
I

Advanced Cryptographic System:

Design, Architecture and FPGA Implementation

Mohammed Falih Al-Gailani

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

Newcastle University

School of Electrical, Electronic and Computer Engineering

England, United Kingdom

May 2012

II

Abstract

The field programmable gate array (FPGA) is a powerful technology, and since its

introduction broad prospects have opened up for engineers to creatively design and

implement complete systems in various fields. One such area that has a long history in

information and network security is cryptography, which is considered in this thesis.

The challenge for engineers is to design secure cryptographic systems, which should

work efficiently on different platforms with the levels of security required. In addition,

cryptographic functionalities have to be implemented with acceptable degrees of

complexity while demanding lower power consumption.

The present work is devoted to the design of an efficient block cipher that meets

contemporary security requirements, and to implement the proposed design in a

configurable hardware platform. The cipher has been designed according to Shannon’s

principles and modern cryptographic theorems. It is an iterated symmetric-key block

cipher based on the substitution permutation network and number theoretic transform

with variable key length, block size and word length. These parameters can be

undisclosed when determined by the system, making cryptanalysis almost impossible.

The aim is to design a more secure, reliable and flexible system that can run as a ratified

standard, with reasonable computational complexity for a sufficient service time.

Analyses are carried out on the transforms concerned, which belong to the number

theoretic transforms family, to evaluate their diffusion power, and the results confirm

good performance in this respect mostly of a minimum of 50%. The new Mersenne

number transform and Fermat number transform were included in the design because

their characteristics meet the basic requirements of modern cryptographic systems.

A new 7×7 substitution box (S-box) is designed and its non-linear properties are

evaluated, resulting in values of 2
-6

 for maximum difference propagation probability and

2
-2.678

 for maximum input-output correlation. In addition, these parameters are

calculated for all S-boxes belonging to the previous and current standard algorithms.

Moreover, three extra S-boxes are derived from the new S-box and another three from

the current standard, preserving the same non-linear properties by reordering the output

elements.

The robustness of the proposed cipher in terms of differential and linear

cryptanalysis is then considered, and it is proven that the algorithm is secure against

such well-known attacks from round three onwards regardless of block or key length.

A number of test vectors are run to verify the correctness of the algorithm’s

implementation in terms of any possible error, and all results were promising. Tests

included the known answer test, the multi-block message test, and the Monte Carlo test.

Finally, efficient hardware architectures for the proposed cipher have been designed

and implemented using the FPGA system generator platform. The implementations are

run on the target device, Xilinx Virtex 6 (XC6VLX130T-2FF484). Using parallel loop-

unrolling architecture, a high throughput of 44.9 Gbits/sec is achieved with a power

consumption of 1.83W and 8030 slices for implementing the encryption module with

key and block lengths of 16×7 bits. There are a variety of outcomes when the cipher is

implemented on different FPGA devices as well as for different block and key lengths.

III

This thesis is dedicated to the memory of my beloved father,

who died during the final stage of my research.

To him I owe this thesis,

and without his support and encouragement

this study would never have been possible

IV

Acknowledgements

My first and foremost thanks go to Allah for his blessings at every stage of my life.

I would like to express my deep appreciation and gratitude to my supervisor Professor

S. Boussakta for his guidance, support and advice throughout the research project.

I would also like to thank my second supervisor Mr. Jeff Neasham for his assistance.

I am immensely thankful and appreciative to Professor B. Sharif, the Head of the

School of Electrical, Electronic and Computer Engineering, for his support.

It is also my pleasure to thank all members of the School of Electrical, Electronic and

Computer Engineering, Newcastle University, both academic and non-academic, who

helped and supported me during my research.

I would like to give special thanks to the Ministry of Higher Education and Scientific

Research in Iraq for their financial support.

Finally, and most importantly, I would like to express my deep appreciation to my

parents, my wife, my family and my friends for their continuous support and endless

patience, and for always encouraging me throughout these years. I am really grateful for

everything they have done for me.

V

Declaration

I hereby declare that the work contained in this thesis has not been previously

submitted, in whole or in part, for the award of any other academic degree or diploma. I

also declare that, except where otherwise indicated, all material in this thesis is entirely

my own work and I have fully cited and referenced all information and results that are

not original to this work.

VI

Table of Contents

Abstract ... II

Acknowledgements .. IV

Table of Contents .. VI

List of Figures ... X

List of Tables ... XII

List of Abbreviations and symbols ... XIV

List of Publications ... XVII

1. Introduction ... 1

1.1 Background .. 1

1.2 Motivation for the Research ... 2

1.3 Aim and Objectives .. 3

1.4 Contributions .. 3

1.5 Outline of the Thesis .. 4

2. Background .. 6

2.1 Basic Definitions .. 6

2.2 Classification of Cryptographic Systems ... 8

2.3 Block Cipher Network Structures .. 10

2.3.1 Feistel Networks ... 10

2.3.2 Generalised Feistel Networks ... 11

2.3.3 Substitution-Permutation Networks .. 13

2.4 Examples of Block Ciphers .. 15

2.4.1 Data Encryption Standard ... 15

2.4.2 International Data Encryption Algorithm ... 19

2.4.3 Advanced Encryption Standard... 20

2.5 Block Cipher Modes of Operation ... 23

2.5.1 Electronic Codebook Mode... 23

2.5.2 Cipher Block Chaining Mode ... 24

2.5.3 Cipher Feedback Mode ... 25

2.5.4 Output Feedback Mode ... 27

2.5.5 Counter Mode ... 28

2.6 Types of Cryptanalytic Attacks .. 29

 Table of Contents

VII

2.7 Field Programmable Gate Array .. 30

2.7.1 Programmable Connectivity Technologies ... 32

2.7.2 FPGA Design Flow ... 33

2.7.3 Categories of Architecture Design .. 35

2.8 Literature Survey .. 37

2.8.1 Data Encryption Standard ... 37

2.8.2 Advanced Encryption Standard... 38

2.8.3 Serpent (5-finalist AES candidate algorithm) ... 39

2.8.4 Twofish (5-finalist AES candidate algorithm) .. 40

2.8.5 RC6 (5-finalist AES candidate algorithm) .. 40

2.8.6 MARS (5-finalist AES candidate algorithm) .. 41

2.8.7 Other Algorithms Based on NTTs .. 42

2.9 Conclusions .. 42

3. Diffusion Analysis of the NTTs .. 43

3.1 Introduction .. 43

3.2 New Mersenne Number Transform .. 45

3.3 Fermat Number Transform ... 46

3.4 Analysis .. 48

3.4.1 Analysis of the NMNT Kernel Matrix .. 52

3.4.2 Analysis of the FNT Kernel Matrix .. 53

3.5 Results .. 54

3.5.1 Results of the NMNT Analysis ... 55

3.5.2 Results of the FNT Analysis ... 64

3.5.3 Summary of results for NMNT and FNT .. 69

3.6 Discussion .. 71

3.7 Conclusions .. 72

4. Substitution Box Analysis ... 73

4.1 Introduction .. 73

4.2 Methods of S-box Construction ... 74

4.3 Analysis of Non-linear Properties of an S-box .. 75

4.3.1 Maximum Difference Propagation Probability ... 75

4.3.2 Maximum Input-Output Correlation ... 79

4.3.3 Robustness of the S-box .. 82

4.4 Analysis of the DES S-boxes ... 83

4.4.1 Analysis of the Non-linear Properties of DES S-boxes 83

4.4.2 Robustness of DES S-boxes .. 83

 Table of Contents

VIII

4.5 Analysis of the AES S-box ... 88

4.5.1 Analysis of the Non-linear Properties of the AES S-box 91

4.5.2 Robustness of the AES S-box ... 92

4.6 Generation of the 8×8 S-box .. 92

4.7 Generation of the 7×7 S-box .. 93

4.7.1 Robustness of the 7×7 S-box .. 93

4.8 Conclusions .. 94

5. Design of the Proposed Algorithms ... 95

5.1 Introduction .. 95

5.2 Algorithm Design ... 96

5.2.1 Block Size ... 99

5.2.2 Components of the Design .. 101

5.2.3 Number of Rounds .. 104

5.3 Generation of Cipher Key and Round Keys ... 105

5.3.1 Cipher Key Generation ... 105

5.3.2 Round Keys Generation .. 106

5.4 Algorithm Implementation ... 112

5.5 Test Vectors .. 116

5.5.1 The Known Answer Test .. 116

5.5.2 The Multi-block Message Test ... 119

5.5.3 The Monte Carlo Test ... 120

5.6 Algorithm Complexity .. 121

5.7 Discussion of the System .. 122

5.8 Algorithm Based on FNT ... 124

5.9 Conclusions .. 128

6. Cryptanalysis ... 130

6.1 Introduction .. 130

6.2 Classification of Attacks .. 131

6.3 Criteria of Attack Success .. 134

6.4 Differential Cryptanalysis .. 135

6.5 Linear Cryptanalysis ... 136

6.6 Differential and Linear Cryptanalytic Attacks ... 137

6.7 Related-key Attacks ... 144

6.8 Slide Attacks ... 144

6.9 Brute-Force Attacks ... 144

6.10 Weak Keys ... 145

 Table of Contents

IX

6.11 Conclusions .. 145

7. Architecture Design and FPGA Implementation ... 146

7.1 Introduction .. 146

7.2 Device Specifications ... 147

7.3 System Design .. 147

7.3.1 Design of the Components .. 147

7.3.2 Design Based on Loop Unrolling Architecture for Block of 16×7-bit ... 167

7.3.3 Design Based on Loop Unrolling Architecture for Block of 32×7-bit ... 171

7.4 Verification and Simulation ... 172

7.5 Implementation ... 172

7.6 Configuration .. 174

7.7 Results .. 176

7.8 Complexity ... 179

7.9 Conclusions .. 179

8. Conclusions and Further Work ... 181

8.1 Summary of Research and Results ... 181

8.2 Recommendations for Further Work .. 183

References .. 185

Appendix A. NMNT Diffusion Analysis Results .. 193

Appendix B. FNT Diffusion Analysis Results ... 209

Appendix C. Test Vectors Using NMNT ... 226

X

List of Figures

Figure 2.1: Feistel Network Structure ... 11
Figure 2.2: Type-1 Generalised Feistel Network Structure .. 12
Figure 2.3: Type-2 Generalised Feistel Network Structure .. 12
Figure 2.4: Type-3 Generalised Feistel Network Structure .. 13

Figure 2.5: Unbalanced Feistel Network Structure ... 13
Figure 2.6: Substitution-Permutation Network ... 14
Figure 2.7: DES and Key Schedule Algorithms ... 16
Figure 2.8: Expansion Permutation ... 17
Figure 2.9: IDEA One Round Flow diagram .. 20

Figure 2.10: AES Encryption Flow diagram .. 21

Figure 2.11: Electronic Codebook Mode (ECB) .. 24
Figure 2.12: Cipher Block Chaining Mode (CBC) ... 25

Figure 2.13: Cipher Feedback Mode (CFB) ... 26
Figure 2.14: Output Feedback Mode (OFB) ... 27
Figure 2.15: Counter Mode (CTR).. 28
Figure 2.16: FPGA Internal Structure ... 31

Figure 2.17: FPGA Design Flow .. 33

Figure 3.1: 1-D NMNT output modification ... 48
Figure 3.2: 1-D FNT output modification .. 48

Figure 3.3: Pair distributions .. 51
Figure 3.4: Single elements modifications at even locations ... 55
Figure 3.5: Lower bounds for modifying odd number of paired elements at even

locations with the same values .. 58
Figure 3.6: Lower bounds for modifying odd numbers of unpaired elements with the

same values .. 59
Figure 3.7: Lower bounds for modifying even numbers of unpaired elements with

different values their sum equal Mp ... 60
Figure 3.8: Lower bounds for modifying any number of paired elements with any value

and location and the remaining elements modified randomly 61
Figure 3.9: All elements and all even/odd elements modification with the same value 61
Figure 3.10: Percentages of the number of zero elements relative to the total 63
Figure 3.11: Lower bounds for modifying any number of paired elements with any

value and location and the remaining modified randomly (FNT) 68

Figure 5.1: Block diagram of the proposed algorithm .. 96

Figure 5.2: Proposed block sizes ... 99
Figure 5.3: Image encryption and decryption with the correct and incorrect key 115
Figure 5.4: Image encryption/decryption with correct/incorrect key based on FNT 128

Figure 6.1: Minimum number of active S-boxes for different rounds and block sizes 143

file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813747
file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813748
file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813751
file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813752
file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813753
file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813754
file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813755
file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813760
file:///H:/MyWork/Thesis/MF%20PhD%20Thesis%203%20App%20Final%20after%20viva.docx%23_Toc323813769

 List of Figures

XI

Figure 7.1: Preparing the plaintext .. 148
Figure 7.2: Memory setting ... 149
Figure 7.3: Counter1 setting .. 150

Figure 7.4: Time division demultiplexer setting ... 150
Figure 7.5: Conversion of elements .. 151
Figure 7.6: Slice setting .. 152

Figure 7.7: Convert setting .. 152
Figure 7.8: Modular addition .. 152
Figure 7.9: Modular subtraction .. 153
Figure 7.10: ROM setting for S-box ... 154
Figure 7.11: Variable addition .. 155

Figure 7.12: Multiplication by 2 ... 155
Figure 7.13: Properties setting of Xilinx shift’s block ... 155
Figure 7.14: Variable Subtraction ... 155
Figure 7.15: In-place butterfly of the split-radix DIT for the 1-D NMNT 157
Figure 7.16: 4-points NMNT signal flow graph .. 158

Figure 7.17: NMNT design for transform length (N) = 4 .. 158
Figure 7.18: 8-points NMNT using the split-radix DIT algorithm (Mp = 127) 159
Figure 7.19: NMNT design for N = 8 using the split-radix DIT algorithm 159

Figure 7.20: The internal structure of the Subsystem .. 160
Figure 7.21: 16-points NMNT using the split-radix DIT algorithm (Mp = 127) 160
Figure 7.22: NMNT design for N = 16 using the split-radix DIT algorithm 161

Figure 7.23: The internal structure of the Subsystem1 .. 162
Figure 7.24: The internal structure of the Subsystem2 .. 163
Figure 7.25: Modular multiplication .. 163

Figure 7.26: Xilinx multiplier block setting ... 164
Figure 7.27: Design for multiplying by 24 .. 164

Figure 7.28: Design for multiplying by 21 .. 164
Figure 7.29: Design of forward round transformation ... 165
Figure 7.30: Design of variable addition layer .. 166

Figure 7.31: Design of reverse round transformation (decryption) 166

Figure 7.32: Design of variable subtraction layer .. 167
Figure 7.33: Algorithm design for encryption based on loop unrolling architecture .. 168
Figure 7.34: Design of round transformation for round keys schedule algorithm 169
Figure 7.35: Algorithm design for decryption based on loop unrolling architecture .. 170

Figure 7.36: Design of round transformation for block size 32×7 171
Figure 7.37: Design of inverse round transformation for block size 32×7 172
Figure 7.38: Parameter specific to the system generation block (token) 173
Figure 7.39: ISE project navigator ... 174
Figure 7.40: PROM File Formatter .. 175

Figure 7.41: Generating PROM File .. 175
Figure 7.42: Power analysis for encryption circuit of block size 16×7 bits 176

XII

List of Tables

Table 2.1: Key sizes comparable with reference to cryptanalysis computational efforts . 8

Table 3.1: Maximum FNT length for t = 1, 2, 3, 4 ... 47

Table 3.2: β(nk) Matrix distribution for P = 7, Mp = 127, N = 16................................... 52
Table 3.3: Minimum active bundle for transform length 4 .. 54
Table 3.4: Minimum active bundle for transform length 8 .. 54
Table 3.5: NMNT diffusion for P = 7, Mp = 127, N = 32 ... 56
Table 3.6: NMNT diffusion for P = 17, Mp = 131071, N = 256 57

Table 3.7: NMNT modification comparisons for P = 7, Mp = 127, N = 16 64

Table 3.8: FNT diffusion for t = 3, Ft = 257, N = 16 .. 65

Table 3.9: FNT diffusion for t = 4, Ft = 65537, N = 512 .. 66
Table 3.10: FNT modification comparisons for t = 3, Ft = 257, N = 16 69

Table 4.1: 3×3 S-box representation ... 75
Table 4.2: Input XOR difference (binary)... 76

Table 4.3: Input XOR difference (decimal) .. 76
Table 4.4: Output XOR difference .. 77
Table 4.5: XOR distribution table ... 78

Table 4.6: XOR distribution table (modified S-box) .. 79
Table 4.7: Possible S-box input combinations .. 80

Table 4.8: Possible S-box output combinations .. 80

Table 4.9: Linear approximation table .. 81

Table 4.10: Linear approximation table for modified S-box .. 82
Table 4.11: DES S-boxes .. 84
Table 4.12: DES - XOR distribution table (S1) .. 85

Table 4.13: DES - Linear approximation table (S1) ... 86
Table 4.14: Summary of the non-linear properties of DES S-boxes............................... 88

Table 4.15: Robustness of DES S-boxes... 88
Table 4.16: AES S-box ... 89
Table 4.17: AES inverse S-box ... 90

Table 4.18: Part of XOR distribution table of the AES S-box .. 91
Table 4.19: Part of linear distribution table of the AES S-box 92

Table 4.20: 7×7 S-box ... 93
Table 4.21: 7×7 Inverse S-box .. 94

Table 5.1: Three round keys generation using first technique 107

Table 5.2: Round keys generation using first technique .. 108
Table 5.3: Generation of key-dependent permutation index array 110
Table 5.4: Round keys generation using second technique .. 110
Table 5.5: Three round keys generation using second technique 111
Table 5.6: Three rounds encryption using round keys generated from first technique .. 113
Table 5.7: Encryption processing steps using keys generated from first technique 114

 List of Tables

XIII

Table 5.8: Sample of the variable text known answer test .. 117
Table 5.9: Sample of the variable key known answer test .. 118
Table 5.10: Sample of the multi-block message test .. 119

Table 5.11: Sample of the Monte Carlo test ... 120
Table 5.12: Complexity of the NMNT .. 121
Table 5.13: Complexity of the overall encryption algorithm .. 121

Table 5.14: FNT complexity ... 124
Table 5.15: Complexity of the overall encryption algorithm (FNT) 125
Table 5.16: Round keys generation using first technique based on FNT 125
Table 5.17: Round keys generation using second technique based on FNT 126
Table 5.18: Encryption step for algorithm based on FNT .. 126

Table 5.19: Three rounds encryption based on FNT using keys from first technique ... 127

Table 6.1: Equivalent key sizes ... 132
Table 6.2: Require time for exhaustive key search ... 133

Table 6.3: Minimum number of active S-boxes required ... 140
Table 6.4: The lower bounds of the number of active S-boxes per round 140

Table 6.5: 3-Round differential and linear characteristics .. 140
Table 6.6: Minimum number of active S-boxes required for Rijndael AES 141
Table 6.7: The lower bounds of the number of active S-boxes for Rijndael AES 141
Table 6.8: Exhaustive key search complexity ... 145

Table 7.1: FPGA implementation results for encryptions .. 177
Table 7.2: FPGA implementation results for decryptions .. 177
Table 7.3: Performance comparison of the proposed architecture and AES 178

Table 7.4: Overall system complexity .. 179

XIV

List of Abbreviations and symbols

 A modulo B

 Bitwise XOR operation

 Modular addition

 Modular multiplication

1-D One dimension

Ac Column indices for addition array

ADT Actual data transfer

AES Advanced Encryption Standard

AN Number of addition operations

ANSI American National Standards Institute

Ar Row indices for addition array

BIC Bit Independence Criterion

BitGen Bitstream generation program

BN Branch Number

CBC Cipher Block Chaining mode

CFB Cipher Feedback mode

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

CMT Clock Management Tile

CT Ciphertext

CTR Counter mode

D Decryption

DC Differential Cryptanalysis

DCM Xilinx Digital Clock Manager

DES Data Encryption Standard

DFT Discrete Fourier Transform

DIF Decimation In Frequency

DIT Decimation In Time

Dmax Maximum value in the XOR distribution table

DPPmax Maximum Difference Propagation Probability

DSP Digital Signal Processing

E Encryption

E
2
PROM Electrically Erasable Programmable Read-Only Memory

ECB Electronic Codebook mode

ECC Elliptic Curve Cryptography

EDK Embedded Development Kit

FIFO First-In First-Out

FIPS Federal Information Processing Standard

FNT Fermat Number Transform

FPGA Field Programmable Gate Array

Ft Fermat number

GF(•) Galois Field

h Hexadecimal number

HDL Hardware Description Language

I/O Input/Output

 List of Abbreviations and Symbols

XV

ib Number of required input bytes per block

IDE Integrated Development Environment

IDEA International Data Encryption Algorithm

Im(•) Imaginary part

Inv-NMNT Inverse new Mersenne number transform

Inv-ST Inverse shifts transform

IOCmax Maximum Input-Output Correlation

IP Initial Permutation

IP
-1

 Inverse of the Initial Permutation

ISE Xilinx Integrated Software Environment

ISP In-System Programmable

IUT Implementations Under Test

IV Initial Value

JTAG Joint Test Action Group

Ka Accumulated Key

KAT Known Answer Test

Kc Cipher Key

Kr Round Key

LC Linear Cryptanalysis

LCs Logic Cells

LFSR Linear Feedback Shift Register

Lmax Maximum value in the linear approximation table

LSB Least Significant Bit

LUT Look-Up Table

MAC Message Authentication Code

MCT Monte Carlo Test

MDS Maximum Distance Separable

ml Number of elements in the message

MMT Multi-block Message Test

MN Number of multiplication operations

Mp Mersenne number

MSB Most Significant Bit

MUX Multiplexers

N Transform Length

nb Block size in bits

NBS National Bureau of Standards

NCD Native Circuit Description

NGD Xilinx Native Generic Database file

NIST National Institute of Standards and Technology

nM Message length in bits

Nmax Maximum transform length

NMNT New Mersenne Number Transform

nNz Number of non-zero elements in the first column of the XOR

distribution table

NTT Number Theoretic Transform

nZ Number of padded bytes

OFB Output Feedback mode

OTP One-Time Programmable

PBmax Maximum probability bias

P-box Permutation box

Pc Column indices for permutation array

PC Permuted choice

http://en.wikipedia.org/wiki/JTAG

 List of Abbreviations and Symbols

XVI

PES Proposed Encryption Standard algorithm

PGP Pretty Good Privacy

PHT Pseudo-Hadamard Transform

Pr Row indices for permutation array

Pr Probability

PROM Programmable Read-Only Memory

PT Plaintext

R Maximum number of row in the array

RAM Random Access Memory

Rcon Round constant

rd Maximum number of rounds

Re(•) Real part

ROM Read Only Memory

Rs Robustness of the S-box

RSA Public key algorithm with its inventor’s initials

RTL Register Transfer Level

s Segment

S(•) Element substitution

SAC Strict Avalanche Criterion

S-box Substitution box

SI(•) Inverse element substitution

SoC System-on-Chip

SOPC System on a Programmable Chip

SPN Substitution Permutation Network

SR Shift Register

SRAM Static Random-Access Memory

ST Shifts transform

T Transitional Transform

TDEA Triple Data Encryption Algorithm

TPA Throughput Per Area

UCF User Constraints File

VA Variable addition

VHDL V: VHSIC, Very High Speed Integrated Circuit; HDL, Hardware

Description Language

VS Variable subtraction

W(•) Element’s Weight

XST Xilinx Synthesis Technology

Zp Percentage of the number of zero elements relative to the total

α Kernel of 1-D Fermat number transform

β Kernel of 1-D new Mersenne number transform

 Bias

XVII

List of Publications

1. M. F. Al-Gailani and S. Boussakta, "Evaluation of One-dimensional NMNT for

Security Applications," in 7th International Symposium on Communication

Systems, Networks and Digital Signal Processing (CSNDSP) England, UK,

2010, pp. 715-720.

2. X. B. Yang, et al., "A New Development of Cryptosystem Using New Mersenne

Number Transform," in 7th International Symposium on Communication

Systems, Networks and Digital Signal Processing (CSNDSP), England, UK,

2010, pp. 701-705.

3. M. F. Al-Gailani, et al., "Fermat Number Transform Diffusion's Analysis," in

IEEE GCC Conference and Exhibition, Dubai, UAE, 2011, pp. 237-240.

4. M. F. Al-Gailani and S. Boussakta, "New Mersenne Number Transform

Diffusion Power Analysis,” in American Journal of Engineering and Applied

Sciences, 2011, 4(4), pp. 461-469.

1

Chapter 1

Introduction

This chapter introduces the work described in this thesis. It is organised as follows:

section 1.1 briefly introduces the background of the subject. The motivation for the

research is explained in section 1.2, and its aim and objective are stated in section 1.3

while its contributions to knowledge are detailed in section 1.4. Finally an outline of the

thesis is presented in section 1.5.

1.1 Background

The breakthrough of the field programmable gate array (FPGA) made by Xilinx in

1984, especially given the tremendous developments in silicon technology, has

prompted engineers to make innovations in design, architecture and hardware

implementation in many different fields such as communication devices, digital signal

processing (DSP), cryptography and the system-on-chip (SoC).

Data security is of great interest in relation to most applications, especially those

concerning personal and financial issues. It has been a hot topic for a long time,

particularly in today’s societies living in a world of ubiquitous computing. Computers

are everywhere, millions and millions of items of data are transferred every second

using many different applications. The confidentiality associated with a large number of

1.2 Motivation for the Research

2

these applications needs to be protected. Some applications, for instance, require a

disclosure of credit card information to a website for online transactions such as in

internet shopping, ATM operations and bank transfers.

Cryptography is a tool that has been extensively used for many years [1], although

at its inception this was confined to diplomatic, military and intelligence services,

cryptography can be used nowadays by everyone to protect the confidentiality of their

data transmitted over insecure channels as well as to provide authenticity and data

integrity.

However, due to significant developments in cryptanalytic techniques and in

processing power, existing algorithms used in cryptography are increasingly susceptible

to attacks, such as side-channel attacks, for example. Therefore, as a response, new

methods are continuously emerging in order to achieve the desired level of

requirements, regarding for example: security, speed, platform, complexity, and power

consumption.

1.2 Motivation for the Research

The previous standard algorithm, the Data Encryption Standard (DES) [2], was once

very secure. However, due to developments in processing power and parallel processing

technologies, this algorithm became quite vulnerable to exhaustive key search attacks,

as the key length of the algorithm was considered to be short. Since the algorithm was

designed for a fixed block size and key length, an alternative algorithm was essential.

As a result, the National Institute of Standards and Technology (NIST) proposed in

1997 the Advanced Encryption Standard (AES) to replace the DES. In the current

standard AES algorithm [3], the block size is double that of the DES of 128-bit, and the

key length has expanded from 56 to 128-bit and could even support 192 and 256-bit.

Even though this algorithm is currently believed to be secure, risks of vulnerability still

exist due to the continual development in the field of cryptanalysis as well as increasing

networking and processing power. Sooner or later, this algorithm will be broken, since

it was designed for a fixed block size and limited key lengths, in my opinion the same

action that has been taken before with the previous standard algorithm, an

announcement for a replacement algorithm, is expected to be taken with this standard

should the block size or key lengths become insufficient to suit the security

requirements. Consequently, a reasonable solution would be to design an algorithm in

such a way that it works efficiently on different block sizes and key lengths while

1.4 Contributions

3

adhering to the required level of security. In other words it would be a revision-free

algorithm, ensuring practical usage for the proposed lifespan. In addition, the suitability

of the algorithm for implementing on different platforms should be taken into

consideration within the design.

1.3 Aim and Objectives

The aim of the present work is to design an efficient block cipher that meets security

requirements and then propose an architecture for the investigated cipher to be

implemented in a configurable hardware platform. The design of the algorithm is based

on the following criteria: simplicity, in order facilitate ease of analysis and

implementation; immunity, so as be resilient to known attacks; flexibility, in accepting

variable key lengths, block lengths and word lengths; and efficiency, so as to be

implemented on a wide range of platforms with reasonable complexity and speed.

1.4 Contributions

The major contributions of the research work can be summarised as follows:

 The new Mersenne number transform (NMNT) and the Fermat number transform

(FNT), as well as the mix column transform used in the current state-of-the-art

AES algorithm are analysed and their diffusion power are determined based on

the branch number technique. The diffusion power of the NMNT and FNT are

further investigated to diagnose every possible case, especially those vulnerable

ones to know how to avoid them in the design. These analyses are conducted

using proposed techniques based on probabilities.

 All S-boxes of the previous standard DES as well as the current standard AES

are analysed. Accordingly, their non-linear properties represented by maximum

difference propagation probability (DPPmax), maximum input-output correlation

(IOCmax) and robustness are computed after building up XOR distribution and

linear approximation tables. Thereafter, a new S-box is generated by following

the same procedures used in the construction of the AES S-box. In addition,

other S-boxes are derived from the AES S-box and from the new S-box which

have the same non-linear properties but where the order of the output elements

with different offsets is changed.

 A new parameterised symmetric-key block cipher is proposed based on the

substitution permutation network (SPN) and number theoretic transform (NTT).

1.5 Outline of the Thesis

4

The cipher is designed in such a way that it optionally can calculate the word

length as well as the appropriate block size this is equivalent to the key length

efficiently depending on the processor register length and message length. By

undisclosed such parameters, cryptanalysis becomes almost impossible. In

addition, a solution is proposed for the algorithm based on the NMNT to solve a

problem that might arises due to the modulus value being a power of two minus

one, where the zero value and the Mp value are retrieved as a zero. In addition, a

simple action is undertaken in the substitution boxes (S-boxes) to overcome such

a possible problem.

 Three categories of test vectors are run to verify the correctness of the

algorithm’s implementation in terms of any possible error. These tests include

the known answer test (KAT), the multi-block message test (MMT), and the

Monte Carlo test (MCT).

 The resistance of the suggested cipher towards differential and linear

cryptanalysis is considered.

 Efficient hardware architectures for the proposed cipher are designed and

implemented using FPGA technology.

1.5 Outline of the Thesis

This thesis is devoted to designing and implementing a secure cryptographic system,

and it discusses the various stages of the design in realising the planned target. The

thesis is organised as follows:

 The first part of Chapter 2 presents a general background of the field of

cryptography, starting with basic definitions of the terminology used in this

field, followed by a classification of cryptography, then possible network

structures. Next, three well-known block ciphers are described, and after that the

modes of operation of block ciphers are explained and types of cryptanalytic

attack are outlined. The second part of the chapter discusses the background of

the FPGA, programmable connectivity technologies, the design flow, and

categories of design architecture.

 Chapter 3 explains the NTTs involved in the design for the purpose of enhancing

diffusion. The chapter gives detailed descriptions of these transforms, and the

necessary analyses are carried on to evaluate their diffusion power.

1.5 Outline of the Thesis

5

 Chapter 4 addresses the subject of confusion, which is accomplished in the

design by the incorporation of a substitution box (S-box). The chapter begins by

describing the methods available for constructing S-boxes. Then, the

mechanisms for analysing them to determine their non-linear properties are

discussed. In addition the non-linear properties of all S-boxes used in the current

and previous standard algorithms are computed. Finally, new S-boxes are

generated based on the AES S-box.

 Chapter 5 is dedicated to the design of the proposed cipher, its encryption and

decryption algorithms, and the generation of the cipher key and round keys. The

theoretical complexity of the algorithm is also determined. In addition, a number

of test vectors are applied to the algorithm to verify the correctness of its

implementation.

 The robustness of the proposed cipher towards several types of attack, especially

differential and linear cryptanalysis, is discussed in Chapter 6.

 The hardware implementation of the cipher is described in Chapter 7, which is

based on the FPGA system generator, where encryption and decryption circuits

are designed for block sizes of 16×7 and 32×7 bits. In addition, the complexity

of the cipher for different architectures is computed.

 Chapter 8 outlines the achievements that have been made in this research. In

addition, recommendations are suggested concerning further work.

 The results of analyses of diffusion power based on probabilities for both the

NMNT and FNT are presented in Appendices A and B, respectively.

 The results of the complete sets of test vectors run on algorithm based on the

NMNT are illustrated on Appendix C.

6

Chapter 2

Background

This chapter provides a general background to cryptography and the FPGA. It is

organised as follows: section 2.1 defines the basic terminology used in the field of

cryptography, followed in section 2.2 by a classification of cryptography. Section 2.3

then demonstrates the network structures of block ciphers. Three important examples of

block ciphers are then described in detail in section 2.4. The mode of their operation is

explained in section 2.5, and a list of possible attacks is provided in section 2.6. The

FPGA is illustrated in section 2.7 and section 2.8 discusses the relevant literature.

Finally the conclusions of the chapter are drawn in section 2.9.

2.1 Basic Definitions

The basic definitions of the main terms used in cryptography are presented in this

section as follows:

 Cryptology:

This word is a combination of the Greek words kryptos and logos, and means hidden

study [4]. It is the science concerned with secure communication, including two

areas: cryptography and cryptanalysis.

2.1 Basic Definitions

7

Cryptography involves techniques designed to maintain the confidentiality of

data [5]. Using cryptography sensitive information can be stored or transmitted

across insecure channels without revealing its contents to anyone other than the

intended recipient, where access is usually controlled by a secret key. The objective

of cryptography is to provide confidentiality, data integrity, authentication and non-

repudiation [6].

Cryptanalysis is the science concerned with techniques used to retrieve

encrypted information without having access to the key, or to attempt to recover the

key so that all information encrypted with it can be retrieved. Such techniques are

also known as hacking or attacking.

 Plaintext:

This may also be referred to as cleartext, and is the original intelligible information

that is required to be kept confidential.

 Ciphertext:

This is the unintelligible or gibberish form which is the result of the processing of

plaintext.

 Encryption

Encryption is the process of converting a plaintext into a ciphertext in an attempt to

keep information confidential to anyone except those possessing the right key.

 Decryption

Decryption is the inverse of encryption; a process of transformation used to return

the encrypted data to its original intelligible form.

 Cipher

A cipher is a complete system that encompasses both encryption to conceal the

meaning of information, and decryption to reveal the content of the original data

under the control of a key.

 Cryptographic System

This is also referred to as a cryptosystem, consisting of the following: a plaintext

space PT, a ciphertext space CT, a cipher key space Kc, a key generation algorithm,

encryption algorithm , and decryption algorithm .

2.2 Classification of Cryptographic Systems

8

2.2 Classification of Cryptographic Systems

Cryptographic systems are categorised depending on the number of keys used by

senders and receivers. If they use different but related keys the system is referred to as

asymmetric or public-key cryptography. The two keys involved are a private key which

should kept secret and a public key which is published. For the purposes of

confidentiality, a sender encrypts a message using the receiver’s public key. The

receiver then decrypts the encrypted message using his private key. For authentication

purposes, the sender encrypts a message using his private key, providing digital

signatures. The receiver then decrypts the encrypted message using the sender’s public

key. These two steps can be combined to provide both confidentiality and

authentication. The security of a public-key cryptosystem is based on the difficulty of

solving certain mathematical problems rather than on substitution and transposition as

based on the conventional cryptography. For instance, the RSA algorithm [7] is based

on integer factorisation, where its difficulty is to factor a product of two large prime

numbers. The ElGamal algorithm [8, 9] is based on a discrete logarithm, and its

difficulty is to find the discrete logarithms over finite fields GF(P
m
). Finally, Elliptic

Curve Cryptography (ECC) [10, 11] is based on elliptic curve groups over finite fields.

Where there are two possible types of finite fields: a prime field GF(P); and a binary

field GF(2
m
). The difficulty here is to find the discrete logarithm of an elliptic curve

element ‘k’ with respect to a given base point ‘B’ and their product. The advantage of

ECC compared to RSA is that the former can offer the same level of security with a

much smaller size of key, providing less computational complexity.

If, on the other hand, the sender and receiver share the same key, the system is

referred to as symmetric or conventional cryptography. The security of conventional

cryptography rests in the key itself, which should be agreed securely between parties

before establishing a session. Table 2.1 compares the key sizes (in bits) of various

algorithms belonging to different categories in relation to the computational effort

required by cryptanalysis [12].

Table 2.1: Key sizes comparable with reference to cryptanalysis computational efforts

Symmetric scheme ECC-based scheme RSA

56 112 512

112 224 2048

128 256 3072

256 512 15360

2.2 Classification of Cryptographic Systems

9

Conventional cryptography is classified into two types based on the way the

plaintext is processed. The first type is called the stream cipher, which processes one

input element at a time. It is developed as an approximation to the action of the one-

time pad [4], which XOR the plaintext with a complete random keystream. Stream

ciphers are much faster than those in the second group, the block ciphers, and do not

lead to error propagation, so that a flip-bit error only affects that bit which gives the

stream cipher a major advantage over a block cipher. For a slip-bit error, the error is

propagated following that point. The stream cipher starts by generating a keystream (a

sequence of bits), usually using a mechanism for generating binary bits called a Linear

Feedback Shift Register (LFSR) or a combination of LFSRs, where the seed of the

registers is most often the secret key. The keystream generated should be non

predictable and looks random, where a statistical technique such as Chi-squared

analysis [13] is usually applied to provide a quantitative measure of randomness.

Encryption is accomplished by combining a keystream with a plaintext, mostly with

bitwise XOR operation. The RC4 algorithm [14] is a prominent example of a stream

cipher.

The second group are block ciphers. In this scheme instead, of processing a single

element at a time all block elements are processed simultaneously under the control of a

secret key to generate a ciphertext block of equal size.

Two basic operations are used for transforming plaintext into ciphertext.

Substitution maps the elements onto one another, and transposition relocates the

elements. The cipher usually consists of multiple stages of these operations, yielding

what is known as a product cipher.

In his famous paper on secrecy systems, Shannon [15] highlighted that the

fundamental principles in designing a secure block cipher are confusion and diffusion.

In simple terms, confusion consists of complicating the relationship between the

statistics of plaintext bits, ciphertext bits and key bits. By preventing the properties of

key and plaintext bits from being reflected in the corresponding ciphertext bits, this is

achieved mostly by applying substitution operations. Diffusion aims to dissipate the

statistical structure of the input into as much of the output statistics as possible, by

spreading out the influence of each individual plaintext bit over many ciphertext bits.

This can be accomplished using transposition operations during which after a number of

rounds, each ciphertext bit should be a function of all input bits. The main disadvantage

of this scheme is error propagation, since of these dependence a single ciphertext bit

error may causes many errors in the corresponding plaintext block.

2.3 Block Cipher Network Structures

10

A block cipher can be implemented using various modes of operation depending on

the application, and certain modes of operation make a block cipher in effect work as a

stream cipher. These modes of operation are explained in detail in section 2.5.

Many algorithms are block ciphers, such as AES [3, 16], Blowfish [17], Camellia

[18], CAST [19, 20], DES [2], IDEA [21, 22], MARS [23], RC5 [24], RC6 [25],

SAFER [26], Serpent [27], Skipjack [28] and Twofish [29]. Some of these are described

in sections 2.4 and 2.8.

Both conventional and public-key cryptographies can be combined to produce what

is known as a hybrid system which can benefit from both sets of properties; those of the

latter concerned with sorting the distribution of a secret key and those of the former

used to secure rapid data processing [5, 6].

2.3 Block Cipher Network Structures

There are different types of network structures, all of which are designed according to

Shannon’s [15] principles of confusion and diffusion, so as to ensure data

confidentiality after a number of rounds. The most well-known network structures for a

block cipher are listed below:

2.3.1 Feistel Networks

This most widely used scheme was proposed by Feistel [30] in 1973 using the concept

of the product cipher, which iterates the execution of a few simple components to

achieve strongly secure results. Since then the Feistel structure has been utilised for

different well-known block ciphers; for instance, Blowfish [17], CAST [19, 20], DES

[2], FEAL [31], GOST [32], Khufu and Khafre [33], LOKI [34] and RC5 [24].

The inputs to the encryption algorithm, as shown in Figure 2.1, are a block of

plaintext and a key. The plaintext block is split into two halves of equal length; only one

half is modified at each round. Then the two halves are swapped and enter the following

round. After processing the last round, the two halves are combined to produce the

ciphertext. In this scheme, substitution is performed via the round function F, and

permutation is achieved through swapping the two halves. An important feature of the

Feistel network is that the algorithm is invertible, and hence both encryption and

decryption are processed in the same algorithm taking into consideration the order of

the keys. This is unlike the round function which needs not be invertible.

2.3 Block Cipher Network Structures

11

 Plaintext L(N/2) Plaintext R(N/2)

F+

F+

F+

 Ciphertext L(N/2) Ciphertext R(N/2)

K1

Ki

Kn

Rn

Rn+1

Ln

Ln+1

Round n

RiLi

Round i

L1 R1

R0L0

Round 1

Figure 2.1: Feistel Network Structure

2.3.2 Generalised Feistel Networks

In the Feistel network, the input is split into two halves of equal length. However, in

generalised Feistel networks [35, 36], some structures known as unbalanced Feistel

networks may be involved where the input is either split into two halves of different

lengths or split into more than two. For the latter case, different schemes are available

2.3 Block Cipher Network Structures

12

where a network can be constructed with one or more round functions and their inputs

can be from one or more than one source, as shown in Figures 2.2-2.5. Examples of

block ciphers that are based on generalised Feistel Networks: the CAST-256 [20] which

uses the type-1 structure; RC6 [25], based on type-2; and MARS [23], type-3.

The scheme can be homogenous, which means that the round function is the

same in all rounds. Conversely, the scheme can be heterogeneous [35], such that the

round function is not identical in all rounds. The advantage of this scheme lies in the

difficulty of constructing its characteristics with high probability throughout all rounds,

due to the alterations in round functions between the rounds. This provides high

resistance to attacks, but implementing such schemes is costly and analysing them is

complicated.

Fk+

K

.

B1 B2 B3 Bn

B2 B3 Bn

.

B1 Fk(B2)+

Figure 2.2: Type-1 Generalised Feistel Network Structure

Fk,1+

K

.

B1 B2 Bn-1 Bn

B2 Bn-1 Fk,n-1(Bn) Bn

.

B1 Fk,1(B2)+

Fk,n-1+

+

Figure 2.3: Type-2 Generalised Feistel Network Structure

2.3 Block Cipher Network Structures

13

Fk,1+

K

.

B1 B2 Bn-1 Bn

B2 Fk,2(B3) Bn-1 Fk,n-1(Bn) Bn

.

B1 Fk,1(B2)+

Fk,n-1+

+

Fk,2+

+

Figure 2.4: Type-3 Generalised Feistel Network Structure

Fk+

K

.

B1 B2 B3 Bn

B2 B3 Bn

.

B1 Fk(B2, B3… Bn)+

...

Figure 2.5: Unbalanced Feistel Network Structure

2.3.3 Substitution-Permutation Networks

The substitution-permutation network (SPN) directly implements Shannon’s [15]

principles of confusion and diffusion. It accepts a block of plaintext and a key as inputs,

processing the plaintext by alternating the layers of substitution (S-boxes) and

permutation (P-boxes) throughout the rounds to produce a ciphertext. Figure 2.6,

illustrates the general structure of the scheme.

The S-box maps a fixed number of bits into other bits, and the mapping is

conducted by bijection (one-to-one) to ensure invertibility. Chapter 4 describes and

analyses a number of S-boxes. The P-box spreads the output bits of each S-box to as

many S-boxes inputs as possible during the following rounds. The current industry

standard, the AES, is based on this scheme as are other well-known block ciphers such

as Safer [26], Serpent [27], Shark [37] and Square [38].

2.3 Block Cipher Network Structures

14

In this type of network, decryption is achieved by applying the algorithm as well as

the round keys in reverse order. The latter are derived by means of a key schedule

algorithm, and in addition, inverse versions of both the S-boxes and the P-boxes are

used.

S-box 1 S-box 2 S-box 3 S-box n

Permutation (P-box)

.

. . .

.

 . . .+ + + + K1

.

 Plaintext . . .

.

 . . . + + + + K0

. . .

. . .

S-box 1 S-box 2 S-box 3 S-box n

Permutation (P-box)

.

. . .

.

 . . .+ + + + K2

.

. . .

S-box 1 S-box 2 S-box 3 S-box n

Permutation (P-box)

.

. . .

.

 . . .+ + + + Krd

.

. . .

.

 Ciphertext . . .

Figure 2.6: Substitution-Permutation Network

2.4 Examples of Block Ciphers

15

2.4 Examples of Block Ciphers

In this section, three well-known block ciphers are described in detail; two of which,

namely the DES and AES are the former and the current industry standards,

respectively.

2.4.1 Data Encryption Standard

The DES was adopted in 1977 by the US. National Bureau of Standards (NBS), now

known as the NIST, as a Federal Information Processing Standard (FIPS PUB 46) for

unclassified government communications [2]. It was also approved in 1981 by the

American National Standards Institute (ANSI) as a private-sector standard (ANSI

X3.92) [39].

The DES is a block cipher based on the Feistel network structure, which encrypts

and decrypts blocks of data of 64-bit size under the control of a key 56-bit in length.

The 56-bit of the key are extracted from a 64-bit string, while the remaining 8-bit are

used for detecting errors among the bytes of the key. This involves a parity check,

which is achieved by setting the least significant bit (LSB) of each byte such that the

resulting parity of that byte is odd.

The algorithm, as shown in Figure 2.7, starts by initial permutation (IP) followed

by 16 identical key dependent rounds of transformation ignoring the final swap. The

ciphertext is then produced after passing the output through a final permutation which is

the inverse of the initial permutation (IP
-1

). Since the design is based on the Feistel

structure, both encryption and decryption use the same algorithm except in terms of the

order of the round keys.

After initial permutation the input is equally split into two halves, which are both

processed through subsequent rounds according to equations 2.1 and 2.2, respectively.

 (2.1)

 (2.2)

where L and R stand for the left and right half of the data, respectively,

denotes bitwise XOR operation (bit-by-bit addition modulo 2).

The round transformation consists of four layers, which are expansion permutation,

round key addition, element substitution and finally permutation. This round

transformation works only on the right-hand half of the data.

2.4 Examples of Block Ciphers

16

S-boxes

Expansion

P-box

IP

Input

S-boxes

Expansion

P-box

S-boxes

Expansion

P-box

IP
-1

Output

R0 L0

R1 L1

R15 L15

Key

PC-1

L. Shift L. Shift

PC-2

L. Shift L. Shift

PC-2

Kr1

Kr2

PC-2
Kr16

L. Shift L. Shift

Figure 2.7: DES and Key Schedule Algorithms

2.4 Examples of Block Ciphers

17

The expansion permutation layer is used to expand the right half of the data from

32 to 48-bit. Expansion is achieved by duplicating and permutating the outer bits of

every 4-bit, as illustrated in Figure 2.8. This layer improves the avalanche effect by

rapidly spreading the dependency of the output bits on the input bits [5].

The output from the expansion permutation layer is XORed with the 48-bit round

key. Sixteen different 48-bit round keys are generated from the 56-bit key via the key

schedule algorithm. This operation is achieved by first ignoring the parity bit from each

byte of the 8-byte of the key. Then the remaining 56-bit are permutated and

subsequently split into two halves. Next, each half is left-shifted in a circular manner by

either one offset for rounds 1, 2, 9 and 16, or two offsets for the other rounds. After that

a 48-bit round sub-key is chosen out of the 56-bit. These two operations are known

permuted choice (PC) or compression permutation, as a subset of data is chosen after

permuting the all [5].

The next step after the key addition layer is the element substitution layer. Eight

different 6×4 S-boxes are used, and thus the 48-bit are converted into eight 6-bit groups.

The S-box conducts non-linear mapping, the six input bits to the S-box are mapped into

four output bits. The S-boxes are analysed in detail in Chapter 4. The final layer of the

round functions is permutation, which permutates the 32-bit resulting from the mapping.

1 2 3 4 5 6 7 8 9 10 11 12 - - - - - - - 29 30 31 32

 32 1 2 3 4 5 4 5 6 7 8 9 8 9 10 11 12 13 - - - - - 28 29 30 31 32 1

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 - - - - - 43 44 45 46 47 48

Figure 2.8: Expansion Permutation

32

1

2.4 Examples of Block Ciphers

18

Security of the DES

The key length of the DES algorithm is considered short in terms of processing power

nowadays, and the code can be broken using an exhaustive key search attack that

decrypts the encrypted message with all possible key spaces using 2
56

 or on average 2
55

combinations to recover the right key. A variety of attacks against the DES are

described in the literature. For instance, differential cryptanalysis can break the cipher

with a complexity of 2
47

 of chosen-plaintext [40], and linear cryptanalysis can succeed

with an availability of 2
43

 known plaintext-ciphertext pairs.

Triple DES

One of the variants of the DES algorithm is the Triple DES algorithm, also known as

the Triple Data Encryption Algorithm (TDEA), which IBM suggested to improve the

security of the DES algorithm by increasing the length of the key without altering the

algorithm. The improvement is achieved by repeating the procedures three times using

two or three different keys. Here, encryption and decryption are processed according to

equations 2.3 and 2.4, respectively, where E and D refer to normal single DES

encryption and decryption.

The TDEA is described in ANSI X9.52 [41], and has been recommended for use

instead of the DES due to the vulnerability of the latter to exhaustive key search attacks.

 (2.3)

 (2.4)

where CT, PT, E, D and k stand for ciphertext, plaintext, encryption,

decryption, and key, respectively.

The ANSI X9.52 standard identifies there possible keying options as follows:

1. The three keys k1, k2 and k3 are independent.

2. Keys k1 and k2 are independent and k3 = k1.

3. The values of the three keys are the same (k1 = k2 = k3), and are equivalent to the

single DES.

The security of the system is thereby enhanced, since the exhaustive key search

now requires 2
168

 attempts to break the system if all keys are independent, or 2
112

 if two

of the keys are independent (as in point 2 above), which is clearly much harder than

with just 2
56

 as in the single DES.

2.4 Examples of Block Ciphers

19

2.4.2 International Data Encryption Algorithm

The origin of the International Data Encryption Algorithm (IDEA) was the Proposed

Encryption Standard (PES) algorithm [42], which was designed in 1990 as an

alternative to the DES algorithm. The PES algorithm was further improved a year later

after occurrences of successful differential cryptanalysis [43]. The improved algorithm,

called the IPES [21], reflects much more resistant to such an attack, and it was later

renamed the IDEA in 1992 [22]. Although this algorithm has not been chosen as a

standard, it has been very popular as part of the Pretty Good Privacy (PGP) [44]

designation.

The IDEA is an iterated block cipher that processes blocks of 64-bit size under the

control of a key 128-bit in length. It consists of eight identical rounds (where the inner

word swap in the last round is omitted) followed by key addition/multiplication

operations; and encryption and decryption use the same algorithm apart from the order

of their keys. Figure 2.9 illustrates the structure of one round of the IDEA. The input

block is divided into four 16-bit words. In each round four 16-bit words, X1-X4, are

processed with round keys each with six 16-bit words, K1-K6, producing four 16-bit

output words, Y1-Y4. Only three operations are used namely: () bitwise XOR

operation, () addition modulo 2
16

, and () multiplication modulo 2
16

+1 (where the

number 0 is represented as the number 2
16

). The ciphertext is obtained by combining the

four 16-bit output words after having processed the plaintext through the eight rounds

and the final key operations.

The round keys are generated from the cipher key using the round key schedule

algorithm. Simple operations are used and a total of 52 16-bit words are required, 6

words in each round and 4 at the final transformation. The first eight 16-bit words are

filled with the cipher key, and then eight 16-bit words are generated for every 25-bit left

rotating the cipher key bits until all of the required keys have been generated.

Security of the IDEA

Although exhaustive key search attacks on the IDEA are considered impractical, as they

would require the processing of on average 2
127

 decryption steps to recover the key,

other types of attacks may succeed more rapidly in breaking the reduced version of

IDEA and up to 5 rounds. For instance, differential cryptanalysis can work on 2.5

rounds [45], differential-linear attack on 3 rounds [46], truncated differential attack on

3.5 rounds [46] and an impossible differential attack on 4.5 rounds [47].

2.4 Examples of Block Ciphers

20

X1 X2 X3 X4

Y1 Y2 Y3 Y4

K1 K2 K3 K4

K5

K6

Figure 2.9: IDEA One Round Flow diagram

2.4.3 Advanced Encryption Standard

The AES algorithm [3] was announced by the NIST in the U.S. FIPS Publication 197

[16] on November 26, 2001. Replacing the old DES and the triple-DES, it was the

culmination of a 5-year standardisation process in which fifteen competing designs were

submitted and evaluated according to their levels of security, cost and capacity for

implementation. In the event, Rijndael was chosen as the AES algorithm.

The AES is an iterated symmetric-key block cipher based on the SPN structure, and

it processes data blocks of 128 bits using a cipher key 128, 192, or 256 bits long. The

cipher starts by initial key addition followed by 10, 12, or 14 repeated rounds of

transformation for key lengths of 128, 192, or 256 bits, respectively, as shown in Figure

2.10. All operations are performed on a 4×4 array of bytes, called state. The round

transformation consists of a sequence of four different transformations, called steps,

which are SubBytes, ShiftRows, MixColumns, and AddRoundKey.

2.4 Examples of Block Ciphers

21

Add Initial Key

i = 1

Substitute Bytes

Shit Rows

Mix Columns

Add Round Key

i = i + 1

i < rd

i > rd

Ciphertext

Plaintext

Yes

No

Yes

No

AES 128, rd = 10

AES 192, rd = 12

AES 256, rd = 14

Figure 2.10: AES Encryption Flow diagram

These are applied to the data block in the encryption procedure and in reverse order

with inverse transformations in the decryption procedure. The round transformation in

the last round of encryption or first round of decryption is applied without the

Mix/Inverse Mix column transformation.

The SubBytes transformation is a non-linear byte substitution that operates

independently on each byte of the state using an S-Box. The S-box was designed on the

basis of the following criteria [3]: the probability of the maximum difference

2.4 Examples of Block Ciphers

22

propagation has to be as small as possible; the amplitude of the IOCmax has to be as

small as possible; and the algebraic expression of the S-Box has to be complex. Detail

descriptions of the S-box and an analysis of its non-linear properties can be found in

Chapter 4.

The forward and inverse ShiftRows transformation is a byte transposition achieved

by cyclically shifting the rows of the state with different levels of offset. The offset

depends on the length of the key. The inverse ShiftRows applies the same amount of

offset but in the opposite direction. The main criterion in the design is that the offsets

should be different for each row.

The MixColumns is a linear transformation used to mix the bytes of each column,

thereby providing local diffusion, where the columns of the state are considered as a

polynomial over Galois field GF(2
8
) and the mix columns operation is undertaken by

multiplying the columns modulo (x
4
+1) by a fixed polynomial c(x). For inverse mix

columns, the alternative fixed polynomial d(x) is used. The transform has an optimal

diffusion power; its branch number of 5 means that for the modification of any n input

bytes, at least 5-n output bytes will be modified. The c(x) and d(x) are given in

hexadecimal values below [3]:

 (2.5)

 (2.6)

The round keys are derived from the cipher key by means of the key schedule

algorithm, where the total number of round keys equals the number of rounds plus one,

and the length of each round key is the same as the block length. In this step the value

of the state is modified by bitwise XORing its value with the relevant round key.

The key schedule algorithm consists of two phases: key expansion and round key

selection. In the key expansion phase the key expanded array is initially filled with a

cipher key, and then the array is expanded to cover all the required round keys. Four

operations are used in the expansion, which are, in sequence, Rotward, Subword,

bitwise XOR with Rcon, and bitwise XOR with a word in the location [i – Nk], where i

is the location of the processed word and Nk is the number of words in the key (key

length over 32). The function of Rotward is to rotate the 4-bytes of the word to the left

by one byte. The rotated word is then non-linearly mapped through the S-box. The

2.5 Block Cipher Modes of Operation

23

results are then bitwise XORed with the round constant (Rcon). Finally, the word is

bitwise XORed with the word in the location [i – Nk]. These operations are applied in

the generation process for every Nk word. The generation of the other words is achieved

by merely bitwise XORing the previous word and the word in the location [i – Nk]. In

the case that Nk > 6, an additional Subword operation is applied to the intermediate

words before the last bitwise XOR operation for every (i – 4) a multiple of Nk. The

round keys are chosen in sequence in the second phase (round key selection), such that

the words of round i are in the locations W [4 × i] to W[4 × (i + 1)] -1.

Security of the AES

Since the AES is a standard algorithm worldwide it has attracted much interest from

cryptanalysts. The reduced version of AES has been broken by different kinds of

attacks, the most efficient of which does not exceed 7-rounds for AES-128 [48, 49] and

8-rounds for AES-192 and AES-256 [50].

2.5 Block Cipher Modes of Operation

Block ciphers may employ different modes of operation, which essentially involve ways

of encrypting messages of arbitrary length. The NIST defines four modes of operation

for the DES algorithm [51]: the electronic codebook (ECB), cipher block chaining

(CBC), cipher feedback (CFB) and output feedback (OFB). The NIST subsequently

extend [52] the use of the four modes of operation to any approved FIPS symmetric key

block ciphers. In addition, a new confidentiality mode of operation, the counter mode

(CTR) was added. These modes of operation can support the effectiveness of the cipher;

moreover they add extra properties in their implementation. For instance, in certain

modes of operation a block cipher can be transformed into a stream cipher. The five

modes of operation mentioned above are briefly described below.

2.5.1 Electronic Codebook Mode

The ECB mode is the simplest mode of operation, and it allows the cipher to

encrypt/decrypt each block of a message independently, so that multiple blocks can be

processed in parallel. The message length must be a multiple of the block size; therefore

last block must be padding accordingly if necessary. The drawback of the ECB mode is

that, for a given key, encrypting the same plaintext blocks always results in the same

ciphertext blocks. Therefore the ECB is recommended for use in processing messages

2.5 Block Cipher Modes of Operation

24

of short length. Furthermore, processing a block with a flipping-bit error only affects the

block where the error occurs, whereas the influence of a slip-bit error is propagated to

other blocks. A block diagram for the ECB mode of operation is shown in Figure 2.11.

2.5.2 Cipher Block Chaining Mode

The CBC mode forces the input blocks into chains, it combines them using a bitwise

XOR operation with the previously processed block before encryption or with the

successive block after decryption. The first block is combined with an initial value (IV)

which should be unpredictable, although it is not necessary for it to be secret [52]. The

length of the message, as with the ECB mode, should be a multiple of the block size;

accordingly padding could be expected in the last block.

The CBC mode solves the problem that arises with the ECB mode regarding of

obtaining similar output blocks resulting from the processing of similar input blocks

using the same key. However, due to the structure of the CBC mode which is sequential

in nature, the parallel processing of multiple blocks cannot be applied in the encryption

phase, whereas this it is possible in the reverse phase. Processing a block with a

flipping-bit error can affect both the block where it occurs and the following block,

while the influence of a slip-bit error propagates to further blocks. A block diagram of

the CBC mode is illustrated in Figure 2.12.

Ek(PT1)

PT1

CT1

K Ek(PT2)

PT2

CT2

K Ek(PTn)

PTn

CTn

K

a. Encryption

Dk(CT1)

CT1

PT1

K Dk(CT2)

CT2

PT2

K Dk(CTn)

CTn

PTn

K

b. Decryption

Figure 2.11: Electronic Codebook Mode (ECB)

2.5 Block Cipher Modes of Operation

25

2.5.3 Cipher Feedback Mode

The CFB mode is a mechanism used to convert a block cipher into a stream cipher, by

utilising the cipher to generate a key-stream which is later bitwise XORed with a

plaintext to produce a ciphertext. At each point one bit or more can be processed

depending on an integer value of s, which should be decided in advance. The segment s

can be any length of 1-bit, 1-byte or a maximum value which is the length of the block

(nb). However, the plaintext should be a multiple of s. This mode can sometimes be

identified from the length of the segment which precedes the name of the mode; for

example, a 1-bit CFB mode.

The first block is processed by accepting an IV as an input to the cipher. Again this

value is not necessarily secret but should be unpredictable. The s most significant bits of

the result is XORed with a plaintext segment of length s to produce the first ciphertext

segment. The processing of the following blocks is the same, by each time the initial

value is left-shifted by s-bit and the s least significant bit is filled with the previously

generated ciphertext segment. Decryption is the same, swapping the locations of the

Figure 2.12: Cipher Block Chaining Mode (CBC)

Ek(PT´1)

PT1

CT1

K Ek(PT´2)

CT2

K Ek(PT´n)

CTn

K

a. Encryption

Dk(CT1)

CT1

PT1

K Dk(CT2)

CT2

PT2

K Dk(CTn)

CTn

PTn

K

b. Decryption

PT2

PTn

 IV
CTn-1

 IV
CTn-1

2.5 Block Cipher Modes of Operation

26

plaintext and ciphertext, as illustrated in Figure 2.13. Like the CBC mode, the CFB

mode is not capable of the parallel encryption of multiple blocks due to its structure,

since the processing of the following blocks requires the results of the previous step.

Processing a block with a single bit error causes the error to propagate from the current

block to the following nb/s-1 blocks [5]. The CFB and CBC modes can also be used for

authentication purposes by producing a message authentication code (MAC), since any

change in the input block will result in all subsequent output blocks also changing [53].

s

PT2

Ek(I2)

CT2

K

a. Encryption

b. Decryption

Figure 2.13: Cipher Feedback Mode (CFB)

IV

s<< nb-s-bit |s-bit

Select s (MSB)

 PT1

Ek(IV)

CT1

K

Select s (MSB)

Shift Register

PTn

Ek(In)

CTn

K

s<< nb-s-bit |s-bit

Select s (MSB)

CTn-1

s s s

PT2

Ek(I2)

CT1

K

IV

s<< nb-s-bit |s-bit

Select s (MSB)

PT1

Ek(IV) K

Select s (MSB)

Shift Register

PTn

Ek(In)

CTn

K

s<< nb-s-bit |s-bit

Select s (MSB)

CTn-1

s

s

s s

CT2 s

s

2.5 Block Cipher Modes of Operation

27

2.5.4 Output Feedback Mode

The OFB mode as shown in Figure 2.14 has a similar structure to the CFB mode. The

only difference is the input to the encryption, the feedback. The feedback in OFB mode

is the encryption output, whereas in CFB mode it is the ciphertext segment. The

segment in OFB mode has a length equal to that of the block.

The IV in this mode is nonce; that is, for a given key, different values of IV should

be used when processing different messages.

One advantage of the OFB mode is that a flipping-bit error does not propagate, and

only the recovered value is affected. On the other hand, slipping-bit error causes a loss

of synchronisation resulting from an incorrect message recovered from that point

onward.

The parallel processing of multiple blocks again cannot be achieved due to the

structure of this mode; however the key-stream can be generated in advance as the

values of IV and the key are known. Later encryption/decryption can be processed by

bitwise XORing the plaintext/ciphertext with the key-stream already generated,

providing fast implementation.

PT2

Ek(I2)

CT2

K

a. Encryption

Figure 2.14: Output Feedback Mode (OFB)

IV

 PT1

Ek(IV)

CT1

K

 PTn

Ek(In)

CTn

K

Ek(In-1)

CT2

Ek(I2)

PT2

K

b. Decryption

IV

 CT1

Ek(IV)

PT1

K

 CTn

Ek(In)

PTn

K

Ek(In-1)

2.5 Block Cipher Modes of Operation

28

2.5.5 Counter Mode

In CTR mode, as shown in Figure 2.15, the input to the encryption is a counter, and the

output from the encryption is bitwise XORed with the plaintext to produce the

ciphertext and vice versa. The counter is given an initial value using random-sequence

generator, then for following blocks the counter value is incremented by 1 or a certain

constant. The only restriction here is that the counter value should not be used in more

than one block for a given key across all messages.

The CTR mode is very fast, and multiple blocks can be implemented in parallel. In

addition, all processing can be prepared in advance, and accordingly a sequence of XOR

operations is only applied when the plaintext/ciphertext becomes available. Errors

resulting from flip or slip-bit have exactly the same impacts as those in the OFB mode.

a. Encryption

Figure 2.15: Counter Mode (CTR)

Counter (Ct)

PT1

Ek(Ct)

CT1

K

b. Decryption

Ct1 = Ct + a1

PT2

Ek(Ct1)

CT2

K

Ctn = Ct + an

PTn

Ek(Ctn)

CTn

K

.

Counter (Ct)

CT1

Ek(Ct)

PT1

K

Ct1 = Ct + a1

CT2

Ek(Ct1)

PT2

K

Ctn = Ct + an

CTn

Ek(Ctn)

PTn

K

.

2.6 Types of Cryptanalytic Attacks

29

2.6 Types of Cryptanalytic Attacks

Cryptanalytic attacks are classified depending on the amount of information available to

the cryptanalyst. Kerckhoff [54], has stated that the system should be secure even if all

the details are exposed except the secret key; that is do not rely on “security through

obscurity”. Accordingly, for all types of cryptanalytic attacks listed below, it is assumed

that the cryptanalyst has full details of the algorithm. The mission of the cryptanalyst is

to recover the plaintext or, furthermore, to deduce the key, in order to recover all

messages encrypted with that key. Knudsen [55], classified the breaking of algorithm

into four categories: a total break, i.e., recovering the key; global deduction, allowing

cryptanalyst to decrypt messages with an alternative algorithm without accessing the

key; instance deduction, recovering the plaintext; and finally information deduction,

gaining information about part of the plaintext or the key bits. The different types of

cryptanalytic attacks are listed below [5, 12]:

1. Ciphertext-only Attack

In this kind of attack an adversary has the least amount of information, perhaps

only the ciphertext of a few messages. Any algorithm subject to a successful

attack of this kind is considered to be weak and insecure [5, 6].

2. Known-plaintext Attack

In a known-plaintext attack further information is at hand in addition to the

ciphertext of several messages, for example their sources are also known. An

intruder’s goal is to deduce the key, and a typical example of such an attack is

linear cryptanalysis [56].

3. Chosen-plaintext Attack

A well known chosen-plaintext attack is differential cryptanalysis [43], in which

the adversary not only has access to plaintext-ciphertext pairs, but also the

capability to choose plaintexts, encrypt them and derive their outputs. His job

then is to deduce the key.

4. Adaptive Chosen-plaintext Attack

The adaptive chosen-plaintext attack is a type of chosen-plaintext attack with

extra facilities, where an adversary can update his choice according to the results

obtained from the previous encryption.

5. Chosen-ciphertext Attack

This attack allows an adversary to decrypt a chosen ciphertext and gain its

corresponding plaintext. The objective again is to recover the key.

2.7 Field Programmable Gate Array

30

6. Chosen-text Attack

This is a more powerful attack combining the chosen-plaintext and chosen-

ciphertext attacks, allowing the adversary to encrypt or decrypt the amount of

text required to recover the key.

It is worth noting that an algorithm is considered to be unconditionally secure if it

impossible to recover a plaintext for a given ciphertext without knowledge of the key,

even if time and resources are unlimited. A one-time pad [4] is the only type of

algorithm which falls into this category, however this is considered impractical as it

requires the length of a key to be equal to that of a message. Therefore, to be secure,

algorithms not in the latter category should meet the following criteria [12]:

 The cost of recovering the data is more expensive than the actual value of the

information.

 The time required to recover the data exceeds the lifespan of the information’s

utility.

2.7 Field Programmable Gate Array

FPGA technology was developed in 1984 by Xilinx. It is an integrated circuitry that

contains a large number of configurable logic blocks (CLBs) along with configurable

interconnections between these blocks, including configurable general purpose

input/output (I/O) interfaces. By configuring a number of these blocks with

corresponding links, a variety of applications can be performed. At the beginning most

designers used FPGAs for limited data processing tasks such as glue logic

implementations for connecting and interfacing between different large blocks [57, 58].

A few years later, with the evolution of silicon technology, the FPGA was migrated

from a simple technology providing programmable connectivity between different

system components into a complete programmable system component in its own right.

Nowadays, FPGAs contain millions of gates, large amounts of memory, embedded

multipliers, adders, DSP functions, microprocessor cores and high speed programmable

I/O interfaces, in addition to parallelism facilities, resulting in powerful devices that can

be used in a wide range of applications. Moreover the development cost of these devices

is low and application prototypes can be produced in a short time [57, 59, 60].

Three different epochs of development of the FPGA technology are pointed out in

[58]: invention, expansion, and accumulation. These eras were classified depending on

2.7 Field Programmable Gate Array

31

the ability of the FPGA related to the application problem size, which was very limited

in the first age and became far outweigh in the latter age.

A CLB consists of a number of slices, which may be 2 or 4 depending on the

device. Each slice comprises generally of 2 core building blocks. The logic cells (LCs)

consist of look-up tables (LUTs), multiplexers (MUXs), registers and special high-

speed carry logics for the purposes of arithmetic operations, which establish dedicated

interconnection between the cells, a diagram of an internal structure of the FPGA is

illustrated in Figure 2.16, which is depicted from [57]. Each LUT can also be used as a

RAM (distributed RAM) or as a shift register. For instance, a 4-bit LUT can be used as

a 16×1 RAM or a 16-bit shift register. Two different types of RAM are available:

distributed RAMs and block RAMs. Their control signals can also be configured; for

instance the clock signal can be configured to be either rising or falling-edge, enabling a

signal which is used to control the read and write operations and set/reset signals that

force the data output into a predefined value. The device consists of a large number of

embedded Block RAMs, which are placed in columns or around the device. Block

RAMs can be used individually or some of them can be combined to form single large

blocks. Depending on the application, these RAMs can be used as single-port RAM,

dual-port RAM or first-in first-out (FIFO).

Figure 2.16: FPGA Internal Structure

2.7 Field Programmable Gate Array

32

2.7.1 Programmable Connectivity Technologies

The programmable connectivity between blocks is based on three technologies:

antifuse, E
2
PROM and SRAM [57]. Antifuse is a one-time programmable (OTP) link,

and once a fuse is blown there is no way to remove it. The fuse acts as an open circuit

due to its high resistance, and programming such a fuse is achieved by applying pulses

with relatively high voltage and current using a special device programmer. Antifuse-

based FPGAs are non-volatile, and hence there is no need to upload a configuration file

when a system is powered up, thus saving the time and memory it would require to

carry such a file. In addition, the device is immune to the effects of radiation due to its

internal structure, which is known as ‘rad hard’, qualifying it to be used for special

applications if accompanied with flip-flop radiation protection, such as in the use of a

triple redundancy design to makes all environment radiation intensive.

The second technique is based on electrically erasable programmable read-only

memory (E
2
PROM). The configuration of E

2
PROM-based FPGA devices can either be

programmed off-line using a device programmer or may be in-system programmable

(ISP); however the programming time is around three times that of devices based on

SRAM. The data contained in this device, as with the previous one, is non-volatile, and

therefore when the device is powered up the configuration is already available, which is

known as “instant on”. The static power consumption of E
2
PROM-based FPGA is,

however, considered to be high due to the large number of internal pull-up resisters

[57].

Finally, programming may be based on static random-access memory (SRAM).

This type is considered to be the state-of-the-art, and most current FPGA devices are

configured based on the use of SRAM cells. The main advantage of these devices is that

they can be reconfigured over and over again. Although, SRAM-based devices are

volatile; meaning that they need to be reconfigured every time they are powered up, the

configuration process runs very rapidly, and in addition further configurations can be

run before the main task. The configuration file that is used to program a device is

usually stored in an external memory, and therefore to maintain the confidentiality of

this file a bitstream encryption facility is used.

The choice of the programming connectivity technology depends on the application

and the computation environment in which the FPGA device is used [61].

2.7 Field Programmable Gate Array

33

2.7.2 FPGA Design Flow

The Xilinx Integrated Software Environment (ISE) package contains all the necessary

tools needed by a designer to build up and process an FPGA design prototype. The

package includes a graphical integrated development environment (IDE), design entry

tools, a simulator for design verification, a synthesiser, implementation tools and finally

tools for producing a bitstream for FPGA device configuration. The FPGA design flow

is summarised in Figure 2.17 and described briefly below:

 Specification

The designer should have a detailed knowledge of target device specifications.

Specification

Design Entry

Synthesis

Translate

Map

Place and Route

Behavioural Simulation

Pre-Synthesis:

Logic Simulation

Post-Synthesis:

Gate Level Simulation

Post-Place and Route:

Timing & power analysis

Post-map:

Static timing analysis

Design Verification

Implementation

Device Programming On-Chip Verification

Post-Translate:

Simulation Model

Figure 2.17: FPGA Design Flow

2.7 Field Programmable Gate Array

34

 Design Entry

There are a variety of choices available for representing the design, due to the

flexibility in the Xilinx ISE in accepting designs in different formats. Generally,

the Register Transfer Level (RTL) is the most common level for FPGA design

entry, where the circuit design can be represented in behavioural or structural

models. The former are further classified into algorithmic and architectural

models, while the latter is categorised as RTL, gate or switch level [57]. RTL

design can be created using hardware description language (HDL) or a

schematic form. The possible choices for representing the design are listed

below:

 Hardware description language (HDL), such as:

o VHDL, which is a standard language defined in IEEE-STD-1076

o Verilog, also a standard language defined in IEEE-STD-1364

 High level languages:

o SystemC, Handel-C, Catapult C, Impulse C

o Matlab M-Code

o Accel DSP

 High level graphical design entry:

o Matlab Simulink (Xilinx System Generator or Altera DSP Builder tools

are used to convert the design developed in the Matlab platform into an

FPGA implementation)

o Labview

 Configurable IP

o Xilinx Platform Studio/Embedded Development Kit (EDK)

o Altera SOPC Builder

 Synthesis

Xilinx ISE has the built-in synthesiser tool called Xilinx Synthesis Technology

(XST). Synthesis is used to convert the RTL code into a gate level netlist

(NGC), which contains both design logic and constraints. Constraints are

determined through a user constraints file (UCF) that includes timing, I/O and

placement constraints. A number of properties for synthesis options have to be

set prior to synthesis in order to obtain optimum performance, such as area,

2.7 Field Programmable Gate Array

35

speed and power reduction optimisation. Device utilisation summary can be

viewed in the resulted synthesiser reports.

 Implementation

The Xilinx ISE implementation processes the synthesised netlist (NGC) in three

steps: translate, map, and place and route. Translate is used to prepare

synthesised netlists for the place and route step, merging multiple netlists and

constraints, adding I/O pads to top level ports, and generating the Xilinx Native

Generic Database (NGD) file which can be mapped to the target device. The

following step, map, is basically used to map the design into the FPGA resources

available (LUTs, registers, I/Os, RAMs, DSP and others), producing a Native

Circuit Description (NCD) to be used in the place and route step. The final step

in the implementation is place and route. As the name suggests, it places and

routes the mapped designed in the device, choosing the precise physical

components to be used and establishing real connections between them.

 Device Programming

The final step in the design flow is to generate a configuration bitstream file

from the placed and routed design (NCD file), which has to be loaded in the

FPGA device in order to program it. The configuration bitstream file is

generated using the Xilinx ISE BitGen program, and the target FPGA device is

configured using the iMPACT software. The final bitstream file can be

compressed, and in addition can be encrypted before it is saved in the external

memory in order to retain its confidentiality.

 Design Verification

Design verification is carried out using the Xilinx ISE ModelSim Simulator at

various points along the design flow in order to ensure functionality; following

the maxim that the earlier a bug is found, the easier it is to correct.

2.7.3 Categories of Architecture Design

In general the hardware architecture of the design can fall into one of the following

categories. The decision concerning which architecture the designer should choose

depends on the application itself and the availability of resources. The functionality of

some applications can be processed in parallel other in sequential or accept pipelining.

2.7 Field Programmable Gate Array

36

The differences between various types of architecture can be seen as tradeoffs between

area and throughput. The possible architecture types are described below.

 Basic architecture

Also known as iterative looping architecture, it is suitable for applications that

require the usage of minimum area, and thus the focus is on area rather than

throughput, in situations where resources are limited. Only one round

transformation is designed in this architecture, followed by a register, and

implementation is achieved by processing the data throughout this circuit rd

times depending on the number of rounds. In general each round is completed in

one clock cycle, and therefore the total number of clock cycles required to

implement one block of data depends on the number of rounds. This architecture

is suitable for a design with homogeneous rounds.

 Loop unrolling architecture

Unlike the basic architecture, loop unrolling architecture focuses on throughput

rather than area, duplicating the hardware required to implement each round.

Hence the expansion in area depends on the number of copies, where the

maximum would be the number of rounds. One block of data is processed at a

time, and the optimum time is one clock cycle.

 External (outer) pipelining architecture

This is similar to loop unrolling architecture, and in placing registers in between

the unrolled rounds forms what is called the stages of a pipeline. If registers are

placed between each round, the result is called full pipeline architecture. This

type of architecture further increases processing speed by decreasing critical

delay and processing multiple blocks of data simultaneously.

 Internal pipelining architecture

An internal, inner or sub-pipeline architecture is achieved by placing registers

inside the round in between the layers. This type of architecture is useful for

complex round functions in order to reduce critical delay. Full sub-pipeline

architecture refers to cases where registers are added in between all the steps

within a round. Adding registers in between combinational logics reduces the

delay; however, at the same time it increases the number of clock cycles

required to process the algorithm.

2.8 Literature Survey

37

 Hybrid pipelining architecture

This type of architecture combines internal and external pipelining architectures

and implements them simultaneously.

 Parallel architecture

Parallel architecture is suitable for algorithms that have the ability to process

their functionalities in parallel.

2.8 Literature Survey

Large contributions in the field of cryptography can be found in the literature due to the

importance of this topic in maintaining the confidentiality of stored information or that

transmitted over insecure channels. This section reviews prominent studies of the

hardware implementation of block cipher algorithms meeting previous and current

standards, as well as describing other AES candidate algorithms. In addition, a number

of algorithms whose core elements are based on the NTTs are also outlined, in the

following sections.

2.8.1 Data Encryption Standard

The previous standard block cipher has been described in detail in section 2.4.1, and

several important published hardware implementations are discussed below.

Hardware for the DES algorithm was designed and implemented using Xilinx

XC4020E [62]. An iterative structure was suggested and the S-boxes generated based

on a logic design. A 26.7Mbits/sec encryption speed was achieved using 438 CLBs.

A fully unrolled and pipelined architecture for the DES algorithm has also been

reported [63]. The design was implemented using Virtex V150-6 FPGA, with a

throughput of 10.7 Gbits/sec using 1584 slices and a power consumption of 3.2 watts.

The logics related to entering the cipher key and generating the round keys were

eliminated by counting these values in software.

Full and partial pipeline architectures have been designed and implemented on the

FPGA Altera platform [64]. The maximum throughput achieved was 1054.24 Mbits/sec

for the 16-stage full pipeline architecture implemented on an EP1K100FC484-3 device.

The throughput was 665.28 Mbits/sec for an 8-stage pipeline implemented with the

same device. For the forth, second and first stage pipelines, the throughputs were 254.36

2.8 Literature Survey

38

Mbits/sec, 138.88 Mbits/sec and 69.56 Mbits/sec, respectively, which were

implemented with a EPF10K30(50)BC356-3 Altera device.

A design for full pipeline architecture has been proposed for the DES algorithm

[65]. This design was implemented with a Xilinx Virtex XCV1000-4 FPGA device, and

achieved a throughput of 3.87Gbits/sec utilising 6446 CLBs slices.

Non- and fully-pipelined architectures have also been proposed as a trade-off

between area and throughput [66]. Xilinx Virtex 6 xc6vlx240t-3ff1156 FPGA

technology was used in the implementation, resulting in a throughput of 4.8 Gbits/sec

for the non-pipelined design, and 18.82 Gbits/sec for the pipeline architecture.

2.8.2 Advanced Encryption Standard

Different architectures and implementations for the current standard AES algorithm can

be found in the literature with different achievements depending on the availability of

resources and the application concerned. Some of the important published studies are

described below.

In 2001, McLoone and McCanny [67] proposed an AES architectures based on

utilising look-up tables to implement the entire Rijndael round functions. The design

was able to achieve a throughput of 12 Gbits/sec at 93.9 MHz using 244 BRAMs and

2000 CLB slices on a Xilinx Virtex XCV812E device.

Two different architectures as tradeoffs between throughput and area for the AES

algorithm have also been designed and implemented [68]. The first was based on a

feedback logic that reaches a throughput of 259 Mbits/sec at 22MHz using 2358 slices

on a Xilinx Virtex XCV300BG432 device, which is suitable for applications with

limited resources. The second architecture uses a pipeline technique to attain high speed

performance, and throughput was here improved to 3.65 Gbits/sec at 28.5 MHz using

17314 slices when implemented with a Xilinx Virtex XCV1000BG560 device.

In 2004, Hodjat and Verbauwhede [69] presented a loop unrolling and inner-round

and outer-round pipelining architecture for an AES encryption processor. A maximum

throughput of 21.54 Gbits/sec at 168.3 MHz was achieved using 12450 slices on a

Virtex XC2VP30 FPGA device.

In 2006, Iyer et al. proposed a fully sub-pipelined architecture for the AES-128 core

with both inner and outer round pipelining [70]. The architecture was implemented

2.8 Literature Survey

39

using Virtex XC2VP30 device and a throughput of 26.47 Gbits/sec at 206.84 MHz was

achieved using 11720 CLB slices.

A three-stage pipeline based architecture has been proposed for the AES algorithm

[71] which processes three blocks of data simultaneously. The design includes both

encryption and decryption, and in addition the keys are generated on-the-fly. It operates

in a CBC mode and can works with the three possible AES key lengths. The

architecture was simulated in Verilog HDL and implemented on a Xilinx FPGA Virtex

XC2V2000-5bf957 device. A throughput of 1.315 Gbits/sec at 102.8 MHz for a key

128-bit long was achieved using 3223 slices.

Two further architectures were designed and implemented for the AES-128

algorithm on a XC2VP7X FPGA device with a LUT S-box [72]. The first architecture

used a basic iterative, which implement the same hardware for all rounds and a

throughput of 3.85 Gbits/sec at 300 MHz with 2599 CLB slices was obtained. In the

second architecture, a one stage sub-pipelined element was added as well as one stage

of outer pipelining, and throughput was improved to 6.2 Gbits/sec at 481 MHz with

3119 CLB slices.

2.8.3 Serpent (5-finalist AES candidate algorithm)

The Serpent is a block cipher based on the SPN [27]. It processes a block of 128-bit in

size under the control of a key 256-bit in length, and the key should be padded to a 256-

bit in case it is supplied at a lesser length. It is faster than the DES and more secure than

the triple-DES. The cipher starts with an initial permutation followed by 32 identical

rounds (apart from in the last round, where a linear transformation is replaced by an

additional key mixing operation), and ending with a final permutation which is the

inverse of the initial permutation. The initial and final permutations are included in the

design for the purposes of improving both the optimisation of the implementation and

computational efficiency, rather than adding to its cryptographic significance [27]. The

round functions consist of a key mixing operation, S-boxes, and a linear transformation.

The key mixing operation is a simple bitwise XOR operation between the intermediate

result and the round key. Eight different 4×4 S-boxes are used in the algorithm, and this

layer is applied in parallel by duplicating 32 similar S-boxes at each round, so that each

S-box is used four times, i.e., every eight rounds. The structure of these S-boxes is an

improvement over the structure of the DES S-boxes, guaranteeing higher resilience in

the face of possible attacks. In the linear transformation layer the block is divided into

2.8 Literature Survey

40

four sub-blocks with a word length of 32-bit each, a number of bitwise XOR operations,

circular rotation and shift operations with different offsets which are applied to the 32-

bit four words in order to maximise the diffusion and avalanche effects.

The decryption algorithm is different, however, in applying the encryption

algorithm in reverse order, and inverse S-boxes as well as an inverse linear

transformation are used instead. In addition, the round keys are applied in reverse order.

2.8.4 Twofish (5-finalist AES candidate algorithm)

The Twofish [73] is a 128-bit iterative block cipher with a key of variable length up to

256 bits. It is a Feistel based structure with additional key bitwise XORing at the input

and output. The block is internally divided into four 32-bit words; the cipher runs

through 16 identical rounds, and at each round the first left word is processed through

the g function that consists of four key-dependent 8×8 S-boxes, followed by a linear

transformation of a 4×4 maximum distance separable (MDS) matrix over GF(2
8
). The

second left word is first left-rotated by 8-bit and then processed through the same g

function, and this can be conducted in parallel with the processing of the first word. The

outputs from these two layers are fed to the following layer, the Pseudo-Hadamard

Transform (PHT), which mixes its two inputs x0 and x1 according to equations 2.7 and

2.8. The outputs from the PHT layer are XORed with another two sub-key words,

completing the F function. Next, the values of the two words in the right are modified

by bitwise XORing their values with the two processed words. The first right word is 1-

bit left-rotated before modifying its value, and the second right word is 1-bit right-

rotated after modifying its value. The two halves are then interchanged and fed to the

next round.

 (2.7)

 (2.8)

2.8.5 RC6 (5-finalist AES candidate algorithm)

The RC6 [25] is a fully parameterised block cipher, and is a further developed version

of the RC5 [24] algorithm with better performance and security. The block size is 128-

bit; however it can also support smaller sizes of 64 or 32-bit. The key is variable and

can be any length up to 2040 bits. The number of rounds is recommended to be 20 for

2.8 Literature Survey

41

the AES, although it can be any number up to 255. These parameters were selected to

be suitable for the levels of security and performance efficiency required. The non-

linear part of the algorithm is not based on an S-box, but instead on data-dependent

rotations. The security of the RC6 relies on the extensive use of data-dependent rotation

accompanied by modular integer multiplication and addition as well as bitwise XOR

operations. The multiplication is based on a quadratic function given in equation 2.9.

The offset for data-dependent rotation is determined by the least significant

bits of the relevant word, where w is the word length in bits. The structure of the

algorithm is a type-2 generalised Feistel network with the addition of an extra key.

Decryption is performed by replacing each modular addition with subtraction, reversing

the direction of rotation and using the round keys in reverse order.

 (2.9)

2.8.6 MARS (5-finalist AES candidate algorithm)

The MARS [23] is a symmetric 128-bit block cipher with variable key length ranging

from 128 to 400-bit. The algorithm is based on a type-3 generalised Feistel network,

where one data word is used to modify the other three words. The MARS was designed

using a mixed structure such that the middle rounds (known as the cryptographic core,

or second phase) are treated differently from the outer rounds (the wrapper layers, or

first and third phases) providing more resistance against attack. The cryptographic core

consists of 8 rounds of keyed forward transformation and 8 rounds of keyed backward

transformation. The wrapper layers are used to provide rapid mixing and key avalanche,

where the first phase starts with a key addition followed by a layer of 8 rounds of

unkeyed forward mixing. The third phase in the cipher involves a mixing layer of 8

rounds of unkeyed backwards operations followed by a key subtraction, which is the

inverse of the first phase.

This cipher is word-oriented, in that all operations are performed at a level of 32-bit

words, and a round combines a variety of operations to provide a very strong cipher.

These operations are XORs, additions, subtractions, S-boxes, multiplications, and both

fixed and data-dependent rotation. Decryption is achieved by processing the cipher and

the key in reverse order.

2.9 Conclusions

42

2.8.7 Other Algorithms Based on NTTs

In addition to the above mentioned algorithms, some other algorithms have been

designed using one of the families of NTTs.

A new algorithm was developed in [74] based on the transitional (T) transform.

This is a 128-bit iterated block cipher with 5 rounds, each of which consists of four

modules: non-linear key-controlled substitution; modified T transform; key-controlled

multiplication; and a shuffle module. Non-linear key-controlled substitution consists of

16 operations of additions and XOR between the plaintext and the round keys, and the

final result is obtained by inverting the elements processed in the transform domain. In

the modified T transform, the input is diffused and shuffled through multiple stages of

different T transform lengths. The output is then confused via key-controlled

multiplication, which is a byte-by-byte multiplication between the key and the

intermediate results. The final shuffle module first reorders the elements such that

elements in even positions are located first and then the bytes are cyclically shifted

depending on the value of a round key.

The same author then developed another block cipher [75] based on the NMNT

which utilises a cascade of five of such transforms with different transform lengths so as

to ensure high diffusion rates throughout the processing. In addition, each NMNT is

preceded by a key-dependent S-box, and the different S-boxes are generated at each

stage depending on the value of the stage key.

2.9 Conclusions

This chapter has introduced and briefly described the basic concepts of cryptography as

well as the FPGA. Special attention has been given to block ciphers, since most of the

relevant algorithms fall within this category. Different well-known block ciphers are

described in detail in order to explain the methods and principles used in designing

secure block ciphers. The possible architectures and design options for the FPGAs are

discussed, which mainly involve a tradeoff between area and throughput. Finally a

number of the most important studies in the field are outlined.

43

Chapter 3

Diffusion Analysis of the NTTs

In this chapter, parameter-based transforms, the NMNT and the FNT are analysed and

their diffusion power are evaluated. The NMNT or FNT is used in the proposed cipher

mainly to enhance system’s diffusion.

Consider that diffusion power of the algorithm in the design is very important,

since the number of rounds for any iterated block cipher is inversely proportional to this

value. Additionally, achieving higher levels of diffusion is likely to result in a more

secure system with a lower number of rounds, which improves system performance

regarding speed and complexity.

The chapter is organised as follows: section 3.1 provides a brief introduction.

Sections 3.2 and 3.3 explain the NMNT and FNT, respectively. The analyses are carried

out in section 3.4 and the results are described in section 3.5. A discussion is given in

section 3.6 and finally the conclusions of the chapter are summarised in section 3.7.

3.1 Introduction

As mentioned in the previous chapter, Shannon [15] introduced two main principles for

designing secure cryptographic systems: confusion and diffusion. Substitution is one of

the processes used to achieve confusion, in which the elements of the plaintext are

3.1 Introduction

44

mapped onto other elements so as to complicate the statistical correlation between the

plaintext and the corresponding ciphertext, and the strength of confusion depends on the

strength of the non-linear properties of the S-box applied, as explained in detail in the

next chapter. Diffusion is then a process of rearranging the plaintext into the ciphertext.

Accordingly, how influential the diffusion process is can be measured by how widely

the plaintext is redistributed across the ciphertext, where a small change in the variables

influencing the diffusion process, such as the key or the plaintext itself, should have a

significant impact on the resulting ciphertext. This effect is called the avalanche effect,

and a system is considered to have good avalanche characteristics if roughly half of the

output bits change for a single change in input bits [30, 76]. An extension to this

criterion is called the strict avalanche criterion (SAC) [77], which states that each output

bit changes with a probability of 0.5 for a single input bit change. In other words, all

output bits are equally likely to change for a single input change. The same author [77]

also proposed another criterion, the bit independence criterion (BIC), which states that

any two output bits should change independently for any single input bit change.

Moreover another concepts, called completeness, can be applied such that a system is

considered complete if every output bit depends on all input bits [8, 78]. To quantify

this it is necessary to verify that the system is resilient to statistical attacks and to ensure

that the ciphertext remains incoherent.

Once differential [43] and linear [56] cryptanalysis had developed, designing the

diffusion part of algorithms by relying only on the transposition of elements or

permutation was no longer secure and such algorithms became subject to successful

attack. Hence more sophisticated techniques have been used to improve and strengthen

diffusion, such as the application of transforms. For instance, in the Twofish algorithm

[29], a fixed transform, a 4×4 MDS matrix over GF(2
8
), is utilised. Here an input vector

of four bytes in length is multiplied by the MDS over GF(2
8
) in each round. A MDS

matrix in hexadecimal form is given below [29]:

BEFEF

EFBEF

EFEFB

BBEF

MDS

501

015

015

5501

 (3.1)

3.2 New Mersenne Number Transform

45

In the current state-of-the-art, the AES algorithm [3], a transform called ‘mix

columns’ is used for diffusion purposes to mix the bytes in each column to ensure local

diffusion. This transform is explained in section 2.4.3.

These transforms are powerful in diffusing data, but their lengths are fixed for these

dedicated algorithms. The disadvantage of this is that there is a need for an alternative

algorithm in case the block size or key length becomes insufficient to meet security

requirements. This might happen due to future increases in processor power and parallel

processing technologies as was the case with the previous standard, the DES algorithm

[2]. Accordingly, a practical solution is the use of a parameter-based transform such that

the block size or key length can be changed by changing the transform size. This could

then achieve the desired level of security, and would represent an algorithm which

would not require revision, ensuring practical usage for the proposed lifespan.

The suggested parameter-based transforms are the NMNT and FNT, both of which

belong to the NTT family. NTTs use modular arithmetic operations on a field or ring of

integers, without the rounding and/or truncation errors inherent to normal floating-point

operations such as those found in the discrete Fourier transform (DFT), for example.

NTTs have found wide application in different areas, including digital signal processing

[79], digital filtering [80, 81], image processing [82], decoding [83], cryptography [74,

75, 84] and the concealment of digital image information [85].

3.2 New Mersenne Number Transform

The NMNT is defined modulo of the Mersenne numbers (Mp) [86, 87]. This transform

can be used in the forms of one or multiple dimensions [88, 89]. Fast algorithms such as

the radix-2 [90, 91], radix-4 [92, 93] and split-radix [94] can be adapted to speed up its

processing, where decimation can be carried out either in the time or frequency

domains. The forward and inverse transforms have a similar appearance, with a scale

factor 1/N being the only difference. The forward 1-D NMNT X(k) of an integer

sequence x(n) with a transform length N = 2
m
 for m = 1,2, ..., P and its inverse can be

defined as follows:

pM

N

on

nknxkX

1

)()()(k = 0, 1, 2…N-1 (3.2)

pM

N

ok

nkkX
N

nx

1

)()(
1

)(n = 0, 1, 2…N-1 (3.3)

3.3 Fermat Number Transform

46

Where:

)()()(21 nknknk (3.4)

PM

nk
jnk 211 Re)((3.5)

PM

nk
jnk 212 Im)((3.6)

12 P

pM (3.7)

PM

q21 (3.8)

PM

q32 (3.9)

22 pq (3.10)

The above kernels β1(nk) and β2(nk) are calculated for a maximum transform length

of 12 P . For transform lengths less than this, the values can be calculated using the

following equations:

PM

nkd
jnk 211 Re)((3.11)

pM

nkd
jnk 212 Im)((3.12)

where and stand for real and imaginary parts of the enclosed

term, respectively,
 denotes modulo the Mp and d = 2

P+1
/N, which is an

integer power of two.

3.3 Fermat Number Transform

The FNT is defined modulo of the Fermat number (Ft) [81, 95]. This transform can also

be used in either single or multi-dimensional forms [96]. The forward 1-D FNT and its

inverse are defined as follows:

1,...2,1,0)()(
1

NknxkX

tF

N

on

nk (3.13)

1,...2,1,0)(
1

)(
1

 NnkX
N

nx

tF

N

ok

nk (3.14)

122
t

tF (3.15)

3.3 Fermat Number Transform

47

where: t is a positive integer, such that Fermat numbers are primes for 0 ≤ t

≤ 4, and composite after that,
denotes the modulo Ft and α is a root of

unity of order N, where N is the least positive integer such that:

tF

N 1 , and
tF

i 1 , for 0 < i < N (3.16)

Table 3.1 outlines the maximum transform length Nmax and other parameters for

different values of t, where the maximum transform length for Fermat primes depends

on the kernel value [81] as follows:

1

max 2 tN , 22 t , or
t22 for α = 2, √2, or 3, respectively (3.17)

Table 3.1: Maximum FNT length for t = 1, 2, 3, 4

t Ft α N Nmax

1 5 √2 8 8

 2 4

2 17 3, √2 16 16

 2 8

 4 4

3 257 3 256 256

 9 128

 81 64

 136, √2 32

 2 16

 4 8

 16 4

4 65537 3 65536 65536

 9 32768

 81 16384

 6561 8192

 54449 4096

 61869 2048

 19139 1024

 15028 512

 282 256

 13987 128

 8224,√2 64

 2 32

 4 16

 16 8

 256 4

3.4 Analysis

48

3.4 Analysis

To reflect the sensitivity of the transforms for any changes in the input or output

elements, a simple example can be considered which illustrates the effect of modifying

a single output (transformed) element to the input elements. The text and ASCII

representations for both the input elements to the transforms and the corresponding

output elements are illustrated in Figures 3.1 and 3.2 for the NMNT and FNT,

respectively. The recovered plaintexts result after modifying one of the transformed

elements (shadowed) are shown to be completely different, confirming the high

sensitivity of the transforms regarding any changes in the input or output elements. In

other words, the transforms possess good avalanche characteristics.

 The calculations are achieved by applying equations 3.2 and 3.3 for the NMNT,

respectively. Where N = 8 (plaintext length is eight strings), P = 7, Mp = 2
P
-1 = 127, α1

= α2 = 119, β(n) = 1 111 1 0 126 16 126 0, and PT and CT in Figures 3.1 and 3.2

stand for the ASCII representations for both the plaintext and ciphertext, respectively.

In addition, to implement equations 3.13 and 3.14 for the FNT, Ft = 257.

Plaintext: A n a l y s i s

PT : 65 110 97 108 121 115 105 115

CT : 74 16 113 64 67 110 109 94

Ciphertext: J q @ C n m ^

CT´ : 74 16 113 64 63 110 109 94

PT´ : 1 47 33 45 57 52 41 52

Plaintext´: / ! - 9 4) 4

Figure 3.1: 1-D NMNT output modification

Plaintext: A n a l y s i s

PT : 65 110 97 108 121 115 105 115

CT : 65 119 16 238 197 27 209 163

Ciphertext: A w ε ┼ ╤ ú

CT´ : 65 119 16 238 193 27 209 163

PT´ : 193 239 225 237 249 244 233 244

Plaintext´: ┴ ∩ ß Ø . ⌠ Θ ⌠

Figure 3.2: 1-D FNT output modification

3.4 Analysis

49

Two different techniques are used in scrutinising and verifying the diffusion power

of the transforms. The first technique involves the calculation of the branch number of

the transforms, in order to characterise the diffusion power of a linear transformation.

The branch number (BN) of a transformation (F) is calculated based on equation 3.18

[3]:

 aFWaWFBN
a

0

min)((3.18)

where: W(a) is the bundle (element) weight (number of non-zero elements,

also known number of active elements) and F is the linear transformation.

The branch number determines the worst case diffusion of a transform; therefore it

is a lower bound for the number of active S-boxes in two consecutive rounds of a linear

or differential characteristic. The branch number of a transform with maximum

diffusion power is N+1, and by considering an input weight W(a) = 1, the output weight

is a maximum of N. Therefore the branch number of a transform F is [3]:

 (3.19)

The second technique is based on calculating the diffusion power as a range of

probabilities for different cases. These cases are determined according to the kernel

matrix analysis [97, 98] explained in sections 3.4.1-2. These cases differ depending on

the number of modified elements and their locations. The type of element modification

depends on the modified values, which may be the: same value, different values with a

total sum equal to the modulus for each modified pair/elements, and different values

with a total sum not equal to the modulus for each modified pair/elements. The range of

probabilities for each case is calculated by counting the distance (number of differences)

between the elements of the modified and unmodified versions, where diffusion power

represents the results of the process over-all elements (N) by 100%. The results are

verified by recalculating the above cases and modifying the elements in three different

tests. The first test is performed by transforming the input elements and producing the

initially diffused elements. Next, the input is modified and transformed and the output is

compared to the transformed output of the unmodified input. The second test is

performed by modifying the transformed output elements and recalculating the input

elements by applying the inverse transform and comparing the original input to the

inversely transformed input. The final test involves modifying the mathematical

equation according to the relevant cases as shown in the explanation below, for

modifying: a single element (equations 3.20 and 3.26); a single paired elements

3.4 Analysis

50

(equations 3.21 and 3.27) and unpaired elements (equations 3.22 and 3.28), all-odd

elements (equations 3.23 and 3.29), all-even elements (equations 3.24 and 3.30), and all

elements (equations 3.25 and 3.31) for both the NMNT and FNT, respectively:

1,...2,1,0)()()()(
1

0

NkikanknxkX

pM

N

n

 (3.20)

pM

x
N

n

kNiaikanknxkX)2/()()()()(21

1

0

 (3.21)

pM

N

n

kiakianknxkX)()()()()(2211

1

0

 (3.22)

pM

N

n

n

N

n

nkanknxkX

1
2

0

2

1

0

2)()()((3.23)

pM

N

n

n

N

n

knanknxkX

1
2

0

12

1

0

12)()()((3.24)

pM

N

n

n

N

n

nkanknxkX

1

0

1

0

)()()((3.25)

tF

N

on

iknk anxkX

1

)()((3.26)

t

x

F

N

on

kNiiknk aanxkX

1

)2/(

21)()((3.27)

tF

N

on

kikink aanxkX

1

21
21)()((3.28)

tF

N

n

nk

n

N

n

nk anxkX

1
2

0

2

2

1

0

)()((3.29)

tF

N

n

kn

n

N

n

anknxkX

1
2

0

12

12

1

0

)()()((3.30)

tF

N

n

nk

n

N

n

anknxkX

1

0

1

0

)()()((3.31)

3.4 Analysis

51

where i is the location of the modified element (0 ≤ i ≤ N-1) and a is the

modification value that is added to the initial value.

Considering all these cases is very important that, apart from determining the

diffusion power, the cases that provide maximum or minimum diffusion percentages are

determined. These can then be exploited or avoided in the design.

The elements of an input vector are modified at the following locations:

1. Initially, all of the single elements at even and odd locations are modified.

2. Next, all of the even/odd numbers of paired elements and up to N/2-1 pairs are

modified at their corresponding even/odd/mix locations. This is shown in Figure

3.3 using the formula xNii 2/, , where (1 ≤ x ≤ log2N-1).

3. The following case is the modification of even/odd groups of unpaired elements

that are situated in the even/odd/mix locations.

4. A combination is performed that requires the modification of both the paired

elements at even/odd/mix locations xNii 2/, using predetermined values and

modifying the remaining unpaired elements by replacing with random values.

5. The elements are modified that reside in all-even positions, followed by the

elements that reside in all-odd locations.

6. Finally, all of the elements are modified for the last time, completing this

particular process within the implementation.

Figure 3.3: Pair distributions

x = 1

x = 2

x=3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3.4 Analysis

52

3.4.1 Analysis of the NMNT Kernel Matrix

The NMNT is analysed for diffusion by first analysing the structure of the kernel in a

matrix form. The following parameters are taken for illustration purposes: P = 7 and N,

transform length = 16.

Then: Mp = 2
P
-1 = 127, α1 = 106, α2 = 103

)(n = 1 82 111 82 1 3 0 124 -1 45 16 45 -1 124 0 3

 for n = 0, 1, 2…N-1

The distribution of β(nk) in a matrix form is represented in Table 3.2, and its

analysis which is suitable for any transform length is listed below:

1. The first column always consists of elements with +1 value. Accordingly, the first

output element result from multiplying an input vector with the transform

represents the sum of all vector elements, and its value changes with any change

in the input elements, except when the sum of the total changes equals zero or the

modulus (Mp).

Table 3.2: β(nk) Matrix distribution for P = 7, Mp = 127, N = 16

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

82

111

82

1

3

0

124

-1

45

16

45

-1

124

0

3

1

111

1

0

-1

16

-1

0

1

111

1

0

-1

16

-1

0

1

82

0

45

-1

3

111

3

-1

45

0

82

1

124

16

124

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

3

16

3

1

45

0

82

-1

124

111

124

-1

82

0

45

1

0

-1

111

-1

0

1

16

1

0

-1

111

-1

0

1

16

1

124

0

3

_1

82

16

82

-1

3

0

124

1

45

111

45

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

-1

1

45

111

45

1

124

0

3

-1

82

16

82

-1

3

0

124

1

16

1

0

-1

111

-1

0

1

16

1

0

-1

111

-1

0

1

45

0

82

-1

124

111

124

-1

82

0

45

1

3

16

3

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

-1

-1

1

1

124

16

124

1

82

0

45

-1

3

111

3

-1

45

0

82

1

0

-1

16

-1

0

1

111

1

0

-1

16

-1

0

1

111

1

3

0

124

-1

45

16

45

-1

124

0

3

1

82

111

82

-

3.4 Analysis

53

2. The first row always consists of elements with +1 value. As a result, any change in

the value of the first element of an input vector will be reflected equally in all

output elements.

3. The sum of all elements of each column/row (except the first column/row) modulo

Mp equal zero.

4. The matrix is symmetric, i.e., the matrix and its transpose are the same.

5. The even columns/rows always contain only two elements with zero value (except

for N which equals 4), with N/2 locations between each one at odd positions (even

for N = 8).

6. The four odd columns/rows always contain no zero elements, only +1 or ±1 at

locations 1, (N/4)+1, (N/2)+1, and (3N/4)+1.

7. The four odd columns/rows (except for N = 4) always contain a maximum number

of zero elements N/4 at locations (N/8)+1, (3N/8)+1, (5N/8)+1, and (7N/8)+1.

8. The number of elements with zero value in the odd columns/rows range from zero

elements in four columns/rows (point 6 above) to the maximum N/4 elements in

four columns/rows (point 7 above) and the rest in between N/8, N/16 etc.

9. The total number of elements with zero value in the matrix is N(log2N-2).

10. Element values in the second half of each even column/row are the inverse of the

values of the corresponding elements in the first half (their sum modulo Mp is

equal to zero).

11. Element values in the second half of each odd column/row are the same as those

of the corresponding elements in the first half. Each half may further consist of

another two identical halves. However, the final values of the elements of the

second half are the inverse of those of the elements of the first half (except in the

first column/row).

12. Any modification in the elements of an input vector has the same effect as

modifying its transformed elements, as the same equation is used with a scale

factor 1/N.

3.4.2 Analysis of the FNT Kernel Matrix

The FNT kernel matrix has a structure similar to that of the previous transform (NMNT)

regarding points 1 - 4, 10 and 11. The main difference is that there are no elements with

a zero value in the matrix, and this has a positive effect on diffusion power.

3.5 Results

54

3.5 Results

The calculations of the branch number for the NMNT and FNT according to equation

3.18 for transforms of length (N) 4 and 8 as well as for the AES are shown in Tables 3.3

and 3.4. As mentioned earlier, for maximum diffusion power the branch number is N+1.

To illustrate this, consider the case for an input weight equal to 1. For AES in Table 3.3,

the output weight is 4, in total giving 5, which represents N+1, and for an input weight

of 2 the minimum output weight is 3, in total 5. The same results are obtained for any

input weight, indicating that the transform has a branch number equal to 5, signifying

that the transform has maximum diffusion power. For the NMNT and FNT it is clear

from Table 3.3 that most cases provide maximum diffusion power. However for an

input weight equal to 2, the output weight is a minimum of 2, in total giving 4, which

means that for this case the transforms have a value lower than N+1, providing less than

maximum diffusion. This is especially the case when modifying an even number of

active elements and up to N/2 from the total elements N. As the branch number is

computed relative to the worst cases, the NMNT and FNT for transforms of length 4

have a branch number equal to 4. The details of all cases, including those that provide

low diffusion, are explained in detail in the second method presented in the following

section.

 Table 3.3: Minimum active bundle for transform length 4

 Bundle weight AES NMNT FNT

 1 5 5 5

 2 5 4 4

 3 5 6 5

 4 5 5 5

Table 3.4: Minimum active bundle for transform length 8

 Bundle weight NMNT FNT

 1 7 9

 2 4 6

 3 7 7

 4 6 6

 5 8 9

 6 7 8

 7 9 9

 8 9 9

3.5 Results

55

3.5.1 Results of the NMNT Analysis

The NMNT has been extensively analysed with different values of modulus (for P = 7,

13, 17, and 19) and transform lengths (N = 4, 8, 16, 32…1024). Tables 3.5 and 3.6 give

samples of the results for P = 7, N = 32 and P = 17, N = 256, respectively, while all

other results are listed in Appendix A. Note that all calculations are based on bundle

level, that is, P-bit. The results of the analysis are outlined below:

1. Modifying single elements at odd locations offers %100/ NCN diffusion,

where C is the number of zero elements in that row in the kernel matrix

corresponding to the location of the modified element. Minimum level of diffusion

is 75% which achieved for rows that contain a maximum number of zero elements

that is N/4, and 100% in rows that contain no zero elements (always 100% for N =

4 or 8).

2. Modifying single elements at even locations offers %100/2 NN diffusion

(100% for N = 4). Accordingly the percentage diffusion improves with larger

transform lengths (N). For instance, 87.5% for N = 16, and 98.44% for N = 128, as

shown in Figure 3.4.

Transform Length (N)

Figure 3.4: Single elements modifications at even locations

4 8 16 32 64 128 256 512 1024
60

65

70

75

80

85

90

95

100

D
if

fu
si

o
n

 P
er

ce
n
ta

g
e

3.5 Results

56

Table 3.5: NMNT diffusion for P = 7, Mp = 127, N = 32

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+16

i-even (x = 1)

Odd 43.8-50% 25-50% 68.8-100%

Even 12.5- 50% 25-50% 56.3-100%

All 6.25% 37.5-50% 87.5-100%

Paired elements

i, i+16

i-odd (x = 1)

Odd 37.5-50% 25-50% 62.5-100%

Even 12.5-43.8% 25-50% 50-100%

All 6.25% 31.3-50% 81.3-100%

Paired elements

i, i+16

i-mix (x = 1)

Odd 37.5-50% 34.4-50% 71.9-100%

Even 18.8-50% 34.4-50% 81.3-100%

All 3.125% 43.8-50% 90.6-100%

Paired elements

i, i+8

i-even (x = 2)

Odd 68.75% 56.3-75% 81.3-100%

Even 62.5-68.8% 62.5-75% 68.8-100%

All 56.25% 62.5-75% 87.5-100%

Paired elements

i, i+8

i-odd (x = 2)

Odd 50-75% 50-75% 62.5-100%

Even 62.5% 62.5-75% 75-100%

All 56.25% 62.5-75% 87.5-100%

Paired elements

i, i+8

i-mix (x = 2)

Odd 68.8-75% 62.5-75% 84.4-100%

Even 56.3-71.9% 62.5-75% 84.4-100%

All 53.125% 65.6-75% 90.6-100%

Unpaired elem.

Even

Single 93.8% 93.75% 93.75%

Odd 93.8% 68.8-93.8% 68.8-100%

Even 56.3-100% 56.3-93.8% 68.8-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 68.8-93.8% 75-100%

Even 50-93.8% 50-93.8% 50-100%

Unpaired elem.

Mix

Odd 71.9-100% 68.8-96.9% 62.5-100%

Even 56.3-100% 50-96.9% 68.8-100%

i, i+16,

random for others

Odd 84.4-100% 87.5-100% 87.5-100%

Even 84.4-100% 84.4-100% 87.5-100%

3.5 Results

57

Table 3.6: NMNT diffusion for P = 17, Mp = 131071, N = 256

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+128

i-even (x = 1)

Odd 49.2-50% 48.4-50% 97.7-100%

Even 21.1-50% 48.4-50% 97.7-100%

All 0.781% 50% 100%

Paired elements

i, i+128

i-odd (x = 1)

Odd 37.5-50% 25-50% 75-100%

Even 18.8-50% 43.8-50% 87.5-100%

All 0.781% 50% 100%

Paired elements

i, i+128

i-mix (x = 1)

Odd 37.5-50% 49.2-50% 99.2-100%

Even 24.2-50% 49.2-50% 99.2-100%

All 0.391% 50% 100%

Paired elements

i, i+64

i-even (x = 2)

Odd 73.4-75% 73.4-75% 97.7-100%

Even 55.5-75% 73.4-75% 97.7-100%

All 50.78% 75% 100%

Paired elements

i, i+64

i-odd (x = 2)

Odd 50-75% 50-75% 87.5-100%

Even 54.7-75% 73.4-75% 93.8-100%

All 50.78% 75% 100%

Paired elements

i, i+64

i-mix (x = 2)

Odd 68.8-75% 74.2-75% 99.2-100%

Even 61.7-75% 74.2-75% 78.8-100%

All 50.39% 74.6-75% 100%

Unpaired elem.

Even

Single 99.2% 99.2% 99.2%

Odd 98.4-100% 87.5-99.2% 97.7-100%

Even 71.1-100% 74.2-99.2% 97.7-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 87.5-99.2% 95.3-100%

Even 50-100% 50-99.2% 87.5-100%

Unpaired elem.

Mix

Odd 87.5-100% 87.5-99.6% 98.4-100%

Even 86.7-100% 98.4-99.6% 99.2-100%

i, i+128,

random for others

Odd 99.2-100% 99.2-100% 99.2-100%

Even 99.2-100% 99.2-100% 99.2-100%

3.5 Results

58

3. Modifying odd numbers of paired elements with:

a. the same values for each pair, at any location results in 37.5-50% diffusion for

x = 1. In general diffusion percentages vary between %1002/12 11 xx

and %1002/12 xx
 for x > 1. The lower bounds approach the upper

bounds when modifying pairs at even locations with larger transform length or

values of P, as shown in Figure 3.5.

b. different values, with a total sum equal to the modulus for each pair, at any

location achieves 25-50% diffusion for x = 1. In general diffusion percentages

vary between %1002/12 11 xx
 and %1002/12 xx

 for x > 1. The

lower bounds approach the upper bounds when modifying pairs at even

locations with larger values of P.

c. different values, with a total sum not equal to the modulus for each pair, at any

location gives levels of diffusion between 62-100%. The lower bounds

approach the upper bounds when modifying pairs at even locations with larger

transform lengths or values of P.

4. Modifying even numbers of paired elements with:

a. the same values for each pair, at any location produces diffusion levels

between %1002/25.72 22 xx
 and %1002/12 xx

. Levels of 9.4-

50% for x = 1, increase to 54.7-75% for x = 2, so that larger values of x are

better.

Transform Length (N)

Figure 3.5: Lower bounds for modifying odd number of paired elements at even

locations with the same values

4 8 16 32 64 128 256 512 1024
0

10

20

30

40

50

60

70

80

x = 2

x = 1

D
if

fu
si

o
n

 P
er

ce
n
ta

g
e

3.5 Results

59

b. different values, with a total sum equal to the modulus for each pair, at any

location results in %1002/12 xx
 diffusion at upper bounds, and the

lower bound varies from half of the upper bound up to the upper bound’s

values with larger values of P or transform lengths.

c. different values, with a total sum not equal to the modulus for each pair, at any

location gives diffusion levels between 50-100%. The lower bound approaches

100% when modifying pairs at even locations with larger transform lengths or

values of P.

5. Modifying unpaired elements with the same values for:

a. odd numbers of elements at even locations produces diffusion levels between

((N - C)/N)×100% and 100%, where C equals 2 and can be up to log2N.

b. even numbers of elements at even locations leads diffusion to vary between

56.25-100%; the lower bound improves with larger transform lengths.

c. odd numbers of elements at odd locations results in diffusion levels between

75-100%, as illustrated in Figure 3.6.

d. even numbers of elements at odd locations gives diffusion between 50-100%.

6. Modifying unpaired elements with different values, with a total sum equal to the

modulus for:

a. odd numbers of elements at any location produces diffusion between 68% and

((N - 2)/N)×100%, and the lower bound improves with larger values of P.

Transform Length (N)

Figure 3.6: Lower bounds for modifying odd numbers of unpaired elements with the

same values

4 8 16 32 64 128 256 512 1024
60

65

70

75

80

85

90

95

100

Even locations

Odd locations

D
if

fu
si

o
n

 P
er

ce
n
ta

g
e

3.5 Results

60

b. even numbers of elements at even locations gives diffusion between 56% and

((N - 2)/N)×100%, the lower bound improving with larger transform lengths.

c. even numbers of elements at odd locations leads diffusion to vary between

50% and ((N - 2)/N)×100%, as illustrated in Figure 3.7.

7. Modifying unpaired elements with different values, with a total sum not equal to

the modulus for:

a. odd numbers of elements at any location results in diffusion between 75-

100%, the lower bound improves with larger values of P and transform length.

b. even numbers of elements at any location gives diffusion between 50-100%;

the lower bound improves with larger values of P and transform length.

8. Modifying any number of paired elements with any values at any location and

with all other elements modified randomly, produces in general levels of diffusion

over 75%. On average these are between ((N - 2)/N)×100% and 100% for larger

values of P and transform length, as shown in Figure 3.8.

9. Modifying all input elements with the same value, which is equivalent to adding a

DC value, gives a diffusion percentage %1001N . As a result, the ratio

decreases as N increases. The best ratio is 25% for N = 4, and decreases as N

increases (see Figure 3.9).

Transform Length (N)

Figure 3.7: Lower bounds for modifying even numbers of unpaired elements with

different values their sum equal Mp

4 8 16 32 64 128 256 512 1024
30

40

50

60

70

80

Even locations

Odd locations

D
if

fu
si

o
n

 P
er

ce
n
ta

g
e

3.5 Results

61

10. Modifying all even input elements with the same value, or all odd input elements

with the same value or different values, with a total sum equal to the modulus for

each pair, the diffusion percentage becomes %1002 1 N , which is double that

in the previous case, as shown in Figure 3.9.

Transform Length (N)

Figure 3.8: Lower bounds for modifying any number of paired elements with any value

and location and the remaining elements modified randomly

Transform Length (N)

Figure 3.9: All elements and all even/odd elements modification with the same value

4 8 16 32 64 128 256 512 1024
80

85

90

95

100

4 8 16 32 64 128 256 512 1024
0

5

10

15

20

25

30

35

40

45

50

All even or odd elements

All elements

D
if

fu
si

o
n

 P
er

ce
n
ta

g
e

D
if

fu
si

o
n

 P
er

ce
n
ta

g
e

3.5 Results

62

From the above results, most cases provide levels of diffusion over than or equal to

50%, except three which can be avoided either by increasing the values of the transform

parameters, P and/or N, or in the design by inserting additional layers to reduce the

effect of transform symmetry. The following discusses these cases.

1. Modifying a number of paired elements xNii 2/, up to N/2-1 pairs for x = 1 and

leaving all other elements unchanged; at any location with the same value for each

pair (Figure 3.5), or different values but with a total sum equal to the modulus for

each pair (points 3.a, 3.b, 4.a and 4.b above). This would give in the best cases a

diffusion level of 50%. The lower bounds approach the upper bounds at 50%

when modifying pairs at even locations with a larger modulus and/or transform

length. The probability of this case arising can be calculated by assuming that all

nonzero changes of all possible values of the bundles belonging to the set Mp-1 are

independent and equally likely to occur. The same assumption also applies in the

following cases as well as for the FNT. The probability of a single pair arising is

 1

p

N

p MMN , where N ≥ 8, for example 1.49×10
-14

 for P = 7 and N = 8,

decreasing to 1.83×10
-131

 for P = 7 and N = 64. The probability increases by

increasing the number of modified pairs, a maximum probability is attaining when

modifying N/4 pairs.

2. Modifying all input elements with the same value (as in point nine above), gives a

diffusion level of %1001 N (Figure 3.9). The probability of this case occurring is

 1

p

N

p MM . For P = 7, Mp = 127 and N = 128 the probability is thus 6.51 ×

10
-268

.

3. Modifying all even input elements with the same value; or all odd input elements

with the same value (Figure 3.9); or different values, with a total sum equal to the

modulus for each pair, with the same values for all modified pairs at odd locations

(as in point ten above), gives a diffusion level of %1002 1 N . The probability

of this case arising is 422/
2112

N

p

N

p

N

pp

N

p MMMMM

.

For P = 7, Mp = 127 and N = 8 the probability is 3.74×10
-15

, decreasing to 1.4 ×

10
-1185

 for P = 31 and N = 128.

One of the main reasons for the diffusion percentage improving as the transform

length increases is that the percentage of the number of zero elements relative to the

total (Zp) is inversely proportional to N, as shown in equation 3.32. Figure 3.10,

3.5 Results

63

graphically represents the percentage of the number of zero elements against the total

for different transform lengths.

%100
2log 2

N

N
Zp (3.32)

Table 3.7 illustrates some of these results using the example of P = 7, Mp = 127 and

N = 16. The first two rows represent the initial input to the NMNT and its corresponding

transformed output elements. The third row shows the initial input but modifying only

one element in the odd position (shadow); its output (row 4) is completely different

from that of the initial output (row 2), giving 100% diffusion. The output elements are

completely different because the modified input element is located at position

 514 N , where there are no zero elements in the corresponding row in the)(nk

matrix. While for row number five, a single element is modified also in the odd

position, but the resulting output (row 6) has four elements unchanged; this is because

the modified input element is located at position 318 N , which contains the

maximum number of zero elements 44 N in the corresponding row in the)(nk

matrix, giving 75% diffusion. Finally, in row seven a single element is modified in the

even location, and the resulting output (row 8) modifies all elements except two. This is

because of the two zero elements in the even rows at the)(nk matrix, giving a

diffusion level of %5.87%100/2 NN , which is better with larger values of N.

Transform Length (N)

Figure 3.10: Percentages of the number of zero elements relative to the total

4 8 16 32 64 128 256 512 1024
0

2

4

6

8

10

12

14

P
er

ce
n
ta

g
e

3.5 Results

64

3.5.2 Results of the FNT Analysis

The FNT has been also extensively analysed with different values of modulus and

transform length. Tables 3.8 and 3.9 give sample results for t = 3, N = 16 and t = 4, N =

512, respectively, while all other results are presented in Appendix B. All calculations

are based on bundle level. The results are listed below:

1. Modifying single elements at any location gives 100% diffusion.

2. Modifying odd numbers of paired elements at any location with:

a. the same values for each pair produces nearly %1002/12 xx
 diffusion. It

is nearly 50% for x = 1, increasing to 75% for x = 2, i.e., improving for higher

values of x.

b. different values, with a total sum equal to the modulus (Ft) for each pair,

results in 37.5-50% diffusion for x = 1, increasing to 62.5-75% for x = 2, and

improving with higher x. The upper bounds are limited to %1002/12 xx
,

while the lower bounds vary from 75% up to 100% of the upper bound values

with larger t.

c. different values, with a total sum not equal to the modulus for each pair, leads

diffusion to vary between 75-100%. The lower bounds improve with larger

values of t and N.

3. Modifying even numbers of pairs of elements at any location with:

a. the same values for each pair, leads diffusion to vary between

 %1002/72 22 xx
 and %1002/12 xx

. For example, it is 12.5-50%

for x = 1, increasing to 56.25-75% for x = 2, i.e. better with larger values of x.

Table 3.7: NMNT modification comparisons for P = 7, Mp = 127, N = 16

1 I/P 81 43 121 17 44 119 111 69 75 3 26 38 51 29 107 33

2 O/P 78 72 98 122 50 69 122 66 11 61 9 30 103 48 15 88

3 I/P 81 43 121 17 64 119 111 69 75 3 26 38 51 29 107 33

4 O/P 98 92 78 102 70 89 102 46 31 81 116 10 123 68 122 68

5 I/P 81 43 129 17 44 119 111 69 75 3 26 38 51 29 107 33

6 O/P 86 71 106 122 42 70 114 66 19 60 17 30 95 49 7 88

7 I/P 81 53 121 17 44 119 111 69 75 3 26 38 51 29 107 33

8 O/P 88 3 65 53 60 99 122 36 1 3 42 99 93 18 15 118

3.5 Results

65

Table 3.8: FNT diffusion for t = 3, Ft = 257, N = 16

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+8

i-even (x = 1)

Odd 50 37.5-50 87.5-100

Even 25- 37.5 25-50 75-100

All 12.5 25-50 87.5-100

Paired elements

i, i+8

i-odd (x = 1)

Odd 50 37.5-50 75-100

Even 25-37.5 25-50 75-100

All 12.5 25-50 87.5-100

Paired elements

i, i+8

i-mix (x = 1)

Odd 50 37.5-50 87.5-100

Even 18.8-50 25-50 81.3-100

All 6.25 43.8-50 81.3-100

Paired elements

i, i+4

i-even (x = 2)

Odd 75 75 75-100

Even - - -

All 62.5 62.5-75 75-100

Paired elements

i, i+4

i-odd (x = 2)

Odd 75 75 75-100

Even - - -

All 62.5 62.5-75 75-100

Paired elements

i, i+4

i-mix (x = 2)

Odd 75 68.8-75 87.5-100

Even 68.75 68.8-75 87.5-100

All 56.25 62.5-75 87.5-100

Unpaired elem.

Even

Single 100 100 100

Odd 100 75-87.5 75-100

Even 62.5-87.5 75-87.5 75-100

Unpaired elem.

Odd

Single 100 100 100

Odd 100 75-87.5 75-100

Even 62.5-87.5 75-87.5 75-100

Unpaired elem.

Mix

Odd 100 75-93.8 75-100

Even 62.5-100 75-93.8 81.3-100

i, i+8,

random for others

Odd 87.5-100 81.3-100 87.5-100

Even 81.3-100 81.3-100 87.5-100

3.5 Results

66

Table 3.9: FNT diffusion for t = 4, Ft = 65537, N = 512

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+256

i-even (x = 1)

Odd 49.2-50 46.9-50 93.8-100

Even 24.6-50 49.2-50 99.2-100

All 0.391 50 100

Paired elements

i, i+256

i-odd (x = 1)

Odd 49.2-50 48.4-50 96.9-100

Even 24.6-50 49.2-50 98.8-100

All 0.391 50 99.6-100

Paired elements

i, i+256

i-mix (x = 1)

Odd 49.6-50 49.6-50 99.6-100

Even 24.8-50 49.6-50 99.4-100

All 0.195 50 99.8-100

Paired elements

i, i+128

i-even (x = 2)

Odd 74.2-75 73.4-75 98.4-100

Even 60.9-75 73.4-75 98.4-100

All 50.391 75 100

Paired elements

i, i+128

i-odd (x = 2)

Odd 74.2-75 71.9-75 96.9-100

Even 60.9-75 73.4-75 98.4-100

All 50.391 75 99.6-100

Paired elements

i, i+128

i-mix (x = 2)

Odd 74.6-75 74.6-75 99.6-100

Even 62.3-75 74.6-75 99.6-100

All 50.195 74.8-75 99.8-100

Unpaired elem.

Even

Single 100 100 100

Odd 98.4-100 93.8-99.6 98.4-100

Even 75-100 75-99.6 99.2-100

Unpaired elem.

Odd

Single 100 100 100

Odd 98.4-100 93.8-99.6 98.4-100

Even 75-100 75-99.6 99.2-100

Unpaired elem.

Mix

Odd 98.4-100 96.9-99.8 98.4-100

Even 98.2-100 99.2-99.8 99.6-100

i, i+256,

random for others

Odd 99.4-100 99.6-100 99.4-100

Even 99.6-100 99.4-100 99.6-100

3.5 Results

67

b. different values, with a total sum equal to the modulus for each pair, gives

levels of diffusion varying between %1002/62 22 xx and

 %1002/12 xx . For example, it is 25-50% for x = 1, increasing to 62.5-

75% for x = 2. The result is better with larger values of x and the lower bounds

increase with larger t.

c. different values, with a total sum not equal to Ft for each pair, leads to

maximising diffusion levels to between 75-100%. The lower bounds improve

with larger values of t and transform length.

4. Modifying odd numbers of unpaired elements at any location with:

a. the same values give diffusion levels of nearly 100%.

b. different values, with a total sum equal to the modulus, leads to diffusion

between 75% and %100/2 NN . The lower bounds improve with larger

values of t.

c. different values, with a total sum not equal to the modulus, results in levels of

diffusion between 75-100%. The lower bounds increase with larger values of t

and transform length.

5. Modifying even numbers of unpaired elements at any location with:

a. the same values give levels of diffusion between 62.5-100%, while the lower

bounds increase up to 75% for larger transform lengths.

b. different values, with a total sum equal to the modulus, results in diffusion

between 75% and %100/2 NN .

c. different values, with a total sum not equal to the modulus, increases diffusion

to between 75-100%. The lower bounds again improve with larger values of t.

6. Modifying any number of paired elements with any value at any location and all

other elements modified randomly produces, in general, diffusion levels over 75%,

on average lying between %100/2 NN and 100% for larger values of t and

transform length, as shown in Figure 3.11.

7. Modifying all input elements with the same value, which is equivalent to adding a

DC value, gives a diffusion percentage of %1001N (see Figure 3.9).

8. Modifying all even or all odd input elements with the same value, the diffusion

level achieved is %1002 1 N , which is double the percentage in the preceding

case (see Figure 3.9).

3.5 Results

68

Transform Length (N)

Figure 3.11: Lower bounds for modifying any number of paired elements with any

value and location and the remaining elements modified randomly (FNT)

From the above results, most cases have good levels of diffusion at a minimum

50%. The probability of those levels below 50% occurring can be reduced by increasing

either values of t and/or those of transform length. The cases that provide low levels of

diffusion are shown below:

1. When modifying even or odd numbers of paired elements xNii 2/ , for x = 1

with the same values or different values, with their sum equal to the modulus for

each pair, and leaving all other elements unchanged (points 2.b, 3.a and 3.b above).

The probability of this case arising under the same assumptions as in the NMNT

can be determined by considering that all nonzero changes of all possible values of

the bundles belonging to the set 1tF are independent and equally likely. The

probability of a single pair arising is thus 1

t

N

t FFN . Where N ≥ 8, for

example the probability is 1.08×10
-16

 for t = 3 and N = 8, decreasing to 9.52×10
-151

for t = 3 and N = 64. The probability increases by increasing the number of

modified pairs, a maximum probability is reached when modifying N/4 pairs.

2. When modifying all input elements with the same value (point 7 above), the

diffusion level achieved is %1001 N . The probability of this case occurring is

 1

t

N

t FF . For example, for t = 3 and N = 128 the probability is 8.65×10
-307

.

4 8 16 32 64 128 256 512 1024
80

82

84

86

88

90

92

94

96

98

100

D
if

fu
si

o
n

 P
er

ce
n
ta

g
e

3.5 Results

69

3. When modifying all even or all odd input elements with the same value (point 8

above), the level of diffusion becomes %1002 1 N . The probability of this case

arising is 12

t

N

t FF . For t = 3 and N = 8 it is 2.69×10
-17

, decreasing to 1.58×

10
-614

 for t = 4 and N = 128.

 Table 3.10 explains some of these results using the example of t = 3, Ft = 257 and N

= 16. The first two rows stand for the initial input to the FNT and its corresponding

output. The third row represents the initial input but modifying only one element in the

even location (shadowed); its output (row 4) is completely different from that of the

initial output (row 2), giving 100% diffusion. The same level of diffusion is gained

when modifying a single element in any location whether even or odd. In the fifth row

the initial input is modified with an odd number of unpaired elements at mix locations

(shadowed). Its output (row 6) is completely different from that of the initial output,

giving 100% diffusion. Finally, rows 7-10 explain the case of modifying singles and

couples of pairs 2/ , Nii of elements. The first example modifies the paired

elements with different values whose sum is equal to Ft, while the second modifies each

pair of elements with the same value different from that of the other. The resulting

levels of diffusion are 50%.

3.5.3 Summary of results for NMNT and FNT

The first class of results includes cases that provide good diffusion power of a minimum

of 50%, and the second class lists cases that exhibit low diffusion power up to 50%. As

mentioned above, all calculations are based on a bundle level:

Table 3.10: FNT modification comparisons for t = 3, Ft = 257, N = 16

1 I/P 77 16 65 112 84 37 19 53 2 107 41 72 35 22 96 87

2 O/P 154 3 61 44 18 184 7 83 170 18 85 223 193 147 201 155

3 I/P 77 16 65 108 84 37 19 53 2 107 41 72 35 22 96 87

4 O/P 150 228 62 52 82 182 248 212 174 50 84 215 129 149 217 26

5 I/P 78 116 45 114 84 37 19 53 4 107 41 74 35 22 96 87

6 O/P 235 124 142 79 97 124 46 29 51 253 137 200 156 112 33 201

7 I/P 77 216 65 112 84 37 19 53 2 164 41 72 35 22 96 87

8 O/P 154 32 61 160 18 134 7 140 170 246 85 107 193 197 201 98

9 I/P 79 16 65 117 84 37 19 53 4 107 41 77 35 22 96 87

10 O/P 168 3 191 44 119 184 51 83 164 18 220 223 100 147 165 155

3.5 Results

70

1. Cases that provide good diffusion power

a. Modifying single elements

NMNT: Modifying single elements at odd locations, gives levels of diffusion

between 75-100%, depending on the number of elements with zero value at

that row in the kernel matrix corresponding to the position of the modifying

element. Modifying single elements at even locations produces

 %100/2 NN diffusion (100% for N = 4), and the diffusion level

increasing with larger transform length, for instance, 87.5% for N = 16, and

98.44% for N = 128.

FNT: Modifying single elements at any locations achieves 100% diffusion.

b. Modifying paired elements

Modifying any numbers of paired elements xNii 2/, at any location with

any value and x > 1, results in a minimum diffusion level of 50%.

NMNT: The lower bounds increase with larger values of x and modulus, as

well as improving for larger transform lengths for elements modified at even

locations.

FNT: The lower bound increases with larger values of x, modulus and

transform length.

c. Modifying unpaired elements

NMNT: Modifying even numbers of unpaired elements at any location with

any value gives diffusion levels between 50-100%, increasing to 68-100%

when modifying odd numbers of unpaired elements.

FNT: Modifying even numbers of unpaired elements at any location with any

value leads diffusion to vary between 62-100%, increasing to 75-100% when

modifying odd numbers of unpaired elements.

For both cases the lower bounds increase in most cases with larger values of

modulus and/or transform length.

d. Modifying all elements

NMNT and FNT: Modifying any number of paired elements with any value

at any location and all other elements modified randomly offers levels of

diffusion between 50-100%. In general levels exceeding 75% increase with

larger values of modulus and transform length.

2. Cases that produce low diffusion power

a. Modifying paired elements

3.6 Discussion

71

Modifying any number of paired elements xNii 2/, for just x = 1 and

leaving all other elements unchanged at any location with the same values for

each pair, or different values with a total sum equal to the modulus for each

pair, gives diffusion levels in the best cases of 50%. The probability of a single

pair arising is 1 ModulusModulusN N
, it is increased when the number

of modified pairs is increasing, maximum is achieved when modifying N/4

pairs.

NMNT: The lower bounds approach the upper bounds at 50% when modifying

pairs at even locations with larger values of modulus and/or transform length.

FNT: The lower bounds increase with larger values of modulus and/or

transform length.

For both transforms, the diffusion power improves when x increase to greater

than 1.

b. Modifying all input elements

NMNT and FNT: modifying all input elements with the same value gives a

diffusion level of %1001N . The probability of this case occurring is

 1 ModulusModulus N
.

c. Modifying all even input elements or all odd input elements

NMNT: modifying all even input elements with the same value, or all odd

input elements with the same value, or different values with their sum equal to

the modulus, with the same values for all modified pairs, the diffusion

percentage achieved is %1002 1 N . The probability of this case appearing is

 422/
2112

N

p

N

p

N

pP

N

p MMMMM

.

FNT: modifying these elements with the same value, the level of diffusion

resulting is %1002 1 N . The probability of this case is 12

t

N

t FF .

The probabilities of occurrence of the last two cases (points b and c) can be

reduced by increasing the values of modulus and/or the transform length.

3.6 Discussion

The diffusion power of both the NMNT and FNT have been considered in this chapter

using two different techniques in order to evaluate their suitability for secure

applications.

3.7 Conclusions

72

The branch number of the transforms which is discussed on the first technique

indicates that the transforms can provide maximum diffusion power in most cases, with

the exception of mostly for even input weight and up to the half of the transform length.

However, the analysis from the second technique explains deeply this case which

obviously arises with very low probability when modifying pairs of elements

 xNii 2/, (just for x = 1) with only the same value or different values with their sum

equal to the modulus.

The results achieved with the second technique are classified into two classes. In

the cases providing good diffusion power over 50%, the lower bounds are further

increased with increasing values of modulus and/or transform length. However, cases

where the diffusion power provides is less than 50% can be avoided by involving other

layers in the design, or alternatively the probability of those cases arising can be

reduced by increasing the values of the modulus and/or transform length. In general,

increasing the modulus and/or transform length is beneficial as it either improves the

diffusion power or reduces the probability of such cases arising. It is important to ensure

that diffusion power improves with larger block sizes or key lengths, which may be

achieved by increasing the modulus and/or the transform length. This will facilitate the

design by providing the possibility of changing the block size or key length so as to

achieve the required level of security without the need to alter the algorithm itself. At

the same time the number of rounds required can be fixed for different sizes, which

would support the compatibility of the algorithm on different platforms.

3.7 Conclusions

The diffusion power of the NMNT and FNT is evaluated in this chapter. Although the

results demonstrate that in certain cases the transforms provide lower diffusion than the

maximum possible, due to matrix symmetry which could be avoided in the design, it

can be concluded that the transforms have many features making them suitable in the

design of a secure cryptosystem. Advantages include: parameterisation, providing

flexibility to change the block size and key length to meet the required level of security;

and sensitivity, the diffusion power has been proven in general it is good [97-99];

having a long transform length (of the power of two); these operations are performed

without the errors that normally arise through using floating-point operations; finally,

they are suitable for real time implementation as fast algorithms can be adapted to them

to speed up processing.

73

Chapter 4

Substitution Box Analysis

The previous chapter has explained the details of the transforms responsible for

providing diffusion in the design. This chapter turns to the function of confusion, which

is achieved in the design through the use of the S-box. The methods of S-box

construction are briefly described, along with the mechanism used to analyse its non-

linear properties. The chapter is organised as follows: section 4.2 presents different

ways of building an S-box. The methods used to analyse the non-linear properties of an

S-box are explained in section 4.3. The non-linear properties of S-boxes employed in

the previous and current standard algorithms are then analysed in sections 4.4 and 4.5,

respectively. In the subsequent two sections, new S-boxes are generated based on the

AES S-box. Finally, the conclusions of the chapter are outlined in section 4.8.

4.1 Introduction

The security of most block cipher cryptosystems relies heavily on the strength of the S-

boxes involved. Therefore an S-box with strong non-linear properties is essential to

ensure high resilience against attacks, especially those deploying differential and linear

cryptanalysis and their variants. The S-box is usually preceded with n×m dimensions,

where n is the number of input bits to the S-box and m is the number of output bits, and

4.2 Methods of S-box Construction

74

n and m may be equal or unequal. For instance, the DES algorithm [2] has eight 6×4 S-

boxes, the AES [16] uses one 8×8 S-box and Blowfish [17] has four 8×32 S-boxes. A

larger S-box is more resistant to attacks, but at the same time a larger look-up table is

needed and the size of the look-up table increases exponentially with larger values of n.

Hence, for practical purposes in implementation, the value of n is limited to between 8

and 10 [12].

4.2 Methods of S-box Construction

S-boxes can be constructed using several different techniques which may be

summarised as follows:

1. Random / Random and key-dependent

The elements of such an S-box are chosen completely at random. Smaller S-boxes

can be insecure and vulnerable to attacks. One of the methods used to make the

appearance of the S-box random is the key-dependent scheme, which alters the

contents using a key [12]. The Blowfish [17] is one of the prominent algorithms

using this approach to generate S-boxes.

2. Random followed by testing

In this scheme, the S-box entries are also chosen randomly. However, the elements

are tested and only accepted if they pass certain criteria. This scheme has been used

in many algorithms, such as CAST [19, 20], DES [2], Mars [23], Serpent [27], and

Twofish [29].

3. Algebraic constructions

S-boxes generated based on algebraic constructions offer more resistance to

differential and linear cryptanalysis, because good non-linear properties can be

achieved. Various techniques have been proposed for algebraic construction; for

example, a combination of an inverse function in GF(2
n
) and an affine

transformation, as with the AES [3], Camellia [18], Shark [37] and Square [38]

algorithms.

Although, S-boxes carefully generated using algebraic construction are secure

against differential and linear cryptanalysis they are, to some extent, subject to

algebraic attacks if weak functions are used.

4.3 Analysis of Non-linear Properties of an S-box

75

To build a reliable secure cryptosystem, it is important to be certain that all of the

S-boxes involved in the design have good non-linear properties, meaning that it should

not be possible to derive an S-box output as a linear function of the input. In addition,

the designed S-box should actively responses to the SAC.

4.3 Analysis of Non-linear Properties of an S-box

The S-box plays a crucial role in the overall security of an algorithm, and hence it is

important to evaluate the strength of all of the S-boxes involved in the design by

analysing and enumerating their non-linear properties. In order to achieve this, it is

necessary to calculate the DPPmax and the IOCmax as well as the robustness of the S-box.

These calculations are needed to verify the resistance of the algorithm to differential and

linear cryptanalysis and other related attacks, which are explained in detail in chapter 6.

To illustrate the procedures used to calculate the required values, it is useful to start by

considering a small S-box for the purposes of simplicity. For instance, the 3×3 S-box

shown in Table 4.1 maps 3 input bits to 3 output bits, the procedures used with it are

explained in the following sections [100].

Table 4.1: 3×3 S-box representation

I/P O/P

000 0 011 3

001 1 010 2

010 2 111 7

011 3 101 5

100 4 001 1

101 5 110 6

110 6 000 0

111 7 100 4

4.3.1 Maximum Difference Propagation Probability

The calculation of the DPPmax is achieved by first building the XOR distribution table.

This is not a straightforward process, and passes through a number of stages as follows:

4.3 Analysis of Non-linear Properties of an S-box

76

1. Calculate the input XOR difference, by XORing all possible input pairs (2
3
×2

3
),

as shown in Tables 4.2 and 4.3 for binary and decimal representation,

respectively.

2. Separate input pairs into groups according to their input XOR values (columns 1

and 2, Table 4.4).

3. Map all input pairs through the S-box to derive their corresponding output pairs

(column 3).

4. Calculate the output XOR difference, by XORing all output pairs (column 4).

Table 4.2: Input XOR difference (binary)

I/P XOR

Difference
000 001 010 011 100 101 110 111

000 000 001 010 011 100 101 110 111

001 001 000 011 010 101 100 111 110

010 010 011 000 001 110 111 100 101

011 011 010 001 000 111 110 101 100

100 100 101 110 111 000 001 010 011

101 101 100 111 110 001 000 011 010

110 110 111 100 101 010 011 000 001

111 111 110 101 100 011 010 001 000

Table 4.3: Input XOR difference (decimal)

I/P XOR

Difference

0

1

2

3

4

5

6

7

0 0 1 2 3 4 5 6 7

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 2 1 0

4.3 Analysis of Non-linear Properties of an S-box

77

Table 4.4: Output XOR difference

I/P XOR I/P Pairs O/P Pairs O/P XOR

0 0,0 3,3 0

 1,1 2,2 0

 2,2 7,7 0

 3,3 5,5 0

 4,4 1,1 0

 5,5 6,6 0

 6,6 0,0 0

 7,7 4,4 0

1 (0,1) , (1,0) (3,2) , (2,3) 1

 (2,3) , (3,2) (7,5) , (5,7) 2

 (4,5) , (5,4) (1,6) , (6,1) 7

 (6,7) , (7,6) (0,4) , (4,0) 4

2 (0,2) , (2,0) (3,7) , (7,3) 4

 (1,3) , (3,1) (2,5) , (5,2) 7

 (4,6) , (6,4) (1,0) , (0,1) 1

 (5,7) , (7,5) (6,4) , (4,6) 2

3 (0,3) , (3,0) (3,5) , (5,3) 6

 (1,2) , (2,1) (2,7) , (7,2) 5

 (4,7) , (7,4) (1,4) , (4,1) 5

 (5,6) , (6,5) (6,0) , (0,6) 6

4 (0,4) , (4,0) (3,1) , (1,3) 2

 (1,5) , (5,1) (2,6) , (6,2) 4

 (2,6) , (6,2) (7,0) , (0,7) 7

 (3,7) , (7,3) (5,4) , (4,5) 1

5 (0,5) , (5,0) (3,6) , (6,3) 5

 (1,4) , (4,1) (2,1) , (1,2) 3

 (2,7) , (7,2) (7,4) , (4,7) 3

 (3,6) , (6,3) (5,0) , (0,5) 5

6 (0,6) , (6,0) (3,0) , (0,3) 3

 (1,7) , (7,1) (2,4) , (4,2) 6

 (2,4) , (4,2) (7,1) , (1,7) 6

 (3,5) , (5,3) (5,6) , (6,5) 3

7 (0,7) , (7,0) (3,4) , (4,3) 7

 (1,6) , (6,1) (2,0) , (0,2) 2

 (2,5) , (5,2) (7,6) , (6,7) 1

 (3,4) , (4,3) (5,1) , (1,5) 4

4.3 Analysis of Non-linear Properties of an S-box

78

5. Count the number of pairs that give different output XORs for corresponding

input XORs. The complete table is shown in Table 4.5, which represents the

input-output XOR distribution table or, in short the XOR distribution table,

which is also referred to as the difference distribution table.

6. Compute the DPPmax by dividing the maximum value in the XOR distribution

table generated (ignoring the value in the top left corner) by the total elements

(2
n
), where n is the element length in bits. Hence, the DPPmax for this S-box is

4/8 = 2
-1

.

Table 4.5: XOR distribution table

I/P-O/P

XOR

Difference

0

1

2

3

4

5

6

7

0 8 0 0 0 0 0 0 0

1 0 2 2 0 2 0 0 2

2 0 2 2 0 2 0 0 2

3 0 0 0 0 0 4 4 0

4 0 2 2 0 2 0 0 2

5 0 0 0 4 0 4 0 0

6 0 0 0 4 0 0 4 0

7 0 2 2 0 2 0 0 2

From Table 4.5 the probability of the occurrence of any particular input-output

difference (XOR) can be determined. For example, an input difference of 2 may result

in an output difference 4 with a probability of 2/8. While, input difference 2 may NOT

cause output difference 3 as its probability is 0. For an ideally randomising S-box, the

probability of any particular output difference occurring with any particular input

difference is 1/2
n
 [100], which is mathematically not possible. For differential

cryptanalysis to be possible, the cryptanalyst must search for a particular input

difference that gives a particular output difference with a high probability.

All XOR distribution tables share the following properties. Firstly, the sum of

elements in every row is equal to the total input elements (for S-boxes that have the

same number of input and output bits, the sum in every column is equal to the total as

well). Secondly, the values of all elements are even, providing that a pair of (x, x´)

element values has the same difference as a pair of (x´, x) element values. Finally, for

an input difference of zero, the resulting output difference can only be zero.

4.3 Analysis of Non-linear Properties of an S-box

79

It is worth mentioning that if the elements of an S-box or just their order are

changed, the DPPmax and overall XOR distribution table will be changed accordingly.

For example, if the first two output elements of the S-box in Table 4.1 are swapped, i.e.

2 become the output for an input of 0 and 3 the output for an input of 1, the XOR

distribution table for this modified S-box is shown in Table 4.6. The maximum value in

the table is 2, giving a DPPmax of 2/8 = 2
-2

, which is less than the maximum value for

the original S-box and therefore has improved the S-box. Thus caution should be

exercised when changing, for example, the appearance of the elements of an S-box or

their order since this could degrade its non-linear properties.

Table 4.6: XOR distribution table (modified S-box)

I/P-O/P XOR

Difference
0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 2 2 0 2 0 0 2

2 0 2 2 0 0 2 2 0

3 0 0 0 0 2 2 2 2

4 0 2 0 2 0 2 0 2

5 0 0 2 2 2 2 0 0

6 0 0 2 2 0 0 2 2

7 0 2 0 2 2 0 2 0

4.3.2 Maximum Input-Output Correlation

To examine the linear vulnerability of an S-box, the probability bias or input-output

correlation for each linear approximation represented in equation 4.1 needs to be

computed, where Xi represents the i
th

 bit of the input X to the S-box and Yj is the j
th

 bit of

the output Y from the S-box, respectively, and denotes bitwise XOR operation.

 (4.1)

All possible combinations of input and output bits in the S-box shown in Table 4.1

are represented in Tables 4.7 and 4.8, respectively. The probability bias is calculated by

counting the number of matches between input and output combinations over all 2
n

minus 0.5 for each linear expression, n is the element length in bits. For instance,

4.3 Analysis of Non-linear Properties of an S-box

80

considering all values for the linear expression , which is equivalent to

 , the number of matches between the input and output combinations can be

counted. There are precisely 2 cases out of 8 that hold the above expression true, and so

the probability bias for this expression is

 . Similarly, for the linear

expression , the probability bias is

 , whereas for the linear

expression the probability bias is

 .

Table 4.7: Possible S-box input combinations

Initial I/P All possible I/P combinations

x2 x1 x0 x0 x1 x2

0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1

0 1 1 1 1 0 0 1 1 0

1 0 0 0 0 0 1 1 1 1

1 0 1 1 0 1 1 0 1 0

1 1 0 0 1 1 1 1 0 0

1 1 1 1 1 0 1 0 0 1

Table 4.8: Possible S-box output combinations

Initial O/P All possible O/P combinations

y2 y1 y0 y0 y1 y2

0 1 1 1 1 0 0 1 1 0

0 1 0 0 1 1 0 0 1 1

1 1 1 1 1 0 1 0 0 1

1 0 1 1 0 1 1 0 1 0

0 0 1 1 0 1 0 1 0 1

1 1 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 1

4.3 Analysis of Non-linear Properties of an S-box

81

A complete input/output linear approximation is shown in Table 4.9, where the

probability bias of any particular linear combination of input and output bits represents

the value in the table over 2
n
 (total number of elements 2

3
 = 8). Each value represents

the number of matches in the linear expression between the input and output

combinations minus 2
n-1

 (where minus 2
n-1

 = 4 followed by dividing over all is

equivalent to subtraction of 0.5). The maximum value in Table 4.9 (by ignoring the

value in the top left corner) is 4, indicating that the maximum bias probability is 4/8=2
-1

.

For linear cryptanalysis to be possible, the cryptanalyst searches for a linear expression

that holds a linear probability further away from 0.5, which is the probability for

random values. On the other hand, the correlation between input and output

combinations is equal to their inner products divided by their norms [3]. Where the

norm is equal to the square root of the domain size, i.e. 2
n/2

. This can be computed by

summing the products of all inner values over the total for each particular input-output

combination, replacing each 0 with 1 and each 1 with -1. The input-output correlation is

exactly twice the bias.

It should be noted that, in the linear approximation table, the sum of elements in

every column is equal to the absolute value of the half of the total input elements, i.e.,

2
n-1

 (for S-boxes that have the same number of input and output bits, the sum in every

row is equal to the total as well) and the top left value is always 2
n-1

 providing a

probability bias of 0.5, which represents the case of a linear combination with no input-

output bits.

Table 4.9: Linear approximation table

Output Sum

0 1 2 3 4 5 6 7

In
p
u
t

S
u
m

0 4 0 0 0 0 0 0 0

1 0 -2 0 2 2 0 2 0

2 0 0 -2 -2 2 -2 0 0

3 0 -2 2 0 0 -2 -2 0

4 0 -2 -2 0 0 2 -2 0

5 0 0 -2 2 -2 -2 0 0

6 0 2 0 2 2 0 -2 0

7 0 0 0 0 0 0 0 4

4.3 Analysis of Non-linear Properties of an S-box

82

As in the previous case, changing the values of elements in an S-box, or just their

order, will generally change the maximum bias probability, IOCmax and overall linear

approximation table. For example, if the first two output elements of the S-box in Table

4.1 are swapped, so that 2 become the output for input 0 and 3 is the output for input 1,

the linear approximation table for this modified S-box is shown in Table 4.10. The

maximum value is |2|, giving a maximum bias probability of 2/8 = 2
-2

, which is less than

the maximum value for the original S-box. Thus, again, caution should be exercised

when changing the order or values of elements in an S-box as this could degrade its

non-linear properties.

Table 4.10: Linear approximation table for modified S-box

Output Sum

0 1 2 3 4 5 6 7

In
p
u
t

S
u
m

0 4 0 0 0 0 0 0 0

1 0 0 0 0 2 2 2 -2

2 0 0 -2 -2 2 -2 0 0

3 0 0 2 -2 0 0 -2 -2

4 0 -2 -2 0 0 2 -2 0

5 0 2 -2 0 -2 0 0 -2

6 0 2 0 2 2 0 -2 0

7 0 2 0 -2 0 2 0 2

4.3.3 Robustness of the S-box

This is a measure of the resistance of an S-box to differential cryptanalysis. The

robustness, Rs, is defined in equation 4.2 [101], and is based on the two variables nNZ

and Dmax which are derived from the XOR distribution table: nNZ is the number of non-

zero elements in the first column (excluding the first element), and Dmax is the

maximum value in the table. The value of nNZ is very important, as it represents the

number of cases that give no output change for an input change. An S-box with a higher

value of Rs is more resistant to differential cryptanalysis [101].

 (4.2)

where n is the number input bits to the S-box

4.4 Analysis of the DES S-boxes

83

4.4 Analysis of the DES S-boxes

The DES algorithm consists of a set of eight different 6×4 S-boxes. Mapping 6 input

bits and produces 4 output bits, each S-box is a two dimensional array of 64 elements

with 4-bit each, distributed in 4 rows and 16 columns. The mapping is achieved by

combining the first and last input bits to identify the row number and then the inner

input bits are used to select the column number. These S-boxes are shown in Table 4.11.

For example, a decimal input of 48, which is equivalent to 110000 in binary form, is

mapped to the decimal 15 through the first S-box (S1), where the row number is 10 in

base 2 from the first and last input bits and the column number is 1000 in base 2 from

the middle input bits.

4.4.1 Analysis of the Non-linear Properties of DES S-boxes

The non-linear properties of all DES S-boxes can be examined by following the same

procedures described in section 4.3. Tables 4.12 and 4.13 are samples for the XOR

distribution and linear approximation tables for the first S-box (S1), respectively.

The maximum values found in the XOR distribution and linear approximation

tables for all DES S-boxes are summarised in Table 4.14. The DPPmax is the same for all

of the S-boxes, at 16/64 = 2
-2

, and the maximum bias probability of -20/64 is found in

the fifth S-box (S5).

4.4.2 Robustness of DES S-boxes

The values of robustness for all of the DES S-boxes are calculated by applying equation

4.2 and are shown in Table 4.15. The results indicate that all of the S-boxes are

approximately have the same robustness, and that S4 can be more resistance to

differential cryptanalysis.

4.4 Analysis of the DES S-boxes

84

Table 4.11: DES S-boxes

 Column Number

 R 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S

-b
o
x
 1

 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S
-b

o
x
 2

 0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S
-b

o
x
 3

 0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S
-b

o
x
 4

 0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S
-b

o
x
 5

 0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S
-b

o
x
 6

 0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S
-b

o
x
 7

 0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S
-b

o
x
 8

 0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

4.4 Analysis of the DES S-boxes

85

 Table 4.12: DES - XOR distribution table (S1)

 Output Difference

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
p
u
t

D
if

fe
re

n
ce

0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4

2 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2

3 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0

4 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2

5 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6

6 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12

7 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4

8 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4

9 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12

10 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10

11 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12

12 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2

13 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2

14 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8

15 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8

16 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6

17 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0

18 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0

19 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6

20 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0

21 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4

22 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6

23 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0

24 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2

25 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0

26 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8

27 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2

28 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0

29 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0

30 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2

31 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4

32 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12

33 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8

34 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10

35 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10

36 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4

37 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2

38 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0

39 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4

40 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2

41 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4

42 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2

43 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4

4.4 Analysis of the DES S-boxes

86

44 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6

45 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6

46 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4

47 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2

48 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4

49 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8

50 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0

51 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4

52 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6

53 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0

54 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0

55 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4

56 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10

57 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0

58 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0

59 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2

60 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0

61 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4

62 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4

63 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2

 Table 4.13: DES - Linear approximation table (S1)

 Output Sum

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
p
u
t

S
u
m

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 -2 -2 -4 -2 0 -4 6 2 0 0 6 4 -2 -6 4

3 0 -2 -2 -4 -2 0 -4 6 2 8 0 -2 4 6 -6 -4

4 0 2 -2 -4 -2 0 -4 -6 -2 4 8 2 0 -2 -6 12

5 0 -2 -2 0 -2 -4 -4 -2 2 -4 -4 2 4 -10 -2 -4

6 0 0 0 4 0 4 0 0 0 -4 4 4 0 0 -4 -8

7 0 -4 0 8 0 0 0 4 4 -4 -8 -4 4 0 0 0

8 0 4 -2 6 -6 -6 0 -4 -4 -4 2 -2 2 -2 0 0

9 0 0 6 -6 -2 -6 4 -4 0 -4 -2 6 2 -6 0 -4

10 0 -2 0 2 0 6 8 2 -2 0 -2 4 -2 0 -2 4

11 0 2 -8 -2 -4 -10 4 2 -6 8 2 4 -2 -4 -2 0

12 0 -2 0 6 0 2 0 2 2 0 6 -4 2 -4 6 0

13 0 6 0 6 4 -2 -4 -2 2 0 6 4 -2 8 -6 -4

14 0 0 -2 -2 2 2 0 0 4 4 6 -2 2 2 -4 4

15 0 0 -2 6 -2 -2 4 -4 -4 -4 -2 -2 -2 -2 0 0

16 0 2 2 0 -2 0 4 -6 0 6 2 -4 6 -4 -4 -18

17 0 2 -2 -4 2 -4 -4 10 -4 2 2 -4 -2 -4 0 -6

18 0 4 0 0 -4 4 0 4 -6 2 2 6 2 6 6 -10

4.4 Analysis of the DES S-boxes

87

19 0 4 -4 -4 0 0 -8 -12 -2 -2 -6 6 2 6 2 2

20 0 4 0 4 -8 -4 4 0 2 6 -2 2 6 2 -2 2

21 0 0 4 -4 -4 4 4 -4 10 2 2 2 -6 2 6 -2

22 0 6 2 0 2 -4 0 2 4 2 2 0 -2 0 0 2

23 0 2 6 -8 6 4 0 -2 -12 -2 -2 0 -6 0 0 -2

24 0 2 8 2 0 6 4 2 4 -2 4 6 0 -2 -4 2

25 0 -2 4 -6 0 -6 0 2 4 -6 8 6 0 2 0 -6

26 0 0 -6 2 -2 -2 4 4 -2 -2 0 0 -4 4 2 2

27 0 4 6 2 -10 2 -8 4 -2 -6 4 0 4 0 -2 2

28 0 -4 2 2 2 -6 0 -4 -2 -2 4 0 0 4 2 2

29 0 4 -2 -2 2 -6 -4 0 2 2 -4 0 -12 0 -6 -6

30 0 2 0 -2 4 -2 0 -2 0 6 -4 -2 0 -2 0 2

31 0 2 -4 2 -4 -2 4 2 4 -6 4 -2 -4 2 0 2

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 0 2 -2 0 2 0 0 6 -2 0 -4 6 4 10 10 0

35 0 2 -2 0 2 0 0 6 6 0 4 -10 -4 -6 2 0

36 0 2 -6 -8 2 4 4 2 2 0 0 2 0 6 -10 0

37 0 -2 2 4 2 0 -4 -2 -2 0 4 2 -4 6 -6 0

38 0 4 4 -4 8 -8 4 0 0 -8 0 -4 0 4 0 0

39 0 0 -4 -8 -8 4 -4 -4 4 -8 -4 -4 4 4 -4 0

40 0 4 -2 -2 -2 -2 -4 0 4 4 2 6 -2 -6 12 4

41 0 0 -2 -6 2 -2 -8 8 0 -4 -2 -2 6 -2 -4 0

42 0 2 0 -2 0 2 0 -2 2 -8 -6 -4 2 0 2 -4

43 0 -10 0 2 -4 2 4 6 -2 0 -10 4 2 -4 -6 0

44 0 6 -4 2 8 2 4 6 -2 -4 -2 12 -2 -8 -2 0

45 0 -2 -4 2 -4 -2 0 2 -2 -4 -2 4 -6 4 2 -4

46 0 -4 2 6 6 -6 -8 4 -4 0 2 6 6 2 4 0

47 0 -4 2 -2 2 -10 12 0 -4 0 2 -2 10 6 0 4

48 0 -2 -2 0 -2 4 0 2 0 2 6 4 6 0 0 -2

49 0 -2 2 4 2 0 0 -6 -4 -2 -2 -4 -2 0 -4 2

50 0 -4 -4 -4 0 0 0 4 -2 -2 -6 -2 -6 6 2 2

51 0 -4 0 0 4 -4 0 -4 -6 2 2 -2 2 -2 -2 -2

52 0 8 -8 8 4 4 0 0 -2 -2 2 -6 6 6 -2 -2

53 0 4 -4 0 -8 -4 0 -4 -2 2 -2 2 2 -2 -2 2

54 0 6 2 -8 2 -4 8 2 4 -6 2 0 6 0 0 2

55 0 2 -10 0 6 4 8 -2 4 6 -2 0 2 0 0 -2

56 0 -10 4 2 -4 -2 4 -2 4 2 0 6 -4 6 -4 -2

57 0 2 0 -6 -4 2 0 -2 -4 6 -4 -2 4 2 8 -2

58 0 0 6 -2 6 6 0 0 2 2 0 0 8 0 2 2

59 0 4 2 -2 -2 10 4 0 -14 -2 4 0 0 -4 -2 2

60 0 0 10 -2 -6 -2 0 8 -6 6 0 -8 -4 4 -2 2

61 0 8 -2 2 -6 -2 4 4 -2 -6 0 0 0 0 -2 2

62 0 2 0 -2 -8 2 4 2 0 -2 4 -2 -4 2 4 -2

63 0 -14 -12 -6 0 2 0 -2 -4 -6 12 -2 0 -2 4 -2

4.5 Analysis of the AES S-box

88

Table 4.14: Summary of the non-linear properties of DES S-boxes

S-Box Dmax (XOR Dist. Table) Lmax (Linear Appr. Table)

S1 16 -18

S2 16 -16

S3 16 16

S4 16 ±16

S5 16 -20

S6 16 ±14

S7 16 -18

S8 16 ±16

Table 4.15: Robustness of DES S-boxes

S-Box nNZ Dmax Rs

S1 37 16 0.316

S2 33 16 0.363

S3 37 16 0.316

S4 24 16 0.469

S5 31 16 0.387

S6 33 16 0.363

S7 35 16 0.340

S8 36 16 0.328

4.5 Analysis of the AES S-box

The AES S-box is an 8×8 non-linear invertible substitution box constructed

mathematically by applying two transformations in order to ensure high security against

attacks, especially those of differential and linear cryptanalysis. The second

transformation is added to further strengthen the algorithm against algebraic attacks

such as an interpolation attack [102]. The process of generating the S-box is as follows:

1. Taking the multiplicative inverse in the GF(2
8
) where the elements are

represented in a polynomial form with a degree less than 8 and the coefficients

in the GF(2). The multiplication is done modulo the irreducible polynomial

 . The element {00}h is mapped to itself.

2. Applying the following affine transformation over GF(2):

 (4.3)

for 0 ≤ i < 8, where xi is the ith bit of the byte, and ci is the ith bit of a byte c with

the value {63}h.

4.5 Analysis of the AES S-box

89

In matrix form, the affine transformation element of the S-box is expressed as

follows:

 (4.4)

The AES S-box is shown in Table 4.16, and the elements of the table are

represented in hexadecimal format such that the value {xy}h in hexadecimal form

represents the decimal value (16x + y), and x and y stand for the table’s row and column

indices. For example, the input {81}h to the S-box is mapped to {0c}h by the

intersection of the row index 8 and the column index 1.

Table 4.16: AES S-box

Column No.

Row

No.
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

4.5 Analysis of the AES S-box

90

The AES Inverse S-Box is obtained by applying the inverse of the affine

transformation as specified in equation 4.5 followed by taking the multiplicative inverse

in GF(2
8
).

 (4.5)

The AES inverse S-box is shown in Table 4.17.

Table 4.17: AES inverse S-box

Column No.

Row

No.
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb

1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb

2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e

3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25

4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92

5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84

6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06

7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73

9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e

a 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b

b fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4

c 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f

d 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef

e a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61

f 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

4.5 Analysis of the AES S-box

91

4.5.1 Analysis of the Non-linear Properties of the AES S-box

The non-linear properties of the AES S-box are examined by following the steps

discussed earlier in section 4.3. The XOR distribution and linear approximation tables

are first built, but their large sizes of 256×256 dimensions mean that they are too big to

reproduce here in full. Therefore, only a sample of one row with all columns from each

table is shown below. For instance, from the XOR distribution table, a randomly

selected row number 100 with all columns is shown in Table 4.18. All other rows have

the same values with different distributions. The maximum value in the table is 4, and

thus the DPPmax is 4/2
n
 = 4/2

8
 = 2

-6
.

Table 4.18: Part of XOR distribution table of the AES S-box

0 2 0 2 0 0 0 0 2 2 0 0 0 2 2 2

2 0 0 2 2 0 0 2 0 2 0 2 0 2 2 0

2 2 2 2 2 0 2 2 0 0 0 0 2 2 0 2

0 0 2 0 0 0 0 2 0 0 0 0 2 0 2 2

2 0 2 2 0 2 0 0 2 2 2 2 2 2 2 2

2 0 0 0 0 2 2 2 2 2 0 0 0 0 0 2

2 2 2 0 0 2 0 2 2 0 2 2 0 2 2 2

0 2 0 2 0 2 2 2 0 0 0 0 0 2 2 2

0 2 2 2 0 0 2 2 2 0 2 2 2 2 2 2

2 0 0 0 2 0 2 2 4 2 0 0 0 2 2 0

0 0 0 2 0 0 2 2 0 0 0 2 2 2 0 0

2 0 2 0 0 0 0 0 0 0 2 2 0 2 0 0

0 2 2 2 0 0 0 2 2 0 0 2 0 0 2 0

2 2 2 0 0 2 2 2 0 0 2 0 2 2 2 0

0 2 0 0 0 2 0 0 0 2 0 2 0 0 2 0

0 0 2 0 0 2 0 2 0 2 0 2 0 0 2 0

Part of the linear approximation table for the same row number is displayed in

Table 4.19. The remaining rows of the table have the same values with different

distributions, and the maximum value in the table is |16|, resulting in a maximum

probability bias (PBmax) equal to 16/2
n
 = 16/2

8
 = 2

-4
. The IOCmax is equal to 2

-3
, since as

mentioned earlier the input-output correlation is twice the bias.

4.6 Generation of the 8×8 S-box

92

Table 4.19: Part of linear distribution table of the AES S-box

0 0 6 6 -14 2 -8 16 14 -2 12 -12 12 -4 2 2

-14 -10 12 8 0 -12 2 6 -4 -16 -2 2 -2 2 -16 12

-4 0 -2 2 6 2 8 12 10 -2 -4 -8 0 -4 10 6

6 -2 -4 -4 -4 12 -6 10 -8 0 14 6 2 2 8 0

-4 -8 -2 2 -10 10 -8 -4 6 10 0 -12 12 8 -2 2

6 -2 -12 12 -4 12 2 10 -12 4 -6 -14 -2 -10 4 12

-12 4 2 10 6 -10 -12 4 6 14 -12 12 -12 -4 -6 10

-2 -6 8 4 12 8 14 2 -4 0 6 2 14 2 -8 12

-10 -6 -12 0 8 4 14 -6 8 4 -2 10 -2 -14 4 0

4 4 -2 -2 -6 -14 -12 4 10 2 -4 -4 12 12 -10 6

-10 6 8 -16 -16 0 10 -6 8 0 -6 2 6 -2 8 8

-4 -8 -6 -10 -6 -10 -8 12 -6 -2 -8 -12 4 -8 -6 14

14 -10 0 -8 0 8 -6 -6 12 4 6 6 2 10 12 -12

-4 -8 2 6 2 -2 -8 -12 6 2 4 0 -8 -12 -2 2

2 6 8 -4 -4 8 10 14 -8 12 -2 10 6 -14 -4 -8

0 8 -6 -6 -2 14 8 8 -6 2 4 12 -12 4 6 -2

4.5.2 Robustness of the AES S-box

The robustness of the AES S-box can be calculated by applying equation 4.2. The

results reflect the high resistance of this S-box to differential cryptanalysis.

 0.984, where nNZ = 0 and Dmax = 4.

4.6 Generation of the 8×8 S-box

Three different S-boxes can be derived from the initial AES S-box by changing the

order of the output bytes, such that they are circularly shifted with different offsets. All

possible offsets are considered and only three cases result in the same characteristics

and high non-linear properties as those of the AES S-box. These offsets are 64, 128 and

192. Accordingly, four different S-boxes can be used in the algorithm, while only one

look-up table is actually constructed, and this will be reflected in the efficiency of the

system in terms of its security and complexity.

4.7 Generation of the 7×7 S-box

93

4.7 Generation of the 7×7 S-box

A 7×7 S-box is generated by following the same steps used in the construction of the

AES S-box, replacing both the degree-8 irreducible polynomials)1(348 xxxx

to degree-7 (17 xx) [103, 104] and the degree-8 reduction polynomials (18 x) to

degree-7)1(7 x , respectively. The non-linear properties are calculated such that the

maximum value in the XOR distribution table is 2, providing a DPPmax = 2
-6

 and a

maximum value in the linear approximation table of ±10, thus giving a PBmax = 2
-3.678

 or

an IOCmax = 2
-2.678

. The forward and inverse S-boxes in hexadecimal format are shown

in Tables 4.20 and 4.21, respectively. In addition, another three S-boxes are generated

from this S-box which have the same non-linear properties of the original by changing

the order of the output elements with different offsets of rotation of 32, 64 and 96.

4.7.1 Robustness of the 7×7 S-box

The robustness of the S-box generated can be computed by applying equation 4.2, and

the result is exactly the same as for the robustness of the AES S-box, which is 0.984.

This result reflects the robustness of this S-box to differential cryptanalysis.

Table 4.20: 7×7 S-box

 Column No.

Row

No.
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 63 7C 33 3 54 43 53 35 27 2E 73 6B 64 8 48 16

1 5E 5A 5 38 74 24 67 50 20 25 9 58 29 71 6 70

2 22 7 3F 76 4F 52 0E 6D 37 65 0 4B 7E 60 3A 69

3 1D 44 5F 0B 56 40 3E 4C 46 72 75 4A 11 59 2A 21

4 1C 5D 4E 23 4D 78 36 0A 6A 2F 3B 6C 15 6E 7B 79

5 49 14 7F 1 0D 51 77 5B 32 13 3D 1B 0F 41 66 17

6 5C 1F 30 55 7D 7A 57 47 26 0C 2D 39 12 3C 34 19

7 31 1A 2B 6F 68 2 28 62 45 10 61 1E 18 4 42 2C

4.8 Conclusions

94

 Table 4.21: 7×7 Inverse S-box

 Column No.

Row

No.
0 1 2 3 4 5 6 7 8 9 a b c d e f

0 2A 53 75 3 7D 12 1E 21 0D 1A 47 33 69 54 26 5C

1 79 3C 6C 59 51 4C 0F 5F 7C 6F 71 5B 40 30 7B 61

2 18 3F 20 43 15 19 68 8 76 1C 3E 72 7F 6A 9 49

3 62 70 58 2 6E 7 46 28 13 6B 2E 4A 6D 5A 36 22

4 35 5D 7E 5 31 78 38 67 0E 50 3B 2B 37 44 42 24

5 17 55 25 6 4 63 34 66 1B 3D 11 57 60 41 10 32

6 2D 7A 77 0 0C 29 5E 16 74 2F 48 0B 4B 27 4D 73

7 1F 1D 39 0A 14 3A 23 56 45 4F 65 4E 1 64 2C 52

4.8 Conclusions

In this chapter several objectives have been achieved as follows:

 The non-linear properties of both the DES and AES S-boxes are examined and

determined by computing the DPPmax and PBmax or IOCmax, in addition to the

robustness of the S-boxes. All of these calculations are conducted after building

the XOR distribution and linear approximation tables.

 Three different S-boxes are derived from the AES S-box by changing the order

of the output bytes. The S-boxes derived have the same non-linear properties as

those of the original AES S-box.

 A new 7×7 S-box is generated which is similar to the AES S-box in structure, in

order to meet the security requirements of the proposed cipher. The non-linear

properties of this new S-box are good compared to the current state-of-the-art

AES S-box, where the DPPmax is the same for both S-boxes which is 2
-6

 and the

IOCmax is 2
-2678

, whereas it is 2
-3

 for the AES. Moreover, another three S-boxes

are generated from this S-box by changing the order of the output elements, and

the same non-linear properties result.

95

Chapter 5

Design of the Proposed Algorithms

In this chapter a secure and efficient block cipher, based on the SPN and the NMNT, is

designed according to Shannon’s principles [15] and modern cryptographic theorems.

The chapter is organised as follows. Section 5.1 gives a brief introduction to the topic

and section 5.2 discusses the design of the proposed algorithms. Section 5.3 explains the

generation of the keys, and the implementation of the algorithm and test vectors are

presented in sections 5.4 and 5.5, respectively. The complexity of the algorithm is

computed in section 5.6, and a discussion of the system is given in section 5.7. Another

algorithm based on the FNT is then outlined in section 5.8, and finally the conclusions

of the chapter are drawn in section 5.9.

5.1 Introduction

Fundamental principles when designing a secure block cipher are relate to confusion

and diffusion [15], which remain the most widely accepted principles to design secure

cryptosystems. In addition, the steps necessary to build efficient diffusion had been

proposed [3], which can be constructed by combining two steps. The first step provides

high local diffusion, by using a transform having a high branch number which works on

a limited number of bundles. Examples here include the Mix column transform in AES

[3], the MDS transform in Twofish [29], and the PHT in SAFER [26]. The second step

provides high dispersion once the first step is implemented, the locations of elements

5.2 Algorithm Design

96

 rd Rounds

Plaintext

Ciphertext

Initial Key Addition

Element Substitution

Variable Addition

NMNT

Round Key Addition

Figure 5.1: Block diagram of the proposed algorithm

Shifts Transform

that are too close are changed. Confusion can be achieved by mapping the values of

element through the use of a substitution box. The design of the proposed algorithm

follows this sequence, as illustrated in the following sections.

5.2 Algorithm Design

The proposed algorithm is an iterated symmetric-key block cipher based on the SPN

with variable block size, key length and word length. The block size and key length

ranging from 16×P-bit up to 256×P-bit with a power of two, for a word length P = 7,

31, 61, or 127. The general block diagram for the proposed forward algorithm

(encryption) is shown in Figure 5.1. It starts with an initial key addition, followed by rd

identical rounds. The number of rounds is 10, however this can vary. The round

functions consist mainly of the following five layers: element substitution; shifts

transform; variable addition; NMNT; and, finally, round key addition. This order of

operations is for encryption, and for decryption the algorithm and the round keys are run

in reverse order, with inverse functions applied instead. High level descriptions of both

the encryption and decryption are provided in Algorithms 5.1 and 5.2, respectively.

5.2 Algorithm Design

97

/* Initial key addition */

a = (PT + Kr(0)) % Mp; /* PT: Plaintext block, Kr: round key */

/* Loop 10 times (10 : total number of rounds) */

for (i = 1; i ≤ 10 ; i++)

{

/* Elements Substitution*/

a = S (a);

/* Shifts Transform*/

a = ST (a);

/* Variable addition */

a = VA (a) % Mp;

/* NMNT*/

a = NMNT (a);

/* Round keys addition */

a = (a + Kr(i)) % Mp;

}

CT = a;

/* CT: Output Ciphertext block */

Algorithm 5.1: Encryption Algorithm (High Level Description)

5.2 Algorithm Design

98

/* CT: Input Ciphertext block */

a = CT;

/* Loops 10 times in descending order (10 : total number of rounds) */

for (i = 10; i > 0 ; i--)

{

/* Round keys subtraction */

a = (a - Kr(i)) % Mp;

/* Inverse NMNT*/

a = Inv_NMNT (a);

/* Variable Subtraction */

a = VS (a) % Mp;

/* Inverse Shifts Transform*/

a = Inv_ST (a);

/* Inverse Elements Substitution*/

a = SI (a);

}

/* Initial key Subtraction */

PT = (a - Kr(0)) % Mp;

/* PT: Output Plaintext block */

Algorithm 5.2: Decryption Algorithm (High Level Description)

5.2 Algorithm Design

99

5.2.1 Block Size

Both the block size and key length of the proposed algorithm are variable. A block

consists of a number of elements with a P-bit word length distributed in a two

dimensional array, where the number of rows (R) can be 4, 8, or 16 and the number of

columns is represented by the NMNT length (N), which can be 4, 8, or 16 as shown in

Figure 5.2. Here, the number of rows is either the same as or half of the transform length.

The block sizes are chosen carefully such that by processing the data the highest possible

levels of diffusion are achieved.

(4×4)×P (4×8)×P

(8×8)×P

(16×16)×P

(8×16)×P

a0,0 a0,1

a1,1

a0,N-1

a1,0 a1,N-1

aR-1,0 aR-1,1
aR-1

,N-1

•

•

• •

•

•

•

• •

•

•

•

•

• •

• •

•

• •

• •

• •

• •

• • •

•

Figure 5.2: Proposed block sizes

The message is converted into a number of blocks, onto which the elements are

vertically mapped starting from the top left corner (top to bottom and left to right), that

is, in the order a0,0, a1,0 ... aR-1,0, a0,1, a1,1 ... aR-1,1, ... , a0,N-1, a1,N-1 ... aR-1,N-1.

5.2 Algorithm Design

100

The selection of key length and block size as well as word length is usually agreed

between the communicating parties before exchanging information. However, the system

is built up in such a way that either these parameters are agreed beforehand or they are

efficiently set by the system. The system is initially configured with default values of P =

7 for word length and 16×P for both key and block length. The system can select word

length depending on the length of the processor registers in the machine that carries out

the encryption. The block size is equivalent to the key length and is chosen depending on

the message length such that the final block padding required is minimal, noting that a

larger block is selected for the case of equal padding on different block sizes (the details

are explained in Algorithm 5.3). This means that different plaintexts can have different

block and key sizes depending on their length. So not only is block size variable, but its

value is kept secret to increase the overall security of the system and to render the task of

cryptanalysis as hard as possible. The values of block size and word length are encrypted

and sent within the ciphertext at a random location depending on the key, in order to be

used later in the decryption phase.

/* ml is the number of elements in the message (including 1 byte padding) */

ml = ceil ((nM + 8) / (P - 1)); /* nM is the message length in bits */

c = 256 - ml % 256; /* modulo number of elements of larger block size */

/* nb is the block size in bits, P: word length */

nb = 256 × P;

for (i = 7; i > 3; i--) {

if (pow (2 , i) - ml % pow (2 , i) < c) {

c = pow (2 , i) - ml % pow (2 , i);

nb = pow (2 , i) × P;

}

}

Algorithm 5.3: Chosen a block size of the system

5.2 Algorithm Design

101

5.2.2 Components of the Design

The structure of the design as shown in Figure 5.1 starts with the initial key addition

layer followed by round transformation which, as mentioned earlier, consists of five

layers identical for all rounds. In addition, there are supplementary padding and

conversion layers. The former is used to force the length of the plaintext to be a multiple

of block size by padding at the end of the message with a number of bytes with zero

value. The conversion layer is used to convert each word from one length to another and

also to convert a vector to an array and vice versa. The elements are processed rd times

throughout the round transformations until it is ensured that the ciphertext is resilient to

attacks, taking into consideration predetermined safety margins. The components of the

design are explained below.

1. Padding

The padding layer starts with the insertion of a byte at the end of the plaintext with a

value of 1. This indicates the end of the message, which is very useful when

removing padded bytes. Next, a number of bytes with a value of 0 are padded at the

end if necessary in order that the length of the plaintext is a multilpe of the block

size. This step can be conducted after the size of the block and word length has been

determined. The maximum number of padded bytes can be any value up to one

block. The number of padded bytes (nZ) required to fill the gaps in the final block is

calculated using equation 5.1. Noting that there is a 1-bit is reserved at each element

for error avoidnace, as explained later in this chapter.

 (5.1)

where nP is the plaintext length in bytes and ib is derived in equation 5.2,

which represents the number of required input bytes per block.

 (5.2)

where R and N stand for the block dimensions; R representing the number of

rows, and N is column length (which is the transform length), and P is word

length.

5.2 Algorithm Design

102

2. Conversion of Elements

In this layer the elements are converted from one length to another. In the encryption

phase after the padding layer, the input bytes are converted from 8-bit to P-1-bit, and

then converted into a number of blocks of predetermined size. Later, after the round

transformation, the output is converted back from the transform domain (P-bit) into

bytes (8-bit). Another conversion is needed inside the round transformation before

and after the element substitution layer, in case the word length is greater than the

default value. So for P ≠ 7, each element is converted into a number of sub-elements

with S-boxes input lengths which could be 7 or 8-bit or a combination of both, and

then later the converted sub-elements are return back to the original length after

substituting them. The conversion is achieved by converting the elements into a

binary form, concatenating them all and then slicing them into the required length.

In the decryption phase, each element is converted from bytes to P-bit and later

from P-bit to bytes after removing the zero bits added at the beginning.

3. Initial Key Addition

Starting and ending the cipher with a key addition, sometimes referred to as whitening

[53], is important in the design, since any other layers before the first or after the last

key additions could be peeled off without prior knowledge of the key, for instance in

the initial and final permutations in the DES algorithm [3, 53]. In addition, this

operation obstructs a cryptanalysis by hiding the required information in specific

rounds. Initial key addition is applied in several designs, such as AES [3], Blowfish

[17], IDEA [42], Khufu/Khafre [33], SAFER [26], and Twofish [29].

4. Element Substitution

This is the non-linear part of the proposed algorithm which plays a crucial role in the

overall security of the system, where its strength is strongly influenced by that of the

S-boxes involved. The strength of the S-box is evaluated according to the strength of

its non-linear properties, as discussed in detail in chapter 4. Confusion is achieved in

this layer by non-linearly mapping the elements through the destination S-boxes. The

number of S-boxes used in this layer depends on the selection of word length. For

example, for P = 7, one 7×7 S-box is used, while for word lengths greater than 7 a

combination of 7×7 S-boxes and 8×8 S-boxes are utilised.

5.2 Algorithm Design

103

5. Shifts Transform

Elements are redistributed in this layer to satisfy the function of dispersion [3], where

the columns of the array are cyclically shifted with different offsets such that the

resultant elements in each row are a combination of elements from all rows.

6. Variable Addition

In this layer, a set of variable values are added to certain elements in the array and

then the results are multiplied by 2 according to equation 5.3, where the addition and

multiplication are modular operations. One element is modified from each row, and

the locations of the modified elements are very important. All elements in the kernel

matrix at row/column N/4+1 have no zero value, and consequently modifying

elements at such locations ensure after processing the NMNT layer the effect of the

elements modification is achieved. While modifying elements in other places except

those mentioned in point 6, section 3.4.1, a maximum of N/4 elements in the worst

cases could be unmodified in each row. The value of the variable is a function of the

row number, the round number and the block number. Three purposes are achieved in

this layer. Firstly, by adding the variables to the intermediate results ensure that the

cases where the NMNT provides low diffusion are eliminated by eliminating

symmetries in the correlated elements. Secondly, the addition of variables with

different values to different elements results in a ciphertext consisting of different

elements corresponding to a plaintext made up of the same elements. Thirdly, the

involvement of the value of block number in the calculation of the variable results in

different values for different blocks, which ensures that two different ciphertext

blocks are obtained when encrypting two identical plaintext blocks using the same

cipher key. Secure output is thus gained by implementing a simple mode of operation,

which is then reflected in the efficiency of the system in terms of speed and

complexity.

 (5.3)

where a´ is the updated element value and a is the original element value, N

is the transform length, bn is the block number, R is the maximum number of

rows and rd is the maximum number of rounds

5.2 Algorithm Design

104

7. New Merssene Number Transform

The NMNT is used in the design in order to ensure high diffusion. This transform was

investigated in Chapter 3 and shown to exhibit good diffusion characteristics [97, 99].

Prior to the development of differential and linear cryptanalysis a simple permutation

alone was sufficient to diffuse data. As new analytic systems evolved, more complex

techniques were required, such as the use of a linear transformation which improves

the avalanche characteristic of the cipher and increases its resistance to such attacks

[105].

8. Round Key Addition

In this layer, the round keys that are derived from the cipher key when applying the

key schedule algorithm are added modulo the Mp to the intermediate result at each

round, as explained in equation 5.4. The length of the round key is the same as the

block length.

 (5.4)

where a´ is the updated element value, a is the original element value, kr is

the round key, R is the maximum number of rows, N is the transform length

and rd is the maximum number of rounds

5.2.3 Number of Rounds

The number of rounds is determined by investigating in which round the system can be

successfully broken, and adding then a sufficient number of rounds to achieve the

security margins required. Schneier has suggested that, if a system can be broken in n

rounds, it should be designed with 2n or 3n rounds [5]. In addition, he recommended a

minimum number of rounds for the current standard as follows: 16 rounds for AES-128;

20 rounds for AES-192; and 28 rounds for AES-256. The formula proposed for this is

shown in equation 5.5 [55]. For instance, for AES-128, d = 1, nb = 128, and w = 8,

resulting in rd ≥ 16 as suggested by Schneier. In another example for Twofish [29], d =

2 (Feistel structure, half of the data is processed in the confusion stage at each round), nb

= 128, and w = 8, producing rd ≥ 32. Both values resulting from this formula have larger

values than those proposed by the algorithm designers.

 (5.5)

5.3 Generation of Cipher Key and Round Keys

105

where rd is the number of rounds, d is the maximum number of rounds

required to process all words of a block in the confusion stage, nb is the

block size, and w is the minimum word size input to the confusion stage.

In the proposed algorithm, both differential and linear cryptanalysis have been

investigated as explained in Chapter 6 and it has been proven that the system is secure

against such attacks from round three regardless of block or key size. Accordingly, 10

rounds have been suggested, taking into consideration other possible types of attack and

sufficient safety margins.

5.3 Generation of Cipher Key and Round Keys

This section deals with the generation of the necessary sub-keys. In the first part an

algorithm is proposed for deriving the cipher key from the secret key, and the second

part deals with the key schedule algorithm as the mechanism for deriving round keys

from the cipher key. Two key schedule algorithms are proposed. Both combine high

diffusion and non-linearity of properties in order to generate round keys with high

resistance to attacks such as the related-key attack.

5.3.1 Cipher Key Generation

A cipher key () is generated from the secret key or password supplied by the user,

which can be of any length, by padding the key if necessary to the block length by

applying equation 5.6, which is derived from [3]. If the secret key provided has a length

longer than required, then the cipher key is derived by truncating the key to the required

length.

 (5.6)

where i is the location of the processed element, nc is the number of elements

in the provided secret key, bl is the block length (elements).

For example, if bl = 16 and the secret key = 1 2 3 4 5 6 7 8, then the padded cipher

key is kc = 1 2 3 4 5 6 7 8 9 11 14 18 23 29 36 44. If kc = 1 2 3 4 5 6 7 8 9, then the

cipher key generated is 1 2 3 4 5 6 7 8 9 10 12 15 19 24 30 37.

Padding the cipher key according to this method results in a more random

appearance than just padding with zero elements, as applied in existing techniques.

5.3 Generation of Cipher Key and Round Keys

106

5.3.2 Round Keys Generation

Round keys are derived from the cipher key by means of a key schedule algorithm. The

lengths of the cipher key and round keys are the same as the block length. The total

number of round keys is equal to the number of rounds. Two techniques are used in

generating the round keys, as explained below.

1. Key schedule algorithm (first technique)

The first key schedule algorithm applies the same round transformation of the cipher

for easy analysis and implementation, where the input to the cipher is the cipher key

and each round is used to generate one round key. This means generating all round

keys equivalent to encrypting one block of data. The round transformation is

modified in such a way that the initial key addition layer is eliminated and, the

variable addition layer is a function of only row and round numbers. In addition,

rather than adding a single round key at each round in the round key addition layer

an accumulation of all previously generated round keys are added. Thus each round

key generated is a function of all previously generated round keys, in addition to the

cipher key and the round number [3]. For example, the key that is used in the round

key addition layer to generate the first round key is the modular addition of the

cipher key and the number 1 for round number one. The second round key is then the

modular addition of the cipher key, the first generated round key and the number 2.

For the final round, the key generated is the modular addition of the cipher key, and

the first up to the ninth round keys and the number 10 for round number ten.

For example, if P = 7, block size is 16×P, and the password or secret key is

“Dell Laptop”, then the ASCII representations for the secret key with 8-bit each is Ks

= 68 101 108 108 32 76 97 112 116 111 112, where 32 is the ASCII code for

the space character. Next, the cipher key will be derived from the secret key by

applying equation 5.6 if necessary. The length of the cipher key is 16 P-bit or 16×P/8

= 14 bytes, i.e. Kc = 68 101 108 108 32 76 97 112 116 111 112 180 25 133.

Then, the 14 bytes of Kc are converted into 16 7-bit elements to be compatible with

the transform domain. The converted Kc = 34 25 45 70 97 1 24 97 56 29 13

119 5 80 51 5. The conversion is achieved by converting Kc elements into binary

representation, concatenating all of the elements and then slicing them into 7-bit

each. The detailed sequence of the generation process for the first three round keys is

shown in Table 5.1. The final round keys generated are shown in Table 5.2, in

addition to the cipher key, which is represented in the first row in the table.

5.3 Generation of Cipher Key and Round Keys

107

Table 5.1: Three round keys generation using first technique

 Round 1 Round 2 Round 3

In
p
u
t

K
ey

34 97 56 5 81 38 91 75 40 5 3 59

25 1 29 80 121 62 77 4 51 102 70 10

45 24 13 51 54 69 22 13 38 81 67 50

70 97 119 5 45 52 97 104 76 107 56 98

E
le

m
en

ts
 S

u
b
.

63 31 70 67 20 14 27 108 55 67 3 74

37 124 113 73 16 42 110 84 11 87 54 115

96 32 8 11 62 120 103 8 14 20 35 95

54 31 98 67 96 86 31 38 21 57 70 48

S
h
if

ts
 T

ra
n
sf

. 54 32 113 67 96 120 110 108 21 20 54 74

63 31 8 73 20 86 103 84 55 57 35 115

37 31 98 11 16 14 31 8 11 67 70 95

96 124 70 67 62 42 27 38 14 87 3 48

V
ar

ia
b
le

 A
d
d
.

54 66 113 67 96 117 110 108 21 46 54 74

63 78 8 73 20 77 103 84 55 35 35 115

37 116 98 11 16 9 31 8 11 42 70 95

96 122 70 67 62 86 27 38 14 50 3 48

N
M

N
T

46 67 34 69 50 122 108 104 68 66 82 122

95 60 47 50 30 37 89 51 113 67 67 100

8 44 8 88 64 113 30 111 91 15 71 121

101 81 104 98 86 83 92 114 115 13 46 9

A
cc

u
m

u
l.

 K
ey

 35 98 57 6 117 10 22 82 31 16 26 15

26 2 30 81 21 65 108 86 73 41 52 97

46 25 14 52 101 95 37 66 13 50 105 117

71 98 120 6 117 24 91 111 67 5 21 83

A
d
d
in

g
 K

ey
 81 38 91 75 40 5 3 59 99 82 108 10

121 62 77 4 51 102 70 10 59 108 119 70

54 69 22 13 38 81 67 50 104 65 49 111

45 52 97 104 76 107 56 98 55 18 67 92

5.3 Generation of Cipher Key and Round Keys

108

Table 5.2: Round keys generation using first technique

Kc 34 25 45 70 97 1 24 97 56 29 13 119 5 80 51 5

Kr1 81 121 54 45 38 62 69 52 91 77 22 97 75 4 13 104

Kr2 40 51 38 76 5 102 81 107 3 70 67 56 59 10 50 98

Kr3 99 59 104 55 82 108 65 18 108 119 49 67 10 70 111 92

Kr4 106 33 48 107 29 60 53 69 0 70 62 90 52 38 116 44

Kr5 65 80 73 16 57 12 0 64 23 123 67 16 30 31 27 111

Kr6 9 5 32 98 74 68 106 53 68 104 67 93 97 3 16 119

Kr7 27 70 107 82 91 33 47 106 53 56 23 16 18 17 118 93

Kr8 52 39 40 3 41 82 97 16 39 8 0 88 107 14 24 75

Kr9 66 65 32 41 2 22 123 18 101 65 72 102 22 3 65 72

Kr10 77 26 101 65 3 64 87 124 55 107 24 80 8 85 58 117

2. Key schedule algorithm (second technique)

The second proposed key schedule algorithm is key-dependent. With a structure

similar to that of the first technique, it is achieved by replacing both the shifts

transform layer and the variable addition layer with key-dependent permutation and

key-dependent addition layers. These two layers are processed by first building up

two arrays with the block size length at each round for each layer; these arrays

represent the row and column indices, respectively. For the key-dependent addition

layer, a key-dependent modular addition is applied to all elements, where the two

arrays generated are used to determine for each element the location of the

corresponding element that will be added to it. The first array, which is called the

Addition row indices array (Ar), is generated by applying equation 5.7. It is achieved

by modularising the key of the previous round (Krd-1) for modulo equal to the total

number of rows after mapping it to the element substitution layer.

 (5.7)

where for element substitution, R is the total number of rows, rd is the

total number of rounds and N is the transform length.

5.3 Generation of Cipher Key and Round Keys

109

The second array, known as the Addition column indices array (Ac), is generated

according to equation 5.8, by modularising the accumulated key (ka) at that round

with modulo equal to the transform length. The accumulated key at each round

represents the summation of the cipher key and all round keys generated before that

round.

 (5.8)

For the key-dependent permutation layer, the locations of the elements are

changed based on a key. Two arrays, Pr and Pc, are generated, which are used to

determine the new location for each element. They are built by first filling up the

arrays with an initial sequence of indices values, and then the sequence of the indices

is continuously changed based on the values in the Ar and Ac arrays until all

elements have been processed.

A simple illustration of this is shown in Table 5.3, consider a key K(n) as a

vector of 16-elememts with a single dimension. The corresponding Addition indices

vector A(n) is calculated by modularising the key K(n) for modulo equal to the total

number of elements, i.e. 16. The permutation indices vector P(n) is initially filled

with indices in sequence from 1 to the total number of elements, 16. Then the

sequence of indices are changed based on the corresponding values in the A(n)

vector. For example, for A(1) = 2 the index in P(1) is swapped with the index in

P(2), for A(2) = 9 the updated index in P(2) is swapped with the index in P(9), and

the generation process are continue in the same manner until processing all P(n)

elements with respect to A(n) elements, where the last row represents the new indices

of the elements at that round.

By taking the same parameters and the same secret key as the example in the

first proposed structure, the cipher key is derived by following the same procedures

by padding it to the required length. A summary of all round keys generated in

addition to the cipher key is shown in Table 5.4. The generation process for the first

three round keys is explained in Table 5.5.

Many important properties are used in the key schedule designs in order to make

successful related-key and other types of attack more difficult. Such properties

include the use of a round number to eliminate symmetries, and the generation of any

5.3 Generation of Cipher Key and Round Keys

110

round key depending on all previously generated round keys and the cipher key. This

means that knowing part of the cipher key or one or more full round key will not be

sufficient to generate the cipher key or other round keys. In addition, high diffusion

and non-linearity are achieved.

Table 5.3: Generation of key-dependent permutation index array

K(n) 34 25 45 70 97 1 24 97 56 29 13 119 5 80 51 5

A(n) 2 9 13 6 1 1 8 1 8 13 13 7 5 16 3 5

P1(n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P2(n) 2 1

P3(n) 5 9 13 6 2 4 1 3

. 4 5 8 7

. 7 4

. 1 4 3 10

. 12 10 8 11

. 15 11 2 16 13 14

. 14 11

Pj(n) 7 9 15 6 14 5 12 1 4 3 10 8 2 16 13 11

Table 5.4: Round keys generation using second technique

Kc 34 25 45 70 97 1 24 97 56 29 13 119 5 80 51 5

Kr1 103 107 77 2 73 88 43 119 49 40 93 35 56 117 11 95

Kr2 70 121 8 118 105 44 50 38 91 112 20 40 34 48 91 52

Kr3 2 80 74 17 54 25 26 83 25 66 43 61 39 104 61 36

Kr4 100 97 29 42 83 23 86 51 104 70 14 64 8 98 90 61

Kr5 118 54 78 111 0 100 52 54 25 38 50 48 36 123 76 83

Kr6 114 2 67 58 60 85 32 8 35 96 12 43 22 24 86 36

Kr7 27 82 108 124 33 14 43 51 21 125 37 109 27 3 113 12

Kr8 121 19 108 52 110 38 77 41 79 67 38 115 99 58 20 8

Kr9 74 19 96 121 41 112 30 14 81 25 44 78 89 103 30 47

Kr10 64 60 84 53 93 62 51 25 2 21 60 26 125 7 52 49

5.3 Generation of Cipher Key and Round Keys

111

Table 5.5: Three round keys generation using second technique

 Round 1 Round 2 Round 3

In
p
u
t

K
ey

34 97 56 5 103 73 49 56 70 105 91 34

25 1 29 80 107 88 40 117 121 44 112 48

45 24 13 51 77 43 93 11 8 50 20 91

70 97 119 5 2 119 35 95 118 38 40 52

E
le

m
en

ts

S
u
b
st

it
u
te

63 31 70 67 71 47 68 70 54 12 27 63

37 124 113 73 57 50 55 2 16 126 49 29

96 32 8 11 110 75 65 107 39 95 116 27

54 31 98 67 51 98 118 23 40 14 55 86

K
d
 P

er
m

u
t.

R
o
w

 I
n
d
ex

 2 3 2 1 1 1 4 2 2 1 3 3

3 3 4 1 4 2 4 3 4 2 4 1

1 4 3 1 2 3 3 4 3 3 1 1

4 2 2 4 1 2 3 1 4 2 2 4

K
d
 P

er
m

u
t.

C
o
l.

 I
n
d
ex

3 1 4 3 4 1 1 1 4 1 1 3

2 3 3 2 2 3 3 2 4 3 1 3

1 4 4 4 4 4 3 4 2 4 2 4

1 2 1 2 2 2 1 3 3 2 1 2

K
d
 A

d
d
it

io
n

R
o
w

 I
n
d
ex

 3 3 2 3 3 3 4 2 2 4 3 3

1 4 1 1 1 2 3 2 4 2 1 1

4 4 4 3 2 3 1 3 3 3 4 3

2 3 2 3 3 2 2 3 4 2 3 2

K
d
 A

d
d
it

io
n

C
o
l.

 I
n
d
ex

2 1 4 1 2 3 1 1 4 1 1 3

1 1 1 4 1 1 1 2 2 3 2 2

1 4 1 3 2 3 2 2 3 1 2 2

2 1 3 1 4 1 3 4 3 4 3 1

K
d

P
er

m
u
ta

ti
o

n
 113 96 73 70 70 71 51 57 29 54 39 116

32 8 98 31 98 55 118 75 86 49 40 27

63 67 11 67 2 107 65 23 95 27 12 63

54 124 37 31 47 50 110 68 55 126 16 14

5.4 Algorithm Implementation

112

K
d
 A

d
d
it

io
n

 53 32 104 6 50 9 98 28 56 109 7 1

85 62 24 37 21 76 120 24 85 89 22 9

117 98 65 5 78 45 74 68 107 7 11 70

116 114 61 21 115 71 103 9 71 8 27 99

N
M

N
T

68 102 119 50 58 60 111 98 46 30 80 68

81 86 10 36 114 80 41 103 78 16 9 110

31 18 79 86 11 108 39 27 68 33 41 32

58 21 42 89 44 74 11 77 78 80 118 8

A
cc

u
m

u
la

te
d

K
ey

35 98 57 6 12 45 107 63 83 24 72 98

26 2 30 81 7 91 71 72 129 9 57 121

46 25 14 52 124 69 108 64 6 120 129 29

71 98 120 6 74 91 29 102 66 3 70 28

A
d
d
in

g
 K

ey
 103 73 49 56 70 105 91 34 2 54 25 39

107 88 40 117 121 44 112 48 80 25 66 104

77 43 93 11 8 50 20 91 74 26 43 61

2 119 35 95 118 38 40 52 17 83 61 36

5.4 Algorithm Implementation

The hardware implementation of the algorithm is discussed in detail in Chapter 7.

However in this section the processing steps of encryption are explained in two examples

of text message and an image using round keys generated in the last section. Tables 5.6

and 5.7 represent the processing steps for encrypting blocks of data, for instance the

Plaintext = “Blue Lines” using the round keys listed in Table 5.2. The implementation of

the round functions for the first three rounds are explained in detail in Table 5.6 using the

actual block size. A summary of the encryption, including the intermediate results for all

rounds, is given in Table 5.7. The first row represents the plaintext followed by the

ASCII representation of the plaintext. Then the padding process starts by adding 1, as an

indication of the end of the message followed by the number 0 so as to achieve the

required length. Next, the conversion process converts the input into a number of blocks

with P-1-bit element length.

5.4 Algorithm Implementation

113

Table 5.6: Three rounds encryption using round keys generated from first technique

 Round 1 Round 2 Round 3

R
o
u
n
d
’s

 I
n
p
u
t 50 122 82 33 80 1 47 23 28 33 11 46

63 19 51 1 24 117 91 31 78 102 119 99

94 25 70 55 18 36 96 13 17 120 76 24

123 109 29 5 119 31 61 114 110 99 115 33

E
le

m
en

ts
 S

u
b
.

95 97 44 7 73 124 105 80 41 7 107 58

33 56 11 124 32 2 27 112 123 87 98 85

102 37 54 76 5 79 92 8 90 69 21 32

30 60 113 67 98 112 89 43 52 85 111 7

S
h
if

ts
 T

ra
n
sf

. 30 37 11 7 98 79 27 80 52 69 98 58

95 60 54 124 73 112 92 112 41 85 21 85

33 97 113 76 32 124 89 8 123 7 111 32

102 56 44 67 5 2 105 43 90 87 107 7

V
ar

ia
b
le

 A
d
d
.

30 78 11 7 98 37 27 80 52 19 98 58

95 11 54 124 73 4 92 112 41 93 21 85

33 123 113 76 32 104 89 8 123 51 111 32

102 115 44 67 5 8 105 43 90 52 107 7

N
M

N
T

126 90 83 75 115 28 8 114 100 42 73 120

30 55 14 27 27 0 49 89 113 28 11 12

91 94 74 0 106 39 9 101 63 31 24 120

74 106 91 10 34 119 59 62 2 28 11 65

R
o
u
n
d
 K

ey
 81 38 91 75 40 5 3 59 99 82 108 10

121 62 77 4 51 102 70 10 59 108 119 70

54 69 22 13 38 81 67 50 104 65 49 111

45 52 97 104 76 107 56 98 55 18 67 92

A
d
d
in

g
 K

ey
 80 1 47 23 28 33 11 46 72 124 54 3

24 117 91 31 78 102 119 99 45 9 3 82

18 36 96 13 17 120 76 24 40 96 73 104

119 31 61 114 110 99 115 33 57 46 78 30

5.4 Algorithm Implementation

114

Table 5.7: Encryption processing steps using round keys generated from first technique

1 B l u e L i n e s

2 66 108 117 101 32 76 105 110 101 115

3 66 108 117 101 32 76 105 110 101 115 1 0

4 16 38 49 53 25 18 1 12 26 22 57 37 28 48 4 0

5 50 63 94 123 122 19 25 109 82 51 70 29 33 1 55 5

6 80 24 18 119 1 117 36 31 47 91 96 61 23 31 13 114

7 28 78 17 110 33 102 120 99 11 119 76 115 46 99 24 33

8 72 45 40 57 124 9 96 46 54 3 73 78 3 82 104 30

9 39 31 63 74 77 3 0 27 47 124 104 103 99 86 115 72

10 62 96 97 19 90 95 41 26 65 20 28 35 67 90 68 5

11 51 11 5 89 68 124 70 105 116 10 6 96 110 76 0 70

12 83 69 50 110 67 78 116 72 11 118 97 76 104 82 79 53

13 27 76 44 17 114 96 71 69 121 35 24 97 58 67 121 125

14 50 98 39 1 24 48 36 65 25 18 42 45 71 89 5 118

15 15 107 29 67 38 107 70 99 121 89 3 116 84 105 106 32

16 31 172 236 52 218 227 99 243 100 31 74 154 117 32

17 ¬ ì 4 Ú ã c ó d J š u

18 Û = Ñ ô É } + Ú A â Ž

In this example the message only has one block and, for illustration purposes, the

block is represented in one dimension. Row 5 is the result of the initial key addition layer

which performs modular addition between the input prepared and the initial key. Data is

then processed through successive rounds, where rows 6-15 are the outputs from each

round after processing the round functions. In row 16 the output from the previous round

is converted from the transform domain into 8-bit for each element. Row 17 is the ASCII

representation of the Ciphertext, while the final row is the ciphertext for the same

plaintext encrypted with round keys listed in Table 5.4. The decryption process is the

same as encryption except that the layers are implemented in reverse order, in addition

inverse round functions are required and the round keys are used in reverse order.

5.4 Algorithm Implementation

115

Figure 5.3 illustrates a case of image encryption, where the image in Figure 5.3.b is

the result of the encryption procedure for the image in Figure 5.3.a. The image in Figure

5.3.c is the recovered image after decrypting the encrypted image using the correct key.

The encrypted image is decrypted again using an incorrect key with only one bit

changed from the correct key. The image as shown in Figure 5.3.d is completely

unrecognizable, reflecting the power of this system.

a. Original image

b. Encrypted image

c. Decrypted image with the correct key

d. Decrypted image with incorrect key

Figure 5.3: Image encryption and decryption with the correct and incorrect key

5.5 Test Vectors

116

5.5 Test Vectors

In this section a number of test vectors are run to verify the correctness of the algorithm

implementation. It includes three categories of tests; the KAT, the MMT, and the MCT.

These validation tests were initially designed by NIST [106] to validate the

implementations under test (IUT) for conformance to the AES algorithm as specified in

the FIPS 197: AES [16]. In addition to determining conformance, it is used to detect

implementation flaws, including pointer problems, the insufficient allocation of space,

improper error handling, and other incorrect behaviour [106]. The complete results of

the tests for encryption (which can also be applied to the decryption phase) for block

size and key length of 16×P, (P = 7) and the ECB mode of operation are listed in

Appendix C. Descriptions and sample results for each test are given below.

5.5.1 The Known Answer Test

Two types of KAT are applied:

1. Variable Text

In this test, the cipher key is fixed to zero for all iterations and the plaintext

is variable. It starts at zero and is changed by setting one bit to 1 at each

iteration within the bits of the elements from left to right starting from the

first element. For instance, in Table 5.8, the first element in the plaintext for

the first iteration is set to 64 which is equivalent to 1000000 in binary form

and all other elements are zero. At the second iteration only the first element

is changed and become 96 which is equivalent to 1100000 in binary form.

The first element continues to change at each iteration until it becomes 126,

which is equivalent to 1111110 in binary form, and the final bit is not set to

1 due to the modulo. Next, the same procedure is repeated for the second

element until all elements have been processed.

It is obvious from the results of this test that if a single bit in the input is

changed, the resulting output (ciphertext-CT) is completely different. This

reflects the power of the system in diffusing the data and producing totally

different outputs for nearly the same inputs, even in the worst cases where

most of the elements are zero for both the key and the plaintext. The

following is a sample of the test:

5.5 Test Vectors

117

Table 5.8: Sample of the variable text known answer test

Kc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PT 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 52 104 96 49 102 66 37 120 23 8 4 38 104 91 100 20

PT 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 66 87 59 38 14 103 38 50 105 80 1 79 94 126 97 35

PT 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 80 29 122 35 21 1 26 6 83 122 93 35 61 120 120 110

PT 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 44 4 50 114 18 13 120 114 29 122 35 50 107 19 43 103

PT 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 117 52 0 31 68 33 94 81 22 99 44 72 77 45 78 72

PT 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 106 108 77 46 44 71 73 4 109 77 70 5 25 79 121 85

PT 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 15 122 74 91 71 97 62 100 16 117 6 14 122 94 98 70

PT 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 106 69 110 4 99 90 110 46 68 56 118 82 79 112 81 111

PT 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 120 29 113 19 8 109 13 54 22 26 85 72 59 121 68 94

PT 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 70 103 28 36 97 93 22 108 74 82 54 14 7 124 93 13

2. Variable Key

This test follows the same procedure as the previous one, replacing the positions

of the cipher key and the plaintext. The plaintext is accordingly set to zero for all

iterations and the key is variable, the latter being changed based on the

procedure explained in the previous test. The results again confirm the power of

the system, since changing a single bit in the key results in drastic changes in the

output. Below is a sample of the test.

5.5 Test Vectors

118

Table 5.9: Sample of the variable key known answer test

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kc 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 114 120 13 82 8 8 59 107 19 13 40 18 46 71 2 3

Kc 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 55 49 36 51 75 92 88 89 81 96 78 106 100 36 101 53

Kc 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 53 57 38 69 116 66 50 119 94 71 50 47 31 53 62 57

Kc 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 32 31 29 74 20 9 31 121 81 112 21 102 11 76 57 100

Kc 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 114 95 101 119 56 113 37 61 92 19 74 40 114 13 96 72

Kc 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 96 102 21 20 74 53 91 125 111 115 64 23 126 107 15 68

Kc 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 92 73 35 70 22 93 58 42 0 98 116 106 78 84 97 106

Kc 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 97 13 21 13 0 122 99 21 56 110 102 77 33 25 64 23

Kc 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 78 21 28 95 26 104 8 96 8 26 46 64 86 52 57 65

Kc 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 115 118 90 90 42 113 89 31 41 6 26 123 65 59 71 9

Kc 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 47 84 46 83 19 7 93 52 33 90 16 40 82 92 110 79

Kc 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 97 78 12 75 2 68 86 59 32 13 105 87 51 117 122 31

5.5 Test Vectors

119

5.5.2 The Multi-block Message Test

The MMT is applied to check the capability of the implementation to process

messages with many blocks. Here, depending on the mode of operation, a

processing between the blocks could be imposed. The test is run on 10 different

messages whose lengths are different. The first message consists of one integral

block of data, and the length of the second message is expanded into two full

blocks of data, so that the length of the message is incremented by full one block

of data after each following message. Thus the final message is built up from ten

integral blocks of data. The following is a sample data set where the same key is

used in the encryption of all of the messages.

Table 5.10: Sample of the multi-block message test

Kc 45 118 71 35 98 63 121 56 72 51 49 104 37 64 89 93

1 Block

PT 49 48 49 119 119 67 117 47 89 50 35 123 110 77 47 94

CT 14 123 66 69 99 84 34 54 35 37 17 116 16 85 14 10

2 Blocks

PT 93 67 72 53 37 87 73 68 83 67 125 64 78 83 77 50

 47 45 73 39 35 48 110 65 62 109 49 50 104 100 97 78

CT 24 6 81 84 41 31 45 31 55 62 1 90 35 35 2 89

 1 26 43 69 76 90 109 62 23 0 98 85 93 25 7 118

3 Blocks

PT 77 80 80 123 44 74 110 77 120 37 75 78 120 112 117 115

 65 41 98 119 53 67 120 81 42 80 114 54 122 84 68 41

 62 78 71 101 49 78 58 47 83 63 68 39 59 87 86 67

CT 48 50 13 116 87 81 60 49 57 21 35 111 114 19 50 81

 114 15 99 6 101 30 42 92 15 120 29 73 42 96 25 92

 124 109 11 16 85 40 30 59 17 36 39 11 0 73 61 10

5.5 Test Vectors

120

5.5.3 The Monte Carlo Test

In the MCT 100 pseudorandom texts are encrypted. The initial values of both the

key and the plaintext are pseudo randomly generated, and next each text is

processed 1000 times, where the output of each iteration is assigned as the input

for the next iteration. The final output resulting from processing the text 1000

times is passed on as the next new text, and the new key is generated by XORing

its value with the output, so that in total 100000 iterations are processed for all

texts.

The basic idea behind the MCT is to give indication that no combinations

of irregular inputs exist that participates in terminating the test oddly. In

addition, the test verifies that neither the key nor the plaintext would be exposed

if the implementation goes wrong. Moreover, any obvious operational errors can

be identified. The sample data set for the MCT is shown in Table 5.11.

Table 5.11: Sample of the Monte Carlo test

Count = 1

Kc 78 88 64 55 85 64 68 101 115 119 59 70 65 77 55 79

PT 74 58 110 97 48 69 103 100 95 83 90 40 126 86 37 48

CT 110 21 88 67 42 123 115 37 51 4 122 56 110 93 2 59

Count = 2

Kc 32 77 24 116 127 59 55 64 64 115 65 126 47 16 53 116

PT 110 21 88 67 42 123 115 37 51 4 122 56 110 93 2 59

CT 12 55 15 73 114 1 72 42 121 65 109 100 38 22 88 7

Count = 3

Kc 44 122 23 61 13 58 127 106 57 50 44 26 9 6 109 115

PT 12 55 15 73 114 1 72 42 121 65 109 100 38 22 88 7

CT 61 28 61 28 0 10 61 58 83 64 6 98 0 12 29 5

Count = 4

Kc 17 102 42 33 13 48 66 80 106 114 42 120 9 10 112 118

PT 61 28 61 28 0 10 61 58 83 64 6 98 0 12 29 5

CT 76 109 26 11 77 31 11 63 27 122 0 32 106 126 83 73

5.6 Algorithm Complexity

121

5.6 Algorithm Complexity

The complexity of the algorithm is calculated by counting the total number of operations.

The complexity of the forward NMNT for the split-radix fast algorithm can be derived

from equations 5.9 and 5.10 for the numbers of multiplication and addition operations,

respectively [107].Therefore, the complexity for transform lengths of 4, 8, and 16 is

displayed in Table 5.12. Accordingly, the complexity of the overall forward algorithm

(for encryption) for different block sizes is shown in Table 5.13.

 9/139/19log3/2 2

m

N NNNM (5.9)

 9/5139/14log3/4 2

m

N NNNA (5.10)

where: Nm 2log

Table 5.13: Complexity of the overall encryption algorithm

Block Size Addition (AN) Multiplication (MN) Shift

16×P 536 0 30

32×P 1272 80 60

64×P 2544 160 70

128×P 6608 960 140

256×P 13216 1920 150

The complexity of the inverse algorithm (for decryption) is exactly the same as the

forward algorithm, the only difference is in the number of multiplications, where the

transformed elements are multiplied by 1/N. In addition, subtraction is applied instead of

addition in the variable and key addition layers.

Table 5.12: Complexity of the NMNT

N
NMNT

AN MN

4 8 0

8 22 2

16 64 12

5.7 Discussion of the System

122

The number of different S-boxes used in the algorithm depends on the word length.

For the default length of P = 7 only 7×7 S-boxes are used, but for word lengths greater

than 7 both 7×7 S-boxes and 8×8 S-boxes are used.

5.7 Discussion of the System

Flexibility is one of the pillars of the design. For instance, key length, block length and

word length are variable and can be set by the user or the system to provide efficient

implementation and high levels of security. The default values are P = 7 for word length

and 16×P for block and key length. However, if these parameters are set by the system,

they are initialised based on the processor register length and message length. These

parameters can be encrypted and embedded in a random location depending on the key,

making it almost impossible for cryptanalysis to attack the system without prior

knowledge of these parameters.

After determining the above-mentioned parameters, a byte with a value of 1 is added

at the end of the message. This indication of the end of the massage will be useful in the

recovery process. Then the massage is padded if necessary to make its length a multiple

of the chosen block size. Next, the plaintext is converted into a number of blocks with

word length of P-bit. However, because the modulus is a power of two minus one, the

problem may arise that the zero value and the Mp value are retrieved as a zero. This

would only occur at the plaintext conversion stage, while all round transformations apply

modular arithmetic operations. This problem can be avoided by using the CTR, OFB, or

CFB mode as a mode of operation; otherwise, in order to overcome this possible

problem two solutions have been proposed. The first solution imposes the insertion of

one bit with a value of 0 at the beginning of each element, while the second solution

depends on placing the addresses of elements with the value of Mp at the end of the

ciphertext. The first method is accomplished by splitting the message into a number of

blocks with P-1-bit elements and inserting a bit with a value of 0 at the beginning of each

element, so that the element word length becomes P-bit. In this case the padding is based

on the P-1-bit. This method guarantees that no elements enter the transform with the

value of Mp; however, the actual data transfer in the block is a function of P, as shown in

equation 5.11. For instance, for P = 7, the actual data transfer represents 85.7% of the

total block size, and for P = 31 it is 96.8%. The second method is based on placing the

5.7 Discussion of the System

123

element addresses that have the value of Mp at the end of the message, in order to update

their values at the final stage of the decryption phase.

%100)
1

(

p

p
ADT (5.11)

where ADT is the actual data transferred.

At this stage the blocks are ready for processing, which starts by the initial key

addition followed by a round transformation that runs rd times. The layers of the round

functions are selected very carefully to ensure high diffusion throughout the rounds.

After element substitution, a shifts transform is applied in order to shuffle the elements

such that each resulting row holds elements from all rows. Then variable values are

added to the elements at location N/4+1 from each row in the array in order to further

complicate the correlation between the related elements and to eliminate cases that

provide low diffusion in the transform so as to provide higher diffusion. Next, the

NMNT is applied to each row individually to mix all row elements, where each output

element is a function of all input elements. Finally, a round key is added, which is

derived from the key schedule algorithm.

Using the transform accompanied by other layers in the process of generating round

keys excludes the possibility that two different user-supplied keys may yield the same

round keys. In addition, adding round numbers [3] will eliminate symmetries and thus

prevent potential weak-key and related-key attacks.

For CTR, OFB and CFB modes, the decryption procedures are applied in exactly the

same as those for encryption, while for other modes of operation; they are applied in the

reverse order. In addition, inverse functions are used instead, and the round keys are

utilised in the reverse order.

The default value for word length is appropriate for different platforms, such as on

8-bit processor. For larger lengths of processor register, such as in the case of 32-bit, it is

possible to retain the default value or utilise larger values of P such as P = 31, so as to

increase the actual data transfer at each block and at the same time reduce the complexity

which results from using a larger block size for the same amount of data. Accordingly, a

larger amount of data is encrypted with higher levels of security and lower complexity.

Likewise, for a 64-bit processor, an even larger P can be used, i.e. 61.

5.8 Algorithm Based on FNT

124

5.8 Algorithm Based on FNT

The other proposed algorithm is exactly the same as the one proposed earlier regarding

its structure in both directions and the generation of the keys; the only difference is in

the transform that is used to provide local diffusion. In this algorithm the FNT is used

instead of the NMNT and all other layers remain unchanged. The FNT is explained in

detail in Chapter 3, and from the levels of diffusion power found in analysis it has been

proven that the transform has good diffusion power [98].

The integer t is chose to be 3, and therefore the modulus is

and word length bits. The selection of these parameters has a clear

advantage during the implementation of the algorithm. The need for the conversion of

elements at the beginning and end of the algorithm is eliminated, hence reducing the

complexity resulting from this layer.

The complexity of the forward transform using the split-radix fast algorithm is

shown in equations 5.12 and 5.13 for the number of multiplications and additions,

respectively [108]. Accordingly, the numbers of multiplications and additions for

transform lengths 4, 8, and 16 are shown in Table 5.14. Consequently, the complexity of

the overall forward algorithm (encryption) for different block sizes is shown in Table

5.15. By setting the value of the kernel α to 2 or a power of 2, the multiplication

operation can be implemented by shift and addition operations.

 22/3log2/ 2 NNNMN

 (5.12)

 42/5log2/3 2 NNNAN

 (5.13)

Table 5.14: FNT complexity

 FNT

 N AN MN

 4 6 0

 8 20 2

 16 60 10

5.8 Algorithm Based on FNT

125

Table 5.15: Complexity of the overall encryption algorithm (FNT)

Block Size Addition (AN) Multiplication (MN) Shift

16×P 456 0 30

32×P 1192 80 60

64×P 2384 160 70

128×P 6288 800 140

256×P 12576 1600 150

The round keys generated by applying the key schedule algorithms are listed in

Tables 5.16 and 5.17 for the first and second proposed techniques, respectively. The

cipher key is “Dell Laptop”, which is used earlier in the example of the algorithm that is

based on NMNT.

A summary of encryption, including the intermediate results for all rounds, is given

in Table 5.18 and the detailed implementation of the round transformation covering all

round functions for the first three rounds is shown in Table 5.19 using the round keys

listed in Table 5.16. The implementation is exactly the same as that with NMNT; the

only difference is in eliminating the rows related to word length conversion. Row 16 in

Table 5.18 is the ciphertext for the plaintext “Blue Lines” in row 1, while row 17 is the

ciphertext for the same input encrypted with the round keys generated in the second

technique as listed in Table 5.17.

Table 5.16: Round keys generation using first technique based on FNT

Kc 68 101 108 108 32 76 97 112 116 111 112 180 25 133 241 17

Kr1 238 25 137 161 121 198 66 42 187 148 7 67 19 162 146 214

Kr2 95 142 8 249 157 92 214 98 172 207 65 45 76 167 198 157

Kr3 206 61 256 55 187 41 82 227 230 70 155 119 22 174 247 225

Kr4 163 47 43 9 71 249 28 78 103 116 96 237 190 12 88 222

Kr5 133 256 74 137 226 211 205 179 207 190 107 52 137 193 56 154

Kr6 8 65 5 177 249 146 72 62 34 178 193 159 241 80 16 28

Kr7 227 138 75 54 182 169 171 227 201 130 206 167 76 93 138 237

Kr8 138 209 104 62 100 131 145 151 1 48 196 160 100 38 205 4

Kr9 11 71 115 253 226 12 113 112 71 184 109 36 38 254 197 174

Kr10 26 195 103 253 37 137 78 27 160 215 203 33 97 167 52 109

5.8 Algorithm Based on FNT

126

Table 5.17: Round keys generation using second technique based on FNT

Kc 68 101 108 108 32 76 97 112 116 111 112 180 25 133 241 17

Kr1 207 224 189 40 43 242 147 72 190 93 1 112 74 212 26 140

Kr2 45 29 83 65 129 150 43 221 169 179 173 32 78 197 124 48

Kr3 158 157 114 141 109 91 174 155 77 55 94 71 116 112 198 64

Kr4 52 23 214 48 255 54 91 173 228 121 180 66 248 25 147 43

Kr5 146 126 79 1 173 40 209 58 217 31 90 204 87 186 3 63

Kr6 179 249 99 95 135 113 100 208 11 157 72 171 116 21 180 204

Kr7 34 152 256 4 149 70 43 63 185 131 162 122 51 66 154 21

Kr8 110 26 98 29 118 34 233 93 210 227 177 40 165 51 243 60

Kr9 229 254 153 137 71 39 144 75 188 128 67 122 173 254 39 233

Kr10 111 37 53 104 248 150 150 48 138 50 22 112 22 7 38 117

Table 5.18: Encryption step for algorithm based on FNT

1 B l u e L i n e s

2 66 108 117 101 32 76 105 110 101 115

3 66 108 117 101 32 76 105 110 101 115 1 0 0 0 0 0

5 134 209 225 209 64 152 202 222 217 226 113 180 25 133 241 17

6 129 226 61 91 158 188 137 164 210 152 232 225 59 239 174 225

7 17 198 254 149 169 32 124 7 247 228 105 71 38 198 96 221

8 126 36 105 6 153 34 239 2 90 82 215 236 187 200 130 102

9 193 69 245 22 136 88 139 170 38 94 157 74 90 117 187 248

10 102 25 11 248 84 172 42 193 42 78 47 124 245 27 11 106

11 51 136 152 226 27 214 166 99 215 251 245 140 242 72 57 133

12 105 233 91 137 49 197 94 61 143 114 11 252 226 252 150 1

13 201 114 1 174 104 78 213 48 143 213 197 135 45 246 102 248

14 227 164 108 6 238 190 102 31 60 94 33 247 219 186 33 16

15 20 227 127 87 112 107 40 104 50 209 19 58 68 239 28 236

16 ã W p k (h 2 Ñ : D ï ì

17 M ‘ ? w Ð « š 8 [Õ È ‚ Š

5.8 Algorithm Based on FNT

127

Table 5.19: Three rounds encryption based on FNT using keys from first technique

 Round 1 Round 2 Round 3

R
o
u
n
d
’s

 I
n
p
u
t 134 64 217 25 129 158 210 59 17 169 247 38

209 152 226 133 226 188 152 239 198 32 228 198

225 202 113 241 61 137 232 174 254 124 105 96

209 222 180 17 91 164 225 225 149 7 71 221

E
le

m
en

ts
 S

u
b
.

68 9 53 212 12 11 181 226 130 211 104 247

62 70 152 151 152 101 70 223 180 183 105 180

248 116 163 161 39 167 155 228 187 16 249 208

62 29 141 130 57 73 248 248 42 197 160 193

S
h
if

ts
 T

ra
n
sf

. 62 116 152 212 57 167 70 226 42 16 105 247

68 29 163 151 12 73 155 223 130 197 249 180

62 9 141 161 152 11 248 228 180 211 160 208

248 70 53 130 39 101 181 248 187 183 104 193

V
ar

ia
b
le

 A
d
d
.

62 236 152 212 57 83 70 226 42 40 105 247

68 76 163 151 12 180 155 223 130 187 249 180

62 74 141 161 152 132 248 228 180 72 160 208

248 13 53 130 39 203 181 248 187 238 104 193

N
M

N
T

148 37 23 40 179 12 75 219 177 223 117 165

201 247 4 77 56 197 21 31 232 250 12 26

181 71 225 28 246 167 40 155 106 157 60 140

187 122 158 11 157 166 26 64 208 32 117 134

R
o
u
n
d
 K

ey
 238 121 187 19 95 157 172 76 206 187 230 22

25 198 148 162 142 92 207 167 61 41 70 174

137 66 7 146 8 214 65 198 256 82 155 247

161 42 67 214 249 98 45 157 55 227 119 225

A
d
d
in

g
 K

ey
 129 158 210 59 17 169 247 38 126 153 90 187

226 188 152 239 198 32 228 198 36 34 82 200

61 137 232 174 254 124 105 96 105 239 215 130

91 164 225 225 149 7 71 221 6 2 236 102

5.9 Conclusions

128

The algorithm can also be used efficiently to encrypt images, Figure 5.4 shows an

example of the encryption of a medical image, where the image in Figure 5.4.b is the

result of the encryption of the image in Figure 5.4.a, and the image in Figure 5.4.c is the

decrypted image which is exactly the same as the original using the correct key. While

in Figure 5.4.d the encrypted image is decrypted with the correct key. However, one of

the key bits is flipped, and the decrypted image is totally different from the original.

a. Original image

b. Encrypted image

c. Decrypted image with the correct key

d. Decrypted image with incorrect key

Figure 5.4: Image encryption/decryption with correct/incorrect key based on FNT

5.9 Conclusions

A new iterated symmetric-key block cipher based on the NTT has been designed and a

number of test vectors have been run to verify its correctness. The flexibility of the

design makes the cipher suitable for implementation on different platforms and levels of

security required. The cipher has a variable block size and key length, with a size range

5.9 Conclusions

129

of (16, 32, 64, 128, or 256)×P, where the word length P can be 7, 31, 61, or 127. The

possibility that the system can secretly select an appropriate block size and word length

increases the security of the overall system by hiding those parameters from the

attacker. The cipher is fully parameterised for word length, key length and block size.

Even the number of rounds, although identified here as ten, it can be changed to adhere

to security requirements, so as to ensure practical usage for the proposed lifetime. The

general structure of the cipher is based on the SPN, which alternately implementing

confusion layers represented by the S-boxes and diffusion layers which process the

NTT to provide a high local diffusion, in addition, to the shifts transformation to

disperse the elements.

130

Chapter 6

Cryptanalysis

In this chapter the main types of cryptanalytic attacks, namely those arising from the use

of differential and linear cryptanalysis, are described and considered in relation to the

proposed NMNT based cipher. The chapter is organised as follows: after the

introduction a classification of types of attacks is presented in section 6.2. Then, in

section 6.3 the criteria of attacks are listed while in sections 6.4 and 6.5 general

descriptions of differential and linear cryptanalysis are given, respectively. Section 6.6

discusses in detail the differential and linear cryptanalytic attacks on the proposed

algorithm. Sections 6.7-6.9 explain related-key, slide and brute-force attacks,

respectively. Weak keys are discussed in section 6.10, and finally the conclusions of the

chapter are presented in section 6.11.

6.1 Introduction

The objective of an attack is to recover a plaintext from a given ciphertext without prior

knowledge of a key, or it may attempt to find a cipher key in order to recover all

ciphertexts encrypted with this key. Generally, a system is considered broken if the

cryptanalyst can succeed in recovering the plaintext having used less computational

6.2 Classification of Attacks

131

effort than that required for an exhaustive key search, even if this success is only

theoretical, since as unfeasible amount of data, memory or time could be required.

Therefore, the cryptanalyst’s efforts are focused on analysing the cipher in order to

search for possible weaknesses that could be exploited in attacking it at a level of

complexity less than an exhaustive key search [109].

Two well-known powerful types of attacks can be considered: differential and

linear cryptanalysis. Differential cryptanalysis [43] is a chosen-plaintext attack which

mainly observes the differences in ciphertext pairs as a function of a particular

difference in a plaintext pair. This can then be exploited to allocate probabilities to

potential keys. On the other hand, linear cryptanalysis [56] is a known-plaintext attack

which tends to construct an expression of linear approximations for a given algorithm,

resulting in a high probability of estimating one or more of the key bits.

Consideration of these two types of attack plays a crucial role in the design and

development of the infrastructure of the cipher ranging from selecting the components

and their order to producing the final model. The possibility of other types of attacks

may later require a minor modification to the final design [3] or the addition of extra

rounds [110].

Resistance to differential and linear cryptanalysis have now almost become

benchmarks in assessing the robustness of an algorithm. Hence, for any suggested

algorithm, a verification of robustness against such attacks is considered essential.

6.2 Classification of Attacks

In chapter 2, attacks were classified on the basis of what resources are available to the

cryptanalyst, considering that the cryptanalyst has full details of the algorithm. In this

section attacks are classified in another way, based on additional information related to

the physical properties of the implementation. So, in general, attacks can be classified

into three categories as follows:

1. Brute-force attacks

This type of attack can be applied to any block cipher regardless of its strength.

It does not depend on the internal structure of the cipher, but instead the attacker

considers the cipher as a black box. The complexity of such attacks depends on

the length of the key. The attack, also known as an exhaustive key search,

requires one or a few known plaintext-ciphertext pairs encrypted with the same

key. The key will be recovered by trying every possible key until the correct text

6.2 Classification of Attacks

132

is obtained. In the worst cases, all possible keys would be checked, i.e. 2
nk

,

where nk is the number of key bits, and on average half of all possible keys are

tried until the key is recovered, 2
nk-1

. Therefore the key space of the system

should be large enough to frustrate this attack, and this represents the upper

bound for the security of the system. The lower bounds for computationally

equivalent key sizes for different cryptosystem have been recommended with an

acceptable security margin for the years ranging from 1982 to 2050 [111], as

shown in Table 6.1. The authors of this study predicted that the computational

complexity required to attack an 86-bit symmetric key in 2020 would be

considered impracticable, as was the case with the DES in 1982.

Table 6.1: Equivalent key sizes

Year
Symmetric Key

Size

Classical Asymmetric

Key Size

Elliptic Curve Key

Size

1982 56 417 105

1990 63 622 117

2000 70 952 132

2010 78 1369 146

2020 86 1881 161

2030 93 2493 176

2040 101 3214 191

2050 109 4047 206

Despite the recommended key lengths cited in Table 6.1 [111], current

cryptosystems have larger key spaces, providing more security. In the current

standard the AES, the key space is 128-bit and it can support 192 and 256-bit.

Table 6.2 shows the time required to recover a key for different algorithms

and various key spaces as calculated in a subsequent study [12]. The results in

column 3 are calculated by assuming that each decryption is performed in 1

microsecond, whereas the results in the right-hand column consider that the key

can be recovered by processing 1 million decryptions per microsecond,

assuming that the operations are performed in parallel with access to a network

with a huge number of machines. It is clear from the results that the DES

algorithm can currently be subject to exhaustive key search attacks and,

6.2 Classification of Attacks

133

accordingly, it is no longer considered secure. The other calculations are for the

AES and for the proposed algorithm, where for the latter the results are

computed for a default word length of P = 7. For longer words even longer times

are obtained.

Table 6.2: Require time for exhaustive key search

Algor.
Key size

(bits)
Key Space

Time required at

1 decryption/µs

Time required at

10
6
 decryption/µs

DES 56 2
56

 = 7.2 × 10
16

 2
55

 µs = 1142 years 10.01 hours

AES

128

2
128

 = 3.4 × 10
38

2
127

 µs = 5.4 × 10
24

years

5.4 × 10
18

 years

192 2
192

 = 6.3 × 10
57

 2
191

 µs = 9.9 × 10
43

years 9.9 × 10
37

years

256 2
256

 = 1.2 × 10
77

 2
255

 µs = 1.8 × 10
63

years 1.8 × 10
57

 years

NMNT

112

2
112

 = 5.2 × 10
33

2
111

 µs = 8.2 × 10
19

years

8.2 × 10
13

 years

224 2
224

 = 2.7 × 10
67

 2
223

 µs = 4.3 × 10
53

years 4.3 × 10
47

 years

448 2
448

 = 7.3 × 10
134

 2
447

 µs = 1.2 × 10
121

years 1.2 × 10
115

years

896 2
896

 = 5.3 × 10
269

 2
895

 µs = 8.4 × 10
255

years 8.4 × 10
249

years

1792 2
1792

 = 2.8 × 10
539

 2
1791

 µs = 4.4 × 10
525

years 4.4 × 10
519

years

2. Shortcut attacks

Shortcut attacks are concerned with the internal structure of the cipher. The

attacker mathematically analyses the interior components of the cipher to

diagnose undesirable probabilistic characteristics that can be exploited in

attacking the system in an attempt to deduce the key being used. The well-

known attacks of differential and linear cryptanalysis fall into this category.

3. Side-Channel attacks

This attack is also known as an implementation attack, exploiting the physical

properties of the cipher’s implementation in addition to its mathematical

characteristic. For instance, a timing attack [112] investigates the execution time

of the algorithm in order to derive the key. This type of attack is applicable to a

cipher if the execution time is not the same for all processed data, but is a

function of the data itself and/or the key. Another type of such an attack is power

6.3 Criteria of Attack Success

134

analysis [113] which derives key information by considering the power

consumption of the machine that is processing the encryption algorithm.

6.3 Criteria of Attack Success

The success of an attack is evaluated based on three criteria: the time, memory and data

complexity required to conduct the attack successfully [114].

a. Time complexity refers to the number of computational steps required to attack

an algorithm successfully.

b. Memory complexity concerns the amount of memory necessary for processing

the attack on an algorithm.

c. Data complexity is the number of data items of known, chosen or adaptively

chosen plaintext and/or ciphertext required by the cryptanalyst to attack the

algorithm effectively.

Accordingly, an attack is considered successful and the cipher is considered broken

if the key can be recovered in a period of time shorter than would be required for an

exhaustive key search, i.e. requiring time complexity of significantly less than 2
nk

,

where nk denotes the number of key bits. On the other hand, the cipher is considered

partially broken if part of the plaintext is revealed in the same time period.

In a similar manner, the cipher can be characterised by encrypting all different

plaintexts with the same key, this lead to the determination of an upper bound of 2
nb

 for

the data complexity to a successful attack, where nb is the block length in bits.

According to the above, an attack is considered successful if it requires a time

complexity of significantly less than 2
nk

 or a data complexity of significantly less than

2
nb

 [114].

It is also possible to assess the robustness of an algorithm by quoting the maximum

number of rounds an attacker has successfully broken the reduced-round version of the

cipher. For instance, the AES algorithm has been attacked with a maximum of 7 rounds

for reduced-round version AES-128 with 2
110

 time complexity and 2
106

 data complexity

[49], a maximum of 8 rounds for reduced-round AES-192 with 2
185

 time complexity

and 2
126

 data complexity [50], and also 8 rounds for reduced-round AES-256 with 2
209

time complexity and 2
126

 data complexity [50].

6.4 Differential Cryptanalysis

135

6.4 Differential Cryptanalysis

Differential cryptanalysis is one of the most powerful types of attack against block

ciphers, and was initially proposed by Biham and Shamir in 1990 [43] as a method of

attacking the DES algorithm and a variety of DES-like cryptosystems.

Differential cryptanalysis is a chosen-plaintext attack which uses only the resultant

ciphertext to derive the key; it requires a large number of plaintext-ciphertext pairs with

a particular input difference to allocate the right values to the key bits. The technique

investigates the consequence of certain differences in plaintext pairs on differences in

the resulting ciphertext pairs, which can be exploited to assign probabilities to the

values and locations of possible key bits.

The mechanism used in the attack can be described as follows. Firstly, an n-round

characteristic with high probability has to be built. An n-round characteristic represents

the values of difference gathered from XORing a pair of plaintexts, then XORing its

resultant ciphertexts, and finally XORing its inputs to each round and its outputs from

each round. The probability of the characteristic is then the probability that a plaintext

pair with a particular difference has the round and ciphertext differences represented in

the characteristic. Secondly, from the characteristics an intermediate difference is

assumed at the input of the last round (in general) for each pair. This value along with

the absolute value of the output pairs determines the number of key bits to be counted.

If the assumed value and the absolute value match, then this pair is called the ‘right

pair’, which suggests a number of right and wrong subkey values. The number of

suggested values differs from pair to pair. Each suggested value is assigned to a

counting table and, after processing a sufficient number of pairs, the right subkey can be

identified since its value is suggested more frequently. Those pairs whose values of

absolute output do not match the assumed values are called ‘wrong pairs’, and usually

their suggested values are incorrect as they suggest random values.

An essential requirement for this attack to be successful is to find a high probability

characteristic, in addition to provide a sufficient number of ciphertext pairs.

Differential cryptanalysis has succeeded in breaking the full DES version with a

complexity of 2
47

 for chosen plaintext, which is less than that needed in an exhaustive

key search which required in the worst case 2
56

 steps [40]. The attack also succeeded in

breaking a 4-round reduced version of the current standard AES with a time complexity

of 2
40

 [115].

6.5 Linear Cryptanalysis

136

6.5 Linear Cryptanalysis

Linear cryptanalysis [56] is a known-plaintext attack. It approximates the cipher in a

linear manner by constructing expressions of an effective linear approximation for the

entire algorithm with a high probability of identifying one or more of the key bits. The

expression of linear approximation that the attacker seeks to construct is shown in

equation 6.1. For a successful attack, the bias for a given expression should be large

enough, that is, the probability should be away from 1/2. The bias, which represents the

effectiveness of equation 6.1, is shown in equation 6.2.

 (6.1)

 (6.2)

where PT, CT and K stand for the plaintext, ciphertext and key, respectively.

[] denotes the bitwise XORing of a number of bits in fixed bit locations.

 and Pr represent the bias and probability of the expression.

Two algorithms were proposed in a previous study [56] for identifying the key bits

from given expressions of a linear approximation holding a high probability. The

concept of the two algorithms is the same where the algorithm counts the number of

pairs from the total number of pairs that makes the left side of equation 6.1 equal to

zero. Then the bit value of the key can be deduced based on the maximum likelihood

method. In the second algorithm more than one bit from the key bits can be deduced

resulting in practice in a more efficient algorithm.

Linear cryptanalysis has succeeded in breaking the full DES cipher by finding 14-

bit of the key using 2
47

 known-plaintexts, where the remaining key bits can be

recovered completely at a level of complexity less than that needed for an exhaustive

key search.

For the AES algorithm, it has been concluded [116] that linear cryptanalysis can be

effective in deducing key bits only for the reduced-round version and up to the first

three rounds, due to the small bias of its S-box.

6.6 Differential and Linear Cryptanalytic Attacks

137

6.6 Differential and Linear Cryptanalytic Attacks

The nature of differential and linear cryptanalysis, as explained in sections 6.4 and 6.5

has been taken into consideration in the present design. The robustness of the algorithm

against these two types of attacks has been examined based on the calculation of two

main parameters: the non-linear properties of all of the S-boxes involved; and the lower

bounds for the number of active S-boxes at each round. The S-box is considered active

if its input difference pattern or output selection pattern are non-zero.

The proposed cipher is designed based on the wide trail design strategy [3]. This

ensures that both the maximum probability of the differential characteristics and the

IOCmax of the linear characteristics are low. To achieve this, it is important to design an

S-box with highly non-linear properties, such that the DPPmax and the IOCmax are both at

a minimum, in addition to finding a mechanism to maximise the number of active S-

boxes [3].

In order to build a system which is secure against differential cryptanalysis, the

probability of the characteristic should be smaller than 2
1-nb

, where nb is the block size

in bits. To achieve this the number of rounds should be chosen in such a way that there

are no differential characteristics with a weight lower than nb [3], where a differential

characteristic consists of a sequence of difference patterns whose weight represents the

sum of the weights of all patterns concerned. In other words, the weight of the

differential characteristic can be computed by summing the weights of all active S-

boxes involved. This can be reformulated as the result of multiplying the number of

active S-boxes and the minimum differential weight per S-box.

Furthermore, the system can resist linear cryptanalysis if the amplitude of the input-

output correlation is smaller than 2
-nb/2

. This can be achieved by increasing the number

of rounds such that there are no linear characteristics with a correlation over nk
-1

2
-nb/2

[3], where nk stands for the key length in bits. Similarly to the differential characteristic,

a linear characteristic consists of a sequence of patterns whose weight represents the

sum of the weights of all patterns concerned. The weight of the linear characteristic can

be computed by summing the weights of all active S-boxes involved. Therefore, it is the

result of multiplying the number of active S-boxes and the minimum correlation weight

per S-box.

Therefore, to construct a secure system, it is required first to count the number of

rounds necessary to make the system secure against differential and linear cryptanalysis,

and then to add a few additional rounds to guard against other possibly attacks and for

6.6 Differential and Linear Cryptanalytic Attacks

138

security margins. For instance, the analysis of the security of the AES algorithm with a

128-bit key length indicated that the algorithm is secure against differential and linear

cryptanalysis from round four; however a saturation attack [117] can break the reduced-

rounds versions up to six rounds. Hence, additional rounds are added that provide

double full diffusions as a security margin, making in total 10 rounds.

In order to determine the number of rounds necessary to make the cipher secure

against differential and linear cryptanalysis, it is first required to calculate the non-linear

properties of all S-boxes involved. This can be achieved, as explained in Chapter 4, by

building up the XOR distribution and linear approximation tables. From these, the

DPPmax and the IOCmax can be calculated. These two values have already been

computed in Chapter 4 for the S-boxes concerned, which are the 7×7 S-box and the 8×8

S-box. For the 7×7 S-box, the DPPmax = 2
-6

 and the PBmax = 2
-3.678

 or the IOCmax = 2
-2.678

.

For the 8×8 S-box, the DPPmax = 2
-6

 and PBmax = 2
-4

 or the IOCmax = 2
-3

.

In the proposed cipher the arithmetic operations are performed modulo Mp, because

the value of the modulus is 2
P
-1, hence there is a possibility that a value of 2

P
 will

appear after mapping the elements through the S-boxes. Therefore, to avoid such a

possible problem from arising, all S-boxes involved are modified so that the maximum

value is swapped to map to itself in order to prevent its appearance after mapping.

The swapping in the 7×7 S-box and its inverse is as follows:

 s_box(82) = 44; inv_s_box(44) = 82;

 s_box(127) = 127; inv_s_box(127) = 127;

For 8×8 S-box and its inverse the swapping is as follows:

 s_box(125) = 22; inv_s_box(22) = 125;

 s_box(255) = 255; inv_s_box(255) = 255;

Although one element is only swapped at each S-box, the non-linear properties then

need to be recalculated since this change could have a positive or negative effect on

those properties. Accordingly, the XOR distribution and linear approximation tables for

both the 7×7 S-box and the 8×8 S-box have been rebuilt, and the DPPmax and the IOCmax

are recalculated. For the 7×7 S-box, the DPPmax is 2
-5

, or in weight form it is equal to 5,

observing that the weight is the negative of the binary logarithm of DPPmax. The IOCmax

from the linear distribution table is 20/128, equivalent to 2.678 in weight form. For the

6.6 Differential and Linear Cryptanalytic Attacks

139

modified 8×8 S-box, the DPPmax is 6/256, or in weight form equal to 5.415, and the

IOCmax is 36/256, equivalent to 2.83 in weight form. For larger values of P, the weight

is calculated by summing the weights of the S-boxes involved. It is clear from the

results that the swapping of elements has slightly reduced the non-linear properties of

the S-boxes. This, however, cannot be avoided yet at the same time the resulting non-

linear properties can still be considered to be good.

Once the non-linear properties have been calculated, it is then possible to compute

the minimum number of active S-boxes required to make the system secure against

differential and linear cryptanalysis. This can be achieved directly using equations 6.3

and 6.4, respectively, which are derived from [3]. The minimum number of active S-

boxes required for different block sizes is shown in Table 6.3:

 (6.3)

 (6.4)

where Bmin is the minimum active S-boxes for differential (DC) and linear

(LC) cryptanalysis, nb is the block size, nk is the key size, and W is the

weight of the DPPmax and IOCmax.

The next step is to determine the lower bounds for the number of active S-boxes at

each round; this can be achieved by using equation 3.18. This step is implemented by

processing only the linear parts of the algorithm in addition to excluding the initial key

addition and the round key addition layers. The simulation results for an input weight of

2 and for different block sizes are shown in Table 6.4. The input weight of 2 was chosen

since it produces the worst level of diffusion.

By comparing the results in Table 6.4 with those in Table 6.3, it can be concluded

that the algorithm is secure against differential and linear cryptanalysis from round three

for all block sizes.

The simulation results also confirm that no 3-round differential characteristic and

linear characteristic exists with a probability greater than the approximate results listed in

Table 6.5 for different block sizes and word lengths.

6.6 Differential and Linear Cryptanalytic Attacks

140

Table 6.4: The lower bounds of the number of active S-boxes per round

Round

Number

Block Size

16×P 32×P 64×P 128×P 256×P

1 2 2 2 2 2

2 10 18 50 98 226

3 26 50 112 223 477

4 42 81 174 350 728

5 57 113 238 477 947

6 73 144 302 603 1197

7 88 176 365 729 1449

8 104 208 429 855 1701

9 120 239 493 980 1951

10 135 271 557 1105 2204

Table 6.5: 3-Round differential and linear characteristics

Block Size P = 7 P = 31 P = 61 P = 127

DPP IOC DPP IOC DPP IOC DPP IOC

16 × P 2
-130

2
-70

2
-552

2
-290

2
-1094

2
-577

2
-2242

2
-1173

32 × P 2
-250

2
-134

2
-1062

2
-558

2
-2104

2
-1109

2
-4311

2
-2256

64 × P 2
-560

2
-300

2
-2379

2
-1251

2
-4712

2
-2485

2
-9657

2
-5054

128 × P 2
-1115

2
-597

2
-4738

2
-2490

2
-9383

2
-4947

2
-19228

2
-10064

256 × P 2
-2385

2
-1277

2
-10134

2
-5327

2
-20070

2
-10582

2
-41129

2
-21526

Table 6.3: Minimum number of active S-boxes required

Block Size

Minimum number of active S-boxes required to make the

system secure against:

Differential cryptanalysis Linear cryptanalysis

16×P 23 24

32×P 45 45

64×P 90 87

128×P 179 171

256×P 359 339

6.6 Differential and Linear Cryptanalytic Attacks

141

To evaluate the results obtained, the same procedures are followed with the

Rijndael AES algorithm, Table 6.6 represents the number of active S-boxes necessary to

make the Rijndael AES secure against differential and linear cryptanalysis, and Table

6.7 gives the simulation results for the lower bounds of the number of active S-boxes at

each round, for an input weight equal to 2. By comparing the results in Tables 6.6 and

6.7, it can be concluded that, for a block size of 128-bit, four rounds is enough to secure

the algorithm from these two attacks, while for a block size of 256 a further round is

required. This is the reason for increasing the number of rounds with larger key or block

sizes with the Rijndael AES, which is not the case with the proposed algorithm.

Table 6.6: Minimum number of active S-boxes required for Rijndael AES

Block Size

Minimum number of active S-boxes required to make the

system secure against:

Differential cryptanalysis Linear cryptanalysis

128 22 24

256 43 46

Table 6.7: The lower bounds of the number of active S-boxes per round for

Rijndael AES

Round Number
Block Size

128 256

1 2 2

2 5 5

3 17 17

4 30 43

5 32 74

6 40 105

7 52 128

8 60 136

9 62 138

10 70 146

6.6 Differential and Linear Cryptanalytic Attacks

142

In Figure 6.1 the results from both the proposed algorithm and the Rijndael AES

algorithm for all block sizes are represented graphically. The horizontal lines represent

the boundaries for differential and linear cryptanalysis, which are nearly the same for

both algorithms. The system is considered secure when the curves pass these

boundaries. It is clear from the figure that the proposed algorithm exhibits good

diffusion and is secure against both differential and linear cryptanalysis from round

three, regardless of block size.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

N
u
m

b
er

 o
f

A
ct

iv
e

S
-b

o
x

es

N
u
m

b
er

 o
f

A
ct

iv
e

S
-b

o
x

es

Round Numbers

a. Block size: 16 elements

DC

LC

DC

LC

NMNT

AES

NMNT

AES

Round Numbers

b. Block size: 32 elements

6.6 Differential and Linear Cryptanalytic Attacks

143

Figure 6.1: Minimum number of active S-boxes for different rounds and block sizes

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

N
u
m

b
er

 o
f

A
ct

iv
e

S
-b

o
x

es

N
u
m

b
er

 o
f

A
ct

iv
e

S
-b

o
x

es

DC

LC

DC

LC

NMNT

DC

LC

NMNT

NMNT

N
u
m

b
er

 o
f

A
ct

iv
e

S
-b

o
x

es

Round Numbers

c. Block size: 64 elements

Round Numbers

d. Block size: 128 elements

Round Numbers

e. Block size: 256 elements

6.9 Brute-Force Attacks

144

6.7 Related-key Attacks

A different type of attack had been developed [118] which is based on the structure of

the key schedule algorithm. This attack exploits the relationship between the keys to

attack the cipher, and it demonstrates the importance of the key schedule algorithm to

the overall security of the cipher so that care in this regard should be taken in the design.

The attack was successful in attacking the LOKI [34] and Lucifer [119] algorithms.

However it does not work with the DES [2] algorithm since the shift pattern used in the

key schedule algorithm differs from round to round. In the AES [3] algorithm, round

numbers are added in the process of the generation of the key schedule algorithm, which

eliminate symmetries so as to prevent potential related-key attacks.

In the proposed cipher, the key schedule algorithm is designed to be strong enough

to survive against this type of attack. It is designed with high diffusion and non-

linearity, and in addition each round key generated depends on all previously generated

keys as well as the cipher key and the round number. Together these measures exclude

the possibility of weak-key and related-key attacks.

6.8 Slide Attacks

The slide attack [120, 121] is a powerful attack applicable to iterative block ciphers with

a high degree of self-similarity, where the attack is independent of the number of

rounds. In order to build a cipher resilient to such an attack, it is important to eliminate

symmetry in the key schedule or in the round transformation in the main algorithm.

The proposed cipher is designed to be immune to such an attack by adding a

variable addition layer in the round functions. The value of the variable is a function of

the row number, the round number and the block number, and the value changes

accordingly from round to round as well as from block to block. In addition, a round

constant is added in the key schedule algorithm.

6.9 Brute-Force Attacks

The complexity of exhaustive key search attacks depends on the length of the cipher

key, which is the key length to the power of 2 or on average half of this amount. Table

6.8 summarises the general levels of complexity associated with the exhaustive key

search for different block sizes and variable word length.

6.11 Conclusions

145

Table 6.8: Exhaustive key search complexity

Block Size 16×P 32×P 64×P 128×P 256×P

Complexity 2
16×P

 2
32×P

 2
64×P

 2
128×P

 2
256×P

Average 2
(16×P)-1

 2
(32×P)-1

 2
(64×P)-1

 2
(128×P)-1

 2
(256×P)-1

6.10 Weak Keys

Weak keys are those which produce output with detectable weaknesses, such as could

occur if the non-linear parts of the cipher are key-dependent, which is not the case with

the proposed cipher. A good example of weak keys are those found in the IDEA [122].

6.11 Conclusions

The security of the proposed algorithm against both differential and linear cryptanalysis

has been considered, and security has been evaluated against the upper bounds of the

probabilities of maximum differential characteristics and maximum linear

characteristics, based on the DPPmax, IOCmax, and the minimum numbers of active S-

boxes. The simulation results confirm that the cipher is secure against such attacks from

round three regardless of the block sizes and word lengths

146

Chapter 7

Architecture Design and FPGA Implementation

In this chapter efficient hardware architectures for the proposed cipher are designed and

implemented using Xilinx FPGA technology. The chapter is organised as follows.

Section 7.1 gives a brief introduction to the topic. Section 7.2 lists the specifications of

the target FPGA device. The design of the system is described in detail in section 7.3

and its correctness is verified in section 7.4. The implementation of the system is carried

out in section 7.5 and device configuration is outlined in the following section. The

results are discussed in section 7.7, and the complexity of the design is mentioned in

section 7.8. Finally, the conclusions of the chapter are drawn in section 7.9.

7.1 Introduction

A hardware description language (HDL), such as VHDL or Verlog is usually used in the

design flow to program FPGA boards. However, in order to reduce the complexity and

design time, Xilinx System Generator is used, which allows a rapid development of the

algorithm using the Matlab and Simulink data flow environment. System Generator is a

powerful development tool that allows the designer to model a design entirely in a

graphical environment. It consists of a Simulink library called the Xilinx Blockset

which has direct mapping to HDL. The steps in the design are illustrated below.

7.3 System Design

147

7.2 Device Specifications

The target device is Virtex-6 XC6VLX130T-2FF484, which is chosen based on the

amount of resources the design required. This device is implemented in 40nm CMOS

process technology with a core voltage of 1.0V. It is volatile, since the device is based

on SRAM technology, and therefore device configuration file must be reloaded

whenever the FPGA is powered up.

The internal structure of this device can be summarised as follows. Each

configurable logic block (CLB) consists of two slices, and each slice contains 4 LUTs, 8

flip-flops, a multiplexer and arithmetic carry logic. The LUT can be configured as either

6-input LUT (64-bit ROMs) with one output, or as two 5-input LUTs (32-bit ROMs)

with 2 outputs. The LUTs of up to half of the available slices also can be used as a

distributed 64-bit RAM or as a 32-bit shift register (SRL32) or dual SRL16s. The device

consists of the following resources:

 10,000 CLB (20,000 Slices and 1740 Kb Distributed RAM).

 480 DSP48E1 Slices, each containing a 25×18 bit 2’s complement multiplier,

adder and a 48-bit accumulator, which can operate at 600 MHz.

 9504 Kb Block RAM Blocks; each Block RAM is either 36Kb or 18Kb.

 5 CMTs (Clock Management Tiles).

 4 Ethernet MACs (Media Access Control).

 20 GTX Transceivers (ultra-fast serial data transmission that combines

transmitter and receiver and can operate at a data rate up to 6.6 Gbits/sec).

 15 I/O Banks (40 pins per bank).

7.3 System Design

The proposed algorithms are efficiently designed using Xilinx FPGA System Generator

which is a visual programming environment. This is a system-level design tool that

allows system developer to utilise graphical data entry.

7.3.1 Design of the Components

The description of all components and layers involved in the design of the encryption

and decryption modules as well as in the generation of the round keys for block size of

16×7 bits are illustrated below.

7.3 System Design

148

 Padding and Preparing the Plaintext

In this layer the plaintext is read from memory and converted from serial to parallel

form with a predetermined block size of 12 bytes, where the plaintext should enter the

cipher as a sequence of full blocks. The last block is padded with a byte of the value of

1 as an indication of the end of the message, and then it is padded with a number of

bytes with a value of 0 if necessary to fill the block. This layer is illustrated in Figure

7.1.

Figure 7.1: Preparing the plaintext

First of all, sufficient locations are reserved for the plaintext and the padded bytes

in the Xilinx Single Port RAM shown in Figure 7.1. This is achieved as shown in Figure

7.2 by setting the depth of the memory according to the following formula:

 . These two extra bytes are added to the length of the message,

so as to take into account the insertion of a byte which indicates the end of the message

and another which is imposed as a result of that insertion. The actual values of the

plaintext are assigned to the memory through the initial value vector.

7.3 System Design

149

Figure 7.2: Memory setting

The Xilinx Counter block, which is titled ‘Counter1’ in Figure 7.1, is used to

allocate locations in the memory for read/write data. It counts from 0 up to the total

number of bytes in the plaintext including the padded bytes. The setting of the counter

is shown in Figure 7.3, for instance the parameter ‘Count to value’ is set according to

the same formula used in setting the depth of the memory minus 1, as the counter counts

from 0.

The Xilinx Relational block ‘Relational1’ is used as a comparator. It compares the

counter’s value of ‘Counter1’ with the constant ‘Constant1’ whose value is set to the

total number of bytes of the plaintext without considering the padded bytes. If there is

no matching, the data is continuously read from the memory according to the addresses

pointed to by the counter. If they match, that is, at the end of the message, a byte of the

value of 1 is written in the memory at that location. This can be achieved by passing the

value of 1 to the memory read/write control signal to set write mode and to the data

input port to write this value after converting the data type from Boolean to an unsigned

integer number 8-bit in length through the casting block.

The Xilinx Relational block ‘Relational2’ compares the counter’s value of

‘Counter2’ that counts from 0 to 13 with the constant ‘Constant2’ whose value is set to

12 based on the block size which is 12 bytes. Both memory and first counter ‘Counter1’

remain enabled if the value of Counter2 is less than the value in Constant2. This step is

used to make the number of cycles required for reading and converting each input block

from serial to parallel 14 instead of 12 cycles.

7.3 System Design

150

Figure 7.3: Counter1 setting

Figure 7.4: Time division demultiplexer

setting

The bytes of each block are then down-sampled by using the Xilinx Time Division

Demultiplexer block, which accepts input serially and presents it to parallel outputs.

The last two bits from the 14-bit in the frame sampling pattern are set to 0, as shown in

Figure 7.4, therefore only the first 12 input values from each input data frame (block)

are down sampled at a rate of 14. This step, along with that related to Counter2, are

essential to make the required time for reading each input block 14 instead of 12 cycles,

so as to be compatible with the time required for reading one block of key or ciphertext

data.

 Conversion of Elements

In this layer the bytes of the block are converted from 8 to P-1 bits (6-bit). This is

achieved by converting the bytes into a binary form, concatenating them all and then

slicing them into the required length, as shown in Figure 7.5. The Xilinx Concat block

7.3 System Design

151

performs a concatenation of the 12 input bytes of the unsigned integer numbers. The

slicing is then achieved using the Xilinx Slice block, which slices off a sequence of 6-

bit. The result of this operation is a block of 16 elements of 6-bit each. The setting of

the slice block is shown in Figure 7.6, where the parameter ‘Offset of top bit’ is set to 0

for the first sliced element, -6 for the second, -12 for the third, and so on.

Figure 7.5: Conversion of elements

The last step in this layer is to convert the length of the elements from 6 to 7-bit by

inserting a bit with the value of 0 at the most significant bits (MSB) from each element.

This step can be achieved using the Xilinx Convert block (cast), which is set according

to Figure 7.7.

7.3 System Design

152

Figure 7.6: Slice setting

Figure 7.7: Convert setting

 Elements Addition

All arithmetic operations performed in the cipher are modular operations. Since in

NMNT the modulus Mp is a power of 2 minus 1, modular addition is achieved by

adding the carry bit after the addition, as shown in Figure 7.8 [123, 124].

Figure 7.8: Modular addition

For instance, consider the case for P = 7. The modulus is then Mp = 2
7
-1 = 127, and

let a = 100 and b = 30. Accordingly:

In hardware this operation is performed as follows:

100 in binary form is: 1100100

 30 in binary form is: 0011110 +

Their sum : 1 0000010

By adding the carry : 1 +

 0000011 = 3 in decimal form

For FNT the modulus is a power of 2 plus 1, since the modular addition is achieved

by adding the elements and then subtracting the carrier instead [81, 125].

7.3 System Design

153

 Elements Subtraction

In cases where the cipher is based on the NMNT, the modular subtraction is

implemented in exactly the same way as when implementing modular addition, first

negating the subtrahend simply by complementing it, as shown in Figure 7.9.

For instance, for Mp = 127, a = 100 and b = 30,

In hardware this operation is performed as follows:

 30 in binary form is: 0011110

100 in binary form is: 1100100

-30 : 1100001 +

 1 1000101

By adding the carry : 1 +

 1000110 = 70 in decimal form

Figure 7.9: Modular subtraction

For FNT negating is achieved by first complementing the positive integer and then

adding 2.

 Element Substitution

In this layer the elements are non-linearly mapped into other elements through the S-

box. The S-box is represented as a look-up table and stored in a read-only memory

(ROM) using the Xilinx ROM block. The ROM is initialised by storing the values of

the elements of the S-box in the parameter ‘Initial value vector’, as shown in Figure

7.10. For an inverse S-box a different look-up table is used, and accordingly the

parameter ‘Initial value vector’ is replaced by the relevant values.

 Shifts Transform

The elements in the first three columns of the array are cyclically shifted over different

numbers of offset in this layer. In hardware this layer as well as the inverse shifts

transform layer is simply hardwired without involving logics.

7.3 System Design

154

Figure 7.10: ROM setting for S-box

 Variable Addition

In the variable addition layer, the variable values are added to the elements at location

N/4+1 from each row in the array and then the results are multiplied by 2. The value of

the variable is a function of a row number, round number and a block number. The

values of the row and round numbers are pre-computed and added to the intermediate

elements as a constant, then the block number is added to the results, and finally the

output is multiplied by 2, as shown in Figure 7.11. The multiplication is achieved by

using the Xilinx Shift block which shifts the input signal according to the required

direction and offset. In this case it is left-shifted 1-bit and then the outputs of the two

registers are added after slicing them, as shown in Figures 7.12. The setting of the

properties of the Xilinx shift block is explained in Figure 7.13.

 Variable Subtraction

The steps of the variable addition are here processed in reverse order and inverse

functions are used instead. Hence it starts by multiplying the input element by ½, and

then the block number is subtracted from the result which is then subtracted from the

constant as shown in Figure 7.14. Multiplying by ½ is achieved by left-shifting the

elements by 6-bit (2
-1+7

) and then adding the values of the two registers after slicing

them. If the elements are right-shifted 1-bit instead, the outputs are only correct if the

result of their multiplication is below the modulus value.

7.3 System Design

155

Figure 7.11: Variable addition

Figure 7.12: Multiplication by 2

Figure 7.13: Properties setting of Xilinx shift’s block

Figure 7.14: Variable Subtraction

7.3 System Design

156

 New Mersenne Number Transform

In the present work, the NMNT is implemented by applying the split-radix decimation

in time (DIT) algorithm, which was initially introduced for the fast calculation of the

DFT [126]. This algorithm is considered one of the most efficient algorithms in

computing fast transforms. It applies the radix-2 decomposition to even-indexed

samples and radix-4 decomposition to odd-indexed samples of X(k).

Therefore, the calculation of the forward NMNT in equation 3.2 is modified

according to equation 7.1 [127].

 7.1

where Xev (k) and Xod (k) are the even and odd-indexed samples,

respectively, given below:

)()2()2()(2

12/

0

kXnknxkX n

M

N

n

ev

p

 7.2

pM

N

n

N

n

od knnxknnxkX))34(()34())14(()14()(
14/

0

14/

0

 7.3

The Xod (k) in equation 7.3 can be further decomposed as shown in equation 7.4

using the trigonometric identity represented in equation 7.5.

pMnn

nn

od
kkNXkkX

kkNXkkX
kX

)]3()4/()3()([

)]()4/()()([
)(

234134

214114

 7.4

 7.5

Accordingly,)(kX can be written as:

pMnn

nnn

kkNXkkX

kkNXkkXkX
kX

)]3()4/()3()([

)]()4/()()([)(
)(

234134

2141142

 7.6

where is N/2-point 1-D NMNT and and are N/4-

point 1-D NMNTs.

7.3 System Design

157

The other transformations)4/(kNX ,)2/(kNX and)4/3(kNX were also

derived [127]:

pMnn

nn

n

kkNXkkX

kkNXkkX

kNX

kNX

)]3()4/()3()([

)]()4/()()([

)4/(

)4/(

134234

114214

2

 7.7

pMnn

nnn

kkNXkkX

kkNXkkXkX
kNX

)]3()4/()3()([

)]()4/()()([)(
)2/(

234134

2141142

 7.8

pMnn

nn

n

kkNXkkX

kkNXkkX

kNX

kNX

)]3()4/()3()([

)]()4/()()([

)4/(

)4/3(

134234

114214

2

 7.9

The in-place butterfly of the 1-D NMNT for split-radix DIT algorithm is shown in

Figure 7.15 [127].

X(k)

X(N/4-k)

X(k+N/4)

X(N/2-k)

X(k+N/2)

X(3N/4-k)

X(k+3N/4)

X(N-k)

+
+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

+

+

+

+

+

+

+

+

X(k)

X(N/4-k)

X(k+N/4)

X(N/2-k)

X(k+N/2)

X(3N/4-k)

X(k+3N/4)

X(N-k)

+

+

-

+

+

-

+

+

β1(k)

β1(3k)

-β1(k)

-β1(3k)

β2(k)

β2(k
)

β2(3k)

β2(3
k)

Figure 7.15: In-place butterfly of the split-radix DIT for the 1-D NMNT

7.3 System Design

158

The 4-points 1-D NMNT signal flow graph is shown in Figure 7.16 and the

architecture design of the NMNT following this graph is presented in Figure 7.17.

x(0)

x(2)

x(1)

x(3)

X(0)

X(1)

X(2)

X(3)

+

+

+

+

+

-

+

-

+

+

+

+

+

+

-

-

Figure 7.16: 4-points NMNT signal flow graph

Figure 7.17: NMNT design for transform length (N) = 4

The signal flow graph of the 8-points 1-D NMNT is shown in Figure 7.18 and its

architecture design is explained in Figure 7.19.

The top left quarter of the signal flow graph represented in Figure 7.18 is exactly

similar to that in Figure 7.16, hence in the design shown in Figure 7.19 this part is

replaced by a block titled NMNT 4 for transform length 4, which is based on Figure

7.17. The bottom left quarter of Figure 7.18 is designed and combined in a subsystem as

shown in Figure 7.19, and the internal structure of this subsystem is displayed in Figure

7.20.

7.3 System Design

159

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

+
+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

+

+

+

+

+

+

+

+

+

-

+

-

+

-

+

-

+

+

+

+

+

+

+

+

-

-

+

-

β(1)

β(1)

β(1) = -2
(P+1)/2

 = -16 for (P = 7)

Figure 7.18: 8-points NMNT using the split-radix DIT algorithm (Mp = 127)

Figure 7.19: NMNT design for N = 8 using the split-radix DIT algorithm

7.3 System Design

160

Figure 7.20: The internal structure of the Subsystem

In Figure 7.18 the signal x(1)-x(5) as well as x(3)-x(7) are multiplied by β(1), which

has a value of -16. This can be achieved in the design by first negating these signals

using inverters as shown in Figure 7.20 (inverters 2 and 5), and then multiplying by 16.

Because 16 is an integer of a power of 2, this multiplication can be replaced by a left

shift operation with a 4-bit offset.

Finally, the 16-points 1-D NMNT signal flow graph is shown in Figure 7.21 and its

architecture design is presented in Figure 7.22.

x(0)

x(8)

x(4)

x(12)

x(2)

x(10)

x(6)

x(14)

x(1)

x(9)

x(5)

x(13)

x(3)

x(11)

x(7)

x(15)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

X(8)

X(9)

X(10)

X(11)

X(12)

X(13)

X(14)

X(15)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

-

-

-

-

+
+

+

+

+

+

+

+

+

+

+

+

-

-

-

-

+

+

+

+

-

+

+

+

-

-

+

+

+

+

+

+

+

-

+

-

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

-

+

-

+

+

-

-

+

+

-

-

β(N/8)=β(2)

β(N/8)=β(2)

β(N/8)=β(2)

β(N/8)=β(2)

β1(1)

β1(1)

β1(3)

β1(3)

β2(1)

β2(1
)

β2(3)

β2(3
)

β1(1) = 106, β2(1) = -24, β1(2) = β2(2) = -8, β(2) = β1(2)+β2(2) = -16, β1(3) = -24, β2(3) = -21

Figure 7.21: 16-points NMNT using the split-radix DIT algorithm (Mp = 127)

7.3 System Design

161

Figure 7.22: NMNT design for N = 16 using the split-radix DIT algorithm

7.3 System Design

162

The top left quarter of the signal flow graph is an NMNT of length 8, and

accordingly a block of the NMNT with this length is placed in the design as shown in

Figure 7.22.

The bottom left quarter of Figure 7.21 which is represented as subsystem1 on the

design in Figure 7.22 is further described in detail in Figure 7.23.

Figure 7.23: The internal structure of the Subsystem1

The internal structure of Subsystem2 is explained in Figure 7.24 while Subsystem3

has the same structure, swapping the external multiplication blocks with the internal, i.e.

24 and 21.

Multiplying by 24 or 21 can be achieved either by using the Xilinx multiplier block

as shown in Figure 7.25 to multiply the two elements and then the values of the two

registers are combined after slicing them, or by using a sequence of shift and addition

operations. The former option requires 3 latencies, as shown in the parameter setting in

Figure 7.26. The second option costs 0 latency, and can be achieved by decomposing

the constants into a number of integers of the power of 2, and therefore the integer 24

can be decomposed into 16+8 = 2
4
+2

3
 and integer 21 into 16+4+1 = 2

4
+2

2
+2

0
.

7.3 System Design

163

Accordingly, multiplying by 24 can be achieved as shown in Figure 7.27 by left-shifting

the element 4-bit and then the original element is left-shifted 3-bit and the result is

achieved by combining the shifted elements. The same applies for multiplying by 21,

which is achieved by left-shifting the element 4-bit and then the original element is left-

shifted this time 2-bit, the shifted elements are combined and the value of the original

element is added to the combination to achieve the result as illustrated in Figure 7.28.

Figure 7.24: The internal structure of the Subsystem2

Figure 7.25: Modular multiplication

7.3 System Design

164

Figure 7.26: Xilinx multiplier block setting

Figure 7.27: Design for multiplying by 24 Figure 7.28: Design for multiplying by 21

7.3 System Design

165

 Round Transformation

The round transformation, as mentioned in Chapter 5, consists of five layers: element

substitution, shifts transform, variable addition, NMNT, and finally, round key addition.

The design of one round transformation as shown in Figure 7.29 can be achieved by

combining the layers previously described in this section, where the elements of each

layer are processed in parallel. Each S-box block composes of four look-up tables, the

shifts transform is hardwired, and the variable addition block is explained in Figure

7.30. Finally the NMNT blocks are based on the design of Figure 7.17, and the elements

of the intermediate results are added to the round key elements through the round key

block which is explained in Figure 7.8.

The design of the round transformation for the decryption circuit is given in Figure

7.31, which follows the same steps in designing the encryption circuit in reverse order

and inverse functions are used instead. It starts with a round key subtraction which is

the same as addition by negating the subtrahend using an inverter. Then the processing

of the inverse NMNT, this is achieved by implementing the forward NMNT followed

by a multiplication with a 1/N, which is a 5-bit left-shifting (2
-2+7

). This is followed by

the variable subtraction layer as described in Figure 7.32 and inverse shifts transform

which is hardwired. Finally, the inverse S-box which maps elements using the look-up

table.

Figure 7.29: Design of forward round transformation

7.3 System Design

166

Figure 7.30: Design of variable addition layer

Figure 7.31: Design of reverse round transformation (decryption)

7.3 System Design

167

Figure 7.32: Design of variable subtraction layer

7.3.2 Design Based on Loop Unrolling Architecture for Block Size of 16×7-bit

In the design the focus was on throughput rather than on area, and therefore this

architecture has been chosen which duplicates the hardware required to implement each

round. The complete encryption circuit of block size 16×7-bit accompanied by the key

generation is shown in Figure 7.33. The blocks in the bottom row (blue) is the

encryption part, where the first block is used to pad and prepare the plaintext as

illustrated in Figure 7.1. The plaintext is read from memory and converted from serial to

parallel form according to the specified block size. In the following block the elements

are converted from 8 to 6-bit, and then to 7-bit by inserting a bit with the value of 0 at

the MSB of each element, making plaintext blocks ready for processing. This is

explained in Figure 7.5. The third block in Figure 7.33 is the initial key addition layer,

which simply adds the cipher key elements to the elements of the plaintext. The fourth

block up to block thirteen are the rounds transformations presented in Figure 7.29.

These blocks are identical apart from the values of the variable addition layer and the

round keys. The inputs to these blocks as shown in Figure 7.33 are in addition to the

elements from the previous round and the round keys a value from a counter which

represents the value of the block number that is needed in the calculation of the variable

value in the variable addition layer. As this counter counts for the block number, its

7.3 System Design

168

value should be incremented every 14 cycles, and accordingly the parameter explicit

period should be set to 14 in the counter setting window.

Figure 7.33: Algorithm design for encryption based on loop unrolling architecture

After processing all rounds, the elements of the block are converted from the

transform domain length to bytes. This is achieved by concatenating all block elements

and slicing them off into 8-bit each, which is shown in Figure 7.33 by the dark blue

block. In the following final stage, the elements are converted from parallel into serial

form using the Xilinx bus multiplexer block.

The round keys are derived from the cipher key by means of the key schedule

algorithm which is processed on-the-fly in parallel with the encryption algorithm. This

is achieved by processing the blocks in the top row (pink). First the secret key or

password supplied by the user, depending on its length, is either padded or truncated if

necessary to the required key length which is 14-byte. This step is performed in

software by implementing the codes shown in Algorithm 7.1, which is run in the

hardware model by specifying this function in the callback pane of the model

initialisation properties. Next, the 14-byte generated for the cipher key are read from the

memory and converted to parallel form and then to a transform length which is 7-bit for

each element. These steps are performed in the first two blocks in the diagram. After

that, ten rounds of transformation are applied, and at each round one round key is

generated, with the design of the round transformation shown in Figure 7.34.

7.3 System Design

169

function SecretKey = SecretKeyGen

% This function is used to input secret key and pad or truncate its

% length according to the required length

%Input Secret key
Key = double(input('Enter Secret Key up to 14 strings : ', 's'));

while numel(Key) < 2
 Key = double(input('Enter Secret Key up to 14 strings : ', 's'));
end

nc = numel(Key);

if nc > 14
 SecretKey = Key(1:14);
else
 %pad password to the required length rNxNxP/8
 for i= nc+1:14
 Key(i)=mod(Key(i-1)+Key(i-nc),256);
 end
 SecretKey = Key;
end

Algorithm 7.1 Secret Key Generation

Figure 7.34: Design of round transformation for round keys schedule algorithm

7.3 System Design

170

The round transformation used in the design of the key schedule algorithm is

similar to that used in the design of the encryption algorithm. The block number, which

is one of the parameters used in computing the value of the variable in the variable

addition layer, is eliminated. Then, rather than adding a single round key at each round

in the round key addition layer, an accumulation of all previously generated round keys

are added in addition to the cipher key and the round number, which is achieved in the

design by adding a ‘Prev Key Add’ block. In this block, at each round, the value of the

last generated key is added to the values of all previously generated keys.

The design of the decryption algorithm is shown in Figure 7.35. It has the same

structure as that in the encryption algorithm but is processed in reverse order as well as

the order of the rounds key. In addition inverse transformations are used instead. The

ciphertext is read from memory and every 14-byte are converted from serial to parallel,

which is achieved in the first block. In the second block the element length is changed

from bytes to 7-bit. Then ten rounds are processed, and each round block is based on the

round transformation illustrated in Figure 7.31. After that, the initial key is subtracted

from the processed elements. Next, the elements are converted from 7 to 6-bit so as to

remove the 0 bit added at the beginning of each element, and then the elements are

converted to bytes. Finally, the elements are converted from parallel to serial form

representing the resulting plaintext.

Figure 7.35: Algorithm design for decryption based on loop unrolling architecture

7.3 System Design

171

The Xilinx Resource Estimator block shown in Figure 7.35 is used to provide an

estimation of the resources necessary to implement a model in hardware. The other

block, the System Generator (token) is used to ensure control over the system during

simulation and to handle the specified code generation and simulation.

7.3.3 Design Based on Loop Unrolling Architecture for Block Size of 32×7-bit

The design of the round transformation circuits for both encryption and decryption are

shown in Figures 7.36 and 7.37, respectively. The differences between these circuits

and those previously designed for a block size of 16×7-bit shown in Figures 7.29 and

7.31 are that the former involves an NMNT of length 8 instead of 4, and uses nearly

double the resources.

Figure 7.36: Design of round transformation for block size 32×7

7.5 Implementation

172

Figure 7.37: Design of inverse round transformation for block size 32×7

7.4 Verification and Simulation

This step is carried out to verify the correctness of the architecture according to the

specifications in the design. It operates by simulating the model in the Simulik

environment. If the results are unsatisfactory or the simulation is interrupted, for

instance due to unassigned block connections, a design revision is necessary. Otherwise

the design is ready for implementation. To make the process of checking easy to follow

and to correct any errors pointed out by the verification, individual completed functions

have to be verified first, then a combination of functions, until the whole system is

verified.

7.5 Implementation

The following step after verifying the performance of the design is the implementation,

which translates the final design into an HDL code (VHDL or Verilog) or into a form

7.5 Implementation

173

that can be used later to configure the device. This is achieved by clicking ‘Generate’ in

the Xilinx system generator block which automatically processes a sequence of

operations starting from producing a bit-accurate and cycle-true synthesised netlist to

translate, map, and place and route operations.

The parameter specific to the system generator block consists of compilation and

clocking options, as shown in Figure 7.38. Compilation options allow the designer to

choose the appropriate: compilation, part, target directory, synthesis tool, HDL, and the

possibility to create a testbench if required. Compilation specifies the type of output,

which could be Netlist files, bitstream, hardware co-simulation, or timing and power

analysis. The appropriate FPGA device is selected through the part option, and the

possible tools that could be used to synthesise the design are: Synplify Pro, Synplify,

and Xilinx’s XST. Finally, in the HDL option the type of hardware description language

to be used for the compilation of the design is specified, which could be VHDL or

Verilog. In the clocking options, for instance, the designer can set the appropriate

system clock period whether for a single or multi-rate design. In addition, the FPGA

system clock period can be derived from the Xilinx digital clock manager (DCM) input

block period which is an external hardware-defined input.

Figure 7.38: Parameter specific to the system generation block (token)

7.6 Configuration

174

7.6 Configuration

After the FPGA design is completely placed and routed, the final step in the design flow

is to configure the FPGA by generating a bitstream file and downloading it into the

internal memory (PROM) of the target device using the iMPACT software which is part

of the Xilinx tools installation. Once this file is downloaded, the FPGA is configured

every time it is powered up. The procedures for configuring the FPGA device are

illustrated below:

 Run the Generate Programming File from the ISE Project Navigator in the

Processes pane (see Figure 7.39), which in turn will run the Xilinx bitstream

generation program (BitGen) to prepare the design information and produces a

bitstream file to configure the FPGA device. Before running the generation it is

possible to set the properties of the process, such as for example, allow an

encryption option or enable bitstream compression.

 Open ISE iMPACT software which is used to configure the target device as well

as to generate configuration files for the Xilinx FPGA and PROMs. Through the

Boundary Scan add the target device, or initialise JTAG chain to assign the

target device from all detected devices on the chain, in this case the FPGA

device has to be connected to the computer through a Xilinx download cable.

 Generate a PROM file (.mcs) which contains the PROM configuration

information. This can be generated each time the Configure Target Device

process is run by setting the Automatically Run Generate Target PROM / ACE

Figure 7.39: ISE project navigator

7.6 Configuration

175

file process property. Alternatively, the appropriate storage device can be

selected through the Create PROM File Formatter in the iMPACT Flow panel,

as shown in Figure 7.40. This will format the configuration bitstream file into a

PROM which is used later to configure the FPGA device once it is powered up.

By running the Generate File in the iMPACT processes panel, as shown in

Figure 7.41, iMPACT will generate the PROM files depending on the

specifications that have been identified.

Figure 7.40: PROM File Formatter

Figure 7.41: Generating PROM File

7.7 Results

176

7.7 Results

The hardware implementation of the proposed cipher is carried out on the target FPGA

device of: family, Xilinx 6; port, xc6vlx130t; package, ff484; and speed grade, -2. Two

circuits are designed; one for encryption and the other for decryption for a block size of

16×7 bits. In addition another two circuits are designed for a block size of 32×7 bits.

The architectures of block size of 16×7 bits are implemented also on a smaller device to

compare the effect of device on throughput and power consumption. The results of

hardware implementations are summarised in Tables 7.1 and 7.2 for encryption and

decryption circuits, respectively, which contain the amount of resources utilised,

maximum clock frequency, power consumption, throughput and efficiency. These

results, in addition to encryption and decryption, include the generation of the round

keys. In the decryption circuits, a delay is imposed due to executing the round keys

before starting decryption, as the key should be used in reverse order. In contrast, in the

encryption circuit both parts are run in parallel. The results are obtained from the ISE

12.4 Project Navigator shown in Figure 7.39, and a power analysis is shown in Figure

7.42 for an encryption circuit of block size 16×7 bits.

Figure 7.42: Power analysis for encryption circuit of block size 16×7 bits

7.7 Results

177

Table 7.1: FPGA implementation results for encryptions

Encryption

Block Size 16×7 bits Block Size 32×7 bits

FPGA Vertix 5

xc5vlx85t-3ff1136

FPGA Vertix 6

xc6vlx130t-2ff484

FPGA Vertix 6

xc6vlx130t-2ff484

No. of Registers 519 out of 51800 509 out of 160000 962 out of 160000

No. of LUTs 26132 out of 51800 26140 out of 80000 58176 out of 80000

No. of Slices 7371 out of 12960 8030 out of 20000 17685 out of 20000

No. of bonded IOBs 9 out of 480 9 out of 240 9 out of 240

Max. Frequency (MHz) 441.112 467.727 431.034

Dynamic Power (W) 0.355 0.295 0.633

Quiescent Power (W) 0.913 1.535 1.548

Total Power (W) 1.268 1.830 2.181

Output every (cycles) 1 1 1

Throughput (Gbits/sec) 42.347 44.902 82.759

Thro./Area (Mb/s/slice) 5.745 5.592 4.680

Energy/bit (nJ/bit) 0.03 0.041 0.026

Table 7.2: FPGA implementation results for decryptions

Decryption

Block Size 16×7 bits Block Size 32×7 bits

FPGA Vertix 5

xc5vlx85t-3ff1136

FPGA Vertix 6

xc6vlx130t-2ff484

FPGA Vertix 6

xc6vlx130t-2ff484

No. of Registers 515 out of 51800 518 out of 160000 1260 out of 160000

No. of LUTs 27364 out of 51800 27359 out of 80000 60904 out of 80000

No. of Slices 7706 out of 12960 8366 out of 20000 18392 out of 20000

No. of bonded IOBs 9 out of 480 9 out of 240 9 out of 240

Max. Frequency (MHz) 333.890 373.552 329.489

Dynamic Power (W) 0.386 0.299 0.676

Quiescent Power (W) 0.914 1.535 1.549

Total Power (W) 1.300 1.834 2.225

Output every (cycles) 1 1 1

Throughput (Gbits/sec) 32.053 35.861 63.262

Thro./Area (Mb/s/slice) 4.159 4.287 3.440

Energy/bit (nJ/bit) 0.041 0.051 0.035

7.7 Results

178

The throughput which represents the speed of encryption or decryption process is

calculated according to equation 7.10.

The throughput per area (TPA) which represents the efficiency of implementation

in terms of performance, gives an indication of the hardware resource cost related to the

throughput achieved.

The cipher itself is processed in one clock cycle regardless of direction (i.e.,

encryption or decryption) and block size. Although there is a delay of 14-cycle for block

size 16×7-bit and 28-cycle for block size 32×7-bit for input conversion from serial to

parallel form, this has not been considered in the calculation of the throughput since this

step represents the preparation of the input for processing which can be performed in

advance in software.

The results of FPGA implementation of the proposed architecture and comparison

with AES approaches for encryption core with block size and key length of 128-bit are

summarised in Table 7.3.

Table 7.3: Performance comparison of the proposed architecture and AES

Design Device
Frequency

(MHz)

Area

(Slices)

Throughput

(Gbits/sec)

TPA

(Mbits/s/slice)

Sklavos [68] XCV1000 28.5 17314 3.7 0.21

Hodjat [69] XC2VP30 168.3 12450 21.5 1.70

Iyer [70] XC2VP30 206.8 11720 26.5 2.26

Li [71] XC2V2000 102.8 3223 1.3 0.40

Thongkhome [72] XC2VP7X 481.3 3119 6.2 1.99

Standaert [128] XCV3200E 145.0 15112 18.6 1.23

Ours
XC5VLX85T 441.1 7371 42.3 5.75

XC6VLX130T 467.7 8030 44.9 5.59

7.9 Conclusions

179

7.8 Complexity

The overall complexity of the hardware design for the proposed architectures is

summarised in Table 7.4. The look-up tables are used to store the values of the

substitution and inverse substitution boxes which are used to non-linearly map the value

of the elements in order to satisfy the concept of confusion. The NMNTs are designed

based on the split-radix fast algorithm. For transform lengths 8 the multiplication

operation is replaced by shift and addition operations, and accordingly the only

operations used in the architectures are shift, addition and inverter (NOT).

Table 7.4: Overall system complexity

 Block size 16×7 bits Block size 32×7 bits

Encryption Decryption Key Encryption Decryption Key

Word size (bits) 7 7 7 7 7 7

Key size (bits) 16×7 16×7 16×7 32×7 32×7 32×7

Subkey size (bits) 1232 1232 1232 2464 2464 2464

Look-up tables/

Table size

160

(7×7)

160

(7×7)

160

(7×7)

320

(7×7)

320

(7×7)

320

(7×7)

Shift 40 200 40 120 440 120

ADD 1192 1352 1688 2744 3064 3816

NOT 160 386 160 520 922 520

7.9 Conclusions

Efficient hardware architectures for the proposed cipher have been designed and

implemented on the target FPGA device XC6VLX130T-2FF484. The Xilinx System

Generator of the ISE version 12.4 development suite, which is a system level modelling

tool, has been used to facilitate hardware design and reduces design time providing

efficient and fast FPGA prototypes.

The design of the proposed cipher, which includes encryption and decryption

modules and the key schedule algorithm, is based on the parallel loop-unrolling

architecture. Two block sizes and key lengths are considered of 16×7 and 32×7 bits,

while the algorithm is designed to support a wide range of lengths. The mode of

operation used in the design is a generalised electronic code book, where a block

number with other parameters are used in the calculation of the values of the variables

7.9 Conclusions

180

in the variable addition layer, providing different variables for different blocks

encrypted with the same key. With this novel improvement a simple mode of operation

is implemented with a high level of security, which is reflected in the performance of

the system regarding speed and complexity.

There is a trade-off between throughput and area represented by the amount of

resources utilised. The cipher starts with an initial key addition followed by ten identical

rounds. Each round consists of five sequential layers: element substitution, shifts

transform, variable addition, NMNT, and round key addition. The design of the

proposed architectures targets throughput, and hence the hardware resources of a single

round including the S-boxes are duplicated ten times providing what is known as a

loop-unrolling architecture. In addition, the elements within the layers are implemented

in parallel so as to further increase the speed of implementation. The round keys are

generated on-the-fly on the same device, thus allowing less complexity and resource

utilisation. Using such architecture a high throughput is achieved at the cost of area,

where a throughput of 44.9 Gbits/sec is achieved with a power consumption of 1.83 W

for implementing the encryption module with a key and block lengths of 16×7 bits. This

power can be reduced to 1.27 W using a smaller device and the throughput achieved is

42.3 Gbits/sec. For larger block and key lengths (32×7 bits), 82.8 Gbits/sec throughput

is achieved for 2.18 W power consumption. In addition, the results of the

implementation are compared with those of the AES, and it has been shown that the

proposed cipher can run at a higher throughput with a reasonable usage of resources.

181

Chapter 8

Conclusions and Further Work

This chapter summarises the results of the research presented in this thesis and

suggestions are proposed to extend the current research in further work.

8.1 Summary of Research and Results

The following are the major achievements made in the research:

 A new iterated symmetric-key block cipher based on the SPN and NTT with

variable block size, key length and word length has been proposed. The block

size and key length ranging from 16×P up to 256×P-bit with a power of two, for

a word length P = 7, 31, 61 or 127-bit. These parameters can be efficiently

determined by the system depending on the message length and processor

registers length, by undisclosed these values the task of cryptanalysis becomes

almost impossible.

 The NMNT and FNT have been extensively analysed in Chapter 3 to evaluate

their diffusion power using two different techniques. The first technique is based

on the branch number, while the second technique is based on probabilities. The

results confirm that these transforms exhibit generally good diffusion power that

in most cases is at a minimum of 50%. The cases that provide low levels of

8.1 Summary of Research and Results

182

diffusion less than 50% which obviously arise due to the symmetrical structure

of the transforms are overcome in the design by including a variable addition

layer. This layer participates also in providing two different ciphertext blocks for

the encryption of two identical plaintext blocks using the same cipher key.

Consequently, a simple mode of operation can be implemented with high levels

of security, which will be reflected in the efficiency of the system regarding

speed and complexity.

 Two solutions have been suggested to sort the problem that may arise due to the

value of the modulus of the NMNT, where the zero value and the Mp value are

retrieved as a zero. This can be avoided either by inserting one bit with a value of

0 at the beginning of each element or by reserving the addresses of the elements

that have the Mp value at the end of the ciphertext in order to update their values

at the final stage of decryption. In addition, all S-boxes involved in the design

based on the NMNT are modified such that the maximum value is swapped to

map to itself in order to prevent its appearance after mapping.

 The non-linear properties of all of the S-boxes in the previous standard DES, as

well as in the current standard AES, have been analysed in Chapter 4.

Consequently the DPPmax and IOCmax have been computed for each S-box after

building up the XOR distribution and linear approximation tables. All S-boxes

of the DES have the same DPPmax which is equal to 2
-2

, but the IOCmax is not the

same for all the 8 S-boxes. The best probability was found in S-box 6, which is

2
-1.193

, and the worst was in S-box 5 which is equal to 2
-0.678

, with the

probabilities of the other S-boxes in between. For the AES S-box the DPPmax =

2
-6

 and IOCmax = 2
-3

.

 A new 7×7 S-box is generated with DPPmax = 2
-6

 and IOCmax = 2
-2.678

, by

following the same procedures used in the construction of the AES S-box.

Furthermore, other S-boxes are derived from the new S-box generated as well as

from the AES S-box preserving the same non-linear properties but reordering

the output elements with different offsets.

 Two different key schedule algorithms are proposed to generate round keys from

a cipher key. The first applies the same round transformation of the cipher for

ease of analysis and implementation, while the second is key dependent. It is

achieved by replacing both the shifts transform and variable addition layers with

key dependent permutation and key dependant addition layers. Both algorithms

8.2 Recommendation for Further Work

183

extensively use the non-linear mapping and high diffusion mixing to exclude the

potential of weak-key and related-key attacks.

 Three categories of test vectors are run in Chapter 5 to verify the correctness of

algorithm implementation from any possible error. The results of all of the tests

are promising. These tests include the KAT, the MMT, and the MCT, which

were initially designed by the NIST to validate the IUT for conformance to the

AES algorithm as specified in FIPS 197: AES.

 Differential and linear cryptanalysis have been analysed in Chapter 6 and it has

been proven that the proposed cipher is secure against these two powerful well-

known types of attack from round three for all block sizes and key lengths.

Considering the possibility of these two attacks at the design stage has a major

impact on selecting the layers and in constructing the final model. The

subsequent consideration of all other types of attack may require minor

modifications to the final design, which could be made secure by adding further

rounds. However, in order to secure the cipher from other possible attacks and to

allow for extra security margins, 10 rounds is determined.

 Parallel loop-unrolling architectures for the proposed cipher are designed and

implemented using the FPGA system generator, the details of which are

explained in Chapter 7. Using such architecture a high throughput at the cost of

area is achieved. For instance, a maximum frequency of 467.727 MHz, a

throughput of 44.902 Gbits/sec and a power consumption of 1.83W using 8030

slices is achieved for a block size and key length of 16×P, (P = 7) on Xilinx

Virtex 6 (XC6VLX130T-2FF484) board.

8.2 Recommendations for Further Work

The following suggestions would extend the current research in further work:

 The number of rounds of the algorithm has been chosen to be 10 based on the

results obtained from the analysis of differential and linear cryptanalysis, after

adding extra rounds in case of stronger attacks and for security margins.

However, to choose the right number of rounds precisely, it is required to

consider all variants of differential and linear cryptanalysis as well as other types

including side-channel attacks, such as power analysis, for example.

8.2 Recommendation for Further Work

184

 The cipher is designed to work efficiently with variable block sizes and key

lengths as well as word lengths. The analysis was carried out on five different

sizes, however the hardware architectures are designed only for the first two

block sizes with the standard cipher word length of P = 7. Implementing other

possible word lengths or block sizes can be a task for further work. Where

implementing larger block size, the same structure is used with extra resources.

While for larger word lengths, in addition to resources, would require extra

layers of a word length conversion before and after elements mapping through

the element substitution layer.

 The focus in the hardware design was on achieving fast implementation, and

parallel loop-unrolling architectures have been designed accordingly which are

characterised by high throughput. However, it would be worth to implement the

basic architecture as a trade-off between throughput and area usage.

Implementing such a scheme with a smaller circuit would have the advantage of

reducing the power consumption of the system.

 The FNT has been analysed and it has been proven that it has good diffusion

power mostly over 50%, and in addition an example for image encryption has

been provided. The structure of the cipher is the same as that based on the

NMNT, eliminating the conversion layer, realising a practically faster cipher. A

hardware implementation of this scheme can be another task for further work.

 To further complicate the task of cryptanalysis, it is recommended that a

compression layer is added at the beginning before processing the encryption;

hence the data will be compressed and then ciphered. This layer will provide

extra protection against attacks by complicating the statistical analysis of the

cipher through eliminating the redundancy in the data. In addition, it will reduce

the amount of data processed, which will help in improving system performance.

 Finally, in order to build a complete practical system, it is suggested that the

design should be expanded not only provide data confidentiality but also to

cover data integrity for authentication purposes.

185

References

[1] S. Singh, The Code Book: Science of Secrecy from Ancient Egypt to Quantum

Cryptography: Anchor Books, 2000.

[2] National Bureau of Standards. (1977). U.S. Department of Commerce, FIPS

PUB 46, Data Encryption Standard. Available:

http://www.itl.nist.gov/fipspubs/fip46-2.htm

[3] Joan Daemen and V. Rijmen, The Design of Rijndael: AES-The Advanced

Encryption Standard. Berlin Heidelberg: Springer, 2002.

[4] R. Kippenhahn, Code Breaking: A History and Exploration. London: Constable,

1999.

[5] B. Schneier, Applied Cryptography: Protocals, Algorithms and Source Code in

C, 2nd ed. New York: John Wiley & Sons, 1996.

[6] H. Delfs and H. Knebl, Introduction to Cryptography: Principles and

Applications Berlin Heidelberg: Springer, 2007.

[7] R. L. Rivest, et al., "A Method for Obtaining Digital Signatures and Public-Key

Cryptosystems," Communications of the ACM, vol. 21, pp. 120-126, 1978.

[8] A. J. Menezes, et al. (1997). Handbook of Applied Cryptography. Available:

http://www.cacr.math.uwaterloo.ca/hac/

[9] T. Elgamal, "A Public Key Cryptosystem and a Signature Scheme Based on

Discrete Logarithms," IEEE Transactions on Information Theory, vol. 31, pp.

469-472, 1985.

[10] V. S. Miller, "Use of Elliptic Curves in Cryptography," Advances in Cryptology,

Crypto ’85 Proceedings, Lecture Notes in Computer Science, vol. 218, pp. 417-

426, 1986.

[11] N. Koblitz, "Elliptic Curve Cryptosystems," Mathematics of Computation, vol.

48, pp. 203-209, 1987.

http://www.itl.nist.gov/fipspubs/fip46-2.htm
http://www.cacr.math.uwaterloo.ca/hac/

 References

186

[12] W. Stallings, Cryptography and Network Security: Principles and Practices, 4th

ed. USA: Pearson Education International, 2006.

[13] P. E. Greenwood and M. S. Nikulin, A Guide to Chi-Squared Testing. New

York: John Wiley & Sons, Inc., 1996.

[14] R. L. Rivest, "The RC4 Encryption Algorithm," RSA Data Security, Inc., 1992.

[15] C. Shannon, "Communication Theory of Secrecy Systems," Bell System

Technical Journal, vol. 28-4, pp. 656-715, 1949.

[16] Federal Information Processing Standards Publication. (2001). FIPS197,

Advanced Encryption Standard (AES). Available:

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[17] B. Schneier, "The Blowfish Encryption Algorithm," in Fast Software

Encryption, Cambridge Security Workshop Proceedings, Lecture Notes in

Computer Science 809, ed: Springer-Verlag, 1994, pp. 191-204.

[18] K. Aoki, et al., "Camellia: a 128-bit Block Cipher Suitable for Multiple

Platforms - Design and Analysis," 7th Annual International Workshop, SAC

2000, Waterloo, Ontario, Canada, Proceedings, Lecture Notes in Computer

Science, Springer-Verlag, vol. 2012, pp. 39-56, 2001.

[19] C. M. Adams, "Constructing Symmetric Ciphers Using the CAST Design

Procedure," Designs, Codes and Cryptography, vol. 12, pp. 283-316, 1997.

[20] C. M. Adams, et al., "CAST256: a Submission for the Advanced Encryption

Standard," presented at the First AES Candidate Conference (AES1), Ventura,

California, USA, 1998.

[21] X. Lai, et al., "Markov Ciphers and Differential Cryptanalysis," Advances in

Cryptology, Eurocrypt '91, Lecture Notes in Computer Science, Springer-

Verlag, vol. 547, pp. 17-38, 1991.

[22] X. Lai, "On the Design and Security of Block Ciphers," ETH Series in

Information Processing. Hartung-Gorre Verlag, vol. 1, 1992.

[23] C. Burwick, et al., "MARS - a Candidate Cipher for AES," presented at the First

AES Candidate Conference (AES1), Ventura, California, USA, 1998.

[24] R. L. Rivest, "The RC5 Encryption Algorithm," Fast Software Encryption: 2nd

International Workshop. Leuven, Belgium. Proceedings, Lecture Notes in

Computer Science, Springer-Verlag., vol. 1008, pp. 86-96, 1995.

[25] R. L. Rivest, et al., "The RC6

Block Cipher, V1.1," presented at the First AES

Candidate Conference (AES1), Ventura, California, USA, 1998.

[26] J. L. Massey, "SAFER K-64: A Byte-Oriented Block-Ciphering Algorithm," in

Fast Software Encryption '93, Lecture Notes in Computer Science 809, ed: R.

Anderson, Ed., Springer-Verlag, 1994, pp. 1-17.

[27] E. Biham, et al., "Serpent: a New Block Cipher Proposal," Fast Software

Encryption, 5th International Workshop, FSE'98, Proceedings, Lecture Notes in

Computer Science, Springer-Verlag, vol. 1372, pp. 222-238, 1998.

[28] National Institute of Standards and Technology. (1998). U. S. Department of

Commerce, Skipjack and KEA algorithm specications. Available:

http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf

[29] B. Schneier, et al., The Twofish Encryption Algorithm: John Wiley & Sons,

1996.

[30] H. Feistel, "Cryptography and Computer Privacy," Scientific American, vol. 228,

pp. 15-23, 1973.

[31] A. Shimizu and S. Miyaguchi, "Fast Data Encipherment Algorithm FEAL,"

Advances in Cryptology, Eurocrypt '87, Lecture Notes in Computer Science,

Springer-Verlag, vol. 304, pp. 267-278, 1988.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf

 References

187

[32] Government Committee of the USSR for Standards (In Russian), "GOST,

Gosudarstvennyi Standard 28147-89, Cryptographic Protection for Data

Processing Systems," 1989.

[33] R. Merkle, "Fast Software Encryption Functions," Advances in Cryptology,

Crypto '90, Lecture Notes in Computer Science, Springer-Verlag, vol. 537, pp.

476-501, 1990.

[34] L. Brown, et al., "LOKI - a Cryptographic Primitive for Authentication and

Secrecy Applications," Advances in Cryptology, Proceedings Auscrypt'90,

Lecture Notes in Computer Science, Springer-Verlag, vol. 453, pp. 229-236,

1990.

[35] B. Schneier and J. Kelsey, "Unbalanced Feistel Networks and Block-Cipher

Design," Fast Software Encryption, 3rd International Workshop Proceedings,

Springer-Verlag, pp. 121-144, 1996.

[36] V. T. Hoang and P. Rogaway, "On Generalized Feistel Networks " Advances in

Cryptology, Crypto '10, Lecture Notes in Computer Science, Springer-Verlag,

vol. 6223, pp. 613-630, 2010.

[37] V. Rijmen, et al., "The Cipher Shark," Fast Software Encryption, 3rd

International Workshop Proceedings, Lecture Notes in Computer Science,

Springer-Verlag, vol. 1039, pp. 99-111, 1996.

[38] J. Daemen, et al., "The Block Cipher SQUARE," Fast Software Encryption, 4th

International Workshop Proceedings, Lecture Notes in Computer Science,

Springer-Verlag, vol. 1267, pp. 149-165, 1997.

[39] American National Standards Institute (ANSI) X3.92, "American National

Standard for Data Encryption Algorithm (DEA)," 1981.

[40] E. Biham and A. Shamir, "Differential Cryptanalysis of the Full 16-Round

DES," Advances in Cryptology, Proceedings Crypto'92, Springer-Verlag, vol.

740, pp. 487-496, 1992.

[41] American National Standards Institute (ANSI) X9.52, "American National

Standard for Triple Data Encryption Algorithm (TDEA)," 1998.

[42] X. Lai and J. L. Massey, "A Proposal for a New Block Encryption Standard,"

Advances in cryptology, Eurocrypt '90, Lecture Notes in Computer Science,

Springer-Verlag, vol. 473, pp. 389 - 404, 1990.

[43] E. Biham and A. Shamir, "Differential Cryptanalysis of DES-like

Cryptosystems," Journal of Cryptology, vol. 4, pp. 3-72, 1991.

[44] P. R. Zimmermann, The Official PGP User's Guide: MIT Press, 1995.

[45] W. Meier, "On the Security of the IDEA Block Cipher," Advances in

Cryptology, Eurocrypt '93 Proceedings, Lecture Notes in Computer Science,

Springer-Verlag, vol. 765, pp. 371-385, 1993.

[46] J. Borst, et al., "Two Attacks on Reduced IDEA," Advances in Cryptology,

Eurocrypt '97 Proceedings, Lecture Notes in Computer Science, Springer-

Verlag, vol. 1233, pp. 1-13, 1997.

[47] E. Biham, et al., "Miss-in-the-middle Attacks on IDEA and Khufru," Fast

Software Encryption, 6th International Workshop Proceedings, Lecture Notes in

Computer Science, Springer-Verlag, vol. 1636, pp. 124-138, 1999.

[48] R. Phan, "Impossible Differential Cryptanalysis of 7-Rounds Advanced

Encryption Standard (AES)," Information Processing Letters, vol. 91, pp. 33-38,

2004.

[49] H. Mala, et al., "Improved Impossible Differential Cryptanalysis of 7-Round

AES-128," Indocrypt ’10, Lecture Notes in Computer Science. Springer, vol.

6498, pp. 282-291, 2010.

 References

188

[50] O. Dunkelman, et al., "Improved Single-Key Attacks on 8-Round AES-192 and

AES-256," Advances in Cryptology, Asiacrypt '10, Lecture Notes in Computer

Science, Springer, vol. 6477, pp. 158-176, 2010.

[51] Federal Information Processing Standards Publication. (1980). FIPS PUB 81,

DES Modes of Operation. Available: http://www.itl.nist.gov/fipspubs/fip81.htm

[52] National Institute of Standards and Technology. (2001). NIST Special

Publication 800-38A, Recommendation for Block Cipher Modes of Operation

Methods and Techniques. Available:

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

[53] D. R. Stinson, Cryptography: Theory and Practice (Discrete Mathematics and

Its Applications): Chapman & Hall/CRC (Taylor & Francis Group), 2005.

[54] D. Kahn, The Codebreakers: The Story of Secret Writing. New York: Macmillan

Publishing Co.,, 1967.

[55] L. R. Knudsen, "The Number of Rounds in Block Ciphers," Public report,

NESSIE. NES/DOC/UIB/WP3/003, 2000.

[56] M. Matsui, "Linear Cryptanalysis Methods for DES Cipher," in Advances in

Cryptology - Eurocrypt' 93 Proceedings, Lecture Notes in Computer Science, .

vol. 765, ed: T. Helleseth, Ed., Springer-Verlag, 1994, pp. 386-397.

[57] C. M. Maxfield, FPGAs World Class Designs: Elsevier, 2009.

[58] R. Woods, et al., FPGA-Based Implementation of Signal Processing Systems:

John Wiley & Sons Ltd, 2008.

[59] C. M. Maxfield, The Design Warrior's Guide to FPGAs: Devices, Tools and

Flows: Elsevier, 2004.

[60] R. C. Cofer and B. Harding, Rapid System Prototyping with FPGAs

Accelerating the Design Process: Elsevier, 2006.

[61] S. Vassiliadis and D. Soudris, Fine- and Coarse-Grain Reconfigurable

Computing: Springer, 2007.

[62] K. Wong, et al., "A single-chip FPGA Implementation of the Data Encryption

Standard (DES) Algorithm," in Global Telecommunications Conference.

GLOBECOM 98. The Bridge to Global Integration. IEEE, 1998, pp. 827-832

vol.2.

[63] C. Patterson, "High Performance DES Encryption in Virtex FPGAs Using

JBits," in IEEE Symposium on Field-Programmable Custom Computing

Machines, 2000, pp. 113-121.

[64] T. Arich and M. Eleuldj, "Hardware Implementations of the Data Encryption

Standard," in The 14th International Conference on Microelectronics - ICM,

2002, pp. 100-103.

[65] M. McLoone and J. V. McCanny, "High-performance FPGA Implementation of

DES Using a Novel Method for Implementing the Key Schedule," IEE

Proceedings -Circuits, Devices and Systems, vol. 150, pp. 373-8, 2003.

[66] S. Taherkhani, et al., "Implementation of Non-Pipelined and Pipelined Data

Encryption Standard (DES) Using Xilinx Virtex-6 FPGA Technology," in 10th

International Conference on Computer and Information Technology (CIT),

IEEE 2010, pp. 1257-1262.

[67] M. McLoone and J. V. McCanny, "Rijndael FPGA Implementation Utilizing

Look-Up Tables," IEEE Workshop on Signal Processing Systems, pp. 349-360,

2001.

[68] N. Sklavos and O. Koufopavlou, "Architectures and VLSI Implementations of

the AES-Proposal Rijndael," IEEE Transactions on Computers, vol. 51, pp.

1454-1459, 2002.

http://www.itl.nist.gov/fipspubs/fip81.htm
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

 References

189

[69] A. Hodjat and I. Verbauwhede, " A 21.54 Gbits/s Fully Pipelined AES Processor

on FPGA," Proceedings of the 12th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM’04), pp. 308-309, 2004.

[70] N. C. Iyer, et al., "High Throughput, low cost, Fully Pipelined Architecture for

AES Crypto Chip," in Annual IEEE India Conference, 2006, pp. 1-6.

[71] H. Li, "Efficient and Flexible Architecture for AES," IEE Proceedings -Circuits,

Devices and Systems, vol. 153, pp. 533-538, 2006.

[72] K. Thongkhome, et al., "A FPGA Design of AES Core Architecture for Portable

Hard Disk," in Eighth International Joint Conference on Computer Science and

Software Engineering (JCSSE), 2011, pp. 223-228.

[73] B. Schneier, et al., "Twofish: A 128-bit Block Cipher," in First AES Candidate

Conference (AES1), USA, August 20-22, 1998.

[74] X. B. Yang and S. Boussakta, "A New Development of Symmetric Key

Cryptosystem," International Conference on Communications (ICC 08), pp.

1546-1550, 2008.

[75] X. B. Yang, et al., "A New Development of Cryptosystem Using New Mersenne

Number Transform," in 7th International Symposium on Communication

Systems, Networks and Digital Signal Processing (CSNDSP), England, UK,

2010, pp. 701-705.

[76] H. M. Heys and Stafford E. Tavares, "Avalanche Characteristics of Substitution-

Permutation Encryption Networks," IEEE Transactions On Computers, vol. 44,

pp. 1131-1139, 1995.

[77] A. F. Webster and S. E. Tavares, "On the Design of S-boxes," Advances in

Cryptology, Proceedings Crypto'85, Lecture Notes in Computer Science,

Springer-Verlag, vol. 218, pp. 523-534, 1986.

[78] J. B. Kam and G. I. Davida, "Structured Design of Substitution-Permutation

Encryption Networks," IEEE Transactions on Computers, vol. C-28, pp. 747-

753, 1979.

[79] J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing:

Prentice-Hall, 1979.

[80] S. Boussakta and A. G. J. Holt, "Filtering Employing a New Transform," in

OCEANS '94. 'Oceans Engineering for Today's Technology and Tomorrow's

Preservation.' Proceedings, 1994, pp. I/547-I/553.

[81] R. Agarwal and C. Burrus, "Fast Convolution Using Fermat Number Transforms

with Applications to Digital Filtering," IEEE Transactions on Acoustics, Speech

and Signal Processing vol. 22, pp. 87-97, 1974.

[82] S. Boussakta and A. G. J. Holt, "Number Theoretic Transforms and their

Applications in Image Processing," Advances in Imaging and Electron Physics,

vol. 111, pp. 1-90, 1999.

[83] I. S. Reed, et al., "The Fast Decoding of Reed-Solomon Codes Using Number

Theoretic Transforms," Jet Propulsion Laboratory, Pasadena, Calif.1976.

[84] D. Kehil and Y. Ferdi, "Signal Encryption Using New Mersenne Number

Transform," in 2010 7th International Symposium on Communication Systems

Networks and Digital Signal Processing (CSNDSP), , England, UK, 2010, pp.

736-740.

[85] Z. Yanqun and W. Qianping, "A New Scrambling Method Based on Arnold and

Fermat Number Transformation," in International Conference on Environmental

Science and Information Application Technology, ESIAT 2009, pp. 624-628.

[86] S. Boussakta and A. G. J. Holt, "New Number Theoretic Transform,"

Electronics Letters, vol. 28, pp. 1683-1684, 1992.

 References

190

[87] S. Boussakta and A. G. J. Holt, "New Transform Using the Mersenne Numbers,"

IEE Proceedings -Vision, Image and Signal Processing, vol. 142, pp. 381-388,

1995.

[88] S. Boussakta and A. G. J. Holt, "New Two Dimensional Transform," Electronics

Letters, vol. 29, pp. 949-950, 1993.

[89] S. Boussakta, et al., "3-D Vector Radix Algorithm for the 3-D New Mersenne

Number Transform," IEE Proceedings.-Vis. Image Signal Process., vol. 148, pp.

115-125, 2001.

[90] Omar Nibouche, et al., "Pipeline Architectures for Radix-2 New Mersenne

Number Transform," IEEE Transactions on Circuits and Systems, vol. 56, pp.

1668-1680, 2009.

[91] O. Nibouche, et al., "A New Architecture for Radix-2 New Mersenne Number

Transform," IEEE ICC 2006 proceedings., 2006.

[92] S. Boussakta, et al., "Radix-4 Decimation-in-Frequency Algorithm for the New

Mersenne Number Transform," 10th IEEE International Conference on

Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003

vol. 3, pp. 1133-1136, 2003.

[93] O. Alshibami, et al., "Radix-4 Algorithm for the New Mersenne Number

Transform," 5th International Conference on Signal Processing Proceedings,

2000. WCCC-ICSP 2000. , vol. 1, pp. 54-56, 2000.

[94] O. Alshibami, et al., "Split-Radix Algorithm for the New Mersenne Number

Transform," The 7th IEEE International Conference on Electronics, Circuits

and Systems, 2000. ICECS 2000. , vol. 1, pp. 583-586, 2000.

[95] R. Agarwal and C. Burrus, "Fast Digital Convolution Using Fermat

Transforms," Southwest IEEE Conf. Rec., Houston, Tex. , pp. 538-543, 1973.

[96] R. C. Agarwal and C. S. Burrus, "Fast One-Dimensional Digital Convolution by

Multidimensional Techniques," IEEE Transactions on Acoustics, Speech and

Signal Processing, vol. ASSP-22, pp. 1-10, 1974.

[97] M. F. Al-Gailani and S. Boussakta, "Evaluation of One-dimensional NMNT for

Security Applications," in 7th International Symposium on Communication

Systems, Networks and Digital Signal Processing (CSNDSP) England, UK,

2010, pp. 715-720.

[98] M. F. Al-Gailani, et al., "Fermat Number Transform Diffusion's Analysis," in

IEEE GCC Conference and Exhibition, Dubai, UAE, 2011, pp. 237-240.

[99] M. F. Al-Gailani and S. Boussakta, "New Mersenne Number Transform

Diffusion Power Analysis " American Journal of Engineering and Applied

Sciences, vol. 4, pp. 461-469, 2011.

[100] H. M. Heys, "A Tutorial on Linear and Differential Cryptanalysis," Cryptologia,

vol. 26, pp. 189-221, 2002.

[101] J. Seberry, et al., "Pitfalls in Designing Substitution Boxes," Advances in

Cryptology, Proceedings Crypto'94, Lecture Notes in Computer Science,

Springer-Verlag, vol. 839, pp. 383-396, 1994.

[102] T. Jakobsen and L. Knudsen, "The Interpolation Attack Against Block Ciphers,"

Fast Software Encryption, 4th International Workshop Proceedings, FSE'97,

Lecture Notes in Computer Science, Springer-Verlag, vol. 1267, pp. 28-40,

1997.

[103] T. Hansen and G. L. Mullen, "Primitive Polynomials Over Finite Fields,"

Mathematics of Computation, vol. 59, pp. 639-643, 1992.

[104] R. Lidl and H. Niederreiter, Finite Fields 2nd ed. Cambridge: Cambridge

University Press, 2008.

 References

191

[105] H. M. Heys and S. E. Taveres, "Substitution-Permutation Networks Resisitant to

Differential and Linear Cryptanalysis," Journal of Cryptology, vol. 9, pp. 1-9,

1996.

[106] L. E. BasshamIII. (2002). The Advanced Encryption Standard Algorithm

Validation Suite (AESAVS). Available:

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf

[107] H. V. Sorensen, et al., "On Computing the Discrete Hartley Transform," IEEE

Transactions on Acoustics, Speech, and Signal Processing, vol. VOL. ASSP-33,

pp. 1231-1238, 1985.

[108] P. Duhamel, "Implementation of "Split-Radix" FFT Algorithms for Complex,

Real, and Real-Symmetric Data," IEEE Transactions on Acoustics, Speech and

Signal Processing, vol. ASSP-34, pp. 285-295, 1986.

[109] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca Raton:

Chapman & Hall/CRC (Taylor & Francis Group), 2008.

[110] B. Preneel, et al., "Principles and Performance of Cryptographic Algorithms,"

Dr. Dobb's Journal, vol. 23, pp. 126-131, 1998.

[111] A. K. Lenstra and E. R. Verheul, "Selecting Cryptographic Key Sizes," Journal

of Cryptology, vol. 14, pp. 255-293, 2001.

[112] P. C. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems," Advances in Cryptology, Proceedings Crypto'96,

Lecture Notes in Computer Science, Springer-Verlag, vol. 1109, pp. 104-113,

1996.

[113] P. C. Kocher, et al., "Differential Power Analysis," Advances in Cryptology,

Proceedings Crypto'99, Lecture Notes in Computer Science, Springer-Verlag,

vol. 1666, pp. 388-397, 1999.

[114] B. Preneel, et al., "Final Report of European Project Number IST-1999-12324:

New European Schemes for Signatures, Integrity and Encryption (NESSIE),"

http://www.cryptonessie.org ,April 19, 2004.

[115] C. Bouillaguet, et al., "Low Data Complexity Attacks on AES," Cryptology

ePrint Archive, Report 2010/633, 2010.

[116] K. Sakamura, et al., "A Study on the Linear Cryptanalysis of AES Cipher,"

Journal of the Faculty of Environmental Science and Technology, vol. 9, pp. 19-

26, 2004.

[117] S. Lucks, "The Saturation Attack - a Bait for Twofish," Fast Software

Encryption, 8th International Workshop Proceedings, Lecture Notes in

Computer Science, Springer-Verlag, vol. 2355, pp. 1-15, 2002.

[118] E. Biham, "New Types of Cryptanalytic Attacks Using Related Keys," Advances

in Cryptology, Proceedings Eurocrypt'93, Lecture Notes in Computer Science,

Springer-Verlag, vol. 765, pp. 398-409, 1994.

[119] J. Smith, "The Design of Lucifer: A Cryptographic Device for Data

Communications," Technical report, IBM T.J. Watson Research Center, USA,

1971.

[120] A. Biryukov and D. Wagner, "Slide Attacks," Fast Software Encryption, 6rd

International Workshop Proceedings, FSE'99, Lecture Notes in Computer

Science, Springer-Verlag, vol. 1636, pp. 245-259, 1999.

[121] A. Biryukov and D. Wagner, "Advanced Slide Attacks," Advances in

Cryptology, Eurocrypt '00, Lecture Notes in Computer Science, Springer-

Verlag, vol. 1807, pp. 589-606, 2000.

[122] A. Biryukov, et al., "New Weak-Key Classes of IDEA," 4th International

Conference in Information and Communications Security (ICICS), Lecture

Notes in Computer Science, Springer-Verlag, vol. 2513, pp. 315-326, 2002.

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://www.cryptonessie.org/

 References

192

[123] C. M. Rader., "Discrete convolutions via Mersenne transforms," in IEEE

TRANSACTIONS ON COMPUTERS vol. C-21, ed, 1972, pp. 1269-1273.

[124] U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate

Arrays, 3rd ed.: Springer-Verlag Berlin Heidelberg, 2007.

[125] L. Leibowitz, "A Simplified Binary Arithmetic for the Fermat Number

Transform," IEEE Transactions on Acoustics, Speech and Signal Processing,,

vol. 24, pp. 356-359, 1976.

[126] P. Duhamel and H. Hollmann. (1984, Split-radix FFT algorithm. IET Electrincs

Letters 20(1), 14-16.

[127] O. Alshibami, "Development of Fast Algorithms for One and Multidimensional

Transforms with Application to Digital Signal Processing and

Communications," PhD, School of Electronic and Electrical Engineering,

University of Leeds, Leeds, 2002.

[128] F.-X. Standaert, et al., "Efficient Implementation of Rijndael Encryption in

Reconfigurable Hardware: Improvements and Design Tradeoffs," CHES 2003,

LNCS, vol. 2779, pp. 334-350, 2003.

193

Appendix A

NMNT Diffusion Analysis Results

The NMNT diffusion analysis results based on the probabilities (second technique) for

different modulus and transform lengths are attached in this appendix.

A. NMNT Diffusion Analysis Results

194

Table A.1: NMNT diffusion for P = 7, Mp = 127, N = 4

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+2

i-even (x = 1)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-odd (x = 1)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-mix (x = 1)

Odd - - -

Even - - -

All 25% 50% 75-100%

Paired elements

i, i+1

i-even (x = 2)

Odd - - -

Even - - -

All - - -

Paired elements

i, i+1

i-odd (x = 2)

Odd - - -

Even - - -

All - - -

Paired elements

i, i+1

i-mix (x = 2)

Odd - - -

Even - - -

All - - -

Unpaired elem.

Even

Single 100% 100% 100%

Odd - - -

Even - - -

Unpaired elem.

Odd

Single 100% 100% 100%

Odd - - -

Even - - -

Unpaired elem.

Mix

Odd - - -

Even - - -

i, i+2,

random for others

Odd 50-100% 50-100% 75-100%

Even - - -

A. NMNT Diffusion Analysis Results

195

Table A.2: NMNT diffusion for P = 7, Mp = 127, N = 8

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+4

i-even (x = 1)

Odd 50% 25% 75%

Even - - -

All 25% 50% 75-100%

Paired elements

i, i+4

i-odd (x = 1)

Odd 50% 50% 100%

Even - - -

All 25% 50% 75-100%

Paired elements

i, i+4

i-mix (x = 1)

Odd 50% 37.5-50% 75-100%

Even 25% 37.5-50% 62.5-100%

All 12.5% 37.5-50% 75-100%

Paired elements

i, i+2

i-even (x = 2)

Odd - - -

Even - - -

All 75% 75% 100%

Paired elements

i, i+2

i-odd (x = 2)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-mix (x = 2)

Odd - - -

Even - - -

All 62.5% 62.5-75% 75-100%

Unpaired elem.

Even

Single 75% 75% 75%

Odd - - -

Even 75% 75% 75-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd - - -

Even 50% 50% 50-100%

Unpaired elem.

Mix

Odd - - -

Even 75% 75% 75-100%

i, i+4,

random for others

Odd 62.5-100% 75-100% 75-100%

Even 62.5-100% 75-100% 75-100%

A. NMNT Diffusion Analysis Results

196

Table A.3: NMNT diffusion for P = 7, Mp = 127, N = 16

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+8

i-even (x = 1)

Odd 37.5% 37.5-50% 75-100%

Even 25- 37.5% 25-50% 62.5-100%

All 12.5% 37.5-50% 75-100%

Paired elements

i, i+8

i-odd (x = 1)

Odd 50% 25-50% 75-100%

Even 25% 37.5-50% 75-100%

All 12.5% 25-50% 75-100%

Paired elements

i, i+8

i-mix (x = 1)

Odd 37.5-50% 25-50% 68.8-100%

Even 12.5-43.8% 31.3-50% 75-100%

All 6.25% 43.8-50% 87.5-100%

Paired elements

i, i+4

i-even (x = 2)

Odd 75% 62.5% 62.5-87.5%

Even - - -

All 62.5% 62.5-75% 75-100%

Paired elements

i, i+4

i-odd (x = 2)

Odd 50-75% 50-75% 100%

Even - - -

All 62.5% 62.5-75% 75-100%

Paired elements

i, i+4

i-mix (x = 2)

Odd 75% 62.5-75% 81.3-100%

Even 62.5% 62.5-75% 81.3-100%

All 56.25% 56.3-75% 87.5-100%

Unpaired elem.

Even

Single 87.5% 87.5% 87.5%

Odd 87.5% 75-87.5% 75-100%

Even 62.5-87.5% 62.5-87.5% 62.5-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 75-87.5% 75-100%

Even 50-75% 50-87.5% 50-100%

Unpaired elem.

Mix

Odd 75-100% 75-93.8% 75-100%

Even 62.5-93.8% 62.5-93.8% 75-100%

i, i+8,

random for others

Odd 81.3-100% 81.3-100% 81.3-100%

Even 75-100% 75-100% 75-100%

A. NMNT Diffusion Analysis Results

197

Table A.4: NMNT diffusion for P = 7, Mp = 127, N = 32

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+16

i-even (x = 1)

Odd 43.8-50% 25-50% 68.8-100%

Even 12.5- 50% 25-50% 56.3-100%

All 6.25% 37.5-50% 87.5-100%

Paired elements

i, i+16

i-odd (x = 1)

Odd 37.5-50% 25-50% 62.5-100%

Even 12.5-43.8% 25-50% 50-100%

All 6.25% 31.3-50% 81.3-100%

Paired elements

i, i+16

i-mix (x = 1)

Odd 37.5-50% 34.4-50% 71.9-100%

Even 18.8-50% 34.4-50% 81.3-100%

All 3.125% 43.8-50% 90.6-100%

Paired elements

i, i+8

i-even (x = 2)

Odd 68.75% 56.3-75% 81.3-100%

Even 62.5-68.8% 62.5-75% 68.8-100%

All 56.25% 62.5-75% 87.5-100%

Paired elements

i, i+8

i-odd (x = 2)

Odd 50-75% 50-75% 62.5-100%

Even 62.5% 62.5-75% 75-100%

All 56.25% 62.5-75% 87.5-100%

Paired elements

i, i+8

i-mix (x = 2)

Odd 68.8-75% 62.5-75% 84.4-100%

Even 56.3-71.9% 62.5-75% 84.4-100%

All 53.125% 65.6-75% 90.6-100%

Unpaired elem.

Even

Single 93.8% 93.75% 93.75%

Odd 93.8% 68.8-93.8% 68.8-100%

Even 56.3-100% 56.3-93.8% 68.8-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 68.8-93.8% 75-100%

Even 50-93.8% 50-93.8% 50-100%

Unpaired elem.

Mix

Odd 71.9-100% 68.8-96.9% 62.5-100%

Even 56.3-100% 50-96.9% 68.8-100%

i, i+16,

random for others

Odd 84.4-100% 87.5-100% 87.5-100%

Even 84.4-100% 84.4-100% 87.5-100%

A. NMNT Diffusion Analysis Results

198

Table A.5: NMNT diffusion for P = 7, Mp = 127, N = 64

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+32

i-even (x = 1)

Odd 43.8-50% 37.5-50% 78.1-100%

Even 9.4- 50% 34.4-50% 75-100%

All 3.125% 46.9-50% 93.8-100%

Paired elements

i, i+32

i-odd (x = 1)

Odd 37.5-50% 25-50% 62.5-100%

Even 12.5-50% 25-50% 62.5-100%

All 3.125% 43.8-50% 90.6-100%

Paired elements

i, i+32

i-mix (x = 1)

Odd 35.9-50% 37.5-50% 75-100%

Even 21.9-50% 40.6-50% 84.4-100%

All 1.56% 46.9-50% 95.3-100%

Paired elements

i, i+16

i-even (x = 2)

Odd 65.6-75% 62.5-75% 84.4-100%

Even 56.3-75% 62.5-75% 78.1-100%

All 53.125% 68.8-75% 93.8-100%

Paired elements

i, i+16

i-odd (x = 2)

Odd 50-75% 50-75% 62.5-100%

Even 56.3-71.9% 62.5-75% 81.3-100%

All 53.125% 68.8-75% 90.6-100%

Paired elements

i, i+16

i-mix (x = 2)

Odd 65.6-75% 65.6-75% 84.4-100%

Even 57.8-75% 64.1-75% 90.6-100%

All 51.56% 71.9-75% 95.3-100%

Unpaired elem.

Even

Single 96.9% 96.9% 96.9%

Odd 90.6-100% 71.9-96.9% 75-100%

Even 59.4-100% 62.5-96.9% 78.1-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 71.9-100% 68.8-96.9% 75-100%

Even 50-100% 50-96.9% 62.5-100%

Unpaired elem.

Mix

Odd 73.4-100% 68.8-98.4% 73.4-100%

Even 62.5-100% 62.5-98.4% 81.3-100%

i, i+32,

random for others

Odd 87.5-100% 90.6-100% 87.5-100%

Even 89.1-100% 87.5-100% 90.6-100%

A. NMNT Diffusion Analysis Results

199

Table A.6: NMNT diffusion for P = 7, Mp = 127, N = 128

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+64

i-even (x = 1)

Odd 45.3-50% 37.5-50% 82.8-100%

Even 10.9- 50% 40.6-50% 82.8-100%

All 1.563% 46.9-50% 95.3-100%

Paired elements

i, i+64

i-odd (x = 1)

Odd 35.9-50% 25-50% 68.8-100%

Even 9.4-50% 25-50% 62.5-100%

All 1.563% 48.4-50% 95.3-100%

Paired elements

i, i+64

i-mix (x = 1)

Odd 36.7-50% 43.8-50% 75-100%

Even 23.4-50% 43.8-50% 92.2-100%

All 0.781% 47.7-50% 97.7-100%

Paired elements

i, i+32

i-even (x = 2)

Odd 67.2-75% 65.6-75% 85.9-100%

Even 54.7 – 75% 62.575% 89.1-100%

All 51.56% 71.9-75% 95.3-100%

Paired elements

i, i+32

i-odd (x = 2)

Odd 50-75% 50-75% 62.5-100%

Even 56-75% 62.5-75% 68.8-100%

All 51.56% 71.9-75% 95.3-100%

Paired elements

i, i+32

i-mix (x = 2)

Odd 66.4-75% 68.8-75% 86.7-100%

Even 60.9% 68.8-75% 92.2-100%

All 50.78% 72.7-75% 96.9-100%

Unpaired elem.

Even

Single 98.4% 98.4% 98.4%

Odd 92.2-100% 81.3-98.4% 85.9-100%

Even 60.9-100% 73.4-98.4% 73.4-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 68.8-98.4% 71.4-100%

Even 50-100% 50-98.4% 81.3-100%

Unpaired elem.

Mix

Odd 75-100% 75-99.2% 87.5-100%

Even 73.4-100% 73.4-99.2% 85.9-100%

i, i+64,

random for others

Odd 93.8-100% 93-100% 93-100%

Even 93-100% 93-100% 93-100%

A. NMNT Diffusion Analysis Results

200

Table A.7: NMNT diffusion for P = 17, Mp = 131071, N = 4

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+2

i-even (x = 1)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-odd (x = 1)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-mix (x = 1)

Odd - - -

Even - - -

All 25% 50% 100%

Paired elements

i, i+1

i-even (x = 2)

Odd - - -

Even - - -

All - - -

Paired elements

i, i+1

i-odd (x = 2)

Odd - - -

Even - - -

All - - -

Paired elements

i, i+1

i-mix (x = 2)

Odd - - -

Even - - -

All - - -

Unpaired elem.

Even

Single 100% 100% 100%

Odd - - -

Even - - -

Unpaired elem.

Odd

Single 100% 100% 100%

Odd - - -

Even - - -

Unpaired elem.

Mix

Odd - - -

Even - - -

i, i+2,

random for others

Odd 100% 100% 100%

Even - - -

A. NMNT Diffusion Analysis Results

201

Table A.8: NMNT diffusion for P = 17, Mp = 131071, N = 8

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+4

i-even (x = 1)

Odd 50% 25% 75%

Even - - -

All 25% 50% 100%

Paired elements

i, i+4

i-odd (x = 1)

Odd 50% 50% 100%

Even - - -

All 25% 50% 100%

Paired elements

i, i+4

i-mix (x = 1)

Odd 50% 50% 100%

Even 25% 37.5-50% 100%

All 12.5% 37.5-50% 100%

Paired elements

i, i+2

i-even (x = 2)

Odd - - -

Even - - -

All 75% 75% 100%

Paired elements

i, i+2

i-odd (x = 2)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-mix (x = 2)

Odd - - -

Even - - -

All 62.5% 75% 100%

Unpaired elem.

Even

Single 75% 75% 75%

Odd - - -

Even 75% 75% 100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd - - -

Even 50% 50% 100%

Unpaired elem.

Mix

Odd - - -

Even 75% 75% 100%

i, i+4,

random for others

Odd 100% 100% 100%

Even 100% 100% 100%

A. NMNT Diffusion Analysis Results

202

Table A.9: NMNT diffusion for P = 17, Mp = 131071, N = 16

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+8

i-even (x = 1)

Odd 37.5% 50% 87.5-100%

Even 25- 37.5% 50% 87.5-100%

All 12.5% 50% 100%

Paired elements

i, i+8

i-odd (x = 1)

Odd 50% 25-50% 75-100%

Even 25% 50% 100%

All 12.5% 50% 100%

Paired elements

i, i+8

i-mix (x = 1)

Odd 37.5-50% 43.8-50% 93.8-100%

Even 12.5-43.8% 37.5-50% 93.8-100%

All 6.25% 50% 100%

Paired elements

i, i+4

i-even (x = 2)

Odd 75% 62.5% 87.5%

Even - - -

All 62.5% 75% 87.5-100%

Paired elements

i, i+4

i-odd (x = 2)

Odd 50-75% 50-75% 100%

Even - - -

All 62.5% 75% 100%

Paired elements

i, i+4

i-mix (x = 2)

Odd 75% 75% 100%

Even 62.5% 75% 100%

All 56.25% 75% 100%

Unpaired elem.

Even

Single 87.5% 87.5% 87.5%

Odd 87.5% 87.5% 100%

Even 62.5-87.5% 62.5-87.5% 87.5-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 87.5% 100%

Even 50-75% 50-87.5% 100%

Unpaired elem.

Mix

Odd 75-100% 75-93.8% 100%

Even 62.5-93.8% 87.5-93.8% 93.8-100%

i, i+8,

random for others

Odd 93.8-100% 100% 93.8-100%

Even 93.8-100% 93.8-100% 93.8-100%

A. NMNT Diffusion Analysis Results

203

Table A.10: NMNT diffusion for P = 17, Mp = 131071, N = 32

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+16

i-even (x = 1)

Odd 43.8-50% 50% 93.8-100%

Even 12.5- 50% 43.8-50% 87.5-100%

All 6.25% 50% 100%

Paired elements

i, i+16

i-odd (x = 1)

Odd 37.5-50% 25-50% 75-100%

Even 12.5-43.8% 43.8-50% 87.5-100%

All 6.25% 50% 100%

Paired elements

i, i+16

i-mix (x = 1)

Odd 37.5-50% 43.8-50% 93.8-100%

Even 18.8-50% 43.8-50% 93.8-100%

All 3.125% 50% 100%

Paired elements

i, i+8

i-even (x = 2)

Odd 68.75% 75% 93.8-100%

Even 62.5-68.8% 75% 93.8-100%

All 56.25% 75% 93.8-100%

Paired elements

i, i+8

i-odd (x = 2)

Odd 50-75% 50-75% 87.5-100%

Even 62.5% 75% 100%

All 56.25% 75% 100%

Paired elements

i, i+8

i-mix (x = 2)

Odd 68.8-75% 71.9-75% 96.9-100%

Even 56.3-71.9% 71.9-75% 96.9-100%

All 53.125% 75% 96.9-100%

Unpaired elem.

Even

Single 93.75% 93.75% 93.75%

Odd 93.8-100% 81.3-93.8% 93.8-100%

Even 56.3-100% 68.8-93.8% 93.8-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 81.3-93.8% 87.5-100%

Even 50-93.8% 50-93.8% 87.5-100%

Unpaired elem.

Mix

Odd 75-100% 81.3-96.9% 81.3-100%

Even 56.3-100% 81.3-96.9% 93.8-100%

i, i+16,

random for others

Odd 96.9-100% 96.9-100% 96.9-100%

Even 93.8-100% 96.9-100% 96.9-100%

A. NMNT Diffusion Analysis Results

204

Table A.11: NMNT diffusion for P = 17, Mp = 131071, N = 64

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+32

i-even (x = 1)

Odd 46.9-50% 43.8-50% 90.6-100%

Even 9.4-50% 43.8-50% 90.6-100%

All 3.125% 50% 100%

Paired elements

i, i+32

i-odd (x = 1)

Odd 37.5-50% 25-50% 75-100%

Even 12.5-50% 37.5-50% 87.5100%

All 3.125% 50% 100%

Paired elements

i, i+32

i-mix (x = 1)

Odd 37.5-50% 46.9-50% 75-100%

Even 21.9-50% 46.9-50% 87.5-100%

All 1.563% 50% 100%

Paired elements

i, i+16

i-even (x = 2)

Odd 71.9-75% 71.9-75% 96.9-100%

Even 56.3-75% 71.9-75% 90.6-100%

All 53.125% 75% 100%

Paired elements

i, i+16

i-odd (x = 2)

Odd 50-75% 50-75% 87.5-100%

Even 56.3-71.9% 71.9-75% 93.8-100%

All 53.125% 71.9-75% 100%

Paired elements

i, i+16

i-mix (x = 2)

Odd 68.8-75% 71.9-75% 87.5-100%

Even 59.4-75% 71.9-75% 96.9-100%

All 51.56% 73.4-75% 98.4-100%

Unpaired elem.

Even

Single 96.9% 96.9% 96.9%

Odd 96.9-100% 84.4-96.9% 90.6-100%

Even 59.4-100% 71.4-96.9% 90.6-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 81.3-96.9% 93.8-100%

Even 50-100% 50-96.9% 87.5-100%

Unpaired elem.

Mix

Odd 75-100% 75-98.4% 90.6-100%

Even 62.5-100% 87.5-98.4% 93.8-100%

i, i+32,

random for others

Odd 98.4-100% 98.4-100% 98.4-100%

Even 96.9-100% 96.9-100% 96.9-100%

A. NMNT Diffusion Analysis Results

205

Table A.12: NMNT diffusion for P = 17, Mp = 131071, N = 128

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+64

i-even (x = 1)

Odd 48.4-50% 46.9-50% 95.3-100%

Even 10.9-50% 46.9-50% 95.3-100%

All 1.563% 48.4-50% 100%

Paired elements

i, i+64

i-odd (x = 1)

Odd 37.5-50% 25-50% 75-100%

Even 9.4-50% 46.9-50% 87.5-100%

All 1.563% 50% 100%

Paired elements

i, i+64

i-mix (x = 1)

Odd 37.5-50% 48.4-50% 98.4-100%

Even 23.4-50% 48.4-50% 98.4-100%

All 0.781% 50% 99.2-100%

Paired elements

i, i+32

i-even (x = 2)

Odd 73.4-75% 71.9-75% 95.3-100%

Even 54.7-75% 71.9-75% 95.3-100%

All 51.56% 75% 100%

Paired elements

i, i+32

i-odd (x = 2)

Odd 50-75% 50-75% 87.5-100%

Even 56.3-75% 71.9-75% 93.8-100%

All 51.56% 75% 100%

Paired elements

i, i+32

i-mix (x = 2)

Odd 68.8-75% 73.4-75% 98.4-100%

Even 60.9-75% 73.4-75% 98.4-100%

All 50.78% 75% 100%

Unpaired elem.

Even

Single 98.4% 98.4% 98.4-100%

Odd 98.4-100% 87.5-98.4% 95.3-100%

Even 60.9-100% 73.4-98.4% 95.3-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 81.3-98.4% 93.8-100%

Even 50-100% 50-98.4% 87.5-100%

Unpaired elem.

Mix

Odd 75-100% 87.5-99.2% 95.3-100%

Even 73.4-100% 96.9-99.2% 98.4-100%

i, i+64,

random for others

Odd 98.4-100% 98.4-100% 98.4-100%

Even 99.2-100% 99.2-100% 98.4-100%

A. NMNT Diffusion Analysis Results

206

Table A.13: NMNT diffusion for P = 17, Mp = 131071, N = 256

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+128

i-even (x = 1)

Odd 49.2-50% 48.4-50% 97.7-100%

Even 21.1-50% 48.4-50% 97.7-100%

All 0.781% 50% 100%

Paired elements

i, i+128

i-odd (x = 1)

Odd 37.5-50% 25-50% 75-100%

Even 18.8-50% 43.8-50% 87.5-100%

All 0.781% 50% 100%

Paired elements

i, i+128

i-mix (x = 1)

Odd 37.5-50% 49.2-50% 99.2-100%

Even 24.2-50% 49.2-50% 99.2-100%

All 0.391% 50% 100%

Paired elements

i, i+64

i-even (x = 2)

Odd 73.4-75% 73.4-75% 97.7-100%

Even 55.5-75% 73.4-75% 97.7-100%

All 50.78% 75% 100%

Paired elements

i, i+64

i-odd (x = 2)

Odd 50-75% 50-75% 87.5-100%

Even 54.7-75% 73.4-75% 93.8-100%

All 50.78% 75% 100%

Paired elements

i, i+64

i-mix (x = 2)

Odd 68.8-75% 74.2-75% 99.2-100%

Even 61.7-75% 74.2-75% 78.8-100%

All 50.39% 74.6-75% 100%

Unpaired elem.

Even

Single 99.2% 99.2% 99.2%

Odd 98.4-100% 87.5-99.2% 97.7-100%

Even 71.1-100% 74.2-99.2% 97.7-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 75-100% 87.5-99.2% 95.3-100%

Even 50-100% 50-99.2% 87.5-100%

Unpaired elem.

Mix

Odd 87.5-100% 87.5-99.6% 98.4-100%

Even 86.7-100% 98.4-99.6% 99.2-100%

i, i+128,

random for others

Odd 99.2-100% 99.2-100% 99.2-100%

Even 99.2-100% 99.2-100% 99.2-100%

A. NMNT Diffusion Analysis Results

207

Table A.14: NMNT diffusion for P = 17, Mp = 131071, N = 512

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+256

i-even (x = 1)

Odd 49.2-50% 49.2-50% 98.8-100%

Even 23.8-50% 49.2-50% 98.8-100%

All 0.391% 50% 100%

Paired elements

i, i+256

i-odd (x = 1)

Odd 37.5-50% 25-50% 75-100%

Even 18.8-50% 49.2-50% 87.5-100%

All 0.391% 50% 100%

Paired elements

i, i+256

i-mix (x = 1)

Odd 37.5-50% 49.6-50% 99.6-100%

Even 24.6-50% 49.6-50% 99.6-100%

All 0.195% 50% 100%

Paired elements

i, i+128

i-even (x = 2)

Odd 73.8-75% 74.2-75% 98.8-100%

Even 60.5-75% 74.2-75% 98.8-100%

All 50.39% 75% 100%

Paired elements

i, i+128

i-odd (x = 2)

Odd 50-75% 50-75% 87.5-100%

Even 59.4-75% 73.4-75% 93.8-100%

All 50.39% 75% 99.8-100%

Paired elements

i, i+128

i-mix (x = 2)

Odd 68.8-75% 74.6-75% 99.6-100%

Even 62.1-75% 74.6-75% 99.4-100%

All 50.195% 74.8-75% 99.8-100%

Unpaired elem.

Even

Single 99.61% 99.61% 99.61%

Odd 98.8-100% 93-99.6% 98.8-100%

Even 74.6-100% 74.6-99.6% 98.8-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 87.5-100% 87.5-99.6% 96.9-100%

Even 50-100% 50-99.6% 87.5-100%

Unpaired elem.

Mix

Odd 96.9-100% 96.9-99.8% 99.2-100%

Even 96.5-100% 99.2-99.8% 99.6-100%

i, i+256,

random for others

Odd 99.6-100% 99.6-100% 99.6-100%

Even 99.6-100% 99.6-100% 99.6-100%

A. NMNT Diffusion Analysis Results

208

Table A.15: NMNT diffusion for P = 17, Mp = 131071, N = 1024

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Mp = 0

Different Modifi.

modulo Mp ≠ 0

Paired elements

i, i+512

i-even (x = 1)

Odd 49.4-50% 49.6-50% 99.4-100%

Even 24.4-50% 49.6-50% 99.4-100%

All 0.195% 50% 100%

Paired elements

i, i+512

i-odd (x = 1)

Odd 37.5-50% 25-50% 75-100%

Even 18.8-50% 49.6-50% 87.5-100%

All 0.195% 50% 100%

Paired elements

i, i+512

i-mix (x = 1)

Odd 37.5-50% 49.8-50% 99.8-100%

Even 24.8-50% 49.8-50% 99.8-100%

All 0.0977% 50% 100%

Paired elements

i, i+256

i-even (x = 2)

Odd 74.4-75% 74.6-75% 99.4-100%

Even 61.9-75% 74.6-75% 99.4-100%

All 50.2% 75% 99.8-100%

Paired elements

i, i+256

i-odd (x = 2)

Odd 50-75% 50-75% 87.5-100%

Even 59.4-75% 74.2-75% 93.8-100%

All 50.2% 75% 100%

Paired elements

i, i+256

i-mix (x = 2)

Odd 68.8-75% 74.8-75% 99.8-100%

Even 62.3-75% 74.8-75% 99.8-100%

All 50.1% 75% 99.9-100%

Unpaired elem.

Even

Single 99.8% 99.8% 99.8%

Odd 99.4-100% 96.7-99.8% 99.4-100%

Even 74.8-100% 74.8-99.8% 99.4-100%

Unpaired elem.

Odd

Single 75-100% 75-100% 75-100%

Odd 96.9-100% 96.9-99.8% 99.6-100%

Even 50-100% 50-99.8% 93.8-100%

Unpaired elem.

Mix

Odd 99.1-100% 98.4-99.9% 99.6-100%

Even 98.3-100% 99.6-99.9% 99.8-100%

i, i+512,

random for others

Odd 99.7-100% 99.8-100% 99.8-100%

Even 99.8-100% 99.8-100% 99.8-100%

209

Appendix B

FNT Diffusion Analysis Results

This appendix provides the diffusion analysis results of the FNT based on the

probabilities (second technique) with different modulus and transform lengths.

B. FNT Diffusion Analysis Results

210

Table B.1: FNT diffusion for t = 3, Ft = 257, N = 4

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+2

i-even (x = 1)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-odd (x = 1)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-mix (x = 1)

Odd - - -

Even - - -

All 25% 25-50% 75-100%

Paired elements

i, i+1

i-even (x = 2)

Odd - - -

Even - - -

All - - -

Paired elements

i, i+1

i-odd (x = 2)

Odd - - -

Even - - -

All - - -

Paired elements

i, i+1

i-mix (x = 2)

Odd - - -

Even - - -

All - - -

Unpaired elem.

Even

Single 100% 100% 100%

Odd - - -

Even - - -

Unpaired elem.

Odd

Single 100% 100% 100%

Odd - - -

Even - - -

Unpaired elem.

Mix

Odd - - -

Even - - -

i, i+2,

random for others

Odd 50-100% 50-100% 75-100%

Even - - -

B. FNT Diffusion Analysis Results

211

Table B.2: FNT diffusion for t = 3, Ft = 257, N = 8

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+4

i-even (x = 1)

Odd 50% 50% 100%

Even - - -

All 25% 25-50% 75-100%

Paired elements

i, i+4

i-odd (x = 1)

Odd 50% 50% 100%

Even - - -

All 25% 25-50% 75-100%

Paired elements

i, i+4

i-mix (x = 1)

Odd 50% 37.5-50% 87.5-100%

Even 37.5% 37.5-50% 87.5-100%

All 12.5% 25-50% 87.5-100%

Paired elements

i, i+2

i-even (x = 2)

Odd - - -

Even - - -

All 75% 75% 75-100%

Paired elements

i, i+2

i-odd (x = 2)

Odd - - -

Even - - -

All 75% 75% 75-100%

Paired elements

i, i+2

i-mix (x = 2)

Odd - - -

Even - - -

All 62.5% 62.5-75% 75-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd - - -

Even 75% 75% 75-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd - - -

Even 75% 75% 75-100%

Unpaired elem.

Mix

Odd - - -

Even 87.5% 87.5% 87.5-100%

i, i+4,

random for others

Odd 75-100% 75-100% 75-100%

Even 75-100% 75-100% 87.5-100%

B. FNT Diffusion Analysis Results

212

Table B.3: FNT diffusion for t = 3, Ft = 257, N = 16

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+8

i-even (x = 1)

Odd 50% 37.5-50% 87.5-100%

Even 25- 37.5% 25-50% 75-100%

All 12.5% 25-50% 87.5-100%

Paired elements

i, i+8

i-odd (x = 1)

Odd 50% 37.5-50% 75-100%

Even 25-37.5% 25-50% 75-100%

All 12.5% 25-50% 87.5-100%

Paired elements

i, i+8

i-mix (x = 1)

Odd 50% 37.5-50% 87.5-100%

Even 18.8-50% 25-50% 81.3-100%

All 6.25% 43.8-50% 81.3-100%

Paired elements

i, i+4

i-even (x = 2)

Odd 75% 75% 75-100%

Even - - -

All 62.5% 62.5-75% 75-100%

Paired elements

i, i+4

i-odd (x = 2)

Odd 75% 75% 75-100%

Even - - -

All 62.5% 62.5-75% 75-100%

Paired elements

i, i+4

i-mix (x = 2)

Odd 75% 68.8-75% 87.5-100%

Even 68.75% 68.8-75% 87.5-100%

All 56.25% 62.5-75% 87.5-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 100% 75-87.5% 75-100%

Even 62.5-87.5% 75-87.5% 75-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 100% 75-87.5% 75-100%

Even 62.5-87.5% 75-87.5% 75-100%

Unpaired elem.

Mix

Odd 100% 75-93.8% 75-100%

Even 62.5-100% 75-93.8% 81.3-100%

i, i+8,

random for others

Odd 87.5-100% 81.3-100% 87.5-100%

Even 81.3-100% 81.3-100% 87.5-100%

B. FNT Diffusion Analysis Results

213

Table B.4: FNT diffusion for t = 3, Ft = 257, N = 32

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+16

i-even (x = 1)

Odd 50% 37.5-50% 87.5-100%

Even 12.5- 50% 25-50% 50-100%

All 6.25% 43.8-50% 87.5-100%

Paired elements

i, i+16

i-odd (x = 1)

Odd 50% 31.3-50% 87.5-100%

Even 12.5-50% 25-50% 75-100%

All 6.25% 43.8-50% 87.5-100%

Paired elements

i, i+16

i-mix (x = 1)

Odd 50% 37.5-50% 87.5-100%

Even 21.9-50% 37.5-50% 87.5-100%

All 3.125% 43.8-50% 93.8-100%

Paired elements

i, i+8

i-even (x = 2)

Odd 75% 62.5-75% 75-100%

Even 62.5-68.8% 62.5-75% 87.5-100%

All 56.25% 62.5-75% 87.5-100%

Paired elements

i, i+8

i-odd (x = 2)

Odd 75% 62.5-75% 75-100%

Even 62.5-68.8% 62.5-75% 87.5-100%

All 56.25% 68.75-75% 87.5-100%

Paired elements

i, i+8

i-mix (x = 2)

Odd 75% 65.63-75% 90.6-100%

Even 59.4-75% 65.6-75% 90.6-100%

All 53.125% 68.75-75% 93.8-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 100% 75-93.8% 75-100%

Even 62.5-100% 75-93.8% 75-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 100% 75-93.8% 75-100%

Even 62.5-100% 75-93.8% 75-100%

Unpaired elem.

Mix

Odd 93.8-100% 75-96.9% 84.4-100%

Even 62.5-100% 75-96.9% 81.3-100%

i, i+16,

random for others

Odd 90.6-100% 90.6-100% 90.6-100%

Even 87.5-100% 90.6-100% 90.6-100%

B. FNT Diffusion Analysis Results

214

Table B.5: FNT diffusion for t = 3, Ft = 257, N = 64

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+32

i-even (x = 1)

Odd 50% 37.5-50% 81.3-100%

Even 12.5- 50% 25-50% 75-100%

All 3.125% 43.8-50% 93.8-100%

Paired elements

i, i+32

i-odd (x = 1)

Odd 50% 37.5-50% 87.5-100%

Even 12.5-50% 25-50% 75-100%

All 3.125% 46.9-50% 93.8-100%

Paired elements

i, i+32

i-mix (x = 1)

Odd 46.9-50% 42.2-50% 89.1-100%

Even 23.4-50% 37.5-50% 90.6-100%

All 1.563% 48.4-50% 95.3-100%

Paired elements

i, i+16

i-even (x = 2)

Odd 71.9-75% 65.6-75% 75-100%

Even 56.3-75 62.5-75% 87.5-100%

All 53.125% 68.8-75% 93.8-100%

Paired elements

i, i+16

i-odd (x = 2)

Odd 71.9-75% 62.5-75% 75-100%

Even 56.3-75 62.5-75% 87.5-100%

All 53.125% 68.8-75% 93.8-100%

Paired elements

i, i+16

i-mix (x = 2)

Odd 71.9-75% 68.8-75% 92.2-100%

Even 60.9-75% 62.5-75% 89.1-100%

All 51.56% 70.3-75% 95.3-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 93.8-100% 75-96.9% 81.3-100%

Even 62.5-100% 75-96.9% 75-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 93.8-100% 75-96.9% 75-100%

Even 62.5-100% 75-96.9% 75-100%

Unpaired elem.

Mix

Odd 95.3-100% 75-98.4% 87.5-100%

Even 68.8-100% 75-98.4% 87.5-100%

i, i+32,

random for others

Odd 90.6-100% 92.2-100% 90.6-100%

Even 90.6-100% 90.6-100% 90.6-100%

B. FNT Diffusion Analysis Results

215

Table B.6: FNT diffusion for t = 3, Ft = 257, N = 128

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+64

i-even (x = 1)

Odd 46.9-50% 37.5-50% 87.5-100%

Even 12.5- 50% 25-50% 75-100%

All 1.563% 46.9-50% 96.9-100%

Paired elements

i, i+64

i-odd (x = 1)

Odd 46.9-50% 37.5-50% 87.5-100%

Even 12.5-50% 25-50% 75-100%

All 1.563% 46.9-50% 96.9-100%

Paired elements

i, i+64

i-mix (x = 1)

Odd 47.7-50% 45.3-50% 93-100%

Even 24.2-50% 46.1-50% 94.5-100%

All 0.781% 47.7-50% 96.9-100%

Paired elements

i, i+32

i-even (x = 2)

Odd 71.9-75% 67.2-75% 75-100%

Even 56.3-75% 62.5-75% 87.5-100%

All 51.56% 71.9-75% 96.9-100%

Paired elements

i, i+32

i-odd (x = 2)

Odd 71.9-75% 62.5-75% 75-100%

Even 56.3-75% 62.5-75% 87.5-100%

All 51.56% 70.3-75% 96.9-100%

Paired elements

i, i+32

i-mix (x = 2)

Odd 71.9-75% 70.3-75% 93-100%

Even 61.7-75% 70.3-75% 94.5-100%

All 50.78% 73.4-75% 97.7-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 95.3-100% 75-98.4% 87.5-100%

Even 68.8-100% 75-98.4% 75-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 95.3-100% 75-98.4% 87.5-100%

Even 68.8-100% 75-98.4% 75-100%

Unpaired elem.

Mix

Odd 96.1-100% 75-99.2% 87.5-100%

Even 74.2-100% 93-99.2% 94.5-100%

i, i+64,

random for others

Odd 93.8-100% 93.8-100% 93.8-100%

Even 94.5-100% 93.8-100% 94.5-100%

B. FNT Diffusion Analysis Results

216

Table B.6: FNT diffusion for t = 3, Ft = 257, N = 256

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+128

i-even (x = 1)

Odd 47.7-50% 37.5-50% 87.5-100%

Even 21.9- 50% 25-50% 75-100%

All 0.781% 48.4-50% 97.7-100%

Paired elements

i, i+128

i-odd (x = 1)

Odd 47.7-50% 37.5-50% 87.5-100%

Even 21.9-50% 25-50% 75-100%

All 0.781% 48.4-50% 97.7-100%

Paired elements

i, i+128

i-mix (x = 1)

Odd 48-50% 46.5-50% 96.5-100%

Even 24.6-50% 43-50% 93-100%

All 0.391% 48.8-50% 98.4-100%

Paired elements

i, i+64

i-even (x = 2)

Odd 71.9-75% 62.5-75% 75-100%

Even 56.3-75% 68.8-75% 87.5-100%

All 50.78% 71.9-75% 97.7-100%

Paired elements

i, i+64

i-odd (x = 2)

Odd 71.9-75% 68.8-75% 75-100%

Even 56.3-75% 62.5-75% 87.5-100%

All 50.78% 72.7-75% 96.9-100%

Paired elements

i, i+64

i-mix (x = 2)

Odd 72.3-75% 71.5-75% 96.1-100%

Even 62.1-75% 71.1-75% 96.1-100%

All 50.39% 73.4-75% 98.4-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 96.1-100% 75-99.2% 87.5-100%

Even 74.2-100% 75-99.2% 87.5-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 96.1-100% 75-99.2% 87.5-100%

Even 74.2-100% 75-99.2% 75-100%

Unpaired elem.

Mix

Odd 96.9-100% 87.5-99.6% 90.6-100%

Even 92.6-100% 95.7-99.6% 93.8-100%

i, i+128,

random for others

Odd 96.5-100% 96.5-100% 96.5-100%

Even 96.5-100% 96.1-100% 96.1-100%

B. FNT Diffusion Analysis Results

217

Table B.7: FNT diffusion for t = 4, Ft = 65537, N = 4

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+2

i-even (x = 1)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-odd (x = 1)

Odd - - -

Even - - -

All 50% 50% 100%

Paired elements

i, i+2

i-mix (x = 1)

Odd - - -

Even - - -

All 25% 50% 100%

Paired elements

i, i+1

i-even (x = 2)

Odd - - -

Even - - -

All - - -

Paired elements

i, i+1

i-odd (x = 2)

Odd - - -

Even - - -

All - - -

Paired elements

i, i+1

i-mix (x = 2)

Odd - - -

Even - - -

All - - -

Unpaired elem.

Even

Single 100% 100% 100%

Odd - - -

Even - - -

Unpaired elem.

Odd

Single 100% 100% 100%

Odd - - -

Even - - -

Unpaired elem.

Mix

Odd - - -

Even - - -

i, i+2,

random for others

Odd 100% 100% 100%

Even - - -

B. FNT Diffusion Analysis Results

218

Table B.8: FNT diffusion for t = 4, Ft = 65537, N = 8

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+4

i-even (x = 1)

Odd 50% 50% 100%

Even - - -

All 25% 50% 100%

Paired elements

i, i+4

i-odd (x = 1)

Odd 50% 50% 100%

Even - - -

All 25% 50% 100%

Paired elements

i, i+4

i-mix (x = 1)

Odd 50% 50% 100%

Even 37.5% 50% 100%

All 12.5% 50% 87.5-100%

Paired elements

i, i+2

i-even (x = 2)

Odd - - -

Even - - -

All 75% 75% 100%

Paired elements

i, i+2

i-odd (x = 2)

Odd - - -

Even - - -

All 75% 75% 100%

Paired elements

i, i+2

i-mix (x = 2)

Odd - - -

Even - - -

All 62.5% 75% 100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd - - -

Even 75% 75% 100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd - - -

Even 75% 75% 100%

Unpaired elem.

Mix

Odd - - -

Even 87.5% 87.5% 100%

i, i+4,

random for others

Odd 100% 100% 100%

Even 87.5-100% 100% 87.5-100%

B. FNT Diffusion Analysis Results

219

Table B.9: FNT diffusion for t = 4, Ft = 65537, N = 16

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+8

i-even (x = 1)

Odd 50% 50% 87.5-100%

Even 25- 37.5% 50% 100%

All 12.5% 50% 100%

Paired elements

i, i+8

i-odd (x = 1)

Odd 50% 50% 100%

Even 25-37.5% 50% 100%

All 12.5% 50% 100%

Paired elements

i, i+8

i-mix (x = 1)

Odd 50% 43.8-50% 93.8-100%

Even 18.8-50% 43.8-50% 93.8-100%

All 6.25% 50% 100%

Paired elements

i, i+4

i-even (x = 2)

Odd 75% 75% 100%

Even - - -

All 62.5% 75% 87.5-100%

Paired elements

i, i+4

i-odd (x = 2)

Odd 75% 75% 100%

Even - - -

All 62.5% 62.5-75% 100%

Paired elements

i, i+4

i-mix (x = 2)

Odd 75% 75% 100%

Even 68.75% 68.8-75% 100%

All 56.25% 75% 93.8-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 100% 87.5% 87.5-100%

Even 62.5-87.5% 75-87.5% 100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 100% 87.5% 87.5-100%

Even 62.5-87.5% 75-87.5% 100%

Unpaired elem.

Mix

Odd 100% 87.5-93.8% 87.5-100%

Even 62.5-100% 87.5-93.8% 93.8-100%

i, i+8,

random for others

Odd 93.8-100% 93.8-100% 93.8-100%

Even 93.8-100% 93.8-100% 93.8-100%

B. FNT Diffusion Analysis Results

220

Table B.10: FNT diffusion for t = 4, Ft = 65537, N = 32

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+16

i-even (x = 1)

Odd 50% 43.8-50% 93.8-100%

Even 12.5- 50% 43.8-50% 93.8-100%

All 6.25% 50% 100%

Paired elements

i, i+16

i-odd (x = 1)

Odd 50% 43.8-50% 93.8-100%

Even 12.5-50% 43.8-50% 93.8-100%

All 6.25% 50% 100%

Paired elements

i, i+16

i-mix (x = 1)

Odd 50% 46.9-50% 96.9-100%

Even 21.9-50% 46.9-50% 96.9-100%

All 3.125% 50% 100%

Paired elements

i, i+8

i-even (x = 2)

Odd 75% 68.8-75% 93.8-100%

Even 62.5-68.8% 75% 100%

All 56.25% 75% 100%

Paired elements

i, i+8

i-odd (x = 2)

Odd 75% 68.8-75% 93.8-100%

Even 62.5-68.8% 75% 100%

All 56.25% 75% 100%

Paired elements

i, i+8

i-mix (x = 2)

Odd 75% 71.9-75% 96.9-100%

Even 59.4-75% 71.9-75% 96.9-100%

All 53.125% 75% 96.9-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 100% 87.5-93.8% 93.8-100%

Even 62.5-100% 75-93.8% 93.8-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 100% 87.5-93.8% 93.8-100%

Even 62.5-100% 75-93.8% 93.8-100%

Unpaired elem.

Mix

Odd 100% 87.5-96.9% 87.5-100%

Even 62.5-100% 87.5-96.9% 93.8-100%

i, i+16,

random for others

Odd 96.9-100% 96.9-100% 96.9-100%

Even 96.9-100% 96.9-100% 96.9-100%

B. FNT Diffusion Analysis Results

221

Table B.11: FNT diffusion for t = 4, Ft = 65537, N = 64

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+32

i-even (x = 1)

Odd 50% 43.8-50% 87.5-100%

Even 12.5- 50% 43.8-50% 93.8-100%

All 3.125% 50% 100%

Paired elements

i, i+32

i-odd (x = 1)

Odd 50% 43.8-50% 93.8-100%

Even 12.5-50% 43.8-50% 93.8-100%

All 3.125% 50% 100%

Paired elements

i, i+32

i-mix (x = 1)

Odd 50% 48.4-50% 96.9-100%

Even 23.4-50% 48.4-50% 96.9-100%

All 1.563% 48.4-50% 100%

Paired elements

i, i+16

i-even (x = 2)

Odd 75% 71.9-75% 96.9-100%

Even 56.3-75% 71.9-75% 96.9-100%

All 53.125% 71.9-75% 100%

Paired elements

i, i+16

i-odd (x = 2)

Odd 75% 71.9-75% 96.9-100%

Even 56.3-75% 71.9-75% 96.9-100%

All 53.125% 75% 96.9-100%

Paired elements

i, i+16

i-mix (x = 2)

Odd 75% 71.9-75% 98.4-100%

Even 60.9-75% 73.4-75% 98.4-100%

All 51.56% 73.4-75% 98.4-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 100% 87.5-96.9% 87.5-100%

Even 62.5-100% 75-96.9% 93.8-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 100% 87.5-96.9% 93.8-100%

Even 62.5-100% 75-96.9% 93.8-100%

Unpaired elem.

Mix

Odd 98.4-100% 87.5-98.4% 93.8-100%

Even 68.8-100% 87.5-98.4% 93.8-100%

i, i+32,

random for others

Odd 96.9-100% 98.4-100% 96.9-100%

Even 96.9-100% 96.9-100% 96.9-100%

B. FNT Diffusion Analysis Results

222

Table B.12: FNT diffusion for t = 4, Ft = 65537, N = 128

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+64

i-even (x = 1)

Odd 50% 46.9-50% 93.8-100%

Even 12.5- 50% 43.8-50% 96.9-100%

All 1.563% 50% 100%

Paired elements

i, i+64

i-odd (x = 1)

Odd 50% 37.5-50% 93.8-100%

Even 12.5-50% 43.8-50% 93.8-100%

All 1.563% 50% 100%

Paired elements

i, i+64

i-mix (x = 1)

Odd 48.4-50% 49.2-50% 98.4-100%

Even 24.2-50% 49.2-50% 98.4-100%

All 0.781% 50% 100%

Paired elements

i, i+32

i-even (x = 2)

Odd 75% 71.9-75% 96.9-100%

Even 56.3-75% 73.4-75% 96.9-100%

All 51.56% 75% 100%

Paired elements

i, i+32

i-odd (x = 2)

Odd 75% 73.4-75% 98.4-100%

Even 56.3-75% 71.9-75% 96.9-100%

All 51.56% 75% 100%

Paired elements

i, i+32

i-mix (x = 2)

Odd 74.2-75% 73.4-75% 98.4-100%

Even 61.7-75% 73.4-75% 98.4-100%

All 50.78% 75% 100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 98.4-100% 87.5-98.4% 93.8-100%

Even 68.8-100% 75-98.4% 87.5-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 98.4-100% 87.5-98.4% 96.9-100%

Even 68.8-100% 75-98.4% 93.8-100%

Unpaired elem.

Mix

Odd 98.4-100% 75-99.2% 93.8-100%

Even 74.2-100% 97.7-99.2% 98.4-100%

i, i+64,

random for others

Odd 98.4-100% 98.4-100% 98.4-100%

Even 98.4-100% 98.4-100% 98.4-100%

B. FNT Diffusion Analysis Results

223

Table B.13: FNT diffusion for t = 4, Ft = 65537, N = 256

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+128

i-even (x = 1)

Odd 48.4-50% 46.9-50% 93.8-100%

Even 21.9-50% 46.9-50% 96.9-100%

All 0.781% 49.2-50% 100%

Paired elements

i, i+128

i-odd (x = 1)

Odd 48.4-50% 48.4-50% 98.4-100%

Even 21.9-50% 46.9-50% 96.9-100%

All 0.781% 50% 100%

Paired elements

i, i+128

i-mix (x = 1)

Odd 49.2-50% 49.2-50% 99.2-100%

Even 24.6-50% 49.2-50% 99.2-100%

All 0.391% 50% 99.6-100%

Paired elements

i, i+64

i-even (x = 2)

Odd 74.2-75% 73.4-75% 98.4-100%

Even 56.3-75% 71.9-75% 96.9-100%

All 50.78% 75% 100%

Paired elements

i, i+64

i-odd (x = 2)

Odd 74.2-75% 73.4-75% 96.9-100%

Even 56.3-75% 73.4-75% 96.9-100%

All 50.78% 75% 99.2-100%

Paired elements

i, i+64

i-mix (x = 2)

Odd 74.2-75% 74.2-75% 99.2-100%

Even 62.1-75% 73.8-75% 99.2-100%

All 50.39% 74.6-75% 99.6-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 98.4-100% 87.5-99.2% 96.9-100%

Even 74.2-100% 75-99.2% 98.4-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 98.4-100% 87.5-99.2% 96.9-100%

Even 74.2-100% 75-99.2% 98.4-100%

Unpaired elem.

Mix

Odd 98.4-100% 93.8-99.6% 98.4-100%

Even 93.4-100% 98.8-99.6% 99.2-100%

i, i+128,

random for others

Odd 99.2-100% 99.2-100% 99.2-100%

Even 99.2-100% 99.2-100% 99.2-100%

B. FNT Diffusion Analysis Results

224

Table B.14: FNT diffusion for t = 4, Ft = 65537, N = 512

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+256

i-even (x = 1)

Odd 49.2-50% 46.9-50% 93.8-100%

Even 24.6-50% 49.2-50% 99.2-100%

All 0.391% 50% 100%

Paired elements

i, i+256

i-odd (x = 1)

Odd 49.2-50% 48.4-50% 96.9-100%

Even 24.6-50% 49.2-50% 98.8-100%

All 0.391% 50% 99.6-100%

Paired elements

i, i+256

i-mix (x = 1)

Odd 49.6-50% 49.6-50% 99.6-100%

Even 24.8-50% 49.6-50% 99.4-100%

All 0.195% 50% 99.8-100%

Paired elements

i, i+128

i-even (x = 2)

Odd 74.2-75% 73.4-75% 98.4-100%

Even 60.9-75% 73.4-75% 98.4-100%

All 50.391% 75% 100%

Paired elements

i, i+128

i-odd (x = 2)

Odd 74.2-75% 71.9-75% 96.9-100%

Even 60.9-75% 73.4-75% 98.4-100%

All 50.391% 75% 99.6-100%

Paired elements

i, i+128

i-mix (x = 2)

Odd 74.6-75% 74.6-75% 99.6-100%

Even 62.3-75% 74.6-75% 99.6-100%

All 50.195% 74.8-75% 99.8-100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 98.4-100% 93.8-99.6% 98.4-100%

Even 75-100% 75-99.6% 99.2-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 98.4-100% 93.8-99.6% 98.4-100%

Even 75-100% 75-99.6% 99.2-100%

Unpaired elem.

Mix

Odd 98.4-100% 96.9-99.8% 98.4-100%

Even 98.2-100% 99.2-99.8% 99.6-100%

i, i+256,

random for others

Odd 99.4-100% 99.6-100% 99.4-100%

Even 99.6-100% 99.4-100% 99.6-100%

B. FNT Diffusion Analysis Results

225

Table B.15: FNT diffusion for t = 4, Ft = 65537, N = 1024

Location
No. Modified

elements

Same

Modification

Different Modifi.

modulo Ft = 0

Different Modifi.

modulo Ft ≠ 0

Paired elements

i, i+512

i-even (x = 1)

Odd 49.2-50% 49.2-50% 98.4-100%

Even 24.8-50% 49.6-50% 99.6-100%

All 0.195% 50% 100%

Paired elements

i, i+512

i-odd (x = 1)

Odd 49.2-50% 49.2-50% 98.4-100%

Even 24.8-50% 49.6-50% 99.6-100%

All 0.195% 50% 100%

Paired elements

i, i+512

i-mix (x = 1)

Odd 49.8-50% 49.8-50% 99.8-100%

Even 24.9-50% 49.8-50% 99.8-100%

All 0.098% 50% 100%

Paired elements

i, i+256

i-even (x = 2)

Odd 74.6-75% 74.2-75% 98.4-100%

Even 62.3-75% 74.6-75% 99.4-100%

All 50.195% 74.8-75% 100%

Paired elements

i, i+256

i-odd (x = 2)

Odd 74.6-75% 73.4-75% 98.4-100%

Even 62.3-75% 74.6-75% 99.6-100%

All 50.195% 75% 100%

Paired elements

i, i+256

i-mix (x = 2)

Odd 74.8-75% 74.7-75% 99.8-100%

Even 62.4-75% 74.8-75% 99.7-100%

All 50.098% 75% 100%

Unpaired elem.

Even

Single 100% 100% 100%

Odd 98.4-100% 98.4-99.8% 99.2-100%

Even 75-100% 75-99.8% 99.6-100%

Unpaired elem.

Odd

Single 100% 100% 100%

Odd 98.4-100% 96.9-99.8% 99.2-100%

Even 75-100% 75-99.8% 99.6-100%

Unpaired elem.

Mix

Odd 99.6-100% 99.2-99.9% 99.6-100%

Even 99.4-100% 99.6-99.9% 99.8-100%

i, i+512,

random for others

Odd 99.7-100% 99.8-100% 99.8-100%

Even 99.8-100% 99.8-100% 99.8-100%

226

Appendix C

Test Vectors Using NMNT

The following are the three vector tests, namely: the known answer test with its two

parts, the variable text and the variable key; the multi-block message test; and the

Monte Carlo test. These tests are run on the algorithm based on the NMNT in order to

verify its correctness.

C. Test Vectors Using NMNT

227

1. The Known Answer Tests (KAT)

a. Variable Text

Kc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PT 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 52 104 96 49 102 66 37 120 23 8 4 38 104 91 100 20

PT 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 66 87 59 38 14 103 38 50 105 80 1 79 94 126 97 35

PT 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 80 29 122 35 21 1 26 6 83 122 93 35 61 120 120 110

PT 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 44 4 50 114 18 13 120 114 29 122 35 50 107 19 43 103

PT 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 117 52 0 31 68 33 94 81 22 99 44 72 77 45 78 72

PT 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 106 108 77 46 44 71 73 4 109 77 70 5 25 79 121 85

PT 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 15 122 74 91 71 97 62 100 16 117 6 14 122 94 98 70

PT 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 106 69 110 4 99 90 110 46 68 56 118 82 79 112 81 111

PT 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 120 29 113 19 8 109 13 54 22 26 85 72 59 121 68 94

PT 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 70 103 28 36 97 93 22 108 74 82 54 14 7 124 93 13

PT 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 106 119 122 97 91 37 61 115 74 16 20 33 61 115 15 14

PT 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 25 2 115 45 33 39 75 124 121 47 91 82 105 86 111 102

PT 126 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 89 47 103 24 28 80 95 80 92 124 18 70 87 76 91 99

PT 126 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 55 70 43 9 21 99 46 48 58 7 0 33 44 107 118 107

PT 126 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 39 124 110 60 57 99 57 71 93 51 99 99 120 62 71 82

PT 126 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 100 38 107 34 93 81 10 93 33 40 18 63 19 13 23 30

PT 126 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 96 19 87 38 52 46 63 65 112 57 110 88 63 123 33 82

PT 126 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 27 7 19 14 116 15 49 71 114 111 18 116 5 11 16 97

PT 126 126 126 64 0 0 0 0 0 0 0 0 0 0 0 0

CT 117 10 9 67 24 111 98 117 84 111 28 6 6 94 26 80

PT 126 126 126 96 0 0 0 0 0 0 0 0 0 0 0 0

CT 102 70 47 122 28 104 108 117 116 111 22 98 71 15 9 50

PT 126 126 126 112 0 0 0 0 0 0 0 0 0 0 0 0

CT 58 19 32 59 20 72 106 91 45 25 111 27 75 69 36 80

PT 126 126 126 120 0 0 0 0 0 0 0 0 0 0 0 0

CT 14 64 103 34 39 89 100 55 80 16 104 99 122 16 7 61

C. Test Vectors Using NMNT

228

PT 126 126 126 124 0 0 0 0 0 0 0 0 0 0 0 0

CT 26 100 124 48 3 75 32 102 75 37 81 72 27 28 89 111

PT 126 126 126 126 0 0 0 0 0 0 0 0 0 0 0 0

CT 103 118 26 125 101 43 117 102 88 71 14 112 39 58 0 21

PT 126 126 126 126 64 0 0 0 0 0 0 0 0 0 0 0

CT 31 70 104 21 48 10 110 87 76 99 35 60 47 26 94 21

PT 126 126 126 126 96 0 0 0 0 0 0 0 0 0 0 0

CT 19 88 6 112 84 68 38 85 88 49 32 65 49 116 110 43

PT 126 126 126 126 112 0 0 0 0 0 0 0 0 0 0 0

CT 86 72 43 95 6 126 104 74 103 120 60 85 84 89 17 122

PT 126 126 126 126 120 0 0 0 0 0 0 0 0 0 0 0

CT 19 11 4 4 31 87 113 36 84 6 82 103 111 36 74 103

PT 126 126 126 126 124 0 0 0 0 0 0 0 0 0 0 0

CT 3 44 117 104 15 69 118 87 82 44 93 80 49 119 59 74

PT 126 126 126 126 126 0 0 0 0 0 0 0 0 0 0 0

CT 41 104 11 52 13 100 122 86 56 114 14 16 108 73 75 15

PT 126 126 126 126 126 64 0 0 0 0 0 0 0 0 0 0

CT 36 106 82 71 20 102 47 107 46 72 97 17 116 115 108 84

PT 126 126 126 126 126 96 0 0 0 0 0 0 0 0 0 0

CT 98 112 37 52 69 114 122 78 7 22 40 96 76 71 54 123

PT 126 126 126 126 126 112 0 0 0 0 0 0 0 0 0 0

CT 23 60 121 36 103 45 81 39 125 45 19 34 80 83 106 24

PT 126 126 126 126 126 120 0 0 0 0 0 0 0 0 0 0

CT 43 116 81 88 64 21 92 43 118 24 19 10 39 88 22 38

PT 126 126 126 126 126 124 0 0 0 0 0 0 0 0 0 0

CT 4 97 60 37 37 88 48 17 56 36 41 96 54 118 73 71

PT 126 126 126 126 126 126 0 0 0 0 0 0 0 0 0 0

CT 118 122 107 20 126 50 73 100 82 103 59 27 98 10 68 123

PT 126 126 126 126 126 126 64 0 0 0 0 0 0 0 0 0

CT 112 72 33 69 50 7 11 102 20 117 63 41 109 6 2 89

PT 126 126 126 126 126 126 96 0 0 0 0 0 0 0 0 0

CT 53 73 123 38 9 36 126 33 104 27 91 83 3 116 52 81

PT 126 126 126 126 126 126 112 0 0 0 0 0 0 0 0 0

CT 18 75 69 50 55 94 2 3 15 84 10 98 114 22 49 28

PT 126 126 126 126 126 126 120 0 0 0 0 0 0 0 0 0

CT 95 27 48 14 81 105 35 15 116 53 105 78 102 57 29 102

PT 126 126 126 126 126 126 124 0 0 0 0 0 0 0 0 0

CT 119 110 26 52 56 118 23 69 89 90 6 50 20 82 77 29

PT 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0 0

CT 53 35 5 122 49 66 10 111 40 74 76 42 35 114 14 13

PT 126 126 126 126 126 126 126 64 0 0 0 0 0 0 0 0

CT 124 87 106 44 41 19 85 89 6 122 91 26 70 25 34 46

PT 126 126 126 126 126 126 126 96 0 0 0 0 0 0 0 0

CT 31 34 104 13 89 120 30 59 38 104 82 83 109 85 69 121

PT 126 126 126 126 126 126 126 112 0 0 0 0 0 0 0 0

CT 10 92 55 88 69 57 67 85 20 42 69 38 68 6 9 46

PT 126 126 126 126 126 126 126 120 0 0 0 0 0 0 0 0

CT 105 118 1 99 82 112 6 20 126 83 33 27 14 56 45 80

PT 126 126 126 126 126 126 126 124 0 0 0 0 0 0 0 0

CT 32 29 44 12 15 53 39 55 23 118 113 82 18 18 48 95

C. Test Vectors Using NMNT

229

PT 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0

CT 55 2 72 9 50 15 3 100 76 8 38 121 20 84 109 81

PT 126 126 126 126 126 126 126 126 64 0 0 0 0 0 0 0

CT 121 73 59 43 81 39 107 12 94 36 79 99 122 17 5 97

PT 126 126 126 126 126 126 126 126 96 0 0 0 0 0 0 0

CT 68 114 96 32 99 33 69 9 117 73 116 48 84 82 27 85

PT 126 126 126 126 126 126 126 126 112 0 0 0 0 0 0 0

CT 76 11 3 23 126 70 62 83 30 102 14 102 84 20 113 75

PT 126 126 126 126 126 126 126 126 120 0 0 0 0 0 0 0

CT 107 100 45 123 119 98 11 107 36 116 47 25 5 19 88 61

PT 126 126 126 126 126 126 126 126 124 0 0 0 0 0 0 0

CT 78 40 104 84 10 20 115 39 89 62 43 18 6 57 65 122

PT 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0

CT 101 27 114 78 22 50 82 42 12 42 61 75 43 126 14 113

PT 126 126 126 126 126 126 126 126 126 64 0 0 0 0 0 0

CT 57 107 81 90 10 49 42 65 98 46 29 27 89 113 31 50

PT 126 126 126 126 126 126 126 126 126 96 0 0 0 0 0 0

CT 36 9 66 112 24 109 93 67 113 57 89 109 86 82 70 11

PT 126 126 126 126 126 126 126 126 126 112 0 0 0 0 0 0

CT 14 71 104 35 86 11 93 81 63 72 82 30 111 12 51 112

PT 126 126 126 126 126 126 126 126 126 120 0 0 0 0 0 0

CT 71 113 53 102 68 30 112 73 35 125 63 67 105 14 13 112

PT 126 126 126 126 126 126 126 126 126 124 0 0 0 0 0 0

CT 17 15 44 115 123 41 27 48 2 45 51 49 48 58 77 1

PT 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0

CT 57 95 6 92 92 111 51 28 4 60 110 1 112 88 1 46

PT 126 126 126 126 126 126 126 126 126 126 64 0 0 0 0 0

CT 62 7 14 10 35 43 122 85 73 1 44 13 14 120 30 50

PT 126 126 126 126 126 126 126 126 126 126 96 0 0 0 0 0

CT 20 125 116 124 103 103 36 98 27 34 101 11 119 26 121 93

PT 126 126 126 126 126 126 126 126 126 126 112 0 0 0 0 0

CT 60 125 103 85 109 90 117 102 5 26 10 29 58 72 12 120

PT 126 126 126 126 126 126 126 126 126 126 120 0 0 0 0 0

CT 0 52 22 73 112 83 43 106 113 18 3 92 126 77 24 58

PT 126 126 126 126 126 126 126 126 126 126 124 0 0 0 0 0

CT 126 37 68 92 40 26 103 70 29 51 0 68 52 71 104 45

PT 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0

CT 32 114 26 117 110 18 35 4 33 109 114 55 125 11 125 98

PT 126 126 126 126 126 126 126 126 126 126 126 64 0 0 0 0

CT 45 2 57 102 55 58 102 97 11 28 122 102 9 16 47 116

PT 126 126 126 126 126 126 126 126 126 126 126 96 0 0 0 0

CT 3 49 40 15 48 33 113 98 91 8 11 56 47 12 109 88

PT 126 126 126 126 126 126 126 126 126 126 126 112 0 0 0 0

CT 54 117 76 109 88 81 111 103 4 55 2 31 122 30 78 24

PT 126 126 126 126 126 126 126 126 126 126 126 120 0 0 0 0

CT 55 13 14 77 82 102 6 89 104 103 26 66 29 19 46 36

PT 126 126 126 126 126 126 126 126 126 126 126 124 0 0 0 0

CT 50 90 65 14 0 78 80 94 17 38 44 103 116 64 86 12

PT 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0

CT 62 15 68 79 32 101 126 17 52 33 66 25 101 77 110 0

C. Test Vectors Using NMNT

230

PT 126 126 126 126 126 126 126 126 126 126 126 126 64 0 0 0

CT 39 110 80 104 110 13 39 124 1 5 45 123 47 66 112 102

PT 126 126 126 126 126 126 126 126 126 126 126 126 96 0 0 0

CT 98 125 43 11 118 102 51 74 19 19 104 89 27 5 24 88

PT 126 126 126 126 126 126 126 126 126 126 126 126 112 0 0 0

CT 1 55 12 97 33 42 106 1 14 56 65 28 19 3 67 17

PT 126 126 126 126 126 126 126 126 126 126 126 126 120 0 0 0

CT 20 118 104 114 123 106 101 30 72 83 86 97 83 112 28 64

PT 126 126 126 126 126 126 126 126 126 126 126 126 124 0 0 0

CT 25 5 36 23 58 82 77 46 19 38 106 76 65 42 3 64

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0

CT 27 29 27 99 8 66 125 106 82 18 121 21 103 80 62 125

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 64 0 0

CT 93 89 54 63 43 1 51 15 82 89 10 123 118 123 69 2

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 96 0 0

CT 81 13 6 17 15 62 103 0 106 74 84 67 73 100 47 1

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 112 0 0

CT 110 55 70 73 77 58 55 12 74 77 116 95 53 95 30 54

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 120 0 0

CT 73 79 58 91 24 35 83 58 97 67 110 125 64 109 62 34

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 124 0 0

CT 20 47 35 19 75 112 121 74 109 106 0 44 43 114 38 1

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 0 0

CT 61 114 20 12 40 29 84 78 42 76 122 26 69 101 114 41

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 64 0

CT 67 122 87 6 65 72 42 108 111 38 67 32 87 1 17 7

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 96 0

CT 2 59 14 22 93 64 61 19 81 58 83 43 0 107 101 93

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 112 0

CT 69 11 97 89 70 63 38 31 49 28 29 115 45 70 90 6

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 120 0

CT 44 93 115 91 61 56 27 120 125 7 107 58 112 113 97 126

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 124 0

CT 62 112 68 124 65 30 43 125 27 38 20 101 101 88 17 117

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 0

CT 4 59 3 125 109 24 112 57 7 80 0 120 60 26 40 16

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 64

CT 64 2 21 36 123 48 64 93 124 45 23 116 17 93 4 80

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 96

CT 33 10 47 27 120 26 79 98 100 81 36 118 66 99 2 18

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 112

CT 112 63 96 106 115 35 117 74 91 84 47 120 46 28 120 120

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 120

CT 102 78 63 66 47 7 27 31 62 10 76 6 81 40 107 119

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 124

CT 40 60 115 119 11 109 118 54 4 89 12 73 32 24 41 50

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126

CT 40 86 125 47 110 0 38 27 91 97 32 54 39 75 45 57

C. Test Vectors Using NMNT

231

b. Variable Key

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Kc 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 114 120 13 82 8 8 59 107 19 13 40 18 46 71 2 3

Kc 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 55 49 36 51 75 92 88 89 81 96 78 106 100 36 101 53

Kc 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 53 57 38 69 116 66 50 119 94 71 50 47 31 53 62 57

Kc 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 32 31 29 74 20 9 31 121 81 112 21 102 11 76 57 100

Kc 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 114 95 101 119 56 113 37 61 92 19 74 40 114 13 96 72

Kc 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 96 102 21 20 74 53 91 125 111 115 64 23 126 107 15 68

Kc 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 92 73 35 70 22 93 58 42 0 98 116 106 78 84 97 106

Kc 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 97 13 21 13 0 122 99 21 56 110 102 77 33 25 64 23

Kc 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 78 21 28 95 26 104 8 96 8 26 46 64 86 52 57 65

Kc 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 115 118 90 90 42 113 89 31 41 6 26 123 65 59 71 9

Kc 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 47 84 46 83 19 7 93 52 33 90 16 40 82 92 110 79

Kc 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 97 78 12 75 2 68 86 59 32 13 105 87 51 117 122 31

Kc 126 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 99 45 7 102 68 15 100 80 31 52 49 116 89 38 7 96

Kc 126 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 111 66 54 35 120 107 121 62 117 57 53 111 67 95 11 29

Kc 126 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 49 59 77 106 56 16 116 50 61 1 108 44 58 13 86 38

Kc 126 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 40 23 23 100 19 107 113 125 34 63 84 67 84 84 70 101

Kc 126 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 101 90 57 68 113 11 42 115 105 110 62 9 124 103 62 107

Kc 126 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0

CT 4 64 100 101 38 110 113 36 51 67 120 67 3 22 57 114

Kc 126 126 126 64 0 0 0 0 0 0 0 0 0 0 0 0

CT 83 106 109 48 51 52 63 81 97 22 42 93 109 96 76 78

Kc 126 126 126 96 0 0 0 0 0 0 0 0 0 0 0 0

CT 92 16 61 41 40 46 105 114 95 73 44 104 60 57 31 124

Kc 126 126 126 112 0 0 0 0 0 0 0 0 0 0 0 0

CT 71 96 55 28 94 18 97 101 15 120 120 97 103 78 42 81

Kc 126 126 126 120 0 0 0 0 0 0 0 0 0 0 0 0

CT 59 16 78 85 107 63 59 4 116 102 3 87 49 32 80 0

Kc 126 126 126 124 0 0 0 0 0 0 0 0 0 0 0 0

CT 122 112 126 31 74 58 32 105 39 13 28 14 105 35 122 51

C. Test Vectors Using NMNT

232

Kc 126 126 126 126 0 0 0 0 0 0 0 0 0 0 0 0

CT 99 70 78 15 112 93 35 50 103 87 10 113 60 52 2 71

Kc 126 126 126 126 64 0 0 0 0 0 0 0 0 0 0 0

CT 57 34 71 15 70 29 45 45 48 125 63 108 50 65 119 74

Kc 126 126 126 126 96 0 0 0 0 0 0 0 0 0 0 0

CT 72 65 74 92 85 38 54 20 105 50 122 126 89 35 7 80

Kc 126 126 126 126 112 0 0 0 0 0 0 0 0 0 0 0

CT 0 33 124 84 89 104 34 4 23 103 67 14 69 86 98 28

Kc 126 126 126 126 120 0 0 0 0 0 0 0 0 0 0 0

CT 69 90 4 55 78 43 123 104 118 113 113 46 115 56 80 42

Kc 126 126 126 126 124 0 0 0 0 0 0 0 0 0 0 0

CT 63 5 115 32 73 3 63 97 119 118 69 34 67 75 41 37

Kc 126 126 126 126 126 0 0 0 0 0 0 0 0 0 0 0

CT 113 49 66 30 83 3 59 77 119 30 53 100 22 123 60 55

Kc 126 126 126 126 126 64 0 0 0 0 0 0 0 0 0 0

CT 106 61 41 11 86 14 121 53 36 113 83 56 87 88 126 119

Kc 126 126 126 126 126 96 0 0 0 0 0 0 0 0 0 0

CT 65 100 22 86 47 19 66 118 115 105 36 2 22 58 121 126

Kc 126 126 126 126 126 112 0 0 0 0 0 0 0 0 0 0

CT 75 105 13 110 46 24 58 99 67 79 99 9 50 115 104 111

Kc 126 126 126 126 126 120 0 0 0 0 0 0 0 0 0 0

CT 30 61 121 123 1 58 36 25 92 111 46 117 15 101 1 108

Kc 126 126 126 126 126 124 0 0 0 0 0 0 0 0 0 0

CT 105 27 76 65 65 27 48 25 89 104 30 40 69 32 31 38

Kc 126 126 126 126 126 126 0 0 0 0 0 0 0 0 0 0

CT 6 100 4 24 94 91 107 3 110 65 83 93 38 0 116 91

Kc 126 126 126 126 126 126 64 0 0 0 0 0 0 0 0 0

CT 36 112 82 1 113 82 99 38 9 44 27 47 8 120 82 104

Kc 126 126 126 126 126 126 96 0 0 0 0 0 0 0 0 0

CT 15 77 92 45 14 69 75 28 46 24 43 45 115 37 56 64

Kc 126 126 126 126 126 126 112 0 0 0 0 0 0 0 0 0

CT 21 93 83 46 2 46 11 41 46 36 78 103 113 69 35 62

Kc 126 126 126 126 126 126 120 0 0 0 0 0 0 0 0 0

CT 10 35 114 65 87 32 80 15 62 45 50 85 62 5 17 52

Kc 126 126 126 126 126 126 124 0 0 0 0 0 0 0 0 0

CT 50 55 18 103 108 83 47 42 96 82 58 124 106 75 69 44

Kc 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0 0

CT 88 58 23 125 35 117 126 75 63 0 65 9 90 105 75 29

Kc 126 126 126 126 126 126 126 64 0 0 0 0 0 0 0 0

CT 26 47 49 59 54 80 9 120 33 83 118 41 46 68 126 13

Kc 126 126 126 126 126 126 126 96 0 0 0 0 0 0 0 0

CT 77 126 5 113 117 112 126 118 52 63 108 94 124 57 61 86

Kc 126 126 126 126 126 126 126 112 0 0 0 0 0 0 0 0

CT 64 84 71 25 45 69 63 69 2 41 34 18 95 46 9 77

Kc 126 126 126 126 126 126 126 120 0 0 0 0 0 0 0 0

CT 109 16 24 84 83 65 62 51 51 81 6 45 72 112 37 119

Kc 126 126 126 126 126 126 126 124 0 0 0 0 0 0 0 0

CT 119 5 46 106 92 75 3 8 76 30 90 101 125 71 117 125

Kc 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0

CT 80 103 119 44 105 88 99 7 98 12 45 119 1 50 35 76

C. Test Vectors Using NMNT

233

Kc 126 126 126 126 126 126 126 126 64 0 0 0 0 0 0 0

CT 44 45 57 101 91 92 70 2 89 116 64 6 81 27 50 98

Kc 126 126 126 126 126 126 126 126 96 0 0 0 0 0 0 0

CT 17 123 7 5 87 14 107 92 121 91 54 12 13 118 113 123

Kc 126 126 126 126 126 126 126 126 112 0 0 0 0 0 0 0

CT 32 67 11 28 11 63 79 121 99 45 15 98 15 88 50 33

Kc 126 126 126 126 126 126 126 126 120 0 0 0 0 0 0 0

CT 42 22 47 13 118 41 63 31 47 29 9 114 86 60 16 53

Kc 126 126 126 126 126 126 126 126 124 0 0 0 0 0 0 0

CT 21 23 32 76 115 98 28 77 1 89 18 63 66 10 76 121

Kc 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0

CT 11 122 41 94 1 28 125 93 88 50 99 42 80 99 59 78

Kc 126 126 126 126 126 126 126 126 126 64 0 0 0 0 0 0

CT 42 81 86 49 50 6 12 78 93 0 107 32 51 82 15 13

Kc 126 126 126 126 126 126 126 126 126 96 0 0 0 0 0 0

CT 117 64 87 79 18 50 120 15 15 82 17 89 98 23 41 73

Kc 126 126 126 126 126 126 126 126 126 112 0 0 0 0 0 0

CT 8 54 7 1 125 121 1 30 39 8 49 48 55 28 43 41

Kc 126 126 126 126 126 126 126 126 126 120 0 0 0 0 0 0

CT 20 64 32 107 88 80 71 96 6 103 117 19 89 0 97 63

Kc 126 126 126 126 126 126 126 126 126 124 0 0 0 0 0 0

CT 37 27 123 110 29 82 77 57 17 51 61 30 81 1 10 3

Kc 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0

CT 9 119 101 32 17 27 59 100 23 3 22 16 8 44 24 84

Kc 126 126 126 126 126 126 126 126 126 126 64 0 0 0 0 0

CT 43 68 113 2 62 83 44 20 29 54 91 100 122 102 33 21

Kc 126 126 126 126 126 126 126 126 126 126 96 0 0 0 0 0

CT 35 122 50 80 50 80 43 94 3 117 69 52 24 109 1 41

Kc 126 126 126 126 126 126 126 126 126 126 112 0 0 0 0 0

CT 9 35 89 91 16 116 97 15 30 113 61 79 84 16 53 79

Kc 126 126 126 126 126 126 126 126 126 126 120 0 0 0 0 0

CT 34 74 105 95 81 17 84 54 5 12 41 37 118 23 14 31

Kc 126 126 126 126 126 126 126 126 126 126 124 0 0 0 0 0

CT 71 36 0 122 2 17 125 4 82 44 38 102 70 62 110 118

Kc 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0

CT 20 3 112 40 93 40 47 81 85 88 103 93 108 52 120 49

Kc 126 126 126 126 126 126 126 126 126 126 126 64 0 0 0 0

CT 39 26 121 60 50 0 13 71 2 22 76 68 4 89 24 72

Kc 126 126 126 126 126 126 126 126 126 126 126 96 0 0 0 0

CT 57 93 91 46 38 81 68 7 24 117 13 71 123 33 29 69

Kc 126 126 126 126 126 126 126 126 126 126 126 112 0 0 0 0

CT 24 8 42 26 85 69 29 99 43 63 66 78 72 63 82 73

Kc 126 126 126 126 126 126 126 126 126 126 126 120 0 0 0 0

CT 15 109 65 16 11 82 24 102 7 78 40 40 66 49 22 29

Kc 126 126 126 126 126 126 126 126 126 126 126 124 0 0 0 0

CT 111 29 94 93 71 47 106 25 17 119 98 29 119 22 90 8

Kc 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0

CT 101 65 124 16 67 109 22 102 81 92 66 115 32 31 64 80

Kc 126 126 126 126 126 126 126 126 126 126 126 126 64 0 0 0

CT 112 26 113 115 9 7 47 74 3 24 121 62 86 6 89 102

C. Test Vectors Using NMNT

234

Kc 126 126 126 126 126 126 126 126 126 126 126 126 96 0 0 0

CT 117 17 19 113 105 102 112 100 17 73 9 79 120 100 29 11

Kc 126 126 126 126 126 126 126 126 126 126 126 126 112 0 0 0

CT 85 14 65 100 60 23 27 113 55 19 33 12 78 20 26 59

Kc 126 126 126 126 126 126 126 126 126 126 126 126 120 0 0 0

CT 30 66 63 65 107 6 10 80 107 40 115 116 18 62 36 94

Kc 126 126 126 126 126 126 126 126 126 126 126 126 124 0 0 0

CT 90 36 18 95 92 52 116 34 125 91 73 16 124 25 106 78

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0

CT 80 18 91 41 52 6 10 67 109 108 65 39 118 103 92 89

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 64 0 0

CT 122 56 98 71 45 66 4 99 45 36 47 20 122 83 100 67

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 96 0 0

CT 14 62 56 112 27 7 112 31 17 61 54 109 30 49 40 30

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 112 0 0

CT 25 76 21 93 51 39 64 27 96 83 102 0 11 125 99 20

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 120 0 0

CT 29 12 9 116 28 106 60 20 26 51 10 36 121 84 45 24

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 124 0 0

CT 7 82 32 33 56 120 38 101 47 85 103 15 84 115 35 52

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 0 0

CT 15 117 55 71 68 120 33 5 91 61 65 40 60 95 123 1

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 64 0

CT 17 16 60 21 29 15 59 114 85 50 71 99 93 22 44 121

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 96 0

CT 104 104 123 126 35 63 22 98 126 125 73 107 9 42 76 41

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 112 0

CT 24 65 55 43 53 109 92 125 112 124 111 105 17 69 100 23

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 120 0

CT 98 122 62 107 97 82 87 35 106 0 115 39 38 36 109 19

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 124 0

CT 109 31 39 60 29 111 37 77 87 34 85 32 96 68 83 30

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 0

CT 50 36 116 55 62 8 0 56 6 119 117 67 61 72 78 65

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 64

CT 36 28 122 98 30 41 12 119 31 38 30 5 44 2 33 108

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 96

CT 95 59 81 26 36 77 126 7 18 103 24 90 1 27 10 55

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 112

CT 64 48 17 47 26 89 65 121 29 33 39 41 28 18 45 56

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 120

CT 91 28 89 5 96 96 105 69 83 70 5 88 22 3 64 120

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 124

CT 66 52 30 104 126 44 87 47 43 68 19 18 20 47 121 28

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126

CT 90 24 107 64 105 96 7 95 45 20 67 16 111 35 12 0

C. Test Vectors Using NMNT

235

2. The Multi-block Message Test (MMT)

Kc 45 118 71 35 98 63 121 56 72 51 49 104 37 64 89 93

1 Block

PT 49 48 49 119 119 67 117 47 89 50 35 123 110 77 47 94

CT 14 123 66 69 99 84 34 54 35 37 17 116 16 85 14 10

2 Blocks

PT 93 67 72 53 37 87 73 68 83 67 125 64 78 83 77 50

 47 45 73 39 35 48 110 65 62 109 49 50 104 100 97 78

CT 24 6 81 84 41 31 45 31 55 62 1 90 35 35 2 89

 1 26 43 69 76 90 109 62 23 0 98 85 93 25 7 118

3 Blocks

PT 77 80 80 123 44 74 110 77 120 37 75 78 120 112 117 115

 65 41 98 119 53 67 120 81 42 80 114 54 122 84 68 41

 62 78 71 101 49 78 58 47 83 63 68 39 59 87 86 67

CT 48 50 13 116 87 81 60 49 57 21 35 111 114 19 50 81

 114 15 99 6 101 30 42 92 15 120 29 73 42 96 25 92

 124 109 11 16 85 40 30 59 17 36 39 11 0 73 61 10

4 Blocks

PT 53 89 94 84 40 66 78 77 91 60 55 46 46 96 120 124

 106 46 58 114 68 78 47 107 87 96 61 64 96 41 57 108

 62 35 61 99 71 68 71 104 37 59 80 107 77 91 97 44

 49 68 80 75 116 95 113 89 101 117 95 66 70 97 81 71

CT 28 43 1 116 110 99 113 60 8 51 15 3 116 13 17 24

 31 2 7 74 86 16 120 111 85 23 45 27 109 101 95 98

 9 105 37 24 91 109 94 58 45 86 31 51 57 10 24 2

 58 11 6 93 73 93 124 64 6 50 115 125 105 92 27 77

5 Blocks

PT 52 125 96 58 48 126 94 55 86 89 117 64 52 114 115 47

 102 114 121 80 44 87 109 36 44 67 62 36 60 66 83 107

 93 43 90 55 96 54 87 97 97 98 83 84 94 125 116 103

 77 92 101 52 79 71 87 57 67 103 46 94 119 45 103 65

 109 84 59 78 111 82 35 121 36 122 82 65 86 77 83 123

CT 126 35 81 88 74 15 38 54 61 98 104 30 83 13 94 25

 45 37 54 46 60 18 103 54 104 27 42 114 13 66 86 58

 54 23 84 61 29 3 115 111 84 58 40 37 61 106 10 75

 4 11 39 49 44 48 8 93 74 23 97 27 90 35 55 113

 6 29 113 19 35 32 2 9 15 109 35 44 96 25 69 105

C. Test Vectors Using NMNT

236

6 Blocks

PT 124 99 124 91 59 58 62 68 82 114 100 85 125 62 82 105

 110 78 114 53 105 114 111 59 68 49 81 85 91 94 59 89

 124 122 77 47 55 115 97 41 82 34 47 42 99 70 99 124

 40 115 105 75 46 89 119 97 46 57 97 119 116 37 120 72

 105 106 102 42 57 77 51 40 34 83 75 119 115 89 118 85

 116 76 67 96 81 99 84 88 84 117 113 53 86 94 90 102

CT 47 6 14 46 4 123 20 51 30 88 92 45 23 86 26 10

 61 2 72 35 78 20 116 7 81 19 9 39 126 41 3 56

 63 47 2 15 71 26 57 36 76 124 120 96 65 118 30 71

 19 7 3 41 57 92 112 15 73 82 38 122 122 24 20 122

 10 17 72 103 104 42 49 40 76 4 33 97 50 63 117 63

 9 50 38 57 38 22 8 28 85 39 6 16 6 107 18 40

7 Blocks

PT 44 112 57 88 77 85 87 46 111 49 89 44 72 81 87 60

 120 63 103 125 119 66 92 104 60 77 70 67 109 35 47 33

 79 103 36 54 109 102 101 69 101 97 40 100 116 121 38 86

 109 41 54 69 87 75 116 126 124 92 62 43 94 106 80 60

 55 118 64 120 87 92 70 35 90 34 44 50 66 95 54 107

 34 126 36 102 57 83 78 52 53 95 44 52 38 104 48 70

 94 125 71 106 52 117 92 102 113 124 79 118 92 80 88 80

CT 42 110 95 65 122 110 122 53 95 88 74 59 34 105 42 79

 72 36 79 73 30 90 14 87 106 89 28 67 80 24 119 84

 74 111 90 105 91 71 56 123 34 108 88 60 0 2 54 9

 89 74 20 51 67 21 54 114 81 18 120 20 77 61 64 108

 56 13 75 105 76 121 86 26 87 112 54 17 72 80 35 36

 20 106 117 24 112 5 12 13 75 69 89 126 1 80 30 77

 27 63 105 52 27 81 108 55 46 40 15 61 55 66 75 46

8 Blocks

PT 126 103 91 95 102 94 93 122 52 124 120 52 90 67 68 96

 107 56 89 118 120 37 90 74 99 72 52 33 111 36 71 116

 36 40 99 108 54 100 62 122 46 101 88 116 37 49 115 121

 102 50 81 55 38 78 85 63 115 63 47 91 83 33 105 93

 61 35 84 121 43 51 86 40 80 83 90 33 88 115 114 72

 42 100 46 117 53 102 80 48 72 87 88 41 60 36 87 41

 60 40 71 100 77 62 74 95 96 66 119 118 44 98 117 60

 78 112 106 75 121 33 35 79 94 79 33 50 50 90 73 54

CT 85 69 52 69 108 119 17 50 16 23 83 29 33 44 115 105

 16 49 121 32 93 39 33 81 52 67 59 97 103 111 89 111

 67 48 70 47 14 112 34 51 81 85 92 61 65 126 123 72

 84 117 0 121 117 0 23 30 59 120 77 117 122 32 6 88

 12 52 106 53 68 58 70 104 8 27 13 93 6 96 5 22

 52 75 83 13 125 117 102 27 57 117 58 45 116 33 126 43

 24 62 22 78 3 45 88 9 1 34 73 68 70 120 17 95

 87 40 75 119 60 2 101 66 66 25 98 73 102 34 74 46

C. Test Vectors Using NMNT

237

9 Blocks

PT 59 64 40 88 70 45 106 106 75 121 48 89 41 105 47 106

 39 55 58 43 109 71 46 51 116 67 58 48 49 99 60 49

 117 117 72 79 83 75 58 52 69 89 106 83 100 55 51 98

 108 99 58 69 60 113 116 118 66 105 95 100 55 71 120 124

 43 44 58 82 62 68 51 55 112 125 121 108 115 68 84 59

 64 59 110 54 73 76 69 86 42 51 108 36 93 112 54 82

 98 77 75 112 60 50 85 82 74 75 115 125 108 82 115 63

 69 109 105 48 109 95 36 74 88 41 89 73 121 106 98 85

 118 105 124 39 82 108 36 105 125 108 119 105 84 74 49 39

CT 56 23 66 12 0 66 106 47 35 51 98 29 92 100 72 92

 61 3 113 12 63 94 10 72 99 80 74 7 65 30 98 96

 86 85 17 123 63 101 101 4 123 36 75 25 70 37 40 17

 35 11 116 60 26 107 101 99 57 18 25 78 3 94 81 59

 26 75 83 98 31 54 82 70 49 59 13 29 21 30 113 98

 4 69 5 62 17 103 104 12 102 94 121 32 25 30 31 76

 57 21 49 117 71 75 25 25 54 74 53 56 126 44 104 105

 83 107 117 109 52 66 29 59 76 84 70 75 55 124 90 105

 88 34 52 77 0 69 104 80 51 72 63 102 50 104 5 106

10 Blocks

PT 106 88 79 96 69 38 69 94 76 49 57 109 51 85 40 75

 95 51 126 109 87 97 94 41 124 111 73 112 99 33 66 100

 117 100 68 126 78 119 38 73 58 61 72 111 100 44 43 105

 74 94 41 77 63 39 41 69 107 102 94 107 49 51 121 98

 65 122 124 42 74 121 96 72 70 76 62 72 89 112 85 35

 43 106 85 100 72 57 53 68 101 48 49 107 98 58 90 87

 54 71 107 55 83 110 36 78 110 125 116 35 43 74 68 75

 47 57 104 110 116 37 71 120 112 37 58 76 118 48 83 41

 52 100 114 34 83 54 95 118 64 61 114 56 86 52 84 82

 90 95 60 60 35 54 52 104 99 57 75 63 37 119 113 64

CT 85 94 104 71 56 26 42 38 55 13 32 91 97 73 33 42

 23 51 85 37 57 46 71 40 64 126 87 16 41 59 82 61

 121 120 18 12 101 87 60 73 47 71 14 80 98 28 48 110

 89 118 35 92 31 87 69 32 92 50 20 71 94 14 69 92

 12 45 38 67 4 61 3 49 52 57 67 80 118 99 117 57

 120 72 64 47 70 30 120 109 86 117 44 101 116 29 75 24

 80 15 57 49 76 32 119 42 43 82 18 120 104 44 41 108

 113 4 33 65 99 6 126 28 118 17 116 93 122 121 37 19

 8 34 13 26 93 78 83 79 119 16 124 84 74 117 76 55

 87 82 58 108 36 101 35 113 96 91 66 28 110 14 31 8

C. Test Vectors Using NMNT

238

3. The Monte Carlo Test (MCT)

Count = 1

Kc 78 88 64 55 85 64 68 101 115 119 59 70 65 77 55 79

PT 74 58 110 97 48 69 103 100 95 83 90 40 126 86 37 48

CT 110 21 88 67 42 123 115 37 51 4 122 56 110 93 2 59

Count = 2

Kc 32 77 24 116 127 59 55 64 64 115 65 126 47 16 53 116

PT 110 21 88 67 42 123 115 37 51 4 122 56 110 93 2 59

CT 12 55 15 73 114 1 72 42 121 65 109 100 38 22 88 7

Count = 3

Kc 44 122 23 61 13 58 127 106 57 50 44 26 9 6 109 115

PT 12 55 15 73 114 1 72 42 121 65 109 100 38 22 88 7

CT 61 28 61 28 0 10 61 58 83 64 6 98 0 12 29 5

Count = 4

Kc 17 102 42 33 13 48 66 80 106 114 42 120 9 10 112 118

PT 61 28 61 28 0 10 61 58 83 64 6 98 0 12 29 5

CT 76 109 26 11 77 31 11 63 27 122 0 32 106 126 83 73

Count = 5

Kc 93 11 48 42 64 47 73 111 113 8 42 88 99 116 35 63

PT 76 109 26 11 77 31 11 63 27 122 0 32 106 126 83 73

CT 75 20 105 18 126 38 106 89 4 92 19 108 72 80 123 53

Count = 6

Kc 22 31 89 56 62 9 35 54 117 84 57 52 43 36 88 10

PT 75 20 105 18 126 38 106 89 4 92 19 108 72 80 123 53

CT 108 66 16 67 92 36 58 21 61 82 37 61 0 64 76 13

Count = 7

Kc 122 93 73 123 98 45 25 35 72 6 28 9 43 100 20 7

PT 108 66 16 67 92 36 58 21 61 82 37 61 0 64 76 13

CT 45 52 81 109 35 51 8 100 111 98 61 22 28 101 95 19

Count = 8

Kc 87 105 24 22 65 30 17 71 39 100 33 31 55 1 75 20

PT 45 52 81 109 35 51 8 100 111 98 61 22 28 101 95 19

CT 7 58 88 8 119 17 87 46 107 120 60 113 81 107 13 70

Count = 9

Kc 80 83 64 30 54 15 70 105 76 28 29 110 102 106 70 82

PT 7 58 88 8 119 17 87 46 107 120 60 113 81 107 13 70

CT 41 115 62 3 59 7 17 81 43 29 65 14 123 45 18 78

Count = 10

Kc 121 32 126 29 13 8 87 56 103 1 92 96 29 71 84 28

PT 41 115 62 3 59 7 17 81 43 29 65 14 123 45 18 78

CT 58 31 56 11 65 7 100 66 33 31 126 116 95 63 59 118

Count = 11

Kc 67 63 70 22 76 15 51 122 70 30 34 20 66 120 111 106

PT 58 31 56 11 65 7 100 66 33 31 126 116 95 63 59 118

CT 29 121 43 77 63 62 83 69 26 11 40 79 126 95 72 13

Count = 12

Kc 94 70 109 91 115 49 96 63 92 21 10 91 60 39 39 103

PT 29 121 43 77 63 62 83 69 26 11 40 79 126 95 72 13

CT 92 75 53 19 72 7 78 47 67 30 98 121 13 92 83 25

C. Test Vectors Using NMNT

239

Count = 13

Kc 2 13 88 72 59 54 46 16 31 11 104 34 49 123 116 126

PT 92 75 53 19 72 7 78 47 67 30 98 121 13 92 83 25

CT 47 115 44 12 119 2 71 2 32 52 49 2 50 112 34 108

Count = 14

Kc 45 126 116 68 76 52 105 18 63 63 89 32 3 11 86 18

PT 47 115 44 12 119 2 71 2 32 52 49 2 50 112 34 108

CT 0 8 54 82 57 36 29 43 12 77 103 108 113 122 115 14

Count = 15

Kc 45 118 66 22 117 16 116 57 51 114 62 76 114 113 37 28

PT 0 8 54 82 57 36 29 43 12 77 103 108 113 122 115 14

CT 88 50 101 100 122 82 38 37 17 73 17 13 49 28 12 73

Count = 16

Kc 117 68 39 114 15 66 82 28 34 59 47 65 67 109 41 85

PT 88 50 101 100 122 82 38 37 17 73 17 13 49 28 12 73

CT 22 107 117 79 86 83 57 71 7 100 120 84 94 94 74 27

Count = 17

Kc 99 47 82 61 89 17 107 91 37 95 87 21 29 51 99 78

PT 22 107 117 79 86 83 57 71 7 100 120 84 94 94 74 27

CT 75 20 23 52 12 13 104 89 81 97 23 5 80 88 31 5

Count = 18

Kc 40 59 69 9 85 28 3 2 116 62 64 16 77 107 124 75

PT 75 20 23 52 12 13 104 89 81 97 23 5 80 88 31 5

CT 34 60 101 8 77 7 10 83 14 95 54 62 90 34 21 44

Count = 19

Kc 10 7 32 1 24 27 9 81 122 97 118 46 23 73 105 103

PT 34 60 101 8 77 7 10 83 14 95 54 62 90 34 21 44

CT 28 19 36 105 65 79 110 64 114 119 47 11 4 57 76 1

Count = 20

Kc 22 20 4 104 89 84 103 17 8 22 89 37 19 112 37 102

PT 28 19 36 105 65 79 110 64 114 119 47 11 4 57 76 1

CT 79 79 22 75 77 107 32 120 25 78 120 68 35 50 100 12

Count = 21

Kc 89 91 18 35 20 63 71 105 17 88 33 97 48 66 65 106

PT 79 79 22 75 77 107 32 120 25 78 120 68 35 50 100 12

CT 28 46 78 106 94 98 18 34 116 59 1 80 28 97 86 93

Count = 22

Kc 69 117 92 73 74 93 85 75 101 99 32 49 44 35 23 55

PT 28 46 78 106 94 98 18 34 116 59 1 80 28 97 86 93

CT 15 49 111 12 17 110 52 126 92 29 105 87 75 8 42 31

Count = 23

Kc 74 68 51 69 91 51 97 53 57 126 73 102 103 43 61 40

PT 15 49 111 12 17 110 52 126 92 29 105 87 75 8 42 31

CT 88 115 23 87 113 89 87 99 97 63 64 33 60 13 29 109

Count = 24

Kc 18 55 36 18 42 106 54 86 88 65 9 71 91 38 32 69

PT 88 115 23 87 113 89 87 99 97 63 64 33 60 13 29 109

CT 84 73 107 10 40 69 115 83 74 2 29 80 105 57 35 55

C. Test Vectors Using NMNT

240

Count = 25

Kc 70 126 79 24 2 47 69 5 18 67 20 23 50 31 3 114

PT 84 73 107 10 40 69 115 83 74 2 29 80 105 57 35 55

CT 0 82 104 41 115 51 34 21 119 97 89 84 28 121 76 102

Count = 26

Kc 70 44 39 49 113 28 103 16 101 34 77 67 46 102 79 20

PT 0 82 104 41 115 51 34 21 119 97 89 84 28 121 76 102

CT 56 34 97 86 84 21 110 0 15 98 79 53 125 8 1 6

Count = 27

Kc 126 14 70 103 37 9 9 16 106 64 2 118 83 110 78 18

PT 56 34 97 86 84 21 110 0 15 98 79 53 125 8 1 6

CT 11 99 99 96 14 111 16 68 20 91 94 116 0 122 99 103

Count = 28

Kc 117 109 37 7 43 102 25 84 126 27 92 2 83 20 45 117

PT 11 99 99 96 14 111 16 68 20 91 94 116 0 122 99 103

CT 56 27 72 102 118 31 4 15 77 109 2 17 113 10 115 79

Count = 29

Kc 77 118 109 97 93 121 29 91 51 118 94 19 34 30 94 58

PT 56 27 72 102 118 31 4 15 77 109 2 17 113 10 115 79

CT 40 32 7 37 97 71 117 101 74 17 82 124 1 70 28 17

Count = 30

Kc 101 86 106 68 60 62 104 62 121 103 12 111 35 88 66 43

PT 40 32 7 37 97 71 117 101 74 17 82 124 1 70 28 17

CT 25 97 74 77 88 120 53 39 19 125 119 20 69 114 42 65

Count = 31

Kc 124 55 32 9 100 70 93 25 106 26 123 123 102 42 104 106

PT 25 97 74 77 88 120 53 39 19 125 119 20 69 114 42 65

CT 17 44 120 109 94 31 59 15 89 19 112 117 88 86 59 82

Count = 32

Kc 109 27 88 100 58 89 102 22 51 9 11 14 62 124 83 56

PT 17 44 120 109 94 31 59 15 89 19 112 117 88 86 59 82

CT 77 64 44 87 24 110 15 110 94 22 70 24 15 14 32 25

Count = 33

Kc 32 91 116 51 34 55 105 120 109 31 77 22 49 114 115 33

PT 77 64 44 87 24 110 15 110 94 22 70 24 15 14 32 25

CT 3 118 79 0 41 120 93 82 29 12 62 54 86 11 17 45

Count = 34

Kc 35 45 59 51 11 79 52 42 112 19 115 32 103 121 98 12

PT 3 118 79 0 41 120 93 82 29 12 62 54 86 11 17 45

CT 21 61 79 65 36 18 94 105 80 46 34 97 79 124 69 78

Count = 35

Kc 54 16 116 114 47 93 106 67 32 61 81 65 40 5 39 66

PT 21 61 79 65 36 18 94 105 80 46 34 97 79 124 69 78

CT 122 55 58 106 115 68 12 124 58 69 79 64 55 124 22 45

Count = 36

Kc 76 39 78 24 92 25 102 63 26 120 30 1 31 121 49 111

PT 122 55 58 106 115 68 12 124 58 69 79 64 55 124 22 45

CT 116 92 20 121 114 14 107 110 76 22 38 51 28 122 110 113

C. Test Vectors Using NMNT

241

Count = 37

Kc 56 123 90 97 46 23 13 81 86 110 56 50 3 3 95 30

PT 116 92 20 121 114 14 107 110 76 22 38 51 28 122 110 113

CT 33 5 0 55 23 119 62 98 71 119 91 117 126 67 88 77

Count = 38

Kc 25 126 90 86 57 96 51 51 17 25 99 71 125 64 7 83

PT 33 5 0 55 23 119 62 98 71 119 91 117 126 67 88 77

CT 50 91 69 56 77 46 3 73 125 46 21 79 121 99 114 122

Count = 39

Kc 43 37 31 110 116 78 48 122 108 55 118 8 4 35 117 41

PT 50 91 69 56 77 46 3 73 125 46 21 79 121 99 114 122

CT 63 84 52 11 58 105 72 81 76 74 116 13 85 113 116 107

Count = 40

Kc 20 113 43 101 78 39 120 43 32 125 2 5 81 82 1 66

PT 63 84 52 11 58 105 72 81 76 74 116 13 85 113 116 107

CT 111 103 98 15 111 52 80 88 67 84 34 21 115 21 72 3

Count = 41

Kc 123 22 73 106 33 19 40 115 99 41 32 16 34 71 73 65

PT 111 103 98 15 111 52 80 88 67 84 34 21 115 21 72 3

CT 31 82 92 24 83 74 37 59 35 90 111 41 10 55 14 107

Count = 42

Kc 100 68 21 114 114 89 13 72 64 115 79 57 40 112 71 42

PT 31 82 92 24 83 74 37 59 35 90 111 41 10 55 14 107

CT 42 40 70 47 84 86 44 119 107 26 26 113 126 19 115 30

Count = 43

Kc 78 108 83 93 38 15 33 63 43 105 85 72 86 99 52 52

PT 42 40 70 47 84 86 44 119 107 26 26 113 126 19 115 30

CT 91 19 90 63 106 122 53 77 8 21 124 43 100 95 28 13

Count = 44

Kc 21 127 9 98 76 117 20 114 35 124 41 99 50 60 40 57

PT 91 19 90 63 106 122 53 77 8 21 124 43 100 95 28 13

CT 113 22 65 115 79 80 114 9 108 41 113 67 72 32 5 113

Count = 45

Kc 100 105 72 17 3 37 102 123 79 85 88 32 122 28 45 72

PT 113 22 65 115 79 80 114 9 108 41 113 67 72 32 5 113

CT 110 69 16 33 80 34 15 110 81 121 64 37 59 125 77 71

Count = 46

Kc 10 44 88 48 83 7 105 21 30 44 24 5 65 97 96 15

PT 110 69 16 33 80 34 15 110 81 121 64 37 59 125 77 71

CT 87 114 10 31 8 122 121 26 17 44 36 31 118 25 5 32

Count = 47

Kc 93 94 82 47 91 125 16 15 15 0 60 26 55 120 101 47

PT 87 114 10 31 8 122 121 26 17 44 36 31 118 25 5 32

CT 0 96 2 5 4 88 85 86 76 33 64 79 49 12 125 94

Count = 48

Kc 93 62 80 42 95 37 69 89 67 33 124 85 6 116 24 113

PT 0 96 2 5 4 88 85 86 76 33 64 79 49 12 125 94

CT 33 73 113 125 126 44 102 95 54 47 44 71 110 15 89 56

C. Test Vectors Using NMNT

242

Count = 49

Kc 124 119 33 87 33 9 35 6 117 14 80 18 104 123 65 73

PT 33 73 113 125 126 44 102 95 54 47 44 71 110 15 89 56

CT 37 95 57 38 98 112 32 111 124 95 33 32 65 113 71 22

Count = 50

Kc 89 40 24 113 67 121 3 105 9 81 113 50 41 10 6 95

PT 37 95 57 38 98 112 32 111 124 95 33 32 65 113 71 22

CT 93 102 92 89 46 72 41 20 38 13 113 13 58 33 51 16

Count = 51

Kc 4 78 68 40 109 49 42 125 47 92 0 63 19 43 53 79

PT 93 102 92 89 46 72 41 20 38 13 113 13 58 33 51 16

CT 39 44 66 86 33 38 32 50 44 49 10 75 87 62 110 110

Count = 52

Kc 35 98 6 126 76 23 10 79 3 109 10 116 68 21 91 33

PT 39 44 66 86 33 38 32 50 44 49 10 75 87 62 110 110

CT 85 72 17 74 64 40 42 104 107 53 36 13 26 21 91 85

Count = 53

Kc 118 42 23 52 12 63 32 39 104 88 46 121 94 0 0 116

PT 85 72 17 74 64 40 42 104 107 53 36 13 26 21 91 85

CT 41 0 79 51 17 84 25 53 13 17 84 100 64 57 78 72

Count = 54

Kc 95 42 88 7 29 107 57 18 101 73 122 29 30 57 78 60

PT 41 0 79 51 17 84 25 53 13 17 84 100 64 57 78 72

CT 85 97 99 83 70 76 5 40 44 48 90 19 90 106 24 78

Count = 55

Kc 10 75 59 84 91 39 60 58 73 121 32 14 68 83 86 114

PT 85 97 99 83 70 76 5 40 44 48 90 19 90 106 24 78

CT 22 119 14 94 68 85 84 22 99 80 123 100 119 9 34 33

Count = 56

Kc 28 60 53 10 31 114 104 44 42 41 91 106 51 90 116 83

PT 22 119 14 94 68 85 84 22 99 80 123 100 119 9 34 33

CT 125 118 17 87 102 24 102 55 97 37 97 18 29 58 105 16

Count = 57

Kc 97 74 36 93 121 106 14 27 75 12 58 120 46 96 29 67

PT 125 118 17 87 102 24 102 55 97 37 97 18 29 58 105 16

CT 119 39 55 10 92 45 118 73 85 72 125 60 21 72 23 17

Count = 58

Kc 22 109 19 87 37 71 120 82 30 68 71 68 59 40 10 82

PT 119 39 55 10 92 45 118 73 85 72 125 60 21 72 23 17

CT 6 107 110 2 123 29 111 19 66 55 17 16 59 50 97 52

Count = 59

Kc 16 6 125 85 94 90 23 65 92 115 86 84 0 26 107 102

PT 6 107 110 2 123 29 111 19 66 55 17 16 59 50 97 52

CT 109 80 60 117 64 51 11 65 29 7 46 32 99 69 71 111

Count = 60

Kc 125 86 65 32 30 105 28 0 65 116 120 116 99 95 44 9

PT 109 80 60 117 64 51 11 65 29 7 46 32 99 69 71 111

CT 99 28 126 0 79 118 91 26 64 65 14 46 105 121 92 24

C. Test Vectors Using NMNT

243

Count = 61

Kc 30 74 63 32 81 31 71 26 1 53 118 90 10 38 112 17

PT 99 28 126 0 79 118 91 26 64 65 14 46 105 121 92 24

CT 24 113 23 122 99 102 86 91 119 53 117 45 10 13 106 125

Count = 62

Kc 6 59 40 90 50 121 17 65 118 0 3 119 0 43 26 108

PT 24 113 23 122 99 102 86 91 119 53 117 45 10 13 106 125

CT 57 118 107 86 62 116 96 10 59 57 122 26 25 77 83 57

Count = 63

Kc 63 77 67 12 12 13 113 75 77 57 121 109 25 102 73 85

PT 57 118 107 86 62 116 96 10 59 57 122 26 25 77 83 57

CT 108 124 29 48 44 74 79 21 109 122 69 109 72 106 54 40

Count = 64

Kc 83 49 94 60 32 71 62 94 32 67 60 0 81 12 127 125

PT 108 124 29 48 44 74 79 21 109 122 69 109 72 106 54 40

CT 20 82 81 110 72 62 40 15 85 59 98 99 75 20 51 31

Count = 65

Kc 71 99 15 82 104 121 22 81 117 120 94 99 26 24 76 98

PT 20 82 81 110 72 62 40 15 85 59 98 99 75 20 51 31

CT 23 103 49 96 74 55 108 79 65 101 19 52 49 102 59 19

Count = 66

Kc 80 4 62 50 34 78 122 30 52 29 77 87 43 126 119 113

PT 23 103 49 96 74 55 108 79 65 101 19 52 49 102 59 19

CT 22 101 40 74 119 116 89 68 15 28 17 88 47 21 105 109

Count = 67

Kc 70 97 22 120 85 58 35 90 59 1 92 15 4 107 30 28

PT 22 101 40 74 119 116 89 68 15 28 17 88 47 21 105 109

CT 11 70 123 92 32 25 5 79 110 51 124 12 1 85 97 14

Count = 68

Kc 77 39 109 36 117 35 38 21 85 50 32 3 5 62 127 18

PT 11 70 123 92 32 25 5 79 110 51 124 12 1 85 97 14

CT 89 94 17 56 57 7 77 113 62 41 126 100 95 72 21 26

Count = 69

Kc 20 121 124 28 76 36 107 100 107 27 94 103 90 118 106 8

PT 89 94 17 56 57 7 77 113 62 41 126 100 95 72 21 26

CT 14 34 47 98 53 64 61 34 75 80 42 7 94 62 53 29

Count = 70

Kc 26 91 83 126 121 100 86 70 32 75 116 96 4 72 95 21

PT 14 34 47 98 53 64 61 34 75 80 42 7 94 62 53 29

CT 72 67 115 16 120 42 99 41 62 93 47 57 32 103 106 13

Count = 71

Kc 82 24 32 110 1 78 53 111 30 22 91 89 36 47 53 24

PT 72 67 115 16 120 42 99 41 62 93 47 57 32 103 106 13

CT 18 2 78 28 6 95 111 23 18 75 52 63 94 18 25 30

Count = 72

Kc 64 26 110 114 7 17 90 120 12 93 111 102 122 61 44 6

PT 18 2 78 28 6 95 111 23 18 75 52 63 94 18 25 30

CT 104 54 86 63 32 41 76 126 46 81 20 119 60 49 55 2

C. Test Vectors Using NMNT

244

Count = 73

Kc 40 44 56 77 39 56 22 6 34 12 123 17 70 12 27 4

PT 104 54 86 63 32 41 76 126 46 81 20 119 60 49 55 2

CT 25 73 62 113 0 0 67 117 117 86 98 17 30 94 89 88

Count = 74

Kc 49 101 6 60 39 56 85 115 87 90 25 0 88 82 66 92

PT 25 73 62 113 0 0 67 117 117 86 98 17 30 94 89 88

CT 99 60 1 30 76 79 84 12 32 35 34 93 91 93 51 35

Count = 75

Kc 82 89 7 34 107 119 1 127 119 121 59 93 3 15 113 127

PT 99 60 1 30 76 79 84 12 32 35 34 93 91 93 51 35

CT 77 40 29 37 20 6 59 97 53 24 41 78 89 107 80 113

Count = 76

Kc 31 113 26 7 127 113 58 30 66 97 18 19 90 100 33 14

PT 77 40 29 37 20 6 59 97 53 24 41 78 89 107 80 113

CT 94 64 122 10 37 118 65 100 32 105 22 61 88 98 57 70

Count = 77

Kc 65 49 96 13 90 7 123 122 98 8 4 46 2 6 24 72

PT 94 64 122 10 37 118 65 100 32 105 22 61 88 98 57 70

CT 18 122 22 19 85 89 37 88 106 111 96 58 110 87 22 62

Count = 78

Kc 83 75 118 30 15 94 94 34 8 103 100 20 108 81 14 118

PT 18 122 22 19 85 89 37 88 106 111 96 58 110 87 22 62

CT 12 71 105 49 34 124 99 94 21 4 13 85 97 80 101 16

Count = 79

Kc 95 12 31 47 45 34 61 124 29 99 105 65 13 1 107 102

PT 12 71 105 49 34 124 99 94 21 4 13 85 97 80 101 16

CT 9 124 63 126 56 125 70 95 28 4 88 115 17 8 76 120

Count = 80

Kc 86 112 32 81 21 95 123 35 1 103 49 50 28 9 39 30

PT 9 124 63 126 56 125 70 95 28 4 88 115 17 8 76 120

CT 43 67 9 26 88 60 112 95 28 73 16 1 2 82 65 42

Count = 81

Kc 125 51 41 75 77 99 11 124 29 46 33 51 30 91 102 52

PT 43 67 9 26 88 60 112 95 28 73 16 1 2 82 65 42

CT 12 77 16 11 3 56 53 108 2 84 75 4 43 53 6 119

Count = 82

Kc 113 126 57 64 78 91 62 16 31 122 106 55 53 110 96 67

PT 12 77 16 11 3 56 53 108 2 84 75 4 43 53 6 119

CT 33 118 59 90 106 25 13 52 105 23 25 115 94 28 40 54

Count = 83

Kc 80 8 2 26 36 66 51 36 118 109 115 68 107 114 72 117

PT 33 118 59 90 106 25 13 52 105 23 25 115 94 28 40 54

CT 113 4 56 59 74 115 5 52 83 81 21 100 39 24 68 20

Count = 84

Kc 33 12 58 33 110 49 54 16 37 60 102 32 76 106 12 97

PT 113 4 56 59 74 115 5 52 83 81 21 100 39 24 68 20

CT 57 68 96 14 22 27 23 66 63 67 105 34 123 109 74 101

C. Test Vectors Using NMNT

245

Count = 85

Kc 24 72 90 47 120 42 33 82 26 127 15 2 55 7 70 4

PT 57 68 96 14 22 27 23 66 63 67 105 34 123 109 74 101

CT 59 79 44 47 71 84 41 60 20 111 32 6 70 56 98 40

Count = 86

Kc 35 7 118 0 63 126 8 110 14 16 47 4 113 63 36 44

PT 59 79 44 47 71 84 41 60 20 111 32 6 70 56 98 40

CT 39 55 57 84 88 59 101 41 65 5 37 17 2 85 55 67

Count = 87

Kc 4 48 79 84 103 69 109 71 79 21 10 21 115 106 19 111

PT 39 55 57 84 88 59 101 41 65 5 37 17 2 85 55 67

CT 84 112 40 54 52 66 99 56 113 4 78 15 15 45 100 57

Count = 88

Kc 80 64 103 98 83 7 14 127 62 17 68 26 124 71 119 86

PT 84 112 40 54 52 66 99 56 113 4 78 15 15 45 100 57

CT 7 73 114 100 66 73 79 125 17 77 78 90 43 70 22 39

Count = 89

Kc 87 9 21 6 17 78 65 2 47 92 10 64 87 1 97 113

PT 7 73 114 100 66 73 79 125 17 77 78 90 43 70 22 39

CT 9 54 45 30 94 77 46 33 83 42 61 11 32 98 3 25

Count = 90

Kc 94 63 56 24 79 3 111 35 124 118 55 75 119 99 98 104

PT 9 54 45 30 94 77 46 33 83 42 61 11 32 98 3 25

CT 120 16 53 41 123 54 36 48 33 56 91 8 78 109 19 70

Count = 91

Kc 38 47 13 49 52 53 75 19 93 78 108 67 57 14 113 46

PT 120 16 53 41 123 54 36 48 33 56 91 8 78 109 19 70

CT 88 57 10 95 121 102 44 74 30 91 65 44 107 72 51 12

Count = 92

Kc 126 22 7 110 77 83 103 89 67 21 45 111 82 70 66 34

PT 88 57 10 95 121 102 44 74 30 91 65 44 107 72 51 12

CT 71 119 40 34 86 123 9 51 82 12 88 70 38 56 92 35

Count = 93

Kc 57 97 47 76 27 40 110 106 17 25 117 41 116 126 30 1

PT 71 119 40 34 86 123 9 51 82 12 88 70 38 56 92 35

CT 12 81 4 112 104 37 31 122 81 125 58 71 66 120 104 5

Count = 94

Kc 53 48 43 60 115 13 113 16 64 100 79 110 54 6 118 4

PT 12 81 4 112 104 37 31 122 81 125 58 71 66 120 104 5

CT 33 85 120 123 120 15 34 78 35 13 33 85 82 23 113 4

Count = 95

Kc 20 101 83 71 11 2 83 94 99 105 110 59 100 17 7 0

PT 33 85 120 123 120 15 34 78 35 13 33 85 82 23 113 4

CT 6 1 4 21 15 102 120 9 121 126 35 12 52 116 15 94

Count = 96

Kc 18 100 87 82 4 100 43 87 26 23 77 55 80 101 8 94

PT 6 1 4 21 15 102 120 9 121 126 35 12 52 116 15 94

CT 66 103 33 70 121 41 7 36 103 5 49 53 29 69 105 9

C. Test Vectors Using NMNT

246

Count = 97

Kc 80 3 118 20 125 77 44 115 125 18 124 2 77 32 97 87

PT 66 103 33 70 121 41 7 36 103 5 49 53 29 69 105 9

CT 50 5 9 10 124 100 115 62 87 60 34 58 43 102 103 55

Count = 98

Kc 98 6 127 30 1 41 95 77 42 46 94 56 102 70 6 96

PT 50 5 9 10 124 100 115 62 87 60 34 58 43 102 103 55

CT 79 44 50 63 21 95 39 99 68 0 30 14 79 7 48 81

Count = 99

Kc 45 42 77 33 20 118 120 46 110 46 64 54 41 65 54 49

PT 79 44 50 63 21 95 39 99 68 0 30 14 79 7 48 81

CT 37 120 33 110 54 35 0 83 25 126 114 32 12 68 61 18

Count = 100

Kc 8 82 108 79 34 85 120 125 119 80 50 22 37 5 11 35

PT 37 120 33 110 54 35 0 83 25 126 114 32 12 68 61 18

CT 80 46 55 104 108 89 100 73 74 57 72 40 120 3 27 84

