consequence, the average processing time gets worse and there is a higher number of

unfinished jobs, since the system cannot cope with the load.

$ java Main 1000000

totalJobs: 200411

totalDone: 200332

totalTime: 8.707705766162425E7

avgTime: 434.6637464889496

We can see that the simulation runs produce results as expected.

Chapter 6 - Case Studies

121

This is an example of the M/M/1 queueing system. For this kind of system, the

performance of interest (e.g. the average response time) can be calculated easily using

some equations:

A = inter arrival time (interArr)

B = server’s processing time (procTime)

ρ = offered load = B / A

W = average response time = B / (1 - ρ)

More simulation runs were conducted by giving different parameter values to

interArr and procTime. The results were then compared to the expected results,

which were calculated using the equations above.

• interArr = 6

 procTime = 5

$ java Main 100000

totalJobs: 16667

totalDone: 16663

totalTime: 468685.94052131195

avgTime: 28.12734444705707

$ java Main 1000000

totalJobs: 166972

totalDone: 166962

totalTime: 4946078.361097511

avgTime: 29.62397648026204

• interArr = 5

 procTime = 4

$ java Main 100000

totalJobs: 19991

totalDone: 19988

totalTime: 373642.7350252167

avgTime: 18.693352762918586

Expected result:

ρ = procTime / interArr
 = 5/6

W = procTime / (1-ρ)
 = 5 / (1 - 5/6)
 = 30

Expected result:

ρ = procTime / interArr
 = 4/5

W = procTime / (1-ρ)
 = 4 / (1 - 4/5)
 = 20

Chapter 6 - Case Studies

122

$ java Main 1000000

totalJobs: 200411

totalDone: 200397

totalTime: 3972644.332626486

avgTime: 19.823871278644322

These simulation results conform to the calculated results, therefore we can be

confident that the simulation produces the right results.

One Arrival, Multiple Servers queueing system

Here we replace the server with a slower one but keep the inter arrival time to the

same value. So, the parameters are:

interArr = 5

procTime = 12

In order to be able to keep up with the load, there is a condition that must be satisfied:

ρ < n, where n is the number of servers. For the parameters above, we obtain:

ρ = 12/5 = 2.4

We therefore could estimate beforehand that we would need at least three servers if

we want to get an acceptable performance.

Calculating the performance of this kind of system (M/M/n system) is more

difficult, because we need to use some complex equations:

λ = arrival rate = 1/A µ = processing rate = 1/B

[ρj

 j! Σ
n-1

j=0

P0 =
ρn

 (n–1)! (n-ρ)]
+

-1

[λ

µ
L =

(λ/µ)n λµ

 (n–1)! (nµ-λ)2]
+ P0

W =
L

λ

(Probability of the server being idle)

(Average number of jobs in the system)

(Average response time)

Chapter 6 - Case Studies

123

For example, if the inter arrival time is 5 (i.e. λ = 1/5) and the server’s processing time

is 12 (i.e. µ = 1/12), the following values are obtained (sparing the calculation details):

ρ = 2.4

P0 = 0.05618

L = 4.98877

W = 24.94

Using the same parameters for the inter arrival time and processing time, several

simulation runs were performed (each with a simulation length of 100,000), with an

increasing number of servers. In all cases, the number of jobs generated will be

19,991. The results of the simulations can be seen Table 6-1 below.

Table 6-1: Simulation results of One Arrival, Multiple Servers systems

Number of Servers totalDone totalTime avgTime

1 8326 2.385E8 28646.28

2 16715 1.378E8 8181.79

3 19987 469270.50 23.48

4 19987 279053.62 13.96

5 19987 248312.51 12.42

It can be seen that when there is only one (slow) server used, the jobs overflow the

system, hence the response time is very poor: the jobs spend most of their time

waiting in the queue before being processed. Adding more servers alleviates the

problem, and a reasonable performance can be obtained by using three servers.

It should also be noted that when there are three servers used, the average

performance time found from the simulation (23.48) is pretty close to the calculated

value (24.94). Simulating the same configuration with a longer simulation time

(1,000,000 units) produces an even closer result:

$ java Main 1000000

totalJobs: 200411

Chapter 6 - Case Studies

124

totalDone: 200397

totalTime: 4953181.88039389

avgTime: 24.71684646174289

This indicates that the simulation method can be used to predict the performance, thus

saving the effort of performing the complex calculations.

Multiple Arrivals, Multiple Servers queueing system

We use the same parameters as in the “One Arrival, Multiple Servers” system and we

fix the number of servers to five. We then add the number of arrival processes one at

the time until the system cannot cope with the load anymore.

Table 6-2: Simulation results of Multiple Arrivals, Multiple Servers systems

Number of Arrivals totalJobs totalDone totalTime avgTime

1 19979 19976 240153.74 12.02

2 40232 40182 2242744.50 55.81

3 60097 41918 6.38E8 15225.39

Table 6-2 shows that as the number of arrival processes is increased, the total jobs

generated also increases (in the same ratio). In this case, the system can only cope

with two arrival processes, adding more arrival processes will overflow the system

and degrade the performance considerably.

6.2.4. Summary of the Queueing Systems case study

This case study shows that the UML/SimML tool can be used for generating

simulation programs for simple queueing system specifications. Simulation

parameters can be changed easily to enable a quick and convenient way of exploring

different scenarios. It also shows that the results obtained from the automatically

generated simulation program are logically correct and the tool can be used for the

specification of more complex systems, including multiple queues and pipelining.

Chapter 6 - Case Studies

125

6.3. BT Intelligent Network (IN) Application

The British Telecom (BT) Intelligent Network (IN) application aims to make the

telephone system smarter by allowing it to be expanded with extra features such as

call barring, call forwarding, etc.

6.3.1. Description of the BT IN Application

New features for call handling (e.g. credit call charging, call barring, etc.) in

intelligent networks (INs) are typically delegated to computer systems that are

attached to switches [5]. A switch passes the incoming call request that needs special

processing to the local computer system to be dealt with properly before the

connection is set up. These computer systems maintain data pertaining to the

customers. The processing must be done fairly quickly (less than a second for most of

the calls), otherwise the customer might not be happy. Two operations provided for

each customer are makeCall and receiveCall; the former maintains information

relating to outgoing calls (e.g. should the call be barred) and the latter maintains

information concerning incoming calls (e.g. does the receiver wish to receive calls

from the caller).

Physical Architecture

The basic system structure is shown in Figure 6-9. Processing at a switch site is

performed by a high-performance computing cluster, comprising of about ten hosts.

There maybe between 60 and 1,000 sites distributed throughout the world.

Communication within a site would typically be carried out via a Local Area Network

(LAN) with ~100Mbps bandwidth and a latency of ~1 millisecond. Sites would be

connected by Wide Area Networks (WANs) with bandwidth of ~34Mbps and a

latency of ~50 milliseconds. The total number of customer objects (i.e. telephone

Chapter 6 - Case Studies

126

callers) in the system is estimated to be in the range 105-108 with an approximately

equal allocation of objects to hosts.

Processing Requirements

Processing is initiated via messages from the physical switch which contain two

parameters - the calling line identity (CLI) and the dialled number (DN). Between

3,000 and 3,000,000 messages per second are expected. Each message is first handled

by a name location mechanism which assigns object uids to the CLI (OBJ1) and DN

(OBJ2). This may be achieved by, for example, a dedicated name server. The object

uids are unique identifiers which contain the address and host number of the

appropriate caller (OBJ1) and callee (OBJ2) objects. The makeCall method of

OBJ1 is then invoked, passing OBJ2 as a parameter. This typically takes place on a

different host on the same site (though it may be in the same process, or a different

process on the same host or, exceptionally, on a different site). Marshalling routines

pack and unpack inter and intra site messages. The makeCall method of OBJ1

checks to see that the barOutgoing flag is not set and it then makes an RPC

OBJ1

switch

phone

name
server

hosts

site

OBJ2

switch

phone

name
server

hosts

site
all hosts have
stable storage

Figure 6-9: The Architecture of the BT IN Application

Chapter 6 - Case Studies

127

(Remove Procedure Call) to the receiveCall method of OBJ2. The

receiveCall method checks whether OBJ1 is in the blacklist of OBJ2 and

sends back a startRinging reply if the call is to be accepted. The performance

requirements imposed on the makeCall method are that it must service 90% of calls

in at most 500 milliseconds, 95% of calls in at most 5,000 milliseconds and 100% of

calls in at most 10,000 milliseconds.

6.3.2. BT specification using UML/SimML

The elements of the architecture and the requirements above can be translated into

several UML diagrams:

• The physical architecture

Site

Host

- memory
- speed
- id

+ connectCustomer()

Customer

- name : String
- address : String
- id : String
- barOutgoingFlag : Boolean = false
- blacklist : List<Customer.id>

+ makeCall(Customer.id)
+ receiveCall(Customer.id)
+ updateBlacklist()

Network connection

- bandwidth
- latency

System

Name Server

{bandwidth ~100Mbps
and latency ~1ms}

{bandwidth ~34Mbps
and latency ~50ms}

Hosts are connected
to each other through
the Network Connection

Caller Callee

LANLocal WAN

*
1...101 1

1 1

10 5...108

60...1000

1

11...n

1

Figure 6-10: The Class Diagram of BT IN Application

Chapter 6 - Case Studies

128

 The main details of the underlying hardware (the machines and the connection

between them) as well as the application objects can be represented as a class

diagram as shown in Figure 6-10.

• Application logic

 Customers can only make a call if they are not barred from doing so by the

telephone company (e.g. due to unpaid bills). Another requirement is that the

caller is not on the blacklist of the called party. The makeCall operation tries to

connect two customers through a series of operations that involves several checks

to ensure that both requirements are satisfied. As a customer can have more than

one phone number (in different locations), it is necessary that makeCall

accesses the name server to find the latest binding indicating where the called

party can be reached.

 a switch
message

a Lookup Table :
Host

a CLI (OBJ1) :
Customer

a DN (OBJ2) :
Customer

initiate(CLI, DN)
assign OBJ1 to CLI
assign OBJ2 to DN

barOutgoing()

[barOutgoing == "false"]
makeRPC()

a

blacklist(OBJ1)

[blacklist(OBJ1) = "false"]
 startRinging()

b

 (b-a) < 500 ms (90%) CLI = Calling Line Identity
 (b-a) < 5,000 ms (95%) DN = Dialled Number
 (b-a) < 10,000 ms (100%)

Notes:

Figure 6-11: The Sequence Diagram of BT IN Application

Chapter 6 - Case Studies

129

 Figure 6-11 illustrates the sequence diagram which represents the makeCall

operation. This diagram also indicates the time constraints of the makeCall

operation. It should be noted that the standard UML notation cannot describe the

probabilistic constraints except in comments or notes.

In addition to the two diagrams above, an activity diagram can also be used to

elaborate the makeCall operation by showing a possible scenario when a customer

tries to call another customer using this system (Figure 6-12).

It is the performance of the makeCall operation that we are interested in

investigating. The UML/SimML tool can be used to predict the performance by

generating a simulation program for the makeCall operation. We first need to obtain

more detailed information on which processes (entities) are involved and what actions

do actually happen within each process when a makeCall operation is invoked.

Make
Call

[barred]
Customer

Check
barOutgoing

Locate the
Callee

Check the
Blacklist

Start
Ringing

End

Establish
Connection

Close
Connection

Callee
Hangs Up

Caller
Hangs Up

Give
Error Tone

Caller
Hangs Up

[allowed to call]

[callee unknown]

[callee found]

[caller is in the blacklist]

[caller is not in the blacklist]

[callee answers] [no one answers]

Figure 6-12: An Activity Diagram for makeCall

Chapter 6 - Case Studies

130

There are three processes needed to simulate the makeCall operation: the

Arrival, Call, and Lookup processes. They are represented as classes in the

UML/SimML Class Diagram view (Figure 6-13). The Arrival process simulates the

initiation of a phone call by generating a Call object. Since the location of the Call

object within the phone network can be local, LAN or WAN, it is necessary to assign

appropriate properties to the call, such as its network connection latency.

The Call process represents a phone call request. When such a request is

initiated, it is necessary to perform several operations (cf. Figure 6-11):

• getting caller’s and callee’s identities from the Name Server (a lookup operation),

• checking the barOutgoing flag of the caller (a read operation),

• checking the blacklist of the callee (a search operation),

Each operation takes a certain time to complete and any operation sent across the

network must also take into consideration the delay imposed by the network latency

based on the locality of the call.

Figure 6-13: The Class Diagram for the makeCall operation

Chapter 6 - Case Studies

131

The Lookup process represents the Name Server and it keeps a queue for

handling the call initiation requests in order. Since there are many sites (between 60

and 1,000 according to the Physical Architecture specification, see Section 6.3.1 and

Figure 6-10) and each site has a Name Server, this means that there are multiple

instances of the Lookup process as well. Here we took 60 as the multiplicity of the

Lookup process.

The interaction between the Arrival, Call and Lookup processes can be

seen in the Sequence Diagram view of the UML/SimML tool (Figure 6-14).

The Random and Statistics Variables views of the UML/SimML tool are not

shown here, but these variables are outlined in the simulation sub-section that follows.

6.3.3. Simulation of the makeCall operation

The specification of the makeCall operation using the UML/SimML tool is then

converted into a JavaSim simulation program. There are eight random number

Figure 6-14: The Sequence Diagram for the makeCall operation

Chapter 6 - Case Studies

132

variables, which are shown in Table 6-3 below, including their types and some

explanation on what they are used for.

Table 6-3: The Random Variables used in the makeCall simulation

Name Type Explanation

interArr Exponential The inter arrival time of the calls

lookupTime Exponential The time taken by the Name Server to lookup for call identities

readTime Exponential The time taken to perform the barOutgoing flag evaluation

searchTime Exponential The time taken to check the blacklist

localDelay Exponential The network latency for local call objects

lanDelay Exponential The network latency for LAN call objects

wanDelay Exponential The network latency for WAN call objects

rndCallGen Uniform Used for randomly generating the local/LAN/WAN call types

The statistics to collect can be divided into four categories: those for the local,

LAN and WAN calls, as well as the aggregate of them all. For each category, the

information gathered concerns the number of generated calls, the number of

completed calls and the total time of processing the calls. The average processing

times of those four categories are also calculated. All the units used here is in

millisecond (ms).

Obtaining simulation parameters

Before the simulation can be performed, it is necessary to obtain the parameters for

the random variables. The Processing Requirements specification (Section 6.3.1)

mentions that there are between 3,000 and 3,000,000 calls made per second. For

simplicity, we took the lower boundary value of 3,000 calls per second, i.e. the inter

arrival rate is 0.33 ms. The local, LAN and WAN delays are specified to be zero, 1 ms

and 50 ms respectively (Figure 6-10).

The parameters for the read and search operations were obtained from

experiments where random access and binary search for a record (among 1,000,000

Chapter 6 - Case Studies

133

records) are executed. These experiments were conducted on a Pentium II/133 Mhz

running Linux with a low load. From the results, we set the readTime to be 0.00023

ms and the searchTime to be 0.0057 ms.

We would like to investigate what parameter is needed for the Name Server’s

lookup operation in order to fulfill the requirements where most (90%) of the calls

must be processed within 500 ms. (Here, we would base the comparison with the

average processing time of the WAN calls, which have the worst performance).

Simulation Results

Several simulations were performed, each for a simulation length of 100,000 ms. The

parameter for the lookupTime is modified until an acceptable performance is

obtained. An example of a report generated from one simulation run (with

lookupTime parameter of 20 ms) is shown below:

totalLocal: 100070

localDone: 99043

localTime: 5.1879070461091794E7

avgLocalTime: 523.8035041455912

totalLan: 102853

lanDone: 101801

lanTime: 5.354958759335911E7

avgLanTime: 526.0222158265549

totalWan: 99926

wanDone: 98759

wanTime: 7.109652840283486E7

avgWanTime: 719.8992335162857

totalCalls: 302849

totalDone: 299603

Chapter 6 - Case Studies

134

totalTime: 1.7652518645728326E8

avgTime: 589.1969922106363

We can see that if the lookupTime has a mean of 20 ms, the performance of the

makeCall operation is worse than what the requirement asks. Changing the

lookupTime parameter to 19 ms gave the following results:

totalLocal: 100070

localDone: 100050

localTime: 2041272.6611432696

avgLocalTime: 20.402525348758317

totalLan: 102853

lanDone: 102831

lanTime: 2506776.6377693936

avgLanTime: 24.37763551622948

totalWan: 99926

wanDone: 99725

wanTime: 2.1875343049229436E7

avgWanTime: 219.35666131089934

totalCalls: 302849

totalDone: 302606

totalTime: 2.6423392348142095E7

avgTime: 87.31945945599921

Here, a drastic performance improvement is obtained. To find the minimum parameter

value for lookupTime that satisfies the requirement, a small decrement of 0.01 ms

was applied to the parameter value, starting at 20 ms. The results are shown in Table

6-4. Only the information of main interest are shown here, i.e. the average times for

each call-type and the summary of all calls. In all cases, there are 302,849 calls made

in total for each simulation run.

Chapter 6 - Case Studies

135

Table 6-4: Simulation results of the makeCall operation

lookup average times all calls

Time local LAN WAN done time avgTime

20.00 523.80 526.02 719.90 299603 1.77E8 589.20

19.99 499.13 501.38 695.36 299748 1.69E8 564.58

19.98 474.39 476.76 670.77 299889 1.62E8 539.93

19.97 449.67 452.12 646.22 300053 1.55E8 515.29

19.96 424.88 427.49 621.68 300223 1.47E8 490.65

19.95 400.05 402.79 597.00 300353 1.40E8 465.91

19.94 375.25 378.10 572.33 300511 1.33E8 441.19

19.93 350.44 353.33 547.61 300650 1.25E8 416.42

19.92 325.60 328.58 522.87 300804 1.18E8 391.64

19.91 300.71 303.76 498.13 300945 1.10E8 366.83

19.90 275.83 278.94 473.33 301091 1.03E8 341.99

It was found that in order to satisfy the performance requirement (i.e. the WAN calls

should be processed within 500 ms on average), the upper limit of the lookupTime

is 19.91 ms.

6.3.4. Summary of BT case study

The BT case study demonstrates how the UML/SimML tool could be used in

specifying (a part of) a complex system. The interest lies on the makeCall

operation, which is invoked when a phone call is made.

The performance of the makeCall operation is influenced by many factors,

such as the location of the caller/callee (in relation to the Name Server), the number of

Name Servers used, the number of calls initiated per second, etc., but the most

important factor is the time delay that the Name Server takes to process or initiate

each call (the lookupTime delay).

The simulation program (generated automatically from the specification)

enables us to estimate what parameter is needed for the Name Server in order to

satisfy the requirements of the system. This is very helpful, for example in deciding

Chapter 6 - Case Studies

136

how much resources should be spent on the Name Server by evaluating the possible

scenarios.

6.4. Voltan

This project addresses the problem of preventing faulty hardware processors from

causing application programs to fail by developing a family of “fail-controlled” nodes,

the Voltan nodes. These nodes are fail-silent nodes, which means that they either

function correctly or stop functioning after an internal failure is detected.

The construction of fail-silent nodes can be achieved using one of the two

approaches available: hardware-implemented or software-implemented. A hardware-

implemented fail-silent node requires special-purpose hardware components, such as

fault-tolerant clocks, comparators and bus interface circuits. On the other hand, a

software-implemented fail-silent node can be constructed simply by using standard

“off-the-shelf” components. There are many advantages offered by the software-

implemented nodes, such as easy upgradeability and more robustness against transient

failures; these can be seen in [70] and [19].

The Voltan project is an example of how fail-silent nodes can be constructed

using the software-implemented approach. In the software-implemented fail-silent

nodes, the non-faulty processors of the node need to execute a message order protocol

(for keeping in step) as well as a comparison protocol (for checking each other). More

details on the Voltan system are given below.

6.4.1. Description of the Voltan system

A Voltan node is composed of a number of conventional (“off-the-shelf”) processors

on which application level processes are replicated to achieve fault tolerance [19, 70].

Chapter 6 - Case Studies

137

The processors in Voltan nodes are connected via communication links (network and

local connections). Within a node, the processors execute message agreement and

ordering protocols to guarantee that correct replicas of application processes will

receive and process input messages in identical order.

A basic Voltan node can be constructed of two processors: the LEADER and the

FOLLOWER. The LEADER determines the order of processing messages by

choosing a message and sending a copy of that message to the FOLLOWER. The

LEADER keeps a counter, which is used to assign a unique identifier to input

messages. Both the LEADER and FOLLOWER then process the message and cross-

send the results to their respective voters in order to validate/compare the results. A

diagrammatical representation of a Voltan node can be seen as Figure 6-15.

There is a network delay associated with the task of sending a message between

the LEADER and the FOLLOWER. There is also a delay for processing a message,

and within each process, there is a (very small) local delay between different actions

(e.g. from processing to comparing).

fvq1

fvq2

lvq2

lvq1

fsq

lsq
message

network

LR

FV

LV

FS

LS

LR = Leader Receiver lsq = Leader Server Queue
LS = Leader Server lvq1 = Leader Voter Queue from LS
LV = Leader Voter lvq2 = Leader Voter Queue from FS
FS = Follower Server fsq = Follower Server Queue
FV = Follower Voter fvq1 = Follower Voter Queue from FS
 fvq2 = Follower Voter Queue from LS

Note: Server and Voter are actually threads within the same processor.

Figure 6-15: A simplified architecture of a single Voltan node

Chapter 6 - Case Studies

138

We would like to investigate the performance of a Voltan node, more

specifically on the comparison between the performance times of the LEADER and

the FOLLOWER processes. In the following sub-section, a specification of the Voltan

system is given in a textual SimML framework. This specification is then converted

using runsim (which is one of the two SimML parser implementation outlined in

Section 5.3.2) into C++SIM simulation program.

6.4.2. Voltan system specification using the SimML framework

 An older SimML parser implemented in Perl (runsim) is used here because

Voltan system specification requires a priority ordering on its queues, and this is not

yet supported in the UML/SimML tool. Here each message is given an identification

number (stored as a member variable called id in the Message class) and they are

queued according to that number. This means that messages with smaller id numbers

will be placed closer to the head of the queue.

The older SimML framework syntax (which is parseable using runsim)

supports a way to achieve this requirement. It has an extra SimML component called

SEQUENCE, which is a specialised form of QUEUE component that takes into

account the id variable of the queued object.

The complete SimML notation for the Voltan system can be seen in Figure 6-16.

As we can see, it is a fully textual notation, but runsim is able to automatically

transform this notation into C++SIM program for performance evaluation.

Chapter 6 - Case Studies

139

The simulation of this specification is discussed in the next sub-section.

 SEQUENCE Queue of Message using id
PROCESS Message once
{
 +int id
 +int type
 +double arrTime
 +void Body()
 {
 if type == 1
 [
 wait localDelay
 enqueue this to lsq
 activate ls
 sleep
]
 elsif type == 2
 [
 wait netDelay
 enqueue this to fsq
 activate fs
 sleep
]
 if type == 11
 [
 wait localDelay
 enqueue this to lvq1
 activate lv
]
 elsif type == 12
 [
 wait netDelay
 enqueue this to fvq2
 activate fv
]
 elsif type == 21
 [
 wait netDelay
 enqueue this to lvq2
 activate lv
]
 elsif type == 22
 [
 wait localDelay
 enqueue this to fvq1
 activate fv
]
 end
 }
}

PROCESS Arrival
{
 +void Body()
 {
 create msg of Message
 create msg2 of Message
 update totalMessages
 record id of msg = totalMessages
 record id of msg2 = totalMessages
 record arrTime of msg
 record arrTime of msg2
 record type of msg = 1
 record type of msg2 = 2
 activate msg
 activate msg2
 wait interArrivalTime
 }
}

PROCESS LeaderServer
{
 +void Body()
 {
 while lsq->IsEmpty()
 [
 sleep
]
 dequeue msg from lsq
 wait procDelay
 create msg2 of Message
 record id of msg2 = msg->id
 record arrTime of msg2 = msg->arrTime
 record type of msg = 11
 record type of msg2 = 12
 activate msg
 activate msg2
 }
}

PROCESS FollowerServer
{
 +void Body()
 {
 while fsq->IsEmpty()
 [
 sleep
]
 dequeue msg from fsq
 wait procDelay
 create msg2 of Message
 record id of msg2 = msg->id
 record arrTime of msg2 = msg->arrTime
 record type of msg = 21
 record type of msg2 = 22
 activate msg
 activate msg2
 }
}

PROCESS LeaderVoter
{
 +void Body()
 {
 while lvq1->IsEmpty() || lvq2->IsEmpty()
 [
 sleep
]
 while lvq1->First()->id != lvq2->First()->id
 [
 sleep
]
 dequeue msg from lvq1
 dequeue msg2 from lvq2
 update totalTimeL
 update totalDoneL
 }
}

PROCESS FollowerVoter
{
 +void Body()
 {
 while fvq1->IsEmpty() || fvq2->IsEmpty()
 [
 sleep
]
 while fvq1->First()->id != fvq2->First()->id
 [
 sleep
]
 dequeue msg from fvq1
 dequeue msg2 from fvq2
 update totalTimeF
 update totalDoneF
 }
}

CONTROLLER Controller
OBJECT lsq of Queue
OBJECT fsq of Queue
OBJECT lvq1 of Queue
OBJECT lvq2 of Queue
OBJECT fvq1 of Queue
OBJECT fvq2 of Queue
OBJECT a of Arrival
OBJECT ls of LeaderServer
OBJECT lv of LeaderVoter
OBJECT fs of FollowerServer
OBJECT fv of FollowerVoter

RANDOMS
{
 interArrivalTime exponential 10
 procDelay exponential 1
 localDelay exponential 0.01
 netDelay exponential 0.1
}

STATISTICS
{
 double totalTimeL +now-msg->arrTime
 double totalTimeF +now-msg->arrTime
 int totalMessages +1
 int totalDoneL +1
 int totalDoneF +1
 double avgTimeL =totalTimeL/totalDoneL
 double avgTimeF =totalTimeF/totalDoneF
}

Figure 6-16: The SimML notation of the Voltan system

Chapter 6 - Case Studies

140

6.4.3. Simulation of Voltan system

There are several parameters that need to be supplied for the random variables used.

These can be seen in the “RANDOMS” component of the SimML specification

shown in Figure 6-16. This specification is saved into an ASCII file called “voltan”

and by running the runsim script, the corresponding C++SIM simulation program is

generated, compiled and run. Figure 6-17 illustrates the execution of the runsim

parser and the simulation results produced.

bash$ runsim voltan

Simulation maker

Removing the old C++SIM files...

Read 179 lines of source code...

Creating a SEQUENCE of Message with name Queue using id

Creating a PROCESS class called Message

Creating a PROCESS class called Arrival

Creating a PROCESS class called LeaderServer

Creating a PROCESS class called FollowerServer

Creating a PROCESS class called LeaderVoter

Creating a PROCESS class called FollowerVoter

Creating a CONTROLLER called Controller

Creating the Main program...

Creating the Imakefile...

Creating the Makefile...

Executing the Makefile...

Running the program...

Enter the simulation length: 1000000

totalTimeL = 178048

totalTimeF = 177330

totalMessages = 100272

totalDoneL = 100272

totalDoneF = 100272

avgTimeL = 1.77565

avgTimeF = 1.76849

Figure 6-17: Screen dump obtained from running runsim parser

Chapter 6 - Case Studies

141

The performance time of the FOLLOWER process is better than that of the

LEADER. This is because the LEADER has to start first and subsequently it has to

wait for the result from the FOLLOWER before it can compare both of the results (in

the Leader Voter). On the other hand, the FOLLOWER process would usually have

had the result from the Leader Server already in the Follower Voter queue (fvq2)

before (or at around the same time as) the Follower Server puts its result in fvq1.

This observation agrees with that of an M.Sc. thesis carried out in 1998 that studied

and compared the behaviour of fail-silent and TMR nodes through simulation [39].

Increasing the network delay not only makes the average performance time

worse, but also widens the gap between the performance times of the LEADER and

FOLLOWER processes. To investigate this further, several simulation runs were

performed with the network delay incremented by 0.1. Each simulation was given a

simulation length of 100,000, and the results can be seen in Table 6-5.

Table 6-5: Voltan simulation results with incrementing netDelay

mean of average proc. time proc. time

netDelay LEADER FOLLOWER difference

0.1 1.77541 1.76586 0.009548

0.2 1.91205 1.88006 0.031986

0.3 2.06357 2.00105 0.062526

0.4 2.22748 2.12677 0.100713

0.5 2.39783 2.25833 0.139498

0.6 2.57757 2.38926 0.188310

0.7 2.76821 2.52798 0.240230

0.8 2.96302 2.67023 0.292786

0.9 3.16979 2.81513 0.354660

1.0 3.37338 2.96305 0.410327

The data presented in Table 6-5 indicate that the differences between the LEADER

and FOLLOWER processing times do not grow in a linear fashion. By plotting these

differences against the netDelay values, a clearer picture is obtained (Figure 6-18).

Chapter 6 - Case Studies

142

This graph shows that the difference between the performance times of the LEADER

and FOLLOWER processes grows exponentially when the network delay is

incremented by a fixed value. This indicates the significance of the network

performance in affecting the performance of the Voltan system.

6.4.4. Summary of Voltan case study

Although the UML/SimML tool does not provide sufficient support for the Voltan

specification, it has been shown that the other SimML parser - runsim - is up to the

task. This is because runsim, which is the older parser of the two, has a richer

semantics at an expense of no graphical notation (i.e. its notations are purely textual).

Further work can be done to include the extra semantics into the UML/SimML tool.

6.5. Some remarks

The three case studies described and simulated in this chapter demonstrate the

usefulness of the SimML framework in assisting system designers in choosing a

design/scenario that would satisfy the requirement with minimum cost.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mean of netDelay (seconds)

d
if

fe
re

n
ce

 (
se

co
n

d
s)

Figure 6-18: Effect of netDelay on performance difference between LEADER and FOLLOWER

Chapter 6 - Case Studies

143

The two parser implementations for the SimML framework (the UML/SimML

and runsim parsers, see Chapter 5) have their own advantages and disadvantages.

While the UML/SimML tool offers graphical notations to be incorporated into the

design, it lacks some semantics which makes it a bit difficult for specifying complex

systems like Voltan. The runsim parser requires its users to understand its syntax

well but it offers more features such as easier loop/condition statements and an extra

component called SEQUENCE for priority queues.

In both cases, appropriate simulation programs can be generated automatically

from the parsers, and if necessary, they can be “fine-tuned” to allow more specific

information to be incorporated into the simulation. This include some debugging

messages, more complex loops or control sequences and extra statistics collection.

All in all, this chapter has shown that the idea of constructing simulation

programs for performance prediction directly from a design notation is workable and

proven to be beneficial. Some work still needs to be done to make the tools better and

to allow more complex systems to be specified and their performance predicted.

Chapter 7 - Conclusion

144

Chapter 7

7. Conclusion

7.1. Analysis of the SimML Tools

The Simulation Modelling Language (SimML) framework is supported by two tools

(parsers) that allow the appropriate specification to be transformed into simulation

programs in a generic manner. The implementation of these tools is covered in detail

in Chapter 5, and some examples of their usage are described in Chapter 6.

The first parser (runsim) is able to transform textual design specification (that

conforms to the SimML syntax) into C++SIM simulation program. This serves as a

prototype for exploring the feasibility of deriving simulation program directly from

design specification. In a sense, the SimML framework acts as a bridge that connects

the specification and simulation, and this framework proves to be the core of this

Ph.D. project.

The second parser (UML/SimML tool) combines Graphical User Interface

(GUI) features and the SimML framework for enabling an automatic generation of

simulation program (in JavaSim) from the relevant Unified Modeling Language

(UML) design notations. The UML notations used here are the class and sequence

diagrams, where a direct mapping between these diagrams and the SimML

components and actions have been obtained. Two important aspects of simulation not

supported in UML are random properties and statistics specifications. The

Chapter 7 - Conclusion

145

UML/SimML tool tries to address this deficiency by providing two extra views for

those specifications.

The two parsers above have their own strong points and weak points. While the

runsim parser only supports textual notation, it allows richer syntax and has some

extra features that were not implemented yet in the UML/SimML tool (such as the

PIPELINE and SEQUENCE components). On the other hand, the UML/SimML tool

allows graphical notation to be used, but it is more difficult to incorporate more

detailed SimML features (such as the if-elsif actions) into the notation. As a summary,

some comparisons between these two tools are outlined in Table 7-1.

Table 7-1: Comparisons between runsim and UML/SimML tools

Feature runsim UML/SimML

Notation supported textual graphical

Simulation program generated C++SIM JavaSim

PIPELINE, SEQUENCE components supported not supported

SimML actions defined in Body() run()

Control actions supported if, elsif, else if

A block of conditional actions supported not supported

One of the advantages of generating simulation programs separately from the

design framework or tools is the possibility of fine tuning the simulation to suit more

detailed requirements. Here, the tools provide the starting blocks for the simulation

program (i.e. the necessary classes and their interactions, data structures, random

variables, statistics variables, etc.) and this helps the software designer a lot since

normally they are not familiar with simulation techniques. These tools also save us

from always building simulation programs from scratch, which can be quite tedious

and time consuming.

Chapter 7 - Conclusion

146

The most prominent drawback of using simulation approach in predicting

systems’ performance concerns the amount of resources (machine’s memory and

processing time) that the simulation program needs to take. This becomes more

apparent when long simulation runs are to be performed. The simulation may fail to

finish due to the fact that there is not enough memory available to spawn another

thread for the active objects. This problem can be alleviated by trying to keep the

number of active objects created to a minimum, e.g. by using the SimML DATA

component instead of PROCESS component for representing the jobs that the system

tries to simulate.

One problem that was found (when using the C++SIM or JavaSim packages)

concerns the random numbers generation. The random number generator requires the

seeds to be modified when each random distribution class is created, otherwise the

starting position of that sequence will always be the same. This results in the

generation of the same sequence of numbers, which is not desired. To prevent this

from happening, each random stream class has an additional parameter for one of its

constructors to indicate the offset in this sequence from which sampling should begin.

7.2. Further Work

During the implementation stage of this project, there are some UML deficiencies

uncovered. It is extremely difficult to incorporate control structures (such as loops

and condition statements) efficiently into design. Although UML provides a

constraint notation - with the conditions enclosed in a pair of square brackets - it is yet

to be formulated if there are multiple actions to be performed upon the fulfilment of

those conditions (Note: the UML notation used in this thesis was version 1.1. Since

Chapter 7 - Conclusion

147

then, the UML notation has evolved a lot and the current version has supports for

more complex control structures).

One possible further work is on combining or incorporating the SimML

framework with/into an existing UML tool such as Argo/UML [71]. Although the

UML/SimML tool provides the necessary GUI features for designing and generating

simulation program for a system specification, it is not a complete UML tool and its

features are limited. The UML/SimML tool only offers a subset of UML notations, so

it is useful to provide a translation of standard UML patterns into this subset.

It might also be useful to add an extra feature to the UML/SimML tool that

allows a range of experiments to be conducted. So, instead of investigating only one

scenario at a time, it should be possible to specify a range of values upon which

several scenarios can be automatically predicted (even compared) and summarised.

Another area that can be investigated further is on how to reduce time and/or

resources taken by the simulation runs. This would be useful for generating accurate

simulations in a reasonable time. There is a functional simulation tool called

DEPEND [32], which presents some techniques for reducing the simulation time

explosion. The techniques mentioned there include those on hierarchical simulation,

general time acceleration mechanism, as well as variance reduction.

There is also a need to have a standard for incorporating performance related

information into UML notations. The amount of work done in this area indicates that

there is a wide audience on this topic, and collaboration with other people/project

working on the similar line would be beneficial.

148

Bibliography

[1] Akehurst, D., G. Waters, P. Utton, and G. Martin, “Predictive Performance

Analysis for Distributed Systems - PERMABASE position”, Proc. One Day

Workshop on Software Performance Prediction extracted from Designs, Heriot-

Watt University, Edinburgh (25 November 1999).

[2] Akehurst, D. H. and A. G. Waters, “UML Deficiencies from the Perspective of

Automatic Performance Model Generation”, Proc. OOPSLA ’99 Workshop on

Rigorous Modelling and Analysis with the UML: Challenges and Limitations

(November 1999).

[3] Akehurst, D. H. and A. G. Waters, “UML Specification of Distributed System

Environments”, Computing Laboratory, University of Kent at Canterbury,

Technical Report 18-99 (May 1999).

[4] Arief, L. B., “DTD for the SimML Framework” (online at

http://www.cs.ncl.ac.uk/~l.b.arief/home.formal/SimML.dtd).

[5] Arief, L. B., M. C. Little, S. K. Shrivastava, N. A. Speirs, and S. M. Wheater,

“Specifying Distributed System Services”, British Telecom Technical Journal -

Special Issue, pp. 126-136 (1999).

[6] Arief, L. B. and N. A. Speirs, “Automatic Generation of Distributed System

Simulations from UML”, SCS Proc. 13th European Simulation Multiconference

(ESM’99), Warsaw, Poland, pp. 85-91 (June 1999).

149

[7] Arief, L. B. and N. A. Speirs, “Simulation Generation from UML Like

Specifications”, IASTED Proc. International Conference on Applied Modelling

and Simulation, Cairns, Australia, pp. 384-388 (September 1999).

[8] Arief, L. B. and N. A. Speirs, “Specification of Distributed Intelligent Network

Systems using UML and Extensions”, BT Deliverable (February 1998).

[9] Arief, L. B. and N. A. Speirs, “A UML Tool for an Automatic Generation of

Simulation Programs”, ACM Proc. 2nd International Workshop on Software

Performance (WOSP 2000), Ottawa, Canada, pp. 71-76 (17-20 September

2000).

[10] Arief, L. B. and N. A. Speirs, “Using SimML to Bridge the Transformation from

UML to Simulation”, Proc. One Day Workshop on Software Performance

Prediction extracted from Designs, Heriot-Watt University, Edinburgh (25

November 1999).

[11] Arjuna-Team, “C++SIM User's Guide”, Department of Computing Science,

University of Newcastle upon Tyne (1994).

[12] Arnold, K. and J. Gosling, The Java Programming Language, Addison-Wesley

(1996).

[13] Banks, J., Handbook of Simulation: Principles, Methodology, Advances,

Applications, and Practice, John Wiley & Sons, Inc. (1998).

[14] Bennett, B. S., Simulation Fundamentals, Prentice Hall (1995).

[15] Bondavalli, A., I. Majzik, and I. Mura, “Automated Dependability Analysis of

UML Designs”, IEEE Proc. 2nd International Symposium on Object-oriented

Real-time distributed Computing (ISORC’99), Saint-Malo, France, pp. 139-144

(1999).

150

[16] Bondavalli, A., I. Majzik, and I. Mura, “Automatic Dependability Analysis for

Supporting Design Decision in UML”, IEEE Proc. 4th High Assurance System

Engineering Symposium (HASE’99), Washington D.C. (17-19 November 1999).

[17] Booch, G., Object Oriented Design with Applications, Benjamin/Cummings

Publishing Company, Inc. (1991).

[18] Booch, G., J. Rumbaugh, and I. Jacobson, The Unified Modeling Language

User Guide, Addison-Wesley (1999).

[19] Brasiliero, F. V., P. D. Ezhilchelvan, S. K. Shrivastava, N. A. Speirs, and S.

Tao, “Implementing Fail-Silent Nodes for Distributed Systems”, IEEE

Transactions on Computers, Vol. 45, No. 11, pp. 1226-1238 (1996).

[20] Bryan, M., “An Introduction to the Extensible Markup Language (XML)”, The

SGML Centre (online at http://www.personal.u-net.com/~sgml/xmlintro.htm).

[21] CACI, MODSIM III: The Language for Object-Oriented Programming

(Tutorial), CACI Products Co. (1996).

[22] Campione, M., K. Walrath, and A. Huml, The Java Tutorial Continued - The

Rest of the JDK, Addison-Wesley (1998).

[23] Chan, P., The Java Developer Almanac 1999, Addison-Wesley (1999).

[24] Ciardo, G., J. Muppala, and K. Trivedi, “SPNP: Stochastic Petri Net Package”,

Proc. 3rd International Workshop on Petri Nets and Performance, Kyoto,

Japan, pp. 142-151 (1989).

[25] Coad, P. and E. Yourdon, Object-Oriented Analysis, 2nd Edition. Englewood

Cliffs, N.J., Yourdon Press (1991).

[26] Cortellessa, V. and R. Mirandola, “Deriving a Queuing Network based

Performance Model from UML Diagrams”, ACM Proc. 2nd International

151

Workshop on Software Performance (WOSP 2000), Ottawa, Canada, pp. 58-70

(17-20 September 2000).

[27] de-Miguel, M., T. Lambolais, M. Hannouz, S. Betgé-Brezetz, and S. Piekarec,

“UML Extensions for the Specification and Evaluation of Latency Constraints

in Architectural Models”, ACM Proc. 2nd International Workshop on Software

Performance (WOSP 2000), Ottawa, Canada, pp. 83-88 (17-20 September

2000).

[28] Douglass, B. P., Real Time UML: Developing Efficient Objects for Embedded

Systems, Addison-Wesley (1998).

[29] Eriksson, H.-E. and M. Penker, UML Toolkit, John Wiley & Sons, Inc. (1998).

[30] Flanagan, D., Java in a Nutshell: a Desktop Quick Reference, O'Reilly (1997).

[31] Fowler, M. and K. Scott, UML Distilled: Applying the Standard Object

Modeling Language, Addison-Wesley (1997).

[32] Goswami, K. K., R. K. Iyer, and L. Young, “DEPEND: A Simulation-Based

Environment for System Level Dependability Analysis”, IEEE Transactions on

Computers, Vol. 46, No. 1, pp. 60-74 (1997).

[33] Hoeben, F., “Using UML Models for Performance Calculation”, ACM Proc.

2nd International Workshop on Software Performance (WOSP 2000), Ottawa,

Canada, pp. 77-82 (17-20 September 2000).

[34] Howell, F. and R. McNab, “SimJava”, Institute for Computing Systems

Architecture, Division of Informatics, University of Edinburgh (online at

http://www.dcs.ed.ac.uk/home/hase/simjava/).

[35] Howell, F. and R. McNab, “simjava: a discrete event simulation package for

Java with applications in computer systems modelling”, Society for Computer

152

Simulation Proc. First International Conference on Web-based Modelling and

Simulation, San Diego, CA (January 1998).

[36] Huber, F., S. Molterer, A. Rausch, B. Schätz, M. Sihling, and O. Slotosch,

“Tool supported Specification and Simulation of Distributed Systems”, IEEE

Computer Society Proc. International Symposium on Software Engineering for

Parallel and Distributed Systems, pp. 155-164 (1998).

[37] Hunt, J., Java for Practitioners - An Introduction and Reference to Java and

Object Orientation, Springer (1999).

[38] IBM, “XML Parser for Java - XML4J”, IBM Alpha Works (online at

http://www.alphaworks.ibm.com/tech/xml4j).

[39] Jardin, L. G., “Simulation of Fault Tolerant Distributed System”, Department of

Computing Science, University of Newcastle upon Tyne, M.Sc. Dissertation

(August 1998).

[40] Jarvinen, H.-M. and R. Kurki-Sunio, “DisCo Specification Language: Marriage

of Actions and Objects”, IEEE Computer Society Press Proc. 11th International

Conference on Distributed Computing Systems, Arlington, Texas, pp. 142-151

(May 1991).

[41] Java-Tutorial-Team, “Creating a GUI with JFC/Swing” (online at

http://java.sun.com/docs/books/tutorial/uiswing).

[42] Java-Tutorial-Team, “The Java Tutorial” (online at

http://java.sun.com/docs/books/tutorial/).

[43] Jones, C. B., Systematic Software Development Using VDM, Prentice-Hall

International Series in Computer Science (1986).

153

[44] Jonkers, H., W. Janssen, A. Verschut, and E. Wierstra, “A Unified Framework

for Design and Performance Analysis of Distributed Systems”, Proc. 3rd

Annual IEEE International Computer Performance and Dependability

Symposium (IPDS’98), Durham, NC, USA, pp. 109-118 (September 1998).

[45] Kähkipuro, P., “UML Based Performance Modeling Framework of Object-

Oriented Distributed Systems”, Proc. One Day Workshop on Software

Performance Prediction extracted from Designs, Heriot-Watt University,

Edinburgh (25 November 1999).

[46] Katara, M., “A short tutorial on DisCo” (online at

http://www.cs.tut.fi/ohj/DisCo/BEST98/tutorial/Tutorial.DisCo92.html).

[47] King, P. and R. Pooley, “Software Performance Prediction Workshop”, Heriot-

Watt University, Edinburgh (25 November 1999, online at

http://www.cee.hw.ac.uk/~pjbk/umlworkshop/sppw.html).

[48] King, P. and R. Pooley, “Using UML to Derive Stochastic Petri Net Models”,

Proc. 15th UK Performance Engineering Workshop (UKPEW’99), Department

of Computer Science, University of Bristol, pp. 45-56 (July 1999).

[49] King, P. J. B., Computer and Communication Systems Performance Modelling,

Prentice Hall (1990).

[50] Lightfoot, D., Formal Specification Using Z, Macmillan Press Ltd. (1991).

[51] Little, M. C., “JavaSim” (online at http://javasim.ncl.ac.uk).

[52] Little, M. C. and D. L. McCue, “Construction and Use of a Simulation Package

in C++”, Department of Computing Science, University of Newcastle upon

Tyne, Technical Report 437 (July 1993).

154

[53] Luckham, D. C., “Rapide: A Language and Toolset for Simulation of

Distributed System by Partial Orderings of Events”, DIMACS Partial Order

Methods Workshop IV, Princeton University (July 1996).

[54] Luckham, D. C., J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann,

“Specification and Analysis of System Architecture using Rapide”, IEEE

Transactions on Software Engineering, Vol. 21, No. 4, pp. 336-355 (1995).

[55] Megginson, D., “SAX: The Simple API for XML” (online at

http://www.megginson.com/SAX/index.html).

[56] Mitrani, I., Modelling of Computer and Communication Systems, Cambridge

University Press (1987).

[57] Mitrani, I., Probabilistic Modelling, Cambridge University Press (1997).

[58] Mitrani, I., Simulation Techniques for Discrete Event Systems, Cambridge

University Press (1982).

[59] Object-International, Together: Visual UML modeling with simultaneous

round-trip engineering, Object International Software Ltd. (1998).

[60] Pooley, R., “Software Engineering and Performance: A Road-map”, ACM Proc.

The Future of Software Engineering, pp. 191-199 (2000).

[61] Pooley, R. J., An Introduction to Programming in SIMULA, Blackwell

Scientific Publications (1987).

[62] Pooley, R. J. and P. J. B. King, “The Unified Modeling Language and

Performance Engineering”, IEE Proceedings on Software, Vol. 146, No. 1, pp.

2-10 (1999).

[63] Rational-Rose, “UML Resource Center” (online at

http://www.rational.com/uml).

155

[64] Rumbaugh, J., I. Jacobson, and G. Booch, The Unified Modeling Language

Reference Manual, Addison-Wesley (1999).

[65] Scheuerl, S., R. C. H. Connor, R. Morrison, J. E. B. Moss, and D. S. Munro,

“MaStA - An I/O Cost Model for Database Crash Recovery Mechanisms”,

ESPRIT BRA Project 6309 FIDE2, Report FIDE/95/128 (1995).

[66] Scheuerl, S., R. C. H. Connor, R. Morrison, J. E. B. Moss, and D. S. Munro,

“The MaStA I/O Cost Model and its Validation Strategy”, Proc. 2nd

International Workshop on Advances in Databases and Information Systems

(ADBIS’95), Moscow, Russia, pp. 165-175 (1995).

[67] Scheuerl, S. J. G., “Modelling Recovery in Database System”, School of

Mathematical and Computational Sciences, University of St. Andrews, Ph.D.

Thesis (August 1997).

[68] Schwartz, R. L., Learning Perl, O'Reilly & Associates (1993).

[69] Speirs, N. A. and L. B. Arief, “Simulation of a Telecommunication System

using SimML”, IEEE Proc. 33rd Annual Simulation Symposium, Washington

D.C., pp. 131-138 (April 2000).

[70] Speirs, N. A., S. Tao, F. V. Brasileiro, P. D. Ezhilchelvan, and S. K.

Shrivastava, “The Design and Implementation of Voltan Fault-Tolerant Nodes

for Distributed Systems”, Transputer Communications, Vol. 1, No. 2, pp. 93-

109 (1993).

[71] UCI, “Argo/UML - Providing Cognitive Support for Object-Oriented Design”

(online at http://www.ics.uci.edu/pub/arch/uml/).

156

[72] Utton, P., G. Martin, D. Akehurst, and G. Waters, “Performance Analysis of

Object-Oriented Designs for Distributed Systems”, Computing Laboratory,

University of Kent at Canterbury, Technical Report 17-99 (March 1999).

[73] Wall, L., T. Christiansen, and J. Orwant, Programming Perl, 3rd ed, O'Reilly &

Associates (2000).

[74] Wall, L. and R. L. Schwartz, Programming Perl, O'Reilly & Associates (1990).

[75] Winder, R. and G. Roberts, Developing Java Software, Second ed, John Wiley

& Sons, Ltd. (2000).

[76] Woodside, M., “WOSP2000: Second International Workshop on Software and

Performance”, Ottawa, Canada (17-20 September 2000, online at

http://www.sce.carleton.ca/wosp2000/).

[77] Wright, C., Java, Second ed, Hodder & Stoughton (2000).

