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Abstract

N-Modular Redundancy (NMR)is a form of active replication in which each processor
is replicated to form a node and each processor replica within the node executes the
same set of software component replicas. Communication between nodes, in the form
of messages, passes through a voting mechanism by which processor failures are
masked. When the degree of replication is three, the technique is known as Triple

Modular Redundancy (TMR) and can tolerate the failure of a single node processor.

For voting to be successful, non-faulty software component replicas must output
identical messages in an identical order. If we assume that software components are
deterministic, then we need only ensure that the replicas process identical input
messages in an identical order. Such software components conform to the well

understood and researched state machine model of active replication.

However, most distributed programs employ mechanisms not incorporated in the srate
machine model such as timeouts and prioritized messages. These potential sources of
non—determinism could lead to a divergence of state among software component
replicas which could then produce inconsistent responses to identical input messages,

thereby defeating the NMR voting mechanism.

The main contributions of this thesis are:

(1) To presentan architecture for active replicated processing which may be applied to

any distributed system.

(i) To present a more expressive, enhanced model for software components which
incorporates non-determinism and show how a system of such software
components may be replicated, using a single weli-defined generic mechanism
(the order process) to prevent state divergence. Since the problem of identical
ordering can be formulated as the interactive consistency problem which is solvable
in the presence of arbitrary (Byzantine) failures, the approach presented in this

thesis, unlike any other published to date, is capable of tolerating such failures.



Acknowledgements

Firstly I would like to thank my supervisor, Professor Santosh Shrivastava, for
suggesting this area of research and for reading and commenting upon the numerous

drafts of this thesis.

Iwould also like to thank Dr. Paul Ezhilchelvan, Dr. Neil Speirs, Dr. Stuart Wheater

and Mark Little, for their many useful comments.

Finally I would like to thank my family for their support and encouragement, which

they gave me during my studies.

Financial support for much of the work described in this thesis was provided by grants

from the Science and Engineering Research Councit and ESPRIT Project DELTA-4.



Chapter 1

Chapter 2

Chapter 3

Chapter 4

:Introductiont.. llllll S 6 862 EDH OSSR US SIS NSO L B 3

: Understanding Active Replication .....c.cecoeveerncceranas veo
2.1 Introduction ..... T ot eraesea st esennaenaoreasaaosrannes
2.2 The State Machine ....co0veeceeecssssoccaaranss ceevee
2.3 Replicating the State Machine ........o00vveivennnrnans.
2.4 Interactive ConsiStency .uveeeercrevssssonscronsosnean ves
2.4.1 Introduction ..........oiiiiineeniniaiiiiiinnrnnn,
2.4.2 The Byzantine Generals Problem ......................
2,43 A Solution using Oral Messages .............c.couvun..
2.4.4 A Solution using Signed Messages .....................
2.4.5 SUMmMary . ....oveeeersenernenrencasnereinrenssenann
25 Total Ordering ....ocvvvevervevenvsossasnsancnssascannss
2.5.1 Logical clocks ... oiueinin it i,
2.5.2 Approximately Synchronized Real-Time Clocks . ..........
2.6 Introducing Non-determinism into the State Machine Model
2.6.1 Timeouts........cu it eneenenronaneneraneenns

2.6.2 Prioritized requests .. .. .. ..o eeeeneeieeniineninanennnns
27 Summary ......cc000000. P resmsesansarasenarearanennan
: Fault-Tolerant Architectures.......oovvevevoerorccscnerannass
31 Introduction ......ovoeeeeesconscovsocascssass
3.2 The Tandem Non-Stop System .....ccveveerecrosanceenns
3.3 The Sequoia Computer SyStem ....vcovveevvarecannascnes
3.4 The Stratus Computer SyStelM .....ccocesaecesccccccares
35 SIFT c.vvvevenoenonces besesrssestresearonsnsenans
3.5.1 SIFT - An Extension . ...... C e eaararee e
36 Mars ccieieiennnn sesesnaratsevansetaesnaroesartnrbnase
3.7 FIMP ....... S eseuesecanieataccsesraasesosansuetrns
38 FIP toiviiiiiiiiiicsonsennsas
39 MAFT ..ot iicinsnnescesnnnes
3.10 Deltad OSA ...viviiiivencnnscenscocssnceansans teens
3.10.1 Active Replication .............ceeereineneineennnnen.
3.10.2  Passive Replicalion . ...........coueerunreernenrnnennns
311 Delta—4 XPA .o c.vveoecrennnsacsasssocrocescsassacnnes .
3.12 Summary ....... Cerrecnasrersaseeebtassaseasraenenanae
: System Architecture .....ccc0vcn00ennnns ceenes Ceasrerananes
4.1 Introduction .....vvvevsnvecncovecssosssssoassanranansns
4.2 The Replicated Processing Model .........oeiinvnvvennnss
4.3 Processor Interconnection ........... cesesen tesssaasaaas
4.4 Signatures and Authentication .......... cessosenconsnana
4.4.1 Single-signed Messages . ... .........ccoiiiiiiinnenns
4.4.2 Double~signed Messages ..........voueenveeneninnanns
4.5 Voting and Authentication .....ovvevvrersvcnnncons cevens
4.5.1 Single~signed Messages . .......coviierviiirnennrnenns

4.5.2 Double-signed Messages ..........coveiieiiiinannn,



4.5.4 Detection of Duplicate Messages ..........occvviieennn.n 80

4.6 A Dual Processor Derivative ....ccicorernncscosocennan .. 84
47 SUMMATY +ivuvteerveorcrscssessosescosasssnenasanes .o 87
Chapter 5 : The Order Process ........ eetessesecosatosoesaeeasarenns .. 88
5.1 Introduction ........... resenne trresenereratrranesseanns 88
5.2 Order Process SITUCHUTe ....vconvesvsvonvsrsonnssnascns 90
5.3 Atomic Broadcast Protocols...... ccestsetacraroas cresseen 4|
5.3.1 First Protocol (omission) ........ccooeeiiiieinnennnaa, 93
5.3.2 Second Protocol (timing) ........ccoiuiiiiiinnnnnnnn, 96
533 Third Protocol (Byzantine) ..........c.ovevviennrnnenn. 98
534 Performance .........veeieninenenniennennnnenns 101
S4 SUmMmMArY .veoeveeseiorsseorsressonsosssvcsnssosassess 102
Chapter 6 : Non-determinism in the Enhanced Model ............. ceves.. 103
6.1 Introduction .....coovvivsiverncerennnnerennescennsanss 103
6.2 Enhanced Message Selection v..cveveceoneereracnssnennns 103
6.2.1 BlockingInput .......oo it iiiiiintrennnan. 103
6.2.2 Non-Blocking Input . .......ccovviiiiininainnananna, 105
6.2.3 Replicating the Enhanced Model . . . .................... 167
6.2.4 The Generic Input Function ...........cocoiieuinnenn. 107
6.2.5 Prioritized Input . . .. ... iuiiiiiiroiiennsnnonnnnn, 109
6.3 Asynchronous External Events ......vccecvvvecasrasnoess 110
6.4 Non~deterministic Processing ........... sessvessesenssas 113
6.5 Semaphores ......... cedessssurasusacsnsnsrnsrnes eenes 114
6.6 Real-Time Clocks ..... P &
6.7 Performance .....c.covveecrcvavonssescocscsanson eeeress 118
6.8 SUMIMNAIY .cvivviorrorecrsvsverossnceronsaosanscrsnsses 121
Chapter 7 : Non—determinism in Programming Languages ............ vees 122
7.1 Introduction . .o..evscesesosssccosossecnnnsnsssessnsssss 122
72 OCCAM .. iiiiiiioinirrecseossescosasnsnescssnsns vee 122
7 T X . seesssrsnssesss 124
7.4 Other Languages...oeveeecieccncssscronasocnsssnns eeee 127
7.5 Summary ..... Lt aseracsrarateersetresrrbesesbanaceoe 127
Chapter 8 : Software Architecture of a TMR Node ............ crosensesess 128
8.1 Introduction.......... A 104, 1
8.2 The Helios Operating System ............. sesesnsrensees 129
8.3 Software Structure Overview .. ...cevveviverrroscosonnass 131
84 The Queue SErver ..vvevsocesessosvossosrssovnaresnness 134
8.5 Building with Queue Servers....... vessscsccnsssasnes eees 135
8.6 Summary ...... U X ¥ §
Chapter ¢ : Concluding Remarks ..... Cesessneanariectaseanrnnesesnnnns 138
Appendix A : A C+ + Interface to Clients and Servers ................ . 142

A.l Introduction LA B LI B L B L A L L B % e s 89P0 0 142



A.2 TheBaseClasses ........... f ittt ns e
A3 TheDerived Classes ..vovvvevrreerrvancrnsronnenns
A4 Usingthe C+ + Interface ........covvvviiivens vas
A5  SUIDMArY . .iovriirrorerosencrsonassassossssasons

References ......... tescscsscrsennccenna

142
149
152
153

157






Chapter 1 : Introduction

A large class of computer applications specify a performance requirement which far
exceeds the capability of any single processor. Even as processors become faster due to
new materials, fabrication methods and internal organization, new applications arise
which continue to exceed current capabilities. It is for this reason that computer

architects have turned to various forms of parallelism to satisfy their needs.

When parallel systems are designed, high performance is often achieved by using
application-specific hardware and sacrificing versatility. With the advent of VLSI
however, computing hardware costs have been reduced to such a level that large
networks of general-purpose processors have become economically viable. A
custom-designed system will aiways be able to out-perform a regular network of
general-purpose processors. However, this apparent inefficiency may in many cases
be offset by an increase in the number of processors. The reduction in design costs will
more than pay for the moderate increase in hardware costs for a broad range of

applications.

The construction of massive networks of processors raises the question of reliability. If
a single processor failure results in the failure of the system as a whole then that system
is of little practical use. Fault-avoidance techniques may be used to minimize the
probability of failure but that probability cannot be made negligible in large and
complex systems. Additional steps must be taken to ensure continuous system

operation by providing tolerance to individual processor failures.

Fault-tolerance techniques which employ redundancy can prevent failure of a system
in the presence of faults. Passive replication techniques provide for the re-execution of
software components on a non-faulty processor. Active replication techniques

replicate software components and concurrently execute each replica on an



independent processor. In this way, the failure of a bounded number of processors can
be masked without a further time penalty. The latter solution is particularly attractive

when the computing system must provide a rea/~time response to external events.

Some active replication techniques make the assumption that processors have
fail-silent semantics. That is, a processor either produces the correct response (as
specified) or no response at all. A minimum of m + 1 software component replicas are
necessary to tolerate m processor failures (in the worst case where m failures occur, the
outputs of the one remaining non~faulty replica may be trusted). An alternative view
assumes that processors have fail-arbitrary semantics (Byzantine failure [2][11]). That
is, the behaviour of a faulty processor is undefined. A minimum of 2m + I replicas are
then necessary to tolerate m processor failures (in the worst case where m failures

occur, the outputs of the remaining m + I non—faulty replicas will still form a majority).

N-Modular Redundancy (NMR) is a form of active replication in which each processor
is replicated to form a node and each processor replica within the node executes the
same set of software component replicas. Communication between nodes, in the form
of messages, passes through a voting mechanism by which processor failures are
masked. When the degree of replication is three, the technique is known as Triple

Modular Redundancy (’IMR) and can tolerate the failure of a single node processor.

For voting to be successful, non-faulty software component replicas must output
identical messages in an identical order. If we assume that software components are
deterministic, then we need only ensure that the replicas process identical input
messages in an identical order. Such software components conform to the well
understood and researched state machine model of active replication [7] where,
“Outputs of a state machine are completely determined by the sequence of requests it

processes, independent of time and any other activity in the system”.

However, most distributed programs employ mechanisms not incorporated in the

state machine model such as timeouts and prioritized messages. These potential



sources of non—determinism could lead to a divergence of state among software
component replicas which could then produce inconsistent responses to identical input
messages, thereby defeating the NMR voting mechanism. This thesis addresses the
problem of preventing state divergence in active replicated processing using an

enhanced processing model.

The main contributions of this thesis are:

(i) Topresentanarchitecture for active replicated processing which may be applied to
any distributed system (reported in [8]).

(i) To present a more expressive, enhanced model for software components which
incorporates non-determinism and show how a system of such software
components may be replicated, using a single well-defined generic mechanism
(the order process) to prevent state divergence (reported in [9]). Since the problem
of identical ordering can be formulated as the inferactive consistency problem
which is solvable in the presence of arbitrary (Byzantine [2]) failures, the approach
presented in this thesis, unlike any other published to date, is capable of tolerating

such failures.

The work reported in this thesis forms the basis of a practical architecture that the
author and colleagues are implementing for a real-time application (initial work

reported in [10]).

Chapter 2 introduces the state machine as a model for active replicated processing and
shows how the consistent message ordering requirement of the replicated state
machine may be achieved using solutions to the interactive consistency problem.
Interactive consistency is examined in more detail using the well-known Byzantine
Generals Problem analogy for which several solutions are then presented. Finally,
expansion of the state machine model to incorporate non-deterministic mechanisms
for real-time systems is considered, to show that consistent message ordering alone is

not sufficient to prevent state divergence among process replicas.



Chapter 3 presents the architectures of several existing systems which employ a range
of passive and/or active replication techniques to achieve fault-tolerance, with a view

to showing how each prevents state divergence.

Chapter 4 describes the proposed architecture of a multi-processor distributed system
designed to tolerate Byzantine faults. A processing model is presented then replicated
using TMR techniques. A processor interconnection scheme is developed to support
the replicated processing model which remains fully connected after one processor
failure per TMR node. Finally, a degenerate form of the node is described in which
process and processor triads are replaced by process and processor pairs to create a

node with fail-silent semantics.

Chapter 5 introduces the order process as a mechanism for preventing state divergence
in software components with non-deterministic message selection (state machine
model) and shows how it may be implemented using protocols which tolerate various

classes of faults, up to and including Byzantine faults.

In Chapter 6, the order process is used to prevent state divergence in an enhanced
model which allows more complex message selection criteria {generic input function),
asynchronous external events, non-deterministic processing, semaphores (to allow

shared-memory inter-process communication) and real-time clocks.

Chapter 7 shows how the input constructs of several current languages may be mapped
onto the generic input function. Because state divergence can be prevented when using
the generic input function, it can also be prevented when executing the example

constructs.

Chapter 8 describes a practical design of the mechanisms presented in this thesis using

the client/server facilities provided by the Helios operating system.

Finally, Chapter 9 considers the implications of using the techniques presented in this

thesis and reflects on possible future enhancements.



Chapter 2 : Understanding Active Replication

2.1 Introduction

In active replication, all the non-faulty replicas must produce identical output
messages in an identical order. This requires that non—faulty replicas carry-out
identical processing on an identical sequence of identical input messages. The state
machine mode! [7] to be discussed in this chapter provides a rigourous setting for
explaining the principles of active replication. As wili be shown, to support active
replication, protocols for message agreement and order are required. These protocols
can be formulated in terms of the interactive consistency problem which is also
discussed in this chapter. Finally, limitations of the state machine model which make it
less suitable for real-time distributed systems are discussed. The removal of these
limitations will introduce problems of non-determinism amongst replicas, which must
be addressed for active replication to be useful. Solutions to these problems will be

developed in subsequent chapters of this thesis.

2.2 The State Machine

A state machine [7] consists of state variables which implement its state and commands
which transform its state and produce output. A command, which is implemented by a
deterministic program, is invoked by a request from a client. Multiple clients may
make multiple concurrent requests but the commands will be executed strictly

sequentially. Thus a state machine will possess the following property:

P1 The outputs of a state machine are completely determined by the
sequence of requests it processes, independent of time and any other

activity in a system.



Requests are processed by a state machine in an order consistent with causality:

01 Multiple requests issued by a single client to a given state machine sm

are processed in the order they were issued.

02 If the fact that request r was made to sm by client ¢ could have caused a
request 7’ to be made to sm by another client ¢’, then r is processed

before r'.

The scenario described by 02 is possible if the request r made to sm was followed by a
request 7'’ made to some other state machine sm'’ which then itself acted as a client ¢’
by making the request s’ to sm. Because the making of a request and the receipt of any
reply are separated in the state machine model, it is possible for the requestr’ to arrive
atsm before the requestr. Messages cannot therefore be processed simply in the order

in which they are received at sm.

A state machine may be expressed by a process accepting requests in the form of

messages and performing the actions they specify as shown in Figure 1.

process state_machine
var mmessage
cycle
receiveany(m)
action(m)
end

Figure 1 The State Machine

The message returned by a call to the function receiveany(m) must satisfy 01 and 02

and action(m) must satisfy P1I.



2.3 Replicating the State Machine

A fault~tolerant state machine can be implemented by replicating it and executing
each replica on a distinct processor in a distributed system. The outputs of the replicas
may then be combined though voting to mask the failure of some of the processors
executing state machine replicas. However, if voting is to be successful, it is necessary
to ensure that non-faulty replicas produce the same outputs. If each replica starts in
the same initial state and processes requests in the same order then because of P1, each
will produce the same outputs. Thus a fault-tolerant state machine requires the

fault-tolerant implementation of the Order abstraction:

Order Requests are processed in the same order by every non-faulty state

machine replica.
This in turn requires the fault-tolerant implementation of the Agreement abstraction:
Agreement  Every non-faulty copy of the state machine receives every request.
Agreement may be implemented by any protocol which allows the processor executing a

client (the transmitter) to send a request (the value) to all the processors executing

state machine replicas (the receivers) such that:
IC1 All non-faulty receivers agree on the same value.

IC2 If the transmitter is non-faulty then all non-faulty receivers use its value

as the one they agree on.

These are the interactive consistency conditions of the Byzantine Generals Problem and

may be satisfied using any of the solutions to that problem. Several solutions will be

presented in Section 2.4,

Order may be implemented by assigning to each request a unique identifier and
ensuring that state machine replicas process requests according to a total ordering

relation on these identifiers. Total order is necessary as processing requests in the



order they are received by the replicas does not necessarily satisfy the Order
abstraction. For example, two requests could be received by one state machine replica
in one order while being received by another replica in the other order. Two methods
of assigning unique identifiers at the point of issue (the client) will be presented in
Section 2.5. Both methods satisfy OI and 02; the first uses logical clocks while the

second uses approximately synchronized real-time clocks.

In Chapter 3, other practical solutions will be presented employing atomic broadcast

protocols which simultaneously satisfy Agreement and Order.

Note that a client may itself be structured as a state machine and therefore it may also

be made fault-tolerant through replication.

2.4 Interactive Consistency

2.4.1 introduction

The Byzantine Generals Problem [2] has been proposed as an abstract way of expressing
the interactive consistency problem encountered in distributed computing systems
constructed using components which, when they fail, can exhibit arbitrary behaviour.
As such, it provides a convenient way of relating the problems and algorithms of this

thesis to each other and to the interactive consistency problem itself.

A loyal general may represent a correctly functioning processor while a traitorous
general may represent a failed processor. The messages sent between processors are

represented by orders sent from a commanding general to his lieutenant generals.

'The Byzantine Generals Problem is introduced in Section 2.4.2 followed by solutions
based on oral messages (Section 2.4.3) and signed messages (Section 2.4.4). Finally, the

main findings of this section are summarized in Section 2.4.5.



2.4.2 The Byzantine Generals Problem

A number of divisions of the Byzantine army are camped outside an enemy city, each

division commanded by its own general. The generals can communicate with each

other only via messengers.

Each general g observes the enemy and independently forms an opinion v; on whether
the army should attack or retreat, then communicates v; to the other generals g (i54f)
using messengers. g collects the opinions v; of all the other generals from their

messengers to form, along with his own opinion, V;:

Vi = setof v forj = 1.n (where n = the number of generals)

& then performs a majority vote on ¥} to reach a decision 4; on whether to attack or

retreat:

di = maj V;

Some of the generals will be loyal while some will be traitorous but the following

conditions must always be satisfied:
condA All loyal generals reach the same decision, d;.

condB Asmall number of traitorous generals cannot cause the loyal generals to

reach a bad decision.

A decision to attack may be considered bad for example, if a large majority of loyal
generals are of the opinion that the army should retreat (because the enemy is too
strong). A decision to retreat may be considered bad, if a large majority of loyal
generals are of the opinion that the army should attack (lest the enemy grow in

strength).



Aloyal general g; will always send the same value ofv; to all the other generals. So if all
generals are loyal, every general g will receive the same set of opinions and will

therefore reach the same decision, satisfying condA.:

foralli = lnandj=1n Vi=Vi=majVi=magV,=d; = d

Now suppose that one general g is traitorous, he could send a different view of his
opinion v to different generals. Some general g would then receive a different set of
opinions (¥;) to some other general g (V). If the opinions of the loyal generals were

divided equally between artack and retreat, then they may not reach the same decision,

thereby violating condA:

Vi£Vi=majV;, % majV, = d; # d

Therefore to satisfy condA in the presence of a traitorous general:

condl Every loyal general g must receive the same set of opinions V.

That is, for every general g, whether or not loyal:

cond1’ Every loyal general g must obtain the same value for v;,

In satisfying cond4, condB must not be violated. Therefore, for every loyal general g

cond2 Every loyal general g; must receive v; uncorrupted.

Since conditions cond1’ and cond2 are both conditions on the opinionv; of general g as
received by general g, the problem is reduced to ensuring that a general g; may send his
opinion v; to the other generals. This problem may be re-phrased in terms of a
commanding general g sending an order (use v; as my opinion) to his lieutenants. This

1s known as the Byzantine Generals Problem:

10



Byzantine Generals Problem

A commanding general must send an order to his lieutenant generals

such that the following conditions are satisfied:
ICI All loyal lieutenants obey the same order,
I1C2 If the commanding general is loyal, then every loyal lieutenant obeys the

order he sends.

Conditions ICI and IC2 are called the interactive consistency conditions, and are

identical to the message-based formulation presented in Section 2.3.

Conditions condA and condB may then be satisfied by repeatedly applying some

solution to the Byzantine Generals Problem, with each general in turn acting as the

commander.

Two solutions will now be considered; one using oral messages and the other using

signed messages. The reader is referred to [2] for a formal proof of the algorithms.

2.4.3A Solution using Oral Messages

It is assumed that a general may send a message directly to any other general and that
messengers are loyal (a traitorous messenger may be modelled by the traitorous
general who sent him). So a traitorous general cannot interfere with the

communication between any other generals. It is therefore assumed that:
Al Every message that is sent is delivered correctly.

A2 The receiver of a message knows who sent it.

It is further assumed that:

A3 The absence of a message may be detected.

Satisfying A3 is not straightforward; a general cannot detect, in finite time, that a

message will never arrive. But, if the time taken for the generation and transmission of

11



a message by a loyal general is bounded to some fixed value A, then a general may
assume that any message arriving after A must be from a traitorous general and may be
discarded. A message is therefore assumed to be absent if it does not arrive by T + A,
where T is the time of transmission. For such timeouts to be meaningful, all generals
must know the actual time of transmission T. The value of T may be implicit (eg
periodic) or explicitly contained within the message (timestamp). In the later case the
general would have to receive at least one copy of the message, either direct or via
another general (otherwise he could not determine T). In either case, each general
measures time by his own clock, so the clocks of all loyal generals must be

synchronized to within some bounded time e (see Section 5.3).

If a traitorous commanding general does not send an order to one of his lieutenants,

the lieutenant assumes refreat.

For a solution to the Byzantine Generals Problem satisfying ICI and IC2 using oral
messages, which tolerates m traitorous generals, there must be at least 3m + ]

generals in total.

attack(1) retreat(1)

" he said
retreat(2)

 he said
retreat(2)

@ (b)

Figure 2 Insufficient Generals for Oral Messages

Consider the converse case (n < 3m + I) from the point of view of lieutenant L7 as

shown in Figure 2, where n = 3andm = 1.

12



Each general executes the appropriate 2-stage algorithm of Figure 3. The timeout
clause is necessary to handle a traitorous general who refuses to send (commander) or

relay (lieutenant} an order.

In the scenario of Figure 2(a), the commander is loyal and in stage 1 ordersattack, but
the traitorous lieutenant L2 lies to the loyal lieutenant L7 in stage 2 by saying that he
received the order to retreat. In the scenario of Figure 2(b), the commander is

traitorous and orders L1 to attack while ordering L2 to retreat in stage 1. In stage 2, L2

process cornmander
var v.order
cycle
formutate _order(v)
send_to_all_tieutenants(v)
end
end

Stage 1

process lieutenant
varv, v', viorder
cycle

within t do
receive_from_commander(v)
Stage 1

timeout
v = retreat
od
send_to_other_tlieutenant(v) )
within t do
receive_from_other_lieutenant{v’) \
timeout | (>' Stage 2

v’ = retreat
od
) , v
ve = decide_order(v,v’)
end
end

Figure 3 Oral Message Algorithms

correctly informs L1 that he received the order to retreat. These two scenarios appear
exactly the same to L1. Hence he doesn’t know the identity of the traitorous general

nor what message was sent to L.2. Hence to satisfy /C2, LI must obey the order received

13



directly from the commander in both scenarios, that is to atfack. The scenarios of
Figure 2 may be repeated from the point of view of L2 and by a similar argument, it
may be shown that L2 must also obey the order received directly from the commander.
But in Figure 2(b), the order is to retreat. Therefore in the scenario of Figure 2(b), L7

will attack while L2 will retreat, violating IC1.

The scenarios of Figure 2 may be modified by substitution to prove the impossibility of
satisfying IC1 using oral messages with 3m generals of which m are traitorous. The

algorithm of Figure 3 will then require more stages (see [2]).

Now consider the case where n = 3m + 1, shown for m = [ in Figure 4.

(@ (b)

Figure 4 Sufficient Generals for Oral Messages

Each general executes the appropriate 2-stage algorithm of Figure 5.

In the scenario of Figure 4(a), the commander is loyal and sends the order to attack to
all the lieutenants in stage 1. In stage 2, the loyal lieutenants LI and L2 relay the order
he said attack to each other and to the traitorous lieutenant L3, while L3 sends an
arbitrary order to L1 (y) and L2 {x). After stage 2, each lieutenant has a set of three

opinions. Each lieutenant may then perform a majority vote on the set to reach a

14



decision. Both the loyal lieutenants have a majority of attack opinions and will

therefore reach the same decision, to attack, thereby satisfying ICI and IC2.

process commander
var v.order
cycle
formulate_order(v)
send_to_all_iieutenants(v)
end
end

process fieutenant
varv, v, v", vgorder
cycle
within t do
receive_from_commander{v)
timeout
v = retreat
od
send_io_other_lieutenants{v)
par
within t do
receive_from_other_lieutenant{v’)
timgout
v’ = retreat
od
within t do
receive_from_other_lieutenant(v”)
timeout
v" = retreat
od
endpar
Vo = maj{v, v, v")
end
end

Figure 5 Oral Message Algorithms

}
i‘

N

Stage 1

Stage 1

Stage 2

Now consider the scenario of Figure 4(b), where the commander is traitorous and

sends conflicting orders {x,yz} to its lieutenants in stage 1. In stage 2, the loyal

lieutenants each correctly relay the order they received in stage 1. After stage 2, each

lieutenant has a set of three opinions. Each lieutenant may then perform a majority

15



vote on the set to reach a decision. All the lieutenants have the same set of opinions
V' = {x,y,z} and will therefore reach the same decision (maj {x,y,z}) thereby satisfying

IC1. Condition IC2 does not apply because the commander is traitorous.

The scenarios of Figure 4 may be modified by substitution to prove the validity of
satisfying IC1 and IC2 using oral messages with 3m + I generals of which m are

traitorous. The algorithm of Figure 5 will then require more stages (see [2]).

2.4.4 A Solution using Signed Messages

As was shown by the scenarios of Figure 2 and Figure 4, it is the ability of the
traitorous general to lie which makes the Byzantine Generals Problem impossible for
n<3m. This ability may be restricted by enabling the generals to sign a message under
the assumption that:

Ad (a) A loyal generals signature cannot be forged.

(b) Any alteration of the contents of a signed message can be detected.

(c) Any general can verify the authenticity of another generals signature.
A solution to the Byzantine Generals Problem now exists for the casen = m + 2.
Consider the case where n = 3 and m = I as shown in Figure 6.
Each general executes the appropriate 2-stage algorithm of Figure 7.

In the scenario of Figure 6(a), the commander is loyal and in stage 1 orders attack. In
stage 2, the traitorous lieutenant L2 tries to lie to the loyal lieutenant L1 by saying that
he received the order to retreat, as he did in Figure 2(a). However, by assumption 44,
L1 will now be able to detect a corruption of the message which may then be discarded.
After stage 2, the loyal general L7 will hold the single command attack:C sent directly

by the loyal general. LI may then obey the command, satisfying ICI and IC2.

In the scenario of Figure 6(c), the commander is loyal and in stage 1 orders attack. In

stage 2, the traitorous lieutenant L2 refuses to relay an order to the loyal lieutenant L1.
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After stage 2, the loyal general LI will hold the single command aftack:C (as in

Figure 6(a)) sent directly by the loyal general. LI may then obey the command,
satisfying ICI and IC2.

In the scenario of Figure 6(b), the commander is traitorous and orders LI to aftack
while ordering L2 to retreat in stage 1. Both orders carry the valid signature of the
commander. In stage 2, the loyal lieutenants correctly relay the order they received in
stage 1. After stage 2, each loyal lieutenant has two conflicting commands bearing the
valid signature of the commander. They may therefore deduce that the commander is
faulty, and assume the default order to retrear, thereby satisfying IC1. Condition JC2

does not apply because the commander is traitorous.

attack:C retreat:C

attack:C

@ o)

(© (d)

Figure 6 Sufficient Generals for Signed Messages

In the scenario of Figure 6(d), the commander is again traitorous and orders L2 to
retreat in stage 1, while refusing to send an order to LI. In stage 2, L] relays the

command to L2 but L2 has nothing to relay to L1. After stage 2, both the loyal
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lieutenants will hold the single command retreat:C sent by the traitorous general. Both

process commander
var v:order
cycle
formulate_order(v)
append_signature_to(v)
send_to_all_lieutenants(v)

Stage 1

end
end

process lieutenant
var v, v, vgorder
cycie

within t do
receive_from_commander(v)
timeout Stage 1
od
If received_from_commander(v) then
if not authentic(v) then discard(v)
else
append_signature_to{v)
send_to_other_lieutenant(v)
endif
endif
within t do
receive_from_other_lieutenant(v')
timeout
od
if received_from_other_liewtenant(v') then
if not authentic(v’) then discard(v)
endif

Stage 2

endif
¥ received_from_commander{v) y
or received_from_other_lieutenani(v’)
then v, = decide_order{v,v’)
else v, = retreat
endif
end

Y Figure 7 Signed Message Algorithms

may then obey the order, satisfying IC1. IC2 does not apply because the commander is

traitorous.
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Finally, if the commander is traitorous and refuses to send any order (not shown in

Figure 6), both the loyal generals will obey the default order, to retreat.

The scenarios of Figure 6 may be modified by substitution to prove the validity of
satisfying ICI and IC2 uéing signed messages with m + 2 generals of which m are

traitorous. The algorithm of Figure 7 will then require more stages (see [2]).

2.4.5Summary

It has thus been shown that interactive consistency, satisfying the conditions ICI and
IC2, may be maintained in the presence of m traitors when there are are at least
3m + I generals (oral messages) orm + 2 generals (signed messages). Therefore the
conditions condl’ (and hence condl).and cond2 of the original problem are satisfied
under the stated fault assumptions. Since every loyal general receives the same set of
opinions (as a lieutenant to each general in turn), by applying maj V{i), they will all
reach the same decision (satisfying condd), either to attack or retreat. If there are at
least 2m + I generals, then the loyal generals will be in a majority and a small number
of traitorous generals (any minority) cannot cause this to be a bad decision (satisfying
condB). Thus to satisfy cond4 and condB, there must be at least 3m + I generals using

oral messages or 2m + I generals (2m + I >m + 2) using signed messages.

2.5 Total Ordering

The discussion that follows shows how 01 and 02 may be met by the total ordering of

client requests.

A client must be able to assign a unique identifier to each request it produces. This
identifier will consist of the identity of the client ¢, the identity of the state machine sm
along with a timestamp ¢ which is unique for the given pair (c, sm). Requests from a

given client ¢ may be then ordered according to timestamp at sm, satisfying O1.
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However, if requests from multiple clients are to be ordered to satisfy 02, the
timestamp attached to a given request r by a client ¢ must be greater than that carried
by any communication previously received by ¢ (a communication could be received by

c if ¢ was itself to act as a state machine to other clients).

If two requests are received by sm bearing identical timestamps then their order of
acceptance is unimportant and may be decided by some deterministic algorithm to
ensure the replicas make a consistent choice. The choice may be based on the unique

client identifier (the clients thus assume a priority).

In the following sections, two total ordering methods will be presented. The first,
which uses logical clocks, does not require processor clock synchronization but has
difficulty in determining when a request may be accepted (stability) in the presence of
faulty processors. The second, which uses approximately synchronized real-time
clocks, does not suffer from the stability problem associated with logical clocks but

incurs the unavoidable overheads associated with processor clock synchronization.

2.5.1 Logical clocks

A logical clock [5] is a mapping F of events E to integers I:
In=F(Ey)
In the state machine context, an event may be the issue of a request or the receipt of

some communication. For any two distinct events E;, Ex:

F(E;) # F(Ey)

Further, if E; could have caused Ey then:
F(E) < F(Eyp)
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Logical clocks may then be implemented using counters. Every client ¢, has its own
counter G, whose values are taken from the set of integers. Every request issued by a
client carries the current value (timestamp) of its counter and the identity of the client.

The counter is modified according to to counter-update rules:
cul1 C,, is incremented after after each event at c,,.

cu2 Upon receipt of a message with timestamp 1, G, is updated further:

Cn = max(Cy, 1) + 1

The logical clock (timestamp + client identifier) may then be used to impose a total
ordering on events, and hence requests to a given state machine sm may be ordered;

satisfying QI and 02.

However, there is a problem. To satisfy O and 02, a state machine cannot accept a
given request 7, until it is no longer possible for another request to arrive bearing a

lower or equal timestamp. This is termed stability and occurs only under the following

conditions:

CONI The state machine has received at least one request from every client
in the system.

CON2 The timestamps carried by the latest request from each other client are

all greater or equal to that carried by ;.

If any client omits to send a request for some period, 7, cannot become stable, so all
clients must periodically make null requests to all state machines. However, the failure
of a single client could prevent the issue of null request and hence prevent r; becoming

stable.

This problem can be solved in the presence of fail-stop failures by sm setting a

separate timeout on the receipt of the null request from each client. A timeout would
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indicate failure of a client. No further requests could be received from that client sor;

could become stable.

This problem can only be solved in the presence of arbitrary (Byzantine) failures if the

non—fauity state machines can agree on whether or not the timeout has occurred then

ignore all further requests from the failed client.

2.5.2 Approximately Synchronized Real-Time Clocks

Each processor has its own real-time clock and the clocks of all processors are
synchronized to within some known bound e. Each clock increases monotonically in
steps of &. Every request issued by a client carries the current value (timestamp = 7) of

its clock and the identity of the client.

01 will be satisfied if a client makes no more than one request between successive
clock ticks. 02 will be satisfied if the clock synchronization error € is less than the
minimum time necessary to deliver a request (A,;,) from client ¢ to state machine sm.
If A, were less than €, and the clock of sm lagged behind the clock of c by ¢, then a

request 7 issued at local clock time ¢ (= 7) could be delivered to sm at a its local clock

time t,, where:

bm < &

The state machine could then issue a request 7’ as a consequence of receiving r which

carried a timestamp lower than that of r, violating 02.
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As with logical clocks, to satisfy O and 02, a state machine cannot accept a given
request 7; until it is no longer possible for another request to arrive bearing a lower or
equal timestamp (7). If through clock synchronization the maximum time necessary to
deliver a request (A,,,) from client ¢ to all non-faulty state machines is bounded, then

r, may be accepted when the local clock £, satisfies:

Stability I~ Ton > 7 + Apge + €

This requirement forces the state machine to delay all requests by up to A + €. The
delay may be reduced if an additional stability test is included based on the conditions

CONT and CON2 specified for a system employing logical clocks.

Stability 2 Arequestr is additionally stable at state machine replica s if a request
bearing an equal or larger timestamp has been received from every

other client in the system.

The first stability test can be made to tolerate a range of faults from fail-silent to
arbitrary (Byzantine) if requests are delivered using an Atomic Broadcast Protocol as
described in Section 5.3. In general, however, as the range of tolerable faults is
increased, the time elapsed before a request becomes stable is also increased. The
second stability test breaks down in the presence of faults as it did for logical clocks,
described in the previous section. But since this is an optimization on the first test, no
additional steps need be taken to make it fault-tolerant. In the presence of faults all

requests would still become stable according to the first test.



2.6 Introducing Non-determinism into the State Machine Model

When replicating a state machine for fault-tolerance it is necessary to ensure that
non-faulty replicas produce the same outputs. As has been shown, this is achieved by

ensuring that:

P1 The outputs of a state machine are completely determined by the
sequence of requests it processes, independent of time and any other

activity in a system.

Order Requests are processed in the same order by every non-faulty state

machine replica.

P1 is achieved by processing requests sequentially and ensuring that each command is
implemented by a deterministic program. Order is achieved by total message ordering,

thereby depriving the state machine of any control over the selection of requests.

Most distributed systems intended for real-time applications employ mechanisms
which are prohibited by the state machine model. For example, PI would be violated
by internal concurrency, timeouts or asynchronous external events (interrupts), while
Order could be violated by prioritized requests or timed access restrictions. If such
distributed systems are to be replicated for fault-tolerance, the State Machine Model

must be enhanced to incorporate these mechanisms.

To illustrate how such mechanisms could defeat successful voting, timeouts and

prioritized requests will now be considered.

2.6.1 Timeouts

Suppose that a state machine has been designed to manage some external device, such
as a robot arm. The state machine is replicated and the outputs of the replicas

combined through voting by the arm control circuit. In response to a
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move_to(new_position, f) request from a client, the state machine must perform some
iterative calculation to decide the most efficient route (avoiding obstacles) then issue a
sequence of outputs to move the arm to the new position before time ¢. The task of the
state machine is thus to calculate the best route in the available time. The command

required to service the request could be programmed as in Figure 8.

process state_machine
var m:message
cycle
receiveany(m)
switch {m.request)

case move fo:
calculate(route, m.new_position)
deadline = m.t - time_needed_for_move
whiile time < deadline
do improve(route, m.new_position)
output{route)

end

Figure 8 The Non—deterministic State Machine

The total number of iterations performed by the state machine will depend on other
processor activity and may vary between replicas. It is thus possible for the replicas to
produce different opinions on the best route {output). This could defeat the voting

mechanism, even in the absence of faults.

2.6.2 Prioritized requests

Suppose that the robot arm of Section 2.6.1 continuously receives independent
move_to requests from a number of clients. At any point in time, there will be a
number of requests pending. But their order in the queue may not correspond to the
order of their deadlines, so instead of processing requests in the order dictated by the
receiveany(m) function (total ordering), requests must be selected by the state

machine, after taking into account the deadline associated with the move. Selecting
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requests in this way effectively assigns a level of priority to each request according to its

deadline parameter and requires a prioritized search of the queue of pending requests.

However, although requests are delivered to state machine replicas in the same order,
the time at which a given request is delivered to a given replica relative to the time of its
search may vary. So at the time of search, the replica queues may not be consistent. It is
therefore possible that the highest priority request selected by one replica is not
present in the queue of another replica at the time of its search. In this case, the other
replica will select a different request so their outputs will differ, thereby defeating the

voting mechanism, even in the absence of faults.

2.7 Summary

A fault-tolerant state machine can be implemented by replicating it and executing
each replica on a distinct processor in a distributed system. For voting to be successful,
non-faulty replicas must produce the same outputs. This may be achieved by the total
ordering of requests to make request selection deterministic and by the prohibition of

internal non-~determinism.

However, most distributed systems employ mechanisms which would, if incorporated
directly into the state machine model, introduce possible sources of non-determinism.
This non-determinism could lead to a divergence of state among the state machine

replicas. They could thereafter produce inconsistent outputs which would defeat the

voting mechanism.

If non—deterministic behaviour is to be introduced into the state machine model, steps
must be taken to ensure that state divergence does not occur, so that the replicas

continue to produce consistent outputs. A solution will be presented in Chapter 6.



Chapter 3 : Fault-Tolerant Architectures

3.1 Introduction

Many fault tolerant distributed systems have been implemented under the assumption
that processors have fail-silent semantics, that is they fail cleanly by just stopping
[17][26][31][32][46][47][78]. Such a restricted view is hard to justify in computer
systems intended for mission and life critical applications where failure probabilitiesin
the range 107 to 10-1 per hour are often specified [28][37]. It is then preferable to
design and implement such systems under a totally unrestricted fault assumption
namely, that a failed processor can behave in an arbitrary manner. In the literature this

failure mode is often referred to as the Byzantine failure mode [2] (see Section 2.4).

Replicated processing with majority voting, N-modular redundant (NMR)
processing [1], is a technique which enables the construction of systems which tolerate
Byzantine processor failures. NMR techniques have already been applied successfully
to distributed and multi-computer systems [6][21][28]{37}[47] including real-time
control applications such as railway signalling [79]. When the degree of replication is

three the technique is known as Triple Modular Redundancy (TMR),

The communication of information between processors required to perform majority
voting is similar to that required to solve the interactive consistency problem (see
Section 2.4). However, there is one fundamental difference which affects the
complexity of the solution and the minimum number of processor n necessary to

tolerate m failures [30].

In the interactive consistency problem, loyal generals can legitimately form a different
opinion on whether to attack or retreat. To ensure that all loyal generals make the

same decision it is necessary to ensure that all loyal generals possess the same set of
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opinions (V; in Section 2.4) before performing a majority vote, This may be achieved
by repeatedly applying stages 1 and 2 (more for m> 1) of the Byzantine Generals
Problem solution, once for each general. The minimum number of processors n
necessary to tolerate m failures isn>3m + I using oral messages or n>2m + I using

signed messages as discussed in Section 2.4,

With NMR processing on the other hand, it may be assumed that all loyal generals
share the same opinion (non—faulty processors produce the same output message). So,
if the loyal generals are in a majority, their common opinion will form a majority,
irrespective of the opinions of the traitorous generals. A majority vote may thus be
perfonﬁed after repeatedly applying only stage 1 of the Byzantine Generals Problem
solution, once for each general. The minimum number of processors n necessary to
tolerate m failures is n>2m + I using oral messages (signed messages become

necessary only if processors are not directly connected).

Thus when the problem of state divergence is disallowed or prevented, the interactive
consistency problem cannot occur and such an NMR processing system may be

constructed using only 2m + [ processors.

Several existing fault-tolerant systems will now be examined, with a view to showing

how each prevents state-divergence.
The systems may be divided into four groups.

In the first group (Tandem, Delta-4 OSA passive model), processors are assumed to
have fail-silent semantics, allowing passive replication techniques to be used (since
outputs from a functioning processor are by definition correct), so non—determinism

within process replicas cannot cause state divergence.

In the second group (SIFT, Mars, Delta-4 OSA active model), process replicas are

constrained to be deterministic and cannot therefore cause state divergence. However,
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in SIFT and Mars, communication between concurrently executing processes is
asynchronous, another possible source of non-determinism which must be tackled if

state divergence is to be prevented.

In the third group (FTMP, FIP, Sequoia, Stratus), process replicas operate inlock—step
execution (micro—frame synchronization [35]). and special hardware is used to
synchronize asynchronous events (eg. interrupts and timeouts) to the processor
instruction stream so process replicas are interrupted at the same point in their

execution. Therefore non-determinism within process replicas cannot cause state

divergence.

In the fourth group (Delta-4 XPA, MAFT), agreement protocols are executed on
behalf of the process replicas, to resolve non-determinism and prevent state

divergence.

3.2 The Tandem Neon-Stop System

The Tandem Non-Stop system [14][15][17][18][24][26] is a commercial distributed
computing system for on-line transaction processing. When the system was designed
in the mid 1970s the~v1'ew was taken that active replication of processes through
hardware redundancy would not be cost effective for that application. So, Tandem
assumes that processors have fail-silent semantics, then uses passive replication to

tolerate failures. A simplified representation of the Tandem architecture is shown in

Figure 9.

A Tandem system consists of 2 to 16 processing modules connected via dual busses
(The Dynabus). Each processing module consists of a single processor with its private
memory. Multiple Tandem systems may be connected by a replicated fibre-optic ring

to increase the number of processing modules. All inter-processor communication is

performed by passing messages on Dynabus,
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Each process is duplicated to form primary and secondary replicas. The primary
replica P executes the algorithm of the process and periodically checkpoints its state to
the secondary replica S. The secondary replica, which resides on another processor,
uses these checkpoints to update its own state. The secondary replica does not execute
the algorithm of the process and hence does not consume processor time (except when

receiving checkpoints).

Figure 9 Tandem

Every processor periodically (once per second) transmits an I'm alive message which is
monitored by all processors. It is assumed that the absence of such a message (detected
by timeout) indicates the failure of that processor. When a failure is detected,
processors participate in an interactive consistency algorithm to agree on the failure.
Then each processor checks to see if it maintains a secondary replica for any primary
on the failed processor. If it does, the secondary replica is activated, beginning
execution at its last checkpoint. The secondary replica now becomes the new primary,

but without a secondary of its own (failure of the new primary cannot be tolerated).

When the failed processor recovers or is replaced, it again periodically transmits an
I'm alive message. This is detected by the new primary and causes a new secondary
replica to be created on the formerly failed processor, thereby regaining

fault—tolerance.



The secondary replica has its path of supposed execution imposed by the primary
replica (through a sequence of checkpoints), so the path of execution of the primary

may be non-deterministic without causing state divergence.

3.3 The Sequoia Computer System

Sequoia {24][25][27] is another commerecial distributed computing system for on-line
transaction processing which, like Tandem, uses passive replication to tolerate failures.
However, whereas Tandem assumes that processors have fail-silent semantics,
Sequoia assumes that processors have fail-arbitrary semantics and employs active
replication (a processor pair) to implement a processor with real fail-silent semantics.

A simplified representation of the Sequoia architecture is shown in Figure 10.

e

:3%‘». IR

Dual Bus: - s |

Replicated Checkpoint '

Figure 10 Sequoia
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A Sequoia system consists of a number of processing elements (PEs) and memory
elements (MEs), connected via a dual bus. Each PE is constructed using two processors
which operate in Jock—step execution. A comparator detects any difference in their

behaviour and ensures that PEs have fail-silent semantics.

Each PE contains a cache memory. A process P executing on a PE uses this cache
memory to store its data; all read and write requests operate on the cache. Periodically,

the contents of the cache are flushed to two distinct MEs, thereby establishing a

replicated checkpoint.

The code of a process is stored in an ME. If a PE fails, each process residing on the

failed PE is restarted on another PE, beginning execution at its last checkpoint.

When implementing a PE with fail—silent semantics, only the failure of a whole

processor is considered. Failures of MEs or busses, on the other hand, are dealt-with

on a much finer granularity.

Data is protected by error-detecting codes while stored in a PE cache, in an ME or
while in transit over a bus. The hardware implementing storage and data paths is
partitioned such that no two bits of the same byte have a common component. Thus
failure of a single component can only produce a single-bit error in any byte and all
such errors are detectable. If an error is detected, the byte may be discarded and the

component which sent it then has fail-silent semantics.

If an ME fails, a PE can always obtain data from the other ME to which it checkpoints.
Read-only data is treated as a special case; it is not checkpointed. Consequently, it is

stored on only one ME. If that ME fails, the data is restored from disc.

All Sequoia components thus have fail-silent semantics, either through active
replication (PEs) or error detection (MEs and busses). Replication of all code and
data, using checkpoints and disc back-ups, ensures that the execution of a failed

process may be resumed elsewhere.

32



Processors within a PE operate in lock-step execution and receive exactly the same
input data. External events are synchronized to this execution, so non-determinism

within process replicas cannot cause state divergence among process replicas.

In the event of a failure, execution of a process is resumed by another PE. The new
process inherits its history (its imaginary path of execution) from the old process via the
latest checkpoint, so the path of execution of the process may be non-deterministic

without causing state divergence.

3.4 The Stratus Computer System

The Stratus computer system [15][16][18][24] is another commercial distributed
computing system for on-line transaction processing. Stratus assumes that processors
have fail-arbitrary semantics and employs active replication (a processor pair) to
implement a processor with real fail-silent semantics (like Sequoia). Active replication

is then used again to mask the fail-silent failure of a processor pair.

A Stratus system consists of a number of processing modules (PM) connected by a dual

bus called StratalLINK, as shown in Figure 11.

Strata LINK

Figure 11 The Stratus Computer System

Each processing module consists of two identical processing elements (PE), connected

by a dual bus called StrataBUS, as shown in Figure 12.
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Each processing element consists of a number of components (CPU, memory etc)

which constitute the smallest replaceable unit (SRU) of the system.

A CPU component is constructed from two identical processors operating inlock-step
execution (like Sequoia). The outputs of the two processors are compared in hardware.
As long as they match, outputs are gated onto StrataBUS. If a disagreement is
detected, the outputs are not propagated, the component is isolated from StrataBUS

and thus has fail-silent semantics.

StrataLINK

Figure 12 A Stratus Processing Module



A memory component contains error detection/correction circuits which prevents the
propagation of erroneous data. A memory component therefore also has fail-silent

semantics.

Stratus may also contain a number of other component types (not shown) such as disc

controllers. In all cases, components have fail-silent semantics.

When a component in a PE issues/receives a message on StrataBUS, the
corresponding component (in the other PE of the same PM) also issues/receives the
same message (in the absence of failures). So when a single failure occurs, there is

always at least one message issued/received and the failure is masked.

The processors which make-up the two CPU components in a processing module are
fed exactly the same inputs in the same order in lock—step. Thus all four processors in a
processing module operate in Jock-step execution. Processes may therefore contain

non—-determinism without causing state—divergence.

3.5 SIFT

SIFT (Sofiware Implemented Fault Tolerance) [17]{19][28] is an ultra-reliable

computer for critical aircraft control applications.

The physical architecture of the SIFT system is shown in Figure 13. It is composed of a
number of processors P;, each with its own memory M;. Processors and memory are
connected to a number of data busses. A processor may read or write its own memory

but may only read the memory of other processors.

Every processor executes one or more processes. Every process is replicated and each
replica executed on a different processor. Processes are iterative in nature. Each
process repeatedly inputs data, performs some calculation and outputs the results.

Data produced by a process replica is deposited in its own memory. Data to be input by
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Multiple Buses

Figure 13 The Physical Architecture of SIFT

a process is read from the memory of several replicas. Each read operation is
performed over a different bus, and the results combined through majority voting to
produce a single input to the process. In this way, the failure of a single process replica

(through the failure of its host processor) or the failure of a bus will be masked.

An iteration rate is specified for each process. The scheduler guarantees that a
particular iteration of a task will be completed within the time frame for that iteration.
Execution may take place at any point during the time frame but the results will be
available by the end. Now suppose that a process P, provides input data for another
process Py, and that both processes have the same iteration rate, Figure 14 depicts four
successive time frames in their execution. In some time frames P, will complete before
Py, and in others the converse will be true and the order may vary among the replicas of
a process. If P, were to take its data directly from P,, this data could be from the same
iteration (time frames {1] and (2}) or from the previous iteration (time frames [3] and
(4]), as shown by the curved arrows in Figure 14. Since the order of execution may vary
among replicas, some replicas will use data from the same iteration and some from the

previous iteration. Unchecked, this could lead to state divergence within the replicas.

The problem is solved by the double-buffering of results passed from P; to Py, as
shown in Figure 15. During odd-numbered time frames P, outputs data to buffer 1
while Py, inputs data from buffer 2. During even-numbered time frames P, outputs data

to buffer 2 while Py, inputs data from buffer 1. In this way, the replicas of Py, will all use
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Time frame

gl

Figure 14 Process Execution

the data produced by P; in the previous iteration and state divergence will be

prevented.

The clocks of all processors are loosely synchroniied to within 50us (clock
synchronization is another form of the interactive consistency problem, discovered and
solved by the SIFT designers). So the time frames of different processors will also be
synchronized to within 50us. Now suppose the clock of Py, is running 50us faster than
that of P, and P, outputs its data to the buffer right at the end of a time frame (as
determined by the clock of P,). If Py, inputs its data from the buffer right at the start ofa
time frame (as determined by the clock of Py), it could precede the data output by 50us
and the data would thus be two iterations old. It is necessary therefore to separate the
input and output of data by, for example, preventing the inputting of data until at least
50 us into the time frame. The proportion of the fime frame available for input is then

reduced by 50 us.

Odd-numbered Frames Even-numbered Frames
Bufferl Bufferl

Buffer2 Buffer2

Figure 15 Double-buffering
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SIFT processes must be deterministic. However, non-determinism may be
incorporated into process scheduling by synchronizing asynchronous events to
time—frame boundaries. In this way, either all process replicas will see a given event at

the start of their execution, or none will.

With the bus-based SIFT architecture, data values are fetched from other processors
and voted when required, incurring a delay. In a development of SIFT [29), the data is

broadcast and voted in advance. So when required, it is available locally without a

delay.

The double~buffering scheme of Figure 15 is not sufficient and must be expanded, as

shown in Figure 16.

pre-broadcast buffer pre-vote buffer post-vote buffer

Figure 16 Modified Buffering

Now suppose that a process P, provides input data for another process Py,. P, placesits
data in the pre-broadcast buffer some time during its time—-frame of execution. At the
end of that time—frame, the data is broadcast to the processor executing Py, where it is
placed in a pre~vote buffer. When a majority of data copies have been received from
replicas of P,, the data is placed in the post—vote buffer. The broadcasts and voting take
place during the time—frame following that in which P, is executed, so the data is not
available to Py, until the end of that time—frame. P, and Py, should not therefore be

scheduled for adjacent time—frames unless additional double-buffering is available.
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3.5.1SIFT ~ An Extension

A number of modifications to the SIFT strategy were proposed in [80] in order that
some of its disadvantages may be overcome while still preventing state divergence. In
both the modifications presented in this section, the process need not be iterative and
no planned scheduling is necessary. But the rather restrictive assumption is made thata

message cannot be lost, only corrupted.
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In the first modification, two additional assumptions are made:

Al A process P, may send a message to the replicas of another process Py, in an
indivisible way.

A2 The replicas of Py, process messages in an identical order.

The assumptions can be satisfied by centralizing communication. The multiple bus
structure of SIFT is replaced by a single bus. To satisfy A1, a message is broadcast to
either all of the replicas of Py, or none of them (bus failures are not considered). To
satisfy A2, a replica of Py, will attach a timestamp to every message it receives and
process messages from various sources in order of their timestamps (oldest first). Since
the timestamps are only used by the processor which appended them, their absolute
value is unimportant and hence there is no need for the synchronization of processor

clocks.

It may be noted that the author has in fact described an atomic broadcast (see
Section 5.3) which relies on trusted hardware for its implementation (the bus). The
assumptions A and 42 are satisfied by the atomicity and order properties of the afomic
broadcast. The third property of the atomic broadcast, termination, is not considered.
The replicas of P, will each try to broadcast the same data, so in the absence of faults,
each replica of Py, will receive three copies of every message and a mechanism for

duplicate removal is necessary.

Although this solution removes some of the restrictions of the original SIFT approach
to preventing state divergence, the requirement for a single bus creates a single point

of failure and does not lend itself to the construction of massively parallel systems.

In the second solution, the need for a single bus is removed. A process Py no longer has
direct access to the output data of P,. Instead, the replicas of Py, periodically perform
an interactive consistency algorithm to agree on a set of messages which have arrived at

or are about to arrive at Py. They then independently order the set using some
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deterministic algorithm, appending a sequence number to each message and

processing them in order of sequence number.

Any implementation of the interactive consistency algorithm would have to solve the
Byzantine Generals Problem of Section 2.4.2. In fact, the second solution to preventing
state divergence is similar to ours except that the messages are atomically broadcast
periodically in batches (instead of singly in advance), sequence numbers are used to
order messages (instead of a queue), the process model is limited to blocking input (see

Section 6.2.1) and the clocks of all processors must be synchronized.

3.6 Mars

The Maintainable Real-Time System (Mars [31][32][33]) was designed for real-time
control applications where reliability, availability and safety are of paramount

importance. The simplified physical architecture of a Mars cluster is shown in

Figure 17.

Mars Bus

Figure 17 A Mars Cluster

It consists of a number of processors which are assumed to have fail-silent semantics,
connected via a TDMA bus, called Mars Bus. A number of Mars clusters may be

connected in a hierarchical structure (not shown),

The clocks of all processors are synchronized to create a fault-tolerant global

timebase called system time. The scheduling of tasks is pre~planned and conforms to
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one of a finite set of schedules, which may be changed to give the system a new phase or

mode.

Processes communicate using state messages and event messages. The semantics of a
state message is similar to that of a global variable. That is, a new version of a
particular state message updates (overwrites) an old one and state messages are not
consumed when read. The semantics of an event message is similar to that of a
conventional message. That is, event messages are queued and an event message is

consumed when read.

All messages carry a validity timestamp which, when it expires, causes a state message

to become invalid or an event message to be discarded.

Mars uses active replicateion. If processes were allowed immediate access to
messages, state divergence could occur, because message arrival is asynchronous with
respect to process execution. Instead, all messages are buffered. Periodically, a
clock-driven interrupt routine is executed which acts on all buffered messages to

create a new image sef, representing a new global state.

Process scheduling, bus scheduling and clock—-driven interrupts are all synchronized.
So when process replicas perform a read operation, they will all read from the same

image set and state divergence will be prevented.

3.7 FTMP

The Fault Tolerant Multiprocessor (FTMP) [17][19][34] was designed as part of a
commercial aircraft fly~-by-wire program. The physical architecture of an FTMP system

is shown in Figure 18.

Like SIFT, it is composed of a number of processors P;, each with its own memory M;,

collectively termed a processing module. Unlike SIFT however, only processors are

42



connected to the multiple data busses, the memory remains private to its attached
processor. Instead, there are a number of global memory modules, also connected to
the multiple busses and accessible to all processors. Any module, whether a processing
or memory module, may receive data on all busses but may send data on only one (the
choice of this bus is quasi-static but reconfigurable). Modules are logically grouped

into triads such that each member sends its data on a different bus.

seoeceec oo

Multiple Buses

‘Global Memory

Figure 18 The Physical Architecture of FTMP

Every processor executes exactly one process (at any given point in time). Every
process is replicated (to degree of three) and each replica executed on a different
member of a processor triad. When a process triad sends a message to another triad,
three messages are sent, one from each replica. These three messages will necessarily
be sent on different busses (a bus triad). Each replica in the destination triad receives
all three messages, one from each bus, combining them in hardware to form a majority.
As with SIFT, the failure of a single process replica (through the failure of its host
processor) or the failure of a bus will be masked. Although the majority is formed by
hardware, each member of the destination triad has its own voter. So a failure of the

voter will be treated as a failure of the attached module, ie there is no trusted hardware.

All module clocks are fightly synchronized using a fault-tolerant hardware clock. So
the processes of a triad remain in Jock—step execution and will perform data input and

output requests synchronously. Although process triads operate independently, their
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access to the multiple busses is strictly controlled such that the processors of a triad are
granted access simultaneously and exclusively, even if the two bus triads concerned
have no common members (as shown in Figure 19 for process triads P,, and Py,). That

is, at any point in time, there may only be one active bus triad.

Bus i
Bus 2
Bus 3
Bus 4
Bus §
Bus 6
Bus 7

Figure 19 Bus Activity

Although there are multiple busses as in SIFT, the enforced sequentially of bus traffic
limits the bandwidth to that of a single bus no matter how many busses are available.

This bandwidth would be insufficient for large systems.

Bus transfers thus constitute an ordering mechanism which eliminates the possibility of
state divergence within deterministic process replicas by centralizing communication in
a way reminiscent of that described in Section 3.5.1. Note that the system behaves as

though three atomic broadcasts were being performed in parallel, one from each of the

replicas.

Because the members of a processor triad operate in lock-step execution, processes

may contain non—determinism without causing state divergence.

3.8 FTP

The Fault Tolerant Processor (FTP) [19]{35][36] is a derivative of FTMP designed for
nuclear power plant applications. The system consists of four processors which are

fully connected as shown in Figure 20.



This quadruplex configuration is used in preference to the triplex configuration of
FTMP to improve the reliability. The replicas periodically output data. This data is
voted in hardware to mask failures and the result passed back to the replicas as input.
The processors are tightly synchronized by synchronizing their clocks, so process

replicas operate in lock—step execution. Asynchronous events are synchronized to the

Figure 20 The Architecture of FTP

processor instruction stream, so process replicas see the event at the same point in their

execution. Processes may thus contain non-determinism without causing state

divergence.

3.9 MAFT

The Multicomputer  Architecture for Fault-Tolerance (MAFT) system
[39][40][41][42][43][44][45] is similar to SIFT in that it consists of a number of
semi-autonomous processors connected via multiple busses and its processes are
periodic in nature. However, MAFT allows some non-periodic behaviour through
conditional branch scheduling and design diversity of both hardware and software

through median voting algorithms.
The architecture of the MAFT system is shown in Figure 21.

Each MAFT processor consists of an Application Processor (AP) and a hardware

intensive Operations Controller (OC). The APs which may be heterogeneous, execute
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application processes. The OCs execute all the voting and consistency algorithms and

are responsible for process scheduling on the APs.

Processes are replicated to a degree specified by the application and each replica

executed on a distinct AP (as an alternative, the replicas may be diverse).

OCs communicate using messages. Each OC transmits on a different bus but may
receive on all buses. Every transmission by an OC thus constitutes a broadcast

(non-atomic) to all other OCs.

Figure 21 The MAFT Architecture

An application process consists of an indivisible block of code which must be executed
without interruption on a single AP. An iteration rate is specified for each process. The
inverse of the maximum iteration rate is called the atomic period. The inverse of all
iteration rates must be binary multiples of the atomic period. Several different short
processes may be executed strictly sequentially during the same atomic period, where

time permits.



The atomic period is further divided into an integral number of sub-atomic periods.

The execution of a process always starts on a sub—-atomic boundary.

The clocks of the OCs are loosely synchronised [45] through the exchange of system
state (SS) sync messages (and presync messages) whose transmission marks an atomic

boundary. Thus the atomic and sub-atomic boundaries of all OCs are also loosely

synchronised.

When an AP completes the execution of a process, it sends a branch condition (BC) to
its OC. The OC then broadcasts a process completed/started (CS) message containing

BC to all other OCs.

On each sub--atomic boundary, an OC broadcasts an interactive consistency {TIC)
message consisting of two bytes. The TIC reflects the scheduling activity (as seen by
that OC) of all processors during the previous sub-atomic period. The first byte (TC)
indicates those processors from which a CS message was received. The second byte

(BC) indicates the branch conditions contained within those CS messages.

The CS and TIC messages form the basis of an interactive consistency algorithm which
ensures that all nodes reach agreement on the existence and content of each CS
message transmitted, even in the presence of a single malicious (Byzantine) failure.
Each OC may then execute any deterministic scheduling algorithm which uses the TIC

information and consistent scheduling will be maintained.

The TIC allows the scheduler to determine whether or not a particular process has
completed its execution. The application may therefore specify simple dependencies
(process B to be scheduled only when process A has been completed). More complex
dependencies may be specified using an AND-FORK (processes B and C to be
scheduled only when process A has completed) or an AND-JOIN (process D to be

scheduled only when processes B and C have completed).
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The TIC also allows the scheduler to use consistent BCs generated by the APs to
implement conditional branching using an OR-FORK (If process A returns true then
schedule process B else schedule process C) or an OR-JOIN (Schedule process D

when either process B or process C has completed).

The OCs maintain a form of distributed shared data memory on behalf of their AP

processes so a request for data from an AP may be satisfied immediately.

When an AP process wishes to modify part of this data, it sends the new value to its OC.
The OC forms a data message by appending to this value a data identification
descriptor (DID) which uniquely labels the data in the message then broadcasts the

message to all other OCs.

When An OCreceives a data message, it performs an acceptance test based on a range
of acceptable values particular to that DID. If the data message fails the test, it is

discarded and an error signal raised. If it passes the test, it is forwarded to a voter.

The voter performs an instant vote using the new data message and any other data
messages previously received from other replicas. The voting algorithm is based on
median voting to cope with the inconsistent values produced by diverse software
implementations of the process replicas. It is conceivable that a faulty OC could
broadcast inconsistent values to other OCs. This could result in a difference in the
outputs 6f their voters. But since all data messages must undergo an acceptance test,
voter outputs would be bound to an acceptable range of values. Thus approximate

agreement is achieved in the presence of arbitrary (Byzantine) failures.

The MAFT OC uses an interactive consistency algorithm to determine when a given
process replica has terminated, and to agree on the BC it returned. This information is
then used to perform non-periodic scheduling. The value of BC returned by a given
process replica need not be consistent among non-faulty replicas. So although the

execution of a given process replica must be deterministic, the calculation of its BC
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need not and hence the next process to be scheduled may depend on time and any other
activity in the system (see Section 2.2). In this way, the sequence of processes executed
by MAFT may be non-deterministic without causing state divergence among process

replicas.

3.10 Delta-4 OSA

The aim of the Delta—4 project [46][47] is to define an open, fault tolerant, distributed
systems architecture (OSA). Processors may be heterogeneous and may have
fail-silent or fail-arbitrary semantics. Every processor is connected to a single
dependable local area network (LAN) via a network attachment controller (NAC) which
has fail-silent semantics. Figure 22 shows an example system of three fail-silent

processors and three fail-arbitrary processors.

- -y

- -

-------- L I R )

Muiticast Communication System (MCS)
Figure 22 Delta—4 Architecture

The Multicast Communication System (MCS), which consists of the dependable LAN
and the fail-silent NACs, provides an atomic broadcast mechanism (Atomic Multicast
Protocol, AMp [48][49]) which ensures that either all destination processors receive a
given message or none do, and has the same afomicity, termination and order properties

as the atomic broadcast protocols used to implement the order process discussed in
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Chapter 5. So the algorithms of Chapter 6 can be made to run on top of MCS. The
advantage of our approach is that it does not require special hardware such as the

NACs.

Delta-4 assumes two classes of processor failures; fail-arbitrary and fail-silent.

3.10.1 Active Replication

A process is replicated and each replica located on a distinct processor in the
fail-arbitrary domain of Figure 22. Any group of processors may be used, but they must

be homogeneous. All replicas execute the algorithm of the process.

When one process group (the source group) sends a message to some other process;
group (the destination group), the NACs of the two groups execute a two stage
algorithm to achieve fault masking. Stage 1 is executed by the NACs of the source
process group and serves to arrive at a majority decision. Stage 2 serves to
communicate this decision to the NACs (and hence the process replicas) of the

destination group.

It was stated in Section 3.1 that a majority decision may be achieved in one stage using
oral messages with 2m + I replicas (assuming state divergence is not possible).
However, it was assumed that processors communicate directly. In Delta-4,
processors communicate through a shared medium, so additional steps are necessary if

a majority is to be reached in one stage.

The fail-silent nature of the NACs and the dependable communication medium
together ensure that a faulty-processor cannot send different values for a given
message to other processors. So the scenario of the inconsistent traitorous commander
general of Figure 2 in Section 2.4.3 cannot occur in the Delta—4 system. But because
the medium is shared, a faulty processor could assume the identity of another, send a

second message and fool the other processors into adopting a majority based on its
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incorrect message. To prevent this happening, each processor (or NAC) must sign its

message such that any NAC may determine the source (see Section 3.1).

Having achieved a majority, a source NAC may send the single-signed message to the
destination group. The fail-silent nature of the NACs and the dependable
communication medium together ensure that the same message will arrive at all
destination NACs uncorrupted. A destination NAC may therefore pass such a message

to its destination process replica without any further voting,.
The protocol is now described in more detail:

Suppose that a process P, wishes to send a message to some other process Py, Each
replica of P, independently sends a copy of the message to its NAC. If the NAC is not
faulty, it signs the message and broadcasts it to the other members of the P, group. If
the NAC is faulty, then it will fail-silent, and no message will be broadcast. Within the
group only a minority of NACs may fail so the majority of NACs will broadcast a

message of some kind.

If the message is broadcast, all the NACs in the group P, will receive it uncorrupted
because the LAN is assumed to be dependable. However, the processor executing a
replica of P, may fail—arbitrary so there is no guarantee that this message is correct. A
NAC must therefore await a majority of authentic signed copies which agree before it

may assume that it has received the correct message.

Thereafter, if the NAC is not faulty, it broadcasts this message to all the members of
the destination process group Py, If the NAC is faulty, then it will fail-silent, and no
message will be broadcast (another NAC in the group P, will broadcast the message

instead). To eliminate the broadcast of unnecessary messages the NACs ensure that

only one copy is sent.

Since the LAN is dependable, all the NACs in the group Py, will receive the same

message uncorrupted. When a NAC receives a single message, it may assume that it
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has received the correct message. The NAC then sends the message to the process

replica, Py,

During stage 2, a single message is sent by a source group NAC to the destination
group NACs. The fail-silent nature of the NACs and the dependable communication
medium together ensure that a given message is either received correctly by all
destination group NACs or none of them (not broadcast). So the broadcast has the
atornicity property of an atomic broadcast. If the message is broadcast it will be
received by the destination group NACs within a finite time. So the broadcast also has
the termination property of an atomic broadcast. Because the medium is sequential (it
can only carry one message at a time), messages will arrive at the destination group
NAC:s in an identical order. So the broadcast also has the order property of an atomic
broadcast. The stage 2 broadcast thus constitutes an atomic broadcast and ensures that
the destination group process replicas receive identical messages in an identical order.
Since the destination process replicas are deterministic (they conform to the state
machine model referred to in Chapter 1), they will process identical messages in an

identical order and state divergence cannot occur.

3.10.2 Passive Replication

A process is replicated and each replica located on a separate processor in the
fail-silent domain of Figure 22. Any group of processors may be used, but they must be

homogeneous.

The principles behind passive replication are as follows. One process replica becomes
the active replica, while the others become the passive replicas. Only the active replica
executes the algorithm of the process. Each time the active replica discloses its state to
the rest of the system by sending a message, it checkpoints that state to the passive
replicas. If an active replica fails, one of the passive replicas becomes active. The new

active replica then resumes execution of the process algorithm from the last checkpoint
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it received as a passive replica. In the Delta-4 passive replication model, a process may
be non—deterministic. Such a new active replica could adopt a different execution path
to that of its predecessor. But as its predecessor did not produce any output since the

last checkpoint, no process could have been affected by it.

Because of the fail-silent assumption, the output messages of the active replica may be
trusted. The active replica of the destination process group may therefore accept any

messages it receives without voting.

Because all the passive replicas change their state accbrding to the checkpoints they
receive from the active replica, there is no possibility of state divergence. The processing
model may even incorporate pre—-emption, something which is not possible in active
replication without additional mechanisms. This is because pre-emption in active
replication could occur at a different point of execution (and hence a different internal
state) in each replica. Actions of the pre-empted process replica which depended oniits
current state could therefore diverge. In passive replication, only the active replica is
pre~empted. If a failure occurs after pre~emption but before a further checkpoint is
sent to the passive replicas, the new active replica, when elected, must also be

pre-empted.

Delta-4 overcomes many of the disadvantages of other systems, multitasking is
allowed, clock synchronization is not required and non—determinism is allowed within
passively replicated processes. The disadvantage is that it requires special hardware;
the fail-silent NACs and a reliable LAN. In addition, the fail-silent NAC may have to
be realized using fail-arbitrary components (see Section 4.6), in which some form of

internal clock synchronization will almost certainly be necessary.
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3.11 Delta-4 XPA

Both of the Delta-4 OSA models have advantages and disadvantages. Active
replication suffers no time penalty in the case of a failure but incurs an overall time
penalty due to the need for authentication and voting protocols. Passive replication
minimizes processing requirements and allows non-deterministic processing but
suffers a delay in the case of failure. The Delta-4 Extra Performance Architecture
(XPA) [50][51]{52] introduces a new model, the leader—follower model, which seeks to
incorporate the advantages of both the models of Delta-4 OSA. This architecture does
not require all of the functionality of the atomic multicast protocol (AMp [48]), rather
the limited functionality of reliable delivery: either all or none of the functioning

receivers receive the message.

In the leader—follower model, a process is replicated and each replica located on a
different processor in the fail-silent domain of Figure 22. All replicas are active,
receive input messages and execute the algorithm of the process. Only one replica,
designated the leader, produces output messages. Since it is assumed that the leader is

fail-silent, its output messages may be trusted and voting is unnecessary.

In the OSA active model, non-deterministic processing and pre-emption are
prohibited as they could cause state-divergence among the replicas. The Delta-4 XPA
model incorporates both non—deterministic processing and pre-emption and prevents

state~divergence by using synchronizing messages.

All replicas must process their input messages in the same order. Whenever the leader
inputs a message, it sends a synchronizing message to its followers containing the
identity of that input message. The followers then input that message. Thus the

followers always input messages in a consistent order as dictated by their leader.

This mechanism synchronizes replicas at points of input and so may be used to

implement pre-emption. All replicas must be pre—empted at the same point in their
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execution (to avoid state divergence as referred to in Section 3.10.2). Whenever the
leader wishes to input a message, it first checks to see if it should be pre-empted
(interrupts etc.). If so, it sends a pre—empt message to its followers. The followers then
pre-empt at the same point in their execution (the same input statement). The
disadvantage of this method is that a process may be pre-empted only when it tries to
perform input. Thus the response time to a pre-emption request is dependent on the
granularity of input statements in the process. Delta-4 XPA overcomes this
disadvantage by explicitly inserting additional pre—emption points into the process

code.

At every pre~-emption point, the leader checks to see if it should be pre-empted. If not;
it increments a counter and continues, pre—emption points are thus numbered. If it
should be pre-empted, it sends a pre-empt message to its followers containing the

current value of its counter (a timestamp).

When a follower receives a pre-empt message from its leader, a note is made of the
timestamp contained in the message but no other immediate action is taken. At every
pre~emption point a follower also increments a counter. If a pre-empt message has
been received, the couﬁter is compared with the message timestamp. If the counter has
not yet reached the value of the fimestamp, execution continues. Eventually a
pre—emption point is reached where the counter equals the value of the timestamp,
whereupon the follower is pre~empted. The leader and followers thus pre-empt at

exactly the same point in their execution.

There is therefore a need for followers to lag behind their leader by at least one
pre—emption point. If there was no such time lag, a message sent by the leader,
containing a timestamp value of n, could be received by a follower after execution of its
nth pre-emption point. The leader would thus be pre-empted at n while the follower

would be pre-empted at n+ 1, introducing the possibility of state divergence.
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3.12 Summary

This chapter has presented several existing systems which use a variety of techniques to

prevent state divergence.

In one group (Tandem, Delta—4 OSA passive model), the assumption is made that
processors have fail-silent semantics, allowing passive replication techniques to be
used, so non-determinism within process replicas cannot cause state divergence. Such
an assumption is hard to justify in computer systems intended for mission~critical and

life—critical applications.

In a second group (SIFT, Mars, Delta-4 OSA active model), state divergence is
prevented by constraining process replicas to be deterministic. This prohibits the

incorporation of many of the mechanisms found in dynamic real-time systems.

In a third group (FTMP, FTP, Sequoia, Stratus), special hardware is used to achieve
tight clock synchronization. Potential sources of non-determinism, such as

asynchronous events, are then synchronized to this clock (by hardware) to prevent

state divergence.

In a fourth group (Delta—4 XPA, MAFT), agreement protocols are executed to resolve

non—-determinism and prevent state divergence.

The Delta-4 XPA and MAFT systems are similar to that proposed in this thesis.
However, Delta-4 XPA makes the assumption that processors have fail-silent
semantics, while MAFT may only incorporate non—-determinism in process scheduling;

processes themselves must be deterministic.

A new architecture will now be presented which seeks to provide an enhanced NMR
processing model without the need for specialized hardware or restricted fault
assumptions. Processors are grouped to form NMR processing nodes. Protocols are

employed within the nodes both to mask faults and to prevent state divergence. Unlike

56



any of the systems presented in this chapter, the interconnection of nodes is not

restricted to any particular architecture or communication medium.

A degenerate form of the NMR node, which has fail-silent semantics and supports
processes which conform to the enhanced processing model, will then be presented.
The protocols used are the same as those used to implement NMR nodes and, as with
the NMR architecture, the interconnection of nodes is not restricted to any particular

architecture or communication medium.
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Chapter 4 : System Architecture

4.1 Introduction

This chapter considers the application of NMR techniques to a distributed system of
processors. As stated in Section 3.12, processors are grouped to form NMR processing
nodes but the interconnection of nodes is not restricted to any particular architecture
or communication medium. In this chapter however we shall consider the specific case

of a collection of TMR nodes connected via point-to-point communication links.

It is intended to achieve replication transparency. That is, any problems posed by
replication and voting are hidden from the application programmer who is then only
concerned with the development of a non-redundant system. The architecture is
aimed primarily at compute-intensive real-time applications and is a practical one.
Microprocessors such as the Inmos Transputer [65] were designed specifically to
enable construction of such networks with little hardware overhead (at present, a

Transputer has 4 bi-directional 10Mbit/sec serial communication links).

The chapter is structured as follows. Section 4.2 develops a processing model and
shows how this may be replicated using TMR techniques. Section 4.3 presents a
processor interconnection scheme to support the replicated processing model which
remains fully connected after one processor failure per TMR node (triad). Section 4.4
describes the signature and authentication mechanisms used in voting while
Section 4.5 presents the algorithm for voting and shows how duplicate messages may
be detected and discarded. Section 4.6 describes the properties of a degenerate form
of our system in which process and processor triads are replaced by process and

processor pairs, while Section 4.7 summarizes the contributions of this chapter.



4.2 The Replicated Processing Model

We assume that application programs can be mapped on to a number of processes that
interact via messages. Communicating processes have bi-directional links between
them. Figure 23(a) shows a system of five concurrent processes with six links. A link
connecting two processes has the property that the messages sent by one process are
received by the other process uncorrupted and in the sent order. We also assume that if
a process with multiple links (such as c; in Figure 23(a)) simultaneously receives
messages on those links then these messages are chosen non-deterministically for
processing. Message selection is however assumed to be fair, that is, the process will

eventually select a message present on a link.

P1

ci: process  (a) i link Pi: processor (b) sj serial link
Figure 23 Process-Processor Mapping

We further assume that such a system of processes can be configured to run oh a given
set of processors, each possessing a number of bi-directional communication links, as
shown in Figure 23(b) for example. Each process is mapped onto a physical processor
(eg. c3 mapped onto p;). This may require multitasking (eg. ¢; and ¢, mapped onto py).
Each inter—process link is mapped onto a physical link (eg. 15 onto s3). This may require
the multiplexing of several links onto one physical link (eg. 12, 13 mapped onto s). If such
a process to processor mapping places two communicating processes on processors

which are not directly connected (eg. s; does not exist), then the intermediate
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processors must have the capability of relaying messages (through—routing). If
replication transparency is to be achieved, multitasking, multiplexing and

through-routing must be invisible to the processes themselves.

We now consider the problem of making a system of concurrent processes tolerant to a
bounded number of processor failures. Given a non-redundant system of C (Cx>1)
concurrent processes partitioned to run on P (P<C) number of processors, we address
the problem of constructing a voted replicated system of N*C processes (N=2m+ 1,
m>1) partitioned to run on N*P processors and capable of tolerating up to P*m
processor failures. Each process ceC is replaced by a group of processes with N

members, and each processor peP is replaced by a group of N processors.

From now on we will assume the degree of replication to be three giving us the well

known Triple Modular Redundant (TMR) system.

Figure 24 Replicated System

In the replicated version of the system of Figure 23, shown in Figure 24, each process ¢;
(1<i<5) is replaced by a process triad C;, such that Ci={C;1,Ci2,Ci3} and each
processor p; (1<j<4) is replaced by a processor triad P; such that Pj={P;;,P;2,Pj3} with

C;; mapped onto le, C;; onto Pp and C;3 onto Pj3.
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A processor with its links will be treated as a single entity, so a processor with either
faulty links or a faulty processing unit or both will be treated as a faulty processor. A
failed processor may behave in an arbitrary manner and hence, processes of a failed
processor may behave in an arbitrary manner. Assuming that at most one processor in

each triad may fail, at most one process in each process triad may be faulty.

Cjj: jth member of process triad i (1<j<3)

Figure 25 Voting of Incoming Messages

A non-faulty process must reject inputs from a faulty process; this is achieved by
majority voting as shown in Figure 25 which depicts the voters for the jth member of

process triad C; (The replicated version of process c; in Figure 23(a)).

The function of each process ¢;, is to repeatedly pick up an input message from one of

its links and perform some action, as shown in Figure 26.

process o
var m:message

cycle
receiveany(m)
action{m)

end

Figure 26 Unspecified Input

If a process with multiple links has input messages pending on more than one link, then
one is selected non—deterministically. Message selection is however assumed to be fair,

that is, every message will eventually be selected, The computation performed by a
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process (action(m)} on receipt of a particular selected message is deterministic. In
particular this means that if all non-faulty process replicas of a triad have identical
initial states and process identical messages in an identical order, then identical output
messages in an identical order will be produced. The above model conforms to the
state machine model presented in Section 2.2 and discussed in [ 7] where, “Outputs ofa
state machine are completely determined by the sequence of requests it processes,

independent of time and any other activity in the system”.

In Figure 25, if Cy; receives two voted messages simultaneously then one of them will
be choseﬁ non~deterministically for processing. As a consequence, if the replicas were
to act unilaterally, they could make a different choice, produce non-identical outputs
and thereby defeat the voting mechanism. It is necessary therefore to ensure that each
non-faulty replica performs identical‘message selection from the set of available input

messages.

The problem of identical message selection may be transformed to that of identical
message ordering by presenting a single input message queue to a process and ensuring
that only the message at the head of the queue may be selected. An order process may
then employed to ensure identical message ordering in the queues as described in

Chapter 5.

This is the basis of the replicated state machine approach presented in [7]. Other
approaches particularly suited to replicated processing with voting are presented in
[8][80]. Some practical systems have opted for more restrictive models (without
non-determinism) to avoid the overheads associated with ordering (examples are
SIFT [28] and MARS [31]); while other work on replicated distributed programs [60)

did not address the issue of concurrent processing and ordering.

The model presented here is sufficiently general in that other models, such as clients

and servers interacting through remote procedure calls [61], or objects communicating
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by messages can be seen as special cases. However, several important enhancements

are possible and will be discussed in Chapter 6.

4.3 Processor Interconnection

Processor interconnection architectures and voting algorithms are closely related. If
Byzantine faults are allowed and signatures are not used to protect messages against
corruption (oral messages) then a message can be trusted (non-faulty if the sender is
non—faulty) only if it is received directly from the sender. So processors of
communicating triads must be fully connected as shown in Figure 27.

estin

ation Triad

Source Triad D Tri
3 SriTeiey iy !

i

Failed processor

Figure 27 Communicating Triads (oral messages)

If we allow one processor failure per triad, the destination voter of a non faulty
processor will receive at least two uncorrupted copies of a message from the source
component replicas on non-faulty processors and will be able to form a majority (as

shown in bold for Cy; in Figure 27).

In a distributed system of triads where one processor failure per triad must be

tolerated, either every potentially communicating pair of triads must be fully
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connected or every adjacent pair must be fully connected and messages must be voted

at all intermediate triads as well as at the destination.

If signatures and authentication (see signed messages in Section 4.4) are available then
the architecture may be simplified to that shown in Figure 28. Voting may be
carried—out at the source or destination (see Section 4.5) but the architecture remains

the same,

Figure 28 Communicating Triads (signed messages)

If we allow at most one processor failure per triad, every non-faulty processor remains
connected to every other non-faulty processor; either directly, or via other non-faulty
processors, as shown by the bold lines in Figure 28. Each source component replica
sends a copy of it’s message to each of it’s neighbours within the triad and relays any
authentic messages it receives. Therefore at least two non-corrupted copies of every

message will be received by every voter, whether at source or destination.

In a distributed system of triads, an intermediate triad processor must also send copies

of each message it receives to it’s neighbours within the triad. If the potentially large
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number of duplicates is to be reduced, they must authenticate every message and relay

only the first authentic copy. This problem will be addressed in Section 4.5.4.

Current research [62] into distributed TMR systems assumes that the triads are

embedded into one homogeneous communication structure as shown in Figure 29.

Destination
Triad
Figure 29 Embedded Triads
This has several disadvantages:
(e The routing algorithm must ensure that the three inter-triad

communication paths A, B and C (shown in bold in Figure 29) and the
six infra~triad communication paths (not shown) remain distinct; to
prevent the failure of a single intermediate processor corrupting two or

more messages.

o Determining the number and position of tolerable failures is a complex
procedure and depends on the relative positions of the source and
destination triads (no concept of intermediate triads and one failure per

triad).
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Alternatively, paths A, B and C may lie in three totally disjoint communication planes

as shown in Figure 30.

Figure 30 Distinct Communication Planes

Several advantages become apparent:

i g A simpler (more efficient and reliable) routing algorithm may take any

path to reach it's destination; path isolation is guaranteed.

4 Intermediate processors may be grouped into triads to provide
symmetry.
i If the routing algorithm is identical for each plane, paths A, B and C will

pass through the same set of intermediate triads, simplifying

authentication and the passing of messages between planes.

e Processors within a triad are directly connected in a local voting plane so
voting algorithms become more efficient and do not depend on the

correctness of intermediate processors.
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We will assume a three~plane architecture for the remainder of this thesis.
If a processor has four bidirectional links (as is the case with current Transputers} a
pipeline (or a ring) of processor triads may be constructed as shown in Figure 31.

Triad Py Triad Py Triad P3 Triad Py

RS

faulty processor

internal link external link processor triad

Figure 31 Processor Interconnections

We will refer to a link connecting processors of a triad (within the voting plane) as

internal and a link connecting processors of two adjacent triads (within a

communication plane) as external.

The pipelined nature of interconnection means that a message from one process to

some other process may have to be relayed by intermediate processors. From a TMR

system we require:

M1 the capability of masking at most one processor failure per triad.

Under such a failure assumption, the pipelined structure possesses the following two

connectivity properties:
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CI Any non-faulty processor of a triad is remains directly connected to all

other non—faulty processors of the same triad.

C2 From any non-faulty processor in a triad P;, there is a non-faulty path
connecting that processor to any non-faulty processor of any other

triad Py.

A path between any two non-faulty processors is non~faulty if all the intermediate
processors in the path are non—faulty (for example, the path between Py and P4y drawn

in bold lines in Figure 31 is non-faulty).

Any architecture which possesses CI and C2 may support a voting mechanism which
implements M7 (see Section 4.5). Hence the pipeline architecture is a suitable

candidate for replication.

Figure 32 A Triplicated Grid

If more than four links per processor are available, then structures other than a

pipeline can be formed. For example, Figure 32 shows a small section of a triplicated
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grid structure which requires up to six links per processor (a six link processor could be

built by clustering two four link processors).

Figure 33 Communication using Routing Chips

The grid structure also possesses CI and C2. In fact, any structure in which the P;;’s, the
Piz’s and the Pj3’s are independently connected by an identical network possesses C1
and 2. This means that any non-replicated structure {bus, grid, hypercube etc.) hasan
equivalent replicated counterpart which satisfies M1. Such a replicated structure is
constructed by transforming each processor p;into a triad P;and connecting P;;, Pz and

Pj3 directly.
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Interprocessor communication speeds in the grid structure of Figure 32 depend on the
distance between the communicating parties and the processing load on intermediate
processors (through-routing is not automatic but requires the cooperation of the
relaying processor). Figure 33 shows the replication of a structure envisaged by the

designers of the new Transputer family (at present known only as the HI).

The management of interprocessor communication is delegated to a purpose-built
routing chip (or network of such chips) to increase the speed of interprocessor
communication. Each Processor has one or more connections to a routing chip. This
architecture has an inherent weakness in fault-tolerance terms. Failure of a single
routing chip would incapacitate a large number of processors (up to one third as shown
in Figure 33). Although the voting mechanism would tolerate such a failure, a singié
fault arising in any of the remaining processors would cause system failure. The
problem may be overcome to some extent by increasing the number of routing chips
and connecting each processor to more than one of them. But in the limit, to achieve
the same level of fault-tolerance as in the grid structure of Figure 32, one routing chip
per processor would be necessary. Failure of a routing chip would be then considered

as a failure of the attached processor.

4.4 Signatures and Authentication

The algorithms in this thesis refer to signed and double-signed messages. Both may be
generated using a public~key cryptosystem mechanism (based on that published in {63])

which will now be described.

Processor P; encrypts a message M using an encryption procedure E; and decrypts a
message using a decryption procedure D;. A procedure consists of a general method
(Gg or Gp) common to all processors and a processor-specific key (Kg; or Kp;). The

encryption key Kg; is made public and is therefore known to all processors which wish
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to communicate with P;, but the decryption key Kp; is kept secret and is therefore

known only to P;. The procedures have the following properties.

= Both E{M) and Dy(M) are easy to compute if Kg; and Kp; are known.
g There is no efficient method of computing Di(M) without knowing Kp;.
=g Dy(Ei(M)) = M
r  EOM) =M

4.4.1 Single~signed Messages

To generate a single-signed message, we require that:

SIGI A non-faulty processor must be able to sign a message such that the
non-faulty recipient of that message can verify it’s correctness (message
received = message sent) and determine the signer—identity (collectively

termed authentication).

Suppose that a message Mp is to be sent by some processor P; to some other

processor Py.

A new message M; is constructed by appending to My the identity of P; (I;) and any
other relevant information (O,) such as the destination~identity (I} or a sequence

number (see Section 4.5.4).

My = (Mo + I, + O)

A signature S is calculated by decrypting M.

S; = Di(My) [ = DMy + L + O))]

A new message Mj is constructed by appending this signature to M; and sent to Py.

Mz = (M; + §)) [ =My + 1 + O) + DMy + I + O]
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When M; is received by Py, the identity of the signer (I;) is extracted and used to
retrieve the appropriate encryption function E;. The signature S; is then extracted and
encrypted using E; to reveal the purported original message M;’.

M," = Ej(§)) [ = E(DiMy + §; + Op)]

m(Mg‘l‘I}ﬁ”Oj)?

M, is then extracted and compared with M;’. If they are equal, then the message M,
(and hence My, I and O;) must have been received uncorrupted (with high probability)
and M must have been decrypted using E;. So the original message must be My, and it

must have been signed by P;.

4.4.2 Double-signed Messages

To generate a double-signed message, we require that:

SIG2 On receipt of a single-signed message, a non—faulty processor must be
able to extract and compare the original message (Mj) with one of it’s
own making and if equal, be able to countersign the message such that
the non-faulty recipient of that message can verify it’s correctness and
determine both the signer—identity and the countersigner-identity

(collectively termed authentication).

Suppose that a message M, has been sent by some processor P; to some other
processor Py as described in Section 4.4.1, and that the message must be relayed to

some third processor P;. The message received by Py is:

M; = (M + §) [=Mp+ I + O) + Dy(Mg + I; + Oy]
A new message M3 is constructed by appending to M; the identity of Py (Ix) and any
other relevant information (Oy).

M3 = (M2 + Iy + Oy)

{=(Mg+Ij+0j)+Dj(Mg+Ij+Oj)+1k+0k]
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A signature Sy is calculated by decrypting M3,

Sk = Dy(M3)
[ = Dk((Mg + Ij + Oj) + Dj(Mg + I; + Oj) + I + Ok)]

A new message My is constructed by appending this signature to M3 and sent to P;.
My = (M3 + §y)

[=Mpg+L+0)+D;Mg+ L + O + Iy + O

+ Di((Mp + Ij + Oj) + Dj(Mo + Ij + Oj) + Ik + Oy)]

When Myisreceived by P, the identity of the countersigner (Iy) is extracted and used to
retrieve the appropriate encryption function Ey. The signature Sy is then extracted and
encrypted using Ey to reveal the purported original message M3'.
M;" = Ey(Sp)
[ = Ex{(Dh((Mp + Ij “+ Oj) + Dj(Mg + Ij + Oj) + Ik + Oy))l

=(Mg+Ij+Oj)+Dj(M0+Ij+Oj)+Ik+0k?

M3 is then extracted and compared with Mj'. If they are equal, then the message My
(and hence Mj, Ik and Oy) must have been received uncorrupted (with high
probability) and M3 must have been decrypted using Ey. So the intermediate message

must be M3, and it must have been countersigned by Py.

M; is now processed by P, (as it was processed by Py in Section 4.4.1). That is, the
identity of the signer (I;) is extracted and used to retrieve the appropriate encryption
function E;. The signature S; is then extracted and encrypted using E; to reveal the
purported original message M;".
M,;" = E(S) [ = E{(DiMp + Tj + Op)]
= (Mg + Ij + Oi)?
M, is then extracted and compared with M;". If they are equal, then the message M,

(and hence My, I; and O;) must have been received uncorrupted (with high probability)
j i p g
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and M; must have been decrypted using E;. So the original message must be My, and it

must have been signed by P;.

To summarize, the original message must be My, and it must have been signed by P;and

countersigned by Py.

4.5 Voting and Authentication

The voting algorithm must allow the sending of messages between one triad (source)
and another (destination) in the presence of up to one processor failure per triad. The
prob]em'zfnay be broken-down into the three sub-problems of how to send the
message of each replica in the source processor to all replicas in the destination triad:
This is another manifestation of the Byzantine Generals Problem of Section 2.4.2.
However, whereas in the Byzantine Generals Problem we must satisfy ICT even in the
case where the commanding general is traitorous, in the voting algorithms presented

here we need make no such assumption (see Section 3.1).

Consider the architecture of Figure 34 where non-faulty processors remain connected
via a non—faulty path in the presence of a single processor failure per triad (shown by

the bold lines).
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4.5.1 Single-signed Messages

Assume that a process triad C, is mapped onto processor triad Py, and a process triad
C, is mapped onto processor triad P4 and that C,, wishes to send a message to C,,. The
voting of messages may be achieved as follows. For each j=1..3, the message is signed
by Py and sent to its neighbours Py (j#k) and to it’s successor P. Any message
received by Py; from it’s neighbours is also sent on to Pyj. Any message received by Py;

from Py; is sent to it’s neighbours Py (jk) and sent on to it’s successor P3;. Any

internal link external link processor triad faulty processor

Kigure 34 Processor Interconnections

message received by Py from a neighbour Py (jzk) is sent on to it’s successor P3; (this
overcomes the case of a faulty Py) Pj; then behaves as Py, When the message is
received by the destination processor Py, it is sent to the neighbouring processors Py
(j¢k) and passed to the destination process ¢,j. Any message received by P4 from a
neighbour Py (j#£k) is also passed to the destination process ¢y (this overcomes the

case of a faulty P3;),
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Every inter-triad message is signed by it’s originator Py;. Since we assume at most one
processor failure per triad and that a signature cannot successfully be forged, when the
destination processor Py receives two authentic matching copies from two different
originators, at least one of the copies must be from a correct source processor and

therefore both copies must be correct.

One disadvantage of this method (voting at destination) is the unnecessary generation
of a large number of duplicates messages. In Figure 34, if there were no faulty
processors, a total of eighty-one messages would pass between P3 and Py;. In the
presence-of faults an unlimited number of additional authentic messages could be
injected into the system by a babbling processor. Additional steps are necessary to limit

the number of inter-triad messages.

For each message, the destination processor P4 needs only two authentic matching
copies from two different originators for successful voting to take place. Since there is
always at least one non-faulty path between each non—faulty source processor and
each non-faulty destination processor, only two messages need be sent along each
link. Therefore Py need only send two messages to it’s successor Py;; it’s own and the
first authentic one from a neighbour which matches. P need only send two messages
to it’s neighbours Py (j#k) and it’s successor Pyj; the first two authentic messages from
a different originator. P3; then behaves as Py;. Finally, P4 need only send two messages
to it’s neighbours Py (j=¢k): the first two authentic messages from a different
originator. The number of messages passing between P3; and Py4; (or any other pair of

adjacent triads) has now been reduced to six.

76



4.5.2 Double-signed Messages

To reduce the number of inter triad messages to six as described in Section 4.5.1, Py;
must authenticate a message received from a neighbour and compare it with it’s own
message before sending it on. Authentication and voting is therefore taking place at
the source triad as well as at the destination triad. Suppose that Py were to append it’s
own signature to authentic messages received from it’s neighbours before sending
them on (voting at source). An inter-triad message is now signed by two members of
the source triad. Since we assume at most one failure per triad, the message must have
been seen and signed by at least one non-faulty processor. If the message arrives at the
destination uncorrupted, it must therefore be correct (with high probability). This fact
allows the destination triad to continue processing after the receipt of a single
authentic double-signed message, wifhout any further voting. So processors need only
send one authentic double-signed message to their successor (Py;..P3;) and neighbours
(P2..P4;). The number of messages passing between P3j and Py;. (or any other pair of

adjacent triads) has now been reduced to three.

The algorithm will now be considered in more detail. The mechanisms for the removal

of duplicates have been omitted for clarity; discussion will be deferred until

Section 4.5.3.



Referring to Figure 35, a processor maintains four message pools :

1

Processed Message Pool (PMP) : Contains unsigned messages produced
by local process triads (Cjjs).

Received Message Pool (RMP) : Contains single-signed messages that

are received from neighbours and found to be authentic.

Candidate Message Pool (CMP) : Contains locally produced unsigned

messages waiting for a signed message of identical contents to arrive at

RMP.

Voted Message Pool (VMP) : Contains voted messages (stripped of their

double-signatures) intended for members of local process triads (Cj’s).

Intermediate
Source Triad P Triad P2,P3 Destination Triad Py

Figure 35 Message Flow

In addition, each process C; has a queue (VMQy) containing messages to be

processed. As we shall see in subsequent chapters, the order of messages within VMQ;;

is ensured by an order process to be identical among members of the process triad.
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process voler:
process sender;
yar m:message
cycle
remove(PMP, m)
deposit{CMP, m)
send_to_neighbours(signed(m))
end
end
PIocess receiver:
yal nmessage
cycle
receive_from_neighbours(m)
if not authentic(m) then
discard(m)
glse deposit(RMP, m)
endif
end
end
process majority:
yar m:message
cycle
remove_pair(RMP, CMP, m)
send_to_successor{signed(m))
end
end
end

Figure 36 Voter Process Algorithms

process receiver:
Yar numessage
cycle
if not authentic(m)
then discard(m)
else
send_to_neighbours(m)
if m.dest = me then
deposit(VMP, m)
else
send_to_successor(m)
endif
endif
end
end

Figure 37 Receiver Process Algorithm

The voter process is composed of three
concurrent processes: sender, receiver, and
majority as shown in Figure 36. The
voter.sender process selects a message from
PMP, places a copy in CMP and sends
signed copies to the other members of the
source triad. The voterreceiver process
collects these single-signed messages in
RMP. The votermajority process tries to
pair-up messages from pools CMP and
RMP. If a pair can be formed, the copy from
RMP is countersigned and the resulting
double signed message is sent towards the

destination.

The double-signed message is received at
the neighbouring triad by a receiver
process. If the message is authentic and has
not yet reached it’s destination
(intermediate triad), it is sent to other
members of the triad and relayed towards
it’s destination, as shown in Figure 37. If
the message is authentic and has reached
it’s destination (destination triad), it is sent
to other members of the triad and a copy, is

deposited in VMP.
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The unsigned message is transferred from VMP to VMQ by the order process in such a

way that the order of messages in VMQ is identical to that in the other replicas.

When the destination triad is the same as the source, the message need not be voted (a
faulty source process implies a faulty destination process). So, as an optimization, the

source process may in this case deposit the message directly into the local VMP.

Figure 38 The Stub Process

In Figure 35, c¢; has only one outgoing link (to PMP) and one incoming link (from
VMQ). This violates the replication transparency requirement. One way in which the
requirement may be satisfied is by the addition of a stub process which emulates the

original links of ¢; as shown in Figure 38.

4.5.4 Detection of Duplicate Messages

As they stand, the algorithms in Figure 36 and Figure 37 would generate many
duplicatés. Also, although corruption of a message would be detected by a
voter.receiver or receiver process and would prevent it’s propagation (a faulty processor
cannot flood the system with corrupted messages) a faulty processor could repeatedly
send the same authentic message, causing RMP or VMP to overflow. For these two

reasons, the voterreceiver and receiver processes must detect a duplicate message and

prevent it’s propagation.

This could be accomplished by maintaining a history of propagated messages but such

a history would be infinite. The history could be made finite if the message were to
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carry a timestamp protected by the double-signature and a message older than some
predetermined value was deemed a duplicate. But this requires the processors of the
source triad to agree on the timestamp (difficult in a Byzantine world) and a faulty

processor could still send an arbitrary number of messages during this period.

Whatis needed is a method whereby a process can determine whether or not a message

is a duplicate immediately upon receipt of that message.

It is assumed that a message carries source and destination identifiers and a process
can determine if the source (and destination) processes of two independent messages
belong to the same triad. If the messages differ in either source process triad or
destination process triad they cannot be duplicates. The problem is therefore reduced

to that of detecting duplicates for a given source triad/destination triad pair.

It is assumed that communication is synchronous. That is, at most one message
(excluding duplicates) will be in transit between a given source triad and destination
triad at any point in time. Now suppose that each message is timestamped by the source
process and that duplicates of a message carry the same fimestamp. A process could
detect a duplicate message by comparing it's fimestamp with that of the last
non-duplicate message received. Values equal or lower would signify a duplicate
message. A higher value would signify that the message was a new one and not a
duplicate. Unfortunately, the method, which is a form of temporal ordering, requires
the synchronization of the clocks of processors within the source triad (difficult in a

Byzantine world).

The absolute time that a message was sent is not of importance here, only it’s
relationship to other messages between the same source triad/destination triad pair.
We may establish a happened before (or more accurately happened at the same time)
relationship by employing synchronized logical clocks [5] instead of synchronized

real-time clocks.
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Consider the following. Every message carries a sequence number. A message is
discarded if it carries a sequence number equal to or lower than that of a message

already received (between the same source triad/destination triad pair). In practice

process voter:
process sender:
¥af m:message
yar counter]{]:sparse array of lot: =0
cycle

remove(PMP, m)
m.counterstamp: =counter[m.scc}[m.dest)
deposit(CMP, m)
send_to_neighbours{signed(m))
inc counter[m.src}im.dest)
end
end
process receiver:
Yar mmessage
var counter{j{]:sparse array of int: =0
cycie

raceive_from_neighbours{m}
i not authentic{m) then discard(m)
glse
¥ m.counterstamp = counter[m.sic]{m.dest] then
deposit(RMP, m)
inc counter{m.src]fm.dest)
elself m.counterstamp < counter[m.src][m.dest] then discard(m)
glselt m.counterstamp > counterfm.src)[m.dest] then
serious_ermror(m}
discard{m)
endif
. end
end
end

Figure 39 Modified Voter Process Algorithms

this means that every process on the path from source to destination must maintain a
counter unique to that source triad/destination triad pair (counter(s,df). A counter/s,d]

is initialised to zero when the first message between s and d is received. In the
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discussion that follows, it will be assumed that corrupted messages have already been

discarded.

Consider the modified voter process algorithms in Figure 39. When a message is
removed from PMP by the votersender process, it is stamped with the current
voter.sender.counterfs,d] value and the latter is incremented. When a message is
received by the voferreceiver process, the counterstamp is compared with the

voter.receiver.counter[s,d] value.

iy If counterstamp = voterreceiver.counter(s,d] the message is placed in

RMP and the counter incremented.

r If counterstamp < voter.receiver.counterfs,d] the message is a duplicate

and may be discarded.

= If counterstamp > voter.receiver.counter(s,d] the message is from a faulty

neighbour and may also be discarded.

This mechanism removes the redundant duplicate generated when all three processors

are non-faulty which would otherwise stay forever in RMP.

Consider the modified receiver algorithm in Figure 40. When a message is received by
the receiver process, it’s counterstamp is compared with the receiver.counter(s,d] value.
- If counterstamp = receivercounterfs,d] the message is sent to the

neighbours and successor (intermediate triad) or sent to the neighbours

and placed in VMP (destination triad) and the counter incremented.

o If counterstamp < receiver.counter(s,d] the message is a duplicate and

may be discarded.

=g If counterstamp > receiver.counter(s,d] this cannot occur as it requires

two faulty processors in the source triad.
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This mechanism removes the duplicates generated by diffusion at intermediate and

destination triads which would otherwise greatly increase inter-triad message traffic.

process receiver:
yar m:message

yar counter(j[).sparse array of Int: =0

gycle
if not authentic(m) then discard(m)

else
if m.counterstamp = counter[m.src][m.dest] then

send_to_neighbours(m)
It m.dest = me then deposit{VMP, m)
else

send_to_successor(m)

endif
inc counter[m.srcj[m.dest]

elseif m.counterstamp < counterfm.srcj(m.dest] then discard(m)

elself m.counterstamp > counter[m.src){m.dest] then
serious_error(m)
discard(m)

endit

endtf
end
end

Figure 40 Modified Receiver Algorithm

4.6 A Dual Processor Derivative

Consider again the system of Figure 23. In the replicated version, shown in Figure 41,
each process ¢; (1<i<5) is now replaced by a process pair C;, such that Ci={Cj;,Cjp}
and each processor p; (1<j<4) is replaced by a processor pair Pjsuch that Pi={Pj1,P;2}

with Cj; mapped onto Pj; and C;; onto Pj.

As will now be shown, the failure of a processor in the source node results in no
authentic double-signed messages being produced. The source node, when combined
with the authentication mechanisms of the destination node, thus has fail-silent
semantics. A dual-processor node may therefore used to implement a fail-silent

processor such as that required by the Delta—4 XPA system discussed in Section 3.11.
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Processors may be connected as shown in Figure 42. Assume that a process pair Cp, is
mapped onto processor pair Py, and a process pair C,, is mapped onto processor pair P4
and that C,, wishes to send a message to C,. If we implement the algorithms of
Figure 39 and Figure 40 in the manner of Figure 35, then the system will behave as

follows.

In the absence of any faults, the voter.majority process will produce double-signed
messages which will be received at the destination processor uncorrupted and passed

to the destination process C,.

Figure 41 Replicated System

Thus in the absence of faults, the system will function correctly. Now consider system

behaviour in the presence of faults:

If an external link fails (eg between P;; and Py), one double-signed message will be
lost. However, an equivalent double signed message will be sent on the external link
between the corresponding neighbours (eg between Py; and Py;). This message will

eventually be received at the destination processor uncorrupted and passed to the

destination process Cp,.

If an internal link fails in an intermediate pair (eg between P,; and Py,), each member
will send-on the double-signed message it receives from it’s predecessor (P;; and Py

respectively).
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If a processor fails in an intermediate pair (eg Py1), then a double-signed message will

be sent-on by it’s neighbour (eg Px).

Thus there are a class of failures which the system will mask; that is, any combination of
external link failures, intermediate processor failures and intermediate internal link
failures after which there remains a non-faulty path between the source and
destination pairs. This is similar to the fault model represented by the connectivity
properties CI and €2 of Section 4.3. Such failures cannot be detected using the

algorithms of Figure 39 and Figure 40 without modification.

Pair P4 Pair P i Pair Py

internal link external link

Figure 42 Processor Interconnections

Now consider the following failures:

Failure of a processor or internal link at the source pair may delay or prevent the
voter.majority process finding a given message pair and hence delay or prevent the

generation of the corresponding double-signed message.

Failure of a processor or internal link at the destination pair could prevent the correct
functioning of the order process (see Chapter 5). This could result in a message being
delayed or blocked in VMP (see Figure 35) and hence delay or prevent delivery of that

message to the destination process C,,.



A combination of external link failures, intermediate processor failures and
intermediate internal link failures which result in the source and destination pairs
being no longer connected by a non—faulty path could delay or prevent delivery of a

double-signed message to the destination processor.

If the message was transmitted asynchronously by the source process Cy, the fact that it
was delayed or lost would be invisible to the non-faulty processor(s) of the source pair
which would continue to function. Any subsequent attempt by C,, to send another
message to C,, which resulted in the successful transmission of that message would be
detected as an out-of-sequence message by the receiver process (serious_error in
Figure 40) and discarded. All subsequent messages will also be discarded, so C,,, would
have fail-silent semantics, If the message was transmitted synchronously by the source
process Cp, (using some higher level protocol), Cy,, would block and therefore have

fail-silent semantics.

Thus there are a class of failures which result in fail-silent behaviour of the source

process.

4.7 Summary

This Chapter began by introducing a replicated processing model. It then presented a
number of alternative physical architectures to support this model and showed how
these architectures must be considered in parallel with the choice of voting algorithms.
The subject of public key cryptosystems was then covered in preparation for a full
description of the voting algorithms. The subject of duplicate removal was discussed in
relation to the production of duplicates by faulty processors and the voting mechanism
and a set of algorithms given for its implementation. Finally, a degenerate,
processor—pair architecture was proposed to support fail-silent behaviour using the
same mechanisms and algorithms. Note that none of the algorithms presented in this

chapter require any form of clock synchronization.
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Chapter 5 : The Order Process

5.1 Introduction

This chapter introduces the order process mechanism which is used in later chapters to
prevent state divergence. Section 5.2 describes it’s structure and relates it to the
Byzantine Generals Problem of Section 2.4.2. Section 5.3 describes a set of atomic
broadcast protocols which are used to implement the order process mechanism with
varying degrees of fault-tolerance. Finally, Section 5.4 summarizes the contributions

of this chapter.

Each processor Pj; has an order process Oy, as shown in Figure 43 for the destination
triad P4 of Section 4.5. The function of each order process Oyjis to take a message from

Destination Triad P4

Figure 43 The Order Processes of a Triad

VMPy; and broadcast it to all three of the VMQy,;, as indicated for Oy by the dashed

lines in Figure 43.



The order process thus faces a problem similar to that encountered in the Byzantine
Generals Problem discussed in Section 2.4.2, namely the sending of an order by the
commander (the order process) to his lieutenants (the VMQs). This type of broadcast
is termed an atomic broadcast [64] and if implemented using a solution to the Byzantine
Generals Problem, satisties the interactive consistency conditions ICI and IC2 of
Section 2.4.2. This ability to satisfy ICI and JIC2 is expressed by the atomic broadcast
properties of termination and atomicity. In addition, the atomic broadcast possesses a
third property of order. This may be expressed in terms of Byzantine Generals as the
licutenants accepting their orders from three different commanders (the order
processes) such that the sequence in which the orders are obeyed is consistent among

the three lieutenants (the VMQs).

Although it may seem that with one commander (order process) and three lieutenants
(VMQs) there will be a solution to this problem using oral messages (n = 3m + I),
one of the lieutenants and the commander are in fact the same person (the same
processor), Thus a traitorous commander would also imply a traitorous lieutenant and
with n = 4 there is no solution form = 2 (n < 3m + I) using oral messages. Any

solution must therefore employ signatures and authentication (n > m + 2).

If the order processes use an atomic broadcast protocol to send the messages to the
VMQs then the order property will ensure that the order of messages within the VMQs

remains consistent.

In the absence of faults, each message will be broadcast three times, once by each Oy,
while a faulty order process could attempt to broadcast any number of duplicates. In
addition, a faulty order process could attempt to broadcast an arbitrary, corrupted
message. Corruption may be detected by authentication of the double-signature
appended to the message by the source triad (see Section 4.5.2) while duplicates may
be detected by comparison of the message counterstamp (protected by the

double-signature) with a local counter (see Section 4.5.4). As these two techniques
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have already been discussed in relation to the voting mechanism, they have been
omitted from the following algorithms for the sake of clarity. The signature,
authentication and duplicate removal mechanisms referred to in Section 5.3.3 are

independent of, and additional to those employed by the voting mechanism.

5.2 Order Process Structure

In the following algorithms, the order process is composed of three sub-processes;

start (Sy), relay (R;;) and end (E;;) as shown in Figure 44.

Destination Triad Py

Figure 44 Structure of an Order Process

An atomic broadcast is performed in three stages:

stage 1 Each Sy works independently, selecting a message from VMPy, placing
itin a local pool then sending a copy to it’s neighbours (only the path of a

message from VMPy; is shown in Figure 44 for clarity) .




stage 2 Each Rj; receives this message and either rejects it or places a copy in a
local pool and sends it to the other R;;. The other R;; would then still

receive the message in the case where S;; was faulty and had not send it
directly.

stage 3 After some specified time interval, each E;j removes the message from

it’s local pool and delivers it to the VMQy; of the destination process.

Thus the message will be placed in the local pool at either stage 1 (Sy) or stage 2 (R;)

and removed at stage 3 (Ej).

Stage 1 and stage 2 as outlined above correspond to stage 1 and stage 2 of the signed
message solution to the Byzantine Generals Problem described in Section 2.4.4. The
additional stage 3 is necessary to satisfy the order property particular to the atomic

broadcast abstraction as will be explained in the following sections.

All the following protocols conform to the model shown in Figure 44, they differ only
in their criteria for rejecting a message (authenticity, timeliness etc) and in the length
of the time interval. Although only the third protocol is suitable for the Byzantine
world already assumed by the voting mechanisms, the first and second protocol are

also presented, as they tolerate an ever increasing subset of Byzantine faults and each

serves to explain a facet of the third.

5.3 Atomic Broadcast Protocols

A protocol to implement the atomic broadcast abstraction exhibits the following

properties:

termination It delivers every message broadcast by a correct sender to all correct

receivers after some known time interval (A).

atomicity It ensures that every message whose broadcast is initiated by a sender is

either delivered to all correct receivers or none of them.
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order It guarantees that all messages delivered from all senders are delivered

in the same order at all correct receivers.

When employed in a fault-tolerant system, the protocol must continue to exhibit those
properties even in the presence of faults. The protocol must therefore possess a degree

of fault-tolerance at least as great as that of the system itself. Faults may be divided

into three classes;

omission causes the component to omit to send a message which should be sent,

according to the specification.

timing causes the component to send a message either too early or too late,

according to the specification.
Byzantine causes the component.to behave in any way which differs from the

specification.

A family of protocols will now be presented, each tolerating a different class of faults.

In all cases, a number of assumptions are made about the underlying hardware.

o Processors are connected by a point-to-point network.
= Faults do not cause network partitioning.
o A message sent between two correct adjacent processors over a correct

link is delivered within 8§ time units.

o The clocks of correct processors are synchronized to within € time units

(see [S3)[S4][S51[56][5TI[581[59]).

Therefore, if a message sent by a correct processor p at local time 1,, over % correct

links is delivered to a correct processor q at local time £, then :

-€<l—lh <hd + ¢
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It is further assumed that each message carriesa timestamp which gives its local time of

departure t, and that no correct processor will issue two messages with the same

timestamp.

In the TMR architecture of Figure 44, if the link between P4, and Py; is faulty (may be
considered as a failure of either P4y or Py3), the message removed from VMPy; at t4;

(=timestamp) will be placed in the pool in P43 (via Pyy, so £ =2) at local clock time t43

where:

—-€ <143 — timestamp < 28 + ¢

The order property of an atomic broadcast may then be implemented by ensuring that:

order In every correct processor, messages are delivered (to the VMQs) in the
order of their timestamps or where equal, their senders identifier (a

deterministic tie—breaker).

Because of the variation in transmission message times, a message may not be
delivered to VMQ immediately upon arrival in the pool. Instead, it may be delivered

only when itis no longer possible for a subsequent correct message to arrive bearing an

earlier timestamp.

5.3.1 First Protocol (omission)

A processor which suffers from omission faults will either:

omission produce a valid message at the correct time or will produce no message

(ie never corrupted, never early or late).
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A message may be delivered only when it is no longer possible for a subsequent correct
message to arrive bearing an earlier timestamp. In a system of n processors in which 7

are faulty, a message may be delivered at local clock time tyejver:

tdeliver = timestamp + wd + (n - w - 1)8 + ¢

where,
timestamp = local time at which message was transmitted
w8 = time from transmission to acceptance by first correct processor

(n-m-1)8 = time for that correct processor to send the message to all

the other correct processors

¢ = maximum clock synchronization error

This is the worst case, in which all processors are connected in a pipeline, the sender is
faulty and is separated from the nearest correct processor by all of the other faulty

ProcCessors.

In the TMR architecture of Figure 44, this corresponds to the situation where Py, and
the link to P43 are faulty. The message will be removed from VMPy at tg
(= timestamp)and sent to P43 via P4; (n =3, w = 1) and may therefore be removed from

the pool in P43 at local clock time ty3 = tyepver Where:

tdeliver = timestamp+ 28 + €

The algorithms to implement the first protocol for TMR are shown in Figure 45.

A message is discarded by the relay process only if it is a duplicate (in_pool{message)).
Since a message cannot be corrupted, the function in_pool(message) may assume that
two messages are duplicates if they have matching source and destination and
matching timestamp. The end process may have to deliver several messages as it may

have been scheduled by both the start and relay tasks simultaneously.
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process order
var pool:message_pool
process start
var m:message
cycle
remove_from _VMP(m)
deposit(pool, m)
send_on_both_links(m)
schedule{end, teiver)

endcycle
end

process relay
var m:message
cycle
receive_on_a_jink(m)

K (not in{poot, m})
deposit(pooi, m)
send_on_other link(m)

schedule(end, t4giver)
endit
endcycle
end

process end
yar m:message
var min:message_id

/ select a message

/ deposit in pool for end process

/ copy to neighbouring relay processes
/ schedule the end process to remove
/ message from the pool at time tygjiver

{ receive message from start process
/ (or relay process)

/ if not a duplicate

/ deposit in poal for end process

/ copy to other neighbour

{ (if received from start process)

/ while there are deliverable messages
while (messages_ready to_deliver(pool) > 0} do
min = min_timestamp_message_ready(pooi)
remove(pool, min, m) | deliver oldest dejiverable message
deliver_to_appropriate_VMQ(m)
od
end

end

Figure 45 The First Protocol

95



5.3.2 Second Protocol (timing)

A processor which suffers from timing faults will either:

timing produce a valid message at the correct time or will produce a valid

message at the wrong time (ie either on time, too early or too late but

always correct).

The first protocol cannot tolerate timing faults. If a message was to be delayed by a
faulty processor, it could be delivered to some correct processors before f4..r and to

others after #z.5.-. In the latter case, another message could be delivered before it

thereby violating the required order property.

In the TMR architecture of Figure 44, this corresponds to the situation where Py, and.
the link to P43 are faulty. The message removed from VMP,; may be delayed by S
such that it is delivered to the pool in P4; atlocal clock time t4; < tgenver and to the pool
in P43 at local clock time t43 > tgeiver- By then, P43 could have already delivered a

message bearing a higher timestamp.

In the second protocol, the time interval during which a message is acceptable is made
proportional to 4 the number of processors which have already accepted it (equal to
the number of links over which the message has already passed). A message is

acceptable at local clock time ¢ iff:
bnin S < bax
where,

tmin = timestamp — he

bnaxy = timestamp + he + h8

The he component is necessary to prevent a delayed message being rejected by some

correct processors and accepted by others due to the clock skew € between them.

9%



process order
var pool.maessage_pool

process start
var m:message
cycle
remove_from VMP(rm) / selsct a message
deposit(poot, m) { depaosit in pool for end process
message.hop_count = 1
send_on_both_tinks{m) / copy 1o neighbouring relay processes
schedule{end, tggiver) / schedule the end process to remove
/ message from the pool at time tggiver
endcycls
end

process relay
var mmessage
cycle
recaive_on_a_link(m) [ receive message from start process
/ (or relay process)
/ if not a duplicate and timely

if (notin{pool, M) and tipcy < tmay aNd Yocg > thin)

deposit{pool, m) / deposit in pool for end process
increment(message.hop_count)
send_on_other link{m) / copy to other neighbour

{ (if received from start process)
schedule(end, tyeives)
endif
endcycle
end

process end
var m:message
var min:message id
/ while there are deliverable messages
while (messages_ready_to_deliver(pool) > () do
min = min_timestamp_message_ready(pool)
remove(pool, min, m) / deliver oldest deliverable message
deliver_to_appropriate_VMQ(m)
od
end

end

Figure 46 The Second Protocol



In a system of n processors in which 7 are faulty, a message may now be delivered at

local clock time

lieliver = fimestamp + w8 + we + (n —w - 1)8 + ¢

where,

w8 + we = time from transmission to acceptance by first correct

processor

In the TMR architecture of Figure 44, if P43 and the link to Py; are faulty, the message
is removed from VMPy; at t4; (= timestamp) and sent to Py3 via P43 (=3, w=1) and

may therefore be removed from the pool in Pg3 at local clock time tg3 = tgejiver Where:

tdeliver = timestamp+ 28 + 2e¢

The algorithms to implement the second protocol for TMR are shown in Figure 46.
They differ from those of the first protocol only in that the start task appends a hop
count to the message and the relay task incorporates two additional acceptance tests

(t <tmay and t > tyin) and increments the hop count.

5.3.3 Third Protocol (Byzantine)

A processor which suffers from Byzantine faults will either:

Byzantine  produce a valid message at the correct time or behave arbitrarily.

A processor affected by a Byzantine fault could defeat both the previous protocols, by
modifying the timestamp for example. In the third protocol, signatures and
authentication (see section 4.4) are employed to prevent this happening.

It is assumed that,

signature Each non-faulty processor possesses a unique signature which with high

probability, is unforgeable by any other processor.
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authentication Each non-faulty processor can authenticate a signature with high

probability.

These assumptions are similar to assumption 44 in the solution to the Byzantine

Generals Problem using signed messages. Three procedures are assumed.
sign(m) append the local processor’s signature to the message m
co-sign(m)  append the local processor’s signature to the list of signatures on m

authenticate(m) verify the authenticity of the message m

The message does not carry a hop count as this may be determined by counting the

number of appended signatures.

If the time to authenticate is ignored, £, fmar and Ligiver are the same as for the second

protocol.

The algorithms to implement the third protocol for TMR are shown in Figure 47. The
function authenticate(message) detects a corrupted message and discards it, so the
function in_pooi(message) may still assume that two messages are duplicates if they have
matching source and destination and matching timestamp. However, a faulty
processor could send two different authentic messages with the same timestamp which
could arrive at the two non-faulty neighbours in a different order. Without any
additional mechanisms, the second message would be regarded by in_pooi(message) as a
duplicate and discarded, resulting in inconsistent VMQs. The different_to_pool{message)
function detects this case and marks the message as bad so that the end process will not

deliver it to the VMQ.



process order
var poolimessage_pool

process start
var m:message
cycle
remove_from_VMP{m) / select a message
deposit(pool, m) / depaosit in pool for end process
sign(m) ' / sign message and
send_on_both_links(m) { copy to neighbouring relay processes
schedule(end, tdeiver) / schedule the end process 1o remove
/ message from the pool at time tgayer
endcycle
end

process relay
var mmessage
cycle
receive_on_a_link(m) / receive message from stant process
/ (or relay process)
/ i uncorrupted and timely

it ({authenticate{m) and Yipca < tmax 8nd Ygca > i) then

if (not in(pool, m)) then / if not a duplicate
deposit(pool, m) / deposit in pool for end process
co-sign{m) / co-sign message and
send_on_other link{m) { copy to other neighbour
schedule(end, gsiiver) { {if recelved from start process)
else { If a different message exists with the
it different_to(pool, m) then / sarme source, destination and
mark_as_bad(pool, m) / timestamp, cause both to be
{ discarded
endif
endif
endif
endcycle
end
process end
var m:message
var min:message_id / whiie there are deliverable messages

while (messages_ready to_deliver(pool) > 0) do
min = min_timestamp_message_ready(pool)

remove({pool, min, m) { deliver oldest defiverable message
if not (marked_as_bad{pool, m)) then / (if sender is not faulty)
deliver_to_appropriate_ VMQ(m)
od
end

end
Figure 47 The Third Protocol
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5.3.4 Performance

In the absence of faults, the number of messages sent per broadcast per link is

L. _lel-1
||
where,
Ed = The number of processors
2] = The number of links

For sparsely connected networks this is close to 1, while for highly connected ones it is

close to 2.

When the third algorithm is applied to the TMR node architecture of Chapter 4, the

termination time becomes

(n-1)8 + (m + Le= 28+ 2¢
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54 Summary

The order process was introduced as a mechanism for ensuring that the order of
messages within the message queues (VMQs) of process replicas remains consistent.
Then the atomic broadcast abstraction was discussed in relation to the Byzantine
Generals Problem of Section 2.4.2 and a number of atomic broadcast algorithms given
to implement the order process with varying degrees of fault-tolerance. Finally, the
performance of the algorithms when applied to the system of Chapter 4 was

investigated.

Note that because the atomic broadcast takes place within the triad, clock
synchronization is required between the processors within a triad but is not necessary,

between triads, ie there is no need for global clock synchronization.

- In thé absence of faults, three atomic broadcasts of the same message will take place,
so there is a requirement for the removal of duplicates. This could be accomplished by
processing the output of the order process using the sequence number contained within
the original double-signed message as described in Section 4.5.4. However, it should
be possible to intercept duplicates earlier by modifying the start and relay processes
(Figure 45, Figure 46 and Figure 47) to include an acceptance test based on the

sequence number. This would then obviate the need to compare timestamps in the

relay process.

Note that the order process satisfies only 07 of Section 2.2. To satisfy 02, additional
mechanisms are required to implement total ordering (see Section 2.5). If the message
sequence number is used to implement a logical clock [5] then the algorithms for
duplicate removal must be modified (see Section 4.5.4) for the case where

counterstamp > volter.receiver.counter(s,d].
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Chapter 6 : Non-determinism in the Enhanced Model

6.1 Introduction

In this section, the restrictive state machine model introduced in Section 4.2 is
expanded to include enhanced message selection, asynchronous external events,
non—deterministic processing and semaphores. State divergence is prevented in all
cases by exploiting the order property of the order process (see Section 5.1). In

Section 6.7, the overheads associated with this technique are examined.

6.2 Enhanced Message Selection

In the model presented in Section 4.2, a process may select any input message for
processing. As a consequence, it is acceptable in the replicated version for a process to
accept messages in an order determined by the order process. However, it may be
desirable for a process to exercise some control over the selection of messages. This
section examines a range of possible selection criteria in terms of classes of input and

shows how the order process alone cannot handle such inputs.

6.2.1 Blocking Input

The process may specify a subset of clients from which it is prepared to accept a
message at any given point, but must accept one before continuing. This could happen
when the process is acting as a resource allocator server for example, and under some
condition is prepared to listen to only some subset of its clients. If the message supplied
first by the order process is not in the subset then we have deadlock. Two forms of

blocking input are considered; selective and alternative.
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(i}  Selective Input

The client C; from which a message is to be accepted is specified by the process S, as

shown in the algorithm of Figure 48.
process Sy
var m:message

' receivetrom(C;, m)
action(m)

end

Figure 48 Selective Input

(ii) Alternative Input

The set of clients £ = [C;...C;] from which a message may be accepted is specified by the

process S, as shown in Figure 49. The value returned by a call to the function

process Sy
var m:message,
¥:setof cilent

¥:=[C...CJ
switch (receivefrom($, m))
case C;
action(m)

case Cj.
action;(m)
end
end
Figure 49 Alternative
Input

receivefrom(f, m) identifies the sender of the selected message and is used to perform an

appropriate action.
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6.2.2 Non—-Blocking Input

The process may specify a range of clients from which it is prepared to accept a
message but may continue execution if no message is available. When such a process s
replicated, either all the replicas must accept the same message or all of the replicas
must continue execution. Since messages can arrive at replicas at different times, just
preserving order is not sufficient to cope with non-blocking input. Three variants of

non-blocking input are considered.

(i) Conditional Input

The client C; from which a message is to be accepted is specified by Sy, as in the
algorithm of Figure 50.Whereas in Figure 48 the receivefrom(C;, m) function is assumed

process S
var m:message

' It receivenowaitfrom(C;, m)

then
action{m)

else
altaction()

endif

end
Figure 50 Conditional Input

to block until an appropriate message is received, here a Boolean value is returned by
receivenowaitirom(C;, m); true if the message is present, false if it is not. Thus in the

absence of a message from C;, the process continues execution with altactiony).
(i) Timed Input

With timed input, the alternative action is performed only if a message does not arrive
before the expiry of a timeout as shown by Figure 51. So a Boolean value is returned by

receivefrom(C;, m, t); true if the message is present, false if it is not.
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process Si:
var m:meassage,
t:timeval

t:= <period>
It receivefrom(C;, m, t}
then
action{m)
else
altaction()
endif

end
Figure 51 Timed Input

(iti) Timed Alternative Input

The set of clients  =[C;...C;] from which a message may be accepted is specified by the

process S, as shown by Figure 52. But if an input does not arrive before the expiry of a

process Sy
var m:message,
t:timeval,
¥:setof client

¥ = [G...Cf
t:= <period>
switch {receivefrom(¥, m ,t)}
case C;
action;(m)

case C]:
actiony(m)
case nuli
altaction{)
end
end

Figure 52 Timed Alternative Input

timeout, some alternative action is performed. The identity of the successful client (or

null if timeout) is returned by the call to receivefram(y, m, t).
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6.2.3 Replicating the Enhanced Model

Two forms of enhancement are proposed; blocking and non-blocking input on
specified clients. When replicating the enhanced model, the order process solution
discussed in Chapter 5 is not sufficient to deal with such inputs; it could cause
deadlocks for the former case and state divergence for the latter. Deadlocks can be
prevented if a process is allowed to perform an ordered search on the message queue
for the first acceptable message. Since messages in the queues of replicas are ordered
identically, this solution will work. Thus blocking inputs (Figure 48 and Figure 49) can
be handled easily. More complex mechanisms are required to solve the second case. In
the following sections, a general mechanism will be presented which resolves

non—determinism for both cases.

6.2.4 The Generic Input Function

Both unspecified and selective input are special cases of alternative input (¥ = A,
where QU is the set of all possible clientsand ¥ = C; respectively). Conditional inputisa
special case of timed input (t = 0). Alternative (t = o) and timed (¥ = C;) input, and
hence unspecified, selective and conditional input are all -special cases of timed

alternative input (See Figure 52).

Since all the input forms discussed so far may be represented by timed alternative
input, resolving non-determinism for the generic input function receivefrom(s, m 1) will

also resolve non-determinism for all other cases.

Consider the algorithm of Figure 53 which describes how the generic input function

can be implemented using blocking input.

The generic input function waits for a maximum duration 7 to receive a message.
Assuming timeout does not occur, the blocking function RECEIVEFROM(Y, m) returns the

first message in the queue for which Ciey. Since the order of queues is consistent
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among replicas (ensured by the order process), so is the choice of message. The state

and subsequent behaviour of the server are therefore also consistent among replicas.

procedure receivefrorn
(f:setof client, m:message, t:timeval):
var c:client
begin
within t do
{c := RECEIVEFROM(Z, m)}
timeout
{sendto(self, timeout)
¢ := RECEIVEFROM([¢, self], m)}
od
if {c = self)
then
return nufi
else
return ¢
endif
end

Figure 53 The Generic Input Function

If no message is received within the duration ¢, then the timeout clause will be

executed. The function then attempts to send a timeout message to itself. If a majority

Unspecified Input f =9 t = oo
Selective Input =G t=co
Alternative Input ¥ = C..C t = oo
Conditional Input $=C t=20
Timed Input =g t=1T

Timed Alternative Input ¥ = C;...Cj t=r
where T = timeout value

Figure 54 Input Mapping

of replicas time-out (see Section 4.5.2), then a timeout message will be majority voted
and will arrive at all the replicas. The order processes ensure that messages are
identically ordered in all the replica queues. So RECEIVEFROM(Y, seif], m) will return the
same message to each replica; either a message from a member of ¥ or the timeout

message. The problem is therefore transformed to that of alternative input from
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#=[C;...C;, self] for which consistency is maintained. The complete mapping of input

types onto the generic input function recsivefrom(#, m, t) is shown by Figure 54.

0.2.5 Prioritized Input

In Section 6.2.4, it was stated that the message returned by a call to RECEIVEFROM(¥, m)
is the first in the queue for which Cie¥; all messages assume equal priority. However, it
may be desirable to impart some other ordering strategy based on a concept of
urgency, for example, where the level of priority is derived from the client identifier or
perhaps from the message itself. This form of input may be called prioritized
alternative input. The replica must then search the queue for the highest priority
message for which Cies. Although the order of the queues is guaranteed to be
consistent among replicas, the time at which the queues are updated relative to the call
to RECEIVEFROM(¢, m) is non-deterministic. So the set of messages present in the
queue at the time of the search need not be identical among replicas. A call to
RECEIVEFROM(y, m) could therefore return a different client identifier in each

replica, causing state-divergence.

The problem is similar to that of conditional input where the presence or absence of a
message may affect the future behaviour of a process. In fact, prioritized alternative
input may be expressed as a nested sequence of conditional inputs. The problem may
therefore be solved by a nested sequence of calls to receivefrom(¥, m 1), with t=0.
However, this solution would place a large load on the communication medium due to
the continuous production of timeout messages. A more efficient implementation of

RECEIVEFROM(¥, m) which can handle prioritized messages is now presented.

The problem may be solved by using a self-directed message to mark the queue, as
shown in Figure 55. The set of messages which arrive before the marker is consistent
among replicas. So an ordered search which is restricted to this set will always produce

a consistent result.
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A call is made to RECEIVEREADYFROM(S) which blocks until a message from C;e¢ arrives
in the queue then returns without removing it. The function then sends a marker
message to itself. When a majority of marker messages is achieved, a copy will be placed
in the queue by the order process. A further call is made to RECEIVEREADYFROM(self)
which blocks until the marker message arrives in the queue then returns without
removing it. At this stage, each replica queue contains at least one message from C;¥
followed by the marker message and the replica queues are identical up to and
including the marker message. An ordered search of the restricted queue is then
performed to identify the highest priority message. Finally the marker and highest

priority message are both removed from the queue and the latter returned to the

caller.

procedure RECEIVEFROM
(f:setof ciient, m:message):
var c:cliemt,
begin
RECEIVEREADYFROM(S)
sendto(self, marker)
RECEIVEREADYFROM([self])
c:=  <ldentity of highest priority
message in queue ahead of
the mark >
receivefrom(self, m)
receivefrom(c, m)
return ¢
end

Figure 55 Prioritized Alternative Input

6.3 Asynchronous External Events

Practical applications often require the use of asynchronous signals (eg an alarm
signal) to force a process to immediately stop its current activity and perform some
alternative action. However, if the process replicas were stopped independently, they

could be stopped at different points in their execution, resulting in a difference in their
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internal states. If the subsequent behaviour of the alternative action is dependent on

this state then divergence could oceur.

The same problem was encountered in Section 6.2.2 in relation to non-blocking input
and was solved by the generic input function using a self-directed message to order
timeout with respect to other messages as described in Section 6.2.4. If we transform
an external event into a message from a system client ¢, it too may be ordered with
respect to other messages. Then by adding € to the set of acceptable clients, whenever
the generic input function is called, we can ensure that all replicas receive the event
message (and hence respond to the event) at identical points in their execution. We
may adjust the priority of an event in relation to other events and messages using the
method discussed in Section 6.2.5, but this requires the transmission of a self-directed
message to establish priority. If the original client set expressed no priority this

becomes an additional overhead.

procedure pre-emption_point{everi_handlerprocedure):
begin

var mmessage

if receivenowaitirom(C, m)

then

event_handler(m)

endif

end

Figure 56 Conditional Input

Although this solution will work, the response time to an external event is dependent
on the granularity of input statements. If the opportunities for message input are
infrequent, it may be desirable to add additional pre-emption points at which a signal
may be accepted by explicitly performing conditional input from €, as shown in
Figure 56. This is equivalent to calling the generic input function with $=¢ and t=0
where a timeout means no event detected. So every time a pre-emption point is
executed when an event has not occurred, the process is delayed waiting for the

self-directed message to arrive, which makes this type of pre-emption point a
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considerable overhead. This technique is similar to that used in the leader—follower
model of Delta—4 XPA [50][51]{52] described in Section 3.11 which does not suffer the

same overhead due to its restricted failure assumptions.

We can eliminate the overhead by taking advantage of the periodic nature of
pre-emption points to perform the transmission of the self-directed message in

parallel with the normal processing of the replica.

procedure pre-emption_point{event_handler:procedure}:
begin
var m:message
Iif RECEIVEFROM([C, self], m)==C
then
event_handler(m)
sendto(self, null)
endif
end

Figure 57 Pre-emption Point

A self-directed message is sent at the end of every pre-emption point, as shown in
Figure 57. If no event occurs before that message is entered into the queue then the
next pre-emption point will receive that message and execution will continue. Only one
such self-directed message will be in transit at any point in time. After an event occurs,
an event message will be produced and entered into the queue. This event message will
be ordered with respect to the self—directed message. Therefore either all pre-emption
point replicas will receive the event message and respond to the event or all will receive
the self-directed message. In the latter case, the event message will be received by the
next pre-emption point. Pre-emption points implemented in this way handle
non-deterministic processing more efficiently than the method of adding ¢ to the set of

acceptable clients whenever the generic input function is called, as described earlier in

this section.

The price we pay for eliminating the overhead is the introduction of an additional

latency into the response time to an external event. The RECEIVEFROM(,m) procedure

112



f—g

referred to in Section 6.2.4 (ie no priority) is used in preference to that of Figure 55 to
avoid the transmission of yet another self-directed message which would re-introduce
the overhead we seek to eliminate. Note that a self-directed message must be sent
during initialization to prevent the first pre-emption point blocking on the call to

RECEIVEFROM([@, self], m) until the occurrence of an event.

6.4 Non-deterministic Processing

Consider the non-deterministic program segment shown in Figure 58.

t:= timer + timeval

while timer < t do
=i+ 1
send(i)

od

Figure 58 Program Segment

As it stands, such a program cannot be replicated without causing divergence of state
as the value of i at timeout need not be identical among replicas. The timeout may be
thought of as an external event and handled by one of the methods described in
Section 6.3. The pre-emption point method is preferable as it is more efficient and

there may be no input statements within the scope of the timed construct.

t = timer + timeval

schedule(alarm(l))

forever do
pre—emption_point(exit)
br=i 4+ 1
send(i)

od

Figure 59 Pre-emption Point

The action to be taken in response to a timeout message is to exit the timed construct as

shown in Figure 59 which implements the timed construct of Figure 58.
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6.5 Semaphores

It was stated in Chapter 3 that processes communicate only via message-passing.
However, some applications could be implemented more efficiently if processes
sharing a processor and having a common address space were also able to share

memory. Semaphores would typically be the mechanism used to control access to this

shared memory.

An implementation of semaphores must contain indivisible request and release
operations. In a non-replicated system they could be part of the operating system, in
the form of non-interruptable primitives or they could be provided by the underlying
hardware component. When such a system is replicated, the order in which requests are.
granted could be different in each replica and could thereafter cause a divergence of
state, It is therefore necessary to ensure that semaphore operations are indivisible

across all replicas.

A call to a semaphore primitive may be viewed as a request to a server (the operating
system) to perform some operation (lock/unlock) on a shared resource. If such a call
were translated into a2 message to a real server, then requests would be ordered by the
order process of each replica. The server would conform to the basic model of
Section 4.2, so the order in which requests were granted would be consistent among
replicas. The grant message would then be translated to form the reply to the original

call.
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6.6 Real-Time Clocks

Application programs may require access to a real-time clock. In a uni-processor
system, the application would typically call an operating system primitive which would
simply return the current value of the processor clock. In a distributed system, two
processes on distinct processors which read their own clocks at approximately the same
point in (real) time should obtain approximately the same reading. This is usually
accomplished by some form of clock synchronization [53]{54][55][56]}[57]{58][59]. In
a replicated system however, all process replicas on non-faulty processors which read
their own clocks at the same point in their execution must obtain exactly the same
reading. Evenif the clocks could be synchronized exactly, the replicas read their clocks

independently and hence could obtain inconsistent readings.

A typical clock synchronization may be performed in three stages.

stage 1 Processors cooperate to execute an interactive consistency algorithm to
ensure that all non-faulty processors have a consistent view of the

current clock values Cyg, of all other non-faulty processors.

stage 2 Each processor independently performs a deterministic calculation on

this set of values to obtain an a single agreed value Cyey.

stage 3 Each processor adds an offset to its own clock to take account of the
difference between the agreed value calculated in stage 2 and its own

value, as disseminated in stage 1 (C; = C; + (Cew - Cio))-

Thus the clocks of all non-faulty processors which participate in stage 1 are

synchronized to within some known bound e.

One possible solution to the problem of ensuring consistent clock readings among
replicas is to repeat stages 1 and 2, and use the single agreed value. However, step 3 of
the underlying clock synchronization requires the addition of an offset to the current

processor clock. Thus the synchronized clock will appear to run a little faster than
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real—time. As the clock synchronization period is reduced, to reduce e, this speed-up
becomes more pronounced. If the application requires a true real-time clock, this

method may be inappropriate.

Apparent clock speed-up is a direct result of clock synchronization. So if stages 1 and 2
were to use the unsynchronized clocks, consistent clock readings would still be

obtained but would more accurately reflect the passage of real time.

This may be accomplished by not modifying the clock in stage 3’ of the clock
synchronization algorithm, but instead merely calculating the offset. This offset would
then be added to the current clock value before dissemination in stage 1’ of the clock
synchronization algorithm but would be ignored during stage 1 of ensuring consistent

reading of the real-time clock.

Clock synchronization becomes:

stage I' Processors cooperate to execute an interactive consistency algorithm to
ensure that all non-faulty processors have a consistent view of the

current clock values (Cip + Ciof), of all other non~faulty processors.

stage 2’ Each processor independently performs a deterministic calculation on

this set of values to obtain an a single agreed value Cpey,.

stage 3’ Each processor calculates an offset to its own clock to take account of
the difference between the agreed value calculated in stage 2 and its own

value, as disseminated in stage 1 (Ciof = Cpew = (Cio + Ciof))-

Ensuring a consistent real-time clock remains:

stage 1 Processors cooperate to execute an interactive consistency algorithm to
ensure that all non-faulty processors have a consistent view of the

current clock values Cy, of all other non-faulty processors.

stage 2 Each processor independently performs a deterministic calculation on

this set of values to obtain an a single agreed value Cpew.

116



The clock may be viewed as a server providing a clock service. A call to an operating
system primitive toread the current value of the clock could cause a message to be sent
to the clock server which would ensure consistent clock readings by using the steps
outlined above. The message returned by the server would then be transformed into

the primitive return value. The clock server would also perform the clock

synchronization algorithm.

Having structured the real-time clock as a server, another method for ensuring
consistency may be used. The method is similar to the solution for timeouts (see
Section 6.2.4) and asynchronous events (see Section 6.3). The principle of this method
is to implement a logical real-time clock and to order clock read requests with respect to

ticks of that clock.

Each server replica periodically and independently attempts to send a tick message to
itself. Timing is with respect to its own independent, unsynchronized clock. When a
majority of replicas attempt to tick (see Section 4.5.2), a tick message will be majority
voted and will arrive at all the replicas. The clock server then ticks by incrementing a
clock variable. Note that the value of the clock variable will be identical to the tick

message sequence number (see Section 4.5.4).

Clock read requests arrive at the server as messages. The order processes ensure that
messages are identically ordered in all the replica queues. So read messages will be
consistently ordered with respect to fick messages, and replicas will read consistent

clock values.
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6.7 Performance

The generic input function presented in Section 6.2.4 relies on the order process, which
is implemented using an atomic broadcast protocol such as that presented in

Section 5.3.3. Such a protocol has a termination time of:

A = 28 + 2¢

where 8 is the maximum time required to transmit a message between two adjacent
processors in a triad and e is the maximum possible synchronization error between the

clocks of those processors.

Thus every message transmitted from some process P, to some other process Py, will
incur an additional latency of A, due to the actions of the order process of the
processor executing Py. However, the order process will atomically broadcast this
message as soon as it arrives at the destination processor, whether or not Py, is ready to
receive it. So if Py does not become ready until at least A, after the message arrives at

the destination processor, it would not be affected by this additional latency.

If the generic input function detects a timeout while waiting for a message, it sends a
timeout message to itself (see Section 6.2.4), This message is atomically broadcast by
the order process and therefore a further A, expires before an actual timeout can
occur. If the intended message arrives before this timeout message, no timeout will

occur. Thus the effective timeout period is:

f+ A

where ¢ is the timeout value parameter given in the call to the generic input function.

If the actual timeout period must be ¢, then the value 7 - A; must be passed as a

parameter to the generic input function. It follows therefore that timeout periods of

less than A, are not possible.
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When a process executes a prioritized input construct an additional self-directed
marker message must be sent and received before the input can take place (see

Section 6.2.5). Thus a process will be delayed by A; when executing such a construct.

External events must be converted into messages by the system. This will require an
atomic broadcast, resulting in a latency of A, before the event message becomes visible
to the process. If external events are handled using pre-emption points, implemented
as in Figure 56, there will be an overhead of A for each pre-emption point. If the time
between pre-emption points is A, there will be an event latency of between A, and

Ay + A, That is an average of:

At+_‘2l.

If however, external events are handled using pre-emption points, implemented as in
Figure 57, there will be no significant overhead but the latency will increase to

between A, and 2Ap, That is an average of:

3A,
2

Note that that the time between pre-emption points, Ap cannot be less than A, the

time taken to transmit the self-directed message.

When a process executes a non-deterministic construct such as that shown in
Figure 58 of Section 6.4, a pre-emption point must be executed every iteration, as
shown in Figure 59. Since the minimum time between pre-emption points, Ap cannot
be less than 4, the iteration rate of such a construct will be limited to 1/A,.. The
effective timeout period will be ¢ plus an additional event (timeout) message latency,

the value of which depends on which method is used to implement pre-emption points.
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That is an average of:

At-i-_%L or 3_§R.

If the execution time of the construct (minus pre-emption point) is small then the
iteration rate will be determined largely by the minimum time between pre-emption
points, Ap = A, and the event (timeout) message latency for both methods will tend

towards:

34,
2
If the actual timeout period must be t, then value passed to the alarm call in Figure 59,

must be reduced accordingly. Note that the actual timeout period may occur over a

range of values.

The semaphore server of Section 6.5 requires a request message before it will send a
grant message. Both of these messages must be atomically broadcast, so the minimum
time between the issue of a request and the receipt of grant is 2A,. Similarly the time
between the issue of a release message and receipt of a grant message by another
requesting user is 24A,. Thus there is an overhead of 2A, every time the ownership of a

resource is transferred from one user to another using semaphores.

The mutual exclusion implemented by the server is achieved by atomically
broadcasting requests. If the semaphore server is implemented on the same processor
triad as a user, then a failure of the processor would imply failure of a user replicaand a
server replica. So the grant and release messages need not be atomically broadcast and

the overhead is then reduced to A,.

Real~time clocks may be implemented using a clock server. The server may achieve
consistency by performing a clock synchronization type algorithm or by using logical

real-time clocks. In the former case, a request to read the clock will be delayed by A, for
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the request message to be ordered, and by a further A, for the agreement protocol, a

total of 2A,. In the latter case, a request to read the clock will be delayed only by A, for

the request message to be ordered.

6.8 Summary

This Chapter proposed several enhancements to the state machine model; enhanced
message selection, asynchronous external events, non-deterministic processing,
semaphores and real-time clocks. A single well-defined mechanism, the order process,

was then used to prevent state divergence.

This technique may introduce a processing or latency overhead proportional to the
atomic broadcast time, A¢ (and/or the time between pre-emption points, Ap), as
described in Section 6.7. This overhead will be invisible in many applications.
However, if it is deemed to be excessive for a given application, then either the
processing model (e.g. state machine model) or the failure assumptions (e.g fail-silent

as in Delta—-4 XPA) must be restricted.
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Chapter 7 : Non-determinism in Programming Languages

7.1 Introduction

In this section we investigate the sources of non-determinism in real systems and show
how they may be mapped onto the generic input function. Where the language dictates
synchronized communication (eg OCCAM channels) we assume the existence of a
handshake protocol which employs asynchronous communication at a lower levelT. It

is at this lower level that we consider the mappings.

7.2 OCCAM

Occam [66] is based on the process ﬁlodel of computing. A process is an independent
computation with its own program and data. Processes can communicate only through
message passing, there is no sharing of data. Messages are input from and output to
named channels. An output statement succeeds only when a process executes an input
statement on the same channel while an input statement succeeds only when a process

executes an output statement on the same channel. Thus communication is

synchronized.

The ALT construct, shown in Figure 60, is composed of a number of input statements,
only one of which may succeed. Each input statement is followed by an action
statement. An action statement is executed if and when its corresponding input
statement succeeds. If more than one alternative is ready when the ALT construct is
executed, selection between them is arbitrary. One of the input statements may be

replaced by either a SKIP statement, which succeeds immediately if no other input can

1 This must be true of any distributed implementation of such a language and is not peculiar to replicated

systems.
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succeed or, a watchdog timer input statement, which succeeds if no other input
statement succeeds before completion of the specified period. The SKIP statement is

therefore equivalent to a timer input statement with a zero time value.

CHAN chan,, chan; :
TIMER clock :
INT n, start:
SEQ
clock ? start
ALT
chan; 7 n
action;(n)
chanj n
actiony(n)
clock ? AFTER start PLUS t
altaction()

Figure 60 The ALT Construct

The ALT construct may be transformed into the generic input function
receivefrom(¥, m, 1), by mapping each channel onto a member client of the set ¥ and the
watchdog input time value onto the time parameter t. The value returned by

receivefrom(f, m, 1) is mapped onto the selection of an action() or the aitaction() (timeout).

Priority based on channels may be expressed by the PRI ALT construct. The PRI ALT
construct may be transformed into the generic input function by additionally mapping
the lexical order of each input statement onto the priority of the message received on

the specified channel.
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7.3 Ada

Concurrency in Ada [67] can be expressed using the client/server model of computing.
An Ada task, which may act as both a client and a server, is an independent
computation with its own program and data. A task advertises its services as a
collection of entry procedures¥. Tasks communicate by calling each others entry
procedures. A call to an entry procedure succeeds only when the recipient executes an

accept statement for that entry procedure. An accept statement succeeds only when the

task server Is
entry service;();

entry service();
end server;

task body serveris
begin
select
accept sarvicg() do
action();
end,
or
accept service() do
action;();
end;
or
delay <period>;
altaction();
end select;
end server;

Figure 61 The Select Statement {accept)

specified entry procedure is called by another task. Thus the two tasks come together

at what is called a rendezvous. The client must specify the server entry procedure.

1 Tasks may also communicate via local copies of shared variables but the possibility of a successful imple-
mentation of this facility in a distributed environment is questionable.
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However, while the server has control over which entry procedure is accepted, it

cannot even identify let alone specify the client.

The select statement, shown in Figure 61, may be composed of a number of accept
statements, only one of which may succeed. Each accept statement may be followed by
an action statement. An action statement is executed if and when its accept statement
succeeds. One of the accept statements may be replaced by either an else statement,
which succeeds immediately if no other accept can succeed or, a delay statement, which
succeeds if no other accept statement succeeds before completion of the specified
period. The else statement is therefore equivalent to a delay statement with a zero time
value. If more than one entry call is pending when the select statement is executed,

selection between the accept statements is arbitrary.

task client is.
end client;

task body client Is
begin
select
server.servicey);
action;();
or
server.service),
actiony();
or
delay <pefiod>;
altaction();
end select;
end server;

Figure 62 The Select Statemnent (entry call)

The select statement may be transformed into the generic input function
receivefrom(¢, m, ty by mapping each accept statement onto a member client of the set ¢
and the delay statement time value onto the time parameter t. The value returned by

receivefrom(f, m, t) is mapped onto the selection of an action;() or the aitaction(.
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A task may also use a select statement to time its entry calls as shown in Figure 62.

The mapping onto the generic input function receivefrom(¢, m, 1} in this case is not so
clear, as the client performs no explicit input. However, the implementation of a
rendezvous must employ some protocol using messages between the client and server
as shown in Figure 63. The client timeout is then set on the request accepted message.

Client Server

request enfry
v

request aecepted

et
request confirmed/aborted
s

resudts returned

Figure 63 The Rendezvous Protocol

The select statement with entry calls may therefore be transformed into the generic
input function by mapping the input of each request accepted message onto a member
client of the set ¥ and the deiay statement time value onto the time parameter . The
value returned by receivefrom(s, m, 1) is mapped onto the selection of an action;} or the

altaction() (timeout).
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7.4 Other Languages

In addition to OCCAM and ADA, we have also investigated the sources of
non-determinism in Fault-Tolerant Concurrent C (FTCC) [68]. The message
input~output constructs of this language are a mixture of those present in the two

languages considered here, thus can be mapped onto the generic input function.

Concurrent programs are often composed of separately compiled modules written in a
sequential language (e.g. C) which interact by calling communication primitives
provided by an underlying operating system. The Unix system for example, provides a

select primitive for message selection; its functionality is broadly similar to the select

construct of ADA.

7.5 Summary

This section presented a number of programming constructs taken from current
programming languages which are potential sources of non-determinism and showed
how they could be mapped onto the Generic Input Function. Because state divergence
can be prevented when using the Generic Input Function, as shown in Section 6.2.4, it
can also be prevented when éxecuting the example constructs. Such mappings could be
performed by a pre—processor to allow the automatic distribution of a program written

in a conventional programming language.
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Chapter 8 : Software Architecture of a TMR Node

8.1 Introduction

This section presents a proposal for a software architecture to support the replicated
processing system based on the architecture of Chapter 4. The design will incorporate
the order process and generic input function as a mechanism for the prevention of state
divergence. The Unix-like operating system called Helios [69] will be used to illustrate
how the mechanisms discussed in this thesis can be impiémented. We will assume that

the application programs follow a modular, object—oriented style.

Helios supports the client/server model for the structuring of application
programs [70], as described in Section 8.2. However, the amount of work involved in
establishing and maintaining this model is not negligible. When applications are
written in a high~level object-oriented language such as C+ + [71], an abstract view
of this model which hides the complexities of client/server creation and
communication would be beneficial to the programmer. Such an abstraction can be
implemented as a number of C+ + class types from which application classes may be
derived (see Appendix A, which gives the details of one such working

implementation).

The client/server model also provides a convenient tool for the implementation of the
various mechanisms described in this thesis. By incorporating a queue into the data
part of the server (see Figure 64 and Appendix A), the structures of Figure 35 and
Figure 44 may be implemented using a single queue_server type as described in the
following sections. The generic input function of Section 6.2.4 becomes an additional
member function of the server implementing VMQ. The system may then be used to
prevent state divergence in application programs by performing a mapping of the

application program onto the generic input function as described in Chapter 7.
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8.2 The Helios Operating System

ATask as defined by Helios is a self-contained program unit which has been separately
compiled and linked. A task may be multi-threaded but all threads share the same data

space and are constrained to run on the same processor.

An application may be structured as a set of tasks (task force) which communicate
using facilities provided by Helios. True concurrency may then be obtained by

distributing the task force over several processors.

There are three distinct ways in which a task force may be structured; using pipes, using
the Component Distribution Language (CDL) and using clients and servers. In
general, the choice of method for a particular application must balance the flexibility

of the solution against the complexity of its implementation.

Both pipes and CDL use streams {stdin, stdout etc.) for inter-task communication and
produce static software architectures. Clients communicate with named servers using
Helios primitives. So an application program using clients and servers provides a more

dynamic software architecture.

Helios itself is based on the client/server model. Server tasks are provided by Helios to
control access to system resources such as screens, keyboards and disks and usually
reside on the processor closest to the resource that they manage. Application
programs act as clients to these servers by sending requests and receiving replies
(Remote Procedure Calls [70]) and may be located anywhere in the processor network.
A client task may send requests to many servers during its lifetime, so the structure of
the Helios+ application task force is continually changing under the direct control of
the application. Fortunately, all the mechanisms used by Helios to provide the

client/server framework are also made available to application task forces.

There are three main parts to a typical server as shown in Figure 64. The Active part

corresponds to the main body of a conventional single-threaded task. It continues to
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execute during the lifetime of the server. The Data part corresponds to the data space
of the task. The Passive part which also has access to the Data Part distinguishes a
server from any other task. Whenever a request is received from a new client, a2 new
thread is spawned by the Helios dispatcher to deal with it. The code for the thread (the
Passive part) is provided by the application but invoked automatically by Helios and
may be thought of as a Remote Procedure Call (RPC) handler. In general, the passive
part will continue to exist after completion of the RPC, remaining dormant (hence the
name passive) until a further request is received from the same client. When the client
has no further use for the server, the connection is broken and the RPC handler

destroyed. If requests are received from a number of clients, a separate RPC handler is

spawned for each client.

Active Part

Passive Part

Data Part,”

"Figure 64 A Helios Server with Clients

The sequence of actions which comprise a typical client/server interaction are shown
by Figure 65. The name of the new server (screen) is passed by the Active Part to the
name server along with a port descriptor, then a dispatcher process is spawned to listen
on that port. Thereafter, a locate request issued by a prospective client returns the
server’s port descriptor. On receipt of an open request, the dispatcher spawns a new
Passive Part which returns a unique port descriptor to the client, to be used in all future
requests. Aremote procedure call is implemented using two messages; a request from
client to server followed by a reply from server to client. When the client has no further

use for the server, a special kill message causes the Passive Part to terminate.

130



Client name server Active Part

 Create(screen; server_port)
spawn dispatcher -

Dispatcher
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Figure 65 Client/Server Communication

8.3 Software Structure Overview

The software structure of Figure 35 may be represented by the block diagram of
Figure 66 (intermediate nodes are not considered at this stage). The dual signature
service (DSS) corresponds to the voter process, the meésage distribution service
(MDS) to the destination receiver process and the order process service (OPS) to the

order process.

When an application process wishes to make an RPC to a named service, it declares a
queue_client. The queue_client establishes a connection to the local DSS. The local
DSS establishes a connection to the remote MDS on the destination processor. The
remote MDS is connected to the remote OPS. Finally the remote OPS establishes a

client connection to the named service (queue_server).

The RPC is sent (in the form of a message) to the DSS, which generates a
double-signed message, as described in Figure 39 (and Figure 36). The double signed
message, into which the name of the service has been encoded, is sent to the MDS. The

MDS distributes the message to its neighbours using the algorithm described in
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Figure 40. One copy is sent to the OPS. The OPS performs the atomic broadcast
algorithm of Figure 47, before decoding the name of the service and delivering the
message (to the VMQ of the queue_server). A similar procedure must be followed to

return the RPC reply to the client.

Figure 66 Software Block Diagram

All three services DSS, MDS and OPS require communication between neighbouring
processors within a triad. They could simply communicate using Helios, but there are
sound reasons why such an approach is undesirable. The powerful client/server
connection described above, is not needed. A simpler, more efficient mechanism
could be devised which takes advantage of the direct connection. This would improve
the performance of the clock synchronization algorithm and hence the atomic
broadcast, upon which the mechanisms used to implement the enhanced processing

model of this thesis depend.

All intra-node message traffic will now be handled directly, without recourse to
Helios. There must therefore be a neighbour communication service (NCS), as shown

in Figure 67. The NCS will use the same client/server interface as the rest of the system
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when communicating with the other services but will use its own methods for

communicating within the triad on behalf of those services.

Figure 67 The Neighbour Communication Service

When an service wishes to send a message to a named service on a neighbouring
processor within the triad, it declares a queue_client. The queue_client establishes a
connection to the local NCS. The local NCS establishes a connection to the NCS on
the neighbouring processor. Finally the neighbouring NCS establishes a client

connection to the named service.

The message is sent to the local NCS, which appends the name of the service. The
message s then sent to the neighbouring NCS which extracts the name and delivers the

message to the service.

The encoding and decoding of the names of services will be performed by classes
derived from the queue_client and queue_server classes, and bearing the same user
interface. In this way, users of the facility will imagine that they are directly connected,

and algorithms may be written without regard to actual locations.
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There will also be a need for a fifth service, the clock synchronization service (CSS)
which will be responsible for maintaining the synchronization of the processor clocks

within the triad.

8.4 The Queue Server

When a task declares a service (an instance of a queue_server) (see Section A.4), the
result may be represented by the functional diagram of Figure 68. Messages received
from clients are placed at the back of the queue. The message at the front of the queue

is removed by calling a pop operation on the queue_server object.

Server

Figure 68 Queue Server

A task may declare more than one service (queue_server) as shown in Figure 69. A
message is removed from a particular queue by invoking a pop operation on the

appropriate queue_server object.

Figure 69 Double Queue Server
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8.5 Building with Queue Servers

The block diagram of Figure 67 may now be redrawn as a complete functional

diagram, as shown in Figure 70.

Figure 70 The Complete Functional Diagram
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All services provide a queue for messages from their neighbouring counterparts (via
NCS) and a client connection for sending messages to their neighbours’ queues (via

NCS). If we represent A uses B by A> B then:

Figure 71 Order Process Implementation

service > NCS > NCS > service

All services (except CSS) provide a queue for messages from their clients and a client
connection for sending messages to the queues of the services they use. If we represent

A uses B by A> B then:

application_client > DSS > MDS > OPS > application_service

It may be desirable when implementing some of the services to use multiple threads. In
such a case, each thread could advertise its own service by declaring a queue_server.
This would allow the service structure to be designed in a way which reflects its logical

construction. For example, in the order process structure of Figure 44, reproduced in
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Figure 71, the start and relay processes must communicate within the triad. A logical

solution 1s to place a queue at each point of input.

Thus an arbitrary structure can be built using the queue_server as a building block
thereby allowing the designer of the service to concentrate on algorithms without

considering the intricacies of implementation.

8.6 Summary

This section has presented the proposed design of a TMR node. The major
building-blocks, the client/server classes have been implemented and the generic input
function has been tested under the assumption that order is available. A complete
implementation is now being developed by a project group consisting of the author

and several colleagues.
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Chapter 9 : Concluding Remarks

This thesis began by introducing the state machine as a model for active replicated
processing and showed how the consistent message ordering requirement of the
replicated state machine could be achieved using a solution to the interactive
consistency problem. Interactive consistency was then examined in more detail using
the well-known Byzantine Generals Problem analogy and several solutions to the
problem were presented. Expansion of the state machine model to incorporate
non-determinism was considered, to show that consistent message ordering alone is

not sufficient to prévent state divergence among process replicas.

Arange of existing system architectures were then presented to show how they prevent
state divergence by either using passive replication techniques, by constraining
processes to be deterministic, by using hardware support to execute processes in

lock-step or by executing agreement protocols.

The new architecture of a multi-processor distributed system was then proposed, to
support active replicated processing using TMR techniques and tolerate the arbitrary
failure of one processor per TMR node. Several important issues were addressed, such
as the use of digital signatures and the detection of duplicate messages. A degenerate

form of the node was developed to have fail-silent semantics.

The order process was introduced as a mechanism for preventing state divergence in
processes which conform to the state machine model. Implementation of the order

process was considered using protocols which tolerate various classes of failure.

The order process was then used to prevent state divergence in an enhanced processing
model which incorporates more complex message selection criteria, as expressed by
the generic input function, asynchronous external events, non-deterministic

processing, semaphores and real-time clocks.
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A number of programming languages were investigated for constructs which could be
potential sources of non—determinism and thus cause state divergence among process
replicas. It was then shown how such constructs could be mapped onto the generic input

function for which a solution had already been presented.

This thesis has presented a generic mechanism (the order process and generic input
function) for the prevention of state divergence when applying NMR techniques to
achieve fault-tolerance in highly safety~critical distributed systems. The mechanism
will support an enhanced processing model (superior to the state machine model)
while tolerating various types of processor faults up to and including arbitrary
(Byzantine) faults. This is a significant advance on existing systems which restrict either
the processing model (as in SIFT [28]) or the fault model (as in Tandem). A particularly
important enhancement to the processing model is the incorporation of asynchronous
external events which makes the mechanism suitable for real-time systems such as

railway signalling {79} and nuclear power plant control [38].

The same mechanisms may also be used with a degenerate form of the TMR node
architecture to construct processors with fail-silent semantics [13} and other
fail-controlled processor architectures [12], as discussed in Section 4.6. Such

processors can be used as building blocks for architectures such as Delta-4 XPA.

The mechanism does not assume any particular type of processor interconnection
network (unlike SIFT and FTMP) and does not require any special hardware (unlike
Delta-4 which requires a fail-silent NAC). Thus the mechanism may be used to
incorporate fault-tolerance into any existing non-replicated multiprocessor

architecture.

The generic mechanism requires processor clock synchronization only between
members of a triad (to implement the atomic broadcast), so there is no need for global
clock synchronization (as in other systems such as SIFT) and the mechanism is

therefore suitable for massively parallel systems. This is due largely to the use of logical
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clocks to determine the age of messages and to the confinement of atomic broadcast

protocols to within a triad of directly connected processors.

The confinement of atomic broadcast protocols also reduces their termination time A,
by reducing 8, the time taken to transmit a message between participating processors
and reducing €, the synchronization error between the clocks of those processors (see
Section 5.3.4). Since the overheads introduced by the mechanism are proportional to
A, (see Section 6.7), the confinement also greatly improves the mechanism’s

performance.

If the performance of the mechanism is insufficient for a particular application, then
either the underlying fault model should be restricted, as in the Delta—4 system
[46][47], thereby simplifying the atomic broadcast protocol and reducing A,, or the
computational model should be made deterministic, as in SIFT [17][19][28] or
specialized hardware support should be used, as in FTMP [17][19][34], to limit the

need for complex protocols.

If the fail-silent assumption for processes is made, then optimized solutions are
possible; for example, the approach of forcing the decision of one replicate onto the
others could be adopted, thereby preventing state divergence. Such an approach has
been suggested for FTCC [72] and the leader—follower model for DELTA-4 XPA
[50]{51][52]. However, when the abstraction of fail-silence is implemented using
fail-arbitrary processors (as in Sequoia [24][25]]27] and Stratus [15][16][18]), the
mechanism must be re-introduced (see Section 4.6). The current practice is to employ
specialized hardware solutions. The fail-silent architecture made possible using the

mechanisms of this thesis provides an alternative approach.

One possible development of the architecture proposed in this thesis is the
incorporation of hardware support to drastically reduce A, and hence greatly improve
system performance. This hardware need not be complex as clock synchronization and

atomic broadcast take place only within the confines of the processor triad. Taken to
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the extreme, the processors of a triad could be tightly synchronized to execute
processes in lock-step (as in FTMP) and asynchronous events synchronized to the
processor instruction stream. Note however, that when applied to the system proposed

in this thesis, only synchronization within the triad is required.

This thesis has presented a general-purpose software architecture and supporting
mechanisms for building arbitrarily large replicated systems. More practical results are
needed to evaluate the performance implications of the approach in an industrial

setting. To this end, work is currently underway as part of the Delta-4 project.
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Appendix A : A C+ + Interface to Clients and Servers

A.1 Introduction

[10] The Helios Server of Figure 64 may be implemented in C+ + as a task which
declares an instance of a class. The Data Part is represented by the private class data
members and the Passive Part by a private class member function. The Active Part is
represented by the body of the task, accessing the Data Part via public class member

functions.

In a typical application there will be a need for several distinct server types. Although
their functions may vary widely, their basic structure is identical. It makes sense
therefore to encapsulate this structure into a Base_server class from which individual
server class types may then be derived. Similarly, the mechanisms by which a client may
connect to and communicate with a server may be encapsulated within a Base_cient

class.

A.2 The Base Classes

The base classes are responsible for making, maintaining and breaking the
client/server connection. The interface between the base classes and the derived

classes consists of a single well-defined operation in each case (RPC_call,

typedef struct {
unsigned short  DataSize;
unsigned char ContSlze;
word *Controi;
byte *Data;
} Message_Block;

Figure 72 Message_Block
RPC_handler) with a consistent parameter (message block, of Figure 72). The derived

classes are responsible for the mapping of individual procedure calls onto this
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interface). In addition the derived server provides the target procedures which

implement the server passive part of Figure 64,

class Base_Server

{ typedef struct UserDlspatchinfo {
Dispatchinf Info;
Base_Server *that;}:

ObjNode objnode;

Nameinfo nameinfo;

UserDispatchinfo userinfo;

struct Object *sorver_obj;
public:

Base_Server{char *);

“Base_Server();

vold do_open(Servinfo *);

virtuat voild  RPC_handler
(Megssage Block *) = 0;

virtua! Message_Block
*give_block{} = 0;}

Figure 73 The Base_Server Declaration

The Base_server class declaration is shown in Figure 73. The class data elements
comprise all that is necessary to maintain the server and are hidden from the derived
class. The public interface specifies that the derived class must supply two functions;
the RPC_handier and give_biook. The function de_open must be public for reasons explained

later in this section.

To establish a server, two actions must be performed. Firstly, a dispatcher process must
be created to spawn a new Passive Part process on receipt of an openrequest from each
new client. Secondly, the server must identify itself to the Helios name server so that it
may be located by a prospective client. This may be accomplished by the class

constructor as shown in Figure 74.

Consider first the action of identification. The server name, as passed to the
constructor, is entered into the Helios name table by a call to create. One of the
parameters to Create is a nameinfo structure. One of the elements of nameinfo is a port
descriptor called nameport. This port descriptor, which corresponds to server_port in

Figure 65, is passed back to the client in response to a Locate server request. The same
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Base_Server::Base_Server(char *name)

{

/i’itiiﬁtittit"tlitbititiﬁittifﬁllii‘i/

/* Prepare Information for the dispatcher */

,tiiti!iilﬁttitatﬁﬁiitt*tt'iittitiittii/

initNode (&objnode, &(name{0]}, Type_Fle, 0,
DefFileMatrix);

Dispatchinfo *Info = {Digpatchinfo *)&userinfo;

info->Rcot = {DirNode *) &objhode;

info->ReqPort = NewPort();

Info->SubSys = 8§ _NuliDevice;

Info->ParentName = NULL;

info—>PrivateProtocol.Fn = NULL;

Info->PrivateProtocol. StackSize = 0;

for {Int i=0; IKIOCFns; H+)

{ Info->Fnmtabli}.Fn = (VoidFnPtr)invalidFn;

info->Fntab[i] .StackSize = 2000;

1§

info->Fntab[0] .Fn = {VoidFnPtr)inter_do_open;

Info->Fntab[0].StackSize = 5000;

info->Fntab[2}.Fn = (VoidFnPtriDolLocate;

info->Fntab{3] .Fn = {VoldFnPtr)DoObjinfo;

userinfo._that = this;

Fork(2000, (VoldFnPtr}Dispatch, 4, info);

’ﬁttt*titttﬁ'titll.ill!i.ﬁll‘ii‘li‘il'*t'ﬁ*l

/* Enter the server into the Heliosname table */

Itliii’*i*i'Ii’ii'!i*iﬂtiitiitiitii*i.iilli!

nameinfo.NamePort = info->ReqPort;
nameinfo,Flags = Flags_StripName;
nameinfe.NameMatrix = DefFileMatrix;
nameinfo.l.oadData = NULL;
struct Object “sysroot =
Locate{Null{struct Object), "/");
server_obj = Create({sysroot, name, Type_Name,
sizeof (Namelnfe}, (byte *)&nameinfo};
Close((struct Stream *)sysroot);

}
Base_Server::"Base_Server|()

{

FreePort{nameinfo.NamePort);
Delete{server_obj, ""};

}

Figure 74 The Base_Server Class Con-

structor and Destructor
port descriptor is passed to the dispatcher process as the Regrort element of the info

structure.

The dispatcher is created by forking a process. The function table within the info
structure tells the dispatcher which function to call on receipt of a particular type of
request such as open,Rename, Link, etc.. The entry for open requests points to a function

called inter_do_open which must implement the Passive Part.

Interpretation of RPCs and generation of replies is the responsibility of the derived

class. However, lower-level functions such as the reception, interpretation and
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transmission of Helios messages may be handled by the Base_server to contain

unnecessary detail.

The Base_server’s Passive Part is implemented by the do_open class member function.
Unfortunately, class member functions cannot be called directly by Helios (a ‘C’
world) as it has no way of initializing the implicit tns pointer parameter. Instead, the tnis

pointer is passed to inter_do_open (a ‘C’ function) explicitly by casting an additional

vold inter_do_open(Servinfo *servinfo)

{
{{({UserDispatchinfo *)servinfo->info)

->that}->do_open) (servinfo);
}
Figure 75 Calling a Class Member Function

element to the info structure (userinfo.that in Figure 74). This pointer can then be
extracted from the servinfo parameter (by casting) to call the do_open member function of
the appropriate class instance as shown in Figure 75. To the do_open function, this

indirection is invisible.
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The do_open function, as shown in Figure 76, begins by returning the request port

descriptor to the client.

void

{

}

Base_Server::do_open(Servinfo *servinfo}

/Bi!*ttﬁ*lttltiti*‘iitiittl.!ﬁti..ﬁ*i.iiiil

/* Reply to 'open’ command *f
j*ttﬁ*ttnttﬁﬁtﬁn.i*tittﬁtit.ltbttﬁtiiihiii[
MsgBuf *r = New(struct MsgBuf};

FormOpenReply (r,servinfo->m, {struct ObjNode *)
userinfo.info.Root, Flags_Server,

sorvinfo->Pathname};
Portrequest_port = NewPort{)};
r->mcb. MCBMsgHdr. Reply = request_port;

PutMsg(&r->mcb) ;
Free(r); UnLockTarget| servinfo );

/*i.tiiit"iQtli!*ti..iil‘ti’lit'il*tﬁt*ﬂ*,

i*  GContinue to direct RPC requests */
/*ﬁ*i**tiltt‘tﬁt'hti*itttitttttiiititltili!
MCB mch;

word function_code;

Message_Block *mb = give_block();

meb, Timeout . =-1;

meb, Controt = mb->Control;
meb.Data = mb->Data;
meb.MCBMsgHdr. Dest = request_port;

while ({GetMsg{&mcb) >= 0}

&& {{function_code = mcb.MCBMsgHdr.FnRe
& FG_Mask) 1= FG_Close))

{ mb->ContSize= mcb.MCBMsgHdr.ContSize;
mb->DataSkze= mcbh.MCBMsgHdr.DataSize:
if (function_code == FG_Write)

{ RPC_handler{mb);
mch, MCBMsgHdr. ContSize
= mb->ContSize;
mcb. MCBMsgHdr.DataSize
. = mb->DataSize;
mcb. Control = mb->Control;
mcb.Data = mb->Data;
mcb.MCBMsgHdr.Dest
= mch.MCBMsgHdr. Reply;
PutMsg{&mcb);}
mcb.MCBMsgHdr. Dest = request_port:}

FresPort{request_port}:delete{mb->Control};

deleta (mb->Data) delete{mb]};

return;

Figure 76 The Base_Server Passive Part

It then continues to direct RPC requests (function_code == FG_Write) to the

handler and returns RPC replies to the client until a terminating message is received

(function_code = =

FG_Close). It then commits suicide. The call to get_block is to allow

the size of the first message block to be determined by the derived class. Note that the

message block which is returned by the handler containing the RPC reply is re-used to
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store the following RPC request. It is the responsibility of the derived class to ensure

that the size of this block is sufficient to contain the largest possible request.

The Base_ciient class declaration is shown in Figure 77. The class data elements
comprise all that is necessary to maintain the server connection and are hidden from
the derived class. The public interface consists of a single function (rRpc_car). When a
client calls this function with a given message block the RPC_nandier of the server is
invoked with that block. Any reply generated by the server is returned to the client
caller in the same block.

class Base_Client

{

Port reply_port;

struct Stream *server;

MCB mcb;
public:

Base_Client{char *);

“Base_Clent{):

veid APC_cali{Message_Block *);
b

Figure 77 The Base_Client Declaration

To connect a client to a server, two actions are necessary. Firstly the server must be
located, secondly an open request must be sent to the server to spawn an RPC_hander.
This may be accomplishedusihg the class constructor as shown in Figure 78. The
server port descriptor is contained within the severob) structure returned by the tocata
request. The request port descriptor is contained within the server structure returned
by the open request. The latter is maintained as a class data element for the use of

private member functions.
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To break a client server connection, a special message must be sent to kill the server

Passive Part for that particular client (function_code = = FG_Close). This may be

accomplished by the class destructor, also shown in Figure 78.

Bage_Cllent::Base_Client{char *name)

{

/tiiﬁAiiili.i.i’iiiiﬂit.’ittiit’

/*  Find the server, */
liti&ti&l!tal#.iiiﬁtt&tt.ti!t‘i/
struct Object *sysroot;

struct Object "serverob|;

sysroot = Locate(
Nult{struet Oblect), "/");
serverobj = L.ocate(sysroot, nams);

Closa({Stream *}sysroot);

/ﬁtt.ﬁiQiﬁ*iittit!iiliiﬁii‘ttti/

/* Open a connection to the serve*/
/*i*tttt*ttnt.iltttittitii.étii’
server = Open(serverobi,
Nulf{char}, O_ReadWrite);
reply_port = NewPort();
Close((Stream *)serverobj);

Base_Client::"Base_Client(}

{

}

INtMCB (&meb, MsgHdr_Flags_preserve,
server->Server, reply_port, FG_Close);

mecb.MCBMsgHdr.DataSize =0;
mcb.Data = NULL;
mcb.MCBMsghHdr.ContSize =0;
mcb. Control = NULL;
PutMsg{&mch);

Closa(server);

FreePort(repiy_port};

Figure 78 The Base_Client Constructor and Destructor

Generation of an rpc_cak and interpretation of the reply is the responsibility of the

derived class. However, as with the Base_server, low~level message passing may be

handled by the Base_client.
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The Base_ctient class provides an rpc_can function to send an RPC request using the
FG_Write function_code then return the RPC reply to the caller, as shown in
Figure 79. Note that the message block which contains the RPC request is re-used to
store the RPC reply. It is the responsibility of the derived class to ensure that the size of

this block is sufficient to contain the largest possible reply.

void Base_Client::RPC_call(Message_Block *mb)
{
IntMCB (&mcb, MsgHdr_Flags _preserve,
server->Server, reply_port, FG_Write);

mch.MCBMsgHdr.DataSize = mb->DataSize;
mcb.Data = mb->Data;
mcb.MCBMsgHdr. ContSlze = mb->ContSiza;
mcb.Control = mb->Control;
PutMsg{a&mob):

meb . MCBMsgHdr.Dest = reply_port;
GetMsg{&mcb);

mb->DataSize = meb.MCBMsgHdr.DataSize;
mb->Data = mcb.Data;

mb->ContSize = mech.MCBMsgHdr.ContSize;
mb->Control = mch.Control;

}
Figure 79 Making a Remote Procedure Call

A.3 The Derived Classes

An implementation of an example Queue class pair is now presented to illustrate the
use of the base classes.

typedef struct Queus_Obj

{ List st;

Semaphore access;
Semaphore not_empty;};

Figure 80 The Queue Object
The queve_ob; (Figure 80) employs the Helios structured types, Ust and semaphore. The
access semaphore is used to control access to the List to prevent a conflict between the
active and passive parts of the server. The not_empty semaphore allows the active part to
wait for data without consuming processor time. This technique should be used

wherever a data structure must be shared between the active and passive parts of the

SErver.
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Both the aueue_client and queus_server rely on the constructors and destructors of the base
classes for server and connection creation and management. They need only create

and manage their own data structures, as shown in Figure 81.

Queue_Server::Queue_Server
(char *name):Base_Servar(name)

{ inktList{&qusue_obj.list);
InitSemaphore{&queue_obj.access, 1};
InitSemaphore { &queue_ob}.not_empty, 0);)

Queue_Cllent: :Queus_Client
{char *name):Base_Cllent(name)
{ mb = new(Message_Block);}

Figure 81 The Derived Class Constructors

The queue example implements two RPC*s; reverse and push. They are encoded into a

message by the client, as shown for push in Figure 82. They are then decoded by the

void Queue_Cilient:.push{char *message)

{ word rpc= RPC_Push_Quesue;
mb->ContSize =1;
mb-—>Control = &rpe;
mb->DataSize = strien{rmessage)+1;
mb->Data = message;
RPC_callimb};}

Figure 82 Encoding the RPC

server to vector control to the appropriate function as shown in Figure 83.
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.

The RPC reply is generated by allowing the function to directly manipulate the data

part of the message block via the message pointer it receives as a parameter.

void Queue_Server::RPC_handler (Message_Block *mb)
{ word rpc = *(mb->Control};
if {rpe == RPC_Reverse_Queue)
reverse(mb->Data);
else If {rpc == APC_Push_Quaua)
push(mb->Data);

%ypedef struct Entry
{ Node node;
char *message;};

void Queue_Server::push(char *massags}

{ Entry *next_entry = new(struct Entry);
int length = strlen(message)+1;
next_entry->message = new{charflength]);
sprintf{next_sntry—>message,” %8&" ,message);
Walt{&queue_obj.access);
AddHead{&queue_obi}.list, &next_sntry->node);
Signal{ &queue_ob}. access);
Signal{&queue_obj,not_ampty);}

vold Queue_Server: :reverse(char *message)
{ intlength = strlen{message};
for (Inti=0; I <length/2; 1++}
{
char hold;
heold = messageli};
message [i] = messagsilength - | - 1];
message [length-i-1] = hold;
1

Figure 83 Decoding and Performing the
RPC

A pop function is provided for the use of the Active Part of the server (Figure 84). Note

char *Queue_Server::popl}
{ struct Entry ‘*next_entry;
char *message,;
Wait { &queue_ob].not_empty};
Walt{&gueue_obj.access);
next_sntry =
{struct Entry *) RemTall{&queue_obj.list};
Signal(&gueue_obj.access);
message = next_entry->message;
Free(next_entry);
returnimessage):}

Figure 84 Active Part Access Function

that in the case of a non-empty queue, the Active Part is forced to wait on a semaphore

to avoid consuming processor time,
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A.4 Using the C+ + Interface

The following program segments show how client/server interface objects are used to
communicate between processes. A queus_server is created by declaring an instance of
the Queue_server class as shown in Figure 85. The body of this program implements the
server active part. Messages which have been placed in the queue in response to a push
RPC are removed by the pop function and displayed on the screen. The name of the

server (to be entered in the Helios name table) is derived from the command line used

to invoke the program (argv[1]).

Int main{int argc, char *argv|])
{
i {arge 1= 2} {printf{"llegal
number of parameters\n”);return{0}:};
Queue_Server scraen{argv[1});
char *message;
do
{
message = scraen.popi{);
printf("Message I8 %s\n" .message);

}

while (strien{message) > 1);

Figure 85 A Queue Server

A queue_Ciient is created by declaring an instance of the cueuve_chient class as shown in
Figure 86. The name of the server to which the client must be attached is derived from

the command line used to invoke the program (argv[1]). A string derived from the

Int main{int arge, char *argv[})

{
if {arge != 3) {printf{"illoga}

nurnber of parameters\n"};return(0);};

Queue_Cllent screen(argv(i]);
char *message = new(char[20}};
sprintf{message, %8, argv[2});
screen.push{message):
3jcreen.reverse{message};
screen.push{message);

Figure 86 A Queue Client

second command-line parameter is sent to the server, reversed, then sent again. This
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causes the string to be displayed twice on the screen associated with the server; once as

normal and once reversed.

A.5 Summary

The base classes provide a convenient interface which encapsulates the
application-independent aspects of Helios servers. The application programmer need
only be concerned with the server data structures and their manipulation through
RPCs as shown in the queue example of Section A.3. The derived classes show how the
base classes may be used in a typical application. The queue_server (less the reverse
function) in fact fbrms the basic building block for the implementation of the
mechanisms described in this thesis (see Chapter 8). The derived classes are then used'

by declaring objects of type queue_client and queue_server.

Although at present the client/server structure is explicitly defined in the form of two
separate programs (see Section A.4), it may in future be derived automatically. A
standard C+ + program will be processed by a stub generator [ 73] which will convert
classes into servers and map invocations of class member functions onto calls to
member functions of a corresponding client class. This would allow an arbitrary C + +

program to be distributed across a network of processors running Helios.
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