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ABSTRACT

In planning orthopaedic procedures or designing joint replacements for the upper

limb, detailed knowledge on the kinematic and dynamic behaviour of the shoulder,

elbow and wrist joints during the performance of everyday tasks is essential.

Previous studies have included kinematic analyses of everyday activities

involved in feeding and personal hygiene though none have included both the

kinematic and dynamic analyses of these tasks. This study has involved the

development, validation and application of experimental methods and analysis

techniques, enabling the measurement and modelling of upper limb kinematics and

dynamics.

A four camera video-based motion analysis system was used to track

reflective spheres attached at specific locations on the upper limb and trunk. Novel

methods for the definition of the embedded trunk frame and glenohumeral rotation

centre were incorporated. Joint attitudes, cadences, angular velocities and angular

accelerations were calculated prior to the determination of external forces and

moments through the dynamic modelling of the upper limb.

The procedures developed have been validated against known

measurements and the results of previous studies. These have been applied to

obtain kinematic and dynamic data from unimpaired subjects and subjects with

shoulder impairment during performance of ten everyday tasks involved in feeding,

personal hygiene and the use of everyday objects.

Elbow and shoulder flexion were found to be the primary components for the

successful completion of the selected tasks.

Reaching to the opposite side of the neck was identified as being the most

complex of the activities tested in terms of rotation at the shoulder and elbow.

Characteristic patterns of motion at the joints of the upper limb were identified

during anterior targeted lifting.

Differences in performance between the unimpaired and impaired subjects

were identified, particularly in the results for cadence and the individual joint

velocities and accelerations.
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CHAPTER 1: INTRODUCTION

1.1 Foreword

The measurement of human motion involves obtaining and comparing

the position and orientation of the involved limb segments during movement.

The relative motion between these segments may be described in terms of the

kinematic descriptors; joint angles and linear and angular velocities and

accelerations.

External forces and moments at or around the joints may be calculated

by combining information on the mass of the limb segments and any additional

load with the kinematic results. These forces and moments are the dynamic or

kinetic descriptors of human motion, relating segment motion to its causes.

Knowing the external kinematics and dynamics, properties such as the

moments and contact forces at each of the joints may be obtained through

calculation of the associated muscle forces. The measurement and modelling

of such parameters for the lower limb have been performed extensively to

determine the loading cycle and kinematics of the hip and knee during gait.

Less frequently studied, probably due to its complexity, have been the

same properties of upper limb motion. Upper limb joints and particularly the

shoulder, are subjected to larger ranges of motion than the lower limb and

involve highly complex three-dimensional task specific motions. In comparison,

lower limb motion is primarily two-dimensional during gait, having more of a

cyclic nature with relatively simple and consistent patterns of motion largely

associated with a single activity.

A major procedural difference between upper and lower limb studies is

that the latter usually involves the measurement of ground reaction forces

which are not relevant in upper limb studies.

As highlighted in the President's Lecture at the International Society of

Biomechanics, XVllt Congress (Rau (1999)), there is a lack of a standardised

marker attachment pattern for upper limb studies and of detailed biomechanical

models of the upper limb. The scarcity of databases of information from upper

limb studies on unimpaired subjects was also highlighted.
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Such databases of information are essential in the investigation of

shoulder impairment and injury as well as in the development of design

specifications for artificial joint implants. Joint implants for the upper limb can

in general be considered to be at an earlier stage of development than those

for the lower limb and studies of the kinematics and dynamics of upper limb

motion can play a key role in rectifying this.

The majority of previous upper limb studies have been related to the

performance of standard tests such as abduction rather than genuine every day

tasks, making the results of limited practical use in, for instance, the

development of implants. Before significant changes can take place there is a

requirement for data on the kinematics and dynamics of the upper limb,

associated with its every day use.

1.2 Obiectives

The objective of this study was to address the measurement and

modelling of the kinematics and dynamics of the segments and joints of the

upper limb associated with normal every day tasks. This would lead to data

truly representative of that experienced during normal daily life.

Kinematic and dynamic data from unimpaired subjects would be

obtained, serving as a basis for development of implant designs or for

comparison with data from subjects with pathological or traumatic impairment.

Results from such impaired subjects would be obtained in order to allow a

comparison. In order to achieve these aims, certain objectives were required to

be met:

• The development of a suitable laboratory arrangement for human

upper limb testing.

• The development of a suitable testing method in terms of marker

attachment pattern, selection of suitable tests and their protocol.

• The development of suitable analysis methods in terms of the definition

of embedded frames and subsequent calculation of angles, forces

and moments through modelling of the upper limb segments.
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• The performing of a thorough validation of the test methods and

analysis techniques developed.

• The investigation of the normal daily patterns and ranges of upper limb

joint angles and the associated external forces and moments for

unimpaired subjects.

• The investigation of the same properties during impaired upper limb

motion.

This study may be seen as the first step towards a more complete view

of the upper extremity and addresses most of the issues raised by Rau (1999).

Further advancement might be achieved through the subsequent performance

of musculoskeletal modelling of the internal structures of the upper limb joints.

1.3 Thesis layout

Throughout the early chapters of this thesis, several topics and their

relevance to the process of analysing upper limb motion will be introduced.

These include information on the anatomical structures and necessary

background theory. The following chapters then discuss the methods

employed and the results obtained using these methods.

Chapter 2 introduces the underlying anatomical structures of the upper

limb and their articulations. Chapter 3 also relates to these structures,

discussing the anthropometry of the upper limb segments.

Chapter 4 'sets the scene' for the study by reviewing the literature

concerning previous studies of upper limb motion in general and in particular

those involving studies of everyday tasks.

Chapter 5 introduces background theory, necessary for an

understanding of the discussion in Chapter 6 of the materials and methods

used during the study.

Chapter 7 presents the results of preliminary testing carried out in order

to assess the analysis system and to validate the methods developed. Chapter

8 presents the results obtained through testing of upper limb motion during the

performance of a set of activities selected for their relevance to everyday tasks.
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A discussion of these results is also given in Chapter 8. Chapter 9 describes a

further experimental study and a discussion of the results obtained.

Conclusions drawn from this entire body of work and recommendations

for further work are given in Chapter 10.
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CHAPTER 2 : THE PECTORAL GtRDLE AND UPPER LIMB ANATOMY

2.0 Introduction

The purpose of this chapter is to describe each of the bony elements

involved in the shoulder complex and upper limb as shown in Fig.2.1. and the

interaction of these components at the articulations between them.

Clavicle

Acromioclavicular joint
	 Sternoclavicular joint

Glenohumeral joint 	
Man u brium

Scapula

Fig. 2.1 The pectoral girdle and upper limb (adapted from Palastanga et al (1994))

The human shoulder complex involves a series of joints with a mobility

greater than any other joint in the human body. Four skeletal segments are

involved, these being the humerus, sternum, scapula and clavicle, the latter two

combining to make up the shoulder girdle. All but the sternum move
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simultaneously and in combination to permit the large range of motion between

trunk and humerus.

As well as permitting the greatest range of motion, the shoulder joint is

also the most frequently dislocated joint in the human body (Martini (1995)),

and thus it can be said that to a certain extent the stability of the joint has been

sacrificed in order to achieve the high degree of joint mobility.

It is of little relevance to this work to enter into the time-consuming

process of a detailed description of the soft tissues of the upper limb, the main

focus of interest being the kinematics of the hard tissues. Some indication of

the complexity of the musculature of the shoulder and upper limb can be taken

from Karlsson & Peterson (1992) however. This paper described the modelling

of thirty muscular components thought to contribute to the carrying of an

internal load, as shown in Fig. 2.2. As shown in this figure, the description of

the muscular involvement at the shoulder joint is a complicated one, details of

which can be found in many published anatomical works.

Fig. 2.2 The muscles of the shoulder complex shown as stretched strings along the
shortest path between their attachment points. (Karlsson & Peterson (1992))

To meet the demands imposed in allowing the large range of movement

at the shoulder, the surrounding skeletal muscles and the rotator cuff

musculature within the joint must interact with bone, ligament and tendon in

order to provide dynamic stability. In combination with the mobility of the elbow
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joint, this allows the placing of the hand in an almost universal range of

positions within its workspace.

2.1 Commonly used anatomical terminology

Any discussion of anatomical structure requires the use of certain

standard descriptive terminology. Before proceeding, it is necessary to

introduce some of this terminology as shown in Fig. 2.3. Slight variations in

terminology exist between published descriptions, but the following definitions

will be used throughout this work.

The definitions of various directions and planes are given in Table 2.1

and illustrated in Fig. 2.3.

Anterior (Ventral)	 The front

Posterior (Dorsal)	 The back

Superior	 Above

(Cephalic/ Cranial) 	 (Towards the head)

Inferior	 Below or away from the head

(Caudal)	 (Towards the coccyx)

Medial	 Toward the body's longitudinal axis or medial plane

Lateral	 Away from the body's longitudinal axis or medial plane

Proximal	 Toward an attached base

Distal	 Away from an attached base

Sagittal plane	 Any vertical plane passing through the body in an anterior-posterior direction

and thus separating right and left portions of the body

Coronal plane	 Any vertical plane passing through the body in a superior-inferior direction and

thus separating anterior and posterior portions of the body

Transverse plane	 Any horizontal plane passing through the body at right angles to the previous

two and thus separating superior and inferior portions of the body

rable 2.1 Definitions of planes and directions used in anatomical descriptions.

Along with the anatomical planes, three anatomical axes are also

defined. These are named the superior-inferior axis, anterior-posterior axis

and medial-lateral axis, and their directions can be ascertained from Fig. 2.3

and Table 2.1.
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It is also necessary to clarify the terminology used when describing

human movement at this stage. Complex geometric rotations like those which

occur at the joints of the human body are not additive but are sequence

dependent and this can result in highly complicated methods for the description

of the motion. Traditionally however, the standard approach is to describe any

motion as a projection in one of the anatomical planes previously discussed.

Lateral

Superior

Posterior
(dorsal)

Right

Inferior

Left

Anterior
(ventral)

Fig. 2.3 Planes of section and terms used in anatomical descriptions (adapted from
Martini et al (1995))

To aid in this description it is necessary to define the 'anatomical

position'. In this position the body is viewed from the anterior surface with the

hands at the sides, palms facing forward. This is often used as a reference
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position when studying or describing motion of the upper limb. Fig. 2.4 aids in

the understanding of the following descriptions of upper limb motion, showing

rotations in relation to the anatomical position.

Flexion\ Extension: These describe the motion of the upper limb

forwards (flexion) or backwards (extension) in the sagittal plane and also the

bending or straightening of the elbow respectively, as shown in the anterior

view in Fig. 2.4 where the right elbow is flexed to 900, while the left elbow is

extended. Similarly, a rotation of the hand about the wrist in the direction in

which the palm faces is termed wrist flexion, the opposite being wrist extension.

These movements can occur in the transverse as well as the sagittal plane,

being termed 'horizontal' flexion and extension.

Abduction\ Adduction: These describe the motion of the upper limb

medially (adduction) or laterally (abduction) in the coronal plane. Most studies

assume no abduction or adduction at the elbow, though as discussed in

Section 2.5.2 there is an apparent abduction when the elbow is fully extended,

known as the carrying angle. At the wrist, a rotation of the hand in the direction

of the thumb side is termed radial deviation, the opposite being ulnar deviation.

The term 'elevation' may also be used to describe raising of the arm in

any plane, up to or beyond 90°, therefore flexion and abduction may be termed

elevation in the sagittal and coronal planes respectively.

Fig. 2.4 The movements of the shoulder (adapted from Hollinshead (1991))

Internal\ External Rotation: This is the motion that turns the upper limb

about its own longitudinal axis. In the anatomical position viewed from above,
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internal rotation of the humerus moves the hand medially, while external

rotation moves the hand laterally. At the elbow, the internal rotation causing

medial motion of the hand is termed pronation. The reverse movement, which

returns the hand to the anatomical position is called supination.

2.2 The bones of the shoulder girdle

2.2.1 The scapula

The scapula is a broad, flat bone the body of which has a triangular

shape to its anterior aspect and is positioned posterior to the shoulder over ribs

two to seven as can be seen in Fig. 2.5.

Acromioclavicular Joint

Fig.2.5 Skeletal system of the shoulder (Adapted from Palastanga et al. (1994))
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The scapula is dynamically moored to the axial skeleton by muscles,

there being no direct bony or ligamentous connection linking it to the thoracic

cage. It is allowed to glide over the fascia-covered thorax during upper limb

movement, giving rise to the "scapulothoracic articulation" described later and

provides the humerus with a stable yet mobile base.

Inferior angle

Fig. 2.6 Posterior surface of the scapula (adapted from Palastanga et al (1994))

The three sides of the triangular shaped scapula are named the

superior, medial and lateral borders with the corners being termed the medial,

inferior and lateral angles, as shown in Fig. 2.6 and Fig. 2.7.

Adjacent to the lateral angle the scapula thickens and becomes rounded

to form a neck which supports the shallow pear-shaped glenoid fossa, as

shown in Fig.2.8. The glenoid fossa is tilted slightly upwards at an angle of

approximately 150 to the vertical, providing some support to the humeral head.
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Acromion process—.

Fig. 2.7 Anterior surface of the scapula (adapted from Palastanga et al (1994))

Acromion process

Fig. 2.8 Lateral view of the scapula (adapted from Palastanga et al (1994))

2.2.2 The clavicle

The clavicle lies almost horizontally in the upper thorax and is the only

direct connection between the axial skeleton and upper limb. It is an s-shaped
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bone as shown in Fig.2.9, curving laterally and dorsally from its roughly

triangular sternal (medial) end to the larger, broad, flat acromial (lateral) end.

The lateral end of the clavicle is constrained to move about the surface

of a sphere defined by its length and thus holds the scapula laterally and

enables the arm to be clear of the trunk.

The clavicle articulates at the sternoclavicular joint with the superior and

lateral border of the manubrium of the sternum (shown in Fig.2. 10) lateral to the

jugular notch, and at the acromioclavicular joint with the acromion of the

scapula (see Fig.2.7 and Fig.2.8). Together with the scapula the clavicle forms

the 'shoulder' or 'pectoral' girdle.

cTI
/_	 _

Acromial end	
Sternal end

....

Fig.2.9 The clavicle (adapted from Palastanga et al (1994))

2.2.3 The sternum

The adult sternum or "breastbone" is a flat bone that forms the anterior

midline of the thoracic wall. It acts as the base on the trunk for the hard tissues

of the upper extremity and has three components, as shown in Fig.2. 10.

The broad, triangular manubrium, the widest and most superior portion

of the sternum, articulates with the clavicle at the sternoclavicular joint and also

with the first pair of ribs. The jugular notch (level with the lower border of the

body of the second thoracic vertebra) is the shallow indentation between the

clavicular articulations and on either side of this are the smaller, oval, clavicular

notches for articulation with the sternal ends of the clavicles.
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The tongue shaped gladiolus (body) attaches to the inferior surface of

the manubrium at the sternal angle (level with the lower border of the body of

the fourth thoracic vertebra).

The smallest of the three components, the xiphoid, attaches at the

inferior surface of the gladiolus, level with the ninth thoracic vertebra.

Fig.2.1O Sternum anterior and lateral views (adapted from Palastanga et al (1994))

2.3 The articulations of the pectoral girdle

The following sections seek to discuss in more detail some of the joints

and articulations touched on briefly in the preceding sections.

2.3.1 The acromioclavicular joint

The acromioclavicular joint is a synovial joint linking the clavicle and

scapula.	 movement at this joint is passive, there being no muscle present

which might enable an active relative movement between the bones.

The shape of lateral end of the clavicle is that of an oval flat or slightly

convex facet and this articulates with a flat or slightly concave facet of a similar

shape on the anterior and medial border of the acromion process. A wedge-
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shaped fibrocartilaginous articular disc is present, compensating for the small

degree of incongruity between the articular surfaces.

Attached at the articular margins of this joint is a relatively loose fibrous

capsule. This capsule is strongest at the top where it is thickened and

reinforced by the muscular fibres of the trapezius. Additional strength is

supplied by thickenings of the capsule known as the superior and inferior

acromioclavicular ligaments, upon which the stability of the joint depends.

Further strength is supplied by the coracoclavicular ligament, anchoring

the lateral end of the clavicle to the coracoid process of the scapula. The

function of this extremely strong ligament is to stabilise the clavicle with respect

to the acromion. It is made up of two parts, the anterolateral trapezoid and the

posteromedial conoid ligaments, restraining movements of the scapula with

respect to the clavicle in the backwards and forwards directions respectively.

The most important function of the acromioclavicular joint is to provide

an additional range of movement for the pectoral girdle after the limits of the

range of motion of the sternoclavicular joint have been reached. Movement

with three degrees of freedom is allowed about the superior, anterior and

lateral axes.

2.3.2 The sternoclavicular joint

The sternoclavicular joint links the medial end of the clavicle with the

manubrium of the sternum. The clavicle is allowed three degrees of freedom of

motion by this joint, elevation and depression, protraction and retraction, and

axial rotation. Functionally the sternoclavicular joint behaves as a ball and

socket joint though its form is not that of such a joint.

As mentioned in Section 2.2.2, the lateral end of the clavicle may

describe an area represented by the surface of a sphere with radius equal to

the length of the clavicle. The centre of rotation for the movements other than

axial rotation is not at the sternoclavicular joint centre, but through the

costoclavicular ligament. This is a short, dense ligament attached between the

medial end of the clavicle and the first rib, and limits the elevation of the

clavicle as well as preventing any excessive movement in the anterior!

posterior direction of its medial end.
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The articulating surfaces of the clavicle and sternum do not have similar

radii of curvature and therefore do not form a particularly congruous joint.

Some degree of congruence is provided by an intra-articular fibrocartilaginous

disc which also provides cushioning as well as contributing to the stability of

the joint.

A fibrous joint capsule surrounds the entire joint attaching to the articular

margins of the sternum and clavicle. This capsule is relatively strong gaining

reinforcement anteriorly, posteriorly and medially by thickenings of the capsule,

the anterior and posterior sternoclavicular ligaments and the interciavicular

ligament respectively.

2.3.3 The scapulothoracic articulation

In addition to the two true synovial joints already described, a third

articulation contributes to the kinematics of the pectoral girdle. This is the

"translational joint" between the scapula and thorax.

The mobility afforded to the scapula through its association with the

clavicle would initially appear to allow it six degrees of freedom, three rotational

from the acromioclavicular joint and three translational from the translations of

the lateral end of the clavicle. The previously mentioned constraint of the

lateral end of the clavicle to move about the surface of a sphere defined by its

length however, imposes a similar constraint on the acromioclavicular joint,

reducing the available degrees of freedom to five.

In order to allow this freedom of movement it is necessary for the

scapula to be free to move on the posterior wall of the thorax, It is this

movement that leads to the description of a translational scapulothoracic

articulation, though the conditions of a true joint are not met.

Normally, the scapula moves across the surface of the thorax, gliding on

an interface between the ribs and their covering musculature and the covering

musculature of the scapula. Both the anterior and posterior articular surfaces

of the scapula are lined with a soft fibrous fascia which allows the gliding

motion to occur. The contact between the scapula and thorax places further

limitation on the range of scapular motion.
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A further physiological though not a true anatomical joint is also defined

in some anatomical descriptions of the shoulder (McCullagh (1995), Culham &

Peat (1993)) named the sub-deltoid, or subacromial joint.

2.4 The bones of the upper limb

The skeletal structure of the upper limb includes the bones of the upper

arm, forearm, wrist and hand. The motion at the wrist between the forearm and

hand was not considered and so the upper limb is described from its

connection to the pectoral girdle at the humeral head, to its connection with the

hand at the wrist.

The upper arm contains a single bone, the hUmerus extending distally

from the glenohumeral joint to the elbow joint. The forearm contains two bones,

the ulna and the radius extending distally from the elbow joint to the wrist joint.

2.4.1 The humerus

The humerus (Fig. 2.11) extends from the scapula proximally, where its

smooth approximately hemispherical head articulates with the glenoid fossa.

At its distal end is the elbow, where the humerus articulates with the two bones

of the forearm, the radius and ulna.

In the resting position the head of the humerus faces upwards, inwards

towards the medial line of the body and in a posterior direction, with a

retroversion on its shaft of approximately 300. This retroversion allows the

humerus to move in the plane of the scapula which lies approximately 30°

anterior to the coronal plane of the body.

The greater tubercie of the humerus is located near the head and can be

used to locate the lateral contour of the shoulder, being located a few

centimetres anterior and inferior to the tip of the acromion.

The lower end of the humerus is expanded laterally, flattened

anteroposteriorly and bent slightly forwards. It presents two articular surfaces,

the capitulum being the lateral of these, providing a rounded, convex surface

for articulation with the proximal end of the radius.
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Medial to the capitulum is the trochlea which articulates with the

proximal end of the ulna. This presents a grooved surface with an anterolateral

projection on its medial edge, which causes a lateral deviation between the

long axis of the ulna in relation to that of the humerus, the previously

mentioned carrying angle.

Greater tubercie

Humeral head-

Olecranon fossa

Medial epicondyle

Trochlea
-r"

Fig.2.1 1 Humerus posterior and anterior views (adapted from Palastanga et al (1994))

The lateral and medial epicondyles of the humerus lie lateral to the

capitulum and medial to the trochlea respectively. The distal end of the

humerus also presents three fossae, one for the olecranon on the posterior of

the bone and two on the anterior of the bone on the medial and lateral sides for

the coronoid process and radius respectively.

2.4.2 The ulna

The ulna is the longer of the two bones of the lower arm, lying medial to

the radius in the anatomical position and articulating laterally with it at each

end. The proximal end of the bone is larger than the distal end and has two

projecting processes enclosing a cavity.
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The larger of these two processes is the olecranon process (the tip of

the elbow) which points forward with the elbow in full extension and which

forms the proximal part of the bone. Anteriorly it is concave forming the upper

part of the articular surface of the trochlear notch. This notch is completed by

the coronoid process on the front of the ulnar shaft and articulates with the

trochlea of the humerus at the elbow joint, known as the olecranal or

humeroulnar joint. On the lateral side of this process is the concave radial

notch which accepts the head of the radius.

The distal end of the ulna has a narrow neck expanding into a smaii

rounded head which has a smooth articular surface for the radius on its anterior

and lateral aspects. The styloid process projects downwards from the posterior

part of the ulnar head.

Fig.2.12 Right radius and ulna - posterior and anterior views (adapted from
Palastanga et al (1994))

2.4.3 The radius

The radius is shorter than the ulna and lies laterally to it in the

anatomical position as shown in Fig. 2.12. The proximal end is the smaller of

the two and presents a thick concave disc for articulation with the capitulum of
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the humerus. The lateral side of the proximal head is flattened and articulates

with the radial notch of the ulna.

The distal end of the radius is expanded having five distinct surfaces,

the lateral surface extending distally to the radial styloid. This assists in the

stability of the wrist joint, while the medial surface forms the concave ulnar

notch for articulation with the distal head of the ulna.

The radial shaft is convex laterafly allowing it to move around the ulna

during forearm prohation.

2.5 The articulations of the upper limb

2.5.1 The glenohumeral joint

The glenohumeral joint is the articulation between the rounded head of

the humerus and the shallow glenoid fossa of the scapula and is an extremely

mobile synovial ball and socket joint.

The articular surface of the humeral head is smooth, round and several

times the diameter of the glenoid fossa. The disproportionate size and lack of

congruency of the articular surfaces make the joint inherently unstable,

necessitating additional support. This is provided through a deepening of the

fossa effected by the glenoid labrum, fibrocartilaginous tissue attached around

the circumference of the fossa.

As the glenoid offers little in the way of a kinematic constraint for the

head of the humerus and as ligaments would severely limit joint movement,

muscle tension is employed to supply kinematic control of the joint and allow its

great range of motion. Active muscular support is provided by all of the

muscles between the pectoral girdle and the humerus but in particular, the

stability of the joint depends on the muscles of the rotator cuff, consisting of

four muscles which act as extensible ligaments.

The joint is surrounded by a loose cytindrical fibrous capsule, which in

contrast to those at other joints discussed, offers no improvement to the

stability of the joint, It is strong in places however, strengthened by the

thickened sections of the capsule anteriorly, the superior, middle and inferior

glenohumeral ligaments and also posteriorly by the coracohumeral ligament.
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Combined with the freedom of the scapula associated with the

sternoclavicular and acromioclavicular joints, the glenohumeral joint contributes

greatly to the complexity of the shoulder mechanism and its large range of

movement.

The glenohumeral joint has a greater range of movement than any other

joint in the human body (Martini (1995)) with five degrees of freedom, these

being rotation in three p'anes as well as sliding of the humeral head over the

glenoid in both vertical and horizontal directions.

2.5.2 The Elbow Joint

As discussed in Palastanga eta! (1994), the elbow joint is the synovial

joint between the arm and forearm and for practical purposes can be regarded

as a pure hinge joint. A fibrous capsule completely encloses the elbow joint,

this capsule being shared with the superior radioulnar joint (see Section 2.5.3).

The capsule is strengthened by the collateral ligaments, strong

triangular bands which blend in with the sides of the joint capsule. They are

relatively tense in all positions of flexion and provide strong support for the

elbow in all directions of movement.

On the anterior of the capsule there is a thickening referred to as the

capsular ligament, posteriorly however, the capsule is weak and membranous.

The shape of the articular surfaces combining at the elbow joint provides

it some stability but the joint is greatly reinforced by the collateral ligaments and

the surrounding cuff of skeletal muscles including the triceps and biceps

muscles.

The articular surfaces come into closest contact when the forearm is

flexed to 900 and in a position of mid pronation-supination. This position lends

itself to allowing the elbow joint maximum stability and is the position naturally

assumed when fine manipulation of the fingers and hand is required.

The possible movements at the elbow joint are those of flexion and

extension which occur about an axis through the humeral epicondyles. This

axis is not at right angles to either of the humeral or forearm long axes. As

mentioned previously there is a carrying angle between the arm and forearm

due to the geometry of the articular surfaces, the medial end of the
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flexion/extension axis being slightly lower than the lateral. The deviation of this

axis leads the hand to move medially during flexion, ultimately lying over the

shoulder.

Several studies have investigated the carrying angle. Beals (1976)

carried out a radiographic study of fifty six male and fifty female adults. The

mean carrying angle at full elbow extension for this group was found to be

17.8°, with no significant difference between males and females. Morrey et al

(1976) used similar techniques and implanted wires on two upper limbs from

unembalmed cadavers. They found a linear change in the carrying angle from

100 in full extension to between 6° and 10° in full flexion. Deland et al (1987)

studied five cadaver specimens and found the carrying angle in full extension

to vary between 13° and 22°, with an average of 15.4°. The angle was found to

be close to zero in full flexion.

A small amount of abduction and adduction and lateral and medial

rotation may occur at the elbow, though these will be extremely small.

2.5.3 The radioulnar Joints

As well as articulating with the humerus at the elbow, the radius and

ulna also articulate with each other. This occurs via synovial pivot joints at

their proximal and distal ends and by an interosseous membrane along their

length which contributes to the stability of the radius and ulna during rotation.

The superior radioulnar joint is the articulation between the head of the

radius and the radial notch of the ulna, and as previously mentioned shares a

joint capsule with the elbow joint. The main movement is the rotation of the

radial head within the radial notch of the ulna though some movement occurs

between the radial head and humerus.

The inferior radioulnar joint is the articulation between the head of the

ulna and the ulnar notch on the lower end of the radius, principally united by a

triangular fibrocartilaginous disc between the lateral side of the root of the ulnar

styloid process and the ulnar notch.
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The loose fibrous joint capsule of the inferior radioulnar joint is relatively

weak, allowing movement between the radius and ulna. The joint is afforded a

high degree of stability however, primarily by the presence of the articular disc.

The major movement that the distal radioulnar articulation permits is the

rolling of the ulnar notch of the radius across the rounded surface of the ulnar

head. This occurs in pronation where the radius and ulna cross, the radius

lying anterior to the ulna.

During pronation there is also an extension and lateral displacement of

the ulna caused by a magnification through the length of the bone of the very

slight extension and medial displacement of the ulna at the elbow.

The interosseus membrane is a strong, fibrous sheet which joins the

lateral margin of the ulna to the radius. It contributes to the stability of the

inferior radioulnar joint and provides a firm connection between the radius and

ulna. The interosseus membrane also allows the transmission of forces from

the hand through the radius to the ulna, and thereafter up through the humerus.
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CHAPTER 3 : TECHNIQUES FOR THE PREDICTION OF BODY SEGMENT

PARAMETERS: A REVIEW OF THE LITERATURE

3.0 Introduction

In carrying out a quantitative biomechanical analysis of human upper

limb motion it is necessary to estimate certain characteristics of the body

segments under analysis. These characteristics include segment lengths,

masses, centre of mass (CM) locations and mass moments of inertia and are

known as the body segment parameters (BSPs).

The objective in analysing upper limb motion, is to combine these

segment parameters with segmental kinematic data obtained from a video

motion analysis system, in order to allow the computation of kinetic quantities

such as the forces and moments at the joints of the upper limb.

Hinrichs (1985) stated that;

"use of indirect estimates of body segment masses, centres of mass, and

moments of inertia is arguably one of the biggest sources of error in

biomechanics research."

It is clear then that the selection of an appropriate and accurate method

for estimation of the various BSPs is an essential part of any motion analysis

method that seeks to minimise errors.

The forces and moments that cause movements in the upper limb fall

into one of two categories. Internal forces and moments are those transmitted

by body tissues as muscular or joint contact forces and tensions in the

ligaments. External forces and moments are all the physical interactions

between the upper limb and its environment including gravitational and loading

contributions.

Gravitational contributions to the external forces and moments can be

determined knowing the mass and the location of the centre of mass of each of

the segments of the upper limb. Such quantities can be calculated, together

with the required segmental mass moments of inertia about the principal axes,

by means of prediction techniques.	 These are based on measured
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anthropometric dimensions and take the form of ratios or regression equations

obtained through statistical analysis of data.

The following chapter contains an introduction to the process of

predicting the BSPs, including a review of literature related to the development

of predictive ratios and regression equations. The topic will be discussed in

two broad categories, the estimation of the mass and centre of mass of the

segment being the first, the calculation of the moments of inertia being the

second. Within these categories the literature is discussed in a largely

chronological order.

3.1 Some initial definitions

Before entering into a discussion of the various techniques it is first

necessary to introduce some definitions for the parameters that will be

discussed.

3.1.1 The Centres of Gravity and Mass

The centre of gravity (CoG) is the location of the centroid of all

gravitational forces of the mass elements of an object, the point through which

the weight of the object acts. The centre of mass (CM) is the location of the

centroid of all mass elements of an object, weighted by their individual mass.

These are not identical properties, particularly for very large objects where

gravitational forces may vary, but for the purposes of biomechanical analysis

can be regarded as the same point.

3.1.2 The Segment Moments of Inertia

The moment of inertia of a body segment is a measure of its opposition

to change in angular motion associated with rotational motion and is the

rotational analogue to mass. The entire inertial system of a rigid body can be

described by specifying six parameters in relation to a reference co-ordinate

frame embedded in the segment. These parameters are the three mass

moments of inertia l<, l, and l about the X,Y and Z axes and the three

products of inertia l, l and I with respect to the XZ & YZ, XY & YZ and XY &

XZ planes respectively.
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If the embedded anatomical axis systems selected for rotation are

chosen to be coincident with the principal axes (longitudinal, anteroposterior,

mediolateral) then the product terms are no longer a factor, only being

necessary where the principal axes are rotated relative to the embedded co-

ordinate axes.

3.2 The prediction of body segment mass and centre of mass location

Many measurement techniques have been used in obtaining body

segment parameter data. Drillis et al (1964) produced a detailed review of

these techniques, as well as some of the data obtained using these methods.

The following discussion concentrates mainly on the results obtained rather

than the techniques used in individual studies.

Harless (1860) segmented the cadavers of two executed criminals

(average age 29years, average height 170.2cm, average weight 55.5kg) into

arm, forearm, hand, thigh, shank and foot segments. The head, neck and trunk

were considered as three segments of which the uppermost segment (the head

and neck) was treated in essentially the same manner as the limb segments.

The separation of adjoining segments was made tangent to their planes

of articulation and the soft tissues at the end of each segment were sutured

over the bone. Each limb segment was then weighed on a precision balance,

and its centre of gravity determined.

In their pioneering work, Braune & Fischer (1889) dissected the frozen

cadavers of three males (average: age 47.Syears, height 168.3cm, weight

64kg) into 14 segments, separated through the appropriate joint centres.

Each of the individual segments was weighed before thin metal rods

were driven into them perpendicular to the three principal planes. The location

of the centre of gravity of each segment was determined by suspending them

from these rods. The planes of intersection of the rods with the segment were

marked and the centre of gravity of the segment located where these three

planes intersected.

Using the same methods as those reported by Braune & Fischer (1889),

Fischer (1906) dissected a small cadaver (height 150cm weight 44.057kg) and

determined the weight and CM location of 14 body segments.
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Dempster (1955) dissected the frozen cadavers of eight males (average:

age 68.5years, height 166.9cm, weight 59.6kg). The cadavers were separated

through the joint centres and each segment weighed. The longitudinal CM

location was determined using a balance plate which could pivot around one of

its diagonals.

The predictive ratios for the masses and centres of gravity (mass) for

upper limb segments from the papers discussed till now can be seen in Table

3.1 along with those from the study of Clauser et al (1969), discussed later.

	

__________________	 Relative Mass (rn/rn)	 Relative Distance (L/L)

	

Harless	 Braune	 Fischer	 Dempster	 Clauser
Segment	 (1860)	 &	 (1906)	 (1955)	 (1969)

Fischer

	

________________ _____ ______ (1889) 	 ______ _____ _____ ______ ______ _____
m,/m L,/L m1/m L1IL rn1/m L1/L rn/rn L/L rn1/m L,/L

_____ % % % % % % % % % %
Arm	 5.7	 -	 6.2	 52.6	 5.4	 44.6	 4.9	 51.2	 4.9	 41.3

Upperarm	 3.2	 -	 3.3	 47.0	 2.8	 45.0	 2.7	 43.6	 2.63	 51.3

	

Forearm & hand	 2.6	 -	 3.0	 47.2	 2.6	 46.2	 2.2	 67.7 2.27 62.6
Forearm	 1.7	 42.0	 2.1	 42.1	 -	 -	 1.6	 43.0	 1.61	 39.0

Hand	 0.9	 39.7	 0.8	 -	 -	 -	 0.6	 50.6	 0.65	 18.0
Table 3.1 Relative segment mass (given as a percentage of total body mass) and
centre of gravity location (given as a percentage of the distance along the longitudinal
axis from the proximal joint) from selected cadaver studies. (Adapted from Nigg &
Herzog (1995))

Contini (1972) derived data with reference to surface landmark

measurements on living subjects using some of the methods discussed in

Drillis et at (1964). This is in contrast to many of the studies discussed in this

chapter which use cadaver dissection and measurement for data. Harless

(1860), Braune & Fischer(1 889), Fischer (1906), Dempster(1955), Clauser et al

(1969) and Chandler et al (1975) discussed later, all used cadaver studies to

determine mass, volume, density and centre of mass of the total human body

and of selected segments.

The data in Contini (1972) were drawn from two studies, those of Drillis

& Contini (1966) & Contini (1970). In the former paper, data were obtained

from twelve males in the age range 20-40 years, while in the latter nine males
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(20-30 years), five females (17-20 years), three females (40-50 years) and

nineteen subjects with hemiplegia or amputation were measured.

The work of Contini (1972) provides data on the location of the centres

of mass of the upper limb, assumed to be coincident with the centres of volume.

The author opined that data obtained from cadaver studies probably

represented true mass centres, while data obtained from live subjects probably

represented volume centres. The data provided gives the average location of

each of the segment centres of mass as a percentage of the overall segment

length from the proximal joint as shown in Table 3.2.

Similar data were given by Pheasant (1986), shown in Table 3.3.

Segment	 %	 Segment Definition
Entire arm	 43.1	 Glenohumeral joint] Ulnar styloid

Upper arm	 44.9	 Glenohumeral axisl Elbow axis

Forearm and hand	 38.2	 Elbow axis! Ulnar styloid

Forearm	 42.3	 Elbow axis! Ulnar styloid

Hand	 39.2	 Wrist axis/ Knuckle II middle finger

Table 3.2 Average location of segment centre of mass, as a percentage of segment
length from the proximal joint. (Contini (1970))

Segment	 Location of centre of gravity

Upper arm	 48% of distance from shoulder to elbow joint

Forearm	 41% of distance from elbow to wrist joint

Hand	 40% of the hand length from the wrist joint

(at the centre of an object gripped)

Table 3.3 Location of the centres of gravity of the segments of the upper limb.
Quoted from Reynolds (1978) or calculated using the data of Dempster (1955),
together with anthropometric estimates for British adults aged 19-65 years. (Pheasant
(1986))

The work of Drillis & Contini (1966) also includes data on the average

mass of each of the upper limb segments as a percentage of the total body

mass, as given in Table 3.4.
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Segment	 %age
Upper extremities 	 5.97

Upper arms	 3.57

Forearm & hand	 2.40

Forearms	 1.80

Hands	 0.60

Table 3.4 Average mass of the segments of the upper limb as a percentage of the
total body mass. (Drillis & Contini (1966))

Again similar data can be found in Pheasant (1986) and is shown in Table 3.5.

	

Segment	 %age of Total Body Weight

	

Total arm	 5.0

	

Upper arm	 2.8

Forearm and Hand	 2.2

	

Forearm	 1.7/1.6

Hand	 0.6

Table 3.5 Average weight of the segments of the upper limb as a percentage of the
total body mass. Quoted from Reynolds (1978) or based on calculations using the
data of Dempster (1955), together with anthropometric etimates for British adults aged
19-65 years. (Pheasant (1986), Winter (1990))

Clauser et al (1969) sought to discover whether anthropometric

dimensions could be used to predict body segment parameters.

Thirteen male cadavers of average weight 66.52kg, average height

172.2cm and average age 49.31 years, were dissected into fourteen segments.

Preserved cadavers were used in order to allow the selection of a

representative range of the population. The dissection cuts were sealed with

aerosol plastic spray to reduce seepage and evaporation.

The weight, volume and centre of mass of each of the segments was

determined and extensive anthropometric measurements taken to describe

their length, breadth and circumference, left and right side data being

averaged.

The foremost assumption made in using these measurements for the

estimation of segment parameters on living subjects, is that relationships found
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for cadavers are equally valid for the living. Changes in the tissues and body

fluids after death will almost certainly affect the validity of this assumption.

The mean values of segment masses and CM Jocation were determined

and a set of regression equations were derived for the prediction of segment

weight, volume and CM location from more than 30 anthropometric

measurements. The equations were produced by selecting the variables that

had most power to predict a specific segment variable. Body mass was found

to be the most common predictor, with circumferences good for weight

estimation and lengths good for centre of mass prediction. The regression

equations were found to be much more effective than the ratios, the three-step

regression having half the error or less than the ratio method.

Clauser et al (1969) compared their data with the estimation of the

centre of mass at the centre of volume point from Drillis & Contini (1966). It

was found that the volume and mass centres were not coincident and that if the

centre of volume were used it would predict the centre of mass proximal to its

true location, imparting an error of constant direction of around 2-3cm.

Hinrichs (1990) made adjustments to the ratio data of Clauser et al

(1969). The mean segment centre of mass ratios for each of the segments were

adjusted in an attempt to allow their application to segments with estimated

joint centres rather than bony landmarks as endpoints. -

The elbow joint centre of rotation was taken to lie midway between the

medial and lateral epicondyles of the humerus, the shoulder joint centre of

rotation at the humeral head centroid and the wrist centre of rotation at a point

mid way between the distal portions of the radial and ulnar styloids. These are

similar locations to those chosen by many upper limb motion studies.

The adjusted ratios for the centres of mass in relation to the corrected

proximal endpoints at the joint centres are given in Table 3.6.

	

Segment	 Endpoints	 %age

	

Upper arm	 Shoulder joint centre-Elbow joint centre 	 0.4910

	

Forearm	 Elbow joint centre-Wrist joint centre	 0.4176

Table 3.6 Average location of segment centre of mass, as a percentage of segment
length from the proximal joint centre. (Hinrichs (1990))
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Clarys & Marfell-Jones (1986a) used experimental anthropometric data

from the embalmed cadavers of three females and three males (ages 79, 79,

81, 69, 78, 15 respectively) in their study of the component tissues of the limb

segments. 182 anthropometric measurements were made bilaterally and the

cadavers severed into 14 segments. The segmentation and dissection

procedures used are outlined in Clarys & Marfell-Jones (1986b).

The upper limb was divided into arm, forearm and hand segments and

each of these further fractionated into four components by removing the skin,

adipose tissue, muscle and bone.

The limb segments and dissected tissues were weighed both in air and

under water, these weights being corrected for fluid loss and various

anthropometric measurements were taken during the process of dissection.

The recorded data were then used to develop regression models for the

prediction of segmental component tissue masses from anthropometric

measurements on the limb segments.

The data given in Clarys & Marfell-Jones (1986b) are for the gross

weights of each of the segments and were used to develop regression

equations for predicting the segment masses. It is possible however to

calculate percentage values for each of the segments in relation to the total

body mass from the data given. This produces the results given in Table 3.7,

which are comparable to those from other studies discussed.

Segment	 %age of Total Body Mass

Upper Arm	 2.70

Forearm	 1.33

Hand	 0.62

Table 3.7 Average mass of the segments of the upper limb as a percentage of the
total body mass. (Clarys & Marfell-Jones (1986b))

Clarys & Marfell-Jones (1986b) found their regression model to be as good as

that of Clauser et al (1969) and significantly better than the ratio method of

Barter (1957). They expressed reservations on its use however, as it was
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unable to predict the masses of all subject segments to within 5% of their

measured mass.

3.3 The prediction of body segment moments of inertia

If a segment is suspended from a fixed point, for instance a bar through

its proximal joint centre and then set in motion, the period of its oscillation can

be measured. The moment of inertia about an axis through the point of

suspension can then be found and from this the moment of inertia about an

axis through the centre of mass.

Such a technique has been adopted in several studies. The relevant

moment data obtained in this way by Dempster (1955) is shown in Table 3.8.

Hatze (1980) developed a 17 segment model whereby the human body

was represented and inertial properties determined mathematically. 262

anthropometric measurements were made on each subject in order that the

rigidly modelled segments could be fitted. Data from one of the four subjects

used to test the model can be seen in Table 3.8, along with data for a cadaver

of similar structure from Dempster (1955).

Other methods include the 'quick release method' (Fenn (1938), Bouisett

& Pertuzon (1967)) whereby the moment of inertia of the forearm on a living

subject can be determined. The subject's limb is required to exert a constant

force against a device which is then released. The angular acceleration of the

forearm after release can be measured and the moment of inertia determined

from this.

Dempster (1955)	 Hatze (1980)

Segment	 Transverse Moment of Inertia 	 Transverse Moment of
2________________________ 	 [kgm	 Inertia [kgm]

Left arm	 0.0222	 0.0203

Right arm	 0.0220	 0.0229

Left Forearm	 0.0055	 0.0086

Right Forearm	 0.0072	 0.0093

Left Hand	 0.0009	 0.0010

RightHand	 0.0011	 0.0010

Table 3.8 Transverse moments of inertia for the upper limb segments based on data
from Dempster (1955) and Hatze (1980). (From Nigg & Herzog (1995)).
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The 'relaxed oscillation' method employed by Peyton (1986) and Allum &

Young (1976) also allowed determination of the moment of inertia of the

forearm of a living subject. A single impulse or oscillating force was applied to

a resting limb and its response allowed calculation of the moment of inertia.

A summary of data on the moment of inertia of the forearm including that

obtained with the previous methods are given in Table 3.9.

Study	 Moment of Inertia of the Forearm [kgm2]

Number of Subjects 	 Mean	 Range

Braune & Fischer (1889)	 2	 .OSO5	 -

Fenn (1938)	 1	 0.0590	 -

Hill (1940)	 1	 0.0277	 -

Wilke (1950)	 1	 0.0530	 -

Dempster (1955) 	 8	 0.0577	 0.0397 - 0.0852

Bouisset & Pertuzon (1968) 	 11	 0.0599	 0.0430 - 0.080

Kwee(1971)	 4	 -	 0.03-0,051

*AlIum & Young (1976)	 4	 0.0740	 0.0690 - 0.0820

Peyton (1986)	 8	 0.0646	 0.0476 - 0.0862

Table 3.9 Moments of inertia of the forearm and hand segment about the humeral
axis from the experimental investigations of several authors. (N.B. * - moment of
inertia of the entire limb about the humeral axis). (Taken from Nigg & Herzog (1995)).

Chandler et al (1975) used similar procedures to those of Clauser et al

(1969). Data regarding mass distribution characteristics of the human body as

described by the principal moments of inertia and their orientation to body and

segment anthropometry were produced.

The weight, centre of mass location and principal moments of inertia

were determined for six adult male cadavers, selected and paired for similarity

of body configuration (mass: 50.6 - 89.2 kg, height: 1.64 - 1 .82m).

All specimens were shaved and 116 anthropometric and landmark

measurements were taken on each cadaver in the supine position using x-rays

and flouroscopy, a type of radiography in which x-rays emerging from a patient

impinge directly on a fluorescent screen.
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Each cadaver was strapped onto a positioning board and frozen prior to

being cut into 14 segments in the planes shown in Fig 3.1, similar to those of

Clauser et al (1969). One of each pair of matched cadavers was treated in a

standing (anatomical) position, the other in a sitting position. Each of the

cadaver segments then had their mass, centre of mass location, moments of

inertia and volume measured.

Fig 3.1 14 primary body segments with their appropriate cut plane locations (Reynolds
et al (1975))

The human body is not composed of rigid segments, but of tissues which

distort as muscles contract and the body changes position or is subject to

varying acceleration. This makes measurement of body segment moments of

inertia difficult and led Chandler et al (1975) to make the assumption that the

segments were rigid, an assumption necessary for the purposes of most

biomechanical studies. In order to make this assumption more reasonable

Chandler et al (1975) determined the segment parameters of frozen cadaver

segments strapped to holders in insulating styrofoam specimen boxes.

Axis systems were defined in relation to the specimen boxes. For the

upper arm the Z-axis was defined as passing through the centre of the humeral
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head and the mid-point of the epicondyles. The X axis was perpendicular and

anteriorly directed with the Y axis normal to these.

For the forearm the Z-axis passed through a proximal point similar to the

mid-point of the epicondyles and the centre of the cut surface of the capitate,

the largest bone of the wrist. The X axis was perpendicular and laterally

directed with the Y axis normal to these. A composite pendulum technique was

used, the pendulum comprising the segment and holder. The holder was

suspended from a rigid stand and the box swung round X,Y and Z axes and

axes in each of the XY, XZ and YZ planes.

The mass, effective length and period of oscillation of the specimen and

holder were all measured over fifty cycles, allowing calculation of the three

principal moments of inertia about axes through the centre of mass. The

volume of each segment was also measured by measuring their weight while

immersed in alcohol.

Chandler et al (1975) specifically stated that their study design did not

attempt to provide a statistically valid sample for establishing population

estimates for the body segment parameters. It was suggested however that the

differences between the principal moments of inertia of their specimens and

those of living male subjects of similar physical characteristics would be small.

The segment volume was found in general to be the best predictor of the

moments of inertia. The L and I values were found to be of approximately the

same magnitude for the major limb segments, with I around 20% of I values.

Differences in the principal moments of inertia between seated and standing

positions were found to be small. It was concluded that estimates of the

segment moments of inertia in one orientation could be used in any other

segment orientation for the purposes of modelling.

The work of Chandler et al (1975) is also documented in a second

paper, that of Reynolds et al (1975). The upper limb segment moments of

inertia about the centre of mass from the latter paper are shown compared to

those of Dempster (1955) in Table 3.10.
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Study	 Reynolds et at	 Dempster
___________ __________ ______________ 	 (1975)	 ______________	 (1955)

Segment
___________ __________ (x i0 kgm2)	 (x i0 kgm2)	 (x 10 kgm2)	 (x 10 kgm2)

Upper arm	 Right	 13.5	 13.27	 2.01	 14.20

Left	 15.21	 13.77	 2.28	 13.90

Forearm	 Right	 6.69	 6.45	 0.88	 5.60

Left	 6.47	 6.30	 0.86	 5.50

Hand	 Right	 0.754	 0.615	 0.215	 0.50

Left	 0.684	 0.557	 0.179	 0.45

Table 3.10 Transverse moments of inertia for the upper limb segments compared
with data from Dempster (1955). NB: for Dempster data is an axis perpendicular
to the longitudinal axis, passing through the centre of mass. (Reynolds (1975)).

McConville et al (1980) aimed to demonstrate that mass distribution

properties of the human body and its segments could be predicted from

anthropometric dimensions taken from living subjects as opposed to cadavers.

Data on 31 male subjects were obtained using three-dimensional

photography from cameras placed at strategic locations to photographically

segment their bodies into 24 parts.

The co-ordinates of selected anatomical landmarks allowed the

computer reconstruction of the segments. The volume, centre of volume and

principal moments of inertia were determined stereophotometrically. Seventy

five body dimensions were anthropometrically measured and multiple

regression equations developed for each of the body segments.

Anatomical co-ordinate axes were defined in each of the segments

based on anatomical landmarks, with Z being directed proximally, X anteriorly

and Y towards the left of the body, as in Fig 3.1. The centres of volume and

mass were assumed coincident and regression equations were developed in a

similar way to those in the earlier paper of Clauser et al (1969).

Hinrichs (1985) set out to develop a set of regression equations for the

estimation of segmental moments of inertia about both the transverse and

longitudinal axes of living subjects. The basis for this was the study of

Chandler et al (1975) with anthropometric measurements used as predictors.
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Symmetry about the segment longitudinal axes was assumed, the

justification being the similar moments of inertia about the axes perpendicular

to the long axis found by Chandler et al (1975).

Hinrichs (1985) averaged the two transverse moments of inertia for each

segment, as well as the anthropometric and moment of inertia data from left

and right extremities. The original data for each segment was thus reduced to

the segment moments of inertia about its longitudinal axis and a transverse

axis through its centre of mass, as well as several anthropometric dimensions

specific to the segment.

Linear regression equations for the estimation of the moment of inertia

from the anthropometric dimensions were then computed. It was suggested

that these equations might not be suitable for use on subjects with

anthropometric dimensions outside the ranges of those on which the original

data was obtained by Chandler et al (1975).

Hinrichs (1985) expressed some concern about the very small sample

size on which his equations were based and Nigg (1995) expressed the view

that these equations should be used with caution for this reason.

Forwood et al (1985) also used the data of Chandler et al (1975) in their

effort to validate methods of scaling data for the segment moment of inertia

about the transverse principal axis through the centre of gravity.

The mean moments of inertia for each segment were scaled using

subject body mass and segment length and also using subject body mass and

standing height. The latter method was found to give the best results and this

should hold for the frontal as well as the transverse axis.

Doubt was cast on the validity of using such scaling techniques for the

longitudinal axis, due to the questionable correlation between standing height

and segment diameters. This would suggest that the use of a technique which

includes segment circumference measurements might be most useful.

Such a technique was developed by Yeadon & Morlock (1989) in their

comparison of linear and non-linear methods of estimating the segmental

moments of inertia from anthropometric measurements.

Segmental moments of inertia about anatomical axes were again derived

from the data of Chandler et al (1975). Linear and non-linear regression
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equations for the moments of inertia of the body segments about the anterior-

posterior, medial-lateral and longitudinal axes were determined. Right limb

data were used to develop the regression equations and left limb data used to

validate them.

Equal transverse moments of inertia for each segment (l=l) were

assumed as Chandler et al (1975) gave no segment depth or width dimensions.

These transverse moments of inertia were averaged to give the mean

transverse moment of inertia I.

Linear equations for the upper limb were based on the length and given

circumference values for each segment (2 for the hand, 3 for all other

segments). Non-linear equations were based on the length and a mean

perimeter value, the latter calculated giving double weighting to the mid-point

perimeter over the end-point perimeters where three were given. Neither set of

equations involved a mass predictor.

The linear and non-linear methods were compared, the linear equations

being found to determine the inertia values for the limb on which the equations

were based more accurately than the non-linear equations. When comparing

the equations on the left arm as an independent sample, the non-linear

equations were more accurate by some margin. The linear equations appeared

to be accurate for the sample on which they are based, but less so on another

sample. The equations were then compared outside the anthropometric range

of the original sample of Chandler et al (1975), on a 10 year old boy. The non-

linear equations were found to perform to a much greater degree of accuracy

than the linear equations.

The non-linear equations were considered superior to the linear ones,

giving reasonable segmental moment of inertia estimates even when the

anthropometric measurements lay outwith the original sample range upon

which they were based. The final non-linear regression equations (equations

3.1 and 3.2) of Yeadon & Morlock (1989) for the non-torso segments are based

on both left and right limb data from Chandler (1975).

l = k1 p4h	 (3.1)
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l + kp2h3	(3.2)

Where l and I are the moments of inertia about the longitudinal axis and

transverse axes respectively in kgm2. Table 3.11 gives other necessary values.

The regression techniques of both Yeadon & Morlock (1989) and

Clauser et al (1969) were used in the paper of Veeger et al (1997) to estimate

segment moments of inertia, mass and centre of mass location. This paper is

discussed in Chapter 7 in relation to location of the glenohumeral joint centre.

Segment	 Variable	 Definition / Value	 p
Upper arm	 h	 Length: shoulder centre to etbow centce

_____________	 p	 Perimeter: below axilla
___________	 p2	 Perimeter: maximum	 p=(p1+2p+p3)/4

___________ Perimeter : elbow
____________	 k1	 0.979
__________	 k2	 6.11	 ______________

Forearm	 h	 Length : elbow centre to wrist centre

____________	 P1	 Perimeter: elbow
__________ __________ Perimeter: maximum	 p=(pl+2p2+p3)/4
__________ __________ Perimeter: wrist
__________	 k1	 0.810
__________	 k2	 4.98	 ______________

Hand	 h	 Length : wrist centre to tip of finger III

__________	 Pi	 Perimeter: wrist

____________	 P2	 Perimeter: metacarpal-phalangeal joints 	 p=(p1+p2)/2

___________	 k1	 1.309
___________	 k2	 7.68	 _______________

Table 3.11 Definitions and values of the variables required in the non-linear approach
of Yeadon & Morlock (1989). (N.B. Linear measurements are in metres and the hand
is in a flexed/ relaxed orientation)

The preferred solution for the estimation of segment parameters would

be to base these on cross sectional segment data from different body types and

for both men and women, none of the papers discussed till now providing a

completely satisfactory solution. In future, Computerised Tomography (CT), or

more so Magnetic Resonance Imaging (MRI) technology may become more

widely used in such studies, allowing the different densities of bone, muscle

and fat to be taken into account. These however are more expensive and

invasive than the more traditional methods and would involve greater ethical

consideration. More recent studies have attempted to use such technologies to

measure body segment parameters however.
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Zatsiorsky & Seluyanov (1983) obtained data from one hundred male

subjects (age23.8±6.2 years, height 174.1±6.2cm, mass 73.0±9.1kg), fifty six of

whom were physical education students, twenty six students and eighteen

researchers. A radioactive isotope gamma ray scanning technique was used to

determine mass and inertial characteristics of their segments.

The intensity of a gamma ray beam decreases as it passes through a

substance and the density of that substance can be determined by the level of

attenuation, It is therefore possible to measure the intensity on either side of

substance (in this case a human subject) and from this calculate its density.

Subjects were placed in a supine position on a couch. A gamma ray

emitter passed over and scanned the entire body. A collimated detector

passing underneath the subject detected the attenuated radiation. A surface

density profile was produced for the entire body, the locations of each of the

measured intensities being recorded in relation to previously defined

anatomical reference points.

The regression equation (3.3) was developed:

y = B0 + B 1 X1 + B2X2	(3.3)

Where X 1 is the body mass in Kg, X 2 is the body height in centimetres and y is

the predicted value of the variable.

	

Segment	 Mass (kg) CoG (%)	 M (%)	 K1 (%)	 K2 (%)	 1(3 (%)

Hand	 0.447	 63.09	 0.614	 28.50	 23.3	 18.2

(0.072)	 (4.85)	 (0.083)	 (2.16)	 (1.71)	 (2.30)

	

Forearm	 1.177	 57.26	 1.625	 29.50	 28.4	 13

(0.161)	 (3.26)	 (0.140)	 (0.86)	 (0.65)	 (1.51)

	

Upperarm	 1.980	 55.02	 2.707	 32.80	 31	 18.20

(0.319)	 (4.19)	 (0.243)	 (1.61)	 (1.245)	 (3.27)

Table 3.12 Mean values of Mass and Inertial characteristics of the upper limb, with
SD in brackets. M(kg)=mass of segment, CoG (%)=centre of gravity along
longitudinal axis, M(%)=mass of segment as a percentage of body mass, K 1 , K2, K3
are the ratios of the radius of gyration about the anteroposterior axis, transverse axis
and longitudinal axis of the segment respectively, to the length of the segment
(Zatsiorsky & Seluyanov (1983))
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This equation was applied to allow prediction of the relative masses and

centre of gravity locations of the body segments along with their radii of

gyration. The three principal moments of inertia about the anteroposterior,

transverse and longitudinal axes with respect to the segment CoG of living

subjects were then calculated. The regression equation coefficients for these

values are given in the original paper, the results are shown in Table 3.12.

In their later paper, Zatsiorsky & Seluyanov (1985) produced regression

equation (3.4) for mass, centre of gravity and principal moments of inertia

based on the results of their previous tests. Again the regression coefficients

for these values can be found in the original paper.

y = B0 + B 1 X1 + B2X2-'- B 3X3+ B4X4	(3.4)

This equation was developed with the "most predictable" anthropometric

features as the predictors as opposed to the weight and height which are not

necessarily the best predictors for the individual body segments. A total of 67

anthropometric measurements were taken, the best predictors for each of the

segments of the upper limb being:

Hand	 X1 = length of straight hand (cm)

X2 = width of the hand (cm)

mean circumference of the hand (cm) (=D 1 +D2 1 2)

where	 = circumference of the hand (cm)

02 = the smallest circumference of the distal forearm (cm)

Forearm	 Xi = length of forearm (cm)

X2 width of the hand (cm)

X3 = mean circumference of the forearm (cm) (=D 1 +D2^D3 I 3)

where	 Di = the smallest circumference of the distal forearm(cm)

02 = middle circumference of the forearm (cm)

03 = the maximum circumference of the proximal forearm (cm)
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Upper arm X1 = biomechanical length of the upper arm (cm)

X2 = circumference of the relaxed upper arm (cm)

X3 = D1i-D2/2

where	 D1 = lower diameter of the upper arm (cm)

D2 = lower diameter of the forearm (cm)

Pearsall & Reid (1994) carried out a comprehensive review of body

segment parameter studies, the works of Dempster (1955), Clauser et al (1969)

and Chandler et al (1975) being found to be the most commonly cited.

The studies of Zatsiorsky & Seluyanov (1983), (1985) along with the

supplementary data for female subjects (age 20-27 years, nine swimmers, six

fencers) in Zatsiorsky et al (1990) were considered among the best sources of

data, since they had a substantially large number of subjects and measured in

vivo.

De Leva (1993) also advocated the use of the data of Zatsiorsky &

Seluyanov (1983) and Zatsiorsky et at (1990) above cadaver based data for the

same reasons. Considered a further advantage of these studies were the

younger average age of the subjects '(23.8 years for males, 19 years for

females) and therefore a greater relevance to a young, living population, most

subjects being physical education undergraduates.

In his later paper, de Leva (1996a) carried out a correction process on

the data of Zatsiorsky & Seluyanov (1983) similar to that carried out by Hinrichs

(1990) on the data of Clauser et al (1969). The motivation for this was the fact

that the original data were not referenced in terms of joint centres but by bony

landmarks and for this reason were rarely utilised.

The mean relative centre of mass positions were adjusted to relate to

joint centres, using the data of Chandler et at (1975) in the case of the upper

arm. The resulting values for the relevant dimensions are given in Table 3.13.
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Mass %	 Centre of Mass %

	

Segment	 End points	 Females	 Males	 Females	 Males

	

Upperarm	 ShoulderJC-EIbowJC	 2.55	 2.71	 57.54	 57.72

	

Forearm	 Elbow JC-Wrist JC	 1.38	 1.62	 45.59	 45.74

Hand	 WristJC-MetIII	 0.56	 0.61	 74.74	 79.00

Table 3.13 Relative segment mass (given as a percentage of total body mass) and
centre of gravity location (given as a percentage of the distance along the longitudinal
axis from the proximal joint centre). (de Leva (1 996a)

3.4 The location of loint centres

The joint centres for the work of de Leva (1996a), are defined using the

methods described in de Leva (199Gb). This technique for estimating the joint

centre locations was developed using a selection of the data of Chandler et al

(1975). Percentage longitudinal distances of the joint centres from

neighbouring bony 'andmarks were calcu)ated, relative to the lengths of the

proximal and! or distal Se iients. The bss for %his 'ei the assumpons 'tha

the human joints are perfect hinge or ball-and-socket joints and that the joint

centres lie on the respective seccent or tucr 	 Th iu\rg

locations of the joint centres are shown in Fig 3.2 where:

Shoulder Joint Centre (SJC) =

Elbow joint Centre (EJC)	 =

The centre of the humeral head.

The centre of the transverse section of the

humerus, at the level of the greatest projection

of the medial humeral epicondyle (near the

level of the skin crease at the anterior surface

of the elbow).

Wrist Joint Centre (WJC)	 The centre of a transverse section of the

capitate bone, at the level of the pa pable

groove between the lunate and capitate bone
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Fig 3.2 Percentage longitudinal distances of joint centres from neighbouring bony
landmarks. Each percentage is relative to the closest 100% distance (N=number of
subjects; SD= standard deviation). (de Leva (1996b))

As can be seen in Fig 3.2, these percentages are based on either four or

six subjects, small samples when trying to develop data representative of the

wider population.

3.5 The prediction of body segment lengths

One of the most common of the anthropometric measurements studied

are the lengths of each of the segments of the body between the joints at either

end. The previously discussed work of Contini (1972) produced data for the

average lengths of the various segments of the body, expressed as a

percentage of the height of the subjects, given for male subjects in Fig.3.3.
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Fig.3.3 Body segment lengths (Contini (1972))

Pheasant (1986) also provides some data for anthropometric segment

length measurements taken from the re-analysis of Dempster (1955) by

Reynolds (1978), the data for the upper limb are shown in Table 3.14.

	

Segment	 Males	 Females

	

Upper arm	 17.4 %	 17.2 %

	

Forearm	 15.6%	 14.9%

Hand	 10.9 %	 10.8 %

Table 3.14 Average length of the links of the upper limb as a percentage of the total
height (Pheasant (1986)).

3.6 Summary and Conclusions

In considering all of the work discussed over the preceding pages, there

seems good reason to be sceptical of BSP data from cadaver studies, where

sample sizes are generally small, average ages high and tissues not

necessarily in a condition similar to that during life. In this respect the more

recent of the cadaver papers discussed may offer little that is superior to the

earlier data provided in the late 1 9th century.
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The advocation of the use of the data of Zatsiorsky & Seluyanov (1983)

by de Leva (1993) and Pearsall & Reid (1994) would seem reasonable. The

sample size on which these data were based was larger than other studies and

thus would lead to more generally relevant average data. The study was

carried out on living and therefore intact subjects and thus the data were not

subject to changes or loss of tissues and fluids after death or in the process of

dissection as occurs during cadaver studies. The younger average age of the

sample also supports their use for similar reasons, the data being more

relevant than cadaver studies for a living population. The modifications by de

Leva (1996a) to the work of Zatsiorsky & Seluyanov (1983) relate the data to

landmarks appropriate to a study of the upper limb. The only comparable work

is that of Drillis & Contini (1966) and Contini (1972), which were carried out on

a much smaller sample and with methods which appear less rigorous than

those of Zatsiorsky & Seluyanov (1983).

For these reasons the data of Zatsiorsky & Seluyanov (1983), modified

by de Leva (1996a), were selected for the calculation of upper limb segment

parameters; segment mass, centre of mass location and mass moments of

inertia. The data used are given in Table 3.15, the segment end points of the

upper arm and forearm being the same as those in Table 3.13. For the hand

the segment end points are the wrist joint centre proximally and the tip of the

third digit distally. The lengths of the upper arm and forearm were obtained

directly from the motion analysis co-ordinate data, the length of the hand being

calculated as 10.79% of the subject height from de Leva (1 996a).

Segment	 End Points	 Mass (%)	 CM (%)	 Ki (%)	 K2 (%)	 K3 (%)

Upper Arm	 SJC-EJC	 2.71	 57.72	 28.5	 26.9	 15.8

Forearm	 EJC-WJC	 1.62	 45.74	 27.6	 26.5	 12.1

Hand	 WJC-DAC3	 0.61	 36.24	 28.8	 23.5	 18.4

Table 3.15 Segment parameters of the upper limb, Mass(%)=Relative segment mass
(as a percentage of total body mass), CM(%)=centre of mass location (as a
percentage of the distance along the longitudinal axis from the proximal joint centre),
K1 , K2 , K3 are the radii of gyration. (de Leva (1996a)).
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Equation (3.5) was then used to calculate the moment of inertia of each

segment about given principal axes.

U(Mxm)x(LxK)2	 (35)

Where M is the total body mass of the subject, m is the mean relative mass of

the segment from Table 3.15, L is the segment length and K is the mean

relative radius of gyration of the segment about the chosen axis.
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CHAPTER 4 UPPER LIMB MOTION STUDIES: A REVIEW OF THE

LITERATURE

4.0 Introduction

Having discussed the anatomy and anthropometrics of the pectoral

girdle and upper limb, the next stage was to investigate how the various

components interrelate. This chapter contains a review of previous studies

involving the measurement of human upper limb motion, providing a summary

of relevant results from previous studies and of possible activities for analysis.

Of particular interest are those studies which have involved analyses of

activities of daily living and those which provide data on the shoulder, the latter

having traditionally been regarded as extremely difficult due to the complex

nature of the shoulder joint.

Several analysis systems are available and have been used for the

study of upper limb motion. The most commonly used of these are introduced

through discussion of general upper limb studies, before focusing on those that

have investigated activities of daily living or provide data of direct relevance to

such studies. All the systems and analysis techniques discussed are based on

the principle of tracking anatomical landmarks or surface markers affixed in

relation to these landmarks. In most studies, landmark co-ordinates are found

in relation to some laboratory fixed co-ordinate system and used to define local

segment-embedded co-ordinate systems.

In such studies the limb segments are treated as rigid bodies in which

the segment-embedded frames are assumed fixed. The position and

orientation of the embedded frames can then be described with respect to the

global co-ordinate system using a position vector and orientation matrix or a

combination of these in a transformation matrix.

Angular changes through time at the joints of the upper limb may be

investigated by comparing the relative movements of embedded co-ordinate

systems in the proximal and distal segments. Angular velocities and

accelerations at these joints can then be calculated to obtain dynamic

information.
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4.1 Motion analysis systems applied in upper limb studies

4.1.1 Electromagnetic systems

Several upper limb motion analyses have been carried out using

electromagnetic devices. The principal on which these operate is the

generation of three orthogonal low frequency electromagnetic fields from a

transmitter and the detection of these fields through multiple smaller receivers.

Biryukova et al (1996) used a 'Polhemus FASTRAK' device in order to

locate the centre of rotation at the shoulder and axes of rotations at the elbow

and wrist. In their later work Biryukova et al (1998) measured the kinematics of

reaching movements using the same methods.

Johnson et al (1993), Barnett (1996) and Barnett et al (1999) used

'Polhemus' systems for measurement of scapulohumeral motion. Similar work

was carried out by Meskers et al (1998b) and Meskers et al (1999) using a

'Flock of Birds' system. Similarly to Biryukova et al (1996) and Biryukova et al

(1998), Djupsjobacka et a (1999) used a ?ohemus 'Fastrak' system ?or the

measurement of upper limb kinematics.

Electromagnetic systems have the benefit of producing virtually real time

data giving fast access to three-dimensional data. Disadvantages are a

sensitivity to metal in the environment, a limited range of around three metres

and the tethering of the subject to the central hardware unit through the

receiver connections. The data output are also dependent on the positioning of

a single sensor on each segment, ruling out the application of optimisation to

overcome the problems of skin movement.

4.1.2 Video-based systems

The most commonly used systems in upper limb studies are those based

on the filming and recording of the motion using video cameras.

The simplest application of this technique is to track anatomical

landmarks with little or no additional external marker, using personal judgement

to locate the defined points of interest on the recorded video images.
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Elliot et al. (1985) used such a method for the analysis of baseball

pitching technique, where test subjects had paint applied over anatomical

landmarks and were then filmed during motion before digitising of the images.

Whiting et al (1 988) studied the kinematics of the upper extremity during

boxing. Points on the shoulder, elbow, wrist and glove were marked with tape

to indicate the centres of the joints and these were filmed using phase-locked

cameras. Phase-locking of the cameras ensured that the correct frames from

each camera would coincide during the process of combining the camera views

to obtain three-dimensional information.

Payton & Bartlett (1995) marked anatomical locations with black tape

prior to capturing kinematic data during swimming, where externally fixed

markers of any reasonable size would obviously be unsuitable. Light emitting

diodes (LEDs) mounted on the camera lenses were used to synchronise the

camera views.

Neither Elliot et al. (1985) nor Whiting et al (1988) defined segment

embedded axes, in contrast to the majority of papers in this field. Two cameras

were used in each of these studies as well as that of Payton & Bartlett (1995).

These studies rely on the tracking of two-dimensional markers in order

to reconstruct three-dimensional trajectories. It is therefore possible that each

camera observes a target of a different size, which could introduce errors in

identification during manual or automatic digitising.

It would seem reasonable that when three-dimensional information is

required, the markers identifying anatomical landmarks should be three-

dimensional in order to present the same size and shape in each camera view.

As neither anatomical landmarks nor painted or taped markers exhibit

this property, the only solution is to attach some form of external marker to the

segment which can be related to the underlying anatomical landmarks.

One frequently used method of achieving this aim is the use of active

LED markers attached to the limb segments of the subject. Mann & Antonsson

(1983) used an infra-red LED-based 'Selspot I' system for measuring human

motion. Samuelson et al. (1987) used an updated version ('Selspot II') of the

same system, attaching forty-three infra-red LEDs at various locations on an
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elastic polyester suit fitted to the contours of the subject's body. In a further

study, Scholz (1989) used the WATSMART TM infra-red LED system.

One problem with such active systems is the necessity for only one infra-

red emitting diode to be visible at each instant during sampling. A sequential

firing of the LEDs at intervals of several microseconds is thus required. This

can introduce difficulties in identifying the active diode and problems with

reflections causing spurious data.

A further problem is the power supply to the LEDs which require the

subject to move while tethered with cable connections from the LEDs and the

analysis system. Some of the most up to date systems such as the infra-red

LED based CODA system have managed to overcome this problem, removing

the direct connections between LED and the analysis unit.

Passive three-dimensional external markers which reflect light, either

from spotlights or camera mounted lights back towards the camera, as opposed

to actively emitting light, may also be used. Such markers can be quick and

easy to apply and interfere less with patient movement than the tethered

markers of some active systems. Passive marker systems operate using either

infra-red light or visible light and many studies have involved their use, some

of which are discussed on the following pages.

Kadaba et al (1989) used a five camera 'Vicon' system incorporating

passive infra-red reflecting markers. The repeatability of gait measurements

from forty subjects was assessed. A similar system was used by Khoo et al

(1995) in their assessment of loads on the lumbar spine during walking.

Peterson & Palmerud (1996) used passive infra-red reflecting markers

and a 'MacReflex' system in order to investigate sources of error in the

measurement of upper extremity orientation in relation to an initial reference

pose. Testing was carried out on a calibration frame, a mechanical link model

of the upper limb and a human volunteer fitted with a cuirass and cuffs around

the distal humerus and forearm, to which were attached reflective spheres.

Scholz & Millford (1993) evaluated the accuracy of a two camera 'PEAK

Performance Technologies' system, synchronising two cameras using LEDs

mounted on the camera lens hood.
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Langrana (1981) tested students carrying out a diagonal reach

movement with and without an orthosis using a two camera system. Wooden

marker triads were attached on the humerus and wrist and aligned with the

underlying segment longitudinal axes.

Wang et al (1996) assessed the kinematics of the soft-tennis forehand

drive using a six camera 'Motion Analysis Corp.' system. Thirteen reflective

markers were placed on each subject as given in Chapter 6, Table 6.1.

Rao et al (1996) used a six camera 'Vicon' system to investigate the

upper limb kinematics of sixteen paraplegics performing wheelchair propulsion.

Accurately defined relationships between ten surface marker positions and the

underlying joint centres were established as given in Chapter 6, Table 6.2.

In this study values of forearm carrying angle were included in contrast

to most studies in which they are disregarded. A more rigorous method of

locating the glenohumeral joint centre than in other studies was also employed.

Sprigings et al (1994) used three cameras in their analysis of the

contributions of upper limb segment rotations to racket head speed in the

tennis serve. Ten markers were attached on the shoulder, elbow, wrist, hand

and racket, their locations again given in Chapter 6, Table 6.1.

Having introduced some of the available motion analysis systems and

their use for studies of the upper limb, the review of previous studies wifl now

focus on studies that have involved investigation of the upper limb during

activities of daily living or are of direct relevance to such studies.

4.2 Kinematic studies of the upper limb

An early attempt was made to carry out a three-dimensional study of the

kinematics of the upper limb during activities of daily living by Dol'nikov (1965).

The upper limb was allocated seven degrees of freedom, these being

abduction\ adduction, flexion extension, and internal\ external rotation at the

shoulder, elbow flexion\ extension, forearm internal\ external rotation, ulnar\

radial deviation and wrist flexion\ extension.

An instrumented orthosis was constructed for the upper limb, secured on

the subject by means of a shoulder harness or vest. This allowed the

measurement of all seven above mentioned degrees of freedom by means of
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potentiometers built into the joints of the orthosis. The joint angles were found

and from these the velocities and accelerations were calculated.

Tests were carried out on thirty-four able-bodied subjects (thirty-one

males, three females) with ages ranging from 17 to 63 years. The subjects

were asked to carry out seven activities associated with everyday living. These

included seated testing of; pouring from a bottle into a glass, drinking from a

glass and eating with a spoon and standing tests of; combing hair and working

with a screwdriver, a hammer and a file.

Kinematic parameters were determined and the means of each of these

were found. The results provided were the mean values of the angular

excursion (e), maximum angular velocity (0)) and maximum angular acceleration

(a), for each of the seven degrees of freedom previously described and are

shown in Table 4.1.

	

________ Everyday Tasks ________ 	 Working Tasks
Pouring Drinking	 Eating	 Combing	 Screw- Hammer File

Movement	 from a	 from a	 with a	 driver
___________________ bottle	 glass	 spoon _________ _________ ________ _____
Hand Flexion /	 0	 3	 3	 4	 10	 7	 10	 3
Extension	 co	 94	 74	 94	 238	 221	 656	 147
________________ a.	 1994	 1885	 1937	 5598	 5168	 24557	 4360
HandAbduction/ 0	 25	 25	 33	 47	 67	 53	 36
Adduction	 119	 124	 201	 606	 652	 1350	 366
_______________ a	 2647	 2217	 2722	 4584	 5512	 20838	 3724
Forearm Rotation 0	 74	 21	 34	 52	 119	 22	 11
_______________ w	 660	 363	 440	 660	 1719	 837	 286
_______________ a.	 13522	 7678	 8136	 13923	 31169	 22460	 8938
Elbow Flexion /	 e	 22	 71	 37	 97	 9	 54	 34
Extension	 Ct)	 92	 269	 126	 584	 97	 842	 309
________________ a	 1318	 2292	 1375	 4183	 1833	 13063	 3495
Shoulder Rotation 0	 0	 22	 25	 50	 46	 37	 30
_______________ Ct)	 0	 321	 418	 980	 768	 1031	 619
_______________ a	 0	 4412	 5443	 18335	 13178	 23778 12032
ShoulderFlexion/ 0	 0	 10	 10	 41	 6	 19	 17
Extension	 0	 54	 1226	 195	 80	 269	 155
_______________ a	 0	 974	 917	 3610	 1375	 5500	 3151
ShoulderAb/	 0	 5	 3	 5	 11	 9	 10	 9
Adduction	 co	 40	 50	 56	 172	 92	 241	 138

a.	 688	 802	 802	 2120	 1375	 3724	 3037

Table 4.1 Angular Excursion, Velocity and Acceleration for Seven Different Tasks,
where 0 = arc of movement (Degrees), w = max. angular velocity (Degrees/s), cx =

max. angular acceleration (Degrees/s2). Dol'nikov, (1965).
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In the original paper the results were expressed in radians, radians/s and

radians/s2, but can be found expressed in units of degrees in Buckley et al

(1996).

For the tasks chosen to represent necessary activities of daily living,

elbow flexion and forearm rotation showed the greatest arc of movement,

reaching maximum values of 97° and 74° respectively. Shoulder flexion and

abduction can both be seen to have relatively low values throughout the

everyday tasks, the maximum value reached being 41° of shoulder flexion

during the combing test.

Safaee-Rad et al (1990b) used a biplanar video analysis technique

described in Safaee-Rad et a (1Oa). Stuöes oi the ¶unction o the w'no'e

upper limb during the activities of eating with spoon, eating with a fork and

drinking from a cup were carried out. Ten healthy male subjects in the age

range 20-29 years were assessed.

Seven markers were placed on the shoulder, elbow, wrist and hand and

an initial position was defined. Deviation of the upper limb joints during testing

was referenced to this position and expressed in terms of Euler angles.

Eight different rotations; shoulder flexion, shoulder abduction, shoulder

rotation, elbow flexion, forearm rotation, wrist flexion, wrist deviation and wrist

rotation were measured. The carrying angle at the elbow was considered

insignificant. The mean and standard deviation of the maximum and minimum

angles for each joint during each task were given and from these, the arc of

motion required to carry out the task. These results can be seen in Table 4.2.

The values shown for elbow flexion can be seen to compare favourably

with those of two studies discussed in Section 4.3. In particular the results for

the drinking test and the fork test compare favourably with those of Money et al

(1981) for similar tests, though the values for eating with a spoon do not

compare quite as well with a similar test discussed by Packer et al (1990).

Cooper et al (1993) discussed a continuation of this work using identical

experimental techniques. The same three feeding tasks were carried out by

ten male and nine female subjects aged between 18 and 50 years, first with the

normal freedom of movement and then with a splint fixing the elbow in 110° of

flexion. The results are given in Table 4.3.
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___________	 Task	 __________
Drinking from a Eating with a fork	 Eating with a

Movement______cup	 _______ ________	 spoon

Mean	 SD	 Mean	 SD	 Mean	 SD
____________________________________ ___________	 (0)	 (0)	 (0)	 (0)	 (0)	 (0)

Wrist flexion\extension	 Mi	 -7.5	 6.1	 3.3	 8.2	 7.7	 9.0

	

__________________________ Max. 	 5.9	 8.0	 17.7	 7.2	 20.4	 8.7
__________________________	 Arc	 13.4	 6.3	 14.4	 3.8	 12.8	 4.1

Wrist deviation	 Mm.	 -16.1	 7.2	 -3.2	 8.2	 -4.2	 6.2

	

__________________________ Max. 	 -8.3	 6.4	 4.9	 6.7	 4.4	 5.9
	_________________________ Arc	 7.8	 3.7	 8.0	 3.0	 8.6	 2.4

Wrist rotation	 Mi	 -0.5	 0.8	 -0.2	 1.0	 -0.3	 1.0

	

_________________________ Max.	 2.0	 1.7	 1.9	 2.3	 2.2	 1.3
__________________________	 Arc	 2.4	 1.6	 2.1	 1.6	 2.5	 0.8

Forearm rotation	 Mm.	 -31.2	 7.2	 -58.8	 7.9	 -58.7	 5.8

	

_________________________ Max. 	 -3.4	 11.1	 38.2	 7.9	 22.9	 14.6
___________________________	 Arc	 27.8	 8.9	 97.0	 8.8	 81.6	 17.5

Elbow flexion\extcnsion 	 Mm.	 71.5	 5.9	 93.8	 6.0	 101.2	 8.1

	

__________________________ Max. 	 129.2	 2.5	 122.3	 3.6	 123.2	 5.0
___________________________	 Arc	 57.7	 5.2	 28.5	 5.3	 22.0	 7.9

Shoulder rotation	 Mm.	 5.2	 8.0	 5.1	 9.8	 4.8	 12.0

	

_________________________ Max. 	 23.4	 12.0	 18.1	 10.0	 16.8	 11.9

	

_________________________ Arc	 18.2	 8.0	 13.0	 2.2	 12.0	 5.1
Shoulder flcxion\extension	 Mi	 15.8	 4.4	 10.7	 5.2	 7.8	 7.7

	

__________________________ Max. 	 43.2	 16.3	 35.2	 11.9	 36.1	 13.7

	

_______________________ Arc	 21.4	 13.	 24.4	 .\	 2%3
Shoulderabduction\adduction 	 Mm.	 12.7	 7.7	 7.1	 7.8	 6.6	 9.9

	

__________________________ Max.	 31.2	 9.2	 18.6	 6.0	 21.8	 7.1
__________________________	 Arc	 18.5	 9.5	 11.5	 2.6	 15.2	 7.2

Table 4.2 Average Joint Rotations During Three Feeding Tasks. (N.B. shoulder
internal rotation - positive, pronation - positive, wrist extension -positive, radial
deviation - positive, wrist external rotation - positive). Safaee-Rad et al (1990b)

________________	 Males	 Females
Movement	 Unrestricted	 Restricted	 Unrestricted	 Restricted

Mm Max Arc Mm Max Arc Mm Max Arc Mm Max Arc

____ a JL L (°) L (°) L L 12 a L
Shoulder_____	 _____	 _____
Flexion	 9.0	 36.1 27.1	 12.4 69.3 56.9	 3.9	 31.1 27.2	 -3.2	 57.5 60.7
Abduction	 5.9	 22.7 16.8	 2.5	 28.7 26.2 12.7 27.6	 14.9 13.1 35.8 22.7
Internal rotation -1.3	 22.1 23.4	 2.2	 49.1 46.2	 1.9	 27.9 29.8 -4.8	 39.6 44.4

Elbow Flexion	 77.3 125.6 48.3 105.7 120.4 14.7 85.7 135.7 50.0 104.8 122.4 17.6
Forearm Rotation -52.8 47.1 99.9 -48.4 34.9 83.3 -51.2 37.5 88.7 -34.1 17.8 51.9
Wrist____	 ____
Flex/extension	 -6.8 20.9 27.7	 -9.1	 22.0 31.1	 -7.7	 22.3	 30.0 -10.1 24.6 34.7
Deviation	 -18.7	 2.4	 21.1 -22.9	 4.8	 27.7	 -3.0	 18.4 21.4 -12.2 12.2 24.4
Rotation	 -1.8	 1.1	 2.9	 -4.0	 1.6	 5.6	 -2.4	 1.1	 3.5	 -3.6	 1.8	 5.4

Table 4.3 Average Joint Rotations Required During Three Feeding Tasks with
Restricted and Unrestricted Elbow Joint - Males and Females (19 subjects) (N.B.
shoulder internal rotation - positive, pronation - positive, wrist extension -positive,
radial deviation - positive, wrist external rotation - positive). Cooper et al (1993).
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It can be seen from these results that a restriction of movement at the

elbow joint resulted in an increase of movement at the other joints

compensating for the restriction. This is indicated by an increase in male

shoulder flexion and rotation and female shoulder flexion for all tasks. Male

abduction increased only during use of the spoon, with female abduction and

internal rotation increasing only during drinking. The results in Table 4.3 for

the unrestricted set of tests compare well with those in Table 4.2 from the work

of Safaee-Rad et al (1990b).

Buckley et al (1996) suggested that differences in the experimental

protocol may be the cause of vanattons in resu'is between ererft suies. D

particular importance are the initial positioning of objects involved in the study

and the definition of a neutral limb position as a reference for the study.

Romilly et al (1994) also carried out a study using the work of Safaee-

Rad et al (1990a) as the basis for their technique. The entire upper extremity

was studied during daily activities of normal adult life as a preparatory step to

developing a powered upper limb orthosis.

Six able-bodied subjects (three males) in the age range 22 to 44 years

carried out 22 different tasks. Five markers were attached at the shoulder,

elbow, wrist and hand. Anthropometric measurements were made on each of

the subjects in order to translate between surface markers and joint centres.

Movements were analysed by means of a video camera system incorporating

two cameras at an angle of 500.

The tasks included four activities involved in eating and drinking; with

hands, a fork, a spoon, from a glass, six reaching activities, nine activities of

daily living; pouring from a jug, lifting a telephone receiver, turning a doorknob,

using a light switch and three activities of personal hygiene; combing the hair,

brushing the teeth and washing the face.

The arm was modelled with seven active degrees of freedom using a

global co-ordinate system similar to that of Pearl et al (1992) discussed later.

This included measures of azimuth (rotation about a fixed vertical axis through

the shoulder), elevation (rotation about any horizontal axis through the

shoulder), roll (internal\ external rotation of the upper arm), elbow flexion,



57

forearm rotation, ulnar deviation and wrist flexion. The forearm carrying angle

was modelled as a further passive degree of freedom.

The average values for each of the joint rotations during performance of

the tasks is shown in Table 4.4. Values for the standard deviations of each of

the values are included in the original paper.

_______________________________ Joint _________ ____________________

	

Shoulder	 Elbow	 Forearm	 Wrist
Azimuth	 Elevation	 Roll	 Flexion	 Rotation	 Flexion	 Yaw

Task	 Mm Max Mm Max Mm Max Mm Max Mm Max Mm Max Mm Max

Hands	 39	 65	 33	 47	 -49	 0	 67 134 -70 36 -18	 12 -12	 10
Fork	 32	 49	 34	 54	 -.40	 1	 73	 129 -37	 50	 -6	 35	 -13	 10
Spoon	 34	 54	 32	 76	 -61	 -4	 75	 123 -24	 57	 -7	 53	 -7	 17
Cup	 37	 56	 32	 63	 -62 -21	 68	 136 -14	 37	 -24	 16	 -11	 8
Reachl	 7	 40	 29	 35	 -38 -23	 71	 84	 -24 -11 -30	 -6	 -7	 9
Reach2	 38	 76	 31	 39	 -32 -19	 66	 78	 -26 -15 -32 -19	 -2	 4
Reach3	 35	 108 30	 42	 -33 -20	 57	 81	 -29 -15 -33 -15	 -2	 5
Reach4	 8	 43	 31	 36	 -28 -17	 67	 80	 42	 49	 -17	 -5	 -1	 7
Reach5	 40	 80	 32	 40 -27 -19 64	 77	 39	 47 -13	 -6	 -2	 4

Reach6	 38	 107 32	 44	 -28 -19	 58	 79	 37	 47 -14	 -6	 -2	 5

Pour	 36	 66	 32	 85	 -45 -16	 65	 86 -49	 36	 -32	 -1	 -12	 4

Door	 39	 72	 34	 58	 -50 -20	 58	 78	 -2	 47	 -32 -11	 -4	 11

Knob	 37	 69	 37	 64	 -45 -15	 42	 76	 7	 52 -38 -11 -10	 9
Tap	 33	 65	 34	 64	 -45 -17	 57	 77	 19	 48 -17	 22 -39	 9
Light	 37	 69	 32	 96	 -56 -21	 45	 88	 -47	 41	 -19	 3	 -23	 1
Button	 39	 68	 31	 90	 -57 -27	 51	 88	 20	 40 -19	 2	 -8	 2
Page	 7	 73	 30	 45	 -26	 -4	 86	 98	 42	 61	 -13	 30 -23	 14
Phone	 36	 71	 35	 53	 -82 -26	 74 151 -26	 48	 -32	 9	 -14	 11
Lap	 7	 81	 15	 34	 -31	 20	 49	 84	 31	 45	 -30	 2	 0	 10
Wash	 32	 86	 28	 51	 -75 -18	 73	 148 -86	 50	 -42	 14	 -19	 15
Brush	 35	 68	 34	 69	 -78 -22 72 146 -46	 41	 -32	 39 -22	 17
Comb	 35	 86	 31	 77	 -85 -13	 71	 143 -52	 47	 -35	 36 -18	 24
Extremes	 7	 108	 15	 96	 -85 20	 42 151 -86 61	 -42	 53	 -39	 24
SD (%)	 7.8	 8.1	 4.1	 6.3	 9.9	 8.3	 6.1	 7.1	 11.0 9.4	 8.9	 11.6 7.3	 5.6

Table 4.4 Average Joint Rotations Dunng 22 Different Tasks (N.B. pronation -
positive, wrist flexion -positive, radial deviation (yaw) - positive) Romilly et al (1994)

Romilly et al (1994) obtained results of a similar magnitude to those of

Safaee-Rad et al (1 990b) for the feeding tasks. These papers employ different

angular conventions however and thus the results cannot be directly compared.

Both papers found greater values than those from the Russian survey of

Dol'nikov (1965). Buckley et al (1996) concluded that Romilly et al (1994)

recorded much greater shoulder rotations overall, due to the fact that they

looked at reaching tasks as opposed to activities of personal hygiene or

feeding. For the elbow joint, Romilly's results correspond fairly closely with
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both Morrey et al (1981) and Packer et al (1990), particularly the latter when

using a telephone, giving more elbow extension than Safaee-Rad et al (1990b).

Cheng (1996) described an investigation of the kinematic and kinetic

characteristics of the upper limb during four activities. Seated tests included

the lifting of 1kg and 2kg weights in the shape of a book to table height,

shoulder height, head height and maximum height, along with the controlling of

a steering wheel (right hand forces) and cutting with a knife. The opening and

closing of a door was tested in a standing position.

M	 M	 M.	 Total Gray. Inert. Load

	

Activity	 Max Mm	 Max I Mm	 Max I Mm	 M	 Mg	 M	 Mh

	

1kgBook	 _____ _____	 _____	 _____ _____

	

Table Hgt	 -1.87	 -9.98	 6.74	 -5.69	 13.17	 -0.35	 16.12	 13.12	 10.68 ______
SD	 1.16	 2.27	 2.25	 1.66	 1.99	 1.93	 1.64	 1.63	 1.78 ______

ShoulderHgt	 -[.34	 -11.54	 5.83	 -6.18	 16.64	 -0.33	 19.73	 14.51	 12.37 _____
SD	 1.53	 3.83	 3.37	 2.46	 3.51	 2.25	 3.17	 1.43	 3.32 ______

	

Head Hgt	 -0.23 -12.53	 5.28	 -5.67	 17.64	 -0.85 21.14	 14.01	 13.97 ______
SD	 2.52	 3.07	 2.97	 1.84	 3.39	 2.95	 3.22	 1.37	 3.31 ______

Maximum Hgt	 0.85	 -14.3	 6.58	 -6.45	 18.08	 -1.1	 23.1	 12.62	 15.75 ______
SD	 1.98	 4.19	 3.86	 2.23	 3.87	 4.21	 4.39	 2.44	 4.46 _____

	

2kgBook	 ______ ______	 ______	 ______ _____

	

Table Hgt	 -2.85 -12.88	 6.24	 -7.06	 18.89	 3.5	 21.35	 19	 11.68 ______
SD	 2.11	 2.72	 3.75	 2.75	 2.14	 2.07	 1.58	 2.03	 2.07 _____

ShoulderHgt	 -2.07	 -13.4	 4.8	 -6.1	 21.69	 3.44	 24.59 20.91	 13.62 _____
SD	 4.41	 4.2	 2.71	 2.77	 1.91	 2.77	 2.54	 1.64	 2.88 _____

	

Head Hgt	 -1.22 -14.14	 5.35	 -6.38	 22.52	 3.07	 25.87 20.07	 14.91 _____
SD	 3.35	 4.7	 3.98	 2.28	 3.71	 3.22	 4.95	 2.15	 3.98 ______

Maximum Hgt	 0.07	 -17.59	 5.66	 -6.84	 21.31	 1.7	 26.69 18.61	 15.24 _____
SD	 2.74	 3.95	 2.18	 1.92	 3.85	 3.03	 5.29	 3.35	 4.22 ______

Door
Open\Close	 0.6	 -5.61	 3.04	 -2.35	 10.93	 -0.9	 11.61	 8.27	 3.79	 5.94

SD	 2.12	 1.37	 0.93	 1.29	 1.94	 1.97	 1.78	 0.98	 2.11	 1.3
Driving

	Steering	 10.04	 -9.18	 32.62	 -3.21	 18.4	 -7.5	 35.44	 9.42	 3.22	 38.07
SD	 7.78	 4.13	 6.41	 2.64	 3.65	 7.03	 5.51	 1.3	 0.86	 8.53

Cutting
	Cutting	 1.3	 -5.22	 2.8	 -3.3	 9.51	 -2.99	 10.7	 5.7	 6.35	 6.87

SD	 2.24	 2.55	 1.58	 1.56	 2.78	 3.68	 2.61	 1.37	 2.67	 3.65
Table 4.5 Maximum moments and standard devIations at the shoulder for various
activities. M, M, and M are the abduction\adduction, internal\external rotation and
flexion\extension moments at the shoulder respectively. M is the maximum resultant
shoulder moment, Mg is the gravitational shoulder moment, M is the inertial shoulder
moment and Mh is the resultant moment from the hand load. Cheng (1996).

A strain-gauged transducer was used for the measurement of hand

loads during control of a simulated steering wheel system, with an instrumented
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door rig and cutting plate being used in the other tests. The three dimensional

movements of the upper limb were measured with a six camera 'Vicon' system

as used by Runciman (1993). The data obtained were combined with the force

data to allow calculation of the moments at the shoulder and elbow joints. Six

normal, right-handed subjects with ages ranging from 27 to 38 years were

tested on their dominant side. The resulting shoulder and elbow moments can

be seen in Table 4.5 and Table 4.6. The gravitational component given

incorporates the mass of the book and the arm.

M	 M	 M	 Total Gray. Inert Load

Activity	 Max I Mm	 Max I Mm	 Max Mm	 M	 M	 M	 Mh
1kgBook _____	 _____ _____	 _____
TabLe Hgt	 1.09	 -3.36	 -0.08	 -4.42	 8.72	 0.66	 10.05	 6.48	 5.23 ______

SD	 1.1	 1.6	 0.53	 0.93	 1.36	 0.96	 1.14	 0.6	 0.87 _____
ShoulderHgt	 1.24	 -3.93	 0.32	 -4.28	 9.89	 -0.38	 11.1	 6.6	 5.71 _____

SD	 0.74	 1.09	 0.64	 1.18	 1.914	 1.26	 1.69	 0.55	 1.3 _____
HeadHgt	 1.1	 -4.82	 0.1	 4.63	 10.17	 -0.33	 11.61	 6.67	 6.2 _____

SD	 1.27	 1.2	 0.85	 0.81	 1.88	 1.76	 1.66	 0.66	 1.46 ______
Maximum Hgt	 2.06	 -5.32	 1.01	 -5.27	 10.54	 -0.68	 12.11	 6.72	 6.73 _____

SD	 2.63	 0.87	 1.7	 1.16	 1.93	 1.31	 1.93	 0.62	 1.61 ______
2kg Book ______	 ______ ______	 _____
Table Hgt	 1.07	 -5.21	 -1.07	 -6.08	 12.97	 2.85	 14.53	 10.99 6.19 ______

SD	 1.41	 1.69	 0.86	 0.97	 1.87	 1.77	 1.52	 0.8	 0.94 _____
ShoulderHgt	 1.19	 -5.38	 -1.19	 -6.86	 15.04	 1.87	 16.66	 11.15	 7.29 _____

SD	 1.67	 1.67	 1.1	 1.53	 1.47	 2.88	 1.19	 0.91	 1.05 ______
Head Hgt	 1.19	 -7.06	 -0.96	 -7.6	 14.86	 0.4	 16.72	 11.14 7.63 _____

SD	 2.47	 1.45	 0.94	 1.71	 2.34	 2.89	 2.03	 1	 1.62 _____
Maximum Hgt	 1.31	 -7.56	 -0.06	 -7.75	 14.68	 0.03	 17.16	 11.26 7.95 _____

SD	 2	 0.91	 0.78	 1.11	 3.25	 1.81	 2.74	 1.15	 1.54 ______
Door

Open\Close	 0.43	 -2.91	 1.37	 -2.72	 5.61	 0.69	 6.28	 2.73	 0.98	 4
SD	 0.99	 -0.75	 0.96	 1.75	 1.76	 1.14	 2.02	 0.42	 2.01	 1.78

Driving
Steering	 13.53	 -3.44	 8.27	 -2.05	 14.04	 -1.99	 21.04	 2.72	 1.04	 22.19

SD	 7.48	 1.38	 2.44	 1.16	 3.38	 3.03	 4.83	 0.43	 0.24	 5.43
Cutting
Cutting	 2.38	 -0.86	 1.94	 -2.91	 4.38	 -1.73	 6.35	 2.32	 2.58	 5.02

SD	 1.3	 0.98	 2.66	 1.19	 2.16	 1.8	 1.83	 0.34	 1.12	 2.73
Table 4.6 Maximum moments and standard deviations at the elbow for various
activities. M, M, and M are the abduction\adduction, internal\external rotation and
flexion\ extension moments at the elbow respectively. M is the maximum resultant
elbow moment, Mg is the gravitational shoulder moment, M is the inertial elbow
moment and Mh is the resultant moment from the hand load. Cheng (1996).

High moments due to hand load in steering were obtained and elbow

flexion and extension was the major component in the activities analysed.
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The difficulty of the activities was graded by the magnitude of the resultant total

shoulder moment. In ascending order these were cutting, door opening

closing, lifting and driving. The difficulty of lifting increased with the increase in

mass and height of lift. The major component of shoulder moment in all

activities other than driving is seen to be the flexion\ extension moment. Cheng

(1996) also gave the data for the 1kg book lift in Table 4.7.

Table Height	 Shoulder Height Head Height	 Max. Height

	

Rotation Angle Mean	 SD	 Mean	 SD	 Mean	 SD	 Mean SD

	

_____________________ 	 (0)	 (0)	 (0)	 (0)	 (0)	 (0)	 (0)	 (0)

Flexion	 37.3	 8.0	 65.2	 5.3	 100.7	 8.2	 118.7	 6.7
Abduction	 25.6	 10.3	 44.2	 11.6	 113.1	 6.6	 137.0	 7.2

	

Internal Rotation	 64.6	 14.9	 66.6	 8.5	 63.6	 8.3	 63.3	 4.1
Table 4.7 Mean and standard deviation of maximum rotation angles of upper arm for
lifting a 1kg book to four heights. Cheng (1996).

4.3 Kinematic studies of the elbow

Several studies have been carried out with specific focus on the elbow

joint. Morrey et al (1981) used an electrogoniometer to study the elbow motion

of eighteen men and fifteen women carrying out fifteen activities of daily living.

Subjects were asked to touch various points on their body that were thought to

reflect possible positions of the hand during activities of dressing and ersona

hygiene, these were the top and rear of the head, the waist, chest and neck,

the sacrum and the shoe. The results obtained are shown in Table 4.8.

Task	 Elbow Flexion	 Forearm Supination	 Forearm Pronation
____________________	 (degrees)	 (degrees)	 (degrees)

Moving_hand to: ____________________ ________________ _________________
Head(vertex)	 118.6 ±6.1	 46.6 ± 16.0	 -
Head (occiput)	 144.0 ± 7.0	 2.0 ±23	 -

Shirt (waist)	 100.4 ± 13.2	 11.9 ±23.8	 -
Shirt (chest)	 120.0 ± 8.2	 29.4 ± 19.2	 -
Shirt (neck)	 134.7 ± 5.2	 40.9 ± 16.3	 -

Sacrum	 69.7 ± 12.4	 55.8 ± 20.1	 -
Shoe	 16.0 ± 6.3	 -	 19.0 ± 17.2

Table 4.8 Position of the elbow joint during routine activities of personal care and
hygiene. Average values of mean and standard deviation for 33 subjects. (Money et
al (1981)).
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Eight activities of daily living were also analysed, these being; pouring

from a jug, raising a glass to the mouth, cutting with a knife, putting a fork to the

mouth, using a telephone, reading a newspaper, rising from a chair and

opening a door. The results obtained are shown in Table 4.9.

Task	 Mean Flexion (Degrees)	 Mean Rotation (Degrees)

	

Mm.	 Max.	 Arc.	 Pronat.	 Supinat.	 Arc.
Pourfromjug	 - 35:6	 •58.3	 22.7	 42.9	 21.9	 64.8

Putglasstomouth	 44.8	 130.0	 85.2	 13.4	 10.1	 23.5
Cutwithknife	 89.2	 106.7	 17.5	 41.9	 -26.9	 15.0

Putforktomouth	 85.1	 128.3	 43.2	 10.4	 51.8	 62.2

Use the telephone	 42.8	 135.6	 92.8	 40.9	 22.6	 63.5

Read a newspaper 	 77.9	 104.3	 26.4	 48.8	 -7.3	 41.5

Rise from a chair	 20.3	 94.5	 74.2	 33.8	 -9.5	 24.3

Open a door	 24.0	 57.4	 33.4	 35.4	 24.3	 58.8

Table 4.9 Amount of elbow motion required to carry out selected daily activities.
Maximum, Minimum and Arc values for 33 subjects where negative supinatiori
represents pronation. (Morrey et at (1981)).

It was concluded that the functional arc of elbow flexion\extension was

100 0 , between limits of 30° acid 130°, and the '&c o 'fovearni cotaton 	 a

around 1000 evenly distributed between pronation and supination.

Packer et at (1990) also carried out a study of elbow function using

electrogoniometry. This study looked at elbow flexion in five rheumatoid

arthritis subjects (three males, two females) awaiting elbow arthroplasty, and

five control subjects (three males, two females), all in the age range 54 to 81

years. Three activities were carried out; standing and sitting using chair arms

for support, eating with a spoon and lifting a telephone receiver to the ear, the

latter two in a seated position. It is important to note that these tests were

partly chosen for the lack of involvement of hand and shoulder function in their

performance. The joint angles, arc and duration of each of the tests were

recorded. The results obtained for the five control subjects with no known

shoulder pathology are shown in Table 4.10.

The results obtained were similar to those of Morrey et at (1981), the

largest discrepancy being in the telephone test, where Packer observed a

much smaller range of movement (75°-i 40°) in comparison to that obtained by

Morrey et at. (43°-137°). Any comparison made between such papers must
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however be made while remembering that the experimental protocol might

have varied in each case, with factors such as the height of the table having

some effect.

_____________________	 Task	 ___________________
Movement	 Sit-Stand-Sit	 Use Telephone	 Eat With Spoon

_____________________ Median 	 Range	 Median	 Range	 Median	 Range
Mm. (°)	 15	 -10-25	 75	 45-85	 70	 35-100

Flexion	 Max. (°)	 110	 85-120	 140	 130-160	 115	 90-140
Arc (°)	 95	 70-110	 65	 55-115	 45	 15-70

Table 4.10 Required elbow flexion in degrees for three selected activities of daily
living carried out by five control subjects, where extreme extension is denoted by the
lowest angle. (Packer et al (1990))

The inter-subject variation can be seen to be quite large, most obviously

in the case of the spoon test, showing that the target end position of a

movement can be achieved with a variety of joint orientations.

Williams (1996) investigated upper limb motion with a particular focus on

the elbow joint. Six activities were analysed using a six camera 'Vicon' system,

these being reaches from table to mouth, to the vertex of the head, to the back

of the neck, to the perineum, forward to a shelf and to maximum height.

Graphical data from eleven unimpaired and eight impaired subjects were

presented. These data, along with that from Cheng (1996), were used for the

validation of the experimental methods and analysis techniques developed in

the current study, as discussed in Section 7.8.

4.4 Musculoskeletal modellin g studies

Several studies have obtained kinematic data during performance of

upper limb tasks as the basis for the development of musculoskeletal models

and the subsequent calculation of internal muscle and joint forces.

An early shoulder study was undertaken by inman et al (1944), who

investigated the relationships between the bony elements of the shoulder using

roentgenography and the insertion of pins into the bones of living subjects.

Forces were calculated at various stages during abduction in the coronal plane,

over a range of elevations between 300 and 180°, though details of the steps

involved between these limits are not given.
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The maximum calculated compressive force on the glenoid was found to

occur at 900 of elevation, reaching 10.2 times the weight of the extremity.

Given that the authors estimated the extremity weight amputated at the

glenohumeral joint as being 9% of the total weight of the body, this would

correspond to a force of around 0.92 times body weight. No details are given

of the mass of the subjects or the number involved in the study, but this force

would be equivalent to approximately 676N for a subject of mass 75kg.

Poppen & Walker (1976) also carried out a roentgenographic study of

the shoulder. Abduction of the arm in the plane of the scapula was studied in

steps of 30°, from the relaxed arm position to an elevation of 150° and then

maximum elevation. A total of 27 subjects comprising twelve normals (age

range 22-63) and fifteen with shoulder problems (age range 17-72) were

tested. The movement and rotation of the scapula, arm angle, glenohumeral

angle, scapulothoracic angle and the movement of the humeral head on the

face of the glenoid were all investigated.

The instantaneous centre of motion about which the humerus appeared

to rotate was also identified. This is possible only if the motion is assumed to

be two-dimensional, no such points existing in three-dimensional movement,

where motion occurs about instantaneous axes of rotation.

Maximum Arm	 30° to Max.	 Instantaneous Centre 	 Excursion of Ball on
Angle (Degrees)	 GH:ST Ratio	 (mm)	 Glenoid (mm)

150	 1.25 ± 0.25	 6.0 ± 1.85	 1.09 ± 0.475
Table 4.11 Averages of the results for the normal volunteers in the work of Poppen &
Walker (1976). The first column shows the angle between the longditudinal axis of
the humerus and an axis parallel with the vertical axis of the body. The second
column shows the ratio between the angle of deviation of the humeral longditudinal
axis from the scapular vertical axis and the deviation of the scapular vertical axis from
a line parallel to the vertical axis of the body. The third column shows the distance
between the instantaneous rotation centre of the humeral head and its geometric
centre. The final column shows the excursion of the humeral head on the glenoid in
the superior/inferior plane between each 30° movement.

This study was limited to two-dimensions though the data in Table 4.11,

the average data for the normal volunteers, is still of interest and of use for

comparison with other results.
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Poppen & Walker (1978), again carried out an investigation of 'isometric'

abduction (or elevation) in the plane of the scapula. The term isometric means

that each of the individual measurements was taken with the arm maintained in

a constant position. The aim was to calculate the force vectors at the

glenohumeral joint for the abduction movement, taking into account the

muscles active at each phase of the motion.

The results from their previous paper, Poppen & Walker (1976) were

combined with data concerning the lines of action of the muscles involved.

This was obtained during a radiographic study of three male upper quarter

cadaveric specimens. The lines of action of the nusc !es 'Nece s'j'c n

radiographs first by attaching elastic wires between their insertions and

repeating the radiographs and later by implanting radiopaque elastic wires

along the muscle centres prior to taking the radiographs.

A further group of data included were a set of ejectromyo9rapfr EMG?

results for the activity of the muscles involved at each angle studied. The

method of calculating the muscle forces is not fully explained in the paper, but

the assumption was made that "the relative force in a t3vec1 msce

proportional to its cross-sectional area times the integrated electromyographic

signal". Information on the integrated EMG of the muscles is cited as coming

from the work of Jones (1970), where 37 normal subjects were tested during

isometric scapular plane abduction. The level of activity of each of the active

muscles was indicated by a value on a scale from 0 to 4.

The results given from this work after combining and processing the data

discussed above, are the averages over the three specimens of the

compressive, shear and resultant forces at the glenohumeral joint for abduction

in neutral rotation at six discrete positions ranging in 30° steps from 0° to 150°.

The maximum resultant force was found to rise to 0.89 times body

weight at 90° of abduction, decreasing thereafter to 0.4 times body weight at

150° of elevation. For a subject of mass 75kg, these values would correspond

to 655N and 294N respectively. The compressive force peaked at around 0.83

times body weight (61 ON) at 90°, the shearing force peaking at 0.42 times body
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weight (309N) at 600. The authors estimated a 60% increase in the force

values if a hand load of 1 kg was present.

On estimating the forces in rotation it was found that in external rotation

they were around the same value as those obtained in neutral rotation. For

abduction in internal rotation however, the forces were found to be higher, the

resultant force at 90° being twice the value for external rotation. All force

values are in the scapular plane, thus the quoted shearing force is in the

superior/inferior direction.

Karisson & Peterson (1992) again focused on elevation in the scapular

plane in their discussion of a shoulder model which included all components

attached to the humerus, nineteen muscular elements, one ligamentous

element and the x, y and z components of the contact force between the

scapula and humerus. The aim was to determine whether such a model could

be used to predict all the internal musculoskeletal forces acting on the humerus

under different conditions of loading.

An idealised mechanical model of the shoulder was used, where the

bones of the shoulder were modelled as rigid bodies, the joints as ball joints

and the muscles or muscle sections as stretched strings between attachment

points. Normalised cross-sectional areas of the muscles were obtained by

expressing the cross-sectional area of each muscle as a percentage of the total

sum of the cross-sectional areas of the shoulder muscles.

Six force and moment equilibrium equations were formulated for the

internal muscular and external gravitational forces, incorporating twenty-three

unknown internal forces and therefore having no unique solution. This

indeterminate problem was solved using an optimisation process for which the

sum of the squared muscle stresses (internal muscle forces/ normalised muscle

cross-sectional areas) was the objective function minimised. Having solved for

the internal muscle forces it was possible to determine the joint contact forces.

In theory the above model could be used to assess the complete range

of shoulder motion. In this paper however, only elevation in the scapular plane

was modelled, between 0° and 120° in steps of 15° for a hand load set at 1kg.

At each step a numerical solution was found for the force levels in each of the

involved components. Anthropometric data for a young male of mass 75kg was
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used as input to the model. The calculated contact force rose to a value of

650N (0.88 times body weight) at a level of 60° of abduction, before falling at

higher elevations. A level of around 600N (0.82 times body weight) was found

between 60° and 900 of elevation for the subject modelled.

Poppen and Walker (1978) estimated a 60% increase in their calculated

force with a 1 kg hand load. This would take their maximum resultant contact

force to around 1.4 times body weight, some way above the value obtained by

Karlsson & Peterson (1992). The latter paper is in closer agreement with the

0.92 times body weight of Inman et al (1944), though their investigation

involved abduction in the coronal plane with no hand load. In comparison with

these other papers the value of Karlsson & Peterson (1992) would appear

relatively low.

The development of another three-dimensional shoulder model was

described by van der Helm (1994). In this model each morphological structure

was represented by an appropriate element, the mechanical behaviour of which

was well defined. The clavicle and humerus for instance were modelled as

rigid beam elements, the scapula by two tightly connected beam elements, with

the joints modelled by three perpendicular hinge elements. Muscles were

modelled by one to six active force-generating elements, representing muscle

lines of action and connected between the muscle origin and insertion.

Knowing the mechanical behaviour of these elements the behaviour of the

whole system could be assessed by connecting them.

The model incorporated 16 muscles, three joints, three extracapsular

ligaments and the kinematic constraint of the scapulothoracic gliding plane.

The parameters for the model described the mass and rotational inertia of the

upper limb, data on the physiological cross-section of the muscles and

geometric parameters describing the positions of muscle and ligament

attachment sites and bony landmarks, as well as joint rotation centres.

Cadaveric studies were used to find many of the geometric parameters

required (details of these studies can be found in Van der Helm & Veenbaas

(1991), Veeger et al (1991) and van der Helm et al (1992)). The position of the

acromioclavicular joint and trigonum spinae (see Fig.2.land Fig.2.5) at each of
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the positions chosen were used as the input for the model, as were the mean

humeral rotation angles.

Position and rotation information was obtained during a study described

in van der Helm & Pronk (1995). This study involved the use of the "palpator'

(as described in Pronk & van der Helm (1991)). This was a spatial digitiser

made up of an open chain mechanism which consisted of four links and four

hinge joints, with a rigidly fixed base. Rotations at the hinge joints were

recorded using high precision potentiometers, the output of which could be

used to determine the position of the end point of the final link. By touching the

endpoint of the palpator to a palpated landmark and pressing a foot trigger, the

three-dimensional co-ordinates of the landmark were calculated to an accuracy

of 1.43mm standard deviation.

Humeral frontal plane abduction and sagittal plane flexion were

measured, both unloaded and with a 0.75kg hand load, for 10 healthy male

subjects. The mean age of these subjects was 23.1±1.9years, the mean height

181 .7±3.7cm and the mean weight 71.3±3.9kg. The positions of eleven bony

landmarks on the thorax (jugular notch, transition from gladiolus to xiphoid

process, 7th cervical vertebra, 8th thoracic vertebra), clavicle (jugular notch,

most dorsal point of the acromioclavicular joint), scapula (acromioclavicular

joint, acromial angle, inferior angle, trigonum spinae) and humerus (lateral and

medial epicondyle) were recorded at 300 intervals of elevation from 0° to 1800.

These experimental data were used by van der Helm (1994) in the

modelling process. The model was used to produce information on the

orientations of the clavicle and scapula and the muscle forces necessary to

counterbalance the external load on the upper extremity. Resultant contact

forces at the glenohumeral joint were calculated, outputs being expressed

about the axes with their origin at the jugular notch (incisura jugularis), the X

axis medial to lateral, Y axis inferior to superior and the Z axis ventral to dorsal.

The highest values found were at 90° of elevation in all tests. The resulting

glenohumeral contact forces at this elevation are shown in Table 4.12.

It can be seen that there is an increase of 56% in the resultant force

between unloaded and loaded abduction, close to the increase predicted for a
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slightly higher hand load by Poppen and Walker (1978). The force obtained for

loaded abduction is close to that of Karlsson and Peterson (1992), though for a

slightly different hand load.

_________________________ X component Y component Z component 	 Resultant
Unloaded abduction	 344N	 83N	 -156N	 387N
Loaded abduction	 533N	 144N	 -239N	 602N

Unloaded anteflexion	 11 IN	 33N	 -328N	 348N

Loadedanteflexion	 ll8N	 56N	 -478N	 496N

iaie 4.1Z esuItant gienonumerai contact rorces at 	 (N.U. values are taken
from graphical information and thus approximate). (van der Helm (1994)).

If the mean body weight of the subjects tested is taken, the resultant

force values in Table 4.12 are equivalent to 0.55 times body weight and 0.86

times body weight for the unloaded and loaded abduction tests respectively.

The latter value can be seen to agree with those previously documented.

The papers discussed to this point all suffer from the same limitation,

being restricted to analysis of two dimensional motion and the associated

kinematics. This simplifies the analysis of a three-dimensional situation. In

order to obtain truly relevant data a study should be made in three dimensions.

Anglin et al (1996) carried out a study into three-dimensional

movements, involving the assessment of five activities in order to gain a

measure of the contact forces on the glenohumeral joint. The activities

assessed were:

1. standing up from a chair using the arms

2. sitting down into a chair using the arms

3. walking with a cane

4. lifting a 5kg box from floor to shoulder height using both hands

5. lifting and carrying a 10kg suitcase

These activities were chosen as they were regarded to be similar to common

daily activities which would lead to a high force at the shoulder joint. An

infrared 'Optotrak' system was used in order to determine arm and trunk

angles, markers being attached as previously described by Romilly et al
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(1994). Forces were measured by means of a transducer on the chair arm

during standing and sitting and a force platform during the walking test. The

box lifting test included a force component due to gravity, the suitcase lift

included a dynamic force component based on the accelerations of the hand.

The average age, body weight and height of the six subjects were

55years (51-64years), 73kg (52-89kg) and 168cm (152-187cm) respectively,

evenly divided between males and females and none had a history of shoulder

problems. The subjects were asked to repeat the tests five times and the

contact forces obtained are shown, normalised to body weight, in Table 4.13.

Included are the overall average force values, the overall range of all of the

trials for each task and the average of the maximum values across each run of

five trials for each of the tasks, as well as the maximum five-trial average force

for each task from all the subjects.

	

___________________________ Standing 	 Sitting	 Cane J Box 1.{Suitcase

	

Average (all trials & subjects)	 1.8	 2.0	 1.7	 j	 1.8	 j	 2.4

	

Range (all trials & subjects)	 0.5 - 4.3	 0.3 - 6.9 0.4 - 3.2J1 .5- 2.3 j 1.3 - 4.3
Avg.Max. (across trials)	 2.7	 2.9	 2.0	 1.9	 j	 2.7

	

Max. Avg. (across subjects) 	 3.1	 5.1	 2.8	 2.2	 L	 3.5
Table 4.13 Glenohumeral contact forces as a multiple of body weight (Anglin (1996)).

Another study of real-life activities is that of Runciman & Nicol (1994),

who outlined the development of a biomechanical model of the glenohumeral

joint. This model was developed in an attempt to investigate muscle and joint

loading during three dimensional activities. The authors used muscle origin

and insertion data from the work of Johnson (1990).

This information was combined with a dry bone study, as well as

anthropometric and real time kinematic data for the trunk, clavicle scapula and

forearm in the modelling process. The kinematic information was obtained

using a six camera 50Hz Vicon system to trace markers of known placements

on the body. A force platform and strain gauged transducer were also used to

measure hand loading.

Several real life activities involving dynamic, three-dimensional

movement were investigated. Results were quoted for a preliminary test of

frontal plane abduction, carried out on a single male subject of age 25 years,
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weight 65kg and height 1 .75m. The net overall effect of the external forces and

moments on the glenohumeral joint were calculated, this including the

gravitational contribution knowing the relative size and positioning of the

segments with respect to the glenohumeral joint centre. The contribution of

any hand load could be similarly calculated. The maximum compressive force

from the humeral head on the glenoid was predicted by the model to be

approximately 1.2 times body weight at a frontal plane abduction of 800. This is

higher than results previously quoted, for instance Poppen & Walker (1978)

who predicted the value to be 0.83 times body weight.

More detailed information on the tests carried out and the results

obtained can be found in Runciman (1993). This thesis details the work on

which the previous paper was based and gives the full description of the testing

process. Five male subjects were tested carrying out a variety of activities,

firstly abduction and flexion with a 2kg hand load to allow comparison with

previous two-dimensional modelling and then some three dimensional

exercises, push-ups, press-ups and chin-ups. The subjects were each required

to carry out two sets of two repetitions of each exercise and from the

information obtained using the Vicon system, the model was used to predict the

joint forces. A summary of the relevant results is shown in Table 4.14.

Range of	 Maximum	 Maximum	 Maximum Superior
Test	 compressive GH	 compressive GH	 Anterior/Posterior	 shearing force (x

contact forces (x	 contact force (x	 shearing force (x 	 body weight)
____________	 body weight)	 body weight)	 body weight)	 __________________

Abduction	 0.9 - 1.8	 > 1.2	 0.5	 0.3
Flexion	 1.4 - 2.0	 > 1.4	 0.1	 0.2
Push-up	 3.0 - 7.5	 > 5.0	 1.0	 1.0
Press-up	 2.3 - 5.4	 > 3.0	 2.0	 1.0
Chin-up	 3.1 -4.9	 >4.0	 <1.0	 <1.0

Table 4.14 Glenohumeral contact forces as a multiple of body weight. Results taken
from Runciman (1993). In the above table both abduction and flexion tests were
carried out with a hand load of 2kg. For the data in the third column the shearing
force is always anterior except in the case of the chin-up test where it is posterior.

Runciman (1993) also used the data for the abduction tests to make an

approximation for unloaded abduction in order to allow comparison with the

earlier work of Poppen & Walker (1978). Based on the results, a maximum

compressive joint force of approximately 0.7 - 0.8 times body weight was
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calculated. This corresponds well with the two-dimensional model of Poppen

and Walker (1978) and the three-dimensional models of Karisson & Peterson

(1992) and van der Helm (1994).

4.5 Summary of results

Tables 4.15 to 4.17 summarise comparable results from the studies discussed.

Author	 Dot'nikov	 Safaee-rad	 Romilly

Activity	 degrees	 degrees	 degrees

Pouring	 rotation arc	 0	 -	 -45---^ -16 (roll)

flex/ext arc	 0	 -	 32-^85 (elev)

abdladd arc	 0	 -	 36—>66 (az)

drinking	 rotation arc	 22	 5.2-^23.4	 -62-^ -21 (roll)

flex/ext arc	 10	 15.8-+43.2	 32-^63 (dcv)

abdladd arc	 3	 12.7-^31.2	 37-^56 (az)

fork	 rotation arc	 -	 5.1—l8.1	 -40-^1 (roll)

flex/ext arc	 -	 10.7-+35.2	 34—*54 (elev)

abd/add arc	 -	 7.1-^18.6	 32-^49 (az)

spoon	 rotation arc	 25	 4.8-16.8	 -61—f -4 (roll)

flex/ext arc	 10	 7.8—*36.1	 32-^76 (elev)

abd/add arc	 5	 6.6-21.8	 34-54 (az)

telephone	 rotation arc	 -	 -	 -82-^ -26 (roll)

flex/ext arc	 -	 -	 3 5-53 (elev)

abd/add arc	 -	 -	 36-^71 (az)

combing	 rotation arc	 50	 -	 -85—f -13 (roll)

flex/ext arc	 41	 -	 31—*77 (elev)

abd/addarc	 11	 -	 35-^86(az)

sit-stand	 rotation arc	 -	 -	 -

flex/ext arc	 -	 -	 -

abd/add arc	 -	 -	 -

door	 rotation arc	 -	 -	 50.* -20 (roll)

flex/ext arc	 -	 -	 34-58 (elev)

abd/add arc	 -	 -	 39—*72 (az)

Table 4.15 Comparison of shoulder motion for selected activities, in degrees. (N.B.
Internal rotn. +ve, values from Romilly are in terms of azimuth, elevation and roll)
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Author	 D'olnikov	 Morrey	 Packer	 Romilly	 Saface-rad

Activity	 degrees	 degrees	 degrees	 degrees	 degrees

Pouring	 flexion arc	 22	 35.6-*58.3	 -	 65-^86	 -

forearm rotn	 74	 42.9-+ -21.9	 -	 -49-36	 -

drinking	 flexion	 71	 44.8-^130	 -	 68-136	 71.5-*129.2

forearm rotn	 21	 13.4 - -10.1	 -	 -14-*37	 -31.2--p -3.4

fork	 flexion	 -	 85.1-128.3	 -	 73-129	 93.8-122.3

forearm rotn	 -	 10.4 - -51.8	 -	 -37-^50	 -58.8--38.2

spoon	 flexion	 37	 -	 70-1l5	 75-^123	 101.2-+123.2

forearm rotn	 34	 -	 -	 -24-^57	 -58.7-^22.9

telephone	 flexion	 -	 42.8-*135.6	 75-*140	 74-^151	 -

forearm rotn	 -	 40.9-^ -22.6	 -	 -26--48	 -

combing	 flcxion	 97	 -	 -	 71-+143	 -

forearm rotn	 52	 -	 -	 -52-447	 -

sit-stand	 flexion	 -	 20.3-^94.5	 15-^110	 -	 -

forearm rotn	 -	 33.8-^9.5	 -	 -	 -

door	 flexion	 -	 24-457.4	 -	 58-*78	 -

forearm rotn	 -	 35.4 -4 -23.4	 -	 -2-*47	 -

Table 4.16 Comparison of elbow motion for selected activities, in degrees. (N.B.
Pronation +ve)

Author (year)	 Plane	 Force (xB.W.)	 Angle	 Band Load

Inman (1944)	 Frontal	 0.92	 90°	 0

Poppen (1978)	 Scapular	 0.89	 90°	 0

1.4(t)	 90°	 1kg

Karlsson (1992)	 Scapular	 0.88	 60°	 1kg

Runciman (1993) 	 Frontal	 >1.2	 -	 2kg

0.7-0.8 (t)	 -	 0

van der Helm (1994)	 Frontal	 0.55	 90°	 0

0.86	 90°	 0.75kg

Table 4.17 Maximum resultant glenohumeral joint contact forces as a multiple of body
weight for abduction of the arm. (t estimated from previous result)

Pheasant (1986) also gave relevant data on the maximum ranges of joint

movement as given in Table 4.18.

Wang et al (1998) found the range of a particular joint motion to be

strongly dependent on the position of the limb. The range of humeral axial
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rotation for seven male subjects aged between 23 and 34 years was studied.

The average range was found to vary from 940 to 157° dependent on humeral

position, the maximum occurring when the upper arm was in its natural

vertically downward position, the minimum when it was near vertically upwards.

Movement	 5th %ile	 50th %ile	 95th %ile	 SD

(degrees)	 (degrees)	 (degrees)	 (degrees)

Shoulder flexion	 168	 188	 208	 12

Shoulder extension	 38	 61	 84	 14

Shoulderabduction*	 106	 134	 162	 17

Shoulder adduction	 33	 48	 63	 9

Shoulder Int.rotn.	 61	 97	 133	 22

Shoulder Ext.rotn.	 13	 34	 55	 13

Elbow flexion	 126	 142	 159	 10

Forearm pronation	 37	 77	 117	 24

Forearm supination 	 77	 113	 149	 22

Wnstflexion	 70	 90	 110	 12

Wrist extension	 78	 99	 120	 13

Radial deviation	 12	 27	 42	 9

Ulnar deviation	 35	 47	 59	 7

Table 4.18 Ranges of upper limb joint motion. From the survey of Dempster (1955)
re-analysed by Barter et al (1957). (Pheasant (1986)). N.B. * - increased to 180°
through accessory movements of the scapula.

4.6 Possible activities for analysis

A variety of tasks have been assessed in previous upper limb studies

and have been discussed in the preceding pages.

McWilliam (1970) carried out a study in which seventeen able-bodied

males and females were requested to complete a questionnaire in which they

indicated the activities they regarded as important in daily living. Many of the

high scoring activities have been analysed in the studies discussed. These

include eating, personal hygiene and the use of door handles and telephones.

Table 4.19 contains a summary of activities previously analysed, others

deemed important during the study of McWilliam (1970) and some anatomical
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locations in which the limb can be placed. This represents a pool of activities

from which a selection might be made for analysis. To the right of some

activities are a grading of their importance carried out by a member of staff at

DePuy International, the sponsors of this work.

Activities previously studied	 Tasks from McWilJiam (1970)
_________________________________ - 	 getting in! out of bed *	 5
Feeding	 -	 dressingt	 2

eating with hands	 -	 tucking! adjusting clothes
eating with fork	 4	 using lavatory *

eating with spoon	 2	 walking with hand rail * 	 -

cutting with knife *	 3	 spreading with knife *	 -

drinking from a glass! mug	 1	 lifting pots! pans	 6
pouring from a jug! kettle 	 5	 shaving	 7

_______________________________ - 	 towelling dry	 4
Personal Hygiene	 -	 using hairdryer	 -

brushing teeth	 4	 writing *	 3

	

brushing! combing hair	 3	 removing objects from pocket	 -

washing face	 2	 vacuuming *	 -

turning tap *	 1	 ironing *

________________________________ - 	 using drawers / hangers *
General	 -	 using a brush / mop * 	 -

usinga screwdriver! hammer! file* - __________________________________

standing/ sitting from! into chair *	 Relevant anatomical locations	 -

	

opening! closing door *	 4	 abduction	 -
lifting a box	 flexion	 -

lifting a suitcase	 -	 hand behind back	 -
using a telephone	 3	 hand in opposite axilla	 -

	

read ing a newspaper t	8	 reach to shoe	 -
using walking stick * 	 6	 reach to opposite hip	 -

driving *	 7	 reach to chest 	 -

	

turning doorknob! lever *	 4	 reach to neck	 -

	

pressing switch/ button * 	 2	 hand behind head, elbow forward -
push-up *	 -	 hand behind head, elbow back	 -
press-up *	 - hand on top of head, elbow forward -
chin-up *	 - hand on top of head, elbow back -

Table 4.19 A summary of activities, * = activities requiring extra instrumented
apparatus, = activities requiring force application other than lifting. Grading: 1 = most
important. (N.B. Of the reaching activities, abduction, flexion and reaching to shoe,
waist chest neck, top of head and behind head have been analysed previously)
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CHAPTER 5 THEORETICAL ASPECTS OF MOTiON ANALYSIS

5.0 Introduction

In order to analyse the motion of the upper limb by modelling its

segments as rigid bodies and affixing markers at relevant landmark points, it

was necessary to apply numerous theoretical elements between the stages of

filming tests and obtaining joint angle, force and moment data.

The following pages provide an introduction to the relevant theory and

available alternatives involved in the analysis process. This serves as

background for the complete discussion of methodology in Chapter 6.

The various topics are introduced in the chronological order in which

they feature during the analysis process.

5.1 Camera calibration

In order that information on the three-dimensional position of markers

can be obtained, it is necessary to employ an algorithm to transform the

digitised two-dimensional video image data. The Direct Linear Transformation

(DLI) introduced by Abdel-Aziz & Karara (1971) is the algorithm favoured in

the Ariel Performance Analysis System (APAS) and used in the current study.

Prior to the introduction of the DLT, the analysis of photogrammetric

data was carried out on "comparators", through projection of the image onto a

grid of known dimensions for instance. Two steps were required to transform

firstly from projected co-ordinates to image data and then to object space co-

ordinates. This involved filming of known fixed landmarks throughout testing

and initial approximations of internal camera parameters and their locations.

The DLI improved the efficiency of the process, transforming between

projected and object space in one step by determining the relative location of

the camera film plane and the orientation of the camera. This information is

combined with two-dimensional co-ordinate data from each camera image to

derive the three-dimensional co-ordinates of the target markers.

An initial requirement of the DLI is the filming by a minimum of two

cameras of non coplanar control points with known 3D co-ordinates in the
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measurement space. Such control points are usually attached to some sort of

rigid calibration frame. The control points are removed prior to filming the

motion analysis study in the same test space. It is critical that camera

positioning and lens settings are unchanged after calibration.

The two-dimensional images of the calibration frame and subject are

then digitised prior to calculating the three-dimensional co-ordinates of the

target markers. It is assumed for the DLT that the co-ordinates of a marker

image in any two-dimensional camera image plane are a linear function of the

co-ordinates of the marker in the three-dimensional object space. These co-

ordinates are found by solving Equations 5.1 and 5.2 which contain a total of

eleven unknown coefficients, akJ, which for each camera j are proportional to an

amplification factor of the camera and define the linear transformation between

object space and image planes.

For m markers the method provides a relationship between the two-

dimensional co-ordinates of a marker I (i=1,...,m) on the film and its three-

dimensional location in space. For n cameras the relationship between the co-

ordinates of the markers on the film of the camera] (j=1, .. .,n) and the spatial

three-dimensional co-ordinates of this marker are determined by:

aij x j ^a21y1 +a 31 z1 +a41	
(5.1)

= a 9 x, +a101 y1 +a111 z1 +1

a 51 x1 ^a61y, +a 71 z1 ^a81	
(5.2)Yq

a 91 x 1 +a 10 y1 +a1ijzj +1

Where for marker I:

x	 = x co-ordinate of marker ion the film measured with camera]

y,j	 = y co-ordinate of marker ion the film measured with camera]

x	 = x co-ordinate of marker i in the three-dimensional space

y,	 =	 y co-ordinate of marker i in the three-dimensional space

z	 =	 z co-ordinate of marker i in the three-dimensional space

=	 coefficient k in the transformation formulas for marker i
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The calibration process establishes the unknown coefficients akJ,

provided the calibration frame includes a minimum of six well distributed and

defined reference points. Each calibration marker yields two equations, six

markers thus provide an overdetermination of the unknowns for each camera,

allowing a least-squares solution to be found. A summary of the DLT method

of Abdel-Aziz & Karara (1971) can be found in Nigg & Herzog (1995).

Several studies have investigated the accuracy when using the DLT

including those of Wood & Marshall (1986), Challis & Kerwin (1992), Chen et al

(1994) and Hinrichs & McLean (1995). In order to achieve the best results it

was found that calibration points should be distributed throughout the test

volume. Accuracy was greatest when the activity under analysis was

performed within the calibrated volume, but decreased as points further outside

the calibrated volume were analysed.

The advantages of the DLT are its relative simplicity and the flexibility it

allows in camera arrangement. It does not require initial knowledge of the

location or orientation of the cameras, the distance between cameras and

subject, or any information about the camera or projection lenses such as focal

length and magnification. By directly determining the relationship between the

image space and each of the digitised views, all the intervening image changes

are eliminated and need not be considered.

The DLT is the most commonly used algorithm in motion analysis

systems based on the reconstruction of three-dimensional co-ordinates from

two-dimensiona' images. Modified versions have been proposed by several

authors including Gazzani (1992), (1993), Hatze (1988) and Yu et al (1993).

Hinrichs & McLean (1995) discuss an alternative to the DLT, the Non-

linear Transformation (NLT) proposed by Dapena et al (1982) with a later

correction by Dapena (1985). Multiple frames of data were collected while two

markers attached to a bar were moved around the test space. Static points

were used to define the location and orientation of the co-ordinate system

allowing the 'building' of any size control object desired. The NLT has

advantages of flexibility of calibration volume and portability of necessary

apparatus, though determination of camera internal parameters by a separate
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procedure is required. Some systems, such as the most recent 'Vicon 512'

system have adopted derivations of the NLT as their default calibration method.

Tsai (1986) also developed a two step calibration method, claimed to

deal with lens distortion more efficiently than the DLT and to be more accurate

outwith the calibration volume, a method recently adapted by Schmid (1998).

Cerveri et at (1998) outlined a further adaptation, a one step process whereby

all internal and external camera parameters were determined by surveying a

moving calibration object similar to that used for the NLT.

5.2 Position and orientation descriptors

Having obtained the three-dimensional marker co-ordinates, the next

stage was to use these co-ordinates to determine the position in space and

orientation of the segments to which they were attached. In order to achieve

this it was necessary to define the orthogonal segment embedded and global

co-odinate frames previously mentioned. By determining the relationships

between these frames, the segment positions and orientations could be found.

The 3D knematc reatonshp tetwn is s

by a position vector and a rotation or direction cosines matrix relating the two

frames. These will be discussed in the following pages using the notation of

Craig (1989) as follows:

• variables written in uppercase represent vectors or matrices

• variables written in lowercase represent scalars

• Leading subscripts and superscripts identify which co-ordinate

system a quantity is written in. For example, Ap represents a

position vector written in co-ordinate system (A], and R is a

rotation matrix that specifies the relationship between co-ordinate

systems (A) and (B)

• Trailing superscripts indicate the inverse or transpose of a matrix.

For example, R 1 , RT
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5.2.1 The Position Vector for describing displacements

Having defined co-ordinate frames, the position of the origin of one

frame may be specified in relation to another by means of a position vector as

shown in Fig. 5.1. Following the prescribed convention the three component

column vector shown is identified as Ap

.7

x&

Fig 5.1 Position vector A P, the onqjn of &B	 eator to to-occS'rte	 &ecc' (\

The components of the 3x1 column vector define the co-ordinates of the

origin of (B) in the frame of (A) and can be denoted:

px
Ap= p
	 (5.3)

pz

5.2.2 The Rotation Matrix for describing orientations

The position vector locates a single point in frame {B}, though this frame

could be in an infinite number of orientations. In order to describe all six

degrees of freedom of the frame, the position vector must be used in tandem

with a rotation matrix which describes the orientation of one frame with respect

to the other.

The scalar product of two unit vectors yields the cosine of the angle

between them. The rotation matrix consists of these direction cosines between



80

each of the axes of frame {B} and the axes of frame (A}. The nine direction

cosines are combined in a 3x3 rotation matrix.

In order to determine the direction cosines a unit vector in the direction

of any of the axes can be considered, unit vector X8 along the X axis of co-

ordinate frame (B) in Fig 5.2 for instance.

B}

XB

ZA

r31

ru

XB (unit vector along XB)

YA
r21

Fig 5.2 Direction cosines of a unit vector

The cosines of the angles a, fi and 2' are the direction cosines of vector

X8 , relative to the co-ordinate system (A). An alternative representation uses

the scalar displacements where cos(a)-r11 , cos(13)=r21 and cosfr)=r31. Hence

the X axis of (B) relative to the co-ordinate system of (A) is described by

equation 5.4.

cos(a)	 r11

	= cos(fl) = r21
	

(5.4)

cos(y)	 r31

The same process can be carried out for the Y and Z axes of (B).

Combining all three yields Equation 5.5, the rotation matrix describing the

orientation of (B) relative to (A), R.

	

R—[AX	

A.9.	
z8J_J,, '2-	 B	 B

	 r,	 2 131

	

r32 r33j

	
(5.5)
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The position and orientation of (A) or (B) may be described relative to

any known co-ordinate system. The rotation matrix which describes the

orientation of [A) relative to (B), R is the transpose of R as given in Equation

5.6.

R=RT	 (5.6)

Similarly, the position of the origin of (A) in the frame of [B), the vector 8P, may

be defined as in Equation 5.7.

(5.7)

5.2.3 The homogeneous transform combining position and orientation

The position vector and orientation matrix descriptions of one frame in

relation to another can be combined in one 4x4 matrix known as a

homogeneous transform. The first 3x3 elements of this matrix are the rotation

matrix, followed by the 3x1 position vector as given in equation 5.8.

'l1	 '2
	 r13

T=	
[R]	 [AP] = r r r23 p	 (5.8)

r3, '32 r	 p
0 0 O1	 00 01

This matrix can be used to describe a general transformation mapping of

a vector or point from its description in one frame to a description in another

frame. It can also be utilised, as in the current study, to describe one frame in

relation to another and was used extensively in the MATLAB analysis routines

described in Chapter 6.

5.2.4 The orientation vector

The columns of a 3x3 rotation matrix are mutually orthogonal and have

unit magnitude and the determinant of such matrices is always +1. These facts
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allow the application of Cayley's formula (Equation 5.9), which gives that for

any such matrix R, there exists a skew symmetric-matrix S, such that

R=(l3 -S) 1 (l3 +S)	 (5.9)

Where 13 is the 3x3 unit matrix.

A skew-symmetric matrix of dimension three such as S is specified by

just three independent parameters, with the result that it is possible to specify

any 3x3 rotation matrix with three parameters.

It is advantageous to reduce the orientation matrix into some more

compact form described in terms of just three elements. Various

parametrisations exist that enable this, one of the most commonly used being

the Euler angles described later in Section 5.4.1. Such a description of an

orientation, defined using three elements as opposed to the nine of the original

orientation matrix is known as an orientation vector.

5.3 Calculation of transformations

The co-ordinates for a set of points associated with each segment were

measured at some initial time and at some later time after motion had occurred.

The segments were regarded as rigid bodies and therefore the final positions

were related to the initial positions by some rotation and translation.

The aim of the motion analysis was to establish the rotation and

translation from marker co-ordinate data, allowing the segment motion to be

found. Various options were available to find the transformation matrices that

describe the relationships between the segments in each sampled instant.

The assumption could have been made that the experimental co-

ordinate data for each segment's three surface skin-fixed markers was noise-

free. The technical axes would then be defined directly from this data. There

will always be some relative motion between the markers however, the

measured marker trajectories being perturbed in comparison to the

displacement of the underlying bony landmarks and causing the rigid body

assumption to be inaccurate. Cappozzo et al (1993) found markers over bony
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landmarks to move by as much as two centimetres in relation to the underlying

bone in their lower limb videofluoroscopic study.

An alternative is to employ some optimisation process in order to correct

for the noise introduced by inter-marker movement and make the positional

data from individual markers conform to the rigid body assumption. Such

optimisations generally involve the estimation of the transformation matrix

which optimally maps the configuration of a cluster of an arbitrary number of

markers (equal to or greater than three) in an initial static calibration data set,

to the analogous noisy configuration of the cluster in the laboratory frame at

each sampled instant during motion. This can be achieved by finding the

values of R (a 3x3 orthogonal rotation matrix) and P (a 3x1 3D translation

vector) which minimise the discrepancy between the true final landmark

location and the transforms of the initial locations in a least squares sense, as

shown in Equation 5.10. The notation '' indicates the frobenius norm of the

resultant matrix, which involves the sum being computed over all the elements

of the matrix.

= IIfinal positions - (Rx(initial positions) + P )11 2 	 (5.10)

Knowing the rotation matrix and translation vector allows the

construction of a transformation matrix. After finding the best estimate of the

transformation that maps the locations of the landmarks from their initial to their

final position, the technical frames would then be defined from the optimised

marker cluster co-ordinates.

Spoor & Veldpaus (1980) introduced a least-squares algorithm for

obtaining translation and rotation matrices from the spatial co-ordinates of

markers. The use of the helical axis method for the characterisation of body

movements, discussed later, was also described. Veldpaus, Woltring &

Dortmans (1988) refined the algorithm of Spoor & Veldpaus (1980), their

unweighted least squares method avoiding some of the disadvantages of the

original algorithm.

Söderkvist and Wedin (1993) also describe a least-squares method for

determining the motion of a rigid body from landmark positions based on that of
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Spoor & Veldpaus (1980). It was concluded to be superior to the earlier

method as it was more stable and hence superior for ill-conditioned problems.

Their method involved computing the solution to the minimisation

process using quantities that derive from the singular value decomposition

(SVD) of a matrix related to the rotation matrix. The SVD is a technique for the

orthogonal decomposition of a single matrix into three, and is discussed in

numerous textbooks, including those of Lawson & Hanson (1974) and Golub &

Van Loan (1991), the theorem for this process being:

If A is a real mxn matrix, then there exists an mxm orthogonal (unitary)

matrix U=[u 1 , ... ,Um] ERmm and an flxfl orthogonal (unitary) matrix V=[v1,

,v] ER"', such that A= USVT. Where S is an m by n orthogonal matrix

(diag(a 1 , ..., aflnj) ERml) with real diagonal elements, a,, such that Gi ^

amin(m.n) ^ 0 (i.e. decreasing non-negative diagonal elements). The

a1 are the singular values of A and the first (m,n) columns of U and V are

the left and right singular vectors of A.

The relationship can be written as A= USVT or alternatively UTAV-S.

Derivations for this method have been described in Hanson & Norris

(1981), Arun et al (1987) and also in the more recent work of Challis (1995).

SOderkvist & Wedin (1993) discuss this method and give a step by step

algorithm for carrying it out, an algorithm similarly described by Challis (1995).

Chèze et al (1995) also described a procedure to numerically solidify an

attached marker configuration. The three markers on each segment were

selected which came closest to representing the corners of a rigid triangle over

the range of movement. A best-fit solid triangular shape was defined from

these markers over the range of images, after removing those in which the

shape was most deformed. The least squares minimisation of SOderkvist &

Wedin (1993) was then used to fit the best-fit solid triangle to the measured

markers at each point in the motion.
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5.4 Angular parametrisations

Having calculated the rotation matrices the next stage in the analysis

process was to obtain some visualisation of their meaning, for instance as a

sequence of three rotations about defined axes as discussed in Section 5.2.4.

5.4.1 Euler angles

Probably the most commonly utilised method for describing

biomechanical orientations are the Euler angles, which may be defined relative

to any axis sequence as long as at least two axes are used. For the purposes

of introducing the relevant theory a three axis Z, Y X" sequence will be

discussed, as given in Fig. 5.3.

Firat rotation about Z	 Second rotation about V	 Third rotation about X

Fig 5.3 Definition of the Z, Y X" Euler sequence.

The Euler angle rotations between frames (A] and (B], initially

coincident, are firstly a rotation of {B} about the ZB axis by an angle a, followed

by a rotation about the displaced YB axis by an angle 13 and finally about the

twice displaced XB axis by an angle y. The orientation of the fixed axis system

being rotated is altered each time a rotation is carried out, the frame lying in

two intermediate positions before reaching its final orientation.

Each rotation occurs not about the axes of the fixed frame (A), but about

those of the moving frame (B]. Each of the intermediate frames (A') and (A"]

are therefore dependent on the preceding rotations. The second rotation 13

occurs about the axis YB, the position of which depends upon the first rotation
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a. Similarly, the position of the final axis of rotation XB is dependent on both of

the previous rotations a and fi.

Such three dimensional rotations are sequence dependent. The given

sequence of rotations about the Z, Y, and X axes does not result in the same

final position of frame (B) as would the same rotations about the sequence X,

Y, Z. The non-commutative nature of rotations is unsurprising given their

derivation from rotation matrices, the multiplication of which are non-

commutative.

In order to apply the Euler angle notation, it is necessary to decompose

the calculated rotation matrices in terms of a selected Euler angle sequence,

achieved in the following manner.

Again referring to Fig. 5.3, a rotation matrix R can be constructed

relating frames (A) and (B). This matrix can be broken down as a multiplication

of three component matrices representing each of the individual rotations,

R=Rzv....(a,/3,y). Expanding to provide a rotation matrix comprised of the

three constituent rotations, a about the Z axis, 5 about the Y' axis and ' about

the X" axis gives Equation 5.11.

Ap	 (a,/3,y) = R(a).R.(/3).R..(y) 	 (5.11)B' 'ZY'.X"

Multiplying the matrices gives Equation 5.12.

	

cosa —sina 0 COS/7 0 sinfl 1 0	 0

= sina cosa 0	 0	 1	 0	 0 cosy —siny

o	 o	 1 —sin/I 0 cosfl 0 sin	 cosy	 (5.12)
cosa . cos/3 cosa•sin/3 . siny—sina . cosy cosa•sinfi.cosy—sina.siny

= sina . cosfl sinasinfi . siny+cosa . cosy sina.sin/3•cosy—cosa•siny

—sin/.?	 cos,8•siny	 cos/3.cosy

The matrix given in Equation 5.12 may be equated with the general form of the

rotation matrix as given in Equation 5.5. This allows the Z, Y' and X" axis

rotations to be obtained by solving Equation 5.12 for a, fi, and giving;
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8= Atan2(-r3i ' Tr i)	 (5.13)

a =Atan2(__1	 r1,	 (5.14)
cosi'j)

y=At5fl2('2	 r3 (5.15)

Twelve possible Euler angle sequences for rotations around the co-

ordinate axes are available. The six classic Euler two axis systems describe

sequences in which the first rotation occurs about an initial axis, the second

about a displaced intermediate axis and the third about the twice displaced first

axis, i.e. Z, Y', Z". The second subset of the Euler angles are the six three axis

systems in which the rotations occur about all three axes i.e. Z, Y', X". These

have been termed the Cardan or Bryant angles (Woltring (1991)).

For the purpose of motion analysis, the aim would be to calculate the

Euler angles between two adjacent segments. A 'zero' position would be

defined in which the embedded co-ordinate frames were parallel. The Euler

angles representing rotations at the joint about perpendicular axes would then

be calculated in relation to this zero position.

When using such systems the occurrence of 'gimbal lock' is a problem,

where a rotation of 9O about the second axis in either direction causes

singularity to occur, two axes becoming parallel and the matrix solutions

becoming unobtainable.

Also in each non-singular case there are two possible angular solutions,

giving rise to the phenomenon of "Codman's Paradox" in anatomy (Codman

(1934)), where different combinations of numerical values of the three angles

produce similar physical orientations of the segment. This is not actually a

paradox, but a consequence of the non-commutative nature of three-

dimensional rotations and can be mathematically explained through the

properties of rotation matrices (Politti et al (1998)).
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5.4.2 Joint Co-ordinate System (JCS)

One perceived limitation of the Euler or Cardan rotations is that they

occur about axes fixed in each segment. Such systems are not regarded as

clinically representative, as flexion is thought to occur about an axis in the

proximal segment and rotation about an axis in the distal segment.

Suntay et al (1978) and Grood & Suntay (1983) presented an alternative

representation, a derivation of a three axis Euler system, the Joint Co-ordinate

System (JCS). Their method involved the definition of bone embedded co-

ordinate frames in the proximal and distal segments at the knee.

One body fixed axis from each of the three available in the proximal and

distal segment systems and a third 'floating' axis, the common perpendicular to

the first two, were used to construct a third co-ordinate system describing the

joint orientation. The floating axis was fixed in neither body segment and

moved in relation to both. A representation of this system is shown in Fig. 5.4.

z

Floating axis F

{A}	 ::j g ( , i 	 X12 A

-I

Fixed *x B

{a}

Fig 5.4 The Joint Co-ordinate System of Grood & Suntay (1983).

Using such a method overcomes the problem of temporal sequence

dependence inherent in the standard Euler angle definitions, as the three axes

about which rotations occur are independent. A sequence effect is imposed

however, though this sequence is established prior to analysis on selection of

axes or the choice of axis geometry. The axes can be selected so the angles

correspond to clinical descriptions of joint motion.
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Again, gimbal lock can be a problem when the second rotation reaches

±900, though this can be made to occur about an axis where little rotation

occurs.

5.43 The "global" angles - azimuth, elevation and roll

An et al (1991) discussed an alternative description of motion in which

the glenohumeral centre was viewed as the centre of an imaginary sphere

described by the distal end of the humerus and with a radius equal to its length.

The position of the elbow may be described on this sphere in terms of an

angle of azimuth about a vertical axis which defines the plane of elevation, an

elevation about an axis perpendicular to the first and finally an axial rotation or

roll of the humerus about its longitudinal axis.

This description, incorporating the angles of azimuth and elevation are

often termed the 'global' angles, due to their similarity to the terms of longitude

and latitude used to describe position on a globe.

Angles of azimuth specify circumferential lines of longitude, while angles

of elevation specify circumferential lines of latitude, the centres of which afi lie

on the polar axis of the globe, as shown in Fig 5.5.

Polar axis

(a)
	

(b)

Fig 5.5 (a) Lines of longitude and latitude and (b) their similarity to the spherical
representation of shoulder rotations from An et al. (1991)

Selecting appropriate axes makes the computation of the global angles

identical to the Z, Y', X" Euler system discussed in Section 5.4.1. This is
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achieved by selecting the Z axis as the vertical polar or azimuthal axis, the Y'

axis as the horizontal elevation axis and the X" axis as the humeral rotation or

roll axis.

Various papers on upper limb task analysis have used variations of this

system (Buckley, 1996) including those of Kapandji (1982) (first published in

1970), Benati (1980) and Engin & Chen (1986), Davis (1998) and Barnett

(1999). Pearl et al (1992) discussed a similar method and found that most

activities of daily living occurred in an anterior plane of elevation as opposed to

the sagittal and coronal planes. Crawford et al (1999) also used a similar

description for spinal motion.

Global angles allow a more visual representation and comprehension of

humeral motion than the Euler angles and allow an unambiguous description of

elevation in any plane. Problems of gimbal lock exist for this method however,

due to a singularity at the poles where the axes of azimuth and roll are

coincident. In this position any amount of azimuth may be measured, but

compensated for by the roll component, making it impossible to accurately

determine these angles.

5.4.4 Projected angles

A further alternative for description of orientation is the projection of the

axes of the local embedded frames onto the planes of a reference co-ordinate

system. The differences in the projections of the axes can be interpreted as

the joint angle between proximal and distal segments.

Using this system, pure flexion of the humerus would be measured as

the projection of the humeral longitudinal axis on the sagittal plane. Abduction

would be the projection of this axis on the frontal plane. The relevant angle

would then be calculated from the components of the vector in the plane

representing the longitudinal axis.

Braune & Fischer (1889) represented the upper arm orientation by the

projection of line connecting the elbow and shoulder centres onto specified

planes. More recently a similar technique was used by Cheng (1996).

Cheng & Pearcy (1999) found this method to cause overestimation and

misinterpretation of 3D joint flexion and adduction rotations, due to the
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influence of longitudinal axis motion out of the planes of projection and the

interdependence of these angles. An alternative method was suggested

whereby flexion/ extension was represented as an angle between the

longitudinal axis of a segment and its projection on the frontal plane.

Abduction/ adduction was then represented as an angle between the

longitudinal segment axis and its projection on the sagittal plane. These

definitions allowed the independent description of flexion at any abduction and

vice versa. Using such a method, rotation about the longitudinal axis would be

calculated by a separate process.

5.4.5 Helical axis motion descriptors

The descriptors of orientation discussed so far require additional

information on the translational components of motion involved in order to

provide a complete description of the position of an embedded frame in three

dimensional space. There are however some methods that allow a complete

kinematic description.

n

Fig 5.6 Illustration of the finite helical axis.

One such option is the 'equivalent screw displacement axis' (ESDA) or

'finite helical axis' (FHA). Chasles' Theorem as given in Woltring et al (1994),

states that the current position and attitude of a rigid body can be described as
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if attained from the reference pose by a single displacement about and along a

directed line in space. A mathematical interpretation of this, using vector

algebra, was presented by Bisshopp (1969). Fig. 5.6 illustrates this theorem.

Knowing the start and end points it is possible to completely describe all

six degrees of freedom of the motion of the body between (A} and (B]. This is

achieved by determining the position and direction of the axis with unit direction

vector n, together with the displacement d along it and the rotation about it.

Woltring et al (1 985) found that the determination of the position and the

direction of the axis was very sensitive to errors in landmark measurement.

Stochastic errors frequently occurred, having magnitude inversely proportional

to the finite rotation magnitude between the two frames. Veldpaus et al (1988)

made similar conclusions.

Chèze et al (1998) also found that the errors involved were inversely

proportional to the rotation magnitude and hence unsuited to calculation over

successive samples. They advised modelling joint kinematics using successive

rotations about a three axis system, such as the JCS of Grood & Suntay

(1983).

Woltring et al (1994) introduced the use of the "Instantaneous Helical

Axis" (IHA), the mean axis of rotation about and a'ong which a segment can be

considered to be instantaneously moving with respect to another segment. The

advantage of the use of the IHA as opposed to the FHA is that the latter fails to

convey any detail of the movement during its occurrence, merely relating the

initial and final positions. The FHA is calculated between successive positions

of two adjacent body segments without regard to route or trajectory between

these points. A series of lHAs can be calculated and displayed for continuous

motion. A further development discussed by Woltring (1991) and Woltring et al

(1994) allows the output of 'helical angles' where the helical axis vector n is

decomposed along the axes of a global or segment embedded cartesian

system.

This technique can be applied to give a functional representation of the

relative motion between two segments and is considered by some to be more

mathematically rigorous than the Euler-based techniques, though is highly

sensitive to measurement error and magnitude of rotation. A disadvantage of
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the helical axis descriptions is that they are not necessarily related to the

mechanical structure of the joint itself. Their general lack of a physical

interpretation calls into question their use in the clinical environment, Euler

angles being more intuitive.

The papers of Ramakrishnan & Kadaba (1991) and Woltring (1991)

provide sources of information on the Euler and helical motion models, the

latter discussing several descriptors of segment position and orientation.

5.5 Velocity and acceleration calculations

In order to determine the dynamics of the upper limb segment motion it

was necessary to calculate linear and angular velocities and accelerations from

the joint angle data.

Numerical differentiation methods can be employed to determine

approximate values of linear velocity and acceleration from displacement data

and are frequently used in motion analysis studies. Several formulas for

performing numerical differentiation exist and the topic is discussed in various

texts, including those of Lanczos (1967), Hildebrand (1974), Kreysig (1983),

Yakowitz (1989), Gerald & Wheatley (1989) and Winter (1990).

Numerical differentiation is an unstable process, approximate values of

derivatives will be less accurate than the data from which they are derived.

Small errors made during the process cause greatly magnified errors in the

final result, any noise in the original data is raised by a power of two on each

differentiation. Truncation errors also affect the accuracy of the technique.

These are due to the reduction of a calculation that might require an infinitely

long series, to a series of limited length. Rounding errors are also a problem,

due to imprecision in representing numbers in a computer where the final digit

after the decimal point is either rounded off or removed.

The most accurate numerical approximations are obtained by

differentiating suitable Lagrange interpolation formulas. Of these the least

susceptible to errors are the central difference equations, involving a

calculation of the derivative at the central point in the relationship.
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Derivatives taken over a span of five data points are among the most

appropriate for motion analysis purposes. Relationships exist using fewer than

five points but these are less reliable.

Equation 5.16 gives a numerical approximation for the first derivative

used by Khoo et al (1995) and Cheng (1996). Equation 5.17 gives a numerical

approximation for the second derivative used by Gagnon & Gagnon (1992) and

Cheng (1996). Each of these approximations are derived from five point

lagrangian polynomials.

x 1_ 2 - 8x, 1 + 8x 11 - x12
f'(xi)=

	

	 (5.16)
I 2h

f"(xi) = - 
X 1_2 + 1 6x,_1 - 30x 1 + I 6x 1^1 - X12	

(5.1 7)
I 2h

In Equations 5.16 and 5.17, x is the data point at which the numerical

differentiation is calculated, where the suffixes denote equal time intervals.

The unit time interval between adjacent data points is denoted h and depends

on the sampling frequency of the motion analysis system.

Worden (1990) carried out an investigation into the merits of various

numerical methods for integration and differentiation. Differentiating

displacement data twice using the five point centred difference formula was

found to give a good estimate of velocity though the acceleration data were

less satisfactory.

It was suggested that the measurement of accelerations followed by

numerical integration rather than numerical differentiation of displacement data

might be more appropriate.

The angular velocities and accelerations of the segments are required

for the calculation of the moments of inertia of the segment and as input for the

calculation of rigid body joint dynamics as discussed in Section 5.7.

Having established the rotation matrix of a moving segment, its absolute

angular velocity can be established using Equation 5.18, the 'Poisson

Equation' discussed in Roberson & Schwertassek (1988).



d(R) AEA ... Ap

di	 B (5.18)
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The Poisson equation relates the time derivative of the rotation matrix

and the angular velocity of the segment, where R is the rotation matrix

describing the rotation of a segment embedded frame {B) with respect to the

reference frame (A).

E is the time derivative of this matrix, a matrix of the time derivatives

of the individual elements of the rotation matrix R at time t, which can be

calculated using numerical differentiation.

B WB is thus the angular velocity of frame (B) with respect frame (A), the

right subscript here indicating that the angular velocity is written in frame (B).

The explicit expression of the above equation can be developed as

discussed in Likins (1973):

	

0	 —0)
	

COY

	(E)(R)'=- (0..	 0
	

- (ox	 (5.19)

	

- cOy (ox
	 0

The matrix on the right of Equation 5.19 is the angular velocity matrix

where w (ix, y, z) are the angular velocities of the segment with respect to the

reference frame (A) as expressed in the segment frame (B), i.e. x, y and z are

the axes of the segment co-ordinate frame.

Because (R 
)1=( R )T then Equation 5.19 can be written as:

/j	 12 ?j 3 J1i i r21 r31	 [0	 — a)- 	 (D

r21 j22 j23 r12 r7	 r32 =- a),	 0
	

- (Ox
	 (5.20)

r31 r32 r331r13 rT2
	

r33	
[-

	
(Dx
	 0
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The matrix on the right of Equation 5.20 has the properties of skew-

symmetry, all elements on the main diagonal are zero and off-diagonal

elements exist in pairs with opposite signs. The transpose of such a matrix is

its negative, i.e. (E)(R) T =-(R)(E) T =-((E)(R)T)T

From Equation 5.20 the components of angular velocity of frame (B),

with respect to frame (A), written in frame (B) can be obtained as:

=-( 1 i, +ri 2 +r3)

coy =_( 1 i, +fr 2 1 2 +13313)	 (5.21)

CV: -( 'i',	 2r22

The numerical differentiation techniques previously described can then

be used to obtain the angular acceleration of the segment with respect to the

laboratory frame expressed in the segment co-ordinate system (B):

do

= dt
dw

C =

	

	
(5.22)

dt
dw1

C =-
dt

The matrix of components of the angular velocity matrix may be obtained

for any parametrisation of the rotation matrix. The same process might be

carried using a rotation matrix parametrised by the Euler angles for instance.

This method has been used previously by Ramey & Yang (1981),

Kromodihardjo & Mital (1987), Gagnon & Gagnon (1992) and Cheng (1996).

This method involves simple calculations and is independent of

rotational sequence. Knowing the rotation matrix the angular velocity of a

moving segment can be calculated, followed by its angular acceleration by

numerical differentiation of the angular velocity.

An alternative when differentiating linear or angular displacement data is

to utilise a smoothing and differentiating filter. An example of this is discussed
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in Dohrmann et al (1988) who used a dynamic programming spline method for

smoothing and differentiating data.

An estimate of the optimal smoothing parameter, a trade-off between the

closeness of the fit and smoothness of the line, was required for this method.

Dohrmann et al (1988) used the method of Generalised Cross Validation (GCV)

to automatically estimate this parameter.

Craven & Wahba (1979) found that an estimate of the optimal smoothing

parameter could be obtained from the data itse'f by minimising an approximate

error function (the GCV function) and thus the mean-squared error between the

data points and an underlying estimated smooth curve. The GCV function can

be written as:

1	 N	 2

GCV(B) =
	

- dk)
(5.23)

- A(B))2

N2

Where N is the number of data points, x k are the estimated positions, d the

measured positions, B the smoothing parameter and A the influence matrix

which depends on B and relates the estimates to the measured data by x=Ad.

The trace of a matrix is the sum of the elements on the main diagonal of that

matrix.

The matrix A in the GCV function was calculated by Dohrmann et al

(1988) through a dynamic programming solution of another minimisation

process for each value of B, described by Busby & Trujillo (1985). The value of

B at which the minimum of the GCV function occurs is then selected as the

optimum estimate of the smoothing parameter for the cubic spline smoothing

process.

Woltring (1986) described a technique similar to that of Dohrmann et al

(1988), involving the GCV. Corradini et al (1993) tested several filtering

techniques, including that of Woltring (1986) which they found to be the most

flexible and accurate technique.

Giakas & Baltzopolous (1997) compared and evaluated six of the most

commonly used automatic filtering techniques in biomechanics. Their

assessment was based on simulated gait analysis kinematic data for eight
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surface fixed markers, sampled at 50Hz using a video based system. One of

the selected algorithms was that of Dohrmann et al (1988), chosen as it does

not require zero accelerations at the end points and was considered

computationally faster than the algorithm of Woltring (1986). It was concluded

that no one filtering method was optimal for the filtering of biomechanical data

or for all derivative domains, though the GCV method was considered one of

the most appropriate for filtering of kinematic data.

Barth et al (1998) compared the performance of the GCV of Woltring

(1986) with that of a second order Butterworth filter, along with three methods

of calculating the angular velocity of a rigid body. Data for comparison were

obtained from five shank markers during a gait analysis trial using the least

squares technique of Challis (1995). Orientations were parametrised using

Cardan angles and the corresponding velocities and accelerations calculated

using the method of Kane (1983) which involves parametrisation of the

orientation matrix using Cardan angles and operating on their time derivatives

followed by 7-point numerical differentiation.

During testing the angular veLocity catcutations wece made ticsthi using

Poisson's equation. The second method used was that of Kane (1983). The

final technique was that described by Angeles (1996), using the relationship

between two body points and the angular velocity of that body and the

positions and velocities of all markers in a least squares sense. The method of

Kane (1983) was found to be superior to the use of Poisson's equation. The

method of Angeles (1996) only compared with that of Kane (1983) when

endpoint errors were removed.

The GCV was found to be superior to the Butterworth filter when

smoothing orientation angles on considering the whole data set, though this

was reversed when several endpoints were removed from the data. A similar

pattern was found for the values of angular acceleration when using these

filters. Both methods provided improved acceleration values on filtering both

marker and angular velocity data after correcting for endpoint errors. In

general the GCV was found to perform much better at the endpoints, though

the Butterworth filter produced smoother results, particularly for the angular

velocity and acceleration.
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Hodgson (1994) developed and suggested improvements to the GCV

method of Dohrmann et al (1988) and developed a MATLAB version of the

generalised cross validation based cubic spline.

5.6 Denavit-Hartenberq (0-H) parameters

In order to calculate the upper limb segment dynamics it was necessary

to model the upper limb as an open kinematic chain. Such modelling of the

human body as a series of interconnected rigid links is a standard

biomechanical approach (Cappozzo (1984)).

Denavit & Hartenberg (1955) developed a notation to describe the

relationship between successive links in any kinematic chain in terms of four

parameters. These uniquely determine the positions of the joint axes of two

adjacent single degree of freedom joints. This notation has been applied to

create a model of the upper limb by both Chèze et at (1996) and Barker et at

(1997). The D-H parameters are:

0, - the joint rotation (rotation of one link wr.t. the next about the joint axis)

d, - the link offset (distance from one link to the next along the axis of the joint)

a, - the link length

a. - the link twist

jointi-1	 inti	 inti+1
I

r
Iink-1	 I

'I	 i—I

I
I

Fig 5.7 The standard Denavit-Hartenberg notation. (adapted from Corke (1996))
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It is important when using the D-H parameters that a consistent method

of frame (and hence parameter) assignment is followed. From the links shown

in Fig. 5.7, we may define the frames in the following way:

Fix an origin (frame 0) with its z axis along the axis of motion of the first joint.

(or Z0) is assigned along the axis of the th joint.

X is assigned along the common perpendicular between the z 11 and the z

axes. If two joint axes are arranged so that their joint axes intersect, there can

be no common normal connecting them, thus a, is zero. In this case the x axis

may be defined along either of the two directions normal to both z1.., and z axes.

V1 .1 is chosen to complete a right handed set.

The link parameters are then assigned thus:

9, - the angle between the x 1 and x1 axes, measured about z..1.

d1 - the distance from the x11 to the x1 axis measured along Zi.

a, - the distance from z11 to z measured along the x, axis.

a, - the angle between z, and z1 measured about the axis x,.

The forward solution when calculating the position and orientation of the

hand relative to the base frame given a set of joint angles may be stated as:

(5.24)

i.e. points expressed in terms of reference frame i = transformation x points

expressed in terms of reference frame 141.

Where ,^ T is formed from a rotation 0, about the z 1 axis, a translation d1 along

the z 1 axis, a translation a1 along the x axis and a rotation a, about the x axis.

The transformation matrix 	 may then be calculated as:

, T= Rot(z_1 , 0, )Trans(O,O, d )Trans(a, ,0,0)Rot(x , a . )	 (5.25)
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0

0

—sinqoo 1000 1O0	 1	 0

ccsq 0 0 0 1 0 0 0 1 0 0 0 ccsc

0	 10001a. 0010 0sino

0	 01000100010 0

0 0

—snc 0

ccsc 0

0	 1

(5.26)

cosO, -cosa 1 sinO1 	SiflaSiflG,	 cosO,a1

1	 I - 
Sin a, cos G	 sine, a

-	 0	 Sifla1	 cosa1	 d.

0	 0	 0	 1

(5.27)

Equation 5.27 gives the general form of the transformation matrix T, which

relates frame (B) relative to frame (A) using the D-H parameters.

Once all the D-H parameters have been found, the individual

transformation matrices can be worked out for each link. These matrices can

then be multiplied together to find the single transformation that relates the final

frame N to the base frame 0.

T=T4TT........NlT
	

(5.28)

5.7 Dynamic calculations

There are several techniques originally developed in the field of

robotics and manipulator dynamics, which may be used for derivation of the

equations of motion of the upper limb, modelled as an open loop kinematic

chain.

Luh et al (1980) discussed some options for the formulation of the

equations of motion of manipulators, assigning their co-ordinate systems

according to the D-H convention. They described a Recursive Newton-Euler

(RNE) formulation based on consideration of the forces involved.

The RNE involves the successive transformations of velocities and

accelerations from the base of a link model out to the end, link by link using the

relationships of moving co-ordinate systems. 	 Knowing this kinematic

information and incorporating mass distribution information, forces are then
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transformed back from the end to the base to obtain the joint moments required

to cause the motion.

These calculations are more efficient than traditional methods as they

reference the ith link velocities, accelerations, forces and moments to the ith link

co-ordinate system as opposed to the base co-ordinate system.

The options of using a free-body method was considered too laborious,

as was the use of a Lagrangian formulation, based on energy considerations in

which the explicit inclusion of forces is avoided. The method of virtual work

(Williams & Seireg (1979)) was also dismissed for similar reasons, there being

no computational difference between it and the Lagrangian formulation, only a

different sequence of steps.

Walker & Orin (1982) also describe the RNE method in their

investigation of techniques for forward dynamics solutions, again using the D-H

convention to assign link co-ordinate systems. Hollerbach (1980) discussed

the RNE formulation and outlined a similar method for a computationally

efficient recursive Lagrangian formulation. It was concluded that recursive

formulations based on either Lagrangian or Newton-Euler dynamics offered the

best method of dynamics calculation. The RNE formulation was found to

reduce the number of necessary additions and multiplications and therefore to

be the more efficient.

The procedure employed for the RNE formulation of the dynamic

equations of motion is to first write the equations which define the outward

recursion. These iteratively calculate the angular and linear velocities and

accelerations of each defined link from proximal to distal end of the model. The

equations which define the inward recursion are then written. These allow

calculation of the forces and moments exerted on successive links under the

prescribed motion for each link from the distal to the proximal end of the model.

Fig 5.8 Shows the notation used for the RNE applied to a D-H parameter link

model.
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jcniu-1
	

jair,1i..t	
n -	 -

Fig 5.8 Notation for RNE formulation inverse dynamics. (adapted from Corke (1996))

The following equations define the outward RNE recursion, 1^ I ^ n,

where n is the number of defined joints and axis k-i is rotational. The notation

used is that employed by Corke (1996) combining those of Hollerbach (1980)

and Walker & Orin (1982), modified to include the rotation matrix definition of

Craig (1989).

'th	 +IR{l th +z 0 i/ +'w. x (z4)}

i+1	 1+1	 i+1	 *

+=	 p

(5.30)

(5.31)

i+1	 *

	

—1+1	 —1+1 { —i+1	 —i+1

i+1 •	 i+1 •	 1+1	 *	 i+1	 1+1
yi+1=	 1+1x p	 + CL) x	 CL)

X	 X {'	 X

(5.32)

(5.33)

= m. V1
	 (5.34)

'N1 zJ1 1 th 1 +' CO 1 x(J'co)
	

(5.35)
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Note that the COM linear velocity given by Equation 5.31 does not need

to be computed as no other expression depends upon it.

The following equations define the inward recursion, n ^ I ^ 1.

L=1R i+If 
1+1
	

(5.36)

	

*	 1+1	 I	 *i+'

	

+(R'p	 ( p . +s,)x'F1+'N1)x f >+ (5.37)

(1 )T(IRZ)

where, referring to Fig. 5.8:

i	 is the link index, in the range 1 to n

is the moment of inertia of sink i about its COM

is the position vector of the COM of link i with respect to frame I

rn	 is the mass of link i

is the angular velocity at joint I (about axis Z1)

is the angular acceleration at joint I (about axis Z.1)

is the angular velocity of link i

cJ
	 is the angular acceleration of link i

is the linear velocity of frame I

is the linear acceleration of frame i

is the linear velocity of the COM of link I

is the linear acceleration of the COM of link I

4	 4 is a unit vector in the Z direction, 4 [0 0 11

ill
	 is the moment exerted on link i by link i-I

is the force exerted on link i by link i-i

is the total moment at the COM of link i

is the total force at the COM of link i

is the moment required to be exerted at joint i

(5.38)
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'R is the rotation matrix defining the orientation of frame i with respect

to frame i-I and can be seen in Equation 5.39 to be the same as the rotation

matrix part of the generalised transformation matrix in Equation 5.27.

	

cos	 —cosa, sing	 sinai

	

= sin	 cosa, cos	 - sin a. cos6
	

(5.39)

	

0	 sin a,	 cosa1

With 'p being the displacement from the origin of frame i-i to frame i with

respect to frame i.

a'

= d . sina1	 (5.40)
d . COSa1

Boundary conditions can be used to introduce the effect of gravity

loading on the links by setting the linear acceleration of the base link, 	 = -

where g is the gravity vector in the reference co-ordinate frame. This is

equivalent to saying that the base of the linkage is accelerating upwards with

an acceleration equal to gravity, causing the same effect on the links as gravity

would. The base velocity is set as zero, v0 =0,	 =0 and th0 =0.

A further alternative for the derivation of the equations of motion of the

upper limb are Kane's dynamical equations, described by Kane et al (1983)

and Kane & Levirison (1983). Kane's equations are a vector based method,

generating a minimal set of equations of motion through the use of generalised

speeds, partial linear and angular velocities of the system and generalised

inertia and active forces. This method has been found to be highly efficient

and has been used to form the basis of the dynamic analysis software

Pro/MECHANICA.

5.8 Spline smoothing

When fitting a curve to data it is possible to employ a single equation

that provides a reasonable approximation to the entire data set. Fitting a single
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equation may be difficult however if the data set is long or complex.

The use of 'splines' offers an alternative to the fitting of a single

equation, using a series of equations to fit the complete data set, with each

equation fitting only a portion of the data. When these equations are

connected together they provide a mathematical approximation to the entire

data set, It is important for each section of the fitted curve to be free of

discontinuities, its slope and curvature blending smoothly at each boundary.

Third order or cubic equations are the lowest order equations which allow this

and along with quintic (fifth order) splines are frequently used in biomechanical

studies. Splines are mathematicallly equivalent to digital filters with a cubic

spline being roughly equivalent to a 2nd order Butterworth filter applied twice.

A quintic spline would be equivalent to a 3rd order Butterworth filter applied

twice.
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Chapter 6: MATERIALS AND METHODS

6.0 Introduction

The aim of this study was to use video cameras to track the positions

and orientations through time of bone-embedded co-ordinate frames, rigidly

associated with and directly related to the underlying bones of the upper limb

and to describe this motion in terms of a global laboratory co-ordinate frame.

Having made the assumption that the limb segments could be treated as

rigid bodies for the purposes of kinematic analysis, such tracking would then

allow the movement of the bones in relation to some reference position and the

relative motion between bones to be assessed.

In order to use such techniques in a laboratory setting, several issues

had to be addressed. These included the identification of landmarks on the

body segments under analysis and the size and positioning of external

markers. It was also necessary to establish the marker attachment pattern and

thereafter the definitions of the segment embedded frames.

A further issue was the method by which the marker co-ordinates

obtained from the motion analysis system should be manipulated in order to

reconstruct the body fixed axes and best describe the relative motion of the

body segments.

The following sections discuss the equipment, software, experimental

methods and subsequent analysis procedures utilised to achieve these aims.

As far as possible these will be introduced in the order in which each element

of the experimental method was carried out, beginning with the Ariel

Performance Analysis System (APAS) and its software.

6.1 The Ariel Performance Analysis S ystem (APAS) - Hardware

6.1.1 Introduction

The APAS is a three-dimensional video motion analysis system

supporting the use of multiple video cameras and automatic or manual marker

digitising. The image sequences obtained from video were stored in picture

form on a computer for subsequent processing.
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Richards (1998) found the APAS system to be superior to several similar

systems available in analysing valid and reliable data for human movement.

6.1.2 The computer

The AST® Bravo® LC P75 computer was the primary hardware

component of the system used and included an 'Intel Smart Video Recorder

Pro Board', a 'Matrox Millenium II Graphics Card' and a '3COM 3C900-COMBO

PCI Ethernet Network Interface Card' and a board for the connection of a

monochrome monitor.

6.1.3 Monitors

Two monitors were connected to the APAS system, a Panasonic

PanaSync/ProTM 7G TX-D2162 21" color display monitor, used to display the

video images for capture and digitising and an ARCUS TM CH-3423W 13"

monochrome monitor used for displaying option menus in the Transform,

Smoothing and Print modules discussed later.

6.1.4 Video playback unit (VCR)

A Panasonic Hi-Fi Professional Video, model AG-7350 was used for

playback of videotape recordings of the upper limb activities in order to allow

high precision freeze-frame video imaging.

6.1.5 Video cameras

Standard compact VHS camcorders were used to record motion

sequences for subsequent analysis. Four were selected from a group of three

JVC GR-A)(400 and three JVC GR-AX460 video cameras.

6.2 The APAS - Software

A typical movement analysis using the APAS consists of several distinct

operations; Data Collection (Filming and Capturing), Digitising, Transforming,

Smoothing and the Presentation of Results. After filming and recording a test
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on video tape, a series of software modules were used to carry out the above

operations and these will now be discussed in order of their use.

6.2.1 The Capture Module

Initially, each recorded video image was displayed on the monitor and

stored on the computer hard disk in digital form using the Capture Module. The

stored image sequences could then be retrieved and displayed one frame at a

time for the purposes of digitising, eliminating the need for video apparatus

during this process.

The maximum sampling frequency was 50Hz as the system allowed the

analysis of fields rather than entire frames. The capturing of image sequences

from video tape at varying sample intervals was enabled however, through the

selection of 'skip' values. For activities performed at slower speeds, the

definition of skip value of one allowed every second image to be captured from

tape, thus doubling the sampling interval. It was also necessary to specify a

'step delay', the time delay between successive commands to step the VCR

when skipping of images had been specified. The step delay had no effect

when every image was being captured.

6.2.2 The Digitising Module

To produce computer image sequences from the stored video images it

was necessary to convert the recorded patterns to numbers or digits, hence the

term digitising.

Each marker appeared as a two dimensional circle in each camera view.

Using a video cursor controlled via the mouse, the location of each of the

attached markers were identified and digitised, a red cross indicating when a

marker had been digitised successfully.

Both manual and automatic digitising modes were supported, the latter

requiring high contrast between the markers and background. Four views were

opened and digitised simultaneously with manual control of the digitising

process providing an opportunity for error checking and visual feedback.

The automatic digitising software used contrast, brightness and

kinematic parameters, such as velocity and acceleration, to locate specific
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markers. The centre of each marker image was located through identification

of the centroid of pixels whose threshold exceeded a user-defined level. After

manually digitising several fields, the algorithm would "learn" the characteristics

of each point and operate under the automatic mode.

It was possible to label markers as 'missing' in a particular camera view

if they became obscured. Such markers would then be ignored in the digitising

process for that particular camera and image. If obscured for several images,

markers were labelled 'invisible' as an alternative to using the 'missing' option

in every image. The software then skipped the marker and proceeded to the

next sequential marker for digitising. Digitising with the marker included was

resumed when it became sbe

With every frame digitised, it was necessary to digitise a fixed marker,

which provided a reference against which all other markers were measured and

compensated for small variations in the horizontal and vertical positions of the

captured images. This marker had to remain stationary and be clearly visible in

every frame including those for the system and anatomical calibrations

discussed later.

6.2.3 The Transformation Module

After digitising all camera views, it was necessary to compute the true

three-dimensional co-ordinates of the attached markers from the two-

dimensional digitised image co-ordinates. This computation was performed in

the APAS using the Direct Linear Transformation (DLI) introduced by Abdel-

Aziz & Karara (1971) and discussed in Section 5.1. Time synchronisation of all

camera views was followed by computation of the 3D image co-ordinates of the

markers.

6.2.4 The Smoothing Module

Smoothing of the image co-ordinates was necessary to remove small

random digitising errors or noise from the transformed image sequence. A

choice from five different types of smoothing functions were available, these

being cubic spline, digital filter, polynomial, quintic spline and Fourier

smoothing. Displacement curves for each marker were displayed along with
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their velocity and acceleration curves. As previously mentioned, taking

successive derivatives has the effect of emphasising or highlighting the

variations or noise in the data. Included in the smoothing module was an

option to use a linear interpolation algorithm between the endpoints of an

interval. This was useful where a section of the data curve contained

erroneous values through digitising errors or obscuring of markers.

6.2.5 Printing Module

Once the sequences had been digitised, transformed and smoothed, the

printing module was used to produce output files. These contained the three-

dimensional data for marker motion in the global Cartesian co-ordinate system.

These reports included marker displacement components along each

global co-ordinate axis, along with velocity and acceleration information

calculated using an in-built system algorithm very similar to the five-point

numerical differentiation of Equations 5.16 and 5.17.

6.2.6 The APAS 'Anthro' Program

This module allowed the calculation of segment mass, location of CM

and principal moments of inertia with respect to the CM, requiring user input of

body mass and height or additional anthropometrical parameters. Algorithms

based on the work of Harless (1860), Braune & Fischer (1889), Fischer (1906),

Bernstein (1947), Dempster (1955), Clauser et al (1969), Marion (1979) and

Zatsiorsky & Seluyanov (1983) were offered, a number of these studies being

discussed in Chapter 3. The modifications to the data of Zatsiorsky &

Seluyanov (1983), made by de Leva (1996a) were not offered and therefore the

'Anthro' module was not utilised for the upper limb study.

6.3 An overview of the motion analysis experimental procedures

6.3.1 Laboratory Preparation

The initial preparation of the testing environment is a crucial step in the

motion analysis process, one of the most basic necessities being the provision
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of multiple electrical outlets in order to power the cameras and computing

equipment.

Suitable lighting conditions were essential as the APAS was dependent

on marker contrast for its accuracy. Alaways et al. (1996) studied the effect on

accuracy of variation in lighting conditions and concluded that line of sight

lighting should be used to evenly illuminate the side of the marker facing each

camera. For this reason built-in camera spotlights were used to illuminate the

test space, some of which were filtered to reduce skin glare. A ceiling mount

and three camera tripods were required to allow a suitable arrangement of the

cameras around the test space.

In order to maximise the contrast between markers and their

background, reflections in the room were minimised. The walls and fittings

were painted with a matte black finish or draped with black cloth and the

windows were covered to darken the room.

6.3.2 Camera Positioning

According to photogrammetrical theory (Ghosh (1979)), the optimal

camera arrangement is one in which the object distances are small,

corresponding to larger scale photographs and the viewing planes or optical

axes of each of the cameras intersect at 9Q0

Alaways et al. (1996) also recommended a 900 camera intersection

angle. In practice however a ten or twenty degree variation from this is not

critical, anything over 60° (tess than 120°) being considered sufficient. For

arrangements in which the viewing planes differ by less than 30 degrees, small

errors in digitising can lead to large errors in the 3D co-ordinates.

Thornton et at (1998) carried out a systematic analysis of the effects of

camera positioning on the error when using a 'Kinemetrix' system. It was found

that in general the precision of the system increased with increasing angle

between the cameras in the horizontal plane from 15° to 45° and in the vertical

plane from 0° to 30°.

Due to the complex motion of the upper limb, attached segment markers

can become obscured by other parts of the body and are thus not necessarily

seen by the same cameras throughout the measured motion. A minimum
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of two cameras must view each marker in each sampled instant or marker

trajectory information can be lost.

In order to minimise the occurrence of occluded markers during critical

phases of the activity the number of cameras was increased to four rather than

the minimum two. In order to reach as near to the recommended 900

intersection angles the cameras were carefully positioned, three around the

front and right side of the subjects with one mounted on the ceiling above.

The cameras were also mounted at differing heights in order to avoid

their axes being coplanar, another situation which can lead to frequent marker

occlusion. Object distances were kept as short as recommended by Ghosh

(1979), as much of the field of view of each camera as possible being filled with

subject activity to ensure maximum resolution when viewing and digitising.

6.3.3 Calibration of test volume

As previously mentioned, the DLT was used to provide a relationship

between the two-dimensional co-ordinates of the markers on the captured

video sequences and their three-dimensional locations in space. In order to

use the DLT the first stage in the experimental process was the calibration of

the test volume. A rigid two-level calibration frame of approximate base

dimensions 0.97x0.96m, a height of 0.88m and upper level dimensions

0.98x0.72m was used. This frame was placed in the test volume on a raised

plafform 0.46m above floor level.

A total of ten calibration markers were attached, one at each corner of

the upper and lower levels and one in the centre of each level, arranged so as

to cover the experimental volume. Their co-ordinates were measured to an

accuracy of 1 mm using a 'Stäubli Unimation Puma 700' robot arm. Using more

than the minimum of six non-coplanar control points, increased the accuracy of

the DLT transformation, the redundancy making the system more robust.

This arrangement allowed the calibration of a volume large enough for

upper limb studies and followed the recommendations of previous work

discussed in Section 5.1, having the calibration points distributed about and

within this volume. One corner of the frame was designated as the global
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laboratory frame origin, the other points having known locations relative to this

point.

After filming the calibration frame, the camera field of view, position and

focal length were fixed for the duration of each motion sequence recorded for

analysis. It was not necessary for the control points to be seen during the

filming so the frame was removed prior to commencing the activity.

As mentioned in Section 6.2.2 it was necessary to include a fixed point

in each of the camera views during filming of both the calibration frame and

subject motion. This was achieved by attaching a 35mm diameter reflective

spherical marker to the tip of a 1 .2m long rod rigidly fixed in a vertical posWon.

After calibration, a set of reflective markers were attached to the limb

segments of each of the subjects under analysis. The construction and

positioning of these markers will be discussed in the following sections.

6.3.4 Marker construction - considerations

When considering the construction of markers for motion analysis two

options are available, as discussed by Cappozzo et al (1995).

The first invo'ves the construction of individual markers which are

attached directly to the skin on, or related to, definable landmarks. These lead

to the definition of flexible skin-fixed marker clusters known as deformable

arrays. These arrays suffer from deformation due to variations in skin

displacement, though such artefacts can be corrected using numerical

techniques, discussed in Section 5.3.

Such least-squares and solidification techniques were discussed by

Chèze et al (1998). They allow correction of the relative displacements

between markers belonging to the same segment but not the global

displacements of the set of external markers with respect to the underlying

bone.

The alternative to the use of individual skin-fixed markers and numerical

artefact correction is to use clusters of markers at skin level or raised from the

skin, attached to common rigid or flexible plates which are fixed on the subject.

The lack of variation in marker spacing during movement in these clusters

leads to them being termed rigid arrays. Such arrays have previously been
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used in studies of upper limb motion by Langrana (1981), Peterson & Palmerud

(1996), Williams et al (1996) and Davis et al (1998). Schmidt et al (1999)

adopted a similar method, mounting markers on foam rubber bandages.

One benefit of rigid arrays is the improved visibility of the markers on

scaling them for differing arm size and they may also be more convenient and

quicker to apply. The rigid relationship between markers also avoids the inter-

marker movement and array deformation that can occur when using individual

markers.

Rigid arrays are still susceptible to movement of the entire array with

respect to the underlying bone however and thus do not necessarily overcome

the effects of skin deformation, but may only hide these effects. The use of

algorithms for the correction of skin movement artefacts is also made

impossible by the use of rigid arrays.

Other disadvantages of rigid arrays are a potential loss of longitudinal

rotation information if arrays are placed near the proximal segment end and

possible greater hindrance to the subject than individual markers, due to the

size and mass of the array.

It was decided for this study to use the option of skin-fixed deformable

arrays obtained by the attachment of individual markers on the skin. Marker

locations were selected for visibility, ease of tracking and minimaL cetative

motion between skin surface and the underlying bone.

As discussed later in section 6.5.5, an option in the analysis software

was included to allow the use of an algorithm for 'solidification' of skin

movement.

6.3.5 Marker construction

In previous studies a range of marker diameters from 15-25mm had

been used. It was decided that markers of diameter 25mm would be suitable

for investigating the motion of the upper limb.

Twelve single markers were constructed from 25mm diameter wooden

spheres, coated in strips of Scotchlite TM reflective tape. A 1mm thick pliable

polythene disc of diameter 25mm was attached to the base of each sphere.
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Three lightweight markers were made from 25mm compressed paper

balls coated in reflective tape. These were mounted on extended wands of

lengths 25mm, 35mm and 45mm, attached to 5Ommxl5mm polyethene bases.

The markers were fixed to each subject with double-sided non-allergenic

'wig' tape.

6.3.6 Methodologies from previous studies

Tables 6.1-6.3 outline the marker placement, joint centre location and

bone embedded frame definition methodologies used in previous studies.

6.3.7 Marker placement - considerations

As previously discussed, at least three markers were required on each

segment of the upper limb to fully describe its position and orientation in three

dimensions.

SOderkvist and Wedin (1993) calculated a condition number, based on

singular values, indicating the effect on computed rotation matrices of landmark

measurement errors. The conclusion reached on calculating this condition

number for several marker configurations, was that the markers should be as

widely spaced as possible and nori-collinear. Cappozzo (1991) and later

Cappozzo et al (1997) also outlined several criteria for the selection of marker

position based on their visibility, separation, offset, convenience and skin

movement.

The selection of the marker locations on the segments of the upper limb

and trunk was crucial to the success of the method, as even using four

cameras some marker loss is inevitable.

In some studies such as that of Turner-Stokes & Reid (1999), individual

markers are attached directly over the joint centres. This is insufficient

however if the aim is to track frames embedded in each upper limb segment.

It was therefore necessary to consider how to define the embedded

frames. The most apparent solution in terms of relating surface markers to the

underlying bone and defining and tracking embedded frames, would be to

attach individual markers directly over palpated bony anatomical landmarks on

each of the segments and define embedded frames from these landmarks.
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These markers could be applied in such positions that they would allow

the determination of the location of the joint centres to which they relate, for

instance, so as their mid-point lies at the joint centre.

Knowing the co-ordinates of the joint centres and the markers with

respect to the global laboratory frame, a set of orthogonal vectors can be

defined and a bone embedded Cartesian frame constructed. Such an

embedded frame is known as an anatomical frame. The instantaneous position

and orientation of the segment in relation to the calibrated laboratory co-

ordinate system would then be described through calculation of the

transformation between the global and embedded frames.

Embedded frames created directly from experimental co-ordinate

information on markers positioned over anatomical landmarks, do not provide

the best characteristics for motion analysis purposes however. This is largely

due to problems of poor marker visibility in many such positions. If the

embedded axes were to be defined by placing markers on either side of the

joint, as is common in many upper limb studies, problems would arise for

instance at the elbow, where a marker on the medial epicondyle would often be

obscured. A marker on this location might also interfere with the natural

performance of the activity. The medial epicondyle is also susceptible to large

movement between skin and underlying bone.

The definition of an intermediate co-ordinate system between the

laboratory and anatomical frames as described by Cappozzo et al (1995), can

help overcome some of these problems. A minimum of three non-collinear

surface markers were still required per segment. In this instance however, it

was not necessary to attach the markers at particular, identifiable bony

landmarks and they could in fact be attached in arbitrary positions with no

apparent geometric relationship to anatomical landmarks.

The main criteria here are that the markers, known as technical markers,

be positioned and fixed in such a way as to minimise their motion with respect

to the underlying bone and that the visibility of the attached markers to the

cameras should be maximised. Data on the position of the technical markers in

the calibrated laboratory reference frame at each sampled instant of time can
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be obtained from the system. From these point co-ordinates in laboratory

space a bone embedded frame is again defined, termed a technical frame.

As with the anatomical frame, the technical frame is described with

respect to the laboratory co-ordinate system in each instant by a transformation

matrix. This represents the displacements and rotations necessary to move the

technical frame from a reference position coincident with the laboratory frame

to its true position in space.

The location of bony anatomical landmarks can then be identified in

relation to the technical frames using the technique of 'anatomical calibration',

discussed in detail in section 6.3.11. Embedded anatomical frames can be

constructed in relation to these landmarks in a similar manner to the anatomical

frame previously discussed. The transformation matrix describing the

anatomical frame in relation to the technical frame can then be found.

The extra step of defining a technical frame helps overcome the

problems of the first option as it allows the fixation of markers at positions of

minimum skin movement and maximum visibility and can aid in reducing the

instances of occluded markers. The constraint of placing the markers over

anatomical landmarks is not imposed, the most suitable marker positions being

chosen.

This latter method was utilisèd for the analysis of the upper limb. The

points identified by markers or through anatomical calibration during this

process are discussed in the following sections.

6.3.8 Markers attached to the forearm

Three markers were attached on the forearm in order to define the

embedded frames as shown in Fig. 6.1.

According to Keogh & Ebbs (1984), the ulnar styloid process may be

identified by lying the hand flat on the table palm down in ulnar deviation to

highlight the tendon of the extensor carpi ulnaris on the ulnar side of the head

of the ulna. By radially deviating the hand it can be seen that the tendon runs in

a groove between the head of the ulna and a smaller palpable bony

prominence continuous with the subcutaneous border of the ulna, this is the

styloid process. The ulnar styloid was the site for the first forearm marker.
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The second forearm marker was placed on the most distal point of the

radial styloid, the distal prolongation of the lateral surface of the radius (Keogh

& Ebbs (1984)), which according to Moore & Agur (1996) can be palpated on

the lateral side of the wrist about 1cm more distal than the ulnar styloid

process, between the tendons of the wrist and also anteriorly. Knowing the

locations of the styloid markers, the wrist centre was defined at their mid-point.

The third forearm marker was attached on the proximal ulna at a

palpable point slightly distal to the tip of the olecranon. This was similar to the

positioning used in the upper limb study of Williams (1996).

In addition to these, the lateral (LE) and medial (ME) epicondyles of the

humerus were also located during anatomical calibration. The elbow joint

centre was defined at their mid-point.
- -
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Fig 6.1 Surface fixed marker locations.

6.3.9 Markers attached to the upper arm

:
St	 :

Three markers were attached on the upper arm as shown in Fig. 6.1.

Again similarly to the work of Williams (1996), a marker was placed
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approximately over the insertion of the deltoid muscle on the proximal humerus

and another approximately over the insertion of the brachioradialis muscle on

the distal humerus.

A third marker was attached on the lateral side of the biceps at a

position approximately midway along a line connecting the other two markers

on the upper arm and anterior to this line with the arm in the anatomical

position.

In addition to these, the lateral and medial epicondyles, palpable at the

distal end of the humerus, were located during anatomical calibration in order

to allow location of the elbow centre at their mid-point and definition of the

humeral longitudinal axis.

According to Keogh & Ebbs (1984), the medial epicondyle is the easily

palpable distal extremity of the medial supracondylar ridge and is more easily

palpated from the posterior aspect, being masked anteriorly by the common

origin of the forearm flexor muscles. The lateral epicondyle is also more easily

palpable from behind, being masked anteriorly by the common origin of the

forearm extensor muscles.

6.3.10 Markers attached to the trunk

Four markers were placed on the trunk during testing as shown in Fig.

6.1, three of these being used for the definition of the trunk embedded frame.

The first marker was placed over the left acromion (the curved continuation of

the spine of the scapula) which, as described in Keogh & Ebbs (1984) is

subcutaneous and is easily palpable in the summit of the shoulder. The tip of

the acromion is the most anterior point and is readily palpated about one

finger's breadth lateral to the lateral end of the clavicle.

The second marker was attached approximtely over the the xiphoid

process, which according to Moore & Agur (1996) lies in a slight depression

where the converging costal margins form the infrasternal angle (the angle

between ribs and xiphoid).

According to Backhouse & Hutchings (1998), the manubrium slopes a

little in comparison to the vertical sternum below, giving the join between them

a slight palpable angulation, the sternal angle.
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With the subject standing vertically with their back against the wall, a

third marker was attached over the manubrium. The most suitable of the

lightweight wand mounted markers was selected and its attachment position

adjusted until it lay vertically above the xiphoid marker, measured using a spirit

level. Establishing a vertical line between the xiphoid and manubrium markers

allowed the definition of the trunk vertical axis between these.

Additional to these, the prominent vertebral spine of the seventh cervical

vertebra (C7) was located during anatomical calibration. Moore & Agur (1996)

state that the tips and spinous processes of some cervical and all thoracic

vertebra are palpable when the vertebral column is flexed. Keogh & Ebbs

(1984) describe the spine of C7 as the upper of the two prominences found in

the root of the neck, the lower being the spine of Ti. The spines can usually

not be seen but can be felt. With the subject bent forwards the spines project

more and can be identified.

A fourth trunk marker was attached over the right acromion. This marker

was used to identify the location of the centre of rotation of the glenohumeral

joint to allow the definition of the humeral longitudinal axis. The process of

locating the glenohumeral rotation centre is discussed in detail in section 6.5.4.

6.3.11 Anatomical calibration

Section 6.3.7 describes the definition of 'technical' embedded co-

ordinate frames assumed rigid with the underlying bone, from skin-fixed marker

arrangements which may be arbitrary and non-repeatable in their relationship

to the bone.

A requirement of this technique is that a preliminary "anatomical

calibration" as described by Cappozzo et al (1995) be carried out. In this

process the geometrical relationships between the surface fixed technical

markers and selected bony anatomical landmarks are found. Knowing or

assuming the relationship between these landmarks and the associated joint

centres then allows the definition of the bone embedded 'anatomical' reference

frames, constructed in relation to these centres.

The relationship between the defined technical frame and the chosen

anatomical landmarks can be found under the most advantageous conditions,
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not necessarily during limb movement, as the anatomical landmark co-

ordinates should be constant with respect to the embedded technical frame.

Points may thus be tracked which would normally be obscured from view or

which might cause the motion to become unnatural if a marker was attached.

The anatomical calibration may be carried out by attaching temporary

markers over the anatomical landmarks as well as the usual technical markers

elsewhere, and recording a single frame. By calculating the three-dimensional

co-ordinates of all the markers, the position of the bony landmarks with respect

to surface technical markers could be determined.

Prior to continuing with the process of filming the motion the temporary

anatomical landmark markers would be removed, their location in reference to

the surface markers being saved on the single frame. Assuming that the skin-

fixed marker array is rigid with the underlying bone, the location of the

anatomical landmarks could thus be calculated at any time during movement.

Such a method was used by Schmidt et al (1999a, 1999b).

As an alternative to attaching temporary extra markers to locate the

positions of the anatomical landmarks in relation to the technical markers, a

pointer can be used, to which are affixed two markers of known separation and

distance from the pointer tip. The tip of the pointer would be placed on the

anatomical landmark allowing both the pointer markers and the surface

markers to be visible. Again a single frame would be recorded and the location

of the anatomical landmarks calculated using the reconstructed image before

proceeding with filming of motion.

The latter method was chosen for the purposes of the upper limb motion

study, having the benefit of allowing calibration of markers in awkward

positions which might be obscured from the view of the camera using the first

method. Using a pointer also removes the need to incorporate a correction for

the size of the marker when locating the anatomical landmark, as its tip rests

directly upon it.

A pointer was constructed from a 79cm long, 6mm diameter steel rod

painted black, to which were attached two 35mm reflective markers. The first

marker was attached at a distance of 25cm from the pointer tip, the second a

further 25cm along the length of the pointer.
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During the anatomical calibration process, subjects were asked to flex

their elbow to around 90° and place their forearm in the neutral forearm

pronation position defined for the current study (90° pronated from the

'anatomical position' forearm position).

6.3.12 Filming the activities

Video recording took place using four cameras, initially for the purposes

of anatomical landmark calibration and then during performance of the selected

activities. A requirement that had to be met in order to combine simultaneous

camera views using the APAS, was that all cameras must record a single

distinct event called the synchronising event. This event had to be seen by all

cameras simultaneously in order to time match the image sequences.

This was achieved using an LED system as shown in Fig 6.2, similar to

those used by Scholz & Millford (1993) and Payton & Bartlett (1995). Four

LEDs were connected to a purpose made timing device which allowed varying

durations of LED firing, between 0.04s and is depending on the selected data

sampling rate. The LEDs could be placed anywhere in the test volume to

maximise their visibility to each camera and triggered simultaneously.

Fig. 6.2 Circuit diagram for LED synchronising device.
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Where:

Id =

swi =

SW2 =

SW3 =

LED 1-5

RI =

R2 =

R3 =

R4 =

R5 =

Timer - NE556N

2 pole 6 way (RS320-685)

Microswitch (1 NO,1 NC)

I pole rocker (320-01 7)

Std 5mm red

36K

33K

130K

39K

300K

R6 =

R7, R8 =

R9 - R12 =

R13 =

Ci, 03, C6 =

C2 =

C4 =

05 =

C7 =

08 =

910K

10K

330K

470K

i000nF

2200nF

4700nF

l500nF

I nF

I OnF

As discussed in Section 6.3.3 a fixed point was also placed within the

test volume. Details of the activities the subjects were asked to perform and

the protocol for each of these are discussed in Section 8.1.

6.4 An overview of the APAS data processing procedures

6.4.1 APAS analysis - obtaining the marker co-ordinates

The APAS software modules described in Section 6.2 were used after

filming of the activities in order to obtain the three-dimensional co-ordinates of

the markers through time.

The 'Capture' module described in Section 6.2.2 was used to create an

image file from the recorded activities from each camera, as well as capturing

images for the calibration frame and anatomical calibration process.

When capturing the motion data the repetition for analysis was selected

and some images from the previous and subsequent cycles captured in order

to allow data leading in and out of the selected repetition.

For the purposes of the anatomical calibration process, four frames of

data were captured for each of the three landmarks located.

The image sequences captured were digitised using the software

described in section 6.2.2. Four views were shown on the monitor

simultaneously for 3D digitising and a digitised sequence was created using a

combination of the automatic and manual digitising features.
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In addition to digitising the subject markers and fixed point, the control

point locations used to calibrate the image space were also digitised for each

camera view. The known Cartesian co-ordinate locations of each of the control

points in relation to the selected calibration frame origin were also entered in

the same order in which their images were digitised. During the digitising

process, the frame in each view showing the LED synchronising device to be

active was noted to allow synchronising of the data.

The transformation module described in section 6.2.3 was then used to

carry out the DLI process on the digitised image sequences, using the actual

measured locations as well as the digitised co-ordinates of the control points.

This module utilised the defined synchronising event (LED flash) from each of

the views as a basis for time matching the sequences. The time for each frame

in each view was adjusted relative to the synchronising event so that in all four

views the synchronising events occurred at the same absolute time.

The cubic spline algorithm from the Smoothing module described in

section 6.2.4 was considered sufficient for positional data and applied on the

transformed data. This algorithm is based on traditional spline function theory,

but enhanced to allow approximate fitting rather than the traditional exact fitting

to the data points. By viewing the marker acceleration curves, the extent of

random error remaining in the data could be determined and smoothing values

were adjusted to reduce this.

The printing module described in section 6.2.5 was then used to output

the three-dimensional marker co-ordinates in the global laboratory frame

through time, along with their velocities and accelerations. The output data

were transferred into the "Excel" package where a macro was written to select

the co-ordinate data for each marker, the velocity and acceleration data being

disregarded. The macro arranged this data in a suitable format before saving it

to a file for input into several MATLAB procedures for further analysis.

6.5 An overview of the MATLAB data processing procedures

After obtaining the marker co-ordinates through time the next stage in

the process was to define the local segment embedded Cartesian frames and

from these to calculate the inter-segment angles, forces and moments.
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The necessary analyses were carried out using MATLAB TM routines

which were a combination of newly written and public domain routines as well

as some adapted from sources in literature. Routines that fall within the latter

categories are credited to their original author where appropriate.

The "apas.m" file orchestrates the analysis process, reading in the files

output by the Excel macro and running the analysis procedures.

6.5.1 Obtaining landmark locations from anatomical calibration

In order to obtain the three-dimensional co-ordinates of the lateral and

medial epicondyles and the seventh cervical vertebra, information from the

frames captured for each landmark were averaged. A vector was defined

between the two pointer markers and this vector was then added to the pointer

marker nearest its tip. Thus the pointer tip and therefore the bony landmark to

which it was applied was located.

Each of the three landmarks was then related to an embedded technical

frame, C7 to the trunk frame and the epicondyles to both the upper arm and

forearm frames. The definitions of these embedded technical frames are given

in the following section.

6.5.2 Defining the embedded Technical frames

Embedded technical frames were defined in relation to the surface fixed

markers with one marker selected as the origin for the frame. For each

segment two vectors were defined between one of the three attached markers

and each of the other two by the subtraction of their position vectors in the

laboratory frame.

The two unit vectors then defined a plane and their cross-product gave

the normal to this plane. By taking the cross-product of this normal vector with

one of the two original vectors it was possible to obtain three orthogonal unit

vectors related to the underlying bone, as required.

For the trunk (Fig.6.3) the xiphoid (Xl) marker was selected as the origin.

A vector was defined from Xl to the manubrium (MA) marker and this was taken

as the trunk technical z-axis (Ttz). Another vector was defined from Xl to the

left acromial (LA) marker (Ttx'). By finding the cross product of TtX' and Ttz it
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was then possible to calculate the trunk technical y-axis (Tty). By finding the

cross product of Tty and Ttz it was then possible to calculate the trunk technical

x-axis (Ttx).

Fig. 6.3 Trunk embedded 'technical' axes.

Thy

Fig. 6.4 Upper arm embedded 'technical' axes.

For the upper arm (Fig.6.4) the brachioradialis insertion (BI) marker was

selected as the origin. A vector was defined from BI to the deltoid insertion (Dl)
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marker and this was taken as the humeral technical z-axis (1hz). Another

vector was defined from BI to the biceps (BB) marker (Thy'). By finding the

cross product of Thy' and Thz it was then possible to calculate the humeral

technical x-axis (Thx). By finding the cross product of Thz and Thx it was then

possible to calculate the humeral technical y-axis (Thy).

For the forearm (Fig.6.5) the ulnar styloid (US) marker was selected as

the origin. A vector was defined from US to the radial styloid (RS) marker and

this was taken as the forearm technical x-axis (Tfx).

A Tfz

Tfy

Fig. 6.5 Forearm embedded 'technical' axes.

Another vector was defined from RS to the proximal ulna (PU) marker

(Tfz'). By finding the cross product of Tfz' and Tfx it was then possible to

calculate the forearm technical y-axis (Tfy). By finding the cross product of Tfx

and Tfy it was possible to calculate the forearm technical z-axis (Tfz).

Each of the trunk, humeral and forearm technical axes were then

unitised, by dividing each of them by their magnitude. The orientation between

the global and technical frames for any sampled instant could then be

calculated.
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The reconstruction of the motion of each bone in the global reference

frame involved estimating, at each sampled instant throughout the motion, the

position of each of the bony anatomical landmarks by using the measured co-

ordinates of the markers which formed the technical cluster.

From anatomical calibration, the transformation matrix that linked the

global and technical frames was known, as well as the locations of the

epicondyle and C7 landmarks in the global frame, It was then possible to

calculate the locations of these landmarks in relation to the technical frames by

dividing their position vectors in the global frame by the calculated

transformation matrix.

This then allowed the definition of the bone embedded anatomical

frames as described in the following section.

6.5.3 Defining the embedded Anatomical frames

Knowing the co-ordinates of the epicondyle and C7 bony anatomical

landmarks in relation to the technical frames from anatomical calibration, it was

possible to define embedded anatomical frames in relation to the technical

frame as opposed to the g1oba 'aboratory frame.

For the trunk (Fig.6.6), the xiphoid (XI) marker was chosen as the origin

of the embedded anatomical frame. The longitudinal anatomical axis (Atz) was

defined first as lying along the line connecting the xiphoid and manubrial

markers, the same as the trunk technical z-axis. Another vector was defined

from the xiphoid marker to the C7 landmark identified during anatomical

calibration in relation to the trunk technical frame (Aty'). By finding the cross

product of Atz and Aty' it was then possible to calculate the trunk anatomical x-

axis (Atx). By finding the cross product of Atz and Atx it was then possible to

calculate the trunk anatomical y-axis (Aty). Each of the trunk anatomical axes

were then unitised.



10

((1
Atx

I

.VIE

134
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Fig. 6.6 Trunk embedded 'anatomical' axes.

The location of the right acromial (RA) marker was identified in relation

to the trunk anatomical frame. From this location and using the method

discussed in section 6.5.4, the glenohumeral centre was identified in relation to

the trunk frame, It was then possible to find the relationship between trunk

anatomical and humeral technical frames and thus define the glenohumeral

centre in relation to the humeral technical frame.

Fig. 6.7 Upper arm embedded 'anatomical' axes.
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The embedded humeral anatomical frame (Fig.6.7) could then be

defined, the elbow joint centre being chosen as its origin. The longitudinal

anatomical axis (Ahz) was defined first as lying along the line connecting the

elbow and glenohumeral centres, identified in relation to the humeral technical

frame during anatomical calibration. Another vector was defined from the ME

landmark to the LE landmark (Ahx'). By finding the cross product of Ahz and

Ahx' it was then possible to calculate the humeral anatomical y-axis (Ahy). By

finding the cross product of Ahy and Ahz it was then possible to calculate the

humeral anatomical x-axis (Ahx). Each of the humeral anatomical axes were

then unitised.

Fig. 6.8 Forearm embedded 'anatomical' axes.

For the forearm (Fig. 6.8) the wrist joint centre was chosen as the origin

of the embedded anatomical frame. The longitudinal anatomical axis (Afz) was

defined first as lying along the line connecting the wrist and elbow centres.

The latter was defined as the mid-point of the medial epicondyle (ME) and

lateral epicondyle (LE) landmarks in relation to the forearm technical frame,

identified during anatomical calibration, the former as the mid-point of the RS



136

and US markers. Another vector was defined from the US marker to the RS

marker (Afx'). By finding the cross product of Afz and Afx' it was then possible

to calculate the forearm anatomical y-axis (Afy). By finding the cross product of

Afy and Afz it was then possible to calculate the forearm anatomical x-axis

(Afx). Each of the forearm anatomical axes were then unitised.

Having defined the anatomical axes, the transformation matrices relating

the technical and anatomical embedded frames could be found, similarly to the

transformation between global and technical frames.

The position of the anatomical landmarks was assumed to be invariant

with respect to the technical frames. Thus at any sampled instant, the three-

dimensional surface marker locations could be found. The embedded technical

frames could be defined in relation to these and the embedded anatomical

frames found knowing the transformation from technical to anatomical frames.

To this stage in the analysis process, all manipulations were carried out

using the 'tech.m' MATLAB procedure, which takes as input the skin-fixed and

pointer marker co-ordinate information and outputs the transformation matrices

between technical and anatomical embedded frames. This includes a

calculation of the glenohumeral joint centre as discussed in the following

section.

6.5.4 Defining the centre of the glenohumeral joint

In order to define the humeral anatomical embedded frame it was

necessary to locate a landmark representing the centre of rotation of the

glenohumeral joint, in line with the recommendations of the International

Society of Biomechanics (ISB) Standardisation Committee Recommendations

(Van der Helm & Dapena (1993), Van der Helm (1997)).

Van Der Helm et al (1992) estimated the position of the rotation centre of

the humerus with respect to the scapula by calculating the location of the

centre of a sphere fitted to the glenoid, using the radius of a sphere fitted to the

humeral head. This approach was first suggested in the earlier work of Van

Der Helm et al (1989), who found that the articular surfaces of the

glenohumeral joint could be assumed to be two concentric spheres.
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Fourteen shoulders from seven cadaver specimens were studied and

their estimated glenohumeral rotation centre was found to be laterally, inferiorly

and anteriorly displaced from the most posterior palpable point on the

acromioclavicular joint as given in Table 6.4. From the data given in the paper

the average distance between acromion and elbow centre was 35.43cm, which

corresponds well with the later data of Veeger et at (1997).

It has been suggested that an alternative to finding the joint centres

through marker positioning, is to locate a functional joint centre by moving the

limb in question and calculating the centre of rotation of this movement. Such a

method had been proposed by Cappozzo (1984), (1991) for locating the

"functional" joint centre of the hip.

Wang (1996) modelled the glenohumeral joint as a ball and socket joint

and located its 'functional' centre with respect to surface landmarks. This was

carried out by minimising the sum of the square distance from an arbitrary point

in space to finite helical axes calculated from data obtained using a two

camera, infra-red optoelectronic system.

Five healthy subjects aged between 17 and 47 were told to sit erect in a

seat, their backs supported, torsos stationary. Upper arm circumduction

movements were repeated three times, limited to a level of humeral elevation

inferior to 9Q0• The calculated average centre of rotation in relation to the

acromio-clavicutar surface point is given in Table 6.4, relative to a set of axes

that coincide with those in which the other results are quoted.

Veeger et al (1997) used a similar method, in their study of five upper

extremity specimens from four fresh cadavers and carried out a similar

procedure to that of Van Del Helm et al (1992) in calculating the centre of a

sphere fitted to the glenoid.

Keeping the scapulohumeral region intact, the scaputse of the

specimens were mounted on a measuring board and the relative movement

between scapula and humerus analysed. This was carried out using an

electromagnetic tracking system, the sensors of which were fixed on the shafts

of the humerus, radius and ulna as well as on the spine of the scapula.

The rotation centre of the glenohumeral joint was determined during

passive abduction/ adduction, flexion/ extension and internal/external rotation
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of the humerus. Three trials for each motion were carried out, each trial

involving two full cycles of the motion. Instantaneous helical axes (lHAs) were

determined for the shoulder from the recorded data. From the calculated IHAs

the optimal pivot point was found.

After studying the humeral motion, positional information for various

bony structures was found by digitising their locations during dissection of the

cadaver specimens. Joints were disarticulated and muscles removed while

leaving the electromagnetic sensors untouched. The locations of the bony

structures were expressed in the global reference frame of the electromagnetic

tracking system, thus allowing direct comparison of their positions with those

on adjacent body segments and the joint rotation centres.

Resulting locations for the glenohumeral centre in relation to the

acromion from this process are given in Table 6.4, after manipulation of the

data in order to relate them to standard anatomical axes. Veeger et al (1997)

state that in fixing the scapulae to the experimental apparatus, they were

rotated -45° around the Z axis and 20° around the X axis in comparison to the

average resting position of the scapula, taken from the work of Pronk (1991)

who measured the rest positions of the scapula and clavicle in eighteen

subjects. A least-squares method was used to calculate a mean orientation

matrix relating the mean scapular resting position to a global anatomical co-

ordinate system centred at the jugular notch.

Initially in the process of manipulating the data of Veeger et al (1997) it

was assumed that the rotations of the scapula from its resting position occurred

in the order in which they are given in the original paper, first about the Z-axis

and then about the X-axis. The order of rotations was checked by attaching a

scapula to a jointed arm in a similar position to the test position of Veeger et al

(1997) and carrying out the two possible sequences of the two rotations in

order to return the scapula to its resting position. It was found that the given

order (X then Z, as this is the reverse direction of the rotations quoted in the

paper) oriented the scapula in a reasonable representation of its resting

position.

The process was later modified to improve its accuracy using the data of

Pronk (1991). The embedded frame of Pronk (1991) was defined in each of the
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scapulae of the five cadavers studied by Veeger et al (1997). The differences

between global frames were corrected and thus it was possible to rotate each

of the scapular data sets of Veeger et al (1997) to lie in the resting position as

defined by Pronk (1991). After carrying out this process it was found that the

order of rotations was the same as that quoted by Veeger et al (1997), but that

the magnitudes varied greatly form those quoted for all except one subject.

On investigating the data it was also found that the left arm data for the

second specimen had not been corrected by Veeger et al (1997) for the

reversal of the y-axis due to the attachment of the scapula facing in the

opposite direction to the right arm specimens. The co-ordinates were adjusted

to account for this and the resulting locations for the corrected glenohumeral

centre locations in relation to the acromion from this improved process are

again given in Table 6.4.

Meskers et al (1 998a) outlined a method for the in vivo calculation of the

rotation centre of the glenohumeral joint. Their technique uses linear

regression equations based on bony landmarks and surface data points of the

scapula and humerus, measured on thirty-six scapulae and humeri sets from

nineteen cadaver specimens. This technique was specifically developed for

those studies where palpation techniques are utilised for the location of

scapular bony landmarks in three dimensions, for example in the work of

Meskers et al (1998b). The position of the glenohumeral rotation centre shown

in Table 6.4 was first estimated using the method of Van Der Helmet al (1992).

The co-ordinates given in Table 6.4 from the work of Meskers et al

(1998a) are expressed in relation to a scapular co-ordinate system with its

origin at the acromion, x-axis along the line from trigonum spinae (TS) to the

most dorsal point of the acromioclavicular joint (AC), z-axis perpendicular to the

plane through TS, AC and the most inferior point of the scapula, the inferior

angle (Al) and the y-axis the cross-product of the x and z axes.

The authors constructed a regression model using linear least squares

to describe the relationship between the rotation centre and palpable

landmarks on the scapula in their local scapular co-ordinate system. They

validated this model against a sample of the original cadaver data and

concluded that an accurate in viva prediction of the glenohumeral rotation



140

centre could be obtained from palpable bony landmarks when required for

kinematic studies of the upper limb.

Paper	 Acromion to:	 X (cm)	 Y (cm)	 Z (cm)	 Mag. (cm)

Van der Helm et al (1992)* 	 Humera! Head	 1.79	 3.39	 -4.44	 5.87

Wang, X.G. (1996) 	 Rotation centre	 1.38	 0.82	 -3.66	 3.9965

range	 -0.29-2.68	 -0.02-1.38	 0.63	 1.08

Veeger et a! (1997)**	 Glenoid	 0.97582	 -0.66234	 -3.86238	 4,038428

SDev	 1.139193	 1.158843	 0.693073	 1.766643

Veeger et al (1997)***	 Humeral Head	 0.74668	 -0.34984	 -4.4593	 4.534895

SDev	 1.179747	 0.610679	 0.82123	 0.629503

Veeger eta! (1997) ****	 Rot. Centre	 0.68448	 -0.82444	 -3.7289	 3.879808

SDev	 0.946897	 0.809161	 0.847892	 1.506743

Veeger et a! (1997)!(corr)	 Rot. Centre	 0.9045	 -0.4333	 -3.8745	 4.0

SDev	 0.4631	 0.3907	 0.8349	 1.03

Meskcrs et al (1998a)*****	 Humeral Head	 0.998t	 1.90t	 -4.58t	 5.06

±	 0.416	 0.756	 0.48	 0.99

Table 6.4 Felationships between : Most posterior palpable point on the
acromioclavicular joint and centre of sphere fitted to glenoid with radius of sphere
fitted to humeral head (*, *****). Surface point of acromioclavicular joint (i). Most
cranial point on the acromioclavicular joint and centre of sphere fitted to glenoid (**)
and sphere fitted to humeral head (***). Most cranial point on the acromioclavicular
joint and calculated rotation centre of glenohumeral joint (****,!). (t - co-ordinates
expressed in non-standard frame - see text)

Laursen et al (1998) defined the centre of the glenohumeral joint as

being 2cm below the inferior edge of the acromion in their study of the

calculation of shoulder muscle forces based on electromyographic studies.

The source of this information is given as the paper by lannotti et al (1992),

though in this paper no direct measurement of this distance was made and it

appears that Laursen et al (1998) may have used the dimensions given for the

radius of the humeral head.

Wang et al (1998) used a sonic dig fser in ther study of upper arm axal

rotation The average centre of rotation of the 'lumped' shoulder joint between

the thorax and the humerus was defined as the proximal andmark for the

defin ton of the humeral embedded axs. Ths pont was found as the centre of
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a sphere to which the measured elbow positions were fitted using an

optimisation procedure, with the acromio-clavicular joint as an initial estimate.

An alternative method to those above would be the direct estimation of

the glenohumeral joint in relation to a surface fixed marker or markers. This

approach has been adopted by several authors (Sprigings et al (1994), Rao et

al (1996), Cheng (1996)) as shown in Table 6.2. Other authors (Runciman

(1993), Van der Helm & Pronk (1994), Williams (1996)) have avoided using the

glenohumeral centre to define the longitudinal axis of the humerus, by locating

this axis directly in relation to surface markers, as shown in Table 6.3.

Cheng (1996) used a method for determining the centre of the shoulder

joint developed by Nicol (1977). A double marker was attached on the acromial

process. By extrapolating the line joining the markers by the radius of the

shoulder joint ball, the centre of the joint could be located.

The radius of curvature of the shoulder joint ball was defined as the

distance from the acromial process to the estimated centre of the glenohumeral

joint, using the semicircular form of the surface contour at the shoulder region.

The centre of shoulder ball was palpated with the upper arm in different

positions, and the radius of shoulder ball measured in each position manually

using a ruler. The resulting measurements were then averaged to find the

required radius.

The key elements in the successful use of such a method would seem to

be that the double marker be as light and as securely attached as possible in

order to minimise swinging of the marker and that it should be carefully

positioned on the acromion to minimise error in the location of the

glenohumeral centre.

Schmidt et al (1999a) defined the centre of the shoulder to be 7cm

inferior to a marker attached on the acromion, this distance being the average

of visually determined distances using a ruler. Schmidt et al (1999b) also used

a method similar to that of Wang et al (1998), locating the functional centre of

the glenohumeral joint during shoulder flexion and abduction.

The data in Table 6.4 allows an estimate of the distance between

acromion and glenohumeral rotation centre to be made, and thus gives an idea

of the expected value when measuring the radius of the shoulder joint ball.
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From the given data, the distance between the acromion and the glenohumeral

centre is between 3.87cm and 5.87cm with an average of around 4.5cm.

On considering the options available it was decided not to utilise the

method of identifying the humeral longitudinal axis directly as carried out by

Runciman (1993), Van der Helm & Pronk (1994), Williams (1996). This method

might be prone to the errors in marker positioning, differing soft tissue bulk and

does not include the location of the glenohumeral centre as suggested in the

ISB recommendations (Van der Helm & Dapena (1993), Van der Helm (1997)).

The method of Sprigings et al (1994) was dismissed as its accuracy

again appears to be dependent on marker placement and would be affected by

muscular movement and differing tissue bulk. The method of Rao et al (1996)

was dismissed as it involves the use of a standard angular correction which

cannot be assumed correct for all subjects. The method of Cherig (1996) was

dismissed as it seemed prone to errors in positioning and angle of attachment

of the double marker and the measurement of the radius of the shoulder joint

ball. The processes used by Wang (1996) and Veeger (1997), locating the

rotation centre through the calculation of instantaneous or finite helical axes

are promising, though would require the addition of an extra stage in the

analysis process.

In order to limit the inconvenience to the subject in terms of time taken to

film the tests and minimise the time taken to analyse the data, it was decided

that the addition of such an extra phase during testing should be avoided.

The similar method of Wang et al (1998), locating the centre of rotation

of the 'shoulder' is not as suitable however as the calculated centre over

extensive upper limb movements would include a large component due to

scapular movement. Again the location of the 'shoulder' as opposed to GH

centre is a deviation from the ISB recommendations (Van der Helm & Dapena

(1993), Van der Helm (1997)).

The method may be adapted to locate the centre of the glenohumeral

joint by the exclusion of certain movements as in the earlier work of Wang

(1996), though again an extra stage in the analysis process would be required.

The regression equations of Meskers et al (1998a) were considered

unsuitable as they are based on a process of estimation from scapular
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landmarks, which are not easily identified with surface fixed markers. This

process would also require positioning of cameras both anteriorly and

posteriorly to the subject which was not convenient in the laboratory

arrangement.

It was finally decided that the most suitable method of locating the

glenohumeral centre, taking into account the limiting factors of laboratory

equipment and test duration would be to use existing data from previous

studies. A standard practice for the calculation of segment masses, centres of

mass and inertias in biomechanical studies as discussed in Chapter 3, has

been the use of generalised values obtained during anatomical studies and it

was decided to apply a similar method in the location of the glenohumeral

centre.

On selecting the previous work as a basis for this process the data of

Meskers et al (1998a) is unsuitable as it is given in reference co-ordinate frame

which is not in line with a standard global frame. After applying the equations

of Meskers et at (1998a) to the cadaver data of Veeger et at (1997) it was also

found that the calculated results varied from those measured.

It was decided to use those data on a calculated rotation centre (Wang

(1996), Veeger et at (1997)) as opposed to fitting of spheres to the articulating

surfaces (Van der Helm (1992)). The data of Wang (1996) and Veeger et al

(1997) correspond very well for the Z (vertical) co-ordinate and reasonably welt

for the X (medial-lateral) co-ordinate. The correspondence is not so close for

the Y (anterior-posterior) co-ordinate, though they are within the error limits of

each other. This difference may be due to any variation in the definition of the

acromial point, though there is a variability within the five individual data sets

for both papers. The data of Veeger et at (1997) was finally chosen for several

reasons.

Wang (1996) collected his data using only two cameras which as

previously discussed is not the optimum arrangement. The resulting data,

being based on marker locations through time, would be prone to the combined

errors of marker movement and digitising errors.

The data of Veeger et al (1997), being based on a study involving the

attachment of sensors directly to the bony elements of the upper limb and
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scapula, would not be susceptible errors due to relative motion between skin

and underlying bone. The scapula also remained fixed in this study and so no

contribution could be made to the resulting data by scapular movement, not

necessarily the case with the data of Wang (1996).

When adopting a generalised approach it is necessary to scale the data

against known anthropometric dimensions, a process made possible by the

extensive anthropometric information supplied by Veeger et al (1997) but not

by the information given in Wang (1996).

The method for utilising the data of Veeger et at (1997) for the location

of the glenohumeral rotation centre involved finding the vectors directly linking

the most cranial point on the acromioclavicular joint with the rotation centre for

each of the five sets of shoulder data, after re-locating the co-ordinate data in

the scapular resting position of Pronk (1991).

These vectors were normalised in each case, by dividing them by an

appropriate scaling dimension, the corresponding distance between the mid-

point of the epicondyles (MP) and the acromion (AC) calculated from the

cadaver data. This dimension was chosen after plotting the vector magnitudes

against the MP-AC distance and finding a trend for the vector sizes to increase

with increasing MP-AC distance. The resulting vectors were then averaged to

give a normalised average position vector for the glenohumerat rotation centre

with respect to the acromion.

Thereafter, the normalised vector can be multiplied by the measured

distance between the mid-point of the epicondyles and the most cranial point

on the acromioclavicular joint from any subject. This will yield the vector

between the most cranial point on the acromioclavicutar joint and glenohumeral

rotation centre in relation to the trunk embedded frame. The average

normalised position vector for the glenohumeral rotation centre in relation to

the most cranial point on the acromion was found to be:

	

[0.0261	 -0.0126	 -0.1115]

	

SOs (Q.013Q	 G.G11	 G.G233
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The exact location of the joint centre of rotation will move with activity

due to variation in the joint structures and articular surfaces which are not

perfect curved surfaces. The location of a constant centre of rotation is

therefore not truly representative of the joint behaviour. Because of this, the

method presented is not ideal, but is considered reasonable and is similar to

standard methods for the estimation of anatomical and anthropometric

parameters in biomechanical studies.

The method is based on the definition of embedded scapular frames

from accurate landmark locations from the cadaver study of Veeger et al (1997)

and the definition of the scapular resting position from Pronk (1991) and is thus

considered to represent a more rigorous location of the glenohumeral centre

than alternative methods.

6.5.5 Calculation of transformation matrices

In order to calculate optimised transformation matrices between marker

locations, the SVD based algorithm given in SOderkvist & Wedin (1993) and

discussed in Section 5.3 was used as the basis of a MATLAB procedure,

'soder.m', included in the 'KineMat' toolbox of Reinschmidt & van den Bogert

(1997). This toolbox is available for download on the International Society of

Biomechanics (ISB) Internet site.

This procedure requires as input, the co-ordinates through time of three

or more non-couinear marker points, expressed as the rows of a matrix. The

singular value decomposition of a 3x3 matrix derived from the positions of the

markers is then calculated. Output are the optimised 4x4 transformation

matrices describing the rigid body segments.

According to Söderkvist & Wedin (1993), the advantages of this SVD

algorithm are that it does not require an initial estimate for the unknown

transformation parameters and is thus computationatly efficient. It is also more

stable in the presence of noise than other methods.

The 'soder.m' procedure was incorporated in the upper limb analysis

process in order to allow calculation of transformation matrices, 	 It was

considered an advantage to include the flexibility in the analysis process to
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allow optimisation if required and the procedure was incorporated for use in two

ways.

The first was to optimise the segment positions and orientations in

relation to an initial reference position and orientation obtained during

anatomical calibration of C7. 	 The transformations between global and

anatomical frames were found for this reference data.

Thereafter the transformations linking the marker clusters at each instant

to their initial position could be found using the optimisation process. The latter

transformations were then multiplied into the initial transformations between

global and anatomical frames, resulting in a sequence of transformation

matrices describing, at each sampled instant, the orientation and position of the

embedded anatomical frames in relation to the global laboratory frame.

The second use of the SVD procedure was to calculate transformation

matrices in a non-optimising fashion where the embedded technical frames

were simply defined in relation to the marker co-ordinate data with no

correction for relative marker movement.

By using the unit vectors representing each of the axes of the technical

frames as input to the SVD procedure, it was possible to calculate the

transformation between these frames. As the transformations in this case were

calculated between predefined axes and not a cluster of markers, the algorithm

had no optimisation effect on the data.

6.5.6 Kinematic Analysis

The next step in the process of analysing the data was to calculate the

joint attitudes through time from the 3D positions and orientations of the

defined embedded frames.

The MATLAB procedure "tech2.m" was written to calculate the positions

and orientations of the embedded technical frames with respect to global

laboratory frame at each sampled instant and express these in terms of

transformation matrices. Knowing the relationship between embedded

technical and anatomical frames from anatomical calibration and calculation in

the "tech.m" procedure, it was then possible to calculate the transformation

matrices relating global and anatomical frames at each instant.
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These matrices were then decomposed using a chosen angular

parametrisation, several options being available as discussed in Section 5.4.

The chosen sequence was the flexion-adduction-internal rotation sequence of

the JCS. This choice was based on the results of preliminary testing,

discussed in Section 7.4. As stated by Woltring (1994), this JCS convention

was recommended by the Committee on Standardisation of the International

Society of Biomechanics.

The angles were calculated in two ways in order to provide a check on

the calculations. The first was to determine them directly from the calculated

matrices using the 'Rzyxsolv.m' function from the Kinemat toolbox. The second

method for calculating the angles was to employ the general algorithm for the

JCS described by Cole et al (1993). The "cole.m" MATLAB procedure was

written in order to carry out the calculation of the joint angles from the

orientations of the embedded frame axes in the global frame.

6.5.7 Calculation of velocities and accelerations

Having calculated the joint orientations through time and prior to

calculating the dnanic parameters associateb with the rnovemen, was then

necessary to find further kinematic variables, the joint velocities and

accelerations.

The generalised cross validation based cubic spline filter of Hodgson

(1994) was obtained from the author as two MATLAB routines "dpf.m" and

"dpfsweep.m". The filter was tested against 5-point numerical differentiation for

upper limb data and found to be superior in that it did not force the endpoint

data to zero.

These MATLAB procedures were incorporated in the analysis program

"numdiff.m". They enabled the filtering and differentiation of the joint angle

data in order to obtain the joint angular velocities and accelerations in a similar

process to that which forms the basis of the technique of Kane (1983). These

velocities and accelerations were output directly, while also being utilised for

the calculation of the upper limb dynamics discussed in the following section.
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6.5.8 Dynamic analysis

Having calculated the kinematics, the next step in the analysis process

was to calculate the dynamics involved in the activity under analysis. The

"numdiff.m" procedure was written to carry out this process, taking as input the

joint angles through time. Included in this procedure were the calculations of

the various body segment parameters.

Segment lengths were calculated as the distance between proximal and

distal joint centres when defining the embedded frames, for example from

glenohumeral centre to elbow centre for the humerus.

Segment masses and centre of mass (CM) locations were calculated

from the measured subject weight using the data from de Leva (1996a)

discussed in Chapter 3. Finally, segment moments of inertia were calculated,

again using the data of de Leva (1 996a).

The next stage was to combine the kinematic information obtained as

discussed in Sections 6.5.6 and 6.5.7, with the segment length, mass, CM,

inertia and loading information in order to allow calculation of the 3-D external

joint forces and moments.

6.5.9 The dynamic upper limb model

In order to calculate the external forces, a generalised dynamic model of

the upper limb as a mechanical linkage was developed. Similar models have

been described by Chèze et al (1996) and Barker et al (1997) for the

glenohumeral and elbow joints. More recently Bao & Willems (1999) extended

these to include the sternoc!avicular and acromioclavicular joints.

The segments of the limb were modelled as rigid bodies using the D-H

notation to specify the location and orientation of the axes of rotation,

represented by revolute joints. Coincident degrees of freedom as found in the

shoulder were represented using links with 90° link twist but zero link length.

The model consisted of three segments, representing the upper arm,

forearm and hand, as shown in Fig. 6.9. Seven degrees of freedom were

included, three at the shoulder, two at the elbow and two at the wrist. Fig 6.10

indicates the rotations represented by the model. The lengths of the upper arm
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and forearm were defined by specifying a link offset equivalent to the

appropriate dimension, the length of the hand by a link length.

Fig 6.9 The modelled upper arm linkage and the anatomical structure. Rectangles
and circles in bold represent rotations about axes parallel with and perpendicular to
the page respectively.
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Fig 6.10 The motions represented by the upper arm linkage model
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The first axis of rotation was defined as shoulder flexion as opposed to

the shoulder adduction of Barker et al (1997). Thus the order of rotations of

the model were made to correspond with the JCS sequence used to calculate

the rotations at the shoulder.

A modification of the upper limb model was also developed to allow

application of the JCS sequence at the wrist as shown in Fig 6.11. This

modification was not adopted as no wrist angles were measured.

Fig.6.1 I Modification to allow application of the chosen JCS sequence at the wrist

Having developed the link model of the upper limb, Barker et al (1997),

used the Robotics Toolbox described by Corke (1995, 1996) in order to carry

out inverse dynamics calculations. This toolbox comprises many functions

required in robotics, the one used in this analysis being the "rne.m" routine

which allowed computation of the inverse dynamics using the RNE formulation

of the dynamic equations of motion described in section 5.7.

This procedure was modified to output calculated values of the forces at

each of the upper limb joints relative to their local co-ordinate system. Also

output were the joint moments required to achieve a given set of joint angles

and linear and angular velocities and accelerations, at each point in the limb

trajectory, as well as the forces and moments due to any additional hand load.

The inputs to the inverse dynamic process were vectors containing the

previously calculated angular displacements, velocities and accelerations at

each of the joints through time.	 A vector representing the standard

acceleration due to gravity was also required, the value used being that
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Shoulder Ab/Add

Shoulder Tnt/Ext Rotn
Elbow Flex/Ext

Forearm mt/Ext Rotn

Wrist Rad/Uln Dev.
Wrist Flex/Ext
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adopted in the International Service of Weights and Measures, 9.80665ms2

(HMSO (1986)).

The other input was a 10x20 'dyn' matrix as shown in Fig 6.12, which

completely described the kinematics and dynamics of the limb model using D-H

parameters. Each row represents one link in the model, each column

represents one of the necessary input parameters, though for the upper limb

model only the first twelve columns are used, the final eight containing zeros.

The first four columns contain all the D-H parameter information for the

construction of the linkage representing the upper limb, as discussed in Section

5.6. The fifth column (c) defined the joints as revolute. Also shown are the

motions represented by each defined link.

D-H Parameters	 CM Locations	 Incrt.Mmts.
a	 a	 0	 d	 o mass	 r	 r	 r	 I	 t	 1

-p112	 0	 O	 0	 0	 0	 0	 0	 0	 0 0	 0

0	 0	 -p1/2	 0	 0	 0	 0	 0	 0	 0 0	 0

p112	 0	 03	 0	 0	 0	 0	 0	 0	 0 0	 0

0	 0	 p112	 0	 0 uam	 0	 0	 -uac A T L

p1/2	 0	 05	 -ual	 0	 0	 0	 0	 0	 0	 0	 0

-p1/2	 0	 06	 0	 0	 fam	 0	 0	 -fac A T	 L

-pi/2	 0	 07	 -fal	 0	 0	 0	 0	 0	 0	 0	 0

0	 0	 p112	 0	 0	 0	 0	 0	 0	 0 0	 0

pi/2	 0	 09	 0	 0	 0	 0	 0	 0	 0 0	 0

0	 hI	 0	 0	 hm	 -hc	 0	 0	 L A T

Fig 6.12 Matrix showing necessary content of 'dyn' matrix.

In the matrix given in Fig 6.12, uai, fal and hi are the upper arm, forearm

and hand lengths respectively, uam, fam and hm their masses and uac, fac and

he the longitudinal locations of their centres of mass with respect to the co-

ordinate frame. A, T and L are the mass moments of inertia about the

Anteroposterior, Transverse and Longitudinal axes of each of the segments

respectively. Any hand-held mass was added to that of the hand in the matrix.

The matrix differs from that of Barker et al (1997) due to the changes for

the angular order at the shoulder. Other differences are the combining of the

final two rows of the matrix as well as a reversal of the sign of the link twist of

the eighth link.
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The MATLAB routine 'numdiff.m' was written to calculate the various

body segment parameters and then insert the values into a corcecUy forrcatted

matrix before applying the RNE for the calculation of forces and moments.

Matrices of output data were then compiled for each test, containing all

the angle, force and moment data. The 'plots.m' procedure was written to allow

plotting of the trajectories of the wrist, elbow and shoulder centres, the angles,

forces and moments through time at each of the joints and the resultant forces.

6.5.10 Normalisation of the data output

The 'data sdd.m' MATLAB procedure was written to normalise angle,

force and moment data to one hundred percentage points of a complete cycle.

Normalising time-series data is a convenient way of comparing time

history curves and is a standard procedure in many biomechanical studies.

Normalising is carried out in order to overcome offsets between structurally

similar data curves due to differences in, for instance, the speed of

performance of the movements between subjects. This normalisation then

allows 'average' curves to be calculated without removing real properties of

these curves.

The technique employed is a modification of that used by Williams

(1996) who used the 'interpft' MATLAB command to normalise angle data. This

function returns a vector of data of a specified length (100 samples for

normalisation purposes), obtained by 1-0 interpolation in the discrete Fourier

Transform of the raw data vector, computed by another in-built MATLAB

function.

The modifications made were to include normalisation of the force and

moment data and to utilise an alternative MATLAB command, 'interpi'. This

function was used to return a normalised vector, determined by cubic spline

interpolation within the raw data vector to find the value of an underlying 1-D

function. A comparison was made between the use of the two methods for

interpolation of a sine function. The 'interpi' was found to be superior to the

'interpft' function in that the latter method introduced noisy 'end-effects' to the

data whereas the former did not. Using the 'interpi' function it was possible to
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re-sample the raw data to one hundred percentage steps between cycle start

and end points selected on screen with a user controlled cursor.

Alternative, more complex normalisation methods are available, based

on structural averaging (Wang & Gasser (1996), Sadeghi et al (1998)),

dynamic time warping (Wang & Gasser (1997)) and also the 'local proportional

scaling' technique of Kanatani-Fujimoto et al (1997)

For the purposes of the current study the performance of the cubic

spline based technique in MATLAB was found to be sufficient after comparing

the normalised angle, force and moment plots with those of the raw data. The

normalised curves were found to accurately represent the curve patterns of the

raw data.

6.6 Presentation of the data

For the purposes of plotting the normalised data, a Microsoft Excel

macro was written which read in the normalised data matrices output from

MATLAB and plotted graphs of the angles, forces and moments through time.

A further macro was written which opened and read each of the normalised

data sheets and plotted various graphs as given in Table 8.6, comparing data

for each of the repetitions of a particular activity.

Where necessary the sample standard deviations (SD) were calculated.

Based on a normal distribution a ±2SD boundary will contain approximately

95% of the observations at any point in the cycle, indicating how widely values

are dispersed from the mean value and therefore the variability in that data.

The SD was calculated using the "nonbiased" or "n-I" method in Equation 6.1.

!,i 2	(x)2

n(n-1)	
(6.1)

The ±2SD boundaries were utilised as only fourteen sets of subject data

were analysed. For larger data samples, more complex statistical analyses

may be employed such as the 'Bootstrap' (Olshen et al (1989), Lenhoff et al

(1999)) or 'Principal Components Analysis' (Jackson (1991), Deluzio et al
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(1997)) methodologies. Each of these allows the calculation of confidence

intervals based on the data curves in their entirety as opposed to breaking

them into their individual data points as occurs when using the ±2SD

boundaries.

6.7 Summary of methods

A four camera video-based motion analysis system was used to track

25mm diameter, reflective spheres attached at specific locations, three on each

of the forearm and upper arm and four on the trunk. Selected anatomical

landmarks were located in relation to these markers through anatomical

calibration (Cappozzo et al (1995)). Activities were filmed, image sequences

digitised and three-dimensional marker co-ordinates obtained.

Purpose-written MATLABTM procedures incorporating some public

domain routines (KINEMAT, Robotics Toolbox) were used to process and

analyse the co-ordinate data. Transformation matrices were calculated using

the optimisation process of Söderkvist & Wedin (1993).

Wrist and elbow centres were estimated as the mid-points of surface

fixed markers and anatomical landmarks respectively and the shoulder centre

using data adapted from the cadaver study of Veeger et al (1997). From the

surface fixed markers and the anatomical landmarks it was then possible to

define technical and anatomical embedded frames.

The Joint Co-ordinate System (JCS) of Cole et at (1993) was used to

calculate joint orientations and the smoothing and differentiation filter of

Hodgson (1994) employed in order to obtain the joint kinematics.

A model of the upper limb was constructed using the notation of Denavit

& Hartenberg (1955), using similar robotics-based techniques to those of

Chèze et al (1996) and Barker et al (1997).

This model combined joint kinematic data with segment inertia, mass

and loading information to give the upper limb rigid body dynamics through the

recursive Newton-Euler formulation of Luh et al (1980) incorporated in the

Robotics Toolbox of Corke (1995, 1996).

Data were standardised to one hundred percentage points of a cycle

using a cubic spline method in MATLAB and presented using Excel macros.
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CHAPTER 7: PRELIMINARY TESTING

7.0 Introduction

In order that the methods described in the preceding chapters might be

used with confidence it was necessary to assess their accuracy and

repeatability. As discussed in the following pages, this was carried out initially

for some of the most basic APAS functions and then for the methodological and

analytical techniques.

7.1 Testing of APAS 'ski p' function

As discussed in section 6.2.1, the APAS Capture module for capturing

image sequences from video tape allows varying sampling intervals through the

selection of 'skip' values and the definition of a 'step delay'.

It was necessary to establish what ranges of step delay were necessary

in order to make the skip values consistent with those specified. Any deviation

from the specified values would lead to varying time steps between sampled

data, introducing errors in data time histories and the process of calculating

velocities and accelerations.

It was decided to compare sampled image sequences against known

time steps. A video tape was obtained on which time codes had been read and

recorded, allowing individual fields to be specifically identified. This then

allowed the capturing of fields from the tape while providing visual evidence of

the interval between each sample.

When capturing image sequences the first image was captured at 1zero

time' as opposed to one specified skip from zero. Therefore there was an

expected shortfall of the captured sequence in comparison with the theoretical

time, equivalent to the number of images being skipped.

The results obtained are shown in Table 7.1 for the capturing of three

hundred fields with a skip value of four (every fifth field captured). The

expected timecode reading was thus thirty seconds minus four skipped fields,

bearing in mind that fifty fields represent one second.
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SKIP	 FRAMES	 STEP	 THEORY	 TIMECODE
NO.	 ____________	 DELAY	 (secs)	 (secs..fields)

4	 300	 l5Oms	 30	 29..46

4	 300	 125ms	 30	 29..46

4	 300	 ll5ms	 30	 29..46

4	 300	 ll2ms	 30	 29..46

4	 300	 ilims	 30	 29..46

4	 300	 hOrns	 30	 17..26

4	 300	 lO9ms	 30	 16..06

4	 300	 lOOms	 30	 15..25

Table 7.1 Results obtained from testing of skip value and step delay.

As can be seen, when the step delay was set equal to or below 11 Oms

the skip function became unreliable. At the lower delay values there was

insufficient time for the video capture mechanism to successfully skip the

specified number of fields. This testing showed that skip values and therefore

timing information were consistent with those specified at step delays of 111 ms

and above. For all further testing the step delay was set to a minimum of

200ms.

7.2 Robot arm testing of velocity measurement

The computation of velocity and acceleration values was necessary for

the implementation of the dynamic model discussed in Section 6.5.9.

In order to test the accuracy of the APAS system in establishing the

velocity of a moving target marker during a well defined movement, a 38mm

diameter spherical plastic marker coated in reflective tape was placed on a

wand in the grip a 'Stãubli Unimation Puma 700' robot arm.

The precise velocity of the motion of the robot arm could not be

specified, only percentages of a maximum value. The arm was programmed to

describe a horizontal or vertical arc across a range of velocities as given in

Table 7.2. Its motion was analysed using the APAS, two cameras being used

due to limitations of space around the robot arm. These were arranged at an

intersection angle of approximately 900.
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Test	 Plane of Arc	 %ages of Maximum	 Angular	 Approximate Radius
No.	 _____________	 Velocity Tested	 Range	 of Curvature

1	 Horizontal	 20, 40, 60, 80 %	 20°	 1.00 m

2	 Vertical	 20, 40, 60, 80 %	 300	 1.09 m

3	 Vertical	 20, 40, 60, 80 %	 45°	 0.95 rn

Table 7.2 Details of the robot arm test repetitions analysed.

A comparison with the experimental data obtained from the APAS could

then be made. Between the tests at 40% and 80% of maximum robot arm

velocity for instance, a doubling of the experimentally obtained velocity would

be expected.

The average peak velocities were calculated from the APAS data for

each test. It was then possible to calculate and compare the projected 100%

velocities of the robot arm during each of the tests, as shown in Table 7.3.

Test 1	 Test2	 Test3

20%Ma.xVelocity	 153.25	 133.26	 118.12

40%MaxVelocity	 153.04	 133.11	 118.05

60%MaxVelocity	 153.40	 132.95	 117.91

80% Max VeLocity	 152.75	 133.55	 115.44

Mean	 153.11	 133.26	 118.13

St.Dev.	 0.3	 0.28	 0.22

rable 7.3 Projected 100% velocities calculated from experimental velocities.

The standard deviation of the projected 100% velocities calculated for

each percentage setting can be seen to be very low for all three tests. These

results show that changes in the velocity of a moving marker were accurately

established using the APAS, the accuracy of such calculations being a key

element in any marker based analysis of human motion.

7.3 Pendulum testing of acceleration measurement

In order to test the accuracy of the APAS system when establishing the

acceleration of a moving target marker, it was initially attempted to analyse the
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motion of a free-falling object. A plaster filled 38mm diameter spherical marker

coated in reflective tape was dropped from rest at a height of around 2.5m.

When analysing the captured video sequences of these tests however, it was

found that the camera shutter speed was too low, causing the images of the

falling marker to be elongated.

The difficulties in accurate digitising of the falling marker location from

the elongated images led to the development of an alternative dynamic test. A

simple pendulum was constructed by attaching a 38mm diameter plaster filled,

spherical plastic marker, coated in reflective tape, to a cotton thread and

connecting this to a rigid frame.

The mean stride frequency for male gait was calculated at 0.92Hz from

the data of Inman et al (1981) and the corresponding frequency of arm

oscillation assumed to be the same. It was considered that most upper limb

daily activities would occur at a frequency lower than that of the free arm swing

during gait, complex targeted daily activities requiring more precise control. A

pendulum length (1) of approximately one metre and frequency 0.5Hz was

therefore selected.

The pendulum was released from a consistent starting position, by the

cutting of a loop of thread securing it to the rigid frame on one side. Its initial

angular deflection from its vertical rest position (0) was around 15°. The first

ten seconds of each test were filmed, this being the period during which the

amplitude was greatest. Capturing of images was initiated towards the end of

the first swing to allow any perturbations due to the release of the pendulum to

die down. The period of the pendulum (T) was obtained from the digitised

data using the 'pends.m' routine, through calculation of the average time

difference between maximum horizontal and vertical displacements in its cycle.

Taking the idealised model of the pendulum as a mass suspended by a

weightless, unstretchable string in a uniform gravitational field and making the

small amplitude assumption that the restoring force is proportional to 0 as

opposed to sinO, equations 7.1 and 7.2 were then employed to calculate g, the

acceleration due to gravity. For an idealised pendulum initially deflected by
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0=15°, the true period differs from that given by Equation 7.1 by less than 0.5%

(Sears et al (1987)).

T=2,r'	 (7.1)

g=4l()	 (7.2)

The results obtained for three repetitions of the pendulum trial, each

involving five full oscillations of the pendulum, are given in Table 7.4 along with

the average and standard deviation (SD) of these results. Also given are the

theoretical period required to obtain the true value of g and that required to

obtain the experimental average value.

Plane of Maxima	 Trial 1	 SD	 Trial 2	 SD	 Trial 3	 SD

Horizontal	 9.6727 ms 2 	0.059	 9.6432 ms 2 	0.068	 9.6432 ms 2 0.068

Vertical	 9.6727 ms 2 	0.059	 9.6732.s 2 	0U4	 9.6727

Average	 Standard Deviation	 Theoretical Period	 Experimental Period

9.6630 ms 2 	0.0668 ms 2 	2.0368s	 2.05 19s

rable 7.4 Acceleration values obtained during pendulum testing.

The average value of 9.663 ms 2 for g, is less than 1.5% from the true

value of 9.8062 ms 2. As can be seen, the period obtained through

experimentation differs from that necessary to obtain the exact value of g by

around 0.015s. This is a small margin considering that the minimum APAS

sampling interval is 0.02s.

The results showing the period of the pendulum as less than the

theoretical value might have been expected, as the force due to air drag,

resisting the motion of the pendulum bob and thus lengthening its period, was

not incorporated in the calculations.
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The results of the analysis of pendulum motion again show the accuracy

with which displacement data obtained using the APAS can r be used to

calculate parameters derived from these displacements.

74 Jointed arm testing of angle measurement

During the analysis process described in Chapter 6, relative angles

between body segments -were -to be calculated from embedded frames defineJ

in relation to patterns of surface attached markers. Having established that the

APAS could be reliably employed for the -tracking of marker- motion, the net

step was to assess the degree of accuracy with which the APAS and the

MATLAB routines allowed angles -to- be calculated: In order to carry This out, a

full-size model of the upper limb was constructed from 20mm diameter plastic

tubing and mounted on a wooden frame,- as shown in Fig 7.1.

* ____

0
-t	 -

Fig.7.1 Five degree of freedom model of the human upper limb with markers
attached.

Five joints incorporating 360° protractors -were included in the model to

represent three degrees of freedom at the shoulder and two at the elbow.

These then allowed the• direct measurement of the joint rotations for

comparison with those obtained using the APAS.

Reflective markers- were- positioned on the model in a similar

arrangement to that described in Chapter 6 for the upper limb motion analysis.
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The arm model and the wooden frame on which it was mounted were painted

black so as to maximise the contrast between the markers and background.

After the initial orientations were established using a spirit level, twelve

stationary orientations of the model joints were then selected as shown in Table

7.5. Two images were captured by three cameras in each position and some

positions were repeated. This allowed the assessment of the reliability and

repeatability of the data.

The magnitude of each of the angles was measured directly using the

attached protractors and experimentally using the APAS. Elbow abduction was

assumed to be zero as no allowance was made in the arm model for such a

movement.

______ _______ ELBOW ________	 SHOULDER _______
Position	 Adduction	 Flexion	 tnt. Rot.	 Adduction	 Flexion	 tnt. Rot.

1	 0	 90	 0	 0	 0	 0
2	 0	 0	 0	 0	 45	 0
3	 0	 0	 45	 0	 45	 0
4	 0	 0	 -45	 0	 45	 0
5	 0	 45	 0	 0	 45	 0
6	 0	 45	 0	 0	 45	 45
7	 0	 45	 0	 45	 45	 45
8	 0	 90	 0	 0	 0	 0
9	 0	 135	 0	 0	 0	 0
10	 0	 90	 0	 0	 0	 0
11	 0	 90	 45	 0	 0	 0
12	 0	 90	 -45	 0	 0	 0

lable 7.5 Orientations of the mechanical arm model joints at each sampled position.

In order to establish the joint orientations from the marker co-ordinate

data, the JCS (Grood & Suntay (1983), Cole et al (1993)) as discussed in

Section 5.4.2 was used. This technique was developed in order to overcome

the sequence dependence of the joint rotations when using traditional Euler

angle methods and to allow description of joint movement in terms of clinically

defined motions.

Using the JCS leads to results that are independent of the rotation

sequence, but are subject to a sequence effect imposed by the initial selection

of the axes about which these rotations occur. Different axis sequence
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selections will result in different numerical results for the same joint attitude in

the same way that selecting different Euler sequences leads to differing results.

Cole et al (1993) found the magnitude of the differences in the joint

attitude representations between selected axis sequences to be dependent on

the range of motion during the movement, differences being more pronounced

at joints with large ranges of motion. It was thus necessary to establish the

most suitable of the six available sequences for obtaining a measure of the joint

orientations at the shoulder and elbow.

For each of the twelve stationary positions of the model arm, the

components of joint attitude were calculated from the APAS data for each of the

six defined angular sequences and compared with the protractor

measurements. Table 7.6 gives the RMS difference between the two for each

rotation sequence, where 'RFA' represents the sequence; internal rotation -

flexion - adduction, the other sequences being similarly labelled.

ELBOW RMS DIFFERENCE (°)	 SHOULDER RMS DIFFERENCE (°)

SEQ. Adduc.	 Flex.	 Int.Rot.	 Total	 Adduc.	 Flex.	 Int.Rot.	 Total
RFA	 48.88	 18.80	 35.32	 103.00	 2.83	 1.24	 2.02	 6.09

ARF	 18.81	 1.16	 17.85	 37.82	 2.82	 .24

RAF	 18.77	 2.15	 17.41	 38.33	 2.95	 1.05	 1.09	 5.09

AFR	 57.97	 2.19	 42.89	 103.05	 0.46	 0.90	 2.26	 3.62

FRA	 1.72	 1.40	 1.90	 5.02	 0.52	 2.23	 0.81	 3.56
FAR	 1.46	 1.75	 1.89	 5.1	 0.26	 0.18	 0.26	 0.7

Table 7.6 RMS differences between experimental and protractor measured results.

Large differences can be seen in the accuracy of the results obtained

when different angle sequences are chosen. The results clearly indicate that

flexion - adduction - rotation (FAR) is the most suitable JCS sequence for the

determination of the angles at the shoulder. This represents the selection of

the flexion/extension axis of the proximal segment for the first rotation, the

abduction/adduction axis as the floating axis for the second rotation, with the

distal segment long axis for the third rotation.

For the elbow, the flexion - rotation - adduction (FRA) sequence appears

to be marginally the most suitable sequence though there is little appreciable
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difference between this and the FAR sequence. This is due to the fact that the

abduction/ adduction angle was defined as zero for the model.

In their discussion of the use of Cardan angles, Tupling & Pierrynowski

(1987) suggested that when selecting a sequence, the first rotation should be

the largest, the second rotation should be the smallest and the third rotation is

the remaining one. This proposal is supported by the jointed arm results where

the two most suitable sequences for both shoulder and elbow have joint flexion

as the first rotation.

Grood & Suntay (1983) defined the FAR axis sequence with specific

reference to the knee joint. Similar sequences were also used by

Ramakrishnan & Kadaba (1991) and Capozzo (1984). The same sequence

was again selected by Cole et al (1993) in their standardisation proposal for the

JCS, along with the suggestion that these axis selections would give attitude

components consistent with the anatomical definitions of joint movement.

The RMS values for the FAR sequence given in Table 7.6, show that the

angles obtained for elbow rotation provide the poorest match with those in

Table 7.5. All the RMS values are within 2° for the elbow however and are

within 0.5° for the shoulder. These results indicate the high accuracy and

repeatability of the angular orientation results obtained using the APAS and

MATLAB angle calculation routines, digitising errors, reading errors and sag in

the jointed arm notwithstanding.

7.5 Comparison of moment calculation with a previous study

Having validated some basic properties of the analysis process involving

the APAS and the MATLAB software for calculation of angles, it was attempted

to validate the method for calculation of the various joint moments described in

Section 6.5.9, through comparison with a previous study.

Runciman (1993) calculated external moments during a preliminary

validation study of his method. Pure abduction in the frontal plane was

analysed, performed as a series of four static positions by a male subject, aged

25, mass 65kg and height 1.75m. As no numerical data were supplied, the

data values for comparison were obtained by measurement of the graphs given

in Runciman (1993) with an accuracy of around ± 0.1 Nm.
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Starting with the angles measured from the graphs and using the body

segment parameter data of Drillis & Contini (1966) as specified by Runciman

(1993), it was possible to re-analyse the tests for the purposes of comparison

by inputting the same initial data into the 'numdiff.m' MATLAB routine.

The motion was modelled as pure abduction in the frontal plane with no

shoulder flexion, shoulder rotation or elbow flexion. The results obtained can

be seen in Fig 7.2 along with those of Runciman (1993) whose axes of rotation

having been modified to correspond with those defined for the shoulder in

Section 6.5.3. The moments shown are the those required to be applied about

the joint to perform the actia'7.

Comparison of Runciman Shoulder Data with Newcastle Analysis
Method

—4--- 44C< S.4ec	 sX4

—u--JR Shoulder ht. Rotn.

----JR Shoulder Flexion

---JR Shoulder Adduction

Fig 7.2 Comparison of Runciman (1993) and MATLAB data, showing moments at the
glenohumeral joint due to external loading of the arm during frontal plane humeral
abduction. (JR = Runciman (1993), NCL = Matlab method)

The abduction moment pattern obtained using the MATLAB method is

similar in shape to that of Runciman (1993) though is of greater magnitude.

This difference in magnitude is due to rotations about the shoulder flexion and

rotation axes and the elbow flexion axis in the data of Runciman (1993), who

stated that "External humeral rotation was kept to a mInimum,. and "The

subject was seated with a slightly bent elbow posture throughout data

collection".
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The effect of the rotations at the shoulder is indicated by the moments

about these axes in Fig 7.2. As previously stated however, the MATLAB model

assumed ideal abduction with a fully extended elbow.

The greatest deviation between the results occurs at the final data point

where the shoulder flexion and rotation moments of Runciman (1993) are at

their greatest. In order to assess the extent of their effect, values of elbow

flexion and shoulder flexion were input into the MATLAB model in order to find

how big an angle would be required to bring these results into line with those of

Runciman (1993). The results shown in Fig 7.3 were obtained.

Comparison Of Runciman Shoulder Data with NewcaIe Analysis
Method

-•-- NCL Shoulder Adduction I

-- JR Shoulder kit. Rotn.

—h--- JR Shoulder Rex ion

-.- JR Shoulder Adduchon

—e-- N ADD

—b-- N FLEX

—s--- '4i4

Fig 7.3 Comparison of Runciman (1993) glenohumeral joint moment data with that
obtained using Matlab method, (JR = Runciman (1993), NCL = Matlab method,
NCL. . . * = corrected for elbow and shoulder flexion)

The values of the angles of flexion at the shoulder and elbow, input in

order to produce these results are given in Table 7.7.

Angle of Abduction	 00	 440	 79°	 106°

Shoulder Flexion	 -14°	 -20°	 -40°	 40°

Elbow Flexion	 25°	 25°	 25°	 25°

Table 7.7 Values of shoulder and elbow flexion input in Matlab model at each step of
abduction in order to obtain results shown in Fig 7.3.
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The change of sign for shoulder flexion at the highest angle of abduction

in Table 7.7 is due to the abduction angle being greater than 900, leading to an

extension moment rather than a flexion moment being required about the

shoulder to maintain the position. From Table 7.7 and Fig 7.3, it is clear that

relatively small amounts of flexion at the shoulder and elbow were required in

order to bring the results from the MATLAB procedure close to those of

Runciman (1993). The contribution of the rotation at the shoulder indicated in

Fig 7.3 would further influence these results.

It was concluded that the MATLAB routine was reliable and accurate for

use in the calculation of joint moments, comparable results to the shoulder

moments of Runciman (1993) being obtained for the same input data. In the

absence of any standardised or definitive directly measured joint moment

values, obtaining similar results to those of Runciman (1993) was as close as

could be achieved to a validation of the MATLAB method.

7.6 Testing of measurement repeatability

In order to assess the repeatability of the motion analysis method it was

decided to film and analyse repetitions of a test selected from those that would

be carried out by all subjects. Any differences arising between the results from

such repetition would be due to variations in marker positioning, anatomical

calibration, test protocol and inconsistencies in the digitising process.

The activity chosen for the validation study was a right hand reach from

a position in which the hand rested palm downwards on a table surface, to a

position in which the hand cupped the left side of the neck. The table was set

at seated elbow height and at a distance from the subject equal to the length of

the forearm and hand with the fingers extended.

This activity was repeated by a single subject at the same time on three

consecutive days, using the same technique on each occasion. The subject

was a male, age 43, height 1 .76m, weight 81.5kg. A sample of the data

obtained can be seen in Fig 7.4, Fig 7.5 and Fig 7.6.
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Fig 7.4 Flexion angles at the shoulder and elbow for validation tests.
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Fig 7.5 Longitudinal axes forces at the shoulder and elbow for validation tests.
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Fig 7.6 Flexion moments at the shoulder and elbow for validation tests.

As can be seen the trials were found to produce results that showed a

relatively consistent pattern of angles, moments and forces, the ranges of the

measured parameters from all three tests corresponding well.

The validation tests were normalised to one hundred percentage points

of a cycle using the elbow angle data, which can be seen to be reasonably

consistently aligned across all three tests. Slight misalignments are observable

in the normalised shoulder angles however and these are due to the difficulty in

normalising the measurements of the various parameters for each test.
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For any subject there will be a natural variability between repetitions

when performing complex upper limb activities, slight differences in the

sequence and timing of the various movements involved which make

normalisation of the data difficult. Such normalisation problems are inherent in

any study that involves normalisation of multiple variables for comparative

purposes while attempting to retain the natural structure of the data.

Cheng (1.996) carried out a validation involving three repeated

measurements of elbow flexion and forearm rotation on each of two subjects.

As discussed in Section 7.5, Runciman (1993) tested one subject carrying out

pure abduction in the frontal plane as a series of four static positions. Similarly

Barnett (1996) took five stationary samples on each of five subjects during

abduction of arm in the coronal plane at 10° increments from 0° to 90°.

The reach to the neck activity was highly complex in comparison with

these, involving ranges of shoulder abduction (-60°), shoulder rotation (-30°),

elbow pronation (-100°) and elbow adduction (-15°), in addition to those

angles given in Figs 7.4-7.6.

The data obtained over three repetitions of this cornpex upper Vrnb

activity show the experimental methods and analytical techniques, discussed in

Chapter 6, to allow high levels of repeatability between tests.

7.7 Comparison of angle measurement with flexible electrogoniometer

In a further validation study, the methods described in Chapter 6 were

used to measure flexion angle at the elbow, the results being compared with

simultaneous measurements of the same angle using two other devices.

The first of these was a measurement device incorporating a 360°

potentiometer as shown in Fig. 7.7. An aluminium strip was attached on each

side of the potentiometer. Cuffs were made to fit around the circumference of

the upper arm and forearm and one of these was attached to each aluminium

strip allowing the device to be secured to the arm. The attachment position of

these cuffs could be altered for use of the device on a range of arm sizes.
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.-	 .Th,.._

Fig 7.7 Potentiometer device for measurement of elbow flexion.

The device was -calibrated- against- a -protractor goniorneter for twelve

points at 30° intervals from 30° up to 1800 and back down to 30°. The linearity

of the device can be seen in the calibration graph shown in Fig. 7.8.

Potentiometer Voltage Vs. Angle

4.5

4

3.5

3

2.5	 .0I+4.89Th
R=0.999

1.5

0.5

0

0
	

20	 40
	

60	 80	 100
	

120	 140	 160	 180

Angle (degrees)

0 VI
	 —x--V2

	
Linear (VI)

Fig 7.8 Calibration graph for the potentiometer device.

When mounted on -the -arm- the potentiometer -was held to the lateral side

of the elbow. The positioning of the device was adjusted, a good alignment

with the flexion axis of the elbow-being judged- to be where flexion of the joint

caused minimal movement of the device other than rotation of the

potentiometer. During elbow-flexion the aluminium strips of the device flexed
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slightly to accommodate the carrying angle, aHowing deflection of the

potentiometer to closely follow the rotation of the joint. During testing, the

potentiometer device was regarded as the 'gold standard'. It was considered

the most accurately aligned with the true elbow rotation axis and was minimally

affected by skin movement.

The second device used for comparison was a Biometrics XMI1O

flexible electrogoniometer as used by Pandyan et al (1999), the signal from

which was amplified using a custom built amplifier. One end was attached on

the posterior of the upper arm, the other on the posterior of the forearm in the

anatomical position.

The angular values from both the flexible electrogoniometer and

potentiometer were collected via an Elan AD132 PCMCIA analogue to digital

converter (ADC) using the Hewlett Packard 'HPVee' software package.

Reflective markers were attached as described in Chapter 6, allowing

the simultaneous measurement of the elbow flexion by the potentiometer,

flexible electrogomiometer and APAS.

In order to synchronise the data from afl thee measce<ec Msc€s,

connection was made from the LED device described in Section 6.3.12 to the

ADC. When triggered this activated LEDs in front of each APAS camera while

simultaneously producing a spike in the data collected by the ADC. During

analysis these spikes were matched with the corresponding LED flash in order

to time match the data sets.

Elbow flexion was performed in two positions, the first at around 900 of

humeral flexion, the second at around 135° of humeral flexion. The forearm

was maintained in a supinated position. The elevation of the humerus was

necessary in order to maximise the visibility of the attached reflective markers

amidst the various cables and connections of the other two attached devices.

One subject performed pure flexion of their elbow as specified. Five

repetitions in each position of humeral flexion were performed. From each set

of five, the middle repetition was selected for ana'ysis using the APAS. The

results obtained are shown in Fig.7.9 and Fig.7.10.
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Measured Elbow Flexion Angles at 900 Humeral Flexion
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Fig 7.9 Measured elbow flexion angles at 90° humeral flexion.

Measured Elbow Flexion Angles at 135° Humeral Flexion
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Fig 7.10 Measured elbow flexion angles at 135° humeral flexion.

It can be seen from these graphs that the patterns of elbow flexion are

similar from all three measurement devices. The graphs indicate an offset of

the APAS and flexible electrogoniometer data from the potentiometer data

however. These offsets would be due to differing definitions of the zero flexion

position between each of the methods used.
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Corrected EJbow Flexion Angles at 900 Humeral Flexion

Fig 7.11 Elbow flexion angles at 900 humeral fJexion corrected for zero offsets.

Corrected Elbow Flexion Angles at 135° Humeral Flexion

Sample

- Potentiometer	 —h-- APAS (corrected)	 —0-- Electrogoniometer (corrected)

Fig 7.12 Elbow flexion angles at 135° humeral flexion corrected for zero offsets.

On correcting the APAS and flexible electrogoniometer data for these

offsets by 16° and 28.6° respectively, the graphs shown in Fig. 7.11 and Fig.

7.12 were obtained. From these corrected graphs it can be seen that the data

from the potentiometer and flexible electrogoniometer correspond very closely.

The range of the APAS data is slightly greater than the others in both

instances.
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The source of this problem was thought to be the fact that the APAS

analysis involved the measurement of flexion about an embedded axis

orthogonal to the longitudinal axis of the humerus. In common with all similar

studies involving embedded frame definition, this axis does not necessarily

exactly replicate the true anatomical flexion axis.

The difference in measured angles was investigated further by trying to

draw a measure of the rotation about the true elbow flexion axis from the APAS

data, this being attempted in two ways. First the helical axis (HA) was

calculated between the upper arm and forearm embedded frames for each

sampled instant, as well as the relative rotation of the frames about this axis. In

theory the HA should correspond with the true elbow flexion axis at each

instant. It was found using the 'screw.m' MATLAB routine of Reinschmidt & van

den Bogert (1997).

The second method used was that described by Charlton (1999), in

which a total linear least squares problem as described in van der Helm et al

(1992) was solved in order to identify a plane fitted through the sampled

positions of the ulnar styloid throughout each test. The axis of elbow flexion

was then defined as the normal to this plane (SPN). Having identified this axis,

a time history of the flexion angles was calculated by rotating the position of the

ulnar styloid at each sampled instant about the axis until it lay coplanar with the

glenohumeral joint centre and epicondyles. It was assumed that this position

represented zero elbow flexion.

The results from both these methods are shown for each test in Fig 7.13

and Fig. 7.14, again incorporating a compensation for the zero position offset,

18.25° in the case of the helical axis and 12° for the styloid plane normal.
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Helical Axis and Styloid Plane Normal Angles at 90° Humeral Flexion
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Fig 7.13 Rotation about helical axis & normal to styloid plane (900 humeral flexin).

Helical Axis and Styloid Plane Normal Angles at 135° Humeral
Flexion
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Fig 7.14 Rotation about helical axis & normal to styloid plane (135° humeral flexion).

These graphs show that both the methods employed to identify the

rotation about the true elbow flexion axis produce results similar to each other

and to the potentiometer measured angle. The HA appears to have greatest

effect on the lower angles .of.flexiori, raising these angles slightly. The SPN

has a similar effect though also decreases the maximum flexion angles to a

certain extent. Both methods decrease the overall range of angles, bringing it
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into line with that measured by the potentiometer. It would thus appear that the

original difference in the range of angles was indeed due to the forced

measurement of the flexion angle about an axis that was displaced from the

true axis of flexion.

The difference in orientation of the axes need only be small to cause this

effect. The average calculated HAs and SPNs, defined in relation to the

humeral embedded frame are given in Table 7.8. The approximate rotations of

these axes in relation to the humeral embedded x-axis are also given.

X	 Y	 Z	 Anterior Rotn. Superior Rotn.

	

HA - 900	 0.9665	 -0.2523	 0.0406	 14.6°	 2.3°

	

HA - 135°	 0.9702	 -0.2411	 0.0037	 14°	 0.2°

	

SPN-90°	 0.9624	 -0.2161	 0.1646	 12.7°	 9.5°

	

SPN- 135°	 0.9776	 -0.1779	 0.1123	 10.3°	 6.4°

Table 7.8 Unit vectors and rotations of the HA and SPN for elbow flexion at 90° and
135° humeral flexion in relation to humeral embedded frame.

The major component of the HA and SPN axes given in Table 7.8 can be

seen to lie in the direction of the humeral embedded x-axis, about which the

APAS elbow flexion was measured. The rotations relating the HA and SPN

axes to the humeral embedded x-axis are seen to be reasonably small.

It can be said then, that the bone embedded forearm frame discussed in

Section 6.5.3 includes a representation of the elbow flexion axis which, though

not exactly coincident with the true anatomical rotation axis, provides a

reasonable representation of it.

Ramakrishnan & Kadaba (1991) and Hollerbach & Hollister (1995) both

found that significant errors could be introduced into kinematic analyses if the

co-ordinate reference frame was not correctly aligned with the joint mechanism.

When trying to define axes of rotation from surface markers however and when

those axes of rotation vary with joint movement, it becomes extremely difficult

to align the defined embedded frame axes with the true anatomical axes of

rotation. Embedded frame definitions in all such studies can therefore only

ever be an estimate of the underlying anatomical axes.
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It has been shown that imposing the orientation of the axes about which

rotations occur by the definition of orthogonal embedded frames introduces

some inconsistency between measured angles and the true anatomical

rotations. Such inconsistencies are inherent in any study that involves the

definition of embedded orthogonal axes about which rotations are measured.

The results of the comparison with the potentiometer and

electrogoniometer devices have shown however, that the methods developed

allow a sufficiently accurate measure of angular rotation to be obtained.

7.8 Comparison with results from two previous studies

In order to test the validity of the overall method from marker attachment

to the final output of angles, forces and moments, activities were included in

the testing process which would allow comparison with results from two

previous studies. These activities were performed by all subjects tested during

data collection as discussed in Chapter 8.

The first of these activities was similar to the "hand to mouth" test of

Williams (1996), for which only angular data were compared. The results from

the repetition of this test are given with the other subject test data in the

following chapter. Fig 7.15 and Ftg 7.16 show the data af William's 19981 Pcx

shoulder and elbow flexion angle respectively, used for the comparison

process.
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Fig 7.15 Shoulder flexion for 'hand to mouth' test from Williams (1996).
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Fig 7.16 Elbow flexion for 'hand to mouth' test from Williams (1996).

The other activities were similar to the "book lift" tests of Cheng (1996),

for which both angular and moment data were compared. Again the results

from the repetition of this test are given with the other subject test data in the

following chapter.
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Fig 7.17 and Fig 7.18 show the data of Cheng (1996) for shoulder and

elbow flexion angle respectively, used for the comparison process. The

reference position of Cheng (1996) was with the elbow in a position of 1800

elbow flexion in comparison with that from the current study. For this reason

the data of Cheng (1996) in Fig 7.18 have been inverted to correct for this

difference.
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Fig 7.17 Shoulder flexion for 'book lift to shoulder height' from Cheng (1996).

Lifting of a 1kg Book to Shoulder Height
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Fig 7.18 Elbow flexion for 'book lift to shoulder height' from Cheng (1996).

When comparing the data of Cheng (1996) with that in Chapter 8 from

the current study, it must be noted that the starting position for the tests of

Cheng (1996) was with elbow almost fully extended by the side.

Fig 7.19 and Fig 7.20 show the data of Cheng (1996) for shoulder and

elbow flexion moment respectively, used for the comparison process.
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Fig 7.19 Shoulder flexion moment for 'book lift to shoulder height' from Cheng (1996).
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Fig 7.20 Elbow flexion moment for 'book lift to shoulder height' from Cheng (1996).

This validation involved a comparison with data obtained during subject

testing and the results are included in the discussion of that testing in Chapter

8.

7.9 Summary of preliminary testing

In several previous studies, validation of analysis methods has taken the

form of showing repeatability of results. The work discussed in this chapter

comprises a more comprehensive and rigorous assessment of the validity of a

set of motion measurement methods and analysis techniques, involving the

comparison of measurements with known quantities.

It has been shown that reliable timing information can be obtained

during the Capture process and that smoothing and differentiation of the



180

displacement data obtained allows the reliable calculation of the velocities and

accelerations of moving markers.

Both the APAS and the MATLAB analysis routines have been shown to

allow the accurate and reliable determination of angles from patterns of

attached reflective markers.

On assessing all six available JCS sequences using an experimental

arrangement specifically related to the upper limb, results in agreement with

the standardisation proposal of Cole et al (1993) were obtained, indicating the

selection of the Flexion-Adduction-Rotation JCS axis sequence for the

description of shoulder and elbow motion.

The MATLAB analysis routines for the calculation of moments from

angular displacements were shown to be accurate and a high level of

repeatability between tests was achieved.

Through comparison with two other measurement devices, the methods

for the measurement of joint angles were shown to be reliable within the

limitations of the rotation axis positioning imposed by the definition of

embedded frames.

Repetition of tests from previous studies allowed an assessment of the

entire process from the camera positioning, attachment of markers and

anatomical calibration through synchronising, capturing and digitising of the

image sequences to the definition of embedded frames and calculation of

angles, body segment parameters, forces and moments. The comparison of

the data from these repeated tests is discussed in the following chapter.
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CHAPTER 8 SUBJECT TRIALS, RESULTS AND DISCUSSION

8.0 Introduction

The purpose of this chapter is to present and discuss the results

obtained during the testing of ten unimpaired and two impaired subjects. A

comparison with results from previous studies introduced in Section 7.8 is

included.

8.1 Selection of activities for analysis

It was decided that a selection of activities from the list presented in

Table 4.19 should be identified for the purposes of subject testing. In order to

assess which of these might be suitable in terms of simplicity of filming,

repeatability and range of motion, test recordings of twenty-three activities were

made using three cameras. These were performed by a single subject on

whom markers were placed as specified in Chapter 6. All the activities were

performed in a seated position in order to minimise trunk movement and

therefore isolate motion of the upper limb from that of the trunk, while also

ensuring that the activities were performed within the calibrated test volume,

the dimensions of which are given in Section 6.3.3.

Each activity was given ascore from one to three, indicating increasing

range of movement at the shoulder and elbow joints. The score for each

activity was established by visual estimation of the ranges on viewing the

recorded image sequences. The overall visibility of the attached markers for

each test was also judged.

The resulting assessment of all twenty-three activities is given in Table

8.1. During the viewing of image sequences it was clear that the ranges of joint

motion were highly dependent on the initial positioning of any object involved

and the positioning of the hand and arm in relation to these objects, indicating

that careful initial positioning of both the subject and any object used was

essential in order to ensure test repeatability.



Activity	 Shoulder R.O.M	 Elbow R.O.M	 Marker Visibility

1	 2	 3	 1	 2	 3

Eating with hands	 good

Eating with fork	 •7	 reasonable

Eating with spoon	 good

Drinking from cup	 _7__	 reasonable

Pouring from jug	 good

Brushing teeth	 ___7____	 7	 good

Brushing hair	 _•_7_•_	 poor

Washing face	 I	 7	 reasonable

Using Telephone	 good

	

Block lift to vaiying heights	 good

Lifting pots and pans	 good

Shaving	 reasonable

Using hairdiyer	 poor

Ab/ Adduction	 __7__ 7	 good

Flex! extension	 I	 7	 good

Hand behind back	 __7__	 7	 poor

Hand to opposite axilla	 good

	

Hand to opposite shoulder 	 'I	 good

Hand to opposite hip	 good

Hand to chest	 good

Hand to neck	 good

	

Hand to head (elbow forward) 	 poor

	

Hand to head (elbow back) 	 7	 poor

Table 8.1 A selection of filmed tasks, the degree of rotation at shoulder and elbow
graded on an ascending scale from 1 to 3, with marker visibility also judged.

The results displayed in Table 8.1 enabled a reduction in the number of

activities selected for the purposes of subject testing, based on the ranges of

joint motion involved, marker visibility and whether their analysis would require

additional apparatus, for example instrumented transducers, which would have

made the analysis process more complex.

Initially sixteen activities were selected for performance by the subjects

during testing, as given in Table 8.2. Only subject No.1 performed all sixteen

however, the number of activities being subsequently reduced to ten, the six
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discarded activities being adjudged to involve movements similar to and

already analysed during other tests given in Table 8.2. Activities involving

positioning of the hand behind the back were not included due to the limitations

in marker visibility when filming such activities with only four cameras.

Activity	 Area of use	 Activity	 Area of use
1. Reach to opposite	 Hygiene	 9. Lift block to	 Everyday object

axilla_______________	 shoulder height	 _______________
2. Reach to opposite	 Hygiene	 10. Lift block to head	 Everyday object

sideof neck	 ________________ 	 height	 ________________
3. Reach to side and	 Hygiene	 11*.Brush hair right 	 Hygiene

backof head	 ______________	 side of head	 ______________
4. Eat with hand to	 Feeding	 12*.Brush hair back	 Hygiene

mouth_______________	 of head	 _______________
5. Eat with a spoon	 Feeding	 13*.Brush hair top of	 Hygiene

________________________ ________________ 	 head	 ________________
6. Drink from a mug	 Feeding	 14*.Reach to throat	 Hygiene
7. Answer telephone	 Everyday object 1S*.Reach to top of	 Hygiene

________________________ ________________ 	 head	 ________________
8. Brush left side of	 Hygiene	 16*.Place hand over 	 Feeding

head_______________	 mouth	 _______________
Table 8.2 List of activities performed by subjects. (* indicates activities performed by
subject No.1 only)

An adjustable table was set at the seated elbow height of each subject

and at a distance from them equal to the length of their forearm and hand with

the fingers extended, a position similar to that described in Section 7.6 for the

tests of repeatability. For the tests involving lifting to seated acromion and

head heights, an adjustable projector stand acted as a shelf.

During testing, all subjects were instructed to perform tests at a speed

and manner with which they felt comfortable. Only the initial position and the

aim of each task were defined, in order to minimise any variation from the

subjects' natural movement patterns. Similar testing procedures were adopted

in the studies of Barker et al (1996), Cheng (1996) and Williams (1996).

Ten repetitions of each activity, divided as two sets of five, were

performed by each subject while seated and as specified in Section 6.3.12

these were recorded using four video cameras. The middle repetition of the

second set of five was selected for analysis. This ensured consistency in the

analysis process and allowed the subjects to become familiar with each activity
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and the laboratory environment, ensuring that their movements were as natural

and representative of their normal everyday motion as possible.

8.2 Sub ject details

Subject No.1 performed all the activities given in Table 8.2, with a further

nine unimpaired male subjects performing activities Nos.1-1O. All subjects

were right-handed and performed the activities with their right arm. Details for

each subject are given in Table 8.3, including their upper arm and forearm

lengths. These were the only BSPs not calculated using the data of De Leva

(1996a), but were measured between the shoulder, elbow and wrist centres

identified from marker data during the process of anatomical calibration.

Subject Age (years) Height (m) Mass (kg) U.Arm Lgth. (cm) Forearm Lgth. (cm)

No.1	 43	 1.76	 81.5	 31.20	 26.57

No.2	 23	 1.85	 88.5	 33.39	 27.31

No.3	 36	 1.70	 60.0	 29.78	 26.59

No.4	 31	 1.71	 81.0	 30.77	 26.07

No.5	 23	 1.79	 82.5	 31.98	 27.21

No.6	 58	 1.72	 82.5	 30.93	 25.78

No.7	 43	 1.77	 82.0	 30.62	 25.45

No.8	 30	 1.71	 79.0	 31.83	 26.70

No.9	 30	 1.78	 81.5	 31.92	 28.37

No.10	 26	 1.77	 66.0	 32.63	 28.51

Mean	 34.30	 1.76	 78.45	 31.50	 26.85

SD	 11.00	 0.05	 8.61	 1.06	 1.01

Table 8.3 Subject details for unimpaired subjects.

In addition to the ten unimpaired subjects, two further right-handed male

subjects were analysed, the relevant details for whom are given in Table 8.4.

Both had subacromial impingement in their right shoulder with a "painful arc"

that had been resistant to steroid injections and were due to have surgery.

These impaired subjects performed the ten selected activities with their

affected arm.
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Subject Age (years) Height (m) Mass (kg) U.Arm Lgth. (cm) Forearm Lgth. (cm)

No.11	 45	 1.79	 82.0	 35.82	 28.00

No.12	 39	 1.69	 66.0	 30.83	 25.97

Mean	 42.00	 1.74	 74.00	 33.32	 26.98

SD	 4.24	 0.07	 11.31	 3.53	 1.43

rable 8.4 Subject details for subacromial impingement subjects.

8.3 Experimental apparatus introducin g additional hand loading

During performance of activities Nos.5 - 10 by all subjects and Nos.11 -

13 by subject No.1 only, additional loading on the upper extremity was

introduced by objects held in the hand. The details of these objects and their

masses measured using a precision calibrated electronic balance are given in

Table 8.5.

Activity	 Object	 Mass (kg)

No. 5	 Spoon	 0.048

No. 6	 Mug	 0.275

No. 7	 Telephone Receiver	 0.2 15

Nos. 8, 11, 12, 13	 Hairbrush	 0.045

No. 9, 10	 Wooden Block	 0.452

lable 8.5 Masses of hand-held objects during testing.

In order to gauge its relevance during performance of activities Nos.9 and 10,

the moments of inertia of the wooden block were calculated using Equation 8.1

for the moment of inertia (I) of a parallelepiped about an axis through its centre

of mass, where m was the mass of the block, I was its length and b its breadth.

mQ 2 +b2)
(8.1)

12

The value for the largest moment of inertia was around 0.00lkgm2,

insignificant for activities performed at the velocities and accelerations

achieved during everyday tasks and some way below the moments of inertia of



the limb segments, discussed in Section 3.3 and which are generally neglected

during such studies (Runciman (1993)). The inertial properties of the hand-

held objects were therefore ignored for the purposes of the dynamic

calculations of the activities involving their use, only their mass being

considered to contribute. The contributions of the segment moments of inertia

were incorporated in the overall force and moment values.

8.4 Protocol for the ten selected everyday activities

8.4.1 Reach to opposite axilla

The reach to the opposite axilla started from an initial position with the

right hand palm downwards on the table surface, placed to the right of the trunk

mid line, anterior to the right shoulder. One full repetition was considered to

involve a reach to place the hand in the left axilla, followed by a return to the

initial position.

8.4.2 Reach to opposite side of neck

The reach to the opposite side of the neck started from the same initial

position as the reach to the opposite axilla. One full repetition was considered

to involve a reach to enclose the left side of the neck with the right hand,

followed by a return to the initial position.

8.4.3 Reach to side and back of head

The reach to head side and back started from the same initial position as

the reach to opposite axilla. One full repetition was considered to involve a

reach to and passing of the right hand around the right side and posterior of the

head, followed by a return to the initial position.

8.4.4 Eat with hand to mouth

The eat with hand to mouth started from an initial position with the right

hand anterior to and in line with, the mid line of the trunk. The hand was

initially held at rest on the table surface, the fingers directed downwards in a

grabbing position simulating the picking of food from a plate. One full repetition
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was considered to involve the raising of the hand to the mouth, followed by a

return to the initial position.

8.4.5 Eat with a spoon

The eat with a spoon started from an initial position with the right hand

anterior to and in line with, the mid line of the trunk, the spoon gripped in the

subjects' preferred manner. One full repetition was considered to involve the

raising of the spoon to the mouth, followed by a return to the initial position.

8.4.6 Drink from a mug

The drink from a mug started from an initial position with the right hand

anterior to and in line with, the mid line of the trunk, the mug gripped in the

subjects' preferred manner. One full repetition was considered to involve the

raising and tilting of the mug to the mouth, followed by a return to the initial

position.

8.4.7 Answer telephone

The answer the telephone activity started from an initial position with the

right hand resting palm downwards on the receiver of a telephone placed to the

right of the trunk mid line, anterior to the right shoulder. One full repetition was

considered to involve the raising of the telephone receiver to the right ear,

followed by a return to the initial position.

8.4.8 Brush hair left side of head

The brush the left side of the head activity started from an initial position

with the right hand lateral to the trunk mid line, anterior to the right shoulder,

clasping a hair brush in the subjects' preferred manner. One full repetition was

considered to involve the raising and one pass of the brush from anterior to

posterior of the left side of the head, followed by a return to the initial position.



8.4.9 Lift to shoulder height

The raising of the block to shoulder height started from an initial position

with the right hand placed lateral to the trunk mid line, anterior to the right

shoulder, gripping a wooden block of dimensions l4cmx9cmx6cm between

thumb and fingers as if holding a book upright. One full repetition was

considered to involve the raising and placing of the block on a shelf set at

shoulder height and at approximately arm's length anterior to the right shoulder

of the subject while introducing no forward movement of the trunk, followed by

a return to the initial position.

8.4.10 Lift to head height

The raising of the block to head height started from the same initial

position as the raise to shoulder height. One full repetition was considered to

be similar to the raise to shoulder height though with the shelf set at head

height.

8.4.11 Activities performed by subject No.1 only

For the activities performed by the first subject only, the brushing of the

right side, back and top of the head activities had the same initial position as

for brushing of the left side of the head. One full repetition was considered to

involve the raising of the brush and one pass of the brush from anterior to

posterior of the right side of the head, from top to bottom of the posterior of the

head, or from anterior to posterior of the top of the head respectively, followed

by a return to the initial position. The reach to the throat, reach to the top of the

head and the placing of the hand over the mouth had the same starting position

as the reach to opposite axilla activity. One full repetition was considered to

involve the raising of the right hand to the throat, to the top of the head or a

reach to and placing of the hand over the mouth respectively, followed by a

return to the initial position.
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8.5 Results obtained for ten selected everyday activities

The following sections detail the results obtained during testing of all

subjects while performing each of the activities given in Table 8.2. The first

section presents the subject cadences from all ten activities. Each subsequent

section includes a discussion of the other kinematic and dynamic data obtained

for a particular activity. For the reach to opposite axilla activity discussed in

Section 8.5.2, time histories of the angles, forces and moments are presented

for both the unimpaired and impaired subjects, along with the average maxima

and minima of these data and the global and the average maxima and minima

of the joint angular velocities and accelerations. It was considered preferable

to establish the ranges in this fashion than to take the maximum and minimum

values from the mean data curve, these being affected by any offset in the time

normalisation of the curves.

For subsequent activities these graphical results are included in

Appendix II and are referred to in the body of the text by a figure number

prefixed with the letter 'A'. Forces and moments at the wrist were calculated

and appear in Appendix III though are not discussed in detail.

For those activities involving an additional hand load, the absolute and

the average maxima and minima of the force and moment contribution of that

hand load are also presented. In some sections where they were considered of

value and clear patterns emerged, angle vs. angle, velocity vs. angle,

acceleration vs. angle, moment vs. angle or velocity vs. velocity graphs are

included. Table 8.6 summarises all the data output permutations for each test.

Cadences	 Acceleration Vs. Acceleration Plots

Shoulder, Elbow & Wrist Trajectories 	 External Joint Forces

Joint Angles	 External Joint Moments

Angle Vs. Angle Plots	 Moment Vs. Angle Plots

Velocity Vs. Angle Plots 	 Moment Vs. Moment P(ots

Acceleration Vs. Angle Plots 	 Forces & Moments Due To Hand Load

Velocity Vs. Velocity Plots 	 Impaired Vs. Unimpaired Comparisons

Table 8.6 All permutations of the data initially output from the analysis process.
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Fig.8.1 Sign conventions for the (a) shoulder, (b) elbow and (C) wrist.
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The sign convention utilised during the discussion of all results in this

chapter is given in Fig.8.1. ForceS-were-taken to act positively along the

positive direction of the embedded axes and represent those applied on the

proximal end of the segment distal to the frame. - Moments were taken to act

positively about the axes following the convention of the right hand rule and

represent those applied about the joint to perform the action. Positive angular

rotations, velocities and accelerations act in the same direction as the positive

moments about the axes.

When discussing the -rotation about- an axis, - the axis is referred to ip

accordance with the positive rotation which occurred about it. Therefore when

discussing forearm pronation or supination for instance,- the - rotations- ap

described in terms of a positive and negative rotation respectively about the

pronation axis.

8.5.1 Cadences

The cadence of each subject while- performing -the -activities wa

calculated and these are summarised in Fig. 8.2. The maximum, mean and

minimum -values for the ten -unimpaired subjects -are presented along with- the

values for each of the two impaired subjects.

Comparison olCadences Between Unimpaired and Impaired Subjects

Fig 8.2 Maximum, Mean and Minimum cadences for unimpaired subjects (1-10) along
with those for the impaired subjects (11, 12) during performance of all tested activities.
Activity numbers are those given in Table 82. -



The mean of all the unimpaired cadences was 0.44Hz, corresponding

well with the value of 0.5Hz suggested during the discussion of the pendulum

preliminary test in Section 7.3.

It can be seen that during five of the ten tested activities (1 7 2 ,3, 7 & 8)

the cadences of the impaired subjects were below the minimum measured

cadence for the unimpaired subjects for the same activity. That this was the

case for the first three activities might have been due to an early hesitation on

the part of the impaired subjects through fear of causing themselves pain. The

impaired subject cadences were below the mean cadence for the unimpaired

subjects in all cases except that of subject No.12 for the drink from a mug

activity (No.6) which was around I % greater than the unimpaired mean.

Overall, a definite trend can be seen for the impaired subjects to have

performed all of the activities at a lesser cadence than those without

impairment. A reduced impaired subject cadence was expected, as these

subjects would be likely to try and reduce or remove the possibility of

experiencing pain.

8.5.2 Activity I - Reach to opposite axilla

The trajectories of the elbow and wrist joint centres are shown in Fig.8.3,

the most notable feature being the similarity between the wrist trajectories from

all subjects in comparison to the much less regular pattern of the elbow

trajectories. Figs. 8.4, 8.5 show the angles, forces and moments at the

shoulder and elbow, with the mean ±2SD boundaries in bold. These data are

also summarised along with the joint angular velocities and accelerations in

Tables 8.7-8.11.

At the shoulder, internal rotation was the major component of the motion,

reaching the greatest maximum in mid-cycle from any of the ten activities. The

greatest force at the shoulder was along the vertical Z axis force, with the

forces applied along the X axis as the hand reached the axilla and moved away

from it being among the highest values from any of the ten activities. Flexion

was the greatest moment at the shoulder, though reached the lowest maximum

from the unimpaired mean for any of the ten activities.
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1 9Sh.Add. Sh.FIcx. Sh.Int.Rot EIb. Add. EIb.FIcx. EIb.Pron.

Activity 1 Max.	 2.0	 54.3	 85.9	 9.8	 115.8	 51.2

SD	 4.6	 7.6	 11.7	 6.9	 7.0	 14.6

Mi	 .25.3	 31.0	 43.9	 -22.2	 60.5	 -42.8

SD	 5.3	 10.5	 15.0	 9.8	 16.7	 11.5

Table 8.7 Mean maximum and minimum joint rotations (°).

Sh.X Sh.Y Sh.Z EIb.X EIb.Y EIb.Z Wr.X Wr.Y Wr.Z

Activity 1 Max.	 6.0	 4.8 42.3	 14.5	 4.3	 18.2	 5.6	 -1.2	 1.1

SD	 2.1	 3.5	 5.5	 2.3	 2.8	 4.0	 2.4	 0.6	 1.0

Mi	 -5.0 -3.9 34.6	 7.8	 -2,7	 6.5	 -0.2	 -5.6	 -1.1

SD	 1.7	 2.3	 4.0	 2.6	 2.2	 3.6	 0.6	 0.5	 0.9

Table 8.8 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.FIcx. Sh.Int.Rot. ELFIex. Wr.U.Dev. Wr.FIex.

	

Activity 1 Max.	 1.9	 8.2	 -1.1	 3.6	 0.0	 -0.1

	

SD	 0.6	 1.5	 0.5	 1.0	 0.0	 0.0

	Mm.	 -2.4	 5.6	 -2.6	 0.7	 -0.4	 -0.4

	

SD	 1.1	 1.0	 0.4	 1.0	 0.2	 0.0

rable 8.9 Mean maximum and minimum joint moments (Nm).

Sh.FIex. Sh.Add. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	Activity 1 Max.	 1.1	 1.2	 1.9	 2.0	 4.8

	

SD	 0.6	 0.3	 0.7	 0.9	 2.5

	Mm.	 -1.0	 -1.2	 -1.6	 -1.9	 -4.0

	

SD	 0.5	 0.2	 0.4	 0.9	 1.5

Table 8.10 Mean maximum and minimum joint angular velocit es (rads1).

Sh.FIex. Sh.Add. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	

Activity 1 Max.	 5.8	 5.9	 9.8	 9.7	 30.9

	

SD	 2.7	 1.8	 4.2	 7.0	 29.5

	

Mm.	 -5.4	 -6.2	 -8.3	 -11.4	 -29.5

	

SD	 3.1	 1.3	 3.5	 9.8	 28.4

Table 8.11 Mean maximum and minimum joint angular accelerations (rads2)
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At the elbow the second largest range of pronation and the narrowest

range of flexion from the unimpaired subjects for any of the ten activities were

obtained. The major component of force was along the humeral longitudinal

(Z) axis. A negative force along the Y axis occurred as the hand reached the

axilla and moved away from it. Flexion was the greatest moment at the elbow.

Figs. 8.6 and 8.7 show the angles, forces and moments at the shoulder

and elbow obtained from the impaired subjects, along with the unimpaired

subject mean and ± 2SD boundaries. The unimpaired and impaired maxima

and minima are given in Fig. 8.8 the key for which is given in Table 8.12 and is

the same for all such plots presented for the ten activities.

	

No.	 Angle Plots	 No.	 Force Plots	 No.	 Moment Plots

	

1	 Shoulder Adduction	 1	 Shoulder X	 1	 Shoulder Adduction

	

2	 Shoulder Flexion	 2	 Shoulder Y	 2	 Shoulder Flexion

	

3	 Shoulder mt. Rotn. 	 3	 Shoulder Z	 3	 Shoulder mt. Rotn.

	

4	 Elbow Adduction	 4	 Elbow X	 4	 Elbow Flexion

	

5	 Elbow Flexion	 5	 Elbow Y	 5	 Elbow Pronation

	

6	 Elbow Pronation	 6	 Elbow Z	 6	 Wrist Ulnar Deviation

	

7	 Wrist X	 7	 Wrist Flexion

	

8	 WristY

	

9	 WristZ

Table 8.12 Key for angle, force and moment maxima and minima plots.

At the shoulder subject No.11 failed to reach the adducted position of

the unimpaired mean but reached a greater maximum of elbow flexion. Subject

No.12 failed to reach a maximum shoulder flexion close to that of the

unimpaired mean, though had a greater range of pronation at the elbow,

reaching a greater maximum value than the unimpaired mean from any of the

ten activities.

At the shoulder, as with the unimpaired subjects, the Z axis force was

the greatest, with that of subject No.11 maintaining a constant level greater

than subject No.12. At the elbow both impaired subjects exhibited negative Y

axis forces similar to the unimpaired mean, the only negative Y axis forces from

these subjects for any of the ten activities. The X axis became vertically
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oriented in mid-cycle leading to a wider variation in the forces along this axis

between subjects due to the difference in their masses. A similar effect can be

seen in the shoulder flexion and internal rotation moment patterns in Figs. 8.6

and 8.8.

The global and mean maxima and minima of the velocities and

accelerations for the unimpaired subjects at each of the modelled joints, along

with the maxima and minima of the impaired subjects, are given in Fig.8.9, the

key for which is given in Table 8.8 and is the same for all such plots discussed.

No.	 Velocity Plots	 No.	 Acceleration Plots

1	 Shoulder Flexion	 1	 Shoulder Flexion

2	 Shoulder Adduction	 2	 Shoulder Adduction

3	 Shoulder mt. Rotn.	 3	 Shoulder mt. Rotn.

4	 Elbow Flexion	 4	 Elbow Flexion

5	 Elbow Pronation	 5	 Elbow Pronation

rable 8.13 Key for angular velocity and acceleration maxima and minima plots.

The average maximum impaired velocity was between 40% and 45%

lower than the mean of the unimpaired subjects. The maximum elbow flexion

velocity of subject No.11 was greater than the unimpaired mean though the

range of flexion for this subject was around 34° greater than for the unimpaired

subjects. The average maximum impaired accelerations were between 50%

and 55% lower than the mean of the unimpaired subjects.

8.5.3 Activity 2 - Reach to opposite side of neck

A similarity between the wrist and elbow trajectories from all subjects for

this activity was apparent as shown in Fig.A.8. 10 for this activity.

Fig.A.8.11 and A.8.12 show the angles, forces and moments at the

shoulder and elbow, with these data also summarised along with the joint

angular velocities and accelerations in Tables 8.14 - 8.18. At the shoulder,

flexion and internal rotation contributed similarly with adduction having the

greatest range and reaching the most adducted position from any of the ten

activities performed. The forces along the X axis reached their maximum
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203Sh.Add. Sh.FIcx. Sh.Int.Rot EIb. Add. EIb.FIex. EIb.Pron.

	

Activity 2 Max.	 20.1	 76.8	 85.2	 3.1	 138.9	 52.0

	

SD	 9.2	 11.9	 8.2	 5.7	 5.2	 13.0

	

Mm.	 -23.4	 28.4	 42.1	 -23.8	 63.3	 -53.7

	SD	 10.2	 11.1	 12.4	 12.3	 16.3	 12.6

Table 8.14 Mean maximum and minimum joint rotations (°)

Sh.X Sh.Y Sh.Z EIb.X EIb.Y EIb.Z Wr.X Wr.Y Wr.Z

	Activity 2 Max. 8.3	 5.8 45.2 17.0	 6.4	 19.5	 5.6	 -0.8	 1.8

SD	 3.3	 2.5	 4.6	 2.5	 1.8	 2.5	 1.1	 1.1	 1.0

Mm.	 -7.4	 -7.9 31.0	 6.6	 -3.3	 -0.3	 0.1	 -6.3	 -1.7

SD	 2.4	 3.4	 4.1	 3.0	 2.2	 3.3	 0.7	 0.8	 0.8

Table 8.15 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.FIex. Sh.Int.Rot. ELFIcx. Wr.U.Dev. Wr.FIex.

	

Activity 2 Max.	 2.0	 9.5	 -0.9	 4.0	 0.0	 0.0

	

SD	 0.9	 1.3	 0.6	 0.5	 0.1	 0.1

	

Mm.	 -2.5	 4.9	 -2.5	 -0.5	 -0.4	 -0.4

	

SD	 1.0	 0.7	 0.3	 0.5	 0.1	 0.1

Table 8.16 Mean maximum and minimum joint rnonients (Nm).

Sh.FIcL Sh.Add. Sh.Int.Rot. EIb.FIeL EIb.Pron.

	

Activity 2 Max.	 2.2	 1.8	 1.9	 2.7	 5.4

	

SD	 0.8	 0.5	 0.7	 1.0	 1.8

	

Mm.	 -1.8	 -1.7	 -2.0	 -2.8	 -4.3

	

SD	 0.7	 0.7	 0.7	 0.8	 1.1

Table 8.17 Mean maximum and minimum joint angular velocities (rads1)

Sh.FIex. Sh.Add. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	

Activity 2 Max.	 9.6	 8.8	 11.1	 12.9	 34.2

	

SD	 4.2	 3.0	 5.2	 3.5	 20.9

	

Mm.	 -8.9	 -8.9	 -10.6	 -13.6	 -29.8

	

SD	 2.7	 3.6	 5.3	 5.0	 12.0

Table 8.18 Mean maximum and minimum joint angular accelerations (rad&2)
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positive and negative values from any of the ten activities with the Y axis force

reaching the greatest negative value from any of these tests.

At the elbow flexion was a major component and pronation had the

greatest range with the most supinated position from any of the ten activities

being reached. The force in the direction of the X axis reached the third

highest maximum and the force along the Y axis the greatest negative value for

any of the ten activities performed due to the vertical orientation of these axes

during the cycle. An extension moment was required at the elbow in mid-cycle.

Figs.A.8.13 and A.8.14 show the angles, forces and moments at the

shoulder and elbow, obtained during performance of this activity by the

impaired subjects with Fig.A.8.15 showing the unimpaired and impaired

maxima and minima.

At the shoulder, subject No.11 had lower ranges of flexion and internal

rotation than the unimpaired mean and failed to reach the adducted position of

that mean. At the elbow, this subject reached a considerably greater maximum

flexion than the unimpaired mean and a more supinated position than the

maximum supination of the unimpaired mean from any of the ten activities.

Subject No.12 reached a lower maximum of internal rotation at the

shoulder in mid-cycle than the unimpaired mean though reached a greater

maximum of flexion. Similar elbow flexion and supination maxima to the

unimpaired mean were reached but a lower maximum pronation.

The shoulder Z axis forces for subjects No.11 and No.12 varied in the

upper and lower levels of the mean unimpaired force range respectively, with

the magnitudes of the minimum for subject No.12 being lower for this activity

than the unimpaired mean from any activity. The moments about each of the

modelled degrees of freedom exhibited similar patterns. The shoulder internal

rotation moment of subject No.11 varied considerably as shown in Fig.A.8.13,

due to the large ranges of elbow flexion and pronation and had a greater

negative magnitude than the unimpaired mean.

The absolute and mean unimpaired maxima and minima of the angular

velocities and accelerations about each joint axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.16. The average

maximum velocity for this activity was between 40% and 45% less than the
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unimpaired mean for subjects No.11 and No.12, the elbow flexion velocity of

subject No.11 being an exception. The average maximum acceleration at all

modelled joints was between 50% and 60% lower for the impaired subjects

than the unimpaired mean.

8.5.4 Activity 3 - Reach to side and back of head

Due to the high complexity of this activity subjects adopted varied

strategies. This made finding a suitable camera arrangement difficult, resulting

in marker visibility problems in mid-cycle for some subjects where both anterior

and posterior views were required. It was necessary to interpolate between the

trajectories of the markers prior to and following the frames in which they were

obscured. For subjects No.3, No.4 and No.8 the data obtained in this way was

found to be unsatisfactory, interpolation being necessary across several frames

and resulting in a section of unreliable data. It was therefore decided that for

this activity only, the data from these three subjects would not be included, the

data presented in this section being that obtained from subjects Nos.1, 2, 5, 6,

7,9, 10,11 and 12.

Fig.A.8.17 shows little repeated pattern in the elbow and wrist

trajectories for this activity with the exception of the sagittal plane wrist

trajectory. Figs.A.8.18 and A.8.19 show the angles, forces and moments at the

shoulder and elbow with these data also summarised along with the joint

angular velocities and accelerations in Tables 8.19 - 8.23. At the shoulder,

flexion and abduction both reached their second highest maximum values from

any of the ten activities, the shoulder maintaining an abducted position

throughout. The minimum vertical Z axis force was the lowest from the

unimpaired subjects for any of the ten activities as was the minimum of the

shoulder flexion moment.

At the elbow, flexion and pronation both reached their greatest maxima

from any of the ten activities. A negative force occurred along the Z axis in

mid-cycle, the shoulder flexing past 900, taking the humeral longitudinal axis

past horizontal. The maximum force in the Y direction was the greatest from

the unimpaired subjects for any of the ten activities performed. The greatest

extension moment from the unimpaired subjects for any of the ten activities
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Activity 3 Max.	 -16.9	 107.9	 63.2	 -0.9	 164.8	 65.3

	SD	 7.6	 9.0	 13.0	 13.7	 8.0	 8.2

	

Mm.	 -35.7	 26.7	 21.9	 -25.7	 61.4	 7.3

	

SD	 11.0	 9.3	 11.4	 7.4	 14.8	 19.9

Table 8.19 Mean maximum and minimum joint rotations (°).

Sh.X Sh.Y Sh.Z EIb.X EIb.Y EIIJ.Z Wr.X Wr.Y Wr.Z

	Activity 3 Max. 4.4	 6.1 47.0 14,5	 14.0 21.8	 4.8	 2.1	 0.9

SD	 1.7	 1.9	 2.5	 3.3	 3.5	 2.1	 1.1	 0.9	 0.7

	

Mm. -4.3	 -5.4 30.1	 6,0	 0.2	 -4.8	 -5.8	 -7.2	 -3.2

SD	 1.3	 1.7	 3.9	 2.9	 1.5	 2.1	 0.9	 0.7	 0.5

Table 8.20 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.FIcx. Shint.Rot. EI.FIcx. Wr.U.Dcv. Wr.FIex.

	

Activity 3 Max.	 1.2	 9.5	 -0.5	 4.5	 0.4	 0.2

	

SD	 0.5	 1.5	 0.4	 0.6	 0.1	 0.1

	

Mm.	 -2.8	 3.9	 -2.0	 -2.8	 -0.4	 -0.5

	1.2	 1.0	 0.4	 0.9	 0.1	 0.1

Table 8.21 Mean maximum and minimum joint moments (Nm).

Sh.Flex. Sh.Add. Sh.Int.Rot. Elb.Flex. Elb.Pron.

	

Activity 3 Max.	 1.7	 0.7	 1.1	 3.6	 2.3

	

SD	 0.6	 0.5	 0.4	 0.9	 0.8

	

Mm.	 -2.8	 -0.5	 -1.9	 -3.8	 -2.4

	

SD	 1.1	 0.2	 1.3	 0.9	 1.1

Table 8.22 Mean maximum and minimum joint angular velocit es (rads1).

Sh.FIcx. Sh.Add. Sh.lnt.Rot. EIb.FIex. EIb.Pron.

	

Activity 3 Max.	 10.9	 4.9	 11.0	 17.1	 19.1

	

SD	 5.5	 2.7	 7.1	 6.4	 9.6

	

Mm.	 -11.7	 -4.0	 -10.2	 -16.1	 -20.9

	

SD	 6.1	 3.0	 10.1	 6.0	 11.6

Table 8.23 Mean maximum and minimum joint angular accelerations (rads2).
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tested was required around mid-cycle as the humeral longitudinal axis passed

horizontal with the elbow fully flexed.

Figs.A.8.20 and A.8.21 show the angles, forces and moments at the

shoulder and elbow, obtained from the impaired subjects with the maxima and

minima of these data given in Fig.A.8.22. At the shoulder subject No.11

reached a considerably lower maximum of internal rotation and a lower level of

abduction than the unimpaired mean, though flexion reached a maximum in

mid-cycle similar to the greatest value from the unimpaired mean for any of the

ten activities. The elbow became supinated in mid-cycle unlike the unimpaired

mean and reached a lower maximum pronation, though flexion reached a

similar maximum to the unimpaired mean and the greatest value for this subject

from any activity.

For subject No.12 the maximum shoulder flexion in mid-cycle was

considerably less than the unimpaired mean as was the maximum level of

abduction, Internal rotation was considerably less than the unimpaired mean

initially and reached a lower minimum. At the elbow the maximum of pronation

was around half that of the unimpaired mean and flexion reached a lower

maximum.

The shoulder Z axis force for subject No.11 had greater maximum and

minimum values than the unimpaired mean with a greater negative maximum

for the X axis force. Those of subject No.12 were considerably lower than the

unimpaired mean. At the elbow, subject No.11 had greater maximum Y axis

force and a greater negative Z axis force than any values from the unimpaired

mean for any activity. The elbow extension moment of subject No.11 in mid-

cycle was greater than any from the unimpaired mean for any activity.

The absolute and mean unimpaired maxima and minima of the angular

velocities and accelerations about each joint axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.23. The average

maximum angular velocity at all modelled joints for subject No.12 was between

46% and 48% less than the unimpaired mean, with the average maximum

acceleration between 60% and 70% less. For subject No.11 the average

maximum upward (positive) velocity was 2% greater than the unimpaired mean,

though the downward (negative) velocity was around 25% lower. The average
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maximum upward acceleration was around 17% less than the unimpaired mean

and the downward acceleration some 31% less.

8.5.5 Activity 4 - Eat with hand to mouth (repetition from Williams (1996))

The trajectories of the elbow and wrFst- joint -centres for this activity arp

shown in Fig.A.8.24 to have had little repeated pattern other than that of the

sagittal plane wrist trajectory.. Figs.A.B.25 arid A.8.26 show the angles,rforce

and moments at the shoulder and elbow with these data also summarised

along with the joint angular velocities and accelerations in Tables 8.24- 8.2.

At the shoulder the smallest ranges for all three rotations from any of the ten

activities were obtained and the adduction moments -were -among the loest

measured.

At the elbow, flexion -Was the primary rotation with the major cornponer!t

of force being along the Z axis. An extension moment at the elbow was

required around mid-cycle as the forearm longitudinal axis passed. vertical

the shoulder flexed. Fig.8.27 shows the relationship between elbow flexion

moment and angle. As elbow .flexion began from the initial position a large

moment was necessary to counteract the action of gravity on the forearm mass

centre, maximally horizontally displaced. from the axis of rotation. As flexion

increased, this horizontal displacement was reduced leading to a decrease in

the moment required.

Elbow Flexion: MomentVsAngIe : Test 4

5-

4j
I

I
0	 ------	 -.---	 )O#-

1 Q	 20	 40	 60	 80	 -100	 120	 i40,. 1 60

-2

Angje (°)
• EHexi , EHex2	 EHex3	 EHex4	 EHex5 • EHex6	 EHex7 - EHex8

EflexlO	 EF1ex11 oEFlexl2

Fig 8.27 Elbow flexion Moment Vs. Angle during eat with hand to mouth.
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Activity 4 Max.	 -9.2	 51.0	 54.7	 -1.3	 144.0	 49.9

	

SD	 6.5	 7.7	 11.1	 5.1	 4.1	 14.6

	

Mm.	 -16.2	 38.0	 42.0	 -18.3	 60.4	 -24.2

	

SD	 7.7	 9.7	 11.8	 9.4	 15.5	 18.3

Table 8.24 Mean maximum and minimum joint rotations (°)

Sh.X Sh.Y Sh.Z EIb.X EIb.Y EIb.Z Wr.X Wr.Y Wr.Z

	

Activity 4 Max. 2.1	 4.8 42.3 12.3	 9.0	 16.8	 4.5	 -1.6	 -0.4

SD	 0.8	 2.3	 3.2	 2.8	 2.5	 2.2	 0.8	 0.9	 0.8

Mm.	 -1.8	 -4.0 35.4	 8.9	 2.9	 7.4	 -0.8	 -5.9	 -3.5

SD	 0.9	 1.7	 42	 2.7	 1.9	 2.7	 0.6	 0.5	 0.6

Table 8.25 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.Flex. Sh.Int.Rot. ElFiex. Wr.U.Dev. Wr.Flex.

	

Activity 4 Max.	 0.9	 9.5	 -1.1	 3.5	 0.1	 -0.1

	

SD	 1.0	 1.4	 0.3	 0.4	 0.1	 0.1

	Mm.	 -0.7	 5.4	 -2.0	 -0.6	 -0.3	 -0.4

	

SD	 0.8	 0.9	 0.5	 0.6	 0.1	 0.0

rable 8.26 Mean maximum and minimum joint moments (Nm).

Sh.Flcx. Sh.Add. Sh.Int.Rot. Elb.FIcx. EIb.Pron.

	

Activity 4 Max.	 0.7	 0.3	 0.6	 3.1	 3.9

	

SD	 0.2	 0.2	 0.3	 0.7	 1.7

	Mm.	 -0.6	 -0.4	 -0.7	 -3.3	 -3.3

	

SD	 0.3	 0.2	 0.3	 0.8	 1.3

Table 8.27 Mean maximum and minimum joint angular velocities (rads1)

Sh.FIex. Sh.AthI. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	

Activity 4 Max.	 4.7	 2.5	 4.8	 14.4	 22.2

	

SD	 2.8	 1.1	 2.6	 6.2	 11,4

	Mm.	 -3.4	 -2.1	 -3.8	 -13.3	 -24.7

	

SD	 1.5	 0.8	 2.1	 4.1	 10.9

Table 8.28 Mean maximum and minimum joint angular accelerations (rads2).



± 2SD boundariesMean Range

1370

330

32°—*-13°

Elbow Flexion (Max)

Elbow Flexion (Mm)

Elbow Adduction

Elbow Pronation

1090 —*166°

-2°--i68°

-32°	 110

71°—*-81°
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The shoulder and elbow angular data were compared with graphs

presented by Williams (1996), examples of which are given in Fig.7.15 and

Fig.7.16. The values were corrected for differences in embedded axes

definitions and initial limb orientations and are shown in Tables 8.29 and 8.30

in relation to the axes defined for the current study.

Mean Range
	

± 2SD boundaries

Shoulder Flexion
	 600 _* 670	 340 940

Shoulder Adduction
	

5° *11
	

21°—*-35°

Shoulder Internal Rotation
	

52° -* 24°
	

88° —>-11°.

Table 8.29 Approximate mean shoulder angles ranges from Williams (1996).

Table 8.30 Approximate mean elbow angle ranges from Williams (1996).

The mean ranges of shoulder flexion and adduction from the current

study were slightly lower than those of Williams (1996), though the mean range

of internal rotation from both studies corresponds closely. The initial minimum

elbow flexion from Williams (1996) was lower as the table surface in that study

was set at waist height, lower than the elbow height used for the current study.

The elbow flexion maxima from both studies were similar, with the mean range

of pronation at the elbow from the current study being slightly greater.

Figs.A.8.28 and A.8.29 show the angles, forces and moments at the

shoulder and elbow obtained from the impaired subjects, with the unimpaired

and impaired maxima and minima of these data given in Fig.A.8.30. Subject

No.11 had a lesser amount of shoulder internal rotation than the unimpaired

mean, particularly in mid-cycle where the hand reached the mouth, with a lower
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flexion also being reached at this point. A steady level of abduction greater

than the unimpaired mean was maintained. At the elbow the maximum

supination as the hand reached the mouth was considerably greater than the

unimpaired mean, with the maximum of flexion similar to the unimpaired mean.

Subject No.12 was more internally rotated and abducted at the shoulder

than the mean of unimpaired subjects throughout the cycle and also reached a

greater maximum flexion. At the elbow a greater supination than the

unimpaired subject mean was reached in mid-cycle though the flexion

maximum was similar.

The shoulder Z axis force and all moments for subject No.11 can be

seen to have varied in the upper levels of the mean unimpaired range with

those of subject No.12 considerably lower. The maximum forces and moments

at shoulder and elbow from both subjects were comparable to the unimpaired

mean however.

The absolute and mean unimpaired maxima and minima of the velocities

and accelerations of rotation about each joint axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.31. The maximum

angular velocities at the shoulder were generally lower than those resulting

from the larger range of motion at the elbow. The average maximum upward

velocity at the shoulder from subjects No.11 and No.12 was around 36-37%

less than the unimpaired mean, with the downward velocity around 3-4% less.

At the elbow the average maximum velocity was around 8-9% less than the

unimpaired mean.

The relationship between the elbow flexion angular velocity and angle in

the phase plane diagram in Fig.8.32, shows the large elbow flexion range and

a similar pattern from all subjects, indicating the importance of the rotation to

this activity. The area above the X axis represents increasing elbow flexion

moving the hand towards the mouth, the area below represents elbow

extension as the hand moves away, returning to its initial position. The

maximum velocity clearly occurs around the mid-point in both phases of the

motion and the X-axis symmetry for the unimpaired subjects indicates the

general similarity in the flexion and extension velocities. A decrease in the

extension phase velocities for the impaired subjects is also apparent.
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Elbow Flexion : Velocity Vs. Angle
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EFlexlO	 EF1ex11 oEF1x12

Fig.8.32 Elbow flexion Velocity Vs: Angle dthing- eat with hand to mouth;

The acceleration plots in Fig.A.8.31 show the average maximum

acceleration at all modelled joints -for subject No.11 to be between 30% and

35% lower than the unimpaired mean. Subject No.12 showed average

maximum shoulder accelerations- between 70% -and 75% lower than the

unimpaired mean with those at the elbow between 15% and 20% greater.

8.5.6 Activity 5 - Eat with spon

The trajectories of the elbow and wrist- joint centres given- in Fig.A.8.33

show little repeated pattern other than that of the sagittal plane wrist trajectory.

Figs.A.8.34 and A.8.35 show-the -angles,- forces and moments at the shouldr

and elbow during this activity with these data also summarised along with the

joint angular velocities and accelerations in Tables 8.31 - 8.35. At- th

shoulder, flexion and internal rotation had the lowest maximum values for any

activity and the shoulder-remained abducted throughout. All three rotations

the shoulder had similar ranges of around 16°, among the lowest from any

activity. The shoulder Z axis-force-maintained a constant level while the forc

along the X axis had the lowest magnitudes in both positive and negative

directions from any activity-. Those along the -Y axis were similarly low. The

maximum and minimum flexion moments were the second lowest from all ten

activities and this was one of onlytwo -activities for which an abduction moment

was required throughout.
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Activity 5 Max.	 -17.6	 49.8	 46.3	 -0.7	 147.6	 7.3

	

SD	 9.8	 10.7	 8.2	 5.9	 1.8	 29.9

	

Miii.	 -34.3	 33.6	 30.1	 -14.5	 62.2	 -26.8

	

SD	 12.5	 12.5	 8.1	 13.1	 12.2	 15.5

rable 8.31 Mean maximum and minimum joint rotations (°).

Sh.X Sh.Y ShZ EIb.X EIb.Y EIb.Z Wr.X Wr.Y Wr.Z

SD	 0.9	 1.7	 4.2	 2.7	 1.9	 2.7	 0.6	 0.5	 0.6

Activity S Max.	 1.6	 3.8 42.1 13.2	 9.1	 15.9	 6.3	 -1.0	 0.1

SD	 0.6	 1.7	 3.7	 3.4	 2.2	 3.1	 0.8	 0.7	 0.8

Mm. -1.7 -3.6 35.5	 9.4	 2.0	 7.5	 -0.6	 -4.0	 -3.7

SD	 0.7	 1.8	 4.4	 3.0	 1.5	 3.0	 1.2	 0.9	 0.7

rable 8.32 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.FIex. Sh.Int.Rot. EI.FIcx. Wr.U.Dcv. Wr.FIex

	

Activity 5 Max.	 -0.8	 9.0	 -1.1	 3.2	 0.1	 -0.1

	

SD	 1.5	 1.7	 0.3	 0.5	 0.1	 0.1

	

Miii.	 -2.0	 4.7	 -2.2	 -0.8	 -0.4	 -0.3

	

SD	 0.9	 0.7	 0.6	 0.6	 0.1	 0.1

rable 8.33 Mean maximum and minimum joint moments (Nm).

Sh.FIcx. Sh.Add. Sh.Int.Rot. EIb.FICL EIb.Pron.

	

Activity 5 Max.	 0.7	 0.6	 0.5	 2.6	 1.6

	

SD	 0.4	 0.3	 0.2	 0.6	 1.2

	

Mm.	 -0.7	 -0.5	 -0.4	 -3.0	 -1.6

	

SD	 0.4	 0.3	 0.2	 0.8	 1.3

Table 8.34 Mean maximum and minimum joint angular velocities (rads1)

Sh.FIex. Sh.Add. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	

Activity 5 Max.	 4.5	 2.8	 2.9	 10.3	 9.6

	

SD	 2.9	 1.4	 2.0	 5.5	 5.6

	

Mm.	 -4.0	 -2.1	 -2.4	 -10.1	 -11.9

	

SD	 3.0	 1.0	 1.5	 4.2	 9.6

Tab'e 8.35 Mean maximum and minimum joint angular accelerations (rads2)
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At the elbow, flexion was by far the greatest rotation, reaching the third

highest maximum value from any activity. Pronation reached the lowet

maximum value from any activity with the maximum of supination being among

the greatest. The force at the elbow along the Z axis reached a lowr

maximum than for any other activity with that along the X axis having a greater

minimum than for any other activity. The maximum flexion moment requireJ

was lower than for any other activity and an extension moment at the elbow

was required around mid-cycle as the forearm- longitudinal axis passed the

vertical with the shoulder flexed. The relationship between elbow flexion angle

and moment is given in Fig.8.36. and shows the decrease in the moment

required as the elbow became more flexed.

Elbow Flexion Moment Vs..Angle: Test 5
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?
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1.0

0.0
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'	 YA

40.0	 60.0	 80.0	 100.0	 120.0	 160.0

Ar,Ie (

• EFlexi	 , EF)ex2	 EFlex3	 ERex4	 EFlex5 • ERex6 . EFIex7 - EFlex8

EFlexlO	 EF1ex11 oEFiexl2

Fig.8.36 Elbow flexion moment Vs. Angle during eat with spoon.

This activity involved additional loading due the mass of the spoon ansi

the maxima and minima of the contributions of this mass to the forces and

moments at each of the . modelled joints is shown in Fig.A. 8. 37. The

contribution of the spoon mass was around 3% on average to the forces and

moments at the shoulder and elbow and around 9% on average to the forces

and moments at the wrist.

Figs.A.8.38 and A.8.39 show the angles, forces and moments at the

shoulder and elbow obtained from the impaired subjects, with the maxima and

minima of these data given in Fig.A.8.40. For subject No.11, shoulder internal
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rotation was less than that of the unimpaired mean throughout the cycle and

reached a considerably lower maximum, while flexion reached a similar

maximum. The maximum abduction reached was slightly greater than the

unimpaired mean. The elbow reached a greater maximum supination than the

unimpaired mean and unlike the unimpaired mean was supinated throughout

the cycle, with flexion reaching a lower maximum than the unimpaired mean.

For subject No.12, shoulder internal rotation and flexion reached slightly

lower maxima than the unimpaired mean and the level of abduction was

considerably lower throughout. At the elbow, as with subject No.11, a greater

supination maximum than the unimpaired mean was reached and the forearm

remained supinated throughout, while flexion was similar to the unimpaired

mean.

The shoulder Z axis force and all moments for subject No.11 varied in

the upper levels of the mean unimpaired range with those of subject No.12

considerably lower. The maximum Y axis force for subject No.11 was lower

than the maximum unimpaired mean Y axis force from any of the ten activities.

The absolute and mean unimpaired maxima and rnnirna of the angu'iar

velocities and accelerations about each joint axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.41.

The maximum angular velocities at the shoulder were considerably lower

than those at the elbow due to the comparatively low range of motion at the

shoulder. The average maximum velocities at the shoulder and elbow for

subject No.11 were around 2% and 35%-45% lower than the unimpaired mean

respectively, with those for subject No.12 around 8% and 18% lower than the

unimpaired mean respectively. Fig.8.42 shows the phase plane relationship

between the flexion angular velocity and angle at the elbow. The area above

the X axis represents increasing elbow flexion as the spoon was raised to the

mouth, the area below represents extension of the elbow, moving the spoon

from the mouth and back to its initial position. The maximum velocity occurred

around the mid-point of each phase, the similarity between velocities in each

phase being shown in the X-axis symmetry.
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Elbow Flex ion : Velocity Vs. Angle

40

2.0	
A	 -	 A A

! :	
200	 C 0	 600

-4.0 -
>	 I

-6 0

Angje (0)

• EFlexi	 EFlex2	 Eflex3	 EFlex4	 EF]ex5	 EFlex6	 EFlex7 - EF]ex8

Efl€xi0 Aflexll oERexi2

Fig.8.42 Elbow flexion Velocity Vs. Angle during eat with spoon.

The acceleration plots in Fig.A.8.41. show the average maximurp

accelerations at the shoulder and elbow for subject No.11 to be around 10%

and 56% lower than the unimpaired mean respectively. For subject No.12 t1-e

average maximum upward and downward accelerations at the shoulder were

around 16% less and 12% greater than the unimpaired mean respectively. Pt

the elbow the average maximum upward and downward accelerations were

around 40% and 3% less than the unimpaired mean respectively.

8.5.7 Activity 6 - Drink from mug

The trajectories of the elbow and wrist joint centres during this taskar!

given in Fig.A.8.43 and show little repeated pattern other than that of the

sagittal plane wrist trajectory.

Figs.A.8.44 and A:8.45 show the angles, forces and moments at the

shoulder and elbow during this activity with these data also summarised along

with the joint angular velocities and accelerations in Tables 8.36 - 8.40. At the

shoulder no rotation was particularly great, flexion being the main component,

with internal rotation having the second narrowest range from all activities and

the second lowest maximum value. The forces along the X and Y axes were

low with the Z axis force maintaining .a relatively constant level. An abduction

moment was required throughout the cycle, this being one of only two activities

for which this was the case:
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Activity 6 Max.	 -14.8	 55.3	 46.7	 -4.1	 144.3	 22.6

	

SD	 7.3	 9.2	 7.3	 6.8	 6.0	 24.6

	

Mm.	 -33.5	 36.0	 33.7	 -15.1	 61.1	 -9.0

	

SD	 12.2	 7.9	 8.5	 11.0	 10.9	 15.3

Table 8.36 Mean maximum and minimum joint rotations (°)

Sh.X ShY Sh.Z EIb.X EIb.Y EIb.Z Wr.X Wr.Y Wr.Z

	

Activity 6 Max.	 2.1	 3.6 45.8 15.0	 10.8	 19.4	 8.8	 -1.8	 0.2

	

SD	 0.8	 1.8	 4.2	 3.3	 1.8	 2.1	 1.5	 1.4	 1.2

	

Mm.	 -1.4 -4.2 37.2 10.6	 2.9	 7.5	 -2.9	 -5.5	 -5.5

	SD	 0.5	 2.3	 4.1	 2.7	 1.6	 3.1	 1.8	 1.4	 0.8

Table 8.37 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.FIex. Sh.Int.Rot. EI.FIcx. Wr.U.Dev. Wr.FIex.

	Activity 6 Max.	 -0.3	 10.8	 -1.5	 4.4	 0.2	 -0.1

	

SD	 1.5	 1.9	 0.3	 0.4	 0.1	 0.1

	

Mm.	 -1.8	 5.6	 -2.8	 -1.0	 -0.6	 -0.4

	

SD	 0.9	 0.7	 0.7	 0.6	 0.1	 0.1

Table 8.38 Mean maximum and minimum joint moments (Nm).

Sh.FIex. Sh.Add. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	

Activity 6 Max.	 0.7	 0.5	 0.4	 2.7	 1.1

	

SD	 0.2	 0.3	 0.2	 0.5	 0.5

	

Mm.	 -0.8	 -0.6	 -0.4	 -2.9	 -1.4

	

SD	 0.3	 0.3	 0.1	 0.8	 0.8

Table 8.39 Mean maximum and minimum joint angular velocit es (rads1).

Sh.FIex. Sh.Add. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	Activity 6 Max.	 3.9	 2.2	 2.5	 11.5	 8.2

	

SD	 2.0	 1.1	 1.3	 4.0	 3.8

	

Mm.	 -3.3	 -2.5	 -1.9	 -9.2	 -7.8

	

SD	 1.5	 1.6	 1.0	 3.8	 2.9

Table 8.40 Mean maximum and minimum joint angular accelerations (rads2)
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At the elbow, flexion made the greatest contribution with the range of

pronation being the second. lowest from any activity. The major force

components occurred along the Z and X axes. An extension moment was

required around mid-cycle as the forearm longitudinal axis passed the vertical

with the shoulder flexed. Fig.8.46 shows the decrease in the elbow flexion

moment as flexion increased for all subjects..

Elbow Flex ion : Moment Vs. Angle : Test 6
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Fig.8.46 Elbow flexion Moment Vs. Angle during drink from mug.

This activity involved additional loading due the mass of the mug and the

maxima and minima of the contributions of this mass to the forces and moments

at each of the modelled joints is shown Fig.A.8.47. This mass contributed

around 12%-14% on average to the forces and moments at the shoulder and

elbow and around 30%-35% to the forces and moments at the wrists.

Figs.A.8.48 and A.8.49 show the angles, forces and moments at the

shoulder and elbow, obtained during performance of this activity by the

impaired subjects, with Fig.A.8.50 showing the maxima and minima of these

data.

Subject No.11 reached a less internaUy rotated position in mid-cycle

than the minimum from the unimpaired mean from any of the ten activities, with

a maximum some 200 lower than that of the unimpaired mean for this activity.

A lower flexion maximum was also reached in mid-cycle and the shoulder of

subject No.11 was in greater abduction than the unimpaired mean throughout
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the activity. At the elbow the pronation maximum was greater than the

maximum from the unimpaired mean for any activity and unlike the unimpaired

mean was pronated throughout the cycle. A slightly greater maximum of elbow

flexion than the unimpaired mean was also achieved.

Subject No.12 reached a lower maximum of shoulder flexion and a

considerably lower maximum abduction than the unimpaired mean in mid-cycle

as the mug reached the mouth, though was less abducted throughout the cycle

than the mean. At the elbow a greater pronation than the unimpaired mean

was reached as the mug was tilted to the mouth with flexion being similar to

that mean.

The shoulder Z axis force and all moments for subject No.11 can be

seen to vary in the upper levels of the mean unimpaired range with those of

subject No.12 considerably lower. Both impaired subjects had lower maxima

along the shoulder X and Y axes and the elbow X and Z axes than the

unimpaired mean.

The absolute and mean unimpaired maxima and minima of the angular

velocities and accelerations about each joint axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.51.

The maximum angu'ar velocities at the shoulder were considerably lower

than those at the elbow. The average maximum shoulder and elbow velocities

for subject No.11 were around 39% and 29% less than the unimpaired mean

respectively, with those of subject No.12 being around 52% and 15% less than

the unimpaired mean at the shoulder and elbow respectively.

Fig.8.52 shows the phase plane relationship between the elbow flexion

velocity and angle, the area above the X axis representing increasing elbow

flexion as the mug was raised to the mouth, the area below representing elbow

extension as the mug was returned to its initial position. The impaired subjects

can be seen to have reached lower magnitudes during the extension phase.
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Elbow Flexion : Velocity Vs. Angle
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Fig.8.52 Elbow flexion Velocity Vs. Angle during drinking from mug.

As shown in Fig.A.8.51 the average maximum shoulder and elbow

accelerations for subject No.11 were between 60% and 65% lower than the

unimpaired mean. Subject No.12 showed average maximum shoulder

accelerations differing by . around the same amount as those for subject No.11,

with those at the elbow being 36% lower than the unimpaired mean.

8.5.8 Activity 7 - Answer telephcne

Fig.A.8.53 shows the trajectories of. the wrist joint centres during this

task to have been relatively consistent between subjects in each of the

transverse, coronal and. sagittal planes, whereas those for the elbow were

inconsistent.

Figs.A.8.54 and A.8.55 show the angles, forces and momentsat tl1e

shoulder and elbow during this activity with these data also summarised along

with the joint angular velocities and accelerations in Tables 8.41 - 8.45. The

shoulder stayed in a position of abduction throughout the cycle with the second

narrowest mean range from any activity The mean shoulder Z axis force

maintained a relatively consistent level with the maximum along the Y axis

being the largest from the . unimpaired subjects for any of the ten activities

tested at the point where the shoulder stopped extending and flexed slightly to

bring the receiver to the ear. The flexion moment at the shoulder had a high

maximum due to the extension of the elbow in the initial position
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Activity 7 Max.	 -12.6	 60.2	 48.2	 -5.8	 152.3	 53.1

	SD	 4.2	 9.9	 10.2	 5.0	 7.9	 17.1

	

Mm.	 -23.0	 39.7	 27.7	 -23.7	 36.3	 22.9

	

SD	 7.7	 8.5	 9.6	 8.6	 15.8	 8.9

Table 8.41 Mean maximum and minimum joint rotations (°).

Sh.X Sh.Y Sh.Z EIb.X EIb.Y EIb.Z Wr.X Wr.Y Wr.Z

	

Activity 7 Max. 2.9	 7.2 44.3 14.7	 12.6	 17.5	 4.9	 0.3	 -0.2

SD	 0.9	 2.4	 4.0	 3.3	 2.1	 2.4	 1.1	 1.4	 1.1

Mm. -2.0	 -6.0 37.1	 8.8	 5.0	 8.0	 -4.2	 -8.3	 -5.8

SD	 0.7	 1.9	 4.2	 2.8	 1.8	 2.8	 0.8	 0.9	 0.6

Table 8.42 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.FIcx. Sh.Int.Rot. EI.FIex. Wr.U.Dev. Wr.FIex.

	

Activity 7 Max.	 0.2	 12.3	 -0.9	 4.1	 0.3	 0.0

	

SD	 0.8	 1.6	 0.2	 0.4	 0.1	 0.1

	

Mm.	 -1.6	 5.1	 -2.7	 -1.3	 -0.3	 -0.6

	

SD	 0.8	 0.9	 0.7	 0.6	 0.1	 0.1

Table 8.43 Mean maximum and minimum joint moments (Nm).

Sh.Flex. Sh.Add. Sh.lnt.Rot. Elb.Iiex. Elb.Pron.

	

Activity 7 Max.	 0.7	 0.3	 0.7	 3.5	 1.0

	

SD	 0.4	 0.2	 0.3	 1.5	 0.6

	

Mm.	 -0.9	 -0.4	 -0.8	 -3.3	 -1.2

	

0.4	 0.3	 0.4	 1,4	 1.1

Table 8.44 Mean maximum and minimum joint angular velocities (rads'1)

Sh.FIei. Sh.Add. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	

Activity 7 Max.	 6.4	 2.2	 5.5	 14.0	 10.5

	

SD	 3.6	 1.3	 2.9	 6.8	 9.4

	

Mm.	 -4.7	 -2.2	 -3.9	 -11.9	 -11.1

	

SD	 2.4	 1.9	 2.9	 6.7	 9.6

Table 8.45 Mean maximum and minimum joint angular accelerations (rads2).
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At the elbow the major component of rotation was flexion with the

greatest mean range from the-unimpaired subjects for any of the ten activities

tested and reaching the second greatest maximum from any activity. Pronation

covered the narrowest mean range, though included the second greatest

maximum from the unimpaired subjects for any of the ten activities tested, the

forearm remaining pronated throughout; The-major component of force at th

elbow was along the Z axis, though considerable forces also occurred along

both X and Y axes: -An- extension moment was -required around -mid-cycle

the forearm longitudinal axis passed the vertical with the shoulder flexed. The

relationship between-the-elbow flexion-moment and angle is given in Fig.8.6

and shows an initial rise as the elbow flexed, raising the forearm from a

downward oriented•• position, - to• a - maximum moment as the- forearm

horizontal before falling as elbow flexion increased.

Elbow Flex ion: Moment Va-Angle T 7
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Fig.8.56 -Elbow flexion Moment Vs. -Angle -during answering telephone.

This activity involved additional loading due to the mass of the receiver

and Fig.A.8.57 shows the -maxima and minima of the contributions of this hand

held load to the forces and moments at each of the modelled joints. The

contribution of this-mass was around 1O%-12%-on average to the forces and

moments at the shoulder and elbow and around 30%-35% to the forces and

momentsat the wrist:-
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Figs.A.8.58 and A.8.59 show the angles, forces and moments at the

shoulder and elbow, obtained during performance of this activity by the

impaired subjects, with the unimpaired and impaired maxima and minima of

these data given in Fig.A.8.60.

For subject No.11 shoulder internal rotation was considerably lower than

the unimpaired mean throughout, though particularly in mid-cycle, with flexion

also slightly lower. Shoulder adduction exhibited a pattern different to that for

the unimpaired mean, being abducted initially and becoming less so in mid-

cycle. At the elbow, pronation was less than the unimpaired mean throughout

with flexion reaching a slightly greater maximum than that mean.

Subject No.12 had a narrow range of shoulder internal rotation and

reached a lesser maximum of flexion and a lesser abduction in mid-cycle as the

receiver reached the ear than the unimpaired mean. At the elbow, the mean

pronation range reached a maximum around half that of the unimpaired mean

with flexion reaching a similar maximum to that mean.

The maximum forces at the shoulder and elbow from both impaired

subjects was comparable to the unimpaired mean, with the shoulder forces for

subjects No.11 and No.12 varying in the upper and lower levels respectively of

the mean unimpaired force range. The moments about each of the modelled

degrees of freedom for these subjects exhibited a similar pattern.

The absolute and mean unimpaired maxima and minima of the angular

velocities and accelerations about each joint axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.61.

The maximum angular velocities at the shoulder were considerably lower

than those at the elbow. The average maximum shoulder velocity for subject

No.12 was between 45% and 50% less than the unimpaired mean, with that of

subject No.11 around 18% less. At the elbow the average maximum pronation

velocity from subject No.11 was around 14% less than the unimpaired mean,

with that from subject No.12 around 39% less. At the elbow the average

maximum flexion velocities from subjects No.11 and No.12 were around 5%

greater and 24% less respectively than the unimpaired mean. Fig.8.62 shows

the phase plane relationship between the elbow flexion velocity and angle.
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Fig.8.62 Elbow flexion Velocity Vs. Angle during answering telephone.

The area above the X axis in Fig.8.62 represents increasing elbow

flexion as the telephone receiver was raised. to the ear, the area below

representing extension as the receiver was returned to the telephone cradle.

Fig.A.8.61 shows the maximum accelerations at all modelled joints for

both impaired subjects to have been less than the unimpaired mean. For

subject No.11 the average maximum shoulder and elbow accelerations were

around 30% and 25% lower than the unimpaired mean respectively, with those

of subject No.12 around 72% and. 51% lower than the unimpaired mean

respectively.

8.5.9 Activity 8 - Brush hair. left side of head

The trajectories of the elbow and wrist joint centres during this task are

given in Fig.A.8.63 and show. relatively consistent patterns of wrist trajectory in

each of the transverse, coronal and sagittal planes with less consistent elbow

trajectories.

Figs.A.8.64 and A.8.65 show the angles, forces and moments at the

shoulder and elbow with these data also summarised along with the joint

angular velocities and accelerations in Tables . 8.46 - 8.50. At the shoulder

flexion and internal rotation were the primary rotations though an adduction

was required in mid-cycle, one of only three activities for which this was the



Sh.Add. Sh.FIex. Sh.Int.Rot Elb. Add. EIb.FIex. EIb.Pron.	 225

	

Activity 8 Max.	 0.4	 83.9	 72.7	 -2.4	 126.3	 19.3

	

SD	 16.9	 18.9	 10.7	 8.1	 8.1	 31.9

	Mm.	 -18.7	 32.7	 37.2	 -27.0	 59.9	 -25.8

	

SD	 13.1	 13.6	 13.6	 14.9	 12.3	 20.6

Table 8.46 Mean maximum and minimum joint rotations (°)

Sb.X Sh.Y Sh.Z EIb.X EIb.Y EIb.Z Wr.X Wr.Y Wr.Z

	Activity 8 Max. 3.9	 3.1 45.6 16.3	 8.7	 18.6	 6.5	 -0.6	 -0.1

SD	 0.6	 1.2	 4.3	 2.9	 1.5	 3.7	 1.1	 1.7	 0.8

	

Mm. -4.3	 -3.1 32.7	 6.9	 2.9	 0.2	 -1.2	 -5.7	 -3.4

SD	 1.2	 1.3	 4.3	 3.2	 1.4	 5.7	 1.4	 1.1	 0.7

[able 8.47 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.Flcx. Sh.Int.Rot. El.FICL WrTJ.Dev. Wr.Flex.

	

Activity8 Max.	 1.7	 10.1	 -1.1	 4.0	 0.1	 -0.1

	

SD	 1.1	 2.0	 0.6	 0.6	 0.1	 0.1

	Miii.	 -1.5	 5.6	 -2.6	 -0.8	 -0.5	 -0.4

	

SD	 1.3	 0.9	 0.5	 0.9	 0.1	 0.1

Table 8.48 Mean maximum and minimum joint moments (Nm).

Sh.Flex. Sh.Add. Sh.Int.Rot. Elb.FIex. Elb.Pron.

	

Activity 8 Max.	 1.8	 0.7	 1.1	 2.8	 1.9

	

SD	 0.5	 0.2	 0.3	 0.9	 1.7

	Mm.	 -2.0	 -1.0	 -1.7	 -2.4	 -2.0

	

SD	 0.6	 0.3	 0.4	 0.6	 1.3

Table 8.49 Mean maximum and minimum joint angular velocities (rads1)

Sh.Flex. Sh.Add. Sh.Int.Rot. Elb.Flex. Elb.Pron.

	

Activity 8 Max.	 9.1	 5.7	 8.3	 13.5	 14.6

	

SD	 2.5	 2.0	 2.6	 5.7	 13.6

	Mm.	 -7.6	 -4.2	 -8.7	 -11.5	 -14.7

	

SD	 2.6	 1.3	 3.0	 5.3	 9.6

Table 8.50 Mean maximum and minimum joint anguiar accelerations (rads2)
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case. The mean shoulder Z axis force maintained a consistent level with the

maxima along the Y axes.in both positive and negative directions having th

lowest magnitude from any of the ten activities. The adduction moment had

quite large variations -between subjects for the moments at the beginning and

end of the cycle due to differing starting and finishing upper limb positioning.

At the elbow the major component of rotation was flexion which had the

second narrowest mean range form any of the ten activities. The major force

components were those -along the Z and X axes. An extension moment at th

elbow was required in mid-cycle as shown in the relationship between the

elbow flexion moment and angle given in Fig.8.66. Some inconsistency

between subjects is shown due to the complex nature of this activity involving

more than simply flexion of the elbow.

Elbow Flexion : Moment Vs. Angle : Test 8
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Fig.8.66 Elbow flexion Moment Vs. Angle during brushing left side of head.

This activity involved additional loading due to the mass of the brush

and the maxima and minima of the contributions of this hand held load to the

forces and moments at each of the modelled joints are given in Fig.A.8.67.

This mass contributed around 3%-5% on average to the forces and moments at

the shoulder and elbow and around 8%-9% to the forces and moments at the

wrist.

Figs.A.8.68 and A.8.69 show the angles, forces and moments at the

shoulder and elbow, obtained during performance of this activity by the
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impaired subjects, with the unimpaired and impaired maxima and minima of

these data given in Fig.A.8.70.

For subject No.11 shoulder internal rotation and flexion were both lower

than the unimpaired mean by a considerable margin throughout the cycle. The

maximum abduction was slightly lower than the unimpaired mean with the

maximum adduction being slightly greater. At the elbow subject No.11 had

greater initial supination than the unimpaired mean and became pronated in

mid-cycle as the unimpaired mean became supinated. Subject No.11 also

reached a greater maximum flexion around mid-cycle than the unimpaired

mean.

For subject No.12, the shoulder was more internally rotated initially and

less internally rotated in mid-cycle, than the unimpaired mean with a similar

pattern for flexion. This subject reached a greater abduction in mid-cycle than

the unimpaired mean as the brush reached the left side of the head, having

been initially less abducted. At the elbow, in contrast to the unimpaired mean,

the forearm remained pronated throughout and a slightly greater maximum of

flexion was reached.

The maximum forces at shoulder and elbow from subjects No.11 and

No.12 were found to vary in the upper and lower levels of the mean unimpaired

force range respectively. At the elbow the minimum X axis force for subject

No.11 was lower than the minimum from the unimpaired mean for any activity.

The moments were greater for subject No.11 than those for subject No.12.

The absolute and mean unimpaired maxima and minima of the angular

velocities and accelerations about each joint axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.71.

The maximum angular velocity for each of the modelled rotations from

the impaired subjects were generally lower than those from the unimpaired

subjects. The average maximum shoulder angular velocity for subject No.11

was around 26% less than the unimpaired mean, with that of subject No.12

around 50% less. At the elbow the average maximum flexion and pronation

velocities from subject No.11 were around 15% and 41% less than the

unimpaired mean respectively, with those from subject No.12 around 4% and

64% less respectively.
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Fig.A.8.71 shows the average maximum accelerations at all modelled

joints for both subjects to be less than the unimpaired mean. Those of subject

No.11 were around 37% and 47% lower than the unimpaired mean at the elbow

and shoulder respectively, with those of subject No.12 around 62% and 49%

lower respectively.

8.5.10 Activity 9 - Lifting to shoulder height (repetition from Cheng (1996))

Fig.A.8.72 shows the trajectories of the elbow and wrist joint centres

during this task, reasonable consistency between subjects for both being

apparent. Of particular note are the ateraUy cucved e!bow ccica pa<e

trajectories due to abduction of the shoulder during lifting.

Figs.A.8.73 and A.8.74 show the angles, forces and moments at the

shoulder and elbow during this activity with these data also summarised along

with the joint angular velocities and accelerations in Tables 8.51 - 8.55. The

maximum of shoulder flexion was the third highest from the unimpaired subjects

for all activities with the minimum being the second lowest, as was the minimum

of internal rotation. The mean shoulder Z axis and Y axis forces reached their

second greatest maxima from any of the ten activities. Fig.8.75 gives the

relationship between the shoulder flexion moment and angle. The initial

moment appears to be low but is actually the greatest minimum from any

activity. As the shoulder extended and the elbow flexed the moment reached

its greatest maximum values from all ten activities. The second greatest

abduction and internal rotation moments were also achieved.

At the elbow the major component of rotation was flexion and this was

one of only two activities involving an extension of the elbow from its initial

position, the second most extended position for any of the ten activities being

reached. The maximum forces along the X, Y and Z axes all reached their

second highest values from all ten activities, as did the elbow flexion moment

and this was one of only three activities that required no elbow extension

moment.



Sh.Add. Sh.Flex. Sh.Int.Rot EIb. Add. EIb.Flex. EIb.Pron.	 229

	

Activity 9 Max.	 -10.6	 88.2	 57.9	 -16.9	 99.7	 38.0

	

SD	 8.2	 9.5	 11.8	 9.5	 7.6	 15.9

	

Mm.	 -32.7	 14.9	 19.2	 -32.2	 22.0	 -10.6

	

SD	 11.9	 6.1	 8.1	 9.1	 7.7	 13.4

Table 8.51 Mean maximum and minimum joint rotations (°)

Sh.X Sh.Y Sh.Z EIb.X Elb.Y EIb.Z Wr.X Wr.Y Wr.Z

	

Activity 9 Max. 3.8	 6.6 50.2 18.8	 13.7 24.2	 8.6	 -2.5	 -1.5

SD	 1.2	 1.9	 4.0	 2.3	 2.1	 1.9	 1.5	 1.8	 0.9

Mm. -4.4	 -6.9 34.5	 7.0	 3.1	 1.2	 1.2	 -8.7	 -7.0

SD	 1.7	 2.6	 5.8	 3.5	 1.6	 3.3	 2.2	 1.5	 1.1

Table 8.52 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.FIcx. Sh.Int.Rot. EI.FIcx. Wr.U.Dcv. Wr.Flex.

	Activity 9 Max.	 1.5	 14.3	 -1.1	 5.4	 0.0	 -0.3

	

SD	 1.1	 1.4	 0.3	 0.5	 0.2	 0.1

	

Miii.	 -3.3	 7.1	 -3.3	 1.5	 -0.6	 -0.7

	

SD	 1.4	 1.2	 0.9	 0.9	 0.1	 0.1

Table 8.53 Mean maximum and minimum joint moments (Nm).

Sh.FIex. Sh.Add. Sh.Int.Rot. EIb.FICL Elb.Pron.

	

Activity 9 Max.	 2.6	 0.9	 1.3	 3.6	 2.0

	

SD	 0.7	 0.3	 0.6	 0.9	 0.9

	

Mm.	 -2.6	 -1.0	 -1.5	 -2.8	 -1.8

	

SD	 0.5	 0.4	 0.4	 0.6	 0.8

Table 8.54 Mean maximum and minimum joint angular velocities (rads1)

Sh.Flex. Sh.Add. Sh.Int.Rot. EIb.FIex. EIb.Pron.

	

Activity 9 Max.	 9.7	 5.9	 7.6	 14.8	 10.8

	

SD	 2.7	 2.3	 2.4	 5.0	 4.8

	

Miii.	 -9.6	 -4.3	 -6.0	 -17.7	 -11.6

	

SD	 3.2	 1.9	 2.4	 5.5	 6.7

Table 8.55 Mean maximum and minimum joint angular accelerations (rads2).
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Shoulder Flexion : Moment Vs. Angle : Test 9
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Fig.8.75 Shoulder flexion Moment Vs. Angle during raise of block to shoulder height1

All possible combinations of angle against angle for both unimpaired and

impaired .subjects were plotted for each activity and were of interest for thi

activity as shown in Fig.8.76. In particular repeated relationships are visible for

the elbow flexion angles, the shoulder internal rotation angles and the elbow

pronation angles, all in relation to shoulder flexion. Of particular note is the

increase in shoulder internal rotation and.decrease in the elbow pronation as

the shoulder was flexed.

This activity involved additional loading due to the mass f the wooden

block and the maxima and minima of the contributions of this mass to the forces

and moments at each of the modelled joints is given in Fig.A 8.77. This mass

contributed around 20%-25% on average to the forces and moments at the

shoulder, around 15%-20% on average to the forces and moments at the elbow

and around 50% to the forces and moments at the wrists.

The shoulder and elbow angle .and moment data were compared with

graphs presented by Cheng (1996), examples of which are given in Figs.7.17-

7.20. The values were corrected for differences in embedded axes definitions

and initial limb orientations, the subjects of Cheng (1996) having raised a 1 kg

block from a surface around 20cm above floor level, considerably lower than

the elbow height initial position used for the current study and requiring a lower

initial elbow flexion of around 30°. Data from the relevant portions of the cycle
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are shown in Tables 8.56 and 8.57 in relation to the axes defined for the

current study. No standard deviation or uncertainty boundaries were given.

Mean Range

Shoulder Flexion
	 30	 67°

Shoulder Adduction	 -16° - -44°

Shoulder Internal Rotation
	

2° - 64°

Table 8.56 Approximate mean shoulder angles ranges from Cheng (1996).

Mean Range

Shoulder Flexion
	

3Nm - l3Nm

Shoulder Adduction	 -3Nm---5Nm

Shoulder Internal Rotation	 -3Nm —1Nm

Table 8.57 Approximate mean shoulder moment ranges from Cheng (1996).

All of the ranges of Cheng (1996) at the shoulder are seen to lie

comfortably within the ±2SD boundaries from the current study, shown in

Fig.A.8.73. The mean ranges of shoulder flexion and adduction from Cheng

(1996) show slightly greater abduction and slightly lower flexion than the

unimpaired mean from the current study, with internal rotation showing a

greater range, being less internally rotated initially. The mean range of the

shoulder flexion moment from Cheng (1996) is similar to that from the current

study, though has a lower minimum value due to the greater extension of the

elbow in the initial position. The shoulder internal rotation and adduction

moments from Cheng (1996) compare less well, with values outside the ±2SD

boundaries from the current study, shown in Fig.A.8.73. This variation could be

explained by differences in the initial positions of the subjects and in the

arrangement of the shelf to which they reached.

At the elbow, Cheng (1996) obtained an approximate mean range of

flexion between 93° and 54° the maximum of which corresponds well with that

obtained in the current study though the minimum, obtained in mid-cycle as the

block was placed on the shelf, does not compare as well. This difference is
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almost certainly due to a difference in the horizontal distance between subjects

and shelf in the two studies. Cheng (1996) established this as the subjects'

preferred distance after practising the movement, whereas it was defined for

the current study as approximately equal to arm's length. The closer the shelf

was to the subject the less extension of the elbow would be required. Cheng

(1996) did not present elbow adduction angles and forearm pronation was

presented in terms of a rotation from an initial position and thus could not be

compared.

For the elbow flexion moment, Cheng (1996) obtained an approximate

mean range for the relevant section of the cycle starting at around 5Nm,

dropping to around lNm before rising to around 5Nm in mid-cycle. No

standard deviation or uncertainty boundaries were given. These values again

correspond well with the unimpaired mean from the current study though have

a greater value around the mid-point of the cycle, probably due to the mass of

the hand held block in the work of Cheng (1996) being more than twice that of

the block used in the current study.

Figs.A.8.78 and A.8.79 show the angles, forces and moments at the

shoulder and elbow, obtained during performance of this activity by the

impaired subjects, with Fig.A.8.80 showing the maxima and minima of these

data.

For subject No.11 shoulder internal rotation reached a considerably

lower maximum value than the unimpaired mean as did flexion and both had

narrower ranges. Subject No.11 showed lower abduction angles than the

unimpaired mean throughout the cycle. At the elbow this subject achieved

lesser magnitudes of pronation and supination and a considerably lower flexion

maximum.

For subject No.12, the shoulder was more internally rotated and

abducted than the unimpaired mean throughout the cycle and was more flexed

initially though reached a lesser maximum. At the elbow, this subject was

considerably more supinated than the unimpaired throughout the cycle and had

a lower initial flexion though reached a similar minimum to the unimpaired

mean in mid-cycle.
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The shoulder Z axis forces for subjects No.11 and No.12 varied in the

upper and lower levels of the mean unimpaired force range respectively.

Forces in each of the X and Y axes directions for subject No.11 were

comparable to the unimpaired mean with those for subject No.12 being lower,

with the magnitude of the negative Y axis force being smaller than the minimum

from the unimpaired mean for any activity. The moments exhibited a similar

pattern with the shoulder flexion moment for subject No.11 being the greatest

maximum value from any subject for any activity. The adduction moment of

subject No.12 stayed negative throughout the cycle where a slight adduction

moment was apparent in mid-cycle for all other subjects.

The absolute and mean unimpaired maxima and minima of the angular

velocities and accelerations about each joint axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.81. The average

maximum angular velocities for all modelled rotations from the impaired

subjects were lower than those from the unimpaired subjects. Subject No.11

achieved average maximum velocities around 33% and 23% lower than the

unimpaired mean at the shoulder and elbow respectively, with those for subject

No.12 around 38% and 51% lower respectively.

Fig.8.82 shows the phase plane relationship between the shoulder

flexion velocity and angle for all subjects. The area above the X axis

represents increasing shoulder flexion as the wooden block was raised to the

shelf, with the area below representing shoulder extension as the block was

returned to its initial position on the table. Of note is the distinctly different

pattern of shoulder flexion from subject No.12, showing a marked reduction in

both the range of flexion angles and the magnitudes of the velocities.

Similarly interesting was the plot of elbow flexion velocity against

shoulder flexion velocity shown in Fig.8.83 in which the right hand loop

represents the raising of the block to the shelf, the left hand loop represents the

lowering of the block to its initial position. The upper portion of each loop

represents the acceleration phase in that direction, with the lower portion

representing deceleration to rest.
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Shoulder Flexion : Velocity Vs. Angle
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• SFIexl	 SFtex2	 SF!ex3	 SFiex4	 SFex5 • SFex6	 Sflex7

	

SFlex9	 SflexlO	 SFIexll o SFlexl2

Fig.8.82 Shoulder flexion Velocity Vs. Angle during raise of block to shoulder height.

Elbow Flex ion Vs. Shoulder Flexion

-
oo	 :i	 eo	 4C

•

w	 -4.00'

Shoulder Flexion (radians/s)
• Eflexi	 Eflex2	 EFlex3	 EFlex4	 EFlex5 • EFlex6 .. Eflex7 - Eflex8

Efle',10 AEF' 1l cEPevl2

Fig.8.83 Elbow flexion Velocity Vs. Shoulder flexion Velocity during actMty 9.

A clear pattern in the velocities from all subjects is visible, indicating

similarity between the strategies adopted and . again the reduction in th

velocities for subject No12 is obvious, particularly in the right hand loop for the

raising of the block.

The acceleration plots in Fig.A.8.81. show the acceleration at ll

modelled joints for both subjects to have been less than the unimpaired mean.

Subject No.11 had average maximum accelerations around 42% and 37%

lower than the unimpaired mean at the shoulder and elbow respectively, with

those for subject No.12 around 42% and 58% lower respectively.
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Fig.8.84 shows the relationship between the shoulder flexion

acceleration and angle for this activity with.the upward and downward phases

superimposed. The pattern indicates a high acceleration at low angles in the

upward phase in order. to move the block, from its initial position, decreasing

until around the mid-point in the raising of the block before deceleration

occurred to bring the block to .rest on the shelf. The similarity of the pattern for

the lowering phase indicates a similar process in reverse. The marked

reduction in angular range . and . in the flexion accelerations for subject No.12 is

apparent.

Shoulder Flexion : Acceleration V& Angle.: Test 9

10	
.5H 'E 

2004	 TO5.000

-10.0

-15.0	

Ang!e (°)

• Sflexl	 SFlex2	 Sflex3	 SFlex4	 :- SF!ex5	 SF!ex6	 . Sflex7

SF!e	 SFe1Q A SF T9XII	 SFe'i2

Fig.8.84 Shoulder flexion Acceleration Vs. Angle during block raise to shoulder height.

8.5.11 Activity 10 - Lift block to head height (repetition from Cheng (1996))

The trajectories of the elbow and wrist joint centres during this task are

shown in Fig.A.8.85. The .mostconsistent trajectory is that of the elbow in the

coronal plane which shows the tendency for the elbow to move laterally as the

shoulder abducts during raising of the block..

Figs.A.8.86 and A.8.87 show the angles, forces and moments at the

shoulder and elbow with these . data also summarised along with the joint

angular velocities and accelerations in Tables 8.58 - 8.62. The mean flexion

range at the shoulder was by . some way . the largest from the unimpaired

subjects for any of the ten activities tested, having a lower minimum value and

larger maximum value than for . any . other activity. The greatest abduction from



Sh.Add. Sh.FIex. Sh.Int.Rot EIb. Add. EIb.FIex. EIb.Pron.

	

Activity 10 Max. 	 -7.4	 111.9	 79.3	 -16.6	 102.6	 44.3

	

SD	 7.6	 7.4	 12.0	 7.8	 12.1	 14.9

	

Mm.	 -39.7	 14.7	 18.7	 -33.3	 15.6	 -18.5

	

SD	 6.9	 7.6	 7.8	 9.5	 6.6	 13.9

Table 8.58 Mean maximum and minimum joint rotations (0)

Sh.X Sh.Y Sh.Z EIb.X EIb.Y EIb.Z Wr.X Wr.Y Wr.Z

	

Activity 10 Max. 5.4	 5.5 51.5 20.1	 13.7 25.3	 8.7	 -1.7	 -0.8

SD	 2.2	 1.7	 4.4	 2.7	 2.7	 2.0	 1.6	 2.4	 1.4

	

Mm. -6.2	 -7.5 32.5	 5.9	 2.1	 -6.6	 -1.6	 -10.4	 -8.0

SD	 3.1	 3.7	 5.6	 3.9	 1.8	 2.3	 3.2	 1.5	 1.1

Table 8.59 Mean maximum and minimum joint forces (N).

Sh.Add. Sh.FIex. Sh.Lnt.Rot. EI.FIcx. Wr.IJ.Dcv. Wr.FIcx.

	Activity 10 Max.	 4.2	 13.5	 -0.8	 5.8	 0.2	 -0.2

	

SD	 1.8	 1.1	 0.4	 0.5	 0.3	 0.2

	

Miii.	 -3.7	 6.5	 -3.9	 0.1	 -0.6	 -0.8

	

SD	 1.2	 1.0	 0.6	 1.1	 0.1	 0.1

Table 8.60 Mean maximum and minimum joint moments (Nm).

Sh.FIex. Sh.Add. Sh.Int.Rot. Eb.FIcx. EIb.Pron.

	Activity 10 Max.	 3.4	 1.4	 2.4	 4.1	 2.9

	

SD	 0.8	 0.2	 0.6	 1.1	 1.3

	

Miii.	 -3.5	 -1.4	 -2,5	 -3.4	 -2.5

	

SD	 0.5	 0.4	 0.6	 0.9	 0.8

Table 8.61 Mean maximum and minimum joint angu ar velocities (rads1)

Sh.FIex. Sh.Add. Sh.Int.Rot. EIb.FIcx. EIb.Pron.

	

Activity 10 Max.	 11.9	 9.2	 13.3	 17.1	 15.3

	

SD	 3.9	 2.5	 3.8	 7.2	 7.0

	

Miii.	 -12.6	 -6.4	 -10.4	 -19.8	 -16.5

	SD	 3.7	 2.4	 3.4	 6.5	 8.1

Table 8.62 Mean maximum and minimum joint angular accelerations (rads"2)

237
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the unimpaired subjects for any of the ten activities tested was also achieved

as well as the lowest minimum and greatest range of internal rotation. The Z

axis force at the shoulder reached the greatest maximum from any of the ten

activities early in the cycle, with the Y axis force reaching its greatest negativ!

magnitude. The mean unimpaired flexion moment at the shoulder reached the

second greatest maximum from any . of the ten activities. The relationship

between the shoulder flexion moment and angle is shown in Fig.8.88. The

mean range of the shoulder adduction moment was the• greatest from th

unimpaired subjects for any of the ten activities tested, having the greatest

magnitudes of moment in . both positive and negative directions. The greatet

mean unimpaired shoulder external rotation moment was also achieved, this

activity involving the greatest range for this momen.

Shoulder Flexion : Moment Vs. Angle : Test 10

160

4.Oi'
2.0 -
0.0	 - ___	 _____

00	 20.0	 40.0	 60.0	 80.0	 100.0	 120.0	 140.0

)

	

• SFlexl	 SFIex2	 SFIex3	 SFIex4	 SF!ex5	 SF!ex6	 SFiex7

	

SRex9	 SFlpxlO	 SFIpxll	 SFiexl2

Fig.8.88 Shoulder flexion Moment Vs. Angle during raising of block to head height.

At the elbow the major component of rotation was flexion with the most

extended position from any of the ten activities being reached around mid-cycle

as the block was placed on the shelf. The major force components at the elbow

were along the Z and X axes, with the magnitudes of the maxima and minima

along both these axes being the greatest from any of the ten activities for the

unimpaired mean. A negative force occurred along the Z axis due to flexion of

the shoulder above 900. The high .X axis force was due to the mass of the

block and the vertical orientation of the axis as the shoulder abducted. Tle
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mean range of the elbow flexion moment included the highest value from the

unimpaired subjects for any of the ten activities.

The angle against angle plots in Fig.8.89 exhibited interesting patterns

for this activity, these including data from all unimpaired and impaired subjects.

Repeated relationships are particularly clear for shoulder adduction and

internal rotation angles and elbow flexion angles, all in relation to the shoulder

flexion angles. Shoulder internal rotation and abduction increase as the

shoulder flexes, while elbow flexion and pronation decrease.

This activity involved additional loading due to the mass of the wooden

block and Fig.A.8.90 shows the maxima and minima of the contributions of this

hand held load to the forces and moments at each of the modelled joints. The

contribution of the mass of the block was around 20%-25% on average to the

forces and moments at the shoulder, around 1 5%-20% on average to the

forces and moments at the elbow and around 47%-49% to the forces and

moments at the wrists.

The shoulder and elbow angle and moment data were compared with

graphs presented by Cheng (1996), the values from which were corrected as

discussed in the previous section. Data from the relevant portions of the cycle

are shown in Tab(es 8.63 acd 8.64	 retc to t

current study. No standard deviation or uncertainty boundaries were given.

Table 8.63 Approximate mean shoulder angle ranges from Cheng (1996).

The mean angular ranges of flexion and internal rotation at the shoulder

from Cheng (1996) are similar to the mean unimpaired values from the current

study, though the extreme values are slightly offset. Both the flexion and

internal rotation ranges of Cheng (1996) at the shoulder lie comfortably within

the ±2SD boundaries from the current study. The shoulder adduction from
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Cheng (1996) shows a very large range in comparison to the unimpaired mean

from the current study. The initial adduction angles are similar but the mean of

Cheng (1996) becomes around 700 more abducted in mid-cycle than the

unimpaired mean and some two and a half times greater than that obtained by

the same author for the raising of the block to shoulder height.

Mean Range

Shoulder Flexion	 3Nm -> I 3Nm

Shoulder Adduction	 -1 ONm - -3Nm

Shoulder Internal Rotation 	 -3Nm -* 1 Nm

Table 8.64 Approximate mean shoulder moment ranges from Cheng (1996).

For the principal moments at the shoulder, flexion and internal rotation,

the mean ranges from Cheng (1996) are similar to those from the current study.

The flexion moment of Cheng (1996) had a lower minimum value due to the

greater extension of the shoulder in the initial position and the maximum value

from the current study was greater due to the greater shoulder flexion and

elbow extension in mid-cycle. Values for the abduction moment from Cheng

(1996) were outside the ±2SD boundaries from the current study,

corresponding with the greater abduction angles from that study.

For elbow flexion Cheng (1996) obtained an approximate mean range

between 96.7° and 41.6°. The maximum corresponds well with that obtained in

the current study though the higher minimum of Cheng (1996) indicates a

greater flexion in mid-cycle. Cheng (1996) obtained an approximate mean

range for the elbow flexion moment starting at around 7Nm, dropping to around

lNm before rising to around 4Nm in mid-cycle, slightly greater than the

unimpaired mean from the current study, probably due to the greater hand held

mass. Cheng (1996) did not present elbow adduction angles and forearm

pronation was presented in terms of a rotation from an initial position and thus

could not be compared.
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Figs.A.8.91 and A.8.92 show the angles, forces and moments at the

shoulder and elbow, obtained from the impaired subjects, with the unimpaired

and impaired maxima and minima of these data shown in Fig.A.8.93.

Subject No.11 was less internally rotated at the shoulder initially and

reached a considerably lower maximum value in mid-cycle than the unimpaired

mean while also reaching a lower maximum of flexion. The shoulder of subject

No.11 was more abducted than the unimpaired mean throughout the cycle and

reached a greater maximum than the unimpaired mean from any activity. The

elbow of subject No.11 was considerably less supinated in mid-cycle than the

unimpaired mean and did not reach as extended an elbow position.

Subject No.12 had a lower initial shoulder internal rotation than the

unimpaired mean with a greater maximum in mid-cycle where shoulder flexion

reached a lower maximum. Subject No.12 was considerably more abducted

throughout the cycle than the unimpaired mean, reaching a maximum greater

than subject No.11 and greater than the unimpaired mean from any activity.

The elbow was less pronated initially and more supinated in mid-cycle than the

unimpaired mean, while flexion reached a similar minimum at that point.

The shoulder Z axis force for Subject No.11 varied in the upper level of

the mean unimpaired force range with that for subject No.12 being below the

mean unimpaired range and reaching a lower maximum than the unimpaired

mean from any activity. The forces along each of the shoulder X and Y axes

for both impaired subjects reached lower maxima than the unimpaired mean.

At the elbow subject No.11 reached a greater maximum along the X and Z axes

than the unimpaired mean from any activity, while subject No.12 had lower

forces along all axes than the unimpaired mean. The shoulder flexion moment

for subject No.11 was of similar magnitude to the unimpaired mean with that of

subject No.12 being lower. Both impaired subjects had lower maximum and

minimum adduction moments than the unimpaired mean with subject No.11

reaching a greater maximum abduction moment than the unimpaired mean from

any activity. At the elbow the flexion moment of subject No.11 reached a

greater maximum than the unimpaired mean from any activity while that of

subject No.12 was considerably lower.
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The absolute and mean unimpaired maxima and minima of the angular

velocities and accelerations about each joint.axis, along with the maxima and

minima from the impaired subjects are given in Fig.A.8.94.

With the exception . of the shoulder internal rotation angular velocity

during lowering for subject No.11, the maximum angular velocity for all the

modelled rotations from both impaired subjects was lower than the unimpaired

mean. The average maximum shoulder angular velocities were around 16%

and 22% less than the unimpaired mean for subjects No.11 and No.12

respectively. The phase plane relationship between shoulder flexion velocity

and angle is shown in Fig.8.95, in which .the area above the X axis represents

increasing shoulder flexion as the wooden block was raised to the shelf and the

area below represents - shoulder extension as - the block was returned to its

initial position on the table. A symmetry across the X axis is visible for all

subjects.

Shoulder -Flexion : Velocity Vs.-ArgIe

6O

AngIe (°)

	

• SRexl	 SFlex2	 SFIex3	 SFIex4	 SF]ex5 • SFlex6	 SFlex7

	

SFex9	 SF!exlO ASF'exll oSF!ex12

Fig.8.95 Shoulder flexion Velocity Vs. Angle during raising of block to head height.

The average maximum -elbow angular velocities were around 30% and

34% less than the unimpaired mean for subjects No.11 and No.12 respectively.

Fig.8.96 shows the elbow flexion . velocity- against shoulder flexion velocity,

where the right hand loop represents the raising of the block to the shelf and

the left hand loop represents the lowering of the block to its initial position. The
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upper portion of each loop represents the acceleration phase in that direction,

with the lower portion representing deceleration to rest.

Elbow Flexion Vs. Shoulder Flexion

8.00

..600-

.2 -	 _________

-600	 4 00	 -2	 6.00

-6.00-

Shoulder .Flexion (rad!as!s)
• EFlexi	 ! EFlex2	 EFlex3	 Eflex4	 EFlex5 j EF!ex6	 ERex7 . EF!ex8

EFlexlO AEFJeX11 oEFex12

Fig.8.96 Elbow flexion Velocity Vs. Shoulder flexion Velocity during activity 10.

A clear pattern is visible in the velocities from all subjects, indicating

similarity between the strategies adopted.. The velocities for subject No.12 can

be seen to be relatively low in comparison to the other subjects from the

reduced size of the loops though the misshapen left hand loop for this subject

indicates a more rapid reduction in elbow flexion velocity on lowering.

Fig.8.97 shows the shoulder adduction velocity against shoulder flexiqn

velocity in which the right hand loop represents the raising of the block to the

shelf and the left hand loop represents the lowering of the block to its initial

position. The lower portion of each loop represents the acceleration phase in

that direction, with the upper portion representing deceleration to rest. A clear

pattern in the velocities from all subjects is visible, again indicating similarity

between the strategies adopted. The size of the loops are relatively small for

subject No.12, indicating the lower joint angular velocities for this subject.

With the exception of the shoulder internal rotation angular acceleration

during lowering for subject Noll, Fig.A.8.94 shows the acceleration at all

modelled joints for both subjects to have been less than the unimpaired mean.

Subject No.11 had average maximum accelerations around 22% and 27%
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lower than the unimpaired mean at the shoulder and elbow respectively, with

those of subject No.12 around 45% lower at both the shoulder and elbow.

Shoulder Adduction Vs. Shoulder Flex ion

2.00

1 50

., ., ,,. .
.	 nr)oSc3c)o ----'.-e.--------: -6.00	 Ic	 6.00

,-1.50--	 •;2	
-2.00-Cl)	

-2.50

Shoulder Flexion (radians(s)
• SAddi s SAdd2	 SAdd3	 SAdd4	 SAdd5 • SAdd6	 SAdd7

SAdd9	 SAddlO , SAddil o SAddl2

Fig.8.97 Shoulder adduction Velocity Vs. Shoulder flexion Velocity during activity 10.

Fig.8.98 shows the relationship . between the shoulder flexion

acceleration and angle for this activity with the upward and downward phases

superimposed. The pattern indicates a high acceleration at low angles in the

upward phase in order to move the block from its initial position, decreasing

until around the mid-point in the . raising of the block before deceleration

occurred to bring the block to rest on the shelf, with a similar process occurring

in reverse for the lowering phase. Reduced ranges of flexion and lower

maximum acceleration values can be seen for the impaired subjects.

Shoulder F!exion : Acceteration Vs. Angle : Tet 10

-	 A

200	 400	 140.0

•

AngIe (°)

• SFIexl r, SFtex2	 SFIex3	 SF?ex4 x SFIexS • SFlex6	 - SFIex7 - SFIex$

SFIexlO ASF1eX11 OSF!evl2

Fig.8.98 Shoulder flexion acceleration Vs. Angle during activity 10.
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8.6 Discussion of results obtained for ten selected everyday activities

8.6.1 Introduction

The following section contains a discussion of the key aspects and

general patterns of the results presented in Section 8.5.

Initially the preliminary assessment of twenty three activities based on

marker visibility and joint ranges of motion allowed the selection of ten that

would be suitable for testing. Those selected were involved in feeding,

personal hygiene and the use of simple everyday objects and were performed

by twelve subjects, two of whom had shoulder impairment. Body segment

parameters, cadences, elbow and wrist trajectories, joint angles, joint angular

velocities and joint angular accelerations were calculated. In addition the

external forces and moments at and around the joints were calculated as well

as the contributions to these forces and moments of any hand held load.

8.6.2 Cadences

The cadence results showed that for five of the ten activities, both

impaired subjects performed the activities slower than the slowest of the

unimpaired subjects. For four of the remaining five activities the unimpaired

subjects performed slower than the mean of the unimpaired subjects. This

indicated a reduction in speed of performance by the subjects with shoulder

impairment, either through a conscious decision or a reduced functional

capacity.

8.6.3 Elbow and wrist trajectories

The trajectory of the wrist centres for the reach to opposite side of the

neck and answer the telephone activities was relatively consistent in all three

planes with the elbow centre trajectory being less consistent. These patterns

indicated the ability of different subjects to achieve the same task using

different combinations of the multiple degrees of freedom available to the upper

limb.

The consistent pattern of the wrist sagittal plane trajectory, particularly

for those activities such as the drink from a mug which involved primarily elbow
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flexion, also indicated the adoption of a strategy whereby the precise location

of the hand in the target position was the key objective.

More consistent trajectories occurred for both the elbow and wrist for

those activities involving more complex motion and placing of the hand in a

more extreme position in its workspace, such as the reach to the opposite side

of the neck and the raising of the block to shoulder and head heights. These

activities made greater demands on the degrees of freedom available to the

upper extremity that were exhibited in the trajectories for other activities.

For the raising of the block to shoulder and head heights the elbow

coronal plane trajectories showed a tendency to curve laterally. This was due

to the abduction of the shoulder in order to avoid impingement at the shoulder.

8.6.4 Joint rotations

From most activities the angle data were reasonably smooth with narrow

±2SD boundaries. Table 8.65 contains a ranking of the maximum unimpaired

mean rotations at each joint. The lower the score for an activity, the greater the

rotation required about the axis to which it refers in comparison to the other

activities. It can be seen for instance that the reach to the opposite axilla

required the greatest shoulder internal rotation maximum from all activities but

among the lowest maxima for shoulder and elbow flexion. Where both positive

and negative rotations occurred about an axis, columns were included for each.

Where no rotation occurred about an axis for one or more activity, they were

each given an equal ranking one below the previous true ranking. The 'Total'

and 'Posn.' columns in Table 8.65 give the sum of the ranking scores for each

activity and the resultant overall ranking of their relative complexity.

The most demanding activities in terms of rotation at the shoulder were

the raising of the block to head height, reach to head side and back and reach

to opposite side of the neck activities, the least demanding being the eat with

hand to mouth and eat with spoon activities.
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Sh.Add. Sh.Abd. Sh.Flex. Sh.Int.Rot EIb.Flex. Elb.Pron. Elb.Sup. Total Posn.

Opposite Axilla	 2	 6	 8	 1	 8	 4	 2	 31	 4

Opposite side of Neck	 1	 7	 5	 2	 6	 3	 1	 25	 2

Head Side and Back	 4	 2	 2	 5	 1	 1	 9	 24	 1

Eat Hand to Mouth	 4	 10	 9	 7	 5	 5	 5	 45	 10

Eat with Spoon	 4	 3	 10	 10	 3	 10	 3	 43	 8

Drink from Mug	 4	 4	 7	 9	 4	 8	 8	 44	 9

Answer Telephone	 4	 8	 6	 8	 2	 2	 9	 39	 5

Brush Left of Head	 3	 9	 4	 4	 7	 9	 4	 40	 6

Block to ShId. Height 	 4	 5	 3	 6	 10	 7	 7	 42	 7

Block to Head Height 	 4	 1	 1	 3	 9	 6	 6	 30	 3

Table 8.65 Ranking of maximum unimpaired mean joint rotations for each activity.

No activity involved extension or external rotation of the shoulder, with

shoulder flexion reaching a maximum level for the raise of the block to head

height and the reach to head side and back activities. The maximum internal

rotation occurred for the reach to opposite axilla and opposite side of the neck

activities. The minimum internal rotation occurred for the eat with spoon and

drink from mug activities due to the targeting of an extended hand held object

to the mouth as opposed to the hand itself. The reach to the opposite side of

the neck activity involved a more considerable adduction of the shoulder than

any other activity, the shoulder being in abduction throughout seven of the ten

activities. The greatest abduction occurred for the raising of the block to head

height, leading to the laterally curved trajectory of the elbow in the coronal

plane. The least amount of abduction occurred for the eat with hand to mouth

activity.

The most demanding activities in terms of rotation at the elbow were the

reach to opposite side of the neck, reach to head side and back and answer the

telephone activities, the least demanding being the raising of the block and

drink from a mug activities.

For all except the last activity, elbow flexion was the major rotation

component. The greatest angles occurred during the reach to head side and

back and the answer the telephone activities, with the most extended positions

being reached for the raise of the block to shoulder and head heights due to
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the positioning of the shelf at arms length. Maximum pronation at the elbow

occurred during the reach to the head side and back activity and the answer a

telephone activity, with maximum supination occurring for the reach to opposite

axilla and reach to the opposite side of the neck activities.

The reach to head side and back activity involved the greatest elbow

flexion and pronation as well as relatively high shoulder abduction and flexion

and consequently can be seen to have been ranked as the most complex task

overall. The next most complex were the block raise to head height with high

relative maxima for shoulder abduction, flexion and internal rotation and the

reach to the opposite side of the neck with high relative maxima for shoulder

adduction and internal rotation and forearm pronation and supination. The

activities ranked as the least demanding overall were the drink from mug, eat

with spoon and eat with hand to mouth activities, being primarily dependent on

elbow motion with relatively little shoulder involvement.

Among the results of interest was the low maximum shoulder adduction

for the brush of the left side of the head in comparison to the reach to opposite

side of neck activity when these activities would appear to be similar. The

difference was due to a tendency for the subjects to turn their head slightly to

meet the brush as well as the extension to the hand afforded by the brush. In

contrast the hand required to be placed fully on the opposite side of the neck

around the mid-cycle of the reach to the opposite side of the neck. High levels

of shoulder abduction were noticeable for the eat with a spoon and drink from a

mug activities due to the extension of the hand by these objects, requiring the

final position of the hand to be slightly lateral to the mouth.

8.6.5 External joint forces

The joint force data, as well as the joint moment data discussed in the

next section were less smooth than the joint angle data, having been based on

velocities and accelerations obtained by differentiating the angle data, a

process which magnified its random noise components. When considering the

external forces it was expected that the primary force component would act in

the direction of the gravitational acceleration. This was indeed the case, the

maximum force for all activities occurring along the vertical shoulder Z axis,
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maintaining a similar level at around 5% of the mean unimpaired subject body

weight which corresponds with the data of de Leva (1996a) from which the

mass of the arm and hand was 4.94% of the body mass.

Sh.X+ Sh.X- Sh.Y+ Sh.Y- Sh.Z+ El..X+ El..Y+ El..Y- El..Z+ El..Z- Total Posn.

Opposite Axilla	 2	 3	 6=	 8	 8=	 7	 10	 2	 7	 4	 57	 6

Opposite side of Neck	 1	 1	 4	 1	 6	 3	 9	 1	 4	 3	 33	 3

Head Side and Back	 4	 5	 3	 5	 3	 7=	 1	 3=	 3	 2	 36	 4

Eat Hand to Mouth	 8=	 8	 6=	 7	 8=	 10	 7	 3=	 9	 4=	 70	 9

Eatwith Spoon	 10	 9	 8	 9	 10	 9	 6	 3=	 10	 4=	 78	 10

Drink from Mug	 8	 10	 9	 6	 4	 5	 5	 3=	 5	 4=	 59	 7

Answer Telephone	 7	 7	 1	 4	 7	 6	 4	 3=	 8	 4=	 51	 5

Brush Left of Head	 5	 5	 10	 10	 5	 4	 8	 3=	 6	 4=	 60	 8

Block to Shd. Height	 6	 4	 2	 3	 2	 2	 2=	 3=	 2	 4=	 30	 2

BlocktoHeadHeight 	 3	 2	 5	 2	 1	 1	 2=	 3=	 1	 1	 21	 1

Table 8.66 Ranking of maximum unimpaired mean joint forces for each activity.

Similar to the summary table for the angles, Table 8.66 ranks the joint

force data. Where both positive and negative forces occurred along an axis,

columns were included for each. Where more than one value were equal they

were given the same ranking and the next lower ranking value was missed out.

Where no force occurred along an axis in a particular direction it was regarded

as zero and all such values were given a ranking one below the previous true

ranking.

At the shoulder the maximum Z axis force occurred for the raising of the

block to shoulder and head heights, these involving the greatest hand-held

load. The maximum positive and negative X axis forces and the maximum

negative Y axis force occurred for the reach to the opposite side of the neck

activity where the shoulder was flexed, adducted and internally rotated. The

maximum positive Y axis force occurred for the answer the telephone activity.

At the elbow the maximum positive and negative forces again occurred

along the Z axis direction for the raising of the block to head height. The only

considerable forces in the negative Z axis direction were for the reach to head
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side and back and raise block to head height activities, both involving flexion of

the shoulder greater than 9Q0 The X and Y axis forces at the elbow reach

greater maximum values than those at the shoulder due to these axes

becoming vertically oriented during motion. The maximum force in the X axis

direction occurred for the raising of the block to head height due to the flexion

and internal rotation of the shoulder. No activity involved a negative force

along the X axis as no shoulder external rotation occurred. The maximum

positive force along the Y axis occurred for the reach to head side and back

activity due to the high flexion at the shoulder and elbow. The maximum

negative force along this axis occurred for the reach to opposite side of the

neck activity as the hand reached the neck and moved away from it.

8.6.6 External joint moments

When considering the joint moments, the maximum values were

expected to occur for horizontal axes about which the rotations were most

affected by gravity. This would tend to be the axes perpendicular to the

longitudinal axes of the upper limb segments and displaced from the segment

mass centres, but would also apply to the humeral longitudinal axis when

horizontal with the elbow flexed. The application of a moment would be

required in such a position to counteract the action of gravity on the mass of

the forearm.

The shoulder flexion moment was the greatest for all activities, being

responsible for the motion of the combined masses of the upper limb segments

through relatively large rotations. The elbow flexion moment was the next

greatest for all tests, with the shoulder adduction moment generally lower due

to the small range of motion about this axis. The internal rotation moments at

the shoulder were small and all negative as the upper limb segment positions

in all activities led to a gravitational internal rotation moment that required to be

opposed.

Table 8.67 shows a ranking of the maximum unimpaired mean shoulder

and elbow moment data. Forearm pronation moments were not included as the

forearm centre of mass was defined to lie on its longitudinal axis leading to
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negligible elbow pronation moments. Where moments were applied in both

directions about an axis, two columns were included.

Sh.Add. Sh.Abd. Sh.Flex. Sh.Ext.Rot Elb.Flex. Elb.Ext. Total Posn.

Opposite Axilla	 3	 5	 10	 5=	 8	 8=	 39	 8

Opposite side of Neck	 2	 4	 6=	 7	 6	 7	 32	 6

Head Side and Back	 6	 3	 8	 9	 3	 1	 30	 3

Eat Hand to Mouth	 7	 10	 6=	 9	 9	 6	 47	 10

Eat with Spoon	 9	 6	 9	 8	 10	 4	 46	 9

Drink from Mug	 9=	 7	 4	 3	 4	 3	 30 3=

Answer Telephone	 8	 8	 3	 4	 5	 2	 30	 3

Brush Left of Head	 4	 9	 5	 5=	 6=	 4=	 33	 7

Block to Shd. Height	 5	 2	 1	 2	 2	 8=	 20	 2

Block to Head Height	 1	 1	 2	 1	 1	 8=	 14	 1

rable 8.67 Ranking of maximum unimpaired mean joint moments for each activity.

As might be expected the raising of the block to shoulder and head

heights were ranked as requiring the greatest moments, these involving the

greatest hand held mass, the greatest elbow extension and among the greatest

levels of flexion at the shoulder. The raise to head height can be seen to

involve the greatest unimpaired mean shoulder adduction, abduction and

external rotation moments from any activity as well as the greatest elbow

flexion moment, the latter being applied in mid-cycle to control extension of the

elbow under the influence of gravity as the block was lowered onto the she'f.

Although the shoulder was abducted in mid-cycle, the block was held in such a

position that an adduction moment was required in order to oppose an

abduction moment due to gravity.

The drink from mug activity was also ranked as requiring relatively large

moments, along with the answer the telephone activity which involved an

extension of the elbow and f(exion of the shoulder in the initial position. The

moments for these were similar due to the comparable hand loads involved.

The eat with hand to mouth and with spoon activities were ranked as requiring

the lowest moments, a result of the limited ranges of motion during these

activities and the lack of any major additional hand load. These activities also



253

involved flexion of the elbow, bringing the forearm centre of mass closer to the

shoulder flexion axis, resulting in a lower moment about this axis.

Elbow extension moments were required to maintain the forearm

position in mid-cycle for all but the reach to opposite axilla and raising of the

block to shoulder and head height activities. These were required where the

forearm reached a position in which the action of gravity tended to cause elbow

flexion. The largest occurred for the reach to head side and back and answer

telephone activities due to flexion at the shoulder and elbow.

8.6.7 Joint angular velocities and accelerations

Angular velocities and accelerations about each of the modelled upper

limb axes were calculated in order to try and establish variations in

performance between subjects which may have been masked during

calculation of the forces and moments due to differences in their masses. The

maximum unimpaired mean values are ranked in Tables 8.68 and 8.69.

S.F. S.E. S.Ad. S.Ab. S.I.R. S.E.R. E.F. E.E. E.P. E.S. Total Posn.

Opposite AxiUa	 6	 6	 3	 3	 2=	 5	 10 10	 2	 2	 49	 5

Opposite side of Neck 3 	 5	 1	 1	 2=	 2	 7= 7=	 1	 1	 30	 2

Head Side and Back 5	 2	 5	 7	 5	 3	 2=	 1	 5	 5	 40	 3

Eat Hand to Mouth 7	 10 9	 9	 8	 8	 5 3	 3	 3	 65	 7

Eat with Spoon	 7= 9	 7	 7	 9	 9	 9	 5	 8	 8	 78	 9

Drink from Mug	 7	 8	 8	 6	 10	 9= 7= 6	 9	 9	 79	 10

Answer Telephone 7	 7	 9	 9	 7	 7	 4 3	 10 10 73	 8

Brush Left of Head	 4	 4	 5	 4	 5	 4	 6	 9	 7	 6	 54	 6

Block to Shd. Height 2 	 3	 4	 4=	 4	 6	 2= 7= 6	 7	 45	 4

Block to Head Height 1	 1	 2	 2	 1	 1	 1	 2	 4	 4	 19	 1

I able ö.bö t<anKing or maximum unimpairea mean joint anguiar velocities br eacn
activity.

The magnitudes of the angular velocities and accelerations were

generally found to be greater for axes about which there were large ranges of

motion. The greatest maximum unimpaired mean velocity from any activity

occurred about the pronation axis for the reach to opposite side of neck activity,

this rotation having the second greatest mean angular range from any activity.
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The lowest maximum angular velocities occurred about the shoulder adduction

axis for the eat with hand to mouth and answer the telephone activities, these

having the narrowest mean ranges from any of the activities. This pattern

suggested that in order to complete large joint rotations while maintaining the

joint co-ordination pattern, the rate of rotation was increased.

S.F. S.E. S.Ad. S.Ab. S.I.R. S.E.R. E.F. E.E. E.P. E.S. Total Posn.

Opposite Axilla	 7	 6	 3=	3	 4	 5	 10	 8	 2	 2	 50	 5

OppositesideofNeck 4	 4	 2	 1	 2	 1	 7	 4	 1	 1	 27	 2

Head Side and Back 2	 2	 6	 6	 3	 3	 1= 3	 4	 4	 34	 3

Eat Hand to Mouth	 8	 9	 8	 9	 8	 8	 4	 5	 3	 3	 65	 7

Eat with Spoon	 9	 8	 7	 9	 9	 9	 9	 9	 9	 7	 85	 9

Drink from Mug	 10 10	 9=	7	 10	 10	 8	 10 10 10 94	 10

Answer Telephone	 6	 7	 9	 8	 7	 7	 5	 6	 8	 9	 72	 8

Brush Left of Head	 5	 5	 5	 5	 5	 4	 6	 7	 6	 6	 54	 6

Block to Shd. Height 3	 3	 3	 4	 6	 6	 3	 2	 7	 8	 45	 4

Block to Head Height 1	 1	 1	 2	 1	 2	 1=	 1	 5	 5	 20	 1

I able ö.b l<anKlng of maximum unimpairea mean joint angular accelerations for
each activity.

The angular accelerations were found to follow a similar pattern, the

greatest maximum occurring for the same rotation as the maximum velocity,

with the lowest maximum occurring about the shoulder adduction axis for the

drink from a mug activity which had a small angular range.

The raising of the block to head height was ranked as requiring the

greatest angular velocities and accelerations, this activity involving the largest

ranges of shoulder flexion and internal rotation from any activity as well as

relatively large ranges about the other axes of rotation.

8.6.8 Ranking of activities for analysis or modelling purposes

In order to assess which of the activities analysed in the current study

would be of most use in future studies of impaired upper limb motion, the

ranking positions from the final columns in each of Tables 8.65 - 8.69 for each

of the activities were totalled. The lowest possible overall total would be five if
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an activity was ranked highest in all five tables, the highest possible total being

fifty. The results are given in Table 8.70.

Overall Ranking	 Activity	 Overall Total

1	 Block to Head Height	 7

2	 Head Side and Back	 14

3	 Opposite side of Neck	 15

4	 Block to Shd. Height	 19

5	 Opposite Axilla	 28

6	 Answer Telephone	 29

7	 Brush Left of Head	 33

8	 Drink from Mug	 39

9	 Eat Hand to Mouth	 43

10	 Eat with Spoon	 45

Table 8.70 Overall ranking of activities.

It can be seen that the raising of the block to head height has the lowest

total by some way, indicating that it involved the greatest combination of

angles, forces, moments, velocities and accelerations from all the activities.

This activity would therefore be proposed as the most suitable of the activities

tested for assessment of impaired function in future studies.

8.6.9 Impaired subject data

From inspection of the angle patterns it can be seen that in general the

impaired subjects managed to achieve ranges of motion that lay within the ±

2SD boundaries of the unimpaired subjects. The joint force and moment data

also lay within these boundaries though there was a tendency for the moments

of subject No.11 to be slightly greater than the unimpaired mean while those of

subject No.12 were slightly lower.

When comparing patterns of force and moment between subjects, a

contribution to any variations will be made by differences in their segment

masses. It is therefore important when looking at data from impaired subjects

in particular, that variations must not be automatically attributed to impairment.

Subject No.11 had a body mass around 3.5 Kg greater than the unimpaired
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mean with that for subject No.12 some 12.45Kg below this mean. Such widely

differing body masses would easily account for variation in data such as that

seen for the block raise to shoulder height activity, during which subject No.11

generated a greater maximum shoulder flexion moment than the unimpaired

mean from any activity, with the maximum of subject No.12 lower by a

considerable margin.

Looking at the patterns of shoulder motion for the impaired subjects from

all the activities tested, subject No.11 reached a considerably lower maximum

shoulder adduction and slightly lower internal rotation than the unimpaired

mean, while subject No.12 reached a considerably lower maximum shoulder

flexion and adduction than the unimpaired mean. For the raising of the block to

head height both impaired subjects reached greater shoulder abduction than

the unimpaired mean perhaps indicating a requirement for greater protective

measures in order to avoid discomfort due to impingement. Both impaired

subjects were seen to employ a lowering of the head to allow the completion of

the reach to head side and back and brush the left side of head activities. A

further compensator'j	 'ua'	 \c'	 \

unimpaired mean, employed in six of the ten activities by subject No.11 and in

two by subject No.12.

Subject No.11 adopted a grip of the mug handle between thumb and

extended fingers, as opposed to encircling the handle with the fingers as was

performed by all other subjects, resulting in an increased abduction due to the

greater length afforded to the hand and mug. Both subjects clearly employed a

greater forearm pronation in order to tilt the mug however, rather than internally

rotating and flexing the shoulder as was the tendency with the unimpaired

subjects.

For the activities which were dependent on elbow motion and required

minimal involvement of the shoulder, the eat with hand to mouth, eat with a

spoon and drink from a mug activities in particular, there was no appreciable

variation between the shoulder rotations from the unimpaired and impaired

subjects.

In general, greater differences between the unimpaired and impaired

groups were noticeable for the velocity and acceleration data, there being a
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tendency for the impaired subjects to show lower maxima, particularly for the

accelerations. This indicated an inability to generate muscular forces

comparable to those of the unimpaired subjects, due possibly to a deterioration

in muscle capability through lack of use. Alternatively it may indicate a

conscious reduction in muscular force as a protective measure, reducing the

load on the tissues around the affected joint and therefore reducing the

possibility of experiencing discomfort.

Clear reductions in the velocities and accelerations for subject No.12 in

comparison to subject No.11 were shown in the plots of shoulder flexion

angular velocity and acceleration against flexion angle and elbow flexion

angular velocity against shoulder flexion angular velocity for the raising of the

block to shoulder and head heights and in the shoulder adduction angular

velocity against shoulder flexion angular velocity plot for the raise to head

height. These results indicate that for these activities at least, greater

protective measures were employed or a greater functional deficit was

experienced, by subject No.12 than subject No.11.

8.6.10 Contribution of additional hand load

As expected, the contribution of the hand-held loads to the external joint

forces and moments increased with their increasing mass. The greatest effect

occurred at the wrist due to the comparable masses of the hand and the objects

involved. The percentage contributions of the hand-held masses to the

external forces and moments at the shoulder and elbow were of similar

magnitude and some way below those at the wrist.

8.6.11 Comparison with Cheng (1996) and Williams (1996)

On repetition of the eat with hand to mouth activity of Williams (1996)

and the raising of the block to shoulder and head height activities of Cheng

(1996) the angular ranges and moment values at the shoulder and elbow were

found to compare well with those from the current study, particularly those for

the primary components of the motion involved. The good correspondence

with the results from these previous studies emphasised the validity of the

experimental methods and analysis techniques used.
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8.6.12 Graphical data output formats

In discussing upper limb motion control strategies, Barker (1996)

highlighted the difficulty in defining 'normal' and 'abnormal' upper limb motion

and indeed suggested that such clear definitions may actually be unobtainable

due to the mechanical degrees of freedom available. As discussed in the

introduction to Section 8.4, various permutations of data output were made in

an attempt to investigate their suitability in trying to shed some light on the

identification of normal and abnormal patterns of motion. The plots of joint

moment against joint moment and angu!a accee	 aas

acceleration were found to contribute no useful information during the analysis

of any activity.

Where they were incorporated, the phase plane plots of the relationship

between joint angular velocity and angle were of particular interest, showing

patterns similar to two out-of-phase sinusoids. Relatively consistent patterns

between subjects indicated the importance of the rotation involved and the

similarity of the strategies adopteci.

During the drinking from a mug, eating with hand to mouth, eating with a

spoon and answering a telephone activities, patterns were obtained for elbow

flexion angular velocity which were symmetrical across the X-axis, showing the

similarity in the flexion and extension velocities for raising and lowering phases.

Similar patterns were obtained for the shoulder flexion angular velocity during

the raise of the block to shoulder and head height activities. For all these plots

the maximum velocities during flexion or extension were seen to occur around

the mid-point of the motion. For the raising of the block to shoulder height

activity the plot of shoulder flexion angular velocity against angle shows a clear

reduction in the velocities and accelerations for subject No.12 in comparison to

subject No.11.

For the raising of the block to shoulder and head height activities,

involving similar movement strategies and targeted reaching of the hand, the

plots of angle against angle were found to be useful. Repeated relationships

were visible for the elbow flexion angles, the shoulder internal rotation angles

and the elbow pronation angles, all in relation to shoulder flexion.
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These patterns indicated that the subjects adapted similar strategies in order to

complete these activities. Also notable from these was the tendency for

shoulder internal rotation to increase as the shoulder was flexed during both

activities and the associated compensatory supination of the forearm in order

to maintain the wooden block in an upright position.

For the same activities, the plots of angular velocity against angular

velocity showed similar 'figure of eight' patterns. These patterns indicate that

different velocities occurred about each of the axes plotted, had they been the

same the expected pattern would have been closer to a straight line.

A reduction in the right hand, raising phase loop for subject No.12 was

evident for the raising of the block to shoulder height. This may be due to the

action of the muscles in this direction being opposed by gravity, whereas it

assists the muscles during lowering of the block. Atkeson & Hollerbach (1985)

previously suggested such an explanation for differences in joint displacement

patterns between upward and downward cycles and it seems that it may be as

valid for the angular velocities of these cycles.

The plots of moment against angle and angular acceleration against

angle also contributed to the discussion of some activities. The patterns

obtained for the plots of velocity, acceleration and moment against angle and

velocity against velocity indicated that these may be useful tools in the

identification of repeated patterns of motion and deviations from these patterns,

particularly for activities involving targeted reaching of the hand in the anterior

workspace.

8.6.13 Experimental arrangement

The initial positioning of the objects and the arrangement of the

experimenta' environment would have an effect on the results obtained. This

was perhaps best illustrated by the occurrence of the lowest minimum shoulder

flexion angles from any activity for the raising of the block to shoulder and head

heights. These low values were due to an initial position of the hand slightly

posterior to that from the other activities in order to allow gripping of the block.

Such small differences could explain the variations between the studies of

Williams (1996) and Cheng (1996) and the current study. As discussed in
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Section 8.5.10, if the shelf of Cheng (1996) was set at a lesser horizontal

distance from the subjects than in the current study during performance of the

block raise to shoulder and head heights, a greater shoulder abduction and

lesser elbow extension would be necessary in order to move the elbow laterally

and raise the block to the shelf. This would become more exaggerated as the

horizontal distance between subject and shelf was reduced and would also

explain the wide variation in the maximum shoulder abduction between the two

block raising activities of Cheng (1996).

8.6.14 General observations

During analysis of the reach to head side and back activity, the most

complex tested in terms of upper limb joint motion, it was necessary to discard

three data sets due to poor results from interpolation across missing marker

paths. This highlighted the difficulty in using four cameras to film motions

where both anterior and posterior views were required.

When raising the wooden block anteriorly to shelves at shoulder and

head heights, the results indicate abduction and internal rotation at the

shoulder and a simultaneous associated supination of the forearm for all

subjects. The shoulder motion is necessary to avoid impingement, with that of

the forearm acting as a compensatory mechanism to maintain the hand-held

block in an upright position.

The differences in body mass between subjects were seen to cause

variation in the results obtained. This was particularly obvious in the results

from the two impaired subjects where the maximum force and moment values

obtained for subject No.11 tended to be some way above those of the much

lighter subject No.12.

The tendency for the angle, force and moment data to show insignificant

differences between unimpaired and impaired subjects is consistent with

results obtained in previous studies. Williams (1996) found that looking at

angles alone allowed poor discrimination between unimpaired elbow function

and that from patients with arthritic conditions. Fazel-Rezai et al (1998) found

that no kinematic parameter showed a clear difference between unimpaired

subjects and those with rheumatoid arthritis of the shoulder during performance
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of five lifting and reaching tasks similar to those from the current study.

Schmidt et al (1999b) tested patients with different shoulder disorders for

maximal ranges of motion at the shoulder and during four reaching tasks.

Young (16-25 y) patients with unstable shoulder conditions were found to differ

little from an unimpaired control group, while older subjects (45-70y) with

degenerative shoulder conditions were found to show obvious differences in

joint angles, trajectories and velocities.

8.7 Activities performed b y sublect No.1 only

As earlier discussed and shown in Table 8.2, Subject No.1 performed six

activities in addition to those discussed in Sections 8.5. Three of these were

the brushing of the right side, back and top of the head, the others being a

reach to the throat, reach to the top of the head and the placing of the hand

over the mouth.

In the same manner as for the first ten activities, two repetitions of each

of the three brushing actMties performed ty Subject No.' 'ieie

Similarly three repetitions of each of the other additional activities were

analysed. The angles, forces and moments at the shoulder, elbow and wrist

during performance of these activities are given in Appendix N. As only a

small number of repetitions of each were performed and by a single subject,

these results cannot be held to be representative of the 'normal' patterns of

motion for these activities.

As can be seen in Appendix IV, the brushing activities and the reach to

the top of the head had similar patterns of motion and associated forces and

moments as those from the brushing of the left side of the head and reach to

side and back of head activities performed by all subjects. The placing of the

hand over the mouth and the reach to the neck activities had very similar

patterns of motion and associated forces and moments to those from the eating

with hand to mouth activity. These additional activities were not performed by

all subjects as the motions involved were considered to be similar to those of

other activities. The results obtained, though from one subject only, would

seem to support their exclusion on these grounds.
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CHAPTER 9: FURTHER INDICATED EXPERIMENTAL WORK

9.1 The influence of the non-rigid-body behaviour of the forearm

9.1.0 Introduction

During analysis of some of the activities discussed in Sections 8.4 and

8.5, the measured abduction angles at the elbow had greater ranges and

variability than might have been expected. The maximum abduction values

for some of the activities reached some way beyond the average adult

carrying angle found by Beals (1976) to be around 17.8°, or the figure of

15.4° from Deland (1987).

Pronation and supination of the forearm does not occur at the elbow

joint but along the length of the forearm between elbow and wrist. It would

therefore be possible for relative rotation between the markers attached on

the proximal and distal forearm to occur during pronation and supination.

As discussed in Section 6.3.11, anatomical calibration of the

epicondyles was carried out with the forearm in a 'neutral' position, pronated

90° from its fully supinated 'anatomical' position.

From such a position it is clear that if the forearm is rotated again into

full supination, the marker on the proximal ulna (marker 3 in Fig.6.5) will

remain largely in the same position while those on the ulnar and radial

styloids (markers I and 2 in Fig.6.5) will be rotated in the negative direction

about the forearm longitudinal axis.

The rotation between proximal and distal forearm will lead to a

deformation of the affixed marker pattern, the proximal ulna marker being

posteriorly and laterally displaced relative to the styloid markers after

supination from the neutral position.

Subsequent least squares fitting of the original marker configuration to

this deformed marker pattern as described in Section 5.3, would cause the

orientation of the technical embedded frame to be determined in greater

adduction and flexion than it had actually reached. This would in turn cause

the anatomical embedded frame to be defined in a similarly adducted and
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flexed position, influencing the accuracy of the angular values obtained for

the rotations at the elbow.

A similar effect would be introduced if no least squares fitting were

used, the embedded technical frame being defined from the raw marker co-

ordinates. In this instance if the proximal ulna and ulnar styloid markers were

used to define the primary axis of the forearm technical frame in the initial

position, on supination of the forearm this frame would again be identified

both flexed and adducted from its true position as shown in Fig.9.1.

(a)	 (b)	 (c)

Fig.9.1 Flexion and adduction of embedded frame due to relative motion between proximal
and distal forearm markers. (a) Frame defined in neutral position, (b) Frame defined in
supinated position if proximal forearm marker also rotates, (C) Frame defined in supinated
position if proximal forearm marker remains stationary.

Fig.9.1. is simplified so that the axis of rotation passes midway

between the radial and ulnar styloid markers and is offset equally from the

proximal ulna marker and each of the styloid markers. In reality this rotation

axis would pass through the centre of the radial and ulnar heads (Nakamura

et at (1999)).

Alternatively if no least squares fitting were used and the radial and

ulnar styloid markers were used to define the primary axis of the forearm

technical frame in the initial position, the offset from its true position on

supination of the forearm would involve flexion only. In this case the

adduction component would be removed in the process of finding the cross-

products to define the axes.
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This last solution might seem to be the best but relies on the initial

forearm technical axis defined between the radial and ulnar styloid markers.

The short distance between these markers would increase the influence of

any marker digitising errors when defining the axes, an effect reduced by the

selection of wider spaced markers when defining the primary technical axis.

Also, although the error introduced to the measured elbow adduction angle

would be removed using this last method, any correction of the error

introduced to the flexion angle would be difficult.

Least squares fitting of the original marker configuration was used in

the current study. The anatomical calibration of the epicondyles with the

forearm in 900 of pronation from its fully supinated 'anatomical' position was

adopted. Forearm pronation was found to vary fairly evenly about this point,

the maximum unimpaired mean values from all tests being 65.3° of pronation

and 53.7° of supination.

In order to investigate what contribution the forearm frame deformation

might make to errors in the measured properties during analysis of upper limb

activities, some additional tests were incorporated during filming of subject

No.10, the final unimpaired subject.

9.1.1 Epicondyle anatomical calibration for varying forearm pronation

The first additional test was to carry out anatomical calibration of the

lateral and medial epicondyles with the elbow in three positions of pronation,

these being full supination, full pronation and a position midway between,

defined as 'neutral' and adopted during subject testing.

The aim in performing this test was to assess the effect on the

resulting angles, forces and moments when the initial relationship between

the forearm embedded technical and anatomical frames was defined in the

varying positions of forearm rotation. The relationship between these frames

would be different for each position of forearm pronation.

The assessment was carried out using the data from the right hand

reach to the left side of the neck activity for subject No.10, this activity being

analysed using the three sets of epicondyle anatomical calibration data in
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turn. The reach to the left side of the neck activity was selected as it exhibited

the largest unimpaired mean range of forearm pronation from any of the

activities tested, between -53.7° and 52.00. The results obtained for the

shoulder, elbow and wrist are given in Figs.9.2, 9.3 and 9.4 respectively.

At the shoulder there is little apparent variation in the angles or the

major force and moment values on performing the analysis for each of the

three positions of forearm anatomical calibration. Some of the lesser force

and moment values are more affected though the magnitudes are small.

At the elbow a far greater variation in the angles than that shown for

the shoulder is apparent. In particular the elbow adduction angle and elbow

flexion angle can be seen to be affected as suggested in Section 9.1.0.

The results obtained for the extremes of pronation and supination are

more exaggerated than any data obtained during subject testing as such

extreme positions were never reached in practice. The results in Fig.9.3 do

indicate however, that slight variations in the position of the forearm during

anatomical calibration for the subjects and therefore differences in the

relationship established between the embedded technical and anatomical

frames, are almost certainly a contributory factor to the variations seen in the

elbow adduction values during testing.

The forces and moments at the elbow and wrist can be seen in Fig.9.3

and Fig.9.4 to be less severely affected than the angles at the elbow, this due

to the fact that the measured adduction angles were not included in the

dynamic model, as discussed in Section 9.1.4.

9.1.2 C7 anatomical calibration for varying forearm pronation

The second additional test was to carry out anatomical calibration of

the seventh cervical vertebra (C7) with the forearm again in positions of full

supination, full pronation and a neutral position midway between.

For this test calibration of the epicondyles and therefore initial

definition of the relationship between the embedded technical and anatomical

frames was carried out with the forearm in the neutral position as was

adopted during subject testing.
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As discussed in Section 6.5.5 the initial configuration of the markers

used as the reference for the SVD least squares fitting in subsequent frames

was defined from the position of the upper limb during anatomical calibration

of the C7 landmark. The aim was to assess the effect on the resulting

angles, forces and moments when the reference marker configuration for the

SVD process was defined in varying positions of forearm rotation.

Again this assessment was made for the data from the right hand

reach to the left side of the neck activity, incorporating the greatest range of

forearm pronation measured for any of the activities. The results obtained for

the shoulder, elbow and wrist are given in Figs.9.5, 9.6 and 9.7 respectively.

These show no significant differences in the results obtained at any of

the three joints and are identical to the results obtained for the neutral

forearm anatomical calibration in the previous section and shown in Figs.9.2,

9.3 and 9.4.

This indicates that the initial marker configuration for the SVD fitting is

not the source of the poor results at the elbow but that these are due to

variations in the initially defined relationship between technical and

anatomical embedded frames or changes in this relationship during motion.

The similarity between the results of this test and those for the neutral

forearm position from the previous test indicates that having established the

relationship between the embedded technical and anatomical frames the

errors introduced by subsequent deformation of the frame are 'locked in'

irrespective of the position taken to define the initial configuration of the

markers for the SVD fitting process.

The selection of the initial position has no effect on the initially defined

relationship between the embedded technical and anatomical frames and

each forearm position during the cycle would introduce the same distortion to

the marker pattern irrespective of which position is used to define the initial

configuration.

It was therefore established that the variation in the elbow adduction

values was not due to any variation in the position of the forearm in which the

initial marker configuration for the SVD fitting was defined.
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9.1.3 Effect of frame deformation during pure forearm pronation

The third additional test was for the subject to perform elbow pronation

and supination across their maximal range while the upper arm was

maintained in a constant position.

The aim in performing this test was to assess the level of elbow

adduction/ abduction that was measured during pure forearm pronation and

supination due to deformation of the surface marker pattern from the initial

pattern used to define the embedded axes.

As for the first test discussed in Section 8.6.1, anatomical calibration of

the lateral and medial epicondyles was carried out with the elbow in full

supination, full pronation and in the neutral position midway between. The

results obtained are given in Fig.9.8 and show the results from the forearm

pronation activity for each of three anatomical calibration positions.

Fig.9.8 shows similar results to those in Fig.9.3, a difference between

the results for the three data sets being shown. This supports the earlier

finding, that changing the initial relationship between embedded technical

and anatomical frames leads to changes in the results obtained.

On considering the traces for the three anatomical calibration positions

independently, it is clear that an adduction was measured during forearm

pronation and supination, though such an adduction motion was not

performed by the subject.

The results form this test support the earlier result that the definition of

the initial relationship between the embedded technical and anatomical

frames has an effect on the results obtained. They also show that once the

relationship between the embedded technical and anatomical frames has

been defined, subsequent deformation in the marker pattern due to forearm

pronation leads to a similar change in this relationship, resulting in the

measurement of an adducton angle that did not occur.

Again as in Section 9.1.1 an effect is also apparent for the flexion

results indicating cross-talk due to misalignment between the embedded axes

and the underlying true anatomical rotation axes. As discussed in Chapter 7
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such cross-talk is unavoidable when defining orthogonal embedded frames

for a system of rotations that do not necessarily occur about orthogonal axes.

9.1.4 Influence of elbow adduction! abduction on dynamic results

The final additional test involved the insertion of predefined elbow

abduction or 'carrying' angles into the linkage model used for calculation of

the limb dynamics.

Four values considered representative of the true anatomical values

were tested, these being 0°, 10°, 20° and the average adult carrying angle of

17.8° from Beals (1976). All other angles at the shoulder and elbow were

kept constant in the dynamic model throughout, the only change being in the

defined value of the elbow carrying angle.

The aim of this test was to assess how the amount of carrying angle

defined in the dynamic model affected the final force and moment results.

This would indicate the relevance of the problem with the elbow adduction

angles for a dynamic study. As before, the data from the right hand reach to

the left side of the neck activity was used. As well as a large range of

forearm pronation this activity involved a large range of elbow flexion thus

maximising the effect of any carrying angle included in the dynamic model.

The results obtained for the shoulder, elbow and wrist are given in Figs.9.9,

9.10 and 9.11 respectively.

These results show that defining a carrying angle in the dynamic

model has little effect on the major forces and moments at each of the joints

in comparison to those obtained with no defined carrying angle. This

suggests that the problem with the forearm marker pattern deformation and

adduction angles at the elbow is of greatest importance to those studies

where accurate measurement of this adduction is a key aim.
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9.1.5 Summary of testing of non-rigid-body behaviour of the forearm

The tests discussed in Sections 9.1.1-9.1.4 allowed an insight into the

problems introduced during upper limb testing due to the deviation of the

forearm from the rigid body assumption.

The first three tests were performed by a single subject only and for

the performance of a single activity and thus their significance must not be

overstated. The reach to the opposite side of the neck activity had the

greatest range of forearm pronation/ supination from all those tested however

and thus allowed an idea of 'worst case scenario' to be obtained.

The first and third tests indicate that different initial definitions of the

relationship between the embedded technical and anatomical frames, lead to

differences in the results obtained, in particular for adduction and flexion at

the elbow.

From these same tests it is also clear that variability in the values of

adduction and flexion at the elbow are caused by the fitting of the initial

marker configuration to a marker pattern subsequently deformed during

forearm pronation and supination. This is due to the deformation of the

marker pattern from that used to define the relationship between the

embedded frames.

It can be seen that the variation in elbow adduction angles apparent

during subject testing could easily have been caused by slight differences in

the initial forearm pronation between subjects and subsequent differences in

the deformation of the marker pattern during performance of the upper limb

activities.

The results of the third test indicate that the variation in elbow

adduction angles during testing was not due to variation in the position of the

forearm selected for the definition of the initial marker configuration for SVD

fitting.

The final test indicates that the input of carrying angles with

magnitudes similar to those accepted as being true anatomical values has

little effect on the principal force and moments measured at the joints of the

upper limb during performance of a standard daily task.
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It is clear that further work is required on this aspect of upper limb

studies, particularly for those that wish to focus on the motion of the elbow

and forearm. The inherent problems of trying to model the forearm as a

single rigid body when it actually consists of two and trying to track its motion

using skin fixed markers make a complete solution to this problem very

d ifficu It.

Greater consideration of the locations and patterns of the markers

fixed to the forearm and the definitions of embedded frames from these

markers is required.

These additional tests have shown that for the current study the

adoption of the neutral forearm position for anatomical calibration was the

most suitable in terms of minimising the deformation problems, Figs.9.3, 9.4

and 9.8 showing the results for the neutral forearm position to lie somewhere

in between those for the extremes of pronation.
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CHAPTER 10 : CONCLUSIONS AND FURTHER WORK

10.1 Conclusions

10.1.1 Development and validation of the measurement technique

This thesis has presented the development, validation and application

9f a technique for the measurement of upper limb kinematics and dynamics

during the performance of everyday tasks.

A set of analysis routines were written to enable the calculation of joint

angles, angular velocities, angular accelerations, cadences and external

forces and moments during the performance of ten activities by twelve

subjects.

It has been shown that the attachment of deformable skin fixed marker

arrays on the segments of the trunk and upper limb may be used in

conjunction with a pointer based anatomical calibration procedure and

optimised fitting of the marker configurations in order to obtain upper limb

kinematic information during everyday activities.

A novel configuration of markers for the trunk was established, the

trunk vertical axis being defined directly through the vertical alignment of

markers over the manubrium and xiphoid with the trunk in an upright position.

A novel method for the location of the rotation centre of the

g)er?ohumera) joint was estab)shed, a normalised vector between the most

superior point on the acromioclavicular joint and the glenohumeral rotation

centre being defined, based on the cadaver studies of Veeger et al (1997)

and Pronk (1991).

10.1.2 Results

The techniques developed for the measurement of upper limb motion

and the dynamic modelling of this motion have been shown to be valid, based

on the results of rigorous validation studies and favourable comparisons with

the results of previous studies. Through testing of both unimpaired and

impaired subjects it has been shown that the techniques developed were
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sensitive enough to identify deficits in upper limb motion for the impaired

subjects.

It can be concluded that the experimental methods and analysis

techniques developed and applied are suitable for the investigation of upper

limb kinematics and dynamics, for establishing standard patterns of motion

and any deviations from these.

From the assessment of the six available JCS sequences in relation to

the upper limb, it can be concluded that the selection of the Flexion-

Adduction-Rotation JCS axis sequence is the most suitable for the

description of shoulder and elbow motion.

Considering the kinematics and dynamics of the upper limb during

everyday tasks, the following conclusions may be drawn:

1. Elbow flexion was the major component for successful completion of

the selected everyday tasks, with flexion of the shoulder the next

most important.

2. During anterior targeted lifting the shoulder abducts and internal

rotation occurs to maintain the hand on the targeted path.

Supination of the forearm is then required to preserve the upright

position of the hand-held object.

3. Subjects with shoulder impairment generally exhibit lower joint

angular velocities and accelerations than unimpaired subjects.

4. The degrees of freedom available to the upper limb allow the

adoption of varied motion strategies for everyday activities.

10.1.3 General issues

Four cameras were found to be suitable for studies of complex upper

limb motion occurring primarily in the anterior workspace, though difficulties

occurred where both anterior and posterior views of the subject were

required.
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Changes in the configuration of the markers attached to the forearm

during pronation and supination introduced errors in the results obtained for

the angular values at the elbow.

It was also found that the major forces and moments measured at the

joints of the upper limb during performance of standard daily tasks were

unaffected by the inclusion of anatomically representative carrying angles in

the dynamic modelling process.

The phase plane plots of joint angular velocity against joint angle and

the plots of angular velocity against angular velocity were found to be useful

in determining standard motion patterns for targeted reaching tasks in the

anterior workspace and any deviations from these patterns.

10.2 Recommendations for further work

10.2.1 Overcoming marker deformation during forearm rotation

Further work is required into the problem of defining a reliable

embedded frame from markers attached on the forearm. It may be that for

accurate measurement of forearm motion, a rigid marker array attached to the

distal forearm might be more suitable than deformable skin-fixed arrays or

that more than one forearm frame should be defined.

Alternatively if these problems cannot be overcome then their

characteristics should be found. Schmidt (1998), (1999a) looked at wrist and

elbow motion with markers attached to a foam rubber cuff on the forearm.

Problems were found at the wrist due to the attached markers not following

the pronation/ supination movement. Suggested were the inclusion of 'pure'

rotations to correct the rotation axes, remove crosstalk and explicitly establish

the skin movement.

Such a procedure could be adopted in order to characterise the

deformation of the configuration of markers attached on the proximal and

distal forearm. Pure forearm pronation/ supination with a flexed elbow and

straight wrist could be measured using a potentiometer or goniometer while

simultaneously filming attached markers. The relationship between the
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deformed marker pattern and the true rotation angles could then be

established and corrections applied.

10.2.2 Further upper limb testing during everyday tasks

A replication of the activity analysis incorporating multiple repetitions

from each subject would allow further validation of the results presented here

and would further establish the characteristic kinematic and dynamic patterns

from both unimpaired and impaired subjects.

Such studies should incorporate additional activities in order to allow

the development of a comprehensive database of upper limb kinematic and

dynamic information. This may then be used to aid in the differentiation of

pathological effects on upper limb kinematics and dynamics from the typical

variations which occur within a group of unimpaired subjects.

Testing of both left and right sides of the subjects should be carried

out in order to assess the difference between impaired and unimpaired limbs,

while also allowing comparison of the movement patterns for the dominant

and non-dominant sides. Activities involving the simultaneous use of both

upper limbs could be included.

Pre-operative and post-operative studies of impaired upper limb

kinematics have previously been performed and similar studies incorporating

the dynamics of the upper limb are required. The inclusion of both elderly

and younger subjects would allow any differences between these groups to

be determined.

10.2.3 Upper limb motion during targeted anterior reaching

Further investigation into the relationship between abduction and

internal rotation at the shoulder and the associated supination of the forearm

during targeted anterior lifting is necessary. The effect of lifting to varying

heights could be investigated as could the lifting of different masses and

objects with varying offset positions of centre of mass. The difference in

patterns between impaired and unimpaired subjects for such activities also

requires further investigation.
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10.2.4 Further assessment of data presentation methods

Further investigation of the various permutations for data output is

required. Characteristic patterns in the plots of joint angular velocity against

joint angular velocity and against joint angle, as obtained for the block raising

tasks, may occur for a variety of similar activities. The identification of such

characteristic patterns could then be used in the identification of motion

strategies and their variations and deviations from these patterns for impaired

subjects.

The presentation of dimensionless measurements, commonly utilised

during gait studies should be investigated for suitability in upper limb studies.

As discussed by Sutherland (1996), Zijlstra et at (1996) and Hof (1996) these

dimensionless quantities may be obtained by taking the physical quantity and

dividing it by a constant quantity which is a relevant measure of the size of

the subject, i.e. body mass or height. The most suitable dimensions for

scaling data from upper limb studies should be found as these may differ from

those for gait studies.

10.2.5 Utilising the advance in technology

Rhoad et al (1998) describe the use of magnetic resonance imaging in

a study of the glenohumeral translations during shoulder internal and external

rotation as a series of five static positions. Similarly Nakamura et at (1999)

decribe the use of magnetic resonance imaging in a study of forearm

pronation and supination again as a series of five static positions.

The most accurate solution for the process of anatomically calibrating

the relationship between surface fixed markers and underlying anatomical

features prior to filming motion studies would seem to involve this technology.

Relationships between centres of rotation and surface markers could be

accurately specified as could the effects of skin movement and deformation of

marker clusters.

The possible incorporation of such technology in the process of upper

limb analysis requires to be investigated, particularly if the advancement of
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such technology leads to MRI systems with greater internal volume allowing

studies of more extensive motion of the upper limb than simply internal and

external rotation.

10.3 Concluding Statement

In order to enable the measurement and modelling of upper limb

kinematics and dynamics during performance of everyday tasks, a set of

experimental methods and analysis techniques were developed. These have

allowed patterns of upper limb motion to be determined and variations

between unimpaired and impaired subjects to be established.

The data obtained during this study are now being used in the

development of a detailed musculoskeletal model which will include both

passive and active soft tissues and which will subsequently be used for the

prediction of internal joint forces in both static and dynamic activities, further

aiding the understanding of upper limb function.
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APPENDIX II

Results for Activities 2 - 10

Figure	 Page	 Figure	 Page	 Figure	 Page
Fig.A.8.1O	 301	 Fig.A.8.35	 324	 Fig.A.8.64	 347
Fig.A.8.1i	 302	 Fig.A.8.37	 325	 Fig.A.8.65	 348
Fig.A.8.12	 303	 Fig.A.8.38	 326	 Fig.A.8.67	 349
Fig.A.8.13	 304	 Fig.A.8.39	 327	 Fig.A.8.68	 350
Fig.A.8.14	 305	 Fig.A.8.40	 328	 Fig.A.8.69	 351
Fig.A.8.15	 306	 Fig.A.8.41	 329	 Fig.A.8.70	 352
Fig.A.8.16	 307	 Fig.A.8.43	 330	 Fg.A.8.71	 353
Fig.A.8.17	 308	 Fig.A.8.44	 331	 Fig.A.8.72	 354
Fig.A.8.18	 309	 Fig.A.8.45	 332	 Fig.A.8.73	 355
Fig.A.8.19	 310	 Fig.A.8.47	 333	 Fig.A.8.74	 356
Fig.A.8.20	 311	 Fig.A.8.48	 334	 Fig.A.8.77	 357
Fig.A.8.21	 312	 Fig.A.8.49	 335	 Fig.A.8.78	 358
Fig.A.8.22	 313	 Fig.A.8.50	 336	 Fig.A.8.79	 359
Fig.A.8.23	 314	 Fig.A.8.51	 337	 Fig.A.8.80	 360
Fig.A.8.24	 315	 Fig.A.8.53	 338	 Fig.A.8.81	 361

Fig.A.8.25	 316	 Fig.A.8.54	 339	 Fig.A.8.85	 362

Fig.A.8.26	 317	 Fig.A.8.55	 340	 Fig.A.8.86	 363

Fig.A.8.28	 318	 Fig.A.8.57	 341	 Fig.A.8.87	 364

Fig.A.8.29	 319	 Fig.A.8.58	 342	 Fig.A.8.90	 365
Fig.A.8.30	 320	 Fig.A.8.59	 343	 Fig.A.8.91	 366
Fig.A.8.31	 321	 Fig.A.8.60	 344	 Fig.A.8.92	 367
Fig.A.8.33	 322	 Fig.A.8.61	 345	 Fig.A.8.93	 368

Fig.A.8.34	 323	 Fig.A.8.63	 346	 Fig.A.8.94	 369
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APPENDIX III

Results for wrist - All activities
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APPENDIX IV

Results for tests performed by subject No.1 only
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APPENDIX V

MATLABTM analysis routines in alphabetical order:

MATLAB Routine	 Page
APAS.m	 411
Cole.m	 414

data sdd.m	 415
Deg2rad.m	 418

dpf.m	 419
dpfsweep.m	 421

gh!oc.m	 423
hmnumdiff.m	 426

numdiff.m	 428
pends.m	 432
plots.m	 434

Rad2Deg.m	 440
RNE.m	 441

Rzyxsolv.m	 445
signd.m	 447
Soder.m	 448
tech.m	 450
tech2.m	 455
unit.m	 459

vecsize.m	 460



APAS.m

%Procedure to allow the running of the APAS analysis functions on typing
%the instruction "APAS" at the >> prompt. The analysis option should be run
which
%will produce and save files of data.
%Then the 'plots' or 'normalise' option can be run as many times as required.

%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.

%Date: June 1998
%Modifications:	 Largely re-written 02/12/98 to allow quicker data analysis

by running tech, tech2 and numdiff automatically.

%Input:	 handvec - a row vector containing the values of hand load for each
test in order.
%	 srvec •- a row vector containing the values of the time between samples
for each test.
%Output: Runs selected script rn-file.

%load(input('Type the name of the subject file.you wish to analyse: ','s'))

antzts=menu('Which option do you require ?','ANALYSE ALL ACTIVITIES','ANALYSE A
SPECIFIC ACTIVITY','PLOT RESULTS', 'NOPNALISE ESULTS','CLOSE WINDOW');

if antsts==1

handvec(0 0 0 0 0.048 0.2755 0.215 0.045 0.452 0.452]
srvec=[0.04 0.06 0.06 0.06 0.04 0.06 0.06 0.06 0.06 0.06]

%Ask for segernent parameters.
M=input('What is the body mass of the subject in kilograms ? ');
H=input('What is the height of the subject in metres ? ');

LSQFinput('Do you wish to use the SVD least squares fitting of marker
positions? Y/N (Y] : ', 's');

if isempty(LSQF)
LSQF='Y';
end

load le.txt
load me.txt
load tv.txt

%
rpzinput('How many activities were tested ?: ');
for files=1:rps

file = 'Test';
l oad([ file , num2 str ( files ), '.txt'));
should=eval(('Test' num2str(files)]);
disp ([' Test ' num2str(files)]);
Hload=handvec (files)
h=srvec (files)
tech
t e ch2
numdi ff
clear global
hmnumdi f
clear global

testres= [ALLANGLE ALLFORCE ALLMOMENTS];
eval(['Tstres' num2str(files) '=testres']);
File = 'Tstres';
save((File,num2str(files)],[File,num2str(files)J, 'ascj.

1 ,'-tabs')
hlodres=(ALLHLFRCS ALLI-ILMOMS];
eval(['Hldres' nuzn2str(files) '=hlodres']);
FilE = 'Hldres';
save ( FilE, num2str ( fi les )],[ FilE ,nuin2 str (fil e s)], '-ascj, ,-tabs)

inrtres=CINERTIAMOMSJ;
eval([' Ineres ' num2str(files) '=inrtres'));
fiLe = 'Ineres';
save ([ fiLe , num2str ( files )],[ fiLe , num2str ( files )], '-ascij '-t b

%	 ,	 as)

trajve l= [ straj etraj wtraj q qd qdd];
eval ([' Trjvel ' num2str(files) '=trajvel']);
fIle = 'Trjvel';



save([flle,nuni2str(filez)),[flle,num2str(files)],'-ascii', 	 tabz')412

omomdot r= [ OMEGAS OMEGADOTS);
eval(['Omegz' num2str(files) =omomdot']);
fILe = 'Omegs';
save([fILe,num2str(files)),[fILe,nuxn2str(files)),'-ascii','-tabs')

if files==l
bsps=[ual fal hl;uam fam hm;uac fac hc;uala ualt uall;fala falt faIl;hla

hIt hI],);
eval(['BSPs' nuin2str(files) 'bsps'));
filE = 'BSPs';
save([filE,num2str(files)),[filE,nuxn2str(files)), '-ascii', '-tabs')
end

end
apa 5
end

if antsts==2

%Ask for segement parameters.
M=input('What is the body mass of the subject in kilograms ? ');
H=input('What is the height of the subject in metres ? ');

LSQF=input('Do you wish to use the SVD least squares fitting of marker
positions? YIN [Y): ','s');

if izempty(LSQF)
LSQF='Y';
end

%
load le.txt
load me.txt
load tv.txt

nxtest=input('Which activity do you wish to analyse?: ');
file	 'Test';
load ([ file , num2str ( nxtest ), '.txt'));
should=eval (['Test' num2str (nxtest)]);
disp (['Test' num2str (nxtest)));
Hload=handvec (nxtest);
h=zrvec (nxtest);
tech
tech2
numdi ff
clear global
testres= [ ALLANGLE ALLFORCE ALLMOMENTS];
eval(['Tstres' nuxn2str(nxtest) '=testres'])
file	 'Tstres';
save ([ file , num2 str ( nxtest )),[ file , num2str (nxtest)], '-ascii', '-tabs')
ap as

end
if antsts==3

plots
end
if antsts==4

rpps =input('How many activities were tested ': ');
cadence=[];
for ffiles=l:rpps
disp( ['Results' num2str(ffiles)])

ffile	 'Tstres';
load([ffile.nuin2str(ffiles)]);
Whatest=eval ([' Tstres ' num2str(ffiles)]);
fFiLe = 'Hidres';
load( (fFiLe, num2str (ffiles)]);
Whahl=eval([' Hldres ' num2str(ffiles)));
data sdd

eval(['Nrmres',num2str(ffiles),'=normres']);
fiile = 'Nrmres';
save([fijle,num2str(ffiles)),[fiile,num2str(ffiles)],'-asci i ', '-

tabs');

eval(('Nrhlrs',num2str(ffiles), '=norhlrs']);
fliLe = 'Nrhlrs';
save([fliLe,num2str(ffiles)],[fliLe,nuxn2str(ffiles)], '-ascii','-

tabs');
end

Cadnce=cadence;



save Cadrice Cadrice -ascii -tabs; 	 413apas	 -
end
if antsts==5
close
end



Cole.m

function [out] = cole(data)
%Procedure to calculate the rotations about defined embedded axes using
%the joint co-ordinate system.

%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.

%Date: March 1998
%
%References: Cole,G.K. et al (1993). Application of the Joint Co-
ordinate System

to Three-dimensional Joint Attitude and Movement
Representation : A

Standardization Proposal. Journal of Biomechanical
Engineering.

November 1993 : Vol 115 : pp 344-349

%e(k)=unit vector describing the attitude of the kth axis of the joint
co-ordinate system between the reference segment (1) and the target

segment (2),
%	 relative to an inertial reference system
%F, L, T = breakdown of the axes of a body segment co-ordinate system
into an
%	 axis of flexion, a longitudinal axis and a third axis.
%fi, ii, ti = unit vectors that describe the attitude of the F, L and T
axes

respectively, in an inertrial reference system

%Input: Matrix C= [fl 11 tl;f2 12 t2], containing the unit vectors
describing the

attitude of the axes of the co-ordinate systems embedded in each
segment.

Vector [fl 11 ti] describes the flexiori, longitudinal and third
co-ordinate
%	 axes of the proximal segment.

Vector [f2 12 t2J describes the flexion, longitudinal and third
co-ordinate
%	 axes of the distal segment.
%
%Output: Angles of rotation about axes el, e2, e3, flexion, abduction and
rotation

respectively.
%
fl=data(1,1:3);,ll=data(1,4:6);,tl=data(1,7:9);
f2=data(2, 1:3) ;,l2data(2,4: 6) ;,t2=data(2,7: 9);
el=f 1;
e3=12;
across (e3,el);
b=vecsize(cross (el,e3) );
if (dot((cross(e3,e1)),t2)<O) & (dot((cross((cross(e3,el)),e3)),f2)>O)

else
A 1;

end
e2(a/b) *A;
r=(cross (fl,e2) )/(vecsize(cross (fl,e2) ) )
thetal= (acos (dot(e2,tl) ) ) * (signd(dot(e2,l1) ));
theta2 = (acos (dot(r,12)) )*(signd(dot(fl 12)));

out= [ rad2deg(thetal) ,rad2deg(theta2) ,rad2deg(theta3)];



data sdd.m	 415

%THIS MPTLAB ROUTINE STANDARDISES THE DATA CYCLE LENGTHS TO 100 POINTS

%Adapted from code first written 24/11/95 by John R. Williams and given
in;
%Williams,J.R. (1996) Some Aspects of the Biomechanics of the Elbow
Joint:
%Related to Prosthetic design.
%
%Modified to include Force and Moment normalisation by I. Murray 21/7/98
%Modified to allow loading and saving of particular test by I. Murray
02/12/98
%Modified to normalise with interpi instead of interpft by I. Murray
04/03/99

%
cyclea[];
cyclef=[];
cyclem=[J;
cyclhl [];
ANGLES dg=Whatest (:11:6);
FORCES dgWhatest ( : ,7:15);
MOMENTS dg=Whatest( :,16:22);
HLFMOM dg=Whahl(:,1:16);
%
%Plot Shoulder and Elbow Flexion curves.

figure (1)
cif reset
plot (ANGLES dg(: ,2))
hold
plot (ANGLES dg ( : , 5), 'r')
plot([0,(max(length(ANGLES_dg)))+10],[0,0],'m');

%Identify start and end points of cycle.

disp (['Test' num2str (ffiles)])
disp('	 "Use cursor to click on start of each cycle, then press "return"
,, , )

lginput;	 %reads point from cursor
l=l(:,1);	 %discards y values

%Calculation of cadence in cycles per minute
cadence(ffiles,1)=(1/((l(2,1)l(l,1))*srvec(1,ffiles)))*60;
%

%spread the field range up and down one frame.

lup=ceil(l);	 %rounds towards +infinity
ldown=floor(l); %rounds towards -infinity

figure(2);	 %prepare figure for data
clf reset;
hold;

angle data=zeros (100,6);

%define the start and finish frames of each cycle
start=ldown(1, 1);
finish=lup (2,1);

%define cycle.
cyclea=ANGLESdg (start: finish,:);

%standardise data to 100 sample points per cycle



sizcyca=size(cyclea,1); 	 416
oldXa=(l:1:sizcyca); 	 -
newXa=linspace (1, sizcyca, 100);
for cyang=1:6;
oldYa=cyclea ( : , cyang);
newYa(: ,cyang)= interpi (oldXa, oldYa, newXa, 'spline');
end;
cydata=newYa;

%
%alternatively use:
%cydata=interpft (cyclea, 100);

plot(cy data);
grid
angle data=cy data;

%

figure(3)
cif reset;
%
force data=zeros (100,9);

%define the start and finish frames of each cycle
%

start=1 down ( 1, 1)
finish=lup (2,1);

%
%define cycle.

cyclef=FORCESdg(start:finish,:);
%
%standardise data to 100 sample points per cycle

sizcycf=size(cyclef,.1);
oldXf(1:1:sizcycf)
newXflinspace (1, sizcycf, 100);
for cyforl:9;
oldYf=cyclef ( : , cyfor);
newYf(:,cyfor) interpi (oldXf, oldYf, newXf, 'spline');
end;
for data=newYf;

%Alternatively use
%fordatainterpft (cyclef, 100);

plot ( for data) ;
grid
force data=for data;

%
%
figure(4)
cif reset;

moment data=zeros (100,7);
%
%define the start and finish frames of each cycle

start=ldown(1, 1);
finish=l_up (2,1);

%
%define cycles.

cyclem=MOMENTSdg (start: finish,:);
%
%standardise data to 100 sample points per cycle

sizcycm=size(cyclem,1)
oldXm=(l:1:sizcycm);
newXm=linspace (1, sizcycm, 100);
for cymom=1:7;
oldYm=cyclem( : , cymom);
newYm(:,cymom)= interpi (oldXm, oldYm, riewXm, 'spline');
end;
xnomdata=newYm;
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%Alternatively use
%momdata=interpft (cyclem, 100);

plot (mom_data);
grid
moment data=mom data;

figure(5)
clf reset;

hlfmomdata=zeros (100,16);
%
%define the start and finish frames of each cycle

start=l down (1, 1)
finish=lup (2,1);

%define cycles.
cyclhl=HLFMOMdg (start: finish,:);

%standardise data to 100 sample points per cycle
szcychl=size(cyclhl,1);
olXhl(1:1:szcychl);
nwXhl=linspace (1, szcychl, 100);
for cyhll:16;
olYhlcyclhl(: ,cyhl);
nwYhl(:,cyhl)= interpi (olXhl, olYhi, nwXhl, 'spline');
end;
hi fmomdata=nwYhi;

%Alternatively use
%hlfmomdatainterpft (cyclhl, 100);
%

plot (hlfmom data);
grid
hndl fmom data=hl fmom data;

normres=[arigie data force data moment data);
norhlrs=[hndlfmom data];
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function [out]=deg2rad (in)

% function [outJ=deg2rad(in)

% Description:	 Conversion of degrees to radians applied to the entire
matrix

% Input:	 in (values in degrees)

% Output:	 out (values in radians)

% Author:	 Christoph Reinschmidt, I-IPL, The University of Calgary

% Date:	 October, 1994

% Last Changes:	 November 29, 1996

% Version: 1.0

outin./(l8O/pi)
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function [ds,Sopt,gcv] = dpf( data, delT, S, maxiter

% DPF:

% A straightforward, but inefficient, implementation of the Dohrmann
% dynamic programming filter using the built-in matrix programming
% abilities of Matlab. To improve speed, either recode the filter
% using the optimized algorithms contained in the C version or compile
% the C version as a DLL and call the DLL from Matlab. Note that this
% routine simply orchestrates the search for the optimal smoothing
% parameter; the real work is done by the routine DPFSWEEP.M.

% Usage:	 [ds,Sopt,gcv] = dpf( data, delT, S, maxiter

% Inputs:
data:	 a vector of noisy data
delT:	 sampling interval

%	 S:	 a smoothing parameter (0 if optimization is requested)
maxiter:the maximum number of iterations used to find the

optimum;
if maxiter = 0, then no optimization is performed and the
data is smoothed using the supplied value of S

% Outputs:
ds:	 smoothed position, velocity and acceleration vectors,

arranged by row
Sopt:	 the optimal smoothing parameter

%	 gcv:	 the generalized cross-validation value

%	 Copyright 1993 Antony Hodgson (ahodgson@hstbme.mit.edu )
%	 All rights reserved

disp('DF notice: This routine is quite slow. Please be patient.');
npts = length(data);

epsiln = le-4; % termination criterion on smoothing parameter range
if (S <= 0), S = 1e5; end
xl = loglO(S);
dx = 1;

if maxiter == 0
[ds,gcvnew] = dpfsweep( data, S );

else % find an optimum
disp('DPF: Smoothing using first guess at smoothing

parameter. ');
[ds,fl) = dpfsweep( data, S ); % ds = smoothed data; fi =

gcv C xl)

x2 = xl + dx;	 S = l0x2;
disp('DPF: Smoothing using second guess at smoothing

parameter.');
[ds,f2) = dpfsweep( data, S );
if (f2 > fi)	 % swap so that fi > f2 is guaranteed

dx = -dx;
tmp = fi; fl = f2; f2 = tmp; % swap(fl, f2);
tmp = xl; xl = x2; x2 = tmp; % swap(xl, x2);

end
% disp('DPF: First points:');
% [ xl x2; fl f2

% the following will be executed at least once since fi > f2
as ensured by the above code

while fi > f2 % go downhill until we bound the minimum
xO = xl; xl = x2; fi = f2; x2 = xl + dx; S = lOx2;
disp('DPF: Stepping downhill to try to bracket minimum.');
[ds,f2]	 clpfsweep( data, S );

end
% disp('DPF: bounding points (note: fl is repeated):' );
% [ xO xl x2; fi fl f2 ] % uncomment to display
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% FOUND A BOUND AND STARTING POINTS 	 -
aa = xO;	 bb = x2;	 GoldenP.atio = (sqrt(5.) - 1) * 0.5;
range = bb - aa; xl = bb - GoldenRatio * range; S = l0"xl;
disp('DPF:	 Closing in.');
[ds,fl] = dpfsweep( data, S );
x2	 aa + GoldenRatio * range; S = l0x2;
disp('DPF:	 Closing in.');
[ds,f2] = dpfsweep( data, S );
gcvold = 0; gcvnew = f2;	 if (fi < f2) gcvnew = fl; end

%% CHECK CONVERGENCE OF GCV
del = (gcvnew - gcvold) / gcvnew;
TEPNINATION CRITERION = le-5; 	 % criterion on generalized

% cross-validation value

while abs(del) > TERMINATION CRITERION
gcvold = gcvnew;
if (fi > f2)

aa = xl; xl = x2; fi = f2; range = bb - ad;
x2 = aa + GoldenRatio * range; oldS = S; S = l0'x2;
if abs( (S - oldS) / S ) > epsiln
disp('DPF:	 Closing in.');

[ds,f2] = dpfsweep( data, S ); gcvnew = f2;
end

else
bb = x2; x2	 xl; f2 = fi; range = bb - aa;
xl = bb - GoldenRat.io * range; oldS = 5; S = l0'xl;
if abs( (S - oldS) / S ) > epsiln
disp('DPF: Closing in.');

[ds,fl] = dpfsweep( data, S ); gcvnew = fl;
end

end
del = (gcvnew - gcvold) / gcvnew;

end
end % optimization

% now that we've got the optimal 5, return the GCV and convert the
% velocity and acceleration estimates to their correct time units.
disp('DPF:	 Done.');
gcv = gcvnew; Sopt = S;
ds(2,:) = ds(2,:) / delT; 	 ds(3,:) = ds(3,:) / delTA2;

% end of dpf
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function [ds,gcv] = dpfsweep( d, b

% DPFSWEEP:

% Performs the forward and reverse sweeps of the Dohrmann algorithm
given
% a smoothing parameter. The data is assumed to be uniformily sampled
% with a sampling interval of one time unit. If the actual sampling
rate
% was different from 1, divide the velocity by delT and the acceleration
% by delT2. Normalizing in time makes it a little easier to
consistently
% find the order of magnitude of the optimal smoothing parameter because
% this parameter is a function of both the non-dimensional noise
amplitude
% and the sampling interval. If we set the sampling interval to 1, then
% the optimal smoothing parameter is only a function of the non-
dimensional
% noise amplitude and we can estimate this more easily.

% Usage:	 [ds,gcvj = dpfsweep( d, b
%
% Inputs:
%	 d: noisy data
%	 b: smoothing parameter

% Outputs:
%	 ds:	 a matrix containing the smoothed data: position, velocity
%	 and acceleration histories organized by row
%	 gcv:	 the generalized cross-validation value (roughly equivalent

to the estimated mean squared error)

%	 Note:	 as implemented, this routine is fairly slow. It does not
take advantage of the symmetry of various matrices involved
in the computations.

%	 Copyright 1993 Aritony Hodgzon (ahodgson@hstbme.mit.edu )
% All rights reserved

N = length(d); % number of sample points
deiT = 1;	 % set to 1 by default; velocity and acceleration vectors
can

% be divided by delT and delT"2 respectively later
U = zeros(3,3); U(1,1) = 1;

% the update equation for the position estimate is X(k+1) 	 M*X(k) +
p*g(k)
M =	 1 delT de1T'2/2; 0 1 delT; 0 0 1 ];
P = [ delT"3/6; delT"2/2; delT ];
g = zeros(1,N-1);	 % history of third derivatives

********** BACKWARD SWEEP **********

% Notes: (1) the subscript t all' in the following variables refers to
% the fact that we are storing these values at all sampling intervals
% because they are needed in the computations of the forward sweep.
% (2) the matrix R is always symmetric, so it really only needs 6
% independent entries, rather than 9 as shown here.
Rail = zeros(9,N); sail	 zeros(3,N); % for the dynamic programming
filter
MThall = zeros(9,N); 	 Eall = zeros(9,N); % for computing the
generalized

% cross-validation

% initialize the recursion variables
R	 U;
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s	 2*U*e;
for j	 1:3, Rall(3*j_2:3*j,N)	 R(1:3,j);	 end
sall(:,N) = s;

for i = N-1:-1:1
HT	 2*R*P;
D = 1/(2*b+p*HT);
R	 U + M*(R_O.5*HT*D*HT')*M;
e = [ d(j); 0; 0 ];
%s = _2*U*e + M1*(eye(3)_HT*D*P)*5;

0]

% since U = [ 1 0 0; 0 0 0; 0 0

% and e = [ e(1); 0; 0 J we can simplify:
S = -2e + M(eye(3)_HT*D*PI)S

% keep track of R and s
for j = 1:3, Rall(3*j_2:3*j,i)	 R1:3,j);	 end
sall(:,i) = s;

end

% also, for the cross validation procedure,
MTh = M* (eye(3)_HT*D*El);
E = _P*D*PI;
for j = 1:3

MThall(3*j_2:3*j,i+1) = MTh(1:3,j)
Eall(3*j_2:3*j,i+1)	 E(1:3,j);

end

FORWARD SWEEP *******

keep track of MTh and E

% initialize the recursion variables
ds = zeros(3,N);
% for maximum programming safety, we should regenerate R(1) and s(1)
from
% the record of the backward sweep, but since we know that we haven't
% changed them, we can just use them directly.
X = _O.5*inv(R)*s; % the position, velocity, acceleration vector
cis(:,1) = X;
Q inv(R);	 % used to compute the trace of the influence matrix
traceA = Q(1,1);

for i = 1:N-1
for j = 1:3, R(1:3,j) = Rall(3*j_2:3*j,i+1); end	 % regenerate R
a	 sall(:,i+1);	 % regenerate s
g(i) = _l/(2*(b+P*R*P))*P%*(s+2*R*M*X);
X = M*X + p*g(i);
ds(:,i+1) = X; % gather up the position, velocity, and

% acceleration estimates

% update the Q matrix
for j = 1:3 % regenerate MTh and E

MTh(1:3,j) =MThall(3*j_2:3*j,i+1);
E(1:3,j)	 Ea11(3j-2:3j,i+1);

end
Q = MTh*Q*MTh_2*E;
traceA = traceA ^ Q(l,1);

end

******** COMPUTE GENERALIZED CROSS-VALIDATION PARAMETER
% Start by making sure that the data vector is a row vector
[rows,cols] = size(d);
if cols == 1, d = d'; end
deix = d - ds(l,)
gcv = deix * deix' * N I ( N - traceA )A2;
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9Procedure to find the riormalised average vector from the most cranial
point on the
%acromioclavicular joint to the glenohumeral rotation centre, from the
data presented
%by Veeger et al (1997) after repositioning their scapulae in the resting
position
%defined by Pronk (1991)
%
%Written by lain Chariton, Ingram Murray, CREST, University of Newcastle
upon Tyne.

%Date: February 1999

%References : Pronk,G.M. (1991) . The shoulder girdle: analyzed and
modelled kinematically.
%	 Doctoral Thesis, Deift University Technology, The
Netherlands.
%	 Veeger,H.E.G., Yu,B., An,K., Rozendal,R.H. (1997).
Parameters for Modeling

the upper Extremity. J. Biomech. Vol.30 pp.647-652

%Output: Matrix "ACGHvec" containing vectors between acrornion and
glenohumeral

rotation centre in global reference frame.
%	 Matrix "ANGLES" containing the positions of the scapulae of
Veeger et al (1997)

in terms of rotations about the global axes from Pronk's resting
position

Matrix "NewAC" containing new Acromion positions after rotation
of scapulae
%	 Vectors "szACGHg", "szACGHs", "szACGHgn" included as a check of
the consistency

of the magnitude of the vector between acromion and Ghc in
global, scapular and

finally new global frames.
Vector AVVEC, the average, normalised vector from acromion to

glenohumeral rotation
centre in the global frame. Mormalised to the distance between

acromion and elbow
centre in the resting position.

%

Xg= [1 0	 0];
Yg= [0 1	 0];
Z g= [ 0 0	 1];

%From Pronk (1991) the rotation matrix describing the location of the
scapula with
%respect to his global frame (rotated +90 degrees about my X)

Sp[-O.82 0.2632 0.5083 0;-0.l919 -0.963 0.1892 O;0.5393 0.0576 0.8401
0;0 0 0 1];

%correction to apply +90 degree rotation of my frame to that of Pronk.

Rpv [1 0 0 0;0 0 -1 0;0 1 0 0;0 0 0 1];

%rotation matrix describing resting location of the scapula in MY global
frame.

RR=Rpv*Sp;

%Co-ordinates of necessary anatomical landmarks from Veeger in global
frame, after
%correcting third set of data (left arm specimen) for reversal of Y axis.

ACg =[	 26.38 5.69 37.6
24.11 5.57 41.26
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23.5 5.03 40.74
25.29 1.28	 40.96];

AAg [	 27.55 4.39 36.5
25.16 2.24 40.65
24.73 -0.88 41.43
24.4 2.35 41.52
24.85 -1.93 39.22];

TSg	 [	 12.66 4.11 35.69
12.31 2.07 35.8
12.19 1.96 36.19
12.56 2.96 36.04
12.87 1.47	 36.921;

AIg [	 11.28 1.78 23.2
14.79 1.22 22.68
15.25 1.62 22.79
15.83 0.88 22.77
13.86 3.09	 22.91];

GHg	 [	 26.13 5.16 32.88
25.5 4.51 38.15
25.49 1.3	 38.41
24.69 4.04 37.9
25.92 2.66 36.44);

	

LEg = [27.51	 5.48	 3.96

	

28.51	 1.45	 5.56

	

26.47	 -0.55	 6.46

	

29.54	 2.5	 8.99

	

30.75	 -1.13	 5.181;

	

MEg =[20.81	 3.18	 4.22

	

22.23	 4.43	 5.02

	

22.87	 5.6	 6.45

	

22.69	 0.31	 8.99

	

23.49	 -0.9	 5.31);

%Calcuate the co-ordinates of the mid-point of the lateral and medial
epicondyles from the
%data of Veeger et al (1997), after rotation of the humerus about the
glenohumeral centre
%so that the mid-point of the epicondyles lies below the gleflohUmeral
rotation centre.

for i=1:5;
MP(i,1:3)=(LEg(i,1:3H-MEg(i,1:3))/2;
mag(i, 1)=vecsize(GHg(i, : ) -MP(i, :))
MPP(i,1:3)=[GHg(i,1:2) (GHg(i,3)-mag(i,1))];
end;
MPgMPP

for ir=1:5;
ACng=[);
TSng[];

RG= [];

%Defining Pronk's embedded scapular plane from Veeger data.
Xsl=unit(TSg(i,1:3)-AAg(i,1:3));
Zsl = unit(cross(Xsl,(AIg(i,1:3)-AAg(i,1:3))));
Ysl = unit(cross(Zsl,Xsl));

%calculate transformation from global to scapular frame
Rgs=soder([Xg Yg Zg;Xsl Ysl Zsl]);

%calculate transformation from scapular to global frame
Rsg=inv(Rgs);
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%Calculate acrontion and glenohumeral centre in scapular co-ordinate---
ACs=Rsg*[ACg(i,1:3) 1]';
GHs=Rsg*[GHg(i,1:3) 1]';
TSsRsg*[TSg(i,1:3) 1]';
AIs=Rsg*[AIg(i,1:3) 1]';

%Caleulate vector from acromion to glenohumeral centre in Veeger scapular
frame.
ACGHs (i, 1: 4)(GHs-ACs) ';

%Calculate vector from acromion to glenohumeral centre in global frame
using Pronk (Veeger)
%frame and Pronk's matrix.
AC_GHng (i, 1: 4) =(RR*AC GHs (i, 1:4) I)

%calculate landmark locations in my global frame
ACng=(RR*ACs) ';
TSng=(RRTSs) ';
AIng=(RR*AIs) t;

%calculate rotation between Pronk's resting and Veeger's positions for
each set of data
RG=sode r([ACng(1,1:3) TSng(1,1:3) AIng(1,l:3) ;ACg(i,1:3) TSg(i,1:3)
AIg(i,l:3) ]

%calculate angles of rotation from resting position to Veeger's position
ANGS(i,l:9)=rzxysolv(RG)

%Calculate new positions of acromion after rotation about glenohumeral
centre
ACgh(i,1:3)=ACg(i,1:3)-GHg(i,1:3);
PCGh(i,1:4)((inv(RG))*[ACgh(i,1:3) 1]')';
ACGH(i,1:3)=ACGh(i,1:3)+GHg(i,1:3);

%Alternative calculation of new acromion positions from reversal of
acromion to
%glenohumeral rotation centre vectors.
ACGH2(i,1:3)=(ACGHng(i,1:3)*(_1))+GHg(i,1:3);

%calculate vectors and their magnitude from elbow mid-point to acromion
MPAC(i,1:3)=ACGH(i,1:3)-MPg(i,1:3);
EAC(i,1)=vecsize(MPAC(i,1:3));

%calculate normalised vector between acromion and glenohumeral centre
normvecs(i,l:3)=(ACGHng(i,1:3))/EAC(i,l);

%calculate magnitudes of the ACGH vectors in global, scapular and
modified global as check
szACGHg(i,1)=vecsize(ACg(i,l:3)-GFIg(i,1:3));
szACGHs(i,1)=vecsize(ACGHng(i,1:3));
szACGHgn(i,1)=vecsize(ACGh(i,l:3));

end

ACGI-Ivec=AC GHng(1:5,l:3)
ANGLESANGS(l:5, 1:3);
NewACACGH
NewAC2=ACGH2
szACGHg
s zACGHs
s zACGHgn

%average vector from acromion to glenohumerla rotation centre
AWEC1 (sum(ACGHvec) ) /5
STDEVEC=s td (ACGHvec)
%average normalised vector from acromion to glenohumerla rotation centre
AVVEC2= (sum(normvecs) ) /5
STDNORNVEC=std (normvecs)



	

hinnumdiff.m	 426

%Procedure to calculate the moments due to hand-held mass only,about the
flexion,
%adduction and rotation axes of the shoulder and flexion and rotation
axes of the
%elbow, using the Robotics Toolbox of Corke (1996) . Using sequence
%Flexion/Adduction/Internal rotn.
%
%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.
%
%Date: Sept 1999

%Input: Output from "tech2.m" and various user inputs.

%Output: Moments and Forces about each of the shoulder and elbow axes in
Nm through
%	 time due to Hand-held mass.

%References: Corke P.1. (1996) A Robotics Toolbox for MATLAB. IEEE
Robotics and
%Automation Magazine. Vol 3 (March) No 1 pp 24-32
%
hlm=[];
HLFORCSHLDER=[];
HLFORCwrst=[);
HLFORC1bo= [];
%Construct the "dyn" matrix for input to "rne.m".

	

alpha	 A	 theta	 D	 sigma mass	 rx	 ry	 rz
lxx Iyy Izz	 Ixy	 Iyz	 Ixz	 Jm	 G	 B	 Tc+	 Tc-

	

dyn= [-pi/2	 0	 01	 0	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

0	 0	 -pi/2	 0	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

	

pi/2	 0	 03	 0	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

0	 0	 pi/2	 0	 0	 0	 0	 0	 -uac
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

	

pi/2	 0	 05	 -ual	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

	

-pi/2	 0	 06	 0	 0	 0	 0	 0	 -fac
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

	

-p1'2	 0	 07	 -fal	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

0	 0	 pi/2	 0	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

	

pi/2	 0	 09	 0	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

0	 hl	 010	 0	 0	 Hload	 -hc	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0 );

%Carry out "rne.m" to calculate the moments.
tau=rne (dyn, q, qd, qdd, gray);

%Display the results in a reasonable format.
hlm(:, 1)tau(: , 3);
hlm(:, 2)tau( : , 1);
hlm(:,3)=tau(:,5)
him(:,4)=tau(:,6)
hlm(:,5)=tau(:,7)
hlm(:,6)=tau(:,9);
hlm(:,7)=tau(:,10)
%disp('	 THE MOMENTS ABOUT THE RESPECTIVE PXES ARE')
%disp(' adduction fiexiori 	 int_rotn elbw flex pronation ulnardev
wrist_flex')
%disp (him)
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global FTUFH
global FTFH
global FTH
FTUFH;
EFTA11=EFTall;
ETHA11=ETHa11;
for ff1:size(FTUFH,1)
%For calculation of force at elbow
ETIIH=ETHAll(l:3,3*ff_2:3*ff);
HLFORC1b0(ff,1:3)=(ETHH\(FTFH(ff,1:3)'))';
HLFORCLBO=}iLFORC1bo ( : , 1: 3);
%For calculation of force at wrist
EFTT=EFTA11(1:3,3*ff_2:3*ff);
HLFORCwrst(ff,1:3)(EFTT\(FTH(ff,13)'))'
HLFORCWRST=HLFORCwrst (: , 1:3);
%Force at shoulder
HLFORCSI-ILDER=FTUFH;
end
%disp('THE FORCES ALONG THE RESPECTIVE AXES DUE TO HAND-HELD LOAD ARE')
%disp(' ShoulderX ShoulderY ShoulderZ')
%disp (HLFORCSHLDER)
%disp('	 ElbowX	 ElbowY	 ElbowZ')
%disp (HLFORCLBO)
%disp('	 WristX	 WristY	 WristZ')
%disp (HLFORCWRST)
ALLI-ILMOMSh1m;
ALLHLFRCS[HLFORCSHLDER 1-ILFORCLBO HLFORCWRSTJ;
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%Procedure to calculate the moments about the flexion,
rotation
%axes of the shoulder and flexion and rotation axes of
the
%Robotics Toolbox of Corke (1996) . Using sequence
Flexion/Adduction/Internal rotn.
%
%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.
%
%Date: April 1999

%MODIFICATIONS

%Input: Output from "tech2.m" and various user inputs.
%
%Output: Moments about each of the shoulder and elbow axes in Nm through
time.
%

%References: Corke E.I. (1996) A Robotics Toolbox for MATLAB. IEEE
Robotics and
%Automation Magazine. Vol 3 (March) No 1 pp 24-32
%

%Some algorithms for numerical differentiation.
%f' (xi)--x(i-1)+x(i+1)/2h
%f'(xi)x(i-2)-8x(i-1)+8x(i+1)-x(i+2)/12h - used
%f''(xi)=-x(i-2)+16x(i-1)-30(xi)+16x(i+1)-x(i+2)/12h"2 - used

(xi) =2x (i-2) -x(i-1) -2 (xi) -x (i-I-i) +2x (i+2) /7h"2
I (xi)=x(i+1)-2(xi)+x(i-1)Ih2

%f'' (xi)=x(i+2)-2(xi)-i-x(i-2)/4h"2

%Take inputs and calculate first and second numerical derivatives of the
angle data.
uat[];
q= [];
qd= );
qdd= [];
FORCES HOULDER [];
FORCEwrist=[);
FORCelbow[];
ALLANGLE=[J;
INERTLN4OMS=[];
OMEGAS [J;
OMEGADOTS=[];
inau= [);
%ELB( : , 3)=ing;
ELbWELB;
ELbw( :, 3)=ELB(: , 3)-90;
SHdr=rSHD;
ELBw=deg2rad (ELbw);
SHDr=deg2rad(SHdr);
g=size(SHDr,l)
gg=size(ELBw,1);
qdsl=(dpf( SHDr(:,1)',h,O,1))';
qds2=(dpf( SHDr(:,2) ',h,O,l)) ';
qds3=(dpf( SHDr(:,3)',h,O,l))';
qdel=(dpf( ELEW(:,1) ',h,O,l)) ';
qde2=(dpf( ELEW(:,2) ',h,O,l)) ';
qde3=(dpf( ELBW(:,3) ',h,0,1)) ';
%Construct q,qd,qdd matrices for "rne.m" input.
q=zeros (g, 10)
q(:,l)qdsl(:,l)
q(:,2)_pi/2*Ofles(g,1)
q(:,3)qds2(1)
q(:,4)pi/2*OfleS(g,l);
q( : , 5)qds3 ( , 1);



q(:,6)=qdel(:,i.)
q(: ,7) =qde3(: ,1);
q(:, 8)pi/2*	 (g, 1),

:, 9) =zeros (g, 1);
q(:,lO)=zeros(g,);
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qdzeros (g, 10);
qd(:,1)qdsl(:,2);
qd(:,2)Zeros(,);
qd(:,3)qds2(:,2);
qd(: , 4)=zeros	 )
qd(:,5)qds3(:,2);
qd(:,6)qde1(:,2) ;
qd(:,7)qde3(:,2)
qd(:,8)Zeros(g,1)
qd(:,9)Zeros(g,1)
qd(:,1O)ZeroS('1) ;

qddzeros (g, 10);
qdd(:, 1)qds1 (:,);
qdd(:,2)ZerOS(i1) ;
qdd(:,3)qdS2(:,3)
qdd( :, 4)zeros (i, 1) ;
qdd(:,5)qdS3(:, 3 ) ;
qdd(:,6)qdel(,3)
qdd(:,7)qde3(:,3)
qdd(:,8)=Zeros(gil)
qdd(: , 9)zeros (g, 1);
qdd(:, 10)=zeros (g, 1);

%Define gravity vector
%grav=[-9. 80665;0;0];
grav ( 0; 0; 0] ;

%This is equivalent to
%accelerating upwards

for input to "rne.m".

saying that the base of the linkage is
at 1g. This ficticious upward acceleration

8causes exactly the same effect on the links as gravity would.
%(Craig (1989)).
%
%

q;
qd;
qdd;
%

%input fractions of body mass
mu=0. 0271;
mf=0. 0162;
rnh=0. 0061;
uam=M*mu;
fam=M*mf;
hrn=M*nth;
%Calculate segment lengths.
ual=vecsize (hanz) /1000;
fal=vecsizel (fanz) /1000;
hlH* (0. 1879/1. 741)
%Calculate CoM positions
uac=(0.5772)*ual;
fac(0. 4574)*fal;
hc(1_0.3624)*hl;
%Calculate Moments of inertia
uaIa=(uam)*(ual*0.285)'2;
ualt=(uam) * (ual*0.269)A2;
uaIl=(uam) * (ual*0. 158) A2;
fala(fam)* (fal*0.276)2;
falt(fam)* (fal*0.265)A2;
faIl(fam) * (fal*0. 121) A2;

and calculate segment masses.



hla=(hm)*(hl*O.288)A2;	 430
hIt=(hm)*(hl*0.235) s 2;	 -
hIl=(hm)*(hl*0.184)A2;
disp ('LENGTHS')
disp(' Upper arm Forearm	 Hand')
disp([	 uai	 fai	 hi	 ])
disp ( 'MASSES')
disp(' Upper arm Forearm	 Hand')
disp([	 uam	 fam
disp ( 'CoM LOCATIONS')
disp(' Upper arm Forearm	 Hand')
disp([	 uac	 fac	 hc	 1)
disp('MOMENTS OF INERTIA')
disp ('	 UAIap	 UAIt	 VAIl')
disp([	 uala ualt uaIl	 ])
disp('	 FAlap	 FAIt	 FAIl')
disp([	 fala falt faIl	 1)
disp('	 HIap	 HIt	 HIl')
disp([	 hla	 hIt	 hIl	 I)

%Construct the "dyn" matrix for input to "rne.m".
alpha	 A	 theta	 .D	 sigma mass	 rx	 ry	 rz

lxx Iyy Izz	 Ixy Iyz	 Ixz Jm G B Tc+ Tc-
dyn [-pi/2	 0	 01	 0	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

0	 0	 -piI2	 0	 0	 0	 0	 0	 0
0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

	

pi/2	 0	 03	 0	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;
0	 0	 pi/2	 0	 0	 uam	 0	 0	 -uac

uala ualt uaIl	 0	 0	 0	 0	 0	 0	 0	 0

	

pi/2	 0	 05	 -ual	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

	

-pi/2	 0	 06	 0	 0	 fam	 0	 0	 -fac

fala falt faIl	 0	 0	 0	 0	 0	 0	 0	 0 ;

	

-piI2	 0	 07	 -fai	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;
0	 0	 pu2	 0	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;

	

pi/2	 0	 09	 0	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0;
0	 hi	 010	 0	 0 hm+Hload -hc	 0	 0

Fill hla hIt	 0	 0	 0	 0	 0	 0	 0	 0 1;

%Carry out "rne.m" to caicuiate the moments.
tau=rne (dyn, q, qd, qdd, gray);

%
%Display the results in a reasonable format.
uat(:,1)tau(:,3)
uat(:,2)tau(:,l);
uat(:,3)=tau(:,5) ;
uat(:,4)=tau(:,6) ;
uat(:,5)=tau(:,7) ;
uat ( : , 6)=tau( , 9);
uat( : , 7)=tau( : ,10);
%disp('	 THE MOMENTS ABOUT THE RESPECTIVE AXES ARE')
%disp(' adduction flexion int_rotn elbw_flex pronation ulnar_dev
wrist_flex')
%disp (uat)

global FTUFH
global FTFH
global FTH
global INNOM
global omega
global omegadot



FTUFH;	 431
EFTA11=EFTa11;
ETHA11=ETHa11;
for ffl:size(FTUFH,1)
%For calculation of force at elbow
ETHHETHAll(1:3,3*ff2:3*ff);
FORCelbow(ff,l:3)=(ETHH\(FTFH(ff,1:3)'))';
FORCELBOWFORCe1b0w ( : , 1: 3);
%For calculation of force at wrist
EFTT=EFTA11(l:3,3*ff_2:3*ff);
FORCEwrist(ff,1:3)=(EFTT\(FTH(ff,1:3)'))';
FORCEWRIST=FORCEwrist ( : , 1:3);
%Force at shoulder
FORCES HOULDER=FTUFH;
end
%disp('THE FORCES ALONG THE RESPECTIVE AXES ARE')
%disp(' ShoulderX ShoulderY ShoulderZ')
%disp (FORCESHOULDER).
%disp('	 ElbowX	 ElbowY	 ElbowZ')
%disp (FORCELBOW)
%disp('	 WristX	 WristY	 WristZ')
%disp (FORCEWRIST)
ALLANGLE(:,1)=rad2deg(q(:,3));
ALLNGLE(: ,2)rad2deg(q(: ,1));
ALLANGLE(:,3)=rad2deg(q(:,5));
ALLANGLE(:,4)=rad2deg(qde2(:,1));
ALLANGLE(: ,5)=rad2deg(q(: , 6));
ALLNGLE(: , 6)rad2deg(q(: ,7));
ALLANGLE;
ALLMOMENTS=uat;
ALLFORCE= [ FORCES HOULDEP. FORCELBOW FORCEWRIST);

%Rearranging matrix of inertial moments for all joints and all samples to
%give matrix whose first three columns are xyz moments for link 1, next
three
%colurnns are xyz moments for link 2 etc, rows are data points.
for lnks=1:10
INERTI?NOMS (:,3*lnks_
2:3*lnks)(reshape(INMOM(:,lnks) ',3,size(INMOM,1)/3)) ';
QMEGAS(:,3*iflks_2:3*lnks)=(reshape(oInega(:,inks)I,3,SiZe(0megai1)t3l

OMEGADOTS ( : , 3*lnks_
2: 3*lnks)=(reshape (omegadot( :, lnks) ',3, size (omegadot, 1)13))';

%The following lines were added by I.Murray 10/11/99
%Display the results in a reasonable format.
global inau
INM(:,1)=inau(:,3);
INM(:,2)=inau(:,l);
INM(:,3)=inau(:,5)
INM(: , 4)inau( :16);
INM(:,5)=inau(:,7);
INM( :, 6)inau( : , 9);
INN(:,7)inau(:,10);
end



pends.m

%Procedure to calculate acceleration due to gravity from APAS co-ordinate
%ciata from pendulum tests. NB For a swinging pendulum the horizontal co-
%ordinates will have one maximum per cycle, the vertical component will
%have two maxima per cycle.

%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.

%Date: June 1998

%Input:	 data - a column matrix of displacement data from the pendulum
tests.
%
%Output: Acceleration due to gravity.

SMOTH=input('Do you wish to smooth the data prior to calculating g? YIN
[YJ :	 ' , ' s '

if isempty(SMOTI-1)
SMOTH='Y';
end

h=input('What is the sampling interval of the data ? ');
pl=input('What is the length of the pendulum ? ');

%Construct vector of time intervals.
x= (h: h: (size (data, 1) *h)) l;
%
OUT= [1
for nn=1:3
t=[];

%
DATAdata ( : , nn);

if SMOTH'Y'
%Smooth data.
srnothd=(dpf(DATA,h,O,1)) ';
end
%
%Include loop to allow recalculation if unsatisfactory.
LOOP='Y';
while LOOP=='Y'
%
if SMOTH'Y'
%Plot smoothed displacement against time vector.
figure (1)
clf reset;
plot(x,smothd(:,1));
hold;
%Identify maxima of each cycle.
disp('	 "Use cursor to click on the maxima of each cycle, then press
"return"	 "')
max=ginput;	 %reads point from cursor
max=rnax(:,1);	 %discards y values
else
plot (x, DATA);
hold;
%Identify maxima of each cycle.
disp('	 "Use cursor to click on the maxima of each cycle, then press
"return"	 "')
maxginput;	 %reads point from cursor
max=max(:,1);	 %discards y values
end

%Calculate periods throughout trial.
n=size (max, 1);

for i1:n-1;
t(i,l)=xnax(i+1,:)-rnax(i,:);
%Apply gravity calculation.
g(i,1)=(4*(pl))*((pi/t(i,1))"2)



end;	 433

%
%Recalculate by starting loop again or exit routine.
LOOP=input('Do you wish to recalculate g 1 YIN [Y): ',ts');

if isempty(LOOP)
LOOP='Y';
end

end
OUT ( : ,nn) =g;
end
OUT
mean (OUT)
std(OtJT)
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434

%Procedure to produce graphs of the data obtained from the APAS system.

%Written by Ingram Murray,

%Date: May 1998

%MODIFICATIONS
%18/8/98 Altered to output
unsmoothed.

CREST, University of Newcastle upon Tyne.

smoothed angular values rather than

%Input: User selection from menu of options.

%Output: Produces a graph of the selected variables.

%Define time vector for use in plotting graphs.
times ecO;
times ecl=O;
for tt=1:g;

timel (tt, 1) =timesec;
timesec=timesec+h;

end;
timel;
gsmenu('Vthich graphs do you wish to plot ?','ANGLE GRAPHS','MOMENT
GRAPHS', 'TRAJECTORY GRAPHS', 'FORCE GRAPHS', 'RESULTANT FORCES', 'CLOSE
WINDOW');
if gsl
kak=menu('Which angle graph do you wish to plot ?','Shoulder Adduction
Angle Vs. Time','Shoulder Flexiori Angle Vs. Time','Shoulder Int.Rotn.
Angle Vs. Time', 'Elbow Flexion Angle Vs. Time', 'Elbow Adduction Angle Vs.
Time','Forearm Pronation Angle Vs. Time','Ulnar Deviation Angle Vs.
Tirne','Wrist Flexion Angle Vs. Time','CLOSE WINDOW');

if kakl
plot(timel,rad2deg(q(:,1)))

title('Shoulder Adduction Angle Vs. Time'),xlabel('Time
(s) '),ylabel('Angle (degrees)')

plots
end
if kak==2

plot(timel, rad2deg(q(: , 3)))
title('Shoulder Flexion Angle Vs. Time'),xlabel('Time

(s) '),ylabel('Angle (degrees)')
plots
end
if kak3
plot(timel,rad2deg(q(:,4)))

title('Shoulder Int.Rotn. Angle Vs. Time'),xlabel('Time
(s) '),ylabel('Angle (degrees)')

plots
end
if kak==4
plot(timel,rad2deg(q(:,5)))

title('Elbow Flexion Angle Vs. Time'),xlabel('Time
(s) '),ylabel('Angle (degrees)')

plots
end
if kak=5
plot(timel,rad2deg(qde2(:,1)))

title('Elbow Adduction Angle Vs. Time') , xlabel ('Time
(s) '),ylabel('Angle (degrees)')

plots
end
if kak=6
plot(timel,rad2deg(q(:,6) ))

title('Forearm Pronation Anqle Vs. Time'),xlabel('Time
(s)'),ylabel('Arigle (degrees)')	 -

plots
end
if kak==7



plot(timel,rad2deg(q(:,8)))
title('TJlnar Deviation Angle Vs. Time'),xlabel('TJme

(s)'),ylabel('Angle (degrees)')
plots
end
if kak=8

plot(timel,rad2deg(q(:,9)))
title('Wrist Flexion Angle Vs.

(a) '),ylabel('Angle (degrees)')
plots
end
if kak=9

close
end

Time') , xlabel ('Time

end
if gs==2
kkmenu('Which moment graph do you wish to plot ?','ShoUlder Adduction
Moment Vs. Time','Shoulder Flexion Moment Vs. Time','ShOUl der Int.Rotn.
Moment Vs. Time', 'Elbow Flexion Moment Vs. Time', 'Elbow Adduction Moment
Vs. Time', 'Forearm Pronation Moment Vs. Time', 'Ulnar Deviation Moment Vs.
Time','Wrist Flexion Moment Vs. Time','CLOSE WINDOW');

if kk==l
plot(timel,uat(:,l))

curvefit(tirne2,uat(:,1),15)
title('Shoulder Adduction Moment Vs.

(s) '),ylabel('Moment (Nm)')
plots
end
if kk==2

plot(timel,uat(:,2))
title('Shoulder Flexion Moment Vs. Time'),Xlabel('Time

(a) '),ylabel('Moment (Nm)')
plots
end
if kk==3

plot (timel, uat (:13))
title('Shoulder Int.Rotn. Moment Vs. Time') , xlabel ( 'Time

(.) '),ylabel('Moment (Nm)')
plots
end
if kk==4

plot(timel,uat(:,4)
title('Elbow Flexion Moment Vs. Time'),xlabel('Time

(s) '),ylabel('Moment (Nm)')
plots
end
if kk==5

plot (tirriel, zeros (g, 1))
title('Elbow Adduction Moment Vs. Time'),xlabel('T3me

(s) '),ylabel('Moment (Nm)')
plots
end
if kk==6

plot(timel,uat(:,5))
title('Forearm Pronation Moment Vs. Time'),Xlabel('Time

(a) '),ylabel('Moment (Nm)')
plots
end
if kk==7

plot(timel,uat(,6))
title('Ulriar Deviation Moment Vs. Timel),Xlabel('Time

(s) '),ylabel('Moment (Nm)')
plots
end
if kk==8

plot(timel,uat(:,7))
title('Wrist Flexion Moment Vs. Time'),Xlabel('Time

(s)'),ylabel('Moment (Nm)')
plots
end

Time') , xlabel ('Time



if kk=9
close	 436

end
end
if gs==3

kkk=menu('I-Iow do you wish to plot the shoulder, elbow and wrist
trajectories ?', '3-Dimensional', 'Sagittal plane', 'Frontal
plane', 'Transverse plane', 'CLOSE WINDOW');
%'flip' x and y axes as these axes in Matlab by default are the reverse
of mine.

if kkk==l
plot3(Straj(:,l),Straj(:,2),Straj(:,3), 'ow',Etraj (:,l),Etraj(:,2),E

traj(:,3),'oy',Wtraj(:,l),Wtraj(:,2),Wtraj(:,3),'or')
title('3D Shoulder, Elbow and Wrist

Trajectories'),xlabel('X'),ylabel('Y'),zlabel('Z')
flipaxis ('X');
flipaxis( 'Y');
plots
end
if kkk==2
plot(Straj(:,2),Straj(:,3), 'ow',Etraj(:,2),Etraj (:,3), 'oy',Wtraj(:,

2) ,Wtraj ( , 3), 'or')
title('Sagittal Plane Shoulder, Elbow and Wrist

Trajectories') , xlabel C 'Y') , ylabel ( 'Z')
plots
end
if kkk==3
plot (Straj (:,1), Straj (:,3), 'ow', Etraj (:, 1), Etraj (:,3), 'oy' ,Wtraj (:,

1) ,Wtraj (:, 3) , 'or')
title('Frontal Plane Shoulder, Elbow and Wrist

Trajectories'),xlabel('X'),ylabel('Z')
flipaxis C 'X');

plots
end
if kkk==4
plot(Straj(:,l),Straj(:,2),'ow',Etraj(:,l),Etraj(:,2),'oy',Wtraj(:,

1) ,Wtraj (:,2), 'or')
title('Transverse Plane Shoulder, Elbow and Wrist

Trajectories') ,xlabel ( 'X') , ylabel C 'Y')

flipaxis ('X')
flipaxis C 'Y');

plots
end
if kkk==5
close
end

end
if gs==4
kkkk=menu('Which force graph do you wish to plot ?','Shoulder X-axis
Force Vs. Time','Shoulder Y-axis Force Vs. Time','Shoulder Z-axis Force
Vs. Time','Elbow X-axis Force Vs. Time','Elbow Y-axis Force Vs.
Time','Elbow Z-axis Force Vs. Time','Wrist X-axis Force Vs. Time','Wrist
Y-axis Force Vs. Time','Wrist Z-axis Force Vs. Time','CLOSE WINDOW');

if kkkk==1
plot(timel, FOP.CESHOULDER( : , 1))

title('Shoulder X-axis Force Vs. Time'),xlabel('Time
(s) '),ylabel('Force (N)')

plots
end
if kkkk==2

plot (timel, FORCESHOULDEP. (: , 2))
title('Shoulder Y-axis Force Vs. Time'),xlabel('Time

(s)'),ylabel('Force (N)')
plots
end
if kkkk==3

plot (timel, FORCESHOULDER( : , 3))
title('Shoulder Z-axis Force Vs. Time'),xlabel('Time

(s) '),ylabel('Force (N)')
plots



(s)

(s)

(s)

(s)

(s)

(s)
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Time') , xlabel ('Time

end
if kkkk==4

plot(timel, FORCELBOW(: , 1))
title('Elbow X-axis Force Vs.

'),ylabel('Force (N)')
plots
end
if kkkk==5

plot(timel, FORCELBOW(:,2))
title('Elbow Y-axis Force Vs.

'),ylabel('Force (N)')
plots
end
if kkkk==6

plot (time!, FORCELBOW( : , 3))
title('Elbow Z-axis Force Vs.

'),ylabel('Force (N)')
plots
end
if kkkk==7

plot (time!, FORCEWRIST (:11))
title('Wrist X-axjs Force Vs.

'),ylabel ('Force (N) ')
plots
end
if kkkk==8

plot(timel,FORCEWRIST(: ,2))
title('Wrist Y-axis Force Vs.

'),ylabel('Force (N)')
plots
end
if kkkk==9

plot (time!, FORCEWRIST (:13))
title('Wrist Z-axis Force Vs.

'),ylabel('Force (N)')
plots
end
if kkkk==lO

close
end

Time') ,xlabel('Time

Time'), xlabel ('Time

Time'),Xlabel('Time

Time') ,xlabel('Tirne

Time') ,xlabel ('Time

end
if gs5
kkkkk=menu('Which resultant force do you wish to plot ?','Resultant
Shoulder Force in 3-D', 'Resultant Shoulder Force in Sagittal
plane','Resultant Shoulder Force in Frontal plane','Resultant Shoulder
Force in Transverse plane','Resultant Elbow Force in 3-D','Resultant
Elbow Force in Y-Z plane',Resultant Elbow Force in X-Z plane','Resultant
Elbow Force in X-Y plane','Resultant Wrist Force in 3-D','Resultant Wrist
Force in Y-Z plane','Resultant Wrist Force in X-Z plane','Resultant Wrist
Force in X-Y plane','CLOSE WINDOW');

if kkkkk==l
plot3(FORCESHOULDER(: , 1) ,FORCESHOULDER(: ,2) ,FORCESHOIJLDER(: ,3),':

')
title('Resultant Shoulder Force in 3D'),xlabel('XForce

(N) '),ylabel('YForce (N) '),zlabel('ZForce (N)')
flipaxis ('X')
flipaxis ( 'Y');

for ddd=l: size(FORCESHOULDER, 1)
ARROW([O 0

0), (FORCESHOULDER(d.dd, 1) , FORCESHOULDER(ddd, 2) , FORCESHOULDER(ddd, 3)))
end

plots
end
if kkkkk==2

plot(FORCESHOULDER(: ,2) ,FORCESHOULDER(: ,3), 'k')
title('Resultant Shoulder Force in Sagittal Plane'),xlabel('YForce

(N) '),ylabel('ZForce (N)')
for ar=l: size (FORCESHOULDER, 1)
aFORCESHOULDER(ar,2) ;b=FORCESHOULDER(ar, 3);
ARROW([O 0 J,[a,b])



plots end
end
if kkkkk==3
plot(FORCESHOULDER(:,1),FORCESHOULDER(:,3), 'k')
tjtle('Resultant Shoulder Force in Frontal Plane'),xlabel('XForce

(N) '),ylabel ( 'ZForce (N) ')
flipaxis('x')

for arr=1: size (FORCESHOULDER, 1)
aa=FORCESHOULDER(arr, 1) ;bb=FORCESHOULDER(arr, 3);
ARROW([O OJ,[aa,bb])
end

plots
end
if kkkkk==4

plot (FORCESHOULDER ( : , 1) , FORCESHOULDER( , 2), 'k')
title('Resultant Shoulder Force In Transverse

Plane'),xlabel('XForce (N) '),ylabel('YForce (N)')
flipaxis('x')
flipaxis ('y')

for arrr=l:size(FORCESHOULDER, 1)
aaa=FORCESHOULDER(arrr, 1) ;bbb=FORCESHOULDER(arrr,2);
ARROW([O OJ,[aaa,bbbj)
end

plots
end
if kkkkk==5

plot3(FORCELBOW(: , 1) ,FORCELBOW(: ,2) ,FORCELBOW(: ,3),':')
title('Resultant Elbow Force in 3D'),xlabel('YForce

(N) '),ylabel('YForce (N) '),zlabel('ZForce (N)')
flipaxis('X')
flipaxis ( 'Y');

for ddd=l: size (FORCELBOW, 1)
ARROW((O 0

01, [FORCELEOW(ddd,1),FORCELBOW(ddd,2),FORCELBOW(ddd,3)J)
end

plots
end
if kkkkk==6

plot(FORCELBOW(: ,2) ,FORCELBOW(: ,3), 'k')
tltle('Resultant Elbow Force In Y-Z plane'),xlabel('YForce

(N) ') , ylabel C 'ZForce (N) ')
for ar=1: size (FORCELBOW, 1)
a=FORCELBOW(ar,2) ;b=FORCELBOW(ar, 3);
ARROW([O 0 ],[a,b])
end

plots
end
if kkkkk==7
plot(FORCELBOW(:,1),FORCELBOW(:,3), 'k')
title('Resultant Elbow Force in X-Z plane'),xlabel('XForce

(N) '),ylabel('ZForce (N)')
flipaxis C 'x')

for arr=1:size(FORCELBOW,l)
aa=FORCELBOW(arr, 1) ;bb=FORCELBOW(arr,3);
ARROW([0 0],[aa,bb])
end

plots
end
if kkkkk==8
plot(FORCELBOW(:,1),FORCELBOW(:,2), 'k')

title('Resultant Elbow Force in X-Y Plane'),xlabel('XForce
(N) '),ylabel('YForce (N)')

flipaxis( 'x')
flipaxis('y')

for arrrl:size(FORCELBOW, 1)
aaa=FORCELBOW(arrr, 1) ;bbb=FORCELBOW(arrr,2);
ARROW([0 O),[aaa,bbb])
end

plots



end
if kkkkk==9

plot3(FORCEWRIST(:,l),FORCEWRIST(:,2),FORCEWRIST(:,3), ': ')
title('Resultant Wrist Force in 3D'),xlabel('YForce

(N) '),ylabel('YForce (N) '),zlabel('ZForce (N)')
flipaxis ('X');
flipaxis ( 'Y')

for ddd=1:size(FORCERIST, 1)
ARROW([O 0

0], [FORCEWRIST(ddd,l),FORCEWRIST(ddd,2),FORCEWRIST(ddd,3)])
end

plots
end
if kkkkk==l0

plot(FORCEWRIST(:,2),FORCEWRIST(:,3), 'k')
title('Resultant Wrist Force in Y-Z Plane'),xlabel('YForce

(N) '),ylabel('ZForce (N)')
for ar=l: size (FORCELBOW, 1)
a=FORCEWRIST(ar,2) ;b=FORCEWRIST(ar, 3);
ARROW([0 0 ],[a,b))
end

plots
end
if kkkkk==ll
plot(FORCEWRIST(:,l),FORCEWRIST(:,3), 'k')
title('Resultant Wrist Force in X-Z Plane'),xlabel('XForce

(N) '),ylabel('ZForce (N)')
flipaxis('x')

for arr=1:size(FORCEWRIST, 1)
aa=FORCEWRIST(arr, 1) ;bb=FORCEWRIST(arr,3);
ARROW([O O],[aa,bb])
end

plots
end
if kkkkk==12
plot(FORCEWRIST(:,l),FORCEWRIST(:,2), 'k')

title('Resultant Wrist Force in X-Y Plane'),xlabel('XForce
(N) '),ylabel('YForce (N)')

flipaxis('x')
flipaxis('y')

for arrr=l: size (FORCEWRIST, 1)
aaa=FORCEWRIST(arrr,l);bbb=FORCEWRIST(arrr,2);
ARROW([O O],[aaa,bbb])
end

plots
end
if kkkkk==13

close
end

end
if gs==6

close
end
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function [out] =rad2deg (in)

% function [out]=rad2deg(in)

% Description:	 Conversion of radians to degrees applied to the entire
matrix

% Input:	 in (values in radians)

% Output:	 out (values in degrees)

% Author:	 Christoph Reinschmidt, HPL, The University of Calgary

% Date:	 October, 1994

% Last Changes:	 November 29, 1996

% Version: 1.0

outin.*(180/pi);
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%BNE	 Compute inverse dynamics via recursive Newton-Euler formulation

TAU = RNE(DYN, Q, QD, QDD)
TAU = RNE(DYN, [Q QD QDD])

Returns the joint torque required to achieve the specified joint
position,

velocity and acceleration state.
%
%	 Gravity is assumed to be acting in the -z direction with
acceleration of

9.81m/s/s, but this may be overriden by providing a gravity
acceleration

vector [gx gy gzj.

TAU= RNE(DYN, Q, QD, QDD, GRAV)
TAU = RNE(DYN, [Q QD QDDJ, GRAy)

An external force/moment acting on the end of the manipulator may
also be
%	 specified by a 6-element vector [Fx Fy Fz Mx My Mz].
%
%	 TAU = RNE(DYN, Q, QD, QDD, GRAy, FEXT)

TAU = RNE(DYN, [Q QD QDD], GRAy, FEXT)

%	 where Q, QD and QDD are row vectors of the manipulator state;
pos, vel, and accel.

The torque computed also contains a contribution due to armature
inertia.

See also DYN, FDYN, ACCEL, GRPLVLOAD, INERTIA.

Should be a MEX file.

% verified against MAPLE code, which is verified by examples
%

Copyright (C) 1992 Peter Corke

% MOD.HISTORY
6/95	 make use of passed in IEXT
4/95	 fix bug in use of passed FEXT
11/96 bug for prismatic case

function [tau] = rne(dyn, al, a2, a3, a4, a5)
zO = [O;O;1];
gray = 9.81*zO;
fext = zeros(6, 1);

n = nuinrows(dyn);
if numcols(al) = 3n,

Q = al(:,1:n);
Qd = al(:,n+1:2*n);
Qdd = a1(:,2*n+1:3*fl)
np = numrows(Q);
if nargin >= 3,

gray = a2;
end
if nargin == 4,

fext = aS.
end

else
np = numrows(al);
Q	 al;
Qd = a2;
Qdd = a3;
if numcols(al) -	 I numcols(Qd) -= n I numcols(Qdd)



riumrows(Qd) - np I numrows(Qdd)	 np,	
442error('bad data');	 -

end
if nargin > 5,

gray = a4;
end
if nargin	 6,

fext = a5;
end

end

% create local vars for mass, COG and inertia matrices

m = dyn(:,6);	 % column vector of link mass
r	 dyn(:,7:9);	 % matrix of COM data; row per link
Jm	 [1;
for j=l:n,

J = [	 dyn(j,1O) dyn(j,13) dyn(j,15);
dyn(j,13) dyn(j,1l) dyn(j,14);
dyn(j,15) dyn(j,14) dyn(j,12) 	 ];

Jm	 [JmJ];
end

tau	 zeros (np,n);

for p1:np,
q = Q(p,:)';
qd =
qdd	 Qdd(p,:)';

Fm= [1;
Nm= [1;
pstarm = [1;
Rrn= [1;
w = zeros (3,1);
wd = zeros (3,1);
v = zeros (3,1);
vd = gray;

%
% mit some variables, compute the link rotation matrices

for j1:n,
alpha = dyn(j,1);
A = dyn(j,2);
if dyn(j,5) == 0,

theta = q(j);
D = dyn(j,4);

else
theta = dyn(j,3);
D = q(j);

end
sa = sin(alpha); ca = cos(alpha);
st = sin(theta); ct = cos(theta);

R = [	 Ct	 _st*ca st*sa
st	 ct*ca	 _ct*sa
0	 sa	 cal;

Pm	 [1inRJ;
pstar = [A; D*sa; D*caj;
pstarm = (pstarm pstar);

end
%The following lines were added by I.Murray 2/4/99

TZo=[O 0 1;0 1 O;-1 0 0];
TZ9=TZ0*Rxn(:,1:3)*Rm(:,4:6)*Bm(:,7:9)*BIn(:,1O:12)

TZ5TZ0*Bm(:,1:3)*Pm(:,4:6)*Fm(:,7:9)*pm(:,10:12)

TZ3=TZ0*Rm(:,1:3)*Rm(:,4:6)*Rm(:,7:9)*pm(:,10:12)
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% the forward recursion
%
	 O

for j=1:n,
R = Rm(:,3*j_2:3*j) U;
pstar = pstarm(:,j);

% statement order is important here

if dyn(j,5) == 0,
% revolute axis
wd = R*(wd + zO*qdd(j) +

cross (w, zO*qd(j) ) ) ;
w = R(w + zO*qd(j));
%v = cross(w,pstar) + R*v;
vd = cros5(wd,pstar) +

cross(w, cross(w,pstar)) +R*vd;

else
% prismatic axis
w = Rw
wd = R*wd;

= R*(zO*qd(j) + v) + cross (w,pstar);
vd = R*(zO*qdd(j)+vd) +

cross(wd,pstar) +
2*cross(w,R*zO*qd(j)) +...
cross (w, cross (w,pstar)

end

J = Jm(:,3*j_2:3*j);
vhat = cross (wd,r(j,:) ') ^

cross(w,cross(w,r(j,:)')) +vd;
F	 m(j)*vhat;
N = J*wd + cross (w,J*w);
Fm= [Fm F];
Nm= [Nm N];

%Angular velocities and accelerations
omega(3*p_2: 3*p, j )=w;
omegadot (3*p_2 : 3p, j ) =wd;

end

%The following lines were added by I.Murray 2/4/99
%Applying inertial moment to all angular rotations.
Nm(:,l)Pm(:,4:6)*Bm(:,7:9)*Pm(:,l0:12)*Nm(:,4); 	 %INSF
Nm(:,3)Rm(:,lO:12)*Nm(:,4); 	 %INSA
Nm(:,5)Bm(:,13:15)\Nm(:,4);	 %INsR
Nm(:,7)Rm(:,].9:21)\Nm(:,6);	 %INFP
Nm(:,9)Rm(:,28:30)*Nrn(:,10);	 %INTJD

%Inertial moments
INMOM(3*p_2:3*p, :)=Nm;

% Forces
FZ9TZ9*Fm( :110);
FZ5TZ5*Fm( :16);
FZ3=TZ3*Fm( :14);
FTUFH (p, 1: 3) FZ9 '+FZ5 '+FZ3';
FTFH(p,1:3)=FZ9'+FZ5';
FT}(p, 1:3)FZ9';

%
% the backward recursion
%

f = text(1:3);	 % force/moments on end of arm
nn = fext(4:6);



for j=n:-1:1,
pstar = pstarm(:,j);

% order of these statements is important, since
both

nn and f are functions of previous f.

if j
R = eye(3,3);

else
R= Rxn(:,3*j+1:3*j+3);

end
nfl	 R(nn ^ cross (Rt*pstar,f)) +

cross (pstar+r(j, :) ',Fm(:,j)) +
Nm ( : , j )

f = R'f + Fm(:,j);
R
if dyn(j,5) == 0,

% revolute
tau(p,j) = nn l *(R I *zO) +

dyn(j,l6)*qdd(j)*dyn(j,17)2;
%The following line was added by I.Murray 10111/99
inau(p,j) = (cross(pstar+r(j,:) ',Fm(:,j))) I*(RI*zO);

else
% prismatic
tau(p,j)	 fl*(RI*z0) ^

dyn(j,l6)*qdd(j)*dyn(j,l7)/2;
end

end
end

%Following lines added by I Murray 2/6/98
global FTUFH;
global FTFH;
global FTM;
%
%The following lines were added by I.Murray 21/9/99
global INNOM;
global omega;
global omegadot;
%The following line was added by I.Murray 10/11/99
global inau
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function [out]	 rzyxsolv(T)

% Description:	 Solves for alpha,beta,gama,Hx,Hy,Hz of the
trans formation

%	 matrix with the order Rzyx (Rzyx = [rx] [ry] [rzl)

% Input:	 - T	 Transformation matrix

% Output:	 - out	 [alpha,beta,gama,Hx,Hy,Hz]

Note that the angles are given in the range

from -180 to +180 deg.

gama is not a typo: gamma could not be used
because

%	 it is an existing matlab function

% Author:	 Christoph Reinschmidt, HPL, The University of Calgary

% Date:	 October, 1994

% Last changes: February 13, 1995

% Version: 1.0

if size(T)-=[4,41;

disp('Error: transformation matrix has to be a 4x4 matrix')

break;

end;

if sum(isnan(T(:)))-=0, out=[NaN,NaN,NaN,NaN,NaN,NaN]; return; end

beta = asin(T(1,3)); %'assumption' that cos(beta)>0

aiphasin = asin(-T(2,3)/cos (beta));

aiphacos = acos(T(3,3)/cos(beta));

if (alphacos>pi/2 & alphasin>0); alphapi-alphasin; end;

if (alphacos>pi/2 & alphasin<0); alpha =-pi-alphasin; end;

if (alphacos<=pi/2); alpha=alphasin; end;

gamasin = asin(-T(1,2)/cos (beta));

gamacos = acos (T(1,1)/cos (beta));

if (gamacos>pi/2 & gamasin>0); gama=pi-gamasin; end;

if (gamacos>pi/2 & gamasin<0); gama=-pi-gamasin; end;

if (gamacos<=pi/2);	 gama=gamasin;	 end;
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% Calculation of Hx,Hy,Hz

A[1, 0, sin(beta);...

0, cos(alpha), .sin(alpha)*cos(beta);...

0, sin (alpha), cos (alpha) *cos (beta)];

H=A\T(1:3,4); H=H';

out [ rad2deg (alpha ) ,rad2deg (beta) ,rad2deg(gama),H];
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function [sid] signd (value)

%Procedure to return a positive or negative unit value depending on
%sign of input.

%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.

%Date: March 1998

%Input: value
%
%Output: +1 if 'value' >= 0, -1 if 'value' < 0

if value >=0
si d 1;

end
if value<0

sid=-1;
end
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function [T, resJ =soder (data)

% function [T,res]=soder(data)

% Description:	 Program calculates the transformation matrix T
containing

%	 the rotation matrix (3x3) and the translation translation

%	 vector d (3x1) for a rigid body segment using a singular

%	 valtie decomposition method (Soederkvist & Wedin 1993)

%

% Input:	 data:	 columns represent the XYZ positions and the rows

represent time.

% Output:	 T:	 4x4 Matrix containing the rotation matrix R and the

translation d: T = [R,d; 0 0 0 1]

res:	 norm of residuals (measure of fit; "rigidity" of body

% References:	 Soderkvist I. and Wedin P. -A., (1993). Determining the

movements of the skeleton using well-configured
markers.

%	 Journal of Biomechanics, 26:1473-1477

% Author:	 Christoph Reinschmidt, HPL, The University of Calgary

(Matlab code adapted from Ron Jacobs, 1993)

% Date:	 February, 1995

% Last Changes: December 09, 1996

% Version:	 3.1

if (size(data,2)/3)-=fix(size(data,2)/3),

disp('ERROR: input has to be multiple of 3 (XYZ coordinates)'); return

end

A= [reshape (data (1, :) ',3, size (data, 2)13)1 ';

B=[reshape(data(2,:)',3,size(data,2)/3)]';

% Checking for NaNs and also checking if still 3 pts left and if not

% T=[NaN...];
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cut[O];

qA=isnan(A); qB=isrian(B); qAB[qA,qB];

qsum=sum(qAB'); cut=find(qsum-=O);

PL( [cut],: )=[] ; B( [cut], : )=[]

if size(A,1)<3,

T=[NaN,NaN,NaN,NaN;NaN,NaN,NaN,NaN;NaN,NaN,NaN,NaN;NaN,NaN,NaN,NaN;];
return;

end

Amean=mean(A) '; Brnean=mean(B) ';

for i=1:size(A,1)-size(cut,2),

Ai(:,i)=[A(i,:)-1mean']';

Bi(:,i)=[B(i,:)-Bmean']';

end

C8i*Ai.';

[P,T,Q]=svd(C);

RP*diag([1 1 det(P*Q)))*Ql;

thBmean_R* (punean);

T [ R ,d;O 0 0 1];

% Calculating the norm of residuals

A=A'; A(4,:)=ones(l,size(A,2));

BB';

Bcalc=T*A; Bcalc(4, :)=[]; Diff=B-Bcalc; Diffsquare=Diff/2;

%D0F3* (number of points)-6 unknowns (Hx,Hy,Hz,alpha,beta,gamma)

DOFsize (B, 1) *size (8,2) -6;

res=[suin(Diffsquare(:))/DOF].AO.5;
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%Procedure to find the rotation between the technical and anatomical
%frames in each segment.
%
%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.

%Date: May 1998

%Modifications : 11/98 to include scaled vector from Veeger et al (1996)
%	 for location of Gh centre.

November 1998- to allow SVD optimisation of marker positions
%	 Soderkvist & çedin (1993)
%

13/05/99- forearm technical frame altered to make z-axis
between proximal ulnar marker and wrist centre.

%Input: Matrices: le, me, tv, these being the matrices containing
%the co-ordinate data from the pointer calibration video sample (lateral
epicondyle,
%medial epicondyle and thoracic vertebra respectively.

%Output: Transformation matrix between the technical and anatomical
frames
%on the forearm, upper arm and trunk (Tfta, Thta and Ttta respectively)

%Average out the landmark data
Line;, L2me;, L3=tv;
for i1:3
x=evai(['L' int2str(i)]);
%X=x
Xmean(x)
%

%select position vectors for pointer markers
pll=X(:,31:33)
p12=X(:,34:36)
%calcuiate vector from p12 to p11 which corresponds to the vector
%between ph and the tip of the pointer
pvec=pli-p12;
%calcuiate location of pointer tip
ptp= (pll+pvec) ';
ptip=[ptp;1];

%
%LE : Select procedure for upper arm markers
if i==1

%select position vectors for humeral (upper arm) markers
h4=X(:,i0:12)
h5=X(:,13:15);
h6X(:,16:18)
%define vectors h4h6 and h4h5, the former of which is taken as the
%technical humeral z axis
hz=h6-h4;
h4h5=h5-h4;
%define cross product of these to give humeral x axis and then

cross
%z and x axes to give y-axis.
hx=cross (h4h5,hz);
hy=cross (hz,hx);
%unitise the vectors representing the humeral technical axes
Hxunit (hx);
Hyunit (hy);
Hzunit(hz);
%add these to the original co-ordinates for the origin, marker h4

to
%give the technical axis unit vectors in terms of the global frame.
HXh4 +Hx;
HY=h4 +Hy;
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%Calculate transformation between global and technical frame.-
HUt13=soder([1 0 0 0 1 0 0 0 1;HX HY HZ]);
Le=HUt13\ptip;
LELe(1:3, :)
ach=X(:,28:30) ';
Ach=HUt13\ [ach; 11;
ACh=Ach(1:3,:);

%select position vectors for forearm markers
flX(:,1:3)
f2X(: ,4:6);
f3X(:,7:9)

%define wrist mid-point for origin of forearm technical frame.
fla=(fl+f2)/2;
%define vectors flaf3 and flf2, the former of which is taken as the
%forearm z axis
fz=f3-f1a;
flf2=f2-fl;
%define cross product of these to give forearm y axis and then

cross
%y and z axes to give x-axis.
fy=cross (fz, flf2)
fx=cross (fy, fz)
%unitise the vectors representing the forearm technical axes
Fxunit(fx);
Fy=unit(fy);
Fzunit(fz);
%add these to the original co-ordinates for the origin, marker fla

to
%give the technical axis unit vectors in terms of the global frame.
FX=fla+Fx;
FY=fla+Fy;
FZ=fla+Fz;
%Calculate transformation between global and technical frame.
FAtl3soder([1 0 0 0 1 0 0 0 1;FX FY FZJ);
Lef=FAt13\ptip;
LEF=Lef(1:3,:);
us=X(:,1:3) ';
rs=X(:,4:6) t;

Us=FAt13\[us;1);
Rs=FAtl3\[rs;l];
RS=Rs (1:3,:);
US=Us(1:3, :);

%
%ME: Select procedure for upper arm markers
elseif i==2

%select position vectors for humeral (upper arm) markers
h4=X(:,1O:12);
h5=X(:,13:15)
h6=X(:,16:18)
%define vectors h4h6 and h4h5, the former of which is taken as the
%technical humeral z axis
hz=h6-h4;
h4h5=h5-h4;
%define cross product of these to give humeral x axis and then

cross
%z and x axes to give y-axis.
hx=cross (h4h5,hz);
hy=cross (hz,hx);
%uriitise the vectors representing the humeral technical axes
Hxunit (hx);
Hy=unit (hy);
Hz=unit(hz);
%add these to the original co-ordinates for the origin, marker h4

to
%give the technical axis unit vectors in terms of the global frame.
HX=h4 +Hx;
FIY=h4+Hy;
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%Calculate transformation between global and technical frame.-
HUt14=soder([]. 0 0 0 1 0 0 0 1;HX HY HZ]);
Me=HUt1 4 \ptip;
MEMe (1: 3,:)
ecenh=(LE+ME) /2;
scaler=(vecsize(ACh-ecenh) )-13.5;

%select position vectors for forearm markers
fl=X(:,1:3)
f2=X ( : , 4 : 6);
f3=X(:,7:9) ;

%define wrist mid-point for origin of forearm technical frame.
fla=(fl+f2)/2;
%define vectors flaf3 and flf2, the former of which is taken as the
%forearm z axis
fz=f3-fla;
flf2=f2-f 1;
%define cross product of these to give forearm y axis and then

cross
%y and z axes to give x-axis.
fycross(fz,flf2)
fxcross(fy,fz)
%unitise the vectors representing the forearm technical axes
Fxunit(fx);
Fy=unit(fy);
Fzunit (fz);
%add these to the original co-ordinates for the origin, marker fla

to
%give the technical axis unit vectors in terms of the global frame.
FX=fla+Fx;
FY=fla-4-Fy;
FZ=fla+Fz;
%Calculate transformation between global and technical frame.
FAtl4=soder([1 0 0 0 1 0 0 0 l;FX FY FZ]);
MefFAtl 4 \ptip;
MEF=Mef(1:3,:);

%TV : Select procedure for trunk markers
elseif i3

%select position vectors for trunk markers
ac7X(:,19:21) ;
t8X(:,22:24)
t9=X(:,25:27)
%define vectors t9t8 and t9ac7, the former of which is taken as the
%trunk z axis
tzt8-t9;
t9ac7=ac7-t9;
%define cross product of these to give trunk y axis and then cross
%z and y axes to give x-axis.
ty=cross (t9ac7, tz);
tx=cross(ty,tz);
%unitise the vectors representing the trunk technical axes
Tx=unit(tx);
Ty= unit (ty);
Tz=unit (tz);
%add these to the original co-ordinates for the origin, marker t9

to
%give the technical axis unit vectors in terms of the global frame.
TX=t9+Tx;
TYt9+Ty;
TZ=t9+Tz;
%Calculate transformation between global and technical frame.
TRt15=soder([l 0 0 0 1 0 0 0 1;TX TY TZ]);
Tv=TRtl5\ptip;
TVTv(1:3, :);
xnanX(:,22:24) ';
xifX(:,25:27) ';
ManTRtl5\ [man; 1];
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Xif=TRtl5\ [xif; 1];	 -
XIF=Xif(1:3, :);

%Define Trunk anatomical frame.
tan z=MPN-XI F;
tanyl=TV-XIF;
tanx=cross (tanz,tanyl);
tany=cross (tanz,tanx);

%unitise the vectors representing the trunk anatomical axes
Tanz=unit(tanz);
Tany=unit (tany);
Tanx=unit(tanx);

%add these to the original co-ordinates for the origin, XIF to
%give the anatomical axis unit vectors in terms of the technical frame.

TanX=XI F+Tanx;
TanY=XIF+Tany;
TanZXIF-I-Tanz;

%Calculate transformation between trunk technical and anatomical frame.
Ttta=soder([1 0 0 0 1 0 0 0 1;TanX' TanY' TanZ'J);

%Calculate transformation between global frame and trunk anatomical
frame.

Tgta=TRtl5*Ttta;
%Calculate AC with respect to trunk anatomical frame

act=X(:,28:30) ';
Act=Tgta\ [act; 1];
ACt=[Act(1,l) Act(2,1) Act(3,1)-13.5];

%Calculate GH rotation centre with respect to trunk anatomical frame
GHrt=ACt+(scaler*(O.020495 -0.02463 -0.10802]);

%select position vectors for humeral (upper arm) markers
h4=X(:,10:12)
h5=X(:,13:15) ;
h6=X(:,16:18) ;
%define vectors h4h6 and h4h5, the former of which is taken as the
%technical humeral z axis
hzh6-h4;
h4h5=h5-h4;
%define cross product of these to give humeral x axis and then

cross
%z and x axes to give y-axis.
hx=cross (h4h5,hz);
hycross (hz,hx);
%unitise the vectors representing the humeral technical axes
Hx=unit(hx);
Hy=unit (hy);
Hz=unit (hz);
%add these to the original co-ordinates for the origin, marker h4

to
%give the technical axis unit vectors in terms of the global frame.
HX=h4+Hx;
HY=h4+Hy;
HZ=h4-I-Hz;

%Calculate transformation between global and technical frame.
HUtl5=soder([1 0 0 0 1 0 0 0 1;HX HY HZ]);

%Calculate transformation between humerus technical frame and trunk
%anatomical frame.

HTTG=HUtl5\Tgta;
%calculate location of glenohumeral rotation centre with respect to
%humeral technical axis.

GHRC=HTTG* fGHrt' ; 1];
%select position vectors for forearm markers

fl=X(:,1:3)
f2X ( : , 4: 6);
f3X(:,7:9);

%define wrist mid-point for origin of forearm technical frame.
fla(fl+f2)/2;
%define vectors flaf3 and flf2, the former of which is taken as the
%forearm z axis
fz=f3-fla;
flf2=f2-f 1;
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cross	 -

%y and z axes to give x-axis.
fycross(fz,f1f2)
fx=cross (fy, fz)
%unitise the vectors representing the forearm technical axes
Fxunit(fx);
Fy=unit(fy);
Fz=unit(fz);
%add these to the original co-ordinates for the origin, marker fla

to
%give the technical axis unit vectors in terms of the global frame.
FX=fla+Fx;
FY=fla+Fy;
FZ=fla+Fz;
%Calculate transformation between global and technical frame.
FAt15=soder([l 0 0 0 1 0 0 0 1;FX F? FZfl;

end
end

%Hume rus
ecenh=(LE+ME) /2;
hanzGHRC(l: 3,1) -ecenh;
hanxl=LE-ME;
hany=cross (hanz,hanxl);
hanx=cross (hariy,hanz);
%unitise the vectors representing the forearm anatomical axes
Hanzunit (hanz);
Hany=unit (hany);
Hanx=uriit (hanx);
%add these to the original co-ordinates for the origin, ecenh to
%give the anatomical axis unit vectors in terms of the technical frame.
HanX=ecenh+Hanx;
I-IanY=e cenh+Hariy;
I-ianZ=ecenh+Hanz;
%Calculate transformation between humerus technical and anatomical frame.
Thta=soder([l 0 0 0 1 0 0 0 1;HanX' HanY' HanZ'fl;

%Forearm
wcenf=(US+RS)/2;
ecerif=(LEF+MEF) /2;
fanz=ecenf-wcenf;
fanxl=RS-US;
farty=cross (fanz, fanxl);
fanx=cross (fany, fanz);
%unitise the vectors representing the forearm anatomical axes
Fanz=unit(fanz);
Fany=unit(fany);
Fanx=unit (fanx);
%add these to the original co-ordinates for the origin, wcenf to
%give the anatomical axis unit vectors in terms of the technical frame.
FanX=wcenf+Fanx;
FanY=wcenf+Fany;
FanZ=wcenf+Fanz;
%Calculate transformation between forearm technical and anatomical frame.
Tfta=soder([l 0 0 0 1 0 0 0 1;FanX' FanY' FanZ']);
Ttta;
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%Procedure to find the flexion, ad.duction and internal rotation at the
elbow
%and shoulder
%
%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.
%
%Date: May 1998

%Modifications : November 1998-	 To cater for new method of GH centre
location.

%	 24/11/98- to allow SVD optimisation of marker positions
%	 Soderkvjst & Wedin (1993)

13/05/99- forearm technical frame altered to make z-axis
between proximal ulnar marker and wrist centre.

%
%Input: Output from "tech.m" plus the matrix 'should' containing the co-
ordinate
%data for the nine body-fixed markers through time.

%Output: The angles of flexion, adduction and int.rotation at the
shoulder and
%elbow through time, using two methods. (1) The step-by-step method of
%transformation matrix multiplication. (2) The algorithm of Cole et al
(1993)

%References: Cole,G.K. et al (1993) . Application of the Joint Co-
ordinate System

to Three-dimensional Joint Attitude and Movement
Representation : A

Standardization Proposal. Journal of Biomechanical
Engineering.
%	 November 1993 : Vol 115 : pp 344-349
%

%
wtraj[1;
etraj[);
straj[);
ELBOW=[);
SHOULDER=E];
SHD= [1;
ELB=[};
EFTall[];
ETHall=[];
tsize(should,1);
for k1:t
%select position vectors for forearm markers

fl=should(k,1:3);
f2=should(k,4:6);
f3=should(k,7 :9);

%define wrist mid-point for origin of forearm technical frame.
fla(fl+f2)/2;

%define vectors flaf3 and flf2, the former of which is taken as the
%forearm z axis
fz=f3-fla;
flf2=f2-fl;
%define cross product of these to give forearm y axis and then

cross
%y and z axes to give x-axis.
fy=cross(fz,flf2);
fx=cross (fy, fz);
%unitise the vectors representing the forearm technical axes
Fx=unit(fx);
Fy=unit(fy);
Fz=unjt(fz);



%add these to the original co-ordinates for the origin, marke.5la
to

	

	 -
%give the technical axis unit vectors in terms of the global frame.
FX=fla+Fx;
FYfla+Fy;
FZ=fla+Fz;
%Calculate transformation between global and technical frame.
FGT=soder([1 0 0 0 1 0 0 0 1;FX FY FZ]
%Calculate transformation between global and anatomical frame.
FGA=FGT*Tfta;

%select position vectors for humeral (upper arm) markers
h4=should(k, 10:12);
h5should(k, 13:15);
h6=should(k,16:18);
%define vectors h4h6 and h4h5, the former of which is taken as the
%technical humeral z axis
hzr=h6_h4;
h4h5=h5-h4;
%define cross product of these to give humeral x axis and then

cross
%z and x axes to give y-axis.
hxcross(h4h5,hz);
hy=cross (hz,hx);
%unitise the vectors representing the humeral technical axes
Hx=unit(hx);
Hy=unit (hy);
Hzunit (hz);
%add these to the original co-ordinates for the origin, marker h4

to
%give the technical axis unit vectors in terms of the global frame.
HX=h4 +Hx;
HYh4 -1-Hy;
HZ=h4+Hz;
%Calculate transformation between global and technical frame.
HGT=soder([1 0 0 0 1 0 0 0 1;HX HY HZ));
%Calculate transformation between global and anatomical frame.
HGA=HGT*Thta;

%

%select position vectors for trunk markers
ac7=should(k, 19:21);
t8=should(k,22:24);
t9=should(k,25:27);
%define vectors t9t8 and t9ac7, the former of which is taken as the
%trunk z axis
tz=t8-t9;
t9ac7=ac7-t9;
%define cross product of these to give trunk y axis and then cross
%z and y axes to give x-axis.
ty=cross (t9ac7,tz);
tx=cross (ty,tz);
%unitise the vectors representing the trunk technical axes
Tx=unit (tx);
Ty=unit (ty);
Tz=unit(tz);
%add these to the original co-ordinates for the origin, marker t9

to
%g-ive the technical axis unit vectors in terms of the global frame.
TXt9+Tx;
TY=t9+Ty;
TZt9+Tz;
%Calculate transformation between global and technical frame.
TGT=soder([l 0 0 0 1 0 0 0 1;TX TY TZ]);
%Calculate transformation between global and anatomical frame.
TGA=TGT*Ttta;

%
if LSQF=='Y'



Ttcmov=soder([X(:,19:21)X(:,22:24)X(:,25:27);ac7t8t9fl; 	 457
Thcmov=soder((X(:,1O:12)X(:,13:15)X(:,16:18);h4h5h6]); 	 -
Tfcmov=soder((X(:,l:3) X(:,4:6) X(:,7:9);flf2f3]);
TGA=Ttcmov*Ttl5*Ttta;
HGA=Thcmov*HUt15*Thta;
FGA=Tfcmov*FAt15*Tfta;
end

%Calculate relative motion using algorithm
%Calculate wrist centre, elbow centre and
%GwcenlFGT* [wcenf; 1];
Gwcen2FGA(1:4, 4);
%Gecenl=HGT* [ecenh; 1J;
Gecen2=HGA ( 1: 4, 4) ;
%Gxifl=TGT*(XIF;1);
Gxif2=TGA(l:4,4);
%Calculate vector of anatomical frames wrt
Gfx=FGA*[1;O;O;1J ;
Gfy=FGA* [0; 1; 0; 1]
Gfz=FGA4 [0; 0; 1; 1]
GhxHGA*[l; 0;0;l);
GhyHGA* [0; 1; 0; 1)
Ghz=MGA*[0;0;1;l)
Gtx=TGA*[l;0;O;11
Gty=TGA*[O;1;0;l];
Gtz=TGA* [0; 0; 1; 1)
%Calculate vectors of each of the axes wrt
GFx=Gfx-Gwcen2;
GFX=GFx (1: 3, 1)
GFy=Gfy-Gwcen2;
GFY=GFy (1: 3, 1)
GFz=Gfz-Gwcen2;
GFZ=GFz (1: 3, 1)
GHx=Ghx-Gecen2;
GHXGHx (1: 3, 1) ;
GHy=Ghy-Gecen2;
GHY=GHy (1: 3, 1)
GHzGhz-Gecen2;
GHZ=GHz (1: 3, 1)
GTxGtx-Gxi f 2;
GTX=GTx (1: 3, 1)
GTy=Gty-Gxif 2;
GTY=GTy (1: 3, 1)
GTzGtz-Gxif2;
GTZGTz(1:3,1) ;
%Calculate shoulder angle using "Cole.m".
C1=[GTX' GTZ' GTY';GHX' GHZ' GHY'];
SHOULDER(k, 1: 3) =cole (Cl)
%Calculate elbow angle using sIcole.mut.
C2=(GHX' GHZ' GHY';GFX' GFZ' GFY'];
ELBOW(k,l:3)=cole(C2);
%
%
%Calculate relative motion at elbow my wa
EHF=1-IGA\ FGA;
%Calculate relative motion at shoulder my
ETh=HGA\TGA;
ETH=inv(ETh);

%For calculation of wrist trajectory, neec
EFt=FGA\TGA;
EFT=inv(EFt);

%Construct big matrices containing all EF
EFTa11= [EFTa11 EFT(l:3,l:3)];
ETHa11 = [ETHa11 ETH(l:3,1:3)];

global frame.

to global frame.

way

forearm frame wrt trunk frame.

and ETH matrices.

• of Cole et al (1993).
xiphoid wrt global frame.



%Calculate AC with respect to trunk anatomical frame
actt=should(k, 28:30)';
Actt=TGA\[actt;l];
ACtt=[Actt(1,1) Actt(2,l) Actt(3,1)-13.5);

%Calculate GH rotation centre with respect to trunk anatOmiCal frame
GHrtt=ACtt+(scaler*[0.026092 -0.012583 -0.1114881);

%Compile wrist, elbow and humeral head centre trajectories wrt trunk
axes.
wtraj ( k , : ) =EFT (1: 3, 4)
etraj (k, : ) =ETH (1: 3, 4)
straj(k, :)=GHrtt(l,1:3);
%

%Break transformation matrices into Euler angles.
Elb=rzyxsolv(EHF);
ELb=Elb (1, 1: 3) ;
ELB(k, 1:3)=ELb;
Shd=rzyxsolv(ETH);
SHd=Shd ( 1, 1: 3)
SHD(k, 1 :3)=SHd;
end

%
%Results from my method
%disp('	 ELBOW')
%disp('	 Flexion Adduction Int.Rotn.')
%disp (ELS)
%disp ('	 SHOULDER')
%disp('	 Flexion Adduction Int.Rotn.')
%disp (SHD)

%Results from the algorithm of Cole et al (1993)
%disp('	 ELBOW-COLE ET AL (1993)')
%disp('	 Flexion Adduction Int.Rotn.')
%disp (ELBOW)
%disp('	 SHOULDER-COLE ET AL (1993)')
%disp('	 Flexion Adduction Int.Rotn.')
%disp (SHOULDER)

Wtraj=wtraj /1000;
Etraj=etraj /1000;
Straj=straj/1000;



unit.m
	 459

%UNIT Unitize a vector

UNIT(V) returns a unit vector aligned with V.

%	 Copright (C) Peter Corke 1990

function u = unit(v)

U = V / norm(v,'fro1);
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function [S]vecsize (data)
%Procedure vecsize.m gives the magnitude of a 1*3 vector

%Written by Ingram Murray, CREST, University of Newcastle upon Tyne.
%
%Date: February 1998

%Input: Vector X

%Output: Magnitude of the vector X

if size(data,1)1
a=data (1,1);
b=data(1,2);
c=data(1,3);
elseif size(data,1)==3
a=data (1,1);
b=data (2,1);
cdata (3,1);
end
A= a * a;
B=b*b;
C=c* c;
Ssqrt(A+B+C);
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