
Formal Modelling and Analysis of
Dynamic Reconfiguration of

Dependable Systems

Anirban Bhattacharyya

A thesis submitted in partial fulfilment of
the requirements for the degree of

Doctor of Philosophy

Newcastle University
School of Computing Science

January 2013

Abstract

The contribution of this thesis is a novel way of formally modelling and analyzing
dynamic process reconfiguration in dependable systems.

Modern dependable systems are required to be flexible, reliable, available and
highly predictable. One way of achieving flexibility, reliability and availability is
through dynamic reconfiguration. That is, by changing at runtime the structure
of a system – consisting of its components and their communication links – or the
hardware location of its software components. However, predicting the system’s
behaviour during its dynamic reconfiguration is a challenge, and this motivates
our research.

Formal methods can determine whether or not a system’s design is correct, and
design correctness is a key factor in ensuring the system will behave predictably
and reliably at runtime. Therefore, our approach is formal. Existing research on
software reconfiguration has focused on planned reconfiguration and link mobil-
ity. The focus of this thesis is on unplanned process reconfiguration. That is, the
creation, deletion and replacement of processes that is not designed into a system
when it is manufactured. We describe a process algebra (CCSdp) which is CCS
extended with a new type of process (termed a fraction process) in order to model
process reconfiguration. We have deliberately not introduced a new operator in
CCSdp in order to model unplanned reconfiguration. Instead, we define a bisim-
ulation (∼o f) that is used to identify a process for reconfiguration by behavioural
matching. The use of behavioural matching based on ∼o f (rather than syntactic
or structural congruence-based matching) helps to make models simple and terse.
However, ∼o f is too weak to be a congruence. Therefore, we strengthen the condi-
tions defining ∼o f to obtain another bisimulation (∼dp) which is a congruence, and
(therefore) can be used for equational reasoning. Our notion of fraction process is
recursive to enable fractions to be themselves reconfigured. We bound the depth
of recursion of a fraction and its successors in order to ensure that ∼o f and ∼dp are
decidable. Furthermore, we restrict the set of states in a model of a system to be
finite, which also supports decidability of the two bisimulations and helps model
checking. We evaluate CCSdp in two ways. First, with respect to requirements used
to evaluate other formalisms. Second, through a simple case study, in which the
reconfiguration of an office workflow is modelled using CCSdp.

ii

Declaration

The work presented in this thesis was done by myself, unless otherwise stated, and
the thesis was written by me.

Dedication

To the maker of all things, without whose help I could not have done my research.

Long is the way
And hard, that out of Hell leads up to light.

– John Milton, Paradise Lost, Book 2

Acknowledgements

I would like to thank the following people for their help during my research. First,
John Shaw Fitzgerald (my supervisor) for giving me the opportunity to study for
my PhD at Newcastle University. John’s encouragement, advice, guidance and
overall support have been invaluable – I cannot thank him enough! I also want
to thank Clifford Bryn Jones and Maciej Koutny for their useful criticism of my
research and advice. Jon Warwick arranged the EPSRC funding for my research
and Matthew Harris administered my MARI trivial commutation, and I gratefully
acknowledge their help.

I have been very fortunate to have done my research in a friendly environment
and in the company of supportive colleagues. Manuel Mazzara gave freely of
his time and we had many hours of stimulating argument. Manuel is that rarity
among creatures – an open-minded process algebraist! I am particularly indebted
to Manuel for his advice on simplifying the semantics of CCSdp. I must also
acknowledge Mario Bravetti for clarifying my understanding of labelled transition
system semantics, and Luke Ong for his observation that different bisimulations
can be used for different purposes. Massimo Strano suggested the reconfiguration
of an office workflow when I was looking for a case study, and Joey Coleman
advised me to use presentations to clarify ideas – targetted on 5-year olds! I must
also thank Peter Nicolls for educating me about chemical processes, and Olivier
Commowick for making his LaTeX template available on the World Wide Web.

On a personal note, I would like to thank Anna Lewis and Caroline Clark for
getting me back on my feet during writing up after a painful bout of sciatica and
back pain. My friends Diane and Katy were constant in their encouragement and
ceaselessly nagged me to get the job done! My parents gave unwavering support
over the years, and I am glad their long wait is over. I am most grateful to my wife
Gill for her love and patience – I could not have done my research without her.

This is a revised version of my thesis. I would like to thank my examiners, José
Luiz Fiadeiro and Lance Jason Steggles, for their detailed comments on the original
submitted version.

This work has been partly funded by the EPSRC under the terms of a graduate
studentship.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Approach . 6
1.3 Thesis Structure . 8

2 Review of Systems Supporting Dynamic Reconfiguration 11
2.1 Programming Languages . 12
2.2 Object Execution Environments . 13
2.3 Operating Systems . 13
2.4 Distributed Systems . 14

2.4.1 Argus . 15
2.4.2 Eternal . 16
2.4.3 Dynamic Reconfiguration Service 17
2.4.4 Related Work . 18

2.5 Module Interconnection Languages 18
2.6 Architecture Description Languages 19
2.7 Architecture Modification Languages 22
2.8 Discussion . 22
2.9 Issues . 23

2.9.1 Dynamic Reconfiguration Issues 23
2.9.2 Dependability Issues . 24

2.10 Dynamic Architecture Description Languages 25
2.10.1 Darwin . 25
2.10.2 Wright . 31
2.10.3 Rapide . 36
2.10.4 Related Work . 41
2.10.5 Discussion . 41

2.11 Requirements on a Formalism . 41
2.11.1 Dynamic Reconfiguration Requirements 42
2.11.2 Dependability Requirements 42
2.11.3 General Requirements . 43

Contents vi

3 Review of Formalisms Supporting Dynamic Reconfiguration 44
3.1 Milner’s, Parrow’s and Walker’s π-calculus 46

3.1.1 Evaluation using Requirements 49
3.2 Higher-Order π-calculi . 53

3.2.1 Evaluation using Requirements 55
3.3 Asynchronous π-calculus . 58

3.3.1 Evaluation using Requirements 60
3.4 Related Work . 61
3.5 Discussion . 62

4 Basic CCSdp 65
4.1 Syntax . 66

4.1.1 Rationale . 69
4.2 Labelled Transition System Semantics 70

4.2.1 LTS Rules . 71
4.2.2 Positive Processes and Zero Processes 77
4.2.3 Strong of-Bisimulation . 79
4.2.4 Structure of the LTS Semantics 81

4.3 Equational Reasoning . 84
4.3.1 Strong of-Bisimulation is an Equivalence Relation 85
4.3.2 Strong of-Bisimulation is not a Process Congruence 92
4.3.3 Strong dp-Bisimulation . 96

4.4 Consistency and Decidability . 107
4.4.1 Consistency . 107
4.4.2 Decidability . 108

4.5 Forms of Matching . 109
4.5.1 Syntactic Equality-based Matching 110
4.5.2 Structural Congruence-based Matching 110
4.5.3 Strong Observation Equivalence-based Matching 111
4.5.4 Comparison . 111

4.6 Evaluation using Requirements . 113

5 Evaluation of Basic CCSdp using a Simple Office Workflow 115
5.1 Office Workflow for Order Processing 115
5.2 Reconfiguration of a Design . 120
5.3 Modelling the Workflow . 121

5.3.1 Modelling Configuration 1 . 121
5.3.2 Modelling Configuration 2 . 124

Contents vii

5.3.3 Modelling the Reconfiguration 126
5.4 Evaluation using the Reconfiguration Requirements 127

5.4.1 Verification of Requirement 2 127
5.4.2 Verification of Requirements 1, 3, 4 and 5 127

5.5 Strengths and Weaknesses of Basic CCSdp 134

6 Towards Full CCSdp 136
6.1 Basic CCSdp+ν . 136

6.1.1 Syntax . 136
6.1.2 Labelled Transition System Semantics 138
6.1.3 Positive Processes and Zero Processes 139

6.2 On Process Identification . 141
6.2.1 A Process Identification Scheme 141

6.3 Discussion . 143

7 Concluding Remarks 145
7.1 Conclusions . 145
7.2 Future Work . 148

Bibliography 150

A Proofs of basic CCSdp 161
A.1 Lemma 4.2.1 ∀p, q∈P (p{o f q =⇒

∀i∈N ∀p′∈succ(p, i)(∃q′∈succ(q, i) (p′{o f q′))) 161
A.2 Corollary 4.2.1

∀p, q∈P (p{o f q =⇒ s f drdepth(p) ≤ s f drdepth(q)) 162
A.3 Lemma 4.3.3 ∀strong of-simulations U,V on P

(UV is a strong of-simulation on P) . 163
A.4 Lemma 4.3.5 ∀p∈P+(Ip ∪ Rp , ∅) . 168
A.5 Lemma 4.3.6 ∀p∈P(p∈P+

⇐⇒ Rp , ∅) 171
A.5.1 ∀p∈P(p∈P+ =⇒ Rp , ∅) . 172
A.5.2 ∀p∈P(Rp , ∅ =⇒ p∈P+) . 172

A.6 Lemma 4.3.7 ∀p∈P0(Ip ∪ Rp = ∅) . 175
A.7 Theorem 4.3.3 ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p) 178

A.7.1 ∀p∈P ∀z∈P0(p|z ∼o f p) . 179
A.7.2 ∀p∈P ∀z∈P0(p ∼o f z|p) . 181

A.8 Theorem 4.3.4
∼o f Preserves the Elementary Contexts α.[·] + M, [·]

P and P
[·] 183

Contents viii

A.8.1 ∀p, q∈P
(if p∼o f q then ∀α ∈ I (α.p + M ∼o f α.q + M) where M is any
summation in P) . 183

A.8.2 ∀p, q∈P (if p∼o f q then ∀r∈P (p
r ∼o f

q
r)) 185

A.8.3 ∀p, q∈P (if p∼o f q then ∀r∈P (r
p ∼o f

r
q)) 186

A.9 Lemma 4.3.13 ∀strong dp-simulations U,V on P
(UV is a strong dp-simulation on P) 187

A.10 Lemma 4.3.15
∀p, q∈P (p|q∈P+ =⇒ f actors+

m(p|q) , ∅m) 189
A.11 Lemma 4.3.16 ∀p∈P (p∈P0 =⇒ f actors+

m(p) = ∅m) 192
A.12 Lemma 4.3.17 ∀p, p′∈P

∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actorsm(p′) , ∅m) 194

A.13 Lemma 4.3.18 . 196
A.14 Lemma 4.3.19 . 206
A.15 Lemma 4.3.20 . 212
A.16 Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 218

A.16.1 ∀p∈P ∀z∈P0(p|z ∼dp p) . 219
A.16.2 ∀p∈P ∀z∈P0(p ∼dp z|p) . 224

A.17 Lemma 4.3.21 . 230
A.18 Theorem 4.3.8 ∀p, q∈P

(p∼dp q =⇒ | f actors+
m(p|0)| = | f actors+

m(q|0)|) 237
A.19 Theorem 4.3.9 ∀p, q∈P

(p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q)) 240
A.19.1 ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼o f q|r)) 240
A.19.2 ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r|p∼o f r|q)) 243

A.20 Theorem 4.3.10
∼dp Preserves all Elementary Contexts 245
A.20.1 ∀p, q∈P

(if p∼dp q then ∀α ∈ I (α.p + M ∼dp α.q + M) where M is any
summation in P) . 246

A.20.2 ∀p, q∈P (if p∼dp q then ∀r∈P (p|r∼dp q|r)) 249
A.20.3 ∀p, q∈P (if p∼dp q then ∀r∈P (r|p∼dp r|q)) 255
A.20.4 ∀p, q∈P (if p∼dp q then ∀r∈P (p

r ∼dp
q
r)) 260

A.20.5 ∀p, q∈P (if p∼dp q then ∀r∈P (r
p ∼dp

r
q)) 263

A.21 Lemma 4.3.22 ∀z∈P0
∀p∈P (z{dp p) 266

A.22 Lemma 4.3.23
∀p, q, r, s∈P (p{dp q ∧ r{dp s =⇒ p|r{dp q|s) 266

Contents ix

A.23 Lemma 4.3.24
∀p, p′∈P ∀τrX ∈Rp (p

τrX
−→p′ =⇒ p′{dp p) 267

A.24 Lemma 4.3.25 ∀p, q∈P
(s f drdepth(p|q) = max{s f drdepth(p), s f drdepth(q)}) 270

A.25 Theorem 4.3.11 ∀p, q∈P (p|q∼o f q|p) . 270
A.26 Theorem 4.3.12 ∀p, q∈P (p|q∼dp q|p) . 270

A.26.1 T satisfies the Observation and Fraction conditions 271
A.26.2 T satisfies the Deletion condition 271
A.26.3 T−1 is a strong dp-simulation on P 275

A.27 Theorem 4.3.13 ∀p, q, r∈P ((p|q)|r∼o f p|(q|r)) 276
A.28 Lemma 4.3.26 . 276
A.29 Theorem 4.3.14 ∀p, q, r∈P ((p|q)|r∼dp p|(q|r)) 276

Chapter 1

Introduction

Contents
1.1 Background . 1

1.2 Approach . 6

1.3 Thesis Structure . 8

1.1 Background

The dialectics of human competition, that is, the interaction between opposing
human forces, drives technological change. The classic example is war. The
conflict between opposing forces during the Second World War directly caused
the construction of the first electronic digital computers (see [Hod87], [Flo83],
[Coo83], [Cha83] and [MN82]). The dialectics of competition still drives computing
technology [Hun12], and requires computing systems, including dependable
systems, to be more flexible, reliable, available and predictable [BF08]. One way
of achieving greater flexibility, reliability and availability is through the use of
dynamic reconfiguration. That is, by changing at runtime the structure of a system
– consisting of its components and their communication links – or the hardware
location of its software components. However, predicting the behaviour of a
system during its dynamic reconfiguration is a challenge.

We define several terms used in the discussion.

Definition 1.1.1 Flexibility is the ability to change or to be changed in order to deliver
service under different operating conditions or to deliver a different service.

For example, a highly flexible distributed system can maintain its performance
during heavy loading on a particular computer by load balancing. The system can
deliver a new service by importing a new component that provides the service. In
this thesis, a flexible system is taken to mean a highly flexible system. Our notions
of system and service are the same as those defined in [ALRL04].

1.1. Background 2

Definition 1.1.2 Reliability is the ability to deliver correct service with no interruption
due to a failure. A correct service delivery is a service delivery that meets the service
requirements. A failure is an incorrect service delivery.

A highly reliable system delivers correct service on demand [ALRL04], and any
downtime not due to a failure (e.g. due to maintenance) is ignored in measuring
the reliability of the system. The system can maintain its reliability if a fault is
activated in a component by replacing the faulty component with a redundant
component. We use the term reliable system to mean a highly reliable system.

Definition 1.1.3 Availability is the ability to deliver service with no interruption.

A highly available system can maintain its availability during maintenance by
using multiple replicas of a component, which is upgraded by replacing each of
its replicas in turn whilst the other replicas deliver service [TMMS01]. We use the
term available system to mean a highly available system.

Thus, dynamic reconfiguration helps to increase the flexibility, reliability and avail-
ability of a computing system. These attributes in turn facilitate the evolution of
computing systems, including dependable systems (defined below). Therefore,
dynamic reconfiguration supports the evolution of dependable systems, which
was recently identified as a key problem domain by several software engineering
researchers and practitioners [CHNF10].

Definition 1.1.4 Predictability is the ability to determine whether or not a service delivery
will be correct.

A service delivery is predictable if it is possible to determine whether or not the
service delivery will be correct. A system is predictable if its service delivery is
predictable. We use the term predictable service delivery to mean a highly predictable
service delivery, and the term predictable system to mean a highly predictable system.

Definition 1.1.5 Dependability is the ability to deliver service that can justifiably be
trusted to meet its requirements.

Our definition of dependability is based on [ALRL04], and makes explicit the
relationship between dependability and requirements. The definition identifies
the need for justification of trust. That is, the need for evidence that justifies the
trust that a service delivery will meet its requirements. It must be possible to use
the evidence to determine whether or not the service delivery will be correct. That

1.1. Background 3

is, the service delivery must be predictable. Dependability is a generic term that
encompasses several attributes of a system, including reliability and availability,
and we add flexibility to this set of attributes. We use the term dependable system to
mean a highly dependable system.

The importance of ensuring predictable service delivery during dynamic reconfig-
uration can be understood by considering the application domains of dependable
systems, such as control of air-traffic, chemical plants, power stations and auto-
mated production lines. Thus, dependable systems are usually large, complex,
geographically distributed, expensive and (consequently) long-lived. They must
be highly predictable and reliable, otherwise they will not be deployed. They
must be also highly available, because shutting down the system is impractical,
or the cost of downtime is too high, or because the controlled environment could
become dangerously unstable if the system became unavailable. Therefore, system
designers need a high level of confidence that a dependable system will meet its
requirements during normal operation. Furthermore, any reconfiguration of the
system (whether this is due to evolving requirements, improved computing tech-
nology, or to mask an internal error) must be made whilst it is operational, and with
no loss of confidence. Failure to achieve this can have catastrophic consequences,
which raises the question of how best to ensure that the service delivered by a
dependable system is predictable and correct, both during the normal operation of
the system and its dynamic reconfiguration.

Definition 1.1.6 A service design is correct if the service requirements are satisfied by the
design.

A system’s design is the design of the service that the system has the ability to
deliver. A system’s design is correct if its service design is correct.

The correctness of a service design is a key factor in achieving a predictable and
correct service delivery. Formal reasoning can determine whether or not a service
design is correct, and the reasoning is supported by formal approaches. Therefore,
we are interested in formal approaches to dynamic reconfiguration. Furthermore,
we are interested in software reconfiguration, because software is much more
mutable than hardware. Therefore, we restrict our attention to formal approaches
to dynamic software reconfiguration.

Existing research in dynamic software reconfiguration can be grouped into three
cases (see Figure 1.1).

1.1. Background 4

configuration 1

configuration 2 time

Case 1

configuration 2

configuration 1

dynamic reconfiguration

actions

Case 2

configuration 2

configuration 1

application actions

dynamic reconfiguration

actions

interactions (functional/temporal)

Case 3

Figure 1.1: Dynamic Reconfiguration Cases.

1.1. Background 5

Case 1 is the instantaneous reconfiguration of a system, in which the duration of
the reconfiguration interval is negligible and any executing task in configuration 1
that is not in configuration 2 is aborted. This is the traditional method of software
reconfiguration [Ves94], and is applicable to small, simple systems running on a
uniprocessor.

Case 2 is the non-instantaneous reconfiguration of a system, in which the duration
of the reconfiguration interval is significant and any executing task in configuration
1 is either aborted or suspended until the reconfiguration is complete. This is
the most common method of software reconfiguration (see [SVK97], [AWvSN01],
[BD93] and [KM90]), and is applicable to some large, complex, distributed systems.
If the duration of the reconfiguration is bounded and the controlled environment
can wait for the reconfiguration to complete, then the method can be used for hard
real-time systems; otherwise, the environment can become irrecoverably unstable
and suffer catastrophic failure.

Case 3 is the non-instantaneous reconfiguration of a system, in which the duration
of the reconfiguration interval is significant and tasks in configuration 1 execute
concurrently with reconfiguration tasks. This method avoids aborting tasks and
reduces the delay on the application due to reconfiguration, but it introduces
the possibility of functional and temporal interference between application and
reconfiguration tasks. If the interference can be controlled, then this method is
the most suitable for large, complex, distributed systems, including hard real-time
systems. This is the least researched method of software reconfiguration. Existing
research in Case 3 has focused on temporal interactions between application
and reconfiguration tasks, and on achieving schedulability guarantees (for
example, see [FW05] and [Mon04]). There is little research on functional inter-
actions between application and reconfiguration tasks (see [MT00] and [BCDW04]).

Therefore, the focus of our research is on Case 3. Specifically, we aim to develop
a process algebra that can model functional interactions between application and
reconfiguration tasks, and can support the verification of system requirements
defined over the reconfiguration interval. Furthermore, unlike existing formal
approaches, our approach will enable unplanned dynamic process reconfiguration
to be modelled abstractly, which is necessary for modelling dynamic evolution. Our
objectives are to extend CCS with a special process for modelling reconfiguration
(rather than a special operator), define the semantics of the resulting process algebra

1.2. Approach 6

(CCSdp) and develop its equational theory. We will evaluate CCSdp in two ways.
First, with respect to requirements used to evaluate other formalisms. Second,
through the reconfiguration of a simple office workflow used as a case study.

1.2 Approach

In modelling functional interactions between application and reconfiguration
tasks, using a single formalism to model the two types of task is simpler than using
different formalisms because the overhead of translation between formalisms is
avoided. Therefore, we focus on approaches based on a single formalism.

We need to model the process through which an application performs its compu-
tations and the process through which the application is reconfigured, in order
to model the functional interaction between the two processes. Process algebras
are well-suited to modelling processes and process interaction. Furthermore, the
structure of a process expression changes naturally as a result of its computation,
which facilitates modelling the structural change of a process expression due to
reconfiguration actions. Process algebras can model link reconfiguration [Mil99]
and process relocation [Uny01], and also non-terminating and concurrently
executing tasks, which are common in control systems. Therefore, we focus on
process algebras as the basis for our formalism.

Existing research on process algebras for dynamic software reconfiguration has
focused on planned reconfiguration. That is, reconfiguration which is incorporated
in the original design of a system. There is very little research on unplanned
reconfiguration, that is, reconfiguration which is not incorporated in the original
design of a system, which is relevant for legacy systems and for the evolution of
systems. Furthermore, much of the research on planned reconfiguration is on link
reconfiguration and process relocation. There is little research on replacement of
non-terminating processes, which is the most common type of process in control
systems. Therefore, we focus our attention on process reconfiguration.

Our process algebra is CCSdp; so called because it is based on CCS [Mil99] and is
focused on dynamic process reconfiguration. CCS is used as the base for three
reasons. First, CCS is one of the simplest process algebras that is capable of
modelling computations. Therefore, it is easier to extend to suit our modelling
requirements than a more complex process algebra; and (for the same reason) it is

1.2. Approach 7

an easier environment in which to experiment with new modelling constructs and
‘tune’ them to our requirements than a more complex process algebra. Second,
CCS is the base for π-calculi [Mil99]. Therefore, it should be possible to extend
CCSdp to model link reconfiguration and process relocation. Third, CCS has no
facility for link reconfiguration. Therefore, it should be possible to extend CCSdp

with real-time constructs to model process reconfiguration in control systems that
do not require link reconfiguration. The key activity in process reconfiguration is
process replacement, which we model using a special process (termed a fraction
process). We do not use a special reconfiguration operator (such as the interrupt
operator in CSP [Hoa85] or the workunit in webπ∞[Maz06]) because an operator
requires syntactic proximity between the operands, which implies that both the
process to be replaced and the process replacing it must be in the model of the
system, which (in turn) implies that both processes must represent quantities in
the system, because the model is supposed to be an abstraction of the system and
(therefore) should not contain any fictitious construct. Therefore, a reconfiguration
operator allows only planned reconfiguration to be modelled, and it precludes
the modelling of unplanned reconfiguration. In contrast, fraction processes
enable both planned and unplanned reconfiguration to be modelled, and allow
models to be changed incrementally in a modular fashion that corresponds to the
reconfiguration of an application by a patch.

The absence of implementation mechanisms (such as messages, interrupts and
timers) in the definition of a fraction process enables the fraction to model the effects
of dynamic reconfiguration and omit the mechanisms that cause it. Consequently,
CCSdp can be used to specify the process of dynamic reconfiguration. Furthermore,
the models can be analysed to determine reconfiguration paths and verify their
properties without being encumbered with unnecessary implementation detail.

The semantics of CCSdp is given in terms of a labelled transition system (LTS)
only. This is done because the LTS semantics is sufficient for equational reasoning
and verification based on model checking, which are the main forms of reasoning
supported by process algebras. It is conventional to provide a reduction semantics
for a new process algebra. This is done for two reasons. First, to enable people
unfamiliar with process algebras to understand the meaning of process expressions
more easily. Second, to conform to the tradition of writing a reduction semantics
that dates back to the λ-calculus [Bar84]. Thus, given the LTS semantics, the
reduction semantics is unnecessary for determining the meaning of process

1.3. Thesis Structure 8

expressions in CCSdp, and (therefore) it is omitted.

The proof technique used to establish results in CCSdp had to meet two require-
ments. First, the proofs had to be more rigorous than conventional proofs in process
algebra. This is because CCSdp is an unconventional process algebra. In a conven-
tional process algebra, conventional proofs typically omit steps in the reasoning
that can be filled by readers with sufficient background knowledge. However, in
an unconventional process algebra, an omitted step in a conventional proof may
not correspond to any background knowledge, and thereby cause doubt about the
truth of the proposition to be proved. Second, the proofs had to be understandable
and verifiable by a greater diversity of researchers in theoretical computing than
only process algebra specialists. This is because the idea of using a special process
(rather than a special operator) to provide functionality in a formalism may be use-
ful beyond the domain of process algebra. Therefore, we used a proof technique
inspired by [BFL+94], which is based on Gentzen’s system of Natural Deduction
[Pra65],[GTL89].

1.3 Thesis Structure

The rest of the thesis is organized as follows.

In Chapter 2, we identify the different approaches to dynamic software reconfigu-
ration, and focus on dynamic architecture description languages (DADLs) as the
most promising approach to managing dynamic reconfiguration of large systems.
We identify dynamic reconfiguration issues and some dependability issues, and
use these to examine a selection of DADLs in order to evaluate their suitability for
the dynamic reconfiguration of dependable systems and to identify their essential
features for modelling and analysis. Thus, we determine modelling and analysis
requirements of system designers on formalisms, which cannot be done by a
review of formalisms alone.

In Chapter 3, we identify the different formal approaches to the study of dynamic
reconfiguration, and focus on π-calculi as the most promising approach to the
modelling and analysis of dynamic reconfiguration of dependable systems. A
selection of π-calculi is then evaluated using the modelling and analysis require-
ments identified in Chapter 2. Thus, limitations of the current research in this field
are identified, which provides a focused motivation for our research. Specifically,

1.3. Thesis Structure 9

we show that existing π-calculi cannot model unplanned process reconfiguration
because of their use of special operators to perform process reconfiguration (such
as the workunit in webπ∞), which justifies our use of a special process to model
process reconfiguration.

In Chapter 4, we define the syntax and LTS semantics of CCSdp and develop an
equational theory. A strong bisimulation (∼o f) is defined to enable a dynamic
binding (termed process matching) to be made between a fraction process and the
processes it can reconfigure. The use of behavioural process matching based on
∼o f helps to maximize the terseness of process expressions for unplanned process
reconfiguration. However, because the ∼o f bisimulation is not a process congru-
ence, another strong bisimulation (∼dp) is defined that is a process congruence and
(therefore) can be used for equational reasoning. We prove a number of results
for ∼o f and ∼dp, which facilitate the use of ∼o f for process matching and the use
of ∼dp for equational reasoning. We briefly discuss the consistency of CCSdp and
the restrictions that make ∼o f and ∼dp decidable. We also discuss different forms
of matching, based on syntactic equality, structural congruence and behaviour.
Finally, CCSdp is evaluated with respect to the requirements used to evaluate
π-calculi in Chapter 3.

In Chapter 5, we evaluate CCSdp using the dynamic reconfiguration of a simple
office workflow. We describe the workflow and its reconfiguration, define the
requirements on the reconfiguration, express the workflow and its reconfiguration
in CCSdp, then evaluate CCSdp using the requirements.

In Chapter 6, we briefly explore modifications of CCSdp in order to overcome some
of its limitations identified in Chapter 4 and Chapter 5. Specifically, changes to the
syntax, LTS semantics and other definitions to accomodate the restriction operator
ν. Also, a process identification scheme to target a specific process instance for
reconfiguration.

In Chapter 7, we summarize the findings of the research, discuss their significance,
and identify future work.

1.3. Thesis Structure 10

Publications

Preliminary versions of the work presented in chapters 2, 4 and 5 of the thesis are
in the following publications:

1. M. Mazzara and A. Bhattacharyya. On modelling and analysis of dynamic
reconfiguration of dependable real-time systems. In Proceedings of the Third
International Conference on Dependability (DEPEND 2010), 2010.

2. A. Bhattacharyya and J. S. Fitzgerald. Development of a formalism for mod-
elling and analysis of dynamic reconfiguration of dependable real-time sys-
tems: A technical diary. In Proceedings of the 2008 RISE/EFTS Joint International
Workshop on Software Engineering for Resilient Systems, pages 67-72, 2008.

3. M. Mazzara, F. Abouzaid, N. Dragoni and A. Bhattacharyya. Toward design,
modelling and analysis of dynamic workflow reconfiguration - A process
algebra perspective. In Proceedings of the 8th International Workshop on Web
Services and Formal Method (WSFM 2011), Lecture Notes in Computer Science
Vol. 7176, pages 64–78. Springer-Verlag, 2012.

Chapter 2

Review of Systems Supporting
Dynamic Reconfiguration

Contents
2.1 Programming Languages . 12

2.2 Object Execution Environments . 13

2.3 Operating Systems . 13

2.4 Distributed Systems . 14

2.4.1 Argus . 15

2.4.2 Eternal . 16

2.4.3 Dynamic Reconfiguration Service 17

2.4.4 Related Work . 18

2.5 Module Interconnection Languages . 18

2.6 Architecture Description Languages . 19

2.7 Architecture Modification Languages 22

2.8 Discussion . 22

2.9 Issues . 23

2.9.1 Dynamic Reconfiguration Issues 23

2.9.2 Dependability Issues . 24

2.10 Dynamic Architecture Description Languages 25

2.10.1 Darwin . 25

2.10.2 Wright . 31

2.10.3 Rapide . 36

2.10.4 Related Work . 41

2.10.5 Discussion . 41

2.11 Requirements on a Formalism . 41

2.11.1 Dynamic Reconfiguration Requirements 42

2.11.2 Dependability Requirements . 42

2.11.3 General Requirements . 43

2.1. Programming Languages 12

In this chapter, the different approaches to dynamic software reconfiguration are
briefly described in order to identify issues that occur in dynamically reconfiguring
software in dependable systems. These issues are then used to evaluate examples
of the most promising approach to dynamic software reconfiguration, namely,
dynamic architecture description languages (DADLs), in order to identify their
key features for modelling and analysis. These features are then used to define
requirements on a formalism for the modelling and analysis of dynamic software
reconfiguration.

Research into the dynamic reconfiguration of systems dates back at least to the
1960s [CV65]. Since then, the research has followed a variety of approaches, based
on programming languages, object execution environments, operating systems,
distributed systems, module interconnection languages, architecture description
languages and architecture modification languages. Furthermore, systems have
been constructed, such as Simplex [SRG96] and Chimera II [SVK97], which support
the dynamic reconfiguration of hard real-time applications. We briefly describe
typical examples of each approach and their limitations, and then discuss which
approach is the most promising for the dynamic reconfiguration of dependable
systems.

The term system consistency is used throughout this chapter, and we define it as
follows.

Definition 2.0.1 In a computing system, consistency is the restriction that two or more
specified entities should have the same value in some well-defined sense. The entities are
consistent if they all have the same value; otherwise, the entities are inconsistent. A system
is consistent if its consistency restrictions are satisfied; otherwise, the system is inconsistent.

For example, the states of different replicas of a component are required to be the
same at specified times. If the replicas are all in the same state at a specified time,
then the replicas are consistent at that time; otherwise, the replicas are inconsistent
at that time, and the system is inconsistent at that time.

2.1 Programming Languages

Several programming languages, including Lisp, Smalltalk and C++ [HG98], allow
executable code of software components of a system to be changed at runtime,

2.2. Object Execution Environments 13

thereby enabling the system to evolve dynamically. However, there is no associated
formalism to determine the system’s behaviour during its dynamic reconfiguration.

Fabry describes an indirection mechanism to handle the dynamic replacement of
abstract data types (ADTs) [Fab76]. ADTs are versioned, and each version is associ-
ated with an indirect segment. Clients access an ADT through its indirect segment,
and the creation of a new version of the ADT results in the client reference to the
indirect segment being updated (through a capability mechanism) to reference the
indirect segment of the new version. It is assumed that all clients of an ADT will
be able to interact with its newest version. No formal proof is given that use of the
mechanism will preserve system consistency.

2.2 Object Execution Environments

The CORBA 2.0 ORB and Microsoft’s COM provide facilities for the dynamic cre-
ation and deletion of objects; the dynamic registration and deregistration of object
interfaces at an interface repository; dynamically discovering the interfaces sup-
ported by objects, the methods provided and their parameters; and for dynamically
constructing and making invocations to the discovered methods [OHE96]. Clearly,
these facilities support the dynamic reconfiguration of a system (including sys-
tem evolution), but there is no associated formalism to determine the system’s
behaviour when these facilities are used.

2.3 Operating Systems

Multics uses dynamic linking, with hardware support in the form of indirect
addressing and a linkage fault indicator, to reduce the linking time and memory
utilisation of programs [MD87]. Shared libraries in SunOS 4.0 and dynamic link
libraries in Microsoft Windows are used for the same purpose. If dynamic linking
is used in combination with a modular programming language, it supports the
dynamic evolution of a program. Indeed, the increasing speed of raw processing
operations relative to I/O operations led Franz to propose the loadtime generation
of executable code [Fra97]. However, it is left entirely to the programmer to de-
termine the consequences of these dynamic changes on the program’s behaviour,
without the assistance of any recommended formalism.

2.4. Distributed Systems 14

Gupta and Jalote describe a scheme for the dynamic upgrade of a program written
in a procedural language [GJ93]. The upgrade involves creating a process using
the new version of the program, suspending the process of the old version of the
program when none of its changed functions is executing (i.e. on the runtime stack),
transferring the state of the old process to the new process using programmer-
supplied code, terminating the old process and resuming execution of the new
process. The program to be upgraded runs as a child process of a modification
shell, so that its runtime stack can be monitored; and the program is linked to a
special library, so that descriptors and offsets of the open files held by the old process
can be transferred to the new process. The granularity of change is a function, and
functions can be added, replaced or deleted. The notion of a valid upgrade of a
program is defined formally as a change in which the program terminates satisfying
the post-condition of either the old version or the new version, and conditions
are defined that guarantee the valid upgrade of a program. The research has
several limitations. First, continuously executing functions cannot be replaced.
Second, a program is replaced instantaneously and on a 1-to-1 basis, which is
problematic for large systems. Third, the issue of interference between functions
is not addressed. Fourth, the scheme is not applicable to distributed systems
(although the researchers claim otherwise) due to the absence of a mechanism for
managing dynamic reconfiguration in distributed processes. Fifth, the process of
dynamic reconfiguration is not formally modelled. In a later work [GJB96], Gupta
et al. redefine the notion of valid upgrade as a change in a program that guarantees
the reachability of a reachable state of the new version, and sufficiency conditions
are given for a valid upgrade that maps a reachable state of the old version to its
corresponding reachable state in the new version. The design correctness of both
versions of the program is assumed. A major limitation of the formalism is that it
is state-based, which makes it unsuitable for modelling distributed systems, since
distributed systems do not have global state.

2.4 Distributed Systems

Distributed systems are the natural environment for dynamic reconfiguration, and
(unsurprisingly) most of the research has concentrated on building mechanisms for
the dynamic reconfiguration of distributed systems, with no associated formalism
for determining a system’s behaviour during its reconfiguration. For a review
of mechanisms supporting dynamic reconfiguration of distributed systems, see
[SF93]. Nevertheless, the issue of ensuring consistency in a system undergoing

2.4. Distributed Systems 15

dynamic reconfiguration has been investigated by a number of projects.

2.4.1 Argus

Argus is a statically typed object-based programming language and execution
environment for fault-tolerant distributed applications that are required to main-
tain data online, for long time intervals, and in a well-defined state [LS83]. An
application consists of subsystems, with each subsystem containing one or more
multi-threaded guardians (i.e. fault-tolerant objects). A guardian is the granularity
of dynamic reconfiguration. It is located on a single physical node (i.e. computer),
communicates through remote procedure calls (RPCs), and it provides an interface
consisting of a set of handlers (i.e. methods) through which its behaviour and
state can be accessed. The interface and body of a guardian are implemented as
separate objects, with the interface object containing the identifiers (i.e. ports)
of the handlers in the guardian’s body; an indirection which helps the dynamic
change of guardians. The clients of a guardian can access its body only through
its interface object, which helps to encapsulate the guardian. The Argus system
has a catalogue service mapping string names and object types to objects, so that
communication links between guardians can be made dynamically. Dynamic
reconfiguration in Argus consists of the creation, deletion and replacement of
guardians, and the relocation of guardians on physical nodes.

The focus of the work on dynamic reconfiguration is guardian replacement, and
Bloom formally defines the conditions for replacing one subsystem by another
so as to preserve application correctness. For guardian replacement on a 1-to-1
basis1: the pre-condition is that the old guardian must be quiescent (i.e. it must
not be engaged in any action or communication). The post-condition is that the
new guardian must preserve or extend the provided interface and the state and
state transitions of the old guardian, such that any extension must be functionally
invisible to the clients of the old guardian. The invariant condition is that the
old guardian must remain quiescent during the replacement process. Guardian
quiescence is user- initiated, and it involves either waiting until the old guardian
is not engaged in any transaction, or aborting all the transactions in which the
guardian is engaged [BD93]. Guardian quiescence is used to ensure that the old
guardian is in a well-defined state during its state transfer to the new guardian,
which results in a well-defined state for the new guardian; and the atomicity of

1The conditions for subsystem replacement are identical to those for guardian replacement on a
1-to-1 basis, with the subsystem being treated as a single unit (like a guardian).

2.4. Distributed Systems 16

Argus transactions ensures the consistency of the application. Bloom excludes
guardian replacement involving interface extensions that interfere with preserved
handlers, because this causes the change to become functionally visible to the
clients of the old guardian.

The research has three limitations. First, it does not address change in the depen-
dence between client and server objects. As a result, the conditions for guardian
replacement are too strong. Second, Argus uses a flat type system (taken from CLU)
that is unsuitable for guardian replacement, especially where the replacement rela-
tionship between guardians is not 1-to-1. Third, Argus has no formal semantics, and
its process of dynamic reconfiguration is not modelled formally [Blo83]. Therefore,
it is not possible to prove the functional and temporal correctness of an application.

2.4.2 Eternal

Eternal is an execution environment (running on CORBA) that supports trans-
parent fault-tolerance and dynamic upgrade of CORBA applications [MMSN98].
An application consists of CORBA objects that communicate by RPCs. Eternal
uses active replication of objects to provide fault-tolerance with high availability,
with each replica located on a distinct physical node. A reliable multicast
communication with total ordering of messages is used to ensure consistency
between the replicas [MMSA+96]. All replicas are single-threaded. An object is the
granularity of dynamic reconfiguration.

The focus of the work on dynamic reconfiguration is object upgrade, which is
controlled by the Eternal Evolution Manager [TMMS01]. The Evolution Manager
is used to create a composite object that contains both the old and new versions
of the object to be upgraded, and has conversion code mapping old state to new
state to keep the states of the two versions consistent. This enables the composite
to behave like either version, depending on the state of the upgrade process, and it
reduces the duration of the switchover between the two versions. For an interface
preserving upgrade to an object, the upgrade process consists of replacing in turn
each replica of the old version with a replica of the composite, whilst the other
replicas continue to provide the old service to the object’s clients. Following each
replacement, the state of an old version is transferred to the new replica, so that the
new replica can provide the service of the old version. During the state transfer, the
object being upgraded is required to be quiescent to ensure consistency between
its replicas. When all the old replicas have been replaced, an atomic switchover

2.4. Distributed Systems 17

is performed, after which the replicas of the composite object provide the service
of the new version. During the atomic switchover, the object being upgraded
is required to be quiescent to ensure consistency between its replicas. Replicas
containing only the new version of the object then replace the replicas of the
composite object, by a process similar to that described above. The Evolution
Manager uses a CORBA method invocation graph to determine when the objects
affected by the upgrade will be quiescent.

For an interface upgrade to an object, the upgrade process involves changing the
object’s clients, which must be included in the atomic switchover. The process
is similar to that described above, with the clients being replaced last. However,
the conditions for the switchover can be weakened through the use of wrapper
functions in the server’s composite object, which convert old method invocations
into new method invocations. This enables the client objects to be changed after
the switchover of the server object, and also independently of each other.

The research has two main limitations. First, it is not possible to upgrade an object
that is never quiescent, such as an object executing an infinite polling loop. Second,
Eternal has no formal model, and so it is not possible to prove the correctness of a
dynamic reconfiguration.

2.4.3 Dynamic Reconfiguration Service

The Dynamic Reconfiguration Service (DRS) is an execution environment (running
on CORBA) that supports transparent dynamic reconfiguration of CORBA
applications [AWvSN01]. An application consists of multi-threaded CORBA
objects that communicate by message passing, with each object located on a single
physical node. An object is the granularity of dynamic reconfiguration; and the
dynamic reconfiguration operations are the creation, deletion and replacement of
objects, and the relocation of objects on physical nodes.

The focus of the work is object replacement, which is controlled by the Reconfig-
uration Manager. For object replacement on a 1-to-1 basis2: the pre-condition is
that the old object must be reconfigurable (i.e. designed for reconfiguration) and
quiescent. The post-condition is that the new object must preserve or extend the
interface of the old object and the state and state transitions of the old object, such

2Object replacement on a set basis is identical to object replacement on a 1-to-1 basis, with the
set of objects being treated as a single unit (like an object).

2.5. Module Interconnection Languages 18

that any extension must be functionally invisible to the clients of the old object.
The invariant condition is that the old object must remain quiescent during its
reconfiguration. The process of object replacement is user-initiated, and it involves
driving the old object into a quiescent state by filtering its clients’ request messages:
the Reconfiguration Manager notifies the old object it is to be reconfigured; and
the facilities of the CORBA ORB and the information it holds on object invocations
(e.g. a method invocation graph) are then used to block all request messages sent
to the object that would prevent its quiescence; all other messages are allowed
to proceed. If the object is active (i.e. time-triggered) it is changed to become
reactive (i.e. event-triggered) by invoking a method of its reconfiguration interface.
When the old object notifies the Reconfiguration Manager it is quiescent, its
state is transferred to the new object. The state of either object can be inspected
(and modified if necessary) using methods of its reconfiguration interface, to
ensure that invariants on the application-state hold. Finally, the new object
replaces the old object, and the blocked messages are redirected to the new object.
The DRS Location Agent helps to rebind the client objects with the new server object.

The research has three limitations. First, replacement of a set of objects is done
simultaneously, which does not scale well. Second, the issue of interference between
new and preserved methods of an object is not addressed in object replacement.
Third, DRS has no formal model, and so it is not possible to prove the correctness
of a dynamic reconfiguration.

2.4.4 Related Work

There are distributed systems (in addition to those discussed above) that address the
issue of consistency; see [ED97], [SM02] and [ALS03]. However, their mechanisms
and processes for ensuring consistency are not significantly different from those
that have been discussed already.

2.5 Module Interconnection Languages

Module interconnection languages (MILs) resulted from the idea that ‘program-
ming-in-the-large’ involves solving a different set of problems in comparison to
‘programming-in-the-small’ [DK75]. Thus, MILs are complementary to ordinary
programming languages, and they are used to define the composition and
connectivity structure of large software systems.

2.6. Architecture Description Languages 19

A MIL defines a system recursively as a composition of modules. Each module is
a container of resources, where a resource is a nameable programming construct,
such as a variable, data type, or function, which can be made available for reference
by other modules. A module definition identifies: the resources provided by the
module to other modules (using the provides construct), the resources required
by the module from other modules (using requires), the external modules to
which access is needed (using has_access_to), and the decomposition of the
module into functions and child modules (using consists_of). The designer of a
module can impose restrictions on its child functions and modules by identifying
resources they must provide (using must_provide). The different versions of a
module implemented in different programming languages can also be identified
(using realisation). Figure 2.1 gives an example of the use of these constructs in
a module definition. For a review of MILs, see [PDN86].

MILs are useful during system construction, because they enable modules to be
designed in parallel, and to be compiled and linked independently, and because
they ensure a degree of inter-module compatibility by checking the required
and provided interfaces of connected modules (based on matching names).
Furthermore, an MIL can enforce a system structure, since a module’s interface
cannot be changed without explicitly changing the system’s structure; which is
also useful during evolution of the system.

MILs have limitations: they do not specify types, or module behaviour, or interac-
tions between modules. Hence, although MILs can describe the structure of a large
software system, they cannot be used to prove its correctness. Nevertheless, the
issue of ensuring consistency in a system undergoing dynamic reconfiguration has
been investigated by a number of MIL projects, including Polylith [Pur94], Durra
[BWD+93] and Aster [BISZ98].

2.6 Architecture Description Languages

Architecture description languages (ADLs) are used to describe the structure of
a system, the behaviour of its components and their interactions, and to express
restrictions on these. Architectures and ADLs are active research areas.

2.6. Architecture Description Languages 20

module ABC
author ’Joseph Green’
date ’1st January 2004’

provides a, b, c
requires x, y
consists_of function XA, module YBC

function XA
must_provide a
requires x
has_access_to module Z
real x, integer a
realisation

version FORTRAN resources file (<FORTRANXA>)
end FORTRAN
version Pascal resources file (<PascalXA>)
end Pascal
version ALGOL resources file (<ALGOLXA>)
end ALGOL

end XA

module YBC
must_provide b, c
requires a, y
real y, integer a, b, c

end YBC

end ABC

Figure 2.1: A module definition in an MIL [PDN86].

2.6. Architecture Description Languages 21

The ISO/IEC/IEEE 42010 standard [ISO11] defines an architecture as:

’fundamental concepts or properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design and evolution’.

The ISO/IEC/IEEE 42010 standard defines an architecture description as a:

’work product used to express an architecture’.

The ISO/IEC/IEEE 42010 standard defines an ADL as:

’any form of expression for use in architecture descriptions’.

Typically, an ADL consists of components, connectors, configurations, and a
language for defining restrictions on these. For a review of ADLs, see [MT00].

A component is used to model a computational unit that can have state, and it
can be implemented in a variety of ways – as a procedure, an object, or an entire
program. A component has an interface consisting of a set of interaction points
(e.g. ports) through which it communicates with its environment. Interaction
points that provide a service to the component’s environment are distinguished
from those that require a service. A component can have a type and a semantics,
and restrictions can be defined on its behaviour. In some ADLs, such as C2, system
evolution is supported through component subtyping [MRT99]. Real-time ADLs
enable the non-functional properties of a component to be defined: MetaH enables
the period of a periodic component to be defined [BEJV96]; and UniCon enables
the priority of a component to be defined [SDK+95].

A connector is used to model communication between components, and it can be
implemented in a great variety of ways – as a separately compiled entity, such
as a message router; or as an embedded construct, such as a shared variable,
buffer, instruction to a linker, method invocation, communication protocol, or a
pipe [MT00]. The interface of a connector consists of interaction points that can
be connected to the interaction points of components or other connectors. The
type of a connector is an abstraction of interaction between components, such as
an RPC or an asynchronous communication, and its semantics is a specification of
communication protocols. The restrictions on a connector are usually defined on

2.7. Architecture Modification Languages 22

its semantics and connectivity. Connectors achieve indirection in communication
between components, and thereby help to model dynamic binding between
components. Connectors also support system evolution through subtyping and
incremental data filtering. Regarding the non-functional properties of connectors,
UniCon enables connector attributes to be defined for schedulability analysis
[SDK+95].

A configuration is used to model the composition and connectivity structure of a
system, and it is a graph of components, connectors, and their inter-connections. It
is the natural locus for defining global restrictions on a system, such as end-to-end
deadlines, and the absence of deadlocks and interaction cycles. A configuration is
also very useful for the modelling and analysis of the dynamic reconfiguration of
a system.

A subset of ADLs, termed dynamic architecture description languages (DADLs),
focus on the problems of managing dynamic reconfiguration of a system, and these
are examined in detail in Section 2.10.

2.7 Architecture Modification Languages

The research on architecture modification languages (AMLs) is in its early stages.
Its purpose is to create an interchange architecture or meta-architecture, so that
an architectural description in one ADL can be transformed into an architectural
description in another ADL.

In principle, an AML should be able to model and analyse fundamental changes
in a system that are beyond the scope of a DADL. However, at present the main
AML is ACME, which provides no support for modelling dynamic reconfiguration.
More importantly, since the modelling and analysis of dynamic reconfiguration of
a system is still a research issue, it is advisable to investigate these simpler forms
of change more fully before attempting to study more difficult forms of change.

2.8 Discussion

It is clear from the above that most of the approaches to the dynamic reconfiguration
of a system have concentrated on mechanisms to implement dynamic reconfigura-
tion, rather than on formal frameworks to predict the system’s behaviour during

2.9. Issues 23

the reconfiguration. The exception is the research on ADLs, which emphasises the
need for an explicit abstract model of a system’s components and their interactions
and the system’s configuration. If the ADL has a formal semantics, the model can be
used both to design the system and to prove its requirements. A formal semantics
also makes the ADL particularly amenable to tool support. Furthermore, dynamic
reconfiguration of large systems is a problem domain of the DADLs. Therefore, we
focus on DADLs, and evaluate a selection of them using issues relevant to dynamic
reconfiguration and dependability in order to determine modelling and analysis
requirements on formalisms.

2.9 Issues

Issues for the dynamic reconfiguration of dependable systems can be identified by
inspection of the published literature, some of which has been reviewed above and
in Section 2.10. The issues have been separated into dynamic reconfiguration issues
and dependability issues for greater clarity. The dependability issues are relevant
for dependable systems in general, whereas the dynamic reconfiguration issues are
particularly relevant for systems with a reconfiguration requirement. Collectively,
the issues help to evaluate the suitability of a DADL and to identify its essential
features for solving both dynamic reconfiguration and dependability problems.

2.9.1 Dynamic Reconfiguration Issues

1. What can be dynamically reconfigured in a system?

The granularity of dynamic reconfiguration is the smallest item of the system
that can be changed independently, and it affects the conditions under which
the change can be performed safely. It is sometimes necessary to change a set
of items, rather than an individual item, and this has a significant effect on
the change conditions and (thereby) on the complexity of the reconfiguration
process.

2. How can an item be dynamically reconfigured in a system?

The process of dynamic reconfiguration of the system typically involves per-
forming multiple basic operations. Restricting these operations to a small
canonical set helps to simplify the modelling and analysis of the process. The
operations include creation, deletion and replacement of a software compo-
nent, and relocation of the component to a different physical node.

2.9. Issues 24

3. What method is used to manage the dynamic reconfiguration of a system?

The process of dynamic reconfiguration of a large system is usually complex,
and typically involves making multiple changes, with restrictions on their
order, duration and synchronisation. Therefore, it is necessary to use a method
to manage the process.

4. When can an item be dynamically reconfigured in a system?

In a dependable system, an item should be dynamically reconfigured only
when it is safe to do so. Therefore, the reconfiguration process must satisfy
conditions that will guarantee the system’s requirements are met both during
and after execution of the process. These conditions can be thought of as the
pre-conditions, invariant conditions, and post-conditions of the process, and
usually involve type information and the system’s state. In a real-time system,
the conditions can be time-dependent, so timely detection of the conditions
becomes an issue. This leads to the requirement that both detection of occur-
rence of the change conditions and execution of the dynamic reconfiguration
process must be fully automated and must satisfy timing restrictions.

5. What are the effects of the interaction between the application actions of a
system and the dynamic reconfiguration actions?

The environment of a dependable system typically contains processes that are
controlled by actions within the system. Since the system has high availability
requirements, it must continue to operate normally during its dynamic recon-
figuration. This suggests that the application actions of the system and the
dynamic reconfiguration actions must run concurrently, which implies that
they interact. Hence, it is necessary to define a formal model of the application
actions of the system, the dynamic reconfiguration actions, and their inter-
action, and to use these to prove that the system will meet its requirements
during its dynamic reconfiguration.

2.9.2 Dependability Issues

Dependability requires predictability, and predictability is a higher-order property
of a system, which is defined with respect to first-order properties (such as function-
ality) and second-order properties (such as timeliness), which (in turn) are defined
with respect to a model. Therefore, we identify dependability issues in terms of
models found in many dependable systems that are required to be dynamically
reconfigurable.

2.10. Dynamic Architecture Description Languages 25

1. What concurrency model is used?

Concurrency is a feature of many dependable systems. Therefore, the system
must have a model of concurrent events and actions. In many real-time
systems the granularity of concurrency is a thread in a software component,
which is either single-threaded or multi-threaded.

2. Is the system amenable to analysis for both functional and temporal correct-
ness?

Formal proof provides the strongest guarantee of the functional correctness
of a system’s design, and schedulability analysis provides the strongest guar-
antee of the temporal correctness of the system’s implementation. Therefore,
the design of the system must have a formal semantics, and its resource al-
locations must be amenable to schedulability analysis [Pri99]. This implies
that the time of occurrence of all time-critical events, and the durations of
all time-critical actions and state transitions of the system and associated
communication between system components, must be known during imple-
mentation of the system; or the bounds on their variability must be known.

2.10 Dynamic Architecture Description Languages

DADLs focus on the problems of managing dynamic reconfiguration of large sys-
tems. Therefore, we examine a selection of DADLs, using the issues identified in
the previous section, in order to evaluate their suitability for managing the dynamic
reconfiguration of dependable systems and to identify their essential features for
modelling and analysis. A summary of these features is given in Table 2.1.

2.10.1 Darwin

Darwin is a statically typed DADL for configuring parallel and distributed
applications that run on the Regis execution environment [MDK93]. It is an
extension of the Conic configuration language [MKS89]. However, unlike Conic,
Darwin can express dynamic connections between components, and is largely
independent of the languages used to implement leaf-level components. Darwin
is also less restrictive than Conic in locating software components on physical nodes.

A Darwin application is structured as a hierarchy of interacting components,
which can be parameterised with simple types. The hierarchical structure has no

2.10. Dynamic Architecture Description Languages 26

runtime representation, and the application is implemented using the leaf-level
components (termed processes), each of which is located on a single physical node.
The components interact through ports at their interface using synchronous and
asynchronous message passing. A component’s interface is partitioned into ports
through which it provides services to other components (termed provided ports),
and ports through which it accesses services required from other components
(termed required ports). A port is a queue of messages with simple types, and
a required port holds a reference to the provided port of another component (to
which it has been bound). Ports are defined in the interface definition of their com-
ponent. The interface definition of a composite component also defines the types
and instances of its sub-components, the bindings between their ports, and the
location of instances on physical nodes. A provided port can be bound to multiple
required ports, and a required port can be bound to only one provided port. A
port is a first class object, so that bindings between ports can be created dynamically.

Figure 2.2 shows the diagram and definition of a simple system (S) in Darwin, con-
sisting of a client component (A) and a server component (B), taken from [MDEK95].
require r defines r as a required port of Client; provide p defines p as a pro-
vided port of Server; inst instantiates components A and B as sub-components of
System; and bind defines the binding between r and p. Darwin also has a con-
struct (forall) to declare an array of components or bindings; and a construct (@)
to define the location of a component instance on an abstract processor. A direct
communication path between any two abstract processors is assumed [MDK93].

2.10.1.1 Evaluation with respect to Dynamic Reconfiguration Issues

Dynamic reconfiguration in Darwin consists of the creation of components and
port bindings. Deletion and modification of bindings is not allowed, in order
to prevent interference between different dynamic reconfiguration processes.
There are two forms of dynamic reconfiguration: lazy instantiation and dynamic
instantiation, both declared using the dyn construct.

The original method of handling dynamic reconfiguration has the following con-
ditions [KM90]: For binding creation, the pre-condition and invariant condition is
that the component with the required port of the binding is quiescent. Component
creation has no pre-condition, since on creation a component is quiescent and
has no external binding. These conditions ensure system consistency during the
dynamic reconfiguration process. Component quiescence is achieved using the

2.10. Dynamic Architecture Description Languages 27

 S

A B

component Client {

 require r;

}

component Server {

 provide p;

}

component System {

inst

 A:Client;

 B:Server;

bind

 A.r -- B.p;

}

Figure 2.2: A simple client server configuration in Darwin [MDEK95].

2.10. Dynamic Architecture Description Languages 28

passivate operation of a component, which makes it passive (i.e. the component
is not engaged, and will not be engaged, in any transaction it initiated; although
it can still engage in transactions it did not initiate). Invoking the passivate
operation on a target component, and on any component capable of initiating
a transaction involving the target, eventually results in quiescence of the target
component [KM90]. However, this implies the environment must wait for a service
if any of the passivated components are involved in the service provision; which is
problematic for dependable systems because of their high availability requirement.

A less restrictive method for achieving component quiescence is proposed in
[MGK96]. The target components are sent a blocking message to make them
passive. However, a blocked component can become temporarily unblocked
on being invoked by a component outside the target set, which in turn may be
servicing a transaction caused by another component of the target set. Therefore, in
order to prevent deadlock of the system, any component of the system outside the
target set that is involved in servicing a transaction caused by a target component
is also sent a blocking message. Hence, when all the target components are
blocked, any further service request on the target set is queued, thereby ensuring
quiescence of the target components; the blocked components outside the target
set are unblocked, to minimise the disruption to system operation. This method
makes a number of assumptions about the transaction structure of the system:
it assumes that the system is free of deadlocks and livelocks in the absence of
dynamic reconfiguration; that there is no cyclic dependency between transactions;
and that a component does not interleave transactions. Both methods assume a
transaction terminates and its initiating component is informed of its completion.
Furthermore, a component has to be designed for reconfiguration in order to
support its dynamic reconfiguration.

Darwin has a formal semantics (defined using the π-calculus) that enables the
configuration between components, and the process of dynamic reconfiguration, to
be formally expressed and analysed. For example, the client server configuration
shown in Figure 2.2 can be modelled as follows [MDEK95]:

The provide construct, which declares a service to be provided through port p, is

expressed as the agent PROV(p, s), with PROV(p, s)
de f
= !(p(x).xs) where p is the ac-

cess name, s is the service reference, and x is the location where service s is required.

2.10. Dynamic Architecture Description Languages 29

PROV is replicated, because a provided port can be bound to arbitrarily many
required ports.

Thus, the Server component is expressed as:

Server(p)
de f
= (νs)(PROV(p, s)|Server′(s)) ≡ (νs)(!(p(x).xs)|Server′(s))

The require construct, which declares a service to be required through port r,

is expressed as the agent REQ(r, l), with REQ(r, l)
de f
= r(y).yl where r is the access

name, y is the service provider, and l is the location where the service is required.

REQ is not replicated, because a required port can be bound to at most one
provided port.

Thus, the Client component is expressed as:

Client(r)
de f
= (νl)(REQ(r, l)|Client′(l)) ≡ (νl)(r(y).yl|Client′(l))

The bind construct, which declares a binding between two ports, is expressed as

the agent BIND(r, p), with BIND(r, p)
de f
= rp

Clearly, the composition of REQ(r, l) with BIND(r, p) results in the REQ agent
receiving the access name of the PROV agent, so that REQ and PROV can
communicate. Thus, System is expressed as the composition:

System
de f
= (νrA, pB)(Client(rA)|BIND(rA, pB)|Server(pB))

Proving the correctness of this configuration consists of proving that client A will
receive the service reference s provided by server B. Elaborating the definition of
System gives:

System ≡ (νrA, pB)((νl)(REQ(rA, l)|Client′(l))|rApB|(νs)(PROV(pB, s)|Server′(s)))

≡ (νrA, pB, l, s)(REQ(rA, l)|rApB|PROV(pB, s)|Client′(l)|Server′(s))

≡ (νrA, pB, l, s)(rA(y).yl|rApB|!(pB(x).xs)|Client′(l)|Server′(s))

→ (νrA, pB, l, s)(pBl|!(pB(x).xs)|Client′(l)|Server′(s))

2.10. Dynamic Architecture Description Languages 30

→ (νrA, pB, l, s)(ls|!(pB(x).xs)|Client′(l)|Server′(s))

Clearly, the Client′ agent needs to perform an input action in order to accept the
service reference s, so that it can use the service; so that

Client′(l)
de f
= l(z).Client′′

=⇒ System→ (νrA, pB, l, s)(!(pB(x).xs)|Client′′(s/z)|Server′(s)) Q.E.D.

The definition of System can be modified to demonstrate the dynamic instantiation
of components (see Figure 2.3). System has a provided port d, which is used to
access the service that dynamically instantiates Client components:

component System {
provide d <dyn>;
inst

B:Server;
bind

d -- dyn Client;
Client.r -- B.p;

}

Figure 2.3: Dynamic instantiation of Client components in Darwin [MDEK95].

The modified System is modelled in [MDEK95] as:

System
de f
= (νpB, d,m)(Server(pB)|PROV(d,m)|!(m().(νr)(Client(r)|BIND(r, pB))))

Thus, an agent requiring a new Client would access PROV(d,m) using d, and
obtain the reference m to the service for instantiating Clients. The agent would then
communicate with the guard m() using m, resulting in the instantiation of Client(r)
and its binding to Server(pB).

Darwin has three limitations with respect to dynamic reconfiguration. First, com-
ponent replacement and deletion, and binding deletion are not supported. Second,
because instantiation of components and bindings is performed without any or-
dering restriction, it is possible for a communication from a component to block
without a known time bound. Third, the requirement for quiescence implies that
the application actions of a system are suspended during the dynamic reconfigura-

2.10. Dynamic Architecture Description Languages 31

tion process, thereby jeopardizing the availability of the system. Thus, the Darwin
research does not analyse the interaction between the application actions and the
dynamic reconfiguration actions of a system.

2.10.1.2 Evaluation with respect to Dependability Issues

Darwin does not fully address the dependability issues: its model of concurrency
depends on the languages used to implement the processes. Processes commu-
nicate on a point-to-point basis with no time bound, and dynamic instantiation
can result in a component being blocked with an unknown time bound. Hence, a
Darwin design is not amenable to schedulability analysis.

A Darwin design can be analysed for safety using reachability analysis, and for live-
ness using labelled transition system analysis, although this has not been integrated
with the analysis for correctness of a dynamic reconfiguration [MKG99].

2.10.2 Wright

Wright is a statically typed DADL for the formal modelling and analysis of
software systems [AG94]. It was originally designed for systems with a static
configuration [All97], and was later applied to dynamically reconfigurable systems.

A Wright system is structured as a graph of components and connectors, where
a component represents a computational unit, and a connector specifies inter-
actions between components. Each component is defined using its ports and
a computation: the ports constitute the interface of the component, and are
expressed as CSP processes defined in terms of their respective port events.
The computation defines the behaviour of the component, and is also expressed
as a CSP process defined in terms of the port events of the component. Each
connector is defined using its roles and a glue: The roles are similar to ports,
and specify the behaviour required of any component port attached to them, and
are expressed as CSP processes defined in terms of their respective role events.
The glue is similar to a computation, and defines the behaviour of the connector
as a CSP process defined in terms of the role events of the connector. Thus, the
behaviour of the system is expressed as the parallel composition of its computa-
tion and glue processes, and its configuration manager (termed configuror) process.

2.10. Dynamic Architecture Description Languages 32

The definitions of components and connectors are type definitions, which are
collected into styles for reuse. A style also contains constraints on instances of its
component and connector types. A particular configuration of a system uses a spe-
cific style, a set of component and connector instances, and the bindings between
the ports and roles of these instances. A port can be bound to exactly one role,
and a role can be bound to exactly one port or another role, in a given configuration.

Figure 2.4 shows the diagram and definition of a simple client server system in
Wright, consisting of a client component (C), a server component (S) and a connector
(L), taken from [ADG98]. The Client − Server style defines: the Client component
type with a single port (p) that can handle any number of iterations of the events:
request output followed by reply input; the Server component type with a single
port (p) that can handle any number of iterations of the events: request input
followed by reply output; and the Link connector type with two roles (c and s),
where c specifies the behaviour required of a Client’s port p, and s specifies the
behaviour required of a Server’s port p. The Link’s Glue specifies that the sequence
of corresponding input and output events of a Link should not be interrupted. The
style also has the constraint that all Client instances must be connected to a unique
Server instance. The Simple configuration uses the Client − Server style to declare
the instances C, S and L; and defines the bindings between the ports of C, S and the
roles of L.

2.10.2.1 Evaluation with respect to Dynamic Reconfiguration Issues

Dynamic reconfiguration in Wright consists of the creation and deletion of
component and connector instances (using the new and del constructs), and the
creation and deletion of bindings between ports and roles (using the attach and
detach constructs), as shown in Figure 2.5.

The dynamic reconfiguration process transforms a system from one configuration
to another, where each configuration meets the safety requirements of the system
and can be maintained indefinitely. The process is controlled by the configurator,
and involves synchronising all the component and connector instances that are
directly affected by the reconfiguration to be at a rendezvous point using control
events. When all the participating instances are at the rendezvous, the configuror
performs the reconfiguration using a combination of the new, del, attach and
detach operations, and the instances then continue their execution in the new
configuration of the system. The pre-condition of the reconfiguration is that the

2.10. Dynamic Architecture Description Languages 33

Style Client − Server

Component Client
Port p = request→ reply→ p

�
§

Computation = internalCompute→ p.request→ p.reply→ Computation
�
§

Component Server
Port p = request→ reply→ p 8 §
Computation = p.request→ internalCompute→ p.reply→ Computation 8 §

Connector Link
Role c = request→ reply→ c

�
§

Role s = request→ reply→ s 8 §
Glue = c.request→ s.request→ Glue 8 s.reply→ c.reply→ Glue 8 §

Constraints
∃ a unique Component s,
such that ∀Component c : TypeServer(s) ∧ TypeClient(c) =⇒ connected(c, s)

EndStyle

Con f iguration Simple
Style Client − Server
Instances
C : Client; L : Link; S : Server
Attachments
C.p as L.c; S.p as L.s

Figure 2.4: Specification of a simple client server system in Wright [ADG98].

2.10. Dynamic Architecture Description Languages 34

Style Dynamic − Client − Server

Component Client
Port p = request→ reply→ p

�
§

Computation = internalCompute→ p.request→ p.reply→ Computation
�
§

Component PrimaryServer
Port p = § 8 (request→ reply→ p

�
control.down→ (§ 8 control.up→ p))

Computation = § 8 (p.request→ internalCompute→ p.reply→
Computation

�
control.down→ (§ 8 control.up→ Computation))

Component SecondaryServer
Port p = § 8 (control.on→ µLoop.(request→ reply→ Loop 8 control.o f f → p 8 §))
Computation = § 8 control.on→ µLoop.
(p.request→ internalCompute→ p.reply→ Loop 8 control.o f f → Computation8 §)

Connector DLink
Role c = request→ reply→ c

�
§

Role s = (request→ reply→ s
�

control.changeOk→ s) 8 §
Glue = c.request → (s.request → Glue 8 control.changeOk → RequestToSend) 8
s.reply→ c.reply→ Glue 8 § 8 control.changeOk→ Glue

where RequestToSend = s.request→ Glue 8 control.changeOk→ RequestToSend

Constraints
∃ a unique Component s,
such that ∀Component c : TypeServer(s) ∧ TypeClient(c) =⇒ connected(c, s)

EndStyle

Con f iguror DynamicClient − Server

Style Dynamic − Client − Server
new.C : Client→ new.Primary : PrimaryServer→ new.Secondary : SecondaryServer
→ new.L : Dlink→ attach.C.p.to.L.c→ attach.Primary.p.to.L.s→WaitForDown
where
WaitForDown =
(Primary.control.down→ Secondary.control.on→ L.control.changeOk→
Style Dynamic − Client − Server
detach.Primary.p. f rom.L.s→ attach.Secondary.p.to.L.s→WaitForUp) 8 §

WaitForUp =
(Primary.control.up→ Secondary.control.o f f → L.control.changeOk→
Style Dynamic − Client − Server
detach.Secondary.p. f rom.L.s→ attach.Primary.p.to.L.s→WaitForDown) 8 §

Figure 2.5: Specification of dynamic reconfiguration of a simple client server system
in Wright [ADG98].

2.10. Dynamic Architecture Description Languages 35

system configuration is free of any deadlock, and all the component and connector
instances are at the rendezvous with no message in transit. The invariant condition
is that the instances remain at the rendezvous. The post-condition is that the new
system configuration is free of deadlock. Clearly, an instance has to be designed for
reconfiguration in order to participate in the reconfiguration process. However, the
instance is not required to be quiescent or passive, which reduces the disruption
to the system’s operation.

The definition of the client server system can be modified to demonstrate the
dynamic replacement of a server component due to its failure (see Figure 2.5),
taken from [ADG98]. The reconfiguration is transparent to a Client, and so its
definition is unchanged. The behaviour of a PrimaryServer is similar to a Server
until it fails, when it generates the control.down event for the Con f iguror, and then
it either terminates or waits for control.up (its restart event). The SecondaryServer
is started by the control.on event from the Con f iguror after the PrimaryServer fails,
then behaves like a Server until it receives the control.o f f event from the Con f iguror,
when it either returns to its initial state or terminates. The behaviour of a DLink
connector is similar to a Link connector until it receives the control.changeOk event
(indicating reconfiguration of its server), when it attempts to resend the client’s
request to the new server. Thus, the original connector definition must be modified
to handle reconfiguration events that occur during its normal transactions, and
so it must buffer messages of incomplete transactions. The Con f iguror creates
the initial configuration of the system, and then controls the reconfiguration
process by receiving and issuing the control events, and creating and deleting the
bindings between the roles of the DLink and the ports of the PrimaryServer and
SecondaryServer.

The main issue with Wright is due to its use of CSP, in which port and role names
are not first class objects, resulting in a cumbersome event model: each event is
labelled with the configuration in which it occurs, by ‘sandwiching’ the event
between its associated port and role. Thus, s.request in DLink is expressed as
L.s.request.Primary.p; and reconfiguration implies a relabelling of the event if it is
required to have an effect in the new configuration (e.g. L.s.request.Secondary.p).
Hence, the same event must have a distinct label for each configuration in which it
is used.

2.10. Dynamic Architecture Description Languages 36

A Wright design can be formally checked for deadlocks using model checking.
Furthermore, because the design and the configurator are both modelled using
CSP, it is possible to check for deadlocks in the dynamic reconfiguration process,
and to analyse interactions between the application actions of a system and the
dynamic reconfiguration process [ADG98].

2.10.2.2 Evaluation with respect to Dependability Issues

Wright does not fully address the dependability issues: its model of concurrency
consists of a set of sequential processes that execute concurrently. However, pro-
cesses communicate synchronously on a point-to-point basis with no time bound.
Hence, a Wright design is not amenable to schedulability analysis.

2.10.3 Rapide

Rapide is a strongly typed object-oriented DADL for prototyping event-driven
real-time distributed systems [LKA+95]. Thus, it resembles a very high-level
programming language, although it can be used to design both software and
hardware systems. It has no formal semantics, and so simulation is used to confirm
the correctness of a system.

Rapide represents the structure of a system (termed architecture) as a graph of
components linked by connections, and restricted by constraints. Each component
has a type (termed interface) that defines a set of functions provided by the
component to other components (using provides), a set of functions required
by the component from other components (using requires), a set of input
events accepted by the component (using in action), and a set of output events
generated by the component (using out action). The interface also defines the
behavioural states and state transitions of the component, and the constraints on
this behaviour. Connections are defined ’in-line’ within the architecture in terms
of the interfaces, and connect corresponding required and provided functions,
and corresponding output and input events. Components interact synchronously
using their required/provided function connections, and asynchronously using
their output/input event connections.

The behaviour of a system is represented using event patterns. An event is a
uniquely identified tuple, consisting of the component generating the event, the
activity associated with the event, and the event’s data values, time of occurrence

2.10. Dynamic Architecture Description Languages 37

and duration. An event pattern is an expression that evaluates to a partially ordered
set (termed poset) of computationally dependent events (termed causal events) and
their causal and timing relationships. The event pattern can be a basic pattern (e.g.
a function call), or a composite pattern created using multiple constructs, including
iteration (*), guard, conjunction (and) and disjunction (or). Event patterns are
of fundamental importance in Rapide, and are used in different ways: to trigger
component and connection behaviour on specific posets of events; to generate
posets of events in response to a trigger; and to express constraints on posets of
events. Thus, event patterns can be used to define connections that dynamically
reconfigure the system, as shown in Figure 2.6.

2.10.3.1 Evaluation with respect to Dynamic Reconfiguration Issues

Dynamic reconfiguration in Rapide consists of the creation and deletion of
components and connections, and occurs through the execution of event patterns
in connections in response to the firing of triggers on events in the connections.
There is no recommended method for performing dynamic reconfiguration.
However, the dynamic reconfiguration events must satisfy the constraints defined
in the architecture definition.

Figure 2.6 gives an example of a simple system with dynamic binding between client
and server components, taken from [LV95]. The system (Client_Server_Network)
consists of a Trader component (NTT), an array of Client components (clients),
an array of Server components (servers), and three sets of connections.

?S, ?J, ?C, ?N and ?param are placeholder variables, which can be bound only
to a component evaluated from an event pattern. Rapide also has an iterator
variable (named using !), which is used as a universal quantifier over a type. The
& construct indicates a name, which is used in Rapide to control the dereferencing
of components. Thus, the architecture binds the Register event of a Server
with the Register_Server event of a Trader, and the Find_Server function of a
Client with the Server_Lookup function of a Trader (effectively aliasing them).
The third set of connections binds the Request_Job function of a Client with the
Do_Job function of a Server. However, it is clear from the interface definition that
a Client cannot dereference a Server’s name, and the dereferencing is done by
the architecture. This indirection helps to achieve dynamic binding between client
and server components.

2.10. Dynamic Architecture Description Languages 38

type Server is interface
provides
function Do_Job(J : Job; P : Parameters) return data;

out action Register(J : Job);
...
end;

type Client is interface
requires
function Request_Job(J : Job; P : Parameters; Pn : &Server) return data;

function Find_Server(J : Job) return &Server;
...
end;

type Trader is interface
provides
function Server_Lookup(J : Job) return &Server;

in action Register_Server(J : Job; S : &Server);
...
behaviour
Jobs : array [Job] of &Server;
?J : Job;
?N : &Server;

function Server_Lookup(J : Job) return &Server is
begin
return Jobs[J];
end;

Register_Server(?J, ?N) => Jobs[?J] := ?N;;
end;

2.10. Dynamic Architecture Description Languages 39

with Client, Server, Trader;
architecture Client_Server_Network is
NTT : Trader;
clients : array [1..NUM_CLIENTS] of Client;
servers : array [1..NUM_SERVERS] of Server;
?S : Server;
?J : Job;
?C : Client;
?N : &Server;
?param : Parameters;

connect
?S.Register(?J) to NTT.Register_Server(?J, &?S);;

?C.Find_Server(?J) to NTT.Server_Lookup(?J);;

?C.Request_Job(?J, ?param, ?N) to *?N.Do_Job(?J, ?param);;

end Client_Server_Network;

Figure 2.6: Dynamic binding between clients and servers in Rapide [LV95].

The main limitation of Rapide is that it has no formal semantics. The execution of
a system produces a poset of causal events that can be checked for conformance
against the system’s constraints. However, the poset is not exhaustive, and so the
correctness of the system can be only confirmed, rather than proved. Nevertheless,
the use of event patterns to express both state transitions of components and dy-
namic reconfiguration enables interactions between the application actions of the
system and its dynamic reconfiguration to be studied.

2.10.3.2 Evaluation with respect to Dependability Issues

Rapide does not fully address the dependability issues: its model of concurrency
consists of single-threaded components (expressed using the transition =>) and
multi-threaded (expressed using the transition ||>). Components communicate by
message passing, which can be either point-to-point or broadcast, and synchronous
or asynchronous. However, the absence of a formal semantics implies that a Rapide
design is not amenable to formal proof of functional correctness. Rapide does not
support schedulability analysis (although it has a notion of deadline [Luc02]), but
it could do so if the periods of actions and the bounds on their inter-release times
could be represented.

2.10. Dynamic Architecture Description Languages 40

A
D

L
/S

y
s

te
m

R
e

c
o

n
fi

g
u

ra
ti

o
n

It
e

m
s

R
e

c
o

n
fi

g
u

ra
ti

o
n

O
p

e
ra

ti
o

n
s

S
u

p
p

o
rt

 f
o

r

S
ta

te

T
ra

n
fe

r?

M
e

th
o

d
 f

o
r

D
y
n

a
m

ic

R
e

c
o

n
fi

g
u

ra
ti

o
n

?

P
re

-C
o

n
d

it
io

n
s

 f
o

r

D
y
n

a
m

ic

R
e

c
o

n
fi

g
u

ra
ti

o
n

P
o

s
t-

C
o

n
d

it
io

n
s

 f
o

r

D
y
n

a
m

ic

R
e

c
o

n
fi

g
u

ra
ti

o
n

In
v

a
ri

a
n

t
C

o
n

d
it

io
n

s

fo
r

D
y
n

a
m

ic

R
e

c
o

n
fi

g
u

ra
ti

o
n

F
o

rm
a

l

S
e

m
a

n
ti

c
s

 o
f

S
ta

ti
c

 S
y
s

te
m

F
o

rm
a

l

S
e

m
a

n
ti

c
s

 o
f

D
y
n

a
m

ic

R
e

c
o

n
fi

g
u

ra
ti

o
n

P
ro

c
e

s
s

M
o

d
e

ll
in

g
 o

f

In
te

ra
c

ti
o

n
s

 b
e

tw
e

e
n

A
p

p
li

c
a

ti
o

n
 a

n
d

D
y
n

a
m

ic

R
e

c
o

n
fi

g
u

ra
ti

o
n

A
c

ti
o

n
s

?

G
u

p
ta

 e
t

a
l.

fu
n

c
ti
o

n
s
 a

n
d

p
ro

c
e

d
u

re
s

fu
n

c
ti
o

n
/p

ro
c
e

d
u

re

c
re

a
ti
o

n
,

re
p

la
c
e

m
e

n
t,

d
e

le
ti
o

n
y
e

s
y
e

s

n
o

n
e

 o
f

th
e

 c
h

a
n

g
e

d

fu
n

c
ti
o

n
s
/p

ro
c
e

d
u

re
s

is
 e

x
e

c
u

ti
n

g
,

s
ta

te
 i
s

w
e

ll-
d

e
fi
n

e
d

p
ro

g
ra

m
 c

a
n

 r
e

a
c
h

 a

w
e

ll-
d

e
fi
n

e
d

 s
ta

te

p
ro

g
ra

m
 n

o
t

e
x
e

c
u

ti
n

g
n
o

n
o

n
o

A
rg

u
s

g
u
a
rd

ia
n
s

g
u
a
rd

ia
n
 c

re
a
ti
o
n
,

re
p

la
c
e

m
e

n
t,

d
e

le
ti
o

n
,

re
lo

c
a

ti
o

n
y
e

s
y
e

s
g
u
a
rd

ia
n
 q

u
ie

s
c
e
n
c
e

fo
r

g
u

a
rd

ia
n

re
p

la
c
e

m
e

n
t:

 t
h

e

c
h

a
n

g
e

 m
u

s
t

b
e

tr
a

n
s
p

a
re

n
t

to
 t

h
e

c
lie

n
ts

 o
f

th
e

 o
ld

g
u
a
rd

ia
n

g
u
a
rd

ia
n
 q

u
ie

s
c
e
n
c
e

n
o

n
o

n
o

E
te

rn
a

l
o

b
je

c
ts

o
b

je
c
t

re
p

la
c
e

m
e

n
t

y
e

s
y
e

s

o
ld

 a
n

d
 n

e
w

 v
e

rs
io

n
s

o
f

a
n

 o
b

je
c
t

m
u

s
t

b
e

fu
n

c
ti
o

n
a

lly
 r

e
la

te
d

re
p

la
c
e

m
e

n
t

m
u

s
t

b
e

tr
a

n
s
p

a
re

n
t

to
 t

h
e

u
n

c
h

a
n

g
e

d
 o

b
je

c
ts

 o
f

th
e

 s
y
s
te

m

o
b

je
c
t

q
u

ie
s
c
e

n
c
e

d
u

ri
n

g
 s

ta
te

 t
ra

n
s
fe

r

a
n

d
 o

b
je

c
t

s
w

it
c
h

o
v
e

r

n
o

n
o

n
o

D
R

S
o

b
je

c
ts

o
b

je
c
t

c
re

a
ti
o

n
,

re
p

la
c
e

m
e

n
t,

d
e

le
ti
o

n
,

re
lo

c
a

ti
o

n
y
e

s
y
e

s

o
b

je
c
t

m
u

s
t

b
e

re
c
o

n
fi
g

u
ra

b
le

 a
n

d

q
u

ie
s
c
e

n
t

fo
r

o
b

je
c
t

re
p

la
c
e

m
e

n
t:

 t
h

e

c
h

a
n

g
e

 m
u

s
t

b
e

tr
a

n
s
p

a
re

n
t

to
 t

h
e

c
lie

n
ts

 o
f

th
e

 o
ld

o
b

je
c
t

o
b

je
c
t

q
u

ie
s
c
e

n
c
e

n
o

n
o

n
o

D
a

rw
in

c
o

m
p

o
n

e
n

ts
 a

n
d

lin
k
s

c
o

m
p

o
n

e
n

t
a

n
d

lin
k
 c

re
a

ti
o

n
n
o

y
e

s

c
o

m
p

o
n

e
n

t
m

u
s
t

b
e

re
c
o

n
fi
g

u
ra

b
le

 a
n

d

q
u

ie
s
c
e

n
t

c
o

m
p

o
n

e
n

t

q
u

ie
s
c
e

n
c
e

c
o

m
p

o
n

e
n

t

q
u

ie
s
c
e

n
c
e

c
o

n
fi
g

u
ra

ti
o

n

d
e

fi
n

e
d

 i
n

π
-c

a
lc

u
lu

s
in

 π
-c

a
lc

u
lu

s
n
o

W
ri

g
h

t

c
o

m
p

o
n

e
n

ts
,

c
o

n
n

e
c
to

rs
 a

n
d

lin
k
s

c
o

m
p

o
n

e
n

t,

c
o

n
n

e
c
to

r
a

n
d

 l
in

k

c
re

a
ti
o

n
,

d
e

le
ti
o

n
n
o

y
e

s

s
y
s
te

m
 c

o
n

fi
g

u
ra

ti
o

n

m
u

s
t

b
e

 f
re

e
 o

f
a

n
y

d
e

a
d

lo
c
k
,

c
o

m
p

o
n

e
n

t/
c
o

n
n

e
c
to

r

m
u

s
t

b
e

re
c
o

n
fi
g

u
ra

b
le

 a
n

d
 a

t

a
 r

e
n

d
e

z
v
o

u
s

s
y
s
te

m
 c

o
n

fi
g

u
ra

ti
o

n

m
u

s
t

b
e

 f
re

e
 o

f

d
e

a
d

lo
c
k

c
o

m
p

o
n

e
n

t/
c
o

n
n

e
c
to

r

m
u

s
t

re
m

a
in

 a
t

th
e

re
n

d
e

z
v
o

u
s

in
 C

S
P

in
 C

S
P

y
e

s

R
a

p
id

e

c
o

m
p

o
n

e
n

ts
 a

n
d

c
o

n
n

e
c
ti
o

n
s

c
o

m
p

o
n

e
n

t
a

n
d

c
o

n
n

e
c
ti
o

n

c
re

a
ti
o

n
,

d
e

le
ti
o

n
n
o

n
o

d
e

fi
n

e
d

 b
y
 e

v
e

n
t

p
a

tt
e

rn
 o

f
a

c
o

n
n

e
c
ti
o

n
's

 t
ri
g

g
e

r

d
e

fi
n

e
d

 b
y
 e

v
e

n
t

p
a

tt
e

rn
 o

f
a

c
o

n
n

e
c
ti
o

n
's

 b
o

d
y

u
n

d
e

fi
n

e
d

n
o

n
o

y
e

s

T
ab

le
 2

.1
:

S
u
m

m
ar

y
 o

f
D

y
n
am

ic
 R

ec
o
n
fi

g
u
ra

ti
o
n
 F

ea
tu

re
s

o
f

A
rc

h
it

ec
tu

re
s

an
d
 S

y
st

em
s.

2.11. Requirements on a Formalism 41

2.10.4 Related Work

There are ADLs (in addition those discussed above) that address the problem
of managing dynamic reconfiguration of large systems, such as Olan [BABR96]
[BBRVD98] and Weaves [GR91]. However, their principles, methods and constructs
for managing dynamic reconfiguration are not significantly different from those that
have been discussed already. Furthermore, none of them has a formal semantics. In
addition, there are web services composition languages (WSCLs), such as WS-BPEL
[AAA+07] and WS-CDL [KBR+05], which are ADLs designed for the composition of
services provided by the world wide web, which is a naturally dynamic computing
system. However, their support for dynamic reconfiguration is limited to error
handling. The formal semantics of the error handling mechanisms of WS-BPEL 2.0
has been defined using the asynchronous π-calculus webπ∞[LM07].

2.10.5 Discussion

It is clear from the review that no DADL fully addresses the issues of managing
dynamic reconfiguration of dependable systems. Considering the most relevant
DADLs, each has a different mix of deficiencies (see Table 2.1): Darwin does not
handle component replacement and deletion, or the deletion of bindings; and be-
cause affected actions are suspended, it does not analyse the interaction between
application actions and dynamic reconfiguration actions of a system. However,
Darwin uses a π-calculus to define the formal semantics of its dynamic recon-
figuration process very simply. In contrast, Wright can fully describe dynamic
reconfiguration and the interaction between application actions and dynamic re-
configuration actions; but its use of CSP leads to a cumbersome formal semantics.
Rapide can fully describe dynamic reconfiguration and the interaction between
application actions and dynamic reconfiguration actions; but it lacks a formal se-
mantics, and (therefore) it can only confirm the correctness of a system, rather than
prove the correctness. None of the DADLs fully addresses the dependability is-
sues, especially with respect to schedulability analysis. Finally, none of the DADLs
addresses the issue of how to manage unplanned dynamic reconfiguration, which
is important for managing the evolution of dependable systems [MMR10].

2.11 Requirements on a Formalism

The strengths and weaknesses of the DADLs and systems reviewed above (summa-
rized in Table 2.1) help to determine requirements on a formalism for the modelling

2.11. Requirements on a Formalism 42

and analysis of dynamic reconfiguration of dependable systems. A preliminary
version of these requirements is given in [MB10]. A formalism should meet the
following requirements.

2.11.1 Dynamic Reconfiguration Requirements

1. It should be possible to model, and to identify instances of, software compo-
nents and tasks, and their communication links.

2. It should be possible to model the creation, deletion and replacement of
software components and tasks, and the creation and deletion of their com-
munication links.

3. It should be possible to model the relocation of software components and
tasks on physical nodes.

4. It should be possible to model state transfer between software components
and between tasks.

5. It should be possible to model both planned and unplanned reconfiguration.

6. It should be possible to model the functional interactions between application
tasks and reconfiguration tasks.

7. It should be possible to model the temporal interactions between application
tasks and reconfiguration tasks.

8. It should be possible to express and to verify the functional correctness re-
quirements of application tasks and reconfiguration tasks.

9. It should be possible to express and to verify the temporal correctness require-
ments of application tasks and reconfiguration tasks.

2.11.2 Dependability Requirements

1. It should be possible to model the concurrent execution of tasks.

2. It should be possible to model state transitions of software components and
tasks.

2.11. Requirements on a Formalism 43

2.11.3 General Requirements

1. The formalism should be as terse as possible, in order to facilitate its use.

2. The formalism should be supported by tools; otherwise, it will not be used.

Chapter 3

Review of Formalisms Supporting
Dynamic Reconfiguration

Contents
3.1 Milner’s, Parrow’s and Walker’s π-calculus 46

3.1.1 Evaluation using Requirements 49

3.2 Higher-Order π-calculi . 53

3.2.1 Evaluation using Requirements 55

3.3 Asynchronous π-calculus . 58

3.3.1 Evaluation using Requirements 60

3.4 Related Work . 61

3.5 Discussion . 62

The material reviewed in Chapter 2 shows that DADLs are the most promising
approach to managing dynamic reconfiguration of dependable systems. However,
the material also shows that no existing DADL is entirely suitable for the purpose.
The most serious defect is the lack of a simple but powerful formalism that
can model and analyze application actions and dynamic reconfiguration actions
(including real-time actions) and their functional and temporal interactions for
both planned and unplanned reconfiguration.

In developing a formalism suitable for DADLs for dependable systems, following
the traditional approach involves representing application actions and recon-
figuration actions by different formalisms (see [KK88] and [KGC89]). This is
understandable, because the two sets of actions are logically different. However,
the use of different formalisms creates the overhead of translation between
the formalisms in order to study interactions between the two sets of actions.
Therefore, we avoid the overhead by focusing on a single formalism to model both
sets of actions.

45

In developing a single formalism suitable for DADLs for dependable systems,
notice that it is more difficult to express dynamic reconfiguration features than to
express real-time features necessary for the modelling and analysis of temporal
interactions between application and reconfiguration tasks. Therefore, it is likely
to be easier (and hence more productive) to modify a formalism that can represent
dynamic reconfiguration with real-time constructs (for example, duration in order
to support schedulability analysis), than to modify a real-time formalism with
constructs for expressing dynamic reconfiguration, or to invent a completely new
formalism ‘from scratch’. Hence, it is advisable to follow the first approach.

Model-based formalisms, such as Z [Spi89] and VDM [Jon80], can express config-
urations [RS94] and the difference between configurations. However, the process
of dynamic reconfiguration cannot be described easily, which makes it difficult
to describe interactions between application actions and reconfiguration actions.
Process algebras are more promising in this respect because they can represent
processes and functional interaction between processes, and their description of
a computational model in terms of actions can be analysed for schedulability
if the actions contain sufficient timing information. However, standard process
algebras, such as CCS [Mil89] and CSP [Hoa85], do not treat components and their
bindings as first class objects, which leads to a cumbersome notation for expressing
dynamic reconfiguration [ADG98]. Mobile process algebras, such as π-calculi, are
interesting because of their treatment of component bindings as first class objects,
which enables dynamic reconfiguration of communication links to be expressed
simply. This suggests that a timed π-calculus may be a suitable formalism for
modelling application actions and reconfiguration actions, and their interactions.

Other candidate formalisms include graph grammars, such as Garp [KK88] and
the ∆-Grammar [KGC89], and the Chemical Abstract Machine [BB92]. These
graph grammars represent the configuration of a system as a directed graph,
with a node representing an agent and an arc representing a communication
path. Nodes interact asynchronously by message passing through ports. System
reconfiguration is expressed as graph rewrites by agents (termed ∆ transitions), in
which a node is replaced by a subgraph. Thus, the graph grammars are similar to
a process algebra. However, they specify the effects of dynamic reconfiguration
rather than model the reconfiguration process.

3.1. Milner’s, Parrow’s and Walker’s π-calculus 46

The Chemical Abstract Machine (CHAM) is based on the GAMMA formalism
defined in [BM90]. GAMMA models a data value as a molecule, the system’s state
as a solution (i.e. a finite multiset) of molecules, and a computation as a sequence
of reactions between molecules, defined by transformation rules between solutions
and guarded by reaction conditions. Different reactions can run in parallel if their
source multisets are disjoint; otherwise a non-deterministic choice is made as to
which reaction will occur. GAMMA uses multisets in order to avoid unnecessary
ordering restrictions in the specification of an algorithm caused by the use of
list-based data structures. CHAM extends GAMMA by allowing the user to define
the syntax of a molecule; a membrane construct is used to encapsulate a solution,
so that it behaves like a single molecule, thereby enabling a large system to be
structured as a hierarchy of solutions; and an airlock construct is used to control
reactions between a given solution and its environment. System reconfiguration is
expressed as rewrites of multisets of molecules [Met96]. CHAM has been used to
specify software architectures [IW95], and to specify the dynamic reconfiguration
of software architectures [Wer99]. However, like the graph grammars discussed
above, CHAM does not model the reconfiguration process. Furthermore, the con-
cepts underlying the CHAM constructs are different from those normally used by
architects to design systems, so that ensuring a CHAM description is an abstraction
of an architect’s description becomes an issue. In contrast, the ‘conceptual gap’
between the architect’s description and a process algebraic description is much less.

Therefore, we focus on π-calculi, and examine a selection of these using the re-
quirements identified in Section 2.11 in order to evaluate their suitability for the
modelling and analysis of dynamic reconfiguration of dependable systems.

3.1 Milner’s, Parrow’s and Walker’s π-calculus

This is the original π-calculus, developed by Milner, Parrow and Walker as an
extension of CCS, in which port names are treated as first class objects [MPW92].
It is based on ECCS [EN86], which extended behavioural equivalence in CCS to
processes communicating port names.

In this π-calculus, a system is modelled as a collection of processes that commu-
nicate synchronously by message passing through ports on a point-to-point basis.
The syntax of a process P is defined as follows [Mil99]:

3.1. Milner’s, Parrow’s and Walker’s π-calculus 47

P ::=
∑
i∈I

πi.Pi | P1|P2 | νaP | !P | 0 (3.1)

where πi ::= xi(~yi) | xi<~yi> | τ and I is a finite set.

Thus, πi is an action prefix1, which can be an input action (xi) that receives a vector
of values on port xi and uses the vector to substitute the vector of names ~yi; or an
output action (xi) that sends a vector of values ~yi on port xi; or an unobservable
action (τ) internal to the process. The identification of a communication action
with its associated port (inherited from CCS) gives the formalism great simplicity.
The summation enables P to behave non-deterministically, in a manner selected
by its environment (using an input/output action) or by P itself (using τ). The
composition operator (|) enables P to be decomposed into, and composed from,
parallel processes (P1 and P2). The restriction operator (ν) restricts the scope of a
port name (a) to P. The replication operator (!) produces an infinite replication and
composition of its operand (i.e. P|P|P|...). The original syntax of a process did not
contain the replication operator [MPW92], but it is necessary in order to make the
formalism Turing complete. 0 is the NIL process, which performs no action.

Notice that this is the process syntax in the polyadic version of the π-calculus,
where a message consists of a vector of names. The process syntax in the monadic
version is similar, except that a message consists of a single name (e.g. y). Clearly,
the monadic version is a simple case of the polyadic version; but it can be used to
encode any expression in the polyadic version. We use the polyadic version for
completeness with respect to definitions given below.

The operational semantics of this π-calculus are defined by the following seven
transition rules, and alpha-conversion2 [Mil99]:

SUMC :
αA α
→ A

M + αA + N α
→ A

where α ::= x(~y) | x<~y> | τ

1Some researchers include port name matching (i.e. [x=y]πi) in the basic definition of πi [SW01];
and other researchers treat the matching as an extension [Ber04]. We follow the latter approach, in
order to keep the process syntax simple.

2Alpha-conversion is the renaming of one or more bound names of a process. It is usually done
in order to avoid a name conflict in a substitution. A bound name of a process is a name whose
scope is restricted to the process. In contrast, a free name of a process is a name in the process whose
scope is not restricted to the process.

3.1. Milner’s, Parrow’s and Walker’s π-calculus 48

L−REACTC :
P x
→ (~y).P′ Q x

→ ν~z< ~w>.Q′

P|Q τ
→ ν~z({~w/~y}P′|Q′)

assuming ~z not f ree in (~y).P′ and |~w| = |~y|

R−REACTC :
P x
→ ν~z< ~w>.P′ Q x

→ (~y).Q′

P|Q τ
→ ν~z({~w/~y}Q′|P′)

assuming ~z not f ree in (~y).Q′ and |~w| = |~y|

L−PARC :
P α
→ A

P|Q α
→ A|Q

R−PARC :
Q α
→ A

P|Q α
→ P|A

RESC :
P α
→ A

νxP α
→ νxA

i fα < {x, x}

REPC :
P|!P α
→ A

!P α
→ A

SUMC states that summation preserves sequential transitions. The REACTC rules
define reactions between two processes that contain an abstraction and a concretion
respectively. An abstraction is an expression (e.g. (~y).P′) that enables the binding of
a vector of port names (~y) to a process (P′) to be expressed in a uniform manner.
A concretion is an expression (e.g. ν~z < ~w > .Q′) that passes a vector of values (~w)
to an abstraction along with an extension in scope of a vector of restricted port
names (ν~z). Thus, a concretion is a dual of an abstraction. The REACTC rules state
that if a process containing a concretion (ν~z < ~w > .Q′) and a process containing
an abstraction ((~y).P′) are composed, then the values of the concretion are passed
to the abstraction ({~w/~y}P′) and the restriction on port names in the concretion is
extended over the result (ν~z({~w/~y}P′|Q′)), provided the restricted names are not
free in the abstraction and the message vectors (~w and ~y) have the same length.
The PARC rules state that composition preserves the transitions of its constituent
processes. The RESC rule states that restriction preserves a transition of its process
if the transition name is not restricted. The REPC rule implies that P|!P and !P have
identical transitions.

Notice that (unlike basic CCS) this π-calculus is asymmetric, since receiving and
sending processes are treated differently. For example, a receiving process P is
equal to x.F where F = (~y).P′ (an abstraction); and its sending process Q is equal to
x.C where C = ν~z< ~w> .Q′ (a concretion). The composition P|Q results in P being
replaced with the residue (~y).P′, and Q being replaced with the residue ν~z< ~w>.Q′,

3.1. Milner’s, Parrow’s and Walker’s π-calculus 49

and we have the asymmetric transition P|Q τ
→ ν~z({~w/~y}P′|Q′), assuming ~z not

free in (~y).P′ and |~w| = |~y|. Furthermore, because the calculus is synchronous, the
sending process waits until the receiving process is ready to receive its message.
Hence, the end time of the sending action depends on the start time of the receiving
action.

Abstractions and concretions are termed agents, and the length of the message
vector is termed the arity of the agent. A process is considered to be an agent of
arity 0, and it is considered to be both an abstraction and a concretion.

3.1.1 Evaluation using Requirements

Dynamic reconfiguration in this π-calculus consists of the creation of processes
(achieved using !), and the creation and deletion of bindings between processes
(achieved by passing port names in communications between processes):

!P creates an infinity of processes composed together (i.e. P|P|P|...).

If P
de f
= x< y>.P′ and Q

de f
= x(u).u(v).Q′ and R

de f
= y<w>.R′, then in P|Q|R P passes

the port name y to Q (thereby substituting u by y) so that Q can communicate with
R. The binding between Q and R can be deleted by a subsequent substitution of u.

The physical relocation of a process can be modelled as a change in its bindings to
other processes.

State transfer between processes can be modelled as communication.

It is not possible to delete a process in an unplanned manner, although a
process can terminate at the end of its execution (e.g. x(a).y(b).0). Hence,
it is not possible to model the unplanned replacement of a process. Further-
more, it is not possible to identify a specific instance of a process for reconfiguration.

Functional interaction between application actions and reconfiguration actions is
modelled as interleavings of actions. Temporal interaction between actions cannot
be modelled, because the duration of an action cannot be expressed.

Functional correctness is expressed in terms of equivalence of process expressions,
and is verified by equational reasoning. Thus, if a process P is correct and a process

3.1. Milner’s, Parrow’s and Walker’s π-calculus 50

expression C[P] that contains P is correct, and if P is substituted by a process Q,
and Q is equivalent to P (in some sense), then the substitution will preserve the
correctness of the process expression C[Q]. The derivation of equivalence is as
follows [Mil99].

Let Pπ be the set of all π-calculus processes, and let S be a binary relation over Pπ.
S is termed a strong simulation if whenever PSQ,

i f P α
→ A then ∃B such that Q α

→ B and ASB

Thus, any behaviour of P can be simulated by Q, but not necessarily vice versa. If
both S and S−1 are strong simulations, then S is termed a strong bisimulation.

If S is a strong bisimulation such that PSQ, then P and Q are termed strongly
equivalent (written P ∼ Q). Thus, any behaviour of P can be simulated by Q, and
vice versa. Notice that if A and B are abstractions (e.g. A = (~x).A′ and B = (~x).B′),
then for A ∼ B we must have ∀~y ({~y/~x}A′ ∼ {~y/~x}B′).

Strong equivalence between processes is important for process substitution in the
context of a process expression (termed a process context), which has the following
syntax:

C ::= [] | π.C + M | νaC | C|P | P|C | !C (3.2)

Thus, a process context is a process expression with a hole (i.e. []) that can be filled
by a process (i.e. C[Q]). The elementary contexts are π.[] + M, νa[], []|P, P|[] and
![]; and [] is the identity context, since [Q] = Q.

Clearly, filling the hole of a process context with different processes can produce
different results. Therefore, a notion of process congruence needs to be defined
between processes that produces equivalent results when congruent processes are
substituted for each other in a process context.

An equivalence relation � over Pπ is termed a process congruence if it is preserved
by all elementary process contexts. Thus, if P � Q then the following must hold:

π.P + M � π.Q + M where π ::= x(~y) | x<~y> | τ

ν~zP � ν~zQ

P|R � Q|R

3.1. Milner’s, Parrow’s and Walker’s π-calculus 51

R|P � R|Q

!P � !Q

The conditions on agents for producing equivalent results in a process context
(termed agent congruence) are slightly stronger than those for process congruence.
Agent congruence is a process congruence with the following two conditions:

ν~x<~y>.P � ν~x<~y>.Q f or concretions

∀~y ({~y/~x}P � {~y/~x}Q) f or abstractions

It can be proved that an equivalence relation is preserved by all elementary
process contexts if and only if it is preserved by all process contexts. Further-
more, strong equivalence is a process congruence. Hence, strongly equivalent
processes can be substituted in any given process context with equivalent
results. Strong equivalence is also an agent congruence. Hence, strongly equiv-
alent agents can be substituted in any given process context with equivalent results.

A stronger notion of congruence between processes is structural congruence, in
which congruent processes can be transformed into one another. These processes
are structurally similar, rather than being merely behaviourally similar:

Processes P, Q ∈ Pπ are termed structurally congruent (written P ≡ Q) if and only if
they can be transformed into one another using the following rules:

Alpha−conversion

Reordering o f terms in a summation

P|0 ≡ P, P|Q ≡ Q|P, P|(Q|R) ≡ (P|Q)|R

νx(P|Q) ≡ P|νxQ i f x not f ree in P

νx0 ≡ 0, νxyP ≡ νyxP

!P ≡ P|!P

Structural congruence leads to a new transition rule:

STRUCT :
Q ≡ P P→ P′ P′ ≡ Q′

Q→ Q′

Regarding the use of verification techniques other than equational reasoning,
the application actions of a system and its dynamic reconfiguration actions are
both modelled using labelled transitions. Hence, it is possible to model their

3.1. Milner’s, Parrow’s and Walker’s π-calculus 52

interleavings, and to analyse the effects using standard techniques (such as
reachability analysis).

There is a weaker equivalence between processes than strong equivalence, termed
weak equivalence, which ignores the internal behaviour of a process. Therefore,
long process expressions can be weakly equivalent to much shorter process
expressions, which helps to model and analyze large systems. The derivation of
weak equivalence is as follows [Mil99].

Let S be a binary relation over Pπ. S is termed a weak simulation if whenever PSQ,

i f P⇒P′ then ∃Q′ such that Q⇒Q′ and P′SQ′

i f P
x<~y>
⇒ P′ then ∃Q′ such that Q

x<~y>
⇒ Q′ and P′SQ′

i f P x
⇒ C then ∃D such that Q x

⇒ D and CSD

where α
⇒ is an α transition preceded and/or followed by 0 or more τ transitions,

and α ::= x(~y) | x<~y> | τ,
and C, D are concretions.

Thus, any behaviour of P can be weakly simulated by Q, but not necessarily vice
versa. P can be thought of as a specification of Q. If both S and S−1 are weak
simulations, then S is termed a weak bisimulation.

If S is a weak bisimulation such that PSQ, then P and Q are termed weakly
equivalent (written P ≈ Q). Thus, any behaviour of P can be weakly simulated by
Q, and vice versa; so that P and Q have the same specification. As with strong
equivalence, if A and B are abstractions (e.g. A = (~x).A′ and B = (~x).B′), then for
A ≈ B we must have ∀~y ({~y/~x}A′ ≈ {~y/~x}B′).

Weak equivalence is an agent congruence. Hence, weakly equivalent agents can
be substituted in any given process context with equivalent results.

In this π-calculus, the model of concurrency is that of a multiset of sequential
processes that execute concurrently, perform state transitions, and communicate
synchronously on a point-to-point basis with no time bound. Hence, an expression
in this formalism is not amenable to schedulability analysis.

3.2. Higher-Order π-calculi 53

Support for functional correctness is provided through proofs of equivalence
and congruence; and the operational semantics support reachability analysis.
Model checking using temporal logic is problematic, due to the dynamic creation
of processes that can be involved in a proposition [CKCB01]. A suitable timed
temporal logic is required.

There is a type system based on sorts. A set of processes is associated with a partial
function (termed a sorting) which maps the sort of an action (σ) to the list of sorts
(ob(σ)) corresponding to the action’s message vector:

ob : Σ ⇀ Σ∗ where Σ is a set o f sorts. (3.3)

For type correctness, each subterm of the form x(~y).P or x< ~y>.P must satisfy the
condition:
i f x : σ then ~y : ob(σ); and x and x must have the same sort (σ). A sorting is a partial
function because not all the elements of a message vector may be used as actions
in a given set of processes. An action with no message vector is mapped to the
empty sort list (ε).

Support for temporal correctness is highly problematic in this π-calculus. First,
the ! operator produces an infinite composition of processes, which causes
problems in modelling systems with finite resources. Second, the synchronous
communication model results in a timing dependency between the sending and
receiving processes, which complicates the schedulability analysis. Third, the
process expressions are not amenable to schedulability analysis.

Inspite of the limitations of this π-calculus, it is a simple and powerful formal-
ism, and (consequently) considerable research on process mobility is based on it.
Tool support includes the Mobility Workbench [VM94], which checks for open
bisimilarity between processes and for deadlocks; and TyPiCal [Kob06], which is a
type-based static analyzer for checking deadlock freedom and termination.

3.2 Higher-Order π-calculi

Higher-order π-calculi are distinguished from first-order π-calculi (such as the
original π-calculus) by their treatment of processes as first class objects in commu-
nications (rather than only port names).

3.2. Higher-Order π-calculi 54

In higher-order π-calculi, a system is modelled as a collection of processes that
communicate by message passing through ports, where the messages can contain
port names or processes [Tho90] [San93]. The syntax of a process P is defined as
follows:

P ::=
∑
i∈I

πi.Pi | P1|P2 | νaP | !x(~y).P | X | 0 (3.4)

where πi ::= xi(~yi) | xi<~yi> | τ and I is a finite set.

Thus, the action prefix πi can be an input action (xi) that receives a vector of port
names or processes, and uses the vector to substitute the vector of names ~yi; or
an output action (xi) that sends a vector ~yi of port names or processes; or an
unobservable action (τ) internal to P. The process syntax is similar to that of the
original π-calculus, with two exceptions. First, the lazy replication operator (!)
uses a guard (x(~y)) to control the replication of P. It can simulate the unguarded
! of the original π-calculus, but has better computational properties. Second, X
indicates the execution of a received process.

The operational semantics of synchronous higher-order π-calculi consist of four
rules of the original π-calculus (i.e. SUMC, L − PARC, R − PARC and RESC) and the
following three transition rules:

L−REACT :
P

x(~y)
→ P′ Q x<~w>

→ Q′

P|Q τ
→ {~w/~y}P′|Q′

assuming |~w| = |~y|

R−REACT :
P x<~w>
→ P′ Q

x(~y)
→ Q′

P|Q τ
→ P′|{~w/~y}Q′

assuming |~w| = |~y|

LAZY−REP : x<~P> |!x(~y).Q τ
→ {~P/~y}Q|!x(~y).Q

The REACT rules determine the result of the interaction between two complemen-
tary actions. The result is asymmetric, since (in L−REACT) a receiving process P
continues to {~w/~y}P′, whereas the sending process Q continues to Q′. Notice that ~w
can be a vector of port names or processes. Obviously, ~w and ~y must have identical
lengths and sorts for the two processes to interact. Notice also that the scope of any
restriction on< ~w> is not extended over the result (unlike the original π-calculus).
The LAZY−REP rule states that a process (Q) can be replicated only through an
interaction with its guard (x(~y)), which enables a process to be created only when
it is needed.

3.2. Higher-Order π-calculi 55

3.2.1 Evaluation using Requirements

As in the original π-calculus, processes can be created (achieved using lazy
replication rather than unguarded replication), and bindings between processes
can be created and deleted by passing port names in communications between
processes.

The physical relocation of a process can be modelled by passing the process in
communications between processes and changing its bindings to other processes.

State transfer between processes can be modelled as communication.

Unplanned process deletion and unplanned process replacement cannot be
modelled; and it is not possible to identify a specific instance of a process for
reconfiguration.

As in the original π-calculus, functional interaction between application and
reconfiguration actions is modelled as action interleavings, and can be analyzed
using standard techniques (such as reachability analysis). Temporal interaction
cannot be modelled. Functional correctness is based on equivalence of process
expressions and substitution of processes, and is verified by equational reasoning.
However, the definition of equivalence in higher-order π-calculi is different from
that in the original π-calculus, because of process passing [Tho90].

Let P be the set of all concurrent processes, and let S be a binary relation over P. S
is termed a strong higher-order simulation if whenever PSQ,

i f P α
→ P′ then ∃Q′, β such that Q

β
→ Q′ and P′SQ′ and αŜβ

where Ŝ = {(α, β) | (α = x(P′′) ∧ β = x(Q′′) ∧ P′′SQ′′) ∨

(α = x<P′′> ∧ β = x<Q′′> ∧ P′′SQ′′) ∨

(α = τ = β)}

Thus, any behaviour of P can be simulated by Q, provided the process passed in
the transition of Q simulates the process passed in the transition of P. If both S
and S−1 are strong higher-order simulations, and Ŝ is common to both S and S−1,
then S is termed a strong higher-order bisimulation.

3.2. Higher-Order π-calculi 56

If S is a strong higher-order bisimulation such that PSQ, then P and Q are termed
strongly higher-order equivalent (written P ∼ Q). Thus, any behaviour of P can be
simulated by Q, and vice versa.

Strong higher-order equivalence is a process congruence [Tho90]. Hence, strongly
higher-order equivalent processes can be substituted in any given process context
with equivalent results.

The issue of whether higher-order π-calculi are more expressive than first-order
π-calculi was addressed in [San93]. Sangiorgi developed a higher-order π-calculus
(HOπ) by extending the sorting scheme of the original π-calculus to allow
processes and parameterised processes of arbitrarily high order to be passed in
communications (i.e. an ω-order extension of the original π-calculus). A notion of
equivalence (based on barbed bisimulation) was defined that applies uniformly over
different calculi, so that equivalence between process expressions can be preserved
by their encodings in different calculi. The derivation of barbed bisimulation is as
follows.

Let P be the set of all concurrent processes, and let S be a binary relation over P. S
is termed a barbed simulation if whenever PSQ,

i f P→ P′ then Q→ Q′ and P′SQ′ where → is a transition.

∀a i f P ↓a then Q ↓a where a is a port

The first condition states that any transition of P can be simulated by Q. ↓a is an
observation predicate on port a which detects the possibility of communication
with the environment through a. Thus, the second condition states that if P can
communicate with its environment through its port a, then Q can communicate
with its environment through its port a. If both S and S−1 are barbed simulations,
then S is termed a barbed bisimulation.

IfS is a barbed bisimulation such that PSQ, then P and Q are termed barbed-bisimilar
(written P ·

∼ Q). Thus, any transition of P can be simulated by Q, and vice versa;
and the resulting states have the same observation set.

The definition of weak barbed bisimulation (written
·

≈) is similar to the definition
of barbed bisimulation, with the transition Q → Q′ replaced by Q ⇒ Q′ and the
predicate Q ↓a replaced by Q ⇓a; where⇒ is the reflexive and transitive closure of

3.2. Higher-Order π-calculi 57

→, and Q ⇓a means Q⇒ Q′′ ↓a for some Q′′.

Weak barbed bisimulation is used to define weak barbed congruence: two processes
P, Q are termed weakly barbed-congruent (written P ≈c Q) if C[P]

·

≈ C[Q] for all
contexts C[]. The importance of ≈c is that it is preserved by encodings in different
calculi in a fully abstract way. That is, two source language terms are weakly
barbed-congruent if and only if their translations are weakly barbed-congruent.
Thus, Sangiorgi proved the semantic equivalence between the original π-calculus
and HOπ [San93] [SW01].

Higher-order π-calculi are useful in expressing process communication in an
abstract manner, especially if process passing is involved. However, there are a
number of reasons for modelling processes in a first-order π-calculus [SW01]. First,
name passing is more widely used in computing systems in comparison to process
passing. Second, first-order π-calculi can express partial access to a process, and
can enable process sharing; whereas in higher-order π-calculi a receiving process
can only execute a received process or communicate it. Third, the theory of
first-order π-calculi is simpler and more tractable than the theory of higher-order
π-calculi.

The concurrency model is that of a multiset of concurrently executing sequential
processes that perform state transitions and communicate with no time bound.
Hence, process expressions are not amenable to schedulability analysis.

Functional correctness is supported through proofs of equivalence and congruence,
and the operational semantics support reachability analysis (as in the original
π-calculus).

The type system is based on sorts, and varies over higher-order π-calculi. In
CHOCS, the sort of a process is defined as follows [Tho90]:

p is a process with sort L (written p :: L) if and only if

∀p′ reachable f rom p through 0 or more transitions (p′
a(~y) | a<~y>
−→ p′′ =⇒ a∈L)

(3.5)

Temporal correctness is supported through guarded replication, which avoids the
instantaneous creation of an infinite composition of processes in a system with finite
resources. However, the process expressions are not amenable to schedulability

3.3. Asynchronous π-calculus 58

analysis, because the communication delays are undefined.

3.3 Asynchronous π-calculus

The asynchronous π-calculus (Aπ) is a subcalculus of the original π-calculus,
defined in [HT91] and [Bou92]. It was intended to be a minimal calculus for
expressing mobility.

In Aπ, a system is modelled as a collection of processes that communicate asyn-
chronously by message passing through ports, where the messages can contain
port names. The syntax of a process P is defined as follows:

P ::= x(~y).P | x<~y>.0 | P1|P2 | νaP | !x(~y).P | 0 (3.6)

In computing systems, asynchronous communication can be thought of as
communication that does not involve waiting by the communicating processes.
Thus, a sending process does not wait for a receiving process to be ready to receive
before sending its message over the communication medium; and a receiving
process does not wait for a sending process to be ready to send – it either receives
its message from the medium (if this has arrived) or executes another action. In
Aπ, sending processes have non-waiting behaviour, and output messages are
unordered; and so output actions (x < ~y >) have no continuation. Furthermore,
an unguarded output action is considered ‘already executed’, rather than ‘to be
executed’. Receiving processes have waiting behaviour, and input messages are
ordered; and so an action prefix is an input action (x(~y)). The remainder of the
syntax has been described previously.

The operational semantics of Aπ are essentially defined by the following eight
asynchronous transition rules [Ber04]:

Let l ::= x(~v) | x< (ν~z)~y> | τ

Let f n(l) and f n(Q) be the sets of free names of l and Q respectively, and let bn(l) be
the set of bound names of l.

OUT :
x<~y>.0

x<~y>
−→a 0

INa :
0

x(~y)
−→a x<~y>.0

3.3. Asynchronous π-calculus 59

PAR :
P l
→a P′ bn(l) ∩ f n(Q) = ∅

P|Q l
→a P′|Q

COM :
x<~y>.0|x(~v).Q τ

→a {~y/~v}Q

LAZY−REP :
x<~y>.0|!x(~v).Q τ

→a {~y/~v}Q|!x(~v).Q

RES :
P l
→a Q x < f n(l) ∪ bn(l)

(νx)P l
→a (νx)Q

OPEN :
P

x<(ν~y)~z>
−→a Q v , x, v ∈ {~z} − {~y}

(νv)P
x<(ν~y,v)~z>
−→a Q

STRUCT :
P ≡ P′ P′ l

→a Q′ Q′ ≡ Q

P l
→a Q

These rules define the transitions of a process that can be observed by an
asynchronous observer. The OUT rule states that a sending process performs its
output action and continues to 0. The INa rule can be understood as the observer
sending a message to the 0 process. The message cannot be received by 0; and so it
exists alongside the 0 process, waiting to be received (i.e. 0 | x<~y>). The observer
cannot detect that the message has not been consumed, since it is asynchronous.
Thus, the 0 process behaves as if it performs an input action (x(~y)). The PAR rule
states that composition preserves the transitions of its constituent processes. The
COM and LAZY − REP rules show how the vector of output names (~y) substitute
the vector of input names (~v) when two complementary actions interact. The RES
rule states that restriction preserves a transition of its process if the transition is
not restricted. The OPEN rule states that a restriction will preserve an output
transition of a process if the transition name is not restricted; and the restriction
will be exported with the output vector if the vector contains the restricted name.
The STRUCT rule states that transitions are preserved by structural congruence.

There are a corresponding set of rules defining the transitions of a process that can
be observed by a synchronous observer. These synchronous transitions are very
similar to the asynchronous transitions defined above, with one exception:

IN :
x(~v).P

x(~z)
−→ {~z/~v}P

3.3. Asynchronous π-calculus 60

3.3.1 Evaluation using Requirements

Dynamic reconfiguration in Aπ consists of the creation of processes (achieved using
lazy replication), and the creation and deletion of bindings between processes
(achieved by passing port names in process communications).

Physical relocation of a process is modelled implicitly (as in the originalπ-calculus).

State transfer between processes can be modelled as communication.

Unplanned process deletion and unplanned process replacement cannot be
modelled; and it is not possible to identify a specific instance of a process for
reconfiguration (as in the previous π-calculi).

Functional interaction between application and reconfiguration actions is mod-
elled as action interleavings, which can be analyzed using standard techniques;
temporal interaction cannot be modelled; and functional correctness is based
on equivalence of process expressions and substitution of processes, and is
verified by equational reasoning (as in the previous π-calculi). Asynchronous
bisimulation (written ≈a) is a form of weak equivalence (discussed above) with
asynchronous transitions; and synchronous bisimulation (written ≈s) is a form of
weak equivalence with synchronous transitions. Furthermore, both ≈a and ≈s

are congruences. Hence, asynchronously/synchronously bisimilar processes can
be substituted in any given process context with correspondingly equivalent results.

The concurrency model is that of a multiset of concurrently executing sequential
processes that perform state transitions and communicate asynchronously with
no time bound. Hence, process expressions are not amenable to schedulability
analysis.

Support for functional correctness is provided through proofs of equivalence and
congruence, and the operational semantics support reachability analysis (as in the
previous π-calculi).

The type system is based on sorts and sortings, and is not significantly different
from that used in the original π-calculus.

Support for temporal correctness is provided through guarded replication, which

3.4. Related Work 61

is suitable for process creation in systems with finite resources; and asynchronous
communication, which simplifies the timing dependency between sending and
receiving processes. However, the process expressions are not amenable to
schedulability analysis, because of the absence of timing information.

Aπ is a simple and powerful formalism, despite its limitations, and it is a basis of
research on process mobility [Ama00], fault-tolerance [Ber04] and composition of
web services [Maz06]. Tool support includes Pict [PT00], which is a strongly-typed
programming language.

3.4 Related Work

There are a number of π-calculi (in addition to those discussed above) that can be
used to model and analyse dynamic reconfiguration of dependable systems.

The fusion calculus is an extension of the π-calculus [PV98]. It simplifies the
π-calculus by treating input and output actions symmetrically, by having a
single binding operator (called scope) and by having a single bisimulation
congruence (called hyperequivalence). When complementary actions interact,
the corresponding input and output names are identified using an equivalence
relation (called a fusion), the visibility of which is controlled by the scope
operator. Fusion causes symmetry in communications, but it has a fundamental
weakness: the scope of a fusion includes any process composed with the processes
related by the fusion, so that a fusion represents an implicit shared state. This
is problematic, since shared state does not exist in distributed systems. Other
weaknesses are the absence of real-time constructs and operators, and the lack of
facilities for unplanned process creation, process deletion and process replacement.

The Φ-calculus is an extension of the π-calculus [RS03]. It was designed to
model discrete systems that control continuously changing environments. An
embedded system is modelled as a pair (E,P), where E is an environment and
P is a hybrid process expression in the Φ-calculus. (E,P) changes according
to: π-actions that change P; time actions that change E continuously; and
e-actions that change both E and P discretely. Weak bisimulation is extended
with e-transitions, and a notion of embedded bisimulation is defined such that
if weakly bisimilar processes are substituted in the same environment, then
the resulting embedded systems are embedded bisimilar. The Φ-calculus has a

3.5. Discussion 62

number of deficiencies for our purpose: it is more complex than necessary, since it
models both discrete and continuous change. It has a synchronous communication
model, which complicates schedulability analysis. The unguarded replication
operator is problematic when used to create processes in systems with finite re-
sources. Unplanned process deletion and process replacement cannot be modelled.

A timed extension of Aπ has been developed to model the reliability of communi-
cations in distributed systems, including message loss, site failure and timeouts
for error detection [Ber04]. The process syntax of Aπ is extended with a timer
construct timert(x(~v).P,Q), which executes x(~v) if a message is received before t
time increments have passed, and otherwise executes Q. The work is interesting
because of its integration of Aπ with discrete time. However, the calculus has
two main deficiencies for our purpose: unplanned process deletion and process
replacement cannot be modelled, and specific instances of processes cannot be
identified for reconfiguration.

webπ∞ is an extension of Aπ designed to model the composition of web services
[Maz06]. The process syntax of Aπ is extended with the construct 〈|P ; Q|〉x (termed
a workunit) in order to model error handling. The workunit executes P until either
P terminates (whereupon the workunit terminates) or an interrupt is received on
channel x during the execution of P. The interrupt can be sent either by P or by a
process in the context of the workunit, and causes the premature termination of P
(without rollback) and the execution of Q. Thus, workunits can be used to model
event-triggered planned reconfiguration. However, unplanned process deletion
and process replacement cannot be modelled, and specific instances of processes
cannot be identified for reconfiguration.

3.5 Discussion

It is clear from the review that most of the research on π-calculi has concentrated
on link reconfiguration in non-real-time systems, with functional interaction be-
tween application and reconfiguration actions modelled as action interleavings,
and functional correctness verified by equational reasoning using congruent pro-
cess expressions and by model checking. Temporal interaction is not modelled and
(therefore) temporal correctness cannot be verified. Unplanned dynamic reconfig-
uration is not modelled, and specific instances of processes cannot be identified for
reconfiguration. The most serious of these defects, with respect to dynamic recon-

3.5. Discussion 63

figuration, is the lack of constructs for modelling unplanned dynamic reconfiguration,
which is defined as follows:

Definition 3.5.1 Unplanned dynamic reconfiguration is the runtime change of a system’s
composition, structure or resource use that is not determined by the system’s design.

Unplanned dynamic reconfiguration is relevant for legacy systems that are not
designed to be reconfigured, but have sufficient laxity to be reconfigured; and for
systems that are required to evolve to meet new requirements.

The inability of the reviewed π-calculi to model unplanned dynamic reconfigu-
ration is due to their use of special reconfiguration operators, as the following
argument explains. A model of a system should be an abstraction of the system.
An abstraction of a system is a representation of the system such that every construct
of the abstraction represents one or more elements of the system, or is determined
from one or more elements of the system, but not every element of the system has
to be represented in the abstraction. Thus, an abstraction is a simplified representa-
tion of a system, and a property of the abstraction should be also a property of the
system (if all the factors that determine the property in the system are represented
in the abstraction). Therefore, if a model is an abstraction of a system, then if the
model has a property then the system should have the same property. However,
if a model has a fictitious construct, then making an inference about the system
from the model can be problematic. The notion of fictitious construct is defined as
follows:

Definition 3.5.2 A fictitious construct of a model of a system is a construct that does not
represent any element or collection of elements of the system, and is not determined from
any element or collection of elements of the system.

If a model of a system has a fictitious construct, then the model is not an abstraction
of the system, and (therefore) if the model has a property based on the fictitious
construct then the system may or may not have the same property. This uncertainty,
caused by the use of a fictitious construct in a model, undermines confidence in
the validity of the model. π-calculi use special reconfiguration operators to model
dynamic process reconfiguration. For example, in webπ∞, the workunit 〈|P ; Q|〉x
executes P until an interrupt is received on channel x, whereupon Q executes
instead of P. The use of a special operator to model process reconfiguration
requires syntactic proximity of the operands, namely, the old process (P) and the
new process (Q); and this requirement implies that the system model (containing

3.5. Discussion 64

P) and the model of the reconfiguring system (containing Q) cannot be syntactically
separated. However, syntactic separation of the system model and the model
of the reconfiguring system is exactly what is required for modelling unplanned
dynamic process reconfiguration as an abstraction. Therefore, the reviewed
π-calculi cannot be used to model unplanned dynamic process reconfiguration
as an abstraction. Instead, they are used to model unplanned reconfiguration
as planned reconfiguration by introducing fictitious constructs (such as new
processes) into the system model, which undermines confidence in the model’s
validity, because the use of fictitious constructs can result in fictitious properties.

Another defect of π-calculi with respect to dependability is their emphasis on link
reconfiguration rather than process reconfiguration. Many dependable systems
are control systems, which consist of non-terminating processes with a stable
communications topology. For these systems, process reconfiguration due to a
mode change is much more relevant than link reconfiguration.

Therefore, our research focuses on process reconfiguration. In a process algebra,
the only alternative to using a special operator to model process reconfiguration
is to use a special process. Therefore, a new type of process (termed a fraction
process) is defined in the following chapter to model both planned and unplanned
process reconfiguration. Our process algebra (CCSdp) is based on CCS, which was
chosen for the following reasons. First, CCS is one of the simplest process algebras
that is capable of modelling computations. Therefore, it is easier to extend to
suit our modelling requirements than a more complex process algebra; and (for
the same reason) it is an easier environment in which to experiment with new
modelling constructs and ‘tune’ them to our requirements than a more complex
process algebra. Second, CCS is the base for π-calculi. Therefore, it should be
possible to extend CCSdp to model link reconfiguration and process relocation.
Third, CCS has no facility for link reconfiguration. Therefore, it should be possible to
extend CCSdp with real-time constructs to model process reconfiguration in control
systems that do not require link reconfiguration.

Chapter 4

Basic CCSdp

Contents
4.1 Syntax . 66

4.1.1 Rationale . 69

4.2 Labelled Transition System Semantics 70

4.2.1 LTS Rules . 71

4.2.2 Positive Processes and Zero Processes 77

4.2.3 Strong of-Bisimulation . 79

4.2.4 Structure of the LTS Semantics 81

4.3 Equational Reasoning . 84

4.3.1 Strong of-Bisimulation is an Equivalence Relation 85

4.3.2 Strong of-Bisimulation is not a Process Congruence 92

4.3.3 Strong dp-Bisimulation . 96

4.4 Consistency and Decidability . 107

4.4.1 Consistency . 107

4.4.2 Decidability . 108

4.5 Forms of Matching . 109

4.5.1 Syntactic Equality-based Matching 110

4.5.2 Structural Congruence-based Matching 110

4.5.3 Strong Observation Equivalence-based Matching 111

4.5.4 Comparison . 111

4.6 Evaluation using Requirements . 113

In this chapter, for simplicity, CCSdp is developed using basic CCS [Mil99] without
the restriction operator (ν). We define the process syntax and explain the design
decisions behind the formulation of the fraction process. We then define the labelled
transition system (LTS) semantics of basic CCSdp and strong of-bisimulation (∼o f),
and explain the decision to use behavioural matching between processes (based
on strong of-bisimulation) in the semantics. We prove that strong of-bisimulation
is an equivalence relation, which is useful for behavioural matching, but that it

4.1. Syntax 66

is not a congruence, and so cannot be used for equational reasoning. Therefore,
we define a stronger relation – strong dp-bisimulation (∼dp) – and prove this is a
congruence. The decidability of strong of-bisimulation and strong dp-bisimulation
is necessary for the automation of equational reasoning and model checking of
process expressions in CCSdp; and the automation is necessary for the usability of
CCSdp. Therefore, we impose restrictions on the structure of processes in order
to facilitate decidability of both bisimulations. We discuss alternative ways of
matching processes, using syntactic equality, structural congruence and strong
observation equivalence, and identify tradeoffs. Finally, CCSdp is evaluated with
respect to the requirements used to evaluate π-calculi in the previous chapter.

4.1 Syntax

Let N be the countable set of names (e.g. a, b, c) that represent both input ports
and input actions of the processes in basic CCSdp; and letN be the countable set of
complementary names (e.g. a, b, c) that represent both output ports and output
actions of the processes in basic CCSdp, where N , {l | l ∈ N}. Let PN be the
countable set of names (e.g. A, B, C) of the processes in basic CCSdp. The setsN ,N
and PN are assumed to be pairwise disjoint.

Thus, given a∈N , a represents the input action on the input port a of a process; and
a represents the complementary output action on the output port a of a process.
The interaction between complementary actions (such as a and a) is represented by
the special action τ, which is internal to a process.

Let L be the set of names that represent both ports and actions of the processes in
basic CCSdp, where L , N ∪N .

We define the function ¯ : L −→ L such that x ,

l if ∃ l∈N(x = l)

l elseif ∃ l∈N(x = l)

so that ∀l∈N(l = l) (as required by convention).

Let I be the set of input and output ports/actions of the processes in basic CCSdp,
and their internal action (τ), where I , L ∪ {τ}.

Let P be the set of processes in basic CCSdp.

4.1. Syntax 67

The syntax of a process P in P is defined as follows (using the style in [SW01]):

P ::= PN<β̃> | M | P|P | P
P

M ::= 0 | α.P | M + M
(4.1)

where PN∈PN , β̃ is a tuple of elements ofN ∪N , and α∈N ∪N ∪ {τ}.

Thus, the syntax of basic CCSdp is the syntax of basic CCS without ν extended with
the P′

P construct.

As in CCS, 0 is the NIL process, which has no behaviour. It is typically used at the
end of a trace of a process to indicate termination of the process.

Prefix (e.g. α.P) models sequential action. For example, α∈N represents the input
action on the input port α of a process, α∈N represents the complementary output
action on the output port α of a process, and τ represents the internal action of a
process. After performing α, the process α.P continues as P.

Summation (e.g. M + M′) models non-deterministic choice of actions by a process.
Notice that 0 can be represented as the empty summation

∑
∅ (by convention).

Notice also that a non-0 term in a summation is guarded by a prefix action in
order to prevent the creation of an infinite number of processes, which complicates
reasoning.

A<β̃> models the invocation of a constant process named A, instantiated with
a tuple of port/action names β̃. A(β̃) has a unique definition, which can be recursive.

Parallel composition (e.g. P|P′) models the execution of concurrent processes and
their direct functional interaction, as well as process composition and decomposi-
tion. Interaction between processes is synchronous and point-to-point.

A fraction (e.g. P′
P) is a process that models process replacement and deletion. On

creation, the fraction P′
P identifies any instance of a process matching its denominator

process P with which it is composed in parallel, and replaces that process atomically
with the numerator process P′. If no such process instance exists, the fraction
continues to exist until such a process is created (or the fraction is itself deleted or
replaced). If there is more than one such process instance, a non-deterministic choice
is made as to which process is replaced. Similarly, if more than one fraction can

4.1. Syntax 68

replace a process instance, a non-deterministic choice is made as to which fraction
replaces the process. Deletion of a process P is achieved by parallel composition
with 0

P . If P progresses to Q, then P′
P will not replace Q by P′ (unless Q matches

P). Notice that a fraction has no communication behaviour; its only behaviour is to
replace a process with which it is composed in parallel that matches its denominator.
The matching is done by behaviour using a bisimulation, as explained in Section
4.2.

Operator Precedence

In CCS, the precedence of the operators (in decreasing order) is:
relabelling (highest); prefix; parallel composition; summation (lowest).

However, in CCSdp, the syntax of summation implies that parallel composition
must have a lower precedence than summation. For example, M + M′

|P should
mean M + (M′

|P) (by the CCS precedence rules); but a parallel composition
of processes cannot be a term in a summation (by the CCSdp syntax rules for
summation). Therefore, in CCSdp, M + M′

|P is taken to mean (M + M′)|P.

Therefore, in CCSdp, the precedence of the operators (in decreasing order) is:
fraction formation (highest); relabelling; prefix; summation; parallel composition
(lowest).

Free Names and Bound Names

In general, the name of a port/action of a process is termed a bound name of the
process if its scope is restricted to the process; otherwise, it is termed a free name. In
the absence of value-passing and the restriction operator, all names of ports/actions
of processes in P are free names.

Given p ∈P, let nm(p), f n(p) and bn(p) be the set of port/action names, free names
and bound names of p respectively, and are defined as follows:

nm : P −→ PL such that nm(p) , f n(p) ∪ bn(p)

4.1. Syntax 69

f n : P −→ PL such that

f n(p) ,

∅ if p = 0

{β} ∪ f n(p1) elseif p = β.p1 ∧ β∈N∪N

f n(M1) ∪ f n(M2) elseif p = M1 + M2

f n(p1) ∪ f n(p2) elseif p = p1|p2

f n(p1) ∪ f n(p2) elseif p =
p1

p2

Set(β̃) elseif p = A<β̃>

bn : P −→ PL such that bn(p) , ∅

4.1.1 Rationale

Special reconfiguration operators cannot be used to model unplanned dynamic
reconfiguration (see Section 3.5). In a process algebra, the only alternative is
to use a special reconfiguration process, and operator overloading for compos-
ing a system model with a model of a reconfiguring system. The standard
operator for composing process expressions is parallel composition (|), and its
associativity and commutativity properties allow modularity of process expres-
sions. Therefore, we decided to overload the parallel composition operator for
dynamic reconfiguration. Operator overloading also simplifies the syntax of CCSdp.

The syntactic separation of the process to be reconfigured from the reconfiguring
process creates the need for a modelling mechanism to bind the two processes
dynamically. We term this modelling mechanism process matching, or simply
matching (if there is no possibility of confusion with the port/action matching
used in π-calculi). Matching is expressed using similarity between processes,
specifically, behavioural similarity based on a bisimulation, as explained in Section
4.2.

The basic process reconfiguration operations are creation, deletion and replace-
ment. Process creation is readily described in CCS, but not unplanned process
deletion or replacement. An intuitive solution is to define an inverse process
(P−1) to model process deletion [BF08], since process replacement is simply a
combination of process creation and deletion. However, using P−1 in a concurrent
model with non-deterministic transitions can result in deletion of the wrong
process, and in creation of an infinite number of processes (see [BF08]). Therefore,

4.2. Labelled Transition System Semantics 70

the fraction process (P′
P) was defined to model process replacement and deletion

[BF08], which resolves the problem (provided there is only one matching process to
be reconfigured). Furthermore, the syntactic recursion of fraction processes enables
a fraction to be itself reconfigured, which cannot be achieved as easily with inverse
processes. For example, the inverse of P−1 is P, but P can evolve to P′ instead
of deleting P−1; whereas a fraction process can perform only reconfiguration actions.

The dichotomy between operator-based and process-based reconfiguration of pro-
cesses, and their relationship to planned and unplanned reconfiguration of sys-
tems, can be summarized as follows. Operator-based modelling of reconfiguration
requires syntactic proximity between the operands. This implies both the recon-
figured and the reconfiguring processes must be within the system model, which
implies both the reconfigured and the reconfiguring components must be within the
system (because the model must be an abstraction of the system), which is planned
reconfiguration. In contrast, process-based modelling of reconfiguration does not
require syntactic proximity between the reconfigured and reconfiguring processes
(because the processes are bound dynamically using a bisimulation). This enables
the reconfiguring process to be located either within the system model or in the
context of the system model, which implies the reconfiguring component can be
located within the system or in the environment of the system, which are (respec-
tively) planned reconfiguration and unplanned reconfiguration. Furthermore, the
step through which a reconfiguring process is added to the context of the system
model is performed outside the calculus, and thereby captures the fact that system
evolution is unplanned. This is illustrated in Section 5.3.3. Notice that a fraction is
a process (not an operator) because it has the syntax of a process (see Equation 4.1).

4.2 Labelled Transition System Semantics

A structural operational semantics (SOS) of a process algebra is a set of inference
rules that define the possible actions (termed transitions) that any process in the
algebra can perform. The conclusion of each SOS rule defines a transition of a
process, and the hypothesis of the rule defines the weakest precondition of the
transition [Plo04].

An SOS defines a directed graph (termed a transition system), in which each vertex
(termed a configuration) represents the cartesian product of an SOS rule and a
process or only a process, and each arc represents a transition of the source process.

4.2. Labelled Transition System Semantics 71

If the arcs are labelled, the graph is termed a labelled transition system (LTS).

CCSdp has a structural operational semantics. This was done for the following
reasons. First, CCSdp is based on CCS, and the semantics of CCS is defined us-
ing an SOS [Mil99], [Mil89]. Second, dependable systems are typically concurrent
with non-deterministic behaviour, and it is easier to express the semantics of con-
current non-deterministic systems using SOS than using other semantics [Hut10].
Third, SOS integrates the representations of process behaviour and process struc-
ture, which facilitates modelling of the reconfiguration behaviour of a process, the
computational behaviour of the process, their effect on the structure of the process,
and thereby their interaction. The semantics of CCSdp is expressed using a labelled
transition system, because the labels facilitate proof of properties of processes and
their transitions.

4.2.1 LTS Rules

Let R be the countable set of reconfiguration actions of the processes in P (e.g. τrX ,
τrY , τrZ) that create a process in P; and let R be the countable set of complementary
reconfiguration actions of the processes in P (e.g. τrX , τrY , τrZ) that delete a process
in P, where R , {τrX | τrX ∈R} (see the Creat and Delet rules below). Each action in
R is represented by τrX , with X∈P. The sets N , N , {τ}, R, R and PN are assumed
to be pairwise disjoint.

Let C be the set of reconfiguration actions of the processes in P, where C , R ∪ R.
We extend the definition of the function ¯ as follows:

¯ : L ∪ C −→ L∪ C such that λ ,

l if ∃ l∈N(λ = l)

l elseif ∃ l∈N(λ = l)

τrX elseif ∃ τrX ∈R (λ = τrX)

τrX elseif ∃ τrX ∈R (λ = τrX)

so that ∀λ∈L ∪ C (λ = λ) (as required by convention).

LetA be the set of actions of the processes in P, whereA , I ∪ C.

The LTS rules for basic CCSdp are a superset of the LTS rules for basic CCS without ν,
consisting of an unchanged rule of basic CCS (i.e. Sum) plus basic CCS rules applica-
ble to reconfiguration transitions (i.e. React, L-Par, R-Par and Ident) plus additional

4.2. Labelled Transition System Semantics 72

rules to describe new reconfiguration behaviour (i.e. Creat, Delet, CompDelet, L-
React and R-React). See Table 4.1. Notice that P+ is the set of positive processes of
P, which is defined in Section 4.2.2. The notion of strong of-bisimulation onP (∼o f)
is defined in Section 4.2.3.

Sum k∈I∑
i∈I αi.Pi

αk
−→Pk

where I is a finite indexing set

React λ∈L∪C ∧ P
λ
−→P′ ∧ Q

λ
−→Q′

P|Q
τ
−→P′|Q′

L-Par µ∈A ∧ P
µ
−→P′

P|Q
µ
−→P′|Q

R-Par µ∈A ∧ Q
µ
−→Q′

P|Q
µ
−→P|Q′

Ident
|̃b|=|̃a| ∧ µ∈A ∧ P[b̃

ã]
µ
−→P′

A<̃b>
µ
−→P′

where A(̃a) , P

Creat
P∼o f Q ∧ P∈P+

P′
P

τrQ
−→P′

Delet
P∼o f Q ∧ P∈P+

P
τrQ
−→0

CompDelet
R∼o f R1|R2 ∧ P

τrR1
−→P′ ∧ P′

τrR2
−→P′′

P
τrR
−→P′′

L-React
R∼o f R1|R2 ∧ P

τrR1
−→P′ ∧ P′

τrR
−→P′′ ∧ Q

τrR2
−→Q′

P|Q τ
−→P′′|Q′

R-React
R∼o f R1|R2 ∧ P

τrR1
−→P′ ∧ Q

τrR2
−→Q′ ∧ Q′

τrR
−→Q′′

P|Q τ
−→P′|Q′′

Table 4.1: Labelled Transition System Semantics of Basic CCSdp.

Sum :
k ∈ I∑

i∈I αi.Pi
αk
−→Pk

The Sum rule states that summation preserves the transitions of constituent
processes as a non-deterministic choice of alternative transitions.

For example, REC is a process that can receive one of a finite number of alternative
orders drawn from the set O (see below). REC receives an order k in O by
performing the transition Receiptk, after which it becomes the two processes
WORKFLOW and InventoryCheckk that execute concurrently. By convention, we

4.2. Labelled Transition System Semantics 73

omit the 0 process following InventoryChecko and InventoryCheckk.

REC ,
∑

o∈O Receipto.(WORKFLOW | InventoryChecko)

REC
Receiptk
−→ WORKFLOW | InventoryCheckk

React :
λ ∈ L ∪ C ∧ P λ

−→P′ ∧ Q λ
−→Q′

P|Q τ
−→P′|Q′

The React rule states that if two processes can perform complementary transitions,
then their parallel composition can result in a τ transition in which both processes
undergo their respective complementary transitions atomically.

For example, IC is a process that can receive an inventory check request for order
k in O by performing the transition InventoryCheckk (by the Sum rule, see below).
InventoryCheckk sends an inventory check request for order k, and InventoryCheckk,
InventoryCheckk are complementary transitions. Therefore, the parallel composition
of IC and InventoryCheckk can react by performing a τ transition.

IC ,
∑

o∈O InventoryChecko.τ.(InventoryCheckNotOKo + InventoryCheckOKo)
IC | InventoryCheckk

τ
−→ τ.(InventoryCheckNotOKk + InventoryCheckOKk) | 0

L-Par :
µ ∈ A ∧ P

µ
−→P′

P|Q
µ
−→P′|Q

R-Par :
µ ∈ A ∧ Q

µ
−→Q′

P|Q
µ
−→P|Q′

The L-Par and R-Par rules state that parallel composition preserves the transitions
of constituent processes.

For example, the parallel composition of REC and IC can perform both the
transitions of REC and the transitions of IC.

REC
Receiptk
−→ WORKFLOW | InventoryCheckk

(by the Sum rule, for any k in O) and

REC | IC
Receiptk
−→ (WORKFLOW | InventoryCheckk) | IC

(by the L-Par rule) and

IC
InventoryCheckl
−→ τ.(InventoryCheckNotOKl + InventoryCheckOKl)

(by the Sum rule, for any l in O) and

REC | IC
InventoryCheckl
−→ REC | τ.(InventoryCheckNotOKl + InventoryCheckOKl)

(by the R-Par rule).

4.2. Labelled Transition System Semantics 74

Ident :
|̃b| = |̃a| ∧ µ ∈ A ∧ P[b̃

ã]
µ
−→P′

A < b̃ >
µ
−→P′

where A(̃a) , P

The Ident rule states that if a relabelled constant process can perform a given
transition, then the constant process instantiated with the new labelling can also
undergo the same transition.

For example, the process named A(a1, a2) is defined as follows: A(a1, a2) , a1.τ.a2

Relabelling A(a1, a2) with (b1, b2) results in the process expression b1.τ.b2,
which is the same process expression named by A(b1, b2).
Therefore, A(a1, a2) relabelled with (b1, b2) and A(b1, b2) have identical transitions.

Creat :
P ∼o f Q ∧ P ∈ P+

P′
P

τrQ
−→P′

Delet :
P ∼o f Q ∧ P ∈ P+

P
τrQ
−→0

Intuitively, it should be possible to reconfigure only processes that exist, and we
identify these processes as the processes with behaviour (termed positive processes).
Processes without behaviour (i.e. 0 and 0-like processes) are terminated processes,
and (therefore) no longer exist, and (therefore) cannot be reconfigured. Therefore,
the hypotheses of Creat and Delet restrict reconfiguration transitions to positive
processes. A more detailed explanation of the need for positive processes is given
in Section 4.2.2.

The Creat rule states that if P is a positive process (P∈P+) that matches Q using strong
of-bisimulation (P ∼o f Q), then the fraction process P′

P can perform the reconfigura-
tion transition τrQ that results in the creation of P′. The Delet rule is complementary
to the Creat rule. It states that if P is a positive process that matches Q using
strong of-bisimulation, then P can be deleted by performing the reconfiguration
transition τrQ that is complementary to the reconfiguration transition τrQ performed
by some fraction that creates a process. Thus, P′ replaces P as a result of the
reaction between P′

P performing τrQ and P performing τrQ (defined by the React rule).

For example, REC is a positive process (because it has behaviour). Therefore,
REC′
REC can perform the reconfiguration transition τrREC that results in the creation of
the process REC′ (because ∼o f is reflexive). REC can perform the reconfiguration
transition τrREC , which results in its deletion (because REC is a positive process). The
transitions τrREC and τrREC are complementary. Therefore, the parallel composition

4.2. Labelled Transition System Semantics 75

of REC′
REC and REC can react by performing a τ transition that results in the creation

of REC′ and the deletion of REC, which is the replacement of REC by REC′.

REC ,
∑

o∈O Receipto.(WORKFLOW | InventoryChecko) (as above).
REC′
REC

τrREC
−→ REC′ (by the Creat rule) and

REC
τrREC
−→ 0 (by the Delet rule).

Therefore, REC′
REC | REC τ

−→ REC′ | 0 (by the React rule).

Strong of-bisimulation is used for matching for two reasons. First, strong
of-bisimulation is a relation between processes. The use of a relation avoids
modelling reconfiguration mechanisms and operators, which (respectively)
simplifies models and facilitates the modelling of unplanned reconfiguration. The
use of reconfiguration transitions in the LTS semantics, and not in the syntax,
also helps to achieve these objectives. Thus, the relation is a pre-condition that
allows a process to be reconfigured only when it is in a specified state, which is an
important requirement for reconfigurable systems. Furthermore, the separation of
fractions and mechanisms enables a fraction process to be combined with general
purpose triggering mechanisms (such as prefixes, interrupts and timeouts) with-
out changing their semantics. Second, strong of-bisimulation helps to maximize
the terseness of expressions modelling reconfiguration, which simplifies modelling.

The notions of positive process and strong of-bisimilarity are defined below. Notice
that reconfiguration transitions do not involve any communication. Therefore, the
interaction between complementary reconfiguration transitions does not require a
port or a communication channel.

CompDelet :
R ∼o f R1|R2 ∧ P

τrR1
−→ P′ ∧ P′

τrR2
−→ P′′

P
τrR
−→ P′′

The CompDelet rule states that consecutive delete transitions of a process can be
composed into a single delete transition of the process. The rule is applicable only
if it is used in combination with L-Par or R-Par.

For example, REC and IC are both positive processes (because both REC and IC
have behaviour). Therefore, REC can perform the reconfiguration transition τrREC ,
which results in its deletion; and IC can perform the reconfiguration transition
τrIC , which results in its deletion (because ∼o f is reflexive). Therefore, the parallel

4.2. Labelled Transition System Semantics 76

composition of REC and IC can perform the transitions τrREC and τrIC consecutively
(using the L-Par and R-Par rules), which results in 0|0. The same result can be
produced by performing the reconfiguration transition τrREC|IC (because ∼o f is
reflexive).

REC | IC
τrREC
−→ 0 | IC (by the Delet and L-Par rules) and

0 | IC
τrIC
−→ 0 | 0 (by the Delet and R-Par rules).

Therefore, REC | IC
τrREC|IC
−→ 0 | 0 (by the CompDelet rule, because ∼o f is reflexive).

L-React :
R ∼o f R1|R2 ∧ P

τrR1
−→ P′ ∧ P′

τrR
−→ P′′ ∧ Q

τrR2
−→ Q′

P|Q τ
−→ P′′|Q′

R-React :
R ∼o f R1|R2 ∧ P

τrR1
−→ P′ ∧ Q

τrR2
−→ Q′ ∧ Q′

τrR
−→ Q′′

P|Q τ
−→ P′|Q′′

In a process expression, the denominator of a fraction process can match the
parallel composition of processes that are located on different sides of the fraction.
The L-React and R-React rules state that a reconfiguration reaction can occur in
this case, with all the processes participating in the reaction undergoing their
respective transitions atomically.

For example, if REC, REC′, IC, IC′ are processes (and REC, IC defined as above),

then REC
τrREC
−→ 0 and IC

τrIC
−→ 0

(by the Delet rule, because REC, IC are positive processes and ∼o f is reflexive),

and REC′ | IC′

REC | IC

τrREC | IC
−→ REC′ | IC′

(by the Creat rule, because the parallel composition of positive processes is a
positive process and ∼o f is reflexive).

Therefore, REC | REC′ | IC′

REC | IC

τrREC
−→ 0 | REC′ | IC′

REC | IC (by the L-Par rule), and

0 | REC′ | IC′

REC | IC

τrREC | IC
−→ 0 | (REC′ | IC′) (by the R-Par rule), and(

REC | REC′ | IC′

REC | IC

)
| IC τ
−→ (0 | (REC′ | IC′)) | 0 (by the L-React rule).

Thus, the fraction REC′ | IC′

REC | IC atomically replaces the two processes REC and IC that
are located on different sides of the fraction.
Similarly, REC′ | IC′

REC | IC | IC
τrIC
−→

REC′ | IC′

REC | IC | 0 (by the R-Par rule), and

REC′ | IC′

REC | IC | 0
τrREC | IC
−→ (REC′ | IC′) | 0 (by the L-Par rule), and

4.2. Labelled Transition System Semantics 77

REC |
(

REC′ | IC′

REC | IC | IC
)

τ
−→ 0 | ((REC′ | IC′) | 0) (by the R-React rule).

In CCS, the parallel composition operator is associative and commutative with
respect to strong bisimulation, and it is desirable to retain these properties of
parallel composition with respect to strong of-bisimulation in CCSdp, because
associativity and commutativity support equational reasoning. However, the
denominator of a fraction can match the parallel composition of two or more
processes, which enables the fraction to replace multiple processes atomically.
The replacement of these processes must be possible even if the processes are
parenthesized differently or are reordered, in order to preserve the associativity
and commutativity of parallel composition with respect to strong of-bisimulation.
The CompDelet rule helps to ensure associativity, and the L-React and R-React
rules help to ensure commutativity, of parallel composition with respect to strong
of-bisimulation.

For example, the CompDelet rule is necessary in order to prove:

((a.0 | b.0) | c.0) |
d.0

a.0 | b.0
∼o f (a.0 | (b.0 | c.0)) |

d.0
a.0 | b.0

(4.2)

And the L-React and R-React rules are necessary in order to prove:

(b.0 |
d.0

a.0 | b.0
) | a.0 ∼o f a.0 | (b.0 |

d.0
a.0 | b.0

) (4.3)

The LTS transitions are defined to be the smallest relation on P that satisfies the
LTS rules. Therefore, a process p ∈P performs a transition p

µ
−→p′ with µ ∈A and

p′ ∈ P iff the hypothesis of some LTS rule that determines the p
µ
−→p′ transition is

satisfied.

4.2.2 Positive Processes and Zero Processes

0 is the identity of the summation and parallel composition operators in the equiv-
alences and congruences of CCS, and it is desirable to retain this property of 0
in CCSdp because it helps to manipulate process expressions during reasoning.
However, the identity property of 0 in combination with fraction processes with a
0-valued denominator is problematic. For example, we would like the following

4.2. Labelled Transition System Semantics 78

bisimilarity to hold, by the identity properties of 0:

a.0
0
|0 ∼o f

a.0
0

(4.4)

If the restriction on the denominators of fractions to be positive processes in the
Creat and Delet rules is elided, we have:

a.0
0
|0 τ
→ a.0 and

a.0
0

τ
9 (4.5)

This is a contradiction with respect to equation 4.4, since the transitions of a.0
0 |0 and

a.0
0 should be the same (by equation 4.4).

One solution to the contradiction is to define any fraction with denominator
matching 0 as undefined (as done with the number 0 in arithmetic). However,
this causes problems in formulating well-defined processes, and also if the
denominator of a fraction is a complex process expression that matches 0.

A simpler solution is to define any fraction process with denominator matching 0
as a zero process, and to exclude all zero processes from reconfiguration transitions
defined by the LTS rules, so that a reconfiguration reaction cannot occur. This is
the approach we have adopted. Therefore, we distinguish processes that can be
reconfigured (positive processes) from processes that cannot be reconfigured (zero
processes).

Let P+ be the set of positive processes of P, where P+ is defined to be the smallest
subset of P that satisties the following conditions:

1. ∀α∈I ∀p∈P (α.p∈P+)

2. ∀p, q∈P (p + q∈P ∧ (p∈P+
∨ q∈P+) =⇒ p + q∈P+)

3. ∀p, q∈P (p∈P+
∨ q∈P+ =⇒ p|q∈P+)

4. ∀p∈P ∀q∈P+
(

p
q ∈P

+
)

5. ∀β∈I ∀X∈PN (β.X∈P+)

Thus, p is a positive process if it can perform an input or an output or a τ prefix
action, or a reconfiguration action that creates a process. Notice that if p is a positive
process, then so is p+0, p|0, 0

p+0 and 0
p|0 . However, the restriction thatP+ must be the

smallest set satisfying the above properties excludes processes such as 0, 0 + 0, 0|0,
p
0 , p

(p
0) and so on. These excluded processes are collected into the set P0, termed the

4.2. Labelled Transition System Semantics 79

set of zero processes of P, which is defined as the smallest subset of P that satisties
the following conditions:

1. 0∈P0

2. ∀p, q∈P0 (p + q∈P =⇒ p + q∈P0)

3. ∀p, q∈P0 (p|q∈P0)

4. ∀p∈P ∀q∈P0
(

p
q ∈P

0
)

A process in P should be either in P+ or in P0. However, the syntax of P allows
processes to be defined for which this is not true. For example:

A , A | A (4.6)

The definition of A is syntactically correct, but it is not a member of P+ or of P0.
Therefore, we restrict P as folllows:

P , P+
∪ P

0 (4.7)

Clearly, P+ and P0 should be disjoint, which suggests {P+,P0
} is a partition of P.

However, before this can be proved, the notion of strong of-bisimulation needs to
be defined and a number of preliminary results need to be proved, for which P is
restricted further.

Following convention, notice that:

1. Every p∈P is the result of one or more applications of the production rules of
P

+ or P0 with finite depth of inference.

2. Every transition of every p ∈P is a result of one or more applications of the
LTS semantic rules with finite depth of inference.

The first condition ensures every process in P can be represented in ‘closed form’,
which facilitates modelling. The second condition ensures every transition of every
process in P can be inferred after a finite number of steps, which facilitates mod-
elling and analysis. Both conditions are used to prove properties of processes in P
by finite induction.

4.2.3 Strong of-Bisimulation

Behavioural matching is a feature of CCSdp, and its purpose is to maximize the
terseness of models that can be reconfigured. Behavioural matching determines

4.2. Labelled Transition System Semantics 80

a reconfiguration reaction between positive processes, and it is expressed using
strong of-bisimulation (∼o f), which is defined as follows.

For all p in P, Tp is defined to be the set of actions in T that p can perform,
where T ∈{N ,N ,L,I,R,R,C,A}.

S is defined to be a strong observational and fractional simulation (or equivalently,
strong of-simulation) on P iff S ⊆ P x P and the following two conditions hold
∀(p, q)∈S:

Observation : ∀α∈Ip ∀p′∈P (p α
−→ p′ =⇒ α∈Iq ∧ ∃q′∈P (q α

−→ q′ ∧ (p′, q′)∈S))

Fraction : ∀τrX ∈Rp ∀p′′∈P (p
τrX
−→ p′′ =⇒ τrX ∈Rq ∧ ∃q′′∈P (q

τrX
−→ q′′ ∧ (p′′, q′′)∈S))

A process p is defined to be strongly of-simulated by process q (or equivalently, q
strongly of-simulates p), written p{o f q, iff there exists a strong of-simulation S on P
with (p, q)∈S.

The Observation condition of strong of-simulation is intended for processes that
can behave like processes in CCS, and it is the same as the condition for strong
simulation in CCS. It states that in order for q to simulate p, any input or output or
τ action that p can perform to become p′, must be also performable by q to become
q′, and q′ must simulate p′.

The Fraction condition of strong of-simulation is intended for processes that can
behave like fraction processes. It states that in order for q to simulate p, any
reconfiguration action that p can perform to create p′′, must be also performable by
q to create q′′, and q′′ must simulate p′′.

The two conditions of strong of-simulation are very similar, and (therefore) can
be readily combined into a single condition. However, we prefer to keep them
separate in order to show the difference between strong bisimulation in CCS and
strong of-bisimulation in CCSdp more clearly.

A strong of-simulation S on P is defined to be a strong observational and fractional
bisimulation (or equivalently, strong of-bisimulation) on P iff both S and S−1 are
strong of-simulations on P.

4.2. Labelled Transition System Semantics 81

Process p is defined to be strongly observationally and fractionally bisimilar to process
q (or equivalently, p is strongly of-bisimilar to q), written p ∼o f q, iff there exists a
strong of-bisimulation S on Pwith (p, q)∈S.

Following convention, we represent the largest strong of-bisimulation on P by ∼o f ,
where∼o f ,

⋃
{S | S is a strong of-bisimulation on P}. Notice that∼o f is non-empty

(∵ (0, 0) ∈∼o f , by Lemma 4.3.1).

4.2.4 Structure of the LTS Semantics

Following convention [Mil99], the LTS semantics is represented as the mathemat-
ical structure (P,T), where P is the set of processes (or equivalently, states) in
CCSdp, and T is the set of transitions of the processes in CCSdp.

The CCS-type transitions in CCSdp, such as the transitions defined by the Sum rule,
have the structure P x I x P.

The reconfiguration transitions in CCSdp, such as the transitions by the Creat and
Delet rules, have the structure (P x P) x P x C x P, because ∼o f is necessary in order
to determine the transitions in C that a given process p in P can perform.

Combining the structures of the CCS-type transitions and the reconfiguration
transitions gives the structure of the transitions in CCSdp.

∴ T = (P ∪ (P x P) x P) xA x P
=⇒ (P,T) = (P, (P ∪ (P x P) x P) xA x P)

Creat is the basic rule that determines the reconfiguration transitions in R; the
hypothesis of Creat depends on ∼o f ; and ∼o f is defined in terms of the transitions in
I ∪ R. This suggests there is an inductive relationship between the transitions in
I ∪ R and ∼o f . In fact, it is clear from the Creat rule that this inductive relationship
is based on the depth of fractional recursion of the denominator of a process.
Induction is a powerful technique for proving properties of recursive processes
and relationships between recursive processes, such as bisimilarity. However,
proof of bisimilarity typically requires the inductive hypothesis to apply to all the
processes to which a given process can evolve. Therefore, in order to facilitate
the use of induction to prove strong of-bisimilarity between processes, such as
p|q ∼o f q|p, we bound the depth of fractional recursion of the denominators of

4.2. Labelled Transition System Semantics 82

fractions and their successors, using the following definitions:

succ : P x N −→ P P such that

succ(p, i) ,

 {p} if i = 0

{q′∈P | ∃q∈succ(p, i − 1) (∃µ∈Iq ∪ Rq (q
µ
−→ q′))} else

succ(p, i) is the set of ith successor processes (or equivalently, successors) of p. That is,
the set of processes reached after i consecutive transitions in I∪ R starting from p,
with succ(p, 0) = {p}.

For example, let p , a.0 | a.0
a.0

then succ(p, 0) = {p} = {a.0 | a.0
a.0 }

=⇒ succ(p, 1) = {0 | a.0
a.0 , a.0 | a.0, a.0}

=⇒ succ(p, 2) = {0 | a.0, a.0 | 0, 0 | 0, 0}
=⇒ succ(p, 3) = {0 | 0}
=⇒ succ(p, 4) = ∅

successors : P −→ P P such that successors(p) ,
⋃

i∈N succ(p, i)

successors(p) is the set of all the successors of p, including p. That is, the set of all the
processes reached after zero, one or more consecutive transitions in I∪ R starting
from p.

For example, p , a.0 | a.0
a.0

=⇒ successors(p) = succ(p, 0) ∪ succ(p, 1) ∪ succ(p, 2) ∪ succ(p, 3)
=⇒ successors(p) = {a.0 | a.0

a.0 , 0 | a.0
a.0 , a.0 | a.0, a.0, 0 | a.0, a.0 | 0, 0 | 0, 0}

f actorsm : P −→ Pm P such that

f actorsm(p) ,

 {p1}m] {p2}m] f actorsm(p1)] f actorsm(p2) if p = p1|p2

∅m else

where Pm is the power multiset, which is the set of all the multisets of P,
{p1}m and {p2}m are the multisets consisting of the processes p1 and p2 (respectively),
] is the multiset union operation, and ∅m is the empty multiset.

The elements of f actorsm(p) are termed the factors of p.
∴ The factors of a.0 | a.0

a.0 are a.0 and a.0
a.0 .

p is termed a singleton process (or equivalently, a singleton) iff f actorsm(p) = ∅m.
∴ a.0 + b. a.0a.0 is a singleton.

4.2. Labelled Transition System Semantics 83

s f drdepth : P −→N such that
s f drdepth(p) , max{ f drdepth(s) | s∈successors(p)}where

f drdepth : P −→N such that

f drdepth(s) ,

 0 if Rs = ∅

1 + max{s f drdepth(X) | τrX ∈Rs} else

f drdepth(p) is the fractional denominator recursion depth of p. If p is a fraction
process, f drdepth(p) is determined from the maximum of the depths of fractional
recursion of the denominator of p and of the successors of the denominator. If p
has one or more fraction factors, f drdepth(p) is determined from the maximum of
the depths of fractional recursion of the denominators of the fraction factors of p
and of the successors of the denominators. If p is not a fraction process and does
not have a fraction factor, then f drdepth(p) = 0.

s f drdepth(p) is the successors’ fractional denominator recursion depth of p. That
is, the maximum value of the f drdepth function taken over all the successors of p,
including p. If p and its successors are CCS processes, then s f drdepth(p) = 0.

For example, p , a.0| a.0a.0

=⇒ f drdepth(p) = 1 ∧ s f drdepth(p) = max{1, 1, 0, 0, 0, 0, 0, 0} = 1

We restrict P to the domain of s f drdepth. Thus, for each process p in P, all the
successors of p have a uniform upper bound (determined by p) on their depths of
fractional recursion. This restriction facilitates the use of induction to prove strong
of-bisimilarities between process expressions with a fraction factor.

There is a close relationship between∼o f and s f drdepth, which is proved in Theorem
4.2.1 using the following lemma and its corollary: Lemma 4.2.1 states that if process
p is strongly of-simulated by process q, then each ith successor of p is strongly of-
simulated by some ith successor of q. Corollary 4.2.1 states that if process p is
strongly of-simulated by process q, then s f drdepth(p) ≤ s f drdepth(q)). Theorem
4.2.1 states that if process p is strongly of-bisimilar to process q, then the s f drdepth
values of p and q are the same.

Lemma 4.2.1 ∀p, q∈P
(p{o f q =⇒ ∀i∈N ∀p′∈succ(p, i) (∃q′∈succ(q, i) (p′{o f q′))).
Proof: See Section A.1 in Appendix A.

4.3. Equational Reasoning 84

Corollary 4.2.1 ∀p, q∈P (p{o f q =⇒ s f drdepth(p) ≤ s f drdepth(q)).
Proof: See Section A.2 in Appendix A.

Theorem 4.2.1 ∀p, q∈P (p∼o f q =⇒ s f drdepth(p) = s f drdepth(q)).

Proof: Suppose p, q∈P (p∼o f q)
then ∃ strong of-bisimulation S on Pwith (p, q)∈S (by definition of p∼o f q)
=⇒ S is a strong of-simulation on Pwith (p, q)∈S ∧
S−1 is a strong of-simulation on Pwith (q, p)∈S−1

(by definition of strong of-bisimulation on P)
=⇒ p{o f q (by definition of p{o f q) ∧ q{o f p (by definition of q{o f p)
=⇒ s f drdepth(p) ≤ s f drdepth(q) ∧ s f drdepth(q) ≤ s f drdepth(p)
(by Corollary 4.2.1)
=⇒ s f drdepth(p) = s f drdepth(q) (by arithmetic).
∴ ∀p, q∈P (p∼o f q =⇒ s f drdepth(p) = s f drdepth(q)) (∵ p, q∈P are arbitrary). Q.E.D.
�

Theorem 4.2.1 enablesP to be partially ordered into layers using the s f drdepth value
of processes. This layering of P results in the following inductive relationships
(expressed as proof obligations) between the transitions in I ∪ R and ∼o f :

1. CCS LTS rules ` −→0

2. ∀n∈N (−→≤n ` ∼o f≤n)

3. ∀n∈N (LTS rules ∧ ∼o f≤n ` −→≤n+1)

where −→0 is the smallest relation on P between processes with s f drdepth value 0
that satisfies the LTS rules, −→≤n is the smallest relation on P between processes
with s f drdepth value ≤ n that satisfies the LTS rules, ∼o f≤n is the largest strong
of-bisimulation on P that contains only processes with s f drdepth value ≤ n, and
−→≤n+1 is the smallest relation onP between processes with s f drdepth value ≤ n + 1
that satisfies the LTS rules.

Therefore, ∼o f = limn→∞ ∼o f≤n , which is the largest strong of-bisimulation on P
under the restriction P = dom(s f drdepth).

4.3 Equational Reasoning

Equational reasoning is the conventional form of reasoning in a process algebra, and
is usually done using a bisimulation that is a process congruence. Process congruence
in basic CCSdp is defined as follows.

4.3. Equational Reasoning 85

Definition 4.3.1 A process context K of P is a process expression that contains a process
variable, denoted by [·], and has the following syntax:

K[·] ::= [·] | α.K[·] + M | K[·]|P | P|K[·] | K[·]
P |

P
K[·]

where α∈I, M is any summation in P, and P is any process in P.

The process variable [·] is usually referred to as a ‘hole’. The result of replacing the
hole (literally) with a process p in P is denoted by K[p]. The contexts α.[·] + M, [·]|P,
P|[·], [·]

P and P
[·] are termed the elementary process contexts of P, and are used to define

process congruence.

Definition 4.3.2 � is a process congruence on P iff the following conditions hold:

1. � is an equivalence relation on P

2. ∀p, q∈P if p�q then the following conditions hold:

(a) ∀α∈I (α.p + M � α.q + M) where M is any summation in P

(b) ∀r∈P (p|r � q|r)

(c) ∀r∈P (r|p � r|q)

(d) ∀r∈P (p
r �

q
r)

(e) ∀r∈P (r
p �

r
q)

Thus, � is a process congruence on P iff � is an equivalence relation on P that is
preserved by the elementary process contexts of P.

Following convention, the terms process context, elementary process context and process
congruence are equivalent to the terms context, elementary context and congruence
(respectively), unless otherwise stated.

4.3.1 Strong of-Bisimulation is an Equivalence Relation

Strong of-bisimulation has a number of properties which are useful for equational
reasoning, and which we now prove.

Lemma 4.3.1 ∼o f is reflexive on P.

Proof: ∼o f is reflexive on P iff ∀p∈P (p∼o f p) (by definition of reflexivity).
If ∃ strong of-bisimulation S on Pwith ∀p∈P ((p, p)∈S)
then ∀p∈P (p∼o f p) (by definition of p∼o f p).
Therefore, we find such an S.

4.3. Equational Reasoning 86

Let S , {(p, p) | p∈P}. Thus, S is the identity function on P.

∀p∈P ((p, p)∈S) (by definition of S).

S is a strong of-bisimulation on P
⇐⇒ S,S−1 are strong of-simulations on P
(by definition of strong of-bisimulation on P)
⇐⇒ S,S−1 are binary relations on P ∧
for all elements of S,S−1 the Observation and Fraction conditions of strong of-
simulation on P are satisfied
(by definition of strong of-simulation on P).
We show S is a strong of-simulation onP by proving S is a binary relation onP and
for all elements of S the Observation and Fraction conditions of strong of-simulation
on P are satisfied, then prove S−1 is a strong of-simulation on P.

S ⊆ P x P (by definition of S).

Verifying the Observation condition of strong of-simulation on P for (p, p)∈S:
For α∈Ip and p′∈P,
if p α
−→ p′

(by the hypothesis of the Observation condition of strong of-simulation on P)
then α∈Ip (by definition of α) ∧ p′∈P (by definition of p′) ∧ p α

−→ p′ ∧
(p′, p′)∈S (by definition of S)
=⇒ ∀α∈Ip ∀p′∈P (p α

−→ p′ =⇒ α∈Ip ∧ ∃p′∈P (p α
−→ p′ ∧ (p′, p′)∈S))

(∵ α∈Ip and p′∈P are arbitrary)
=⇒ the Observation condition of strong of-simulation on P holds for (p, p)∈S
(by definition of the Observation condition of strong of-simulation on P).

Verifying the Fraction condition of strong of-simulation on P for (p, p)∈S:
For τrX ∈Rp and p′′∈P,

if p
τrX
−→ p′′

(by the hypothesis of the Fraction condition of strong of-simulation on P)

then τrX ∈Rp (by definition of τrX) ∧ p′′∈P (by definition of p′′) ∧ p
τrX
−→ p′′ ∧

(p′′, p′′)∈S (by definition of S)

=⇒ ∀τrX ∈Rp ∀p′′∈P (p
τrX
−→ p′′ =⇒ τrX ∈Rp ∧ ∃p′′∈P (p

τrX
−→ p′′ ∧ (p′′, p′′)∈S))

(∵ τrX ∈Rp and p′′∈P are arbitrary)
=⇒ the Fraction condition of strong of-simulation on P holds for (p, p)∈S
(by definition of the Fraction condition of strong of-simulation on P).

∴ S is a strong of-simulation on P
(by definition of strong of-simulation on P, ∵ (p, p)∈S is arbitrary)
=⇒ S and S−1 are strong of-simulations on P (∵ S−1 =S)
=⇒ S is a strong of-bisimulation on P

4.3. Equational Reasoning 87

(by definition of strong of-bisimulation on P)
=⇒ ∀p∈P (p∼o f p) (by definitions of p∼o f p and S)
=⇒∼o f is reflexive on P (by definition of reflexivity). Q.E.D. �

Lemma 4.3.2 ∼o f is symmetric on P.

Proof: ∼o f is symmetric on P iff ∀(p, q)∈P x P (p∼o f q =⇒ q∼o f p)
(by definition of symmetry).

p∼o f q =⇒ ∃ strong of-bisimulation S on P ∧ (p, q)∈S

(by definition of p∼o f q)

=⇒ ∃ strong of-simulations S, S−1 on P ∧ (p, q)∈S ∧ (q, p)∈S−1

(by definitions of strong of-bisimulation on P and inverse relations)

=⇒ ∃ strong of-bisimulation S−1 on P ∧ (q, p)∈S−1

(∵ (S−1)−1 = S and by definition of strong of-bisimulation on P)

=⇒ q∼o f p

(by definition of q∼o f p).
∴ ∀(p, q)∈P x P (p∼o f q =⇒ q∼o f p) (∵ p, q∈P are arbitrary)
=⇒∼o f is symmetric on P (by definition of symmetry). Q.E.D. �

Transitivity is an important property of simulations as well as bisimulations. For
example, in order to prove p|q∼o f q|p (in Theorem 4.3.11), we need the transitivity
of strong dp-simulation on P (defined in Section 4.3.3), which we prove using
the transitivity of strong of-simulation on P (see Corollary 4.3.1 below). Lemma
4.3.3 is the basic proposition, which states that the composition of two strong of-
simulations on P is a strong of-simulation on P. Corollary 4.3.1 states that {o f is
transitive, Corollary 4.3.2 states that the composition of two strong of-bisimulations
on P is a strong of-bisimulation on P, and the third corollary (Lemma 4.3.4) states
that ∼o f is transitive.

Lemma 4.3.3 ∀strong of-simulations U,V on P (UV is a strong of-simulation on P).
Proof: See Section A.3 in Appendix A.

Corollary 4.3.1 ∀p, q, r∈P (p{o f q ∧ q{o f r =⇒ p{o f r).

Proof: Suppose p, q, r∈P (p{o f q ∧ q{o f r)
then ∃ strong of-simulation U on P ((p, q)∈U) (by definition of p{o f q) ∧
∃ strong of-simulation V on P ((q, r)∈V) (by definition of q{o f r)
=⇒ UV is a strong of-simulation on P (by Lemma 4.3.3) ∧
(p, r)∈UV (by composition of binary relations)
=⇒ p{o f r (by definition of p{o f r).

4.3. Equational Reasoning 88

∴ ∀p, q, r∈P (p{o f q ∧ q{o f r =⇒ p{o f r)
(because =⇒ is transitive and p, q, r∈Pwith p{o f q ∧ q{o f r are arbitrary). Q.E.D.
�

Corollary 4.3.2 ∀strong of-bisimulations U,V on P
(UV is a strong of-bisimulation on P).

Proof: Suppose U,V are strong of-bisimulations on P
then U,U−1,V,V−1 are strong of-simulations on P
(by definition of strong of-bisimulation on P)
=⇒ UV,V−1U−1 are strong of-simulations on P (by Lemma 4.3.3)
=⇒ UV, (UV)−1 are strong of-simulations on P
(∵ (UV)−1 = V−1U−1, by algebra of binary relations)
=⇒ UV is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P).
∴ ∀strong of-bisimulations U,V on P (UV is a strong of-bisimulation on P)
(∵ U,V are arbitrary strong of-bisimulations on P). Q.E.D. �

Lemma 4.3.4 ∼o f is transitive on P.

Proof: ∼o f is transitive on P iff ∀p, q, r∈P (p∼o f q ∧ q∼o f r =⇒ p∼o f r)
(by definition of transitivity).

Suppose p, q, r∈P (p∼o f q ∧ q∼o f r)
then ∃ strong of-bisimulation U on P ((p, q)∈U) (by definition of p∼o f q) ∧
∃ strong of-bisimulation V on P ((q, r)∈V) (by definition of q∼o f r)
=⇒ UV is a strong of-bisimulation on P (by Corollary 4.3.2) ∧
(p, r)∈UV (by composition of binary relations)
=⇒ p∼o f r (by definition of p∼o f r).
∴ ∀p, q, r∈P (p∼o f q ∧ q∼o f r =⇒ p∼o f r)
(because =⇒ is transitive and p, q, r∈Pwith p∼o f q ∧ q∼o f r are arbitrary)
=⇒∼o f is transitive on P (by definition of transitivity). Q.E.D. �

Theorem 4.3.1 ∼o f is an equivalence relation on P.

Proof: ∼o f is an equivalence relation on P iff ∼o f is reflexive, symmetric and
transitive on P
(by definition of equivalence relation).

∼o f is reflexive on P (by Lemma 4.3.1) ∧
∼o f is symmetric on P (by Lemma 4.3.2) ∧
∼o f is transitive on P (by Lemma 4.3.4)
=⇒ ∼o f is an equivalence relation on P (by definition of equivalence relation).
Q.E.D. �

4.3. Equational Reasoning 89

Theorem 4.3.1 is important for a number of reasons. First, equivalence is neces-
sary for process congruence, which enables equational reasoning about processes.
Second, equivalence helps to group matching processes into an equivalence class,
and thereby helps to identify the reconfiguration transitions of a process. Third,
equivalence helps to prove Theorem 4.3.2, which states that {P+,P0

} is a partition
of P. Theorem 4.3.2 is proved using the following two lemmas: Lemma 4.3.5 states
that every positive process has a transition in I∪R, and Lemma 4.3.7 states that no
zero process has a transition in I ∪R. Thus, the two lemmas help to prove that P+

and P0 are disjoint. The proof of Lemma 4.3.7 requires Lemma 4.3.6, which states
that a process is positive if and only if the process can perform a delete transition
(i.e. a transition in R).

Lemma 4.3.5 ∀p∈P+(Ip ∪ Rp , ∅)
Proof: See Section A.4 in Appendix A.

The proof of Lemma 4.3.7 requires the notion of a factor tree of a process, which is a
context of the factors of the process, and is defined as follows:

Definition 4.3.3 The factor tree of a process p∈P is the binary tree of processes rooted on
p such that the immediate subnodes of a node are the processes used to produce the node
process using a parallel composition production rule 3 of P.

Thus, in a factor tree, if a node process p has subnodes, then p ∈ P+ is produced
using the P+ production rule 3, and p ∈ P0 is produced using the P0 produc-
tion rule 3. Every process p∈P has a factor tree, because p is the root of its factor tree.

For example, let p , (a.A | b.0
a.A) | (a.0 + 0 | 0). The factor tree of p is shown in Figure

4.1.

(a.A | b.0
a.A) | (a.0 + 0 | 0)

a.A | b.0
a.A

a.A b.0
a.A

a.0 + 0 | 0

a.0 + 0 0

Figure 4.1: Factor Tree of a Process.

Definition 4.3.4 The depth of a singly-rooted tree is the number of nodes in the longest
path with distinct nodes that connects the root node to a leaf node of the tree.

4.3. Equational Reasoning 90

The depth of the factor tree of p is finite, because every process p∈P is the result of
applications of the P production rules with finite depth of inference, and the factor
tree of p is obtained by pruning this inference tree of processes that produces p. The
pruning of the inference tree of p is done by starting from the root node p, working
down each branch (if any) until a subnode is reached that is neither produced by
production rule 3 of P+ nor by production rule 3 of P0, and cutting the branches
(if any) below the subnode. These subnodes (if any) are the leaf nodes of the factor
tree of p; otherwise, p has no subnode, and the factor tree of p is p. Therefore, the
nodes of the factor tree of p are the processes in {p}m] f actorsm(p) (by definition of
f actorsm(p)). Thus, the factor tree of p describes the syntactic relationship between
a factor of p (if any) and its context p.

The inference tree that produces p ∈ P is also the parse tree of p, because the
production rules of P+ and P0 that produce p are inference rules and are based on
the process syntax of basic CCSdp. Therefore, the factor tree of p is the parse tree of
p with either p or the singleton factors of p as its leaf node(s).

Lemma 4.3.6 ∀p∈P(p∈P+
⇐⇒ Rp , ∅)

Proof: See Section A.5 in Appendix A.

Lemma 4.3.7 ∀p∈P0(Ip ∪ Rp = ∅)
Proof: See Section A.6 in Appendix A.

Theorem 4.3.2 {P+,P0
} is a partition of P

Proof: {P+,P0
} is a partition of P iff the following conditions hold

(by definition of set partition):

1. P+, P0 are non-empty subsets of P

2. P+
∩ P

0 = ∅

3. P+
∪ P

0 = P

Therefore, we proveP+,P0 are non-empty subsets ofP,P+
∩P

0 = ∅ andP+
∪P

0 = P.

Case 1. P+, P0 are non-empty subsets of P

Proof: 0∈P0 (by production rule 1 of P0)
=⇒ 0∈P+

∪ P
0 (by set theory)

=⇒ 0∈P (by definition of P)
=⇒ τ.0∈P+ (by production rule 1 of P+, ∵ τ∈I)
=⇒ P+ is non-empty (by set theory).
And P+

⊆ P
+
∪ P

0 (by set theory)

4.3. Equational Reasoning 91

=⇒ P+
⊆ P (by definition of P)

=⇒ P+ is a non-empty subset of P (∵ P+ is non-empty).

0∈P0 (by production rule 1 of P0)
=⇒ P0 is non-empty (by set theory).
And P0

⊆ P
+
∪ P

0 (by set theory)
=⇒ P0

⊆ P (by definition of P)
=⇒ P0 is a non-empty subset of P (∵ P0 is non-empty). Q.E.D.

Case 2. P+
∩ P

0 = ∅

Proof: If P+
∩ P

0 , ∅
then ∃p∈P+

∩ P
0 (by set theory)

=⇒ p∈P+
∧ p∈P0 (by set theory)

=⇒ Ip ∪ Rp , ∅ (by Lemma 4.3.5) ∧ Ip ∪ Rp = ∅ (by Lemma 4.3.7)
=⇒ f alse.
∴ P+

∩ P
0 = ∅ (by contradiction). Q.E.D.

Case 3. P+
∪ P

0 = P

Proof: P+
∪ P

0 = P (by definition of P). Q.E.D.

∴ {P+,P0
} is a partition of P (by definition of set partition). Q.E.D. �

The distinction between positive processes and zero processes was made in order to
retain in CCSdp the identity property of 0 with respect to parallel composition in the
equivalences and congruences of CCS. Theorem 4.3.3 states that all zero processes
have the required identity property with respect to parallel composition and strong
of-bisimulation. The theorem is proved using the following two lemmas: Lemma
4.3.7 states that no zero process has a transition in I ∪ R, and Lemma 4.3.8 states
that no zero process has a transition in R. Together, the two lemmas imply that no
zero process has a transition.

Lemma 4.3.8 ∀p∈P0(Rp = ∅)

Proof: If this lemma is f alse
then ∃p∈P0(Rp , ∅) (by definitions of ¬ and ∀)
=⇒ p∈P (by set theory and definition of P) ∧ Rp , ∅
=⇒ p∈P+ (by Lemma 4.3.6)
=⇒ p<P0 (by Theorem 4.3.2; which is a contradiction).
∴ This lemma is true
(∵ the LTS semantics of basic CCSdp is consistent and decidable (see Section 4.4)).
Q.E.D. �

4.3. Equational Reasoning 92

Theorem 4.3.3 ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p)

Proof: See Section A.7 in Appendix A. The proof technique is to prove the conjuncts
separately by discharging the following two proof obligations:
` ∀p ∈ P ∀z ∈ P0(p|z ∼o f p) and ` ∀p ∈ P ∀z ∈ P0(p ∼o f z|p). Each proof obligation
is discharged by producing a witness value, that is, a binary relation on P which
contains the pair of processes that are required to be strongly of-bisimilar, showing
the relation is a strong of-simulation on P, then showing the inverse relation is a
strong of-simulation on P. �

4.3.2 Strong of-Bisimulation is not a Process Congruence

Theorem 4.3.1 states that strong of-bisimulation is an equivalence relation onP, and
Theorem 4.3.4 states that strong of-bisimulation preserves the elementary contexts
α.[·] + M, [·]

P and P
[·] that correspond to the congruence conditions 2(a), 2(d) and 2(e)

(respectively). The proof of Theorem 4.3.4 is simplified by Lemma 4.3.9, which
states that two strongly of-bisimilar processes are either both positive or both
zero processes. However, strong of-bisimulation does not satisfy the congruence
conditions 2(b) and 2(c), as shown by the two examples below.

Lemma 4.3.9 ∀p, q∈P (p∼o f q =⇒ p∈P+
∧ q∈P+

∨ p∈P0
∧ q∈P0)

Proof: Suppose p, q∈P (p∼o f q)
then p∈P+

∨ p<P+ (by definition of P and set theory).
If p∈P+

then Ip ∪ Rp , ∅ (by Lemma 4.3.5)
=⇒ ∃α∈Ip ∪ Rp ∃p′∈P (p α

−→ p′) (by definitions of Ip and Rp)
=⇒ α∈Iq ∪ Rq ∧ ∃q′∈P (q α

−→ q′) (∵ p∼o f q)
=⇒ Iq ∪ Rq , ∅ (by set theory).
If q∈P0 then Iq ∪ Rq = ∅ (by Lemma 4.3.7; which is a contradiction).
∴ q<P0

=⇒ q∈P+ (by Theorem 4.3.2)
=⇒ p∈P+

∧ q∈P+ (∵ p∈P+, by assumption).

If p<P+

then p∈P0 (by Theorem 4.3.2)
=⇒ Ip ∪ Rp = ∅ (by Lemma 4.3.7).
If q∈P+

then Iq ∪ Rq , ∅ (by Lemma 4.3.5)

=⇒ ∃β∈Iq ∪ Rq ∃q′′∈P (q
β
−→ q′′) (by definitions of Iq and Rq)

=⇒ β∈Ip ∪ Rp ∧ ∃p′′∈P (p
β
−→ p′′) (∵ p∼o f q)

4.3. Equational Reasoning 93

=⇒ Ip ∪ Rp , ∅ (by set theory; which is a contradiction).
∴ q<P+

=⇒ q∈P0 (by Theorem 4.3.2)
=⇒ p∈P0

∧ q∈P0 (∵ p∈P0).

∴ p∈P+
∨ p<P+ =⇒ p∈P+

∧ q∈P+
∨ p∈P0

∧ q∈P0

(∵=⇒ is transitive and
(predicate1 =⇒ predicate2) ∧ (predicate3 =⇒ predicate4) =⇒

(predicate1 ∨ predicate3 =⇒ predicate2 ∨ predicate4)).
∴ For p, q∈P, p∼o f q =⇒ p∈P+

∧ q∈P+
∨ p∈P0

∧ q∈P0 (∵=⇒ is transitive)
=⇒ ∀p, q∈P (p∼o f q =⇒ p∈P+

∧ q∈P+
∨ p∈P0

∧ q∈P0) (∵ p, q∈P are arbitrary).
Q.E.D. �

Theorem 4.3.4 ∼o f Preserves the Elementary Contexts α.[·] + M, [·]
P and P

[·]

Proof: See Section A.8 in Appendix A. The proof technique is to prove∼o f preserves
the three elementary contexts separately by discharging the following three proof
obligations:
` ∀p, q∈P (p∼o f q =⇒ ∀α∈I (α.p + M ∼o f α.q + M)
where M is any summation in P),
` ∀p, q∈P (p∼o f q =⇒ ∀r∈P (p

r ∼o f
q
r)) and

` ∀p, q∈P (p∼o f q =⇒ ∀r∈P (r
p ∼o f

r
q)).

Each proof obligation is discharged by producing a witness value, which is a binary
relation on P that contains the pair of processes that are required to be strongly
of-bisimilar, showing the relation is a strong of-simulation on P, then showing
the inverse relation is a strong of-simulation on P. The first proof obligation is
discharged using the witness value
{(α.p + M, α.q + M), (p, q), (r, r) |
α∈I ∧ p, q∈P (p∼o f q) ∧ M is any summation in P ∧ r∈P}.
The second proof obligation is discharged using the witness value
{(p

r ,
q
r), (p, q) | p, q, r∈P ∧ p∼o f q}.

The third proof obligation is discharged using the witness value
{(r

p ,
r
q), (r, r) | p, q, r∈P ∧ p∼o f q}. �

∼o f does not satisfy the congruence conditions 2(b) and 2(c), because:

1. ∃p, q, r∈P (p∼o f q ∧ ¬(p|r∼o f q|r))

2. ∃p, q, r∈P (p∼o f q ∧ ¬(r|p∼o f r|q))

Example of 1: ∃p,q, r∈P (p∼of q ∧ ¬(p|r∼of q|r))

Let p , a.0|b.0 and q , a.b.0 + b.a.0 and r , 0
b.0 .

We demonstrate p∼o f q by comparing the transitions of p and q, and the transitions
of their corresponding successors, side by side; and then demonstrate ¬(p|r∼o f q|r)

4.3. Equational Reasoning 94

by identifying a transition of p|r that cannot be performed by q|r.

p a
−→0|b.0 (by the Sum and L-Par rules) q a

−→b.0 (by the Sum rule)

0|b.0 b
−→0|0 (by the Sum and R-Par rules) b.0 b

−→0 (by the Sum rule)

0|0 has no transition 0 has no transition.

p b
−→a.0|0 (by the Sum and R-Par rules) q b

−→a.0 (by the Sum rule)

a.0|0 a
−→0|0 (by the Sum and L-Par rules) a.0 a

−→0 (by the Sum rule)

0|0 has no transition 0 has no transition.

Thus, all the transitions of p, q and their successors in I have been identified; and
there is no transition in R, because p, q and their successors are not fractions and
have no fraction factor. Therefore, all the transitions of p, q and their successors in
I ∪ R have been identified; and it should be clear that p∼o f q.

Now p
τrb.0
−→ a.0|0 (by the Delet and R-Par rules) and r

τrb.0
−→ 0 (by the Creat rule)

=⇒ p|r τ
−→ (a.0|0)|0 (by the React rule).

But q
τrb.0
9 (∵ q is not strongly of-bisimilar to b.0, and q is a singleton)

=⇒ q|r τ
9 (∵ the hypothesis of React does not hold ∧ τ<Iq ∧ τ<Ir).

∴ ¬(p|r∼o f q|r) (by definition of strong of-bisimilarity)
=⇒∼o f is not a congruence (by definition of process congruence).

Example of 2: ∃p,q, r∈P (p∼of q ∧ ¬(r|p∼of r|q))

Let p , a.0
b.0 |

a.0
b.0 and q ,

a.0
b.0 |a.0

b.0 and r , 0
a.0
b.0

.

We demonstrate p∼o f q by comparing the transitions of p and q, and the transitions
of their corresponding successors, side by side; and then demonstrate ¬(r|p∼o f r|q)
by identifying a transition of r|p that cannot be performed by r|q.

p
τrb.0
−→a.0| a.0b.0 (by Creat and L-Par) q

τrb.0
−→

a.0
b.0 |a.0 (by Creat).

p
τrb.0
−→

a.0
b.0 |a.0 (by Creat and R-Par) q

τrb.0
−→

a.0
b.0 |a.0 (by Creat).

a.0| a.0b.0
a
−→0| a.0b.0 (by Sum and L-Par) a.0

b.0 |a.0
a
−→

a.0
b.0 |0 (by Sum and R-Par).

a.0| a.0b.0

τrb.0
−→a.0|a.0 (by Creat and R-Par) a.0

b.0 |a.0
τrb.0
−→a.0|a.0 (by Creat and L-Par).

a.0
b.0 |a.0

τrb.0
−→a.0|a.0 (by Creat and L-Par) a.0

b.0 |a.0
τrb.0
−→a.0|a.0 (by Creat and L-Par).

a.0
b.0 |a.0

a
−→

a.0
b.0 |0 (by Sum and R-Par) a.0

b.0 |a.0
a
−→

a.0
b.0 |0 (by Sum and R-Par).

4.3. Equational Reasoning 95

0| a.0b.0

τrb.0
−→0|a.0 (by Creat and R-Par) a.0

b.0 |0
τrb.0
−→a.0|0 (by Creat and L-Par).

a.0|a.0 a
−→0|a.0 (by Sum and L-Par) a.0|a.0 a

−→0|a.0 (by Sum and L-Par).

a.0|a.0 a
−→a.0|0 (by Sum and R-Par) a.0|a.0 a

−→a.0|0 (by Sum and R-Par).
a.0
b.0 |0

τrb.0
−→a.0|0 (by Creat and L-Par) a.0

b.0 |0
τrb.0
−→a.0|0 (by Creat and L-Par).

0|a.0 a
−→0|0 (by Sum and R-Par) 0|a.0 a

−→0|0 (by Sum and R-Par).

a.0|0 a
−→0|0 (by Sum and L-Par) a.0|0 a

−→0|0 (by Sum and L-Par).

0|0 has no transition 0|0 has no transition.

Thus, all the transitions of p, q and their successors in I ∪ R have been identified;
and it should be clear that p∼o f q.

Now p
τr a.0

b.0
−→ 0| a.0b.0 (by the Delet and L-Par rules) and r

τr a.0
b.0
−→ 0 (by the Creat rule)

=⇒ r|p τ
−→ 0|(0| a.0b.0) (by the React rule).

If r|q performs a τ transition then the transition must be a reaction
(∵ neither r nor q can perform a τ action).
A reaction performed by r|q must be a reconfiguration reaction
(∵ neither r nor q can perform an action in I).
A reconfiguration reaction performed by r|q must delete r or q
(∵ r, q are singleton processes).
∴ If r|q performs a τ transition then r or q is deleted
(by the transitivity of implication).
If r is deleted then 0

a.0
b.0
∼o f b.0

(by the hypotheses of the Delet and Creat rules, and Theorem 4.3.1)
=⇒ s f drdepth(0

a.0
b.0

) = s f drdepth(b.0) (by Theorem 4.2.1)
=⇒ 2 = 0 (by definition of s f drdepth; which is a contradiction).
∴ r is not deleted by a reaction transition of r|q.

If q is deleted then
a.0
b.0 |a.0

b.0 ∼o f
a.0
b.0

(by the hypotheses of the Delet and Creat rules, and Theorem 4.3.1)
=⇒ a.0

b.0 |a.0∼o f a.0 (by definition of strong of-bisimilarity)
=⇒ s f drdepth(a.0

b.0 |a.0) = s f drdepth(a.0) (by Theorem 4.2.1)
=⇒ 1 = 0 (by definition of s f drdepth; which is a contradiction).
∴ q is not deleted by a reaction transition of r|q
∴ r|q does not perform a τ transition (by contradiction).
∴ ¬(r|p∼o f r|q) (by definition of strong of-bisimilarity)
=⇒∼o f is not a congruence (by definition of process congruence).

4.3. Equational Reasoning 96

The above two examples suggest that strong of-bisimulation is too weak to be a
congruence. Therefore, it is necessary to strengthen the conditions that define
strong of-bisimulation in order to obtain a stronger bisimulation (∼dp) that is a
congruence, and (therefore) can be used for equational reasoning. However, a
stronger bisimulation reduces the set of processes matched by a given process,
which can reduce the terseness of process expressions. Therefore, in order to retain
the terseness of process expressions, we use strong of-bisimulation for matching,
and use the stronger bisimulation for congruence-based equational reasoning.

4.3.3 Strong dp-Bisimulation

Strong of-bisimulation is not a congruence because it is based on equality of
behavioural state, whereas congruence is based on equality of process structure.
Therefore, strong of-bisimulation equates processes with identical behavioural
state but with different numbers of factors (as shown in the above examples),
whereas congruence distinguishes between processes with different numbers
of factors. This suggests that adding a condition to strong of-bisimulation that
achieves a bijection between the factors of strongly of-bisimilar processes should
be sufficient to produce a bisimulation that is a congruence. Therefore, we define
strong dp-bisimulation (∼dp) as follows.

S is defined to be a strong dynamic process reconfigurational simulation (or equiva-
lently, strong dp-simulation) on P iff S ⊆ P x P and the following three conditions
hold ∀(p, q)∈S:

Observation : ∀α∈Ip ∀p′∈P (p α
−→ p′ =⇒ α∈Iq ∧ ∃q′∈P (q α

−→ q′ ∧ (p′, q′)∈S))

Fraction : ∀τrX ∈Rp ∀p′′∈P (p
τrX
−→ p′′ =⇒ τrX ∈Rq ∧ ∃q′′∈P (q

τrX
−→ q′′ ∧ (p′′, q′′)∈S))

Deletion : ∀τrY ∈Rp ∀p′′′∈P (p
τrY
−→ p′′′ =⇒ τrY ∈Rq ∧ ∃q′′′∈P (q

τrY
−→ q′′′ ∧ (p′′′, q′′′)∈S))

A process p is defined to be strongly dp-simulated by process q (or equivalently, q
strongly dp-simulates p), written p{dp q, iff there exists a strong dp-simulation S on
Pwith (p, q)∈S.

Thus, strong dp-simulation is strong of-simulation extended with the Deletion
condition, which states that in order for q to simulate p, any reconfiguration delete
action that p can perform to become p′′′, must be also performable by q to become
q′′′, and q′′′ must simulate p′′′.

4.3. Equational Reasoning 97

The three conditions of strong dp-simulation are very similar, and (therefore) can
be readily combined into a single condition. However, we prefer to keep them
separate in order to show the differences between strong bisimulation in CCS and
strong of-bisimulation and strong dp-bisimulation in CCSdp more clearly.

A strong dp-simulation S on P is defined to be a strong dynamic process reconfigu-
rational bisimulation (or equivalently, strong dp-bisimulation) on P iff both S and S−1

are strong dp-simulations on P.

Process p is defined to be strongly dynamic process reconfigurationally bisimilar to
process q (or equivalently, p is strongly dp-bisimilar to q), written p ∼dp q, iff there
exists a strong dp-bisimulation S on Pwith (p, q)∈S.

Following convention, we represent the largest strong dp-bisimulation on P by
∼dp, where ∼dp ,

⋃
{S | S is a strong dp-bisimulation on P}. Notice that ∼dp is

non-empty (∵ (0, 0) ∈∼dp, by Lemma 4.3.11).

The similarity between the definitions of strong dp-simulation on P and strong of-
simulation on P suggests several intuitive logical relationships between dp-based
relations and of-based relations that facilitate proof of congruence of∼dp, and which
we now prove. Lemma 4.3.10 states that every strong dp-simulation is also a strong
of-simulation. Corollary 4.3.3 states that if process p is strongly dp-simulated by
process q, then p is strongly of-simulated by q. Corollary 4.3.4 states that every
strong dp-bisimulation is also a strong of-bisimulation. Corollary 4.3.5 states that
if process p is strongly dp-bisimilar to process q, then p is strongly of-bisimilar to q.
Theorem 4.3.5 states that the largest strong dp-bisimulation (∼dp) is a proper subset
of the largest strong of-bisimulation (∼o f).

Lemma 4.3.10 Every strong dp-simulation on P is a strong of-simulation on P.

Proof: If S is a strong dp-simulation on P
then S⊆P x P ∧
∀(p, q)∈S (Observation ∧ Fraction ∧ Deletion conditions of strong dp-simulation on
P) hold
(by definition of strong dp-simulation on P)
=⇒ S⊆P x P ∧
∀(p, q)∈S (Observation ∧ Fraction conditions of strong dp-simulation on P) hold
(∵ predicate1 ∧ predicate2 ∧ predicate3 =⇒ predicate1 ∧ predicate2)
=⇒ S⊆P x P ∧
∀(p, q)∈S (Observation ∧ Fraction conditions of strong of-simulation on P) hold

4.3. Equational Reasoning 98

(∵ the Observation and Fraction conditions of strong dp-simulation onP are the same
as the Observation and Fraction conditions of strong of-simulation onP, respectively)
=⇒ S is a strong of-simulation on P (by definition of strong of-simulation on P).
∴ Every strong dp-simulation on P is a strong of-simulation on P
(∵ S is an arbitrary strong dp-simulation on P). Q.E.D. �

Corollary 4.3.3 ∀p, q∈P (p{dp q =⇒ p{o f q)

Proof: Suppose p, q∈P (p{dp q)
then ∃ strong dp-simulation S on Pwith (p, q)∈S (by definition of p{dp q)
=⇒ S is a strong of-simulation on Pwith (p, q)∈S (by Lemma 4.3.10)
=⇒ p{o f q (by definition of p{o f q).
∴ ∀p, q∈P (p{dp q =⇒ p{o f q) (∵ p, q∈Pwith p{dp q are arbitrary). Q.E.D. �

Corollary 4.3.4 Every strong dp-bisimulation on P is a strong of-bisimulation on P.

Proof: If S is a strong dp-bisimulation on P
then S,S−1 are strong dp-simulations on P
(by definition of strong dp-bisimulation on P)
=⇒ S,S−1 are strong of-simulations on P (by Lemma 4.3.10)
=⇒ S is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P).
∴ Every strong dp-bisimulation on P is a strong of-bisimulation on P
(∵ S is an arbitrary strong dp-bisimulation on P). Q.E.D. �

Corollary 4.3.5 ∀p, q∈P (p∼dp q =⇒ p∼o f q)

Proof: Suppose p, q∈P (p∼dp q)
then ∃ strong dp-bisimulation S on Pwith (p, q)∈S (by definition of p∼dp q)
=⇒ S is a strong of-bisimulation on Pwith (p, q)∈S (by Corollary 4.3.4)
=⇒ p∼o f q (by definition of p∼o f q).
∴ ∀p, q∈P (p∼dp q =⇒ p∼o f q) (∵ p, q∈Pwith p∼dp q are arbitrary). Q.E.D. �

Theorem 4.3.5 ∼dp ⊂∼o f

Proof: Suppose (p, q) ∈∼dp (∵∼dp ⊆ P x P, by definition of ∼dp)
then ∃ strong dp-bisimulation S on Pwith (p, q)∈S (by definition of ∼dp)
=⇒ p∼dp q (by definition of p∼dp q)
=⇒ p∼o f q (by Corollary 4.3.5)
=⇒ ∃ strong of-bisimulation T on Pwith (p, q)∈T (by definition of p∼o f q)
=⇒ (p, q) ∈∼o f (by definition of ∼o f).
∴ ∀(p, q) ∈∼dp ((p, q) ∈∼o f) (∵ (p, q) ∈∼dp is arbitrary)
=⇒∼dp ⊆∼o f (by set theory).
Now (a.0|b.0, a.b.0 + b.a.0) ∈∼o f ∧ (a.0|b.0, a.b.0 + b.a.0) <∼dp

(by an example in Section 4.3.2)

4.3. Equational Reasoning 99

=⇒∼dp ⊂∼o f (∵∼dp ⊆∼o f , and by set theory). Q.E.D. �

Strong dp-bisimulation has a number of properties which are useful for equational
reasoning, and which we now prove. Lemma 4.3.11 states that ∼dp is reflexive,
Lemma 4.3.12 states that ∼dp is symmetric, and Lemma 4.3.14 states that ∼dp is
transitive. The three lemmas help to prove Theorem 4.3.6, which states that ∼dp is
an equivalence relation on P, and (therefore) satisfies condition 1 of congruence.
The transitivity of strong dp-simulation and strong dp-bisimulation is proved us-
ing Lemma 4.3.13, whose importance with respect to strong dp-based relations is
similar to the importance of Lemma 4.3.3 with respect to strong of-based relations.
Lemma 4.3.13 states that the composition of two strong dp-simulations on P is a
strong dp-simulation on P. Corollary 4.3.6 states that {dp is transitive, Corollary
4.3.7 states that the composition of two strong dp-bisimulations on P is a strong
dp-bisimulation on P, and Lemma 4.3.14 states that ∼dp is transitive.

Lemma 4.3.11 ∼dp is reflexive on P.

Proof: ∼dp is reflexive on P iff ∀p∈P (p∼dp p) (by definition of reflexivity).
If ∃ strong dp-bisimulation S on Pwith ∀p∈P ((p, p)∈S)
then ∀p∈P (p∼dp p) (by definition of p∼dp p).
Therefore, we find such an S.

Let S , {(p, p) | p∈P}.
∀p∈P ((p, p)∈S) (by definition of S).

S is a strong of-bisimulation on P (by the proof of Lemma 4.3.1)
=⇒ S is a strong of-simulation on P
(by definition of strong of-bisimulation on P)
=⇒ S is a binary relation on P ∧
for all elements of S the Observation and Fraction conditions of strong of-simulation
on P are satisfied
(by definition of strong of-simulation on P)
=⇒ for all elements of S the Observation and Fraction conditions of strong dp-
simulation on P are satisfied
(∵ the Observation and Fraction conditions of strong dp-simulation on P are the
same as the Observation and Fraction conditions of strong of-simulation on P,
respectively).
We prove for all elements of S the Deletion condition of strong dp-simulation on P
is satisfied.

Verifying the Deletion condition of strong dp-simulation on P for (p, p)∈S:

For τrY ∈Rp and p′′′∈P,

4.3. Equational Reasoning 100

if p
τrY
−→ p′′′

(by the hypothesis of the Deletion condition of strong dp-simulation on P)

then τrY ∈Rp (by definition of τrY) ∧ p′′′∈P (by definition of p′′′) ∧ p
τrY
−→ p′′′ ∧

(p′′′, p′′′)∈S (by definition of S).

∴ ∀τrY ∈Rp ∀p′′′∈P (p
τrY
−→ p′′′ =⇒ τrY ∈Rp ∧ ∃p′′′∈P (p

τrY
−→ p′′′ ∧ (p′′′, p′′′)∈S))

(∵ τrY ∈Rp and p′′′∈P are arbitrary)
=⇒ the Deletion condition of strong dp-simulation on P holds for (p, p)∈S
(by definition of the Deletion condition of strong dp-simulation on P).

∴ S is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ (p, p)∈S is arbitrary)
=⇒ S and S−1 are strong dp-simulations on P (∵ S−1 =S)
=⇒ S is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P)
=⇒ ∀p∈P (p∼dp p) (by definitions of p∼dp p and S)
=⇒∼dp is reflexive on P (by definition of reflexivity). Q.E.D. �

Lemma 4.3.12 ∼dp is symmetric on P.

Proof: ∼dp is symmetric on P iff ∀(p, q)∈P x P (p∼dp q =⇒ q∼dp p)
(by definition of symmetry).

p∼dp q =⇒ ∃ strong dp-bisimulation S on P ∧ (p, q)∈S

(by definition of p∼dp q)

=⇒ ∃ strong dp-simulations S, S−1 on P ∧ (p, q)∈S ∧ (q, p)∈S−1

(by definitions of strong dp-bisimulation on P and inverse relations)

=⇒ ∃ strong dp-bisimulation S−1 on P ∧ (q, p)∈S−1

(∵ (S−1)−1 = S and by definition of strong dp-bisimulation on P)

=⇒ q∼dp p

(by definition of q∼dp p).
∴ ∀(p, q)∈P x P (p∼dp q =⇒ q∼dp p) (∵ p, q∈P are arbitrary)
=⇒∼dp is symmetric on P (by definition of symmetry). Q.E.D. �

Lemma 4.3.13 ∀strong dp-simulations U,V on P (UV is a strong dp-simulation on P).
Proof: See Section A.9 in Appendix A.

Corollary 4.3.6 ∀p, q, r∈P (p{dp q ∧ q{dp r =⇒ p{dp r).

Proof: Suppose p, q, r∈P (p{dp q ∧ q{dp r)
then ∃ strong dp-simulation U on P ((p, q)∈U) (by definition of p{dp q) ∧
∃ strong dp-simulation V on P ((q, r)∈V) (by definition of q{dp r)

4.3. Equational Reasoning 101

=⇒ UV is a strong dp-simulation on P (by Lemma 4.3.13) ∧
(p, r)∈UV (by composition of binary relations)
=⇒ p{dp r (by definition of p{dp r).
∴ ∀p, q, r∈P (p{dp q ∧ q{dp r =⇒ p{dp r)
(because =⇒ is transitive and p, q, r∈Pwith p{dp q ∧ q{dp r are arbitrary). Q.E.D.
�

Corollary 4.3.7 ∀strong dp-bisimulations U,V on P
(UV is a strong dp-bisimulation on P).

Proof: Suppose U,V are strong dp-bisimulations on P
then U,U−1,V,V−1 are strong dp-simulations on P
(by definition of strong dp-bisimulation on P)
=⇒ UV,V−1U−1 are strong dp-simulations on P (by Lemma 4.3.13)
=⇒ UV, (UV)−1 are strong dp-simulations on P
(∵ (UV)−1 = V−1U−1, by algebra of binary relations)
=⇒ UV is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P).
∴ ∀ strong dp-bisimulations U,V on P (UV is a strong dp-bisimulation on P)
(∵ U,V are arbitrary strong dp-bisimulations on P). Q.E.D. �

Lemma 4.3.14 ∼dp is transitive on P.

Proof: ∼dp is transitive on P iff ∀p, q, r∈P (p∼dp q ∧ q∼dp r =⇒ p∼dp r)
(by definition of transitivity).

Suppose p, q, r∈P (p∼dp q ∧ q∼dp r)
then ∃ strong dp-bisimulation U on P ((p, q)∈U) (by definition of p∼dp q) ∧
∃ strong dp-bisimulation V on P ((q, r)∈V) (by definition of q∼dp r)
=⇒ UV is a strong dp-bisimulation on P (by Corollary 4.3.7) ∧
(p, r)∈UV (by composition of binary relations)
=⇒ p∼dp r (by definition of p∼dp r).
∴ ∀p, q, r∈P (p∼dp q ∧ q∼dp r =⇒ p∼dp r)
(because =⇒ is transitive and p, q, r∈Pwith p∼dp q ∧ q∼dp r are arbitrary)
=⇒∼dp is transitive on P (by definition of transitivity). Q.E.D. �

Theorem 4.3.6 ∼dp is an equivalence relation on P.

Proof: ∼dp is an equivalence relation on P iff ∼dp is reflexive, symmetric and
transitive on P
(by definition of equivalence relation).

∼dp is reflexive on P (by Lemma 4.3.11) ∧
∼dp is symmetric on P (by Lemma 4.3.12) ∧
∼dp is transitive on P (by Lemma 4.3.14)

4.3. Equational Reasoning 102

=⇒ ∼dp is an equivalence relation on P (by definition of equivalence relation).
Q.E.D. �

The identity property of zero processes in parallel compositions with respect to ∼o f

and∼dp is established by Theorem 4.3.3 and Theorem 4.3.7 (respectively). Therefore,
a zero process can be elided from a parallel composition with no impact on the
behaviour of the process expression, up to ∼o f and ∼dp. The proof of Theorem 4.3.7
depends on several lemmas and on the notion of positive singleton factor of a process,
which is defined as follows:

Definition 4.3.5 A positive singleton factor of a process p is a positive process that is a
singleton and a factor of p.

There are two related definitions. A positive factor of a process p is a positive pro-
cess that is a factor of p. A zero factor of a process p is a zero process that is a factor of p.

The multiset of positive singleton factors of a process is given by the function
f actors+

m, which is defined as follows:

f actors+
m : P −→ Pm P such that

f actors+
m(p) , { f ∈ f actorsm(p) | f actorsm(f) = ∅ ∧ f ∈P+

}m

If p is a singleton, then f actorsm(p) is the empty multiset, and (therefore) f actors+
m(p)

is the empty multiset.

Theorem 4.3.3 and Theorem 4.3.7 show that the behaviour of a process is
determined only by the behaviour of its positive singleton factors and their
interaction, up to ∼o f and ∼dp. Furthermore, parallel composition is commutative
and associative with respect to ∼o f and ∼dp (see Theorem 4.3.11, Theorem 4.3.13,
Theorem 4.3.12 and Theorem 4.3.14). Therefore, the behaviour of p can be derived
from f actors+

m(p), even though the multiset is devoid of any ordering or structural
relationship between the factors of p. Thus, f actors+

m(p) is a canonical representation
of p. The properties of f actors+

m(p), such as its cardinality, are sufficient to prove The-
orem 4.3.7 and most of the new lemmas on which the proof of the theorem depends.

Lemma 4.3.15 states that if a parallel composition is a positive process, then the
expression has a positive singleton factor. Lemma 4.3.16 states that a zero process
has no positive singleton factor. Lemma 4.3.17 states that if a process can perform
a delete transition, then either the result is 0 or the result has a factor. Lemma

4.3. Equational Reasoning 103

4.3.18 states that if a process can perform a delete transition, then either the result
is 0 or the transition deletes one or more positive singleton factors of the process.
Lemma 4.3.19 and Lemma 4.3.20 are ‘technical’ lemmas that determine the process
structure of the result of a deletion transition performed by the parallel composition
of a zero process with any other process, given the result is a positive process.
Together, the two lemmas imply that the zero process does not participate in the
deletion transition. Theorem 4.3.7 states that a zero process is an identity of parallel
composition with respect to ∼dp.

Lemma 4.3.15 ∀p, q∈P (p|q∈P+ =⇒ f actors+
m(p|q) , ∅m)

Proof: See Section A.10 in Appendix A.

Lemma 4.3.16 ∀p∈P (p∈P0 =⇒ f actors+
m(p) = ∅m)

Proof: See Section A.11 in Appendix A.

Lemma 4.3.17 ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actorsm(p′) , ∅m)

Proof: See Section A.12 in Appendix A.

Lemma 4.3.18 ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(p))

Proof: See Section A.13 in Appendix A.

Lemma 4.3.19 ∀p∈P ∀z∈P0
∀τrY ∈Rp|z ∀(p|z)′∈P+

(p|z
τrY
−→ (p|z)′ =⇒ τrY ∈Rp ∧ ∃p′∈P+(p

τrY
−→ p′ ∧ (p|z)′ = p′|z))

Proof: See Section A.14 in Appendix A.

Lemma 4.3.20 ∀p∈P ∀z∈P0
∀τrY ∈Rz|p ∀(z|p)′∈P+

(z|p
τrY
−→ (z|p)′ =⇒ τrY ∈Rp ∧ ∃p′∈P+(p

τrY
−→ p′ ∧ (z|p)′ = z|p′))

Proof: See Section A.15 in Appendix A.

Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p)

Proof: See Section A.16 in Appendix A. The proof technique is to prove the
conjuncts separately by discharging the following two proof obligations:
` ∀p∈P ∀z∈P0(p|z ∼dp p) and
` ∀p∈P ∀z∈P0(p ∼dp z|p).
Each proof obligation is discharged by producing a witness value, which is a
binary relation on P that contains the pair of processes that are required to be
strongly dp-bisimilar, then showing the relation is a strong dp-bisimulation on P.
The first proof obligation is discharged using the witness value
{(p|z, p), (z1, z2) | p∈P ∧ z, z1, z2∈P

0
}.

The second proof obligation is discharged using the witness value

4.3. Equational Reasoning 104

{(p, z|p), (z1, z2) | p∈P ∧ z, z1, z2∈P
0
}.

Both relations are strong of-bisimulations on P (by the proof of Theorem 4.3.3 and
because zero processes have no transition in I∪R). In order to prove the relations
are strong dp-bisimulations on P, the transitions of the processes in R must be
considered. We use complete induction on the number of positive singleton factors
of a process to prove the relations are strong dp-bisimulations on P, because every
transition in R by a process either deletes the process or deletes one or more
positive singleton factors of the process (by Lemma 4.3.18). �

The multiset of positive singleton factors of a process is also useful for demonstrat-
ing the logical relationship between behavioural similarity and structural similarity
of processes. Specifically, Theorem 4.3.8 states that strongly dp-bisimilar processes
(in parallel composition with 0) have the same number of positive singleton fac-
tors. Notice that the parallel composition with 0 is necessary in order to preserve
the numerical equality if one process is a singleton and the other is not. Therefore,
strengthening strong of-simulation onPwith the Deletion condition produces struc-
tural similarity between strongly dp-bisimilar processes (in parallel composition
with 0) in terms of the number of positive singleton factors. The proof of Theorem
4.3.8 assumes the theorem is false, identifies a pair of strongly dp-bisimilar pro-
cesses – one of which has the least number of positive singleton factors, performs a
deletion transition on the other process that deletes exactly one positive singleton
factor of the process, and shows a contradiction. The proof needs Lemma 4.3.21,
which states that it is possible for a process to perform a deletion transition that
deletes exactly one of its positive singleton factors (if any).

Lemma 4.3.21 ∀p∈P ∀ f ∈ f actors+
m(p)

(∃ τr f ∈Rp ∃ p′∈P (p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m))

Proof: See Section A.17 in Appendix A.

Theorem 4.3.8 ∀p, q∈P (p∼dp q =⇒ | f actors+
m(p|0)| = | f actors+

m(q|0)|)
Proof: See Section A.18 in Appendix A.

In Section 4.3.2, we demonstrated that ∼o f does not satisfy the congruence condi-
tions 2(b) and 2(c). However, if p∼o f q is strengthened to p∼dp q, then the congruence
conditions 2(b) and 2(c) are satisfied for ∼o f (see Theorem 4.3.9). Furthermore, ∼dp

satisfies condition 2 of congruence (by Theorem 4.3.10), and satisfies condition 1 of
congruence (by Theorem 4.3.6). Therefore, ∼dp is a congruence on P (by definition
of congruence), and (therefore) can be used for equational reasoning.

4.3. Equational Reasoning 105

Theorem 4.3.9 ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q))

Proof: See Section A.19 in Appendix A. The proof technique is to prove the conjuncts
separately by discharging the following two proof obligations:
` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼o f q|r)) and
` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r|p∼o f r|q)).
Each proof obligation is discharged by producing a witness value, which is a binary
relation on P that contains the pair of processes that are required to be strongly
of-bisimilar, showing the relation is a strong of-simulation on P, then showing
the inverse relation is a strong of-simulation on P. The first proof obligation is
discharged using the witness value
{(p|r, q|r) | p, q, r∈P ∧ p∼dp q}.
The second proof obligation is discharged using the witness value
{(r|p, r|q) | p, q, r∈P ∧ p∼dp q}. �

Theorem 4.3.10 ∼dp Preserves all Elementary Contexts

Proof: See Section A.20 in Appendix A. The proof technique is to prove ∼dp

preserves the elementary contexts separately by discharging the following five
proof obligations:
` ∀p, q∈P (p∼dp q =⇒ ∀α∈I (α.p + M ∼dp α.q + M)
where M is any summation in P),
` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼dp q|r)),
` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r|p∼dp r|q)),
` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p

r ∼dp
q
r)) and

` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r
p ∼dp

r
q)).

Each proof obligation is discharged by producing a witness value, which is a
binary relation on P that contains the pair of processes that are required to be
strongly dp-bisimilar, then showing the relation is a strong dp-bisimulation on P.
The first proof obligation is discharged using the witness value
{(α.p + M, α.q + M), (p, q), (r, r) |
α∈I ∧ p, q∈P (p∼dp q) ∧ M is any summation in P ∧ r∈P}.
The second proof obligation is discharged using the witness value
{(p|r, q|r), (0, 0) | p, q, r∈P ∧ p∼dp q}
and the third proof obligation is discharged using the witness value
{(r|p, r|q), (0, 0) | p, q, r ∈ P ∧ p ∼dp q}. Both this relation and the previous relation
are strong of-bisimulations on P (by the proof of Theorem 4.3.9 and because
the 0 process has no transition in I ∪ R). We show the relations are strong
dp-bisimulations on P by using complete induction on the depth of inference of

4.3. Equational Reasoning 106

the applications of the LTS rules that determine the transitions of the processes in
R.
The fourth proof obligation is discharged using the witness value
{(p

r ,
q
r), (p, q) | p, q, r∈P ∧ p∼dp q}.

The fifth proof obligation is discharged using the witness value
{(r

p ,
r
q), (r, r) | p, q, r∈P ∧ p∼dp q}. �

Commutativity and associativity are useful for both matching and equational rea-
soning. Theorem 4.3.12 states that the parallel composition of processes is com-
mutative with respect to ∼dp, which facilitates equational reasoning. The proof of
Theorem 4.3.12 uses the commutativity of parallel composition with respect to ∼o f ,
which facilitates matching and is stated in Theorem 4.3.11. The proof of Theorem
4.3.11 uses complete induction on the successors’ fractional denominator recursion
depth of a parallel composition (i.e. s f drdepth(p|q)), and depends on several new
lemmas: Lemma 4.3.25 states that the s f drdepth of a parallel composition is the
maximum of the s f drdepth values of the two composed processes. Lemma 4.3.24
states that a process performing a deletion transition strongly dp-simulates the
result. That is, a deletion transition does not add behaviour to a process. Lemma
4.3.23 states that strong dp-simulation on P is preserved by parallel composition.
Lemma 4.3.22 states that a zero process is strongly dp-simulated by any process.

Lemma 4.3.22 ∀z∈P0
∀p∈P (z{dp p)

Proof: See Section A.21 in Appendix A.

Lemma 4.3.23 ∀p, q, r, s∈P (p{dp q ∧ r{dp s =⇒ p|r{dp q|s)
Proof: See Section A.22 in Appendix A.

Lemma 4.3.24 ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→p′ =⇒ p′{dp p)

Proof: See Section A.23 in Appendix A.

Lemma 4.3.25 ∀p, q∈P (s f drdepth(p|q) = max{s f drdepth(p), s f drdepth(q)})
Proof: See Section A.24 in Appendix A.

Theorem 4.3.11 ∀p, q∈P (p|q∼o f q|p)
Proof: See Section A.25 in Appendix A.

Theorem 4.3.12 ∀p, q∈P (p|q∼dp q|p)
Proof: See Section A.26 in Appendix A.

The associativity of parallel composition with respect to ∼o f and ∼dp is established
by Theorem 4.3.13 and Theorem 4.3.14 (respectively). The proof of Theorem 4.3.14

4.4. Consistency and Decidability 107

uses Theorem 4.3.13 and a new lemma. Lemma 4.3.26 is a ‘technical’ lemma that
shows possible decompositions of a deletion transition performed by a parallel
composition of processes into deletion transitions performed by the two composed
processes, and the structure of the resulting process.

Theorem 4.3.13 ∀p, q, r∈P ((p|q)|r∼o f p|(q|r))
Proof: See Section A.27 in Appendix A.

Lemma 4.3.26 ∀p, q∈P ∀τrX ∈Rp|q ∀(p|q)′∈P

(p|q
τrX
−→ (p|q)′ =⇒

(p|q)′ = 0 ∨ ∃p′∈P (p
τrX
−→ p′ ∧ (p|q)′ = p′|q) ∨ ∃q′∈P (q

τrX
−→ q′ ∧ (p|q)′ = p|q′) ∨

∃τrX1
, τrX2

∈R ∃p′, q′∈P (X∼o f X1|X2 ∧ p
τrX1
−→ p′ ∧ q

τrX2
−→ q′ ∧ (p|q)′ = p′|q′))

Proof: See Section A.28 in Appendix A.

Theorem 4.3.14 ∀p, q, r∈P ((p|q)|r∼dp p|(q|r))
Proof: See Section A.29 in Appendix A.

4.4 Consistency and Decidability

We define the terms consistency of a formalism (also known as logical consistency)
and decidability, and briefly discuss how these two requirements are met by basic
CCSdp.

4.4.1 Consistency

In order to discuss consistency, the following definitions are needed. For a more
detailed explanation of the definitions, see [BA01].

Definition 4.4.1 A formula is an expression with a Boolean value.

Examples of formulae in CCSdp are p α
−→ p′, p∼o f q and p∼dp q.

Definition 4.4.2 A theory is a set of formulae that is closed under logical consequence.

For a formula A and a theory T , A∈T iff T |= A (by Definition 4.4.2).

Definition 4.4.3 A theory T is inconsistent iff for some formula A, T |=A and T |= ¬A.
A theory is consistent iff the theory is not inconsistent.

4.4. Consistency and Decidability 108

Consistency of a formalism is required in order to predict a system’s behaviour, as
well as absence of behaviour, using a system model expressed using the formalism.
Therefore, our theory of basic CCSdp must be consistent.

In basic CCSdp, the formulae are the process transitions and the simulations and
bisimulations derived from the process transitions. Therefore, our theory of CCSdp

is inconsistent iff ∃ p, p′∈P ∃α∈Ap (p α
→ p′ ∧ p α

9 p′) by the application of one or
more LTS rules with finite depth of inference (by Definition 4.4.3).

However, the absence of negative premises in the LTS rules implies the LTS rules
define only transitions [Gro93]. Therefore, our theory of basic CCSdp is not in-
consistent, and (therefore) our theory of basic CCSdp is consistent (by Definition
4.4.3).

4.4.2 Decidability

In order to discuss decidability, the following definitions are needed [BA01]:

Definition 4.4.4 A closed formula is a formula with no free variable.

Definition 4.4.5 A theory T is decidable iff there exists a terminating procedure that
decides for any closed formula A, true if A∈T and false if A<T .

Decidability is required in order to provide tool support for a formalism, without
which the formalism will not be used by engineers. Therefore, formulae in basic
CCSdp, such as p∼o f q, must be decidable.

The decidability of strong of-bisimilarity between processes helps to automate
matching, and thereby the execution of reconfiguration transitions, which (in
turn) facilitates the automation of equational reasoning and model checking. The
decidability of strong dp-bisimilarity between processes also helps to automate
equational reasoning and model checking. Therefore, ensuring decidability of
formulae in our theory of basic CCSdp is important. However, decidability it is
not the focus of our research. Therefore, we identify several factors that help to
achieve decidability, but leave a comprehensive answer for future work.

First, in full CCS, both observation equivalence and strong bisimulation are
undecidable [Mil89]. However, if restriction and relabelling are removed from
CCS, then strong bisimulation is decidable [CHM94]; which justifies our decision

4.5. Forms of Matching 109

to omit the restriction operator (ν) from basic CCSdp, and to use only strong
bisimulations.

Second, the evolution of a fraction process could result in successor fractions with
strictly increasing depth of fractional recursion, which would complicate proofs
and could make matching undecidable. Therefore, we bounded the depth of
fractional recursion of the denominators of fractions and their successors.

Third, the LTS rules define a countably infinite number of reconfiguration
transitions by a process. This problem is resolved by grouping the reconfiguration
transitions into a finite number of equivalence classes using the denominators
of the fractions in the model (which are finite in number) and the equivalence
property of strong of-bisimulation on P.

Fourth, it is possible for a fraction process to evolve into multiple processes due
to its numerator, which could result in a system with an infinite number of states.
Therefore, modellers are advised to construct models that consist of a finite number
of processes and process definitions. This decision avoids imposing unnecessarily
strong restrictions on basic CCSdp before the issue of decidability of bisimulations
between fraction processes has been thoroughly investigated, which requires a
proof theory, and (therefore) is beyond the scope of this thesis.

4.5 Forms of Matching

Matching in basic CCSdp is based on similarity of behaviour between processes,
specifically, strong of-bisimulation on P. However, there are alternative forms
of matching, using syntactic equality (=), structural congruence (≡) or strong
observation equivalence (∼). In this section, we briefly describe these alternatives
and identify tradeoffs.

In order to model unplanned reconfiguration abstractly, matching affects only the
semantics of CCSdp and its derivatives. Therefore, the different forms of matching
do not have any impact on the process syntax of CCSdp nor on the definitions of
positive and zero processes and process context. The impact on the LTS rules is
described below.

4.5. Forms of Matching 110

4.5.1 Syntactic Equality-based Matching

The new LTS rules are Creat=, Delet=, CompDelet=, L-React= and R-React=, which are
identical to their similarly named counterparts in basic CCSdp with the matching
relation ∼o f replaced by =.

Syntactic equality is an equivalence relation on P (by definition of =); which facili-
tates matching. Strong dp-bisimilarity on P is interpreted with the transitions in R
andRdefined by the new LTS rules, and is a congruence; which supports equational
reasoning. Parallel composition is associative and commutative up to ∼dp (due to
CompDelet=, L-React= and R-React=); which also support equational reasoning.

4.5.2 Structural Congruence-based Matching

Structural congruence is an equivalence relation on P defined by the set of axioms
given in Table 4.2.

α-conversion(P) ≡ P

P|0 ≡ P P|Q ≡ Q|P P|(Q|R) ≡ (P|Q)|R

M + 0 ≡M M1 + M2 ≡M2 + M1 M1 + (M2 + M3) ≡ (M1 + M2) + M3

P ≡ Q ∧ R ≡ S⇐⇒ P
R ≡

Q
S

A< b̃>≡ P[̃b/̃a] if A(̃a) , P ∧ |̃b| = |̃a|

Table 4.2: Structural Congruence of Basic CCSdp.

The structural congruence axioms for basic CCSdp are a superset of the structural
congruence axioms for basic CCS without ν. The additional axiom is for fraction
processes, and states that two fractions are structurally congruent iff their respec-
tive numerators and denominators are structurally congruent.

The new LTS rules are Creat≡, Delet≡, CompDelet≡, L-React≡ and R-React≡, which are
identical to their similarly named counterparts in basic CCSdp with the matching
relation∼o f replaced by≡. However, because of the associativity and commutativity
of parallel composition up to ≡, CompDelet≡, L-React≡ and R-React≡ can be replaced
the Struct≡ rule defined below:

Struct≡ : µ∈A ∧ Q ≡ P ∧ P
µ
−→P′ ∧ P′ ≡Q′

Q
µ
−→Q′

4.5. Forms of Matching 111

The Struct≡ rule states that structurally congruent processes (P,Q) have identical
transitions inA, and their respective results (P′,Q′) are structurally congruent.

Structural congruence is an equivalence relation on P (by definition of ≡); which
helps matching. Strong dp-bisimilarity on P is interpreted using the new LTS
rules, and is a congruence; which helps equational reasoning. Parallel composition
is associative and commutative up to ∼dp (due to CompDelet=, L-React= and R-React=

or Struct≡); which also help equational reasoning.

4.5.3 Strong Observation Equivalence-based Matching

This form of matching is identical to that of basic CCSdp with the restriction
∀p∈P (s f drdepth(p) ≤ 1). Therefore, only CCS processes can be reconfigured.

4.5.4 Comparison

The different forms of matching can be compared using the notions of coverage,
decidable processes and complexity. The coverage of a process is the set of processes
that can be matched using the given process. The decidable processes of a matching
is the set of processes for which the matching relation is decidable. The complexity
of matching with a process is the minimum computational complexity of the
matching using the given process.

Regarding coverage, syntactic equality is the most restrictive form of matching.
P matches Q syntactically iff P = Q.
Therefore, P|Q cannot match Q|P syntactically (∵ P|Q , Q|P).
However, P|Q matches Q|P structurally
(∵ P|Q ≡ Q|P, by the structural congruence axioms)
and P = Q =⇒ P matches Q structurally (∵≡ is an equivalence relation on P).
However, a.b.0 + b.a.0 cannot match a.0 | b.0 structurally
(by definition of structural congruence).
But a.b.0 + b.a.0 can match a.0 | b.0 by strong of-bisimulation
(see example in Section 4.3.2),
and P|Q matches Q|P by strong of-bisimulation (by Theorem 4.3.11),
and P = Q =⇒ P matches Q by strong of-bisimulation (∵∼o f is reflexive on P).

If we take coverage as the function coverage : P x (P x P) −→ P P,
we have coverage(p,=) ⊂ coverage(p,≡) ⊂ coverage(p,∼o f).

4.5. Forms of Matching 112

Regarding the decidable processes of a matching relation, syntactic equality is the
most decidable relation, since it involves a syntactic comparison of two process
expressions in closed form. Strong of-bisimulation is the least decidable relation,
since it requires the removal of restriction and relabelling from the process syntax.

If we take the decidable processes of a matching relation as given by the function
DecProcs : P x P −→ P P,
it is conjectured that we have DecProcs(∼o f) ⊂ DecProcs(≡) ⊂ DecProcs(=).

Regarding complexity, it is conjectured that the complexity of matching with a
process is least with syntactic equality-based matching; intermediate with struc-
tural congruence-based matching; and greatest with strong of-bisimulation-based
matching.

Regarding the effect of matching on strong dp-bisimilarity, Theorem 4.3.8 states
that strongly dp-bisimilar processes (in parallel composition with 0) have the
same number of positive singleton factors. This theorem also holds for syntactic
equality-based and structural congruence-based matching. There is a 1–to–1
correspondence between the positive singleton factors of strongly dp-bisimilar
processes (in parallel composition with 0) in all three forms of matching. However,
in syntactic equality-based matching, corresponding factors are syntactically equal
(e.g. a.0 = a.0); in structural congruence-based matching, corresponding factors are
structurally congruent (e.g. a.0+b.0 ≡ b.0+a.0); and in strong of-bisimulation-based
matching, corresponding factors are strongly of-bisimilar (e.g. a.0 + a.0 ∼o f a.0).

The results and conjectures for strong observation equivalence-based matching
are similar to those of strong of-bisimulation-based matching, if the restriction
∀p∈P (s f drdepth(p) ≤ 1) is used.

The proofs of the above conjectures are left for future work, because they are
beyond the scope of this thesis.

In conclusion, regarding the different forms of matching discussed above, match-
ing based on syntactic equality is the most amenable to tool support, because
of its decidable processes and complexity. However, the coverage is minimal,
and (therefore) process expressions modelling reconfiguration are the most ver-

4.6. Evaluation using Requirements 113

bose. Furthermore, the syntactic structure of a process to be reconfigured must be
known. Matching based on structural congruence is also amenable to tool support,
but less so than matching based on syntactic equality, although reconfiguration
models are more terse. The structure of a process to be reconfigured must be
known. Matching based on strong of-bisimulation is the least amenable to tool
support. However, it has the greatest coverage, and (therefore) process expressions
modelling reconfiguration are the most terse. It also supports information hiding,
because only behaviour is used for matching. Matching based on strong observa-
tion equivalence has the advantages of matching using strong of-bisimulation, but
tool support is simpler, because fraction processes cannot be reconfigured.

4.6 Evaluation using Requirements

We evaluate basic CCSdp with respect to the requirements used to evaluate π-calculi
in Chapter 3.

In basic CCSdp, software components and tasks are both modelled as processes,
which can be identified by using unique names (as in CCS). Communication links
between processes are modelled as pairs of complementary port names that belong
to different processes. Communication links can be identified by using unique
port names.

Planned process creation and deletion can be modelled as in CCS or using
fraction processes. Planned process replacement is modelled using fraction
processes. Planned link creation or deletion cannot be modelled directly, but can
be modelled indirectly using process replacement. Unplanned process and link
reconfiguration is modelled using fraction processes. However, it is not possible
to delete or replace instances of processes selectively (e.g. by using a process name).

There is no notion of physical node in basic CCSdp. Therefore, relocation of
processes on physical nodes cannot be modelled.

Transfer of values in communication can be modelled using parameterless transi-
tions. Therefore, state transfer can be modelled using parameterless transitions.

Functional and temporal interactions between application and reconfiguration
tasks are modelled as interleavings of process transitions. However, there is no

4.6. Evaluation using Requirements 114

notion of physical time in basic CCSdp, and (therefore) the duration of actions and
delays cannot be modelled.

Functional correctness can be expressed in terms of strong dp-bisimilarity between
processes, which can be verified by equational reasoning. Model checking can also
be used. However, temporal correctness cannot be expressed or verified, because
there is no notion of physical time in basic CCSdp.

Concurrent execution of tasks is modelled as concurrent execution of processes
with an interleaving semantics.

State transitions of software components and tasks is modelled as process transi-
tions.

Support for functional verification is limited to equational reasoning and model
checking. The absence of a type system precludes type checking. Support for
temporal correctness is problematic. First, the absence of a time model precludes
schedulability analysis of processes. Second, if a time model were added to the
formalism, the schedulability analysis of processes would be still complicated by
the synchronous communication model, which results in a timing dependency
between the sending and receiving processes.

Inspite of its limitations, basic CCSdp is a useful and potentially powerful formalism
for modelling unplanned reconfiguration abstractly, unlike other formalisms. The
simplicity of basic CCSdp should allow it to be extended (like basic CCS) to address
its limitations, but avoid unnecessary complexity. Tool support is contingent on
increasing the set of decidable processes of matching and reducing the complexity
of matching. It may be possible to encode matching in Isabelle [NP02], in which
case it will be possible to prove correctness of expressions in basic CCSdp. However,
this conjecture has to be confirmed.

Chapter 5

Evaluation of Basic CCSdp using a
Simple Office Workflow

Contents
5.1 Office Workflow for Order Processing 115

5.2 Reconfiguration of a Design . 120

5.3 Modelling the Workflow . 121

5.3.1 Modelling Configuration 1 . 121

5.3.2 Modelling Configuration 2 . 124

5.3.3 Modelling the Reconfiguration 126

5.4 Evaluation using the Reconfiguration Requirements 127

5.4.1 Verification of Requirement 2 . 127

5.4.2 Verification of Requirements 1, 3, 4 and 5 127

5.5 Strengths and Weaknesses of Basic CCSdp 134

In this chapter, basic CCSdp is evaluated using as a case study the dynamic recon-
figuration of a simple office workflow. A preliminary version of the workflow is
given in [MADB12]. We describe the workflow and its reconfiguration, and define
the requirements on the reconfiguration. Different designs for the workflow and
its reconfiguration are then identified, and one of the designs is formulated in basic
CCSdp. The reconfiguration requirements are then used to evaluate the formulation,
and thereby identify the strengths and weaknesses of basic CCSdp.

5.1 Office Workflow for Order Processing

Our office workflow for order processing is a simplified version of real workflows
commonly found in large and medium-sized organisations [EKR95]. The workflow
initially contains the following activities:

1. Order Receipt: an order for a product is received from an existing customer.
The order includes the customer’s identifier and the product’s identifier. An

5.1. Office Workflow for Order Processing 116

evaluation of the order is initiated to determine whether or not the order is
viable.

2. Evaluation: in evaluating an order, the product identity is used to perform
an inventory check on the availability of the product. The customer identity
is used to perform an internal credit check on the customer. If both the checks
are positive, the order is accepted; otherwise the order is rejected.

3. Rejection: if the order is rejected, a notification of rejection is sent to the
customer and the workflow terminates.

4. If the order is accepted, the following activities are initiated:

(a) Billing: the customer is billed for the cost of the product ordered plus
shipping costs.

(b) Shipping: the product is shipped to the customer.

(c) Archiving: the order is archived for future reference.

(d) Confirmation: a notification of successful completion of the order is sent
to the customer.

The workflow is structured using Configuration 1, which must meet the following
requirements (see Figure 5.1).

Requirements on Configuration 1 of the Workflow

For each order:

1. Order Receipt must be performed first. That is, it must begin before any
other activity.

2. Evaluationmust be performed second.

3. If the output of Evaluation is negative, Rejectionmust be the third and final
activity of the workflow.

4. If the output of Evaluation is positive, the following conditions must be
satisfied:

(a) Billing and Shippingmust be the third set of activities to be performed.

(b) Billing and Shippingmust be performed concurrently.

5.1. Office Workflow for Order Processing 117

(c) After the completion of both Billing and Shipping, Archivingmust be
performed.

(d) After the completion of Archiving, Confirmationmust be performed.

5. Each activity must be performed at most once.

6. The workflow must terminate.

After some time, the management of an organization using the workflow can decide
to change it in order to increase opportunities for sales, improve the synchronisation
between Billing and Shipping, and to simplify the workflow. The new version
of the workflow can be structured using Configuration 2, to meet the following
requirements (see Figure 5.2).

Requirements on Configuration 2 of the Workflow

For each order:

1. Order Receiptmust be performed first.

2. Evaluation: in evaluating an order, the product identity is used to perform
an inventory check on the availability of the product. The customer identity
is used to perform an internal credit check on the customer. If the internal
credit check fails, an external credit check is performed on the customer. If
the inventory check is positive, and either credit check is positive, the order
is accepted; otherwise the order is rejected.

3. Evaluationmust be performed second.

4. If the output of Evaluation is negative, Rejectionmust be the third and final
activity of the workflow.

5. If the output of Evaluation is positive, the following conditions must be
satisfied:

(a) Shippingmust be the third activity to be performed.

(b) Billingmust be the fourth activity to be performed.

(c) Archivingmust be the fifth and final activity to be performed.

6. Each activity must be performed at most once.

7. The workflow must terminate.

5.1. Office Workflow for Order Processing 118

Order Receipt

Internal Credit Check

Inventory Check

OK? Reject
No

Yes

OK? Reject
No

Yes

+

+

Billing Shipping

Archiving

Confirmation

Figure 5.1: Flow chart of the requirements on Configuration 1.

5.1. Office Workflow for Order Processing 119

Order Receipt

Internal Credit Check

Inventory Check

OK? Reject
No

Yes

OK?
No

Yes

Billing

Shipping

Archiving

External Credit Check

OK? Reject
No Yes

Figure 5.2: Flow chart of the requirements on Configuration 2.

In order to achieve a smooth transition from Configuration 1 to Configuration 2 of
the workflow, the process of reconfiguration must meet the following requirements.

5.2. Reconfiguration of a Design 120

Requirements on Reconfiguration of the Workflow

1. Reconfiguration of a workflow should not necessarily result in the rejection
of an order.

In some systems, executing activities of configuration 1 are aborted during its
reconfiguration to configuration 2 (see Case 2 in Figure 1.1). The purpose of
this requirement is to avoid the occurrence of Case 2 and ensure the occurrence
of Case 3.

2. No order should be significantly delayed by the reconfiguration.

3. All orders being processed that were accepted before the start of the reconfig-
uration must satisfy the requirements on Configuration 1 or the requirements
on Configuration 2.

4. All orders accepted after the start of the reconfiguration must satisfy the
requirements on Configuration 2.

5. The reconfiguration process must terminate.

5.2 Reconfiguration of a Design

The reconfiguration of the workflow depends on the workflow’s design and imple-
mentation. There are at least four possible designs for the workflow:

1. There is at most one workflow, and the workflow handles a single order at a
time.

The workflow is mainly sequential: after an order is received, the thread
performs a sequence of actions, with a choice at Evaluation, and a possible
interleaved execution of Billing and Shipping. After the order has been
processed, the thread is ready to receive a new order. This design corresponds
to a cyclic executive.

2. There is at most one workflow, and the workflow can handle multiple orders
at a time.

The workflow is mainly concurrent: after an order is received, the thread forks
internally into concurrent threads, such that different threads perform the
different activities of the workflow – although the requirements on the config-
urations severely restrict the degree of internal concurrency of the workflow,
and each thread performs the same activity for different orders.

5.3. Modelling the Workflow 121

3. There can be multiple workflows, and each workflow handles a single order
at a time.

After an order is received, the thread forks into two threads: one thread
processes the order sequentially – as in Design 1 – but terminates after the
order has been processed; the other thread waits to receive a new order.

4. There can be multiple workflows, and each workflow can handle multiple
orders at a time.

This design is a complex version of Design 2 with multiple workflows.

We choose to model Design 3 because it has a mixture of sequential and concurrent
processing, and is simple and realistic.

There are three possible designs for the reconfiguration of the workflow:

1. The reconfiguration consists of a single action.

2. The reconfiguration consists of multiple actions performed sequentially.

3. The reconfiguration consists of multiple actions performed concurrently.

We choose to model Design 3 because it provides the maximum scope for analyzing
interactions between application and reconfiguration actions.

5.3 Modelling the Workflow

We now formulate Design 3 of both configurations of the workflow and Design
3 of the reconfiguration in basic CCSdp. The sets of possible customer identifiers,
product identifiers and order identifiers is assumed to be finite.

Let C be the set of possible customer identifiers,
let I be the set of possible product identifiers,
let O be the set of possible order identifiers,
such that |C|, |I|, |O|∈N+

5.3.1 Modelling Configuration 1

Configuration 1 consists of a collection of activities. Each activity consists of a
collection of actions, which are modelled as actions of processes inP. For example,
the actions of the Order Receipt activity are modelled as the actions of the REC

5.3. Modelling the Workflow 122

process. Actions of the Evaluation activity are modelled as actions of the processes
IC, ICH, CC and CCH. The Rejection activity is modelled as the action Rejectc,i,o in
the processes ICH and CCH. The Confirmation activity is modelled as the action
Con f irmc,i,o in the ARCH process.

Configuration 1 of the workflow is denoted by the process WORKFLOW, and
WORKFLOW , REC | IC | ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH

REC ,
∑

c∈C,i∈I,o∈O Receiptc,i,o.(WORKFLOW | InventoryCheckc,i,o)
and denotes the Order Receipt activity.

Notice that the subscripted actions (such as Receiptc,i,o) are distinct.
Thus, Receiptc,i,o = Receiptc′,i′,o′ ⇐⇒ c = c′ ∧ i = i′ ∧ o = o′

By convention, we omit the 0 process at the end of a trace of actions by a process.

IC ,
∑

c∈C,i∈I,o∈O InventoryCheckc,i,o.τ.(InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o)
and denotes the Inventory Check action in Evaluation.

ICH ,
∑

c∈C,i∈I,o∈O InventoryCheckNotOKc,i,o.Rejectc,i,o + InventoryCheckOKc,i,o.CreditCheckc,i,o

and denotes actions in Evaluation and Rejection.

CC ,
∑

c∈C,i∈I,o∈O CreditCheckc,i,o.τ.(CreditCheckNotOKc,i,o + CreditCheckOKc,i,o)
and denotes the Internal Credit Check action in Evaluation.

CCH ,
∑

c∈C,i∈I,o∈O CreditCheckNotOKc,i,o.Rejectc,i,o + CreditCheckOKc,i,o.(Billc,i,o | Shipc,i,o)
and denotes actions in Evaluation and Rejection.

BILL ,
∑

c∈C,i∈I,o∈O Billc,i,o.τ.BillOKc,i,o

and denotes the Billing activity.

SHIP ,
∑

c∈C,i∈I,o∈O Shipc,i,o.τ.ShipOKc,i,o
and denotes the Shipping activity.

BSH ,
∑

c∈C,i∈I,o∈O BillOKc,i,o.ShipOKc,i,o.Archivec,i,o + ShipOKc,i,o.BillOKc,i,o.Archivec,i,o

and denotes an action in Archiving.

ARC ,
∑

c∈C,i∈I,o∈O Archivec,i,o.τ.ArchiveOKc,i,o

and denotes the main Archiving activity.

ARCH ,
∑

c∈C,i∈I,o∈O ArchiveOKc,i,o.Con f irmc,i,o
and denotes the Confirmation activity.

5.3. Modelling the Workflow 123

∴WORKFLOW =∑
c∈C,i∈I,o∈O Receiptc,i,o.(WORKFLOW | InventoryCheckc,i,o)

|
∑

c∈C,i∈I,o∈O InventoryCheckc,i,o.τ.(InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o)

|
∑

c∈C,i∈I,o∈O InventoryCheckNotOKc,i,o.Rejectc,i,o + InventoryCheckOKc,i,o.CreditCheckc,i,o

|
∑

c∈C,i∈I,o∈O CreditCheckc,i,o.τ.(CreditCheckNotOKc,i,o + CreditCheckOKc,i,o)
|
∑

c∈C,i∈I,o∈O CreditCheckNotOKc,i,o.Rejectc,i,o + CreditCheckOKc,i,o.(Billc,i,o | Shipc,i,o)

|
∑

c∈C,i∈I,o∈O Billc,i,o.τ.BillOKc,i,o

|
∑

c∈C,i∈I,o∈O Shipc,i,o.τ.ShipOKc,i,o

|
∑

c∈C,i∈I,o∈O BillOKc,i,o.ShipOKc,i,o.Archivec,i,o + ShipOKc,i,o.BillOKc,i,o.Archivec,i,o

|
∑

c∈C,i∈I,o∈O Archivec,i,o.τ.ArchiveOKc,i,o

|
∑

c∈C,i∈I,o∈O ArchiveOKc,i,o.Con f irmc,i,o

The execution of Configuration 1 of the workflow is modelled as transitions of the
WORKFLOW process. The following example shows a sequence of transitions of
WORKFLOW that models the successful completion of an order in Configuration
1.

WORKFLOW
Receiptc,i,o
−→ WORKFLOW | InventoryCheckc,i,o | IC |

ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH
τ
−→WORKFLOW | τ.(InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) |

ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH
τ
−→WORKFLOW | (InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) | ICH |
CC | CCH | BILL | SHIP | BSH | ARC | ARCH
τ
−→WORKFLOW | CreditCheckc,i,o | CC |
CCH | BILL | SHIP | BSH | ARC | ARCH
τ
−→WORKFLOW | τ.(CreditCheckNotOKc,i,o + CreditCheckOKc,i,o) |

CCH | BILL | SHIP | BSH | ARC | ARCH
τ
−→WORKFLOW | (CreditCheckNotOKc,i,o + CreditCheckOKc,i,o) | CCH |
BILL | SHIP | BSH | ARC | ARCH
τ
−→WORKFLOW | (Billc,i,o | Shipc,i,o) | BILL | SHIP |
BSH | ARC | ARCH
τ
−→WORKFLOW | Shipc,i,o | τ.BillOKc,i,o | SHIP |
BSH | ARC | ARCH
τ
−→WORKFLOW | Shipc,i,o | BillOKc,i,o | SHIP |
BSH | ARC | ARCH
τ
−→WORKFLOW | BillOKc,i,o | τ.ShipOKc,i,o |

BSH | ARC | ARCH
τ
−→WORKFLOW | BillOKc,i,o | ShipOKc,i,o | BSH |
ARC | ARCH

5.3. Modelling the Workflow 124

τ
−→WORKFLOW | BillOKc,i,o | BillOKc,i,o.Archivec,i,o |

ARC | ARCH
τ
−→WORKFLOW | Archivec,i,o | ARC |
ARCH
τ
−→WORKFLOW | τ.ArchiveOKc,i,o |

ARCH
τ
−→WORKFLOW | ArchiveOKc,i,o | ARCH
τ
−→WORKFLOW | Con f irmc,i,o
Con f irmc,i,o
−→ WORKFLOW | 0

5.3.2 Modelling Configuration 2

Configuration 2 is different in structure from Configuration 1, although some of
the activities are unchanged (such as Billing and Shipping), and this difference
is reflected in the processes used to model Configuration 2. For example, the REC
process must be different in order to spawn a workflow with Configuration 2.
The CCH process must be different in order to ensure that Shipping and Billing
are performed in sequence. A new process ECC is needed in order to model the
new action (External Credit Check) in the Evaluation activity. The BSH process
must be different since the serialization of Shipping and Billing results in only one
output for Archiving. Removal of the Confirmation activity implies the Archiving
activity no longer produces an output, and (therefore) the ARC process must be
different and the ARCH process is no longer needed.

Configuration 2 of the workflow is denoted by the process WORKFLOW′, and
WORKFLOW′ , REC′ | IC | ICH | CC | CCH′ | BILL | SHIP | BSH′ | ARC′

REC′ ,
∑

c∈C,i∈I,o∈O Receiptc,i,o.(WORKFLOW′ | InventoryCheckc,i,o)
and denotes the Order Receipt activity.

CCH′ ,
∑

c∈C,i∈I,o∈O CreditCheckNotOKc,i,o.(ExtCreditCheckc,i,o | ECC) +

CreditCheckOKc,i,o.Shipc,i,o.ShipOKc,i,o.Billc,i,o
and denotes changes in Evaluation that initiate an External Credit Check and initiate
Shipping and Billing sequentially.

ECC ,∑
c∈C,i∈I,o∈O ExtCreditCheckNotOKc,i,o.Rejectc,i,o + ExtCreditCheckOKc,i,o.Shipc,i,o.ShipOKc,i,o.Billc,i,o

and denotes the new External Credit Check handling action in Evaluation and the
sequential initiation of Shipping and Billing.

BSH′ ,
∑

c∈C,i∈I,o∈O BillOKc,i,o.Archivec,i,o

and denotes a changed action in Archiving that handles the serialization of Shipping and
Billing.

5.3. Modelling the Workflow 125

ARC′ ,
∑

c∈C,i∈I,o∈O Archivec,i,o.τ
and denotes the main Archiving activity that now terminates the workflow.

∴WORKFLOW′ =∑
c∈C,i∈I,o∈O Receiptc,i,o.(WORKFLOW′ | InventoryCheckc,i,o)

|
∑

c∈C,i∈I,o∈O InventoryCheckc,i,o.τ.(InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o)

|
∑

c∈C,i∈I,o∈O InventoryCheckNotOKc,i,o.Rejectc,i,o + InventoryCheckOKc,i,o.CreditCheckc,i,o

|
∑

c∈C,i∈I,o∈O CreditCheckc,i,o.τ.(CreditCheckNotOKc,i,o + CreditCheckOKc,i,o)
|
∑

c∈C,i∈I,o∈O CreditCheckNotOKc,i,o.(ExtCreditCheckc,i,o | ECC) +

CreditCheckOKc,i,o.Shipc,i,o.ShipOKc,i,o.Billc,i,o
|
∑

c∈C,i∈I,o∈O Billc,i,o.τ.BillOKc,i,o

|
∑

c∈C,i∈I,o∈O Shipc,i,o.τ.ShipOKc,i,o

|
∑

c∈C,i∈I,o∈O BillOKc,i,o.Archivec,i,o

|
∑

c∈C,i∈I,o∈O Archivec,i,o.τ

The execution of Configuration 2 of the workflow is modelled as transitions of the
WORKFLOW′ process. The following example shows a sequence of transitions of
WORKFLOW′ that models the successful completion of an order in Configuration
2.

WORKFLOW′

Receiptc,i,o
−→ WORKFLOW′ | InventoryCheckc,i,o | IC |

ICH | CC | CCH’ | BILL | SHIP | BSH’ | ARC’
τ
−→WORKFLOW′ | τ.(InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) |

ICH | CC | CCH’ | BILL | SHIP | BSH’ | ARC’
τ
−→WORKFLOW′ | (InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) | ICH |
CC | CCH’ | BILL | SHIP | BSH’ | ARC’
τ
−→WORKFLOW′ | CreditCheckc,i,o | CC |
CCH’ | BILL | SHIP | BSH’ | ARC’
τ
−→WORKFLOW′ | τ.(CreditCheckNotOKc,i,o + CreditCheckOKc,i,o) |

CCH’ | BILL | SHIP | BSH’ | ARC’
τ
−→WORKFLOW′ | (CreditCheckNotOKc,i,o + CreditCheckOKc,i,o) | CCH′ |
BILL | SHIP | BSH’ | ARC’
τ
−→WORKFLOW′ | ExtCreditCheckc,i,o | ECC |
BILL | SHIP | BSH’ | ARC’
ExtCreditCheckc,i,o

−→ WORKFLOW′ | ECC |
BILL | SHIP | BSH’ | ARC’
τ
−→WORKFLOW′ | Shipc,i,o.ShipOKc,i,o.Billc,i,o | SHIP |
BILL | BSH’ | ARC’ (assuming the environment performs a ExtCreditCheckOKc,i,o)
τ
−→WORKFLOW′ | ShipOKc,i,o.Billc,i,o | τ.ShipOKc,i,o |

BILL | BSH’ | ARC’

5.3. Modelling the Workflow 126

τ
−→WORKFLOW′ | ShipOKc,i,o.Billc,i,o | ShipOKc,i,o |

BILL | BSH’ | ARC’
τ
−→WORKFLOW′ | Billc,i,o | BILL |
BSH’ | ARC’
τ
−→WORKFLOW′ | τ.BillOKc,i,o |

BSH’ | ARC’
τ
−→WORKFLOW′ | BillOKc,i,o | BSH′ |
ARC’
τ
−→WORKFLOW′ | Archivec,i,o | ARC′
τ
−→WORKFLOW′ | τ
τ
−→WORKFLOW′ | 0

5.3.3 Modelling the Reconfiguration

The workflow is reconfigured by a reconfiguration manager (modelled by the pro-
cess RM) that is activated after receiving a triggering message and reconfigures the
workflow from Configuration 1 to Configuration 2. There are two different ways
of reconfiguring the workflow (depending on its state of execution), and they are
triggered by different messages. The trigger1 guard models receipt of the message
that is used to trigger reconfiguration of the workflow if it has not yet started to
execute. After the release of trigger1, RM replaces the process WORKFLOW with
the process WORKFLOW′, and replicates itself. The trigger2 guard models receipt
of the message that is used to trigger reconfiguration of the workflow if it has
started to execute. After the release of trigger2, RM deletes the process ARCH, re-
places the processes CCH, BSH and ARC with the processes CCH′, BSH′ and ARC′

(respectively), and replicates itself.

The reconfiguration manager is denoted by the process RM, and

RM , trigger1.
(

WORKFLOW′
WORKFLOW | RM

)
+ trigger2.

(
CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)
Thus, RM performs two operations of unplanned process reconfiguration, namely,
the deletion and replacement of processes that are not designed to be reconfigured.

The process of reconfiguration of the workflow is expressed as reactions between
WORKFLOW and RM in the expression WORKFLOW |RM. The step through which
the reconfiguring process RM is added to the context of the process WORKFLOW,
that is, the step through which WORKFLOW becomes WORKFLOW | RM, is per-
formed outside basic CCSdp, and thereby captures the fact that the reconfiguration
is unplanned (as mentioned previously in Section 4.1.1).

5.4. Evaluation using the Reconfiguration Requirements 127

5.4 Evaluation using the Reconfiguration Require-

ments

One of the purposes of modelling is analysis. Therefore, one way to evaluate
basic CCSdp is to examine how well the expression WORKFLOW | RM supports the
verification of the reconfiguration requirements.

5.4.1 Verification of Requirement 2

Reconfiguration requirement 2 states: ‘No order should be significantly delayed
by the reconfiguration’.

This requirement has a notion of duration. However, duration is not expressed in
WORKFLOW | RM (because duration cannot be expressed in basic CCSdp). There-
fore, reconfiguration requirement 2 cannot be verified.

5.4.2 Verification of Requirements 1, 3, 4 and 5

There are two standard approaches to the analysis of process expressions: equa-
tional reasoning and model checking. Equational reasoning works by equating
process expressions that are congruent in structure or in behaviour, which requires
an invariant property of a model that can be represented as a process expression.
However, in the workflow, the invariant property is not clear. Furthermore, the
simplicity of the workflow made it difficult to find simple expressions that could
be equated for the verification of the requirements. Therefore, using equational
reasoning based on ∼dp to verify reconfiguration requirements 1, 3, 4 and 5 is
problematic.

In contrast, reconfiguration requirements 1, 3, 4 and 5 can all be expressed using
a temporal logic and verified by model checking (see [MADB12]). Furthermore,
model checking is a more widely applicable verification technique than equational
reasoning. Therefore, it is desirable that expressions in CCSdp are amenable to
model checking, and we outline the argument that CCSdp processes are amenable
to model checking.

5.4. Evaluation using the Reconfiguration Requirements 128

5.4.2.1 Model Checking CCSdp Processes

Model checking is a technique designed to verify the correctness of concurrent
systems with a finite number number of states and transitions [CGP02]. It has
a number of advantages: it is highly amenable to automation [BBF+01], it can
identify an error state of a system (if any) where the system has failed to meet the
specification, and it can check partial or incomplete representations of a system.
Its principal disadvantage is the ‘state explosion’ problem, although research has
made progress on this issue with the use of binary decision diagrams.

In order to describe model checking, the following definitions are needed. For a
more detailed explanation of the definitions, see [Rot00] and [CGP02].

Definition 5.4.1 A model is a non-empty mathematical structure that satisfies a set of
formulae.

Definition 5.4.2 An atomic proposition is a formula whose Boolean value can be calculated
from a state alone.

Definition 5.4.3 Given a set of atomic propositions A , a Kripke structure over A is a
mathematical structure of the form (S,S0,R,L) such that:

1. S is a finite set of states.

2. S0 is the set of initial states, and S0 ⊆ S.

3. R is a total transition relation on S, and R ⊆ S x S.

4. L : S −→ PA is a total function on S that labels each state in S with the set of atomic
propositions in A that are true in that state.

For some systems, the set of initial states is not important, and their Kripke
structures are simplified to the form (S,R,L). A path π in a Kripke structure
from a state s is an infinite sequence of states, that is, π = s0s1s2... such that
s0 = s ∧ ∀i∈N ((si, si+1)∈R).

Definition 5.4.4 Model checking is an activity that decides whether or not a Kripke struc-
ture is a model of a set of formulae expressed in a temporal logic.

If a system is represented by a Kripke structure (S,R,L), and a system failure is
expressed as a formula f in a temporal logic, then model checking can identify the
states in S (if any) that satisfy f , and thereby identify the states of the system (if

5.4. Evaluation using the Reconfiguration Requirements 129

any) where the system fails as defined.

The first step in model checking is the production of a Kripke structure designed
for the verification of a requirement. Now, processes are essentially states with
transitions. Therefore, it is conceptually feasible to produce a state transition
system from a CCSdp expression. Our restriction (in Section 4.4.2) that models
consist of a finite number of processes and process definitions ensures a finite
number of states. The restriction that every process in P is the result of one
or more applications of the production rules of P+ or P0 with finite depth of
inference, and the equivalence of ∼o f , ensure a finite number of transitions for each
state. Therefore, a process expression in basic CCSdp corresponds to a finite state
transition system. Each state can be associated with a set of atomic propositions.
Therefore, it is conceptually feasible to produce a Kripke structure from a basic
CCSdp expression. More specifically, the state space of a Kripke structure can be
partitioned into sets of dimensions, and a process p can be mapped to coordinates
in dimensions determined by fdrdepth(p).

For example, the process WORKFLOW can be mapped to the first two coordinates
of the state (order_id, workflow_state, reconfiguration_state) in a Kripke structure,
because fdrdepth(WORKFLOW) = 0; and the process RM (after the release of
trigger1 or trigger2) can be mapped to the third coordinate, because

fdrdepth
(

WORKFLOW′
WORKFLOW | RM

)
= 1 and

fdrdepth
(

CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)
= 1.

Representing multiple WORKFLOW processes executing in parallel is not prob-
lematic (in principle), because multiple Kripke structures can be composed to
produce a single Kripke structure (although the state space increases consider-
ably). Furthermore, the requirements can be verified by model checking a single
WORKFLOW in which interactions with the other WORKFLOW processes are
represented by transitions that change the reconfiguration_state coordinate of the
given WORKFLOW.

The verification of a requirement can be performed incrementally: the
WORKFLOW | RM process is mapped to its state in the Kripke structure, and
the value of the temporal logic formula is calculated. Then, for each transition,
the successor process is mapped to its state in the Kripke structure, and the value
of the temporal logic formula is calculated. The second step is repeated until the

5.4. Evaluation using the Reconfiguration Requirements 130

formula’s Boolean value is calculated, which either verifies or refutes the require-
ment. Notice that the commutativity, associativity and the congruence property
of ∼dp (see Theorem 4.3.12, Theorem 4.3.14 and Theorem 4.3.10) allow states in the
Kripke structure to be identified, which simplifies the Kripke structure.

5.4.2.2 Problems identified by Model Checking WORKFLOW | RM

Our initial experiments in model checking were informal and done manually,
because of the lack of a model checker that performs process matching (to our
knowledge). We focused on the termination requirement on workflows and
on reconfiguration, and traced the transitions of the process WORKFLOW | RM
directly in basic CCSdp for convenience. The termination requirement on workflows
can be taken as the requirement that every sequence of transitions of every instance
of the WORKFLOW and WORKFLOW′ processes must reach 0 (for a successfully
completed order, and ignoring the spawned WORKFLOW or WORKFLOW′

process). The termination requirement on reconfiguration can be taken as the
requirement that every sequence of transitions of every instance of the RM process
that has its trigger released must reach 0 (ignoring the spawned RM process). The
termination requirements on workflows and on reconfiguration can be combined.

The following example shows a sequence of transitions of WORKFLOW | RM that
terminates as required. The workflow starts its execution in Configuration 1 and
changes its configuration during execution to Configuration 2.

WORKFLOW | RM
Receiptc,i,o
−→ WORKFLOW | InventoryCheckc,i,o | IC |

ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH | RM
τ
−→WORKFLOW | τ.(InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) |

ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH | RM
τ
−→WORKFLOW | (InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) | ICH |
CC | CCH | BILL | SHIP | BSH | ARC | ARCH | RM
τ
−→WORKFLOW | CreditCheckc,i,o | CC |
CCH | BILL | SHIP | BSH | ARC | ARCH | RM
trigger2
−→ WORKFLOW | CreditCheckc,i,o | CC |

CCH | BILL | SHIP | BSH | ARC | ARCH |
(

CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)
τ
−→WORKFLOW | CreditCheckc,i,o | CC |
CCH’ | BILL | SHIP | BSH | ARC | ARCH |

(
BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)
τ
−→WORKFLOW | CreditCheckc,i,o | CC |
CCH’ | BILL | SHIP | BSH’ | ARC | ARCH |

(
ARC′
ARC |

0
ARCH | RM

)

5.4. Evaluation using the Reconfiguration Requirements 131

τ
−→WORKFLOW | CreditCheckc,i,o | CC |
CCH’ | BILL | SHIP | BSH’ | ARC’ | ARCH |

(
0

ARCH | RM
)

τ
−→WORKFLOW | CreditCheckc,i,o | CC |
CCH’ | BILL | SHIP | BSH’ | ARC’ | 0 | RM
τ
−→WORKFLOW | τ.(CreditCheckNotOKc,i,o + CreditCheckOKc,i,o) |

CCH’ | BILL | SHIP | BSH’ | ARC’ | 0 | RM
τ
−→WORKFLOW | (CreditCheckNotOKc,i,o + CreditCheckOKc,i,o) | CCH′ |
BILL | SHIP | BSH’ | ARC’ | 0 | RM
τ
−→WORKFLOW | Shipc,i,o.ShipOKc,i,o.Billc,i,o | SHIP |
BILL | BSH’ | ARC’ | 0 | RM
τ
−→WORKFLOW | ShipOKc,i,o.Billc,i,o | τ.ShipOKc,i,o |

BILL | BSH’ | ARC’ | 0 | RM
τ
−→WORKFLOW | ShipOKc,i,o.Billc,i,o | ShipOKc,i,o |

BILL | BSH’ | ARC’ | 0 | RM
τ
−→WORKFLOW | Billc,i,o | BILL |
BSH’ | ARC’ | 0 | RM
τ
−→WORKFLOW | τ.BillOKc,i,o |

BSH’ | ARC’ | 0 | RM
τ
−→WORKFLOW | BillOKc,i,o | BSH′ |
ARC’ | 0 | RM
τ
−→WORKFLOW | Archivec,i,o | ARC′ |
0 | RM
τ
−→WORKFLOW | τ | 0 | RM
τ
−→WORKFLOW | 0 | 0 | RM

The following example shows another sequence of transitions of WORKFLOW |RM
where the workflow fails to terminate (i.e. deadlocks) due to non-determinism of
the transitions.

WORKFLOW | RM
Receiptc,i,o
−→ WORKFLOW | InventoryCheckc,i,o | IC |

ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH | RM
τ
−→WORKFLOW | τ.(InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) |

ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH | RM
τ
−→WORKFLOW | (InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) | ICH |
CC | CCH | BILL | SHIP | BSH | ARC | ARCH | RM
τ
−→WORKFLOW | CreditCheckc,i,o | CC |
CCH | BILL | SHIP | BSH | ARC | ARCH | RM
trigger2
−→ WORKFLOW | CreditCheckc,i,o | CC |

CCH | BILL | SHIP | BSH | ARC | ARCH |
(

CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)

5.4. Evaluation using the Reconfiguration Requirements 132

τ
−→WORKFLOW | τ.(CreditCheckNotOKc,i,o + CreditCheckOKc,i,o) |

CCH | BILL | SHIP | BSH | ARC | ARCH |
(

CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)
τ
−→WORKFLOW | (CreditCheckNotOKc,i,o + CreditCheckOKc,i,o) | CCH |
BILL | SHIP | BSH | ARC | ARCH |

(
CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)
τ
−→WORKFLOW | Billc,i,o | Shipc,i,o | BILL | SHIP |
BSH | ARC | ARCH |

(
CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)
τ
−→WORKFLOW | Billc,i,o | Shipc,i,o | BILL | SHIP |
BSH’ | ARC | ARCH |

(
CCH′
CCH |

ARC′
ARC |

0
ARCH | RM

)
τ
−→WORKFLOW | Billc,i,o | Shipc,i,o | BILL | SHIP |
BSH’ | ARC’ | ARCH |

(
CCH′
CCH |

0
ARCH | RM

)
τ
−→WORKFLOW | Billc,i,o | Shipc,i,o | BILL | SHIP |
BSH’ | ARC’ |

(
CCH′
CCH | RM

)
τ
−→WORKFLOW | Shipc,i,o | τ.BillOKc,i,o | SHIP |
BSH’ | ARC’ |

(
CCH′
CCH | RM

)
τ
−→WORKFLOW | τ.BillOKc,i,o | τ.ShipOKc,i,o |

BSH’ | ARC’ |
(

CCH′
CCH | RM

)
τ
−→WORKFLOW | BillOKc,i,o | τ.ShipOKc,i,o |

BSH’ | ARC’ |
(

CCH′
CCH | RM

)
τ
−→WORKFLOW | BillOKc,i,o | ShipOKc,i,o | BSH′ |
ARC’ |

(
CCH′
CCH | RM

)
τ
−→WORKFLOW | ShipOKc,i,o | Archivec,i,o | ARC′ |

(
CCH′
CCH | RM

)
τ
−→WORKFLOW | ShipOKc,i,o | τ |

(
CCH′
CCH | RM

)
τ
−→WORKFLOW | ShipOKc,i,o |

(
CCH′
CCH | RM

)
Notice that the original WORKFLOW fails to terminate because there is no process
to synchronise with its action ShipOKc,i,o. The original RM failed to replace CCH in
the original WORKFLOW, but it can still terminate by replacing CCH in the new
(i.e. wrong) WORKFLOW.

The problems caused by non-deterministic transitions can be minimized by using
Design 1 for the reconfiguration. That is, by removing the term in RM guarded
by trigger2, so that RM , trigger.

(
WORKFLOW′
WORKFLOW | RM

)
. However, atomic reconfig-

uration is a restrictive form of reconfiguration. An alternative way of handling
non-deterministic transitions is to use a priority scheme for processes or transitions.

A second problem that arose during our informal model checking was the replace-
ment of the wrong process by a fraction. For example, suppose we have two
WORKFLOW processes and two RM processes in existence at the same time. For
clarity, the four processes are distinguished by parentheses, which have no seman-

5.4. Evaluation using the Reconfiguration Requirements 133

tic significance because parallel composition is associative in basic CCSdp. Also
suppose reconfiguration transitions have a higher priority than other transitions.
Then the following sequence of transitions is possible.

WORKFLOW | RM
Receiptc,i,o
−→ WORKFLOW |

(InventoryCheckc,i,o | IC | ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) | RM
τ
−→WORKFLOW |
(τ.(InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) |

ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) | RM
τ
−→WORKFLOW |
((InventoryCheckNotOKc,i,o + InventoryCheckOKc,i,o) |

ICH | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) | RM
τ
−→WORKFLOW |
(CreditCheckc,i,o | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) | RM
trigger2
−→ WORKFLOW |

(CreditCheckc,i,o | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) |(
CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH | RM

)
trigger1
−→ WORKFLOW |

(CreditCheckc,i,o | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) |(
CCH′
CCH |

BSH′
BSH |

ARC′
ARC |

0
ARCH

)
|(

WORKFLOW′
WORKFLOW | RM

)
τ
−→ (REC | IC | ICH | CC | CCH′ | BILL | SHIP | BSH | ARC | ARCH) |

(CreditCheckc,i,o | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) |(
BSH′
BSH |

ARC′
ARC |

0
ARCH

)
|(

WORKFLOW′
WORKFLOW | RM

)
τ
−→ (REC | IC | ICH | CC | CCH′ | BILL | SHIP | BSH′ | ARC | ARCH) |

(CreditCheckc,i,o | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) |(
ARC′
ARC |

0
ARCH

)
|(

WORKFLOW′
WORKFLOW | RM

)
τ
−→ (REC | IC | ICH | CC | CCH′ | BILL | SHIP | BSH′ | ARC′ | ARCH) |

(CreditCheckc,i,o | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) |(
0

ARCH

)
|(

WORKFLOW′
WORKFLOW | RM

)
τ
−→ (REC | IC | ICH | CC | CCH′ | BILL | SHIP | BSH′ | ARC′) |
(CreditCheckc,i,o | CC | CCH | BILL | SHIP | BSH | ARC | ARCH) |

0 |(
WORKFLOW′
WORKFLOW | RM

)

5.5. Strengths and Weaknesses of Basic CCSdp 134

Thus, the fractions intended to reconfigure the executing workflow have recon-
figured the other workflow instead, and the fraction intended to replace the
workflow that had not yet started to execute cannot progress. The intention
was to reconfigure both workflows, but only one workflow (the wrong one) was
reconfigured. One way to solve this problem is to use a process identifier to
reconfigure specific processes selectively.

The experience of modelling and informal model checking revealed three other
problems. In a process expression with n + 1 positive singleton factors, one
of which is a fraction, the matching of the denominator of the fraction will
require 2n

− 1 comparisons between the denominator and other factors in the
process expression. Therefore, the computational complexity of matching is expo-
nential at each transition. The use of a process identifier can reduce this complexity.

The office workflow is a simple case study. However, the workflow is modelled
using up to 10 concurrent processes. We had to be careful to avoid port/action
name clashes when defining the processes. More complex case studies are expected
to contain many more processes. In such cases, unless there is a way to scope
port/action names, unintended reactions between processes will be unavoidable.

Writing processes without parameter passing is clumsy and increases the verbosity
of process expressions, which makes them inconvenient to write and to read.

5.5 Strengths and Weaknesses of Basic CCSdp

The case study reveals the following strengths and weaknesses of basic CCSdp.

Strengths

1. Unplanned process reconfiguration can be modelled simply and tersely.

2. Process expressions can be verified against requirements by model checking.

Weaknesses

1. No value-passing in process transitions, which increases the verbosity of
process expressions.

2. Duration of an action cannot be modelled.

5.5. Strengths and Weaknesses of Basic CCSdp 135

3. No facility for controlling the non-determinism of process transitions.

4. No facility for the selective reconfiguration of a specific process instance.

5. Computational complexity of matching is exponential at each transition.

6. No facility for scoping port/action names.

Chapter 6

Towards Full CCSdp

Contents
6.1 Basic CCSdp+ν . 136

6.1.1 Syntax . 136

6.1.2 Labelled Transition System Semantics 138

6.1.3 Positive Processes and Zero Processes 139

6.2 On Process Identification . 141

6.2.1 A Process Identification Scheme 141

6.3 Discussion . 143

In this chapter, we briefly explore modifications of basic CCSdp in order to overcome
some of its limitations identified in Chapter 4 and Chapter 5. Specifically, the
addition of the restriction operator (ν), which scopes port names and (thereby)
supports the modelling of large systems; and a process identification scheme, which
supports the selective reconfiguration of specific process instances and (thereby)
also reduces the computational complexity of matching.

6.1 Basic CCSdp+ν

We define the syntax, LTS semantics, and the sets of positive and zero processes of
basic CCSdp+ν, and make observations.

6.1.1 Syntax

Let Pν be the set of processes in basic CCSdp+ν.

As in basic CCSdp, N is the countable set of names (e.g. a, b, c) that represent both
input ports and input actions of the processes in Pν; and N is the countable set of
complementary names (e.g. a, b, c) that represent both output ports and output
actions of the processes in Pν. Let PNν be the countable set of names (e.g. A, B,

6.1. Basic CCSdp+ν 137

C) of the processes inPν. The setsN ,N andPNν are assumed to be pairwise disjoint.

As in basic CCSdp, the interaction between complementary actions (such as a and a)
is represented by the special action τ, which is internal to a process. By convention,

∀l ∈ N(l , l). L is the set of names that represent both ports and actions of the
processes in Pν, where L , N ∪N . I is the set of input and output ports/actions of
the processes in Pν, and their internal action (τ), where I , L ∪ {τ}.

The syntax of a process P in Pν is defined as follows:

P ::= PN<β̃> | M | P|P | (νβ̃)P | P
P

M ::= 0 | α.P | M + M

where PN∈PNν, β̃ is a tuple of elements ofN ∪N , and α∈N ∪N ∪ {τ}.

As in CCS, (νβ̃)P models restriction of the scope of a tuple of port/action names β̃
to a process P. The meaning of the other syntactic constructs is as in basic CCSdp

(suitably reinterpreted for processes in Pν). Thus, Pν is a superset of P.

Operator Precedence

In basic CCSdp+ν, the precedence of the operators (in decreasing order) is:
fraction formation (highest); restriction and relabelling (right associative); prefix;
summation; parallel composition (lowest).

Free Names

Given p ∈ Pν, let f n(p) be the set of port/action free names of p, and is defined as
follows:

f n : Pν −→ PL such that

f n(p) ,

∅ if p = 0

{β} ∪ f n(p1) elseif p = β.p1 ∧ β∈N∪N

f n(M1) ∪ f n(M2) elseif p = M1 + M2

f n(p1) ∪ f n(p2) elseif p = p1|p2

f n(p1) − (Set(β̃) ∪ Set(β̃)) elseif p = (νβ̃)p1

f n(p1) ∪ f n(p2) elseif p =
p1

p2

Set(β̃) elseif p = A<β̃>

6.1. Basic CCSdp+ν 138

6.1.2 Labelled Transition System Semantics

Let Rν be the countable set of reconfiguration actions of the processes inPν (e.g. τrX ,
τrY , τrZ) that create a process inPν, and letRν be the countable set of complementary
reconfiguration actions of the processes in Pν (e.g. τrX , τrY , τrZ) that delete a process
in Pν (see the Creat and Delet rules below). Each action in Rν is represented by τrX ,
with X∈Pν, and ∀τrX ∈Rν (τrX , τrX).

The setsN ,N , {τ}, Rν, Rν and PNν are assumed to be pairwise disjoint.

LetCν be the set of reconfiguration actions of the processes inPν, whereCν , Rν∪Rν.

LetAν be the set of actions of the processes in Pν, whereAν , I ∪ Cν.

The LTS rules for basic CCSdp +ν are a superset of the LTS rules for basic CCSdp

(suitably reinterpreted for processes in Pν) plus additional rules to describe new
behaviour due to the restriction operator (i.e. Res, ResFract and ResRecon). See
Table 6.1.

Res :
α ∈ I ∧ P α

−→P′ ∧ α < Set(̃a) ∪ Set(̃a)

(νã)P α
−→(νã)P′

The Res rule states that restriction preserves a transition in I of a process, provided
the transition is not in the set of restricted actions nor in the set of complementary
actions of the restricted actions.

ResFract :
P′
P

τrQ
−→P′ ∧ (νã)P ∈ P+

ν

(νã)P′
P

τr(νã)Q
−→ (νã)P′

The ResFract rule for restricted fraction processes corresponds to the Creat rule for
fraction processes. It states that if a fraction process P′

P can perform a reconfiguration
transition τrQ to create P′, then the restricted fraction process (νã)P′

P can perform the
reconfiguration transition τr(νã)Q

to create (νã)P′, provided (νã)P is a positive process.
Thus, the restricted fraction (νã)P′

P behaves like the fraction of the restrictions (νã)P′

(νã)P .

ResRecon :
ρQ ∈ {τrQ , τrQ} ∧ P

ρQ
−→P′ ∧ f n(Q) ∩ (Set(̃a) ∪ Set(̃a)) = ∅

(νã)P
ρQ
−→(νã)P′

The ResRecon rule is the Res rule modified for reconfiguration transitions. It states
that a restriction (νã)P preserves the reconfiguration transitionsτrQ , τrQ of the process

6.1. Basic CCSdp+ν 139

Sum k∈I∑
i∈I αi.Pi

αk
−→Pk

React λ∈L∪Cν ∧ P
λ
−→P′ ∧ Q

λ
−→Q′

P|Q
τ
−→P′|Q′

L-Par µ∈Aν ∧ P
µ
−→P′

P|Q
µ
−→P′|Q

R-Par µ∈Aν ∧ Q
µ
−→Q′

P|Q
µ
−→P|Q′

Ident
|̃b|=|̃a| ∧ µ∈Aν ∧ P[b̃

ã]
µ
−→P′

A<̃b>
µ
−→P′

where A(̃a) , P

Creat
P∼o f Q ∧ P∈P+

ν

P′
P

τrQ
−→P′

Delet
P∼o f Q ∧ P∈P+

ν

P
τrQ
−→0

CompDelet
R∼o f R1|R2 ∧ P

τrR1
−→P′ ∧ P′

τrR2
−→P′′

P
τrR
−→P′′

L-React
R∼o f R1|R2 ∧ P

τrR1
−→P′ ∧ P′

τrR
−→P′′ ∧ Q

τrR2
−→Q′

P|Q τ
−→P′′|Q′

R-React
R∼o f R1|R2 ∧ P

τrR1
−→P′ ∧ Q

τrR2
−→Q′ ∧ Q′

τrR
−→Q′′

P|Q τ
−→P′|Q′′

Res α∈I ∧ P
α
−→P′ ∧ α<Set(̃a)∪Set(̃a)

(νã)P
α
−→(νã)P′

ResFract
P′
P

τrQ
−→P′ ∧ (νã)P∈P+

ν

(νã) P′
P

τr(νã)Q
−→ (νã)P′

ResRecon
ρQ∈{τrQ ,τrQ } ∧ P

ρQ
−→P′ ∧ f n(Q)∩(Set(̃a)∪Set(̃a))=∅

(νã)P
ρQ
−→(νã)P′

Table 6.1: Labelled Transition System Semantics of Basic CCSdp+ν.

P, provided the free names of Q are not restricted by (νã). This condition (on Q) is
stronger than the corresponding condition (on α) in Res, because τrQ and τrQ depend
on the behaviour of the entire process Q for matching.

6.1.3 Positive Processes and Zero Processes

The sets of positive processes and zero processes of Pν are defined as follows.

Let P+
ν be the set of positive processes of Pν, where P+

ν is defined to be the smallest

6.1. Basic CCSdp+ν 140

subset of Pν that satisties the following conditions:

1. ∀α∈I ∀p∈Pν (α.p∈P+
ν)

2. ∀p, q∈Pν (p + q∈Pν ∧ (p∈P+
ν ∨ q∈P+

ν) =⇒ p + q∈P+
ν)

3. ∀p, q∈Pν (p∈P+
ν ∨ q∈P+

ν =⇒ p|q∈P+
ν)

4. ∀p∈Pν ∀q∈P+
ν

(
p
q ∈P

+
ν

)
5. ∀β∈I ∀X∈PNν (β.X∈P+

ν)

6. ∀γ̃∈L|γ̃| ∀p∈Pν (I(νγ̃)p ∪ (Rν)(νγ̃)p , ∅ =⇒ (νγ̃)p∈P+
ν)

Thus, P+
ν is a superset of P+. It should be clear from Lemma 4.3.5 and condition 6

that every positive process in Pν can perform a transition in I ∪ Rν.

Let P0
ν be the set of zero processes of Pν, where P0

ν is defined to be the smallest subset
of Pν that satisties the following conditions:

1. 0∈P0
ν

2. ∀p, q∈P0
ν (p + q∈Pν =⇒ p + q∈P0

ν)

3. ∀p, q∈P0
ν (p|q∈P0

ν)

4. ∀p∈Pν ∀q∈P0
ν

(
p
q ∈P

0
ν

)
5. ∀γ̃∈L|γ̃| ∀p∈Pν (I(νγ̃)p ∪ (Rν)(νγ̃)p = ∅ =⇒ (νγ̃)p∈P0

ν)

Thus, P0
ν is a superset of P0. It should be clear from Lemma 4.3.7 and condition 5

that no zero process in Pν can perform a transition in I ∪ Rν.
Therefore, P+

ν and P0
ν are disjoint.

As in basic CCSdp, we restrict Pν as follows:

Pν , P
+
ν ∪ P

0
ν (6.1)

Furthermore, as in basic CCSdp, every p ∈ Pν must be the result of one or more
applications of the production rules of P+

ν or P0
ν with finite depth of inference; and

every transition of every p∈Pν must be a result of one or more applications of the
LTS semantic rules with finite depth of inference.

It is straightforward to prove that {P+
ν ,P

0
ν } is a partition of Pν.

The definitions of strong of-bisimulation and strong dp-bisimulation on Pν are
identical to their respective definitions onP (suitably reinterpreted for processes in

6.2. On Process Identification 141

Pν); and we conjecture that the propositions proved forP also hold forPν (if suitably
reinterpreted). One important difference is the decidability of ∼o f . However, if
restriction is only applied to constant processes (rather than to recursively defined
processes) then the decidability of ∼o f is not an issue. Furthermore, if models in
CCSdp are restricted to consist of a finite number of processes and process definitions,
then decidability is not an issue.

6.2 On Process Identification

A process identifier is a simple construct for identifying a specific process instance.
Therefore, the identifier can be used by a fraction to select a specific process instance
for reconfiguration; and if the identifier is passed as a parameter to the fraction,
it enables the fraction to reconfigure different process instances in a flexible and
controlled manner. Furthermore, the identification of a specific process for re-
configuration precludes the matching of other processes, and thereby significantly
reduces the computational complexity of matching.

6.2.1 A Process Identification Scheme

An identifier is allocated to each process that is to be considered for reconfigura-
tion, such that the identifier is unique to the expression containing the process.
Processes not to be considered for reconfiguration do not have an identifier.

For example, in the expression p1 | q2 | r | x(m̃). p
′

p (m̃), only p1, q2 and their successors
can be tested for matching, because only p1 and q2 have been identified. Process r
and its successors will not be tested for matching.

If a process does not spawn a process after a transition, then the successor retains
the identity of its parent. The identity is retained after a non-deterministic
transition. Thus, a process identifier is used to identify a thread of a task or a
system component, rather than its state.

For example, we can have p1
a
−→s1

b
−→t1. So, p′

p (1) will test p1, s1 and t1 for a match.

If the parent’s transition results in the creation of two or more processes, then
the child processes append to the identifier of the parent their own identifier that
is locally unique among the set of possible child processes resulting from all the

6.2. On Process Identification 142

possible transitions of the parent.

For example, we can have q2
c
−→u2,1|v2,2 and q2

d
−→w2,3|w2,4. So, p′

p (2) will test q2, and
u2,1|v2,2, and w2,3|w2,4 for a match.

Thus, we use a hierarchical identification scheme for processes, with a unique
identifier for each thread that is to be considered for reconfiguration. The scheme
is hierarchical because processes in CCSdp have a flat compositional structure.
That is, there in no indication of super-processes containing sub-processes in
the process syntax. Therefore, we use the identifier hierarchy to indicate which
processes belong to a given task or component, and to retain this information
during equational reasoning and model checking.

An identification issue arises when a child process is common to different
transitions of a parent.

For example, we can have x a
−→u|v and x b

−→u|w.

Normally, the identifier of the child process u would be the same after either
transition, because u in u|v and in u|w can be considered to be the same instance
of the same process, but resulting from different transitions. However, the
environment of u can be different in the two transitions, and the modeller may
want to distinguish the two instances of u for matching because of the different
environments. Therefore, we leave the identifier allocation of common child
processes to the modeller.

The identifier of a process replacing a matched process should satisfy the same
restrictions as those on the identifiers of the child processes of the matched process.
However, the flexibility of the identification scheme implies that other alternatives
are possible, such as identifying the replacing process as a new top-level thread.

It is important to notice that CCSdp without process identifiers is a class-based
process algebra. That is, like numbers in arithmetic, the processes in CCSdp are
classes, and different instances of a process can be used interchangeably in any
context with identical results. However, the use of process identifiers makes the
modification of CCSdp an instance-based process algebra, so that different instances
of a process with different identifiers in identical contexts can produce different

6.3. Discussion 143

results.

6.2.1.1 Matching using identifiers instead of ∼of

If each positive singleton process in a process expression has a globally unique
identifier, then it is possible to identify uniquely the expression, all its sub-
expressions, and all the expressions resulting from their transitions (and their
sub-expressions). If the process expressions are all behaviourally distinct, then
such an identification scheme would be a very efficient matching mechanism.
However, this is not the case. Syntactically and structurally different processes
can behave identically in any context. In order to match processes with identical
behaviour but different identifiers, we would need much more complex matching
criteria than ∼o f ; which would complicate modelling. Alternatively, it would be
necessary to identify syntactically or structurally different processes with identical
behaviour and label them with a common identifier. However, the computational
complexity of checking identical behaviour would be similar to that of behavioural
matching; but the job would fall on the modeller rather than on the verification tool.

Therefore, we prefer to use a process identifier to identify a task/system component,
and use ∼o f to match a behavioural state of the task/system component.

6.3 Discussion

This thesis has introduced a novel construct – the fraction process – in order to
model unplanned process reconfiguration abstractly. The construct is a special
process rather than a special operator so that the fraction can be located outside
the system model, that is, in the context of the system model, which is necessary
for constructing an abstract model of unplanned process reconfiguration. Further-
more, the fraction can be added to the context of the system model in the same way
that a patch is added to the environment of the system. The syntactic separation of
the fraction from the process it replaces necessitates a dynamic binding between
the two processes, that is, process matching. A strong bisimulation (∼o f) is used
for process matching because it produces terse process expressions. Other forms
of matching based on syntactic equality and structural congruence have also been
briefly discussed. A fraction can also replace another fraction. Therefore, our
notion of reconfiguration is recursive.

6.3. Discussion 144

CCS was used as the host for the fraction process, resulting in the new process
algebra CCSdp. This was done partly because of the simplicity of CCS, and partly
because CCS is the common base for both π-calculi and some timed process
algebras, which should help to insert the fraction process and its theory into other
process algebras. An equational theory has been developed for CCSdp using a
stronger bisimulation than ∼o f (i.e. ∼dp). We have also argued that expressions in
CCSdp are amenable to model checking.

CCSdp has been evaluated in two ways. First, with respect to criteria used to
evaluate other formalisms. Second, by modelling a simple office workflow and
informal model checking. The exercise revealed several limitations of basic CCSdp.
This chapter has briefly outlined two extensions of basic CCSdp that address some
of these limitations. One extension uses the ν operator, which helps to construct
larger models but affects the decidability of ∼o f . Another extension uses a process
identification scheme that allows processes to be selectively reconfigured and also
reduces the computational complexity of matching.

Chapter 7

Concluding Remarks

Contents
7.1 Conclusions . 145

7.2 Future Work . 148

In this chapter, we summarize the findings of the research, discuss their significance,
and identify future work.

7.1 Conclusions

The thesis of this thesis is that the fraction process is a suitable construct for the
modelling and analysis of unplanned dynamic reconfiguration.

The next generation of dependable systems will be required to evolve [CHNF10],
and some of the systems (such as control systems) will be required to evolve
dynamically. Furthermore, it will be impossible to foresee at design time all the
future configurations of an evolving dependable system [MMR10]. This justifies
the modelling and analysis of unplanned dynamic reconfiguration.

We reviewed different approaches to the implementation of dynamic software
reconfiguration, and from these, identified requirements on a formalism for the
modelling and analysis of dynamic reconfiguration in dependable systems. The
requirements were then used to evaluate a number of formalisms. The review
of systems, dynamic architecture description languages and formalisms revealed
several issues in the formal modelling and analysis of dynamic reconfiguration.
One issue is the modelling of unplanned process reconfiguration. Mobile process
algebras are simple and widely used for modelling dynamic reconfiguration, and
their ability to model application actions and reconfiguration actions in the same
notation makes them suitable for modelling computational interactions between
the two sets of actions. However, mobile process algebras cannot model unplanned
reconfiguration abstractly, because they use special operators to model specialised

7.1. Conclusions 146

behaviour (such as reconfiguration), which requires syntactic proximity between
the operands in a model, which (in turn) requires both the reconfigured and the
reconfiguring components to be in the system. Therefore, existing process algebras
can model only planned reconfiguration.

Therefore, we defined a special kind of process (the fraction process) and mod-
elled reconfiguration as a reaction between a fraction and the process that it
reconfigures. Being a process, the fraction can be located outside the boundary
of the system model, that is, in the context of the system model, and thereby can
model reconfiguration of the system that is not designed into the system, that is,
unplanned reconfiguration. Furthermore, just as a patch can be introduced into
the environment of the system by an execution platform, so the fraction process
can be added to the context of the system model by a modelling environment.
Moreover, if a software component can be passed into the system as a value, then
the system model should be able to accept a process as a value. If this process is
a fraction, then the evolution of the system can be modelled elegantly (although
not in basic CCSdp). The notion of fraction process is recursive in order to allow a
reconfiguration subsystem or process to be itself reconfigured.

The use of CCS as a host formalism for the fraction process enables functional in-
teractions between application actions and reconfiguration actions to be expressed
simply – as interleavings of transitions. We conjecture that it is possible to extend in
a similar manner other process algebras that have a parallel composition operator,
and thereby enable the algebras to model unplanned dynamic reconfiguration
simply.

The syntactic separation of the fraction from the process that it reconfigures
necessitates a dynamic binding between the two processes, that is, process
matching. A strong bisimulation (∼o f) is used for matching in order to achieve
terseness of process expressions. We made a distinction between processes that
can be reconfigured (positive processes) and processes that cannot be reconfigured
(zero processes) in order to preserve the identity property of 0. The combination of
syntactic separation and dynamic binding between the processes is useful in other
ways. First, it supports the flexible calculation of different reconfiguration paths
between configurations, since only fraction processes need to be changed in order
to determine new reconfiguration transitions. Second, it is not necessary to have
access to the ‘source code’ of a system model in order to reconfigure it, since the

7.1. Conclusions 147

model can be changed by its interactions with fraction processes in its context.

We proved that ∼o f is an equivalence relation, but not a process congruence.
Therefore, the bisimulation conditions were strengthened to produce a congruence
(∼dp) for equational reasoning. The equational theory was developed using a more
rigorous proof technique than is conventional in order to establish that the theory
of fraction processes is mathematically sound.

Basic CCSdp was evaluated using the requirements used to evaluate the other
formalisms and the reconfiguration of a simple office workflow used as a case
study. The evaluation showed the ability of a fraction to model both planned and
unplanned process reconfiguration simply and tersely. Furthermore, it was argued
that process expressions in basic CCSdp are amenable to model checking. However,
the flexibility of matching causes problems.

First, the matching has to be decidable for tool support, but decidability involves
removing the restriction operator from basic CCSdp, bounding the depth of
fractional recursion of fraction processes, and restricting models to consist of a
finite number of processes and process definitions. However, the third restriction
is realistic for many control systems. An alternative is to achieve decidability
by sacrificing behavioural matching for structural congruence-based matching
or even syntactic matching. Thus, the loss of information hiding in matching is
balanced by the gain of decidability and tool support.

Second, the computational complexity of matching is exponential at each transition.

Third, matching cannot be controlled to reconfigure a specific process instance.
This issue can be addressed using a process identification scheme, which can
also reduce the computational complexity of matching significantly. However,
equational reasoning becomes vacuous with the use of a process identification
scheme, and another verification technique must be used (such as model checking).

The problem of controlling non-deterministic transitions is well known in process
algebra, and it occurs in basic CCSdp. A priority scheme for processes or transitions
is required.

7.2. Future Work 148

The case study also suggests that model checking is more useful in verifying
workflows than equational reasoning.

We assert that CCSdp is relevant for dependable systems, using the following argu-
ment. Dependable systems are required to deliver predictable and correct service,
correct service design is a key factor in achieving predictable and correct service
delivery, formal reasoning can determine whether or not a service design is correct,
and CCSdp supports formal reasoning.

7.2 Future Work

This research has explored the novel idea of using a special process to introduce
dynamic reconfiguration functionality into a process algebra (rather than a special
operator). As a result, there is considerable opportunity for future work.

To support reasoning, a systematic way of mapping a process expression in basic
CCSdp to a Kripke structure is needed (such as an algorithm). The mapping would
be tested on the different designs of the office workflow and its reconfiguration.
The mapping would also provide definitive evidence that basic CCSdp processes
can be model checked. A portfolio of case studies of dynamic reconfiguration of
dependable systems should also be collected for modelling and verification.

To investigate the decidability of strong of-bisimulation, structural congruence and
strong dp-bisimulation on P, a proof theory is needed. It should also be possible
to encode the proof theory in a theorem prover. The automated verification of the
proofs given in this thesis should also be attempted.

The conjectures in Section 4.5.4 about the computational complexities of the
different forms of matching need to be verified.

CCSdp is more of a specification language than a programming language. Therefore,
in order to produce dynamically reconfigurable implementations, a refinement
calculus is needed supported by tools.

In order to facilitate modelling, a value-passing form of CCSdp is needed.
Alternatively, a value-passing process algebra can be extended with the frac-
tion process. Port names should be first class in order to model link reconfiguration.

7.2. Future Work 149

Dynamic reconfiguration is a common requirement in large real-time control
systems. Therefore, CCSdp needs to be extended with real-time constructs, such as
time, duration of actions, preemption of actions, priority of an action, and process
identity. Alternatively, a real-time process algebra can be extended with the
fraction process. The consequences of using a non-interleaving semantics should
also be investigated.

Finally, on a speculative note, since reactions in Nature occur between entities with
opposite characteristics, it may be useful to formalise the notion of anti-similarity
(i.e. the opposite of similarity) and to investigate matching based on anti-similarity.
This may be useful for modelling physical reactions.

Bibliography

[AAA+07] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, and F. Curbera
et al. Web services business process execution language version
2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf,
2007. [Online; accessed 03-Feb-2012]. 41

[ADG98] R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dy-
namic software architectures. In Proceedings of the 1st International
Conference on Fundamental Approaches to Software Engineering, pages
21–37, 1998. 32, 33, 34, 35, 36, 45

[AG94] R. Allen and D. Garlan. Formalizing architectural connection. In
Proceedings of the 16th International Conference on Software Engineering,
pages 71–80, 1994. 31

[All97] R. J. Allen. A Formal Approach to Software Architecture. PhD thesis,
Carnegie Mellon University School of Computer Science, 1997. 31

[ALRL04] A. Avižienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions
on Dependable and Secure Computing, 1(1):11–33, 2004. 1, 2

[ALS03] S. Ajmani, B. Liskov, and L. Shrira. Scheduling and simulation: How
to upgrade distributed systems. In Proceedings of the 9th Workshop on
Hot Topics in Operating Systems, pages 43–48, 2003. 18

[Ama00] R. M. Amadio. An asynchronous model of locality, failure, and process
mobility. Theoretical Computer Science, 240(1):147–176, 2000. 61

[AWvSN01] J. P. A. Almeida, M. Wegdam, M. van Sinderen, and L. Nieuwen-
huis. Transparent dynamic reconfiguration for corba. In Proceedings of
the 3rd International Symposium on Distributed Objects and Applications,
pages 197–207, 2001. 5, 17

[BA01] M. Ben-Ari. Mathematical Logic for Computer Science, 2nd edition.
Springer-Verlag, 2001. 107, 108

[BABR96] L. Bellissard, S. B. Atallah, F. Boyer, and M. Riveill. Distributed appli-
cation configuration. In Proceedings of the 16th International Conference
on Distributed Computing Systems, pages 579–585, 1996. 41

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Bibliography 151

[Bar84] H. P. Barendregt. The Lambda Calculus: its syntax and semantics, 2nd

edition. Elsevier Science Publishers B. V., 1984. 7

[BB92] G. Berry and G. Boudol. The chemical abstract machine. Theoretical
Computer Science, 96(1):217–248, 1992. 45

[BBF+01] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
Ph. Schnoebelen, and P. McKenzie. Systems and Software Verification:
Model-Checking Techniques and Tools. Springer, 2001. 128

[BBRVD98] L. Bellissard, F. Boyer, M. Riveill, and J. Y. Vion-Dury. System services
for distributed application configuration. In Proceedings of the 4th
International Conference on Configurable Distributed Systems, pages 53–
60, 1998. 41

[BCDW04] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger. A survey of
self-management in dynamic software architecture specifications. In
Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed Systems,
pages 28–33, 2004. 5

[BD93] T. Bloom and M. Day. Reconfiguration and module replacement in
argus: theory and practice. Software Engineering Journal (Special Issue),
8(2):102–108, 1993. 5, 15

[BEJV96] P. Binns, M. Englehart, M. Jackson, and S. Vestal. Domain-specific soft-
ware architectures for guidance, navigation and control. International
Journal of Software Engineering and Knowledge Engineering, 6(2):201–227,
1996. 21

[Ber04] M. Berger. Towards Abstractions for Distributed Systems. PhD thesis,
University of London Imperial College of Science, Technology and
Medicine Department of Computing, 2004. 47, 58, 61, 62

[BF08] A. Bhattacharyya and J. S. Fitzgerald. Development of a formalism
for modelling and analysis of dynamic reconfiguration of depend-
able real-time systems: A technical diary. In Proceedings of the 2008
RISE/EFTS Joint International Workshop on Software Engineering for Re-
silient Systems, pages 67–72, 2008. 1, 69, 70

[BFL+94] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, and B. Ritchie.
Proof in VDM: A Practitioner’s Guide. Springer-Verlag London Limited,
1994. 8

Bibliography 152

[BISZ98] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dynamic reconfigu-
ration service for corba. In Proceedings of the 4th International Conference
on Configurable Distributed Systems, pages 35–42, 1998. 19

[Blo83] T. Bloom. Dynamic Module Replacement in a Distributed Programming
System. PhD thesis, Massachusetts Institute of Technology Laboratory
for Computer Science, 1983. 16

[BM90] J. P. Banâtre and D. Le Métayer. The gamma model and its discipline
of programming. Science of Computer Programming, 15(1):55–77, 1990.
46

[Bou92] G. Boudol. Asynchrony and the π-calculus. Technical Report 1702,
Institut National de Recherche en Informatique et en Automatique,
May 1992. 58

[BWD+93] M. R. Barbacci, C. B. Weinstock, D. L. Doubleday, M. J. Gardner, and
R. W. Lichota. Durra: a structure description language for developing
distributed applications. Software Engineering Journal (Special Issue),
8(2):83–94, 1993. 19

[CGP02] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 2002. 128

[Cha83] W. W. Chandler. The installation and maintenance of colossus. Annals
of the History of Computing, 5(3):260–262, 1983. 1

[CHM94] S. Christensen, Y. Hirshfeld, and F. Moller. Decidable subsets of ccs.
The Computer Journal, 37(4):233–242, 1994. 108

[CHNF10] L. Coyle, M. Hinchey, B. Nuseibeh, and J. L. Fiadeiro. Guest editors’
introduction: Evolving critical systems. IEEE Computer, 43(5):28–33,
2010. 2, 145

[CKCB01] S. M. Cho, H. H. Kim, S. D. Cha, and D. H. Bae. Specification and
validation of dynamic systems using temporal logic. IEE Proceedings
Software, 148(4):135–140, 2001. 53

[Coo83] A. W. M. Coombs. The making of colossus. Annals of the History of
Computing, 5(3):253–259, 1983. 1

Bibliography 153

[CV65] F. J. Corbató and V. A. Vyssotsky. Introduction and overview of the
multics system. In Proceedings of the AFIPS Fall Joint Computer Confer-
ence, pages 185–196, 1965. 12

[DK75] F. DeRemer and H. Kron. Programming-in-the-large versus
programming-in-the-small. In Proceedings of Conference on Reliable Soft-
ware, pages 114–121, 1975. 18

[ED97] H. Evans and P. Dickman. Drastic: A run-time architecture for evolv-
ing, distributed, persistent systems. In Proceedings of the 11th European
Conference on Object-Oriented Programming, pages 243–275, 1997. 18

[EKR95] C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within
workflow systems. In Proceedings of the Conference on Organizational
Computing Systems, pages 10–21. ACM, 1995. 115

[EN86] U. Engberg and M. Nielsen. A calculus of communicating systems
with label passing. Technical Report DAIMI PB-208, Aarhus Univer-
sity Department of Computer Science, May 1986. 46

[Fab76] R. S. Fabry. How to design a system in which modules can be changed
on the fly. In Proceedings of the 2nd International Conference on Software
Engineering, pages 470–476, 1976. 13

[Flo83] T. H. Flowers. The design of colossus. Annals of the History of Comput-
ing, 5(3):239–252, 1983. 1

[Fra97] M. Franz. Dynamic linking of software components. IEEE Computer,
30(3):74–81, 1997. 13

[FW05] S. Fischmeister and K. Winkler. Non-blocking deterministic replace-
ment of functionality, timing, and data-flow for hard real-time systems
at runtime. In Proceedings of the 17th Euromicro Conference on Real-Time
Systems, pages 106–114. IEEE Computer Society, 2005. 5

[GJ93] D. Gupta and P. Jalote. On-line software version change using
state transfer between processes. Software - Practice and Experience,
23(9):949–964, 1993. 14

[GJB96] D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line
software version change. IEEE Transactions on Software Engineering,
22(2):120–131, 1996. 14

Bibliography 154

[GR91] M. M. Gorlick and R. R. Razouk. Using weaves for software construc-
tion and analysis. In Proceedings of the 13th International Conference on
Software Engineering, pages 23–34, 1991. 41

[Gro93] J. F. Groote. Negative system specifications with negative premises.
Theoretical Computer Science, 118(2):263–299, 1993. 108

[GTL89] J-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge
University Press, 1989. 8

[HG98] G. Hjálmtÿsson and R. Gray. Dynamic c++ classes: A lightweight
mechanism to update code in a running program. In Proceedings of the
USENIX Annual Technical Conference (NO 98), pages 65–76, 1998. 12

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall
International (UK) Limited, 1985. 7, 45

[Hod87] A. Hodges. Alan Turing: The Enigma of Intelligence. Unwin Hyman
Limited, 1987. 1

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous com-
munication. In Proceedings of the 5th European Conference on Object-
Oriented Programming, pages 133–147, 1991. 58

[Hun12] E. Hunt. Us government computer penetration programs and the
implications for cyberwar. Annals of the History of Computing, 34(3):4–
21, 2012. 1

[Hut10] H. Huttel. Transitions and Trees: An Introduction to Structural Operational
Semantics. Cambridge University Press, 2010. 71

[ISO11] ISO/IEC/IEEE. Systems and software engineering – Architecture descrip-
tion. International standard; ISO 42010. ISO/IEC/IEEE, first edition,
2011. 21

[IW95] P. Inverardi and A. L. Wolf. Formal specification and analysis of
software architectures using the chemical abstract machine model.
IEEE Transactions on Software Engineering, 21(4):373–386, 1995. 46

[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall
International (UK) Limited, 1980. 45

Bibliography 155

[KBR+05] N. Kavantzas, D. Burdett, G. Ritzinger, A. Fletcher, Y. Lafon, and
C. Barreto. Web services choreography description language version
1.0. http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109, 2005.
[Online; accessed 03-Feb-2012]. 41

[KGC89] S. M. Kaplan, S. K. Goering, and R. H. Campbell. Specifying concur-
rent systems with ∆-grammars. In Proceedings of the 5th International
Workshop on Software Specification and Design, pages 20–27, 1989. 44, 45

[KK88] S. M. Kaplan and G. E. Kaiser. Garp: Graph abstractions for concur-
rent programming. In Proceedings of the 2nd European Symposium on
Programming, pages 191–205, 1988. 44, 45

[KM90] J. Kramer and J. Magee. The evolving philosophers problem: Dy-
namic change management. IEEE Transactions on Software Engineering,
16(11):1293–1306, 1990. 5, 26, 28

[Kob06] N. Kobayashi. A new type system for deadlock-free processes. In
Proceedings of the 17th International Conference on Concurrency Theory
(CONCUR 2006), pages 233–247. Springer-Verlag, 2006. 53

[LKA+95] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and
W. Mann. Specification and analysis of system architecture using
rapide. IEEE Transactions on Software Engineering, 21(4):336–355, 1995.
36

[LM07] R. Lucchi and M. Mazzara. A pi-calculus based semantics for ws-bpel.
Journal of Logic and Algebraic Programming, 70(1):96–118, 2007. 41

[LS83] B. Liskov and R. Scheifler. Guardians and actions: Linguistic support
for robust, distributed programs. ACM Transactions on Programming
Languages and Systems, 5(3):381–404, 1983. 15

[Luc02] D. Luckham. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley, 2002. 39

[LV95] D. C. Luckham and J. Vera. An event-based architecture definition
language. IEEE Transactions on Software Engineering, 21(9):717–734,
1995. 37, 39

[MADB12] M. Mazzara, F. Abouzaid, N. Dragoni, and A. Bhattacharyya. Toward
design, modelling and analysis of dynamic workflow reconfiguration

http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109

Bibliography 156

- a process algebra perspective. In Proceedings of the 8th International
Workshop on Web Services and Formal Method (WSFM 2011), volume
7176 of Lecture Notes in Computer Science, pages 64–78. Springer-Verlag,
2012. 115, 127

[Maz06] M. Mazzara. Towards Abstractions for Web Services Composition. PhD
thesis, University of Bologna Department of Computer Science, 2006.
7, 61, 62

[MB10] M. Mazzara and A. Bhattacharyya. On modelling and analysis of
dynamic reconfiguration of dependable real-time systems. In Proceed-
ings of the 3rd International Conference on Dependability (DEPEND 2010),
2010. 42

[MD87] S. E. Madnick and J. J. Donovan. Operating Systems. McGraw-Hill,
Inc., 1987. 13

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. In Proceedings of the 5th European Software En-
gineering Conference, pages 137–153, 1995. 26, 27, 28, 30

[MDK93] J. Magee, N. Dulay, and J. Kramer. Structuring parallel and distributed
programs. Software Engineering Journal (Special Issue), 8(2):73–82, 1993.
25, 26

[Met96] D. Le Metayer. Software architecture styles as graph grammars. In Pro-
ceedings of the 4th Symposium on the Foundations of Software Engineering,
pages 15–23, 1996. 46

[MGK96] K. Moazami-Goudarzi and J. Kramer. Maintaining node consistency
in the face of dynamic change. In Proceedings of the 3rd International
Conference on Configurable Distributed Systems, pages 62–69, 1996. 28

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall International
(U.K.) Limited, 1989. 45, 71, 108

[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cam-
bridge University Press, 1999. 6, 7, 46, 47, 50, 52, 65, 71, 81

[MKG99] J. Magee, J. Kramer, and D. Giannakopoulou. Software Architecture,
chapter Behaviour Analysis of Software Architectures, pages 35–49.
Kluwer Academic Publishers, 1999. 31

Bibliography 157

[MKS89] J. Magee, J. Kramer, and M. Sloman. Constructing distributed systems
in conic. IEEE Transactions on Software Engineering, 15(6):663–675, 1989.
25

[MMR10] T. Mens, J. Magee, and B. Rumpe. Evolving software architecture
descriptions of critical systems. IEEE Computer, 43(5):42–48, 2010. 41,
145

[MMSA+96] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and
C. A. Lingley-Papadopoulos. Totem: A fault-tolerant multicast group
communication system. Communications of the ACM, 39(4):54–63, 1996.
16

[MMSN98] L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Consistent object
replication in the eternal system. Theory and Practice of Object Systems,
4(2):81–92, 1998. 16

[MN82] N. Metropolis and E. C. Nelson. Early computing at los alamos. Annals
of the History of Computing, 4(4):348–357, 1982. 1

[Mon04] J. Montgomery. A model for updating real-time applications. Real-
Time Systems, 27(2):169–189, 2004. 5

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
parts i and ii. Information and Computation, 100(1):1–77, 1992. 46, 47

[MRT99] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. A language and
environment for architecture-based software development and evo-
lution. In Proceedings of the 21st International Conference on Software
Engineering, pages 44–53, 1999. 21

[MT00] N. Medvidovic and R. N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26(1):70–93, 2000. 5, 21

[NP02] T. Nipkow and L. C. Paulson. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer, 2002. 114

[OHE96] R. Orfali, D. Harkey, and J. Edwards. The Essential Distributed Objects
Survival Guide. John Wiley and Sons, Inc., 1996. 13

[PDN86] R. Prieto-Diaz and J. M. Neighbors. Module interconnection lan-
guages. Journal of Systems and Software, 6(4):307–334, 1986. 19, 20

Bibliography 158

[Plo04] G. D. Plotkin. A structural approach to operational semantics. The
Journal of Logic and Algebraic Programming, 60–61:17–139, 2004. 70

[Pra65] D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist
Wiksell, 1965. 8

[Pri99] D. G. Priddin. Method Integration for Real-Time System Design and Ver-
ification. PhD thesis, University of York Department of Computer
Science, 1999. 25

[PT00] B. C. Pierce and D. N. Turner. Proof, Language and Interaction: Essays
in Honour of Robin Milner, chapter Pict: A Programming Language
Based on the Pi-Calculus, pages 455–494. MIT Press, 2000. 61

[Pur94] J. M. Purtilo. The polylith software bus. ACM Transactions on Program-
ming Languages and Systems, 16(1):151–174, 1994. 19

[PV98] J. Parrow and B. Victor. The fusion calculus: Expressiveness and
symmetry in mobile processes. In Proceedings of the 13th Annual IEEE
Symposium on Logic in Computer Science, pages 176–185, 1998. 61

[Rot00] P. Rothmaler. Introduction to Model Theory. Gordon and Breach Science
Publishers, 2000. 128

[RS94] M. D. Rice and S. B. Seidman. A formal model for module interconnec-
tion languages. IEEE Transactions on Software Engineering, 20(1):88–101,
1994. 45

[RS03] W. C. Rounds and H. Song. Theφ-calculus: A language for distributed
control of reconfigurable embedded systems. In Proceedings of the 6th
International Workshop on Hybrid Systems: Computation and Control,
pages 435–449, 2003. 61

[San93] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and
Higher-Order Paradigms. PhD thesis, University of Edinburgh Depart-
ment of Computer Science, 1993. 54, 56, 57

[SDK+95] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Ze-
lesnik. Abstractions for software architecture and tools to support
them. IEEE Transactions on Software Engineering, 21(4):314–335, 1995.
21, 22

Bibliography 159

[SF93] M. E. Segal and O. Frieder. On-the-fly program modification: Systems
for dynamic updating. IEEE Software, 10(2):53–65, 1993. 14

[SM02] M. Solarski and H. Meling. Towards upgrading actively replicated
servers on-the-fly. In Proceedings of the 26th Annual International Com-
puter Software and Applications Conference, pages 1038–1043, 2002. 18

[Spi89] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Inter-
national (U.K.) Limited, 1989. 45

[SRG96] L. Sha, R. Rajkumar, and M. Gagliardi. Evolving dependable real-time
systems. In Proceedings of the IEEE Aerospace Applications Conference,
pages 335–346, 1996. 12

[SVK97] D. B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dynami-
cally reconfigurable real-time software using port-based objects. IEEE
Transactions on Software Engineering, 23(12):759–776, 1997. 5, 12

[SW01] D. Sangiorgi and D. Walker. Theπ-calculus: A Theory of Mobile Processes.
Cambridge University Press, 2001. 47, 57, 67

[Tho90] B. Thomsen. Calculi for Higher Order Communicating Systems. PhD
thesis, University of London Imperial College of Science, Technology
and Medicine Department of Computing, 1990. 54, 55, 56, 57

[TMMS01] L. A. Tewksbury, L. E. Moser, and P. M. Melliar-Smith. Live upgrades
of corba applications using object replication. In Proceedings of the IEEE
International Conference on Software Maintenance, pages 488–497, 2001.
2, 16

[Uny01] A. Unyapoth. Nomadic π-Calculi: Expressing and Verifying Infrastruc-
ture for Mobile Computation. PhD thesis, University of Cambridge
Computer Laboratory, 2001. 6

[Ves94] S. Vestal. Mode changes in a real-time architecture description lan-
guage. In Proceedings of the 2nd International Workshop on Configurable
Distributed Systems, pages 136–146. IEEE Computer Society, 1994. 5

[VM94] B. Victor and F. Moller. The mobility workbench – a tool for the π-
calculus. In Proceedings of the 6th International Conference on Computer
Aided Verification, pages 428–440. Springer-Verlag, 1994. 53

Bibliography 160

[Wer99] M. A. Wermelinger. Specification of Software Architecture Reconfigura-
tion. PhD thesis, University of Lisbon Department of Informatics,
1999. 46

Appendix A

Proofs of basic CCSdp

A.1 Lemma 4.2.1 ∀p, q∈P (p{o f q =⇒

∀i∈N ∀p′∈succ(p, i)(∃q′∈succ(q, i) (p′{o f q′)))

Proof: uses induction on i (the number of consecutive transitions in I∪ R from p).

Suppose p, q∈P (p{o f q).
For i∈N, let Prop(i) be this lemma for i.

The proof by induction involves discharging the following two proof obligations:

1. ` Prop(0)

2. ` ∀i∈N (Prop(i) =⇒ Prop(i + 1))

Base Case: Proof of Prop(0)

i = 0 (by definition of Prop(0))
=⇒ succ(p, 0) = {p} (by definition of succ(p, i)) ∧
succ(q, 0) = {q} (by definition of succ(q, i)).
If p′∈succ(p, 0)
then p′ = p (by definition of succ(p, 0))
=⇒ p′{o f q (∵ p{o f q, by definition of p and q).
Let q′ , q.
p′{o f q′ (∵ p′{o f q, and by definition of q′) ∧
q′∈succ(q, 0) (by definitions of succ(q, 0) and q′)
=⇒ Prop(0) holds (by definition of Prop(0)). Q.E.D.

Induction Step: Proof of ∀i∈N (Prop(i) =⇒ Prop(i + 1))

For i∈N, assume Prop(i) holds (inductive hypothesis).
If p′∈succ(p, i + 1)
then ∃p1∈succ(p, i) (∃µ∈Ip1∪ Rp1 (p1

µ
−→p′)) (by definition of succ(p, i + 1))

A.2. Corollary 4.2.1
∀p, q∈P (p{o f q =⇒ s f drdepth(p) ≤ s f drdepth(q)) 162

=⇒ ∃q1∈succ(q, i) (p1{o f q1) (by the inductive hypothesis)
=⇒ ∃q1∈succ(q, i)
(∀µp1 ∈Ip1∪Rp1 ∀p′1∈P (p1

µp1
−→p′1 =⇒ µp1 ∈Iq1∪Rq1 ∧ ∃q′∈P (q1

µp1
−→q′ ∧ (p′1, q

′)∈S)))
where S is a strong of-simulation on Pwhich contains (p1, q1)
(by definition of p1{o f q1)
=⇒ ∃q1∈succ(q, i) (p1

µ
−→p′ =⇒ µ∈Iq1∪ Rq1 ∧ ∃q′∈P (q1

µ
−→q′ ∧ (p′, q′)∈S))

(∵ if a predicate holds ∀µp1 ∈Ip1∪Rp1 , and µ∈Ip1∪Rp1 , then the predicate holds for
µ ∈Ip1∪ Rp1 ; and if a predicate holds ∀p′1 ∈P, and p′ ∈P, then the predicate holds
for p′∈P)
=⇒ ∃q1∈succ(q, i) (µ∈Iq1∪ Rq1 ∧ ∃q′∈P (q1

µ
−→q′ ∧ (p′, q′)∈S))

(∵ p1
µ
−→p′, and by modus ponens)

=⇒ ∃q′∈succ(q, i + 1) ((p′, q′)∈S) (by definition of succ(p, i + 1))
=⇒ ∃q′∈succ(q, i + 1) (p′{o f q′)
(by definition of p′{o f q′, ∵ S is a strong of-simulation on P).
∴ Prop(i + 1) holds (∵ p′∈succ(p, i + 1) is arbitrary).
∴ ∀i∈N (Prop(i) =⇒ Prop(i + 1)) (∵ i∈N is arbitrary). Q.E.D.

∴ ∀i∈N Prop(i) holds (by induction).
∴ ∀p, q∈P (p{o f q =⇒ ∀i∈N ∀p′∈succ(p, i) (∃q′∈succ(q, i) (p′{o f q′)))
(∵ p, q∈P are arbitrary). Q.E.D.

A.2 Corollary 4.2.1

∀p, q∈P (p{o f q =⇒ s f drdepth(p) ≤ s f drdepth(q))

Proof: Suppose p, q∈P (p{o f q)
then p∈P
=⇒ s f drdepth(p)∈N (by definition of s f drdepth)
=⇒ max{ f drdepth(s) | s∈successors(p)}∈N (by definition of s f drdepth(p))
=⇒ ∃p′∈successors(p) (f drdepth(p′) = s f drdepth(p))
(by arithmetic and definition of s f drdepth(p))
=⇒ ∃i∈N ∃p′∈succ(p, i) (f drdepth(p′) = s f drdepth(p))
(by definition of successors(p) and set theory)
=⇒ ∃q′∈succ(q, i) (p′{o f q′) (by Lemma 4.2.1)
=⇒ ∃q′∈successors(q) (p′{o f q′) (by set theory and definition of successors(q))
=⇒ ∃q′∈successors(q) ∀µp′ ∈Ip′∪ Rp′ ∀p′′∈P

(p′
µp′

−→p′′ =⇒ µp′ ∈Iq′∪ Rq′ ∧ ∃q′′ ∈P (q′
µp′

−→q′′ ∧ (p′′, q′′) ∈ S)) where S is a strong
of-simulation on Pwhich contains (p′, q′)

A.3. Lemma 4.3.3 ∀strong of-simulations U,V on P
(UV is a strong of-simulation on P) 163

(by definition of p′{o f q′)
=⇒ ∃q′∈successors(q) (Ip′∪ Rp′ ⊆ Iq′∪ Rq′) (by set theory)
=⇒ ∃q′∈successors(q) (Rp′ ⊆ Rq′)
(∵ I and R are disjoint, by definitions of I and R)
=⇒ ∃q′∈successors(q) (f drdepth(p′) ≤ f drdepth(q′))
(by definitions of f drdepth(p′) and f drdepth(q′))
=⇒ ∃q′∈successors(q) (s f drdepth(p) ≤ f drdepth(q′))
(∵ f drdepth(p′) = s f drdepth(p), by definition of p′).
Now q′∈successors(q)
=⇒ f drdepth(q′) ≤ max{ f drdepth(r) | r∈successors(q)} (by arithmetic)
=⇒ f drdepth(q′) ≤ s f drdepth(q) (by definition of s f drdepth(q)).
=⇒ s f drdepth(p) ≤ f drdepth(q′)
(∵ s f drdepth(p) = f drdepth(p′) ∧ f drdepth(p′) ≤ f drdepth(q′)) ∧
f drdepth(q′) ≤ s f drdepth(q)
=⇒ s f drdepth(p) ≤ s f drdepth(q) (by arithmetic)
=⇒ ∀p, q ∈ P (p {o f q =⇒ s f drdepth(p) ≤ s f drdepth(q)) (∵ p, q ∈ P are arbitrary).
Q.E.D.

A.3 Lemma 4.3.3 ∀strong of-simulations U,V on P

(UV is a strong of-simulation on P)

Proof: For strong of-simulations U,V on P, let W , UV.
W is a strong of-simulation on P iff W ⊆P x P and ∀(w1,w3) ∈W the Observation
and Fraction conditions of strong of-simulation on P are satisfied
(by definition of strong of-simulation on P).
Therefore, we prove W ⊆ P x P, then prove ∀(w1,w3) ∈ W the Observation and
Fraction conditions of strong of-simulation on P are satisfied.

U,V are strong of-simulations on P (by definitions of U and V)
=⇒ U ⊆ P x P ∧ V ⊆ P x P (by definition of strong of-simulation on P)
=⇒ UV ⊆ P x P (by composition of binary relations)
=⇒W ⊆ P x P (by definition of W).

Now W = ∅ ∨ W , ∅ (by set theory).
If W = ∅

then ∀(w1,w3)∈W the Observation and Fraction conditions of strong of-simulation

A.3. Lemma 4.3.3 ∀strong of-simulations U,V on P
(UV is a strong of-simulation on P) 164

on P are satisfied
(∵ ∅ satisfies all conditions).

If W , ∅

then the proof that ∀(w1,w3)∈W the Observation and Fraction conditions of strong
of-simulation on P are satisfied is as follows.

Proof the Observation condition of strong of-simulation on P is satisfied for
(w1,w3)∈W ∧ W , ∅:

(w1,w3)∈W (∵W , ∅)

=⇒ ∃w2∈P((w1,w2)∈U ∧ (w2,w3)∈V)
(by definition of W and composition of binary relations)

=⇒ ∀αw1∈Iw1

∀w1′∈P
(w1

αw1
−→ w1′ =⇒

αw1∈Iw2 ∧ ∃w2′∈P(w2
αw1
−→ w2′ ∧ (w1′,w2′)∈U)

)
∧

∀αw2∈Iw2

∀w2′∈P
(w2

αw2
−→ w2′ =⇒

αw2∈Iw3 ∧ ∃w3′∈P(w3
αw2
−→ w3′ ∧ (w2′,w3′)∈V)

)
(∵ U, V are strong of-simulations on P
and by the Observation condition of strong of-simulation on P)

A.3. Lemma 4.3.3 ∀strong of-simulations U,V on P
(UV is a strong of-simulation on P) 165

=⇒ ∀αw1∈Iw1

∀w1′∈P
[(w1

αw1
−→ w1′ =⇒

αw1∈Iw2 ∧ ∃w2′∈P(w2
αw1
−→ w2′ ∧ (w1′,w2′)∈U)

)
∧

(∀αw2∈Iw2

∀w2′∈P
(w2

αw2
−→ w2′ =⇒

αw2∈Iw3 ∧ ∃w3′∈P(w3
αw2
−→ w3′ ∧ (w2′,w3′)∈V)

)
)]

(∵ αw1, Iw1 and w1′ do not occur free in the 2nd conjunct of the outer conjunction;
and (therefore) do not affect the truth value of the 2nd conjunct)

=⇒ ∀αw1∈Iw1

∀w1′∈P
(w1

αw1
−→ w1′ =⇒

[αw1∈Iw2

∧

∃w2′∈P(w2
αw1
−→ w2′ ∧ (w1′,w2′)∈U)

∧

(∀w2′∈P
(w2

αw1
−→ w2′ =⇒

αw1∈Iw3 ∧ ∃w3′∈P(w3
αw1
−→ w3′ ∧ (w2′,w3′)∈V)

)
)]

)
(∵ if a predicate is satisfied ∀αw2∈Iw2, and αw1∈Iw2,
then the predicate is satisfied for αw1∈Iw2)

A.3. Lemma 4.3.3 ∀strong of-simulations U,V on P
(UV is a strong of-simulation on P) 166

=⇒ ∀αw1∈Iw1

∀w1′∈P
(w1

αw1
−→ w1′ =⇒

αw1∈Iw2

∧

∃w2′∈P
[(w2

αw1
−→ w2′ ∧ (w1′,w2′)∈U)

∧

(w2
αw1
−→ w2′ =⇒

αw1∈Iw3 ∧ ∃w3′∈P(w3
αw1
−→ w3′ ∧ (w2′,w3′)∈V)

)]
)

(∵ if a predicate is satisfied ∀w2′∈P,
then the predicate is satisfied for a particular w2′∈P)

=⇒ ∀αw1∈Iw1

∀w1′∈P
(w1

αw1
−→ w1′ =⇒

αw1∈Iw2

∧

∃w2′∈P
((w1′,w2′)∈U ∧ αw1∈Iw3 ∧ ∃w3′∈P(w3

αw1
−→ w3′ ∧ (w2′,w3′)∈V))

)
(by modus ponens, using
w2

αw1
−→ w2′ ∧

(w2
αw1
−→ w2′ =⇒ αw1∈Iw3 ∧ ∃w3′∈P(w3

αw1
−→ w3′ ∧ (w2′,w3′)∈V))

=⇒ αw1∈Iw3 ∧ ∃w3′∈P(w3
αw1
−→ w3′ ∧ (w2′,w3′)∈V))

=⇒ ∀αw1∈Iw1

∀w1′∈P
(w1

αw1
−→ w1′ =⇒

∃w2′∈P
((w1′,w2′)∈U ∧ αw1∈Iw3 ∧ ∃w3′∈P(w3

αw1
−→ w3′ ∧ (w2′,w3′)∈V))

)
(∵ predicate1 ∧ predicate2 =⇒ predicate2

and =⇒ is transitive)

A.3. Lemma 4.3.3 ∀strong of-simulations U,V on P
(UV is a strong of-simulation on P) 167

=⇒ ∀αw1∈Iw1

∀w1′∈P
(w1

αw1
−→ w1′ =⇒

αw1∈Iw3

∧

∃w2′∈P
((w1′,w2′)∈U ∧ ∃w3′∈P(w3

αw1
−→ w3′ ∧ (w2′,w3′)∈V))

)
(∵ αw1∈Iw3 remains in scope and remains in conjunction)

=⇒ ∀αw1∈Iw1

∀w1′∈P
(w1

αw1
−→ w1′ =⇒

αw1∈Iw3

∧

∃w2′∈P
(∃w3′∈P(w3

αw1
−→ w3′ ∧ (w1′,w2′)∈U ∧ (w2′,w3′)∈V))

)
(∵ w1′,w2′ are not restricted in the predicate quantified by ∃w3′∈P;
and (therefore) the truth value of (w1′,w2′)∈U is not affected by the predicate)

=⇒ ∀αw1∈Iw1

∀w1′∈P
(w1

αw1
−→ w1′ =⇒

αw1∈Iw3

∧

∃w3′∈P(w3
αw1
−→ w3′ ∧ (w1′,w3′)∈W)

)
(by composition of binary relations and definition of W).

∴ The Observation condition of strong of-simulation on P is satisfied for
(w1,w3)∈W ∧ W , ∅ Q.E.D.

Proof the Fraction condition of strong of-simulation on P is satisfied for
(w1,w3)∈W ∧ W , ∅:

The similarity between the two conditions of strong of-simulation on P implies the
proof of the Fraction condition is identical to the proof of the Observation condition
with the following substitutions:
αw1 is replaced with τrX

A.4. Lemma 4.3.5 ∀p∈P+(Ip ∪ Rp , ∅) 168

Iw1 with Rw1

w1′ with w1′′

αw2 with τrY

Iw2 with Rw2

w2′ with w2′′

Iw3 with Rw3

w3′ with w3′′

and any reference to the Observation condition of strong of-simulation on P in the
justifications is replaced with a corresponding reference to the Fraction condition.

Thus, the Observation and Fraction conditions of strong of-simulation on P are
satisfied for (w1,w3)∈W ∧ W , ∅.
∴ ∀(w1,w3)∈W the Observation and Fraction conditions of strong of-simulation on
P are satisfied
(∵ (w1,w3)∈W is arbitrary). Q.E.D.
∴W is a strong of-simulation on P
(by definition of strong of-simulation on P, ∵W ⊆ P x P)
=⇒ UV is a strong of-simulation on P (by definition of W)
=⇒ ∀strong of-simulations U,V on P (UV is a strong of-simulation on P)
(∵ U,V are arbitrary strong of-simulations on P). Q.E.D.

A.4 Lemma 4.3.5 ∀p∈P+(Ip ∪ Rp , ∅)

Proof: uses complete induction on the depth of inference of the applications of the
P

+ production rules.

For n ∈N+, let Prop(n) be this lemma for p obtained from applications of the P+

production rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

A.4. Lemma 4.3.5 ∀p∈P+(Ip ∪ Rp , ∅) 169

Base Case: Proof of Prop(1)

For r∈P+ produced from a 1st application of the P+ production rules, only rules 1
and 5 apply.

If rule 1 is applied
then ∃α∈I ∃p∈P (r = α.p) (by definition of rule 1 of P+)
=⇒ α∈Ir (by the Sum rule)
=⇒ α∈Ir ∪ Rr (by set theory)
=⇒ Ir ∪ Rr , ∅ (by set theory).

If rule 5 is applied
then ∃β∈I ∃X∈PN (r = β.X) (by definition of rule 5 of P+)
=⇒ β∈Ir (by the Sum rule)
=⇒ β∈Ir ∪ Rr (by set theory)
=⇒ Ir ∪ Rr , ∅ (by set theory).

∴ Prop(1) holds
(∵ r ∈P+ produced from a 1st application of the P+ production rules is arbitrary).
Q.E.D.

Induction Step: Proof of∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For r ∈ P+ produced from applications of the P+ production rules with depth of
inference n + 1, all 5 rules apply.

If rule 1 is applied, the proof of Ir ∪Rr , ∅ is identical to that in Prop(1) with rule 1
applied.

If rule 2 is applied
then ∃p, q∈P (p + q∈P ∧ (p∈P+

∨ q∈P+) ∧ r = p + q)
(by definition of rule 2 of P+).

If p∈P+

then p is a result of applications of the P+ production rules with inference depth
mp, with mp∈ [1,n]
(by definition of r)

A.4. Lemma 4.3.5 ∀p∈P+(Ip ∪ Rp , ∅) 170

=⇒ Prop(mp) holds (by the inductive hypothesis)
=⇒ Ip ∪ Rp , ∅ (by definition of Prop(mp)).
Now p, q are terms in a summation (∵ r = p + q)
=⇒ Ip+q = Ip ∪ Iq ∧ Rp = ∅ ∧ Rq = ∅ ∧ Rp+q = ∅

(by the syntax of processes in a summation and the Sum rule)
=⇒ Ip+q ∪ Rp+q = Ip ∪ Rp ∪ Iq (by set theory)
=⇒ Ip+q ∪ Rp+q , ∅ (∵ Ip ∪ Rp , ∅, and by set theory)
=⇒ Ir ∪ Rr , ∅ (∵ r = p + q).

If q∈P+

then q is a result of applications of the P+ production rules with inference depth
mq, with mq∈ [1,n]
(by definition of r)
=⇒ Prop(mq) holds (by the inductive hypothesis)
=⇒ Iq ∪ Rq , ∅ (by definition of Prop(mq)).
Now p, q are terms in a summation (∵ r = p + q)
=⇒ Ip+q = Ip ∪ Iq ∧ Rp = ∅ ∧ Rq = ∅ ∧ Rp+q = ∅

(by the syntax of processes in a summation and the Sum rule)
=⇒ Ip+q ∪ Rp+q = Ip ∪ Iq ∪ Rq (by set theory)
=⇒ Ip+q ∪ Rp+q , ∅ (∵ Iq ∪ Rq , ∅, and by set theory)
=⇒ Ir ∪ Rr , ∅ (∵ r = p + q).

If rule 3 is applied
then ∃p, q∈P ((p∈P+

∨ q∈P+) ∧ r = p|q) (by definition of rule 3 of P+).

If p∈P+

then p is a result of applications of the P+ production rules with inference depth
mp, with mp∈ [1,n]
(by definition of r)
=⇒ Prop(mp) holds (by the inductive hypothesis)
=⇒ Ip ∪ Rp , ∅ (by definition of Prop(mp))
=⇒ Ip|q ∪ Rp|q , ∅ (by the L − Par rule)
=⇒ Ir ∪ Rr , ∅ (∵ r = p|q).

If q∈P+

then q is a result of applications of the P+ production rules with inference depth
mq, with mq∈ [1,n]

A.5. Lemma 4.3.6 ∀p∈P(p∈P+
⇐⇒ Rp , ∅) 171

(by definition of r)
=⇒ Prop(mq) holds (by the inductive hypothesis)
=⇒ Iq ∪ Rq , ∅ (by definition of Prop(mq))
=⇒ Ip|q ∪ Rp|q , ∅ (by the R − Par rule)
=⇒ Ir ∪ Rr , ∅ (∵ r = p|q).

If rule 4 is applied
then ∃p∈P ∃q∈P+ (r =

p
q) (by definition of rule 4 of P+)

=⇒ τrq ∈R
p
q

(by the Creat rule, ∵ q∈P+ and q∼o f q (by Lemma 4.3.1))
=⇒ τrq ∈I

p
q
∪ R p

q
(by set theory)

=⇒ I p
q
∪ R p

q
, ∅ (by set theory)

=⇒ Ir ∪ Rr , ∅ (∵ r =
p
q).

If rule 5 is applied, the proof of Ir ∪Rr , ∅ is identical to that in Prop(1) with rule 5
applied.
∴ Prop(n + 1) holds
(∵ r ∈ P+ produced from applications of the P+ production rules with depth of
inference n + 1 is arbitrary).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ ∀p∈P+ (Ip ∪ Rp , ∅)
(∵ every p in P+ is the result of applications of the P+ production rules with finite
depth of inference). Q.E.D.

A.5 Lemma 4.3.6 ∀p∈P(p∈P+
⇐⇒ Rp , ∅)

Proof: consists of discharging the following two proof obligations. The proof
obligation stating Rp , ∅ is necessary for p ∈ P+ is discharged by proving p ∈ P+

has a transition in R defined by the Delet rule. The proof obligation stating Rp , ∅

is sufficient for p ∈ P+ is discharged using complete induction on the depth of
inference of the applications of the LTS rules that determine the transitions of p in
R.

1. ` ∀p∈P (p∈P+ =⇒ Rp , ∅)

2. ` ∀p∈P (Rp , ∅ =⇒ p∈P+)

A.5. Lemma 4.3.6 ∀p∈P(p∈P+
⇐⇒ Rp , ∅) 172

A.5.1 ∀p∈P(p∈P+ =⇒ Rp , ∅)

Proof: If p∈P(p∈P+)
then p∈P (by set theory and definition of P)
=⇒ p∼o f p (by Lemma 4.3.1)

=⇒ p
τrp
−→ 0 (by the Delet rule, ∵ p∈P+)

=⇒ τrp ∈Rp (by definition of Rp)
=⇒ Rp , ∅ (by set theory).
∴ ∀p∈P(p∈P+ =⇒ Rp , ∅) (∵ p∈Pwith p∈P+ is arbitrary). Q.E.D.

A.5.2 ∀p∈P(Rp , ∅ =⇒ p∈P+)

Proof: For n∈N+, let Prop(n) be the proposition:

∀p, p′′∈P ∀τrX ∈Rp (Rp , ∅ ∧ p
τrX
−→ p′′ =⇒ p∈P+)

for p
τrX
−→ p′′ determined by applications of LTS rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For p, p′′∈P and τrX ∈Rp,

Rp , ∅ ∧ the transition p
τrX
−→ p′′ has depth of inference 1

(by the hypothesis of Prop(1))
=⇒ only the Delet rule determines the transition p

τrX
−→ p′′

(by definitions of the LTS rules):

If p
τrX
−→ p′′ (by the Delet rule)

then p∈P+ (by the hypothesis of Delet).

∴ ∀p, p′′∈P ∀τrX ∈Rp (Rp , ∅ ∧ p
τrX
−→ p′′ =⇒ p∈P+)

for p
τrX
−→ p′′ determined by applications of LTS rules with depth of inference 1

(∵ p, p′′∈P and τrX ∈Rp with Rp , ∅ and transition p
τrX
−→ p′′ with depth of inference

1 are arbitrary)
=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

A.5. Lemma 4.3.6 ∀p∈P(p∈P+
⇐⇒ Rp , ∅) 173

Induction Step: Proof of ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For p, p′′∈P and τrX ∈Rp,

Rp , ∅ ∧ the transition p
τrX
−→ p′′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))
=⇒ n + 1 ≥ 2 (∵ n∈N+)
=⇒ only the L − Par, R − Par or CompDelet rules determine the transition p

τrX
−→ p′′

(by definitions of the LTS rules):

If the L − Par rule defines a transition p
τrX
−→ p′′

then ∃u,u′′, v∈P (p = u|v ∧ p′′ = u′′|v ∧ u|v
τrX
−→ u′′|v) (by the L − Par rule)

=⇒ u
τrX
−→ u′′ (by the hypothesis of L − Par)

=⇒ τrX ∈Ru (by definition of Ru)

=⇒ Ru , ∅ (by set theory).

Now the transition u|v
τrX
−→ u′′|v has depth of inference n + 1

(∵ p = u|v ∧ p′′ = u′′|v ∧ p
τrX
−→ p′′ has depth of inference n + 1)

=⇒ the transition u
τrX
−→ u′′ has depth of inference m1, with m1∈ [1,n]

(∵ the transition u|v
τrX
−→ u′′|v is inferred from the transition u

τrX
−→ u′′ using the

L − Par rule)
=⇒ Prop(m1) holds (by the inductive hypothesis)
=⇒ u∈P+

(by modus ponens, ∵ u,u′′ ∈ P ∧ τrX ∈ Ru ∧ Ru , ∅ ∧ u
τrX
−→ u′′ with depth of

inference m1)
=⇒ u|v∈P+ (by production rule 3 of P+, ∵ u, v∈P)
=⇒ p∈P+ (∵ p = u|v).

If the R − Par rule defines a transition p
τrX
−→ p′′

then ∃u, v, v′′∈P (p = u|v ∧ p′′ = u|v′′ ∧ u|v
τrX
−→ u|v′′) (by the R − Par rule)

=⇒ v
τrX
−→ v′′ (by the hypothesis of R − Par)

=⇒ τrX ∈Rv (by definition of Rv)

=⇒ Rv , ∅ (by set theory).

Now the transition u|v
τrX
−→ u|v′′ has depth of inference n + 1

(∵ p = u|v ∧ p′′ = u|v′′ ∧ p
τrX
−→ p′′ has depth of inference n + 1)

=⇒ the transition v
τrX
−→ v′′ has depth of inference m2, with m2∈ [1,n]

A.5. Lemma 4.3.6 ∀p∈P(p∈P+
⇐⇒ Rp , ∅) 174

(∵ the transition u|v
τrX
−→ u|v′′ is inferred from the transition v

τrX
−→ v′′ using the

R − Par rule)
=⇒ Prop(m2) holds (by the inductive hypothesis)
=⇒ v∈P+

(by modus ponens, ∵ v, v′′ ∈ P ∧ τrX ∈ Rv ∧ Rv , ∅ ∧ v
τrX
−→ v′′ with depth of

inference m2)
=⇒ u|v∈P+ (by production rule 3 of P+, ∵ u, v∈P)
=⇒ p∈P+ (∵ p = u|v).

If the CompDelet rule defines a transition p
τrX
−→ p′′

then ∃ τrX1
, τrX2

∈R ∃p′∈P (X∼o f X1|X2 ∧ p
τrX1
−→p′ ∧ p′

τrX2
−→p′′)

(by the hypothesis of CompDelet)

=⇒ τrX1
∈Rp (by definition of Rp)

=⇒ Rp , ∅ (by set theory).

Now the transition p
τrX
−→ p′′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition p
τrX1
−→ p′ has depth of inference m3, with m3∈ [1,n]

(∵ the transition p
τrX
−→ p′′ is inferred from the transition p

τrX1
−→ p′ using the

CompDelet rule)
=⇒ Prop(m3) holds (by the inductive hypothesis)
=⇒ p∈P+

(by modus ponens, ∵ p, p′ ∈ P ∧ τrX1
∈ Rp ∧ Rp , ∅ ∧ p

τrX1
−→ p′ with depth of

inference m3).

∴ ∀p, p′′∈P ∀τrX ∈Rp (Rp , ∅ ∧ p
τrX
−→ p′′ =⇒ p∈P+)

for p
τrX
−→ p′′ determined by applications of LTS rules with depth of inference n + 1

(∵ p, p′′∈P and τrX ∈Rp with Rp , ∅ and transition p
τrX
−→ p′′ with depth of inference

n + 1 are arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ ∀p∈P (Rp , ∅ =⇒ p∈P+)
(∵ every transition of every p∈P is a result of one or more applications of the LTS
semantic rules with finite depth of inference). Q.E.D.

A.6. Lemma 4.3.7 ∀p∈P0(Ip ∪ Rp = ∅) 175

∴ ∀p∈P (p∈P+
⇐⇒ Rp , ∅)

(∵ (predicate1 =⇒ predicate2) ∧ (predicate2 =⇒ predicate1)⇐⇒
(predicate1 ⇐⇒ predicate2)). Q.E.D.

A.6 Lemma 4.3.7 ∀p∈P0(Ip ∪ Rp = ∅)

Proof: uses complete induction on the depth of inference of the applications of the
P

0 production rules.

For n ∈N+, let Prop(n) be this lemma for p obtained from applications of the P0

production rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For r ∈ P0 produced from a 1st application of the P0 production rules, only rule 1
applies.

If rule 1 is applied
then r = 0 (by definition of rule 1 of P0).
Now I0 = ∅ ∧ R0 = ∅

(by the LTS rules of basic CCSdp, and because the transitions of the processes in P
is the least relation on P that is defined by the LTS rules of basic CCSdp)
=⇒ I0 ∪ R0 = ∅ (by set theory)
=⇒ Ir ∪ Rr = ∅ (∵ r = 0).

∴ Prop(1) holds (∵ r can be only 0). Q.E.D.

Induction Step: Proof of∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For r ∈ P0 produced from applications of the P0 production rules with depth of

A.6. Lemma 4.3.7 ∀p∈P0(Ip ∪ Rp = ∅) 176

inference n + 1, only rules 2, 3 and 4 rules apply.

If rule 2 is applied
then ∃p, q∈P0 (p + q∈P ∧ r = p + q) (by definition of rule 2 of P0)
=⇒ p, q are results of applications of the P0 production rules with depths of
inference mp,mq (respectively), with mp,mq∈ [1,n]
(by definition of r)
=⇒ Prop(mp) and Prop(mq) hold (by the inductive hypothesis)
=⇒ Ip ∪ Rp = ∅ ∧ Iq ∪ Rq = ∅ (by definitions of Prop(mp) and Prop(mq))
=⇒ Ip = ∅ ∧ Iq = ∅ (by set theory).
Now p + q∈P
=⇒ Ip+q = Ip ∪ Iq ∧ Rp+q = ∅

(by the syntax of processes in a summation and the Sum rule)
=⇒ Ip+q ∪ Rp+q = Ip ∪ Iq (by set theory)
=⇒ Ip+q ∪ Rp+q = ∅ (∵ Ip = ∅ ∧ Iq = ∅, and by set theory)
=⇒ Ir ∪ Rr = ∅ (∵ r = p + q).

If rule 3 is applied
then ∃p, q∈P0 (r = p|q) (by definition of rule 3 of P0)
=⇒ p, q are results of applications of the P0 production rules with depths of
inference mp,mq (respectively), with mp,mq∈ [1,n]
(by definition of r)
=⇒ Prop(mp) and Prop(mq) hold (by the inductive hypothesis)
=⇒ Ip ∪ Rp = ∅ ∧ Iq ∪ Rq = ∅ (by definitions of Prop(mp) and Prop(mq)).
If p|q has a transition in I ∪ R
then only the L − Par, R − Par, React, L − React or R − React rules determine the
transition
(by definitions of the LTS rules).

If the L − Par rule defines a transition of p|q in I ∪ R
then p has a transition in I ∪ R (by the hypothesis of L − Par)
=⇒ Ip ∪ Rp , ∅ (by set theory).
But Ip ∪ Rp = ∅ (∵ Prop(mp) holds; which is a contradiction).
∴ The L − Par rule does not define a transition of p|q in I ∪ R.

If the R − Par rule defines a transition of p|q in I ∪ R
then q has a transition in I ∪ R (by the hypothesis of R − Par)

A.6. Lemma 4.3.7 ∀p∈P0(Ip ∪ Rp = ∅) 177

=⇒ Iq ∪ Rq , ∅ (by set theory).
But Iq ∪ Rq = ∅ (∵ Prop(mq) holds; which is a contradiction).
∴ The R − Par rule does not define a transition of p|q in I ∪ R.

If the React rule defines a transition of p|q in I ∪ R
then p and q have complementary transitions in L ∪ C
(by the hypothesis of React)
=⇒ p has a transition in I ∪ R or q has a transition in R
(by definitions of I, C and complementary actions)
=⇒ Ip ∪ Rp , ∅ ∨ Iq ∪ Rq , ∅ (by set theory).
But Ip ∪ Rp = ∅ ∧ Iq ∪ Rq = ∅

(∵ Prop(mp) and Prop(mq) hold; which is a contradiction).
∴ The React rule does not define a transition of p|q in I ∪ R.

If the L − React rule defines a transition of p|q in I ∪ R

then ∃ τrX1
∈R ∃p′∈P (p

τrX1
−→ p′) (by the hypothesis of L − React)

=⇒ τrX1
∈Rp (by definition of Rp)

=⇒ Rp , ∅ (by set theory)
=⇒ p∈P+ (by Lemma 4.3.6, ∵ p∈P (by definitions of p and P, and set theory))
=⇒ Ip ∪ Rp , ∅ (by Lemma 4.3.5).
But Ip ∪ Rp = ∅ (∵ Prop(mp) holds; which is a contradiction).
∴ The L − React rule does not define a transition of p|q in I ∪ R.

If the R − React rule defines a transition of p|q in I ∪ R

then ∃ τrX2
∈R ∃q′∈P (q

τrX2
−→ q′) (by the hypothesis of R − React)

=⇒ τrX2
∈Rq (by definition of Rq)

=⇒ Rq , ∅ (by set theory)
=⇒ q∈P+ (by Lemma 4.3.6, ∵ q∈P (by definitions of q and P, and set theory))
=⇒ Iq ∪ Rq , ∅ (by Lemma 4.3.5).
But Iq ∪ Rq = ∅ (∵ Prop(mq) holds; which is a contradiction).
∴ The R − React rule does not define a transition of p|q in I ∪ R.

∴ Ip|q ∪ Rp|q = ∅

(by the LTS rules of basic CCSdp, and because the transitions of the processes in P
is the least relation on P that is defined by the LTS rules of basic CCSdp)
=⇒ Ir ∪ Rr = ∅ (∵ r = p|q).

A.7. Theorem 4.3.3 ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p) 178

If rule 4 is applied
then ∃p∈P ∃q∈P0 (r =

p
q) (by definition of rule 4 of P0)

=⇒ q is a result of applications of the P0 production rules with inference depth mq,
with mq∈ [1,n]
(by definition of r)
=⇒ Prop(mq) holds (by the inductive hypothesis)
=⇒ Iq ∪ Rq = ∅ (by definition of Prop(mq))
=⇒ q<P+ (∵ q∈P+ =⇒ Iq ∪ Rq , ∅ (by Lemma 4.3.5); which is a contradiction)
=⇒ R p

q
= ∅ (by the Creat rule)

=⇒ I p
q
∪ R p

q
= ∅

(∵ a fraction process does not have an input or an output or a τ transition (by the
LTS rules of basic CCSdp), and by set theory)
=⇒ Ir ∪ Rr = ∅ (∵ r =

p
q).

∴ Prop(n + 1) holds
(∵ r ∈ P0 produced from applications of the P0 production rules with depth of
inference n + 1 is arbitrary).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ ∀p∈P0 (Ip ∪ Rp = ∅)
(∵ every p in P0 is the result of applications of the P0 production rules with finite
depth of inference). Q.E.D.

A.7 Theorem 4.3.3 ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p)

Proof: consists of discharging the following two proof obligations. Each proof
obligation is discharged by defining a binary relation S on P which contains the
pair of processes that are required to be strongly of-bisimilar, proving S is a strong
of-simulation on P, then proving S is a strong of-bisimulation on P.

1. ` ∀p∈P ∀z∈P0(p|z ∼o f p)

2. ` ∀p∈P ∀z∈P0(p ∼o f z|p)

A.7. Theorem 4.3.3 ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p) 179

A.7.1 ∀p∈P ∀z∈P0(p|z ∼o f p)

Proof: If ∃ strong of-bisimulation S on Pwith ∀p∈P ∀z∈P0((p|z, p)∈S)
then ∀p∈P ∀z∈P0(p|z ∼o f p) (by definition of p|z ∼o f p).
Therefore, we find such an S.

Let S , {(p|z, p) | p∈P ∧ z∈P0
}.

A.7.1.1 S is a strong of-simulation on P

S⊆P x P ∧ ∀p∈P ∀z∈P0((p|z, p)∈S) (by definition of S).

We prove for (p|z, p) in S that the Observation and Fraction conditions of strong
of-simulation on P are satisfied.

(p|z,p) satisfies the Observation and Fraction conditions

If p|z has a transition in I∪ R
then only the L − Par, R − Par, React, L − React or R − React rules determine the
transition
(by the syntax of p|z and definitions of the LTS rules).

If the L − Par rule defines a transition δ of p|z in I∪ R
then p|z δ

−→p′|z (by the L − Par rule)
=⇒ p δ

−→p′ (by the hypothesis of L − Par).
And (p′|z, p′)∈S (by definition of S).

z∈P0 (by definition of z)
=⇒ Iz ∪ Rz = ∅ (by Lemma 4.3.7)
=⇒ z has no transition in I∪ R (by set theory and definitions of Iz and Rz)
=⇒ the R − Par rule does not define a transition of p|z in I∪ R
(∵ the hypothesis of R − Par does not hold).

If the React rule defines a transition of p|z in I∪ R
then p, z have complementary transitions in L ∪ C
(by the hypothesis of React, and definitions of complementary transitions, L and
C)
=⇒ Lz ∪ Cz , ∅ (by set theory and definitions of Lz and Cz)
=⇒ Iz ∪ Cz , ∅ (by set theory and definition of Iz).

A.7. Theorem 4.3.3 ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p) 180

But Iz ∪ Rz = ∅ (by Lemma 4.3.7) ∧ Rz = ∅ (by Lemma 4.3.8)
=⇒ Iz ∪ Rz ∪ Rz = ∅ (by set theory)
=⇒ Iz ∪ Cz = ∅ (by definition of Cz; which is a contradiction).
∴ The React rule does not define a transition of p|z in I∪ R.

If the L − React rule or the R − React rule defines a transition of p|z in I∪ R
then z has a transition in R
(by the hypotheses of L − React and R − React)
=⇒ Rz , ∅ (by set theory and definition of Rz).
But Rz = ∅ (by Lemma 4.3.8; which is a contradiction).
∴Neither the L−React rule nor the R−React rule defines a transition of p|z in I∪R.

∴ ∀(p|z, p)∈S the Observation and Fraction conditions of strong of-simulation on P
are satisfied
(∵ (p|z, p)∈S is arbitrary)
=⇒ S is a strong of-simulation on P
(by definition of strong of-simulation on P). Q.E.D.

A.7.1.2 S is a strong of-bisimulation on P

We prove S is a strong of-bisimulation onP by proving S−1 is a strong of-simulation
on P.
S−1 = {(p, p|z) | p∈P ∧ z∈P0

} (by definitions of S and inverse binary relations)
=⇒ S−1

⊆P x P ∧ ∀p∈P ∀z∈P0((p, p|z)∈S−1) (by definition of S−1).

For (p, p|z)∈S−1, if p δ
−→p′ with δ∈I∪ R

then p|z δ
−→p′|z (by the L − Par rule) ∧ (p′, p′|z)∈S−1 (by definition of S−1).

∴ ∀(p, p|z) ∈ S−1 the Observation and Fraction conditions of strong of-simulation on
P are satisfied
(∵ (p, p|z)∈S−1 is arbitrary)
=⇒ S−1 is a strong of-simulation on P
(by definition of strong of-simulation on P).
∴ S is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P).
∴ ∀p∈P ∀z∈P0(p|z ∼o f p) (by definition of p|z ∼o f p). Q.E.D.

A.7. Theorem 4.3.3 ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p) 181

A.7.2 ∀p∈P ∀z∈P0(p ∼o f z|p)

Proof: If ∃ strong of-bisimulation S on Pwith ∀p∈P ∀z∈P0((p, z|p)∈S)
then ∀p∈P ∀z∈P0(p ∼o f z|p) (by definition of p ∼o f z|p).
Therefore, we find such an S.

Let S , {(p, z|p) | p∈P ∧ z∈P0
}.

A.7.2.1 S is a strong of-simulation on P

S⊆P x P ∧ ∀p∈P ∀z∈P0((p, z|p)∈S) (by definition of S).

We prove for (p, z|p) in S that the Observation and Fraction conditions of strong
of-simulation on P are satisfied.

(p, z|p) satisfies the Observation and Fraction conditions

If p δ
−→p′ with δ∈I∪ R

then z|p δ
−→z|p′ (by the R − Par rule) ∧ (p′, z|p′)∈S (by definition of S).

∴ ∀(p, z|p)∈S the Observation and Fraction conditions of strong of-simulation on P
are satisfied
(∵ (p, z|p)∈S is arbitrary)
=⇒ S is a strong of-simulation on P
(by definition of strong of-simulation on P). Q.E.D.

A.7.2.2 S is a strong of-bisimulation on P

We prove S is a strong of-bisimulation onP by proving S−1 is a strong of-simulation
on P.
S−1 = {(z|p, p) | p∈P ∧ z∈P0

} (by definitions of S and inverse binary relations)
=⇒ S−1

⊆P x P ∧ ∀p∈P ∀z∈P0((z|p, p)∈S−1) (by definition of S−1).

For (z|p, p)∈S−1, if z|p has a transition in I∪ R
then only the L − Par, R − Par, React, L − React or R − React rules determine the
transition
(by the syntax of z|p and definitions of the LTS rules).

A.7. Theorem 4.3.3 ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p) 182

z∈P0 (by definition of z)
=⇒ Iz∪ Rz = ∅ (by Lemma 4.3.7)
=⇒ z has no transition in I∪ R (by set theory and definitions of Iz and Rz)
=⇒ the L − Par rule does not define a transition of z|p in I∪ R
(∵ the hypothesis of L − Par does not hold).

If the R − Par rule defines a transition δ of z|p in I∪ R
then z|p δ

−→z|p′ (by the R − Par rule)
=⇒ p δ

−→p′ (by the hypothesis of R − Par).
And (z|p′, p′)∈S−1 (by definition of S−1).

If the React rule defines a transition of z|p in I∪ R
then z has a transition in L ∪ C (by the hypothesis of React)
=⇒ Lz ∪ Cz , ∅ (by set theory and definitions of Lz and Cz)
=⇒ Iz ∪ Cz , ∅ (by set theory and definition of Iz).
But Iz ∪ Rz = ∅ (by Lemma 4.3.7) ∧ Rz = ∅ (by Lemma 4.3.8)
=⇒ Iz ∪ Rz ∪ Rz = ∅ (by set theory)
=⇒ Iz ∪ Cz = ∅ (by definition of Cz; which is a contradiction).
∴ The React rule does not define a transition of z|p in I∪ R.

If the L − React rule or the R − React rule defines a transition of z|p in I∪ R
then z has a transition in R (by the hypotheses of L − React and R − React)
=⇒ Rz , ∅ (by set theory and definition of Rz).
But Rz = ∅ (by Lemma 4.3.8; which is a contradiction).
∴Neither the L−React rule nor the R−React rule defines a transition of z|p in I∪R.

∴ ∀(z|p, p) ∈ S−1 the Observation and Fraction conditions of strong of-simulation on
P are satisfied
(∵ (z|p, p)∈S−1 is arbitrary)
=⇒ S−1 is a strong of-simulation on P
(by definition of strong of-simulation on P).
∴ S is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P).
∴ ∀p∈P ∀z∈P0(p ∼o f z|p) (by definition of p ∼o f z|p). Q.E.D.

∴ ∀p∈P ∀z∈P0(p|z ∼o f p ∧ p ∼o f z|p). Q.E.D.

A.8. Theorem 4.3.4
∼o f Preserves the Elementary Contexts α.[·] + M, [·]

P and P
[·] 183

A.8 Theorem 4.3.4

∼o f Preserves the Elementary Contexts α.[·] + M,
[·]
P and P

[·]

Proof: consists of discharging the following three proof obligations. Each proof
obligation is discharged by defining a binary relation S on P which contains the
pair of processes that are required to be strongly of-bisimilar, proving S is a strong
of-simulation on P, then proving S is a strong of-bisimulation on P.

1. ` ∀p, q∈P (p∼o f q =⇒ ∀α∈I (α.p + M ∼o f α.q + M)
where M is any summation in P)

2. ` ∀p, q∈P (p∼o f q =⇒ ∀r∈P (p
r ∼o f

q
r))

3. ` ∀p, q∈P (p∼o f q =⇒ ∀r∈P (r
p ∼o f

r
q))

A.8.1 ∀p, q∈P
(if p∼o f q then ∀α ∈I (α.p + M ∼o f α.q + M) where M is any

summation in P)

Proof: If ∃ strong of-bisimulation S on P with ∀α∈I ((α.p + M, α.q + M)∈S) where
M is any summation in P and p, q are any processes in P such that p∼o f q
then ∀p, q∈P (if p∼o f q then ∀α∈I (α.p + M ∼o f α.q + M) where M is any summation
in P)
(by definition of α.p + M ∼o f α.q + M).
Therefore, we find such an S.

Let S , {(α.p + M, α.q + M), (p, q), (r, r) |
α∈I ∧ p, q∈P (p∼o f q) ∧ M is any summation in P ∧ r∈P}.

We prove S is a strong of-simulation on P.
S⊆P x P ∧
∀α∈I and ∀p, q∈P such that p∼o f q and ∀summation M∈P (α.p + M, α.q + M)∈S
(by definition of S).

The transitions of α.p + M in I∪ R are defined by the Sum rule only
(by the syntax of α.p + M and definitions of the LTS rules):
α.p + M α

−→p and α.q + M α
−→q (by the Sum rule),

A.8. Theorem 4.3.4
∼o f Preserves the Elementary Contexts α.[·] + M, [·]

P and P
[·] 184

and p∼o f q (by definition of p and q)
=⇒ (p, q)∈S (by definition of S).
If M δ
−→s for some δ∈I∪ R and some s∈P

then α.p + M δ
−→s and α.q + M δ

−→s (by the Sum rule),
and (s, s)∈S (∵ ∀r∈P ((r, r)∈S), by definition of S).

If p
β
−→p′ for some β∈I∪ R and some p′∈P

then q
β
−→q′ for some q′∈P ∧ p′∼o f q′ (∵ p∼o f q, by definition of p and q)

=⇒ (p′, q′)∈S (by definition of S).

If r
γ
−→r′ for some γ∈I∪ R and some r′∈P

then r
γ
−→r′

and (r′, r′)∈S (by definition of S).

∴ S is a strong of-simulation on P (by definition of strong of-simulation on P).

We prove S is a strong of-bisimulation onP by proving S−1 is a strong of-simulation
on P.
S−1 = {(α.q + M, α.p + M), (q, p), (r, r) |
α∈I ∧ p, q∈P (p∼o f q) ∧ M is any summation in P ∧ r∈P}
(by definitions of S and inverse binary relations)
=⇒ S−1 = {(α.q + M, α.p + M), (q, p), (r, r) |
α∈I ∧ q, p∈P (q∼o f p) ∧ M is any summation in P ∧ r∈P}
(∵ ∼o f is symmetric, by Lemma 4.3.2)
=⇒ S−1

⊆P x P ∧
∀α∈I and ∀p, q∈P such that p∼o f q and ∀summation M∈P (α.q + M, α.p + M)∈S−1

(by definition of S−1).
The proof that S−1 is a strong of-simulation on P is identical to the proof that S is a
strong of-simulation on Pwith the following substitutions:
p is replaced with q
q with p
p′ with q′

q′ with p′

S with S−1.
Thus, S−1 is a strong of-simulation on P
(by definition of strong of-simulation on P).
∴ S is a strong of-bisimulation on P

A.8. Theorem 4.3.4
∼o f Preserves the Elementary Contexts α.[·] + M, [·]

P and P
[·] 185

(by definition of strong of-bisimulation on P).
∴ ∀p, q∈P (if p∼o f q then ∀α∈I (α.p + M ∼o f α.q + M) where M is any summation
in P)
(by definition of α.p + M ∼o f α.q + M). Q.E.D.

A.8.2 ∀p, q∈P (if p∼o f q then ∀r∈P (p
r ∼o f

q
r))

Proof: If ∃ strong of-bisimulation S on P with ∀r ∈P ((p
r ,

q
r) ∈ S) for any processes

p, q in P such that p∼o f q
then ∀p, q∈P (if p∼o f q then ∀r∈P (p

r ∼o f
q
r)) (by definition of p

r ∼o f
q
r).

Therefore, we find such an S.

Let S , {(p
r ,

q
r), (p, q) | p, q, r∈P ∧ p∼o f q}.

We prove S is a strong of-simulation on P.
S⊆P x P ∧ ∀p, q, r∈P (p∼o f q =⇒ (p

r ,
q
r)∈S) (by definition of S).

The transitions of p
r in I∪ R are defined by the Creat rule only

(by the syntax of p
r and definitions of the LTS rules):

If r∈P0

then p
r ∈P

0 (by definition of rule 4 of P0)
=⇒ I p

r
∪ R p

r
= ∅ (by Lemma 4.3.7)

=⇒
p
r has no transition in I∪ R (by set theory).

If r<P0

then r∈P+ (by Theorem 4.3.2),
and if r∼o f X

then p
r

τrX
−→p ∧ q

r

τrX
−→q (by the Creat rule).

p∼o f q (by definition of p and q)
=⇒ (p, q)∈S (by definition of S).

If p
β
−→p′ for some β∈I∪ R and some p′∈P

then q
β
−→q′ for some q′∈P ∧ p′∼o f q′ (∵ p∼o f q, by definition of p and q)

=⇒ (p′, q′)∈S (by definition of S).

∴ S is a strong of-simulation on P (by definition of strong of-simulation on P).

We prove S is a strong of-bisimulation onP by proving S−1 is a strong of-simulation

A.8. Theorem 4.3.4
∼o f Preserves the Elementary Contexts α.[·] + M, [·]

P and P
[·] 186

on P.
S−1 = {(q

r ,
p
r), (q, p) | p, q, r∈P ∧ p∼o f q}

(by definitions of S and inverse binary relations)
=⇒ S−1 = {(q

r ,
p
r), (q, p) | q, p, r∈P ∧ q∼o f p} (∵ ∼o f is symmetric, by Lemma 4.3.2)

=⇒ S−1
⊆P x P ∧ ∀p, q, r∈P such that p∼o f q (q

r ,
p
r)∈S−1 (by definition of S−1).

The proof that S−1 is a strong of-simulation on P is identical to the proof that S is a
strong of-simulation on Pwith the following substitutions:
p is replaced with q
q with p
p′ with q′

q′ with p′

S with S−1.
Thus, S−1 is a strong of-simulation on P
(by definition of strong of-simulation on P).
∴ S is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P).
∴ ∀p, q∈P (if p∼o f q then ∀r∈P (p

r ∼o f
q
r)) (by definition of p

r ∼o f
q
r). Q.E.D.

A.8.3 ∀p, q∈P (if p∼o f q then ∀r∈P (r
p∼o f

r
q))

Proof: If ∃ strong of-bisimulation S on P with ∀r ∈P ((r
p ,

r
q) ∈ S) for any processes

p, q in P such that p∼o f q
then ∀p, q∈P (if p∼o f q then ∀r∈P (r

p ∼o f
r
q)) (by definition of r

p ∼o f
r
q).

Therefore, we find such an S.

Let S , {(r
p ,

r
q), (r, r) | p, q, r∈P ∧ p∼o f q}.

We prove S is a strong of-simulation on P.
S⊆P x P ∧ ∀p, q, r∈P (p∼o f q =⇒ (r

p ,
r
q)∈S) (by definition of S).

The transitions of r
p in I∪ R are defined by the Creat rule only

(by the syntax of r
p and definitions of the LTS rules):

If p∈P0

then r
p ∈P

0 (by definition of rule 4 of P0)

=⇒ I r
p
∪ R r

p
= ∅ (by Lemma 4.3.7)

=⇒ r
p has no transition in I∪ R (by set theory).

If p<P0

A.9. Lemma 4.3.13 ∀strong dp-simulations U,V on P
(UV is a strong dp-simulation on P) 187

then p∈P+ (by Theorem 4.3.2)
=⇒ q∈P+ (by Lemma 4.3.9, ∵ p∼o f q ∧ p<P0),
and if p∼o f X
then q∼o f X (∵ p∼o f q ∧ ∼o f is an equivalence relation, by Theorem 4.3.1).

∴ r
p

τrX
−→r =⇒ r

q

τrX
−→r (by the Creat rule),

and (r, r)∈S (by definition of S).

If r
γ
−→r′ for some γ∈I∪ R and some r′∈P

then r
γ
−→r′

and (r′, r′)∈S (by definition of S).

∴ S is a strong of-simulation on P (by definition of strong of-simulation on P).

We prove S is a strong of-bisimulation onP by proving S−1 is a strong of-simulation
on P.
S−1 = {(r

q ,
r
p), (r, r) | p, q, r∈P ∧ p∼o f q}

(by definitions of S and inverse binary relations)
=⇒ S−1 = {(r

q ,
r
p), (r, r) | q, p, r∈P ∧ q∼o f p} (∵ ∼o f is symmetric, by Lemma 4.3.2)

=⇒ S−1
⊆P x P ∧ ∀p, q, r∈P such that p∼o f q (r

q ,
r
p)∈S−1 (by definition of S−1).

The proof that S−1 is a strong of-simulation on P is identical to the proof that S is a
strong of-simulation on Pwith the following substitutions:
p is replaced with q
q with p
S with S−1.
Thus, S−1 is a strong of-simulation on P
(by definition of strong of-simulation on P).
∴ S is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P).
∴ ∀p, q∈P (if p∼o f q then ∀r∈P (r

p ∼o f
r
q)) (by definition of r

p ∼o f
r
q). Q.E.D.

A.9 Lemma 4.3.13 ∀strong dp-simulations U,V on P

(UV is a strong dp-simulation on P)

Proof: For strong dp-simulations U,V on P, let W , UV.
W is a strong dp-simulation on P iff W ⊆P x P and the Observation, Fraction and
Deletion conditions of strong dp-simulation on P hold ∀(w1,w3)∈W

A.9. Lemma 4.3.13 ∀strong dp-simulations U,V on P
(UV is a strong dp-simulation on P) 188

(by definition of strong dp-simulation on P).
Therefore, we prove W ⊆P x P, then prove the Observation, Fraction and Deletion
conditions of strong dp-simulation on P hold ∀(w1,w3)∈W.

U,V are strong dp-simulations on P (by definitions of U,V)
=⇒ U,V are strong of-simulations on P (by Lemma 4.3.10)
=⇒ UV is a strong of-simulation on P (by Lemma 4.3.3)
=⇒W is a strong of-simulation on P (by definition of W)
=⇒W⊆P x P ∧
for all elements of W the Observation and Fraction conditions of strong of-simulation
on P are satisfied
(by definition of strong of-simulation on P)
=⇒ for all elements of W the Observation and Fraction conditions of strong
dp-simulation on P are satisfied
(∵ the Observation and Fraction conditions of strong dp-simulation on P are the
same as the Observation and Fraction conditions of strong of-simulation on P,
respectively).

It remains to prove that for all elements of W the Deletion condition of strong
dp-simulation on P is satisfied.

Proof the Deletion condition of strong dp-simulation on P holds for (w1,w3)∈W:

The similarity between the three conditions of strong dp-simulation on P implies
that the proof of the Deletion condition of strong dp-simulation is identical to the
proof of the Observation condition of strong of-simulation in Lemma 4.3.3 (see A.3)
with the following substitutions:
αw1 is replaced with τrY

Iw1 with Rw1

w1′ with w1′′′

αw2 with τrZ

Iw2 with Rw2

w2′ with w2′′′

Iw3 with Rw3

w3′ with w3′′′

and in the justifications: U,V are strong dp-simulations on P, and any reference
to the Observation condition of strong of-simulation on P is replaced with a

A.10. Lemma 4.3.15
∀p, q∈P (p|q∈P+ =⇒ f actors+

m(p|q) , ∅m) 189

corresponding reference to the Deletion condition of strong dp-simulation on P.

∴ The Deletion condition of strong dp-simulation on P holds ∀(w1,w3)∈W
(∵ (w1,w3)∈W is arbitrary)
=⇒W is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵W⊆P x P and for all elements of W
the Observation and Fraction conditions of strong dp-simulation on P are satisfied)
=⇒ UV is a strong dp-simulation on P (by definition of W)
=⇒ ∀strong dp-simulations U,V on P (UV is a strong dp-simulation on P)
(∵ U,V are arbitrary strong dp-simulations on P). Q.E.D.

A.10 Lemma 4.3.15

∀p, q∈P (p|q∈P+ =⇒ f actors+
m(p|q) , ∅m)

Proof: uses complete induction on the depth of the factor tree of p|q.

For n∈ (N+
−{1}), let Prop(n) be this lemma for p|q with factor tree of depth n.

Depth of the factor tree of p|q ≥ 2 (by Definition 4.3.3 and Definition 4.3.4).
Therefore, the proof by complete induction on the depth of the factor tree of p|q
involves discharging the following two proof obligations:

1. ` Prop(2)

2. ` ∀n∈ (N+
−{1}) (∀m∈ [2,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(2)

For p, q∈P, p|q∈P+ with factor tree of depth 2 (by the hypothesis of Prop(2))
=⇒ f actorsm(p) = ∅m ∧ f actorsm(q) = ∅m

(by definitions of f actorsm(p) and f actorsm(q))
=⇒ f actorsm(p|q) = {p}m] {q}m (by definition of f actorsm(p|q) and set theory)
=⇒ f actorsm(p|q) = {p, q}m (by multiset theory).
Now p|q∈P+ (by the hypothesis of Prop(2))
=⇒ p∈P+

∨ q∈P+ (by the hypothesis of production rule 3 of P+, ∵ p, q∈P)
=⇒ f actorsm(p) = ∅m ∧ p∈P+

∨ f actorsm(q) = ∅m ∧ q∈P+

(∵ f actorsm(p) = ∅m ∧ f actorsm(q) = ∅m)
=⇒ p∈ f actors+

m(p|q) ∨ q∈ f actors+
m(p|q)

(by definition of f actors+
m(p|q), ∵ f actorsm(p|q) = {p, q}m)

A.10. Lemma 4.3.15
∀p, q∈P (p|q∈P+ =⇒ f actors+

m(p|q) , ∅m) 190

=⇒ f actors+
m(p|q) , ∅m (by set theory).

∴ ∀p, q∈P (p|q∈P+ =⇒ f actors+
m(p|q) , ∅m) for p|q with factor tree of depth 2

(∵ p, q∈Pwith p|q∈P+ and factor tree of p|q of depth 2 are arbitrary)
=⇒ Prop(2) holds (by definition of Prop(2)). Q.E.D.

Induction Step:

Proof of ∀n∈ (N+
−{1}) (∀m∈ [2,n]Prop(m) =⇒ Prop(n + 1))

For n∈ (N+
−{1}), assume ∀m∈ [2,n]Prop(m) holds (inductive hypothesis).

For p, q∈P, p|q∈P+ with factor tree of depth n + 1
(by the hypothesis of Prop(n + 1))
=⇒ f actorsm(p|q) = {p}m] {q}m] f actorsm(p)] f actorsm(q)
(by definition of f actorsm(p|q))
=⇒ f actorsm(p|q) = {p, q}m] f actorsm(p)] f actorsm(q) (by multiset theory)
=⇒ {p, q}m ⊆ f actorsm(p|q) ∧
f actorsm(p) ⊆ f actorsm(p|q) ∧ f actorsm(q) ⊆ f actorsm(p|q)
(by set theory).
Now p|q∈P+ (by the hypothesis of Prop(n + 1))
=⇒ p∈P+

∨ q∈P+ (by the hypothesis of production rule 3 of P+, ∵ p, q∈P)
=⇒ (f actorsm(p) = ∅m ∨ f actorsm(p) , ∅m) ∧ p∈P+

∨

(f actorsm(q) = ∅m ∨ f actorsm(q) , ∅m) ∧ q∈P+

(∵ (f actorsm(p) = ∅m ∨ f actorsm(p) , ∅m) ∧ (f actorsm(q) = ∅m ∨ f actorsm(q) , ∅m))
=⇒ f actorsm(p) = ∅m ∧ p∈P+

∨ f actorsm(p) , ∅m ∧ p∈P+
∨

f actorsm(q) = ∅m ∧ q∈P+
∨ f actorsm(q) , ∅m ∧ q∈P+

(∵ (predicate1 ∨ predicate2) ∧ predicate3⇐⇒

predicate1 ∧ predicate3 ∨ predicate2 ∧ predicate3).

If f actorsm(p) = ∅m ∧ p∈P+

then p∈ f actors+
m(p|q) (by definition of f actors+

m(p|q), ∵ {p, q}m ⊆ f actorsm(p|q))
=⇒ f actors+

m(p|q) , ∅m (by set theory).

If f actorsm(p) , ∅m ∧ p∈P+

then ∃r, s∈P (p = r|s) (by definition of f actorsm(p))
=⇒ r|s∈P+ (∵ p∈P+) ∧
r|s has factor tree of depth mp, with mp∈ [2,n]
(∵ the factor tree of p|q has depth n + 1 and p is a subnode of p|q in the factor tree of
p|q)

A.10. Lemma 4.3.15
∀p, q∈P (p|q∈P+ =⇒ f actors+

m(p|q) , ∅m) 191

=⇒ Prop(mp) holds (by the inductive hypothesis)
=⇒ f actors+

m(r|s) , ∅m

(by modus ponens, ∵ r, s∈Pwith r|s∈P+ and r|s has factor tree of depth mp).
Now f actors+

m(r|s) ⊆ f actorsm(r|s) (by definition of f actors+
m(r|s)) ∧

f actorsm(r|s) ⊆ f actorsm(p|q) (∵ p = r|s ∧ f actorsm(p) ⊆ f actorsm(p|q))
=⇒ f actors+

m(r|s) ⊆ f actorsm(p|q) (∵⊆ is transitive, by multiset theory)
=⇒ ∃ f ∈ f actorsm(p|q) (f actorsm(f) = ∅m ∧ f ∈P+)
(∵ f actors+

m(r|s) , ∅m, and by set theory and definition of f actors+
m(r|s))

=⇒ f ∈ f actors+
m(p|q) (by definition of f actors+

m(p|q))
=⇒ f actors+

m(p|q) , ∅m (by set theory).

If f actorsm(q) = ∅m ∧ q∈P+

then q∈ f actors+
m(p|q) (by definition of f actors+

m(p|q), ∵ {p, q}m ⊆ f actorsm(p|q))
=⇒ f actors+

m(p|q) , ∅m (by set theory).

If f actorsm(q) , ∅m ∧ q∈P+

then ∃u, v∈P (q = u|v) (by definition of f actorsm(q))
=⇒ u|v∈P+ (∵ q∈P+) ∧
u|v has factor tree of depth mq, with mq∈ [2,n]
(∵ the factor tree of p|q has depth n + 1 and q is a subnode of p|q in the factor tree of
p|q)
=⇒ Prop(mq) holds (by the inductive hypothesis)
=⇒ f actors+

m(u|v) , ∅m

(by modus ponens, ∵ u, v∈Pwith u|v∈P+ and u|v has factor tree of depth mq).
Now f actors+

m(u|v) ⊆ f actorsm(u|v) (by definition of f actors+
m(u|v)) ∧

f actorsm(u|v) ⊆ f actorsm(p|q) (∵ q = u|v ∧ f actorsm(q) ⊆ f actorsm(p|q))
=⇒ f actors+

m(u|v) ⊆ f actorsm(p|q) (∵⊆ is transitive, by multiset theory)
=⇒ ∃g∈ f actorsm(p|q) (f actorsm(g) = ∅m ∧ g∈P+)
(∵ f actors+

m(u|v) , ∅m, and by set theory and definition of f actors+
m(u|v))

=⇒ g∈ f actors+
m(p|q) (by definition of f actors+

m(p|q))
=⇒ f actors+

m(p|q) , ∅m (by set theory).

∴ ∀p, q∈P (p|q∈P+ =⇒ f actors+
m(p|q) , ∅m) for p|q with factor tree of depth n + 1

(∵ p, q∈Pwith p|q∈P+ and factor tree of p|q of depth n + 1 are arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈ (N+

−{1}) (∀m∈ [2,n]Prop(m) =⇒ Prop(n + 1)) holds
(∵ n∈ (N+

−{1}) is arbitrary). Q.E.D.

A.11. Lemma 4.3.16 ∀p∈P (p∈P0 =⇒ f actors+
m(p) = ∅m) 192

∴ ∀n∈ (N+
−{1}) Prop(n) holds (by complete induction).

∴ ∀p, q∈P (p|q∈P+ =⇒ f actors+
m(p|q) , ∅m)

(∵ for every p, q∈Pwith p|q∈P+, the depth of the factor tree of p|q is finite). Q.E.D.

A.11 Lemma 4.3.16 ∀p∈P (p∈P0 =⇒ f actors+
m(p) = ∅m)

Proof: uses complete induction on the depth of the factor tree of p.

For n∈N+, let Prop(n) be this lemma for p with factor tree of depth n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For p∈P, p∈P0 with factor tree of depth 1 (by the hypothesis of Prop(1))
=⇒ f actorsm(p) = ∅m

(by Definition 4.3.3, Definition 4.3.4 and definition of f actorsm(p))
=⇒ f actors+

m(p)⊆ f actorsm(p) (by definition of f actors+
m(p)) ∧ f actorsm(p) = ∅m

=⇒ f actors+
m(p) = ∅m (by set theory).

∴ ∀p∈P (p∈P0 =⇒ f actors+
m(p) = ∅m) for p with factor tree of depth 1

(∵ p∈Pwith p∈P0 and factor tree of depth 1 is arbitrary)
=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

Induction Step: Proof of∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For p∈P, p∈P0 with factor tree of depth n + 1 (by the hypothesis of Prop(n + 1))
=⇒ p has factor tree of depth ≥ 2 (∵ n + 1 ≥ 2 (∵ n∈N+))
=⇒ ∃r, s∈P (p = r|s) (by Definition 4.3.3 and Definition 4.3.4)
=⇒ r|s∈P0 (∵ p∈P0) ∧
r, s have factor trees of depths mr, ms respectively, with mr,ms∈ [1,n]
(∵ p has factor tree of depth n + 1)
=⇒ r, s∈P0 (by production rule 3 of P0) ∧

A.11. Lemma 4.3.16 ∀p∈P (p∈P0 =⇒ f actors+
m(p) = ∅m) 193

Prop(mr) and Prop(ms) hold (by the inductive hypothesis)
=⇒ f actors+

m(r) = ∅m ∧ f actors+
m(s) = ∅m (by modus ponens, ∵ r, s∈P).

Now f actorsm(p) = {r}m] {s}m] f actorsm(r)] f actorsm(s)
(by definition of f actorsm(p), ∵ p = r|s).
If f actors+

m(p) , ∅m

then ∃ f ∈ f actors+
m(p) (by set theory)

=⇒ f ∈ f actorsm(p) ∧ f actorsm(f) = ∅m ∧ f ∈P+ (by definition of f actors+
m(p))

=⇒ f ∈{r}m ∨ f ∈{s}m ∨ f ∈ f actorsm(r) ∨ f ∈ f actorsm(s)
(by definition of f actorsm(p)).

If f ∈{r}m
then f = r (by set theory)
=⇒ f ∈P0 (∵ r∈P0)
=⇒ f <P+ (by Theorem 4.3.2; which is a contradiction).
∴ f < {r}m.

If f ∈{s}m
then f = s (by set theory)
=⇒ f ∈P0 (∵ s∈P0)
=⇒ f <P+ (by Theorem 4.3.2; which is a contradiction).
∴ f < {s}m.

If f ∈ f actorsm(r)
then f ∈ f actorsm(r) ∧ f actorsm(f) = ∅m ∧ f ∈P+ (by definition of f)
=⇒ f ∈ f actors+

m(r) (by definition of f actors+
m(r))

=⇒ f actors+
m(r) , ∅m (by set theory; which is a contradiction).

∴ f < f actorsm(r).

If f ∈ f actorsm(s)
then f ∈ f actorsm(s) ∧ f actorsm(f) = ∅m ∧ f ∈P+ (by definition of f)
=⇒ f ∈ f actors+

m(s) (by definition of f actors+
m(s))

=⇒ f actors+
m(s) , ∅m (by set theory; which is a contradiction).

∴ f < f actorsm(s).

∴ f actors+
m(p) = ∅m (by contradiction).

∴ ∀p∈P (p∈P0 =⇒ f actors+
m(p) = ∅m) for p with factor tree of depth n + 1

(∵ p∈Pwith p∈P0 and factor tree of depth n + 1 is arbitrary)

A.12. Lemma 4.3.17 ∀p, p′∈P

∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actorsm(p′) , ∅m) 194

=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ ∀p∈P (p∈P0 =⇒ f actors+

m(p) = ∅m)
(∵ every p∈Pwith p∈P0 has a factor tree of finite depth). Q.E.D.

A.12 Lemma 4.3.17 ∀p, p′∈P

∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actorsm(p′) , ∅m)

Proof: uses complete induction on the depth of inference of the applications of the
LTS rules that determine the transitions of p in R.

For n ∈N+, let Prop(n) be this lemma for p
τrX
−→ p′ determined by applications of

LTS rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For p, p′∈P and τrX ∈Rp, the transition p
τrX
−→ p′ has depth of inference 1

(by the hypothesis of Prop(1))
=⇒ only the Delet rule determines the transition p

τrX
−→ p′

(by definitions of the LTS rules):

If the Delet rule defines a transition p
τrX
−→ p′

then p′ = 0 (by the Delet rule)
=⇒ p′ = 0 ∨ f actorsm(p′) , ∅m (by definition of ∨)

=⇒ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actorsm(p′) , ∅m)

for p
τrX
−→ p′ determined by applications of LTS rules with depth of inference 1

(∵ p, p′ ∈ P and τrX ∈ Rp with transition p
τrX
−→ p′ and depth of inference 1 are

A.12. Lemma 4.3.17 ∀p, p′∈P

∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actorsm(p′) , ∅m) 195

arbitrary)
=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

Induction Step: Proof of∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).

For p, p′∈P and τrX ∈Rp, the transition p
τrX
−→ p′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ p
τrX
−→ p′ has depth of inference ≥ 2 (∵ n + 1 ≥ 2 (∵ n∈N+))

=⇒ only the L − Par, R − Par or CompDelet rules determine the transition p
τrX
−→ p′

(by definitions of the LTS rules):

If the L − Par rule defines a transition p
τrX
−→ p′

then ∃r, r′, s∈P (p = r|s ∧ p′ = r′|s ∧ r|s
τrX
−→ r′|s) (by the L − Par rule)

=⇒ f actorsm(p′) = {r′}m] {s}m] f actorsm(r′)] f actorsm(s)
(by definition of f actorsm(r′|s))
=⇒ r′∈ f actorsm(p′) (by set theory)
=⇒ f actorsm(p′) , ∅m (by set theory)
=⇒ p′ = 0 ∨ f actorsm(p′) , ∅m (by definition of ∨).

If the R − Par rule defines a transition p
τrX
−→ p′

then ∃r, s, s′∈P (p = r|s ∧ p′ = r|s′ ∧ r|s
τrX
−→ r|s′) (by the R − Par rule)

=⇒ f actorsm(p′) = {r}m] {s′}m] f actorsm(r)] f actorsm(s′)
(by definition of f actorsm(r|s′))
=⇒ r∈ f actorsm(p′) (by set theory)
=⇒ f actorsm(p′) , ∅m (by set theory)
=⇒ p′ = 0 ∨ f actorsm(p′) , ∅m (by definition of ∨).

If the CompDelet rule defines a transition p
τrX
−→ p′

then ∃ τrX1
, τrX2

∈R ∃u∈P (X∼o f X1|X2 ∧ p
τrX1
−→u ∧ u

τrX2
−→p′)

(by the hypothesis of CompDelet)

=⇒ τrX2
∈Ru (by definition of Ru).

Now the transition p
τrX
−→ p′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition u
τrX2
−→ p′ has depth of inference mu, with mu∈ [1,n]

(∵ the transition p
τrX
−→ p′ is inferred from the transition u

τrX2
−→ p′ using the CompDelet

A.13. Lemma 4.3.18 196

rule)
=⇒ Prop(mu) holds (by the inductive hypothesis)
=⇒ p′ = 0 ∨ f actorsm(p′) , ∅m

(by modus ponens, ∵ u, p′∈P ∧ τrX2
∈Ru ∧ u

τrX2
−→ p′ with depth of inference mu).

∴ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actorsm(p′) , ∅m)

for p
τrX
−→ p′ determined by applications of LTS rules with depth of inference n + 1

(∵ p, p′ ∈ P and τrX ∈ Rp with transition p
τrX
−→ p′ and depth of inference n + 1 are

arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).

∴ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actorsm(p′) , ∅m)

(∵ every transition of every p∈P is a result of one or more applications of the LTS
semantic rules with finite depth of inference). Q.E.D.

A.13 Lemma 4.3.18

∀p, p′∈P ∀τrX ∈Rp

(p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(p))

Proof: uses complete induction on the depth of inference of the applications of the
LTS rules that determine the transitions of p in R.

For n ∈N+, let Prop(n) be this lemma for p
τrX
−→ p′ determined by applications of

LTS rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

A.13. Lemma 4.3.18 197

Base Case: Proof of Prop(1)

For p, p′∈P and τrX ∈Rp, the transition p
τrX
−→ p′ has depth of inference 1

(by the hypothesis of Prop(1))

=⇒ only the Delet rule determines the transition p
τrX
−→ p′

(by definitions of the LTS rules):

If the Delet rule defines a transition p
τrX
−→ p′

then p′ = 0 (by the Delet rule)
=⇒ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(p) (by definition of ∨)

=⇒ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(p))

for p
τrX
−→ p′ determined by applications of LTS rules with depth of inference 1

(∵ p, p′ ∈ P and τrX ∈ Rp with transition p
τrX
−→ p′ and depth of inference 1 are

arbitrary)
=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

Induction Step: Proof of∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).

For p, p′∈P and τrX ∈Rp, the transition p
τrX
−→ p′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ p
τrX
−→ p′ has depth of inference ≥ 2 (∵ n + 1 ≥ 2 (∵ n∈N+))

=⇒ only the L − Par, R − Par or CompDelet rules determine the transition p
τrX
−→ p′

(by definitions of the LTS rules):

If the L − Par rule defines a transition p
τrX
−→ p′

then ∃r, r′, s∈P (p = r|s ∧ p′ = r′|s ∧ r|s
τrX
−→ r′|s) (by the L − Par rule)

=⇒ r
τrX
−→ r′ (by the hypothesis of L − Par).

Now r′|s , 0 (by the syntax of r′|s and 0)
=⇒ p′ , 0 (∵ p′ = r′|s).
Therefore, we prove f actors+

m(p′) ⊂ f actors+
m(p).

τrX ∈Rr (∵ r
τrX
−→ r′, and by definition of Rr)

=⇒ Rr , ∅ (by set theory)
=⇒ r∈P+ (by Lemma 4.3.6, ∵ r∈P)
=⇒ r|s∈P+ (by production rule 3 of P+, ∵ r, s∈P)

A.13. Lemma 4.3.18 198

=⇒ f actors+
m(r|s) , ∅m (by Lemma 4.3.15, ∵ r, s∈P)

=⇒ f actors+
m(p) , ∅m (∵ p = r|s).

Now f actors+
m(p′) = ∅m ∨ f actors+

m(p′) , ∅m (by set theory).

If f actors+
m(p′) = ∅m

then f actors+
m(p′) ⊂ f actors+

m(p) (by set theory, ∵ f actors+
m(p) , ∅m).

If f actors+
m(p′) , ∅m

then f actors+
m(r′|s) , ∅m (∵ p′ = r′|s)

=⇒ ∃ f ∈ f actors+
m(r′|s) (by set theory)

=⇒ f ∈ f actorsm(r′|s)(f actorsm(f) = ∅m ∧ f ∈P+) (by definition of f actors+
m(r′|s))

=⇒ f ∈{r′}m] {s}m] f actorsm(r′)] f actorsm(s)(f actorsm(f) = ∅m ∧ f ∈P+)
(by definition of f actorsm(r′|s))
=⇒ f ∈{r′}m(f actorsm(f) = ∅m ∧ f ∈P+) ∨ f ∈{s}m(f actorsm(f) = ∅m ∧ f ∈P+) ∨
f ∈ f actorsm(r′)(f actorsm(f) = ∅m ∧ f ∈P+) ∨
f ∈ f actorsm(s)(f actorsm(f) = ∅m ∧ f ∈P+)
(by set theory).
Now f actorsm(r|s) = {r}m] {s}m] f actorsm(r)] f actorsm(s)
(by definition of f actorsm(r|s)).

And the transition p
τrX
−→ p′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition r|s
τrX
−→ r′|s has depth of inference n + 1 (∵ p = r|s ∧ p′ = r′|s)

=⇒ the transition r
τrX
−→ r′ has depth of inference mr, with mr∈ [1,n]

(∵ the transition r|s
τrX
−→ r′|s is inferred from the transition r

τrX
−→ r′ using the L − Par

rule)
=⇒ Prop(mr) holds (by the inductive hypothesis)
=⇒ r′ = 0 ∨ f actors+

m(r′) ⊂ f actors+
m(r)

(by modus ponens, ∵ r, r′∈P ∧ τrX ∈Rr ∧ r
τrX
−→ r′ with depth of inference mr).

If f ∈{r′}m(f actorsm(f) = ∅m ∧ f ∈P+)
then f = r′ ∧ f actorsm(r′) = ∅m ∧ r′∈P+ (by set theory).
Now r′ = 0 ∨ r′ , 0 (by definition of ∨).
If r′ = 0
then r′∈P0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ r′<P+ (by Theorem 4.3.2; which is a contradiction).
∴ r′ , 0
=⇒ f actorsm(r′) , ∅m

A.13. Lemma 4.3.18 199

(by Lemma 4.3.17, ∵ r, r′∈P ∧ τrX ∈Rr ∧ r
τrX
−→ r′ ; which is a contradiction).

∴ f < {r′}m.

If f ∈{s}m(f actorsm(f) = ∅m ∧ f ∈P+)
then f ∈ f actorsm(r|s)(f actorsm(f) = ∅m ∧ f ∈P+)
(∵ {s}m ⊆ f actorsm(r|s) (by definition of f actorsm(r|s)), and by set theory)
=⇒ f ∈ f actors+

m(r|s) (by definition of f actors+
m(r|s)).

If f ∈ f actorsm(r′)(f actorsm(f) = ∅m ∧ f ∈P+)
then f actorsm(r′) , ∅m (by set theory) ∧
f ∈ f actors+

m(r′) (by definition of f actors+
m(r′)).

Now r′ = 0 ∨ r′ , 0 (by definition of ∨).
If r′ = 0
then f actorsm(r′) = ∅m (by definition of f actorsm(0); which is a contradiction).
∴ r′ , 0
=⇒ f actors+

m(r′) ⊂ f actors+
m(r) (∵ r′ = 0 ∨ f actors+

m(r′) ⊂ f actors+
m(r)) ∧

f actors+
m(r) ⊆ f actorsm(r) (by definition of f actors+

m(r)) ∧
f actorsm(r) ⊆ f actorsm(r|s) (by definition of f actorsm(r|s))
=⇒ f actors+

m(r′) ⊂ f actorsm(r|s) (by set theory)
=⇒ f ∈ f actorsm(r|s) (∵ f ∈ f actors+

m(r′), and by set theory)
=⇒ f ∈ f actors+

m(r|s)
(∵ f actorsm(f) = ∅m ∧ f ∈P+, and by definition of f actors+

m(r|s)).

If f ∈ f actorsm(s)(f actorsm(f) = ∅m ∧ f ∈P+)
then f ∈ f actorsm(r|s)(f actorsm(f) = ∅m ∧ f ∈P+)
(∵ f actorsm(s) ⊆ f actorsm(r|s) (by definition of f actorsm(r|s)), and by set theory)
=⇒ f ∈ f actors+

m(r|s) (by definition of f actors+
m(r|s)).

∴ ∀ f ∈ f actors+
m(r′|s)(f ∈ f actors+

m(r|s)) (∵ f ∈ f actors+
m(r′|s) is arbitrary)

=⇒ f actors+
m(r′|s) ⊆ f actors+

m(r|s) (by definition of ⊆)
=⇒ f actors+

m(r′|s) ⊂ f actors+
m(r|s) ∨ f actors+

m(r′|s) = f actors+
m(r|s)

(by multiset theory).
We prove f actors+

m(r′|s) ⊂ f actors+
m(r|s).

Let F+
r′ , {g∈{r

′
}m] f actorsm(r′) | f actorsm(g) = ∅m ∧ g∈P+

}m

and let F+
r , {g∈{r}m] f actorsm(r) | f actorsm(g) = ∅m ∧ g∈P+

}m.
If f actors+

m(r′|s) = f actors+
m(r|s)

A.13. Lemma 4.3.18 200

then {g∈ f actorsm(r′|s) | f actorsm(g) = ∅m ∧ g∈P+
}m =

{g∈ f actorsm(r|s) | f actorsm(g) = ∅m ∧ g∈P+
}m

(by definitions of f actors+
m(r′|s) and f actors+

m(r|s))
=⇒ {g∈{r′}m] {s}m] f actorsm(r′)] f actorsm(s) | f actorsm(g) = ∅m ∧ g∈P+

}m =

{g∈{r}m] {s}m] f actorsm(r)] f actorsm(s) | f actorsm(g) = ∅m ∧ g∈P+
}m

(by definitions of f actorsm(r′|s) and f actorsm(r|s))
=⇒ {g∈{r′}m] f actorsm(r′) | f actorsm(g) = ∅m ∧ g∈P+

}m =

{g∈{r}m] f actorsm(r) | f actorsm(g) = ∅m ∧ g∈P+
}m

(by multiset theory)
=⇒ F+

r′ = F+
r (by definitions of F+

r′ and F+
r).

Now r′ = 0 ∨ r′ , 0 (by definition of ∨).

If r′ = 0
then r′∈P0 (∵ 0∈P0, by production rule 1 of P0) ∧
f actorsm(r′) = ∅m (∵ f actorsm(0) = ∅m, by definition of f actorsm(0))
=⇒ r′<P+ (by Theorem 4.3.2) ∧ f actorsm(r′) = ∅m

=⇒ {g∈{r′}m] f actorsm(r′) | f actorsm(g) = ∅m ∧ g∈P+
}m = ∅m

(by multiset theory)
=⇒ F+

r′ = ∅m (by definition of F+
r′).

Now f actorsm(r) = ∅m ∨ f actorsm(r) , ∅m (by set theory).
If f actorsm(r) = ∅m

then f actorsm(r) = ∅m ∧ r∈P+ (∵ r∈P+)
=⇒ r∈F+

r (by definition of F+
r and by multiset theory)

=⇒ F+
r , ∅m (by set theory)

=⇒ F+
r′ , ∅m (∵ F+

r′ = F+
r ; which is a contradiction).

∴ f actorsm(r) , ∅m

=⇒ ∃u, v∈P(r = u|v) (by definition of f actorsm(r))
=⇒ u|v∈P+ (∵ r∈P+)
=⇒ f actors+

m(u|v) , ∅m (by Lemma 4.3.15, ∵ u, v∈P)
=⇒ f actors+

m(r) , ∅m (∵ r = u|v)
=⇒ ∃g1∈ f actors+

m(r) (by set theory)
=⇒ g1∈ f actorsm(r)(f actorsm(g1) = ∅m ∧ g1∈P

+) (by definition of f actors+
m(r))

=⇒ g1∈F+
r (by definition of F+

r and by multiset theory)
=⇒ F+

r , ∅m (by set theory)
=⇒ F+

r′ , ∅m (∵ F+
r′ = F+

r ; which is a contradiction).

∴ r′ , 0

A.13. Lemma 4.3.18 201

=⇒ f actorsm(r′) , ∅m (by Lemma 4.3.17, ∵ r, r′∈P ∧ τrX ∈Rr ∧ r
τrX
−→ r′) ∧

f actors+
m(r′) ⊂ f actors+

m(r) (∵ r′ = 0 ∨ f actors+
m(r′) ⊂ f actors+

m(r))
=⇒ r′<F+

r′ (by definition of F+
r′ and by set theory) ∧ f actors+

m(r′) ⊂ f actors+
m(r)

=⇒ F+
r′ = {g∈ f actorsm(r′) | f actorsm(g) = ∅m ∧ g∈P+

}m

(by definition of F+
r′ and by multiset theory) ∧

f actors+
m(r′) ⊂ f actors+

m(r)
=⇒ F+

r′ = f actors+
m(r′) (by definition of f actors+

m(r′)) ∧ f actors+
m(r′) ⊂ f actors+

m(r)
=⇒ F+

r′ ⊂ f actors+
m(r) (by multiset theory)

=⇒ F+
r′ ⊂ f actors+

m(r) ∧
f actors+

m(r) ⊆ F+
r (by definitions of f actors+

m(r) and F+
r , and by multiset theory)

=⇒ F+
r′ ⊂ F+

r (by multiset theory)
=⇒ F+

r′ , F+
r (by multiset theory; which is a contradiction).

∴ f actors+
m(r′|s) , f actors+

m(r|s)
=⇒ f actors+

m(r′|s) ⊂ f actors+
m(r|s)

(∵ f actors+
m(r′|s) ⊂ f actors+

m(r|s) ∨ f actors+
m(r′|s) = f actors+

m(r|s))
=⇒ f actors+

m(p′) ⊂ f actors+
m(p) (∵ p′ = r′|s ∧ p = r|s).

∴ p′ = 0 ∨ f actors+
m(p′) ⊂ f actors+

m(p) (by definition of ∨).

If the R − Par rule defines a transition p
τrX
−→ p′

then ∃r, s, s′∈P (p = r|s ∧ p′ = r|s′ ∧ r|s
τrX
−→ r|s′) (by the R − Par rule)

=⇒ s
τrX
−→ s′ (by the hypothesis of R − Par).

Now r|s′ , 0 (by the syntax of r|s′ and 0)
=⇒ p′ , 0 (∵ p′ = r|s′).
Therefore, we prove f actors+

m(p′) ⊂ f actors+
m(p).

τrX ∈Rs (∵ s
τrX
−→ s′, and by definition of Rs)

=⇒ Rs , ∅ (by set theory)
=⇒ s∈P+ (by Lemma 4.3.6, ∵ s∈P)
=⇒ r|s∈P+ (by production rule 3 of P+, ∵ r, s∈P)
=⇒ f actors+

m(r|s) , ∅m (by Lemma 4.3.15, ∵ r, s∈P)
=⇒ f actors+

m(p) , ∅m (∵ p = r|s).
Now f actors+

m(p′) = ∅m ∨ f actors+
m(p′) , ∅m (by set theory).

If f actors+
m(p′) = ∅m

then f actors+
m(p′) ⊂ f actors+

m(p) (by set theory, ∵ f actors+
m(p) , ∅m).

If f actors+
m(p′) , ∅m

A.13. Lemma 4.3.18 202

then f actors+
m(r|s′) , ∅m (∵ p′ = r|s′)

=⇒ ∃ f ∈ f actors+
m(r|s′) (by set theory)

=⇒ f ∈ f actorsm(r|s′)(f actorsm(f) = ∅m ∧ f ∈P+) (by definition of f actors+
m(r|s′))

=⇒ f ∈{r}m] {s′}m] f actorsm(r)] f actorsm(s′)(f actorsm(f) = ∅m ∧ f ∈P+)
(by definition of f actorsm(r|s′))
=⇒ f ∈{r}m(f actorsm(f) = ∅m ∧ f ∈P+) ∨ f ∈{s′}m(f actorsm(f) = ∅m ∧ f ∈P+) ∨
f ∈ f actorsm(r)(f actorsm(f) = ∅m ∧ f ∈P+) ∨
f ∈ f actorsm(s′)(f actorsm(f) = ∅m ∧ f ∈P+)
(by set theory).
Now f actorsm(r|s) = {r}m] {s}m] f actorsm(r)] f actorsm(s)
(by definition of f actorsm(r|s)).

And the transition p
τrX
−→ p′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition r|s
τrX
−→ r|s′ has depth of inference n + 1 (∵ p = r|s ∧ p′ = r|s′)

=⇒ the transition s
τrX
−→ s′ has depth of inference ms, with ms∈ [1,n]

(∵ the transition r|s
τrX
−→ r|s′ is inferred from the transition s

τrX
−→ s′ using the R − Par

rule)
=⇒ Prop(ms) holds (by the inductive hypothesis)
=⇒ s′ = 0 ∨ f actors+

m(s′) ⊂ f actors+
m(s)

(by modus ponens, ∵ s, s′∈P ∧ τrX ∈Rs ∧ s
τrX
−→ s′ with depth of inference ms).

If f ∈{r}m(f actorsm(f) = ∅m ∧ f ∈P+)
then f ∈ f actorsm(r|s)(f actorsm(f) = ∅m ∧ f ∈P+)
(∵ {r}m ⊆ f actorsm(r|s) (by definition of f actorsm(r|s)), and by set theory)
=⇒ f ∈ f actors+

m(r|s) (by definition of f actors+
m(r|s)).

If f ∈{s′}m(f actorsm(f) = ∅m ∧ f ∈P+)
then f = s′ ∧ f actorsm(s′) = ∅m ∧ s′∈P+ (by set theory).
Now s′ = 0 ∨ s′ , 0 (by definition of ∨).
If s′ = 0
then s′∈P0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ s′<P+ (by Theorem 4.3.2; which is a contradiction).
∴ s′ , 0
=⇒ f actorsm(s′) , ∅m

(by Lemma 4.3.17, ∵ s, s′∈P ∧ τrX ∈Rs ∧ s
τrX
−→ s′ ; which is a contradiction).

∴ f < {s′}m.

A.13. Lemma 4.3.18 203

If f ∈ f actorsm(r)(f actorsm(f) = ∅m ∧ f ∈P+)
then f ∈ f actorsm(r|s)(f actorsm(f) = ∅m ∧ f ∈P+)
(∵ f actorsm(r) ⊆ f actorsm(r|s) (by definition of f actorsm(r|s)), and by set theory)
=⇒ f ∈ f actors+

m(r|s) (by definition of f actors+
m(r|s)).

If f ∈ f actorsm(s′)(f actorsm(f) = ∅m ∧ f ∈P+)
then f actorsm(s′) , ∅m (by set theory) ∧
f ∈ f actors+

m(s′) (by definition of f actors+
m(s′)).

Now s′ = 0 ∨ s′ , 0 (by definition of ∨).
If s′ = 0
then f actorsm(s′) = ∅m (by definition of f actorsm(0); which is a contradiction).
∴ s′ , 0
=⇒ f actors+

m(s′) ⊂ f actors+
m(s) (∵ s′ = 0 ∨ f actors+

m(s′) ⊂ f actors+
m(s)) ∧

f actors+
m(s) ⊆ f actorsm(s) (by definition of f actors+

m(s)) ∧
f actorsm(s) ⊆ f actorsm(r|s) (by definition of f actorsm(r|s))
=⇒ f actors+

m(s′) ⊂ f actorsm(r|s) (by set theory)
=⇒ f ∈ f actorsm(r|s) (∵ f ∈ f actors+

m(s′), and by set theory)
=⇒ f ∈ f actors+

m(r|s)
(∵ f actorsm(f) = ∅m ∧ f ∈P+, and by definition of f actors+

m(r|s)).

∴ ∀ f ∈ f actors+
m(r|s′)(f ∈ f actors+

m(r|s)) (∵ f ∈ f actors+
m(r|s′) is arbitrary)

=⇒ f actors+
m(r|s′) ⊆ f actors+

m(r|s) (by definition of ⊆)
=⇒ f actors+

m(r|s′) ⊂ f actors+
m(r|s) ∨

f actors+
m(r|s′) = f actors+

m(r|s) (by multiset theory).
We prove f actors+

m(r|s′) ⊂ f actors+
m(r|s).

Let F+
s′ , {g∈{s

′
}m] f actorsm(s′) | f actorsm(g) = ∅m ∧ g∈P+

}m

and let F+
s , {g∈{s}m] f actorsm(s) | f actorsm(g) = ∅m ∧ g∈P+

}m.
If f actors+

m(r|s′) = f actors+
m(r|s)

then {g∈ f actorsm(r|s′) | f actorsm(g) = ∅m ∧ g∈P+
}m =

{g∈ f actorsm(r|s) | f actorsm(g) = ∅m ∧ g∈P+
}m

(by definitions of f actors+
m(r|s′) and f actors+

m(r|s))
=⇒ {g∈{r}m] {s′}m] f actorsm(r)] f actorsm(s′) | f actorsm(g) = ∅m ∧ g∈P+

}m =

{g∈{r}m] {s}m] f actorsm(r)] f actorsm(s) | f actorsm(g) = ∅m ∧ g∈P+
}m

(by definitions of f actorsm(r|s′) and f actorsm(r|s))
=⇒ {g∈{s′}m] f actorsm(s′) | f actorsm(g) = ∅m ∧ g∈P+

}m =

{g∈{s}m] f actorsm(s) | f actorsm(g) = ∅m ∧ g∈P+
}m

A.13. Lemma 4.3.18 204

(by multiset theory)
=⇒ F+

s′ = F+
s (by definitions of F+

s′ and F+
s).

Now s′ = 0 ∨ s′ , 0 (by definition of ∨).

If s′ = 0
then s′∈P0 (∵ 0∈P0, by production rule 1 of P0) ∧
f actorsm(s′) = ∅m (∵ f actorsm(0) = ∅m, by definition of f actorsm(0))
=⇒ s′<P+ (by Theorem 4.3.2) ∧ f actorsm(s′) = ∅m

=⇒ {g∈{s′}m] f actorsm(s′) | f actorsm(g) = ∅m ∧ g∈P+
}m = ∅m

(by multiset theory)
=⇒ F+

s′ = ∅m (by definition of F+
s′).

Now f actorsm(s) = ∅m ∨ f actorsm(s) , ∅m (by set theory).
If f actorsm(s) = ∅m

then f actorsm(s) = ∅m ∧ s∈P+ (∵ s∈P+)
=⇒ s∈F+

s (by definition of F+
s and by multiset theory)

=⇒ F+
s , ∅m (by set theory)

=⇒ F+
s′ , ∅m (∵ F+

s′ = F+
s ; which is a contradiction).

∴ f actorsm(s) , ∅m

=⇒ ∃u, v∈P(s = u|v) (by definition of f actorsm(s))
=⇒ u|v∈P+ (∵ s∈P+)
=⇒ f actors+

m(u|v) , ∅m (by Lemma 4.3.15, ∵ u, v∈P)
=⇒ f actors+

m(s) , ∅m (∵ s = u|v)
=⇒ ∃g1∈ f actors+

m(s) (by set theory)
=⇒ g1∈ f actorsm(s)(f actorsm(g1) = ∅m ∧ g1∈P

+) (by definition of f actors+
m(s))

=⇒ g1∈F+
s (by definition of F+

s and by multiset theory)
=⇒ F+

s , ∅m (by set theory)
=⇒ F+

s′ , ∅m (∵ F+
s′ = F+

s ; which is a contradiction).

∴ s′ , 0
=⇒ f actorsm(s′) , ∅m (by Lemma 4.3.17, ∵ s, s′∈P ∧ τrX ∈Rs ∧ s

τrX
−→ s′) ∧

f actors+
m(s′) ⊂ f actors+

m(s) (∵ s′ = 0 ∨ f actors+
m(s′) ⊂ f actors+

m(s))
=⇒ s′<F+

s′ (by definition of F+
s′ and by set theory) ∧ f actors+

m(s′) ⊂ f actors+
m(s)

=⇒ F+
s′ = {g∈ f actorsm(s′) | f actorsm(g) = ∅m ∧ g∈P+

}m

(by definition of F+
s′ and by multiset theory) ∧

f actors+
m(s′) ⊂ f actors+

m(s)
=⇒ F+

s′ = f actors+
m(s′) (by definition of f actors+

m(s′)) ∧ f actors+
m(s′) ⊂ f actors+

m(s)
=⇒ F+

s′ ⊂ f actors+
m(s) (by multiset theory)

A.13. Lemma 4.3.18 205

=⇒ F+
s′ ⊂ f actors+

m(s) ∧
f actors+

m(s) ⊆ F+
s (by definitions of f actors+

m(s) and F+
s , and by multiset theory)

=⇒ F+
s′ ⊂ F+

s (by multiset theory)
=⇒ F+

s′ , F+
s (by multiset theory; which is a contradiction).

∴ f actors+
m(r|s′) , f actors+

m(r|s)
=⇒ f actors+

m(r|s′) ⊂ f actors+
m(r|s)

(∵ f actors+
m(r|s′) ⊂ f actors+

m(r|s) ∨ f actors+
m(r|s′) = f actors+

m(r|s))
=⇒ f actors+

m(p′) ⊂ f actors+
m(p) (∵ p′ = r|s′ ∧ p = r|s).

∴ p′ = 0 ∨ f actors+
m(p′) ⊂ f actors+

m(p) (by definition of ∨).

If the CompDelet rule defines a transition p
τrX
−→ p′

then ∃ τrX1
, τrX2

∈R ∃u∈P (X∼o f X1|X2 ∧ p
τrX1
−→u ∧ u

τrX2
−→p′)

(by the hypothesis of CompDelet)

=⇒ τrX1
∈Rp (by definition of Rp) ∧ τrX2

∈Ru (by definition of Ru)
=⇒ Ru , ∅ (by set theory).

Now the transition p
τrX
−→ p′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition p
τrX1
−→ u has depth of inference mp, with mp∈ [1,n] ∧

the transition u
τrX2
−→ p′ has depth of inference mu, with mu∈ [1,n]

(∵ the transition p
τrX
−→ p′ is inferred from the transitions p

τrX1
−→ u and u

τrX2
−→ p′ using

the CompDelet rule)
=⇒ Prop(mp) and Prop(mu) hold (by the inductive hypothesis)
=⇒ u = 0 ∨ f actors+

m(u) ⊂ f actors+
m(p)

(by modus ponens, ∵ p,u∈P ∧ τrX1
∈Rp ∧ p

τrX1
−→u with depth of inference mp) ∧

p′ = 0 ∨ f actors+
m(p′) ⊂ f actors+

m(u)

(by modus ponens, ∵ u, p′∈P ∧ τrX2
∈Ru ∧ u

τrX2
−→p′ with depth of inference mu).

Now u = 0 ∨ u , 0 (by definition of ∨).
If u = 0
then u∈P0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ Ru = ∅ (by Lemma 4.3.8; which is a contradiction).
∴ u , 0
=⇒ f actors+

m(u) ⊂ f actors+
m(p) (∵ u = 0 ∨ f actors+

m(u) ⊂ f actors+
m(p)).

Now p′ = 0 ∨ p′ , 0 (by definition of ∨).
If p′ = 0
then p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(p) (by definition of ∨).

A.14. Lemma 4.3.19 206

If p′ , 0
then f actors+

m(p′) ⊂ f actors+
m(u) (∵ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(u))

=⇒ f actors+
m(p′) ⊂ f actors+

m(u) ∧
f actors+

m(u) ⊂ f actors+
m(p) (∵ f actors+

m(u) ⊂ f actors+
m(p))

=⇒ f actors+
m(p′) ⊂ f actors+

m(p) (∵⊂ is transitive, by multiset theory)
=⇒ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(p) (by definition of ∨).

∴ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(p))

for p
τrX
−→ p′ determined by applications of LTS rules with depth of inference n + 1

(∵ p, p′ ∈ P and τrX ∈ Rp with transition p
τrX
−→ p′ and depth of inference n + 1 are

arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).

∴ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(p))

(∵ every transition of every p∈P is a result of one or more applications of the LTS
semantic rules with finite depth of inference). Q.E.D.

A.14 Lemma 4.3.19

∀p∈P ∀z∈P0
∀τrY ∈Rp|z ∀(p|z)′∈P+

(p|z
τrY
−→ (p|z)′ =⇒ τrY ∈Rp∧∃p′∈P+(p

τrY
−→ p′∧(p|z)′ = p′|z))

Proof: uses complete induction on the number of positive singleton factors of p|z
deleted by τrY .

For p∈P, z∈P0, τrY ∈Rp|z and (p|z)′∈P+, p|z
τrY
−→ (p|z)′

(by the hypothesis of the lemma)
=⇒ only the Delet, L − Par, R − Par or CompDelet rules determine the transition

p|z
τrY
−→ (p|z)′

(by definitions of the LTS rules).

If the Delet rule defines the transition p|z
τrY
−→ (p|z)′

then (p|z)′ = 0 (by the Delet rule)

A.14. Lemma 4.3.19 207

=⇒ (p|z)′∈P0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ (p|z)′<P+ (by Theorem 4.3.2 and set theory; which is a contradiction).

∴ The Delet rule does not define the transition p|z
τrY
−→ (p|z)′.

And z∈P0 (by the hypothesis of the lemma)
=⇒ Rz = ∅ (by Lemma 4.3.8)
=⇒ τrY <Rz (by set theory)

=⇒ ¬(τrY ∈R ∃ z′∈P (z
τrY
−→ z′)) (by definition of Rz)

=⇒ the R − Par rule does not define the transition p|z
τrY
−→ (p|z)′

(∵ the hypothesis of R − Par does not hold)

=⇒ neither the Delet rule nor the R − Par rule defines the transition p|z
τrY
−→ (p|z)′

(∵ the Delet rule does not define the transition p|z
τrY
−→ (p|z)′)

=⇒ only the L − Par or CompDelet rules determine the transition p|z
τrY
−→ (p|z)′

(∵ only the Delet, L − Par, R − Par or CompDelet rules determine the transition

p|z
τrY
−→ (p|z)′).

Now τrY ∈Rp|z ∧ p∈P ∧ z∈P0 (by the hypothesis of the lemma)
=⇒ Rp|z , ∅ (by set theory) ∧
p|z∈P
(by Theorem 4.3.2, production rule 3 of P+, production rule 3 of P0 and set theory)
=⇒ p|z∈P+ (by Lemma 4.3.6) ∧
z∈P (∵ z∈P0, and by Theorem 4.3.2 and set theory)
=⇒ f actors+

m(p|z) , ∅m (by Lemma 4.3.15, ∵ p∈P).
And (p|z)′∈P (∵ (p|z)′∈P+, and by Theorem 4.3.2 and set theory)
=⇒ (p|z)′ = 0 ∨ f actors+

m((p|z)′) ⊂ f actors+
m(p|z)

(by Lemma 4.3.18, ∵ p|z∈P ∧ τrY ∈Rp|z ∧ p|z
τrY
−→ (p|z)′)

=⇒ f actors+
m((p|z)′) = ∅m (∵ f actors+

m(0) = ∅m, by definition of f actors+
m(0)) ∨

f actors+
m((p|z)′) ⊂ f actors+

m(p|z)
=⇒ f actors+

m((p|z)′) ⊂ f actors+
m(p|z) (by set theory, and because f actors+

m(p|z) , ∅m)
=⇒ | f actors+

m((p|z)′)| < | f actors+
m(p|z)| (by multiset theory)

=⇒ 1 ≤ | f actors+
m(p|z)| − | f actors+

m((p|z)′)|
(∵ | f actors+

m(p|z)|, | f actors+
m((p|z)′)|∈N, and by algebra of inequalities)

=⇒ 1 ≤ | f actors+
m(p|z)| − | f actors+

m((p|z)′)| ∧ p|z∈P+
∧

only the L − Par or CompDelet rules determine the transition p|z
τrY
−→ (p|z)′

(∵ p|z ∈ P+
∧ only the L − Par or CompDelet rules determine the transition

p|z
τrY
−→ (p|z)′)

A.14. Lemma 4.3.19 208

=⇒ ∀p∈P ∀z∈P0
∀τrY ∈Rp|z ∀(p|z)′∈P+ with p|z

τrY
−→ (p|z)′

(1 ≤ | f actors+
m(p|z)| − | f actors+

m((p|z)′)| ∧ p|z∈P+
∧

only the L − Par or CompDelet rules determine the transition p|z
τrY
−→ (p|z)′)

(∵ p∈P and z∈P0 and τrY ∈Rp|z and (p|z)′∈P+ with p|z
τrY
−→ (p|z)′ are arbitrary).

Therefore, we use complete induction on | f actors+
m(p|z)| − | f actors+

m((p|z)′)|

and use only the L − Par or CompDelet rules to determine p|z
τrY
−→ (p|z)′.

For n∈N+, let Prop(n) be the proposition:
∀p∈P ∀z∈P0

∀τrY ∈Rp|z ∀(p|z)′∈P+

(p|z
τrY
→ (p|z)′ ∧ | f actors+

m(p|z)| − | f actors+
m((p|z)′)| = n =⇒

τrY ∈Rp ∧ ∃p′∈P+(p
τrY
→ p′ ∧ (p|z)′ = p′|z)).

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For p∈P and z∈P0 and τrY ∈Rp|z and (p|z)′∈P+,

p|z
τrY
−→ (p|z)′ ∧ | f actors+

m(p|z)| − | f actors+
m((p|z)′)| = 1 (by the hypothesis of Prop(1)).

If the L − Par rule defines the transition p|z
τrY
−→ (p|z)′

then ∃ p′∈P (p
τrY
−→ p′) (by the hypothesis of L − Par) ∧

(p|z)′ = p′|z (by the L − Par rule)

=⇒ τrY ∈Rp (by definition of Rp) ∧ p′|z∈P+ (∵ (p|z)′∈P+)

=⇒ τrY ∈Rp ∧ p′∈P+ (by production rule 3 of P+ and Theorem 4.3.2, ∵ z∈P0)

=⇒ τrY ∈Rp ∧ ∃p′∈P+(p
τrY
−→ p′ ∧ (p|z)′ = p′|z) (∵ p

τrY
−→ p′ ∧ (p|z)′ = p′|z).

If the CompDelet rule defines the transition p|z
τrY
−→ (p|z)′

then ∃ τrY1
, τrY2
∈R ∃(p|z)′′∈P (Y∼o f Y1|Y2 ∧ p|z

τrY1
−→(p|z)′′ ∧ (p|z)′′

τrY2
−→(p|z)′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈Rp|z (by definition of Rp|z) ∧ τrY2

∈R(p|z)′′ (by definition of R(p|z)′′)

A.14. Lemma 4.3.19 209

=⇒ R(p|z)′′ , ∅ (by set theory)
=⇒ (p|z)′′∈P (by definition of p|z

τrY1
−→(p|z)′′) ∧ R(p|z)′′ , ∅

=⇒ (p|z)′′∈P+ (by Lemma 4.3.6)
=⇒ (p|z)′′<P0 (by Theorem 4.3.2, ∵ (p|z)′′∈P)
=⇒ (p|z)′′ , 0 (∵ 0∈P0, by production rule 1 of P0).
Now p|z∈P
(by Theorem 4.3.2, production rule 3 of P+, production rule 3 of P0 and set theory,
∵ p∈P ∧ z∈P0)
=⇒ (p|z)′′ = 0 ∨ f actors+

m((p|z)′′) ⊂ f actors+
m(p|z)

(by Lemma 4.3.18, ∵ (p|z)′′∈P ∧ τrY1
∈Rp|z ∧ p|z

τrY1
−→ (p|z)′′)

=⇒ f actors+
m((p|z)′′) ⊂ f actors+

m(p|z) (∵ (p|z)′′ , 0)
=⇒ | f actors+

m((p|z)′′)| < | f actors+
m(p|z)| (by multiset theory).

And (p|z)′∈P+ (by the hypothesis of Prop(1))
=⇒ (p|z)′∈P (by Theorem 4.3.2 and set theory)
=⇒ (p|z)′<P0 (by Theorem 4.3.2, ∵ (p|z)′∈P+)
=⇒ (p|z)′ , 0 (∵ 0∈P0, by production rule 1 of P0).
Now (p|z)′ = 0 ∨ f actors+

m((p|z)′) ⊂ f actors+
m((p|z)′′)

(by Lemma 4.3.18, ∵ (p|z)′′∈P ∧ (p|z)′∈P ∧ τrY2
∈R(p|z)′′ ∧ (p|z)′′

τrY2
−→ (p|z)′)

=⇒ f actors+
m((p|z)′) ⊂ f actors+

m((p|z)′′) (∵ (p|z)′ , 0)
=⇒ | f actors+

m((p|z)′)| < | f actors+
m((p|z)′′)| (by multiset theory)

=⇒ | f actors+
m((p|z)′)| < | f actors+

m((p|z)′′)| < | f actors+
m(p|z)|

(by algebra of inequalities, ∵ | f actors+
m((p|z)′′)| < | f actors+

m(p|z)|)
=⇒ 2 ≤ | f actors+

m(p|z)| − | f actors+
m((p|z)′)|

(by algebra of inequalities and
because | f actors+

m(p|z)|, | f actors+
m((p|z)′′)|, | f actors+

m((p|z)′)|∈N).
But | f actors+

m(p|z)| − | f actors+
m((p|z)′)| = 1

(by the hypothesis of Prop(1); which is a contradiction).

∴ The CompDelet rule does not define the transition p|z
τrY
−→ (p|z)′.

∴ ∀p∈P ∀z∈P0
∀τrY ∈Rp|z ∀(p|z)′∈P+

(p|z
τrY
→ (p|z)′ ∧ | f actors+

m(p|z)| − | f actors+
m((p|z)′)| = 1 =⇒

τrY ∈Rp ∧ ∃p′∈P+(p
τrY
→ p′ ∧ (p|z)′ = p′|z))

(∵ p∈P and z∈P0 and τrY ∈Rp|z and (p|z)′∈P+ with

p|z
τrY
−→ (p|z)′ and | f actors+

m(p|z)| − | f actors+
m((p|z)′)| = 1 are arbitrary)

=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

A.14. Lemma 4.3.19 210

Induction Step: Proof of∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For p∈P and z∈P0 and τrY ∈Rp|z and (p|z)′∈P+,

p|z
τrY
−→ (p|z)′ ∧ | f actors+

m(p|z)| − | f actors+
m((p|z)′)| = n + 1

(by the hypothesis of Prop(n + 1)).

If the L − Par rule defines the transition p|z
τrY
−→ (p|z)′

then ∃ p′∈P (p
τrY
−→ p′) (by the hypothesis of L − Par) ∧

(p|z)′ = p′|z (by the L − Par rule)

=⇒ τrY ∈Rp (by definition of Rp) ∧ p′|z∈P+ (∵ (p|z)′∈P+)

=⇒ τrY ∈Rp ∧ p′∈P+ (by production rule 3 of P+ and Theorem 4.3.2, ∵ z∈P0)

=⇒ τrY ∈Rp ∧ ∃p′∈P+(p
τrY
−→ p′ ∧ (p|z)′ = p′|z) (∵ p

τrY
−→ p′ ∧ (p|z)′ = p′|z).

If the CompDelet rule defines the transition p|z
τrY
−→ (p|z)′

then ∃ τrY1
, τrY2
∈R ∃(p|z)′′∈P (Y∼o f Y1|Y2 ∧ p|z

τrY1
−→(p|z)′′ ∧ (p|z)′′

τrY2
−→(p|z)′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈Rp|z (by definition of Rp|z) ∧ τrY2

∈R(p|z)′′ (by definition of R(p|z)′′)
=⇒ R(p|z)′′ , ∅ (by set theory)
=⇒ (p|z)′′∈P (by definition of p|z

τrY1
−→(p|z)′′) ∧ R(p|z)′′ , ∅

=⇒ (p|z)′′∈P+ (by Lemma 4.3.6)
=⇒ (p|z)′′<P0 (by Theorem 4.3.2, ∵ (p|z)′′∈P)
=⇒ (p|z)′′ , 0 (∵ 0∈P0, by production rule 1 of P0).
Now p|z∈P
(by Theorem 4.3.2, production rule 3 of P+, production rule 3 of P0 and set theory,
∵ p∈P ∧ z∈P0)
=⇒ (p|z)′′ = 0 ∨ f actors+

m((p|z)′′) ⊂ f actors+
m(p|z)

(by Lemma 4.3.18, ∵ (p|z)′′∈P ∧ τrY1
∈Rp|z ∧ p|z

τrY1
−→ (p|z)′′)

=⇒ f actors+
m((p|z)′′) ⊂ f actors+

m(p|z) (∵ (p|z)′′ , 0)
=⇒ | f actors+

m((p|z)′′)| < | f actors+
m(p|z)| (by multiset theory)

=⇒ 1 ≤ | f actors+
m(p|z)| − | f actors+

m((p|z)′′)|
(by algebra of inequalities and because | f actors+

m(p|z)|, | f actors+
m((p|z)′′)|∈N).

And (p|z)′∈P+ (by the hypothesis of Prop(1))
=⇒ (p|z)′∈P (by Theorem 4.3.2 and set theory)
=⇒ (p|z)′<P0 (by Theorem 4.3.2, ∵ (p|z)′∈P+)

A.14. Lemma 4.3.19 211

=⇒ (p|z)′ , 0 (∵ 0∈P0, by production rule 1 of P0).
Now (p|z)′ = 0 ∨ f actors+

m((p|z)′) ⊂ f actors+
m((p|z)′′)

(by Lemma 4.3.18, ∵ (p|z)′′∈P ∧ (p|z)′∈P ∧ τrY2
∈R(p|z)′′ ∧ (p|z)′′

τrY2
−→ (p|z)′)

=⇒ f actors+
m((p|z)′) ⊂ f actors+

m((p|z)′′) (∵ (p|z)′ , 0)
=⇒ | f actors+

m((p|z)′)| < | f actors+
m((p|z)′′)| (by multiset theory)

=⇒ 1 ≤ | f actors+
m((p|z)′′)| − | f actors+

m((p|z)′)|
(by algebra of inequalities and because | f actors+

m((p|z)′′)|, | f actors+
m((p|z)′)|∈N).

Let m1 , | f actors+
m(p|z)| − | f actors+

m((p|z)′′)| and
m2 , | f actors+

m((p|z)′′)| − | f actors+
m((p|z)′)|.

m1∈N+

(by definition of m1, and
because 1 ≤ | f actors+

m(p|z)| − | f actors+
m((p|z)′′)| ∧

| f actors+
m(p|z)|, | f actors+

m((p|z)′′)|∈N) ∧
m2∈N+

(by definition of m2, and
because 1 ≤ | f actors+

m((p|z)′′)| − | f actors+
m((p|z)′)| ∧

| f actors+
m((p|z)′′)|, | f actors+

m((p|z)′)|∈N).
And m1 + m2 =

(| f actors+
m(p|z)| − | f actors+

m((p|z)′′)|) + (| f actors+
m((p|z)′′)| − | f actors+

m((p|z)′)|)
(by definitions of m1 and m2)
=⇒ m1 + m2 = | f actors+

m(p|z)| − | f actors+
m((p|z)′)| (by arithmetic)

=⇒ m1 + m2 = n + 1 (by the hypothesis of Prop(n + 1))
=⇒ m1,m2∈ [1,n] (∵ m1,m2∈N+, and by algebra of inequalities)
=⇒ Prop(m1) and Prop(m2) hold (by the inductive hypothesis)

=⇒ τrY1
∈Rp ∧ ∃p′′∈P+(p

τrY1
−→ p′′ ∧ (p|z)′′ = p′′|z)

(by modus ponens, ∵ p∈P ∧ z∈P0
∧ τrY1

∈Rp|z ∧ (p|z)′′∈P+
∧ p|z

τrY1
−→(p|z)′′ ∧

| f actors+
m(p|z)| − | f actors+

m((p|z)′′)| = m1)
=⇒ p′′∈P (by Theorem 4.3.2 and set theory) ∧ (p|z)′′ = p′′|z ∧
Rp′′|z = R(p|z)′′ (by definitions of Rp′′|z and R(p|z)′′) ∧
f actors+

m(p′′|z) = f actors+
m((p|z)′′)

(by definitions of f actors+
m(p′′|z) and f actors+

m((p|z)′′))

=⇒ p′′∈P ∧ τrY2
∈Rp′′|z (∵ τrY2

∈R(p|z)′′) ∧ p′′|z
τrY2
−→ (p|z)′ (∵ (p|z)′′

τrY2
−→ (p|z)′) ∧

| f actors+
m(p′′|z)| − | f actors+

m((p|z)′)| = m2

(by set theory and because | f actors+
m((p|z)′′)| − | f actors+

m((p|z)′)| = m2)

=⇒ τrY2
∈Rp′′ ∧ ∃p′∈P+(p′′

τrY2
−→ p′ ∧ (p|z)′ = p′|z)

A.15. Lemma 4.3.20 212

(by modus ponens, ∵ Prop(m2) holds ∧ z∈P0
∧ (p|z)′∈P+)

=⇒ p
τrY
−→ p′ (by the CompDelet rule, ∵ Y∼o f Y1|Y2 ∧ p

τrY1
−→ p′′) ∧

p′|z∈P+ (∵ (p|z)′∈P+)

=⇒ τrY ∈Rp (by definition of Rp) ∧

p′∈P+ (by production rule 3 of P+ and Theorem 4.3.2, ∵ z∈P0)

=⇒ τrY ∈Rp ∧ ∃p′∈P+(p
τrY
−→ p′ ∧ (p|z)′ = p′|z) (∵ p

τrY
−→ p′ ∧ (p|z)′ = p′|z).

∴ ∀p∈P ∀z∈P0
∀τrY ∈Rp|z ∀(p|z)′∈P+

(p|z
τrY
→ (p|z)′ ∧ | f actors+

m(p|z)| − | f actors+
m((p|z)′)| = n + 1 =⇒

τrY ∈Rp ∧ ∃p′∈P+(p
τrY
→ p′ ∧ (p|z)′ = p′|z))

(∵ p∈P and z∈P0 and τrY ∈Rp|z and (p|z)′∈P+ with p|z
τrY
−→ (p|z)′ and

| f actors+
m(p|z)| − | f actors+

m((p|z)′)| = n + 1 are arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ ∀p∈P ∀z∈P0

∀τrY ∈Rp|z ∀(p|z)′∈P+

(p|z
τrY
−→ (p|z)′ =⇒ τrY ∈Rp ∧ ∃p′∈P+(p

τrY
−→ p′ ∧ (p|z)′ = p′|z))

(∵ ∀p∈P ∀z∈P0
∀τrY ∈Rp|z ∀(p|z)′∈P+

(p|z
τrY
−→ (p|z)′ =⇒ | f actors+

m(p|z)| − | f actors+
m((p|z)′)|∈N+)). Q.E.D.

A.15 Lemma 4.3.20

∀p∈P ∀z∈P0
∀τrY ∈Rz|p ∀(z|p)′∈P+

(z|p
τrY
−→ (z|p)′ =⇒ τrY ∈Rp∧∃p′∈P+(p

τrY
−→ p′∧(z|p)′ = z|p′))

Proof: uses complete induction on the number of positive singleton factors of z|p
deleted by τrY .

For p∈P, z∈P0, τrY ∈Rz|p and (z|p)′∈P+, z|p
τrY
−→ (z|p)′

(by the hypothesis of the lemma)
=⇒ only the Delet, L − Par, R − Par or CompDelet rules determine the transition

z|p
τrY
−→ (z|p)′

(by definitions of the LTS rules).

A.15. Lemma 4.3.20 213

If the Delet rule defines the transition z|p
τrY
−→ (z|p)′

then (z|p)′ = 0 (by the Delet rule)
=⇒ (z|p)′∈P0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ (z|p)′<P+ (by Theorem 4.3.2 and set theory; which is a contradiction).

∴ The Delet rule does not define the transition z|p
τrY
−→ (z|p)′.

And z∈P0 (by the hypothesis of the lemma)
=⇒ Rz = ∅ (by Lemma 4.3.8)
=⇒ τrY <Rz (by set theory)

=⇒ ¬(τrY ∈R ∃ z′∈P (z
τrY
−→ z′)) (by definition of Rz)

=⇒ the L − Par rule does not define the transition z|p
τrY
−→ (z|p)′

(∵ the hypothesis of L − Par does not hold)

=⇒ neither the Delet rule nor the L − Par rule defines the transition z|p
τrY
−→ (z|p)′

(∵ the Delet rule does not define the transition z|p
τrY
−→ (z|p)′)

=⇒ only the R − Par or CompDelet rules determine the transition z|p
τrY
−→ (z|p)′

(∵ only the Delet, L − Par, R − Par or CompDelet rules determine the transition

z|p
τrY
−→ (z|p)′).

Now τrY ∈Rz|p ∧ p∈P ∧ z∈P0 (by the hypothesis of the lemma)
=⇒ Rz|p , ∅ (by set theory) ∧
z|p∈P
(by Theorem 4.3.2, production rule 3 of P+, production rule 3 of P0 and set theory)
=⇒ z|p∈P+ (by Lemma 4.3.6) ∧
z∈P (∵ z∈P0, and by Theorem 4.3.2 and set theory)
=⇒ f actors+

m(z|p) , ∅m (by Lemma 4.3.15, ∵ p∈P).
And (z|p)′∈P (∵ (z|p)′∈P+, and by Theorem 4.3.2 and set theory)
=⇒ (z|p)′ = 0 ∨ f actors+

m((z|p)′) ⊂ f actors+
m(z|p)

(by Lemma 4.3.18, ∵ z|p∈P ∧ τrY ∈Rz|p ∧ z|p
τrY
−→ (z|p)′)

=⇒ f actors+
m((z|p)′) = ∅m (∵ f actors+

m(0) = ∅m, by definition of f actors+
m(0)) ∨

f actors+
m((z|p)′) ⊂ f actors+

m(z|p)
=⇒ f actors+

m((z|p)′) ⊂ f actors+
m(z|p) (by set theory, and because f actors+

m(z|p) , ∅m)
=⇒ | f actors+

m((z|p)′)| < | f actors+
m(z|p)| (by multiset theory)

=⇒ 1 ≤ | f actors+
m(z|p)| − | f actors+

m((z|p)′)|
(∵ | f actors+

m(z|p)|, | f actors+
m((z|p)′)|∈N, and by algebra of inequalities)

=⇒ 1 ≤ | f actors+
m(z|p)| − | f actors+

m((z|p)′)| ∧ z|p∈P+
∧

A.15. Lemma 4.3.20 214

only the R − Par or CompDelet rules determine the transition z|p
τrY
−→ (z|p)′

(∵ z|p ∈ P+
∧ only the R − Par or CompDelet rules determine the transition

z|p
τrY
−→ (z|p)′)

=⇒ ∀p∈P ∀z∈P0
∀τrY ∈Rz|p ∀(z|p)′∈P+ with z|p

τrY
−→ (z|p)′

(1 ≤ | f actors+
m(z|p)| − | f actors+

m((z|p)′)| ∧ z|p∈P+
∧

only the R − Par or CompDelet rules determine the transition z|p
τrY
−→ (z|p)′)

(∵ p∈P and z∈P0 and τrY ∈Rz|p and (z|p)′∈P+ with z|p
τrY
−→ (z|p)′ are arbitrary).

Therefore, we use complete induction on | f actors+
m(z|p)| − | f actors+

m((z|p)′)|

and use only the R − Par or CompDelet rules to determine z|p
τrY
−→ (z|p)′.

For n∈N+, let Prop(n) be the proposition:

∀p∈P ∀z∈P0
∀τrY ∈Rz|p ∀(z|p)′∈P+

(z|p
τrY
→ (z|p)′ ∧ | f actors+

m(z|p)| − | f actors+
m((z|p)′)| = n =⇒

τrY ∈Rp ∧ ∃p′∈P+(p
τrY
→ p′ ∧ (z|p)′ = z|p′)).

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For p∈P and z∈P0 and τrY ∈Rz|p and (z|p)′∈P+,

z|p
τrY
−→ (z|p)′ ∧ | f actors+

m(z|p)| − | f actors+
m((z|p)′)| = 1 (by the hypothesis of Prop(1)).

If the R − Par rule defines the transition z|p
τrY
−→ (z|p)′

then ∃ p′∈P (p
τrY
−→ p′) (by the hypothesis of R − Par) ∧

(z|p)′ = z|p′ (by the R − Par rule)

=⇒ τrY ∈Rp (by definition of Rp) ∧ z|p′∈P+ (∵ (z|p)′∈P+)

=⇒ τrY ∈Rp ∧ p′∈P+ (by production rule 3 of P+ and Theorem 4.3.2, ∵ z∈P0)

=⇒ τrY ∈Rp ∧ ∃p′∈P+(p
τrY
−→ p′ ∧ (z|p)′ = z|p′) (∵ p

τrY
−→ p′ ∧ (z|p)′ = z|p′).

If the CompDelet rule defines the transition z|p
τrY
−→ (z|p)′

then ∃ τrY1
, τrY2
∈R ∃(z|p)′′∈P (Y∼o f Y1|Y2 ∧ z|p

τrY1
−→(z|p)′′ ∧ (z|p)′′

τrY2
−→(z|p)′)

A.15. Lemma 4.3.20 215

(by the hypothesis of CompDelet)

=⇒ τrY1
∈Rz|p (by definition of Rz|p) ∧ τrY2

∈R(z|p)′′ (by definition of R(z|p)′′)
=⇒ R(z|p)′′ , ∅ (by set theory)
=⇒ (z|p)′′∈P (by definition of z|p

τrY1
−→(z|p)′′) ∧ R(z|p)′′ , ∅

=⇒ (z|p)′′∈P+ (by Lemma 4.3.6)
=⇒ (z|p)′′<P0 (by Theorem 4.3.2, ∵ (z|p)′′∈P)
=⇒ (z|p)′′ , 0 (∵ 0∈P0, by production rule 1 of P0).
Now z|p∈P
(by Theorem 4.3.2, production rule 3 of P+, production rule 3 of P0 and set theory,
∵ p∈P ∧ z∈P0)
=⇒ (z|p)′′ = 0 ∨ f actors+

m((z|p)′′) ⊂ f actors+
m(z|p)

(by Lemma 4.3.18, ∵ (z|p)′′∈P ∧ τrY1
∈Rz|p ∧ z|p

τrY1
−→ (z|p)′′)

=⇒ f actors+
m((z|p)′′) ⊂ f actors+

m(z|p) (∵ (z|p)′′ , 0)
=⇒ | f actors+

m((z|p)′′)| < | f actors+
m(z|p)| (by multiset theory).

And (z|p)′∈P+ (by the hypothesis of Prop(1))
=⇒ (z|p)′∈P (by Theorem 4.3.2 and set theory)
=⇒ (z|p)′<P0 (by Theorem 4.3.2, ∵ (z|p)′∈P+)
=⇒ (z|p)′ , 0 (∵ 0∈P0, by production rule 1 of P0).
Now (z|p)′ = 0 ∨ f actors+

m((z|p)′) ⊂ f actors+
m((z|p)′′)

(by Lemma 4.3.18, ∵ (z|p)′′∈P ∧ (z|p)′∈P ∧ τrY2
∈R(z|p)′′ ∧ (z|p)′′

τrY2
−→ (z|p)′)

=⇒ f actors+
m((z|p)′) ⊂ f actors+

m((z|p)′′) (∵ (z|p)′ , 0)
=⇒ | f actors+

m((z|p)′)| < | f actors+
m((z|p)′′)| (by multiset theory)

=⇒ | f actors+
m((z|p)′)| < | f actors+

m((z|p)′′)| < | f actors+
m(z|p)|

(by algebra of inequalities, ∵ | f actors+
m((z|p)′′)| < | f actors+

m(z|p)|)
=⇒ 2 ≤ | f actors+

m(z|p)| − | f actors+
m((z|p)′)|

(by algebra of inequalities and
because | f actors+

m(z|p)|, | f actors+
m((z|p)′′)|, | f actors+

m((z|p)′)|∈N).
But | f actors+

m(z|p)| − | f actors+
m((z|p)′)| = 1

(by the hypothesis of Prop(1); which is a contradiction).

∴ The CompDelet rule does not define the transition z|p
τrY
−→ (z|p)′.

∴ ∀p∈P ∀z∈P0
∀τrY ∈Rz|p ∀(z|p)′∈P+

(z|p
τrY
→ (z|p)′ ∧ | f actors+

m(z|p)| − | f actors+
m((z|p)′)| = 1 =⇒

τrY ∈Rp ∧ ∃p′∈P+(p
τrY
→ p′ ∧ (z|p)′ = z|p′))

(∵ p∈P and z∈P0 and τrY ∈Rz|p and (z|p)′∈P+ with

A.15. Lemma 4.3.20 216

z|p
τrY
−→ (z|p)′ and | f actors+

m(z|p)| − | f actors+
m((z|p)′)| = 1 are arbitrary)

=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

Induction Step: Proof of∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For p∈P and z∈P0 and τrY ∈Rz|p and (z|p)′∈P+,

z|p
τrY
−→ (z|p)′ ∧ | f actors+

m(z|p)| − | f actors+
m((z|p)′)| = n + 1

(by the hypothesis of Prop(n + 1)).

If the R − Par rule defines the transition z|p
τrY
−→ (z|p)′

then ∃ p′∈P (p
τrY
−→ p′) (by the hypothesis of R − Par) ∧

(z|p)′ = z|p′ (by the R − Par rule)

=⇒ τrY ∈Rp (by definition of Rp) ∧ z|p′∈P+ (∵ (z|p)′∈P+)

=⇒ τrY ∈Rp ∧ p′∈P+ (by production rule 3 of P+ and Theorem 4.3.2, ∵ z∈P0)

=⇒ τrY ∈Rp ∧ ∃p′∈P+(p
τrY
−→ p′ ∧ (z|p)′ = z|p′) (∵ p

τrY
−→ p′ ∧ (z|p)′ = z|p′).

If the CompDelet rule defines the transition z|p
τrY
−→ (z|p)′

then ∃ τrY1
, τrY2
∈R ∃(z|p)′′∈P (Y∼o f Y1|Y2 ∧ z|p

τrY1
−→(z|p)′′ ∧ (z|p)′′

τrY2
−→(z|p)′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈Rz|p (by definition of Rz|p) ∧ τrY2

∈R(z|p)′′ (by definition of R(z|p)′′)
=⇒ R(z|p)′′ , ∅ (by set theory)
=⇒ (z|p)′′∈P (by definition of z|p

τrY1
−→(z|p)′′) ∧ R(z|p)′′ , ∅

=⇒ (z|p)′′∈P+ (by Lemma 4.3.6)
=⇒ (z|p)′′<P0 (by Theorem 4.3.2, ∵ (z|p)′′∈P)
=⇒ (z|p)′′ , 0 (∵ 0∈P0, by production rule 1 of P0).
Now z|p∈P
(by Theorem 4.3.2, production rule 3 of P+, production rule 3 of P0 and set theory,
∵ p∈P ∧ z∈P0)
=⇒ (z|p)′′ = 0 ∨ f actors+

m((z|p)′′) ⊂ f actors+
m(z|p)

(by Lemma 4.3.18, ∵ (z|p)′′∈P ∧ τrY1
∈Rz|p ∧ z|p

τrY1
−→ (z|p)′′)

=⇒ f actors+
m((z|p)′′) ⊂ f actors+

m(z|p) (∵ (z|p)′′ , 0)
=⇒ | f actors+

m((z|p)′′)| < | f actors+
m(z|p)| (by multiset theory)

=⇒ 1 ≤ | f actors+
m(z|p)| − | f actors+

m((z|p)′′)|
(by algebra of inequalities and because | f actors+

m(z|p)|, | f actors+
m((z|p)′′)|∈N).

A.15. Lemma 4.3.20 217

And (z|p)′∈P+ (by the hypothesis of Prop(1))
=⇒ (z|p)′∈P (by Theorem 4.3.2 and set theory)
=⇒ (z|p)′<P0 (by Theorem 4.3.2, ∵ (z|p)′∈P+)
=⇒ (z|p)′ , 0 (∵ 0∈P0, by production rule 1 of P0).
Now (z|p)′ = 0 ∨ f actors+

m((z|p)′) ⊂ f actors+
m((z|p)′′)

(by Lemma 4.3.18, ∵ (z|p)′′∈P ∧ (z|p)′∈P ∧ τrY2
∈R(z|p)′′ ∧ (z|p)′′

τrY2
−→ (z|p)′)

=⇒ f actors+
m((z|p)′) ⊂ f actors+

m((z|p)′′) (∵ (z|p)′ , 0)
=⇒ | f actors+

m((z|p)′)| < | f actors+
m((z|p)′′)| (by multiset theory)

=⇒ 1 ≤ | f actors+
m((z|p)′′)| − | f actors+

m((z|p)′)|
(by algebra of inequalities and because | f actors+

m((z|p)′′)|, | f actors+
m((z|p)′)|∈N).

Let m1 , | f actors+
m(z|p)| − | f actors+

m((z|p)′′)| and
m2 , | f actors+

m((z|p)′′)| − | f actors+
m((z|p)′)|.

m1∈N+

(by definition of m1, and
because 1 ≤ | f actors+

m(z|p)| − | f actors+
m((z|p)′′)| ∧

| f actors+
m(z|p)|, | f actors+

m((z|p)′′)|∈N) ∧
m2∈N+

(by definition of m2, and
because 1 ≤ | f actors+

m((z|p)′′)| − | f actors+
m((z|p)′)| ∧

| f actors+
m((z|p)′′)|, | f actors+

m((z|p)′)|∈N).
And m1 + m2 =

(| f actors+
m(z|p)| − | f actors+

m((z|p)′′)|) + (| f actors+
m((z|p)′′)| − | f actors+

m((z|p)′)|)
(by definitions of m1 and m2)
=⇒ m1 + m2 = | f actors+

m(z|p)| − | f actors+
m((z|p)′)| (by arithmetic)

=⇒ m1 + m2 = n + 1 (by the hypothesis of Prop(n + 1))
=⇒ m1,m2∈ [1,n] (∵ m1,m2∈N+, and by algebra of inequalities)
=⇒ Prop(m1) and Prop(m2) hold (by the inductive hypothesis)

=⇒ τrY1
∈Rp ∧ ∃p′′∈P+(p

τrY1
−→ p′′ ∧ (z|p)′′ = z|p′′)

(by modus ponens, ∵ p∈P ∧ z∈P0
∧ τrY1

∈Rz|p ∧ (z|p)′′∈P+
∧ z|p

τrY1
−→(z|p)′′ ∧

| f actors+
m(z|p)| − | f actors+

m((z|p)′′)| = m1)
=⇒ p′′∈P (by Theorem 4.3.2 and set theory) ∧ (z|p)′′ = z|p′′ ∧
Rz|p′′ = R(z|p)′′ (by definitions of Rz|p′′ and R(z|p)′′) ∧
f actors+

m(z|p′′) = f actors+
m((z|p)′′)

(by definitions of f actors+
m(z|p′′) and f actors+

m((z|p)′′))

=⇒ p′′∈P ∧ τrY2
∈Rz|p′′ (∵ τrY2

∈R(z|p)′′) ∧ z|p′′
τrY2
−→ (z|p)′ (∵ (z|p)′′

τrY2
−→ (z|p)′) ∧

| f actors+
m(z|p′′)| − | f actors+

m((z|p)′)| = m2

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 218

(by set theory and because | f actors+
m((z|p)′′)| − | f actors+

m((z|p)′)| = m2)

=⇒ τrY2
∈Rp′′ ∧ ∃p′∈P+(p′′

τrY2
−→ p′ ∧ (z|p)′ = z|p′)

(by modus ponens, ∵ Prop(m2) holds ∧ z∈P0
∧ (z|p)′∈P+)

=⇒ p
τrY
−→ p′ (by the CompDelet rule, ∵ Y∼o f Y1|Y2 ∧ p

τrY1
−→ p′′) ∧

z|p′∈P+ (∵ (z|p)′∈P+)

=⇒ τrY ∈Rp (by definition of Rp) ∧
p′∈P+ (by production rule 3 of P+ and Theorem 4.3.2, ∵ z∈P0)

=⇒ τrY ∈Rp ∧ ∃p′∈P+(p
τrY
−→ p′ ∧ (z|p)′ = z|p′) (∵ p

τrY
−→ p′ ∧ (z|p)′ = z|p′).

∴ ∀p∈P ∀z∈P0
∀τrY ∈Rz|p ∀(z|p)′∈P+

(z|p
τrY
→ (z|p)′ ∧ | f actors+

m(z|p)| − | f actors+
m((z|p)′)| = n + 1 =⇒

τrY ∈Rp ∧ ∃p′∈P+(p
τrY
→ p′ ∧ (z|p)′ = z|p′))

(∵ p∈P and z∈P0 and τrY ∈Rz|p and (z|p)′∈P+ with z|p
τrY
−→ (z|p)′ and

| f actors+
m(z|p)| − | f actors+

m((z|p)′)| = n + 1 are arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ ∀p∈P ∀z∈P0

∀τrY ∈Rz|p ∀(z|p)′∈P+

(z|p
τrY
−→ (z|p)′ =⇒ τrY ∈Rp ∧ ∃p′∈P+(p

τrY
−→ p′ ∧ (z|p)′ = z|p′))

(∵ ∀p∈P ∀z∈P0
∀τrY ∈Rz|p ∀(z|p)′∈P+

(z|p
τrY
−→ (z|p)′ =⇒ | f actors+

m(z|p)| − | f actors+
m((z|p)′)|∈N+)). Q.E.D.

A.16 Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p)

Proof: consists of discharging the following two proof obligations. Each proof
obligation is discharged by defining a binary relation T on P which contains the
pair of processes that are required to be strongly dp-bisimilar, proving T is a strong
dp-simulation on P, then proving T is a strong dp-bisimulation on P.

1. ` ∀p∈P ∀z∈P0(p|z ∼dp p)

2. ` ∀p∈P ∀z∈P0(p ∼dp z|p)

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 219

A.16.1 ∀p∈P ∀z∈P0(p|z ∼dp p)

Proof: If ∃ strong dp-bisimulation T on Pwith ∀p∈P ∀z∈P0((p|z, p)∈T)
then ∀p∈P ∀z∈P0(p|z ∼dp p) (by definition of p|z ∼dp p).
Therefore, we find such a T.

Let S , {(p|z, p) | p∈P ∧ z∈P0
}.

S⊆P x P
(by definition of S, Theorem 4.3.2, production rule 3 of P+, production rule 3 of P0

and set theory) ∧
∀p∈P ∀z∈P0((p|z, p)∈S) (by definition of S).
Let Z , {(z1, z2) | z1, z2∈P

0
}.

Z⊆P x P (by definition of Z, Theorem 4.3.2 and set theory).
Let T , S ∪ Z.
∀p∈P ∀z∈P0((p|z, p)∈T) (by set theory and definitions of S and T).

T is a strong dp-bisimulation on P
⇐⇒ T,T−1 are strong dp-simulations on P
(by definition of strong dp-bisimulation on P)
⇐⇒ T,T−1 are binary relations on P ∧
for all elements of T,T−1 the Observation, Fraction and Deletion conditions of strong
dp-simulation on P are satisfied
(by definition of strong dp-simulation on P).
We prove T,T−1 are binary relations on P and for all elements of T,T−1 the
Observation, Fraction and Deletion conditions of strong dp-simulation on P are sat-
isfied.

A.16.1.1 T,T−1 satisfy the Observation and Fraction conditions

S is a strong of-bisimulation on P
(by the proof of Theorem 4.3.3, see A.7) ∧
Z is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P, ∵ Iz1∪ Rz1 = ∅ ∧ Iz2∪ Rz2 = ∅ (by
Lemma 4.3.7))
=⇒ T is a strong of-bisimulation on P
(∵ the union of strong of-bisimulations on P is a strong of-bisimulation on P, and
by definition of T)
=⇒ T,T−1 are strong of-simulations on P

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 220

(by definition of strong of-bisimulation on P)
=⇒ T⊆P xP ∧ T−1

⊆P xP ∧ for all elements of T,T−1 the Observation and Fraction
conditions of strong of-simulation on P are satisfied
(by definition of strong of-simulation on P)
=⇒ for all elements of T,T−1 the Observation and Fraction conditions of strong
dp-simulation on P are satisfied
(∵ the Observation and Fraction conditions of strong dp-simulation on P are the
same as the Observation and Fraction conditions of strong of-simulation on P,
respectively). Q.E.D.

It remains to prove that for all elements of T,T−1 the Deletion condition of strong
dp-simulation on P is satisfied.

A.16.1.2 T satisfies the Deletion condition

We use complete induction on | f actors+
m(u)| for u∈dom(T).

For n∈N, let Prop(n) be the proposition:

∀(u, v)∈T ∀τrX ∈Ru ∀u′′∈P

(| f actors+
m(u)| = n ∧ u

τrX
−→ u′′ =⇒ τrX ∈Rv ∧ ∃v′′∈P (v

τrX
−→ v′′ ∧ (u′′, v′′)∈T)).

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(0)

2. ` ∀n∈N (∀m∈ [0,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(0)

For (u, v)∈T, u∈P (∵ T⊆P x P and by set theory) ∧
| f actors+

m(u)| = 0 (by the hypothesis of Prop(0))
=⇒ f actors+

m(u) = ∅m (by set theory).
Now u∈P+

∨ u∈P0 (by Theorem 4.3.2, ∵ u∈P).
If u∈P+

then u<P0 (by Theorem 4.3.2, ∵ u∈P)
=⇒ (u, v)<Z (by definition of Z)
=⇒ (u, v)∈S (∵ (u, v)∈T ∧ T = S ∪ Z)
=⇒ ∃p∈P ∃z∈P0 (u = p|z ∧ v = p) (by definition of S)

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 221

=⇒ p|z∈P+ (∵ u∈P+) ∧ z∈P (by Theorem 4.3.2 and set theory)
=⇒ f actors+

m(p|z) , ∅m (by Lemma 4.3.15, ∵ p∈P)
=⇒ f actors+

m(u) , ∅m (∵ u = p|z; which is a contradiction).
∴ u<P+

=⇒ u∈P0 (∵ u∈P+
∨ u∈P0)

=⇒ Ru = ∅ (by Lemma 4.3.8)
=⇒ consequent of Prop(0) holds (∵ ∅ satisfies all conditions)
=⇒ Prop(0) holds
(by definition of Prop(0), ∵ (u, v)∈T with | f actors+

m(u)| = 0 is arbitrary). Q.E.D.

Induction Step: Proof of ∀n∈N (∀m∈ [0,n]Prop(m) =⇒ Prop(n + 1))

For n∈N, assume ∀m∈ [0,n]Prop(m) holds (inductive hypothesis).
For (u, v)∈T, u∈P (∵ T⊆P x P and by set theory) ∧
| f actors+

m(u)| = n + 1 (by the hypothesis of Prop(n + 1))
=⇒ | f actors+

m(u)| ≥ 1 (by algebra of inequalities, ∵ n ≥ 0)
=⇒ f actors+

m(u) , ∅m (by set theory).
Now u∈P+

∨ u∈P0 (by Theorem 4.3.2, ∵ u∈P).
If u∈P0

then f actors+
m(u) = ∅m (by Lemma 4.3.16, ∵ u∈P; which is a contradiction).

∴ u<P0

=⇒ u∈P+ (∵ u∈P+
∨ u∈P0) ∧ (u, v)<Z (by definition of Z)

=⇒ (u, v)∈S (∵ (u, v)∈T ∧ T = S ∪ Z)
=⇒ ∃p∈P ∃z∈P0 (u = p|z ∧ v = p) (by definition of S)
=⇒ p|z∈P (∵ u∈P) ∧ p|z∈P+ (∵ u∈P+) ∧
z∈P (by Theorem 4.3.2 and set theory)
=⇒ p∈P+ (by production rule 3 of P+ and Theorem 4.3.2, ∵ p∈P ∧ z∈P0) ∧
Rp|z , ∅ (by Lemma 4.3.6)
=⇒ ∃ τrX ∈Rp|z (by set theory)

=⇒ ∃ (p|z)′′∈P (p|z
τrX
−→ (p|z)′′) (by definition of Rp|z)

=⇒ only the Delet, L − Par, R − Par or CompDelet rules determine the transition

p|z
τrX
−→ (p|z)′′

(by definitions of the LTS rules).
Now z∈P0 (by definition of z)
=⇒ Rz = ∅ (by Lemma 4.3.8)
=⇒ τrX <Rz (by set theory)

=⇒ ¬(τrX ∈R ∃ z′′∈P (z
τrX
−→ z′′)) (by definition of Rz)

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 222

=⇒ the R − Par rule does not define the transition p|z
τrX
−→ (p|z)′′

(∵ the hypothesis of R − Par does not hold)

=⇒ only the Delet, L−Par or CompDelet rules determine the transition p|z
τrX
−→ (p|z)′′

(∵ only the Delet, L − Par, R − Par or CompDelet rules determine the transition

p|z
τrX
−→ (p|z)′′).

If the Delet rule defines the transition p|z
τrX
−→ (p|z)′′

then (p|z)′′ = 0 (by the conclusion of Delet) ∧
p|z∼o f X (by the hypothesis of Delet)
=⇒ p|z∼o f p (by Theorem 4.3.3, ∵ p∈P ∧ z∈P0) ∧ p|z∼o f X
=⇒ p∼o f p|z (∵∼o f is symmetric, by Lemma 4.3.2) ∧ p|z∼o f X
=⇒ p∼o f X (∵∼o f is transitive, by Lemma 4.3.4)

=⇒ p
τrX
−→ 0 (by the Delet rule, ∵ p∈P+)

=⇒ τrX ∈Rp (by definition of Rp) ∧
0∈P (by production rule 1 of P0, set theory and Theorem 4.3.2) ∧ p

τrX
−→ 0 ∧

(0, 0)∈T (by set theory and definitions of Z and T)

=⇒ τrX ∈Rv ∧ 0∈P ∧ v
τrX
−→ 0 ∧ (0, 0)∈T (∵ v = p).

If the L − Par rule defines the transition p|z
τrX
−→ (p|z)′′

then ∃ p′′∈P (p
τrX
−→ p′′ ∧ (p|z)′′ = p′′|z) (by definition of L − Par)

=⇒ p′′∈P ∧ p
τrX
−→ p′′ ∧ ((p|z)′′, p′′) = (p′′|z, p′′)

(by definition of p′′, and by algebra of binary relations)

=⇒ τrX ∈Rp (by definition of Rp) ∧ p′′∈P ∧ p
τrX
−→ p′′ ∧

((p|z)′′, p′′)∈T (∵ (p′′|z, p′′)∈T, by set theory and definitions of S and T)

=⇒ τrX ∈Rv ∧ p′′∈P ∧ v
τrX
−→ p′′ ∧ ((p|z)′′, p′′)∈T (∵ v = p).

If the CompDelet rule defines the transition p|z
τrX
−→ (p|z)′′

then ∃ τrX1
, τrX2

∈R ∃(p|z)′∈P (X∼o f X1|X2 ∧ p|z
τrX1
−→ (p|z)′ ∧ (p|z)′

τrX2
−→ (p|z)′′)

(by the hypothesis of CompDelet)

=⇒ τrX1
∈Rp|z (by definition of Rp|z) ∧ τrX2

∈R(p|z)′ (by definition of R(p|z)′)
=⇒ R(p|z)′ , ∅ (by set theory).

=⇒ (p|z)′∈P+ (by Lemma 4.3.6, ∵ (p|z)′∈P)

=⇒ (p|z)′∈P+
∧ (p|z)′<P0 (by Theorem 4.3.2, ∵ (p|z)′∈P)

=⇒ τrX1
∈Rp ∧ ∃p′∈P+(p

τrX1
−→ p′ ∧ (p|z)′ = p′|z)

(by Lemma 4.3.19, ∵ p∈P ∧ z∈P0
∧ τrX1

∈Rp|z ∧ p|z
τrX1
−→ (p|z)′)

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 223

=⇒ ((p|z)′, p′) = (p′|z, p′) (by algebra of binary relations)
=⇒ ((p|z)′, p′)∈S (∵ (p′|z, p′)∈S, by definition of S)
=⇒ ((p|z)′, p′)∈T (by set theory and definition of T).

Now (p|z)′ = 0 ∨ f actors+
m((p|z)′) ⊂ f actors+

m(p|z)
(by Lemma 4.3.18, ∵ p|z, (p|z)′∈P ∧ τrX1

∈Rp|z ∧ p|z
τrX1
−→ (p|z)′)

=⇒ (p|z)′∈P0 (∵ 0∈P0) ∨ f actors+
m((p|z)′) ⊂ f actors+

m(p|z)
=⇒ f actors+

m((p|z)′) ⊂ f actors+
m(p|z) (∵ (p|z)′<P0)

=⇒ | f actors+
m((p|z)′)| < | f actors+

m(p|z)| (by set theory)
=⇒ | f actors+

m((p|z)′)| < n + 1 (∵ u = p|z ∧ | f actors+
m(u)| = n + 1)

=⇒ | f actors+
m((p|z)′)| ∈ [0,n] (by set theory and algebra of inequalities)

=⇒ Prop(| f actors+
m((p|z)′)|) holds (by the inductive hypothesis)

=⇒ τrX2
∈Rp′ ∧ ∃p′′∈P (p′

τrX2
−→ p′′ ∧ ((p|z)′′, p′′)∈T)

(by modus ponens,
∵ ((p|z)′, p′)∈T ∧ τrX2

∈R(p|z)′ ∧ (p|z)′′∈P ∧ (p|z)′
τrX2
−→ (p|z)′′)

=⇒ p
τrX
−→ p′′ ∧ ((p|z)′′, p′′)∈T (by the CompDelet rule, ∵ X∼o f X1|X2 ∧ p

τrX1
−→ p′)

=⇒ τrX ∈Rp (by definition of Rp) ∧ p′′∈P (by definition of p′′) ∧ p
τrX
−→ p′′ ∧

((p|z)′′, p′′)∈T
=⇒ τrX ∈Rv ∧ p′′∈P ∧ v

τrX
−→ p′′ ∧ ((p|z)′′, p′′)∈T (∵ v = p).

∴ Prop(n + 1) holds
(∵ u = p|z ∧ v = p, and
because (u, v)∈T and τrX ∈Rp|z and (p|z)′′∈P

with | f actors+
m(u)| = n + 1 and p|z

τrX
−→ (p|z)′′ are arbitrary).

∴ ∀n∈N (∀m∈ [0,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n is arbitrary). Q.E.D.

∴ ∀n∈N Prop(n) holds (by complete induction).
∴ For all elements of T the Deletion condition of strong dp-simulation on P is
satisfied
(∵ every process in dom(T) has a finite number of positive singleton factors). Q.E.D.
∴ T is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T ⊆ P x P and for all elements of T
the Observation and Fraction conditions of strong dp-simulation on P are satisfied).

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 224

A.16.1.3 T−1 satisfies the Deletion condition

T = S ∪ Z (by definition of T)
=⇒ T−1 = S−1

∪ Z−1 (by algebra of binary relations)
=⇒ T−1 = {(p, p|z), (z2, z1) | p∈P ∧ z, z1, z2∈P

0
}

(by definitions of S, Z and inverse binary relations, and by set theory).

If p
τrY
−→ p′ with τrY ∈R

then p|z
τrY
−→ p′|z (by the L − Par rule).

And (p′, p′|z)∈T (by definition of T−1).

And z2∈P
0 (by definition of Z)

=⇒ Rz2 = ∅ (by Lemma 4.3.8).

∴ For all elements of T−1 the Deletion condition of strong dp-simulation on P is
satisfied
(∵ p∈P and z, z2∈P

0 and τrY ∈R are arbitrary). Q.E.D.
∴ T−1 is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T−1

⊆ P x P and for all elements
of T−1 the Observation and Fraction conditions of strong dp-simulation on P are
satisfied).
∴ T is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P).
∴ ∀p∈P ∀z∈P0(p|z ∼dp p) (by definition of p|z ∼dp p). Q.E.D.

A.16.2 ∀p∈P ∀z∈P0(p ∼dp z|p)

Proof: If ∃ strong dp-bisimulation T on Pwith ∀p∈P ∀z∈P0((p, z|p)∈T)
then ∀p∈P ∀z∈P0(p ∼dp z|p) (by definition of p ∼dp z|p).
Therefore, we find such a T.

Let S , {(p, z|p) | p∈P ∧ z∈P0
}.

S⊆P x P
(by definition of S, Theorem 4.3.2, production rule 3 of P+, production rule 3 of P0

and set theory) ∧
∀p∈P ∀z∈P0((p, z|p)∈S) (by definition of S).
Let Z , {(z1, z2) | z1, z2∈P

0
}.

Z⊆P x P (by definition of Z, Theorem 4.3.2 and set theory).

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 225

Let T , S ∪ Z.
∀p∈P ∀z∈P0((p, z|p)∈T) (by set theory and definitions of S and T).

T is a strong dp-bisimulation on P
⇐⇒ T,T−1 are strong dp-simulations on P
(by definition of strong dp-bisimulation on P)
⇐⇒ T,T−1 are binary relations on P ∧
for all elements of T,T−1 the Observation, Fraction and Deletion conditions of strong
dp-simulation on P are satisfied
(by definition of strong dp-simulation on P).
We prove T,T−1 are binary relations on P and for all elements of T,T−1 the
Observation, Fraction and Deletion conditions of strong dp-simulation on P are sat-
isfied.

A.16.2.1 T,T−1 satisfy the Observation and Fraction conditions

S is a strong of-bisimulation on P
(by the proof of Theorem 4.3.3, see A.7) ∧
Z is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P, ∵ Iz1∪ Rz1 = ∅ ∧ Iz2∪ Rz2 = ∅ (by
Lemma 4.3.7))
=⇒ T is a strong of-bisimulation on P
(∵ the union of strong of-bisimulations on P is a strong of-bisimulation on P, and
by definition of T)
=⇒ T,T−1 are strong of-simulations on P
(by definition of strong of-bisimulation on P)
=⇒ T⊆P xP ∧ T−1

⊆P xP ∧ for all elements of T,T−1 the Observation and Fraction
conditions of strong of-simulation on P are satisfied
(by definition of strong of-simulation on P)
=⇒ for all elements of T,T−1 the Observation and Fraction conditions of strong
dp-simulation on P are satisfied
(∵ the Observation and Fraction conditions of strong dp-simulation on P are the
same as the Observation and Fraction conditions of strong of-simulation on P,
respectively). Q.E.D.

It remains to prove that for all elements of T,T−1 the Deletion condition of strong
dp-simulation on P is satisfied.

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 226

A.16.2.2 T satisfies the Deletion condition

T = S ∪ Z (by definition of T)
=⇒ T = {(p, z|p), (z1, z2) | p∈P ∧ z, z1, z2∈P

0
}

(by definitions of S and Z, and by set theory).

If p
τrX
−→ p′ with τrX ∈R

then z|p
τrX
−→ z|p′ (by the R − Par rule).

And (p′, z|p′)∈T (by definition of T).

And z1∈P
0 (by definition of Z)

=⇒ Rz1 = ∅ (by Lemma 4.3.8).

∴ For all elements of T the Deletion condition of strong dp-simulation on P is
satisfied
(∵ p∈P and z, z1∈P

0 and τrX ∈R are arbitrary). Q.E.D.
∴ T is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T ⊆ P x P and for all elements of T
the Observation and Fraction conditions of strong dp-simulation on P are satisfied).

A.16.2.3 T−1 satisfies the Deletion condition

Now S−1 = {(z|p, p) | p∈P ∧ z∈P0
}

(by definitions of S and inverse binary relations).
And Z−1 = {(z2, z1) | z1, z2∈P

0
} (by definitions of Z and inverse binary relations).

And T = S ∪ Z (by definition of T)
=⇒ T−1 = S−1

∪ Z−1 (by algebra of binary relations).
We use complete induction on | f actors+

m(u)| for u∈dom(T−1).

For n∈N, let Prop(n) be the proposition:

∀(u, v)∈T−1
∀τrY ∈Ru ∀u′′∈P

(| f actors+
m(u)| = n ∧ u

τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T−1)).

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(0)

2. ` ∀n∈N (∀m∈ [0,n]Prop(m) =⇒ Prop(n + 1))

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 227

Base Case: Proof of Prop(0)

For (u, v)∈T−1, u∈P (∵ T−1
⊆P x P and by set theory) ∧

| f actors+
m(u)| = 0 (by the hypothesis of Prop(0))

=⇒ f actors+
m(u) = ∅m (by set theory).

Now u∈P+
∨ u∈P0 (by Theorem 4.3.2, ∵ u∈P).

If u∈P+

then u<P0 (by Theorem 4.3.2, ∵ u∈P)
=⇒ (u, v)<Z−1 (by definition of Z−1)
=⇒ (u, v)∈S−1 (∵ (u, v)∈T−1

∧ T−1 = S−1
∪ Z−1)

=⇒ ∃p∈P ∃z∈P0 (u = z|p ∧ v = p) (by definition of S−1)
=⇒ z|p∈P+ (∵ u∈P+) ∧ z∈P (by Theorem 4.3.2 and set theory)
=⇒ f actors+

m(z|p) , ∅m (by Lemma 4.3.15, ∵ p∈P)
=⇒ f actors+

m(u) , ∅m (∵ u = z|p; which is a contradiction).
∴ u<P+

=⇒ u∈P0 (∵ u∈P+
∨ u∈P0)

=⇒ Ru = ∅ (by Lemma 4.3.8)
=⇒ consequent of Prop(0) holds (∵ ∅ satisfies all conditions)
=⇒ Prop(0) holds
(by definition of Prop(0), ∵ (u, v)∈T−1 with | f actors+

m(u)| = 0 is arbitrary). Q.E.D.

Induction Step: Proof of ∀n∈N (∀m∈ [0,n]Prop(m) =⇒ Prop(n + 1))

For n∈N, assume ∀m∈ [0,n]Prop(m) holds (inductive hypothesis).
For (u, v)∈T−1, u∈P (∵ T−1

⊆P x P and by set theory) ∧
| f actors+

m(u)| = n + 1 (by the hypothesis of Prop(n + 1))
=⇒ | f actors+

m(u)| ≥ 1 (by algebra of inequalities, ∵ n ≥ 0)
=⇒ f actors+

m(u) , ∅m (by set theory).
Now u∈P+

∨ u∈P0 (by Theorem 4.3.2, ∵ u∈P).
If u∈P0

then f actors+
m(u) = ∅m (by Lemma 4.3.16, ∵ u∈P; which is a contradiction).

∴ u<P0

=⇒ u∈P+ (∵ u∈P+
∨ u∈P0) ∧ (u, v)<Z−1 (by definition of Z−1)

=⇒ (u, v)∈S−1 (∵ (u, v)∈T−1
∧ T−1 = S−1

∪ Z−1)
=⇒ ∃p∈P ∃z∈P0 (u = z|p ∧ v = p) (by definition of S−1)
=⇒ z|p∈P (∵ u∈P) ∧ z|p∈P+ (∵ u∈P+) ∧
z∈P (by Theorem 4.3.2 and set theory)
=⇒ p∈P+ (by production rule 3 of P+ and Theorem 4.3.2, ∵ p∈P ∧ z∈P0) ∧

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 228

Rz|p , ∅ (by Lemma 4.3.6)
=⇒ ∃ τrY ∈Rz|p (by set theory)

=⇒ ∃ (z|p)′′∈P (z|p
τrY
−→ (z|p)′′) (by definition of Rz|p)

=⇒ only the Delet, L − Par, R − Par or CompDelet rules determine the transition

z|p
τrY
−→ (z|p)′′

(by definitions of the LTS rules).
Now z∈P0 (by definition of z)
=⇒ Rz = ∅ (by Lemma 4.3.8)
=⇒ τrY <Rz (by set theory)

=⇒ ¬(τrY ∈R ∃ z′′∈P (z
τrY
−→ z′′)) (by definition of Rz)

=⇒ the L − Par rule does not define the transition z|p
τrY
−→ (z|p)′′

(∵ the hypothesis of L − Par does not hold)

=⇒ only the Delet, R−Par or CompDelet rules determine the transition z|p
τrY
−→ (z|p)′′

(∵ only the Delet, L − Par, R − Par or CompDelet rules determine the transition

z|p
τrY
−→ (z|p)′′).

If the Delet rule defines the transition z|p
τrY
−→ (z|p)′′

then (z|p)′′ = 0 (by the conclusion of Delet) ∧
z|p∼o f Y (by the hypothesis of Delet)
=⇒ p∼o f z|p (by Theorem 4.3.3, ∵ p∈P ∧ z∈P0) ∧ z|p∼o f Y
=⇒ p∼o f Y (∵∼o f is transitive, by Lemma 4.3.4)

=⇒ p
τrY
−→ 0 (by the Delet rule, ∵ p∈P+)

=⇒ τrY ∈Rp (by definition of Rp) ∧
0∈P (by production rule 1 of P0, set theory and Theorem 4.3.2) ∧ p

τrY
−→ 0 ∧

(0, 0)∈T−1 (by set theory and definitions of Z−1 and T−1)

=⇒ τrY ∈Rv ∧ 0∈P ∧ v
τrY
−→ 0 ∧ (0, 0)∈T−1 (∵ v = p).

If the R − Par rule defines the transition z|p
τrY
−→ (z|p)′′

then ∃ p′′∈P (p
τrY
−→ p′′ ∧ (z|p)′′ = z|p′′) (by definition of R − Par)

=⇒ p′′∈P ∧ p
τrY
−→ p′′ ∧ ((z|p)′′, p′′) = (z|p′′, p′′)

(by definition of p′′, and by algebra of binary relations)

=⇒ τrY ∈Rp (by definition of Rp) ∧ p′′∈P ∧ p
τrY
−→ p′′ ∧

((z|p)′′, p′′)∈T−1 (∵ (z|p′′, p′′)∈T−1, by set theory and definitions of S−1 and T−1)

=⇒ τrY ∈Rv ∧ p′′∈P ∧ v
τrY
−→ p′′ ∧ ((z|p)′′, p′′)∈T−1 (∵ v = p).

A.16. Theorem 4.3.7 ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p) 229

If the CompDelet rule defines the transition z|p
τrY
−→ (z|p)′′

then ∃ τrY1
, τrY2
∈R ∃(z|p)′∈P (Y∼o f Y1|Y2 ∧ z|p

τrY1
−→ (z|p)′ ∧ (z|p)′

τrY2
−→ (z|p)′′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈Rz|p (by definition of Rz|p) ∧ τrY2

∈R(z|p)′ (by definition of R(z|p)′)
=⇒ R(z|p)′ , ∅ (by set theory)

=⇒ (z|p)′∈P+ (by Lemma 4.3.6, ∵ (z|p)′∈P)

=⇒ (z|p)′∈P+
∧ (z|p)′<P0 (by Theorem 4.3.2, ∵ (z|p)′∈P)

=⇒ τrY1
∈Rp ∧ ∃p′∈P+(p

τrY1
−→ p′ ∧ (z|p)′ = z|p′)

(by Lemma 4.3.20, ∵ p∈P ∧ z∈P0
∧ τrY1

∈Rz|p ∧ z|p
τrY1
−→ (z|p)′)

=⇒ ((z|p)′, p′) = (z|p′, p′) (by algebra of binary relations)
=⇒ ((z|p)′, p′)∈S−1 (∵ (z|p′, p′)∈S−1, by definition of S−1)
=⇒ ((z|p)′, p′)∈T−1 (by set theory and definition of T−1).

Now (z|p)′ = 0 ∨ f actors+
m((z|p)′) ⊂ f actors+

m(z|p)
(by Lemma 4.3.18, ∵ z|p, (z|p)′∈P ∧ τrY1

∈Rz|p ∧ z|p
τrY1
−→ (z|p)′)

=⇒ (z|p)′∈P0 (∵ 0∈P0) ∨ f actors+
m((z|p)′) ⊂ f actors+

m(z|p)
=⇒ f actors+

m((z|p)′) ⊂ f actors+
m(z|p) (∵ (z|p)′<P0)

=⇒ | f actors+
m((z|p)′)| < | f actors+

m(z|p)| (by set theory)
=⇒ | f actors+

m((z|p)′)| < n + 1 (∵ u = z|p ∧ | f actors+
m(u)| = n + 1)

=⇒ | f actors+
m((z|p)′)| ∈ [0,n] (by set theory and algebra of inequalities)

=⇒ Prop(| f actors+
m((z|p)′)|) holds (by the inductive hypothesis)

=⇒ τrY2
∈Rp′ ∧ ∃p′′∈P (p′

τrY2
−→ p′′ ∧ ((z|p)′′, p′′)∈T−1)

(by modus ponens,
∵ ((z|p)′, p′)∈T−1

∧ τrY2
∈R(z|p)′ ∧ (z|p)′′∈P ∧ (z|p)′

τrY2
−→ (z|p)′′)

=⇒ p
τrY
−→ p′′ ∧ ((z|p)′′, p′′)∈T−1 (by the CompDelet rule, ∵ Y∼o f Y1|Y2 ∧ p

τrY1
−→ p′)

=⇒ τrY ∈Rp (by definition of Rp) ∧ p′′∈P (by definition of p′′) ∧ p
τrY
−→ p′′ ∧

((z|p)′′, p′′)∈T−1

=⇒ τrY ∈Rv ∧ p′′∈P ∧ v
τrY
−→ p′′ ∧ ((z|p)′′, p′′)∈T−1 (∵ v = p).

∴ Prop(n + 1) holds
(∵ u = z|p ∧ v = p, and
because (u, v)∈T−1 and τrY ∈Rz|p and (z|p)′′∈P

with | f actors+
m(u)| = n + 1 and z|p

τrY
−→ (z|p)′′ are arbitrary).

∴ ∀n∈N (∀m∈ [0,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n is arbitrary). Q.E.D.

A.17. Lemma 4.3.21 230

∴ ∀n∈N Prop(n) holds (by complete induction).
∴ For all elements of T−1 the Deletion condition of strong dp-simulation on P is
satisfied
(∵ every process in dom(T−1) has a finite number of positive singleton factors).
Q.E.D.
∴ T−1 is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T−1

⊆ P x P and for all elements
of T−1 the Observation and Fraction conditions of strong dp-simulation on P are
satisfied).
∴ T is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P).
∴ ∀p∈P ∀z∈P0(p ∼dp z|p) (by definition of p ∼dp z|p). Q.E.D.

∴ ∀p∈P ∀z∈P0(p|z ∼dp p ∧ p ∼dp z|p). Q.E.D.

A.17 Lemma 4.3.21

∀p∈P ∀ f ∈ f actors+
m(p)

(∃τr f ∈Rp ∃p′∈P

(p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m))

Proof: uses complete induction on the depth of the factor tree of p.

For n∈ (N+
−{1}), let Prop(n) be this lemma for p with factor tree of depth n.

For p∈P and f ∈ f actors+
m(p), f ∈ f actorsm(p) (by definition of f actors+

m(p))
=⇒ f actorsm(p) , ∅m (by set theory)
=⇒ depth of the factor tree of p ≥ 2
(by definition of f actorsm(p), Definition 4.3.3 and Definition 4.3.4).
Therefore, the proof by complete induction on the depth of the factor tree of p
involves discharging the following two proof obligations:

1. ` Prop(2)

2. ` ∀n∈ (N+
−{1}) (∀m∈ [2,n]Prop(m) =⇒ Prop(n + 1))

A.17. Lemma 4.3.21 231

Base Case: Proof of Prop(2)

For p∈P and f ∈ f actors+
m(p), p has factor tree of depth 2

(by the hypothesis of Prop(2))
=⇒ ∃r, s∈P (p = r|s) (by definition of factor tree of p)
=⇒ r, s have factor trees of depth 1
(∵ p has factor tree of depth 2, and by definition of depth of factor tree)
=⇒ f actorsm(r) = ∅m ∧ f actorsm(s) = ∅m

(by definitions of f actorsm(r) and f actorsm(s))
=⇒ f actorsm(r|s) = {r}m] {s}m (by definition of f actorsm(r|s))
=⇒ f actorsm(p) = {r, s}m (∵ p = r|s, and by multiset theory)
=⇒ f actors+

m(p) = {g∈{r, s}m | f actorsm(g) = ∅m ∧ g∈P+
}m

(by definition of f actors+
m(p))

=⇒ f = r ∨ f = s (∵ f ∈ f actors+
m(p)).

Now f ∈P+ (∵ f ∈ f actors+
m(p), and by definition of f actors+

m(p))

=⇒ ∃ τr f ∈R (f
τr f
−→ 0) (by the Delet rule, ∵ f ∼o f f (by Lemma 4.3.1))

=⇒ f |s
τr f
−→ 0|s (by the L − Par rule) ∧ r| f

τr f
−→ r|0 (by the R − Par rule).

If f = r
then p = f |s (∵ p = r|s)

=⇒ p
τr f
−→ 0|s (∵ f |s

τr f
−→ 0|s)

=⇒ τr f ∈Rp (by definition of Rp) ∧ 0|s∈P (by definition of p
τr f
−→ 0|s).

Let p′ , 0|s.
Now f actors+

m(p) = {g∈{ f , s}m | f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ f actors+
m(p) = {g∈{r, s}m | f actorsm(g) = ∅m ∧ g∈P+

}m ∧ f = r)
=⇒ f actors+

m(p) = { f }m] {g∈{s}m | f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ f ∈ f actors+
m(p), and by multiset theory)

=⇒ f actors+
m(p) = { f }m] {g∈{0}m] {s}m] f actorsm(0)] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ 0 <P+ (by production rule 1 of P0 and Theorem 4.3.2) ∧ f actorsm(0) = ∅m (by
definition of f actorsm(0)) ∧ f actorsm(s) = ∅m)
=⇒ f actors+

m(p) = { f }m] {g∈ f actorsm(0|s) | f actorsm(g) = ∅m ∧ g∈P+
}m

(by definition of f actorsm(0|s))
=⇒ f actors+

m(p) = { f }m] f actors+
m(0|s) (by definition of f actors+

m(0|s))
=⇒ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵] is commutative, and by definition of p′)

A.17. Lemma 4.3.21 232

=⇒ τr f ∈Rp ∧ p′∈P ∧ p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵ τr f ∈Rp ∧ p′ = 0|s ∧ 0|s∈P ∧ p
τr f
−→ 0|s).

If f = s
then p = r| f (∵ p = r|s)

=⇒ p
τr f
−→ r|0 (∵ r| f

τr f
−→ r|0)

=⇒ τr f ∈Rp (by definition of Rp) ∧ r|0∈P (by definition of p
τr f
−→ r|0).

Let p′ , r|0.
Now f actors+

m(p) = {g∈{r, f }m | f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ f actors+
m(p) = {g∈{r, s}m | f actorsm(g) = ∅m ∧ g∈P+

}m ∧ f = s)
=⇒ f actors+

m(p) = { f }m] {g∈{r}m | f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ f ∈ f actors+
m(p), and by multiset theory)

=⇒ f actors+
m(p) = { f }m] {g∈{r}m] {0}m] f actorsm(r)] f actorsm(0) |

f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ 0 < P+ (by production rule 1 of P0 and Theorem 4.3.2) ∧ f actorsm(r) = ∅m ∧

f actorsm(0) = ∅m (by definition of f actorsm(0)))
=⇒ f actors+

m(p) = { f }m] {g∈ f actorsm(r|0) | f actorsm(g) = ∅m ∧ g∈P+
}m

(by definition of f actorsm(r|0))
=⇒ f actors+

m(p) = { f }m] f actors+
m(r|0) (by definition of f actors+

m(r|0))
=⇒ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵] is commutative, and by definition of p′)

=⇒ τr f ∈Rp ∧ p′∈P ∧ p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵ τr f ∈Rp ∧ p′ = r|0 ∧ r|0∈P ∧ p
τr f
−→ r|0).

∴ ∀p∈P ∀ f ∈ f actors+
m(p)

(∃τr f ∈Rp ∃p′∈P (p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m))

for p with factor tree of depth 2
(∵ p∈Pwith factor tree of depth 2 and f ∈ f actors+

m(p) are arbitrary)
=⇒ Prop(2) holds (by definition of Prop(2)). Q.E.D.

Induction Step:

Proof of ∀n∈ (N+
−{1}) (∀m∈ [2,n]Prop(m) =⇒ Prop(n + 1))

For n∈ (N+
−{1}), assume ∀m∈ [2,n]Prop(m) holds (inductive hypothesis).

For p∈P and f ∈ f actors+
m(p), p has factor tree of depth n + 1

A.17. Lemma 4.3.21 233

(by the hypothesis of Prop(n + 1))
=⇒ p has factor tree of depth ≥ 3 (∵ n + 1 ≥ 3 (∵ n∈ (N+

−{1})))
=⇒ ∃r, s∈P (p = r|s) (by definition of factor tree of p)
=⇒ r has factor tree of depth dr, with dr∈ [1,n] ∧
s has factor tree of depth ds, with ds∈ [1,n]
(∵ p has factor tree of depth n + 1, and by definition of depth of factor tree).
Now f actorsm(p) = f actorsm(r|s) (∵ p = r|s)
=⇒ f actorsm(p) = {r}m] {s}m] f actorsm(r)] f actorsm(s)
(by definition of f actorsm(r|s))
=⇒ f actors+

m(p) = {g∈{r}m] {s}m] f actorsm(r)] f actorsm(s) |
f actorsm(g) = ∅m ∧ g∈P+

}m

(by definition of f actors+
m(p))

=⇒ f ∈{g∈{r}m] {s}m] f actorsm(r)] f actorsm(s) | f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ f ∈ f actors+
m(p))

=⇒ f ∈{r}m ∨ f ∈{s}m ∨ f ∈ f actorsm(r) ∨ f ∈ f actorsm(s) (by multiset theory)
=⇒ f = r ∨ f = s ∨ f ∈ f actorsm(r) ∨ f ∈ f actorsm(s) (by set theory).
Now f actorsm(f) = ∅m ∧ f ∈P+

(∵ f ∈ f actors+
m(p), and by definition of f actors+

m(p))

=⇒ ∃ τr f ∈R (f
τr f
−→ 0) (by the Delet rule, ∵ f ∼o f f (by Lemma 4.3.1))

=⇒ f |s
τr f
−→ 0|s (by the L − Par rule) ∧ r| f

τr f
−→ r|0 (by the R − Par rule).

If f = r
then p = f |s (∵ p = r|s)

=⇒ p
τr f
−→ 0|s (∵ f |s

τr f
−→ 0|s)

=⇒ τr f ∈Rp (by definition of Rp) ∧ 0|s∈P (by definition of p
τr f
−→ 0|s).

Let p′ , 0|s.
Now f actors+

m(p) = {g∈{ f }m] {s}m] f actorsm(f)] f actorsm(s) |
f actorsm(g) = ∅m ∧ g∈P+

}m

(∵ f actors+
m(p) = {g∈{r}m] {s}m] f actorsm(r)] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m ∧ f = r)

=⇒ f actors+
m(p) = { f }m] {g∈{s}m] f actorsm(s) | f actorsm(g) = ∅m ∧ g∈P+

}m

(∵ f ∈ f actors+
m(p) ∧ f actorsm(f) = ∅m, and by multiset theory)

=⇒ f actors+
m(p) = { f }m] {g∈{0}m] {s}m] f actorsm(0)] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ 0 <P+ (by production rule 1 of P0 and Theorem 4.3.2) ∧ f actorsm(0) = ∅m (by
definition of f actorsm(0)))

A.17. Lemma 4.3.21 234

=⇒ f actors+
m(p) = { f }m] {g∈ f actorsm(0|s) | f actorsm(g) = ∅m ∧ g∈P+

}m

(by definition of f actorsm(0|s))
=⇒ f actors+

m(p) = { f }m] f actors+
m(0|s) (by definition of f actors+

m(0|s))
=⇒ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵] is commutative, and by definition of p′)

=⇒ τr f ∈Rp ∧ p′∈P ∧ p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵ τr f ∈Rp ∧ p′ = 0|s ∧ 0|s∈P ∧ p
τr f
−→ 0|s).

If f = s
then p = r| f (∵ p = r|s)

=⇒ p
τr f
−→ r|0 (∵ r| f

τr f
−→ r|0)

=⇒ τr f ∈Rp (by definition of Rp) ∧ r|0∈P (by definition of p
τr f
−→ r|0).

Let p′ , r|0.
Now f actors+

m(p) = {g∈{r}m] { f }m] f actorsm(r)] f actorsm(f) |
f actorsm(g) = ∅m ∧ g∈P+

}m

(∵ f actors+
m(p) = {g∈{r}m] {s}m] f actorsm(r)] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m ∧ f = s)

=⇒ f actors+
m(p) = { f }m] {g∈{r}m] f actorsm(r) | f actorsm(g) = ∅m ∧ g∈P+

}m

(∵ f ∈ f actors+
m(p) ∧ f actorsm(f) = ∅m, and by multiset theory)

=⇒ f actors+
m(p) = { f }m] {g∈{r}m] {0}m] f actorsm(r)] f actorsm(0) |

f actorsm(g) = ∅m ∧ g∈P+
}m

(∵ 0 <P+ (by production rule 1 of P0 and Theorem 4.3.2) ∧ f actorsm(0) = ∅m (by
definition of f actorsm(0)))
=⇒ f actors+

m(p) = { f }m] {g∈ f actorsm(r|0) | f actorsm(g) = ∅m ∧ g∈P+
}m

(by definition of f actorsm(r|0))
=⇒ f actors+

m(p) = { f }m] f actors+
m(r|0) (by definition of f actors+

m(r|0))
=⇒ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵] is commutative, and by definition of p′)

=⇒ τr f ∈Rp ∧ p′∈P ∧ p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵ τr f ∈Rp ∧ p′ = r|0 ∧ r|0∈P ∧ p
τr f
−→ r|0).

If f ∈ f actorsm(r)
then f actorsm(r) , ∅m (by set theory) ∧
f ∈ f actors+

m(r) (by definition of f actors+
m(r), ∵ f actorsm(f) = ∅m ∧ f ∈P+)

=⇒ ∃u, v∈P (r = u|v) (by definition of f actorsm(r))

A.17. Lemma 4.3.21 235

=⇒ r has factor tree of depth ≥ 2 (by definition of depth of factor tree of r)
=⇒ dr∈ [2,n] (∵ dr∈ [1,n], and by definition of dr)
=⇒ Prop(dr) holds (by the inductive hypothesis)

=⇒ ∃τr f ∈Rr ∃r′∈P (r
τr f
−→ r′ ∧ f actors+

m(r) = f actors+
m(r′)] { f }m)

(by modus ponens, ∵ r∈P ∧ f ∈ f actors+
m(r))

=⇒ r|s
τr f
−→ r′|s (by the L − Par rule) ∧

(r′ = 0 ∨ f actorsm(r′) , ∅m) (by Lemma 4.3.17, ∵ r∈P)

=⇒ p
τr f
−→ r′|s (∵ p = r|s) ∧

(r′∈P0 (by production rule 1 of P0) ∨ f actorsm(r′) , ∅m)

=⇒ τr f ∈Rp (by definition of Rp) ∧ r′|s∈P (by definition of p
τr f
−→ r′|s) ∧

(r′<P+ (by Theorem 4.3.2, ∵ r′∈P) ∨ f actorsm(r′) , ∅m).

Let p′ , r′|s.
Now f actors+

m(p) = f actors+
m(r|s) (∵ p = r|s)

=⇒ f actors+
m(p) = {g∈ f actorsm(r|s) | f actorsm(g) = ∅m ∧ g∈P+

}m

(by definition of f actors+
m(r|s))

=⇒ f actors+
m(p) = {g∈{r}m] {s}m] f actorsm(r)] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m

(by definition of f actorsm(r|s))
=⇒ f actors+

m(p) = {g∈{s}m] f actorsm(s) |
f actorsm(g) = ∅m ∧ g∈P+

}m] f actors+
m(r)

(∵ f actorsm(r) , ∅m, and by multiset theory and definition of f actors+
m(r))

=⇒ f actors+
m(p) = {g∈{s}m] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m] f actors+

m(r′)] { f }m
(∵ f actors+

m(r) = f actors+
m(r′)] { f }m)

=⇒ f actors+
m(p) = {g∈{s}m] f actorsm(r′)] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m] { f }m

(by definition of f actors+
m(r′) and by multiset theory)

=⇒ f actors+
m(p) = {g∈{r′}m] {s}m] f actorsm(r′)] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m] { f }m

(∵ r′<P+
∨ f actorsm(r′) , ∅m)

=⇒ f actors+
m(p) = f actors+

m(r′|s)] { f }m (by definition of f actors+
m(r′|s))

=⇒ f actors+
m(p) = f actors+

m(p′)] { f }m (∵ p′ = r′|s)

=⇒ τr f ∈Rp ∧ p′∈P ∧ p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m

(∵ τr f ∈Rp ∧ p′ = r′|s ∧ r′|s∈P ∧ p
τr f
−→ r′|s).

A.17. Lemma 4.3.21 236

If f ∈ f actorsm(s)
then f actorsm(s) , ∅m (by set theory) ∧
f ∈ f actors+

m(s) (by definition of f actors+
m(s), ∵ f actorsm(f) = ∅m ∧ f ∈P+)

=⇒ ∃u, v∈P (s = u|v) (by definition of f actorsm(s))
=⇒ s has factor tree of depth ≥ 2 (by definition of depth of factor tree of s)
=⇒ ds∈ [2,n] (∵ ds∈ [1,n], and by definition of ds)
=⇒ Prop(ds) holds (by the inductive hypothesis)

=⇒ ∃τr f ∈Rs ∃s′∈P (s
τr f
−→ s′ ∧ f actors+

m(s) = f actors+
m(s′)] { f }m)

(by modus ponens, ∵ s∈P ∧ f ∈ f actors+
m(s))

=⇒ r|s
τr f
−→ r|s′ (by the R − Par rule) ∧

(s′ = 0 ∨ f actorsm(s′) , ∅m) (by Lemma 4.3.17, ∵ s∈P)

=⇒ p
τr f
−→ r|s′ (∵ p = r|s) ∧

(s′∈P0 (by production rule 1 of P0) ∨ f actorsm(s′) , ∅m)

=⇒ τr f ∈Rp (by definition of Rp) ∧ r|s′∈P (by definition of p
τr f
−→ r|s′) ∧

(s′<P+ (by Theorem 4.3.2, ∵ s′∈P) ∨ f actorsm(s′) , ∅m).

Let p′ , r|s′.
Now f actors+

m(p) = f actors+
m(r|s) (∵ p = r|s)

=⇒ f actors+
m(p) = {g∈ f actorsm(r|s) | f actorsm(g) = ∅m ∧ g∈P+

}m

(by definition of f actors+
m(r|s))

=⇒ f actors+
m(p) = {g∈{r}m] {s}m] f actorsm(r)] f actorsm(s) |

f actorsm(g) = ∅m ∧ g∈P+
}m

(by definition of f actorsm(r|s))
=⇒ f actors+

m(p) = {g∈{r}m] f actorsm(r) | f actorsm(g) = ∅m ∧ g∈P+
}m] f actors+

m(s)
(∵ f actorsm(s) , ∅m, and by multiset theory and definition of f actors+

m(s))
=⇒ f actors+

m(p) = {g∈{r}m] f actorsm(r) |
f actorsm(g) = ∅m ∧ g∈P+

}m] f actors+
m(s′)] { f }m

(∵ f actors+
m(s) = f actors+

m(s′)] { f }m)
=⇒ f actors+

m(p) = {g∈{r}m] f actorsm(r)] f actorsm(s′) |
f actorsm(g) = ∅m ∧ g∈P+

}m] { f }m
(by definition of f actors+

m(s′) and by multiset theory)
=⇒ f actors+

m(p) = {g∈{r}m] {s′}m] f actorsm(r)] f actorsm(s′) |
f actorsm(g) = ∅m ∧ g∈P+

}m] { f }m
(∵ s′<P+

∨ f actorsm(s′) , ∅m)
=⇒ f actors+

m(p) = f actors+
m(r|s′)] { f }m (by definition of f actors+

m(r|s′))
=⇒ f actors+

m(p) = f actors+
m(p′)] { f }m (∵ p′ = r|s′)

=⇒ τr f ∈Rp ∧ p′∈P ∧ p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m

A.18. Theorem 4.3.8 ∀p, q∈P
(p∼dp q =⇒ | f actors+

m(p|0)| = | f actors+
m(q|0)|) 237

(∵ τr f ∈Rp ∧ p′ = r|s′ ∧ r|s′∈P ∧ p
τr f
−→ r|s′).

∴ ∀p∈P ∀ f ∈ f actors+
m(p)

(∃τr f ∈Rp ∃p′∈P (p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m))

for p with factor tree of depth n + 1
(∵ p∈Pwith factor tree of depth n + 1 and f ∈ f actors+

m(p) are arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈ (N+

−{1}) (∀m∈ [2,n]Prop(m) =⇒ Prop(n + 1)) holds
(∵ n∈ (N+

−{1}) is arbitrary) Q.E.D.

∴ ∀n∈ (N+
−{1}) Prop(n) holds (by complete induction).

∴ ∀p∈P ∀ f ∈ f actors+
m(p)

(∃τr f ∈Rp ∃p′∈P (p
τr f
−→ p′ ∧ f actors+

m(p) = f actors+
m(p′)] { f }m))

(∵ for every p∈P, the depth of the factor tree of p is finite). Q.E.D.

A.18 Theorem 4.3.8 ∀p, q∈P

(p∼dp q =⇒ | f actors+
m(p|0)| = | f actors+

m(q|0)|)

Proof: assumes the theorem is f alse and uses a process with the minimum number
of positive singleton factors to produce a contradiction.

The theorem is true ∨ the theorem is f alse
(by definition of ∨, and because the logic used is 2-valued).

Let S , {(p, q)∈P | p∼dp q ∧ | f actors+
m(p|0)| , | f actors+

m(q|0)|}.

If the theorem is f alse
then ∃p, q∈P (p∼dp q ∧ | f actors+

m(p|0)| , | f actors+
m(q|0)|)

(by definition of ¬ and by set theory)
=⇒ S , ∅ (by definition of S)
=⇒ ∃(r, s)∈S ∀(p, q)∈S
(| f actors+

m(s|0)| ≤ | f actors+
m(p|0)| ∧ | f actors+

m(s|0)| ≤ | f actors+
m(q|0)|)

(∵ for every p, q ∈ P, the depths of the factor trees of p, q are in N+, | is a binary
operator, and ∼dp is symmetric on P).
Now r, s∈P ∧ r∼dp s ∧ | f actors+

m(r|0)| , | f actors+
m(s|0)| (∵ (r, s)∈S)

=⇒ r|0, s|0∈P (∵ 0∈P) ∧ r∼o f s (by Corollary 4.3.5)

A.18. Theorem 4.3.8 ∀p, q∈P
(p∼dp q =⇒ | f actors+

m(p|0)| = | f actors+
m(q|0)|) 238

=⇒ s|0∈P+
∨ s|0∈P0 (by Theorem 4.3.2).

If s|0∈P0

then s∈P0 (by the hypothesis of production rule 3 of P0) ∧
f actors+

m(s|0) = ∅m (by Lemma 4.3.16, ∵ s|0∈P)
=⇒ s<P+ (by Theorem 4.3.2) ∧ | f actors+

m(s|0)| = 0 (by multiset theory)
=⇒ r, s∈P0 (by Lemma 4.3.9, ∵ r, s∈P ∧ r∼o f s)
=⇒ r|0∈P0 (by production rule 3 of P0, ∵ 0∈P0)
=⇒ f actors+

m(r|0) = ∅m (by Lemma 4.3.16, ∵ r|0∈P)
=⇒ | f actors+

m(r|0)| = 0 (by multiset theory)
=⇒ | f actors+

m(r|0)| = | f actors+
m(s|0)|

(∵ | f actors+
m(s|0)| = 0; which is a contradiction).

∴ s|0<P0

=⇒ s|0∈P+ (by Theorem 4.3.2, ∵ s|0∈P)
=⇒ f actors+

m(s|0) , ∅m (by Lemma 4.3.15, ∵ s, 0∈P)
=⇒ 0 < | f actors+

m(s|0)| (by multiset theory)
=⇒ 0 < | f actors+

m(s|0)| ∧
| f actors+

m(s|0)| < | f actors+
m(r|0)| (by definitions of (r, s) and S)

=⇒ 0 < | f actors+
m(r|0)| (∵ < is transitive)

=⇒ ∃ f ∈ f actors+
m(r|0) (by set theory).

Now r∼dp s (∵ (r, s)∈S)
=⇒ r|0∼dp r (by Theorem 4.3.7, ∵ r∈P ∧ 0∈P0) ∧ r∼dp s ∧
s|0∼dp s (by Theorem 4.3.7, ∵ s∈P ∧ 0∈P0)
=⇒ r|0∼dp s (∵∼dp is transitive on P, by Lemma 4.3.14) ∧
s∼dp s|0 (∵∼dp is symmetric on P, by Lemma 4.3.12)
=⇒ r|0∼dp s|0 (∵∼dp is transitive on P, by Lemma 4.3.14).

Now ∃τr f ∈Rr|0 ∃rl∈P (r|0
τr f
−→ rl ∧ f actors+

m(r|0) = f actors+
m(rl)] { f }m)

(by Lemma 4.3.21, ∵ r|0∈P ∧ f ∈ f actors+
m(r|0))

=⇒ (rl = 0 ∨ f actorsm(rl) , ∅m) (by Lemma 4.3.17, ∵ r|0∈P) ∧

τr f ∈Rs|0 ∧ ∃sl∈P (s|0
τr f
−→ sl ∧ rl∼dp sl) (∵ r|0∼dp s|0) ∧

| f actors+
m(r|0)| = | f actors+

m(rl)| + 1 (by multiset theory)
=⇒ (rl = 0 ∨ f actorsm(rl) , ∅m) ∧
(sl = 0 ∨ f actorsm(sl) , ∅m) (by Lemma 4.3.17, ∵ s|0∈P) ∧
(sl = 0 ∨ f actors+

m(sl) ⊂ f actors+
m(s|0)) (by Lemma 4.3.18, ∵ s|0∈P) ∧

| f actors+
m(r|0)| = | f actors+

m(rl)| + 1
=⇒ | f actors+

m(sl)| < | f actors+
m(s|0)|

A.18. Theorem 4.3.8 ∀p, q∈P
(p∼dp q =⇒ | f actors+

m(p|0)| = | f actors+
m(q|0)|) 239

(∵ | f actors+
m(0)| = 0 ∧ 0 < | f actors+

m(s|0)| and by multiset theory) ∧
| f actors+

m(s|0)| < | f actors+
m(r|0)| (∵ | f actors+

m(s|0)| < | f actors+
m(r|0)|) ∧

| f actors+
m(r|0)| = | f actors+

m(rl)| + 1
=⇒ | f actors+

m(sl)| < | f actors+
m(s|0)| ∧ | f actors+

m(s|0)| ≤ | f actors+
m(rl)|

(by algebra of inequalities on Z)
=⇒ | f actors+

m(sl)| < | f actors+
m(rl)| (by algebra of inequalities)

=⇒ | f actors+
m(sl)| , | f actors+

m(rl)| (by algebra of inequalities).

Now suppose sl = 0 ∨ rl = 0
then sl∈P

0
∨ rl∈P

0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ sl<P+

∨ rl<P+ (by Theorem 4.3.2, ∵ rl, sl∈P) ∧
rl∼o f sl (by Corollary 4.3.5, ∵ rl, sl∈P ∧ rl∼dp sl)
=⇒ sl∈P

0
∧ rl∈P

0 (by Lemma 4.3.9, ∵ rl, sl∈P)
=⇒ f actors+

m(sl) = ∅m ∧ f actors+
m(rl) = ∅m (by Lemma 4.3.16, ∵ rl, sl∈P)

=⇒ | f actors+
m(sl)| = 0 ∧ | f actors+

m(rl)| = 0 (by set theory)
=⇒ | f actors+

m(sl)| = | f actors+
m(rl)|

(∵ = is symmetic and transitive; which is a contradiction).

∴ sl , 0 ∧ rl , 0 (by definitions of ¬ and ∨)
=⇒ f actorsm(sl) , ∅m (∵ sl = 0 ∨ f actorsm(sl) , ∅m) ∧
f actorsm(rl) , ∅m (∵ rl = 0 ∨ f actorsm(rl) , ∅m)
=⇒ {g∈{sl}m] f actorsm(sl) | f actorsm(g) = ∅m ∧ g∈P+

}m = f actors+
m(sl)

(by definition of f actors+
m(sl)) ∧

{h∈{rl}m] f actorsm(rl) | f actorsm(h) = ∅m ∧ h∈P+
}m = f actors+

m(rl)
(by definition of f actors+

m(rl))
=⇒ {g ∈ {sl}m] {0}m] f actorsm(sl)] f actorsm(0) | f actorsm(g) = ∅m ∧ g ∈ P+

}m =

f actors+
m(sl) ∧

{h∈{rl}m] {0}m] f actorsm(rl)] f actorsm(0) | f actorsm(h) = ∅m ∧ h∈P+
}m = f actors+

m(rl)
(∵ 0 <P+ (by production rule 1 of P0 and Theorem 4.3.2) ∧ f actorsm(0) = ∅m (by
definition of f actorsm(0)))
=⇒ f actors+

m(sl|0) = f actors+
m(sl) (by definition of f actors+

m(sl|0)) ∧
f actors+

m(rl|0) = f actors+
m(rl) (by definition of f actors+

m(rl|0))
=⇒ | f actors+

m(sl|0)| = | f actors+
m(sl)| ∧ | f actors+

m(rl|0)| = | f actors+
m(rl)|

(by multiset theory)
=⇒ | f actors+

m(sl|0)| , | f actors+
m(rl|0)| (∵ | f actors+

m(sl)| , | f actors+
m(rl)|)

=⇒ (rl, sl)∈S (∵ rl, sl∈P ∧ rl∼dp sl)
=⇒ | f actors+

m(s|0)| ≤ | f actors+
m(sl|0)| (by definition of (r, s))

A.19. Theorem 4.3.9 ∀p, q∈P
(p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q)) 240

=⇒ | f actors+
m(sl|0)| ≮ | f actors+

m(s|0)| (by algebra of inequalities).
But | f actors+

m(sl|0)| < | f actors+
m(s|0)|

(∵ | f actors+
m(sl|0)| = | f actors+

m(sl)| ∧ | f actors+
m(sl)| < | f actors+

m(s|0)|; which is a contra-
diction).

∴ The theorem is not f alse
=⇒ the theorem is true (∵ the theorem is true ∨ the theorem is f alse). Q.E.D.

A.19 Theorem 4.3.9 ∀p, q∈P

(p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q))

Proof: consists of discharging the following two proof obligations. Each proof
obligation is discharged by defining a binary relation S on P which contains the
pair of processes that are required to be strongly of-bisimilar, proving S is a strong
of-simulation on P, then proving S is a strong of-bisimulation on P.

1. ` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼o f q|r))

2. ` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r|p∼o f r|q))

A.19.1 ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼o f q|r))

Proof: If ∃ strong of-bisimulation S on P with ∀r∈P ((p|r, q|r)∈S) for any processes
p, q in P such that p∼dp q
then ∀p, q∈P (if p∼dp q then ∀r∈P (p|r∼o f q|r)) (by definition of p|r∼o f q|r).
Therefore, we find such an S.

Let S , {(p|r, q|r) | p, q, r∈P ∧ p∼dp q}.

A.19.1.1 S is a strong of-simulation on P

S⊆P x P ∧ ∀p, q, r∈P (p∼dp q =⇒ (p|r, q|r)∈S) (by definition of S).

We prove for (p|r, q|r) in S that the Observation and Fraction conditions of strong
of-simulation on P are satisfied.

A.19. Theorem 4.3.9 ∀p, q∈P
(p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q)) 241

(p|r,q|r) satisfies the Observation and Fraction conditions

The transitions of p|r in I∪ R are defined by the L − Par, R − Par, React, L − React
and R − React rules only (by the syntax of p|r and definitions of the LTS rules):

If the L − Par rule defines a transition p|r δ
−→ (p|r)′ with δ∈I∪ R

then (p|r)′∈P (by definition of p|r δ
−→ (p|r)′) ∧ (p|r)′ = p′|r (by the L− Par rule) ∧

p δ
−→ p′ (by the hypothesis of L − Par)

=⇒ q δ
−→ q′ ∧ p′∼dp q′ (∵ p∼dp q)

=⇒ q|r δ
−→ q′|r (by the L − Par rule) ∧

(p′|r, q′|r)∈S (by definition of S, ∵ p′, q′, r∈P).

If the R − Par rule defines a transition p|r δ
−→ (p|r)′ with δ∈I∪ R

then (p|r)′∈P (by definition of p|r δ
−→ (p|r)′) ∧ (p|r)′ = p|r′ (by the R−Par rule) ∧

r δ
−→ r′ (by the hypothesis of R − Par)

=⇒ q|r δ
−→ q|r′ (by the R − Par rule) ∧

(p|r′, q|r′)∈S (by definition of S, ∵ p, q, r′∈P ∧ p∼dp q).

If the React rule defines a transition p|r τ
−→ (p|r)′

then (p|r)′∈P (by definition of p|r τ
−→ (p|r)′) ∧ (p|r)′ = p′|r′ (by the React rule) ∧

∃λ∈L ∪ C (p λ
−→ p′ ∧ r λ

−→ r′) (by the hypothesis of React)

=⇒ q λ
−→ q′ ∧ p′∼dp q′ (∵ p∼dp q) ∧ r λ

−→ r′

=⇒ q|r τ
−→ q′|r′ (by the React rule, ∵ λ∈L ∪ C) ∧

(p′|r′, q′|r′)∈S (by definition of S, ∵ p′, q′, r′∈P).

If the L − React rule defines a transition p|r τ
−→ (p|r)′

then (p|r)′∈P (by definition of p|r τ
−→ (p|r)′) ∧

(p|r)′ = p′′|r′ (by the L − React rule) ∧

∃ τrX ∈R ∃ τrX1
, τrX2

∈R ∃ p′∈P (X∼o f X1|X2 ∧ p
τrX1
−→ p′ ∧ p′

τrX
−→ p′′ ∧ r

τrX2
−→ r′)

(by the hypothesis of L − React)

=⇒ ∃ q′, q′′∈P (q
τrX1
−→ q′ ∧ q′

τrX
−→ q′′ ∧ p′∼dp q′ ∧ p′′∼dp q′′)(∵ p∼dp q) ∧

r
τrX2
−→ r′ ∧ X∼o f X1|X2

=⇒ q|r τ
−→ q′′|r′ (by the L − React rule) ∧

(p′′|r′, q′′|r′)∈S (by definition of S, ∵ p′′, q′′, r′∈P).

If the R − React rule defines a transition p|r τ
−→ (p|r)′

A.19. Theorem 4.3.9 ∀p, q∈P
(p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q)) 242

then (p|r)′∈P (by definition of p|r τ
−→ (p|r)′) ∧

(p|r)′ = p′|r′′ (by the R − React rule) ∧

∃ τrX ∈R ∃ τrX1
, τrX2

∈R ∃ r′∈P (X∼o f X1|X2 ∧ p
τrX1
−→ p′ ∧ r

τrX2
−→ r′ ∧ r′

τrX
−→ r′′)

(by the hypothesis of R − React)

=⇒ ∃ q′∈P (q
τrX1
−→ q′ ∧ p′∼dp q′)(∵ p∼dp q) ∧ r

τrX2
−→ r′ ∧ r′

τrX
−→ r′′ ∧ X∼o f X1|X2

=⇒ q|r τ
−→ q′|r′′ (by the R − React rule) ∧

(p′|r′′, q′|r′′)∈S (by definition of S, ∵ p′, q′, r′′∈P).

∴ S is a strong of-simulation on P (by definition of strong of-simulation on P).
Q.E.D.

A.19.1.2 S is a strong of-bisimulation on P

We prove S is a strong of-bisimulation onP by proving S−1 is a strong of-simulation
on P.
Let S′ , {(q|r, p|r) | q, p, r∈P ∧ q∼dp p}.
S−1 = {(q|r, p|r) | p, q, r∈P ∧ p∼dp q}
(by definitions of S and inverse binary relations)
⇒ S−1 = {(q|r, p|r) | q, p, r∈P ∧ q∼dp p} (∵ ∼dp is symmetric, by Lemma 4.3.12)
⇒ S−1 = S′ (by definition of S′).
The proof that S−1 is a strong of-simulation on P is identical to the proof that S is a
strong of-simulation on P (see A.19.1.1) with the following substitutions:
p is replaced with q
q with p
p′ with q′

q′ with p′

p′′ with q′′

q′′ with p′′

S with S′.
Thus, S′ is a strong of-simulation on P
(by definition of strong of-simulation on P)
⇒ S−1 is a strong of-simulation on P (∵ S−1 = S′)
⇒ S is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P, ∵ S is a strong of-simulation on P).
Q.E.D.
∴ ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼o f q|r)) (by definitions of p|r∼o f q|r and S). Q.E.D.

A.19. Theorem 4.3.9 ∀p, q∈P
(p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q)) 243

A.19.2 ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r|p∼o f r|q))

Proof: If ∃ strong of-bisimulation S on Pwith ∀r∈P ((r|p, r|q)∈S) for any processes
p, q in P such that p∼dp q
then ∀p, q∈P (if p∼dp q then ∀r∈P (r|p∼o f r|q)) (by definition of r|p∼o f r|q).
Therefore, we find such an S.

Let S , {(r|p, r|q) | p, q, r∈P ∧ p∼dp q}.

A.19.2.1 S is a strong of-simulation on P

S⊆P x P ∧ ∀p, q, r∈P (p∼dp q =⇒ (r|p, r|q)∈S) (by definition of S).

We prove for (r|p, r|q) in S that the Observation and Fraction conditions of strong
of-simulation on P are satisfied.

(r|p, r|q) satisfies the Observation and Fraction conditions

The transitions of r|p in I∪ R are defined by the L − Par, R − Par, React, L − React
and R − React rules only (by the syntax of r|p and definitions of the LTS rules):

If the L − Par rule defines a transition r|p δ
−→ (r|p)′ with δ∈I∪ R

then (r|p)′∈P (by definition of r|p δ
−→ (r|p)′) ∧ (r|p)′ = r′|p (by the L− Par rule) ∧

r δ
−→ r′ (by the hypothesis of L − Par)

=⇒ r|q δ
−→ r′|q (by the L − Par rule) ∧

(r′|p, r′|q)∈S (by definition of S, ∵ p, q, r′∈P ∧ p∼dp q).

If the R − Par rule defines a transition r|p δ
−→ (r|p)′ with δ∈I∪ R

then (r|p)′∈P (by definition of r|p δ
−→ (r|p)′) ∧ (r|p)′ = r|p′ (by the R−Par rule) ∧

p δ
−→ p′ (by the hypothesis of R − Par)

=⇒ q δ
−→ q′ ∧ p′∼dp q′ (∵ p∼dp q)

=⇒ r|q δ
−→ r|q′ (by the R − Par rule) ∧

(r|p′, r|q′)∈S (by definition of S, ∵ p′, q′, r∈P).

If the React rule defines a transition r|p τ
−→ (r|p)′

then (r|p)′∈P (by definition of r|p τ
−→ (r|p)′) ∧ (r|p)′ = r′|p′ (by the React rule) ∧

∃λ∈L ∪ C (r λ
−→ r′ ∧ p λ

−→ p′) (by the hypothesis of React)

=⇒ q λ
−→ q′ ∧ p′∼dp q′ (∵ p∼dp q) ∧ r λ

−→ r′

=⇒ r|q τ
−→ r′|q′ (by the React rule, ∵ λ∈L ∪ C) ∧

A.19. Theorem 4.3.9 ∀p, q∈P
(p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q)) 244

(r′|p′, r′|q′)∈S (by definition of S, ∵ p′, q′, r′∈P).

If the L − React rule defines a transition r|p τ
−→ (r|p)′

then (r|p)′∈P (by definition of r|p τ
−→ (r|p)′) ∧

(r|p)′ = r′′|p′ (by the L − React rule) ∧

∃ τrX ∈R ∃ τrX1
, τrX2

∈R ∃ r′∈P (X∼o f X1|X2 ∧ r
τrX1
−→ r′ ∧ r′

τrX
−→ r′′ ∧ p

τrX2
−→ p′)

(by the hypothesis of L − React)

=⇒ ∃ q′∈P (q
τrX2
−→ q′ ∧ p′∼dp q′)(∵ p∼dp q) ∧ r

τrX1
−→ r′ ∧ r′

τrX
−→ r′′ ∧ X∼o f X1|X2

=⇒ r|q τ
−→ r′′|q′ (by the L − React rule) ∧

(r′′|p′, r′′|q′)∈S (by definition of S, ∵ p′, q′, r′′∈P).

If the R − React rule defines a transition r|p τ
−→ (r|p)′

then (r|p)′∈P (by definition of r|p τ
−→ (r|p)′) ∧

(r|p)′ = r′|p′′ (by the R − React rule) ∧

∃ τrX ∈R ∃ τrX1
, τrX2

∈R ∃ p′∈P (X∼o f X1|X2 ∧ r
τrX1
−→ r′ ∧ p

τrX2
−→ p′ ∧ p′

τrX
−→ p′′)

(by the hypothesis of R − React)

=⇒ ∃ q′, q′′∈P (q
τrX2
−→ q′ ∧ q′

τrX
−→ q′′ ∧ p′∼dp q′ ∧ p′′∼dp q′′)(∵ p∼dp q) ∧

r
τrX1
−→ r′ ∧ X∼o f X1|X2

=⇒ r|q τ
−→ r′|q′′ (by the R − React rule) ∧

(r′|p′′, r′|q′′)∈S (by definition of S, ∵ p′′, q′′, r′∈P).

∴ S is a strong of-simulation on P (by definition of strong of-simulation on P).
Q.E.D.

A.19.2.2 S is a strong of-bisimulation on P

We prove S is a strong of-bisimulation onP by proving S−1 is a strong of-simulation
on P.
Let S′ , {(r|q, r|p) | q, p, r∈P ∧ q∼dp p}.
S−1 = {(r|q, r|p) | p, q, r∈P ∧ p∼dp q}
(by definitions of S and inverse binary relations)
⇒ S−1 = {(r|q, r|p) | q, p, r∈P ∧ q∼dp p} (∵ ∼dp is symmetric, by Lemma 4.3.12)
⇒ S−1 = S′ (by definition of S′).
The proof that S−1 is a strong of-simulation on P is identical to the proof that S is a
strong of-simulation on P (see A.19.2.1) with the following substitutions:
p is replaced with q

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 245

q with p
p′ with q′

q′ with p′

p′′ with q′′

q′′ with p′′

S with S′.
Thus, S′ is a strong of-simulation on P
(by definition of strong of-simulation on P)
⇒ S−1 is a strong of-simulation on P (∵ S−1 = S′)
⇒ S is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P, ∵ S is a strong of-simulation on P).
Q.E.D.
∴ ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r|p∼o f r|q)) (by definitions of r|p∼o f r|q and S). Q.E.D.

∴ ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼o f q|r) ∧ ∀r∈P (r|p∼o f r|q))
(∵=⇒ is transitive and
(predicate1 =⇒ predicate2) ∧ (predicate1 =⇒ predicate3) =⇒

(predicate1 =⇒ predicate2 ∧ predicate3)). Q.E.D.

A.20 Theorem 4.3.10

∼dp Preserves all Elementary Contexts

Proof: consists of discharging the following five proof obligations. Each proof
obligation is discharged by defining a binary relation T on P which contains the
pair of processes that are required to be strongly dp-bisimilar, proving T is a strong
dp-simulation on P, then proving T is a strong dp-bisimulation on P.

1. ` ∀p, q∈P (p∼dp q =⇒ ∀α∈I (α.p + M ∼dp α.q + M)
where M is any summation in P)

2. ` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p|r∼dp q|r))

3. ` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r|p∼dp r|q))

4. ` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (p
r ∼dp

q
r))

5. ` ∀p, q∈P (p∼dp q =⇒ ∀r∈P (r
p ∼dp

r
q))

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 246

A.20.1 ∀p, q∈P
(if p∼dp q then ∀α∈I (α.p + M ∼dp α.q + M) where M is any

summation in P)

Proof: If ∃ strong dp-bisimulation T on Pwith ∀α∈I ((α.p + M, α.q + M)∈T) where
M is any summation in P and p, q are any processes in P such that p∼dp q
then ∀p, q∈P (if p∼dp q then ∀α∈I (α.p + M ∼dp α.q + M) where M is any summation
in P)
(by definition of α.p + M ∼dp α.q + M).
Therefore, we find such a T.

Let T , {(α.p + M, α.q + M), (p, q), (r, r) |
α∈I ∧ p, q∈P (p∼dp q) ∧ M is any summation in P ∧ r∈P}.

A.20.1.1 T is a strong dp-simulation on P

T⊆P x P ∧
∀α∈I and ∀p, q∈P such that p∼dp q and ∀summation M∈P ((α.p + M, α.q + M)∈T)
(by definition of T).

We prove for (α.p + M, α.q + M), (p, q) and (r, r) in T that the Observation, Fraction and
Deletion conditions of strong dp-simulation on P are satisfied.

(α.p + M, α.q + M) satisfies the Observation and Fraction conditions

The transitions of α.p + M in I∪ R are defined by the Sum rule only
(by the syntax of α.p + M):
α.p + M α

−→p and α.q + M α
−→q (by the Sum rule),

and p∼dp q (by definition of p and q)
=⇒ (p, q)∈T (by definition of T).
If M δ
−→s for some δ∈I∪ R and some s∈P

then α.p + M δ
−→s and α.q + M δ

−→s (by the Sum rule),
and (s, s)∈T (by definition of T).

(α.p + M, α.q + M) satisfies the Deletion condition

A transition of α.p + M in R is defined by Delet or CompDelet only
(by the syntax of α.p + M):

If the Delet rule defines a transition α.p + M
τrW
−→ p′

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 247

then p′ = 0 (by the Delet rule) ∧ α.p + M ∼o f W (by the hypothesis of Delet).
Now p∼dp q (by definition of p and q)
=⇒ p∼o f q (by Corollary 4.3.5)
=⇒ α.p + M ∼o f α.q + M (by Theorem 4.3.4, ∵ α∈I ∧ M is a summation in P)
=⇒ α.q + M ∼o f α.p + M (∵∼o f is symmetric, by Lemma 4.3.2)
=⇒ α.q + M ∼o f α.p + M ∧ α.p + M ∼o f W (∵ α.p + M ∼o f W)
=⇒ α.q + M ∼o f W (∵∼o f is transitive, by Lemma 4.3.4).
And α.q + M∈P+ (by production rules 1 and 2 of P+, ∵ α∈I ∧ p, q,M, α.q + M∈P)

=⇒ α.q + M
τrW
−→ 0 (by the Delet rule, ∵ α.q + M ∼o f W),

and (0, 0)∈T (by definition of T).

If the CompDelet rule defines a transition α.p + M
τrX
−→ p′′

then ∃ τrX1
, τrX2

∈R ∃p′∈P (X∼o f X1|X2 ∧ α.p + M
τrX1
−→p′ ∧ p′

τrX2
−→p′′)

(by the hypothesis of CompDelet)

=⇒ τrX1
∈Rα.p+M (by definition of Rα.p+M) ∧ τrX2

∈Rp′ (by definition of Rp′)
=⇒ p′ = 0 ∨ f actors+

m(p′) ⊂ f actors+
m(α.p + M)

(by Lemma 4.3.18, ∵ α.p + M, p′∈P ∧ α.p + M
τrX1
−→p′).

If p′ = 0
then Rp′ = ∅ (by Lemma 4.3.8).
But τrX2

∈Rp′ =⇒ Rp′ , ∅ (by set theory; which is a contradiction).
∴ p′ , 0.
Now f actors+

m(α.p + M) ⊆ f actorsm(α.p + M) (by definition of f actors+
m(α.p + M)) ∧

f actorsm(α.p + M) = ∅ (by definition of f actorsm(α.p + M))
=⇒ f actors+

m(α.p + M) ⊆ ∅ (by set theory)
=⇒ f actors+

m(α.p + M) = ∅ (by set theory).
∴ If f actors+

m(p′) ⊂ f actors+
m(α.p + M)

then f actors+
m(p′) ⊂ ∅ (which is false, by set theory).

∴ The CompDelet rule does not define a transition of α.p + M in R.

(p,q) satisfies the Observation, Fraction and Deletion conditions

If p
β
−→p′ for some β∈I∪ R ∪ R and some p′∈P

then q
β
−→q′ for some q′∈P ∧ p′∼dp q′ (∵ p∼dp q, by definition of p and q)

=⇒ (p′, q′)∈T (by definition of T).

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 248

(r, r) satisfies the Observation, Fraction and Deletion conditions

If r
γ
−→r′ for some γ∈I∪ R ∪ R and some r′∈P

then r
γ
−→r′

and (r′, r′)∈T (by definition of T).

∴ T is a strong dp-simulation on P (by definition of strong dp-simulation on P).
Q.E.D.

A.20.1.2 T is a strong dp-bisimulation on P

We prove T is a strong dp-bisimulation on P by proving T−1 is a strong dp-
simulation on P.
Let T′ , {(α.q + M, α.p + M), (q, p), (r, r) |
α∈I ∧ q, p∈P (q∼dp p) ∧ M is any summation in P ∧ r∈P}.
T−1 = {(α.q + M, α.p + M), (q, p), (r, r) |
α∈I ∧ p, q∈P (p∼dp q) ∧ M is any summation in P ∧ r∈P}
(by definitions of T and inverse binary relations)
⇒ T−1 = {(α.q + M, α.p + M), (q, p), (r, r) |
α∈I ∧ q, p∈P (q∼dp p) ∧ M is any summation in P ∧ r∈P}
(∵ ∼dp is symmetric, by Lemma 4.3.12)
⇒ T−1 = T′ (by definition of T′).
The proof that T−1 is a strong dp-simulation on P is identical to the proof that T is
a strong dp-simulation on P (see A.20.1.1) with the following substitutions:
p is replaced with q
q with p
p′ with q′

q′ with p′

p′′ with q′′

T with T′.
Thus, T′ is a strong dp-simulation on P
(by definition of strong dp-simulation on P)
⇒ T−1 is a strong dp-simulation on P (∵ T−1 = T′)
⇒ T is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P, ∵ T is a strong dp-simulation on P).
Q.E.D.
∴ ∀p, q∈P (if p∼dp q then ∀α∈I (α.p + M ∼dp α.q + M) where M is any summation
in P)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 249

(by definitions of α.p + M ∼dp α.q + M and T). Q.E.D.

A.20.2 ∀p, q∈P (if p∼dp q then ∀r∈P (p|r∼dp q|r))

Proof: If ∃ strong dp-bisimulation T onPwith ∀r∈P ((p|r, q|r)∈T) for any processes
p, q in P such that p∼dp q
then ∀p, q∈P (if p∼dp q then ∀r∈P (p|r∼dp q|r)) (by definition of p|r∼dp q|r).
Therefore, we find such a T.

Let S , {(p|r, q|r) | p, q, r∈P ∧ p∼dp q}.
S⊆P x P ∧ ∀p, q, r∈P (p∼dp q =⇒ (p|r, q|r)∈S) (by definition of S).
Let Z , {(0, 0)}.
Z⊆P x P (by definition of Z).
Let T , S ∪ Z.

T is a strong dp-bisimulation on P
⇐⇒ T,T−1 are strong dp-simulations on P
(by definition of strong dp-bisimulation on P)
⇐⇒ T,T−1 are binary relations on P ∧
for all elements of T,T−1 the Observation, Fraction and Deletion conditions of strong
dp-simulation on P are satisfied
(by definition of strong dp-simulation on P).
We prove T,T−1 are binary relations on P and for all elements of T,T−1 the
Observation, Fraction and Deletion conditions of strong dp-simulation on P are sat-
isfied.

A.20.2.1 T,T−1 satisfy the Observation and Fraction conditions

S is a strong of-bisimulation on P
(by the proof of Theorem 4.3.9, see A.19) ∧
Z is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P, ∵ I0∪ R0 = ∅ (by Lemma 4.3.7))
=⇒ T is a strong of-bisimulation on P
(∵ the union of strong of-bisimulations on P is a strong of-bisimulation on P, and
by definition of T)
=⇒ T,T−1 are strong of-simulations on P
(by definition of strong of-bisimulation on P)
=⇒ T⊆P xP ∧ T−1

⊆P xP ∧ for all elements of T,T−1 the Observation and Fraction

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 250

conditions of strong of-simulation on P are satisfied
(by definition of strong of-simulation on P)
=⇒ for all elements of T,T−1 the Observation and Fraction conditions of strong
dp-simulation on P are satisfied
(∵ the Observation and Fraction conditions of strong dp-simulation on P are the
same as the Observation and Fraction conditions of strong of-simulation on P,
respectively). Q.E.D.
And ∀p, q, r∈P (p∼dp q =⇒ (p|r, q|r)∈T) (by set theory and definitions of S and T).

It remains to prove that for all elements of T,T−1 the Deletion condition of strong
dp-simulation on P is satisfied.

A.20.2.2 T satisfies the Deletion condition

We use complete induction on the depth of inference of the applications of the LTS
rules that determine the transitions of u∈dom(T) in R.

For n∈N+, let Prop(n) be the proposition:

∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For (u, v)∈T and τrY ∈Ru and u′′∈P,

the transition u
τrY
−→ u′′ has depth of inference 1 (by the hypothesis of Prop(1))

=⇒ only the Delet rule determines the transition u
τrY
−→ u′′

(by definitions of the LTS rules):

If u
τrY
−→ u′′ (by the Delet rule)

then u′′ = 0 (by the Delet rule) ∧ u∼o f Y ∧ u∈P+ (by the hypothesis of Delet)
=⇒ u<P0 (by Theorem 4.3.2)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 251

=⇒ u , 0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ (u, v)<Z (by definition of Z)
=⇒ (u, v)∈S (∵ (u, v)∈T ∧ T = S ∪ Z)
=⇒ ∃p, q, r∈P (p∼dp q ∧ u = p|r ∧ v = q|r) (by definition of S)
=⇒ p|r∼o f q|r (by Theorem 4.3.9) ∧ p|r∼o f Y (∵ u∼o f Y) ∧ p|r∈P+ (∵ u∈P+)
=⇒ q|r∼o f p|r (∵∼o f is symmetric, by Lemma 4.3.2) ∧ p|r∼o f Y ∧

q|r∈P+ (by Lemma 4.3.9)
=⇒ q|r∼o f Y (∵∼o f is transitive, by Lemma 4.3.4) ∧ q|r∈P+

=⇒ q|r
τrY
−→ 0 (by the Delet rule)

=⇒ τrY ∈Rq|r (by definition of Rq|r) ∧

0∈P (by production rule 1 of P0, set theory and definition of P) ∧ q|r
τrY
−→ 0 ∧

(0, 0)∈T (by set theory and definitions of Z and T)

=⇒ τrY ∈Rv ∧ 0∈P ∧ v
τrY
−→ 0 ∧ (0, 0)∈T (∵ v = q|r).

∴ ∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference 1

(∵ (u, v)∈T and τrY ∈Ru and u′′ ∈P with transition u
τrY
−→ u′′ and depth of inference

1 are arbitrary)
=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

Induction Step: Proof of ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For (u, v)∈T and τrY ∈Ru and u′′∈P,

the transition u
τrY
−→ u′′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))
=⇒ Ru , ∅ (by set theory)
=⇒ u∈P+ (by Lemma 4.3.6)
=⇒ u<P0 (by Theorem 4.3.2)
=⇒ u , 0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ (u, v)<Z (by definition of Z)
=⇒ (u, v)∈S (∵ (u, v)∈T ∧ T = S ∪ Z)
=⇒ ∃p, q, r∈P (p∼dp q ∧ u = p|r ∧ v = q|r) (by definition of S)
=⇒ (p|r, q|r)∈T (∵ (u, v)∈T).
Now n + 1 ≥ 2 (∵ n∈N+)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 252

=⇒ only the L − Par, R − Par or CompDelet rules determine the transition u
τrY
−→ u′′

(by definitions of the LTS rules):

If the L − Par rule defines a transition p|r
τrY
−→ p′|r

then p
τrY
−→ p′ (by the hypothesis of L − Par)

=⇒ q
τrY
−→ q′ ∧ p′∼dp q′ (∵ p∼dp q)

=⇒ q|r
τrY
−→ q′|r (by the L − Par rule) ∧

(p′|r, q′|r)∈S (by definition of S, ∵ p′, q′, r∈P)

=⇒ τrY ∈Rq|r (by definition of Rq|r) ∧ q′|r∈P (by definition of q|r
τrY
−→ q′|r) ∧

q|r
τrY
−→ q′|r ∧ (p′|r, q′|r)∈T (by set theory and definition of T)

=⇒ τrY ∈Rv ∧ q′|r∈P ∧ v
τrY
−→ q′|r ∧ (p′|r, q′|r)∈T (∵ v = q|r).

If the R − Par rule defines a transition p|r
τrY
−→ p|r′

then r
τrY
−→ r′ (by the hypothesis of R − Par)

=⇒ q|r
τrY
−→ q|r′ (by the R − Par rule) ∧

(p|r′, q|r′)∈S (by definition of S, ∵ p, q, r′∈P ∧ p∼dp q)

=⇒ τrY ∈Rq|r (by definition of Rq|r) ∧ q|r′∈P (by definition of q|r
τrY
−→ q|r′) ∧

q|r
τrY
−→ q|r′ ∧ (p|r′, q|r′)∈T (by set theory and definition of T)

=⇒ τrY ∈Rv ∧ q|r′∈P ∧ v
τrY
−→ q|r′ ∧ (p|r′, q|r′)∈T (∵ v = q|r).

If the CompDelet rule defines a transition p|r
τrY
−→ (p|r)′′

then (p|r)′′∈P (by definition of p|r
τrY
−→ (p|r)′′) ∧

∃ τrY1
, τrY2
∈R ∃(p|r)′∈P (Y∼o f Y1|Y2 ∧ p|r

τrY1
−→(p|r)′ ∧ (p|r)′

τrY2
−→(p|r)′′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈Rp|r (by definition of Rp|r) ∧ τrY2

∈R(p|r)′ (by definition of R(p|r)′).

Now the transition p|r
τrY
−→ (p|r)′′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition p|r
τrY1
−→(p|r)′ has depth of inference m1, with m1∈ [1,n] ∧

the transition (p|r)′
τrY2
−→(p|r)′′ has depth of inference m2, with m2∈ [1,n]

(∵ the transition p|r
τrY
−→ (p|r)′′ is inferred from the transitions p|r

τrY1
−→(p|r)′ and

(p|r)′
τrY2
−→(p|r)′′ using the CompDelet rule)

=⇒ Prop(m1) and Prop(m2) hold (by the inductive hypothesis)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 253

=⇒ τrY1
∈Rq|r ∧ ∃(q|r)′∈P (q|r

τrY1
−→ (q|r)′ ∧ ((p|r)′, (q|r)′)∈T) ∧ Prop(m2)

(by modus ponens,
∵ (p|r, q|r)∈T ∧ τrY1

∈Rp|r ∧ (p|r)′∈P ∧ p|r
τrY1
−→(p|r)′ with depth of inference m1)

=⇒ τrY2
∈R(q|r)′ ∧ ∃(q|r)′′∈P ((q|r)′

τrY2
−→ (q|r)′′ ∧ ((p|r)′′, (q|r)′′)∈T)

(by modus ponens,
∵ τrY2

∈R(p|r)′ ∧ (p|r)′′∈P ∧ (p|r)′
τrY2
−→(p|r)′′ with depth of inference m2)

=⇒ (q|r)′′∈P ∧ q|r
τrY
−→ (q|r)′′ ∧ ((p|r)′′, (q|r)′′)∈T

(by the CompDelet rule, ∵ Y∼o f Y1|Y2 ∧ q|r
τrY1
−→ (q|r)′)

=⇒ τrY ∈Rq|r (by definition of Rq|r) ∧ (q|r)′′∈P ∧ q|r
τrY
−→ (q|r)′′ ∧ ((p|r)′′, (q|r)′′)∈T

=⇒ τrY ∈Rv ∧ (q|r)′′∈P ∧ v
τrY
−→ (q|r)′′ ∧ ((p|r)′′, (q|r)′′)∈T (∵ v = q|r).

∴ ∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference n + 1

(∵ (u, v)∈T and τrY ∈Ru and u′′ ∈P with transition u
τrY
−→ u′′ and depth of inference

n + 1 are arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ For all elements of T the Deletion condition of strong dp-simulation on P is
satisfied
(∵ every transition of u ∈ dom(T) in R is determined by applications of LTS rules
with finite depth of inference). Q.E.D.

∴ T is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T ⊆ P x P and for all elements of T
the Observation and Fraction conditions of strong dp-simulation on P are satisfied).

A.20.2.3 T−1 satisfies the Deletion condition

Let S′ , {(q|r, p|r) | q, p, r∈P ∧ q∼dp p}.
S′⊆P x P ∧ ∀q, p, r∈P (q∼dp p =⇒ (q|r, p|r)∈S′) (by definition of S′).
S−1 = {(q|r, p|r) | p, q, r∈P ∧ p∼dp q}
(by definitions of S and inverse binary relations)
⇒ S−1 = {(q|r, p|r) | q, p, r∈P ∧ q∼dp p} (∵∼dp is symmetric, by Lemma 4.3.12)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 254

⇒ S−1 = S′ (by definition of S′).
Z−1 = Z (by definitions of Z and inverse binary relations).
Let T′ , S′ ∪ Z.
T′⊆P x P ∧ ∀q, p, r∈P (q∼dp p =⇒ (q|r, p|r)∈T′)
(by set theory and definitions of S′, Z and T′).
T−1 = S−1

∪ Z−1 (∵ T = S ∪ Z and by algebra of binary relations)
⇒ T−1 = S′ ∪ Z (∵ S−1 = S′ ∧ Z−1 = Z)
⇒ T−1 = T′ (by definition of T′).
The remainder of the proof is identical to the proof that for all elements of T the
Deletion condition of strong dp-simulation on P is satisfied (see A.20.2.2) with the
following substitutions:
p is replaced with q
q with p
p′ with q′

q′ with p′

u with v
v with u
u′′ with v′′

v′′ with u′′

S with S′

T with T′.
Thus, for all elements of T′ the Deletion condition of strong dp-simulation on P is
satisfied
(∵ every transition of v ∈ dom(T′) in R is determined by applications of LTS rules
with finite depth of inference)
⇒ for all elements of T−1 the Deletion condition of strong dp-simulation on P is
satisfied
(∵ T−1 = T′). Q.E.D.

∴ T−1 is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T−1

⊆ P x P and for all elements
of T−1 the Observation and Fraction conditions of strong dp-simulation on P are
satisfied)
⇒ T is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P, ∵ T is a strong dp-simulation on P).
∴ ∀p, q∈P (if p∼dp q then ∀r∈P (p|r∼dp q|r)) (by definition of p|r∼dp q|r). Q.E.D.

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 255

A.20.3 ∀p, q∈P (if p∼dp q then ∀r∈P (r|p∼dp r|q))

Proof: If ∃ strong dp-bisimulation T onPwith ∀r∈P ((r|p, r|q)∈T) for any processes
p, q in P such that p∼dp q
then ∀p, q∈P (if p∼dp q then ∀r∈P (r|p∼dp r|q)) (by definition of r|p∼dp r|q).
Therefore, we find such a T.

Let S , {(r|p, r|q) | p, q, r∈P ∧ p∼dp q}.
S⊆P x P ∧ ∀p, q, r∈P (p∼dp q =⇒ (r|p, r|q)∈S) (by definition of S).
Let Z , {(0, 0)}.
Z⊆P x P (by definition of Z).
Let T , S ∪ Z.

T is a strong dp-bisimulation on P
⇐⇒ T,T−1 are strong dp-simulations on P
(by definition of strong dp-bisimulation on P)
⇐⇒ T,T−1 are binary relations on P ∧
for all elements of T,T−1 the Observation, Fraction and Deletion conditions of strong
dp-simulation on P are satisfied
(by definition of strong dp-simulation on P).
We prove T,T−1 are binary relations on P and for all elements of T,T−1 the
Observation, Fraction and Deletion conditions of strong dp-simulation on P are sat-
isfied.

A.20.3.1 T,T−1 satisfy the Observation and Fraction conditions

S is a strong of-bisimulation on P
(by the proof of Theorem 4.3.9, see A.19) ∧
Z is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P, ∵ I0∪ R0 = ∅ (by Lemma 4.3.7))
=⇒ T is a strong of-bisimulation on P
(∵ the union of strong of-bisimulations on P is a strong of-bisimulation on P, and
by definition of T)
=⇒ T,T−1 are strong of-simulations on P
(by definition of strong of-bisimulation on P)
=⇒ T⊆P xP ∧ T−1

⊆P xP ∧ for all elements of T,T−1 the Observation and Fraction
conditions of strong of-simulation on P are satisfied
(by definition of strong of-simulation on P)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 256

=⇒ for all elements of T,T−1 the Observation and Fraction conditions of strong
dp-simulation on P are satisfied
(∵ the Observation and Fraction conditions of strong dp-simulation on P are the
same as the Observation and Fraction conditions of strong of-simulation on P,
respectively). Q.E.D.
And ∀p, q, r∈P (p∼dp q =⇒ (r|p, r|q)∈T) (by set theory and definitions of S and T).

It remains to prove that for all elements of T,T−1 the Deletion condition of strong
dp-simulation on P is satisfied.

A.20.3.2 T satisfies the Deletion condition

We use complete induction on the depth of inference of the applications of the LTS
rules that determine the transitions of u∈dom(T) in R.

For n∈N+, let Prop(n) be the proposition:

∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For (u, v)∈T and τrY ∈Ru and u′′∈P,

the transition u
τrY
−→ u′′ has depth of inference 1 (by the hypothesis of Prop(1))

=⇒ only the Delet rule determines the transition u
τrY
−→ u′′

(by definitions of the LTS rules):

If u
τrY
−→ u′′ (by the Delet rule)

then u′′ = 0 (by the Delet rule) ∧ u∼o f Y ∧ u∈P+ (by the hypothesis of Delet)
=⇒ u<P0 (by Theorem 4.3.2)
=⇒ u , 0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ (u, v)<Z (by definition of Z)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 257

=⇒ (u, v)∈S (∵ (u, v)∈T ∧ T = S ∪ Z)
=⇒ ∃p, q, r∈P (p∼dp q ∧ u = r|p ∧ v = r|q) (by definition of S)
=⇒ r|p∼o f r|q (by Theorem 4.3.9) ∧ r|p∼o f Y (∵ u∼o f Y) ∧ r|p∈P+ (∵ u∈P+)
=⇒ r|q∼o f r|p (∵∼o f is symmetric, by Lemma 4.3.2) ∧ r|p∼o f Y ∧

r|q∈P+ (by Lemma 4.3.9)
=⇒ r|q∼o f Y (∵∼o f is transitive, by Lemma 4.3.4) ∧ r|q∈P+

=⇒ r|q
τrY
−→ 0 (by the Delet rule)

=⇒ τrY ∈Rr|q (by definition of Rr|q) ∧

0∈P (by production rule 1 of P0, set theory and definition of P) ∧ r|q
τrY
−→ 0 ∧

(0, 0)∈T (by set theory and definitions of Z and T)

=⇒ τrY ∈Rv ∧ 0∈P ∧ v
τrY
−→ 0 ∧ (0, 0)∈T (∵ v = r|q).

∴ ∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference 1

(∵ (u, v)∈T and τrY ∈Ru and u′′ ∈P with transition u
τrY
−→ u′′ and depth of inference

1 are arbitrary)
=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

Induction Step: Proof of ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For (u, v)∈T and τrY ∈Ru and u′′∈P,

the transition u
τrY
−→ u′′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))
=⇒ Ru , ∅ (by set theory)
=⇒ u∈P+ (by Lemma 4.3.6)
=⇒ u<P0 (by Theorem 4.3.2)
=⇒ u , 0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ (u, v)<Z (by definition of Z)
=⇒ (u, v)∈S (∵ (u, v)∈T ∧ T = S ∪ Z)
=⇒ ∃p, q, r∈P (p∼dp q ∧ u = r|p ∧ v = r|q) (by definition of S)
=⇒ (r|p, r|q)∈T (∵ (u, v)∈T).
Now n + 1 ≥ 2 (∵ n∈N+)

=⇒ only the L − Par, R − Par or CompDelet rules determine the transition u
τrY
−→ u′′

(by definitions of the LTS rules):

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 258

If the L − Par rule defines a transition r|p
τrY
−→ r′|p

then r
τrY
−→ r′ (by the hypothesis of L − Par)

=⇒ r|q
τrY
−→ r′|q (by the L − Par rule) ∧

(r′|p, r′|q)∈S (by definition of S, ∵ p, q, r′∈P ∧ p∼dp q)

=⇒ τrY ∈Rr|q (by definition of Rr|q) ∧ r′|q∈P (by definition of r|q
τrY
−→ r′|q) ∧

r|q
τrY
−→ r′|q ∧ (r′|p, r′|q)∈T (by set theory and definition of T)

=⇒ τrY ∈Rv ∧ r′|q∈P ∧ v
τrY
−→ r′|q ∧ (r′|p, r′|q)∈T (∵ v = r|q).

If the R − Par rule defines a transition r|p
τrY
−→ r|p′

then p
τrY
−→ p′ (by the hypothesis of R − Par)

=⇒ q
τrY
−→ q′ ∧ p′∼dp q′ (∵ p∼dp q)

=⇒ r|q
τrY
−→ r|q′ (by the R − Par rule) ∧

(r|p′, r|q′)∈S (by definition of S, ∵ p′, q′, r∈P)

=⇒ τrY ∈Rr|q (by definition of Rr|q) ∧ r|q′∈P (by definition of r|q
τrY
−→ r|q′) ∧

r|q
τrY
−→ r|q′ ∧ (r|p′, r|q′)∈T (by set theory and definition of T)

=⇒ τrY ∈Rv ∧ r|q′∈P ∧ v
τrY
−→ r|q′ ∧ (r|p′, r|q′)∈T (∵ v = r|q).

If the CompDelet rule defines a transition r|p
τrY
−→ (r|p)′′

then (r|p)′′∈P (by definition of r|p
τrY
−→ (r|p)′′) ∧

∃ τrY1
, τrY2
∈R ∃(r|p)′∈P (Y∼o f Y1|Y2 ∧ r|p

τrY1
−→(r|p)′ ∧ (r|p)′

τrY2
−→(r|p)′′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈Rr|p (by definition of Rr|p) ∧ τrY2

∈R(r|p)′ (by definition of R(r|p)′).

Now the transition r|p
τrY
−→ (r|p)′′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition r|p
τrY1
−→(r|p)′ has depth of inference m1, with m1∈ [1,n] ∧

the transition (r|p)′
τrY2
−→(r|p)′′ has depth of inference m2, with m2∈ [1,n]

(∵ the transition r|p
τrY
−→ (r|p)′′ is inferred from the transitions r|p

τrY1
−→(r|p)′ and

(r|p)′
τrY2
−→(r|p)′′ using the CompDelet rule)

=⇒ Prop(m1) and Prop(m2) hold (by the inductive hypothesis)

=⇒ τrY1
∈Rr|q ∧ ∃(r|q)′∈P (r|q

τrY1
−→ (r|q)′ ∧ ((r|p)′, (r|q)′)∈T) ∧ Prop(m2)

(by modus ponens,
∵ (r|p, r|q)∈T ∧ τrY1

∈Rr|p ∧ (r|p)′∈P ∧ r|p
τrY1
−→(r|p)′ with depth of inference m1)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 259

=⇒ τrY2
∈R(r|q)′ ∧ ∃(r|q)′′∈P ((r|q)′

τrY2
−→ (r|q)′′ ∧ ((r|p)′′, (r|q)′′)∈T)

(by modus ponens,
∵ τrY2

∈R(r|p)′ ∧ (r|p)′′∈P ∧ (r|p)′
τrY2
−→(r|p)′′ with depth of inference m2)

=⇒ (r|q)′′∈P ∧ r|q
τrY
−→ (r|q)′′ ∧ ((r|p)′′, (r|q)′′)∈T

(by the CompDelet rule, ∵ Y∼o f Y1|Y2 ∧ r|q
τrY1
−→ (r|q)′)

=⇒ τrY ∈Rr|q (by definition of Rr|q) ∧ (r|q)′′∈P ∧ r|q
τrY
−→ (r|q)′′ ∧ ((r|p)′′, (r|q)′′)∈T

=⇒ τrY ∈Rv ∧ (r|q)′′∈P ∧ v
τrY
−→ (r|q)′′ ∧ ((r|p)′′, (r|q)′′)∈T (∵ v = r|q).

∴ ∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference n + 1

(∵ (u, v)∈T and τrY ∈Ru and u′′ ∈P with transition u
τrY
−→ u′′ and depth of inference

n + 1 are arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ For all elements of T the Deletion condition of strong dp-simulation on P is
satisfied
(∵ every transition of u ∈ dom(T) in R is determined by applications of LTS rules
with finite depth of inference). Q.E.D.

∴ T is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T ⊆ P x P and for all elements of T
the Observation and Fraction conditions of strong dp-simulation on P are satisfied).

A.20.3.3 T−1 satisfies the Deletion condition

Let S′ , {(r|q, r|p) | q, p, r∈P ∧ q∼dp p}.
S′⊆P x P ∧ ∀q, p, r∈P (q∼dp p =⇒ (r|q, r|p)∈S′) (by definition of S′).
S−1 = {(r|q, r|p) | p, q, r∈P ∧ p∼dp q}
(by definitions of S and inverse binary relations)
⇒ S−1 = {(r|q, r|p) | q, p, r∈P ∧ q∼dp p} (∵∼dp is symmetric, by Lemma 4.3.12)
⇒ S−1 = S′ (by definition of S′).
Z−1 = Z (by definitions of Z and inverse binary relations).
Let T′ , S′ ∪ Z.

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 260

T′⊆P x P ∧ ∀q, p, r∈P (q∼dp p =⇒ (r|q, r|p)∈T′)
(by set theory and definitions of S′, Z and T′).
T−1 = S−1

∪ Z−1 (∵ T = S ∪ Z and by algebra of binary relations)
⇒ T−1 = S′ ∪ Z (∵ S−1 = S′ ∧ Z−1 = Z)
⇒ T−1 = T′ (by definition of T′).
The remainder of the proof is identical to the proof that for all elements of T the
Deletion condition of strong dp-simulation on P is satisfied (see A.20.3.2) with the
following substitutions:
p is replaced with q
q with p
p′ with q′

q′ with p′

u with v
v with u
u′′ with v′′

v′′ with u′′

S with S′

T with T′.
Thus, for all elements of T′ the Deletion condition of strong dp-simulation on P is
satisfied
(∵ every transition of v ∈ dom(T′) in R is determined by applications of LTS rules
with finite depth of inference)
⇒ for all elements of T−1 the Deletion condition of strong dp-simulation on P is
satisfied
(∵ T−1 = T′). Q.E.D.

∴ T−1 is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T−1

⊆ P x P and for all elements
of T−1 the Observation and Fraction conditions of strong dp-simulation on P are
satisfied)
⇒ T is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P, ∵ T is a strong dp-simulation on P).
∴ ∀p, q∈P (if p∼dp q then ∀r∈P (r|p∼dp r|q)) (by definition of r|p∼dp r|q). Q.E.D.

A.20.4 ∀p, q∈P (if p∼dp q then ∀r∈P (p
r ∼dp

q
r))

Proof: If ∃ strong dp-bisimulation T on P with ∀r∈P ((p
r ,

q
r)∈T) for any processes

p, q in P such that p∼dp q

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 261

then ∀p, q∈P (if p∼dp q then ∀r∈P (p
r ∼dp

q
r)) (by definition of p

r ∼dp
q
r).

Therefore, we find such a T.

Let T , {(p
r ,

q
r), (p, q) | p, q, r∈P ∧ p∼dp q}.

A.20.4.1 T is a strong dp-simulation on P

T⊆P x P ∧ ∀p, q, r∈P (p∼dp q =⇒ (p
r ,

q
r)∈T) (by definition of T).

We prove for (p
r ,

q
r) and (p, q) in T that the Observation, Fraction and Deletion condi-

tions of strong dp-simulation on P are satisfied.

(p
r ,

q
r) satisfies the Observation and Fraction conditions

The transitions of p
r in I∪ R are defined by the Creat rule only

(by the syntax of p
r):

If the Creat rule defines a transition p
r

τrW
−→ p

then r∼o f W ∧ r∈P+ (by the hypothesis of Creat)

=⇒
q
r

τrW
−→ q (by the Creat rule),

and p∼dp q (by definition of p and q) =⇒ (p, q)∈T (by definition of T).

(p
r ,

q
r) satisfies the Deletion condition

A transition of p
r in R is defined by Delet or CompDelet only (by the syntax of p

r):

If the Delet rule defines a transition p
r

τrX
−→ p′

then p′ = 0 (by the Delet rule) ∧ p
r ∼o f X ∧

p
r ∈P

+ (by the hypothesis of Delet)
=⇒ r∈P+ (by the hypothesis of production rule 4 of P+)
=⇒

q
r ∈P

+ (by production rule 4 of P+, ∵ q∈P).

Now p∼dp q (by definition of p and q)

=⇒ p∼o f q (by Corollary 4.3.5)

=⇒
p
r ∼o f

q
r (by Theorem 4.3.4, ∵ r∈P)

=⇒
q
r ∼o f

p
r (∵∼o f is symmetric, by Lemma 4.3.2)

=⇒
q
r ∼o f

p
r ∧

p
r ∼o f X (∵ p

r ∼o f X)

=⇒
q
r ∼o f X (∵∼o f is transitive, by Lemma 4.3.4)

=⇒
q
r

τrX
−→ 0 (by the Delet rule, ∵ q

r ∈P
+),

and (0, 0)∈T (by definition of T, ∵∼dp is reflexive (by Lemma 4.3.11)).

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 262

If the CompDelet rule defines a transition p
r

τrY
−→ p′′

then ∃ τrY1
, τrY2
∈R ∃p′∈P (Y∼o f Y1|Y2 ∧

p
r

τrY1
−→p′ ∧ p′

τrY2
−→p′′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈R p

r
(by definition of R p

r
) ∧ τrY2

∈Rp′ (by definition of Rp′)

=⇒ p′ = 0 ∨ f actors+
m(p′) ⊂ f actors+

m(p
r) (by Lemma 4.3.18, ∵ p

r , p
′
∈P ∧

p
r

τrY1
−→p′).

If p′ = 0 then Rp′ = ∅ (by Lemma 4.3.8).
But τrY2

∈Rp′ =⇒ Rp′ , ∅ (by set theory; which is a contradiction).
∴ p′ , 0.
Now f actors+

m(p
r) ⊆ f actorsm(p

r) (by definition of f actors+
m(p

r)) ∧
f actorsm(p

r) = ∅ (by definition of f actorsm(p
r))

=⇒ f actors+
m(p

r) ⊆ ∅ (by set theory)

=⇒ f actors+
m(p

r) = ∅ (by set theory).
∴ If f actors+

m(p′) ⊂ f actors+
m(p

r) then f actors+
m(p′) ⊂ ∅ (which is false, by set theory).

∴ The CompDelet rule does not define a transition of p
r in R.

(p,q) satisfies the Observation, Fraction and Deletion conditions

If p
β
−→p′ for some β∈I∪ R ∪ R and some p′∈P

then q
β
−→q′ for some q′∈P ∧ p′∼dp q′ (∵ p∼dp q, by definition of p and q)

=⇒ (p′, q′)∈T (by definition of T).

∴ T is a strong dp-simulation on P (by definition of strong dp-simulation on P).
Q.E.D.

A.20.4.2 T is a strong dp-bisimulation on P

We prove T is a strong dp-bisimulation on P by proving T−1 is a strong dp-
simulation on P.
Let T′ , {(q

r ,
p
r), (q, p) | q, p, r∈P ∧ q∼dp p}.

T−1 = {(q
r ,

p
r), (q, p) | p, q, r∈P ∧ p∼dp q}

(by definitions of T and inverse binary relations)
⇒ T−1 = {(q

r ,
p
r), (q, p) | q, p, r∈P ∧ q∼dp p} (∵ ∼dp is symmetric, by Lemma 4.3.12)

⇒ T−1 = T′ (by definition of T′).
The proof that T−1 is a strong dp-simulation on P is identical to the proof that T is
a strong dp-simulation on P (see A.20.4.1) with the following substitutions:
p is replaced with q
q with p

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 263

p′ with q′

q′ with p′

p′′ with q′′

T with T′.
Thus, T′ is a strong dp-simulation on P
(by definition of strong dp-simulation on P)
⇒ T−1 is a strong dp-simulation on P (∵ T−1 = T′)
⇒ T is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P, ∵ T is a strong dp-simulation on P).
Q.E.D.
∴ ∀p, q∈P (if p∼dp q then ∀r∈P (p

r ∼dp
q
r)) (by definitions of p

r ∼dp
q
r and T). Q.E.D.

A.20.5 ∀p, q∈P (if p∼dp q then ∀r∈P (r
p∼dp

r
q))

Proof: If ∃ strong dp-bisimulation T on P with ∀r∈P ((r
p ,

r
q)∈T) for any processes

p, q in P such that p∼dp q
then ∀p, q∈P (if p∼dp q then ∀r∈P (r

p ∼dp
r
q)) (by definition of r

p ∼dp
r
q).

Therefore, we find such a T.

Let T , {(r
p ,

r
q), (r, r) | p, q, r∈P ∧ p∼dp q}.

A.20.5.1 T is a strong dp-simulation on P

T⊆P x P ∧ ∀p, q, r∈P (p∼dp q =⇒ (r
p ,

r
q)∈T) (by definition of T).

We prove for (r
p ,

r
q) and (r, r) in T that the Observation, Fraction and Deletion conditions

of strong dp-simulation on P are satisfied.

(r
p ,

r
q) satisfies the Observation and Fraction conditions

The transitions of r
p in I∪ R are defined by the Creat rule only

(by the syntax of r
p):

If the Creat rule defines a transition r
p

τrW
−→ r

then p∼o f W ∧ p∈P+ (by the hypothesis of Creat).
Now p∼dp q (by definition of p and q)
=⇒ p∼o f q (by Corollary 4.3.5)
=⇒ q∼o f p (∵∼o f is symmetric, by Lemma 4.3.2) ∧
q∈P+ (by Lemma 4.3.9, ∵ p∈P+)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 264

=⇒ q∼o f p ∧ p∼o f W (∵ p∼o f W) ∧ q∈P+

=⇒ q∼o f W (∵∼o f is transitive, by Lemma 4.3.4) ∧ q∈P+

=⇒ r
q

τrW
−→ r (by the Creat rule),

and (r, r)∈T (by definition of T).

(r
p ,

r
q) satisfies the Deletion condition

A transition of r
p in R is defined by Delet or CompDelet only (by the syntax of r

p):

If the Delet rule defines a transition r
p

τrX
−→ p′

then p′ = 0 (by the Delet rule) ∧
r
p ∼o f X ∧

r
p ∈P

+ (by the hypothesis of Delet).

Now p∼dp q (by definition of p and q)

=⇒ p∼o f q (by Corollary 4.3.5)

=⇒ r
p ∼o f

r
q (by Theorem 4.3.4, ∵ r∈P)

=⇒ r
q ∼o f

r
p (∵∼o f is symmetric, by Lemma 4.3.2) ∧

r
q ∈P

+ (by Lemma 4.3.9, ∵ r
p ∈P

+)

=⇒ r
q ∼o f

r
p ∧

r
p ∼o f X (∵ r

p ∼o f X) ∧ r
q ∈P

+

=⇒ r
q ∼o f X (∵∼o f is transitive, by Lemma 4.3.4) ∧ r

q ∈P
+

=⇒ r
q

τrX
−→ 0 (by the Delet rule),

and (0, 0)∈T (by definition of T).

If the CompDelet rule defines a transition r
p

τrY
−→ p′′

then ∃ τrY1
, τrY2
∈R ∃p′∈P (Y∼o f Y1|Y2 ∧

r
p

τrY1
−→p′ ∧ p′

τrY2
−→p′′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈R r

p
(by definition of R r

p
) ∧ τrY2

∈Rp′ (by definition of Rp′)

=⇒ p′ = 0 ∨ f actors+
m(p′) ⊂ f actors+

m(r
p) (by Lemma 4.3.18, ∵ r

p , p
′
∈P ∧

r
p

τrY1
−→p′).

If p′ = 0
then Rp′ = ∅ (by Lemma 4.3.8).
But τrY2

∈Rp′

=⇒ Rp′ , ∅ (by set theory; which is a contradiction).
∴ p′ , 0.
Now f actors+

m(r
p) ⊆ f actorsm(r

p) (by definition of f actors+
m(r

p)) ∧

f actorsm(r
p) = ∅ (by definition of f actorsm(r

p))
=⇒ f actors+

m(r
p) ⊆ ∅ (by set theory)

A.20. Theorem 4.3.10
∼dp Preserves all Elementary Contexts 265

=⇒ f actors+
m(r

p) = ∅ (by set theory).

∴ If f actors+
m(p′) ⊂ f actors+

m(r
p)

then f actors+
m(p′) ⊂ ∅ (which is false, by set theory).

∴ The CompDelet rule does not define a transition of r
p in R.

(r, r) satisfies the Observation, Fraction and Deletion conditions

If r
γ
−→r′ for some γ∈I∪ R ∪ R and some r′∈P

then r
γ
−→r′

and (r′, r′)∈T (by definition of T).

∴ T is a strong dp-simulation on P (by definition of strong dp-simulation on P).
Q.E.D.

A.20.5.2 T is a strong dp-bisimulation on P

We prove T is a strong dp-bisimulation on P by proving T−1 is a strong dp-
simulation on P.
Let T′ , {(r

q ,
r
p), (r, r) | q, p, r∈P ∧ q∼dp p}.

T−1 = {(r
q ,

r
p), (r, r) | p, q, r∈P ∧ p∼dp q}

(by definitions of T and inverse binary relations)
⇒ T−1 = {(r

q ,
r
p), (r, r) | q, p, r∈P ∧ q∼dp p} (∵ ∼dp is symmetric, by Lemma 4.3.12)

⇒ T−1 = T′ (by definition of T′).
The proof that T−1 is a strong dp-simulation on P is identical to the proof that T is
a strong dp-simulation on P (see A.20.5.1) with the following substitutions:
p is replaced with q
q with p
p′ with q′

q′ with p′

p′′ with q′′

T with T′.
Thus, T′ is a strong dp-simulation on P
(by definition of strong dp-simulation on P)
⇒ T−1 is a strong dp-simulation on P (∵ T−1 = T′)
⇒ T is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P, ∵ T is a strong dp-simulation on P).
Q.E.D.
∴ ∀p, q∈P (if p∼dp q then ∀r∈P (r

p ∼dp
r
q)) (by definitions of r

p ∼dp
r
q and T). Q.E.D.

A.21. Lemma 4.3.22 ∀z∈P0
∀p∈P (z{dp p) 266

A.21 Lemma 4.3.22 ∀z∈P0
∀p∈P (z{dp p)

Proof: consists of defining a binary relation T on P with ∀z ∈P0
∀p ∈P ((z, p) ∈T),

then proving T is a strong dp-simulation on P.

Let T , {(z, p) | z∈P0
∧ p∈P}.

T⊆P x P ∧ ∀z∈P0
∀p∈P ((z, p)∈T) (by definition of T).

For (z, p)∈T, z∈P0
∧ p∈P (by definition of T)

=⇒ Iz∪ Rz = ∅ (by Lemma 4.3.7) ∧ Rz = ∅ (by Lemma 4.3.8)
=⇒ Iz = ∅ ∧ Rz = ∅ ∧ Rz = ∅ (by set theory)
=⇒ the Observation, Fraction and Deletion conditions of strong dp-simulation on P
are satisfied
(∵ ∅ satisfies all conditions).
∴ ∀(z, p)∈T the Observation, Fraction and Deletion conditions of strong dp-simulation
on P are satisfied
(∵ (z, p)∈T is arbitrary)
=⇒ T is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T⊆P x P)
=⇒ ∀z ∈ P0

∀p ∈ P (z{dp p) (by definition of z{dp p, ∵ ∀z ∈ P0
∀p ∈ P ((z, p) ∈ T)).

Q.E.D.

A.22 Lemma 4.3.23

∀p, q, r, s∈P (p{dp q ∧ r{dp s =⇒ p|r{dp q|s)

Sketch proof: consists of defining a binary relation T on P with
∀p, q, r, s ∈ P ((p|r, q|s) ∈ T) such that p {dp q ∧ r {dp s, then proving T is a
strong dp-simulation on P.

Let S , {(p|r, q|s) | p, q, r, s∈P (p{dp q ∧ r{dp s)}.
Let Z , {(z, t) | z∈P0

∧ t∈P}.
Let T , S ∪ Z.
T⊆P x P (by set theory and definitions of S, Z and T).
∀p, q, r, s∈P (p{dp q ∧ r{dp s =⇒ (p|r, q|s)∈S) (by definition of S)
=⇒ ∀p, q, r, s∈P (p{dp q ∧ r{dp s =⇒ (p|r, q|s)∈T)
(by set theory and definition of T).

A.23. Lemma 4.3.24
∀p, p′∈P ∀τrX ∈Rp (p

τrX
−→p′ =⇒ p′{dp p) 267

It can be shown that T satisfies the Observation and Fraction conditions, by consider-
ing transitions inI∪Rdefined by the L−Par, R−Par, React, L−React or R−React rules.

It can be shown that T satisfies the Deletion condition by complete induction on the
depth of inference of the applications of the LTS rules (i.e. Delet, L− Par, R− Par or
CompDelet) that determine the transitions of u∈dom(T) in R.

A.23 Lemma 4.3.24

∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→p′ =⇒ p′{dp p)

Proof: uses complete induction on the depth of inference of the applications of the
LTS rules that determine the transitions of p in R.

For n ∈N+, let Prop(n) be this lemma for p
τrX
−→ p′ determined by applications of

LTS rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For p, p′∈P and τrX ∈Rp, the transition p
τrX
−→ p′ has depth of inference 1

(by the hypothesis of Prop(1))

=⇒ only the Delet rule determines the transition p
τrX
−→ p′

(by definitions of the LTS rules):

If the Delet rule defines a transition p
τrX
−→ p′

then p′ = 0 (by the Delet rule)
=⇒ p′∈P0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ p′{dp p (by Lemma 4.3.22, ∵ p∈P).

∴ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′{dp p)

for p
τrX
−→ p′ determined by applications of LTS rules with depth of inference 1

A.23. Lemma 4.3.24
∀p, p′∈P ∀τrX ∈Rp (p

τrX
−→p′ =⇒ p′{dp p) 268

(∵ p, p′ ∈ P and τrX ∈ Rp with transition p
τrX
−→ p′ and depth of inference 1 are

arbitrary)
=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

Induction Step: Proof of∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).

For p, p′∈P and τrX ∈Rp, the transition p
τrX
−→ p′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ p
τrX
−→ p′ has depth of inference ≥ 2 (∵ n + 1 ≥ 2 (∵ n∈N+))

=⇒ only the L − Par, R − Par or CompDelet rules determine the transition p
τrX
−→ p′

(by definitions of the LTS rules):

If the L − Par rule defines a transition p
τrX
−→ p′

then ∃r, r′, s∈P (p = r|s ∧ p′ = r′|s ∧ r|s
τrX
−→ r′|s) (by the L − Par rule)

=⇒ r
τrX
−→ r′ (by the hypothesis of L − Par)

=⇒ τrX ∈Rr (by definition of Rr) ∧ r
τrX
−→ r′

=⇒ r′{dp r (by Lemma 4.3.24, ∵ r, r′∈P).
Now s∼dp s (∵∼dp is reflexive, by Lemma 4.3.11)
=⇒ ∃ strong dp-bisimulation T on Pwith (s, s)∈T (by definition of s∼dp s)
=⇒ T is a strong dp-simulation on Pwith (s, s)∈T
(by definition of strong dp-bisimulation on P)
=⇒ s{dp s (by definition of s{dp s)
=⇒ r′{dp r ∧ s{dp s (∵ r′{dp r)
=⇒ r′|s{dp r|s (by Lemma 4.3.23, ∵ r′, r, s∈P)
=⇒ p′{dp p (∵ p′ = r′|s ∧ p = r|s).

If the R − Par rule defines a transition p
τrX
−→ p′

then ∃r, s, s′∈P (p = r|s ∧ p′ = r|s′ ∧ r|s
τrX
−→ r|s′) (by the R − Par rule)

=⇒ s
τrX
−→ s′ (by the hypothesis of R − Par)

=⇒ τrX ∈Rs (by definition of Rs) ∧ s
τrX
−→ s′

=⇒ s′{dp s (by Lemma 4.3.24, ∵ s, s′∈P).
Now r∼dp r (∵∼dp is reflexive, by Lemma 4.3.11)
=⇒ ∃ strong dp-bisimulation T on Pwith (r, r)∈T (by definition of r∼dp r)
=⇒ T is a strong dp-simulation on Pwith (r, r)∈T
(by definition of strong dp-bisimulation on P)

A.23. Lemma 4.3.24
∀p, p′∈P ∀τrX ∈Rp (p

τrX
−→p′ =⇒ p′{dp p) 269

=⇒ r{dp r (by definition of r{dp r)
=⇒ r{dp r ∧ s′{dp s (∵ s′{dp s)
=⇒ r|s′{dp r|s (by Lemma 4.3.23, ∵ r, s′, s∈P)
=⇒ p′{dp p (∵ p′ = r|s′ ∧ p = r|s).

If the CompDelet rule defines a transition p
τrX
−→ p′

then ∃ τrX1
, τrX2

∈R ∃u∈P (X∼o f X1|X2 ∧ p
τrX1
−→u ∧ u

τrX2
−→p′)

(by the hypothesis of CompDelet)

=⇒ τrX1
∈Rp (by definition of Rp) ∧ τrX2

∈Ru (by definition of Ru).

Now the transition p
τrX
−→ p′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition p
τrX1
−→ u has depth of inference mp, with mp∈ [1,n] ∧

the transition u
τrX2
−→ p′ has depth of inference mu, with mu∈ [1,n]

(∵ the transition p
τrX
−→ p′ is inferred from the transitions p

τrX1
−→ u and u

τrX2
−→ p′ using

the CompDelet rule)
=⇒ Prop(mp) and Prop(mu) hold (by the inductive hypothesis)
=⇒ p′{dp u

(by modus ponens, ∵ u, p′∈P ∧ τrX2
∈Ru ∧ u

τrX2
−→ p′ with depth of inference mu) ∧

u{dp p
(by modus ponens, ∵ p,u∈P ∧ τrX1

∈Rp ∧ p
τrX1
−→ u with depth of inference mp)

=⇒ p′{dp p (∵{dp is transitive, by Lemma 4.3.6).

∴ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′{dp p)

for p
τrX
−→ p′ determined by applications of LTS rules with depth of inference n + 1

(∵ p, p′ ∈ P and τrX ∈ Rp with transition p
τrX
−→ p′ and depth of inference n + 1 are

arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).

∴ ∀p, p′∈P ∀τrX ∈Rp (p
τrX
−→ p′ =⇒ p′{dp p)

(∵ every transition of every p∈P is a result of one or more applications of the LTS
semantic rules with finite depth of inference). Q.E.D.

A.24. Lemma 4.3.25 ∀p, q∈P
(sfdrdepth(p|q) = max{sfdrdepth(p), sfdrdepth(q)}) 270

A.24 Lemma 4.3.25 ∀p, q∈P

(s f drdepth(p|q) = max{s f drdepth(p), s f drdepth(q)})

Sketch proof: s f drdepth(p|q) is determined from a transition in R that is performed
by either p or q; and s f drdepth(p) is determined by a transition inR that is performed
by p|q (by the L − Par rule); and s f drdepth(q) is determined by a transition in R that
is performed by p|q (by the R − Par rule). The result follows.

A.25 Theorem 4.3.11 ∀p, q∈P (p|q∼o f q|p)

Sketch proof: uses complete induction on s f drdepth(p|q).
The rules to consider are L − Par, R − Par, React, L − React and R − React.
The transitions in L − Par, R − Par and React are straightforward.
The L−React and R−React rule applications require X1|X2 ∼o f X2|X1, for which the
inductive hypothesis is needed.

A.26 Theorem 4.3.12 ∀p, q∈P (p|q∼dp q|p)

Proof: If ∃ strong dp-bisimulation T on Pwith ∀p, q∈P ((p|q, q|p)∈T)
then ∀p, q∈P (p|q∼dp q|p) (by definition of p|q∼dp q|p).
Therefore, we find such a T.

Let S , {(p|q, q|p) | p, q∈P}.
S⊆P x P
(by definition of S, and by Theorem 4.3.2, production rule 3 of P+, production rule
3 of P0 and set theory) ∧
∀p, q∈P ((p|q, q|p)∈S) (by definition of S).
Let Z , {(0, 0)}.
Z⊆P x P
(by definition of Z, and by Theorem 4.3.2, production rule 1 of P0 and set theory).
Let T , S ∪ Z.

T is a strong dp-bisimulation on P
⇐⇒ T,T−1 are strong dp-simulations on P
(by definition of strong dp-bisimulation on P)

A.26. Theorem 4.3.12 ∀p, q∈P (p|q∼dp q|p) 271

⇐⇒ T is a binary relation on P ∧
for all elements of T the Observation, Fraction and Deletion conditions of strong dp-
simulation on P are satisfied
(by definition of strong dp-simulation on P) ∧
T−1 is a strong dp-simulation on P.
We prove T is a binary relation on P and for all elements of T the Observation,
Fraction and Deletion conditions of strong dp-simulation on P are satisfied, then
prove T−1 is a strong dp-simulation on P.

A.26.1 T satisfies the Observation and Fraction conditions

S is a strong of-bisimulation on P
(by the proof of Theorem 4.3.11, see A.25) ∧
Z is a strong of-bisimulation on P
(by definition of strong of-bisimulation on P, ∵ I0∪ R0 = ∅ (by Lemma 4.3.7))
=⇒ T is a strong of-bisimulation on P
(∵ the union of strong of-bisimulations on P is a strong of-bisimulation on P, and
by definition of T)
=⇒ T is a strong of-simulation on P
(by definition of strong of-bisimulation on P)
=⇒ T ⊆ P x P ∧ for all elements of T the Observation and Fraction conditions of
strong of-simulation on P are satisfied
(by definition of strong of-simulation on P)
=⇒ for all elements of T the Observation and Fraction conditions of strong dp-
simulation on P are satisfied
(∵ the Observation and Fraction conditions of strong dp-simulation on P are the
same as the Observation and Fraction conditions of strong of-simulation on P,
respectively). Q.E.D.
And ∀p, q∈P ((p|q, q|p)∈T) (by set theory and definitions of S and T).

It remains to prove that for all elements of T the Deletion condition of strong dp-
simulation on P is satisfied.

A.26.2 T satisfies the Deletion condition

We use complete induction on the depth of inference of the applications of the LTS
rules that determine the transitions of u∈dom(T) in R.

A.26. Theorem 4.3.12 ∀p, q∈P (p|q∼dp q|p) 272

For n∈N+, let Prop(n) be the proposition:

∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference n.

The proof by complete induction involves discharging the following two proof
obligations:

1. ` Prop(1)

2. ` ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

Base Case: Proof of Prop(1)

For (u, v)∈T and τrY ∈Ru and u′′∈P,

the transition u
τrY
−→ u′′ has depth of inference 1 (by the hypothesis of Prop(1))

=⇒ only the Delet rule determines the transition u
τrY
−→ u′′

(by definitions of the LTS rules):

Now u∈P ∧ v∈P (∵ (u, v)∈T ∧ T⊆P x P, and by set theory).

If u
τrY
−→ u′′ (by the Delet rule)

then u′′ = 0 (by the Delet rule) ∧ u∼o f Y ∧ u∈P+ (by the hypothesis of Delet)
=⇒ u<P0 (by Theorem 4.3.2, ∵ u∈P)
=⇒ u , 0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ (u, v)<Z (by definition of Z)
=⇒ (u, v)∈S (∵ (u, v)∈T ∧ T = S ∪ Z)
=⇒ ∃p, q∈P (u = p|q ∧ v = q|p) (by definition of S)
=⇒ p|q∼o f q|p (by Theorem 4.3.11) ∧ p|q∼o f Y (∵ u∼o f Y) ∧
p|q, q|p∈P (∵ u, v∈P) ∧ p|q∈P+ (∵ u∈P+) ∧ p|q<P0 (∵ u<P0)
=⇒ q|p∼o f p|q (∵∼o f is symmetric, by Lemma 4.3.2) ∧ p|q∼o f Y ∧

q|p∈P+ (by Lemma 4.3.9, ∵ p|q, q|p∈P ∧ p|q<P0)
=⇒ q|p∼o f Y (∵∼o f is transitive, by Lemma 4.3.4) ∧ q|p∈P+

=⇒ q|p
τrY
−→ 0 (by the Delet rule)

=⇒ τrY ∈Rq|p (by definition of Rq|p) ∧

0∈P (by production rule 1 of P0, set theory and definition of P) ∧ q|p
τrY
−→ 0 ∧

(0, 0)∈T (by set theory and definitions of Z and T)

=⇒ τrY ∈Rv ∧ 0∈P ∧ v
τrY
−→ 0 ∧ (0, 0)∈T (∵ v = q|p).

A.26. Theorem 4.3.12 ∀p, q∈P (p|q∼dp q|p) 273

∴ ∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference 1

(∵ (u, v)∈T and τrY ∈Ru and u′′ ∈P with transition u
τrY
−→ u′′ and depth of inference

1 are arbitrary)
=⇒ Prop(1) holds (by definition of Prop(1)). Q.E.D.

Induction Step: Proof of ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1))

For n∈N+, assume ∀m∈ [1,n]Prop(m) holds (inductive hypothesis).
For (u, v)∈T and τrY ∈Ru and u′′∈P,

the transition u
τrY
−→ u′′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))
=⇒ u∈P ∧ v∈P (∵ T⊆P x P, and by set theory) ∧ Ru , ∅ (by set theory)
=⇒ u∈P+ (by Lemma 4.3.6)
=⇒ u<P0 (by Theorem 4.3.2, ∵ u∈P)
=⇒ u , 0 (∵ 0∈P0, by production rule 1 of P0)
=⇒ (u, v)<Z (by definition of Z)
=⇒ (u, v)∈S (∵ (u, v)∈T ∧ T = S ∪ Z)
=⇒ ∃p, q∈P (u = p|q ∧ v = q|p) (by definition of S)
=⇒ (p|q, q|p)∈T (∵ (u, v)∈T).
Now n + 1 ≥ 2 (∵ n∈N+)

=⇒ only the L − Par, R − Par or CompDelet rules determine the transition u
τrY
−→ u′′

(by definitions of the LTS rules):

If the L − Par rule defines the transition u
τrY
−→ u′′

then ∃ p′∈P (p
τrY
−→ p′ ∧ u′′ = p′|q ∧ p|q

τrY
−→ p′|q)

(∵ u = p|q, and by definition of the L − Par rule)

=⇒ q|p
τrY
−→ q|p′ (by the conclusion of the R − Par rule)

=⇒ τrY ∈ Rq|p (by definition of Rq|p) ∧ q|p′ ∈ P (by definition of q|p
τrY
−→ q|p′) ∧

q|p
τrY
−→ q|p′ ∧

(p′|q, q|p′)∈S (by definition of S, ∵ p′, q∈P)

=⇒ τrY ∈Rq|p ∧ q|p′∈P ∧ q|p
τrY
−→ q|p′ ∧

(p′|q, q|p′)∈T (by set theory and definition of T)

=⇒ τrY ∈Rv ∧ q|p′∈P ∧ v
τrY
−→ q|p′ ∧ (p′|q, q|p′)∈T (∵ v = q|p).

A.26. Theorem 4.3.12 ∀p, q∈P (p|q∼dp q|p) 274

If the R − Par rule defines the transition u
τrY
−→ u′′

then ∃ q′∈P (q
τrY
−→ q′ ∧ u′′ = p|q′ ∧ p|q

τrY
−→ p|q′)

(∵ u = p|q, and by definition of the R − Par rule)

=⇒ q|p
τrY
−→ q′|p (by the conclusion of the L − Par rule)

=⇒ τrY ∈ Rq|p (by definition of Rq|p) ∧ q′|p ∈ P (by definition of q|p
τrY
−→ q′|p) ∧

q|p
τrY
−→ q′|p ∧

(p|q′, q′|p)∈S (by definition of S, ∵ p, q′∈P)

=⇒ τrY ∈Rq|p ∧ q′|p∈P ∧ q|p
τrY
−→ q′|p ∧

(p|q′, q′|p)∈T (by set theory and definition of T)

=⇒ τrY ∈Rv ∧ q′|p∈P ∧ v
τrY
−→ q′|p ∧ (p|q′, q′|p)∈T (∵ v = q|p).

If the CompDelet rule defines the transition u
τrY
−→ u′′

then ∃ τrY1
, τrY2
∈R ∃u′∈P (Y∼o f Y1|Y2 ∧ u

τrY1
−→ u′ ∧ u′

τrY2
−→ u′′)

(by the hypothesis of CompDelet)

=⇒ τrY1
∈Ru (by definition of Ru) ∧ τrY2

∈Ru′ (by definition of Ru′).

Now the transition u
τrY
−→ u′′ has depth of inference n + 1

(by the hypothesis of Prop(n + 1))

=⇒ the transition u
τrY1
−→ u′ has depth of inference m1, with m1∈ [1,n] ∧

the transition u′
τrY2
−→ u′′ has depth of inference m2, with m2∈ [1,n]

(∵ the transition u
τrY
−→ u′′ is inferred from the transitions u

τrY1
−→ u′ and u′

τrY2
−→ u′′

using the CompDelet rule)
=⇒ Prop(m1) and Prop(m2) hold (by the inductive hypothesis)

=⇒ τrY1
∈Rv ∧ ∃v′∈P (v

τrY1
−→ v′ ∧ (u′, v′)∈T) ∧ Prop(m2)

(by modus ponens, ∵ (u, v) ∈ T ∧ τrY1
∈ Ru ∧ u′ ∈ P ∧ u

τrY1
−→ u′ with depth of

inference m1)

=⇒ τrY2
∈Rv′ ∧ ∃v′′∈P (v′

τrY2
−→ v′′ ∧ (u′′, v′′)∈T)

(by modus ponens, ∵ τrY2
∈Ru′ ∧ u′′∈P ∧ u′

τrY2
−→u′′ with depth of inference m2)

=⇒ v′′ ∈ P ∧ v
τrY
−→ v′′ (by the CompDelet rule, ∵ Y ∼o f Y1|Y2 ∧ v

τrY1
−→ v′) ∧

(u′′, v′′)∈T

=⇒ τrY ∈Rv (by definition of Rv) ∧ v′′∈P ∧ v
τrY
−→ v′′ ∧ (u′′, v′′)∈T.

∴ ∀(u, v)∈T ∀τrY ∈Ru ∀u′′∈P

A.26. Theorem 4.3.12 ∀p, q∈P (p|q∼dp q|p) 275

(u
τrY
−→ u′′ =⇒ τrY ∈Rv ∧ ∃v′′∈P (v

τrY
−→ v′′ ∧ (u′′, v′′)∈T))

for u
τrY
−→ u′′ determined by applications of LTS rules with depth of inference n + 1

(∵ (u, v)∈T and τrY ∈Ru and u′′ ∈P with transition u
τrY
−→ u′′ and depth of inference

n + 1 are arbitrary)
=⇒ Prop(n + 1) holds (by definition of Prop(n + 1)).
∴ ∀n∈N+ (∀m∈ [1,n]Prop(m) =⇒ Prop(n + 1)) holds (∵ n∈N+ is arbitrary). Q.E.D.

∴ ∀n∈N+ Prop(n) holds (by complete induction).
∴ For all elements of T, the Deletion condition of strong dp-simulation on P is
satisfied
(∵ every transition of u ∈ dom(T) in R is determined by applications of LTS rules
with finite depth of inference). Q.E.D.

∴ T is a strong dp-simulation on P
(by definition of strong dp-simulation on P, ∵ T ⊆ P x P and for all elements of T,
the Observation and Fraction conditions of strong dp-simulation on P are satisfied).

A.26.3 T−1 is a strong dp-simulation on P

Now T = S ∪ Z (by definition of T) ∧
S = {(p|q, q|p) | p, q∈P} (by definition of S) ∧
Z = {(0, 0)} (by definitions of Z)
=⇒ T−1 = S−1

∪ Z−1 (by algebra of binary relations) ∧
S−1 = {(q|p, p|q) | p, q∈P} (by definition of inverse binary relations) ∧
Z−1 = {(0, 0)} (by definition of inverse binary relations)
=⇒ S−1 = {(q|p, p|q) | q, p∈P} (by set theory) ∧ Z−1 = Z (by definition of Z)
=⇒ S−1 = S (by definition of S) ∧ Z−1 = Z
=⇒ S−1

∪ Z−1 = S ∪ Z (by set theory)
=⇒ T−1 = T (∵ T−1 = S−1

∪ Z−1
∧ T = S ∪ Z)

=⇒ T−1 is a strong dp-simulation onP (∵ T is a strong dp-simulation onP). Q.E.D.

∴ T is a strong dp-bisimulation on P
(by definition of strong dp-bisimulation on P, ∵ T is a strong dp-simulation on P).
∴ ∀p, q∈P (p|q∼dp q|p) (by definition of p|q∼dp q|p, ∵ ∀p, q∈P ((p|q, q|p)∈T)). Q.E.D.

A.27. Theorem 4.3.13 ∀p, q, r∈P ((p|q)|r∼o f p|(q|r)) 276

A.27 Theorem 4.3.13 ∀p, q, r∈P ((p|q)|r∼o f p|(q|r))

Sketch proof: Straightforward case by case analysis.
Let S , {((p|q)|r, p|(q|r)) | p, q, r∈P}.
It can be shown that S, S−1 are strong of-simulations onP by considering transitions
in I ∪ R defined by L − Par, R − Par, React, L − React or R − React.

A.28 Lemma 4.3.26

∀p, q∈P ∀τrX ∈Rp|q ∀(p|q)′∈P

(p|q
τrX
−→ (p|q)′ =⇒

(p|q)′ = 0 ∨

∃p′∈P (p
τrX
−→ p′ ∧ (p|q)′ = p′|q) ∨

∃q′∈P (q
τrX
−→ q′ ∧ (p|q)′ = p|q′) ∨

∃τrX1
, τrX2

∈R ∃p′, q′∈P

(X∼o f X1|X2 ∧ p
τrX1
−→ p′ ∧ q

τrX2
−→ q′ ∧ (p|q)′ = p′|q′))

Sketch proof: uses complete induction on the depth of inference of the applications
of the LTS rules that determine the transitions of p|q in R.

A.29 Theorem 4.3.14 ∀p, q, r∈P ((p|q)|r∼dp p|(q|r))

Sketch proof: Let S , {((p|q)|r, p|(q|r)) | p, q, r∈P}.
Let U , {(0|u, 0|(0|u)) | u∈P}.
Let W , {(w,w) | w∈P}.
Let V , {((v|0)|0, v|0) | v∈P}.
Let T , S ∪U ∪W ∪ V.

It can be shown that T, T−1 are strong dp-simulations on P:

Theorem 4.3.13 is used to prove T, T−1 satisfy the Observation and Fraction conditions.

A.29. Theorem 4.3.14 ∀p, q, r∈P ((p|q)|r∼dp p|(q|r)) 277

To prove T, T−1 satisfy the Deletion condition, we use complete induction on the
depth of inference of the applications of the LTS rules that determine transitions in
R and the LTS rules Delet, L − Par, R − Par and CompDelet. The transitions of the
elements in U, W and V are straightforward.

A.29. Theorem 4.3.14 ∀p, q, r∈P ((p|q)|r∼dp p|(q|r)) 278

	Introduction
	Background
	Approach
	Thesis Structure

	Review of Systems Supporting Dynamic Reconfiguration
	Programming Languages
	Object Execution Environments
	Operating Systems
	Distributed Systems
	Argus
	Eternal
	Dynamic Reconfiguration Service
	Related Work

	Module Interconnection Languages
	Architecture Description Languages
	Architecture Modification Languages
	Discussion
	Issues
	Dynamic Reconfiguration Issues
	Dependability Issues

	Dynamic Architecture Description Languages
	Darwin
	Wright
	Rapide
	Related Work
	Discussion

	Requirements on a Formalism
	Dynamic Reconfiguration Requirements
	Dependability Requirements
	General Requirements

	Review of Formalisms Supporting Dynamic Reconfiguration
	Milner's, Parrow's and Walker's -calculus
	Evaluation using Requirements

	Higher-Order -calculi
	Evaluation using Requirements

	Asynchronous -calculus
	Evaluation using Requirements

	Related Work
	Discussion

	Basic CCSdp
	Syntax
	Rationale

	Labelled Transition System Semantics
	LTS Rules
	Positive Processes and Zero Processes
	Strong of-Bisimulation
	Structure of the LTS Semantics

	Equational Reasoning
	Strong of-Bisimulation is an Equivalence Relation
	Strong of-Bisimulation is not a Process Congruence
	Strong dp-Bisimulation

	Consistency and Decidability
	Consistency
	Decidability

	Forms of Matching
	Syntactic Equality-based Matching
	Structural Congruence-based Matching
	Strong Observation Equivalence-based Matching
	Comparison

	Evaluation using Requirements

	Evaluation of Basic CCSdp using a Simple Office Workflow
	Office Workflow for Order Processing
	Reconfiguration of a Design
	Modelling the Workflow
	Modelling Configuration 1
	Modelling Configuration 2
	Modelling the Reconfiguration

	Evaluation using the Reconfiguration Requirements
	Verification of Requirement 2
	Verification of Requirements 1, 3, 4 and 5

	Strengths and Weaknesses of Basic CCSdp

	Towards Full CCSdp
	Basic CCSdp +
	Syntax
	Labelled Transition System Semantics
	Positive Processes and Zero Processes

	On Process Identification
	A Process Identification Scheme

	Discussion

	Concluding Remarks
	Conclusions
	Future Work

	Bibliography
	Proofs of basic CCSdp
	Lemma 4.2.1 p, q P (p of q =-2.6316mu i N p' succ(p, i) (q' succ(q, i) (p' of q')))
	Corollary 4.2.1 p, q P (p of q =-2.6316musfdrdepth(p) sfdrdepth(q))
	Lemma 4.3.3 strong of-simulations U, V on P (UV is a strong of-simulation on P)
	Lemma 4.3.5 p P+ (Ip Rp)
	Lemma 4.3.6 p P (p P+ -2.6316muRp)
	p P (p P+ =-2.6316muRp)
	p P (Rp =-2.6316mup P+)

	Lemma 4.3.7 p P0 (Ip Rp =)
	Theorem 4.3.3 p P z P0 (p|z of p p of z|p)
	p P z P0 (p|z of p)
	p P z P0 (p of z|p)

	Theorem 4.3.4 of Preserves the Elementary Contexts .[] + M, []P and P[]
	p, q P (if p of q then I (.p + M of .q + M) where M is any summation in P)
	p, q P (if p of q then r P (pr of qr))
	p, q P (if p of q then r P (rp of rq))

	Lemma 4.3.13 strong dp-simulations U, V on P (UV is a strong dp-simulation on P)
	Lemma 4.3.15 p, q P (p|q P+ =-2.6316mufactors+m(p|q) m)
	Lemma 4.3.16 p P (p P0 =-2.6316mufactors+m(p) = m)
	Lemma 4.3.17 p, p' P rX Rp (p -2.6316murX p' =-2.6316mup' = 0 factorsm(p') m)
	Lemma 4.3.18
	Lemma 4.3.19
	Lemma 4.3.20
	Theorem 4.3.7 p P z P0 (p|z dp p p dp z|p)
	p P z P0 (p|z dp p)
	p P z P0 (p dp z|p)

	Lemma 4.3.21
	Theorem 4.3.8 p, q P (p dp q =-2.6316mu|factors+m(p|0)| = |factors+m(q|0)|)
	Theorem 4.3.9 p, q P (p dp q =-2.6316mur P (p|r of q|r) r P (r|p of r|q))
	p, q P (p dp q =-2.6316mur P (p|r of q|r))
	p, q P (p dp q =-2.6316mur P (r|p of r|q))

	Theorem 4.3.10 dp Preserves all Elementary Contexts
	p, q P (if p dp q then I (.p + M dp .q + M) where M is any summation in P)
	p, q P (if p dp q then r P (p|r dp q|r))
	p, q P (if p dp q then r P (r|p dp r|q))
	p, q P (if p dp q then r P (pr dp qr))
	p, q P (if p dp q then r P (rp dp rq))

	Lemma 4.3.22 z P0 p P (z dp p)
	Lemma 4.3.23 p, q, r, s P (p dp q r dp s =-2.6316mu p|r dp q|s)
	Lemma 4.3.24 p, p' P rX Rp (p -2.6316murX p' =-2.6316mup' dp p)
	Lemma 4.3.25 p, q P (sfdrdepth(p|q) = max{sfdrdepth(p), sfdrdepth(q)})
	Theorem 4.3.11 p, q P (p|q of q|p)
	Theorem 4.3.12 p, q P (p|q dp q|p)
	T satisfies the Observation and Fraction conditions
	T satisfies the Deletion condition
	T-1 is a strong dp-simulation on P

	Theorem 4.3.13 p, q, r P ((p|q)|r of p|(q|r))
	Lemma 4.3.26
	Theorem 4.3.14 p, q, r P ((p|q)|r dp p|(q|r))

