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Abstract 

Approximately one-third of trauma patients are coagulopathic on arrival to the 

emergency department.  Acute traumatic coagulopathy and systemic 

inflammatory responses are serious secondary consequences of severe trauma 

and are linked to increased morbidity and mortality. Early tissue hypoxia is a 

major component in the aetiology of both complications.  New resuscitation 

strategies are aimed at improving tissue oxygenation in the pre-hospital phase, 

and may attenuate coagulopathy and inflammatory sequelae.  This is of 

particular importance in military personnel who suffer complex injuries, often 

from blast exposure, and may have extended evacuation times.  

 

This thesis evaluates the effect of a novel hybrid (NH) resuscitation strategy on 

coagulation and inflammation.  Terminally anaesthetised pigs were randomised 

to one of two injury strands of haemorrhage +/- blast injury; initially resuscitated 

with 0.9% Saline to a hypotensive systolic blood pressure of 80mmHg for one 

hour. This was followed by either a return to a normotensive pressure 

(110mmHg) (NH) or a continuation at the hypotensive level.  

 

Over both injury strands NH significantly reduced Prothrombin Time, PT (mean 

proportion of baseline: 1.40±0.05 vs. 1.80±0.09; p=0.001) and interleukin-6 (IL6) 

levels (mean 1106±153 vs. 429±79 pg/ml; p=0.001) compared to the 

hypotensive groups.  PT was positively correlated with IL6 (p=0.002) and base 

deficit (p=0.0004). These findings indicate that improving tissue oxygenation 

reduces the coagulation derangement and the pro-inflammatory response. No 

difference in coagulopathy was found between injury strands although blast did 

cause greater inflammation. 

 

Early identification of coagulopathic casualties is essential and a separate 

feasibility field study was preformed to assess the use of thromboelastometry in 

a deployed military hospital, evaluating the degree of coagulopathy in battlefield 

casualties and to monitor the coagulation status during the resuscitation 

process. 

 

In conclusion, NH attenuated the acute traumatic coagulopathy and 

inflammatory responses and therefore should be considered when an extended 

casualty evacuation is enforced.   
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Chapter 1: Introduction 

 

1.1 The nature of trauma: civilian and military 

Trauma accounts for 10% of deaths worldwide (Holcomb, 2004; Murray and 

Lopez, 1997), being the fourth leading cause of death in western countries and 

the leading cause of death in the first four decades of life. This prevalence in the 

young, results in an average of 36 life years being lost per trauma death (Chaira 

and Cimbanissi, 2003).  Furthermore, trauma is also a major cause of 

debilitating long-term injuries. For each fatality, there are two survivors with 

serious or permanent disability resulting in trauma being a large socio-economic 

burden. In 1998, the estimated cost to the NHS of treating all injuries was £1.2 

billion per annum. The incidence of severe trauma, defined as an Injury Severity 

Score (ISS) of 16 or greater, is estimated to be four per million per week 

(Gorman et al 1995). Given that the UK population in mid-2003 was in the 

region of 59.5 million, there are approximately 240 severely injured patients in 

the UK each week (National Confidential Enquiry into Patient Outcome and 

Death, 2007).  

 

Within the military sphere, the past decade has seen a dramatic change in 

deaths and injuries occurring in the populations at risk (PAR); this includes both 

combatants and civilian populations caught up in the conflict.  During this 

period, the UK Defence Forces have been involved in two significant conflicts – 

OPERATION TELIC in Iraq and OPERATION HERRICK in Afghanistan.  In the 

former, between 1 January 2003 and 31 July 2009, there were 179 deaths and 

222 casualties listed as ‘very seriously’ and ‘seriously’ injured (Ministry of 

Defence, 2009) In the latter ongoing conflict, between 7 October 2001 and 15 

March 2011, 359 have been killed and 503 personnel have been ‘very seriously’ 

and ‘seriously’ injured (Ministry of Defence, 2011).  This is in sharp contrast to 

the conflict in the Balkans in the 1990s, where fatalities were recorded as 72 

from 1 January 1993 to March 2006 (Ministry of Defence, 2006).  
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The death toll of civilians caught in the conflicts has been shown to be 

significantly higher, although exact figures are difficult to corroborate. Between 

March 2003 and July 2006, it is estimated that 654,965 excess Iraqi deaths 

were a consequence of the war.  This correlates to a rise in the mortality rate 

from 5.5 per 1000 people per year pre-invasion to 13.3 per 1000 people per 

year in the 40 months after; with the majority resulting from gunfire (Roberts et 

al 2004; Burnham et al, 2006).     

   

One of the main differences between trauma in the civilian world and that in 

PARs in conflict areas is the mechanism of injury.  Blunt trauma accounts for 

approximately 75% of UK trauma victims, with the main cause being Road Traffic 

Accidents (RTA) (Brohi, 2003; Peden et al, 2002). This is in contrast to the 

military statistics where a minority of patients, 7.6% (67 out of 876 patients) in the 

UK Military Joint Theatre Trauma Registry (1 April 2006 to 30 September 2007, 

OP HERRICK and OP TELIC only) suffered injuries by a blunt force; 5.1% of this 

7.6% resulted from motor vehicle crashes.  In that same period, 53.8% of injuries 

were sustained from blast/ fragmentation and 29.9% from gunshot (Hodgetts et 

al, 2007). The Improvised Explosive Device (IED) has become the most 

significant threat to personnel involved in current military UK conflicts 

(Ramasamy et al., 2008).  The US forces recorded that 71% of personnel injured 

in combat between 2003 and 2006 resulted from explosions (Ritenour et al, 

2010). 

 

The risk from blast as a mechanism to cause injury is becoming a threat to 

civilian populations outside conflict areas as outlined in a systematic review of 

terrorist bombings during the period of 1966-2004 which identified 29 terrorist 

bombings around the world in 4 continents, accounting for 903 persons killed and 

over 7000 injured (Arnold et al, 2004).  More recently the reality of bomb threats 

was brought home to UK citizens with the events of July 7, 2005 where 56 

persons were killed and over 700 injured (Bland et al, 2006) in London. Explosive 

events are not all secondary to terrorist activity; accidental explosions can result 

from the ignition of gas, dust clouds, vapours, inflammable liquids and chemicals 



3 

 

due to fire or the failure of pressurised containers (Cullis, 2001).  A recent case 

series highlighted this risk in a common workplace by examining the morbidity 

and mortality of 7 men who had suffered blast injuries from explosions from high 

pressure tyres (Hefny et al., 2010).  It is for all these reasons it is necessary to 

understand blast; the physics of explosions and the physiological responses to 

blast. 

 

Although explosions are the primary mechanism of current battlefield injury, 

haemorrhage resulting from these injuries is the greatest cause of death on the 

battlefield.  A review of deaths from Vietnam showed that half of all deaths were 

from haemorrhage and 20% of that was from extremity wounds (Bellamy, 1984). 

The Israelis have reported that exsanguinations accounted for about 30% of 

deaths in their recent conflicts (Gofrit et al., 1997).  A recent profile of combat 

injury outlined that over 50% of those who die, did so from exsanguinating 

haemorrhage.  Approximately 80% of these deaths are from uncompressible 

haemorrhage in the torso, meaning that 20% of such deaths are from areas 

where the bleeding might be controlled (Champion et al., 2003). This pattern and 

cause of battlefield fatalities has not changed significantly over the past century 

of conflicts, and the most recent reviews continue to list haemorrhage as the 

greatest cause of death (Champion et al., 2009; Ritenour et al., 2010). In civilian 

trauma, haemorrhage has been reported to be the second cause of death after 

traumatic brain injury (Sauaia et al., 1995).    

 

A final unique consideration of military trauma is the austere, resource and 

logistically constrained environment in which personnel are injured and the 

potential for subsequent delayed access to definitive care. In the prospective 

paper that looked at 1,088 civilian trauma victims brought to the Royal London 

Hospital between 1993 and 1998 by the helicopter emergency medical service, 

the median time from injury (estimated as the time from when the emergency 

services were alerted) to arrival in the emergency department was 73 minutes 

(Brohi et al., 2003).   UK Data from 2007 in current military conflicts has shown 

that times are a median of 97 minutes but can average up to 174 minutes 
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(Hodgetts  and Mahoney, 2007; Parker, 2007).  Transfer timelines shorten as an 

operation matures but in the early stages these can be significantly prolonged 

(Bohman et al, 2005).  In the first two years of the Afghan Conflict, the US forces 

reported times of 5 hours (Bilski et al 2003). 

 

In summary, military trauma differs from civilian trauma and therefore with any 

research in this area, it is essential to consider all these aspects of the 

mechanism of injury when considering the effects on physiology, resuscitation 

algorithms and outcomes of trauma victims.     

 

1.2 The purpose of this thesis 

The work in this thesis forms part of a larger ongoing programme of work aimed 

at improving combat casualty care.  The purpose of this thesis is to assess the 

effect of resuscitation strategies used in clinical practice of trauma patients and 

the secondary consequences of coagulopathy and inflammation following 

exposure to haemorrhage and blast.  The following chapters (Chapters 2-4) 

explore and explain the physiological responses to trauma, the pathophysiology 

of coagulation and current resuscitation strategies.  Chapters 5 and 6 provide 

the results of the experimental work, firstly, carried out using an animal model of 

a survivable battlefield injury and secondly, a clinical feasibility field study 

assessing measurement of the degree of coagulopathy in battlefield casualties. 
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Chapter 2: The Physiological Responses to Trauma. 

 

 2.1 The Physiological Responses to Trauma 

 

Mortality from trauma has traditionally been described as following a trimodal 

distribution; immediately, within the first few hours and then much later (days to 

even weeks) after the injury occurred (Trunkey, 1983).  More recent studies 

have noted a relative skewing of the distribution towards early deaths, with the 

loss or attenuation of the third peak, resulting in the pattern approximating to a 

bimodal distribution (Pang et al., 2008, McGwin et al., 2009, Evans et al., 2010, 

Chalkley et al., 2011).  

 

There are three main physiological systemic responses to trauma: firstly, the 

cardiovascular response that occurs immediately after the injury; secondly, the 

immunological responses, which although starts immediately, it may take a few 

hours to become evident; and finally the metabolic response which are greatest 

importance in the recovery phase.  This chapter will concentrate on the first two 

responses.  

In the physiological sense, trauma is a combination of haemorrhage, tissue 

injury, pain and fear, but to understand the mechanisms of each response they 

have often been studied separately, and most of the understanding comes from 

animal models and human volunteers (Foex, 1999). 

 

2.1.1 The Cardiovascular Response to Simple Haemorrhage 

The loss of blood volume from the circulation, either externally or into a body 

cavity results in the development of hypovolaemia and the patient enters a state 

of shock; a pathophysiological state in which the circulatory system is unable to 

adequately perfuse tissues and meet oxygen demand.  With the loss of blood, 

there is a decrease in the volume returning to the heart, and results in a decrease 

in the pressure of the right atrium.  This in turn, results in a drop of the end-
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diastolic volume (EDV), i.e. a reduced preload.  This drop in preload results in a 

reduction in stroke volume (SV) – the volume ejected from the ventricle with each 

contraction. This leads to a decrease in cardiac output (CO; which is the product 

of SV and the heart rate). Arterial blood pressure is normally maintained until at 

least 20-30% of circulatory volume is lost, due principally to the effects of the 

baroreceptor reflex, before there is a drop in arterial blood pressure (see below).  

The hypotension leads to end-organ hypoperfusion and hypoxia, ultimately 

causing permanent organ damage and organ failure (Revell et al, 2003).  This 

entire pattern of response is orchestrated by a series of homeostatic mechanisms 

which are designed to provide short term protection for the most essential organs 

in the body at the expense of causing a short term reduction in oxygen delivery to 

organs which are able to withstand this.  Serious problems arise when the 

response is protracted. 

 

The Biphasic Response to Simple Haemorrhage    

The sequence of haemodynamic changes were investigated in detail by Barcroft 

and his colleagues during the Second World War.  These studies investigated the 

response to venesecting volunteers (Barcroft et al., 1944) while monitoring heart 

rate, blood pressure, cardiac output, right atrial pressure, and fore-arm blood 

flow.  It was shown that there was a biphasic response to venesection.  As the 

simple haemorrhage progressed there was a development of a tachycardia while 

systolic blood pressure (SBP) was maintained.  The tachycardia coincided with a 

rise in the systemic vascular resistance (SVR), which compensated for the drop 

in CO.  These responses are shown in Figure 1.  After between 20-30% of the 

blood volume was lost, there was a second, depressor, phase which 

compromised of a bradycardia, a reduction in the SVR and a fall in the arterial 

blood pressure.  In Barcroft’s volunteers this caused syncope, and there was a 

profound increase in the fore-arm blood flow.    
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Figure 1.  Graph showing the biphasic response to haemorrhage with the initial 

increase in HR, SVR, and maintenance of SBP but drop in CO.  Followed by the 

depressor phase.  Adopted from Barcroft et al., 1944. 

 

The first phase, sometimes called the “compensatory phase”, is due to the 

action of the ‘Baroreceptor Reflex’ or ‘Baroreflex’ as it is the combined result of 

the action of the arterial baroreceptors, cardiopulmonary baroreceptors, and 

arterial chemoreceptors.  The stimulation of the arterial baroreceptors, which 

gives rise to this reflex, is due to a reduction in the arterial pulse pressure. The 

baroreceptors are stimulated early despite there being no initial fall in mean 

arterial pressure; this is because they respond to the rate of change of arterial 

blood pressure and transduce information about the pulse pressure, as well as 

mean arterial blood pressure (Angell et al., 1971).  Consequently there is a 

reduction in action potential frequency carried in afferent fibres via the vagus 

nerve and the sinus nerve, branch of glossopharyngeal nerve, to the medulla. 

The result of this activation of baroreceptors is a reflex withdrawal of cardiac 

vagal activity and an increase in the sympathetic activity of the heart and 

vasculature (Spyer et al., 1984; Donoghue et al., 1984).  The sympathetic 

outflow releases noradrenaline which acts upon the cardiac -adrenoceptors in 

the heart, increasing the rate and force of contraction.  It also acts on the α-
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adrenoceptors in the peripheral vasculature to cause vasoconstriction and the 

increase in the SVR.  This increase in SVR offsets the hypotension that would 

otherwise accompany the reduced cardiac output which accompanies 

haemorrhage. The arteriolar constriction also reduces the hydrostatic pressure 

downstream in the capillaries favouring absorption of fluid from the interstitial 

space into the circulation.  This partially offsets the hypovolaemia which, in 

combination with the sympathetically induced reduction in volume of the venous 

reservoir helps promote venous return (McGeown, 1996).   

The change in vascular resistance is not uniform throughout all vascular beds in 

the body.  There appears to be a hierarchy with some organs experiencing 

intense vasoconstriction and large reductions in flow while others are relatively 

spared.  Barcroft noted the increase in SVR in the forearm but also noted that 

during his experiments the in the initial phase there was no change in forearm 

blood flow suggesting that increase in SVR was caused by vasoconstriction in 

other vascular beds (Barcroft et al., 1944; Foex, 1999).  This possible ‘regional 

flow’ change was also described by other investigators: Vatner found that mild 

haemorrhage in dogs resulted in an increase in mesenteric and iliac vascular 

resistance but a reduction in renal resistance.  Furthermore, as blood loss 

continued, he found there was a greater reduction in mesenteric flow and an 

increase in coronary blood flow (Vatner, 1974).  This was mirrored in human 

volunteer studies when lower body negative pressure was used to simulate 

hypovolaemia, where the splanchnic blood flow was more sensitive to the 

‘hypovolaemia’ than renal blood flow (Hirsch et al., 1989). This regional blood 

flow appears to be ensuring the maintenance in blood flow and thus oxygen 

delivery to the most immediately vulnerable organs.   

 

As the haemorrhage progresses beyond 20-30% of total blood loss, the second 

‘depressor’ phase becomes evident (Barcroft et al., 1944).  This is characterised 

by profound hypotension which is accompanied by significant bradycardia and a 

dramatic fall in SVR.  This second reflex is vagally-mediated and overrides the 

baroreflex responsible for the first phase.  The bradycardia is mediated by a 

profound increase in vagal efferent activity which increases the diastolic period 

resulting in greater cardiac filling and coronary perfusion (both of which occur in 



 
9 

diastole).  In addition there is a sympatho-inhibition which reduces systemic 

vascular resistance (afterload).  Thus the reflex appears to reduce the cardiac 

work at a time when coronary blood flow is compromised (Little and Kirkman, 

1997).   

The ‘depressor phase’ is not a terminal event, as Barcroft found this phase was 

reversible by re-infusion of the venesected blood in his volunteers.  A further third 

phase has been described by Jacobson and colleagues before the degree of 

shock becomes irreversible (Jacobsen et al., 1990; Jacobsen and Secher, 1992).  

When over 40% of volume has been lost they described a pre-terminal phase of 

tachycardia and hypotension which appears to be driven by increased 

sympathetic drive and could be secondary to cerebral hypoperfusion/hypoxia 

(Foex, 1999). 

 

A host of other reflexes also influence the cardiovascular system during 

haemorrhagic shock. The peripheral arterial chemoreceptors (which are located 

in the carotid and aortic bodies) are stimulated by stagnant hypoxia due to poor 

blood flow and H+ ions that are rising as a consequence of metabolic acidosis.  

Stimulation of these receptors drives an increase in respiratory rate and depth of 

breathing. It also increases the peripheral vasoconstriction and potentiates the 

baroreceptor reflex when the arterial pressure is low (Acker and O’Regan, 1981).   

 

The efferent pathways mediating these reflexes depend on a host of mediators.  

The immediate response is due to alterations in sympathetic efferent activity (as 

described above).  The primary transmitters in this case are the catecholamines, 

both noradrenaline predominantly released from sympathetic nerve terminals and 

circulating adrenaline principally from the adrenal medulla.  Other mediators also 

play important roles including hormones such as vasopressin/Antidiurectic 

hormone (ADH) which is both a potent vasoconstrictor and exerts an antidiurectic 

effect.  The sympatho-activation also activates the renin-angiotensin system 

ultimately resulting in an increase in angiotensin II, which also is a potent 

vasoconstrictor as well as stimulating the release of aldosterone.  The 

aldosterone in turn has the renin action to conserve sodium and overall a longer 
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term results in a restoration of the blood volume.   

 

2.1.2 The cardiovascular response to tissue injury and haemorrhage  

Haemorrhage associated with trauma is often complicated by the effects of 

musculoskeletal injury, nociception and sometimes pain which in turn modifies 

the reflex responses to blood loss.  Original studies in the 1950’s showed that 

isolated tissue injury caused a ‘pressor response’ (Howard et al., 1955) where 

the blood pressure increases with increased sympathetic vasoconstriction and a 

tachycardia.  Furthermore, it was noted that when haemorrhage was combined 

with soft tissue injury, mortality was increased (Overman and Wang, 1947), 

thought to be in part due to haemodynamic disturbances associated with the 

interaction between the cardiovascular reflexes associated with haemorrhage 

(see above) and those resulting from nociception (Kirkman and Little, 1997).  In 

essence it is thought that the effects of nociception initiates a response akin to 

the defence reaction (fight or flight response).  Little et al (1989) noted in the 

rodent studies that the ‘depressor reflex’ that was clearly documented in simple 

haemorrhage was altered by the presence of tissue injury as the expected 

bradycardia and hypotension was not seen.  Thus the response to injury 

overrides the simple haemorrhage mechanism (Foex, 1999).  However this 

response is at the expense of enhanced vasoconstriction of vital organs and 

possibly reduced vasoconstriction in the skeletal muscle (Kirkman et al., 1995).  

Mackway-Jones et al (1994) studied the effect of haemorrhage in a pig model on 

the background of a somatic afferent nerve stimulation to simulate tissue injury.  

After haemorrhage alone (30% blood volume), vascular resistance in the femoral 

bed was noted to double and there was minimal resistance noted in the 

splanchnic bed.  However, when combined with stimulation of the nerve; the 

same haemorrhage resulted in a much smaller increase in femoral resistance but 

a significant increase in the splanchnic resistance.   

Whilst this may aid survival for an individual continuing to fight (or fleeing from a 

fight), it will ultimately reduce survival in the more severely injured as a 

consequence of reduced blood flow to vital organs.  Stimulation of the 

nociceptive afferent C-fibres to mimic tissue injury demonstrated the same 

‘modified’ haemodynamic responses to haemorrhage indicating that the 
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conscious patient with fear does not drive these responses alone (Foex et al., 

2004). 

 

2.1.3. The Immunological Response to Injury           

The immunological/inflammatory response to injury is initiated by tissue 

hypoperfusion, ischaemia and subsequent reperfusion during resuscitation.  A 

simple division of the response is to divide it into two components: humoral and 

cellular.  The humoral component involves the up-regulation and down-regulation 

of many mediators including cytokines, chemokines, the complement system, 

oxygen radicals and nitric oxide (NO).  The cellular response is driven by effector 

cells including neutrophils, monocytes/macrophages and endothelial cells.  All 

these responses are closely interlinked and lead to the systemic inflammatory 

response syndrome (SIRS).  When this systemic inflammation becomes 

overwhelming, it can result in a massive systemic immunological activation after 

severe trauma leading to organ dysfunction and multiple organ failure (MOF) 

(Schroeder et al., 2009, Tsukamoto et al., 2010). 

 

Humoral Mediators of Response after Trauma 

Cytokines are an important response to injury and is important in the 

development of SIRS, with the main pro-inflammatory ones being IL-1, IL-6, 

TNFα and IL-8 (Ayala et al., 1991; Bone, 1996).  These initial releases are 

tempered by the release of the anti-inflammatory cytokines including IL-1Ra, IL-

10, IL-11 and IL-13 and the loss of the balance of the pro- and anti-inflammatory 

cytokines leads to the SIRS and subsequent immunological deterioration 

(Tsukamoto et al., 2010). 

Elective surgery studies have shown that tissue injury caused by surgery will 

stimulate the production of 1L-1 and IL-6 (Di Padova et al., 1991; Baigrie et al., 

1992).  The production of IL-6 is linked to the severity of the tissue-injury inflicted, 

and its level appears to be clinically relevant in the estimation of the severity of 

injury and prognosis after trauma (Svoboda et al., 1994; Biffl et al., 1996; Pape et 

al., 2007), and was particularly raised in burns (de Bandt et al., 1994).  IL-6 levels 
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have found to be raised on the day of admission of trauma and then gradually 

decline over the next 48hrs in the patients who make a good recovery.  Those 

patients that went on to develop septic complications found that the cytokine rise 

was maintained (Svoboda et al., 1994).   

 

The exact role of TNFα in trauma is not clear (Tsukamoto et al., 2010).  Rodent 

models have shown that TNFα was raised in the first 30 minutes after 

haemorrhage but was undetectable during the resuscitation phase (Ayala et al., 

1991; Rhee et al., 1993).  In a swine model of blunt trauma, haemorrhage and 

resuscitation, TNFα was not detectable at any particular level at any stage 

(Stylianos et al., 1991).  This could be a characteristic of swine model rather than 

a true physiological response in other species.  Clinical studies have shown a 

rise in TNFα in trauma patients (Roumen et al., 1995)) but although it was raised 

in 100% of trauma patients, it was not significantly different compared in healthy 

controls and there was no correlation with ISS or GCS (Rabinovici et al., 1993).  

The anti-inflammatory response is noted with a rise in IL-10 and IL-1ra 

(interleukin 1- receptor antagonist), both of which inhibit the production of 

monocytes/macrophage-derived TNFα, IL-6 and IL-8 (Tsukamoto et al., 2010).  

In animal septic peritonitis models, administration of IL-10 was found to improve 

the survival rate (Marchant et al., 1994). Pajkrt et al. found that the release of 

pro-inflammatory cytokines and neutrophils was reduced by the administration of 

IL-10 to healthy male volunteers (Pajkrt et al., 1997).  Clinically, higher IL-10 

levels have been measured in those patients that who where hypotensive on 

admission and found to correlated with the development of sepsis (Sherry et al., 

1996).  This suggests that levels could be used as an indicator of severity.   

 

Along with the cytokine production, the complement system is also activated 

which are pro-inflammatory peptides that help with chemotaxis of leucocytes, 

degranulation of phagocytic cells and an increase vascular permeability.  The 

levels of C3 and C3a (two pro-inflammatory peptides) were found to rise 

immediately after trauma and the levels were related to severity of injury and 

mortality after trauma (Sharma et al., 2004).  
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The humoral modulators appear to play a significant role in the pathophysiology 

of coagulopathy of trauma (see section 3.7.2). 

 

Cellular Effectors of the Response after Trauma 

The cells that act in response to these mediators include the neutrophils, 

leucocytes, monocytes and macrophages all, of which are activated after trauma 

(Pillay et al., 2007).  Activated polymorphonuclear neutrophils (PMNs) are 

recruited to the site of injury by IL-8, and this provokes the up-regulation of 

adhesion molecules on the endothelial and epithelial cells causing damage, 

leading to permeability of the vessels, cell swelling and dysfunction.  The 

activated PMNs degranulate and release further pro-inflammatory cytokines, 

oxygen radicals, NO and proteases (Tsukamoto et al., 2010).  This heightened 

status of the inflammatory process is a fine balance between pro- and the anti-

inflammatory processes which can be easily destroyed by the onset of a second 

‘insult’ such as an ischaemic/reperfusion injury, undergoing surgery or the onset 

of infection (Partrick et al., 1996).   

 

An ischaemic/reperfusion injury results in a change from aerobic to anaerobic 

metabolism at a cellular level and this resultant disturbance of the cell membrane 

causes an increase in permeability and cell swelling.  The reperfusion stage is 

more important for secondary tissue damage and organ dysfunction as oxygen is 

reintroduced.  The oxygen reacts with hypoxanthine, a product of anaerobic 

metabolism to create a superoxide anion (O2
-), which then forms hydrogen 

peroxide and then gives rise to the hydroxyl radicals (OH-).  These, along with 

other reactive oxygen species (ROS) released from the PMNs, cause 

peroxidation of cellular membranes leading to cellular necrosis and possible cell 

apoptosis (Nathan and Singer, 2000).  All this injury occurring at cellular level 

leads to cellular swelling and disruption of inter-cellular adhesion. The cellular 

swelling of the endothelium results in relative narrowing of the capillary lumen 

and this reduces blood flow.  The inter-cellular destruction produces ‘leaky 

capillaries’ allowing a net movement of fluid out of the intravascular space into 

the interstitium taking vital plasma and proteins with it, compounding the insult.  
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Overall there is a loss of intravascular volume and a drop in the SVR (Tsukamoto 

et al., 2010). 

 

The antigen-presenting cells (which include the T-cells, neutrophils and 

macrophages) are activated by endogenous danger signals.  These signals are 

made by damage-associated molecular patterns including the pro-inflammatory 

cytokine called high mobility group box 1 (HMGB1).  Recent studies have shown 

the importance in HMGB1, especially in the development of sepsis being 

released by macrophages and damaged cells and also as a mediator of 

inflammation in trauma/haemorrhagic shock by leading to both epithelial and gut 

barrier dysfunction (Ombrellino et al., 1999; Goldstein et al., 2006; Wang et al., 

2004; Tsukamoto et al., 2010). Antibodies that neutralise HGMB1 actions appear 

to protect against damage and tissue injury in arthritis and thus future work 

directed towards the HMGB1 may help alter this crucial step in the inflammatory 

process (Yang and Tracey, 2010).   

 

The last area to mention when discussing the effect of haemorrhage, tissue injury 

and inflammation is the gut mucosa.  As discussed in section 2.2.1, haemorrhage 

and tissue injury result in regional diversion of blood flow being mainly diverted 

away from the splanchnic bed.  This reduced gut flow can lead to ischaemia and 

mucosal damage, with essentially an ischaemic/reperfusion injury (Offner and 

Moore, 2000).  This insult results in an increase in intestinal permeability allowing 

bacterial overgrowth, and also bacterial translocation; this has been postulated 

as a common pathway to MOF (Balzan et al., 2007), however there is no clear 

evidence for this.  Deitch (2002) proposed that with the loss of the gut barrier, the 

intestinal bacteria and endotoxin would cross into the circulation.  The majority of 

these translocating bacteria are phagocytosed by intestinal inflammatory cells but 

the toxins that are released could contribute to the development of SIRS.  Rodent 

models have shown that this bacterial translocation occurs and is associated with 

sepsis (Senthil et al., 2007). Immunofluorescence studies were used to study 

breakdown products of translocated organisms and it was found that bacteria did 

translocate as the mesenteric lymph nodes were positive; but this may not 
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correlate with a clinical septic episode (Reed et al., 1994).   

 

The inflammatory responses are an essential part of the response to trauma and 

establishing an understanding of the both the mechanism and sequelae may help 

our resuscitation strategies and avoidance of hypoperfusion.  Adequate 

resuscitation goes beyond just restoring blood pressure and urine output and 

future directions should look at the ‘whole’ patient (Foex, 1999).  
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2.2 The Fundamentals of Blast.  

 

It is necessary when investigating military trauma to understand the 

fundamentals of blast.  An explosion is a violent phenomenon during which a 

sudden, large amount of energy is transmitted outwards after detonation.  When 

the explosive detonates it generates an extremely rapid (effectively 

instantaneous) increase in pressure in the immediate vicinity of the explosion.  

This energy is transmitted to the surrounding medium (usually air) transferring 

the high pressure as a wave outwards faster than the speed of sound from the 

site of the explosion.  This rapidly propagating pressure is called the ‘blast 

wave’ and comprises of two components: the ‘shock wave’ (or the static 

overpressure) and the ‘blast wind’ (or the dynamic pressure). (Maynard and 

Cooper, 1988; Stuhmiller et al., 1997; Kirkman et al., 2010).      

 

The shock wave initially comprises of a peak, the static overpressure, which 

lasts a very short time (thousands of a second) and is followed by a rapid, 

exponential fall back to and below the ambient (atmospheric) pressure.  This 

curve is called the Friedlander wave form.  The magnitude of the peak 

overpressure falls as it travels away from the site of the explosion), initially by an 

inverse cube relation (doubling the distance reduces the pressure to one-eighth).  

This is shown schematically in Figure 2 (A and B) below. (Cullis, 2001; Kirkman 

et al., 2010). 

Because the shock wave is a very brief event with conventional explosives it 

does not cause an object or person to move any great distance (this is not the 

part of the explosion that ‘throws things around’).  Fragments (of the munition 

casing and pre-formed fragments contained within the device) and surrounding 

debris energized by the explosion are propelled outwards and can collide with the 

target causing significant injury. 
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Figure 2 (A): Schematic representation of a shock of pressure magnitude vs time 
showing the Friedlander Waveform pressure changes in a undisturbed, free field 
environment. 
 

 

Figure 2 (B) – Schematic graph of pressure vs distance from point of detonation 
(Reproduced with the permission of Kirkman et al., 2010) 
 

 

The ‘blast wind’ results from the explosion giving rise to large volume of hot gas 

which is pushed out as a high-speed wind (the dynamic pressure) driving air and 

debris outwards.  This creates more projectile hazard and will physically displace 

both people and objects. 

The magnitude of damage due to the blast wave is dependent on the peak of the 

initial positive pressure wave as this pressure couples with the body.  Pressure 

changes of 60-80 psi are potentially lethal (Born, 2005).  Injuries are also 

dependent on the distance from source of blast and also the degree of openness 

of the surroundings – the effectiveness of the shock wave to cause injury rapidly 
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decays in open spaces but not so in ‘closed’ buildings or underwater where the 

reflection of the wave off surfaces compounds and enhances the destructive 

potential (Champion et al, 2009).  In a 1996 Israeli study, there was a 8% 

mortality rate with open-air bombings but this rose to 49% in a closed-space bus 

environment (Leibovici et al, 2006).  The heat released in the explosion will also 

cause significant injury to those closest to the epicentre. 

This understanding of the fundamentals of blast helps explain how the injuries 

from exposure to an explosion are classified.  

 

2.2.1  Classification of Blast Injuries. 

In 1940, Zuckerman classified blast injuries in his paper in the Lancet 

(Zuckerman, 1940) and the basis of this is still used today (Horrocks, 2001, 

Champion et al, 2009).  He described four classes of blast injury; primary, 

secondary, tertiary and quaternary and now there is a fifth category to 

encompass specific additives such as bacteria and radiation (US Department of 

Defence Directive, 2006).  The mechanisms of these injuries in each 

classification are shown in Table 1.   

 

Primary Blast Injury (PBI) occurs when the shock wave interacts with the body 

and the energy is transferred directly from the transmitting medium (air or water) 

to the body.  Injury occurs in the auditory and gas-containing structures of the 

respiratory and gastrointestinal tracts injury because energy is predominantly 

deposited when the shock wave encounters a border between a dense and a 

less dense medium and it is the deposition of energy that causes tissue 

damage.  Thus, when the shock wave attempts to cross from tissue (which is 

predominantly water) to pockets of gas such as those found in the alveoli or 

small airways in the lungs and gas-filled areas in the bowel, energy is deposited 

and tissue is damaged with resultant contusion and other forms of damage 

(Guy et al, 1998).  Solid organs, including the skin are more resistant to the 

blast wave and thus patients may display little evidence of trauma (Williams, 

1942; Horrocks, 2001).  Although currently used body armour protects military 

personnel from most ballistic projectiles to the torso, it offers little protection 

against the barotraumas of PBI (Mellor and Cooper, 1989).   
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Type of Blast Injury Mechanism of Injury 

PRIMARY Blast overpressure injury resulting in direct tissue damage 

from the shock wave coupling into the body.   

SECONDARY  Injury produced by primary fragments originating from the 

exploding device (preformed and natural (unformed) 

casing fragments, and other projectiles deliberately 

introduced into the device to enhance the fragment 

threat); and secondary fragments, which are projectiles 

from the environment (debris, vehicular metal, etc.). 

TERTIARY Physical displacement of the body or part of body by the 

blast overpressure causing acceleration/deceleration to 

the body or its parts.  Includes structural collapse of 

buildings. 

QUATERNARY Miscellaneous collection of injuries including burns, 

inhalational injury and the psychological effects of the 

explosion. 

QUINARY Clinical consequences of “post detonation environmental 

contaminants” including bacteria, radiation (dirty bombs). 

Table 1:  Modified Zuckerman’s Classification of Blast Injury, (Champion 2009) 

 

PBI predominantly affects the air-containing organs; namely the auditory system, 

the respiratory system, the gut and the eye.  The tympanic membrane is structure 

most frequently injured and at the lowest pressures (Zuckerman, 1940; DePalma 

et al, 2005).  An increase in pressure of as little as 5 psi above atmospheric 

pressure can rupture the human eardrum (Jensen and Bonding, 1993).  A recent 

study of PBI in US forces between 2003 and 2006 showed that 71% of military 

injured personnel were injured by an explosion and 9% of those suffered 

tympanic membrane rupture (TMR) (Ritenour et al., 2010).  In reports from 

explosions in confined spaces, such as the Madrid train bomb, 41% of all victims 
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suffered TMR with 67% of those being the most critically injured (Gutierrez de 

Caballos et al, 2005).   

 

The lung is the second most susceptible organ to PBI.  “Blast lung” is a clinical 

diagnosis characterised by dyspnoea, progressive hypoxia, haemoptysis and 

haemodynamic instability. Associated pathology may include pneumothoraces, 

haemothoraces, air emboli and pneumomediastinum and the possible later 

development of subsequent adult respiratory distress syndrome (Coppel, 1976; 

Cooper et al 1983; Phillips, 1986; Irwin et al., 1997).  The transient high intra-

thoracic pressure that results when the shock wave hits the chest wall leads to 

tearing of alveoli septae, stripping of airway epithelium and severe alveolar over-

distension with rupture of alveolar spaces, alveolar haemorrhage, oedema and 

formation of alveolovenous fistulae (Argyros, 1997; Tsokos et al., 2003; Avidan et 

al, 2005).   

 

PBI results in a characteristic triad cardio-respiratory response of hypotension, 

bradycardia and apnoea; mediated in large part by the autonomic nervous 

system (Irwin et al., 1997; Guy et al., 1998).  This has been documented in the 

literature from the first world war through to contemporary events, where a 

subgroup of survivors from the Oklahoma City bombing in 1995 were noted to 

be persistently hypotensive, despite having had suffered no other obvious 

injuries (Irwin et al, 1997). The bradycardia and apnoea that occur immediately 

after blast result from a vagal stimulation from the pulmonary afferent C-fibres 

which is activated by an increase in pulmonary interstitial volume or pressure 

(Daly and Kirkman, 1988; Guy et al., 1998; Ohnishi et al., 2001). 

 

The colon is the abdominal viscera most frequently affected by PBI (Irwin et al, 

1999), but mesenteric ischaemia and subsequent infarct can lead to delayed 

complications.  Injuries to the eye include rupture of the globe, serous retinitis 

and hyphema (DePalma et al, 2005). 
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Secondary Blast Injury is the cause of the majority of casualties in a free field 

(outdoors) and is caused by the impact of fragments and debris (Wade et al, 

2008).  The resulting array of both penetrating and non-penetrating injuries will 

often result in haemorrhage (Cooper et al., 1983).  The response to 

haemorrhage has already been described, but it has been demonstrated that 

blast augments the second, depressor phase of bradycardia and hypotension.  

The exact mechanism of this augmentation is not clear, although it has been 

postulated that it could be that blast inhibits the initial baroreflex or it augments 

the second hypotensive phase (Sawdon et al., 2002).   

 

Tertiary Blast Injury results from the acceleration of the whole body or parts of 

the body by the blast wave causing translational impacts of the body with the 

ground or other fixed objects causing classical blunt injuries.  In the more 

severe cases it results in traumatic amputation of body parts and stripping of 

tissue.  This group also encompasses crush injuries that result from the 

collapse of buildings that occurs from the blast wind. 

 

Quaternary Blast Injury is a miscellaneous collection of other injuries that can 

result from the blast.  This includes flash burns, caused by the radiant and 

convective heat of the explosion and burns caused by the combustion of the 

environment.  It encompasses the effects of noxious gases released in 

restricted spaces e.g. carbon monoxide or benzenes/potassium perchlorate as 

documented in WW1 (Laure, 1993).  Psychological effects that result from 

involvement within this group are also grouped under this heading. 

 

Quinary Blast Injury describes injuries that are produced when bacteria or 

radiation are added to explosive device and released on detonation (Champion 

et al. 2009).     
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2.2.2  Physiological Sequelae to Blast and Haemorrhage. 

Blast injuries involve both haemorrhage and tissue damage and therefore the 

reflexes described earlier would explain the expected response to a blast.  Initial 

work in Durham (Sawdon et al., 2002) studied rats that were exposed to blast, 

followed by a controlled haemorrhage of 40% of their blood volume.  The rats 

that underwent sham blast and haemorrhage displayed the expected biphasic 

response as described with the initial tachycardia followed by bradycardia.  

However, the animals exposed to blast followed by the haemorrhage (after 10 

minutes) gave a different result profile.  The blast resulted in an immediate drop 

in their heart rates and blood pressures, and after haemorrhage they failed to 

elicit the compensatory initial tachycardia.  Bradycardia ensued from the onset 

of the haemorrhage and there was no compensatory maintenance of the blood 

pressure.  The authors concluded that coupling of the blast shock wave 

modified the physiological responses to haemorrhage with loss of the initial 

compensatory phase and augmentation of the second, depressor phase.   

 

Impairment of pulmonary gas exchange is usual after blast (Damon et al, 1971, 

Avidan et al., 2005).  When the blast is combined with haemorrhage (which 

invariably happens with secondary and tertiary injuries) there is a grossly 

reduced tissue oxygen delivery resulting in a poor outcome (Parry et al 2005; 

Garner et al, 2010).   

 

Oxygen delivery is the product of two factors: the oxygen content of arterial 

blood and the amount of blood perfusing the organs – Equation 1.    

 

Equation1: Relationship between whole body oxygen delivery (DO2), arterial oxygen content 

(CaO2) and cardiac output (CO). (Little and Edwards, 1993) 

 

Arterial oxygen content is dependent on both the concentration of haemoglobin 

in blood and the degree of saturation of haemoglobin with oxygen, as shown in 

Equation 2. 

DO2 = CaO2 x CO 
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Equation 2:  Relationship between arterial oxygen content (CaO2), Haemoglobin concentration 

[Hb] and arterial saturation with oxygen (SaO2).(Little and Edwards, 1993). 

 

As cardiac output declines in haemorrhage, whole body oxygen consumption is 

maintained despite the reduction in oxygen delivery by an increase in oxygen 

extraction from the blood.  The end result is maintenance of oxygen 

consumption at the expense of a reduced mixed venous oxygen concentration 

(Rady et al., 1991). 

This situation cannot continue indefinitely and eventually oxygen delivery falls 

below a level that can be compensated for by an increase in extraction.  In blast 

injury, with lung compromise, a reduction in arterial oxygen content compounds 

the problem and the victim reaches the point of inadequate oxygen delivery with 

a smaller reduction in blood flow.  Shock states can therefore be more profound 

with combined blast and haemorrhage.  This in turn leads to greater cellular 

damage, leakage from the capillary bed and a downward spiral would ensue.  

Therefore during the resuscitation of any blast patient, it becomes even more 

pertinent to bear all these facts in mind.  

In the medium term, you would expect the sequelae of poor tissue oxygen 

delivery to impair clotting as has been described in non-blast trauma victims by 

Brohi et al (2007).  However, recent evidence suggests that the immediate 

effect of blast (probably before the effects of tissue hypoperfusion have had 

opportunity to manifest) there is evidence of an ultra early hypercoagulable 

state after blast exposure (Harrisson et al, 2008).  The aetiology of this 

hypercoagulation is currently unknown but may be related to blast-induced 

tissue damage. Chapter 3 will explore the haemostatic process further but it 

could be postulated from this that blast injured patients may be therefore be 

more resistant to developing coagulopathy after trauma. The mechanism of 

haemostasis, the methods employed to test the coagulation status and the 

understanding behind the coagulopathy associated in trauma is explored in the 

following chapter. 

CaO2 = [Hb] x SaO2 x 1.34 
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Chapter 3: COAGULATION: Mechanism of coagulation, methods 

of testing and trauma-induced coagulopathy. 

 

Simmons reported from a US Army Military Hospital in Vietnam that 8% of 

patients were coagulopathic on arrival and was correlated closely to the degree 

of shock (Simmons et al., 1969).  The link between trauma and coagulopathy 

has come to the fore over the past decade following a seminal paper from the 

Royal London Hospital that was published in 2003. Their work found that 24% 

of trauma patients presenting to the Accident & Emergency (A&E) were 

coagulopathic on arrival and this group had a significantly higher rate of 

mortality, 46% vs 11% when compared to those who were not coagulopathic at 

the same time point (Brohi et al., 2003).  There has been a significant amount of 

research since then into the understanding of the pathophysiology that causes 

this trauma-induced coagulopathy (TIC), which test to use to evaluate it, and 

how to manage it.   This chapter will discuss the mechanisms of coagulation, 

examine the clinical tests available to assess the coagulation status in patients 

and experimental studies and finally, review the evidence of TIC and its 

pathophysiology.  

 

 

3.1  Mechanism of Coagulation  

The normal haemostatic response to injury that results in vascular damage 

comprises of a series of complex positive and negative feedback loops between 

the blood vessel wall, circulating platelets and blood coagulation factors 

(Kembell-Cook et al., 2005). Simply, haemostasis requires the formation of an 

impermeable platelet and fibrin plug at the site of injury, alongside which are 

powerful procoagulant substances working to ensure the process is localised to 

that site.  These interactions are listed in the simplified diagram below (figure 3).   
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Figure 3:  Simplified diagram to outline the coagulation process that occurs after 

vessel injury with the vasoconstriction, platelet activation and activation of the blood 

coagulation cascade.  The platelet activation is the key to the overall process (modified 

from Hoffbrand et al, 2006). 
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Each step is crucial and all are interlinked: circulating platelets are recruited to 

the site of injury and along with the coagulation cascade initiated by tissue 

factor culminates in the generation of thrombin and fibrin (Furie and Furie, 

2008). 

The function of platelets, including structure and mechanism of action, tissue 

factor, the clotting cascade and finally fibrinolysis is described in the sections 

below.   

 

3.2 Platelets 

Alfred Domé in 1842 described the presence of circulating globules viewed under 

the newly developed microscope (Domé, 1842), however it was Hayem in 1885 

who first described the platelets acting as plugs for stemming blood loss after 

injury to the vessel (Hayem, 1885).  The haemopoietic stem cell differentiates 

into a number of cell-lines including megakaryocytes which fragments to form 

platelets (each megakaryocyte creates 1-5000 platelets).  Development takes 

approximately 10 days and the average life span is 7-10 days. The normal 

platelet count is approx 250 x 109/L (range 150-400) (Hoffbrand et al., 2006).    

 

3.2.1 Platelet Structure 

The platelet is 3-5µm and a schematic diagram is shown in Figure 4.  The 

glycocalyx or glycoprotein coat is vital for adhesion and aggregation in the 

platelet plug.  The plasma membrane invaginates to form an open canalicular 

system (OCS) that provides a large surface area to allow the absorption of the 

plasma coagulation proteins.  The plasma membrane and the OCS combine to 

form the platelet phospholipid, a platform that is an essential for platelet 

function.   The platelet contains three main storage granules: 

1. Electron Dense Granule – contains adenosine diphosphate (ADP)/ adenosine 

triphosphate (ATP), 5-hydroxytryptamine (5-HT) and calcium (Ca2+). 

2.  -Granule – contains fibrinogen, factor V and von-Willebrand factor. 

3.  Lysosome – contains hydrolytic enzymes and peroxisomes.  These contents 

are discharged into the OCS.  There are high levels of calcium within the tubular 

system in the platelet and it is this Ca2+ that is essential for aggregation and 



 
27 

adhesion (Hoffbrand, 2006).   

Von-Willebrand Factor (vWF) is a large multimeric glycoprotein and has a key 

role in platelet function.  It is synthesised by endothelial cells and 

megakaryocytes and continually released into the blood plasma.   

 

 

 

 

⃰ 

 

 

 

 

 
 
Figure 4. Schematic diagram and EM illustration of the ultra-structure of the platelet.    

* The plasma membrane invaginates to form the open canalicular system (OCS) and 

provides the phospholipid surface that is essential for function.  (Modified from Semple 
et al., 2011). 
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3.2.2. Platelet Function 

 Platelets have numerous complex functions including haemostasis, thrombosis 

and inflammation, however in the context of haemostasis, a number of steps 

occur for platelets to carry out their role.  The steps that occur are: 

1. Platelet Activation and Adhesion 

2.  Platelet Aggregation 

3.  Secretion 

4.  Clot Retraction 

The platelet adhesion and aggregation help establish the haemostatic plug.  

The secretion phase occurs at the platelet phospholipid membrane to provide 

the platform for protease activation which leads to the formation of thrombin 

(Kembell-Cook et al., 2005).   

 

Platelet Activation and Adhesion. 

Following blood vessel damage, the platelets adhere to the exposed 

subendothelial matrix proteins via adhesive gylcoproteins (GP) present on the 

glycocalyx (Furie and Furie, 2008).  Exactly how they adhere is dependent on the 

rate of shear in the vessel.  In arterioles, where shear is intermediate to high, the 

adhesion is completely dependent on von Willebrand factor and a GP complex.  

This initiates platelet rolling in the direction of the blood flow with exposed vWF 

activating other GP receptors, these latter interactions are much stronger.  In 

areas of low shear, as in the venous circulation, adhesion can occur directly to 

other subendothelial proteins such as collagen and fibrinogen.  vWF, present in 

plasma and in the -granules, is exposed on the surface of the thrombus helps 

recruit further platelets (Savage et al., 1998, Davenport and Brohi, 2009).    

 

During activation, platelets become spherical and extend pseudophilia to allow 

attachment of other platelets and to the vessel.  The “shape change” pushes the 

granules and organelles into the centre of the platelet body, and allows the 

granules to be then secreted via the OCS (Hoffbrand et al, 2006).  A critical 

function of platelet activation is to provide a negatively charged phospholipid 
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surface for the assembly of the protease complexes, ‘tenase’ and 

‘prothrombinase’, which form a vital part of the coagulation cascade (refer to 

section 3.4) (Heemskerk et al., 2002).   

Referring back to Figure 1, platelet activation in combination with the clotting 

cascade results in a large amount of thrombin being produced in the vicinity of 

the platelet surface, which converts fibrinogen to fibrin and further enhances 

platelet activity.  However, the thrombin also diffuses to the intact endothelial 

cells where it binds to thrombomodulin and activates Protein C (bound to 

Endothelial Cell Protein C receptor – EPCR).  The activated protein C (APC) 

interacts with a surface protein of the activated platelets to prevent assembly of 

the above complexes by cleaving FVa and FVIIIa (section 3.5.1).  Therefore 

platelet surface reactions both promote and limit the cascade process. 

 

Platelet Aggregation 

This is cross-linking of platelets through binding of fibrinogen and other ligands 

to the GP coat.  This number of active GP increases significantly following 

fusion of the -granules with the plasma membrane.  Upon activation, receptor 

signalling causes the GP to undergo a conformational change that increases its 

affinity for fibrinogen, VWF and other ligands.  A rise in calcium aids this 

process (Varga-Sazbo D et al, 2008). 

Secretion  

Primary activation of the platelet leads to the release of its granules.  The ADP 

from the dense granules has an important role in a positive feedback for 

promotion of platelet activation.  Release of the vWF from the -granule is critical 

for normal thrombus formation at intermediate and high flow rates.  The -

granules also contain clotting factors V, VIII, Protein S and plasminogen activator 

inhibitor (PAI).  

Platelet activation also results in the formation of platelet microparticles (PMPs) 

which are membrane vesicles ranging in size from 0.1 to 1.0µm.  These particles 

were first described by Wolf in 1967 as procoagulant ‘dust’ found around 

activated platelets (Wolf, 1967).  The exact function of these particles is only now 

being understood as potent vectors of biological information and protagonists of 
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an intercellular communication network (Mause and Weber, 2010).  The PMPs 

rely on the anionic phospholipid phosphatidylserine which becomes accessible 

on the platelet plasma membrane after remodelling that is a result of initial 

stimulation.   In turn, the PMPs promote the assembly of both procoagulant and 

protein C anticoagulant enzyme complexes acting as a ‘checkpoint’ between the 

haemostatic and thrombotic responses (Morel et al., 2008; Davenport and Brohi, 

2009).  The presence of PMPs, in the presence of activated TF, stimulates the 

velocity of thrombin generation up 15-fold when compared to synthetic 

phospholipids (Keuren et al., 2006).  P-selectin (a cell adhesion molecule – CAM) 

acts as the mechanism for transfer of microparticles between platelets and 

monocytes and appears to contribute to additional localised thrombin production 

(Breimo and Osterud., 2005). 

Clot Retraction 

Platelet activation and aggregation results in a plug that is large enough to 

cover the area of endothelial injury.  The platelets at this stage are completely 

degranulated and adherent to each other.  Retraction occurs by linkage of the 

GP coat and surface fibrin (Kembell-Cook et al., 2005).  

 

3.3 Tissue Factor 

Tissue factor (TF) is a membrane-bound glycoprotein, predominantly present in 

the subendothelial tissue that is expressed or exposed at sites of vascular injury 

and is essential for haemostasis (Kretz et al., 2010).  TF is also found in the α-

granules and the open canalicular system of resting platelets and is expressed 

in PMPs, when the platelet is activated. A small amount of TF is expressed on 

the plasma membrane of many cells that are not exposed to blood and acts as 

a receptor for Factor VII and Factor VIIa and is required for the initiation of 

blood coagulation.  It has been shown that the inactivation of the mouse TF 

gene resulted in embryonic lethality (Carmeliet et al., 1996; Toomey et al., 

1996).  TF exerts its effects when the integrity of the vessel is disrupted and 

when an adequate TF challenge is presented, a full coagulant response follows; 

if the TF challenge is insufficient, the procoagulant response is arrested by the 

synergistic activities of the TF pathway inhibitor (TFPI), Antithrombin and the 

protein C pathway (Butenas et al., 2009).  TF bearing cells, that present the TF 

that becomes activated, includes endothelial cells, smooth muscle cells, 
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fibroblasts, leucocytes and macrophages (Ovanesov et al., 2005).  A small 

reservoir of circulating or ‘blood-borne’ TF has been detected, disseminated by 

vascular cells and monocytes derived microparticles (Giesen et al., 1999). An 

accepted understanding is that this circulating TF is incorporated into thrombotic 

clots at the periphery and participates in its growth (Hathcock et al., 2004; 

Hoffman et al., 2006).  Nemerson and colleagues showed that the ‘blood-borne’ 

or ‘circulating’ TF existed in healthy individuals that was found to enhance 

thrombosis in an ex-vivo model (Giesen et al., 1999).  However, other work has 

shown that circulating TF in healthy individuals is extremely low and unlikely to 

contribute to clotting although it is felt that future work with increasing validity of 

assays would provide more answers (Butenas et al., 2009).   

3.3.1 Microparticles 

 Microparticles (MPs) are present in the blood of healthy individuals and are 

increased in various diseases, including cardiovascular disease, sepsis and 

cancer (Morel et al., 2006; Burnier et al., 2009).  These are small membrane 

‘blebs’ or vesicles that are released from cell surfaces by proteolytic cleavage of 

the cytoskeleton.  They have a number of functions including mediation of cell-

cell communication by transferring a cargo of cell surface receptors, mRNAs 

and microRNAs, from the cell of origin to target cells (Mause and Weber, 2010).  

They are also procoagulant by providing a surface for assembly of components 

of the coagulation protease cascade.  Their procoagulant activity is increased 

by presence of two phospholipids, phosphatidylserine (PS) and TF.  In cancer, 

PS+, TF+ MPs are derived from tumours and may be a useful biomarker to 

identify patients at risk for venous thrombosis (Owens and Mackman, 2011). 

This is an area of research in both healthy and disease states.     

 

3.4 The Coagulation Cascade 

The historical “waterfall or cascade” model of coagulation, proposed by 

McFarland, Davie and Ratnoff in 1964 (Davie, 2003) has been superseded by a 

cell-based system where platelets amplify the haemostatic process allowing the 

propagation of coagulation to occur effectively (Hoffman, 2001; Monroe et al., 

2006).  The cascade model described each clotting factor as proenzymes (and 
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cofactors), which were converted to an active enzyme in a series of sequential 

steps.  Whilst separating the process into the two classical pathways of intrinsic 

and extrinsic, this only related to the clotting factors present in plasma and did 

not adequately refer to the haemostatic process with cellular interaction that 

occurs in vivo (Hoffman et al., 2001 & 2005; Becker, 2005; Furie and Furie, 

2008).  The cascade model could not explain why if one arm (for example the 

intrinsic) pathway were intact, why did a deficiency of FVIII cause a bleeding 

tendency, but those with FXII deficiency did not (Hoffman 2005) and why clots 

don’t constantly form from the circulating factors?  The cell based theory was 

proposed by Hoffman et al (2001) and has gained acceptance as it addresses 

the aspects of the complete haemostatic process that were unexplained by the 

cascade model.  The cell based theory incorporates the role of cells, and in 

particular platelets, integrated into the dynamic vascular system where 

haemostasis occurs with activated components, and TF is crucial (Smith, 2009).  

This can be visualised by referring back to the simplistic diagram (Figure 3) that 

highlights that both the humoral and cellular components of coagulation are 

required.   

 

The complex interactions that lead to the formation of thrombin occurs in distinct 

but overlapping steps: INITIATION for generation of small amounts of thrombin 

(picomolar concentrations); AMPLIFICATION where the thrombin promotes 

activation of the platelets and coagulation factors V, VIII and FXI (Oliver et al., 

2002); and finally PROPAGATION which produces a burst of thrombin and fibrin 

formation that generates the clot (Monroe and Hoffman, 2006).   

 

3.4.1 Initiation 

The vessel wall is lined with endothelium and when the wall is breached, TF is 

exposed.  The TF binds with the circulating plasma factor VIIa (approximately 1-

2% of circulating FVII is active but only expresses proteolytic ability when it 

binds to TF).  As illustrated in figure 5, this complex then activates small 

amounts of factors X and IX.  The activated factor X, Xa, in turn activates the 

cofactor V to form Va, a prothrombinase assembly (Monroe et al., 1996).  This 

generates the formation of Thrombin (Factor IIa) from Prothrombin (Factor II). 

This stage has also been called the TENASE stage (Heemskerk et al., 2002).  
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When Xa dissociates from the TF-bearing cell, it is rapidly inhibited by two 

inhibitors: TF pathway inhibitor (TFPI) or antithrombin (AT) (Kembell-Cook et 

al., 2005). This inhibition of Xa localises its action on the tissue bearing cells at 

this stage in the clotting process since appreciable amounts cannot diffuse 

away from the tissue factor bearing cell to influence neighbouring cells and 

platelets.   

 

 

Figure 5:  Schematic diagram of the initation phase (TENASE stage) which occurs when 

Tissue Factor (TF) is exposed.  The initation phase is quickly turned off by two inhibitors: 

TFPI (Tissue Factor Pathway Inhibitor) and AT (Antithrombin). Part of the process to 

prevent unchecked thrombosis (diagram modified from Smith, 2009). 

 

3.4.2 Amplification 

The small amount of thrombin generated on the TF-bearing cells has two 

functions; firstly to activate the platelets and secondly to further activate 

cofactors V and VIII (Alberio and Dale, 1999).   Platelet activation by thrombin 

results in shape change of the platelet allowing the formation of the platelet 

phospholipid creating the procoagulant membrane surface.  The activation also 

releases the platelet α- and dense-granules allowing the contents necessary for 

thrombus formation.  The activated platelet releases factor V onto the surface 

and this in turn is activated by the thrombin.  Factor XI and VIII are also 

activated (XIa and VIIIa respectively).  The FVIIIa cleaves vWF which mediates 

additional platelet adhesion and aggregation at the site of the injury.  This 

process is amplified by the presence of Ca2+ (Furie and Furie, 2008; Smith, 

2009). This has been described as the PROTHROMBINASE stage and the 
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further activation of platelets allows an increase in platelet adhesion.  

Amplification is illustrated in figure 6. 

 

 

Figure 6: Schematic diagram of amplification showing how Thrombin (IIa) activates the 

platelet, factor V, VIII and XI. The Prothrombinase stage. (diagram modified from Smith, 

2009) 

 

3.4.3 Propagation 

This final stage occurs on the surface of the activated platelet and results in an 

explosion of thrombin.  Factor IXa, which was activated in the initiation phase by 

the TF:FVIIa complex, binds with VIIIa on the platelet surface, and this complex 

in turn binds with X on the activated platelet to form Xa (Monroe and Hoffman, 

2006). Additional IXa can be activated on the surface of the platelet by the 

action of platelet-bound XIa.  This Xa binds with Va and Ca2+ on the platelet and 

this in turn cleaves prothrombin (II) to thrombin (IIa), as shown in figure 7.  This 

prothrombinase activity results in a burst of thrombin generation.  The thrombin 

hydrolyses fibrinogen into two fibrin monomers, which links with Hydrogen 

bonds (H-bonds) to form an insoluble fibrin polymer.  Activated factor XIII 

stabilises the fibrin polymers (Lorand, 2001). 
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Figure 7:  Schematic diagram of Propagation - Thrombin explosion that occurs when 

FXa and Va convert Prothrombin (II) to Thrombin (IIa) (diagram modified from Smith, 

2009). 

 

3.5 Physiological Limitations of Blood Coagulation 

A delicate balance must be kept after injury to ensure that an efficient clot is 

formed but to prevent this extending that could lead to complete vascular 

occlusion.  Two main mechanisms exist to help localise the clot: plasma 

protease inhibitors and a pathway to destroy activated factors, namely FVa and 

VIIIa (Hoffbrand et al., 2006).   

Two of the first group of plasma protease inhibitors are Tissue Factor Pathway 

Inhibitor (TFPI) and Antithrombin (AT) which stop the initiation phase, thus 

preventing the continuous stimulation of the amplification phase, as described 

previously. (Figure 5).  Any factor that diffuses away from the area of cellular 

damage is rapidly inhibited (Monroe and Hoffman, 2006).   

The second mechanism, the protein C pathway, prevents propagation of the 

coagulation on healthy intact endothelium and is described below.   

 

3.5.1 The Protein C Pathway       

This is the pathway designed to prevent FVa and FVIIIa from continually driving 

the formation of thrombin.  The mechanism is outlined in Figure 8.   

Thrombin (factor IIa) 

Explosion 



 
36 

 

Figure 8:  Schematic diagram of formation of the Thrombin/Thrombomodulin (TM) 

complex and its subsequent activation of Protein C.  The TM complex promotes the 

EPCR (Endothelial Protein C Receptor) which presents the Protein C. This stimulates 

Tissue Plasminogin Activator Inhibitor (t-PAI) which inhibits fibrinolysis (section 3.5.2) 

Red arrows indicate inhibition. (Modified from Hoffbrand et al., 2006).   

 

Protein C is a Vitamin-K dependent glycol-protein and plays a regulating role in 

coagulation, inflammation, cell death and vessel permeability (Mosnier et al., 

2007).  The thrombin formed by the coagulation cascade binds with 

thrombomodulin (TM) which is an integral transmembrane receptor on the 

endothelial cell and is present in all body tissues.  The binding of thrombin helps 

‘mop up’ excess thrombin and therefore is no longer available to cleave 

fibrinogen. This TM-thrombin complex also activates the Protein C that is 

localised on the surface, held there by its receptor - Endothelial Protein C 

Receptor (EPCR).  This Activated Protein C (APC) destroys the active factors 

VIII and V by protein cleavage (Jakubowski and Owen, 1989).  This process is 

enhanced by Protein S, a cofactor to Protein C by helping to bind the APC to 

the platelet, and Protein S is thought to act synergistically with Protein C 

(Hoffman et al 2003).   Although it is widely believed that the activated protein C 

(APC) terminates thrombin generation on the activated platelets and endothelial 
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site of action may be more important under normal circumstances since 

APC/Protein S is much more efficient in inactivating factor Va on the surface of 

endothelial cells than on the surface of platelets (Oliver et al 1999).  Therefore, 

some authorities believe that the primary role of APC/Protein S is to prevent the 

generation of thrombin on healthy endothelial cells, thereby contributing to the 

restriction of thrombin generation to the immediate area of an injury (Hoffman et 

al 2003).  While this is likely to be true under conditions of normal clotting it is 

also possible that under the extreme conditions seen in the very severely 

injured, a role of APC/Protein S acting via platelets may become important.  

 

In addition to anticoagulation, APC also plays an important role in clot 

breakdown (fibrinolysis) by inactivating the inhibitor Tissue Plasminogen 

Activator Inhibitor (t-PAI or PAI-1).  This allows the enhancement of fibrinolysis 

with acceleration of plasmin production, which in turn breaks down fibrin 

(Rezaie, 2001).  

 

3.5.2  Fibrinolysis 

This is the natural progression of the coagulation process, to ensure that the 

clot is destroyed as part of repair of the tissue.  The main enzyme in this stage 

is Plasminogen which is converted to Plasmin by the action of two activators: 

tissue plasminogen activator (tPA) and urokinase-type plasminogen activator 

(uPA).  Plasmin this degrades the cross-linked fibrin into fibrin-degradation 

products (FDPs) (See figure 9).  Other factors from the vessel walls; factors XIa, 

XIIa and kallikrein also activate plasminogen, but tPA is the dominant stimulant.  

The tPA also binds to the clot fibrin, which enhances the capacity for the 

conversion of thrombus-bound plasminogen into plasmin.  This dependence of 

fibrin by tPA strongly localises the plasmin formation to the clot (Hoffbrand et 

al., 2006).  FDPs, namely D-dimers, can be measured to indicate thrombolysis. 

 

Fibrinolytic agents are widely used in clinical practice.  Recombinant tissue 

plasminogen activator (rtPA) is used to thrombolyse clots in many diseases 
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including myocardial infarction, major vessel thrombosis and acute ischaemic 

strokes.  A second commonly used fibrinolytic agent is Tranexamic Acid (TXA), 

a lysine analogue that occupies binding sites for the activators on the 

plasminogen molecule, thus preventing the conversion to plasmin and inhibiting 

fibrinolysis (Levy et al., 2010).  This primary effect of inhibition of clot 

breakdown portends a favourable effect on patients with haemorrhage from 

vascular disruption (Shakur et al., 2010; Morrison et al., 2011).  The use of TXA 

in the treatment of traumatic coagulopathy will be discussed later in chapter 4. 

 

Figure 9: The Fibrinolytic system, Blue arrows indicate activation and red arrows 

indicate inhibition. Tissue Plasminogen Activator (tPA) is the main activator.  

Plasminogen activator inhibitors 1&2 (PAI-1 and PAI-2) inhibit the action of the 

activators.  

 

Hyperfibrinolysis 

Hyperfibrinolysis occurs when the fibrinolytic activity is potentially greater than 

fibrin formation such that clot integrity is threatened.  This can result in a 

pronounced coagulopathy and sometimes fatal bleeding (Hunt and Segal, 

1997). Terms such as hyperfibrinolysis and fulminant hyperfibrinolysis are 

widely used but poorly and arbitrarily defined in the literature (Levrat et al., 

2008; Schochl et al., 2009; Kashuk et al., 2010; Schochl et al., 2012).  There is 

little information that can provide a true definition of how to exactly quantify 

hyperfibrinolysis.  A variety of assays have been developed to detect 
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hyperfibrinolysis but most of these tests lack practicability and reliability, making 

them unsuitable for rapid diagnosis of hyperfibrinolysis (Eeckhoudt et al., 2009).   

Specific tests determining t-PA activity, plasminogen activator inhibitor-1 (PAI-1) 

activity, α2-antiplasmin or plasmin-antiplasmin-complexes, euglobulin lysis test 

(ELT) are time consuming and are not routinely available in most trauma 

centres. Assays measuring fibrin/fibrinogen degradation products and D-dimers 

lack sensitivity and specificity, as these markers are elevated in most trauma 

patients (Lang et al., 2006).  Practically, viscoelastic tests such as 

thromboelastometry (ROTEM) or thromboelastography (TEG) are currently 

considered to be the most appropriate tools to detect hyperfibrinolysis 

(Luddington, 2005) and this is explored further in section 3.6.2. 

 

With this understanding of the process of coagulation, the next section of the 

thesis will examine the methods available to test the haemostatic function that 

may have relevance in the clinical assessment of patients.  
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3.6 Tests of Haemostatic Function 

A number of tests are available to assess the coagulation process by assessing 

platelets, the vessel wall and coagulation components of haemostasis.  Testing 

provides a risk assessment for potential bleeding tendencies and can offer 

insight into the pathophysiology of the clinical bleeding problem (Davie, 2003).  

An ideal test would be one that gives an accurate, reproducible real time 

reflection of the in vivo clotting status that can be carried out by a non-

technically skilled person.  Interpretation of the results of such a test should 

indicate which component of the clotting process is at fault and thus allow 

correction of the clotting to be targeted.  Currently no one test allows this, but 

current testing is by standard laboratory tests of haemostasis and when 

combined with more novel point-of-care tests, a wider picture of a patient’s 

haemostatic status can be obtained.   

Historic tests included the Bleeding Time, where a cut, of standardised width 

and depth, is made in a patient’s forearm (a proximal sphygmomanometer is 

placed initially to maintain a constant pressure).  The time taken for bleeding to 

stop was measured giving an indication of platelet function by how long the 

platelet plug takes to form. Although this was a whole blood in vivo test, 

numerous disease processes affect the result and is therefore rarely used 

clinically (Kembell-Cook et al., 2005).   

The following sections describe some of the clinical tests in current use.  

Specialised laboratory assays are used to look at thrombin generation tests 

(TGTs) by measuring the quantity of thrombin produced (van Veen et al., 2008).  

There is also a wide range of other tests that are used in the research 

environment, mainly with ELISA to allow measurement of certain components of 

the coagulation process.  Examples include prothrombin fragments, 

thrombomodulin, thrombin-antithrombin complex, Activated Protein C, and 

plasmin activator inhibitor.  Measurement of these has provided the evidence to 

suggest the pathophysiology of the coagulopathy of trauma (Brohi et al., 2007). 
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3.6.1 Routine Laboratory Tests 

A number of tests can be carried out to assess the function of the coagulation 

system.  The routine standard tests are listed in Table 2.  

Prothrombin Time (PT) 

This is an ex-vivo coagulation assay performed by adding a commercial source 

of tissue factor (usually thromboplastin from brain tissue) and calcium to citrate-

anti-coagulated plasma.  The time to clot (12–18s) reflects the activity of the 

coagulation factors II, V, VII, X and fibrinogen – all involved in the classical 

‘extrinsic’ and ‘common’ pathway. 

Thromboplastin is a phospholipid-protein extract that can vary in its response to 

anticoagulant.  In 1977, WHO released a standardised preparation that allows 

the PT to be reported as the International Normalised Ratio (INR).  It is 

calculated by equation 3: 

   

Equation 3:  Calculation of INR. 

ISI is the International Sensitivity Index for the thromboplastin used to perform 

the PT measurement at any given laboratory (Davie, 2003).  This is the 

standard test to measure the degree of coagulopathy induced by taking 

Warfarin.  

 

Activated Partial Thromboplastin Time (APTT) 

This estimates the activity of the of the coagulation factor proteins involved in 

the classical ‘common’ and ‘intrinsic’ pathways – factors II, V, VIII, IX, X, XI, XII, 

fibrinogen, prekallikrein and high molecular weight kininogen.  During testing, 

phospholipid, a phospholipid surface activator (e.g. kaolin) and calcium are 

added.   The normal APTT is 30-40s and if prolonged, it indicates that a 

reduction of at least 40% of the normal clotting factor activity levels has 

occurred (Kessler et al., 2007).   

INR = (Patient PT/ Mean Patient PT)ISI 
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Table 2: Routinely used laboratory tests for coagulation. 

Many of the techniques listed above are taken in a sample tube that contains 

sodium citrate as an anticoagulant.  It is vital for correct sampling technique is 

followed to prevent erroneous results that can occur as a result of over- or 

under filling of the sample tube.  The correct ratio is 1:9 of dilution of the 

anticoagulant.  If there is decreased plasma volume, then the anticoagulant is 

more concentrated.  The citrate present cannot neutralise the level of calcium 

that is added with the standard recalcification agents that allow coagulation to 

occur in vitro.   

TEST Function of Test 

Full Blood Count (FBC) Measures platelet count and mean platelet volume.  

Prothrombin Time (PT) 

Measures factors II, V, VII, X and fibrinogen. 

Warfarin affects result. Can be expressed as the 

international normalised ratio (INR)  

Activated Partial 

Thromboplastin Time (APTT) 

Measures factors II, V, VIII, IX, X, XI, XII and 

fibrinogen.  

Fibrinogen Level 

 

Tested by Clauss assay or by PT-derived fibrinogen 

level (PT-Fg). 

Fibrinogen Quantitation / 

Fibrinogen degradation 

Products(FDPs) / D-Dimers 

Abnormal results from fibrinogen deficiency or 

abnormal break down of coagulation process  

Blood Film 
Allows erythrocyte/ platelet morphology be 

examined. 

Thrombin Time (TT) or 

Thrombin Clotting Time (TCT) 

This is the rate of clot formation. Is sensitive to 

fibrinogen deficiency / inhibition of thrombin.   

Platelet Function Analysis 

(PFA) 

PFA-100 measures platelet aggregation.  Replaced 

the historic bleeding time. 
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Using citrated plasma which is spun down to produce ‘platelet-poor’ plasma and 

testing can take variable length of times to return from the laboratory to the 

clinician (from 30 to 99 minutes) (Jeger et al., 2009; Singer et al., 2008).  The 

use of dedicated laboratory for emergency department patients reduced times 

to as quickly as 30 mins (Craig et al, 2008; Singer et al., 2008) and in a 

deployed military hospital where the laboratories are next to the emergency 

department, the average time for return of coagulation results was 45 minutes 

(Doran et al., 2010).  In the situation of a dynamic trauma resuscitation, 

coagulopathies could develop in the time for the results to return from the lab 

and thus not be detected or monitored in a timely manner that would allow 

management decisions based on current patient coagulation status.  For this 

reason point of care testing has increased significantly over the past number of 

years and the using whole blood assays (Kaufmann et al., 1997; Johansson et 

al., 2009). 

 

3.6.2 Point-of-Care (POC) Testing. 

The advantage of the method of testing beside the patient is having the results 

which rapidly assess the coagulation status at hand as they are produced.  The 

first bedside system developed was activated clotting time (ACT) described by 

Hattersley in 1966 (Hattersley, 1966) and was used in to assess coagulation in 

cardio-pulmonary bypass.  Instruments have developed since then and one 

widely used is the ‘i-stat’ analyser (Abbott Laboratories, East Winsor, NJ) which 

was designed for whole-blood-based testing, initially for blood gas and 

electrolyte analysis (Jacobs et al., 1993).  These machines have been used in 

cardiac surgery setting and emergency departments, but there were difficulties 

associated with their use in the extreme conditions that is the military 

experience, possibly because of alterations in temperature changes (M 

Midwinter, personal communications).    Recent work in a Level 1 Trauma 

Centre used a simple point of care device called Coaguchek (Davenport et al., 

2011) and compared the results with standard laboratory tests.  The 

Coaguchek (Roche Diagnostics Ltd, Burgess Hill, UK) is a portable, easy to 

use, commercial device that measures PT and INR.    Overall a good 

agreement was documented between the Coaguchek and the laboratory 
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results, but it was confined only to patients without coagulopathy, when there 

was 99% of the Coaguchek results were within 95% confidence levels.  

However, a low haematocrit was associated with larger discrepancies between 

this point-of-care device and the laboratory results.  This would not give reliable 

results in the trauma patient setting. 

The most significant development over the past two decades has been in 

systems that provide a global assessment of blood clotting and platelet function 

by use the thromboelastography (TEG) / thromboelastometry (TEM). 

 

Thromboelastography / Thromboelastometry      

TEG was first developed in 1948 by Hartert in Germany, measuring the 

viscoelastic changes that occur in blood providing information on coagulation 

initiation, propagation kinetics, fibrin-platelet interaction, clot firmness and 

fibrinolysis (Hartert, 1948).  It remained largely as a research tool until the start 

of the 1980’s when the technique of evaluating whole blood during the 

perioperative period began to have resurgence (Kang et al., 1986, Spiess, 

1995, Shore-Lesserson et al., 1999) – mainly in cardiac and liver transplant 

surgery.  In 2008, a health technology assessment report for the NHS was 

published looking at the clinical and cost effectiveness of TEG / TEM (Craig et 

al., 2008).  This concluded that the technique was both a clinical and cost 

effective intervention by reducing the need for inappropriate transfusions and 

decreasing blood product requirement, therefore improving the transfusion in 

cardiac and liver transplant operations.  At the time of publication, the authors 

commented that was no robust, controlled clinical data to support the use of 

TEG/TEM in other major operations associated with major blood loss, including 

trauma, although published observational evidence did support its use 

(Kaufmann et al., 1997; Schreiber MA et al., 2005; Rugeri et al., 2007).   

With the acceptance that effective and rapid management of acute bleeding in 

the trauma patient is of the utmost importance, a multidisciplinary task force for 

Advanced Bleeding Care in Trauma was formed in 2005.  They published a 

guideline for the management of bleeding following severe injury in 2007 

(Spahn et al.) and this was updated and published in 2010 (Rossaint et al.).  
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Key changes in the updated version included new recommendations on 

coagulation support and the appropriate use of local haemostatic measures 

such as tourniquets.  Recommendation no 12 highlighted that routine tests, 

such as INR and APTT, fibrinogen and platelets, should be used to detect post-

traumatic coagulopathy but they should not be used in isolation to guide 

haemostatic therapy.  Their recommendation was to use TEG/TEM in 

characterising the coagulopathy and in guiding haemostatic therapy (Rossaint 

et al., 2010). 

The test is carried out by placing a whole blood sample in a cuvette or cup into 

which a wire is suspended.  The cuvette is oscillated through 475’ and as the 

clot begins to form, the change in viscosity and subsequent shear is transmitted 

through pin.  This change is translated into a characteristic graph known as the 

thromboelastograph (Mallett and Cox., 1992).  A practical limitation of Hartert’s 

classical thromboelastographic test was the long observation time when 

coagulation is not activated by biochemical agonists, therefore the modern tests 

employ various activators and inhibitors with the aim of accelerating the test 

times and getting differential diagnostic information while maintaining the 

principal detection method (Neilson VG et al., 2000; Lang et al., 2004). 

 

TEG vs. TEM 

Two commercial instruments are available for carrying out TEG/TEM: ROTEM® 

(Tem Innovations [Pentapharm] GmbH, Munich, Germany), a self-contained, 

touch-screen that is analogous with Thromboelastograph - TEG® (Haemoscope 

Cooperation, Niles, IL).  Both instruments are shown in figure 8.  Although the 

nomenclature differs slightly between TEM and TEG the essential difference 

between them is a discrepancy in the actual mechanism of detection; table 3 

outlines the main features between the two machines. 

For the purposes of this thesis, TEM will be used as the term meaning either 

TEG or TEM and the focus will be placed on the mechanism and interpretation 

of ROTEM®.  TEG® is used when the actual machine is being referred to. 
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Figure 10:  Pictures showing TEG® on the left and ROTEM® on the right.   

TEG ROTEM 

Two independent channels per analyzer 
Connected to separate computer 

Four independent channels per machine with 
integral computer and touch-screen 

Size: 25 x 26 x 29 cm Size: 57 x 37 x 57 cm 

Requires electrical point and stable, non-
vibrating surface. Works with Windows XP 

Requires electrical point. Runs in an integrated 
Linux program 

Manual pipette  Automated pipette 

Cup rotates 445’ around fixed pin transduction 
system 

Pin transduction system rotates on axis  

475’ around fixed cup 

Daily quality control checks Weekly quality control checks 

Tests run are standard, heparinase, functional 
fibrinogen, platelet mapping.  Adjustable 
measurement temperature 

Tests run are EXTEM, INTEM (looking at extrinsic 
and intrinsic pathways), fibrinogen (FIBTEM), 
hyperfibrinolysis (APTEM), heparinase (HEPTEM). 
Adjustable measurement temperature 

Sample must be tested within 4 minutes of taking 
(wait 30 min if using citrated sample; add 
calcium) 

Citrated sample can be used immediately, stable 
up to 6 hr 

Results exportable in Excel. Via USB or network 
Results exportable in Excel, txt, and JPEG format. 
Via USB port or networked 

Table 3:  Features of TEG


 / ROTEM


 systems. 
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ROTEM 

This system was developed in Munich, Germany between 1995 -1997 

(Calatazis et al., 2002).  The detection method is outline in figure 11.  The blood 

sample is placed in cuvette, held stationary in a warmed holder (at 37C), whilst 

the pin sensor is attached to the rotating axis. All pipetting steps of blood and 

reagents are performed in a standardised way by following the integral 

automated electronic pipette programme.  As the clot forms it restricts the 

rotation of the pin inversely proportional to the overall clot firmness.  The degree 

of rotation is detected optically and translated into the curve, figure 12.  Hartert’s 

original design and that of TEG®, the pin is fixed and it is the cuvette that is 

rotated.  This makes the instrument susceptible to vibration and mechanical 

shocks, which is of relevance when considering use in a deployed military 

setting.  

 

 

Figure 11: Schematic diagram showing the detection of the degree of rotation of the 

axis by an optical detector (reproduced by permission of Tem Innovations GmbH). 

 

Result Analysis 

Each TEM trace provides the following trace, which is explained in figure 12. 
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Figure 12:  TEM trace providing the following parameters: CT- clotting time; CFT – clot 

formation time; α-angle - Speed of clot formation / function of rate of polymerisation; 

MCF – maximum clot firmness; ML – maximum lysis.  (Produced by kind permission of 

Tem Innovations GmbH, Germany).   

The trace provides the following parameters: 

Clotting time (CT) – the time in seconds from the start of the activation process 

to the initial clot formation when the amplitude reaches 2mm on the trace.  This 

equates to the initiation of clotting and thrombin formation.  A prolongation 

occurs in factor deficiency and use of anticoagulants, or severe 

hypofibrinogenaemia (Nielsen et al., 2005) 

Clot Formation Time (CFT) – time taken from clot initiation until a clot firmness 

of 20mm is reached.  This equates to fibrin polymerisation and stabilisation of 

the clot with platelets and Factor XIII, representing the clot formation dynamics.  

This time is shortened by an increase in fibrinogen and platelet function.  A 

prolonged CFT indicates a failure for the clot to form and is also prolonged by 

anticoagulants such as heparin. 

α-Angle – this is given by the angle between the centre line and a tangent to 

the curve through the 2mm point.  This is also giving the kinetics of clot 

formation, ie the smaller the angle the weaker the clot formation is happening 

(Lang et al., 2005) and decreased values would be seen with 

hypofibrinogenaemia and thrombocytopenia (Mallet and Cox, 1992). 

Maximum Clot Formation (MCF) – this is a measurement of the maximum 

firmness and is a reflection of the absolute strength of the fibrin clot equating to 
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the maximum dynamic properties of fibrin and platelets.  A reduction in the MCF 

indicates a deficiency of clottable substrate – either platelet or fibrinogen 

(Luddington, 2005).  Platelet abnormalities, whether they are qualitative or 

quantitative in nature, substantially disturb the MCF (Mallet and Cox, 1992).  

The firmness at 5 and 10mins following the CT are recorded as CA5 and CA10, 

which can give early indications of abnormal results (Davenport et al., 2011). 

Maximum Lysis (ML) – this is a reduction in the clot firmness after MCF in 

relation to MCF.  It is a function of time and reflects loss of clot integrity as a 

result of lysis.  The lysis is often recorded as Ly 30 and Ly 60 which is the 

percentage of lysis that has occurred 30 and 60 mins after MCF.  Normal value 

is <15% lysis in 60 mins. This percentage of lysis increases in hyperfibrinolysis. 

 

TEM and the cell-based model of haemostasis  

In section 3.4, the cell-based model of haemostasis was described in three 

phases: Initiation, amplification and propagation. These phases are reflected in 

the TEM parameters.  Recent work that has looked at the morphology of the 

clot during thromboelastography by electron microscope (Kawasaki et al., 2004) 

and demonstrated that the CT corresponds to the initiation phase; the CFT 

reflects the amplification phase where small amounts of thrombin are formed.  

The thrombin burst that occurs in the propagation phase is reflected by the α-

angle (Rivard et al., 2005; Johansson et al., 2008). This ultimately affects the 

MCF or overall strength. 

 

ROTEM tests 

This is a whole blood global assessment, but it must be recognised that due to 

inherent redundancy in the haemostatic process, specific defects may be 

masked.  Consequently a number of tests with inhibitors and activators exist in 

order to differentiate the components of the process.  The activators also initiate 

the coagulation process which provides more timely results.  There are six 

commercially available tests for ROTEM (Tem Innovations GmbH, Germany) 

which are listed in table 4. 
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Routinely all tests are carried out at 37C, although the running temperature of 

the machine can be altered to mirror the patient’s temperature.  This would 

allow a more accurate assessment of the coagulopathic profile of the patient at 

that moment in time.  TEM has been used to determine the alterations of 

temperature on the coagulation and shown that both CT and CFT are prolonged 

but not the MCF (Kettner et al., 2003; Rundgren and Engstrom, 2008), 

suggesting an impairment of the coagulation factors rather than platelets.  In the 

situation of trauma, all steps are taken to prevent hypothermia and if the results 

show a coagulopathy at 37C then therapeutic action is required, in conjunction 

to warming.   

 

Test Activator/ Inhibitor Information Provided Normal Values 

EXTEM 
Recombinant Tissue 
Thromboplastin  
(Tissue Factor) 

Assesses factors VII, X, 
V, II, I, platelets and 
fibrinolysis  

CT: 38-79s 
CFT: 34-159s 
MCF: 50-72mm 
ML: <15% in 
60mins  

INTEM 
Activated by partial 
thromboplastin 
phospholipid 

Assesses factors XII, XI, 
IX, VIII, X, V, II, I, 
platelets and fibrinolysis 
Sensitive to heparin  

CT: 100-240s 
CFT: 30-110s 
MCF: 50-72mm 
ML: <15% in 
60mins 

FIBTEM 
Activated by tissue factor. 
Platelet function inhibited 
by Cytochalasin D 

Assesses fibrinogen 
levels and fibrin 
polymerisation 

MCF: 9-25mm 

HEPTEM 

Activation is same as 
INTEM with addition of 
heparinase to remove 
effect of heparin. 

Determines if 
coagulopathic are due 
to heparin or not. 

Normal values 
as INTEM 

APTEM 
Activated as EXTEM. 
Aprotinin inhibits 
fibrinolytic processes 

Determines if 
fibrinolysis is true or if 
additional fibrinogen is 
required. 

Normal values 
as EXTEM  

NATEM Calcium only added  

Allows very sensitive 
assessment of 
coagulation activation 
or inhibition – mainly 
for in-vitro 
experimentation 

--- 

Table 4:  Assessment tests of ROTEM, the activating/inhibiting additive, the 
information being assessed / provided and the Normal Expected Values. (Ranges 
validated by Lang et al., 2005).   
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ROTEM graphs 

The ROTEM has four channels allowing four different tests to be run 

simultaneously.  Unless the patient is heparinised, the INTEM result often 

mirrors the EXTEM trace, with a slightly longer CT/CFT value.   By running 

EXTEM and FIBTEM (normal traces in figure 13), information on the overall clot 

dynamics can be assessed and as well as fibrinogen levels from the FIBTEM 

trace (platelets are inhibited).  This also allows two patient’s samples to be run 

simultaneously, using two channels for each patient. 

 

Figure 13:  Normal EXTEM and FIBTEM traces. 

 

Abnormal ROTEM graphs 

This section illustrates the utility of the graphical representation and clinical 

interpretation of the output of ROTEM analyses. The pictorial representation of 

the results makes the test ideal for situations such as a trauma bay in an 

emergency department, as the traces will develop whilst on-going resuscitation 

and care of the patient is continuing and any member of staff, regardless of their 

educational level can easily learn the fundamentals of interpretation.  It is then 

the clinician’s role to incorporate the results into the ongoing management of 

the patient’s resuscitation.  It should be remembered that TEM methods depend 

on low shear force and are therefore not suitable to detect defects in early 

platelet function – for example von Willebrand Factor Deficiency, aspirin or 

clopidogrel.  This should be born in mind if a haemorrhagic patient shows 

normal results (Kembell-Cook et al., 2005). 
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Figure 14 shows an example of EXTEM and FIBTEM in a patient with abnormal 

results.  The EXTEM trace has a normal CT, meaning that the initiation phase 

of clotting is normal but prolonged CFT and decreased α-angle, and decreased 

MCF informs the clinician there is a problem with the thrombin burst and 

subsequent polymerisation of the clot.  The FIBTEM is normal, indicating 

normal fibrinogen levels; thus there is a platelet deficiency / hypofunction in this 

patient. 

 

Figure 14: Platelet deficiency resulting in low MCF in EXTEM but normal fibrinogen 

levels as shown by normal FIBTEM trace. 

 

Figure 15 shows an EXTEM trace like the previous with a normal CT, but 

prolonged CFT, decreased α-angle, and overall decreased MCF.  From the 

FIBTEM trace, the MCF is significantly reduced indicating a low fibrinogen level. 

 

Figure 15: Fibrinogen deficiency, as shown in FIBTEM trace, resulting in a low MCF in 

the EXTEM trace. 

 

Figure 16 shows an EXTEM trace that has a normal CT but the CFT, α-angle 
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and MCF is reduced.  In this example the ML is 100% indicating fulminant 

hyperfibrinolysis.  To prove this is the case, an APTEM trace beside it shows a 

normal trace, as fibrinolysis process has been inhibited by aprotinin.  The 

normal value for fibrinolysis is <15% in 60 minutes, whilst hyperfibrinolysis is a 

result of >15% in that time.  Fulminant hyperfibrinolysis is when the degree of 

fibrinolysis is >50% in 30 minutes.  These appear to be the only definition in the 

literature to attempt to truly define hyperfibrinolysis in trauma patients (Schochl 

et al., 2009). 

 

Figure 16: EXTEM trace showing hyperfibrinolysis and proven by a normal APTEM 

when the fibrinolysis process is inhibited. 

 

Citrated vs non-citrated blood and Different Activators. 

The original work on the development of TEM used non-citrated blood (Hartert, 

1948) which limits the usability in the clinical setting as there is a requirement 

for the analysis to be performed with 4 minutes of the blood being drawn to 

prevent clot formation, but it does avoid of contact activation related to storage 

sample (Wasowicz et al., 2008).  To that end, citrated samples are used in most 

work on TEM in the clinical setting (Lang et al., 2005; Rugeri et al., 2007; 

Johansson et al., 2009).  There have been concerns that the TEG/TEM results 

obtained from citrated blood would be different to those from non-citrated 

samples and that storage time of the citrated sample may influence 

measurements (Bowbrick et al., 2000; Camenzind et al., 2000; Mancuso et al., 

2003; Zambruni et al., 2004).  More recent studies have shown that the storage 

of citrated blood had no discernable effect on the TEG® results (Wasowicz et 

al., 2008), however a hypercoagulable trend has been observed with citrated 
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samples when compared with non-citrated (Mancuso et al., 2003).   

Recent studies conducted by Royal Centre for Defence Medicine/DSTL using 

ROTEM (E Kirkman, personal communication) has shown that citrated blood 

samples from normal volunteers does show evidence of enhanced clotting on 

standing.  However, although this change is statistically significant the 

magnitude is small and clinically insignificant.  By contrast, a recent study have 

shown that citrated samples from coagulopathic patients undergo more 

substantial (clinically and statistically significant) enhancement of clotting upon 

standing (Jansen et al, in press) resulting in the risk of underestimating the 

degree of coagulopathy in these samples.  

 

Further concerns have been raised with both TEG® and ROTEM® with the 

divergent activators employed during analysis.  TEG® traces are predominantly 

based on monoanalysis using kaolin activation (Johansson et al., 2009), but 

other papers use celite, tissue factor or combined kaolin and tissue factor 

(Shore-Lesserson et al., 1999; Avidan et al., 2004; Kashuk et al., 2010).  In 

contrast, ROTEM uses standard activators (TEM-reagents) and Neilson has 

shown that these negate the discrepancies encountered with TEG (Neilson, 

2007).  Larsen et al. (2011) raised these discrepancies when considering how 

many have advocated using TEG/TEM to help guide transfusion and 

questioned whether the results could be misinterpreted if a range of activators 

was used.  Their study investigated the diagnostic performance and therapeutic 

consequence of using kaolin-activated whole blood compared with a panel of 

TEM-reagents to distinguish dilutional coagulopathy, thrombocytopenia, 

hyperfibrinolysis and heparinisation.  The researchers concluded that 

monoanalysis with kaolin was unable to distinguish coagulopathies caused by 

dilution from that of thrombocytopenia but these were readily distinguishable 

using the TEM-reagents.  This could mean that transfusion algorithms based on 

kaolin could lead to unnecessary administration of platelets (Larsen et al., 

2011).            

Comparison of TEM results with standard laboratory tests. 

ROTEM® has been compared with standard laboratory tests such as PT, APTT, 
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fibrinogen and platelet count (Savry et al., 2005; Coakley et al., 2006).  Savry et 

al reported that plasma fibrinogen level was strongly correlated with the kinetics 

of clot formation (CFT) and the maximum clot firmness (MCF) of ROTEM 

(r>0.7, coefficient of Pearson).  This result was mirrored by Coakley et al, who 

reported a significant correlation between FIBTEM MCF and Clauss fibrinogen 

(r=0.75).   

However, the work of both these groups reported that PT and APTT had a weak 

correlation with ROTEM parameters. It is not possible to make exact 

comparisons between the PT/APTT and TEM as the laboratory tests are only 

factor based and provide static end points as compared to the whole blood 

dynamic test of TEM.  Platelet count influences the stability of the clot as 

measured by EXTEM and INTEM, and in combination with FIBTEM and 

EXTEM the MCF gives an indirect measurement of platelet contribution to the 

clot stability (Lang et al., 2009).   

 

Over the past decade, TEM has emerged as a validated and reproducible 

method for assessing coagulopathy, comparable to standard routine laboratory 

tests and is beginning to take an important role in improving patient care 

(Spalding et al., 2007; Ebinger T et al, 2010).  This is of particular interest in the 

role of diagnosing and understanding the pathophysiology of the trauma-

induced coagulopathy. 
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3.7 Coagulopathy of Trauma 

 

Abnormal clotting that occurs after injury is an entity that has been recognised 

in the literature for over 40 years; however the past decade has seen a 

resurgence in interest in this subject as it has been recognised in a significant 

risk of mortality. 

A number of studies looked at the coagulation abnormalities in the Vietnam 

casualties (Simmons et al., 1969).  It was noted that prothrombin time (PT) and 

activated partial thromboplastin time (APTT) correlated poorly with acute 

resuscitation efforts and concluded that later complications were reflective of 

previous shock and massive transfusions.  A more detailed analyses of Vietnam 

results in 1971 recognised that the contribution of thrombocytopenia as the 

cause of a bleeding diathesis after massive transfusion (Miller et al., 1971). 

Over the next two decades it was accepted that coagulation activity was 

enhanced in the first 24hrs after trauma and then suppressed during the next 

five days (Kapsch et al., 1984, Risberg B et al., 1986; Gando et al., 1992).  The 

mechanism was thought to be from loss due to bleeding or consumption, 

dilution from fluid administration or dysfunction of coagulation proteases due to 

hypothermia and effect of acidaemia (Kashuk et al., 1982, Schreiber 2005, 

Brohi et al., 2007).   

 

3.7.1 Trauma-Induced Coagulopathy 

One area that has lead to some confusion has been adoption of multiple terms 

describing different aspects of this phenomenon. It has been described in two 

phases: early and late.  The coagulopathy in the early phase following trauma 

has been called Acute Coagulopathy of Trauma (ATC) (Brohi et al., 2003); 

endogenous acute coagulopathy (EAC) (Chesebro et al., 2009) or the Acute 

Coagulopathy of Trauma-Shock (ACoTS) (Hess et al., 2008). The late phase 

has been described as Systemic Acquired Coagulopathy (SAC) which is due to 

the loss or inhibition of the coagulation proteases (Tieu et al., 2007; Ganter and 

Pittet, 2010). 
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The term Trauma-Induced Coagulopathy (TIC) is more widely accepted as the 

over-arching term that encompasses both phases, as illustrated in figure 17. 

 

 

 

 

 

 

Figure 17:  Illustration of how the nomenclature of the coagulopathy associated with 

trauma is encompassed by the term ‘Trauma-Induced Coagulopathy’. 

 

The clinical incidence and significance of TIC was highlighted by a number of 

seminal papers describing the early onset of a coagulopathy or ATC and that it 

is an independent predictor of death (Brohi, 2009).  Brohi et al (2003) studied 

the immediate clotting screen that was taken from 1,088 patients that were 

brought in by the London Helicopter Emergency Medical Service.  The 

presence of coagulopathy was defined as a PT of greater than 18s, APTT over 

60s and a Thrombin Time (TT) over 15s.  These values are taken from the 

definition of coagulopathy stated by the British Committee for Standards in 

Haematology (2006) and the College of American Pathologists (1994).  By 

these criteria, it was found that 24.4% of patients were coagulopathic at 

admission and when mortality was looked at as an end point, the patients who 

were coagulopathic on arrival had a mortality of 46%, which was significantly 

different form 10.9% for those who had normal clotting parameters (p<0.001) 

(Brohi et al., 2003).  This increased mortality associated with coagulopathy was 

independent of an increased Injury Severity Score (ISS).   There was no 

correlation with the amount of pre-hospital fluid administered and the 

development of coagulopathy (although all volumes actually given were low).        

A second paper that year also identified a link between early coagulopathy and 
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mortality.  MacLeod et al (2003) took their patients to be coagulopathic with a 

non-standard definition of PT >14s and APTT >34s.  From a population size of 

10,790, it was found that 28% had an abnormal PT and 8% had an abnormal 

APTT.  19.3% of patients with an abnormal PT died, significantly different to the 

6.3% who died who had a normal PT (P<0.001).  A univariate analysis 

generated an odds ratio of 3.6 for death with an abnormal PT on arrival to the 

Emergency Department and 7.81 for deaths with an abnormal PTT.  This paper 

did not look at fluid volumes administrated during the resuscitation. 

The third seminal paper documenting this acute trauma coagulopathy was an 

analysis of 8724 patients (Maegele et al., 2007).  Using slightly different testing 

parameters (Quick’s test <70% and platelet count <100,000 l-1), it was found 

that 34.2% were coagulopathic on admission to the hospital.  Correlation was 

noted with increased ISS but also with the volume of pre-hospital fluid 

administered.  This is discussed further in section 4.2.   

A more recent study (Moore et al., 2009) observed this early coagulopathy in 

39% of severely injured patients based on blood that was taken within 15mins 

of injury.  This group corroborated the above findings of having a higher 

incidence of subsequent multi-organ failure (MOF) and death in that group, 

highlighting further the importance of understanding the pathogenesis of this 

ATC.  

Within the reported military experience, there are only a few papers published 

that document the incidence of traumatic coagulopathy in combat casualties 

(Plotkin et al., 2008).  Both were retrospective studies looking at patients 

brought to the Combat Support Hospitals in Iraq.  The incidence of 

coagulopathy was found to 38% on arrival and again it was noted that this 

group had a significantly higher rate of mortality. Results of this thesis (Chapter 

6) have shown that this incidence does depend on the method of testing as the 

use of TEG/TEM can indicate a much higher incidence of coagulopathy. 

 

The above studies have looked at hypocoagulopathy; however 

hypercoagulability after injury is also a major source of morbidity and mortality 

that occurs later in the timeline of the patient’s recovery (Schreiber 2005).   It 
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has been shown that 58% of patients who had an ISS >9 had deep vein 

thrombosis as shown by venography, although there was a high incidence of 

pelvic/lower limb injury (Geerts et al., 1994).  Ganter and Pittet (2010) described 

that this development of a procoagulant activity was associated with a number 

of processes including low levels of activated Protein C (APC), diminished 

fibrinolysis and down regulation of the complement activation.  These processes 

are discussed further in section 3.7.2 below. 

The considerable interest in this area the Educational Initiative on Critical 

Bleeding in Trauma (EICBT) which was formed in 2006 with the aim to increase 

the awareness amongst health professionals that coagulopathy plays an 

important role during the first hour after traumatic injury (Hoyt 2008).  This 

international panel of experts emphasised the need to understand the 

physiological mechanisms behind this TIC and to validate the tools by which to 

recognise these patients.  

 

3.7.2 Review of Mechanisms of the Coagulopathy of Trauma 

The “Bloody Vicious Circle” or the “Lethal Triad of Death” are two terms that 

have been historically linked with the hypocoagulopathy associated with trauma 

and the subsequent resuscitation.  It was suggested that the combination of 

tissue injury (in part, initiating the clotting cascade) and blood loss lead to 

acidosis, hypothermia and coagulopathy.  Figure 18 depicts this circle that 

historically thought to be the cause of the TIC.   

Although this triad contributes to the later acquired phase of the TIC (SAC), the 

pathophysiology has been shown to be more complex.  More complete and 

robust measurements combined with the new models of haemostasis 

(Khierabadi et al., 2007; Rugeri et al., 2007)  have provided a global functional 

characterisation of the causes and effects of traumatic coagulopathy (Hess et 

al., 2008).   
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Figure 18.  “The lethal triad of Death” showing the historical cycle of events that led to 

coagulopathic bleeding that complicates life-saving surgery and forces the early 

termination of operations (Schreiber, 2004).  

 

Cosgriff et al (1997) showed that massively transfused trauma patients with a 

combination of an ISS greater than 25, an acidosis with a pH < 7.10, 

hypothermia with a temperature < 34C and a systolic blood pressure < 70 

mmHg have a 98% likelihood of developing a life threatening coagulopathy 

(when all four factors are present).  They defined the coagulopathy as a PT and 

APTT greater than twice normal.  Patients with none of these risk factors had a 

1% chance of developing such a life threatening coagulopathy (Tieu et al, 

2007).  Hess published the collaborative work by the EICBT that reviewed 87 

publications to conclude that the traumatic coagulopathy is a complex multi 

factorial process and is contrary to the simplistic, reductionist explanations that 

have underpinned current clinical understanding of the so-called ‘lethal triad’ 

(Hess et al., 2008).  The following primary mechanisms were identified: tissue 

trauma, hypoperfusion, inflammation, consumption, haemodilution, acidaemia 

and hypothermia, with the first three being the key pathophysiology to the early 

ATC (Ganter and Pettit, 2010).  The theories for these mechanisms are 

described in the following sub-sections.   

 

 

 



 
61 

Tissue Trauma 

 A degree of tissue trauma is inevitable in trauma and injury severity has been 

shown to be closely associated with traumatic coagulopathy (Brohi et al., 2003; 

MacLeod et al., 2003).  As described previously, damage to the endothelial 

surface initiates coagulation as it results in the exposure of tissue factor, and 

allows the binding of von Willebrand factor, platelets and FVIIa (Mann, 1999).  

The endothelial damage increases the release of tissue plasminogen activator 

(tPA) and this in turn activates the fibrinolytic system (Schneiderman et al., 

1991; Kooistra et al., 1994).  The increasing levels of thrombin formed by the 

clotting cascade in turn leads to an increase in the levels of tPA (di Cera 2003).  

The resulting increase in fibrinolysis is exacerbated by the inhibition of 

plasminogen activator inhibitor-1 (PAI-1) in the presence of hypoperfusion 

resulting in hyperfibrinolysis (Brohi et al., 2007).  Normally fibrinolysis is to limit 

clot propagation to the site of vascular injury but with injuries resulting from 

widespread trauma this localisation appears to be lost (Hess et al., 2008).    

Specific organ injuries have been particularly associated with the development 

of coagulopathy.  Severe traumatic brain injury has often been associated with 

increased bleeding (Zehtabchi et al., 2008) and this has been suggested due to 

the release of brain-specific thromboplastins which activates the clotting 

cascade and subsequently causes inappropriate depletion of clotting factors 

(Stein and Smith, 2004).  In one series it was noted that 77% of brain-injured 

patients who died had a coagulopathy at the time of hospital admission (Hulka 

et al., 1996). More recent studies have postulated that hyperfibrinolysis is the 

dominant mechanism for increased bleeding in these patients (Kusimoto et al., 

2003; Cohen et al, 2009).      

Long bone fractures have also been associated with an increased incidence of 

coagulopathy.  Initially thought to be secondary to a bone marrow-specific 

pathogenesis (Mellor and Soni, 2001), it is now thought to be driven by tissue 

injury, hypoperfusion and inflammation (Hess et al., 2008).  

 

Hypoperfusion 

Evidence is accumulating that systemic hypoperfusion (or ‘shock’) appears to 

be the prime driver in the pathogenesis of early traumatic coagulopathy (Hess 
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et al., 2008, Ganter and Pittet, 2010).  Brohi et al (2007) showed that there was 

a dose-dependent association between the degree of hypoperfusion and the 

extent of the admission coagulopathy (as measured by the prothrombin and 

partial thromboplastin times).  This prospective study looked at 208 trauma 

patients admitted to a single centre in a 15 month period, and blood was taken 

on admission for all routine laboratory tests, blood gas analysis and for a range 

of specialised assays looking at particular components in the thrombomodulin-

Protein C pathway.  Base deficit (BD) was used as a marker of hypoperfusion, a 

value greater than 6mEq/L has been associated with an increase in transfusion 

requirements, acute lung injury, multiple organ failure and mortality. (Siegel et 

al., 1990, Davis et al., 1996, Eberhard et al., 2000, Durham et al, 2003).  As the 

level of tissue hypoperfusion increased (with increasing BD) both PT and APTT 

increased.  This coagulopathy was absent when there was no evidence of 

hypoperfusion (Brohi et al., 2007). 

It is noted that several authors (including Brohi et al., 2007) have used base 

deficit as as a marker of tissue hypoprofusion.   Base deficit (BD) (and lactate) 

are used clinical indices of shock (inadequacy of tissue oxygenation), which in 

the case of haemorrhagic shock is the result of hypoperfusion (Wan et al, 

2009).  In an experimental study BD was shown to correlate significantly with 

tissue (skeletal muscle) blood flow and oxygenation during haemorrhagic shock 

and resuscitation (Wan et al., 2009).  In this work, although the correlations with 

BD were significant the r2 values are not high (0.1274 and 0.1303 respectively 

for tissue oxygenation and blood flow).  This indicates that tissue oxygenation 

and blood flow only account for a relatively small amount of the variability of BD 

observed by Wan et al. This is easily accounted for as BD is a whole body 

measure while in these experiments the blood flow and oxygenation were only 

measured in skeletal muscle.  Nonetheless a number of prominent authors, 

such as Brohi, do use BD as a marker of tissue hypoperfusion, or rather 

restricted oxygen delivery.      

The exact reason for this association with hypoperfusion and coagulopathy is 

still a matter of debate in the literature, but the involvement of protein C appears 

pivotal (Brohi et al, 2007, 2008; Chesebro et al., 2009.).  As the degree of 

hypoperfusion progresses, i.e. the base deficit decreases, there is an increase 

in the levels of soluble thrombomodulin (TM) and a decrease in the protein C 
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levels.  As explained in section 3.5.1, TM is expressed by the endothelium and 

forms a complex with thrombin. Firstly, this reduces the amount of thrombin that 

is available to cleave fibrinogen to fibrin and secondly, the TM/Thrombin 

complex activates Protein C.  Activated Protein C (APC) inhibits factors Va and 

VIIa (thus reducing their levels) which in turn leads to a reduction in the amount 

of thrombin formed.  This leads to the “coagulopathy”.   In the papers cited 

above an increase in APC (which was not measured directly) was inferred from 

a reduction of Protein C. 

The APC rise also drives the fibrinolysis by inhibiting PAI-1 (refer to figure 6) 

and thus to increasing the rate of fibrin and degradation and “hyperfibrinolysis” 

(Brohi et al., 2008).   

 

Chesebro et al (2009) developed a translational mouse model to examine 

further this mechanistic role of Protein C in the early acute coagulopathy.  Mice 

were subjected to one of four treatment groups – 1) control; 2) Trauma 

(laparotomy); 3) Haemorrhage; 4) Trauma + Haemorrhage.  Both the latter two 

groups developed significant and severe metabolic acidosis after 60min of 

haemorrhagic shock, but only in the fourth group of trauma and haemorrhage 

was the degree of shock associated with an increase in PTT and APC levels (as 

seen in human trauma patients).  This study group also inhibited APC by a 

selective monoclonal antibody.  When this was administered to the trauma and 

haemorrhage group, there was no resultant rise in the PTT as noted previously, 

thus preventing the development of the acute traumatic coagulopathy.  This 

adds weight to theory that early acute coagulopathy is mediated by the 

activation of the protein C pathway (Chesebro et al., 2009).   

 

Inflammation  

Inflammation and coagulation are two main host-defences which are intrinsically 

linked.  Inflammation activates coagulation by a number of mechanisms, 

including cytokine induction of TF expression, down-regulation of the protein C 

system, inhibition of fibrinolysis and activation of the complement system. 

Similarly coagulation modulates inflammatory activity by the components of the 
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coagulation process which affect the inflammatory cell responses (Petaja, 

2011).  

The pro-inflammatory cytokines IL-6, IL-1, IL-12 and TNF-α all cause an 

increase in the overall expression of TF increasing thrombin production. This 

occurs mainly by increased exposure in vessels after a breakdown in the 

integrity of the cell-to-cell endothelial junctions and up-regulation of TF 

synthesis in endothelial cells and monocytes/macrophages.  Blockade of IL-6 in 

animal studies has shown to attenuate the thrombin formation in experimentally 

induced endotoxaemia (Van der Poll et al., 1994).  Inflammation also 

propagates the formation of microparticles (section 3.3.1) and when they arise 

from monocytes, they carry significant amounts of TF, increasing their 

procoagulant state (Osterud and Bjorklid, 2006). 

As explained above activated Protein C (APC) appears to be a crucial link in the 

pathophysiology of ATC, and it also plays a central role in the pathogenesis of 

sepsis and associated organ dysfunction (Levi and Van der Poll, 2007).  Severe 

inflammation causes a complete down-regulation of the Protein C system by 

impaired synthesis of the actual protein, a decrease in thrombomodulin activity 

(resultant of IL-1 and TNFα activity) and an overall down-regulation of the 

endothelial protein C receptor (EPCR) which would normally stimulate the 

activity of the APC (Weiler, 2010).  The overall effect is that the production of 

thrombin goes unchecked and can lead to a hypercoagulative state.  

Administration of recombinant APC to severely septic patients was thought to 

decrease mortality (PROWESS trial, Bernard et al., 2001), but newer evidence 

has questioned that finding (Marti-Carvajal et al., 2011).  The physiological 

sequelae after trauma differs from that of the severely septic patient, however 

these papers are mentioned here as the vast majority of research studying the 

interaction of inflammation and coagulopathy have been performed in the 

setting of severe sepsis.  Although a significant number of mechanisms are 

different between the early response to trauma and sepsis, the detailed insight 

into the interaction between the inflammatory and coagulation pathways 

provided by the sepsis studies will undoubtedly contribute to our understanding 

of alterations in trauma. 
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Fibrinolysis is an integral component of the inflammation-coagulation balance 

with TNFα activating it and IL-1 working as an inhibitor.  Inflammation causes 

release of the plasminogen activators (tPA and uPA – section 3.5.2) from 

endothelial cells which can lead to increase in fibrin degradation.  However, its 

action is tempered by a large, but slower release of PA inhibitor (PAI-1) which 

blocks fibrinolysis contributing to microvascular thrombosis (Van der Poll et al, 

1991; Petaja, 2011).    

 

The coagulation process also modulates the activation of the inflammatory 

process predominantly by the action of the coagulation proteases and inhibitors 

on the inflammatory cell responses.  Thrombin markedly enhances the level of 

endotoxin-induced IL-1 in macrophages as well, in conjunction with Factor Xa 

and fibrin, directly stimulate mononuclear cells and endothelial cells to produce 

IL-6/IL-8 (Van der Poll et al., 2011).  This modulation occurs by binding to 

protease-activated receptors (PAR).  Four types exist (PAR 1-4), all part of the 

transmembrane G-protein-coupled receptors, and are localised on endothelial 

cells, mononuclear cells, platelets, fibroblasts and smooth muscle cells (Levi 

and Van der Poll, 2010).  PAR1, 3 and 4 are thrombin receptors and stimulation 

of these results in an up-regulation of cytokines and growth factors.  PAR-2 is 

activated by factor Xa, TF/VIIa and TF/FVIIa/Xa complexes and activation also 

produces an increase in production of reactive oxygen species and cell 

adhesion molecules (Petaja, 2011). 

In the context of trauma and its molecular sequelae, inflammatory changes will 

invariably lead to activation of the coagulation system and vice versa, 

components of the coagulation modulate the inflammatory response.  There are 

many points of ‘cross-talk’ but importantly with components of the Protein C 

pathway and fibrinolytic activators/inhibitors.  Exactly how the theory that 

hypoperfusion and activation of the APC pathway driving the early 

hypocoagulation, however the inflammatory associated with down-regulation of 

the same pathway could explain the subsequent increase in the risk of 

thromboembolism that occurs in trauma patients.   
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Consumption and Dilution of clotting factors. 

Consumption of clotting factors has historically been regards as a primary 

cause of traumatic coagulopathy (Schreiber, 2005).  This was felt to be that 

injury initiated the coagulation cascade, as the injury severity directly correlated 

with the amount of thrombin generated; activation would lead to consumption of 

factors and hence result in a coagulopathy.  This consumptive coagulopathy is 

the basis for the one of the original theories for ATC, where it was thought the 

patient was entering Disseminated Intra-vascular Coagulopathy (DIC) (Gando, 

2001).  Classically DIC has been defined in two stages (Levi, 2005).  The first 

stage involves widespread and unrelated generation of thrombin, inducing 

platelet activation and aggregation, which along with fibrin is deposited in the 

microvasculature.  Increased PAI-1 prevents fibrinogen breakdown producing 

an initial hypercoagulable state.  The surge in thrombin stimulates the 

endothelium to release tPA and activates thrombin-activated fibrinolysis 

inhibitor.  It is the action of these anti-thrombotics, in conjunction with the 

excessive consumption of clotting factors and platelets, that leads to the 

hypocoagulopathy and fibrinolysis (the second stage of DIC) (Harr et al., 2011).  

Gando and colleagues have argued over the past two decades that the early 

coagulopathy is actually the second stage of DIC that results in a substantial 

consumption of clotting factors, especially fibrinogen (Gando et al, 1992).  Hess 

el al (2008) had concluded that the ATC was distinct from DIC, which prompted 

Gando (2009) to publish a special editorial expressing his rebuttal to this.  

Although he agreed that the traumatic coagulopathy was multifactorial, he 

argued that DIC was the predominant and initiative pathogenesis of 

coagulopathy at an early stage of trauma resulting in a consumptive 

coagulopathy and excessive fibrinolysis, and this is what Hess, Brohi et al were 

calling ATC (Hess et al, 2008; Brohi et al, 2007, 2008).   

 

The evidence against the early ATC actually being a form of DIC is that 

fibrinogen and platelet counts, which decrease with consumption in DIC, remain 

within normal limits with patients with ATC (Brohi et al., 2007, 2008).  Brohi and 

colleagues also showed that regardless of the amount of thrombin generated, 

no change in PT or APTT was noted except in patients who had hypoperfusion.  



 
67 

This continues to add more weight to the argument that ATC is driven by 

hypoperfusion and is not DIC, however only a clear definition and diagnostic 

criteria for ATC will help clarify the difference, if one exists. 

Dilutional coagulopathy has been postulated as a cause of bleeding in the later 

phase after trauma, especially after a massive transfusion (Ho et al., 2005).  

When a patient haemorrhages it naturally leads to a loss of clotting factors and 

fibrinogen.  Over a 2L blood loss leads to significant reduction in levels of 

prothrombin, FV, FVII and platelets (Hiippala, 1998).  The subsequent 

resuscitation to replace lost volume with clear fluids can add to this dilution.  

Chapter 4 looks into result of the choice of fluid and how the different 

compositions affect coagulation.    

 

Acidosis    

Metabolic acidosis in trauma is common and is secondary to tissue hypoxia in 

states of hypovolaemia and subsequent inadequate tissue perfusion (Siegel et 

al., 1990).  Meng et al (2003) found that a decrease in pH directly influences 

coagulation by inhibiting the function of the plasma proteases.  When the pH 

was reduced from 7.4 to 7.0 the activity level of FVIIa was reduced by 90%; 

FVIIa/TF complex by 55% and the rate of prothrombin activation by FXa/FVa 

complex was reduced by 70%.  Using a swine model, Martini et al. (2005) 

investigated the independent and combined effects of hypothermia and acidosis 

on thrombin-generation kinetics.  An acidosis of pH 7.1 was induced by the 

infusion of 0.2mol/L hydrochloric acid.  Their results showed that an acidosis of 

pH 7.1 persistently and dramatically inhibited the propagation phase of thrombin 

generation, indicating severe inhibition of the activation of FV, FVIII, FIX and 

FX.  The same group went on to show these coagulation defects were not 

immediately corrected by pH correction alone (Martini et al., 2006 and 2007).   

In human studies, Engstrom et al. (2006) showed lowering of the pH level 

significantly impaired coagulation when measured by thromboelastography; 

resulting in increased clot formation time and reduced alpha angle (an indication 

of thrombin generation).  The clot formation was decreased by 168% at pH 6.8 

as compared with pH 7.4 (P<0.00001).  Fibrinogen levels are also altered by 

acidosis, with a correlation with decreasing pH and fibrinogen 
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degradation (Martini et al., 2007).  It is understood that admission base deficit 

correlates significantly with post-injury organ failure and death (Davis et al., 

1996) and base deficit has also been reported  to be the best detector of occult 

hypoperfusion (when vital signs are normal) (Thom et al., 2010).  As this 

hypoperfusion is linked with ATC, it is clear that early correction of this is 

becoming critical. 

 

Hypothermia  

Clinically significant hypothermia can be defined as a core temperature of 

<35C, and often begins at the time of injury with decreased motor activity and 

increased heat loss by conduction and evaporation and climatic exposure.  This 

is then exacerbated in hospital by exposure from removal of clothing, 

anaesthesia and cold fluids (Gregory et al., 1991; Burch et al., 1997).   

Hypothermia at admission to hospital has been shown to be associated with a 

worse outcome (Ferrara et al., 1990), although overall independently it remains 

a weak predictor of mortality (odds ratio 1.19) (Shafi et al., 2005).   

Watts et al. (1998) concluded that the rate of enzyme reactions of plasma 

coagulation reduces by 10% per C.  However, more recent papers have 

concluded there has been little effect shown on coagulation protease function 

and clinical bleeding at temperatures above 33C (Meng et al., 2003, Wolberg 

et al., 2004).  Below 33C, coagulopathy becomes more severe with significant 

reduction in both enzyme activity and platelet activation.  Thrombin generation 

was reduced by 25% at 33% and 68% below 30C when compared with 37C.  

Platelet aggregation and adhesion were more sensitive with temperature 

changes with a decrease of 40% in function by 33C (Wolberg et al., 2004).  

The dynamic changes of fibrinogen metabolism during hypothermia were 

recently revealed by Martini et al. (2007).  Hypothermia was induced in swine to 

32C and sampling was taken to investigate changes in fibrinogen synthesis 

and degradation.  At 32C there was a decrease in fibrinogen synthesis from 

the norm but there were no effects on fibrinogen degradation.   

Despite these results, it is argued that hypothermia alone is only a weak 
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independent predictor of mortality and that hypothermia does not contribute to 

the incidence or degree of ATC (Brohi et al., 2007, 2008). 

However, hypothermia and acidosis synergistically impair coagulation.  

Dirkmann et al. (2008) looked at whole blood that was acidified in vitro and then 

tested by thromboelastography at temperatures from 30 to 39C.  It was 

concluded that hypothermia produced minor coagulation changes and these 

changes were greatly enhanced by acidosis.  This could be of importance when 

considering the testing temperature, as thromboelastography performed at 37C 

could overestimate the integrity of coagulation during hypothermia in particular 

in combination with acidosis. 

 

Knowledge of the different mechanisms involved in the pathogenesis of acute 

traumatic coagulation has a clear significance for the successful management 

of bleeding trauma patients.  The one common thread linking ATC, SAC, 

acidosis and inflammation is hypoperfusion.  Therefore treatment of shock and 

hypoperfusion in the early stages is vital and then targeting of the progressive 

systemic acquired coagulopathy with goal-directed resuscitation to replace 

clotting factors (Kashuk et al., 2008, Stahel et al., 2009).  This treatment is 

discussed in detail in Chapter 4.   
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Chapter 4:  Resuscitation 

 

4.1 Principles of Resuscitation 

The objective of resuscitation is to correct or prevent the consequences of 

shock1.  In trauma, haemorrhage accounts for 33-56% of pre-hospital deaths in 

civilian trauma (Kauver et al., 2006) and up to 80% of deaths in the military 

(Bellamy, 1984; Holcomb et al., 2007).  A significant proportion (up to 50%) of 

this is exsanguinating haemorrhage (Champion et al., 2003).  Therefore to have 

a significant impact on mortality following major trauma, arresting bleeding is of 

prime importance: firstly by tactical field care (or pre-hospital care); the arrival 

into a medical facility (the emergency department [ED]); onto definitive surgical 

intervention if required, and finally into intensive care as required.  Assuming 

the patient survives the initial blood loss secondary consequences develop as a 

result of the hypovolaemic state.  There is a reduction in tissue perfusion and 

oxygen delivery, leading to metabolic acidosis, coagulopathy and later 

inflammatory responses.  Approximately one-quarter to one-third of all trauma 

patients will present with a coagulopathy at hospital admission.  Resuscitation 

will be required to not only minimise further blood loss and restore tissue 

perfusion and oxygenation but also to address this coagulopathic state.  A 

European Multidisciplinary Task Force for Advanced Bleeding Care in Trauma, 

formed in 2005, recently published their updated guidelines (Rossaint et al., 

2010).  This outlined 31 recommendations that should be considered in trauma 

patients with the overall message of rapid control of bleeding, restoration of 

tissue oxygenation with appropriate volume replacement, prevent hypothermia 

and management of coagulopathies.  This chapter examines the issue of initial 

volume of fluid resuscitation, the types of fluids available and the developing 

use of ‘Damage Control Resuscitation’, with particular emphasis on addressing 

this Trauma Induced Coagulopathy.  The last section will examine the potential 

role of specific clotting tests (thromboelastography /thromboelastometry -

TEG/TEM) in guiding the resuscitation process. 

                                            
1
 Shock is defined as a failure of tissue oxygen delivery to meet demand. 
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4.2 Pre-hospital Resuscitation. 

The rapid arrest of haemorrhage is saving lives (Hodgetts et al., 2006).  In the 

military this is achieved mainly with the use of tourniquets for exsanguinating 

limb injuries and a recognition of incompressible bleeding which needs surgery 

(Brodie et al., 2007; Swan et al., 2009).  Fluid resuscitation is often needed to 

sustain life until the casualty can be evacuated to a surgical facility – the timing, 

choice of fluid, the volume administered and even the required end-point goal 

for resuscitation at specific points in the treatment chain is an on-going debate. 

Animal resuscitation studies in the mid-20th century discovered that prolonged 

hypotension after controlled haemorrhage resulted in an extracellular fluid 

deficit.  A number of studies recommended correcting the loss of blood by the 

administration of a three-fold volume of intravascular crystalloid (Stern et al., 

2001).  Further studies in the 1960’s (Shires et al., 1964) showed this three to 

one resuscitation improved survival.  This aggressive resuscitation approach 

was adopted universally and was widely promulgated in the resuscitation of 

casualties during the Vietnam War.  However excessive fluid volume increases 

the movement of excess fluid into the ‘third space, which resulted in gross 

pulmonary oedema or the ‘Da Nang Lung’ in numerous casualties and therefore 

the benefit was later questioned (Wangensteen and Ludewig, 1969). 

The Advanced Trauma Life Support (ATLS®) approach to trauma patients was 

developed in the late 1970’s to ensure that clinicians were taught a method of 

dealing with trauma victims in a timely and appropriate manner.  By 2007 over 1 

million doctors had trained in the theory of this approach in over 60 000 courses 

worldwide (American College of Surgeons, 2008).  This aggressive and didactic 

approach was at the centre of the resuscitation of circulation on arrival to the 

ED and it continues to promote that 3ml of crystalloid fluid should be given to 

replace each 1ml blood loss – the 3-to-1 rule – with a usual dose of 1-2L of 

crystalloid being given as a initial loading dose (page 63, ATLS® Manual, 

American College of Surgeons, 2008).    

This aggressive initial approach gained support by two key papers in the mid 

1980’s (Jacobs et al., 1984; Pons et al., 1985), which both described how 

trauma patients treated with intravenous fluid resuscitation by paramedics were 
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accredited with improving haemodynamic parameters and overall outcome.  

However patients in these studies had very short transfer time to hospital and 

these studies were compromised by the absence of control groups. 

However, a number of large studies have questioned this use of pre-hospital 

fluid, and have suggested it may actually be harmful in certain subsets of 

trauma patients (Kaweski et al., 1990; Dalton, 1995; Dula et al., 2002; Talving et 

al., 2005). Revell, Porter and Greaves in a consensus paper in 2002, asserted 

that IV fluids should not be administered to penetrating trauma patients if a 

central pulse is present, and that under no circumstances should IV 

administration delay transport (Revell et al., 2002).  The promotion of restricted 

pre-hospital fluid has been nurtured further by the publication of two recent 

papers that involve large patient numbers.  The first was Canadian prospective, 

multi-centred controlled trial that compared the intervention of trauma victims 

before and after a system-wide Advanced Life Support (ALS) program was 

implemented for paramedics (Stiell et al., 2008 for the Ontario Pre-hospital 

Advanced Life Support (OPALS) trauma study).  Prior to the implementation, 

the practice had stipulated that IV fluid should not been given in the field.  2867 

patients were enrolled and the two groups were well matched regarding 

demographics, nature of trauma and severity of injury (>90% were blunt 

trauma).  No improvement in morbidity or mortality was demonstrated following 

the implementation of ALS in all subgroups.  Introduction of the ALS protocol 

did not alter the time to reach hospital as prior to implementation the average 

time between notification of the accident to arrival at ED was 29.7 mins and 

34.2 mins with ALS.  However, it was noted that patients with a decreased 

Glasgow Coma Score (GCS) (<9) did have a worse outcome when given pre-

hospital fluid.   

The second study is a large retrospective cohort study has been published 

looking at patients from the US National Trauma Data Bank: records of 776,734 

trauma patients studied over a period from 2001-2005 (Haut et al., 2011).   

They showed that 49.3% were in the pre-hospital IV group, and the 

multivariable analysis demonstrated that patients receiving IV fluids were 

significantly more likely to die: odds ratio [OR] 1.11 (95% confidence interval 

[CI] 1.05-1.17).  It was especially marked in patients with penetrating 
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mechanism OR 1.25; hypotension OR 1.44; severe head injury OR 1.34 and 

those who need immediate surgery OR 1.35.  The OR also increased as the 

ISS rose; an ISS <9: OR 0.89; ISS≥9: OR 1.14; ISS≥15: OR 1.17; ISS≥25: OR 

1.21.  They concluded that the routine use of pre-hospital IV fluid should be 

discouraged in all trauma patients.  However, they did not look at the time from 

the arrival of paramedics at the scene to arrival at the ED and there was no 

investigation of the actual volumes of pre-hospital fluid administered. 

The Eastern Association of the Surgery of Trauma published guidelines 

suggesting that IV catheters should not be placed in the pre-hospital setting in 

trauma patients, and advocate that fluids should be withheld in patients with 

penetrating torso trauma until active bleeding is addressed (Cotton et al., 2009).   

In view of the accumulating evidence the revised ATLS manual still promotes 

the 3-to-1 rule but has added that aggressive initial fluid management does 

need a careful and balanced approach with frequent re-evaluation (page 64, 

ATLS manual, American College of Surgeons, 2008).     

In Chap 3 section 7, attention was drawn to the incidence of the TIC upon 

arrival at the emergency department and the volume of pre-hospital fluid as a 

predictor of coagulopathy.  In the London study there was minimal pre-hospital 

(median 500ml) fluid administration and no correlation was found with either the 

amount or type of intravenous therapy administered (Brohi et al., 2003).  

However with such volumes of fluid being so small, the true influence of fluid 

cannot truly be commented on in this paper.  The German retrospective 

analysis, where a range of fluid volumes were given to patients, did find a 

correlation between coagulopathy and volume of fluid administered, showing 

the incidence of coagulopathy increased with increasing volume of intravenous 

fluids administered in the pre-hospital phase (Maegele et al., 2007).  The mean 

volume of fluid given in this phase was 2198ml in patients found to have a 

coagulopathy versus 1372ml in the non-coagulopathic group (p<0.001).  

Coagulopathy was observed in 40% of patients who received more than 

2000ml, in more than 50% with more than 3000ml and in more than 70% when 

more than 4000ml was given, but the authors have not correlated these groups 

with their severity of injury (recorded as the ISS). It could be the greater volume 
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was administered to those with the highest ISS, and this could explain the 

higher incidence of coagulopathy. However, their results would advocate a 

lower volume approach to pre-hospital fluids. 

 

4.3 Low Volume Fluid Replacement.  

In keeping with the move away from an aggressive fluid resuscitation, there has 

been considerable evolution in pre-hospital fluid strategies focusing on limited 

(low volume) or hypotensive resuscitation based on both laboratory and clinical 

data.   This hypotensive resuscitation is a strategy of deferring or restricting fluid 

administration until haemorrhage is controlled, while accepting a limited period 

of suboptimum end-organ perfusion (Jansen et al., 2009).  The blood pressure 

is allowed to remain below normal levels in an attempt to avoid disruption of 

nascent blood clots, particularly within the first hour after injury (Stern et al., 

1993).   After this time an undisturbed clot has achieved more than 80% of its 

ultimate tensile strength (Shen and Lorand, 1983).  To prevent this possible 

disruption of the clot, the systolic blood pressure is maintained at approximately 

80mmHg2 (Sondeen et al., 2003, Krausz 2006).  This is the concept that has 

been adopted by the military medical services of some nations, especially 

considering the longer time-lines of extraction (Greaves et al., 2002; Holcomb, 

2003; Krausz, 2006; Battlefield Advanced Trauma Life Support, BATLS, 2006).  

Current UK Guidelines as promulgated by the National Institute for Clinical 

Excellence (NICE) recommend that IV fluids should not be administered in the 

pre-hospital phase if there is a radial pulse, and if not palpable, aliquot boluses 

of 250ml of fluid should be given and reassessed each time (NICE: Technology 

Appraisal Guidance 74, 2004).  Widespread adoption of hypotensive 

resuscitation strategies by national advisory bodies such as NICE who 

rationalise “that in patients with uncontrolled or potentially uncontrolled 

bleeding, vigorous fluid therapy may exacerbate bleeding by diluting blood 

clotting factors, reducing the concentration of circulating blood platelets, and by 

                                            
2
 In the field this is assessed as the arterial pressure necessary to produce a palpable radial 

pulse. 
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dislodging early clots forming at the site of haemorrhage” emphasises the 

acceptance of the concept colloquially known as ‘popping the clot’ during 

aggressive resuscitation in patients where the haemorrhage has not yet been 

controlled.  This concept is supported by an extensive evidence base, however 

much of this may to some extent be biased by the adoption of models which are 

particularly prone to re-bleeding when comparing hypotensive and aggressive 

resuscitation strategies.  Nonetheless, the available clinical evidence does 

support the use of hypotensive resuscitation strategies when evacuation 

timelines are short (see below). 

The laboratory data that provided the evidence for this limited resuscitation was 

carried out on large animal models with an uncontrolled haemorrhage element 

(a model that would be consistent with a penetrating trauma).  Bickell subjected 

a group of pigs to a 5mm aortotomy and those that were not resuscitated 

stopped bleeding spontaneously within 5 minutes (Bickell et al., 1989).  The 

same group of investigators followed this work with a larger animal study in 

which 16 juvenile pigs underwent splenectomy.  This is required as a pig has 

the ability to use the spleen as a reservoir and can return up to 25% of blood 

volume to the circulation as a form of auto-transfusion during haemorrhagic 

compromise (Hannon et al, 1985).  During surgery a wire was placed in the 

aorta, that when pulled later, would create a 5mm aortotomy.  Animals were 

randomised to have no resuscitation or to receive Ringers Lactate (RL) at a rate 

of 3x the rate of blood loss, commenced 6 minutes following the aortotomy. This 

is a considerable volume of fluid when compared to the 3:1 rule proposed by 

Shire (1964) which was based on volume.  At 2 hours, all the animals that had 

received no fluid resuscitation were alive compared to none of the resuscitated 

ones (p<0.05) (Bickell et al., 1991).  The significant increase of intraperitoneal 

blood recorded at the end of the experiment in the resuscitated group, the 

authors postulated that the fluid being commenced at 6 min would have 

disrupted ‘or popped’ the nascent clot.   

Further animal model studies that combined a controlled and an uncontrolled 

haemorrhage component (Kowalenko et al., 1992; Stern et al., 1993) showed 

this detrimental increase in haemorrhage when aggressive fluid was given.  

However in these studies the animals underwent a greater degree of 



76 

 

haemorrhage (due to both a controlled bleed via an indwelling vascular catheter 

and an uncontrolled bleed with a wire aortotomy) and were resuscitated to 

different systolic pressures.  Those who were resuscitated to a lower pressure 

(40mmHg) had the same survival rate at one hour (87.5%) as those who were 

not resuscitated at all, and this was significantly higher than the group 

resuscitated to 80mmHg pressure (37%).  The lower pressure group also had a 

four-fold reduction in intraperitoneal fluid at post mortem.  Their protocol 

dictated that fluid resuscitation was commenced when the pulse pressure 

reached 5mmHg after the aortotomy, meaning that fluid administration was 

instigated almost immediately. This model and protocol have a strong bias 

towards maximising the risk of re-bleed. 

Repeating these experiments with end resuscitation pressures of 40, 60 and 

80mmHg, the most favourable outcome from a metabolic profile was the 

modestly resuscitated group of 60mmHg, whereas the lower pressure group 

had the worst metabolic profile (with lower lactate levels), indicating the 

response to the poor tissue perfusion (Stern et al., 1993).  Resuscitation was 

commenced almost immediately following the aortotomy when the pulse 

pressure dropped to 5mmHg, which is unlikely to provide sufficient time for clot 

formation and this model is likely to be very susceptible to re-bleeding.  None of 

these studies looked at coagulopathy. 

Rafie et al., (2004), looked at resuscitation of sheep after haemorrhage to either 

a hypotensive level of 65mmHg or to a normotensive 90mmHg with either 

crystalloid or colloid.  The animals underwent a controlled bleed only in this 

study (with no uncontrolled element) which occurred at three time intervals.  

The first bleed commenced at time zero (T0) at a rate of 25ml/kg for 15minutes.  

Resuscitation was commenced at T30 and continued to T180.  Two smaller 

bleeds at a rate of 5ml/kg for 5 minutes starting at time T50 and T70.  In the 

hypotensive group, the target pressure of 65mmHg was compromised by both 

survival and the poor tissue perfusion (indicated by increasing base excess) 

and it was concluded that the significantly higher cardiac output and oxygen 

delivery that resulted from the normotensive protocols would offer an overall 

survival advantage.   
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A systematic review of animal studies concluded that hypotensive resuscitation 

strategies reduced the risk of death when compared to normotensive strategies 

(Mapstone et al., 2003).  These models involved vascular injuries that were 

most likely to re-bleed when arterial blood pressure was elevated (transection or 

tear in a major artery), thus biasing in favour of a hypotensive resuscitation 

strategy.  Overall the strategy of using a lower than normal blood pressure as a 

guide to fluid resuscitation appears to consistently reduce the risk of death 

regardless of the severity of injury. 

 However, none of the studies had looked at resuscitation past 120 mins and 

the fundamental limitation of this research is that it involves only animal studies, 

so it is not truly clear how they relate to human injuries.       

With the penalty for a hypotensive approach being tissue hypoperfusion, it is 

essential that a balance between the possibility of a re-bleed and this 

hypoperfusion is considered.  In a poly-trauma patient, with multiple injuries that 

could include a head injury, hypotension would need to be avoided to maintain 

cerebral perfusion and prevent secondary brain injury.   

 

Studies carried out at Porton Down have looked at prolonged hypotension after 

haemorrhage and blast, and effects of resuscitation (Parry et al., 2005, Garner 

et al., 2009; Garner et al., 2010, Jacobs, 2010).  The methodology of this work 

is described in greater detail in Chapter 6.  Terminally anaesthetised pigs were 

randomised into four groups.  All animals underwent a controlled haemorrhage 

(with or without exposure to blast) and were resuscitated using 0.9% saline to 

either a hypotensive level (to maintain a systolic pressure of 80mmHg) or a 

normotensive level (with a systolic pressure of 110mmHg).  The primary 

outcome was survival and the end point was 8 hours.  The results showed that 

survival was significantly shorter with prolonged hypotensive resuscitation and 

this was incompatible with survival after blast injury.  The prolonged 

hypotensive state also found to cause a significant continued drop in base 

excess, rise in blood pH and poor whole-body oxygen delivery, demonstrating 

that prolongation of a hypotensive state will result in physiological penalties of 

low tissue perfusion.  It was noted that hypotensive resuscitation of up to an 
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hour did sustain life (Parry et al., 2005; Garner et al., 2010).  These results are 

of significant importance in the consideration of resuscitation in a prolonged pre-

hospital extraction.   

This model was then developed further to assess the outcome if the systolic 

blood pressure was restored to normotensive values after one hour and the 

outcome assessed (Jacobs, 2010).  Animals had a controlled bleed from an in-

dwelling vascular catheter and an uncontrolled bleed was added, caused by a 

grade IV liver injury, to give an injury that is at risk of re-bleeding.  All animals 

were resuscitated to a hypotensive level of 80mmHg for 60 minutes, allowing 

time for good quality clot formation.  One group of animals continued with a 

prolonged hypotensive strategy and the other was resuscitated to a systolic of 

110mmHg (this initial hypotensive strategy followed by a return to normotensive 

levels has been termed ‘Novel Hybrid’ [NH] resuscitation).  Again the primary 

end point was survival over an 8 hour period of resuscitation.  The Novel Hybrid 

resuscitation group showed an increased survival compared to hypotensive 

resuscitation and reversed the physiological deterioration that had resulted from 

prolonged hypoperfusion.  There was no significant increase in the re-bleed 

from the liver injury with restoration of pressure.   

Thus it is essential that resuscitation considers these systemic, time-critical 

physiological sequelae of hypotensive resuscitation and prevent the adverse 

consequences of hypoperfusion.     

 

Clinical evidence for hypotensive resuscitation has been shown in patients with 

penetrating trauma (Bickell et al., 1994).  Bickell randomly assigned 

hypotensive patients who had penetrating torso trauma to receive standard 

aggressive pre-hospital crystalloid fluid, continued in the ED versus receiving 

nothing until after the onset of general anaesthesia in the operating room (OR).  

The primary end point was survival, with approximately 300 in each group.  

Survival was significantly better in those in whom resuscitation was delayed 

(70%vs 62%; p=0.04), however it should be noted that there was only an 

average 75-80 minutes between the time of injury to the OR.   The study was 
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also limited by firstly the high exclusion rate (44%) due to injuries being too 

severe or not severe enough.   

A UK crossover randomised study that aimed to look at resuscitation in those 

who had sustained blunt trauma showed no difference in mortality between the 

delayed and immediate resuscitation groups (Turner et al., 2000).  Despite over 

1300 patients being recruited, the results of this study are widely disregarded 

due to the poor protocol compliance and the low injury severity score of a 

majority of the patients.     

A third, smaller study (Dutton et al., 2002) randomised patients with either blunt 

or penetrating trauma to receive either conventional treatment or treated with 

restricted fluid.  They were resuscitated to either a normotensive pressure 

(>100mmHg) or a hypotensive pressure (70mmHg).  No difference was found in 

mortality in either group.  The paper is limited by a number of points; there were 

only 55 patients in each group, the majority of the patients had a relatively low 

severity trauma score and the mean blood pressure in the hypotensive group 

was recorded at 100mmHg.   

A Cochrane review in 2003 looked at these three papers as well as two other 

trials not pertaining to trauma (Kwan et al., 2003).  The authors found no 

evidence from randomised controlled trials (RCTs) for or against early or larger 

volume of intravenous fluid administration in uncontrolled haemorrhage.  There 

is still no clear consensus on which protocol offers the best outcome. 

The direct physiological effect of low volume or hypotensive resuscitation has 

not been directly investigated but the resultant poor tissue perfusion resulting in 

both animal and human studies is clear.  With the hypothesis that TIC is 

secondary to tissue hypoperfusion, permissive hypotension could potentially 

exacerbate the coagulopathy.  Therefore the aim of resuscitation should be to 

restore tissue perfusion, which could in turn attenuate a developing 

coagulopathy, but the degree of resuscitation given (especially in the pre-

hospital phase) must always be tempered with the knowledge of possible 

consequence of increased hydrostatic pressure.   
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4.4 Choice of Fluid for Resuscitation 

Recommendation 19 of the updated European Guidelines for the management 

of bleeding following major trauma proposes that resuscitation should be 

commenced with crystalloids, with consideration of use of hypertonic solutions.  

Limited use of colloids could be considered in the haemodynamically unstable 

patient (Rossaint et al., 2010).  It is argued that in the initial stages of a trauma 

patient resuscitation, the precise fluid given is not crucial, as long as appropriate 

volume is given (Nolan, 1999).  The optimal resuscitation fluid would combine 

volume expansion and oxygen carrying capacity of blood, with restoration of the 

normal composition and distribution of the body fluid compartments; as no such 

fluid exists the options essentially remain: crystalloid, colloid, hypertonic or 

blood and blood products replacement.  With the rapid progress in trauma care, 

an emerging concept in combat casualty care is haemostatic resuscitation:  the 

rapid and proactive treatment of the coagulopathy associated with major injury 

(Holcomb et al., 2007; Kirkman et al., 2007).  The section will look at the choice 

of fluid to use and discuss further the concept of this haemostatic resuscitation.   

 

4.4.1 Crystalloid vs. Colloid Solutions 

Crystalloids are solutions of salt(s) in water that are classified in respect to 

plasma as hypotonic, isotonic and hypertonic; with osmolarity ranging from 

252mOsmol/L in 5% Glucose to 1025mOsmol/L in hypertonic saline (Doran, 

2007).  Glucose-based solutions rapidly become hypotonic following 

metabolism of the glucose which leaves free water.  This distributes quickly 

throughout all the compartments providing no expansion of the intravascular 

space.  These fluids are not suitable for trauma resuscitation (Mather et al., 

2004).  The most common crystalloid fluids used are isotonic – 0.9% Saline and 

Hartmann’s Solution (Ringers Lactate [RL] is the equivalent in the United States 

[US]).  Again these fluids distribute relatively quickly to all interstitial spaces, 

only to a slower degree than glucose based ones, and this is especially the 

case in trauma patients when hypoperfusion and ischaemia result in net 

movement of water out of the intravascular space due to the increase in 

vascular permeability (section 2.2.1).  It has been shown at 30 minutes after 
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infusion that 16% of the infused crystalloid remains in the intravascular space.  

This was, however, a study in healthy individuals, rather than in the 

hypovolaemic, injured patient (Watenpaugh and Gaffney, 1998).   

Colloids are homogenous, non-crystalline substances consisting of large 

molecules or ultramicroscopic particles of one substance dispersed through a 

second substance – these particles do not settle and cannot be separated out 

by filtration or centrifugation unlike the components of blood (Salmon and 

Mythen, 1993).  Colloids can be subdivided into two major groups: protein and 

non-protein (also called plasma derivatives and semi-synthetics).   

Naturally occurring colloids include human albumin – the solutions (4.5% or 

20%) are derived from human plasma.  Controversy arose in 1998 when the 

authors of a meta-analysis concluded that the use of albumin was associated 

with an increase in mortality of 6% (Cochrane Injuries Group Albumin 

Reviewers, 1998).  This controversial conclusion was questioned with the 

publication of the SAFE (Saline vs. Albumin Fluid Evaluation) study in 2004 

(Finfer et al., 2004).  This looked at the use of albumin and saline for fluid 

resuscitation in the critically ill in a large multi-centred randomised double-blind 

trial comparing 4% albumin vs. 0.9% saline for intravascular resuscitation. The 

study found no difference in mortality, intensive care unit (ICU) stay or hospital 

days.  However, albumin is expensive and there is no evidence to use it as part 

of the initial resuscitation in a trauma patient.  

The non-protein colloids are classified into the modified gelatins, the dextran 

solutions and the synthetic hydroxyethyl starches; all of which are dissolved in a 

crystalloid carrier solution, commonly isotonic saline.  The gelatins (not 

available in the US) are derived from hydrolysis of bovine collagen and a half-

life of up to 3.5 - 4hrs in the intravascular space (Sadler and Horsey, 1987).  

The dextrans are groups of branched polysaccharides manufactured by the 

bacterial action of Leuconostoc mesenteroides on a sucrose medium.  The 

products available are Dextran 40 and 70 (molecular weight [MW] of 40,000Da 

and 70,000Da respectively), only the latter is used in resuscitation (Salmon and 

Mythen, 1993). 
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The Hydroxyethyl Starches (HES) are the youngest generation of artificial 

colloids and have evolved greatly over the past two decades.  The structure of 

HES is a branched amylopectin polymer and is broken down by serum amylase 

in the blood.  The polymer can undergo etherification which results in 

substitution of hydroxyethyl groups for hydroxide.  This occurs at the C2, C3 

and C6 position of the glucose molecule and increases the resistance of 

degradation by the amylases; the higher degree of substitution increases 

intravascular persistence (Trieb et al., 1996).  The starch products are 

described by their MW followed by their degree of molar substitution – i.e. a 

solution of hetastarch 450/0.7 has a MW of 450kDa and a molar substitution of 

0.7.  It is the latter that contributes to the physiological or physiochemical 

characteristics (Jungheinrich and Neff, 2005); the greater the degree of 

substitution, the greater the side-effect profile.  

As the HES preparations have developed, so have the list of pros and cons.  

Early preparations, especially of the starches, were associated with an increase 

in bleeding, renal failure, anaphylaxis and itching, although more recent 

generations have been found to cause fewer negative effects on coagulation, 

renal function and demonstration lower concentration accumulation in plasma 

(Trieb et al., 1999; Vincent, 2007).  HES have been shown to be beneficial in 

septic patients and acute inflammation by the modulation of inflammatory 

markers (Schmand et al., 1995; Dieterich, 2007).  In a animal model of sepsis, 

rats were subjected to a caecal perforation and then resuscitated using either 

HES or a gelatin solution.  The HES group had a significant reduction in 

inflammatory modulators and a lower degree of capillary leakage (Feng et al., 

2007).  It should, however, be noted that the cardiovascular issues are very 

different between sepsis and hypovolaemia and the results do not necessarily 

translate well between the two circumstances, although in a murine 

haemorrhage model, the use of HES also correlated with a restoration of 

marcrophage integrity and thus a lower IL-6 increase (Schmand et al., 1995).  

However, the use of HES has been questioned with regard to renal dysfunction 

and its effect on coagulation.  Another study looking at sepsis, the VISEP trial 

(the Efficacy of Volume Substitution and Insulin Therapy in Severe Sepsis) was 

published in 2008 (Brunkhorst et al., 2008).  The results of this randomised trial 
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showed that the use of HES was associated with higher rates of acute renal 

failure and the requirement for renal replacement therapy than RL.    

With regard to coagulation, HES has been shown to interfere with haemostasis 

by its effect on platelets (Van der Linden and Ickx, 2006).  The effect of HES 

appears to be the same dysfunction as found in Von Willebrand’s disease 

(abnormal platelet aggregation).  Trieb and Baron reported that after an infusion 

of 1000ml of HES a significant decrease in factor VIII:C and vWF was noted, 

more than would be explained than simple dilution (Treib and Baron, 1998).  

HES have also been found to modify the platelet membrane resulting in a 

prolonged bleeding time (Van der Linden and Ickx, 2006). The coagulation 

profile is preserved by the use of smaller molecular weight, lower substituted 

starches (Roche et al., 2006).  

Animal studies have shown differing results regarding coagulopathy using TEG 

to assess the haemostasis profile.  Via and colleagues assessed the effect of 

HES on coagulopathy after a period of haemorrhagic shock in anaesthetised 

pigs (Via et al., 2001).  No difference was found with resuscitation with HES 

when compared to albumin and RL.  The use of starch in the resuscitation of 

swine after a liver injury was compared with resuscitation by RL (Todd et al., 

2005).  TEG revealed that all animals became hypercoagulable after injury, and 

this effect was attenuated when starch was used, but did not cause an increase 

in blood loss.   

 

Considering all of these pros and cons, the choice to use crystalloids or colloids 

remains an on-going debate in the literature.  The Cochrane Collaboration have 

published two reviews looking specifically at the use of colloids in the critically ill 

(Bunn et al., 2003) and to assess if colloids are more effective than crystalloid in 

reducing mortality in people who are critically ill or injured (Perel and Roberts, 

2007).  The first review looked at the benefits of the available colloids with 

respect to the following outcomes: incidence of adverse reactions, amount of 

whole blood transfused and death.  Out of the 36 trials reviewed, 20 compared 

albumin with HES and 11 compared gelatin with HES.  The pooled Relative 

Risk (RR) of these sub-groups was 1.17 (95% CI 0.91 to 1.5) for the former 
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group and RR = 1.00 (95% CI 0.78 to 1.28) in the latter group.  Overall, there 

was no significant difference in mortality rates and as such there was 

insufficient evidence to determine if one colloid solution is any more effective or 

safer above its competitors (Bunn et al, 2003). 

In the second review, 65 trials were identified with 56 looking at mortality.  The 

use of crystalloid was compared to albumin, HES, modified gelatin, and dextran.  

They concluded that, “there is no evidence from randomised controlled trials 

(RCTs) that resuscitation with colloids reduces the risk of death, compared to 

resuscitation with crystalloids, in patients with trauma, burns or following 

surgery.  As colloids are not associated with an improvement in survival, and as 

they are more expensive than crystalloids, it is hard to see how their continued 

use in these patients can be justified outside the context of RCTs”. (Perel and 

Roberts, 2007).     

 

4.4.2 Use of Hypertonic Solutions. 

Although isotonic crystalloids predominate in the resuscitation of patients, there 

has been substantial interest and extensive preclinical and clinical experience in 

evaluating the use of hypertonic solutions of both saline and colloid (Kramer, 

2003).  Hypertonic solutions are solutions that have a greater solute 

concentration than the cytosol, meaning that when infused into the intravascular 

system, it causes water to be drawn out of the cell in the solution by osmosis.  

This has the effect of increasing the intravascular volume which helps to provide 

vascular support (Cross et al., 1989).  The amount of cellular water mobilised is 

proportional to the osmotic load and reduces the overall volume needs in 

perioperative patients (Tollofsrun and Mathru, 1998).  Research looking at the 

effect of endothelial cell swelling during shock and surgical stresses 

demonstrated that the cells swell (Mazzoni et al., 1989) and that the use of 

hypertonic resuscitation normalises the cell volume rather than reducing it 

below normal (Mazzoni et al., 1990).  The greatest interest has been with 7.5% 

saline after the first publication of its use in 1980 by a research team in San 

Paulo, Brazil (Velasco et al., 1980).  They resuscitated dogs, after subjecting 

them to haemorrhagic shock, with 7.5% saline.  They infused 10% of the 
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volume lost and found that the arterial pressure and cardiac output (CO) rapidly 

returned to baseline values and led to 100% survival.  This was thought to 

radical at a time when a 3:1 rule for resuscitation was accepted as the norm. 

A US team repeated this work with infusions of 7.5% saline in haemorrhaged 

conscious sheep (Nakayama et al., 1984).  They also resuscitated the animals 

with a bolus of approximately 10% of the blood volume lost and found that the 

blood pressure and CO rapidly normalised. This was, however, noted to be 

transient response.  One concern that has been raised is that initial 

resuscitation with hypertonic saline (HTS) may cause a sudden rise in arterial 

blood pressure and dislodge any clot that was forming, and thus actually 

potentiate the degree of bleeding (Gross et al., 1988).  This was not the finding 

of Kentner and colleagues when they studied the use of HTS in rats following 

uncontrolled haemorrhage (Kentner et al., 2005). 

Hypertonic saline (HTS) has also been shown to demonstrate a number of 

benefits; mainly that it appears to mitigate the inflammatory response to 

significant injury.  Hypertonicity has been shown to suppress neutrophil 

activation in-vitro (Junger et al., 1998; Deitch et al., 2003) and modulate T-cell 

activity (Junger et al., 1997).  Another group in San Paulo published findings 

that demonstrated that use of HTS after a ischaemia-reperfusion injury in rats 

attenuated the neutrophil infiltration into lungs and thus reduced the early 

inflammatory response to shock and infection (Fernandes et al., 2009).  HTS 

was also found to be beneficial in reducing the alveolar macrophage activity 

after haemorrhagic shock and thus postulated that it could be beneficial in 

reducing the development of Acute Respiratory Distress Syndrome (ARDS) 

(Powers et al., 2003).   

The use of HTS after traumatic brain injury has warranted investigation.  It has 

been demonstrated that HTS may prove more effective in decreasing cerebral 

oedema when compared with mannitol (Himmelseher, 2007).  HTS offers the 

advantage in facilitating an increase in intravascular volume while reducing 

intracranial pressure without potentially causing or exacerbating hypotension.  

The HTS mediates an increase in the inner diameter of the capillary vessel by 

dehydration of endothelial cells may promote increased blood flow to regions of 
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the brain at risk of secondary injury (Tyagi et al., 2007; Pascual et al., 2008).  

However, an Australian trial looked at the use of HTS with traumatic brain injury 

and hypotension.  There was no significant increase in survival and no 

differences in neurological function after 6 months (Cooper et al., 2004).  

As with HES, concerns were raised about the possibility of change in clotting.  

These concerns were from in vitro studies looking at the coagulant effects of 

HTS on PT, PTT and platelet aggregation.  A prolongation of these times was 

noted after 10% or more of the plasma volume was replaced by HTS (Reed et 

al., 1991; Wilder et al., 2002).  However, these findings have not been 

translated in clinical studies (Tieu et al., 2007).   

The transient response, described above by Nakayama, to the initial 

resuscitation with HTS lead to development of combining the hypertonic saline 

with a colloid to attempt to retain more of the water in the intravascular space.  

This was the development of Hypertonic Saline Dextran (HSD). 

 

4.4.3 Hypertonic Saline Dextran (HSD)  

The concept of using small volume, hypertonic resuscitation is of particular 

interest to the military as they possess a significant logistical benefit in terms of 

reduced weight burden; 250ml of HSD is reputed to be equivalent to 3L of 0.9% 

saline with respect to early plasma volume expansion (Dubick et al., 2003).  

HSD is commercially available as ‘RescueFlow®’ (BioPhausia AB, Stockholm, 

Sweden) and contains 75g sodium chloride (NaCl) and 60g dextran 70.  This 

7.5% NaCl represents an osmotic load of 2400 mOsm/L and a MW of 

70,000Da, giving it a half-life in the plasma of 12hours.  A 250ml aliquot 

represents a dose of approximately 4mg/kg in an average man (Sapsford, 

2003). 

The results from HSD have demonstrated the same benefits that have been 

described with HTS.  Improved blood flow to the kidney, pancreas and gastric 

mucosa was significantly improved when HSD in 10% dextran was used in 

resuscitation and moderate improvement in flow to the myocardium, brain, 

skeletal muscle and intestine (Kreimeier et al., 1990).  The authors postulated 
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that this improvement in blood flow improved the overall survival.  This 

improvement in flow was shown to result from a substantial increase in capillary 

flow that was noted by HSD infusion.  Endothelial cells, swollen during the 

shocked state, were shrunk by 20% when HSD was infused (Mazzoni et al., 

1990).   

HSD, like HTS, has been shown to favourably modulate the immune response 

to haemorrhage/resuscitation-induced leukocyte activation (Rotstein, 2000), two 

recent clinical trials have looked at this in prospective, double-blinded 

randomised controlled trials of trauma patients with hypovolaemic shock.  The 

first was a Canadian trial (Rizoli et al., 2006) that randomised 27 patients 

presenting with haemorrhagic shock following blunt trauma to receive either a 

single 250ml intravenous bolus dose of either HSD or 0.9% saline (placebo).  

Blood was collected prior to infusion and then at 1, 3, 6 and 24 hours after 

intervention.  The leukocyte count dropped in both treatment arms, but more so 

with HSD (but not significantly).  There was a significant difference with the 

expression of CD11b, a surface marker involved in neutrophil adhesion and 

activation, as the progressive increase noted with placebo was prevented when 

HSD was given.  HSD was also found to produce a depletion of CD14+/CD16+ 

pro-inflammatory monocyte markers.  Looking at pro- (TNFα and IL-1b) and the 

anti-inflammatory cytokines (IL-1ra and IL-10); HSD prevented the increased 

TNFα expression that was seen with placebo, although there was no significant 

difference with IL-1b.  HSD was found to produce an early and sustained up-

regulation of IL-10 and IL-1ra (consistent with previous animal results [Powers 

et al., 2003]). 

The second RCT from Seattle looked at samples at 12, 24, 72 hours and 7 days 

after injury (Bulger et al., 2007), from 62 patients who received either a bolus of 

250ml of HSD or Ringers Lactate (placebo).  Again they found a significant 

reduction in CD11b and TNFα 12hrs after injury but these differences were not 

sustained in the recovery period.  Neither study found any difference in clotting 

parameters.  The same group published data looking at the ARDS-free survival 

at 28 days.  Again, there was no difference between those who received HSD 

or placebo.     
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Returning to the question of whether HSD would improve survival, Smith et al. 

continued on the work of Nakayama from 1984 by studying the resuscitation of 

sheep following controlled haemorrhage with either 7.5% NaCl alone or in 

combination with 6% dextran 70 (HSD) (Smith et al., 1985).  In a pig model with 

severe but controlled haemorrhage, a HSD infusion resulted in improved and 

sustained haemodynamic variables when compared to either hypertonic or 

normal saline (Wade et al., 1989).   

This improvement in survival opened the door to clinical studies with HSD in 

resuscitation.  Holcroft looked at resuscitation with either HSD versus Ringer’s 

Lactate in patients who had severe haemorrhagic shock and were transported 

by helicopter to the emergency department.  HSD showed the potential to 

increase survival with a reduction in the fluid requirement during the first 24 hrs 

of the study (Holcroft et al., 1987).  A number of double-blinded trials in 

resuscitation followed for hypotensive patients demonstrated that patients who 

had HSD were found to have a higher blood pressure on arrival to the hospital 

but overall survival to discharge was similar to those that received isotonic 

fluids.  The subgroup of patients with head injuries and particularly those with a 

GCS of less than 8 showed a tendency toward improved survival (Vassar et al., 

1991, 1993; Mattox et al, 1991, Younes et al., 1997).  A meta-analysis in 1997 

found that HSD may be superior to either HTS or isotonic fluid with an increase 

in survival to discharge or 30 days.  The result was not significant (Wade et al., 

1997).  More recent work looked at the efficacy of HSD resuscitation for 

hypotension following penetrating torso trauma (Wade et al., 2003). It did find a 

significant improvement in survival.   

A larger multi-centred trial that was investigating the use of HSD was instigated 

by the National Institute of Health with the Resuscitation Outcomes Consortium 

(ROC) but was halted at the interim analysis (Bulger et al., 2011).  It was a 

double-blinded RCT trial of 3 arms comparing a bolus of 7.5% saline (HTS) 

versus HSD versus 0.9% saline (NS) as the initial resuscitation fluid given to 

patients in haemorrhagic shock in the out-of-hospital setting: 62% suffered blunt 

trauma and 38% with penetrating trauma.  The primary end-point was 28-day 

survival, with secondary points including the ARDS-free survival, multiple organ 

dysfunction score (MODS) and nosocomial infection. Results at interim stage 
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showed there was no difference in survival between patients who received 

hypertonic saline solutions, with or without dextran.  HSD: 74.5% (95% CI- 7.5 

to 7.8); HTS:73%(95% CI- 8.7-6.0); and NS:74.4%, p=0.91.   The mortality rate 

before reaching hospital or in the emergency department was higher in the 

hypertonic saline group, although did not reach statistical significance.  There 

were no differences between groups in organ failure, ARDS-free survival or 

nosocomial infections.  A subgroup analysis of this study looked at the use of 

hypertonic resuscitation following severe traumatic brain injury (TBI) (Bulger et 

al., 2010).  The main outcome was assessment of neurological status at 6 

months.  Results showed there was no difference in 6-month neurological 

outcome among groups with severe TBI (HSD vs NS:53.7% vs 51.5%; HTS vs 

NS:54.7% vs 51.5%, p=0.67).   

Of interest, these studies did not show any clinical difference with coagulopathy, 

although two in vitro studies found that dilution of whole blood with increasing 

concentrations of HSD have decreased clot strength, slight prolongation of PT 

and decreased platelet aggregation (Hess et al., 1992; Coats and Heron, 2003).  

All authors’ did comment that the alterations were not thought to be clinically 

relevant.  

The ROC group concluded that there was no compelling evidence to promote 

the use of HSD in the resuscitation of trauma patients, but they did complete 

their paper by recommending future studies being warranted to define the use 

of HSD in a military environment.  This conclusion should be tempered with the 

understanding that the trial was terminated early on grounds of futility.  

The use of HSD has been investigated in a pre-clinical study for the 

resuscitation in a complex military injury (Jacobs, 2010).  Large white pigs were 

terminally anaesthetised and subjected to two injury patterns: haemorrhage 

(with a controlled and uncontrolled element from a liver injury) alone or 

combined with a blast injury.  Animals were initially resuscitated with 0.9% 

saline (NS) or with HSD to a total amount of 7.1ml/kg (then any subsequent 

resuscitation with 0.9% saline).  Resuscitation was to a hypotensive limit for the 

first 60mins (80mmHg) and then to a normotensive limit thereafter.  Results 

showed HSD was associated with a significantly reduced survival time in the 
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blast/haemorrhage group when compared to the group resuscitated with NS.  In 

the absence of blast, HSD did confer some physiological advantage to the 

animals exposed to haemorrhage alone, with a reduced base deficit throughout 

the resuscitation period.   

Considering the greatest threat to military in current conflicts is from blast, and 

that no clear evidence has been defined for HSD in the pre-hospital setting, it 

is unlikely that HSD could be considered for routine pre-hospital management of 

battlefield or civilian trauma casualties.    

 

4.5 Damage Control Resuscitation (DCR).  

Damage control resuscitation (DCR) combines the concept of ‘permissive 

hypotension’ or hypotensive resuscitation with the developing haemostatic 

resuscitation and used in combination with damage control surgery (Kirkman et 

al., 2007; Holcomb, 2007; Jansen et al., 2009). DCR has been developed in 

military trauma systems and has been defined in two ways: 

1.  The proactive early treatment to rapidly reverse an acidosis, prevention of 

hypothermia and coagulopathy (to arrest the development of the lethal triad 

(section 3. 7.2) on arrival to a combat hospital (Holcomb et al., 2007) 

2.  A systematic approach that combines the paradigm of <C>ABC to address 

catastrophic bleeding, airway, breathing and circulation with a series of clinical 

techniques from point of wounding to definitive treatment in order to minimise 

blood loss, maximise tissue oxygenation and optimise outcome (Hodgetts et al., 

2007).  This extends the principle of DCR forward to the point of wounding. 

The foundation and understanding for hypotensive resuscitation has been 

discussed and is primarily set in the pre-hospital environment; however when a 

major trauma casualty arrives in hospital, then the focus must shift to allow 

access to the rapid control of major surgical haemorrhage and then fluid and 

targeted therapy with the early use of blood and blood products directed 

towards treatment of intrinsic ATC (Acute Traumatic Coagulopathy) and to 

prevent dilutional coagulopathy.  Damage control surgery at this stage has the 
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overall aim to stop haemorrhage and prevent contamination and runs 

simultaneously with the haemostatic resuscitation (neither is an adjunct to the 

other) (Shapiro et al., 2000).   The overall objective is to proactively manage the 

physiological consequences of injury (Midwinter, 2009). 

The ‘haemostatic’ element of resuscitation replaces the lost blood with packed 

red cells and blood products early to attempt to restore both perfusion and 

normal coagulation function.  These approaches are only required in the most 

severely injured, which account for approximately 10% of casualties in a military 

environment (less than 5% in a civilian setting) (Holcomb et al., 2007), and 

encompasses those that will require a massive transfusion. 

Massive transfusion (MT) is regularly cited as the transfusion of more than a 

patient’s circulating volume in 24 hours or more than 10 units of packed red 

blood cells PRBC in 24 hours (Malone et al., 2006).  However, an acutely 

bleeding trauma patient and those at risk of life threatening coagulopathy 

receive 85% of their transfusions in the first 6 hours after injury (Kashuk et al., 

2008).  Protocols have been developed to help counter the dilution and 

consumption of factors and this, along with reversal of hypothermia and 

acidosis is the crux of DCR.   

The current definition of a MT in the UK military is outline in table 5 as laid down 

in the Joint Service Publication (JSP)  950; Medical Policy (2009).  However the 

severity of the injury made on clinical assessment (such as bilateral proximal 

traumatic amputations or truncal haemorrhage with one proximal traumatic 

amputation) can be used to implement the policy as this degree of severe injury 

severity has a high likelihood of developing ACT (Brohi et al., 2003). 
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 Definition of Massive Transfusion in UK as stated in UK JSP 950 

Definition of Massive Transfusion: 

1. The replacement of an equivalent amount of blood to an entire circulating blood 

volume of the patient within 24 hours; or 

 

2. More than 10 units of red blood cells within 24 hours (whichever comes first). 

 

Additional Criteria in the Acute Military Operational Setting: 

1. The transfusion of over four units of red cells in 1 hour; or 

2. The replacement of 50% of the total blood volume in 3 hours; or 

3. A rate of blood loss of >150 ml/min 

Table 5   : UK definition of massive transfusion  

 

This allows the prompt delivery of blood and products to the medical staff to 

ensure resuscitation is prompt and effective.  This section looks at the use of 

blood, blood products and the use of adjunct therapies given during 

haemostatic resuscitation.  

 

4.5.1 Packed Red Blood Cell (PRBC) Transfusion.   

Haemorrhagic shock necessitates the replacement of red blood cells (RBC), 

and early red cell transfusion has shown to increase CO and preserve oxygen 

carrying capacity (Dutton and Carson, 2006).  The contribution of RBC in the 

overall haemostatic process is unclear but reports have stated that they help 

marginalise platelets within the blood vessel and support thrombin generation 

(Quaknine-Orlando et al., 1999; Peyrou et al., 1999).  A drop in the haematotcrit 

(Hct) results in a increase in bleeding time and this parameter returns to normal 

upon transfusion (Valerie et al., 2001) and it is postulated that the presence of 

RBCs accelerates the onset of clot formation (Spoerke et al., 2010).   

There is no current international consensus on what haemoglobin (Hb) level 

should be the trigger for transfusion. The updated European guidelines on the 
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management of bleeding recommend a target Hb of 7-9 g/dL (recommendation 

21, Rossaint et al., 2010).  The British Committee for Standards in Haematology 

(BCSH) (2006) guidelines on management of massive blood loss recommend a 

target Hb of >8g/dL.  The Canadian Critical Trials group found there was less 

transfusion if the target Hb was 7g/dL but there were no significant benefits in 

terms of multi-organ failure (MOF) or post-trauma infections (McIntyre et al., 

2004).  That study was not designed to address the trauma subgroup directly, 

and so a Hb level of >8g/dL is the accepted norm.    

Transfusion will always carry a risk of exposure to blood borne infection, mild 

allergic reactions and ABO incompatibility.  With massive transfusions occurring 

in the most serious ill patients to underpin DCR, it is not without risk.  Blood 

transfusions have been associated with an increased development of MOF, 

increased ICU stay, increased incidence of ARDS, higher degree of renal 

impairment, prolonged length of hospital stay and increased mortality (Moore et 

al., 1996; Claridge et al., 2002; Malone et al., 2003., Charles et al., 2007; Marik 

and Corwin, 2008; Chaiwat et al, 2009).  Therefore blind over-transfusion may 

result in increased risk and also be a waste of precious resources.   

4.5.2 Fresh Frozen Plasma (FFP).     

Considering DCR is designed to rapidly address ATC with the empiric and 

simultaneous administration of clotting products with the initial PRBC 

transfusion (Holcomb et al., 2007) and early administration of thawed FFP at a 

dose of 10-15ml/kg is recommended (Rossaint et al., 2010).  FFP is formed by 

isolating the plasma from the cellular components of blood within 6 hrs of 

collection, giving a preparation of near normal levels of clotting factors 

(Stanworth, 2007).  There is little direct evidence for the clinical efficacy of using 

FFP in trauma patients (Stanworth, 2004), however it is widely accepted that 

replacement of clotting factors is necessary in a bleeding patient, although 

historically it was felt that FFP should be administered when a coagulopathy 

was identified by a PT and APTT were >1.5 times normal (Stainsby et al., 

2000).  However reliance on these laboratory measure given the length of time 

these results take to return to the clinician renders them of limited value in a 

dynamic, rapid resuscitation of a trauma patient (Davenport et al., 2011). 
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Standard clinical teaching of administration of 1-2 units of FFP after 4-6 units of 

PRBCs adopted from animal experiments in the early 1980s (Counts et al., 

1979; Lucas and Ledgerwood, 1981). This thinking was questioned in 1982 

when a FFP:RBC ratio of >1.4 was found to increase the likelihood of 

coagulopathic bleeding and ratios >1.8 were almost uniformly associated with a 

lethal outcome (Kashuk et al., 1982; Cosgriff et al., 1997). 

The more aggressive ratio of FFP:RBC of 1:1 was introduced by military 

surgeons in Iraq during the past decade (Hess et al., 2006; Ketchum et al., 

2006; Borgman et al., 2007).  This recommendation was initially instigated with 

anecdotal evidence, until Borgman published his small, retrospective study to 

determine whether the ratio of plasma to RBCs transfused would affect survival 

(Borgman et al., 2007).  As the ratio of plasma to RBC increased, mortality 

decreased with a statistically significant absolute reduction of 46% (from 65% to 

19%) for those who had been resuscitated with FFP:RBC in a 1:1.4 when 

compared to those  who received the conventional 1:8.  The authors concluded 

that this lower ratio improved the survival of patients at risk of haemorrhagic 

shock, whilst acknowledging that prospective randomised trials were needed to 

compare empiric plasma to RBC ratios on the effect of outcomes for patients 

with severe trauma.  Further publications have looked at this higher ratio and 

found broadly the same results (Kashuk et al., 2008; Duchesne et al., 2008; 

Sperry et al., 2008; Maegele et al., 2008; Holcomb et al., 2008; Gonzalez et al., 

Gunter et al., 2008; Spinella et al., 2008), but all are retrospective studies.  The 

Denver group (Kashuk et al., 2008) found that the 1:1 FFP:RBC reduced 

coagulopathy but did not translate into a survival benefit.  They concluded that 

1:2-1:3 ratios were optimal for survival (Kashuk et al., 2010).  Analysis of the 

German Trauma Registry (Maegele et al., 2008) showed that the mortality rates 

with ratios of RBC:FFP <0.9; RBC:FBC 1=1; RBC:FBC >1.1 were 3.5%, 10% 

and 25% respectively.  They also showed that the frequency of septic 

complications and MOF was significantly raised in the 1:1 group.   

The main problem with these retrospective studies is the survival bias (as in 

those patients who die early do not survive long enough to get as much 

plasma).  When the timings of the transfusions was evaluated, it revealed that 

the patients who were given early, high ratio of FFP:RBC were actually in less 
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shock and less likely to die from uncontrolled haemorrhage, thus the bias is 

because those selected are less likely to die in the first place (Magnotti et al., 

2011).  Snyder reviewed their data to adjust for this bias, the association 

between higher rations and improved mortality was not there (Snyder et al., 

2009).   

Two systematic reviews have looked at the impact of altering FFP:RBC ratio on 

mortality (Zehtabchi and Nishijima, 2009; Murad et al., 2010), analysing 11 

observational studies between them.  One paper concluded that there was no 

significant evidence to show that a high ratio of FFP:RBC was beneficial and 

reiterated the higher relative risks for sepsis, MOF and ARDS (Zehtabchi and 

Nishijima, 2009).  The second paper (only looking at 4 studies) concluded that 

there was some evidence to advocate a higher ration was associated with a 

better outcome (Murad et al., 2010), but both papers commented on the degree 

of bias and the need for prospective work in this area.  

Two prospective cohort studies have been published: the first looking at the 

outcome in critically injured trauma patients (Scalea et al., 2008) and the 

second evaluating the haemostatic effects at different ratios during resuscitation 

(Davenport et al., 2011).  These small studies found that the FFP:RBC ratio did 

not predict or improve ICU stay or mortality, and a ratio of 1:2 and 3:4 

resuscitation provided the greatest benefit to haemostasis.  

The evidence currently supports the use of early use of plasma in the 

resuscitation but in what amount? The other outstanding question is how do we 

administer this practically and how much should be given?  Too much FFP may 

not be the answer.  

4.5.3 Platelets. 

Spontaneous bleeding can occur when the platelet count falls below 50 x109/L 

(Stainsby et al., 2000), and below which platelet function diminishes 

exponentially (Samama et al., 2005).  The British Committee for Standards in 

Haematology (BCSH), 2006, guidelines currently recommend that platelets are 

given at a threshold of >75 x109/L in massive transfusion, and the European 

Guidelines (Rossaint et al., 2010)  recommends the count should be maintained 
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above 50 x109/L or above 100 x109/L in multiple trauma.  In severe TBI, 

thrombocytopenia is a strong negative prognostic factor (Van Beek et al., 2007) 

and so measures to avoid this should be taken in the subgroup.   

Even though there is no direct evidence to support the use of platelets in the 

trauma patient, with the understanding of the role of the platelets are such an 

integral part of the clotting process, their addition to the resuscitation is 

essential. Current evidence suggests that platelet function appears to be of 

greater importance than platelet number in thrombus formation and integrity 

(Davenport and Brohi, 2009).  The use of early platelets has been advocated in 

trauma resuscitation, especially within the military sphere (Holcomb, 2007; 

Borgman et al., 2007; Kirkman et al., 2007).  Again, data is retrospective. A ratio 

of platelets:FBC of 1:5 was shown to have a lower 30-day mortality when 

compared with those who had received less than this ratio (38% vs 61%, 

p=0.001).  However, platelet transfusions are associated with a high incidence 

with Transfusion-related Acute Lung Injury (TRALI) (Khan et al., 2007). 

Platelets are included in the development of proactive massive transfusion 

protocols (MTP).  A recent review of the literature with use of plasma and 

platelets in MTP showed that there was a 74% reduction of odds in mortality 

and a 15% improvement in 30-day survival (Johansson and Stensballe, 2010).  

Again the question of how much and how early platelets should be given 

remains unanswered.     

 

4.5.4 Fibrinogen / Cryoprecipitate.  

Cryoprecipitate is formed when FFP is thawed, centrifuged and the precipitate 

is re-suspended in sterile saline and is rich in factors VIII, XIII, vWF and 

fibrinogen.  Four units of FFP contain approximately 1500mg of fibrinogen, 

equivalent to 1 pooled pack of cryoprecipitate (1400mg) (Kashuk et al., 2010).  

Fibrinogen can decrease to critical levels at an early stage after trauma, even 

before administration of PRBC becomes necessary (Hiippala et al., 1995; 

Martini et al., 2005).  Fries et al have examined the effect of fibrinogen in an 

animal model of traumatic injury and blood loss (Fries et al., 2005 and 2006) 

demonstrating that the administration of fibrinogen normalises the propagation 
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phase of clotting, reduced the overall blood loss and increased the survival of 

the animals compared to those treated with placebo.  An in-vitro study 

compared the effects of fibrinogen, factor XIII and FFP in reversing the dilution-

dependent changes in clot formation (Haas et al., 2008).  Both fibrinogen and 

FFP allowed the indices of initiation of clotting to return to baseline levels, but 

clot firmness was only restored with administration of fibrinogen. These 

conclusions have increased the attractiveness of early replacement of 

fibrinogen.  

Three observational studies have looked at the administration of fibrinogen 

concentrate (Haemocomplettan P, CSL Behring GmbH, Germany: licensed in 

a number of European Countries, not UK).  Two of which looked at patients with 

acquired hypofibrinogenaemia and demonstrated that fibrinogen administration 

alone stopped bleeding (Danes et al., 2008; Weinkove et al., 2008) and as a 

therapy for massive haemorrhage, the third paper concluded that fibrinogen 

improved coagulation tests and the need for transfusion of RBC, FFP and Plts 

decreased (Fenger-Eriksen et al., 2008). 

A recent retrospective review of 252 combat trauma patients who received 

massive transfusion reported a reduction in mortality in the group with higher 

concentrations of fibrinogen than those with lower concentrations (Stinger et al., 

2008).  Current recommendations state that fibrinogen should be replaced if 

plasma levels are less than 1.5 to 2.0g/L or if there are thromboelastometric 

signs of deficiency.  The current recommendation in the European Guidelines is 

a dose of 50mg/kg of cryoprecipitate or 3.4g of fibrinogen concentrate should be 

given initially (Recommendation no 26, Rossaint et al., 2010) when a deficiency 

is found.   There are no scientific trials to support pre-emptive fibrinogen 

replacement early in the treatment of patients with TIC. 

 

4.5.5 Anti-fibrinolytics  

Hyperfibrinolysis is found in the most severely injured patients and is associated 

with a increased mortality rate (Kashuk et al., 2010). Hyperfibrinolysis occurs 

when the fibrinolytic activity is potentially greater than fibrin formation such that 

the clots integrity is threatened (Hunt, 1996) and as explained in section 3.5.2 
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the term hyperfibrinolysis is poorly defined within the current literature. 

Thromboelastography has become the accepted method to both detect and 

define hyperfibrinolysis which is a clot lysis result of >15% within 60 minutes 

(Luddington, 2005; Schochl et al., 2009).  If it is fulminant (where clot lysis is 

greater than 50% in 30mins when measured by ROTEM) it is almost always 

associated with 100% mortality (Schochl et al., 2009).  The condition can be 

treated by the administration of anti-fibrinolytics.  The publication of the CRASH-

2 trial has brought the use of the anti-fibrinolytic, tranexamic acid (TXA) to the 

fore (CRASH-2 collaborators, 2010).  This was a large, international multi-

centre RCT trial of 20 000 patients evaluating the use of the tranexamic acid in 

major trauma within 8 hours of injury.  The primary endpoints were mortality 

with 4 weeks of injury, vascular occlusive events and transfusion requirements. 

Results demonstrated that the early administration of TXA to trauma patients 

reduces the death from haemorrhage with no apparent increase in fatal or non-

fatal vascular occlusive events.  No significant affect on the transfusion 

requirement was noted.   

This trial is of clinical significance but has been criticised for a number of 

reasons.  The majority of patients were recruited in developing countries where 

the approach and treatment of trauma victims varies greatly to that of developed 

countries and also there is no definite evidence that patients were bleeding at 

the time of randomisation.  Also only half the patients (50.4% in the TXA group 

and 51.3% in the placebo group) received blood transfusions.  Was this 

because there was no blood available to transfuse or because the patients were 

not actually bleeding?  Only 47.9% of the TXA group and 48% in the placebo 

group underwent a surgical intervention procedure – is this because they again 

weren’t actually bleeding or the blood loss was controlled by external 

pressures?  These questions have raised many criticisms about the study (Cap 

et al., 2011). 

 A current military study has looked at the use of TXA in combat-related injuries 

in Afghanistan and its impact on mortality.  Initial results have shown that the 

use of TXA in conjunction with component-based resuscitation following combat 

injury is associated with improved survival, especially those requiring massive 

transfusion.  Interestingly the data has shown that there is no significant 
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difference of mortality <24 hrs but there is a significant difference of decreased 

mortality of deaths at 30 days (Morrison et al., 2012).  This reason for this is not 

clear. 

Current recommendations are that TXA should be administered to bleeding 

patients, especially if hyperfibrinolysis is detected (Rossaint et al., 2010). 

 

4.5.6. Recombinant activated Factor VII      

Recombinant activated Factor VII (rFVIIa) (Novoseven, Novo Nordisk) is 

manufactured using recombinant DNA technology.  Its use in surgical bleeding 

and in particular trauma is off licence and is controversial.  The first prospective 

trial (Boffard et al., 2005) in trauma demonstrated a reduction of blood 

transfusions with administration of rFVIIa in blunt trauma, but no reduction in 

mortality.  There was a significant reduction in the incidence of ARDS.  This 

association with reduction of transfusion in blunt trauma has been well 

documented (Vincent et al., 2006; Patanwala, 2008) and therefore its use is 

incorporated into most massive transfusion protocols.  The results of the 

CONTROL trial have been published (Hauser et al., 2010).  This was a 

prospective, randomised, double-blinded multi-centred, placebo-controlled trial 

that was conducted from 2005 to 2008.  The aim was to evaluate efficacy and 

safety of rFVIIa in patients with active bleeding from trauma and had already 

received 4 units of blood.  This trial was terminated early after the enrolment of 

573 patients on the grounds of futility following an interim analysis and because 

of difficulty in recruitment.  Results showed that the addition of rFVIIa reduced 

blood product use but there was no affect on mortality in either blunt or 

penetrating trauma when compared with placebo.      

The current guideline (Rossaint et al., 2010) is that it should be considered if 

major bleeding in blunt trauma persists despite standard attempts to control 

bleeding, although it is not a treatment to used as a ‘last ditch’ attempt in a 

patient that is devoid of all clotting factors, active platelets and red blood cells.  

It should be used before it is too late.  
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  4.5.7 Other Factor Components  

Prothrombin Complex Concentrates (PCC) is composed primarily of Factor IX 

and is most commonly used for haemorrhagic complications of Haemophilia B 

(Hoffbrand et al., 2006).  It also contains concentrations of factors II, VII and X.  

Administration of PCC results in an increase in thrombin production in patients 

who have been on vitamin-K dependent oral anticoagulants (Baglin et al., 

2006), thus it is recommended for the emergency reversal of these 

anticoagulants (Rossaint et al., 2010).  Use in an animal model have shown that 

PCC was more effective than FFP in correcting dilutional coagulopathy and 

correcting bleeding in a trauma model (Dickneite and Pragst, 2009) but there 

are currently no specific clinical trials to advocate its use in the management of 

bleeding in trauma patients who are not on anticoagulation medication (Fries et 

al., 2009).  Patients who have received this must be given thromboprophylaxis 

during the recovery period.   

Although not a factor component, ionised calcium levels must be monitored 

during treatment of bleeding patients and especially those receiving massive 

transfusion, as it is a co-factor for many components in the clotting process.  

The citrate used as the anticoagulant in many blood products chelates calcium 

and therefore transfusion can exacerbate hypocalcaemia (Hoffbrand et al., 

2006).  A decrease in cytosolic calcium concentration results in a decrease in all 

platelet related activity and therefore the level of ionised calcium should be 

maintained above 0.9mmol/L (Lier et al., 2008).   

 

4.5.8 Fresh Whole Blood 

When discussing resuscitation with particular reference to the military sphere, 

the use of Fresh Whole Blood (FWB) should be mentioned.  It has been used in 

conflict to resuscitate patients since World War I and current US/UK military 

doctrine permits FWB to be used in resuscitation when standard blood 

components are not available (JSP 950; Medical Policy 2009).  In a recent 

report of US usage in recent conflict showed that 3% of patients requiring 

transfusion were given FWB in a five year period from January 2001 to 

December 2005 (Spinella et al., 2008).  This practice is not widely used in the 
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civilian trauma in developed countries but should be considered when no other 

solution is available. 

 

All these treatments and recommendations require a rapid diagnosis and 

ongoing treatments should be tailored to the patient requiring haemostatic 

resuscitation, this is where TEG/TEM has been widely documented as an 

essential component of treatment. 

 

4.6 Use of TEM in the Detection & Management of TIC during 

Resuscitation 

Rapid, real time functional assessment of coagulation status is imperative in 

firstly the diagnosis of TIC but also to allow goal-directed therapy for specifically 

identified coagulation abnormalities.  The increasing use of TEG/TEM is 

becoming accepted as essential in routine practice for treating massive 

haemorrhage: for both the diagnosis of coagulopathy and with the direction of 

treatment. 

 

4.6.1 Use of TEG/TEM in detection of TIC 

As discussed in Chapter 3 (section 3.6.2), the use of TEG/TEM has been widely 

published in the sphere of cardiac and liver surgery, however the use in trauma 

is only now coming to prominence.  Kaufmann and colleagues described the 

usefulness of TEG in the assessment of trauma patients (Kaufmann et al., 

1997) highlighting abnormalities in 75% of trauma patients on admission.  

Moderately injured patients (average ISS=13) were hypercoagulable whereas 

more severely injured (ISS= 29) were hypocoagulable by detection of TEG, but 

all had normal PT/APTT results.   

The use of ROTEM demonstrated early changes of in vivo coagulation of 

trauma patients (Rugeri et al., 2007).  Results showed a significant correlation 

between PT and CA15 (the clot amplitude of 15 minutes) in EXTEM; APTT and 
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CFT in INTEM; and Fibrinogen level at CA10 in FIBTEM trace.  There was a 

significant correlation between platelet count and CA15 in INTEM.  

A number of recent clinical studies, all with small numbers, have looked at the 

early evaluation of TIC with TEG/TEM (Plotkin et al., 2008; Levrat et al., 2008; 

Schochl et al., 2009; Carroll et al., 2009; Jaeger et al., 2009; Park et al., 2009; 

Kashuk et al., 2009).  Carroll et al looked at samples taken at the geographical 

site of injury and on arrival to the ED, and found that hypocoagulopathy 

detected by TEG correlated with fatality, whereas no such correlation was 

found with standard tests.  This group noted that 2% had hyperfibrinolysis 

(defined as clot lysis >15% in 60 minutes) compared to 6% in the Levrat study 

(when samples were taken on arrival to ED); these results were found in the 

most severely injured group and associated with an increased mortality rate.   

The development of Rapid TEG, which uses tissue factor as an activator in 

testing, lead to the Wade et al (2009) proposing TEG could assess coagulation 

on arrival to the hospital and begin to guide the administration of blood and 

blood products. However, it was highlighted that no large multi-centred trial that 

was sufficiently powered has yet been undertaken.  This call for a prospective 

and independently validated study using TEG/TEM was echoed by Johansson 

et al in their review of the assessment of coagulopathy in trauma (Johansson et 

al., 2009). 

A small retrospective study of combat patients (Plotkin et al., 2009) reported 

that TEG was a more accurate indicator of blood products than PT, APTT and 

INR, although they were comparing a single TEG trace taken at anytime within 

the first 24hrs of admission.  Use of ROTEM in a deployed military 

environment (Doran et al., 2010) found that 64% of patients were coagulopathic 

on arrival to the ED which was significantly different to the 16% as detected by 

PT/APTT.  The ROTEM value at CA10 (the clot firmness at 10 minutes) was 

found to correlate with an abnormal MCF, meaning that TEM could provide an 

indication of a coagulopathy quickly after arrival into the ED.  Davenport et al 

have presented work form the Royal London Hospital (Davenport et al., 2011) 

that correlates with the size of clot firmness at 5mins (CA5) could predict the 

need for massive transfusion.  Patients with a CA5≤35 mm had a greater PRBC 
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transfusion requirement (4 vs 1 units, p<0.001) and were more likely to receive 

FFP (47% vs 12%, p<0.001).  A normal CA5 (>35mm) had a negative predictor 

value of 99% for massive transfusion.  Woolley et al defined hypocoagulopathy 

as two or more abnormal values of ROTEM parameters relating to clot 

initiation, clot dynamics and clot strength. (Woolley et al., 2011).   

The other advantages above routine laboratory tests are that ROTEM can be 

set to the temperature of the patient to provide a true assessment of the patient, 

whereas all standard tests are at 37C.  Fibrinolysis and platelet dysfunction 

pose diagnostic gaps which may be missed in standard tests.  Considering this, 

these rapid results should be part of the assessment of any coagulopathy in 

trauma patients as recommended by the updated European Guidelines 

(Recommendation 12; Rossaint et al., 2010).   

 

4.6.2 Use of TEG/TEM to guide haemostatic resuscitation 

Haemostatic Resuscitation is a well-established but as outlined above the 

scientific evidence remains poor (Duchesne, 2011).  The need to control blind 

over-transfusion is necessary to avoid donor exposure, and with the increased 

risk of sepsis and MOF it is essential that all methods available are used to 

guide the process.   

In cardiac surgery, 2 RCTs have looked at the use of TEG/TEM in guidance of 

blood and blood product usage.  Shore-Lesserson et al. (1999) compared 

TEG-based and conventional protocols to manage post-operative bleeding.  

Blood and blood component therapy was significantly less in the TEG-guided 

group when compared to the conventional group, although there was no 

difference in blood loss between each group.  The second study (Royston and 

Von Kier, 2001) again demonstrated significantly less blood and blood product 

usage when a TEG-based algorithm was introduced.  The current guidelines 

on antiplatelet and anticoagulation management in cardiac surgery (Dunning et 

al., 2008) recommends that ‘thromboelastography may be used to guide 

transfusion in the postoperative period and studies have demonstrated a 

reduction in blood and blood product usage if used in conjunction with a 

treatment algorithm’.  They conclude that further large, prospective studies are 
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needed before TEG could become the standard of care for management for 

transfusion management. 

 As with cardiac surgery, the recommendation to use TEG/TEM is becoming an 

integral part of the resuscitation protocol of trauma patients (Stahel et al, 2009; 

Kashuk et al., 2010, Doran et al., 2010).  This is of particular interest with 

administration of fibrinogen and platelets.  The evidence for the guidance of 

TEM during resuscitation commences with case reports (Brenni et al, 2010; 

Doran et al., 2010), each highlighting the requirement of ‘personalised’ goal-

directed therapy for each patient.  In Europe, the administration of fibrinogen 

and prothrombin complex concentrate is more widely accepted as an initial 

treatment for traumatic coagulopathy than in the UK and the USA (Schochl et 

al, 2010).  Two recent papers have highlighted the use of TEM to help identify 

those who require fibrinogen concentrate and this in turn lead to a reduction in 

the requirement for allogeneic blood products (Fries and Martini, 2010; Schochl 

et al., 2011) and thus guiding the clinician in their use of products during the 

haemostatic resuscitation.   

The recently Cochrane Review assessed the use of TEG/TEM in monitoring 

haemotherapy in patients with massive transfusion (Afshari et al., 2011).  

Looking at 9 RCTs with a total of 776 patients, the authors concluded that 

current data demonstrated that the use of TEM showed no significant benefit on 

mortality but did show a significant reduction on the amount of bleeding.  As 

with other papers, they concluded that further research was required. 

 

A current review of systematic reviews identified four key questions regarding 

TIC and assessed the literature for answers (Curry et al., 2011).  The questions 

were: 

a) What are the best methods of predicting and diagnosing TIC? 

b) Which methods of clinical management correct coagulopathy?  

c) Which methods of clinical management correct bleeding? 

d) What are the outcomes of transfusion in trauma? 
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After reviewing 37 systematic reviews in the literature, this cohort of authors 

concluded that they could not answer these questions conclusively.  A better 

understanding of the pathophysiology is required, with a clear definition of what 

TIC actually is which allow future clinical trials to a standard to compare with.  

Although the use of blood, blood components and factors alter coagulation 

profiles, the question of ‘Will survival improve if coagulation parameters are 

corrected?’ remains unanswered. Transfusion is needed in bleeding patients, 

but the lack of prospective RCTs into the ratio of products and their timings is 

not clear.  The next decade of research into this subject may answer these 

questions in time.  
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Chapter 5: Hypotheses and Aims of this thesis. 

The aim of this chapter is to summarise the salient points of the introductory 

material and derive the hypotheses that will be tested in the experimental work 

described in the subsequent chapters. 

 

5.1 Randomised controlled trial to compare the effects of Novel Hybrid 

resuscitation with prolonged hypotensive resuscitation on coagulation 

and inflammation in two models of complex battlefield injury in terminally 

anaesthetised pigs. 

 

5.1.1 Summary of background material. 

Acute traumatic coagulopathy (ATC) is a multifactorial phenomenon (section 

3.7.2) which represents a serious clinical problem in a significant proportion of 

trauma casualties (section 3.7.1).  One of the key mechanisms underpinning 

this early phase of ATC is tissue hypoperfusion, evidenced by a clinically 

significant base deficit (BD) in trauma casualties (Brohi et al., 2007).  

Hypotensive resuscitation is often used in the pre-hospital environment and 

after hypovolaemic shock is likely to result in significant tissue hypoperfusion 

and base deficit (section 2.1 and 4.2).  Within military research a resuscitation 

strategy was developed that permitted one hour of hypotensive resuscitation 

and then after that time the blood pressure was restored to a normotensive 

level.  This strategy was labelled as Novel Hybrid (NH) Resuscitation and has 

been shown to reduce the base deficit when compared to a prolonged 

hypotensive resuscitation strategy (Jacobs, 2010).  Thus it could be postulated 

that such a NH resuscitation strategy would result in less coagulopathy when 

compared to a hypotensive strategy.  Conversely, it could also be postulated 

that the NH resuscitation would require more fluid and therefore could run the 

risk of causing greater haemodilution which in turn could potentially worsen 

coagulopathy (section 3.7.2).  However, as the actual volume of fluid required in 

the NH resuscitation was comparatively small to that volume administered in a 

purely hypotensive strategy (Jacobs, 2010), the effect of tissue hypoperfusion is 

likely to predominate over haemodilution, leading to the overall hypothesis that 
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a NH resuscitation strategy will be associated with less coagulopathy than a 

purely hypotensive resuscitation strategy.   

Additionally, it is understood that prolonged hypoperfusion and the associated 

shock state can augment an inflammatory response (section 2.1.3).  It is 

therefore likely that the NH resuscitation strategy will be associated with a 

reduced systemic inflammatory state when compared to the hypotensive 

resuscitation strategy.   

 

5.1.2 Hypotheses 

1.  NH resuscitation will be associated with improved clotting compared to 

hypotensive resuscitation. 

2.    A supplementary hypothesis is that NH resuscitation will be associated with 

evidence of reduced systemic inflammation compared to prolonged 

hypotensive resuscitation. 

5.1.3 Aims   

1.  To test hypothesis 1 (above) clotting status, assessed by measuring peak 

prothrombin time (PT) during resuscitation, will be compared between 

groups of animals given NH and prolonged hypotensive resuscitation.  Two 

models of injury will be employed; both will involve hypovolaemic shock, 

one on the background of blast injury and the other without blast injury.   

2.   To test hypothesis 2 (above) blood levels of IL6 and TNF alpha will be used 

as indicative markers of systemic inflammation and will be compared 

between groups given NH and hypotensive resuscitation.  
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5.2 Feasibility of using rotational thromboelastometry to assess 

coagulation status of combat casualties in a deployed setting. 

This was a feasibility study to determine whether a near patient test of whole-

blood clotting (ROTEM) could be utilised in deployed military setting and 

therefore the main part of this study was not hypothesis driven.  In the context 

of this study, feasibility was determined in two parts: 

a. The ROTEM device would perform to acceptable laboratory standards in the 

deployed environment (i.e. pass manufacturer specified quality control 

assessments at prescribed intervals). 

b. Samples could be processed by trained staff to provide credible traces and 

results imparted to the clinical teams in a clinically meaningful timescale. 

It was anticipated that ROTEM would return results to clinicians more rapidly 

than conventional laboratory testing (PT and APTT).  Since TEM performs a 

more in-depth analysis of clotting (looking at clot initiation, dynamics and 

strength) compared to conventional testing which looks principally at clot 

initiation (section 3.6) then it was anticipated that ROTEM might identify more 

abnormalities in patients.  A supplementary analysis was therefore preformed to 

test the hypothesis that ROTEM would identify greater abnormality than 

conventional testing in the patients studied.  However since this was not 

performed on a randomised sample of patients this is not intended as a 

definitive study but merely as an initial pilot examination to inform future study 

design. 

 

5.2.1 Aims 

1. To determine whether ROTEM passed manufacturer prescribed quality 

assessment tests at prescribed intervals in the military deployed setting. 

2. To evaluate whether patient samples could be processed and the results of 

ROTEM tests returned to clinical teams in a clinically meaningful timescale. 

3. On a non-random sample of patients to compare the results of ROTEM and 

conventional laboratory assessment of clotting. 
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Chapter 6: Randomised controlled trial to compare the effects 

of Novel Hybrid resuscitation with prolonged hypotensive 

resuscitation on coagulation and inflammation in two models of 

complex battlefield injury in terminally anaesthetised pigs. 

 

6.1 Introduction 

Uncontrolled haemorrhage remains the leading cause of battlefield deaths 

(Champion et al., 2003) and coagulopathy accompanies severe bleeding and 

blood transfusion (Brohi et al., 2003; Spahn, 2005; Kashuk et al., 2010).  

Trauma-induced coagulopathy (TIC) has been shown to present in 

approximately 30% of casualties in civilian data with limited data showing that 

TIC has a slightly higher incidence (approximately 39%) in battlefield casualties 

(Brohi et al., 2007; Maegele et al., 2007; Plotkin et al, 2008).  The TIC is 

associated with increased morbidity and mortality (Brohi et al., 2003; Macleod et 

al., 2003; Curry et al., 2011) and a clinical imperative is to limit and reverse the 

development of this coagulopathy by early and aggressive resuscitation on 

arrival to medical facility (Holcomb et al., 2007). 

The recently published European Guidelines for Advanced Bleeding in Trauma 

Care (Rossaint et al., 2010) recommends a rapid approach to gain control of 

bleeding, to identify and correct coagulopathies and overall maintain adequate 

tissue oxygenation.  In the pre-hospital phase in urban trauma there is an 

established trend for hypotensive fluid-resuscitation strategy especially when 

there is a penetrating mechanism (Haut et al., 2011).  This has the aim of 

avoiding the disruption of the initial clot during the first hour following trauma 

whilst it gains strength and before surgical control can be achieved (Midwinter 

and Woolley, 2011).   

However, the penalty for a prolonged hypotensive period is tissue 

hypoperfusion and is particularly pertinent in a military environment when the 

evacuation times can be considerably longer than those experienced in civilian 

settings, especially in less mature operations (Bilski et al., 2003).  Tissue 

hypoperfusion and ischaemia per se that can result from this period of permitted 
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hypotension has been linked to the early TIC by activation of the Protein C 

pathway producing anticoagulation and increased hyperfibrinolysis (see chap 

3.) (Brohi et al., 2008; Cohen et al., 2007). 

To test these theories, an injury model would need to representative of a severe 

but survivable battlefield injury which would require resuscitation.  A relevant 

injury model should ideally include elements of blast injury (primary) with tissue 

injury and uncontrolled haemorrhage requiring resuscitation over a protracted 

timeline (to reflect evacuation delays) would be required. 

 

6.1.1 Choice of Animal Model. 

Garner et al (2009) developed a large animal model to investigate the 

interaction of blast injury and haemorrhage on the outcomes from resuscitation 

strategies after these combined injuries.  A subsequent study (Garner et al 

2010) utilised the swine model to investigate the physiological consequences of 

resuscitation strategies after haemorrhagic shock alone and combined with 

blast injury.  They compared the effects of a normotensive (ATLS-type 

approach) strategy with a hypotensive approach.  The pilot study demonstrated 

that a combination of blast injury and a controlled haemorrhage (30% blood 

volume [BV] extracted from an arterial line) followed by hypotensive 

resuscitation was incompatible with survival during a simulated protracted 

evacuation (up to 8 hours), although survival was good for the first hour of 

resuscitation.  By contrast survival was high over an 8 hour period with 

normotensive resuscitation.  Hypotensive resuscitation after haemorrhagic 

shock in the absence of blast injury did lead to good survival over an 8 hour 

resuscitation period, although there was severe physiological deterioration 

compared to a control group given normotensive resuscitation.  The poor 

survival and physiological deterioration associated with hypotensive 

resuscitation was associated with poor tissue oxygen delivery and severe 

metabolic acidosis, both of which might be predicted to have adverse 

consequences on clotting. Further studies to investigate putative novel 

resuscitation strategies needed a model incorporating uncontrolled 

haemorrhage with the capacity to re-bleed during resuscitation.   
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Uncontrolled haemorrhage refers to blood loss from a damaged vessel that 

cannot be arrested by intrinsic mechanisms or external intervention (Kirkman 

and Watts, 2011).  Established animal models of haemorrhage fall into three 

broad categories: 

- high pressure/high volume owing to a lesion in a major artery; 

- low pressure/ high volume owing to a lesion in a major vein; 

- a mixed model owing to a lesion in both arteries and veins. 

In the mixed (arterial/venous) model, the greatest volume of blood lost is initially 

arterial, then as the haemorrhage progresses and the arterial pressure falls, the 

relative venous contribution becomes more important.  Following Garner’s 

studies, it was considered that this mixed-type of model would be the most 

appropriate to assess any resuscitation model.   

A liver injury can be used to create a mixed arterial/venous uncontrolled 

haemorrhage.  Liver injuries are graded by severity from Grade 1 (least severe) 

to Grade V (most severe).  A grade V liver injury is where there is parenchymal 

disruption involving >75% of hepatic lobe segments within a single lobe and/or 

juxtahepatic vascular venous injuries (Moore et al., 1995) that would cause 

massive venous bleeding.  Models incorporating Grade V liver injuries have 

been used to assess the haemostatic efficacy of commercial clotting agents 

(Holcomb et al., 1999; Pusateri et al., 2004; Klemcke et al., 2005).  However, 

this degree of injury is generally unsurvivable without rapid surgical intervention.  

It is therefore too severe to allow assessment of battlefield resuscitation as 

survival is dependent on early surgical packing of the liver (Martinowitz et al., 

2001), which is not possible in the field.   

In comparison, a grade IV liver injury consists of parenchymal disruption 

involving 25-75% of a hepatic lobe or 1-3 of Couinaud’s segments within a 

single lobe (Moore et al., 1995) and has been shown to a more realistic model 

of potentially survivable (but severe) battlefield injury, which involves significant 

bleeding that is sensitive to therapy (Jeroukhimov et al., 2002).  An additional 

advantage is that haemorrhage from a solid intra-abdominal organ allows the 

haemorrhaged blood to remain in the intact peritoneal cavity and thus can be 



112 

 

measured.  However, if the uncontrolled haemorrhage was the only source of 

blood loss, it could lead to increased variability between animals and thereby 

increase the number of animals needed to assess the efficacy of treatment.  If 

the blood pressure profile during haemorrhage were to be different between 

injury groups, as is the case with haemorrhage on a background of blast vs. no 

blast, then an uncontrolled model of haemorrhage when used alone for blood 

loss can lead to systemic bias.  This is because haemorrhage after blast results 

in a faster fall in arterial blood pressure which would result in a greater 

uncontrolled blood loss from those animals not subjected to a blast injury 

(Sawdon et al., 2002).  To avoid this bias an initial phase of controlled 

haemorrhage (30% estimated BV) can be incorporated.  After the loss of 30% 

blood volume arterial blood pressure is at a similar level between animals 

regardless of prior blast exposure (Garner et al 2010).  Any subsequent 

uncontrolled haemorrhage can be expected to result in similar blood loss 

between injury (blast vs. no blast) strands, thereby obviating the systematic 

bias.   Therefore, in the current study the liver injury was created after the 

controlled loss of 30% blood volume to allow further uncontrolled haemorrhage 

in all groups without the degree of bias.   

It is known that juvenile swine can sequester up to 25% of their circulating blood 

volume in the spleen; and in times of systemic stress they can auto-transfuse a 

large proportion of this blood which would again introduce another systematic 

bias between the groups (Hannon et al., 1985) should the sympathetic 

response mediating the auto-transfusion be different between injury strands.  

This potential problem was overcome by splenectomy after vasoconstriction 

and maximisation of the circulating volume by topical application of adrenaline 

to the spleen (Garner et al., 2009).  This removed further variability from the 

groups and also aligned the model closer to the human response. 

 

6.1.2 Choice of Resuscitation Strategy 

The initial study looking at resuscitation following blast and haemorrhage 

compared normotensive and hypotensive resuscitation strategies and the 

physiological implications over an 8 hour period (Garner et al., 2010).  Having 
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identified a serious limitation of prolonged hypotensive resuscitation for some 

battlefield casualties (blast-injured casualties experiencing extended evacuation 

times) an alternative strategy was designed and investigated (Jacobs 2010).  It 

was recognised that no modern resuscitation strategy would include an 

immediate normotensive element due to the risk of re-bleeding from an 

uncompressible source of haemorrhage (Bickell et al., 1994; NICE: Technology 

Appraisal Guidance 74, 2004).  The new strategy therefore comprised an initial 

hypotensive phase (one hour at a systolic arterial pressure of 80 mmHg, 

corresponding to a palpable radial pulse) followed by additional fluid to maintain 

a normotensive target thereafter.  To evaluate the effects of this strategy on re-

bleeding a model incorporating an element of incompressible haemorrhage was 

used (Jacobs 2010).  The animals were divided into four groups and were 

subjected to either blast injury or sham.  All groups received a total of 35% BV 

haemorrhage, and sustained a liver injury to provide the incompressible 

haemorrhage.  After a 5min shock period, resuscitation (0.9% saline) began to 

the hypotensive level for the first hour, then according to one of two protocols to 

either a normotensive level (a systolic blood pressure of 110mmHg) or a 

hypotensive level (80mmHg).  The former strategy (hypotensive then 

normotensive) is referred to as ‘Novel Hybrid’ while the latter is the hypotensive 

strategy.  Fluid was given as per the protocol for 8 hours or until the animal 

died.   

There was a clear, statistically and clinically significant difference in survival 

times between resuscitation strategies (Jacobs, 2010).  Novel hybrid 

resuscitation was associated with a significantly increased survival time in blast 

injured animals.  This difference in survival time was not apparent after 

haemorrhage in the absence of blast injury since survival time was good even in 

animals given hypotensive resuscitation. Even in the absence of blast injury, 

novel hybrid resuscitation was associated with significantly improved 

physiological status.  Although arterial blood pressure was elevated without 

surgical intervention to control the liver injury, there was no apparent re-

bleeding in the animals who received novel hybrid resuscitation.  Presumably 

this was because a sufficiently robust clot had formed during the one hour 
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hypotensive phase to withstand the subsequent elevation in arterial blood 

pressure (Jacobs, 2010). 

 

6.2 Aims  

This study addresses the hypotheses and aims detailed in section 5.1.  In 

summary, the aim of the study in this chapter is to compare the effect of Novel 

Hybrid (NH) resuscitation against prolonged hypotensive resuscitation on 

coagulation and systemic inflammation in a model of complex battlefield injury, 

since it is anticipated that the improved tissue oxygen delivery associated with 

novel hybrid resuscitation might (in theory) attenuate both acute trauma 

coagulopathy and the later development of an inflammatory response.   

 

6.3 Methods 

This was a randomised controlled trial to compare the effects of Novel Hybrid 

resuscitation with prolonged hypotensive resuscitation on coagulation and 

inflammation in two models of complex battlefield injury in terminally 

anaesthetised pigs, conducted in a laboratory setting.  The study was 

conducted on 24 terminally anaesthetized crossbred, immature, female Large 

White pigs (41-56 kg).  The animals were housed indoors and were fed on a 

complete wheat-soya based ration at 1.5–1.7 kg per day. They were allowed 

water ad libitum.  The study was ethically reviewed and conducted in 

accordance with the Animal (Scientific Procedures) Act 1986. 

6.3.1 Surgical preparation 

The animals were fasted for 18 hours before the surgical procedure, but allowed 

water ad libitum.  After pre-medication with intramuscular midazolam 

hydrochloride (0.1 mg/kg), anaesthesia was induced by mask with isoflurane 

(5%) in a mixture of oxygen and nitrous oxide (1:1) and the animals intubated.  

Surgical anaesthesia was subsequently maintained with isoflurane (1–2 %) in a 

mixture of oxygen and nitrous oxide (1:2) in animals subjected to intermittent 

positive pressure ventilation using a Manley ventilator.  Initial monitoring 
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consisted of end-tidal CO2, pulse oximetry via a tail probe and skin surface 

electrocardiogram electrodes (Propac 106EL, Protocol Systems Inc., Oregon).  

With the animal positioned supine surgical preparation took place after skin 

preparation with povidone-iodine solution (10% w/v, Betadine Aqueous 

Antiseptic Solution, Seaton Healthcare Group plc, UK).   

The left carotid artery, both internal jugular veins, left femoral artery and vein 

were all cannulated (Portex 8FG, Hythe, UK).  Once venous access had been 

established anaesthesia was maintained with intravenous alphaxolone 

(Alphaxan, Vetoquinol UK Ltd, UK) and the isoflurane discontinued. 

A midline laparotomy was performed, the spleen contracted by topical 

application of adrenaline (1.0- 1.5 ml of a 1 mg.ml-1 solution) before removal.  A 

surgical snare was inserted into the left medial lobe of the liver for later 

induction of a Grade IV liver injury, and the snare exteriorized via the 

laparotomy.  The placement of snare was measured to amputate 2/3 of the 

middle Riedel’s lobe.  A schematic illustration is shown in Figure 19 below.   

The bladder was catheterized by open suprapubic cystostomy.  All incisions 

were closed en masse.   

 

Figure 19:  Schematic illustration of liver snare arrangement designed to create a 
grade IV liver injury with amputation of the lower 2/3 of the lobe (reprinted by kind 
permission of the artist, Major N Martin). 
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Animals were allowed to breathe spontaneously for the remainder of the 

experiment unless they displayed marked respiratory depression, at which 

stage Synchronized Intermittent Mandatory Ventilation (SIMV) was instituted in 

an attempt to maintain adequate oxygenation and prevent severe 

hypercapnoea.  The animals recovered from surgery under anaesthesia for one 

hour before baseline measurements were made during which time they were 

transported to the physiological monitoring suite near the explosives arena. 

Cardiovascular monitoring 

Arterial blood pressure was recorded via the carotid artery cannula using a 

strain gauge manometer (Sensonor 840, SensoNor a.s., Norway) and recorded 

using a computerized data acquisition system (Maclab 8/s, ADInstruments, UK) 

and associated software (Chart v4.2.3, ADInstruments, UK) for subsequent 

analysis.  Zero pressure for all transducers was set at heart level.  Body 

temperature was maintained at approximately 38C using external 

heating/cooling and blankets as appropriate.   

Blood gas and related chemistry 

Arterial and venous blood samples were taken into heparinised syringes from 

the carotid and pulmonary artery catheters respectively for blood gas, base 

excess and lactate analysis (Gem Premier 3000 Blood Gas Analyzer, 

Instrumentation Laboratories, Warrington, UK).  Haematocrit was measured by 

centrifugation, whereby blood samples in capillary tubes were subjected to 

13000g for 5 minutes (HaematoSpin 1300, Hawksley, UK) enabling the ratio of 

packed red blood cells volume to total volume to be read using a Tube reader 

(Hawksley, UK).  Arterial and venous oxygen content was determined by co-

oximetry, with oxygen extraction ratio (OER) calculated using standard 

formulae, equation 4. 

 

OER = (CaO2 – CvO2) / CaO2 
 

Equation 4: Determination of oxygen extraction ratio (OER) from arterial oxygen 

content(CaO2) and venous oxygen content (CvO2) (Little and Edwards, 1993) 
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6.3.2 Experimental Protocol 

The animals were randomly allocated to one of four groups (6 animals in each) 

at the outset, described below. Two groups were exposed to blast while the 

remaining groups were not (sham blast).  All four groups underwent both 

controlled (total 35% estimated blood volume) and uncontrolled haemorrhage 

(from liver injury).  The resuscitation strategies employed were either Novel 

Hybrid (NH, target systolic arterial pressure of 80 mmHg for the first hour and 

110 mmHg thereafter) or Hypotensive (Hypot, target systolic arterial pressure of 

80 mmHg throughout).  

Group 1:  Blast / Haemorrhage / NH 

Group 2:  Blast / Haemorrhage / Hypot 

Group 3:  Haemorrhage / NH 

 Group 4:  Haemorrhage / Hypot 

 

The protocol is summarized in Figure 20 on the following page. 

One hour after the end of surgery three cardiovascular measurements were 

made 5 minutes apart and paired arterial and mixed venous blood gas samples 

taken at the time of the first and third baseline cardiovascular measurement.  

After the baseline measurement the animals were moved outdoors, wrapped in 

a Kevlar blanket to protect from secondary and tertiary blast effects and 

positioned on a trolley 2.15 m from a cylindrical charge of EDC1S explosive (2.2 

kg) which was then detonated remotely. Animals subjected to sham blast were 

treated identically but not exposed to blast.  The set-up of the blast arena is 

shown in the picture illustrated (Figure 21.) 
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Figure 20:  Experimental protocol which commenced approximately 1 hour after the end of surgery. CH, controlled haemorrhage; BV, total estimated 

blood volume; SBP, systolic arterial blood pressure; NH, novel hybrid resuscitation; Hypot, hypotensive resuscitation. 
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Figure 21:  Photograph of blast arena.  Charge was fastened to central cardboard tube 

and the animal positioned on trolley to the right wrapped in Kevlar blanket. 

 

Immediately after the blast (or sham blast) the animal was returned to the 

physiological monitoring suite and twenty minutes later, all animals were 

subjected to a controlled haemorrhage of 30% of their estimated total blood 

volume (B0; Equation 5) over 4 minutes via the femoral arterial cannula, using a 

computer-controlled pump (Masterflex® L/S® model 7550-17, Cole Palmer 

Instrument Company, Chicago, IL).  The rate of bleeding reduced exponentially 

as the haemorrhage progressed (Equation 6) to mimic the rate of haemorrhage 

from a major arterial lesion. 

B0 = 161.4751(W-0.2197) 

Equation 5: Equation used to estimate total blood volume. B0 = total blood volume 

(ml.kg-1) and W = body weight (kg). (Bush et al., 1955). 

V = B0(1-e-0.04t) 

Equation 6: Rate of blood loss during controlled haemorrhage.  V, total blood loss at 

time t in ml.kg-1; B0, initial blood volume in ml.kg-1; t, % time until death; B0, initial blood 

volume (Stern et al., 1993) 
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Following haemorrhage, the animals underwent a 5-min shock period where no 

treatment was administered before commencement of fluid resuscitation (time = 

T0) (Figure 20).   

Both resuscitation protocols utilised 0.9% saline given in aliquots at a rate of 

3 mL/kg/min to attain and maintain the relevant target systolic arterial pressure.  

The blood pressure profile in NH was initially hypotensive (for the first hour) and 

thereafter normotensive as described above.  By contrast hypotensive 

resuscitation employed a hypotensive target blood pressure throughout.  All 

animals were subjected to a simulated re-bleeding episode by controlled 

removal of 5% total estimated blood volume 28 min into the resuscitation phase.   

Resuscitation fluid was administered according to the relevant protocol for 8 

hours or until the animal died, if sooner.  Cardiovascular and blood gas 

measurements were made before and after haemorrhage, at T0 and then at 15 

min intervals until 60 min after the onset of resuscitation (T60) and thereafter at 

30 min intervals for the remainder of the study. 

Assessment of coagulation and inflammatory responses 

Arterial blood samples were collected into citrated vacutainers (9NC 0.105M 

Vacutainer 367691, Beckton Dickinson, UK), centrifuged at 1500 x g for 10 min 

and the plasma separated and stored at -80C.  Prothrombin time (PT) was 

determined using the ACL Elite (Instrumentation Laboratories) by turbidometry.  

Interleukin 6 (IL6) and TNF-α levels were determined by ELISA (R&D 

Quantikine sandwich ELISA kits, R&D Systems Ltd, UK). 

Post mortem 

At the end of the study the animals were humanely killed with an overdose of 

intravenous sodium pentobarbitone and a post-mortem examination was 

performed immediately after death. The majority of intra-abdominal fluid, mainly 

blood from the liver injury, was suctioned into a pre-weight container.  Pre-

weighed gauze swabs were then used to swab the abdominal cavity dry before 

repeat weighing of these swabs to accurately calculate the weight and then the 

volume by equation 7. 
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V = W /1.036 
 

Equation 7: Determination of blood volume (V) in ml from a measured weight of blood 

(W) in grammes, determined previously for this strain of pigs in our laboratory. 

 

 

6.3.3 Sample Size Calculation and Randomisation 

The primary (overall) purpose of the study comparing NH to hypotensive 

resuscitation was to compare the effects of these two strategies on survival time 

in a model of complex battlefield injury in terminally anaesthetised pigs 

(principally reported by Jacobs 2010).  Data to inform the power calculation was 

derived from an earlier study by Garner et al (2009).  I am indebted to Dr R 

Gwyther (Dstl Statistician) for the survival power calculation.   

A power calculation, based on an increase from 0.1 to 0.8 in the proportion 

surviving to 8 hours from the onset of resuscitation indicated that 7 animals 

would be required in each of the hypotensive and NH groups (Power 0.8, Alpha 

0.05, Chi Squared test).  An interim analysis by a statistician (independent of 

the study team) was planned and performed when n=6 had been attained in 

each group to determine whether a clear (statistical) conclusion had been 

attained and, if not, how many additional animals would be required to provide 

an unequivocal conclusion.  No meaningful power calculation could be 

performed with respect to the clotting data since there was no background data 

available to quantify the degree (or variability) of coagulopathy in this model of 

complex battlefield injury.  However, data from this study can now be used to 

inform future power calculations. 

Randomisation 

Animals were randomised to treatment allocations prior to anaesthesia.  The 

study was not designed to be ’an intention to treat’ analysis but rather an 

investigation of physiological effects of resuscitation. Despite the injury being 

standardised as far as possible (e.g. reproducible explosive charges, fixed 

distance between charge and animal, placement of liver snares to anatomical 

landmarks) a few animals succumbed e.g. due to air emboli during blast (rare, 
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known complication of blast injury) or catastrophic blood loss during the 

uncontrolled haemorrhage (verified at post-mortem examination) before 

instigation of treatment. As such the few animals who did not reach the point of 

treatment initiation were excluded as they contributed no meaningful data to 

these physiological responses.  No animal data was excluded after the 

treatment allocation was commenced.   

Therefore, although the intended group for each individual animal was pre-

determined according to a random numbers table, if a death occurred prior to 

commencement of treatment then the animal was excluded and the following 

animal allocated to the treatment paradigm.  The flow of animals through the 

study is illustrated in the CONSORT diagram listed in figure 22. 
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Figure 22: CONSORT 2010 diagram indicating the passage of animals through the study, using the format prescribed by the CONsolidated 
Standards of Reporting Trials group (quote ref Schulz KF, Altman DG & Moher D (2010).  CONSORT 2010 Statement: updated guidelines for 
reporting parallel group randomised trials.  BMJ 2010;340:c332) 
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6.3.4 Statistical analysis 

All data are presented as means.e. mean unless indicated otherwise.  Data 

were assessed for normality and transformed if necessary prior to statistical 

analysis using two-way analysis of variance (ANOVA) with repeated measures 

over time.  Single time-point analyses were made using 2 way and 1 way 

ANOVA as appropriate.  Where data could not be adequately transformed non-

parametric analysis was used as indicated.  A significance level of P0.05 (two 

tailed) was used unless indicated otherwise. 

Progressive loss of animals (due to death) from treatment groups can lead to 

bias in a study, especially when the loss is predominant in particular groups.  To 

avoid this bias time series analysis was restricted to the first 180 min in the blast 

groups (loss of one animal from one group only up to this time-point) or 320 min 

in the sham blast groups (loss of two animals from one group).  To ensure that 

graphical data was not misrepresented open symbols are used on all time-

series result graphs when the proportion of survivors fall to 66% and no data is 

plotted when survival is 50% or below.  The exception to this principle was the 

analysis of survival data.  Survival times were compared using Kaplan-Meier 

survival analysis (Peto’s log rank test) and the data stratified with respect to 

blast or sham blast injury and analysed using Minitab (v14).  Data from animals 

still alive after 8 hours were treated as right-censored. 
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6.4 Results 

6.4.1 Baseline Measurements 

Baseline, pre-injury, variables were similar between groups (Table 6).  Small, 

statistically significant, differences were seen between groups for arterial base 

excess, however these are unlikely to be of clinical or physiological significance.  

Group 1 showed a very high mean IL6 level at baseline, however this was due 

to a single animal displaying a much higher level than any of the other animals 

in the study.   

Mean arterial blood pressure (MBP), arterial base excess (ABE) and 

haematocrit were significantly reduced at the end of a 5 min shock phase 

following haemorrhage and blast (or sham blast) (Table 6).  Shock also led to 

significant increases in HR, OER and small (but statistically significant) 

increases in PT and IL6 levels.  In addition, MBP at the end of the shock phase 

was found to be significantly lower in the blast injured groups compared to 

those without blast injury.   

 

6.4.2 Effects of resuscitation 

Following intravenous fluid resuscitation commencing at T0, the target systolic 

blood pressure (SBP) of 80 mmHg was achieved with no differences between 

groups during the first hour of resuscitation by infusion of 0.9% saline.  Beyond 

the first hour, T60, a higher target SBP of 110 mmHg was obtained in all 

animals given NH resuscitation whilst those in the hypotensive groups (Hypot) 

continued at the initial target of 80 mmHg. Thereafter, there was a significant 

(p<0.001) difference between the two different resuscitation strand groups.  

There were no significant differences in the SBP profiles achieved between the 

blast and sham groups within each resuscitation strategy (p=0.793).  The 

respective SBPs were successfully maintained up until the stage at which each 

individual animal began to decompensate (where it was unresponsive to fluid 

resuscitation) when blood pressure entered an in-correctable decline leading 

quickly to death. 
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Despite a SBP of 80mmHg maintained in all groups, arterial base excess (ABE) 

fell significantly in all groups during the first hour of hypotensive resuscitation 

and the oxygen extraction ratio remained high in all groups (Figure 23) (Jacobs 

2010).  At T60 when the two strata of resuscitation diverged, the negative ABE 

was reversed in the NH groups whilst it continued to fall in the Hypot groups.  

Concurrent with these changes OER fell significantly in the NH groups, while it 

remained high in the Hypot groups (P=0.007)(Figure 23).    

Contrary to expectations, the actual volumes of resuscitation fluid infused were 

not significantly different between resuscitation strategies (p= 0.3641, figure 

24), when expressed as a function of time. In keeping with this finding, there 

were also similar haematocrit values between treatment groups (figure 25). The 

mean haematocrit in all study groups declined during haemorrhage and the 

shock period prior to commencing fluid resuscitation.  An early trend was 

observed between the animals exposed to blast and the sham-blast animals, 

with the former demonstrating increased initial resuscitation fluid requirements 

and correspondingly lower haematocrits (haematocrit at T60; blast/ sham blast 

p=0.0019, prospective NH/ Hypo strategy p=0.9566). This difference lessened 

with time, and no significant difference between resuscitation strategies was 

observed (haematocrit at T180; blast/ sham blast p=0.1915, NH/ Hypo 

p=0.5437).  

In order to help explain the attrition of the animals during the experiment, the 

number of animals alive in each group at each time point (in the following 

graphs) is listed in table 7. 
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Blast NH Blast Hypot Sham NH 

Sham 
Hypot 

  

Variable  Group 1 Group 2 Group 3 Group 4 Blast vs 
Sham Blast 

Shock vs 
Baseline 

MBP Baseline 120.2±7.6 125.5±2.4 124.2±6.3 125.3±6.6   

(mmHg) Shock 31.8±3.2 37.3±4.7 51.3±4.8 49.0±6.6 P=0.025 P<0.0001 

HR Baseline 158.0±8.3 146.0±12.2 157.2±10.9 165.7±9.2   

(b/min) Shock 228.9±5.0 209.5±9.7 210.2±14.9 234.2±8.6 P=0.40 P<0.0001 

PT Baseline 1.03±0.02 1.02±0.02 1.00±0.01 1.02±0.01   

Proportion 
of baseline  

Shock 1.10±0.03 1.12±0.03 1.04±0.02 1.09±0.01 P=0.07 P=0.0001 

IL6 Baseline 130±50 66±27 71±17 300±120   

(pg/ml) Shock 252±91 174±45 94±19 410±141 P=0.50 P=0.04 

PaO2 Baseline 9.1±0.3 9.9±0.4 8.5±0.4 9.3±0.3   

(kPa) Shock 9.1±0.5 9.8±0.9 10.3±0.7 12.0±0.5 P=0.27 P=0.0002 

ABE Baseline 2.9±1.6 6.6±0.8 5.4±0.9 1.4±1.6   

(mM) Shock -4.2±0.8 -3.2±1.8 2.5±0.6 -0.2±1.0 P=0.07 P<0.0001 

OER Baseline 0.27±0.01 0.26±0.01 0.24±0.01 0.23±0.02   

(Ratio) Shock 0.63±0.13 0.70±0.03 0.61±0.04 0.61±0.05 P=0.18 P<0.0001 

Hct Baseline 39.3±0.6 37.0±0.7 37.8±0.9 37.2±1.5   

(%) Shock 29.6±1.3 29.5±1.8 31.0±1.6 29.0±1.6 P=0.91 P<0.0001 

Temp Baseline 38.7±0.3 38.6±0.2 38.5±0.2 38.5±0.2   

(°C) Shock 38.5±0.3 38.4±0.4 39.2±0.2 39.2±0.1 P=0.10 P=0.02 

Table 6:  Baseline and values seen after 5 min of shock following blast or sham blast plus 30% 

blood volume controlled haemorrhage and Grade IV liver injury. All groups were combined and 

analysis preformed as a two way analysis of variance with time (baseline/shock) and injury 

(baseline/sham) as the main factors. MBP, mean arterial blood pressure; HR, heart rate; PT, 

prothrombin time expressed as a percentage of that seen at the start of surgery; IL6, arterial 

Interleukin 6; PaO2, arterial partial pressure of oxygen; ABE, arterial base excess; OER, systemic 

oxygen extraction ratio; Hct, arterial haematocrit; Temp, body temperature. 
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Time from onset 
of resuscitation 

(min) 
Sham NH Blast NH Sham Hypot Blast Hypot 

0 6 6 6 6 

15 6 6 6 6 

30 6 6 6 6 

45 6 6 6 6 

60 6 6 6 6 

90 6 6 6 6 

120 6 6 6 5 

150 6 6 6 5 

180 6 6 6 5 

210 6 6 5 3 

240 6 6 4 1 

270 6 6 4 1 

300 6 6 4 1 

330 6 5 4 1 

360 5 5 4 1 

390 5 5 3 1 

420 4 5 3 1 

450 4 5 3 1 

480 4 5 3 1 

 

Table 7:  Number of surviving animals in each group at time-points corresponding to 

the data-points in figures 23, 24 and 25. 
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Figure 23:  Arterial base excess (ABE) and oxygen extraction ratio (OER) in four 

groups of animals subjected to either sham blast (Sham) or blast (Blast), hemorrhagic 

shock and resuscitation.  The first dotted line represents the onset of resuscitation 

(hypotensive in all groups).  The second dotted line indicates the onset of normotensive 

resuscitation in NH groups and continued hypotensive resuscitation in the Hypot 

groups.  Open symbols indicate 66% of animals surviving.  No data plotted when 

survivors fall to 50% or below of the original.  Mean values ± SEM. 
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Figure 24: Cummalative Volumes of Resuscitation fluids give over time in the four 
groups of animals.  Mean values ± SEM.Refer to legend of figure 23. 
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Figure 25:  Haematocrit (HCT) in four groups of animals.  Mean values ± SEM. Refer 
to legend of Figure 23.  
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6.4.3 Survival 

Mean survival time was significantly different between groups (P=0.024, Peto 

log rank), with Group 2, the hypotensive group with blast injury (258 [151-366] 

min, mean [95%CI]) being significantly shorter than Groups 1, 3 and 4 (452, 

448[393-502] and 369[247-490] min respectively) (Jacobs 2010). This is clearly 

shown in Figure 26. 
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Figure 26:  Kaplan-Meier survival graph for the 4 study groups.  

 

6.4.4 Effects on clotting and inflammation 

By the end of the study, NH resuscitation was associated with significantly lower 

PT compared to hypotensive resuscitation (1.44±0.09 and 1.36±0.06 for groups 

1&3 compared to 1.73±0.10 and 1.87±0.15 in groups 2&4; P=0.001).  This was 

measured as a proportion as maximum when compared to pre-surgical baseline 

level.   The peak PT levels attained are shown in Figure 27. 
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By contrast blast injury (vs. sham blast) had no significant effect (P=0.56) on the 

peak levels of PT, even when the analysis was limited to the NH resuscitation 

groups (P=0.24) where survival times were comparable.  
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Figure 27.   Maximum level of Prothrombin Time (PT) in the four animal groups.  Mean 

Values±SEM 

 

When data for all of the four groups were pooled there was a significant 

correlation between clotting impairment, PT and the degree of physiological 

derangement measured as arterial base excess, ABE, (P=0.0004, Kendall’s 

rank correlation). 

 

The inflammatory response was assessed by measuring IL6 and TNF-α levels.  

Peak levels of IL6 were significantly higher in the Hypot groups compared to NH 

(Figure 28, P=0.001), but overall there was no significant effects of blast 

(P=0.34) on this inflammatory marker.  However, survival time was significantly 

shorter in the blast-injured animals given Hypot (P=0.017).  Due to the expected 

time course of IL6 release, the levels seen in the short-lived Blast/Hypot group 

may be reduced.  When the effects of blast was examined only in those given 
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NH resuscitation (where survival times were similar between NH and Hypot, 

P=0.45), IL6 was found to be significantly higher in animals given blast injury 

(P=0.009).  
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Figure 28: Maximum level of arterial Interleukin 6 (IL-6) levels in the four animal 
groups. Mean values ±SEM. 

 

 

There was no significant change in TNF-α levels over time in any of the four 

groups.  Due to the wide variation in baseline (pre-injury) values between 

individuals, data from individual animals are shown in Figure 28.  Examination 

of initial white cell counts in the three animals showing highest baseline TNFα 

levels did not reveal any evidence of pre-existing infection in these animals i.e. 

the white cell count for these animals was within the normal 

range.
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Figure 29:  Relationship between TNF-α levels in all animals recorded over time. 

 

 



135 

 

6.4.5 Relationship between coagulopathy and IL6 response to injury, 

shock and resuscitation  

Taking the data from all four groups once more, it was found that there was a 

significant correlation between the maximum PT and the highest IL6 level seen 

in each animal after the first hour of resuscitation (when all animals had been 

subjected to one hour of hypotensive resuscitation) (P= 0.0017, Kendall’s rank 

correlation).  This is shown in Figure 30. 
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Figure 30:  Correlation between maximum Prothrombin Time (PT) and the highest 
Interleukin 6 (IL6) level after the first hour of resuscitation.  
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6.4.6 Post Mortem results 

At post-mortem successful grade IV liver injuries, with amputation of a portion of 

the Riedel’s lobe of the liver, was found in all animals.  No evidence of 

increased intra-abdominal blood loss (as evidence of re-bleeding) was 

associated with the animals that received NH resuscitation, with no significant 

difference in the volumes of intra-abdominal fluid (P = 0.33, 2 way ANOVA).  

See Figure 30.  The volumes were expressed as a function of survival time to 

enable fair comparisons in groups. (Jacobs, 2010) 

    

 

Figure 31:  Volume of intra-abdominal fluid assessed immediately post-mortem, 

normalised for survival time among the four animal groups.  Data presented as 

Minimum-[lower quartile-medial-upper quartile]- Maximum. 
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6.5 Discussion  

The principal findings of the current study are that novel hybrid (NH) 

resuscitation reduces the clotting impairment and systemic inflammation seen 

with prolonged hypotensive resuscitation (Figures 25 & 27).  These beneficial 

effects are seen following resuscitation after haemorrhagic shock in the 

presence and absence of concomitant blast injury.  

 The beneficial effects of NH on clotting and inflammation are not an artefact of 

the longer survival time in this group (groups 1&3) and are seen despite, not 

because of, the reduced survival time in the Blast Hypotensive group (group 2).  

In the case of PT, it is likely that sufficient time had elapsed for full expression of 

an elevated PT in most of the animals of the blast group given hypotensive 

resuscitation since a recent study demonstrated peak levels of PT 

approximately 60 min post-haemorrhage/resuscitation (Shuja et al., 2008).  

Furthermore, the enhanced PT seen in the hypotensive groups is not an 

artefact of the volume of fluid administered; overall slightly smaller volumes of 

fluid were given to the hypotensive resuscitation groups and the overall degree 

of haemodilution was similar between all groups as the haematocrit levels were 

not significantly different between groups (Figure 25).  Presumably the time-

course of resuscitation was such that the additional fluid given to the NH groups 

had sufficient time to exit the circulation by a combination of renal excretion and 

extravasation into the interstitial space.   

The likely mechanism whereby NH is associated with improved clotting may 

relate to increased tissue perfusion and reduced metabolic acidosis, compared 

to hypotensive resuscitation.   However hypotensive resuscitation is the current 

accepted strategy for pre-hospital resuscitation of civilian trauma casualties 

suffering hypovolaemic shock (NICE: Technology Appraisal Guidance 74, 

2004).  However, hypotensive resuscitation is not without a physiological 

penalty since it results in reduced tissue perfusion and the development of 

metabolic acidosis).  This can become overwhelming in the presence of 

concomitant lung injury due to blast (Garner et al., 2010).   

A statistically and clinically significant metabolic acidosis developed in all 

groups following haemorrhage, regardless of prior exposure to blast, during the 
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hypotensive resuscitation phase; shown by the fall in arterial base excess 

(figure 23).  After 60mins (T60), when the resuscitation protocols diverged, the 

physiological decline was arrested and reversed during the normotensive phase 

of NH.  The animals that continued with hypotensive resuscitation remained 

severely acidotic.  The acidosis progressed until the animals succumbed if there 

had been a blast exposure in their injury pattern. 

The compromise in oxygen delivery was reflected in the oxygen extraction 

ratios (OER).  During the hypotensive phase, when tissue perfusion is low, OER 

was increased to the theoretical maximum of approximately 80% in an attempt 

to meet demand.  This persisted in the hypotensive group whereas animals 

given NH were able to reduce OER from the ceiling once perfusion was 

improved in the normotensive phase (see figure 23).   

Much has been written regarding the acidosis induced by large volumes of 0.9% 

NaCl, referred to as hyperchloraemic acidosis (Vincent et al., 2007).  When the 

literature is unified in concluding that acidosis is associated with adverse 

physiological effects, there is often a failure to differentiate between the effects 

attributable to the cause of acidosis and the acidosis itself (Handy & Soni, 

2008).  In this context, there may an important difference between the acute 

effects of saline administered the unstable conditions found in severe 

haemorrhagic shock and large amounts of this crystalloid given in a ward 

setting.  In the context of our study, marginally more saline was given to animals 

subjected to the NH resuscitation strategy, however the degree of acidosis was 

substantially less in this group.  This raises the possibility that an acute 

hypovolaemic shock restoration of tissue perfusion (and oxygen delivery) may 

outweigh any acidotic effects of the saline itself.  The final word is best 

summarised by Handy and Soni (2008), “there is little evidence that in the 50 

year of normal saline usage that there has been significant morbidity from the 

use of this fluid”   

During this study the animals breathed air throughout.  An elevation in PaO2 

was noted at the end of the shock period in the sham blast, but not in the blast-

exposed animals (see table 6).  This effect can be explained by the 

hyperventilatory response to severe hypovolaemia (Little & Kirkman,1997).  The 
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underpinning mechanism is a stimulation of peripheral (arterial) chemoreceptors 

due to stagnant hypoxia as a consequence of both hypotension and a 

sympathetically-driven vasoconstriction in the chemoreceptors (Acker & 

O’Reegan, 1981).  The resulting increase in ventilation results in an elevation in 

arterial oxygen tension.  It is likely that the elevation in oxygen tension is only 

seen in sham-blast groups since the effects of blast are known to rapidly initiate 

an increase in pulmonary vascular permeability and extravasation of fluid which 

will increase the pulmonary diffusion barrier, in addition to potentially causing an 

arterio-venous shunt, all of which will have a greater effect on pulmonary 

oxygen transport when compared with carbon dioxide transport.  Consequently 

there was an increase in PaO2 after haemorrhage in the sham-blast group, 

despite no increase in FiO2 at any time during the study. 

This study was conducted in female pigs.  It is well documented that there are 

sex-based differences in outcome after trauma, where females generally have a 

better outcome (George et al., 2003; Sperry et al., 2008).  The mechanisms 

underpinning this are only partly understood but a number of studies suggest 

that oestrogen may a key role.  Neutrophil activation is blunted in models of 

trauma and haemorrhagic shock in female when compared to male rats (Dietch 

et al., 2006; Ananthakrishanan et al., 2005).  However, the female advantage is 

lost after oophorectomy but restored with the administration of oestrogen 

receptor agonists (Doucet et al., 2010).  Female mice have been shown to have 

a greater tolerance to ischaemia-reperfusion injury when compared to males 

(Hu et al., 2009).  A recent surgical review (Bullard et al., 2010) summarised the 

key elements of the evidence underpinning sex-related differences in outcome 

after trauma concluding that “in survival after trauma, men would benefit from 

being more like women”. However females do not have it all their own way: a 

recent study indicated that although females appear to exhibit less early trauma 

coagulopathy but the outcome was significantly worse in females that do 

develop the condition (Engels et al., 2011).    Although there are important sex-

related differences in the response to trauma, there are more likely to be 

quantitative rather than qualitative differences in the context of the variables 

studied in this thesis.  By limiting this study to one sex, the results are not 

invalidated as far as males are concerned but it is likely to have reduced 
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variability (compared to mix sex groups) and hence reduced the number the 

number of animals required to attain a statistically robust conclusion.     

The aetiology of acute trauma hypo-coagulopathy is multi-factorial and in part is 

linked to tissue hypoperfusion and consequences such as  acidosis as well as 

hypothermia, consumption of factors and (where large volumes of resuscitation 

fluids are used) dilution (Hess et al., 2008; Tieu et al, 2007).  More recent views 

emphasise the importance of tissue hypoperfusion and ischaemia per se which 

can lead to an early hypo-coagulopathy before these other factors are present 

by changing the balance of clotting pathways from fibrinogenesis to fibrinolysis 

(Brohi et al., 2008).  In support of this view, PT was found to be elevated in a 

cohort of major trauma patients only when there was concurrent evidence of 

tissue hypoperfusion (increased base deficit) (Brohi et al., 2007).  In our study, 

the elevation of PT also correlated with increased base deficit (reduced ABE).  It 

is clear from the oxygen transport measurements made in the current study that 

tissue oxygen delivery is enhanced during the normotensive phase of NH since 

the reduction in base deficit is paralleled by a fall in oxygen extraction ratio.   

It is suggested that tissue hypoperfusion leads to endothelial expression of 

thrombomodulin and increased circulating thrombomodulin levels.  The 

thrombomodulin, in turn, complexes with thrombin, diverting it to an 

anticoagulant function via activated Protein C (Brohi et al., 2007).  Without 

measurements of circulating thrombomodulin and Protein C in this study, it is 

not possible to take the comparison further, but it is interesting to speculate that 

the association of the improvement in the clotting status seen in animals given 

novel hybrid (NH) resuscitation may be due to an improvement in tissue 

perfusion.   

By contrast to our findings, a recent report by White et al. (2010) showed that 

PT (and a number of other clotting parameters) were unaffected by oxygen debt 

in anaesthetised pigs following a similar volume of haemorrhage plus musculo-

skeletal injury.  However, in this latter study measurements were made at pre-

defined levels of oxygen debt and it is of note that the degree of base deficit 

was small (approximately -2 mM) even at the most severe level of oxygen debt.  

A possible explanation for the difference between our two studies is that the 
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development of the coagulopathy is also time-dependent and that in our study 

more time had elapsed to allow greater influence of an oxygen debt on both 

metabolic state (base deficit) and clotting status. 

 

NH resuscitation was associated with a reduced inflammatory IL6 response 

(figure 28) compared to hypotensive resuscitation.  The time-course for the IL6 

(inflammatory) response is such that even higher levels of IL6 would be 

anticipated in the hypotensive groups had they survived longer (Dong et al., 

2006),  The aetiology of the acute systemic inflammatory response associated 

with trauma is complex and includes the effects of both shock and resuscitation 

(Watters et al., 2006).  It has been argued that crystalloid solutions used for 

resuscitation can augment the inflammatory response (Molina et al., 1997).  

However in our study it appears that the effects of prolonged shock are a more 

potent stimulus since the hypotensive group displayed higher levels of IL6 than 

the group given NH resuscitation.  The inflammatory effects of tissue 

hypoperfusion appeared to be greater than the effects of blast per se, 

emphasising the potency of shock as a mediator of systemic inflammation. 

We did not find any effect of injury, shock or resuscitation on TNF-α, and 

consequently no difference in the TNF-α level between the four groups (figure 

29) despite seeing clear changes in another inflammatory marker (IL6).  This 

may appear superficially surprising since a number of studies have shown that 

the inflammatory response that follows haemorrhagic shock and resuscitation is 

characterised by elevations in a range of cytokines, including IL6 and TNF-α 

(Cai et al., 2009; Relja et al., 2009).  However, although a trauma/haemorrhagic 

shock – induced TNF-α response is well described in the rat it is less so in 

porcine models.  Studies conducted in pigs that show elevations in TNF-α after 

traumatic injury and haemorrhagic shock generally involve very profound shock 

e.g. a sustained mean arterial pressure of 20-25 mmHg (Dong et al., 2010), 

while a more modest haemorrhage is associated with little or no alteration in 

TNF-α (Dong et al, 2006).  The TNF-α response in porcine models of 

haemorrhagic shock is often much less than the IL-6 response to the same 

insult, e.g. a two-fold increase in TNF-α compared to a greater than 360 fold 

increase in IL6 (Englehart et al., 2008).   However, where models of 
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haemorrhagic shock are combined with an element of sepsis, TNF-α does show 

a marked increase, confirming that the pig is capable of producing a TNF-α 

response to other forms of shock (Kubiak et al, 2010). Therefore, in contrast to 

other species such as rat, pigs do not mount a large TNF-α response to 

haemorrhagic shock unless the model is very severe or combined with sepsis.  

In this respect the porcine model appears to be a better representation of the 

response to trauma in humans than the rat models are since clinical data 

suggests that man, like pig, does not mount a large TNF-α response to trauma, 

in contrast to the situation in septic shock (Martin et al., 1997).  

The correlations of clotting impairment and degree of physiological impairment 

and enhanced inflammatory state showed a significant association (Figure 30).  

The complex interactions between the inflammatory and coagulation ‘systems’ 

have been discussed in chapter 3.7.2.  It is of note in the present study that the 

development of coagulopathy after trauma/haemorrhage and hypotensive 

resuscitation was mirrored by an inflammatory response (elevation in IL-6).  A 

separate analysis of samples from the same series by a colleague showed that 

HMGB-1 is also increased, especially after hypotensive resuscitation (Jacobs, 

2010).  Collectively these mirror an observational finding from a clinical study 

that the development of acute trauma coagulopathy is paralleled by elevations 

in HMGB-1 (Cohen et al 2009), a known mediator of sterile inflammation and 

driver of secondary inflammatory cytokines such as IL-6 (Fink et al 2007).  It is 

also known that inflammatory agents such as HMGB-1can bind to 

thrombomodulin, although it is currently now known how this might affect 

clotting (Cohen et al 2009).  It is therefore impossible to determine from any of 

these studies whether there is a causative link between the inflammatory 

system and acute trauma coagulopathy or whether the link simply reflects 

common drivers based e.g. on tissue hypoperfusion.   

Superficially it might be expected that an enhanced inflammatory response 

might oppose the acute reduction in clotting associated with trauma. However, 

the situation in vivo is likely to be complex, with a number of competing 

influences occurring at the level of the endothelium.  Some authors have argued 

that the inflammatory system in the context of trauma may drive a very complex 

response comprising of both anticoagulation at the site of injury (leading to 
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ATC) and a systemic enhancement of coagulation giving rise to disseminated 

intravascular coagulation (DIC) (Gando et al 2011) i.e. the worst of both worlds.  

In this circumstance it is argued that a high level of inflammatory cytokines and 

severe tissue injury activates the tissue-factor-dependent coagulation pathway 

followed by massive thrombin generation and its activation. Low levels of 

protein C and antithrombin induce insufficient coagulation control and the 

inhibition of the anticoagulation pathway (Gando et al 2011).  A complex 

interaction between the cellular and fluid (plasma) elements of the coagulation 

system has been proposed to reconcile the simultaneous presence of both 

increased and depressed clotting states (Johansson et al 2010); the situation in 

circulating whole blood is a consequence of the degree of the tissue injury and 

is critically related to the degree of endothelial damage, with a progressively 

more procoagulant endothelium inducing a gradient of increasing 

anticoagulation towards the plasma phase (Johansson et al 2011).  However, a 

very recent clinical study has found no evidence of early DIC at a time when 

ATC is apparent in the presence of concomitant elevations in pro-inflammatory 

cytokines such as Il-6 (Johansson et al 2011).  This suggests that the overt pro-

coagulant state is a later response in injured patient.  The detail of the 

interaction between the inflammatory and coagulation system(s) remains to be 

elucidated; to some degree this may be facilitated by investigations into the 

interactions between the two systems in situations such as sepsis (where it has 

been studied extensively) although this may also be the source of confusion 

since there are very important differences between ‘sterile’ inflammation during 

the early phase of the response to trauma and the inflammation seen during 

sepsis.  

 

There a number of potential and actual limitations in any study which relies on a 

model of a clinical condition.  The study was conducted on anesthetised pigs 

rather than conscious humans and both the species of animal and the choice of 

anaesthetic could have significant implications for the conclusion of the study.  

With the latter, the anaesthetic used (intravenous alphaxolone) has previously 

been documented to preserve the central nervous pathways mediating the 
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relevant cardiovascular response to injury, hence it is unlikely to have caused a 

qualitative alteration in the responses compared to conscious man.   

With regard to the species differences, there are differences in the coagulation 

systems of humans and pigs.  However, provided these differences are known 

and acknowledged then reliable conclusions can be derived regarding the 

elements of the system that are similar between the species of interest.  

Although a porcine model would not be relevant in all aspects of the 

mechanisms of trauma coagulopathy, the current model does seem to replicate 

acute trauma coagulopathy which responded to improved tissue blood flow in 

manner predictable from current human studies.  Lastly, this model has 

relatively little tissue injury (other than the effects of blast in one injury strand).  

Since the degree of tissue injury can affect coagulation, a future model should 

incorporate an additional tissue injury (musculo-skeletal) when studying ATC. 

     

6.6 Conclusion  

We have demonstrated that the novel hybrid (NH) resuscitation strategy 

attenuates the development of acute trauma coagulopathy and systemic 

inflammation in a model of complex injury.  This emphasises the importance of 

the difficult clinical balance involved in choosing a resuscitation strategy for 

individual patients where the needs of tissue perfusion must be offset against 

the risk of re-bleeding during resuscitation. 
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Chapter 7:  Feasibility of using rotational thromboelastometry 

to assess coagulation status of combat casualties in a 

deployed setting. 

7.1 Introduction  

The incidence of acute trauma coagulopathy seen on admission to the 

Emergency Department has been shown to be between 25% to 34% in civilian 

patients and between 31% to 38% in military patients (Brohi et al., 2003; 

Macleod et al., 2003; Maegele et al., 2007; Plotkin et al., 2008).  This is 

associated with a 4-fold increase in mortality (Brohi et al, 2003). Concurrently, a 

higher proportion of military patients (8% to 10%) undergo massive transfusion 

(MT) when compared to civilian (3% to 5%)(Holcomb 2007; Como et al., 2004).  

The mortality rate for those receiving massive transfusion ranges from 20% to 

50% (Borgman et al., 2007). 

As a means of addressing this coagulopathy, haemostatic resuscitation has 

been developed to rapidly and proactively treat the coagulopathy with blood and 

blood products (Kirkman et al., 2007). However, current guidelines on the 

management of massive blood loss rely heavily on the availability of standard 

laboratory results to guide therapy (Rossaint et al., 2010).  The British National 

Blood Transfusion Service and the American College of Pathologists’ guidelines 

define the presence of coagulopathy as a prothrombin time (PT) over 18 

seconds and/or an activated partial thromboplastin time over 60 seconds 

(College of American Pathologists, 1994).  These tests are designed to 

measure only the clotting in plasma and do not consider the action of the factor 

and cellular components together and their interaction.  The average time for 

laboratory test results to be available is 45 minutes, during which time the 

clinical picture can rapidly change allowing coagulopathies to develop and 

remain undetected. The delay does not allow for timely tracking of the 

effectiveness or otherwise of therapeutic intervention. 

Point-of-care monitoring using thromboelastography (TEG) / 

thromboelastometry (TEM) is a test that is well established within cardiac and 

liver elective surgery.  A NHS health technology report in 2008 looked the 
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clinical effectiveness of TEG/TEM concluding that the technique reduced the 

need for inappropriate transfusions and decreased blood product requirement.  

The technique has been shown to reduce the number of deaths, complications, 

infections in cardiac and liver transplant surgery and overall resulted in an 

increase in survival (Craig et al., 2008).    

TEG/TEM provides a timely and convenient method that measures a number of 

aspects of the coagulation profile, including initial clotting, platelet interaction 

and fibrinolysis in a sample of whole blood. ROTEM (Pentapharm GmbH, 

Munich, Germany; figure 1) is a self-contained, touch-screen machine that is 

analogous with thromboelastography (TEG) (Haemoscope Corporation, Niles, 

IL, USA) to produce the clot profile.  Table 3 (Chapter 3) lists the main features 

of the two machines. ROTEM  has come to the forefront in Europe over the 

past decade.  To clarify the nomenclature used in this thesis, TEG/TEM will 

describe the technique of measurement of coagulation (whether it was carried 

out by either ROTEM or TEG.  The specific device (ROTEM or TEG) will be 

named as appropriate.  

 

7.2 Aim 

This study addresses the hypotheses and aims detailed in section 5.2.  In 

summary, the aim of this field study was to assess the feasibility of using 

ROTEM in a deployed setting and to determine if results from the ROTEM 

could be used to assess the coagulation in the military trauma patient with the 

future potential to guide resuscitation therapies in MT patients.  It was not the 

intention of this study to use this technique to select patients who might require 

activation of the MTP, but to observe the changes apparent on admission and 

relate them to their clinical condition, the results of the standard laboratory 

assessments of coagulation and the subsequent use of blood and blood 

products. 



147 

 

7.3 Method 

The study was designed as a prospective observational field trial of the 

feasibility of using TEM in the deployed military environment following 

preliminary experience in the UK with the equipment. The study method was 

assessed by the Ministry of Defence Research Ethical Committee (MODREC).  

Formal consent was not deemed necessary from patients as the blood taken for 

testing was the residue of that taken for routine clinical assessment and was 

therefore deemed to be waste material.  The committee’s opinion was this 

constituted a technology assessment study of an approved ‘CE’ marked clinical 

apparatus being utilised in a novel setting and as the results were available to 

clinicians managing the cases (if they wished), there was no requirement for 

separate ethical consent. The ROTEM® results were anonymised for analysis.  

Permission was granted for the use of the two example cases listed in this 

chapter.  

 

7.3.1 Patient Selection 

The study was performed over 5 weeks in 2009 in the military hospital in Camp 

Bastion in Helmand Province in Afghanistan.   Patients included were those that 

were admitted into the emergency department (ED) and whose injury 

mechanism and clinical concern resulted in the trauma team activation, 

including those requiring massive transfusion.  This group of patients, 

considering the severity of their injuries, were felt to be at risk of developing the 

acute traumatic coagulopathy    Patients were excluded if they had received 

blood transfusion and medical care prior to arrival at Camp Bastion and whose 

condition was not a result of trauma.   The patients in whom the Massive 

Transfusion Protocol (MTP) was activated were defined by the criteria laid down 

in the Joint Service Publication (JSP) 950; Medical Policy (2009).  This is 

described in detail in Table 5 (Chapter 4).   

A blood sample (4ml citrated fresh whole blood) was drawn from the patient at 

the same time as admission bloods, which were tested for routine laboratory 

tests including standard coagulation tests of prothrombin time (PT), activated 

partial thromboplastin time (APTT) and platelet count.  The normal reference 
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values for the hospital’s laboratory analyser (IL 300, Instrumentation 

Laboratories UK Ltd, Warrington, UK) were used to identify those as having 

normal coagulation or abnormal coagulation.  A normal value for PT was ≤ 18s 

and APTT was ≤ 38s.  Arterial blood gases were taken on arrival and initial 

body temperature was recorded with routine observations.  The total transfusion 

of blood and blood products given within the first 24hrs was recorded.  Injury 

Severity Score was calculated using the documented injuries that had been 

determined at the end of 24hr admission using the guidelines by Baker et al 

(1974). 

 

7.3.2 Thromboelastometry measurement 

TEM was measured using ROTEM.  This was chosen as the technique over 

TEG for a number of reasons including: robustness in extreme environments 

and continuous movement; the user-friendly technology with the touch screen 

and automated pipette; the availability of four channels with a coloured coded 

pictorial result that was easily interrupted by all staff.  Several differential 

ROTEM  test assays exist that contain different activators and inhibitors; these 

tests are outlined in table 4 (Chapter 3); which explains which activator is used, 

which aspect of clotting process is being tested and the normal expected 

values.  Three tests were performed on each blood sample in this study; 

EXTEM, INTEM and FIBTEM.  HEPTEM was not used as this population of 

patients were not heparinised and APTEM was only used in extreme 

circumstances to prove that hyperfibrinolysis was occurring. 

The information from each trace provides the following parameters (an example 

trace is illustrated pictorially in figure 32): 
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Figure 32: ROTEM trace. ((Produced by kind permission of Tem Innovations GmbH, 

Germany).  CT-Clotting Time; CFT-Clot Formation Time; MCF-Maximum Clot 

Firmness; ML- Maximum Lysis. 

 

Refer to Section 3.6.2 for a full explanation of the terminology and interpretation 

of the components of the trace.  However, to summarise interpretation, an 

elongated CT time indicates disturbed activation of coagulation, where a factor 

deficiency is considered.  Decreased MCF in the EXTEM test indicates a 

problem with the overall clot strength.  Concurrent evaluation of the FIBTEM 

test allows a differential assessment of whether the problem is due to lack of 

fibrinogen or reduced platelet function /numbers or both.  This is because in the 

FIBTEM test the platelets are disabled by an added inhibitor and hence the 

FIBTEM MCF is independent of the platelets.  A reduced FIBTEM MCF 

therefore suggests a problem with fibrinogen levels whereas a normal FIBTEM 

MCF suggests that fibrinogen levels are adequate and the problem lies 

elsewhere e.g. with the platelets.  Further explanation of ROTEM analysis is 

outlined in Chapter 3.6.2.  The cut-off values to define normal/abnormal clotting 

for each parameter was taken from the manufacturer’s reference ranges as 

documented in table 4 (chapter 3). 

All samples were tested at 37C within 20 minutes of being drawn.  After the 

patient was enrolled into the MTP, a least one (up to 10) further traces were 

carried out to monitor the changes in the coagulation status during the on-going 

resuscitation. Although ROTEM is an established clinical test used in the 

clinical setting in the UK; at the time of this study, the ROTEM had not been 
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incorporated into the MTP algorithm, so it was not used to direct therapy but the 

results were made available to the treating clinicians to use as they felt clinically 

appropriate.    

7.3.3 Statistical analysis 

Comparison of ROTEM results with standard laboratory coagulation tests (PT, 

APTT) was by the non-parametric test of paired proportions – McNemar’s Test.  

Nonparametric data is expressed as median (with interquartile range) and two-

group analysis was performed with Mann-Whitney U test. Parametric data were 

expressed as mean ± SEM and were compared using a Student’s t-test.   A p 

value of 0.05 was chosen to represent statistical significance.     

 

7.4 Results 

In the study period 31 patients had TEM performed, of which 20 were 

subsequently enrolled into the MTP.  One of these 20 patients had received 

blood products at a forward unit, therefore were excluded from the study.  The 

other 11 patients comprised of 4 in-patients and 7 admissions to the ED.  One 

of the ED admissions was a subarachnoid haemorrhage; this patient and the in-

patient cases were excluded from the study, leaving a small group of 6 new 

admissions who did not receive a massive transfusion.  Therefore the overall 

patient group consisted of 19 MTP and 6 non-MTP patients. 

All the patients were men, and the median age was 21 years (interquartile 

range 18-35 years).  In 60% (15 of 25) of cases, injuries occurred after 

exposure to a blast incident, 36% (9 of 25) resulted from gunshot wounds, and 

one case was involved in a road traffic crash.  The admission physiology of 

each group is listed in table 8.  At the end of the study period, 16 patients 

(84.2%) had survived from the MTP group; all non-MTP patients survived. 

 

The total amount of blood products the MTP group received was 164 units 

packed red blood cells (PRBC), 116 units fresh frozen plasma (FFP), 15 units of 

platelets (Plts) and 13 units of cryoprecipitate (cryo).  This is a mean of 8.6 
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PRBC/6 FFP/1Plt/1cryo per patient.  The range of units given per person was 4-

16 PRBC; 2-12 FFP; 0-5 Plts; 0-2 cryo.  The ratio of PRBC to FFP is 1.4:1. The 

non-MTP group of 6 patients received a total of 5.5 units PRBC and 3 units of 

FFP, with no requirement for platelets or cryoprecipitate transfusions. 

 

Parameter MTP Group (n = 19) Non-MTP Group (n = 6) p-value 

ISS (IQR) 35 (25–50) 20 (19–20) p <0.0011 

Systolic blood 

pressure 

(mmHg) 

115 ± 7  142 ± 9 p<0.052 

Pulse rate 

(beats per min) 
122 ± 5 100 ± 10 p<0.032 

Temperature  

(C) 
34.8 ± 0.3 36.0 ± 0.4 p<0.072 

pH 7.27 (7.19–7.32) 7.36 (7.28–7.40) p = 0.081 

Base excess 
(mM) 

-5 (-9 – -3) -2 (-5 – +1) p = 0.121 

Table 8:  Admission physiology of two groups of patients: MTP and non-MTP.  Median 

values (with inter-quartile range) are listed; p-values were calculated by Mann-Whitney 

U (two-tailed) test1 or unpaired t-test2. 

 

Using the normal reference values for the laboratory analyser, (upper limit of 

18s for PT and 38s for APTT), 16% (4/25) of the entire group had abnormal 

results.  All 4 patients with abnormal clotting received MTP.  Therefore in the 

MTP group, 21.1% (4/19) had abnormal results.  All of these four coagulopathic 

patients had an abnormal APTT, one of which also had an abnormal PT.  The 

results are shown in figures 33 and 34 showing the distribution of these values.  

All the patients in the non-MT group had normal PT/APTT results. The average 
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recorded time from when the blood sample was taken from the patient to when 

the laboratory results were available to the clinician was 45 minutes.    

 

Figure 33: Admission values of APTT for patients who went on to have massive 
transfusion. Only four values were above the upper limit of normal. 

 

 

Figure 34: Admission values for PT for patients who went onto have massive 

transfusion. Only one value was above the upper limit of normal. 
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Analysis of the admission ROTEM  traces from all patients (of both the MTP 

and non-MTP groups), it was found that 64% (16 out of 25) had abnormal 

results.  When these figures were examined statistically using a non-parametric 

test of paired proportions (McNemar’s test), ROTEM returned significantly 

more abnormalities than the standard, conventional laboratory tests (p=0,0005).  

When the ROTEM results of the two groups, MTP and non-MTP, were 

examined separately there was little difference in abnormalities detected 

between them.  The MTP group had 63.2% (95% CI; 38.4-83.7%) (12/19) 

outside the set reference ranges. In the non-MTP group, 67.7% (95% CI; 

22.3%- 95.7% (4/6) had an abnormal trace, with all cases having a low MCF in 

the FIBTEM trace.  The normal reference range for MCF in EXTEM is 50-

72mm, but a MCF value of <45mm is viewed as a critical level for increased risk 

of bleeding (Lang et al., 2005).  Taking this value and re-examining the results 

from the two groups, 31.6% (6/19) of the MTP patients fell below this value 

whereas all non-MTP patients had MCF >45mm.  

Table 9 shows the initial EXTEM traces of all 25 patients providing the CT, CFT, 

A10, MCF and ML values.  Patient no. 1-19 are the MTP group and patient no. 

20-25 are the non-MTP group.   Patient no 16 had a grossly abnormal CT 

where no clotting was observed after 30 minutes.  This patient had critical head 

injuries along with extremity injuries, and although full resuscitation was 

commenced initially, this was deemed futile after a CT scan showed 

unsurvivable head injuries.  He died shortly after this information was obtained.   

In the MTP group, the CFT was abnormal in 21.1% (4/19) patients with 3 cases 

going on to develop an abnormal MCF.   

Looking at the MCF value in both groups, a total of 9 patients had an abnormal 

result in their admission trace; 7 of which had an abnormal value at A10.  No 

patient with an abnormal A10 had a normal MCF above 50mm (the lower range 

of normal reference range).   

Patient 22, who did not receive the MTP had abnormal results across all 

parameters recorded.  This patient had been brought in from a RTA having 

suffered blunt injuries.  The exact time from injury to arrival at ED was not 
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known, but the patient required only treatment of re-warming and crystalloid 

fluid.  No transfusion was required. 

Table 9:  ROTEM results of initial EXTEM traces for all patients.  Patients’ no. 1-19 

were in the MTP group and patients 20- 25 were the non-MTP group. Highlighted 

results are abnormal. A dashed line means no result was obtained. 

 INITIAL EXTEM TRACE 

Patient No. 

CT CFT A10 MCF ML 

38–79 (s) 34–159 (s) 43–75 (mm) 
50–72 

(mm) 
<15 (%) 

1 6 148 49 56 0 

2 73 120 40 40 15 

3 60 97 49 55 3 

4 46 356 30 50 0 

5 45 204 34 35 1 

6 51 86 51 55 7 

7 56 143 41 45 3 

8 52 80 54 62 9 

9 73 95 51 55 0 

10 49 66 54 60 4 

11 56 169 50 51 8 

12 55 73 56 56 4 

13 64 108 44 46 1 

14 72 131 40 42 98 

15 68 96 49 51 10 

16 1897 --- --- --- --- 

17 45 83 51 54 14 

18 72 43 39 43 66 

19 73 83 55 55 5 

 

20 51 85 55 59 8 

21 55 168 51 58 2 

22 116 187 42 47 3 

23 50 75 56 60 9 

24 74 102 58 62 6 

25 37 114 46 46 9 
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7.5 Example Cases 

An advantage of TEM is that it can be used to both tailor the direction of the 

clinical management and to display response to therapy of patients.  This is 

best illustrated by individual clinical cases, two of which are listed below.   

6.5.1 Case 1 

A 30-kg male was admitted to the ED 2 hours after he had been involved in an 

explosion. He had sustained significant soft-tissue loss to his right upper leg 

with an associated compound fracture of his femur. Admission physiological 

measurements were a pulse of 140 beats/min, systolic blood pressure of 70 

mmHg, temperature of 32 C, pH of 7.01 and a base excess of -18mM. He was 

anaemic with an Hb of 5.6 g/dL, a abnormal platelet count of 36×109/L and a PT 

of 18.5s, and an APTT of 58.2s.  Over the next 18 hours, this patient was 

transfused 16 units PRBC, 10 units FFP, 5 units Platelets, and 1unit 

cryoprecipitate. The four traces shown in Figures 35 to 38 are EXTEM traces 

over this period of time. As ROTEM results were not incorporated into the MT 

algorithm at this time, the results were not used to direct therapy but the traces 

were available to the treating clinicians to use as they felt appropriate.  

Over the first two hours the patient underwent initial damage control surgery 

with ongoing resuscitation before being transferred to the intensive care unit 

(ICU).  He received 10units PRBC, 7units FFP, 2 units Platelets and 1unit 

cryoprecipitate in that time during which his physiology had essentially returned 

to normal.  Despite this his coagulopathy had worsened (refer to Figure 36 and 

37).  His full blood count showed a Hb of 8.6 g/dL and a platelet count of 55 × 

109 /L at that time.  

 By 0700 the following morning, 15 hours after admission and despite his on-

going resuscitation, he remained coagulopathic with a low platelet count.  This 

was reflected by his ROTEM trace at that time, shown in figure 37.  A unit of 

freshly apherised platelets was given and the response in coagulation state was 

noted in figure 37. This improvement mirrored the subjective assessment of his 

wounds and his clinical ability to clot, meaning he returned to operating room 

(OR) for further debridement of his wounds and external fixation of his femur.  
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His fibrinogen levels were within normal range after his first unit of transfused 

cryoprecipitate.  

 

Figure 35: Admission EXTEM trace showing normal CT but decreased MCF 

 

 

Figure 36: After initial surgery and admission to ITU after initial haemostatic 

resuscitation and surgery. This abnormal trace mirrored clinical coagulopathy. 
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Figure 37: 15 hr after admission, after further surgery and resuscitation, patients 

remained coagulopathic. 

 

 

Figure 38:  After apherised platelets were given, significant improvement was noticed in 

trace and clinically. 

 

This exemplar case demonstrates the how the ROTEM traces could provide 

timely and convenient results that mirror the coagulation status and how it could 
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be used to both potentially guide therapy in MT and to observe response to that 

treatment. 

 

7.5.2 Case 2 

A 65-year-old male admitted after sustaining a GSW to his right flank. He had 

been brought to one of the International Security Assistance Forces (ISAF) 

forward operating bases (FOB), so previous history was not provided. 

Admission physiology was documented as a pulse of 94 beats/min, a systolic 

pressure of 110 mmHg, tympanic temperature of 34.9˚, a pH of 7.01 and base 

excess of -17mM. Blood results were Hb= 8.4g/dL, Plts= 182 x109/L, PT= 14.3s 

and APTT= 83.1s.  He was taken directly to the OR on arrival to the hospital 

facility. 

His initial EXTEM and FIBTEM traces (Figure 39) showed that there was 

complete lysis of the clot within 20 min, indicating hyperfibrinolysis. He 

underwent damage control surgery with aggressive haemostatic resuscitation. 

His physiology continued to deteriorate despite this and after one hour his 

ROTEM trace (Figure 39) showed a completely hypocoagulable state. When 

taken in context with his injury severity and physiological status, it was 

considered by the managing clinicians that further resuscitation would be futile.  

ROTEM added crucial information at a critical time in the decision-making 

process.

 Figure 39: Admission ROTEM trace of case 2 showing hyperfibrinolysis. 
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Figure 40:  ROTEM trace after 1 hour of resuscitation and surgery showing a 
profound hypocoagulable state. 

 

7.6 Discussion 

Acute coagulopathy of trauma is an increasingly recognised problem, but the 

prevalence depends on the established definitions that are based on standard 

laboratory tests. There are two disadvantages with these tests, the first being 

the time that they take from the laboratory. In the setting of a deployed hospital, 

the laboratory is situated next to the ED and is dedicated to the testing of new 

admissions during the reception of trauma patients. Samples were taken to the 

laboratory for PT/APTT and OR for ROTEM analysis. The average time from 

when the samples were drawn to PT/APTT results being available was 45 

minutes. Jaeger et al (2009) found that their turnaround time for laboratory 

results was 61 minutes; and Singer et al (2008), with the introduction of a 

dedicated stat laboratory for the ED patients, reduced the time for results to 30 

minutes. However, with the introduction of the haemostatic resuscitation, the 

evolving situation of rapid trauma damage control resuscitation would make 

those results less relevant to the real-time clinical situation. The ROTEM tests 

in this study were initiated within approximately 8 minutes of the patient’s arrival 

by the lead investigator (the fastest being 3 minutes and exceptionally, one test 

being commenced 20 minutes after arrival).  The results could then be observed 

over the next 20 minutes as they evolve on the screen. Although a full trace can 
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take up to 60 mins to complete, abnormal traces e.g. a prolonged CT or a 

decreased α-angle can be easily seen after a much shorter interval, giving an 

early indication of a coagulopathic state.  This is an advantage of having a near-

patient test. Other bedside tests are available commercially, such as ISTAT 

PT/INR (Abbot Laboratories, East Winsor, NJ, USA), that will measure INR 

within minutes; however, they do not provide the overall dynamic profile 

indicating the rate and strength of the clot formation as provided by the 

ROTEM or TEG. 

This study has suggested that the value at A10 could act as an early indicator of 

an abnormal MCF, as shown by the results in this small study that 80% (7/9) 

patients who had an abnormal A10, had a final abnormal MCF. This has since 

been indicated in a follow-up study at Camp Bastion (Woolley et al, 2012).  This 

is of clinical importance as an early result that indicates the level of 

coagulopathy may allow the haemostatic resuscitation to be directed.  In a 

prospective cohort study at the Royal London Hospital, England has shown that 

an EXTEM CA5 (the amplitude of the EXTEM trace at 5mins after CT was 

attained) correlates with the PT ratio.  A patient with a CA5 result of ≤35mm had 

a greater transfusion requirements (4 vs. 1 unit, p<0.001) and were more likely 

to receive FFP (47% vs 12%, p<0.001). A normal CA5 (>35mm) had a negative 

predictive value of 99% for massive transfusion (10+ units) (Davenport et al., 

2011).  In a separate study of 300 trauma patients, a significant correlation was 

found between CA15 (EXTEM trace) and the PT (Rugeri et al., 2007).  These 

results suggest that as the ROTEM trace develops, an early warning of 

coagulopathy may be evident to the clinician in the first 15 minutes of the test 

starting, rather having to wait for the development of the completed trace. 

The second disadvantage of the standard laboratory tests is the actual 

detection of coagulopathy. This study has shown that the standard laboratory 

tests of PT and APTT detected only 21.1% results outside their normal range in 

the severely injured patients.  This detection rate is significantly lower than the 

64% abnormal results detected by ROTEM when all traces were considered.  

In the absence of an independent ‘gold standard’ assessment of coagulopathy it 

is impossible to be sure whether the conventional testing is returning a number 
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of false negative values or whether the ROTEM gives a number of false 

positive values. Clearly further studies are needed to evaluate this, but in the 

meantime, of the two potential errors, the ‘safe’ clinical approach is to have a 

heightened sensitivity to an impending problem rather than having a false 

security from a negative test.  A clear benefit of ROTEM is a provision of an 

early picture as the test develops. 

However, rather than absolute value of any single parameter, the main benefit 

to the clinician is the trend of any changes and ability monitor further treatment 

during haemostatic resuscitation. 

It is recognised that the same proportion of abnormalities is detected by 

ROTEM in both MT and non-MT groups in the present study.  However, this 

study was not designed to compare MTP and non-MTP groups and the small 

sample sizes involved (especially the non-MTP group) has resulted in large 

95% CI around the means.  A larger, prospective study is clearly required to 

evaluate if initial ROTEM tests can predict subsequently need MTP, as has 

been addressed in the civilian population (Davenport el al., 2011).   

It is currently not suggested that ROTEM should play a role in the initial 

activation of a MTP for any patient, however, this technology may allow 

treatment to be individualised and not given as “one size fits all.” The ongoing 

monitoring of individual patient’s traces may also allow the MTP to be “turned 

off,” as was shown in the UK effectiveness report noting that the number of 

products used was reduced (Craig et al., 2008).  Interestingly, the ratio of PRBC 

to FFP delivered in this study group during the MTP was close to that 

recommended by Borgman et al based on a retrospective analysis of his data 

(Borgman et al., 2007). 

This study is the first to demonstrate the feasibility of the use of ROTEM in the 

deployed military setting to assess coagulation status at the time of admission.  

Prior to this study it was not clear that a ROTEM analyser would function 

reliably in the ROLE 3 hospital in the conditions currently encountered.  The 

study reported in this thesis formed a basis of a report to both UK and US 
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Medical Services which formed part of the evidence base for the clinical 

deployment of the technique (Midwinter et al., 2010).   

The ROTEM was placed in OR which was found to be the ideal location. It was 

directly beside the ED resuscitation bays, and the screen was easily visible for 

the medical staff during surgery when the majority of blood and blood products 

were transfused. The touch-screen and automated process meant that all staff 

members, including operating department practitioners, nurses, and medical 

staff, were able to learn to run the samples. The pictorial results were visible 

from a distance and allowed easy interpretation, as clearly shown by the traces 

in the two exemplar cases described above. Without seeing any actual figures, 

the staff could easily note when a trace was significantly abnormal. This and the 

fact that laboratory staff are fully occupied in issuing blood products during an 

MT make the near-patient assessment of coagulation status in the OR an 

optimal solution.  Figure 40 shows how the machine can easily be seen by all 

staff in the OR. 

 
Figure 41.  The ROTEM


 machine is visible to all staff in the operating room. 
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The ROTEM machine can be adjusted to conduct the test at the patient’s body 

temperature.  However, a decision was made to standardise the test (in 

accordance with manufacturer’s instructions) at a ‘normal’ body temperature of 

37C.  The reason for this was twofold; since all patients have active re-

warming, it was felt important to evaluate what the patient’s clotting status 

would be once the temperature had been normalised, since it is imperative to 

determine if there is an intrinsic coagulopathy independent of the body 

temperature that would require treatment with blood products.  Secondly, this 

standardisation provided the ability to evaluate two patients simultaneously on 

one ROTEM device. 

The only published paper examining the use of thromboelastography (TEG) in 

the deployed military setting was a retrospective study looking at single TEG 

traces that were taken within the first 24 hours (median time 4.5 hr) after 

admission (Plotkin et al., 2008). In this study, as illustrated by the exemplar 

cases, it was found that the greatest benefit of using either ROTEM or TEG 

would be from serial testing to monitor the changes during the resuscitation 

process and not as an isolated result. 

There are restrictions with the technique. It does take some training and 

education for interpretation, and rogue results can be obtained. It is essential that 

citrated samples are taken to ensure the correct mix of blood to anticoagulant; 

failure to do so will give a false impression of coagulopathy. Use of vacutainers 

mitigates against this problem. The ROTEM does not detect the effects of 

anticoagulants such as aspirin, clopidogrel and low-molecular-weight heparin and 

does not detect von Willebrand disease. Failure to detect these effects is not a 

problem in the population in this study but would be a consideration if used in a 

civilian trauma centre/ED.  

The example case studies are an unusual addition in such reports but are 

included as it is felt the individualisation of management is the greatest 

advantage of ROTEM in this setting. This demonstration is particularly 

pertinent with the current increasing use of blood and blood products in the 

military sphere. Wade et al (2009) pointed out that a number of published 

studies (Kaufmann et al, 2007; Johansson et al., 2005) advocate the use of 
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TEM/TEG in trauma patients to determine the coagulation status but that 

currently they lack the power to be incorporated into massive transfusion 

protocols.  This study, while still of limited sample size, adds further weight to 

the argument that battlefield casualties might be managed in a targeted, goal-

directed manner and that the use of ROTEM could help with this management, 

thus ensuring that we are not “empirically and ‘blindly’” administering blood and 

blood products. Continuing clinical evaluation of TEM/TEG data in a deployed 

setting will allow the place of the ROTEM in future algorithms to be better 

defined.  

All patients who had an abnormal EXTEM trace also had an abnormal INTEM 

trace. Unless the patient is heparinised, INTEM does not offer any further 

additional information. Thus, future cases can be run on two channels, allowing 

two patients to be run simultaneously.  

This study has a number of limitations. This was only a feasibility study without 

any randomisation of the patients.  Although the results were available to all 

medical staff, there was requirement for them to be used.  The principle author 

was deployed as a member of the surgical team and although other members of 

the medical staff became proficient at using ROTEM over the study period, but 

it did mean that not all trauma patients admitted to the hospital during the period 

of the study were tested.  Focus was therefore placed only on those most 

severely injured.  

Future work should be continued with a dedicated researcher ensuring samples 

taken are correlated with physiological status and resuscitation time points.  

Continuing use and data collection at Camp Bastion, Helmand Province, 

Afghanistan, will allow the role of ROTEM in the management of battlefield 

casualties to be further refined with the intention of including ROTEM 

parameters in future iterations of the MTP.  

 

7.7 Conclusion 

This observational field study shows that it is both practical and feasible to use 

ROTEM in the deployed military setting. With the immediate availability to the 
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clinician and pictorial representation of the results, this near-patient test allows 

for easy real-time evaluation of the patient’s coagulation status. The ROTEM 

detects a greater proportion of coagulation abnormalities upon admission than 

the standard laboratory tests of PT and APTT.  Future studies may refine the 

role of TEM in MTP algorithms and guide management of individual combat 

casualties. 
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Chapter 8.  Conclusions and Future Directions 

 

The principal finding of the experimental part of this thesis is that a resuscitation 

strategy which targets tissue oxygen delivery (novel hybrid resuscitation) 

attenuates early trauma-induced coagulopathy and inflammation.  Novel hybrid 

(NH) resuscitation has now been incorporated into the military Battlefield 

Advanced Life Support (BATLS) strategy, which currently recommends that 

hypotensive resuscitation the first hour of treatment (Battlefield Advanced 

Trauma Life Support, BATLS, 2006) except in the case of severe head injuries. 

If the evacuation (especially of blast injured casualties) is prolonged then 

consideration should be given to elevating blood pressure to normotensive 

levels after the first hour with the use of crystalloid in the field or blood and 

blood products in the transfer.  Prior to evacuation, the clinical decision is to 

balance of risk between either re-bleeding due to the restoration of the blood 

pressure to a normotensive level or further physiological deterioration due to 

tissue hypoperfusion and shock due to prolonged hypotension.  Based on the 

findings of this thesis, and the prevailing theories accounting for the acute 

traumatic coagulopathy (ATC), it is anticipated that casualties given NH 

resuscitation may experience less coagulopathy than those exposed to a 

prolonged period (of greater than one hour) of hypotension where the tissue 

hypoperfusion could exacerbate the ATC.   If the treatment of ATC requires 

reversal of the hypoperfusion by improving tissue oxygenation, blood and blood 

products used during the resuscitation could obviate this problem but product 

use might potentially worsen hyperfibrinolysis, in the presence of ischaemia, by 

increasing the available thrombin level which is available to conjugate with 

thrombomodulin and drive the production of activated protein C (APC) 

(Midwinter and Woolley, 2010).  

Alternative methods of improving tissue oxygenation can be considered which 

target the arterial oxygen content aspect of oxygen delivery.  The use of oxygen 

for resuscitation after combined blast and haemorrhage has been shown to 

improve survival.  In this work, the targeted use of oxygen arrested but did not 

reverse the shock induced by hypotensive resuscitation, which reflects the 
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limitations of blood flow (J Granville-Chapman et al, 2010).  Follow-on studies 

are being conducted to investigate the effectiveness of enhancing oxygen 

carrying capacity using haemoglobin-based oxygen carriers (HBOCs), which 

will have the advantage of increasing oxygen carrying capacity as well as 

content and should therefore be superior to simply giving supplementary 

oxygen. It will be interesting to examine the effects of HBOCs on the 

development of coagulopathy.   If early trauma coagulopathy is due to tissue 

ischaemia then the use of HBOCs may reduce the coagulopathy, which would 

clearly be of clinical importance as ATC is significantly linked to higher mortality 

rates (Brohi et al., 2003; Macleod et al., 2003).  The results of such work will 

also give further insight into the mechanism of acute trauma coagulopathy by 

helping to determine whether the coagulopathy is due to ischaemia per se or 

possibly due to a change in vascular shear which is also part of trauma-shock.   

It is interesting to speculate whether the beneficial effect of NH resuscitation on 

clotting is because of the improvement in oxygen delivery or due to a change in 

vascular shear associated with improved blood flow; both of which occur during 

the normotensive phase.  There is evidence that both ischaemia and shear can 

modulate thrombomodulin expression in vascular endothelial cells (Jun et al., 

2009; Ishibazawa et al., 2011).  An early study into the investigation of shear 

and thrombomodulin (TM) expression (Malek et al., 1994) suggested that while 

increases in shear elevated the TM expression, a reduction in shear had little 

effect.  Unfortunately most studies have examined the effects of shear on TM 

expression over longer time-courses than those relevant for ATC.   However, 

the effects of shear have not been investigated in vivo as part of the over-all 

‘mixing-pot’ associated with trauma shock, which may affect the dynamics of the 

response.  Shear could therefore be relevant for ATC and the beneficial effects 

of NH resuscitation.  

The current animal model, when used in conjunction with methods which may 

improve tissue oxygen delivery by increasing arterial oxygen content, rather 

than flow, may provide insight into the mechanism underpinning ATC.  

However, the first step towards this is to further characterise the current model 

by evaluating whether the coagulopathy seen in the model used in this thesis is 
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characterised by alterations in protein C (and activated protein C) as described 

clinically by Brohi et al (2007).  

Care would be needed in any follow-on studies using HBOCs to evaluate and if 

possible control changes in vascular shear. Definitive studies are likely to 

require in vitro experiments where it would be easier to maintain constant shear 

while changing oxygen delivery by modulating oxygen content of the perfusate.  

Ultimately both in vitro and in vivo studies would be required, the former to allow 

detailed investigation of mechanisms and the latter to ensure relevance to a 

clinical condition. 

 

The interaction between coagulation and inflammatory systems is an area of 

rapidly increasing interest.  Such is the degree of overlap that a number of 

authors now view clotting and inflammation as different facets of the same 

system.  The study presented in this thesis showed an association between an 

attenuated coagulopathy and reduced inflammation.  It is impossible to 

determine whether there is any causative link or whether both phenomena are 

linked by a common factor such as improved tissue oxygenation and perfusion.  

An interesting speculative comment was made by Cohen et al (2009) in relation 

to the interaction between HMGB1 (an inflammatory cytokine, elevated by 

hypotensive resuscitation in the present study, Jacobs, 2010) and 

thrombomodulin, namely that HMGB1 might attenuate the maladaptive 

activation of protein C (and hence the coagulopathy) observed after severe 

trauma.  The basis of this speculation is that thrombomodulin can bind HMGB1 

(although the effects of this binding on protein C is unknown)(Cohen et al.,  

2009).  The role of endogenous HMGB1 in ATC could be tested in our animal 

model; if the hypothesis is correct then the administration of an HMGB1 

antibody (already shown to possess anti-inflammatory effects [Shimazaki J et 

al., 2012]) may attenuate the early trauma–induced inflammation but would 

worsen the coagulopathy by ‘neutralizing’ endogenous HMGB1.  Such an 

investigation would be essential before any clinical trials were conducted to 

assess the efficacy of a HMGB1 antibody in trauma casualties. 
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Effective targeting of treatment for coagulopathy in casualties requires a timely 

measurement of coagulation to detect, target and monitor treatment.  The 

principal aim of the clinical study reported in this thesis was to evaluate the 

feasibility of using ROTEM in a deployed military facility receiving seriously 

injured battlefield casualties.  ROTEM was found to be sufficiently robust to 

perform well in the environment and provided useful clinical data for those 

clinicians familiar with the technique.  Currently there are no universally 

accepted definitions of ATC based on thromboelastometry which have been 

correlated with a bleeding disorder in individual patients.  ROTEM did identify 

a significantly greater number of patients with an abnormality than conventional 

(PT and APTT) testing.  However, it is not yet clear which of the testing systems 

most accurately reflect a clinical problem in this population of patients.  One 

way to resolve this would be to correlate the findings of both tests against an 

independent, objective, clinical measure of bleeding.  Unfortunately it is likely to 

be very challenging to find quantifiable independent measures since a number 

of commonly used indices, e.g. transfusion volumes, are likely to be driven at 

least in part by measures of clotting.  Further directions in clinical research will 

undoubtedly include assessments of platelet function which, when taken in 

conjunction with ROTEM, will provide valuable insight into the emerging 

pathophysiology of acute trauma coagulopathy and provide valuable clinical 

assessments in the near future. 
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