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Abstract 

 

The field programmable gate array (FPGA) is a powerful technology, and since its 

introduction broad prospects have opened up for engineers to creatively design and 

implement complete systems in various fields. One such area that has a long history in 

information and network security is cryptography, which is considered in this thesis. 

The challenge for engineers is to design secure cryptographic systems, which should 

work efficiently on different platforms with the levels of security required. In addition, 

cryptographic functionalities have to be implemented with acceptable degrees of 

complexity while demanding lower power consumption. 

The present work is devoted to the design of an efficient block cipher that meets 

contemporary security requirements, and to implement the proposed design in a 

configurable hardware platform. The cipher has been designed according to Shannon’s 

principles and modern cryptographic theorems. It is an iterated symmetric-key block 

cipher based on the substitution permutation network and number theoretic transform 

with variable key length, block size and word length. These parameters can be 

undisclosed when determined by the system, making cryptanalysis almost impossible. 

The aim is to design a more secure, reliable and flexible system that can run as a ratified 

standard, with reasonable computational complexity for a sufficient service time. 

Analyses are carried out on the transforms concerned, which belong to the number 

theoretic transforms family, to evaluate their diffusion power, and the results confirm 

good performance in this respect mostly of a minimum of 50%. The new Mersenne 

number transform and Fermat number transform were included in the design because 

their characteristics meet the basic requirements of modern cryptographic systems. 

A new 7×7 substitution box (S-box) is designed and its non-linear properties are 

evaluated, resulting in values of 2
-6

 for maximum difference propagation probability and 

2
-2.678

 for maximum input-output correlation. In addition, these parameters are 

calculated for all S-boxes belonging to the previous and current standard algorithms. 

Moreover, three extra S-boxes are derived from the new S-box and another three from 

the current standard, preserving the same non-linear properties by reordering the output 

elements. 

The robustness of the proposed cipher in terms of differential and linear 

cryptanalysis is then considered, and it is proven that the algorithm is secure against 

such well-known attacks from round three onwards regardless of block or key length. 

A number of test vectors are run to verify the correctness of the algorithm’s 

implementation in terms of any possible error, and all results were promising. Tests 

included the known answer test, the multi-block message test, and the Monte Carlo test. 

Finally, efficient hardware architectures for the proposed cipher have been designed 

and implemented using the FPGA system generator platform. The implementations are 

run on the target device, Xilinx Virtex 6 (XC6VLX130T-2FF484). Using parallel loop-

unrolling architecture, a high throughput of 44.9 Gbits/sec is achieved with a power 

consumption of 1.83W and 8030 slices for implementing the encryption module with 

key and block lengths of 16×7 bits. There are a variety of outcomes when the cipher is 

implemented on different FPGA devices as well as for different block and key lengths. 
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Chapter 1 

 

Introduction 

 

 

 

This chapter introduces the work described in this thesis. It is organised as follows: 

section 1.1 briefly introduces the background of the subject. The motivation for the 

research is explained in section 1.2, and its aim and objective are stated in section 1.3 

while its contributions to knowledge are detailed in section 1.4. Finally an outline of the 

thesis is presented in section 1.5. 

 

 

1.1 Background 

The breakthrough of the field programmable gate array (FPGA) made by Xilinx in 

1984, especially given the tremendous developments in silicon technology, has 

prompted engineers to make innovations in design, architecture and hardware 

implementation in many different fields such as communication devices, digital signal 

processing (DSP), cryptography and the system-on-chip (SoC). 

Data security is of great interest in relation to most applications, especially those 

concerning personal and financial issues. It has been a hot topic for a long time, 

particularly in today’s societies living in a world of ubiquitous computing. Computers 

are everywhere, millions and millions of items of data are transferred every second 

using many different applications. The confidentiality associated with a large number of 
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these applications needs to be protected. Some applications, for instance, require a 

disclosure of credit card information to a website for online transactions such as in 

internet shopping, ATM operations and bank transfers.  

Cryptography is a tool that has been extensively used for many years [1], although 

at its inception this was confined to diplomatic, military and intelligence services, 

cryptography can be used nowadays by everyone to protect the confidentiality of their 

data transmitted over insecure channels as well as to provide authenticity and data 

integrity. 

However, due to significant developments in cryptanalytic techniques and in 

processing power, existing algorithms used in cryptography are increasingly susceptible 

to attacks, such as side-channel attacks, for example. Therefore, as a response, new 

methods are continuously emerging in order to achieve the desired level of 

requirements, regarding for example: security, speed, platform, complexity, and power 

consumption. 

 

 

1.2 Motivation for the Research 

The previous standard algorithm, the Data Encryption Standard (DES) [2], was once 

very secure. However, due to developments in processing power and parallel processing 

technologies, this algorithm became quite vulnerable to exhaustive key search attacks, 

as the key length of the algorithm was considered to be short. Since the algorithm was 

designed for a fixed block size and key length, an alternative algorithm was essential. 

As a result, the National Institute of Standards and Technology (NIST) proposed in 

1997 the Advanced Encryption Standard (AES) to replace the DES. In the current 

standard AES algorithm [3], the block size is double that of the DES of 128-bit, and the 

key length has expanded from 56 to 128-bit and could even support 192 and 256-bit. 

Even though this algorithm is currently believed to be secure, risks of vulnerability still 

exist due to the continual development in the field of cryptanalysis as well as increasing 

networking and processing power. Sooner or later, this algorithm will be broken, since 

it was designed for a fixed block size and limited key lengths, in my opinion the same 

action that has been taken before with the previous standard algorithm, an 

announcement for a replacement algorithm, is expected to be taken with this standard 

should the block size or key lengths become insufficient to suit the security 

requirements. Consequently, a reasonable solution would be to design an algorithm in 

such a way that it works efficiently on different block sizes and key lengths while 
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adhering to the required level of security. In other words it would be a revision-free 

algorithm, ensuring practical usage for the proposed lifespan. In addition, the suitability 

of the algorithm for implementing on different platforms should be taken into 

consideration within the design.  

 

 

1.3 Aim and Objectives 

The aim of the present work is to design an efficient block cipher that meets security 

requirements and then propose an architecture for the investigated cipher to be 

implemented in a configurable hardware platform. The design of the algorithm is based 

on the following criteria: simplicity, in order facilitate ease of analysis and 

implementation; immunity, so as be resilient to known attacks; flexibility, in accepting 

variable key lengths, block lengths and word lengths; and efficiency, so as to be 

implemented on a wide range of platforms with reasonable complexity and speed. 

 

 

1.4 Contributions 

The major contributions of the research work can be summarised as follows: 

 The new Mersenne number transform (NMNT) and the Fermat number transform 

(FNT), as well as the mix column transform used in the current state-of-the-art 

AES algorithm are analysed and their diffusion power are determined based on 

the branch number technique. The diffusion power of the NMNT and FNT are 

further investigated to diagnose every possible case, especially those vulnerable 

ones to know how to avoid them in the design. These analyses are conducted 

using proposed techniques based on probabilities. 

 All S-boxes of the previous standard DES as well as the current standard AES 

are analysed. Accordingly, their non-linear properties represented by maximum 

difference propagation probability (DPPmax), maximum input-output correlation 

(IOCmax) and robustness are computed after building up XOR distribution and 

linear approximation tables. Thereafter, a new S-box is generated by following 

the same procedures used in the construction of the AES S-box. In addition, 

other S-boxes are derived from the AES S-box and from the new S-box which 

have the same non-linear properties but where the order of the output elements 

with different offsets is changed.  

 A new parameterised symmetric-key block cipher is proposed based on the 

substitution permutation network (SPN) and number theoretic transform (NTT). 



1.5            Outline of the Thesis 

4 

 

The cipher is designed in such a way that it optionally can calculate the word 

length as well as the appropriate block size this is equivalent to the key length 

efficiently depending on the processor register length and message length. By 

undisclosed such parameters, cryptanalysis becomes almost impossible.  In 

addition, a solution is proposed for the algorithm based on the NMNT to solve a 

problem that might arises due to the modulus value being a power of two minus 

one, where the zero value and the Mp value are retrieved as a zero. In addition, a 

simple action is undertaken in the substitution boxes (S-boxes) to overcome such 

a possible problem. 

 Three categories of test vectors are run to verify the correctness of the 

algorithm’s implementation in terms of any possible error. These tests include 

the known answer test (KAT), the multi-block message test (MMT), and the 

Monte Carlo test (MCT).  

 The resistance of the suggested cipher towards differential and linear 

cryptanalysis is considered. 

 Efficient hardware architectures for the proposed cipher are designed and 

implemented using FPGA technology. 

 

 

1.5 Outline of the Thesis 

This thesis is devoted to designing and implementing a secure cryptographic system, 

and it discusses the various stages of the design in realising the planned target.  The 

thesis is organised as follows: 

 The first part of Chapter 2 presents a general background of the field of 

cryptography, starting with basic definitions of the terminology used in this 

field, followed by a classification of cryptography, then possible network 

structures. Next, three well-known block ciphers are described, and after that the 

modes of operation of block ciphers are explained and types of cryptanalytic 

attack are outlined. The second part of the chapter discusses the background of 

the FPGA, programmable connectivity technologies, the design flow, and 

categories of design architecture. 

 Chapter 3 explains the NTTs involved in the design for the purpose of enhancing 

diffusion. The chapter gives detailed descriptions of these transforms, and the 

necessary analyses are carried on to evaluate their diffusion power.  
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 Chapter 4 addresses the subject of confusion, which is accomplished in the 

design by the incorporation of a substitution box (S-box). The chapter begins by 

describing the methods available for constructing S-boxes. Then, the 

mechanisms for analysing them to determine their non-linear properties are 

discussed. In addition the non-linear properties of all S-boxes used in the current 

and previous standard algorithms are computed. Finally, new S-boxes are 

generated based on the AES S-box.  

 Chapter 5 is dedicated to the design of the proposed cipher, its encryption and 

decryption algorithms, and the generation of the cipher key and round keys. The 

theoretical complexity of the algorithm is also determined. In addition, a number 

of test vectors are applied to the algorithm to verify the correctness of its 

implementation. 

 The robustness of the proposed cipher towards several types of attack, especially 

differential and linear cryptanalysis, is discussed in Chapter 6. 

 The hardware implementation of the cipher is described in Chapter 7, which is 

based on the FPGA system generator, where encryption and decryption circuits 

are designed for block sizes of 16×7 and 32×7 bits. In addition, the complexity 

of the cipher for different architectures is computed. 

 Chapter 8 outlines the achievements that have been made in this research. In 

addition, recommendations are suggested concerning further work.  

 The results of analyses of diffusion power based on probabilities for both the 

NMNT and FNT are presented in Appendices A and B, respectively. 

 The results of the complete sets of test vectors run on algorithm based on the 

NMNT are illustrated on Appendix C. 
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Chapter 2 

 

Background 

 

 

 

This chapter provides a general background to cryptography and the FPGA. It is 

organised as follows: section 2.1 defines the basic terminology used in the field of 

cryptography, followed in section 2.2 by a classification of cryptography. Section 2.3 

then demonstrates the network structures of block ciphers. Three important examples of 

block ciphers are then described in detail in section 2.4. The mode of their operation is 

explained in section 2.5, and a list of possible attacks is provided in section 2.6. The 

FPGA is illustrated in section 2.7 and section 2.8 discusses the relevant literature. 

Finally the conclusions of the chapter are drawn in section 2.9.  

 

 

2.1 Basic Definitions 

The basic definitions of the main terms used in cryptography are presented in this 

section as follows:  

 Cryptology:  

This word is a combination of the Greek words kryptos and logos, and means hidden 

study [4]. It is the science concerned with secure communication, including two 

areas: cryptography and cryptanalysis.  
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Cryptography involves techniques designed to maintain the confidentiality of 

data [5]. Using cryptography sensitive information can be stored or transmitted 

across insecure channels without revealing its contents to anyone other than the 

intended recipient, where access is usually controlled by a secret key. The objective 

of cryptography is to provide confidentiality, data integrity, authentication and non-

repudiation [6]. 

Cryptanalysis is the science concerned with techniques used to retrieve 

encrypted information without having access to the key, or to attempt to recover the 

key so that all information encrypted with it can be retrieved. Such techniques are 

also known as hacking or attacking. 

 Plaintext: 

This may also be referred to as cleartext, and is the original intelligible information 

that is required to be kept confidential. 

 Ciphertext: 

This is the unintelligible or gibberish form which is the result of the processing of 

plaintext. 

 Encryption 

Encryption is the process of converting a plaintext into a ciphertext in an attempt to 

keep information confidential to anyone except those possessing the right key. 

 Decryption 

Decryption is the inverse of encryption; a process of transformation used to return 

the encrypted data to its original intelligible form. 

 Cipher 

A cipher is a complete system that encompasses both encryption to conceal the 

meaning of information, and decryption to reveal the content of the original data 

under the control of a key. 

 Cryptographic System 

This is also referred to as a cryptosystem, consisting of the following: a plaintext 

space PT, a ciphertext space CT, a cipher key space Kc, a key generation algorithm, 

encryption algorithm            ,  and decryption algorithm            . 
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2.2 Classification of Cryptographic Systems 

Cryptographic systems are categorised depending on the number of keys used by 

senders and receivers. If they use different but related keys the system is referred to as 

asymmetric or public-key cryptography. The two keys involved are a private key which 

should kept secret and a public key which is published. For the purposes of 

confidentiality, a sender encrypts a message using the receiver’s public key. The 

receiver then decrypts the encrypted message using his private key. For authentication 

purposes, the sender encrypts a message using his private key, providing digital 

signatures. The receiver then decrypts the encrypted message using the sender’s public 

key. These two steps can be combined to provide both confidentiality and 

authentication. The security of a public-key cryptosystem is based on the difficulty of 

solving certain mathematical problems rather than on substitution and transposition as 

based on the conventional cryptography. For instance, the RSA algorithm [7] is based 

on integer factorisation, where its difficulty is to factor a product of two large prime 

numbers. The ElGamal algorithm [8, 9] is based on a discrete logarithm, and its 

difficulty is to find the discrete logarithms over finite fields GF(P
m
). Finally, Elliptic 

Curve Cryptography (ECC) [10, 11] is based on elliptic curve groups over finite fields. 

Where there are two possible types of finite fields: a prime field GF(P); and a binary 

field GF(2
m
). The difficulty here is to find the discrete logarithm of an elliptic curve 

element ‘k’ with respect to a given base point ‘B’ and their product. The advantage of 

ECC compared to RSA is that the former can offer the same level of security with a 

much smaller size of key, providing less computational complexity.  

If, on the other hand, the sender and receiver share the same key, the system is 

referred to as symmetric or conventional cryptography. The security of conventional 

cryptography rests in the key itself, which should be agreed securely between parties 

before establishing a session. Table 2.1 compares the key sizes (in bits) of various 

algorithms belonging to different categories in relation to the computational effort 

required by cryptanalysis [12]. 

 
Table 2.1: Key sizes comparable with reference to cryptanalysis computational efforts 

Symmetric scheme ECC-based scheme RSA 

56 112 512 

112 224 2048 

128 256 3072 

256 512 15360 
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Conventional cryptography is classified into two types based on the way the 

plaintext is processed. The first type is called the stream cipher, which processes one 

input element at a time. It is developed as an approximation to the action of the one-

time pad [4], which XOR the plaintext with a complete random keystream. Stream 

ciphers are much faster than those in the second group, the block ciphers, and do not 

lead to error propagation, so that a flip-bit error only affects that bit which gives the 

stream cipher a major advantage over a block cipher. For a slip-bit error, the error is 

propagated following that point. The stream cipher starts by generating a keystream (a 

sequence of bits), usually using a mechanism for generating binary bits called a Linear 

Feedback Shift Register (LFSR) or a combination of LFSRs, where the seed of the 

registers is most often the secret key. The keystream generated should be non 

predictable and looks random, where a statistical technique such as Chi-squared 

analysis [13] is usually applied to provide a quantitative measure of randomness. 

Encryption is accomplished by combining a keystream with a plaintext, mostly with 

bitwise XOR operation. The RC4 algorithm [14] is a prominent example of a stream 

cipher. 

The second group are block ciphers. In this scheme instead, of processing a single 

element at a time all block elements are processed simultaneously under the control of a 

secret key to generate a ciphertext block of equal size. 

Two basic operations are used for transforming plaintext into ciphertext. 

Substitution maps the elements onto one another, and transposition relocates the 

elements. The cipher usually consists of multiple stages of these operations, yielding 

what is known as a product cipher. 

In his famous paper on secrecy systems, Shannon [15] highlighted that the 

fundamental principles in designing a secure block cipher are confusion and diffusion. 

In simple terms, confusion consists of complicating the relationship between the 

statistics of plaintext bits, ciphertext bits and key bits. By preventing the properties of 

key and plaintext bits from being reflected in the corresponding ciphertext bits, this is 

achieved mostly by applying substitution operations. Diffusion aims to dissipate the 

statistical structure of the input into as much of the output statistics as possible, by 

spreading out the influence of each individual plaintext bit over many ciphertext bits. 

This can be accomplished using transposition operations during which after a number of 

rounds, each ciphertext bit should be a function of all input bits. The main disadvantage 

of this scheme is error propagation, since of these dependence a single ciphertext bit 

error may causes many errors in the corresponding plaintext block.  
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A block cipher can be implemented using various modes of operation depending on 

the application, and certain modes of operation make a block cipher in effect work as a 

stream cipher. These modes of operation are explained in detail in section 2.5.  

Many algorithms are block ciphers, such as AES [3, 16], Blowfish [17], Camellia 

[18], CAST [19, 20], DES [2], IDEA [21, 22], MARS [23], RC5 [24], RC6 [25], 

SAFER [26], Serpent [27], Skipjack [28] and Twofish [29]. Some of these are described 

in sections 2.4 and 2.8. 

Both conventional and public-key cryptographies can be combined to produce what 

is known as a hybrid system which can benefit from both sets of properties; those of the 

latter concerned with sorting the distribution of a secret key and those of the former 

used to secure rapid data processing [5, 6].  

 

 

2.3 Block Cipher Network Structures 

There are different types of network structures, all of which are designed according to 

Shannon’s [15] principles of confusion and diffusion, so as to ensure data 

confidentiality after a number of rounds. The most well-known network structures for a 

block cipher are listed below: 

 

2.3.1 Feistel Networks 

This most widely used scheme was proposed by Feistel [30] in 1973 using the concept 

of the product cipher, which iterates the execution of a few simple components to 

achieve strongly secure results. Since then the Feistel structure has been utilised for 

different well-known block ciphers; for instance, Blowfish [17], CAST [19, 20], DES 

[2], FEAL [31], GOST [32], Khufu and Khafre [33], LOKI [34] and RC5 [24]. 

The inputs to the encryption algorithm, as shown in Figure 2.1, are a block of 

plaintext and a key. The plaintext block is split into two halves of equal length; only one 

half is modified at each round. Then the two halves are swapped and enter the following 

round. After processing the last round, the two halves are combined to produce the 

ciphertext. In this scheme, substitution is performed via the round function F, and 

permutation is achieved through swapping the two halves. An important feature of the 

Feistel network is that the algorithm is invertible, and hence both encryption and 

decryption are processed in the same algorithm taking into consideration the order of 

the keys. This is unlike the round function which needs not be invertible. 
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Figure 2.1: Feistel Network Structure 

 

2.3.2 Generalised Feistel Networks 

In the Feistel network, the input is split into two halves of equal length. However, in 

generalised Feistel networks [35, 36], some structures known as unbalanced Feistel 

networks may be involved where the input is either split into two halves of different 

lengths or split into more than two. For the latter case, different schemes are available 
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where a network can be constructed with one or more round functions and their inputs 

can be from one or more than one source, as shown in Figures 2.2-2.5. Examples of 

block ciphers that are based on generalised Feistel Networks: the CAST-256 [20] which 

uses the type-1 structure; RC6 [25], based on type-2; and MARS [23], type-3. 

The scheme can be homogenous, which means that the round function is the 

same in all rounds. Conversely, the scheme can be heterogeneous  [35], such that the 

round function is not identical in all rounds. The advantage of this scheme lies in the 

difficulty of constructing its characteristics with high probability throughout all rounds, 

due to the alterations in round functions between the rounds. This provides high 

resistance to attacks, but implementing such schemes is costly and analysing them is 

complicated.  
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K
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Figure 2.2: Type-1 Generalised Feistel Network Structure 
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Figure 2.3: Type-2 Generalised Feistel Network Structure 
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Figure 2.4: Type-3 Generalised Feistel Network Structure 
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Figure 2.5: Unbalanced Feistel Network Structure 

 

2.3.3 Substitution-Permutation Networks 

The substitution-permutation network (SPN) directly implements Shannon’s [15] 

principles of confusion and diffusion. It accepts a block of plaintext and a key as inputs, 

processing the plaintext by alternating the layers of substitution (S-boxes) and 

permutation (P-boxes) throughout the rounds to produce a ciphertext. Figure 2.6, 

illustrates the general structure of the scheme. 

The S-box maps a fixed number of bits into other bits, and the mapping is 

conducted by bijection (one-to-one) to ensure invertibility. Chapter 4 describes and 

analyses a number of S-boxes. The P-box spreads the output bits of each S-box to as 

many S-boxes inputs as possible during the following rounds.  The current industry 

standard, the AES, is based on this scheme as are other well-known block ciphers such 

as Safer [26], Serpent [27], Shark [37] and Square [38]. 
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In this type of network, decryption is achieved by applying the algorithm as well as 

the round keys in reverse order. The latter are derived by means of a key schedule 

algorithm, and in addition, inverse versions of both the S-boxes and the P-boxes are 

used. 
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Figure 2.6: Substitution-Permutation Network 
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2.4 Examples of Block Ciphers 

In this section, three well-known block ciphers are described in detail; two of which, 

namely the DES and AES are the former and the current industry standards, 

respectively.  

 

2.4.1 Data Encryption Standard 

The DES was adopted in 1977 by the US. National Bureau of Standards (NBS), now 

known as the NIST, as a Federal Information Processing Standard (FIPS PUB 46) for 

unclassified government communications [2]. It was also approved in 1981 by the 

American National Standards Institute (ANSI) as a private-sector standard (ANSI 

X3.92) [39]. 

The DES is a block cipher based on the Feistel network structure, which encrypts 

and decrypts blocks of data of 64-bit size under the control of a key 56-bit in length. 

The 56-bit of the key are extracted from a 64-bit string, while the remaining 8-bit are 

used for detecting errors among the bytes of the key. This involves a parity check, 

which is achieved by setting the least significant bit (LSB) of each byte such that the 

resulting parity of that byte is odd.  

The algorithm, as shown in Figure 2.7, starts by initial permutation (IP) followed 

by 16 identical key dependent rounds of transformation ignoring the final swap. The 

ciphertext is then produced after passing the output through a final permutation which is 

the inverse of the initial permutation (IP
-1

). Since the design is based on the Feistel 

structure, both encryption and decryption use the same algorithm except in terms of the 

order of the round keys.  

After initial permutation the input is equally split into two halves, which are both 

processed through subsequent rounds according to equations 2.1 and 2.2, respectively.  

 
        (2.1) 

 
                      (2.2) 

 

where L and R stand for the left and right half of the data, respectively, 

denotes bitwise XOR operation (bit-by-bit addition modulo 2). 

 

The round transformation consists of four layers, which are expansion permutation, 

round key addition, element substitution and finally permutation. This round 

transformation works only on the right-hand half of the data.  
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Figure 2.7: DES and Key Schedule Algorithms 

 



2.4            Examples of Block Ciphers 

17 

 

The expansion permutation layer is used to expand the right half of the data from 

32 to 48-bit. Expansion is achieved by duplicating and permutating the outer bits of 

every 4-bit, as illustrated in Figure 2.8. This layer improves the avalanche effect by 

rapidly spreading the dependency of the output bits on the input bits [5]. 

The output from the expansion permutation layer is XORed with the 48-bit round 

key. Sixteen different 48-bit round keys are generated from the 56-bit key via the key 

schedule algorithm. This operation is achieved by first ignoring the parity bit from each 

byte of the 8-byte of the key. Then the remaining 56-bit are permutated and 

subsequently split into two halves. Next, each half is left-shifted in a circular manner by 

either one offset for rounds 1, 2, 9 and 16, or two offsets for the other rounds. After that 

a 48-bit round sub-key is chosen out of the 56-bit. These two operations are known  

permuted choice (PC) or compression permutation, as a subset of data is chosen after 

permuting the all [5]. 

The next step after the key addition layer is the element substitution layer. Eight 

different 6×4 S-boxes are used, and thus the 48-bit are converted into eight 6-bit groups. 

The S-box conducts non-linear mapping, the six input bits to the S-box are mapped into 

four output bits. The S-boxes are analysed in detail in Chapter 4. The final layer of the 

round functions is permutation, which permutates the 32-bit resulting from the mapping.  
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Figure 2.8: Expansion Permutation 
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Security of the DES 

The key length of the DES algorithm is considered short in terms of processing power 

nowadays, and the code can be broken using an exhaustive key search attack that 

decrypts the encrypted message with all possible key spaces using 2
56

 or on average 2
55

 

combinations to recover the right key. A variety of attacks against the DES are 

described in the literature. For instance, differential cryptanalysis can break the cipher 

with a complexity of 2
47

 of chosen-plaintext [40], and linear cryptanalysis can succeed 

with an availability of 2
43

 known plaintext-ciphertext pairs. 

 

Triple DES 

One of the variants of the DES algorithm is the Triple DES algorithm, also known as 

the Triple Data Encryption Algorithm (TDEA), which IBM suggested to improve the 

security of the DES algorithm by increasing the length of the key without altering the 

algorithm. The improvement is achieved by repeating the procedures three times using 

two or three different keys. Here, encryption and decryption are processed according to 

equations 2.3 and 2.4, respectively, where E and D refer to normal single DES 

encryption and decryption.  

The TDEA is described in ANSI X9.52 [41], and has been recommended for use 

instead of the DES due to the vulnerability of the latter to exhaustive key search attacks.  

 

                     
       (2.3) 

 

                      
       (2.4) 

 

where CT, PT, E, D and k stand for ciphertext, plaintext, encryption, 

decryption, and key, respectively.  

 

The ANSI X9.52 standard identifies there possible keying options as follows: 

1. The three keys k1, k2 and k3 are independent. 

2. Keys k1 and k2 are independent and k3 = k1. 

3. The values of the three keys are the same (k1 = k2 = k3), and are equivalent to the 

single DES. 

The security of the system is thereby enhanced, since the exhaustive key search 

now requires 2
168

 attempts to break the system if all keys are independent, or 2
112

 if two 

of the keys are independent (as in point 2 above), which is clearly much harder than 

with just 2
56

 as in the single DES. 
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2.4.2 International Data Encryption Algorithm 

The origin of the International Data Encryption Algorithm (IDEA) was the Proposed 

Encryption Standard (PES) algorithm [42], which was designed in 1990 as an 

alternative to the DES algorithm. The PES algorithm was further improved a year later 

after occurrences of successful differential cryptanalysis [43]. The improved algorithm, 

called the IPES [21], reflects much more resistant to such an attack, and it was later 

renamed the IDEA in 1992 [22]. Although this algorithm has not been chosen as a 

standard, it has been very popular as part of the Pretty Good Privacy (PGP) [44] 

designation. 

The IDEA is an iterated block cipher that processes blocks of 64-bit size under the 

control of a key 128-bit in length. It consists of eight identical rounds (where the inner 

word swap in the last round is omitted) followed by key addition/multiplication 

operations; and encryption and decryption use the same algorithm apart from the order 

of their keys. Figure 2.9 illustrates the structure of one round of the IDEA. The input 

block is divided into four 16-bit words. In each round four 16-bit words, X1-X4, are 

processed with round keys each with six 16-bit words, K1-K6, producing four 16-bit 

output words, Y1-Y4. Only three operations are used namely: ( ) bitwise XOR 

operation, ( ) addition modulo 2
16

, and ( ) multiplication modulo 2
16

+1 (where the 

number 0 is represented as the number 2
16

). The ciphertext is obtained by combining the 

four 16-bit output words after having processed the plaintext through the eight rounds 

and the final key operations. 

The round keys are generated from the cipher key using the round key schedule 

algorithm. Simple operations are used and a total of 52 16-bit words are required, 6 

words in each round and 4 at the final transformation. The first eight 16-bit words are 

filled with the cipher key, and then eight 16-bit words are generated for every 25-bit left 

rotating the cipher key bits until all of the required keys have been generated. 

 

Security of the IDEA 

Although exhaustive key search attacks on the IDEA are considered impractical, as they 

would require the processing of on average 2
127

 decryption steps to recover the key, 

other types of attacks may succeed more rapidly in breaking the reduced version of 

IDEA and up to 5 rounds. For instance, differential cryptanalysis can work on 2.5 

rounds [45], differential-linear attack on 3 rounds [46], truncated differential attack on 

3.5 rounds [46] and an impossible differential attack on 4.5 rounds [47]. 
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Figure 2.9: IDEA One Round Flow diagram 

 

2.4.3 Advanced Encryption Standard 

The AES algorithm [3] was announced by the NIST in the U.S.  FIPS Publication 197 

[16] on November 26, 2001. Replacing the old DES and the triple-DES, it was the 

culmination of a 5-year standardisation process in which fifteen competing designs were 

submitted and evaluated according to their levels of security, cost and capacity for 

implementation. In the event, Rijndael was chosen as the AES algorithm. 

The AES is an iterated symmetric-key block cipher based on the SPN structure, and 

it processes data blocks of 128 bits using a cipher key 128, 192, or 256 bits long. The 

cipher starts by initial key addition followed by 10, 12, or 14 repeated rounds of 

transformation for key lengths of 128, 192, or 256 bits, respectively, as shown in Figure 

2.10. All operations are performed on a 4×4 array of bytes, called state. The round 

transformation consists of a sequence of four different transformations, called steps, 

which are SubBytes, ShiftRows, MixColumns, and AddRoundKey. 
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Figure 2.10: AES Encryption Flow diagram 

 

These are applied to the data block in the encryption procedure and in reverse order 

with inverse transformations in the decryption procedure. The round transformation in 

the last round of encryption or first round of decryption is applied without the 

Mix/Inverse Mix column transformation.  

The SubBytes transformation is a non-linear byte substitution that operates 

independently on each byte of the state using an S-Box. The S-box was designed on the 

basis of the following criteria [3]: the probability of the maximum difference 
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propagation has to be as small as possible; the amplitude of the IOCmax has to be as 

small as possible; and the algebraic expression of the S-Box has to be complex. Detail 

descriptions of the S-box and an analysis of its non-linear properties can be found in 

Chapter 4. 

The forward and inverse ShiftRows transformation is a byte transposition achieved 

by cyclically shifting the rows of the state with different levels of offset. The offset 

depends on the length of the key. The inverse ShiftRows applies the same amount of 

offset but in the opposite direction. The main criterion in the design is that the offsets 

should be different for each row. 

The MixColumns is a linear transformation used to mix the bytes of each column, 

thereby providing local diffusion, where the columns of the state are considered as a 

polynomial over Galois field GF(2
8
) and the mix columns operation is undertaken by 

multiplying the columns modulo (x
4
+1) by a fixed polynomial c(x). For inverse mix 

columns, the alternative fixed polynomial d(x) is used. The transform has an optimal 

diffusion power; its branch number of 5 means that for the modification of any n input 

bytes, at least 5-n output bytes will be modified. The c(x) and d(x) are given in 

hexadecimal values below [3]: 

 

                          (2.5) 

 

                         (2.6) 

 

The round keys are derived from the cipher key by means of the key schedule 

algorithm, where the total number of round keys equals the number of rounds plus one, 

and the length of each round key is the same as the block length. In this step the value 

of the state is modified by bitwise XORing its value with the relevant round key. 

 
The key schedule algorithm consists of two phases: key expansion and round key 

selection. In the key expansion phase the key expanded array is initially filled with a 

cipher key, and then the array is expanded to cover all the required round keys. Four 

operations are used in the expansion, which are, in sequence, Rotward, Subword, 

bitwise XOR with Rcon, and bitwise XOR with a word in the location [i – Nk], where i 

is the location of the processed word and Nk is the number of words in the key (key 

length over 32). The function of Rotward is to rotate the 4-bytes of the word to the left 

by one byte. The rotated word is then non-linearly mapped through the S-box. The 
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results are then bitwise XORed with the round constant (Rcon). Finally, the word is 

bitwise XORed with the word in the location [i – Nk]. These operations are applied in 

the generation process for every Nk word. The generation of the other words is achieved 

by merely bitwise XORing the previous word and the word in the location [i – Nk]. In 

the case that Nk > 6, an additional Subword operation is applied to the intermediate 

words before the last bitwise XOR operation for every (i – 4) a multiple of Nk.  The 

round keys are chosen in sequence in the second phase (round key selection), such that 

the words of round i are in the locations W [4 × i] to W[4 × ( i + 1)] -1. 

 

Security of the AES 

Since the AES is a standard algorithm worldwide it has attracted much interest from 

cryptanalysts. The reduced version of AES has been broken by different kinds of 

attacks, the most efficient of which does not exceed 7-rounds for AES-128 [48, 49] and 

8-rounds for AES-192 and AES-256 [50]. 

 

 

2.5 Block Cipher Modes of Operation 

Block ciphers may employ different modes of operation, which essentially involve ways 

of encrypting messages of arbitrary length. The NIST defines four modes of operation 

for the DES algorithm [51]: the electronic codebook (ECB), cipher block chaining 

(CBC), cipher feedback (CFB) and output feedback (OFB). The NIST subsequently 

extend [52] the use of the four modes of operation to any approved FIPS symmetric key 

block ciphers. In addition, a new confidentiality mode of operation, the counter mode 

(CTR) was added. These modes of operation can support the effectiveness of the cipher; 

moreover they add extra properties in their implementation. For instance, in certain 

modes of operation a block cipher can be transformed into a stream cipher. The five 

modes of operation mentioned above are briefly described below. 

 

2.5.1 Electronic Codebook Mode 

The ECB mode is the simplest mode of operation, and it allows the cipher to 

encrypt/decrypt each block of a message independently, so that multiple blocks can be 

processed in parallel. The message length must be a multiple of the block size; therefore 

last block must be padding accordingly if necessary. The drawback of the ECB mode is 

that, for a given key, encrypting the same plaintext blocks always results in the same 

ciphertext blocks. Therefore the ECB is recommended for use in processing messages 
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of short length. Furthermore, processing a block with a flipping-bit error only affects the 

block where the error occurs, whereas the influence of a slip-bit error is propagated to 

other blocks. A block diagram for the ECB mode of operation is shown in Figure 2.11. 

 

2.5.2 Cipher Block Chaining Mode 

The CBC mode forces the input blocks into chains, it combines them using a bitwise 

XOR operation with the previously processed block before encryption or with the 

successive block after decryption. The first block is combined with an initial value (IV) 

which should be unpredictable, although it is not necessary for it to be secret [52]. The 

length of the message, as with the ECB mode, should be a multiple of the block size; 

accordingly padding could be expected in the last block.  

The CBC mode solves the problem that arises with the ECB mode regarding of 

obtaining similar output blocks resulting from the processing of similar input blocks 

using the same key. However, due to the structure of the CBC mode which is sequential 

in nature, the parallel processing of multiple blocks cannot be applied in the encryption 

phase, whereas this it is possible in the reverse phase. Processing a block with a 

flipping-bit error can affect both the block where it occurs and the following block, 

while the influence of a slip-bit error propagates to further blocks. A block diagram of 

the CBC mode is illustrated in Figure 2.12.  
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Figure 2.11: Electronic Codebook Mode (ECB) 
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2.5.3 Cipher Feedback Mode 

The CFB mode is a mechanism used to convert a block cipher into a stream cipher, by 

utilising the cipher to generate a key-stream which is later bitwise XORed with a 

plaintext to produce a ciphertext. At each point one bit or more can be processed 

depending on an integer value of s, which should be decided in advance. The segment s 

can be any length of 1-bit, 1-byte or a maximum value which is the length of the block 

(nb). However, the plaintext should be a multiple of s. This mode can sometimes be 

identified from the length of the segment which precedes the name of the mode; for 

example, a 1-bit CFB mode.  

The first block is processed by accepting an IV as an input to the cipher. Again this 

value is not necessarily secret but should be unpredictable. The s most significant bits of 

the result is XORed with a plaintext segment of length s to produce the first ciphertext 

segment. The processing of the following blocks is the same, by each time the initial 

value is left-shifted by s-bit and the s least significant bit is filled with the previously 

generated ciphertext segment. Decryption is the same, swapping the locations of the 

Figure 2.12: Cipher Block Chaining Mode (CBC) 
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plaintext and ciphertext, as illustrated in Figure 2.13. Like the CBC mode, the CFB 

mode is not capable of the parallel encryption of multiple blocks due to its structure, 

since the processing of the following blocks requires the results of the previous step. 

Processing a block with a single bit error causes the error to propagate from the current 

block to the following nb/s-1 blocks [5]. The CFB and CBC modes can also be used for 

authentication purposes by producing a message authentication code (MAC), since any 

change in the input block will result in all subsequent output blocks also changing [53]. 
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Figure 2.13: Cipher Feedback Mode (CFB) 
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2.5.4 Output Feedback Mode 

The OFB mode as shown in Figure 2.14 has a similar structure to the CFB mode. The 

only difference is the input to the encryption, the feedback. The feedback in OFB mode 

is the encryption output, whereas in CFB mode it is the ciphertext segment. The 

segment in OFB mode has a length equal to that of the block.  

The IV in this mode is nonce; that is, for a given key, different values of IV should 

be used when processing different messages. 

One advantage of the OFB mode is that a flipping-bit error does not propagate, and 

only the recovered value is affected. On the other hand, slipping-bit error causes a loss 

of synchronisation resulting from an incorrect message recovered from that point 

onward. 

The parallel processing of multiple blocks again cannot be achieved due to the 

structure of this mode; however the key-stream can be generated in advance as the 

values of IV and the key are known. Later encryption/decryption can be processed by 

bitwise XORing the plaintext/ciphertext with the key-stream already generated, 

providing fast implementation.  
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Figure 2.14: Output Feedback Mode (OFB) 
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2.5.5 Counter Mode 

In CTR mode, as shown in Figure 2.15, the input to the encryption is a counter, and the 

output from the encryption is bitwise XORed with the plaintext to produce the 

ciphertext and vice versa. The counter is given an initial value using random-sequence 

generator, then for following blocks the counter value is incremented by 1 or a certain 

constant. The only restriction here is that the counter value should not be used in more 

than one block for a given key across all messages. 

The CTR mode is very fast, and multiple blocks can be implemented in parallel. In 

addition, all processing can be prepared in advance, and accordingly a sequence of XOR 

operations is only applied when the plaintext/ciphertext becomes available. Errors 

resulting from flip or slip-bit have exactly the same impacts as those in the OFB mode. 
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Figure 2.15: Counter Mode (CTR) 

 

Counter (Ct) 

PT1 

Ek(Ct) 

CT1 

K 

  

b. Decryption 

Ct1 = Ct + a1 

PT2 

Ek(Ct1) 

CT2 

K 

  

Ctn = Ct + an 

PTn 

Ek(Ctn) 

CTn 

K 

  

. . . . . 

Counter (Ct) 

CT1 

Ek(Ct) 

PT1 

K 

  

Ct1 = Ct + a1 

CT2 

Ek(Ct1) 

PT2 

K 

  

Ctn = Ct + an 

CTn 

Ek(Ctn) 

PTn 

K 

  

. . . . . 



2.6            Types of Cryptanalytic Attacks 

29 

 

2.6 Types of Cryptanalytic Attacks 

Cryptanalytic attacks are classified depending on the amount of information available to 

the cryptanalyst. Kerckhoff [54], has stated that the system should be secure even if all 

the details are exposed except the secret key; that is do not rely on “security through 

obscurity”. Accordingly, for all types of cryptanalytic attacks listed below, it is assumed 

that the cryptanalyst has full details of the algorithm. The mission of the cryptanalyst is 

to recover the plaintext or, furthermore, to deduce the key, in order to recover all 

messages encrypted with that key. Knudsen [55], classified the breaking of algorithm 

into four categories: a total break, i.e., recovering the key; global deduction, allowing 

cryptanalyst to decrypt messages with an alternative algorithm without accessing the 

key; instance deduction, recovering the plaintext; and finally information deduction, 

gaining information about part of the plaintext or the key bits. The different types of 

cryptanalytic attacks are listed below [5, 12]: 

 

1. Ciphertext-only Attack 

In this kind of attack an adversary has the least amount of information, perhaps 

only the ciphertext of a few messages. Any algorithm subject to a successful 

attack of this kind is considered to be weak and insecure [5, 6]. 

2. Known-plaintext Attack 

In a known-plaintext attack further information is at hand in addition to the 

ciphertext of several messages, for example their sources are also known. An 

intruder’s goal is to deduce the key, and a typical example of such an attack is 

linear cryptanalysis [56]. 

3. Chosen-plaintext Attack 

A well known chosen-plaintext attack is differential cryptanalysis [43], in which 

the adversary not only has access to plaintext-ciphertext pairs, but also the 

capability to choose plaintexts, encrypt them and derive their outputs. His job 

then is to deduce the key. 

4. Adaptive Chosen-plaintext Attack 

The adaptive chosen-plaintext attack is a type of chosen-plaintext attack with 

extra facilities, where an adversary can update his choice according to the results 

obtained from the previous encryption.  

5. Chosen-ciphertext Attack 

This attack allows an adversary to decrypt a chosen ciphertext and gain its 

corresponding plaintext. The objective again is to recover the key. 
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6. Chosen-text Attack 

This is a more powerful attack combining the chosen-plaintext and chosen-

ciphertext attacks, allowing the adversary to encrypt or decrypt the amount of 

text required to recover the key. 

 

It is worth noting that an algorithm is considered to be unconditionally secure if it 

impossible to recover a plaintext for a given ciphertext without knowledge of the key, 

even if time and resources are unlimited. A one-time pad [4] is the only type of 

algorithm which falls into this category, however this is considered impractical as it 

requires the length of a key to be equal to that of a message. Therefore, to be secure, 

algorithms not in the latter category should meet the following criteria [12]: 

 The cost of recovering the data is more expensive than the actual value of the 

information.  

 The time required to recover the data exceeds the lifespan of the information’s 

utility.  

 

 

2.7 Field Programmable Gate Array 

FPGA technology was developed in 1984 by Xilinx. It is an integrated circuitry that 

contains a large number of configurable logic blocks (CLBs) along with configurable 

interconnections between these blocks, including configurable general purpose 

input/output (I/O) interfaces. By configuring a number of these blocks with 

corresponding links, a variety of applications can be performed. At the beginning most 

designers used FPGAs for limited data processing tasks such as glue logic 

implementations for connecting and interfacing between different large blocks [57, 58]. 

A few years later, with the evolution of silicon technology, the FPGA was migrated 

from a simple technology providing programmable connectivity between different 

system components into a complete programmable system component in its own right. 

Nowadays, FPGAs contain millions of gates, large amounts of memory, embedded 

multipliers, adders, DSP functions, microprocessor cores and high speed programmable 

I/O interfaces, in addition to parallelism facilities, resulting in powerful devices that can 

be used in a wide range of applications. Moreover the development cost of these devices 

is low and application prototypes can be produced in a short time [57, 59, 60].  

Three different epochs of development of the FPGA technology are pointed out in  

[58]: invention, expansion, and accumulation. These eras were classified depending on 
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the ability of the FPGA related to the application problem size, which was very limited 

in the first age and became far outweigh in the latter age. 

A CLB consists of a number of slices, which may be 2 or 4 depending on the 

device. Each slice comprises generally of 2 core building blocks. The logic cells (LCs) 

consist of look-up tables (LUTs), multiplexers (MUXs), registers and special high-

speed carry logics for the purposes of arithmetic operations, which establish dedicated 

interconnection between the cells, a diagram of an internal structure of the FPGA is 

illustrated in Figure 2.16, which is depicted from [57]. Each LUT can also be used as a 

RAM (distributed RAM) or as a shift register. For instance, a 4-bit LUT can be used as 

a 16×1 RAM or a 16-bit shift register. Two different types of RAM are available: 

distributed RAMs and block RAMs. Their control signals can also be configured; for 

instance the clock signal can be configured to be either rising or falling-edge, enabling a 

signal which is used to control the read and write operations and set/reset signals that 

force the data output into a predefined value. The device consists of a large number of 

embedded Block RAMs, which are placed in columns or around the device. Block 

RAMs can be used individually or some of them can be combined to form single large 

blocks. Depending on the application, these RAMs can be used as single-port RAM, 

dual-port RAM or first-in first-out (FIFO). 

 

 
 

Figure 2.16: FPGA Internal Structure 
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2.7.1 Programmable Connectivity Technologies 

The programmable connectivity between blocks is based on three technologies: 

antifuse, E
2
PROM and SRAM [57]. Antifuse is a one-time programmable (OTP) link, 

and once a fuse is blown there is no way to remove it. The fuse acts as an open circuit 

due to its high resistance, and programming such a fuse is achieved by applying pulses 

with relatively high voltage and current using a special device programmer. Antifuse-

based FPGAs are non-volatile, and hence there is no need to upload a configuration file 

when a system is powered up, thus saving the time and memory it would require to 

carry such a file. In addition, the device is immune to the effects of radiation due to its 

internal structure, which is known as ‘rad hard’, qualifying it to be used for special 

applications if accompanied with flip-flop radiation protection, such as in the use of a 

triple redundancy design to makes all environment radiation intensive. 

The second technique is based on electrically erasable programmable read-only 

memory (E
2
PROM). The configuration of E

2
PROM-based FPGA devices can either be 

programmed off-line using a device programmer or may be in-system programmable 

(ISP); however the programming time is around three times that of devices based on 

SRAM. The data contained in this device, as with the previous one, is non-volatile, and 

therefore when the device is powered up the configuration is already available, which is 

known as “instant on”. The static power consumption of E
2
PROM-based FPGA is, 

however, considered to be high due to the large number of internal pull-up resisters 

[57]. 

Finally, programming may be based on static random-access memory (SRAM). 

This type is considered to be the state-of-the-art, and most current FPGA devices are 

configured based on the use of SRAM cells. The main advantage of these devices is that 

they can be reconfigured over and over again. Although, SRAM-based devices are 

volatile; meaning that they need to be reconfigured every time they are powered up, the 

configuration process runs very rapidly, and in addition further configurations can be 

run before the main task. The configuration file that is used to program a device is 

usually stored in an external memory, and therefore to maintain the confidentiality of 

this file a bitstream encryption facility is used.  

The choice of the programming connectivity technology depends on the application 

and the computation environment in which the FPGA device is used [61].  
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2.7.2 FPGA Design Flow 

The Xilinx Integrated Software Environment (ISE) package contains all the necessary 

tools needed by a designer to build up and process an FPGA design prototype. The 

package includes a graphical integrated development environment (IDE), design entry 

tools, a simulator for design verification, a synthesiser, implementation tools and finally 

tools for producing a bitstream for FPGA device configuration. The FPGA design flow 

is summarised in Figure 2.17 and described briefly below:  

 Specification 

The designer should have a detailed knowledge of target device specifications.  

Specification

Design Entry

Synthesis

Translate

Map

Place and Route

Behavioural Simulation

Pre-Synthesis: 

Logic Simulation

Post-Synthesis: 

Gate Level Simulation

Post-Place and Route: 

Timing & power analysis

Post-map:

Static timing analysis

Design Verification

Implementation

Device Programming On-Chip Verification

Post-Translate: 

Simulation Model

 

Figure 2.17: FPGA Design Flow 
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 Design Entry 

There are a variety of choices available for representing the design, due to the 

flexibility in the Xilinx ISE in accepting designs in different formats. Generally, 

the Register Transfer Level (RTL) is the most common level for FPGA design 

entry, where the circuit design can be represented in behavioural or structural 

models. The former are further classified into algorithmic and architectural 

models, while the latter is categorised as RTL, gate or switch level [57]. RTL 

design can be created using hardware description language (HDL) or a 

schematic form. The possible choices for representing the design are listed 

below: 

 Hardware description language (HDL), such as: 

o VHDL, which is a standard language defined in IEEE-STD-1076 

o Verilog, also a standard language defined in IEEE-STD-1364 

 High level languages: 

o SystemC, Handel-C, Catapult C, Impulse C 

o Matlab M-Code 

o Accel DSP 

 High level graphical design entry: 

o Matlab Simulink (Xilinx System Generator or Altera DSP Builder tools 

are used to convert the design developed in the Matlab platform into an 

FPGA implementation) 

o Labview 

 Configurable IP 

o Xilinx Platform Studio/Embedded Development Kit (EDK) 

o Altera SOPC Builder 

 Synthesis 

Xilinx ISE has the built-in synthesiser tool called Xilinx Synthesis Technology 

(XST). Synthesis is used to convert the RTL code into a gate level netlist 

(NGC), which contains both design logic and constraints. Constraints are 

determined through a user constraints file (UCF) that includes timing, I/O and 

placement constraints. A number of properties for synthesis options have to be 

set prior to synthesis in order to obtain optimum performance, such as area, 
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speed and power reduction optimisation. Device utilisation summary can be 

viewed in the resulted synthesiser reports. 

 Implementation 

The Xilinx ISE implementation processes the synthesised netlist (NGC) in three 

steps: translate, map, and place and route. Translate is used to prepare 

synthesised netlists for the place and route step, merging multiple netlists and 

constraints, adding I/O pads to top level ports, and generating the Xilinx Native 

Generic Database (NGD) file which can be mapped to the target device. The 

following step, map, is basically used to map the design into the FPGA resources 

available (LUTs, registers, I/Os, RAMs, DSP and others), producing a Native 

Circuit Description (NCD) to be used in the place and route step. The final step 

in the implementation is place and route. As the name suggests, it places and 

routes the mapped designed in the device, choosing the precise physical 

components to be used and establishing real connections between them. 

 Device Programming 

The final step in the design flow is to generate a configuration bitstream file 

from the placed and routed design (NCD file), which has to be loaded in the 

FPGA device in order to program it. The configuration bitstream file is 

generated using the Xilinx ISE BitGen program, and the target FPGA device is 

configured using the iMPACT software. The final bitstream file can be 

compressed, and in addition can be encrypted before it is saved in the external 

memory in order to retain its confidentiality. 

 Design Verification 

Design verification is carried out using the Xilinx ISE ModelSim Simulator at 

various points along the design flow in order to ensure functionality; following 

the maxim that the earlier a bug is found, the easier it is to correct.  

 

2.7.3 Categories of Architecture Design 

In general the hardware architecture of the design can fall into one of the following 

categories. The decision concerning which architecture the designer should choose 

depends on the application itself and the availability of resources. The functionality of 

some applications can be processed in parallel other in sequential or accept pipelining. 
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The differences between various types of architecture can be seen as tradeoffs between 

area and throughput. The possible architecture types are described below. 

 Basic architecture 

Also known as iterative looping architecture, it is suitable for applications that 

require the usage of minimum area, and thus the focus is on area rather than 

throughput, in situations where resources are limited. Only one round 

transformation is designed in this architecture, followed by a register, and 

implementation is achieved by processing the data throughout this circuit rd 

times depending on the number of rounds. In general each round is completed in 

one clock cycle, and therefore the total number of clock cycles required to 

implement one block of data depends on the number of rounds. This architecture 

is suitable for a design with homogeneous rounds. 

 Loop unrolling architecture 

Unlike the basic architecture, loop unrolling architecture focuses on throughput 

rather than area, duplicating the hardware required to implement each round. 

Hence the expansion in area depends on the number of copies, where the 

maximum would be the number of rounds. One block of data is processed at a 

time, and the optimum time is one clock cycle. 

 External (outer) pipelining architecture 

This is similar to loop unrolling architecture, and in placing registers in between 

the unrolled rounds forms what is called the stages of a pipeline. If registers are 

placed between each round, the result is called full pipeline architecture. This 

type of architecture further increases processing speed by decreasing critical 

delay and processing multiple blocks of data simultaneously. 

 Internal pipelining architecture 

An internal, inner or sub-pipeline architecture is achieved by placing registers 

inside the round in between the layers. This type of architecture is useful for 

complex round functions in order to reduce critical delay. Full sub-pipeline 

architecture refers to cases where registers are added in between all the steps 

within a round. Adding registers in between combinational logics reduces the 

delay; however, at the same time it increases the number of clock cycles 

required to process the algorithm. 
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 Hybrid pipelining architecture 

This type of architecture combines internal and external pipelining architectures 

and implements them simultaneously. 

 Parallel architecture 

Parallel architecture is suitable for algorithms that have the ability to process 

their functionalities in parallel. 

 

2.8 Literature Survey  

Large contributions in the field of cryptography can be found in the literature due to the 

importance of this topic in maintaining the confidentiality of stored information or that 

transmitted over insecure channels.  This section reviews prominent studies of the 

hardware implementation of block cipher algorithms meeting previous and current 

standards, as well as describing other AES candidate algorithms. In addition, a number 

of algorithms whose core elements are based on the NTTs are also outlined, in the 

following sections. 

 
2.8.1 Data Encryption Standard 

The previous standard block cipher has been described in detail in section 2.4.1, and 

several important published hardware implementations are discussed below. 

Hardware for the DES algorithm was designed and implemented using Xilinx 

XC4020E [62]. An iterative structure was suggested and the S-boxes generated based 

on a logic design. A 26.7Mbits/sec encryption speed was achieved using 438 CLBs. 

A fully unrolled and pipelined architecture for the DES algorithm has also been 

reported [63]. The design was implemented using Virtex V150-6 FPGA, with a 

throughput of 10.7 Gbits/sec using 1584 slices and a power consumption of 3.2 watts. 

The logics related to entering the cipher key and generating the round keys were 

eliminated by counting these values in software.  

Full and partial pipeline architectures have been designed and implemented on the 

FPGA Altera platform [64]. The maximum throughput achieved was 1054.24 Mbits/sec 

for the 16-stage full pipeline architecture implemented on an EP1K100FC484-3 device. 

The throughput was 665.28 Mbits/sec for an 8-stage pipeline implemented with the 

same device. For the forth, second and first stage pipelines, the throughputs were 254.36 



2.8            Literature Survey 

38 

 

Mbits/sec, 138.88 Mbits/sec and 69.56 Mbits/sec, respectively, which were 

implemented with a EPF10K30(50)BC356-3 Altera device. 

A design for full pipeline architecture has been proposed for the DES algorithm 

[65]. This design was implemented with a Xilinx Virtex XCV1000-4 FPGA device, and 

achieved a throughput of 3.87Gbits/sec utilising 6446 CLBs slices. 

Non- and fully-pipelined architectures have also been proposed as a trade-off 

between area and throughput [66]. Xilinx Virtex 6 xc6vlx240t-3ff1156 FPGA 

technology was used in the implementation, resulting in a throughput of 4.8 Gbits/sec 

for the non-pipelined design, and 18.82 Gbits/sec for the pipeline architecture. 

 

2.8.2 Advanced Encryption Standard 

Different architectures and implementations for the current standard AES algorithm can 

be found in the literature with different achievements depending on the availability of 

resources and the application concerned. Some of the important published studies are 

described below.  

In 2001, McLoone and McCanny [67] proposed an AES architectures based on 

utilising look-up tables to implement the entire Rijndael round functions. The design 

was able to achieve a throughput of 12 Gbits/sec at 93.9 MHz using 244 BRAMs and 

2000 CLB slices on a Xilinx Virtex XCV812E device.  

Two different architectures as tradeoffs between throughput and area for the AES 

algorithm have also been designed and implemented [68]. The first was based on a 

feedback logic that reaches a throughput of 259 Mbits/sec at 22MHz using 2358 slices 

on a Xilinx Virtex XCV300BG432 device, which is suitable for applications with 

limited resources. The second architecture uses a pipeline technique to attain high speed 

performance, and throughput was here improved to 3.65 Gbits/sec at 28.5 MHz using 

17314 slices when implemented with a Xilinx Virtex XCV1000BG560 device.  

In 2004, Hodjat and Verbauwhede [69] presented a loop unrolling and inner-round 

and outer-round pipelining architecture for an AES encryption processor. A maximum 

throughput of 21.54 Gbits/sec at 168.3 MHz was achieved using 12450 slices on a 

Virtex XC2VP30 FPGA device.  

In 2006, Iyer et al. proposed a fully sub-pipelined architecture for the AES-128 core 

with both inner and outer round pipelining [70]. The architecture was implemented 
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using Virtex XC2VP30 device and a throughput of 26.47 Gbits/sec at 206.84 MHz was 

achieved using 11720 CLB slices.  

A three-stage pipeline based architecture has been proposed for the AES algorithm 

[71] which processes three blocks of data simultaneously. The design includes both 

encryption and decryption, and in addition the keys are generated on-the-fly. It operates 

in a CBC mode and can works with the three possible AES key lengths. The 

architecture was simulated in Verilog HDL and implemented on a Xilinx FPGA Virtex 

XC2V2000-5bf957 device. A throughput of 1.315 Gbits/sec at 102.8 MHz for a key 

128-bit long was achieved using 3223 slices.  

Two further architectures were designed and implemented for the AES-128 

algorithm on a XC2VP7X FPGA device with a LUT S-box [72]. The first architecture 

used a basic iterative, which implement the same hardware for all rounds and a 

throughput of 3.85 Gbits/sec at 300 MHz with 2599 CLB slices was obtained. In the 

second architecture, a one stage sub-pipelined element was added as well as one stage 

of outer pipelining, and throughput was improved to 6.2 Gbits/sec at 481 MHz with 

3119 CLB slices. 

 

2.8.3 Serpent (5-finalist AES candidate algorithm) 

The Serpent is a block cipher based on the SPN [27]. It processes a block of 128-bit in 

size under the control of a key 256-bit in length, and the key should be padded to a 256-

bit in case it is supplied at a lesser length. It is faster than the DES and more secure than 

the triple-DES. The cipher starts with an initial permutation followed by 32 identical 

rounds (apart from in the last round, where a linear transformation is replaced by an 

additional key mixing operation), and ending with a final permutation which is the 

inverse of the initial permutation. The initial and final permutations are included in the 

design for the purposes of improving both the optimisation of the implementation and 

computational efficiency, rather than adding to its cryptographic significance [27]. The 

round functions consist of a key mixing operation, S-boxes, and a linear transformation. 

The key mixing operation is a simple bitwise XOR operation between the intermediate 

result and the round key. Eight different 4×4 S-boxes are used in the algorithm, and this 

layer is applied in parallel by duplicating 32 similar S-boxes at each round, so that each 

S-box is used four times, i.e., every eight rounds. The structure of these S-boxes is an 

improvement over the structure of the DES S-boxes, guaranteeing higher resilience in 

the face of possible attacks. In the linear transformation layer the block is divided into 
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four sub-blocks with a word length of 32-bit each, a number of bitwise XOR operations, 

circular rotation and shift operations with different offsets which are applied to the 32-

bit four words in order to maximise the diffusion and avalanche effects. 

The decryption algorithm is different, however, in applying the encryption 

algorithm in reverse order, and inverse S-boxes as well as an inverse linear 

transformation are used instead. In addition, the round keys are applied in reverse order. 

 

2.8.4 Twofish (5-finalist AES candidate algorithm) 

The Twofish [73] is a 128-bit iterative block cipher with a key of variable length up to 

256 bits. It is a Feistel based structure with additional key bitwise XORing at the input 

and output. The block is internally divided into four 32-bit words; the cipher runs 

through 16 identical rounds, and at each round the first left word is processed through 

the g function that consists of four key-dependent 8×8 S-boxes, followed by a linear 

transformation of a 4×4 maximum distance separable (MDS) matrix over GF(2
8
). The 

second left word is first left-rotated by 8-bit and then processed through the same g 

function, and this can be conducted in parallel with the processing of the first word. The 

outputs from these two layers are fed to the following layer, the Pseudo-Hadamard 

Transform (PHT), which mixes its two inputs x0 and x1 according to equations 2.7 and 

2.8. The outputs from the PHT layer are XORed with another two sub-key words, 

completing the F function. Next, the values of the two words in the right are modified 

by bitwise XORing their values with the two processed words. The first right word is 1-

bit left-rotated before modifying its value, and the second right word is 1-bit right-

rotated after modifying its value. The two halves are then interchanged and fed to the 

next round. 

 

  
                 (2.7) 

 

  
                  (2.8) 

 

2.8.5 RC6 (5-finalist AES candidate algorithm) 

The RC6 [25] is a fully parameterised  block cipher, and is a further developed version 

of the RC5 [24] algorithm with better performance and security. The block size is 128-

bit; however it can also support smaller sizes of 64 or 32-bit. The key is variable and 

can be any length up to 2040 bits. The number of rounds is recommended to be 20 for 
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the AES, although it can be any number up to 255. These parameters were selected to 

be suitable for the levels of security and performance efficiency required. The non-

linear part of the algorithm is not based on an S-box, but instead on data-dependent 

rotations. The security of the RC6 relies on the extensive use of data-dependent rotation 

accompanied by modular integer multiplication and addition as well as bitwise XOR 

operations. The multiplication is based on a quadratic function given in equation 2.9. 

The offset for data-dependent rotation is determined by the least significant         

bits of the relevant word, where w is the word length in bits. The structure of the 

algorithm is a type-2 generalised Feistel network with the addition of an extra key. 

Decryption is performed by replacing each modular addition with subtraction, reversing 

the direction of rotation and using the round keys in reverse order. 

               (2.9) 

 

2.8.6 MARS (5-finalist AES candidate algorithm) 

The MARS [23] is a symmetric 128-bit block cipher with variable key length ranging 

from 128 to 400-bit. The algorithm is based on a type-3 generalised Feistel network, 

where one data word is used to modify the other three words. The MARS was designed 

using a mixed structure such that the middle rounds (known as the cryptographic core, 

or second phase) are treated differently from the outer rounds (the wrapper layers, or 

first and third phases) providing more resistance against attack. The cryptographic core 

consists of 8 rounds of keyed forward transformation and 8 rounds of keyed backward 

transformation. The wrapper layers are used to provide rapid mixing and key avalanche, 

where the first phase starts with a key addition followed by a layer of 8 rounds of 

unkeyed forward mixing. The third phase in the cipher involves a mixing layer of 8 

rounds of unkeyed backwards operations followed by a key subtraction, which is the 

inverse of the first phase. 

This cipher is word-oriented, in that all operations are performed at a level of 32-bit 

words, and a round combines a variety of operations to provide a very strong cipher. 

These operations are XORs, additions, subtractions, S-boxes, multiplications, and both 

fixed and data-dependent rotation. Decryption is achieved by processing the cipher and 

the key in reverse order.  
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2.8.7 Other Algorithms Based on NTTs  

In addition to the above mentioned algorithms, some other algorithms have been 

designed using one of the families of NTTs. 

A new algorithm was developed in [74] based on the transitional (T) transform. 

This is a 128-bit iterated block cipher with 5 rounds, each of which consists of four 

modules: non-linear key-controlled substitution; modified T transform; key-controlled 

multiplication; and a shuffle module. Non-linear key-controlled substitution consists of 

16 operations of additions and XOR between the plaintext and the round keys, and the 

final result is obtained by inverting the elements processed in the transform domain. In 

the modified T transform, the input is diffused and shuffled through multiple stages of 

different T transform lengths. The output is then confused via key-controlled 

multiplication, which is a byte-by-byte multiplication between the key and the 

intermediate results. The final shuffle module first reorders the elements such that 

elements in even positions are located first and then the bytes are cyclically shifted 

depending on the value of a round key. 

The same author then developed another block cipher [75] based on the NMNT 

which utilises a cascade of five of such transforms with different transform lengths so as 

to ensure high diffusion rates throughout the processing. In addition, each NMNT is 

preceded by a key-dependent S-box, and the different S-boxes are generated at each 

stage depending on the value of the stage key.  

 

2.9 Conclusions 

This chapter has introduced and briefly described the basic concepts of cryptography as 

well as the FPGA. Special attention has been given to block ciphers, since most of the 

relevant algorithms fall within this category. Different well-known block ciphers are 

described in detail in order to explain the methods and principles used in designing 

secure block ciphers. The possible architectures and design options for the FPGAs are 

discussed, which mainly involve a tradeoff between area and throughput. Finally a 

number of the most important studies in the field are outlined. 
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Chapter 3 

 

Diffusion Analysis of the NTTs 

 

 

 

In this chapter, parameter-based transforms, the NMNT and the FNT are analysed and 

their diffusion power are evaluated.  The NMNT or FNT is used in the proposed cipher 

mainly to enhance system’s diffusion.  

Consider that diffusion power of the algorithm in the design is very important, 

since the number of rounds for any iterated block cipher is inversely proportional to this 

value. Additionally, achieving higher levels of diffusion is likely to result in a more 

secure system with a lower number of rounds, which improves system performance 

regarding speed and complexity.  

The chapter is organised as follows: section 3.1 provides a brief introduction. 

Sections 3.2 and 3.3 explain the NMNT and FNT, respectively. The analyses are carried 

out in section 3.4 and the results are described in section 3.5. A discussion is given in 

section 3.6 and finally the conclusions of the chapter are summarised in section 3.7. 

 

 

3.1 Introduction 

As mentioned in the previous chapter, Shannon [15] introduced two main principles for 

designing secure cryptographic systems: confusion and diffusion. Substitution is one of 

the processes used to achieve confusion, in which the elements of the plaintext are 
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mapped onto other elements so as to complicate the statistical correlation between the 

plaintext and the corresponding ciphertext, and the strength of confusion depends on the 

strength of the non-linear properties of the S-box applied, as explained in detail in the 

next chapter. Diffusion is then a process of rearranging the plaintext into the ciphertext. 

Accordingly, how influential the diffusion process is can be measured by how widely 

the plaintext is redistributed across the ciphertext, where a small change in the variables 

influencing the diffusion process, such as the key or the plaintext itself, should have a 

significant impact on the resulting ciphertext. This effect is called the avalanche effect, 

and a system is considered to have good avalanche characteristics if roughly half of the 

output bits change for a single change in input bits  [30, 76]. An extension to this 

criterion is called the strict avalanche criterion (SAC) [77], which states that each output 

bit changes with a probability of 0.5 for a single input bit change. In other words, all 

output bits are equally likely to change for a single input change.  The same author [77] 

also proposed another criterion, the bit independence criterion (BIC), which states that 

any two output bits should change independently for any single input bit change. 

Moreover another concepts, called completeness, can be applied such that a system is 

considered complete if every output bit depends on all input bits [8, 78]. To quantify 

this it is necessary to verify that the system is resilient to statistical attacks and to ensure 

that the ciphertext remains incoherent.  

Once differential [43] and linear [56] cryptanalysis had developed, designing the 

diffusion part of algorithms by relying only on the transposition of elements or 

permutation was no longer secure and such algorithms became subject to successful 

attack. Hence more sophisticated techniques have been used to improve and strengthen 

diffusion, such as the application of transforms. For instance, in the Twofish algorithm 

[29], a fixed transform, a 4×4 MDS matrix over GF(2
8
), is utilised. Here an input vector 

of four bytes in length is multiplied by the MDS over GF(2
8
) in each round. A MDS 

matrix in hexadecimal form is given below [29]:  

 























BEFEF

EFBEF

EFEFB

BBEF

MDS

501

015

015

5501

 (3.1) 
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In the current state-of-the-art, the AES algorithm [3], a transform called ‘mix 

columns’ is used for diffusion purposes to mix the bytes in each column to ensure local 

diffusion. This transform is explained in section 2.4.3. 

These transforms are powerful in diffusing data, but their lengths are fixed for these 

dedicated algorithms. The disadvantage of this is that there is a need for an alternative 

algorithm in case the block size or key length becomes insufficient to meet security 

requirements. This might happen due to future increases in processor power and parallel 

processing technologies as was the case with the previous standard, the DES algorithm 

[2]. Accordingly, a practical solution is the use of a parameter-based transform such that 

the block size or key length can be changed by changing the transform size. This could 

then achieve the desired level of security, and would represent an algorithm which 

would not require revision, ensuring practical usage for the proposed lifespan. 

The suggested parameter-based transforms are the NMNT and FNT, both of which 

belong to the NTT family. NTTs use modular arithmetic operations on a field or ring of 

integers, without the rounding and/or truncation errors inherent to normal floating-point 

operations such as those found in the discrete Fourier transform (DFT), for example. 

NTTs have found wide application in different areas, including digital signal processing 

[79], digital filtering [80, 81], image processing [82], decoding [83], cryptography [74, 

75, 84] and the concealment of digital image information [85].  

 

 

3.2 New Mersenne Number Transform 

The NMNT is defined modulo of the Mersenne numbers (Mp) [86, 87]. This transform 

can be used in the forms of one or multiple dimensions [88, 89]. Fast algorithms such as 

the radix-2 [90, 91], radix-4 [92, 93] and split-radix [94] can be adapted to speed up its 

processing, where decimation can be carried out either in the time or frequency 

domains. The forward and inverse transforms have a similar appearance, with a scale 

factor 1/N being the only difference. The forward 1-D NMNT X(k) of an integer 

sequence x(n) with a transform length N = 2
m
 for m = 1,2, ..., P and its inverse can be 

defined as follows: 
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Where: 
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The above kernels β1(nk) and β2(nk) are calculated for a maximum transform length 

of 12 P . For transform lengths less than this, the values can be calculated using the 

following equations: 
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where       and       stand for real and imaginary parts of the enclosed 

term, respectively,      
 denotes modulo the Mp and d = 2

P+1
/N, which is an 

integer power of two.  

 
 

3.3 Fermat Number Transform 

The FNT is defined modulo of the Fermat number (Ft) [81, 95]. This transform can also 

be used in either single or multi-dimensional forms [96]. The forward 1-D FNT and its 

inverse are defined as follows: 
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where: t is a positive integer, such that Fermat numbers are primes for 0 ≤ t 

≤ 4, and composite after that,       
denotes the modulo Ft and α is a root of 

unity of order N, where N is the least positive integer such that:  

 

tF

N 1 , and
tF

i 1 , for 0 < i < N (3.16) 

 

Table 3.1 outlines the maximum transform length Nmax and other parameters for 

different values of t, where the maximum transform length for Fermat primes depends 

on the kernel value [81] as follows: 

 
1

max 2  tN , 22 t , or 
t22 for α = 2, √2, or 3,  respectively (3.17) 

Table 3.1: Maximum FNT length for t = 1, 2, 3, 4 

t Ft α N Nmax 

1 5 √2 8 8 

  2 4  

2 17 3, √2 16 16 

  2 8  

  4 4  

3 257 3 256 256 

  9 128  

  81 64  

  136, √2 32  

  2 16  

  4 8  

  16 4  

4 65537 3 65536 65536 

  9 32768  

  81 16384  

  6561 8192  

  54449 4096  

  61869 2048  

  19139 1024  

  15028 512  

  282 256  

  13987 128  

  8224,√2 64  

  2 32  

  4 16  

  16 8  

  256 4  
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3.4 Analysis 

To reflect the sensitivity of the transforms for any changes in the input or output 

elements, a simple example can be considered which illustrates the effect of modifying 

a single output (transformed) element to the input elements. The text and ASCII 

representations for both the input elements to the transforms and the corresponding 

output elements are illustrated in Figures 3.1 and 3.2 for the NMNT and FNT, 

respectively. The recovered plaintexts result after modifying one of the transformed 

elements (shadowed) are shown to be completely different, confirming the high 

sensitivity of the transforms regarding any changes in the input or output elements. In 

other words, the transforms possess good avalanche characteristics.  

 The calculations are achieved by applying equations 3.2 and 3.3 for the NMNT, 

respectively. Where N = 8 (plaintext length is eight strings), P = 7, Mp = 2
P
-1 = 127, α1 

= α2 = 119, β(n) = 1  111  1  0  126  16  126  0, and PT and CT in Figures 3.1 and 3.2 

stand for the ASCII representations for both the plaintext and ciphertext, respectively. 

In addition, to implement equations 3.13 and 3.14 for the FNT, Ft = 257.  

 

Plaintext: A n a l y s i s 

PT : 65 110 97 108 121 115 105 115 

CT : 74 16 113 64 67 110 109 94 

Ciphertext: J   q @ C n m ^ 

CT´ : 74 16 113 64 63 110 109 94 

PT´ : 1 47 33 45 57 52 41 52 

Plaintext´:   / ! - 9 4 ) 4 

 
Figure 3.1:  1-D NMNT output modification 

 

Plaintext: A n a l y s i s 

PT : 65 110 97 108 121 115 105 115 

CT : 65    119     16    238    197     27    209    163 

Ciphertext: A w  ε ┼  ╤ ú 

CT´ : 65    119     16    238    193     27    209    163 

PT´ : 193 239 225 237 249 244 233 244 

Plaintext´: ┴ ∩ ß Ø . ⌠ Θ ⌠ 

 
Figure 3.2:  1-D FNT output modification 
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Two different techniques are used in scrutinising and verifying the diffusion power 

of the transforms. The first technique involves the calculation of the branch number of 

the transforms, in order to characterise the diffusion power of a linear transformation. 

The branch number (BN) of a transformation (F) is calculated based on equation 3.18 

[3]: 

     aFWaWFBN
a


0

min)(  (3.18) 

 
where: W(a) is the bundle (element) weight (number of non-zero elements, 

also known number of active elements) and F is the linear transformation. 

 
The branch number determines the worst case diffusion of a transform; therefore it 

is a lower bound for the number of active S-boxes in two consecutive rounds of a linear 

or differential characteristic. The branch number of a transform with maximum 

diffusion power is N+1, and by considering an input weight W(a) = 1, the output weight 

is a maximum of N. Therefore the branch number of a transform F is [3]: 

 

           (3.19) 

 
The second technique is based on calculating the diffusion power as a range of 

probabilities for different cases. These cases are determined according to the kernel 

matrix analysis [97, 98] explained in sections 3.4.1-2. These cases differ depending on 

the number of modified elements and their locations. The type of element modification 

depends on the modified values, which may be the: same value, different values with a 

total sum equal to the modulus for each modified pair/elements, and different values 

with a total sum not equal to the modulus for each modified pair/elements. The range of 

probabilities for each case is calculated by counting the distance (number of differences) 

between the elements of the modified and unmodified versions, where diffusion power 

represents the results of the process over-all elements (N) by 100%. The results are 

verified by recalculating the above cases and modifying the elements in three different 

tests. The first test is performed by transforming the input elements and producing the 

initially diffused elements. Next, the input is modified and transformed and the output is 

compared to the transformed output of the unmodified input. The second test is 

performed by modifying the transformed output elements and recalculating the input 

elements by applying the inverse transform and comparing the original input to the 

inversely transformed input. The final test involves modifying the mathematical 

equation according to the relevant cases as shown in the explanation below, for 

modifying: a single element (equations 3.20 and 3.26); a single paired elements 
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(equations 3.21 and 3.27) and unpaired elements (equations 3.22 and 3.28), all-odd 

elements (equations 3.23 and 3.29), all-even elements (equations 3.24 and 3.30), and all 

elements (equations 3.25 and 3.31) for both the NMNT and FNT, respectively: 
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where i is the location of the modified element (0 ≤ i ≤ N-1) and a is the 

modification value that is added to the initial value. 

 
Considering all these cases is very important that, apart from determining the 

diffusion power, the cases that provide maximum or minimum diffusion percentages are 

determined. These can then be exploited or avoided in the design.  

 
The elements of an input vector are modified at the following locations: 

1. Initially, all of the single elements at even and odd locations are modified. 

2. Next, all of the even/odd numbers of paired elements and up to N/2-1 pairs are 

modified at their corresponding even/odd/mix locations. This is shown in Figure 

3.3 using the formula  xNii 2/,  , where (1 ≤ x ≤ log2N-1). 

3. The following case is the modification of even/odd groups of unpaired elements 

that are situated in the even/odd/mix locations.  

4. A combination is performed that requires the modification of both the paired 

elements at even/odd/mix locations  xNii 2/,   using predetermined values and 

modifying the remaining unpaired elements by replacing with random values. 

5. The elements are modified that reside in all-even positions, followed by the 

elements that reside in all-odd locations. 

6. Finally, all of the elements are modified for the last time, completing this 

particular process within the implementation.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  Pair distributions 
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3.4.1 Analysis of the NMNT Kernel Matrix 

The NMNT is analysed for diffusion by first analysing the structure of the kernel in a 

matrix form. The following parameters are taken for illustration purposes: P = 7 and N, 

transform length = 16.  

Then:  Mp = 2
P
-1 = 127, α1 = 106, α2 = 103 

)(n = 1   82   111   82   1   3   0   124   -1   45   16   45   -1   124   0   3 

           for n = 0, 1, 2…N-1 

 

The distribution of β(nk) in a matrix form is represented in Table 3.2, and its 

analysis which is suitable for any transform length is listed below: 

1. The first column always consists of elements with +1 value. Accordingly, the first 

output element result from multiplying an input vector with the transform 

represents the sum of all vector elements, and its value changes with any change 

in the input elements, except when the sum of the total changes equals zero or the 

modulus (Mp). 

 

Table 3.2: β(nk) Matrix distribution for P = 7, Mp = 127, N = 16 
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2. The first row always consists of elements with +1 value. As a result, any change in 

the value of the first element of an input vector will be reflected equally in all 

output elements.  

3. The sum of all elements of each column/row (except the first column/row) modulo 

Mp equal zero.   

4. The matrix is symmetric, i.e., the matrix and its transpose are the same. 

5. The even columns/rows always contain only two elements with zero value (except 

for N which equals 4), with N/2 locations between each one at odd positions (even 

for N = 8).  

6. The four odd columns/rows always contain no zero elements, only +1 or ±1 at 

locations 1, (N/4)+1, (N/2)+1, and (3N/4)+1. 

7. The four odd columns/rows (except for N = 4) always contain a maximum number 

of zero elements N/4 at locations (N/8)+1, (3N/8)+1, (5N/8)+1, and (7N/8)+1.  

8. The number of elements with zero value in the odd columns/rows range from zero 

elements in four columns/rows (point 6 above) to the maximum N/4 elements in 

four columns/rows (point 7 above) and the rest in between N/8, N/16 etc. 

9. The total number of elements with zero value in the matrix is N(log2N-2). 

10. Element values in the second half of each even column/row are the inverse of the 

values of the corresponding elements in the first half (their sum modulo Mp is 

equal to zero). 

11. Element values in the second half of each odd column/row are the same as those 

of the corresponding elements in the first half. Each half may further consist of 

another two identical halves. However, the final values of the elements of the 

second half are the inverse of those of the elements of the first half (except in the 

first column/row). 

12. Any modification in the elements of an input vector has the same effect as 

modifying its transformed elements, as the same equation is used with a scale 

factor 1/N. 

 

3.4.2 Analysis of the FNT Kernel Matrix 

The FNT kernel matrix has a structure similar to that of the previous transform (NMNT) 

regarding points 1 - 4, 10 and 11. The main difference is that there are no elements with 

a zero value in the matrix, and this has a positive effect on diffusion power. 
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3.5 Results 

The calculations of the branch number for the NMNT and FNT according to equation 

3.18 for transforms of length (N) 4 and 8 as well as for the AES are shown in Tables 3.3 

and 3.4. As mentioned earlier, for maximum diffusion power the branch number is N+1. 

To illustrate this, consider the case for an input weight equal to 1. For AES in Table 3.3, 

the output weight is 4, in total giving 5, which represents N+1, and for an input weight 

of 2 the minimum output weight is 3, in total 5. The same results are obtained for any 

input weight, indicating that the transform has a branch number equal to 5, signifying 

that the transform has maximum diffusion power. For the NMNT and FNT it is clear 

from Table 3.3 that most cases provide maximum diffusion power. However for an 

input weight equal to 2, the output weight is a minimum of 2, in total giving 4, which 

means that for this case the transforms have a value lower than N+1, providing less than 

maximum diffusion. This is especially the case when modifying an even number of 

active elements and up to N/2 from the total elements N. As the branch number is 

computed relative to the worst cases, the NMNT and FNT for transforms of length 4 

have a branch number equal to 4. The details of all cases, including those that provide 

low diffusion, are explained in detail in the second method presented in the following 

section.  

 

 Table 3.3:  Minimum active bundle for transform length 4 

 Bundle weight AES NMNT FNT 

 1 5 5 5 

 2 5 4 4 

 3 5 6 5 

 4 5 5 5 

 

 

 

Table 3.4:  Minimum active bundle for transform length 8 

 Bundle weight NMNT FNT 

 1 7 9 

 2 4 6 

 3 7 7 

 4 6 6 

 5 8 9 

 6 7 8 

 7 9 9 

 8 9 9 
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3.5.1 Results of the NMNT Analysis 

The NMNT has been extensively analysed with different values of modulus (for P = 7, 

13, 17, and 19) and transform lengths (N = 4, 8, 16, 32…1024). Tables 3.5 and 3.6 give 

samples of the results for P = 7, N = 32 and P = 17, N = 256, respectively, while all 

other results are listed in Appendix A. Note that all calculations are based on bundle 

level, that is, P-bit. The results of the analysis are outlined below: 

 

1. Modifying single elements at odd locations offers    %100/  NCN diffusion, 

where C is the number of zero elements in that row in the kernel matrix 

corresponding to the location of the modified element. Minimum level of diffusion 

is 75% which achieved for rows that contain a maximum number of zero elements 

that is N/4, and 100% in rows that contain no zero elements (always 100% for N = 

4 or 8).  

2. Modifying single elements at even locations offers    %100/2  NN diffusion 

(100% for N = 4). Accordingly the percentage diffusion improves with larger 

transform lengths (N). For instance, 87.5% for N = 16, and 98.44% for N = 128, as 

shown in Figure 3.4. 

 

 

 

Transform Length (N) 

 

Figure 3.4:  Single elements modifications at even locations 
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Table 3.5: NMNT diffusion for P = 7, Mp = 127, N = 32 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+16 

i-even (x = 1) 

Odd 43.8-50% 25-50% 68.8-100% 

Even 12.5- 50% 25-50% 56.3-100% 

All 6.25% 37.5-50% 87.5-100% 

Paired elements 

i, i+16 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 62.5-100% 

Even 12.5-43.8% 25-50% 50-100% 

All 6.25% 31.3-50% 81.3-100% 

Paired elements 

i, i+16 

i-mix (x = 1) 

Odd 37.5-50% 34.4-50% 71.9-100% 

Even 18.8-50% 34.4-50% 81.3-100% 

All 3.125% 43.8-50% 90.6-100% 

Paired elements 

i, i+8 

i-even (x = 2) 

Odd 68.75% 56.3-75% 81.3-100% 

Even 62.5-68.8% 62.5-75% 68.8-100% 

All 56.25% 62.5-75% 87.5-100% 

Paired elements 

i, i+8 

i-odd (x = 2) 

Odd 50-75% 50-75% 62.5-100% 

Even 62.5% 62.5-75% 75-100% 

All 56.25% 62.5-75% 87.5-100% 

Paired elements 

i, i+8 

i-mix (x = 2) 

Odd 68.8-75% 62.5-75% 84.4-100% 

Even 56.3-71.9% 62.5-75% 84.4-100% 

All 53.125% 65.6-75% 90.6-100% 

Unpaired elem. 

Even 

Single 93.8% 93.75% 93.75% 

Odd 93.8% 68.8-93.8% 68.8-100% 

Even 56.3-100% 56.3-93.8% 68.8-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 68.8-93.8% 75-100% 

Even 50-93.8% 50-93.8% 50-100% 

Unpaired elem. 

Mix 

Odd 71.9-100% 68.8-96.9% 62.5-100% 

Even 56.3-100% 50-96.9% 68.8-100% 

i, i+16,  

random for others 

Odd 84.4-100% 87.5-100% 87.5-100% 

Even 84.4-100% 84.4-100% 87.5-100% 
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Table 3.6: NMNT diffusion for P = 17, Mp = 131071, N = 256 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+128 

i-even (x = 1) 

Odd 49.2-50% 48.4-50% 97.7-100% 

Even 21.1-50% 48.4-50% 97.7-100% 

All 0.781% 50% 100% 

Paired elements 

i, i+128 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 75-100% 

Even 18.8-50% 43.8-50% 87.5-100% 

All 0.781% 50% 100% 

Paired elements 

i, i+128 

i-mix (x = 1) 

Odd 37.5-50% 49.2-50% 99.2-100% 

Even 24.2-50% 49.2-50% 99.2-100% 

All 0.391% 50% 100% 

Paired elements 

i, i+64 

i-even (x = 2) 

Odd 73.4-75% 73.4-75% 97.7-100% 

Even 55.5-75% 73.4-75% 97.7-100% 

All 50.78% 75% 100% 

Paired elements 

i, i+64 

i-odd (x = 2) 

Odd 50-75% 50-75% 87.5-100% 

Even 54.7-75% 73.4-75% 93.8-100% 

All 50.78% 75% 100% 

Paired elements 

i, i+64 

i-mix (x = 2) 

Odd 68.8-75% 74.2-75% 99.2-100% 

Even 61.7-75% 74.2-75% 78.8-100% 

All 50.39% 74.6-75% 100% 

Unpaired elem. 

Even 

Single 99.2% 99.2% 99.2% 

Odd 98.4-100% 87.5-99.2% 97.7-100% 

Even 71.1-100% 74.2-99.2% 97.7-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 87.5-99.2% 95.3-100% 

Even 50-100% 50-99.2% 87.5-100% 

Unpaired elem. 

Mix 

Odd 87.5-100% 87.5-99.6% 98.4-100% 

Even 86.7-100% 98.4-99.6% 99.2-100% 

i, i+128,  

random for others 

Odd 99.2-100% 99.2-100% 99.2-100% 

Even 99.2-100% 99.2-100% 99.2-100% 
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3. Modifying odd numbers of paired elements with: 

a. the same values for each pair, at any location results in 37.5-50% diffusion for 

x = 1. In general diffusion percentages vary between    %1002/12 11   xx
 

and    %1002/12  xx
 for x > 1. The lower bounds approach the upper 

bounds when modifying pairs at even locations with larger transform length or 

values of P, as shown in Figure 3.5. 

b. different values, with a total sum equal to the modulus for each pair, at any 

location achieves 25-50% diffusion for x = 1. In general diffusion percentages 

vary between    %1002/12 11   xx
 and    %1002/12  xx

 for x > 1. The 

lower bounds approach the upper bounds when modifying pairs at even 

locations with larger values of P. 

c. different values, with a total sum not equal to the modulus for each pair, at any 

location gives levels of diffusion between 62-100%. The lower bounds 

approach the upper bounds when modifying pairs at even locations with larger 

transform lengths or values of P. 

4. Modifying even numbers of paired elements with: 

a. the same values for each pair, at any location produces diffusion levels 

between    %1002/25.72 22   xx
 and    %1002/12  xx

. Levels of 9.4-

50% for x = 1, increase to 54.7-75% for x = 2, so that larger values of x are 

better. 

 

 

Transform Length (N) 

Figure 3.5:  Lower bounds for modifying odd number of paired elements at even 

locations with the same values 
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b. different values, with a total sum equal to the modulus for each pair, at any 

location results in    %1002/12  xx
 diffusion at upper bounds, and the 

lower bound varies from half of the upper bound up to the upper bound’s 

values with larger values of P or transform lengths. 

c. different values, with a total sum not equal to the modulus for each pair, at any 

location gives diffusion levels between 50-100%. The lower bound approaches 

100% when modifying pairs at even locations with larger transform lengths or 

values of P. 

5. Modifying unpaired elements with the same values for: 

a. odd numbers of elements at even locations produces diffusion levels between 

((N - C)/N)×100% and 100%, where C equals 2 and can be up to log2N. 

b. even numbers of elements at even locations leads diffusion to vary between 

56.25-100%; the lower bound improves with larger transform lengths. 

c. odd numbers of elements at odd locations results in diffusion levels between 

75-100%, as illustrated in Figure 3.6. 

d. even numbers of elements at odd locations gives diffusion between 50-100%. 

6. Modifying unpaired elements with different values, with a total sum equal to the 

modulus for: 

a. odd numbers of elements at any location produces diffusion between 68% and 

((N - 2)/N)×100%, and the lower bound improves with larger values of P. 

 

 

 

Transform Length (N) 

Figure 3.6:  Lower bounds for modifying odd numbers of unpaired elements with the 

same values 
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b. even numbers of elements at even locations gives diffusion between 56% and 

((N - 2)/N)×100%, the lower bound improving with larger transform lengths. 

c. even numbers of elements at odd locations leads diffusion to vary between 

50% and ((N - 2)/N)×100%, as illustrated in Figure 3.7. 

7. Modifying unpaired elements with different values, with a total sum not equal to 

the modulus for: 

a. odd numbers of elements at any location results in diffusion between 75-

100%, the lower bound improves with larger values of P and transform length. 

b. even numbers of elements at any location gives diffusion between 50-100%; 

the lower bound improves with larger values of P and transform length. 

8. Modifying any number of paired elements with any values at any location and 

with all other elements modified randomly, produces in general levels of diffusion 

over 75%. On average these are between ((N - 2)/N)×100% and 100% for larger 

values of P and transform length, as shown in Figure 3.8. 

9. Modifying all input elements with the same value, which is equivalent to adding a 

DC value, gives a diffusion percentage %1001N . As a result, the ratio 

decreases as N increases. The best ratio is 25% for N = 4, and decreases as N 

increases (see Figure 3.9). 
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Figure 3.7:  Lower bounds for modifying even numbers of unpaired elements with 

different values their sum equal Mp 
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10. Modifying all even input elements with the same value, or all odd input elements 

with the same value or different values, with a total sum equal to the modulus for 

each pair, the diffusion percentage becomes %1002 1 N , which is double that 

in the previous case, as shown in Figure 3.9. 

 

 

 

Transform Length (N) 

Figure 3.8:  Lower bounds for modifying any number of paired elements with any value 

and location and the remaining elements modified randomly 
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Figure 3.9:  All elements and all even/odd elements modification with the same value 
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From the above results, most cases provide levels of diffusion over than or equal to 

50%, except three which can be avoided either by increasing the values of the transform 

parameters, P and/or N, or in the design by inserting additional layers to reduce the 

effect of transform symmetry. The following discusses these cases. 

1. Modifying a number of paired elements  xNii 2/,  up to N/2-1 pairs for x = 1 and 

leaving all other elements unchanged; at any location with the same value for each 

pair (Figure 3.5), or different values but with a total sum equal to the modulus for 

each pair (points 3.a, 3.b, 4.a and 4.b above). This would give in the best cases a 

diffusion level of 50%. The lower bounds approach the upper bounds at 50% 

when modifying pairs at even locations with a larger modulus and/or transform 

length. The probability of this case arising can be calculated by assuming that all 

nonzero changes of all possible values of the bundles belonging to the set Mp-1 are 

independent and equally likely to occur. The same assumption also applies in the 

following cases as well as for the FNT. The probability of a single pair arising is 

 1


p

N

p MMN , where N ≥ 8, for example 1.49×10
-14

 for P = 7 and N = 8, 

decreasing to 1.83×10
-131

 for P = 7 and N = 64. The probability increases by 

increasing the number of modified pairs, a maximum probability is attaining when 

modifying N/4 pairs. 

2. Modifying all input elements with the same value (as in point nine above), gives a 

diffusion level of %1001 N (Figure 3.9). The probability of this case occurring is

 1


p

N

p MM . For P = 7, Mp = 127 and N = 128 the probability is thus 6.51 × 

10
-268

.  

3. Modifying all even input elements with the same value; or all odd input elements 

with the same value (Figure 3.9); or different values, with a total sum equal to the 

modulus for each pair, with the same values for all modified pairs at odd locations 

(as in point ten above), gives a diffusion level of %1002 1  N . The probability 

of this case arising is       422/
2112

N

p

N

p

N

pp

N

p MMMMM 


.  

For P = 7, Mp = 127 and N = 8 the probability is 3.74×10
-15

, decreasing to 1.4 × 

10
-1185

 for P = 31 and N = 128.  

 

One of the main reasons for the diffusion percentage improving as the transform 

length increases is that the percentage of the number of zero elements relative to the 

total (Zp) is inversely proportional to N, as shown in equation 3.32. Figure 3.10, 
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graphically represents the percentage of the number of zero elements against the total 

for different transform lengths. 

 

%100
2log 2 






 


N

N
Zp  (3.32) 

 

Table 3.7 illustrates some of these results using the example of P = 7, Mp = 127 and 

N = 16. The first two rows represent the initial input to the NMNT and its corresponding 

transformed output elements. The third row shows the initial input but modifying only 

one element in the odd position (shadow); its output (row 4) is completely different 

from that of the initial output (row 2), giving 100% diffusion. The output elements are 

completely different because the modified input element is located at position 

  514 N , where there are no zero elements in the corresponding row in the )(nk  

matrix. While for row number five, a single element is modified also in the odd 

position, but the resulting output (row 6) has four elements unchanged; this is because 

the modified input element is located at position   318 N , which contains the 

maximum number of zero elements 44 N  in the corresponding row in the )(nk  

matrix, giving 75% diffusion. Finally, in row seven a single element is modified in the 

even location, and the resulting output (row 8) modifies all elements except two. This is 

because of the two zero elements in the even rows at the )(nk  matrix, giving a 

diffusion level of    %5.87%100/2  NN , which is better with larger values of N. 
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Figure 3.10:  Percentages of the number of zero elements relative to the total 
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3.5.2 Results of the FNT Analysis 

The FNT has been also extensively analysed with different values of modulus and 

transform length. Tables 3.8 and 3.9 give sample results for t = 3, N = 16 and t = 4, N = 

512, respectively, while all other results are presented in Appendix B. All calculations 

are based on bundle level. The results are listed below: 

1. Modifying single elements at any location gives 100% diffusion. 

2. Modifying odd numbers of paired elements at any location with: 

a. the same values for each pair produces nearly    %1002/12  xx
 diffusion. It 

is nearly 50% for x = 1, increasing to 75% for x = 2, i.e., improving for higher 

values of x. 

b. different values, with a total sum equal to the modulus (Ft) for each pair, 

results in 37.5-50% diffusion for x = 1, increasing to 62.5-75% for x = 2, and 

improving with higher x. The upper bounds are limited to    %1002/12  xx
, 

while the lower bounds vary from 75% up to 100% of the upper bound values 

with larger t. 

c. different values, with a total sum not equal to the modulus for each pair, leads 

diffusion to vary between 75-100%. The lower bounds improve with larger 

values of t and N. 

3. Modifying even numbers of pairs of elements at any location with: 

a. the same values for each pair, leads diffusion to vary between 

   %1002/72 22   xx
 and    %1002/12  xx

. For example, it is 12.5-50% 

for x = 1, increasing to 56.25-75% for x = 2, i.e. better with larger values of x. 

 

Table 3.7: NMNT modification comparisons for P = 7, Mp = 127, N = 16 

1 I/P 81 43 121 17 44 119 111 69 75 3 26 38 51 29 107 33 

2 O/P 78 72 98 122 50 69 122 66 11 61 9 30 103 48 15 88 

3 I/P 81 43 121 17 64 119 111 69 75 3 26 38 51 29 107 33 

4 O/P 98 92 78 102 70 89 102 46 31 81 116 10 123 68 122 68 

5 I/P 81 43 129 17 44 119 111 69 75 3 26 38 51 29 107 33 

6 O/P 86 71 106 122 42 70 114 66 19 60 17 30 95 49 7 88 

7 I/P 81 53 121 17 44 119 111 69 75 3 26 38 51 29 107 33 

8 O/P 88 3 65 53 60 99 122 36 1 3 42 99 93 18 15 118 
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Table 3.8: FNT diffusion for t = 3, Ft = 257, N = 16 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+8 

i-even (x = 1) 

Odd 50 37.5-50 87.5-100 

Even 25- 37.5 25-50 75-100 

All 12.5 25-50 87.5-100 

Paired elements 

i, i+8 

i-odd (x = 1) 

Odd 50 37.5-50 75-100 

Even 25-37.5 25-50 75-100 

All 12.5 25-50 87.5-100 

Paired elements 

i, i+8 

i-mix (x = 1) 

Odd 50 37.5-50 87.5-100 

Even 18.8-50 25-50 81.3-100 

All 6.25 43.8-50 81.3-100 

Paired elements 

i, i+4 

i-even (x = 2) 

Odd 75 75 75-100 

Even - - - 

All 62.5 62.5-75 75-100 

Paired elements 

i, i+4 

i-odd (x = 2) 

Odd 75 75 75-100 

Even - - - 

All 62.5 62.5-75 75-100 

Paired elements 

i, i+4 

i-mix (x = 2) 

Odd 75 68.8-75 87.5-100 

Even 68.75 68.8-75 87.5-100 

All 56.25 62.5-75 87.5-100 

Unpaired elem. 

Even 

Single 100 100 100 

Odd 100 75-87.5 75-100 

Even 62.5-87.5 75-87.5 75-100 

Unpaired elem. 

Odd 

Single 100 100 100 

Odd 100 75-87.5 75-100 

Even 62.5-87.5 75-87.5 75-100 

Unpaired elem. 

Mix 

Odd 100 75-93.8 75-100 

Even 62.5-100 75-93.8 81.3-100 

i, i+8,  

random for others 

Odd 87.5-100 81.3-100 87.5-100 

Even 81.3-100 81.3-100 87.5-100 
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Table 3.9: FNT diffusion for t = 4, Ft = 65537, N = 512 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+256 

i-even (x = 1) 

Odd 49.2-50 46.9-50 93.8-100 

Even 24.6-50 49.2-50 99.2-100 

All 0.391 50 100 

Paired elements 

i, i+256 

i-odd (x = 1) 

Odd 49.2-50 48.4-50 96.9-100 

Even 24.6-50 49.2-50 98.8-100 

All 0.391 50 99.6-100 

Paired elements 

i, i+256 

i-mix (x = 1) 

Odd 49.6-50 49.6-50 99.6-100 

Even 24.8-50 49.6-50 99.4-100 

All 0.195 50 99.8-100 

Paired elements 

i, i+128 

i-even (x = 2) 

Odd 74.2-75 73.4-75 98.4-100 

Even 60.9-75 73.4-75 98.4-100 

All 50.391 75 100 

Paired elements 

i, i+128 

i-odd (x = 2) 

Odd 74.2-75 71.9-75 96.9-100 

Even 60.9-75 73.4-75 98.4-100 

All 50.391 75 99.6-100 

Paired elements 

i, i+128 

i-mix (x = 2) 

Odd 74.6-75 74.6-75 99.6-100 

Even 62.3-75 74.6-75 99.6-100 

All 50.195 74.8-75 99.8-100 

Unpaired elem. 

Even 

Single 100 100 100 

Odd 98.4-100 93.8-99.6 98.4-100 

Even 75-100 75-99.6 99.2-100 

Unpaired elem. 

Odd 

Single 100 100 100 

Odd 98.4-100 93.8-99.6 98.4-100 

Even 75-100 75-99.6 99.2-100 

Unpaired elem. 

Mix 

Odd 98.4-100 96.9-99.8 98.4-100 

Even 98.2-100 99.2-99.8 99.6-100 

i, i+256,  

random for others 

Odd 99.4-100 99.6-100 99.4-100 

Even 99.6-100 99.4-100 99.6-100 
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b. different values, with a total sum equal to the modulus for each pair, gives 

levels of diffusion varying between    %1002/62 22   xx  and

   %1002/12  xx . For example, it is 25-50% for x = 1, increasing to 62.5-

75% for x = 2. The result is better with larger values of x and the lower bounds 

increase with larger t. 

c. different values, with a total sum not equal to Ft for each pair, leads to 

maximising diffusion levels to between 75-100%. The lower bounds improve 

with larger values of t and transform length. 

4. Modifying odd numbers of unpaired elements at any location with: 

a. the same values give diffusion levels of nearly 100%. 

b. different values, with a total sum equal to the modulus, leads to diffusion 

between 75% and    %100/2  NN . The lower bounds improve with larger 

values of t. 

c. different values, with a total sum not equal to the modulus, results in levels of 

diffusion between 75-100%. The lower bounds increase with larger values of t 

and transform length.  

5. Modifying even numbers of unpaired elements at any location with: 

a. the same values give levels of diffusion between 62.5-100%, while the lower 

bounds increase up to 75% for larger transform lengths. 

b. different values, with a total sum equal to the modulus, results in diffusion 

between 75% and    %100/2  NN .  

c. different values, with a total sum not equal to the modulus, increases diffusion 

to between 75-100%. The lower bounds again improve with larger values of t. 

6. Modifying any number of paired elements with any value at any location and all 

other elements modified randomly produces, in general, diffusion levels over 75%, 

on average lying between    %100/2  NN  and 100% for larger values of t and 

transform length, as shown in Figure 3.11. 

7. Modifying all input elements with the same value, which is equivalent to adding a 

DC value, gives a diffusion percentage of %1001N  (see Figure 3.9). 

8. Modifying all even or all odd input elements with the same value, the diffusion 

level achieved is %1002 1 N , which is double the percentage in the preceding 

case (see Figure 3.9). 
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Transform Length (N) 

Figure 3.11:  Lower bounds for modifying any number of paired elements with any 

value and location and the remaining elements modified randomly (FNT) 

 

From the above results, most cases have good levels of diffusion at a minimum 

50%. The probability of those levels below 50% occurring can be reduced by increasing 

either values of t and/or those of transform length. The cases that provide low levels of 

diffusion are shown below: 

1. When modifying even or odd numbers of paired elements  xNii 2/ ,   for x = 1 

with the same values or different values, with their sum equal to the modulus for 

each pair, and leaving all other elements unchanged (points 2.b, 3.a and 3.b above). 

The probability of this case arising under the same assumptions as in the NMNT 

can be determined by considering that all nonzero changes of all possible values of 

the bundles belonging to the set 1tF  are independent and equally likely. The 

probability of a single pair arising is thus  1


t

N

t FFN . Where N ≥ 8, for 

example the probability is 1.08×10
-16

 for t = 3 and N = 8, decreasing to 9.52×10
-151

 

for t = 3 and N = 64. The probability increases by increasing the number of 

modified pairs, a maximum probability is reached when modifying N/4 pairs. 

2. When modifying all input elements with the same value (point 7 above), the 

diffusion level achieved is %1001 N . The probability of this case occurring is

 1


t

N

t FF . For example, for t = 3 and N = 128 the probability is 8.65×10
-307

.  
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3. When modifying all even or all odd input elements with the same value (point 8 

above), the level of diffusion becomes %1002 1  N . The probability of this case 

arising is  12 


t

N

t FF . For t = 3 and N = 8 it is 2.69×10
-17

, decreasing to 1.58× 

10
-614

 for t = 4 and N = 128. 

 

 Table 3.10 explains some of these results using the example of t = 3, Ft = 257 and N 

= 16. The first two rows stand for the initial input to the FNT and its corresponding 

output. The third row represents the initial input but modifying only one element in the 

even location (shadowed); its output (row 4) is completely different from that of the 

initial output (row 2), giving 100% diffusion. The same level of diffusion is gained 

when modifying a single element in any location whether even or odd. In the fifth row 

the initial input is modified with an odd number of unpaired elements at mix locations 

(shadowed). Its output (row 6) is completely different from that of the initial output, 

giving 100% diffusion. Finally, rows 7-10 explain the case of modifying singles and 

couples of pairs  2/ , Nii   of elements. The first example modifies the paired 

elements with different values whose sum is equal to Ft, while the second modifies each 

pair of elements with the same value different from that of the other. The resulting 

levels of diffusion are 50%.  

 

3.5.3 Summary of results for NMNT and FNT  

The first class of results includes cases that provide good diffusion power of a minimum 

of 50%, and the second class lists cases that exhibit low diffusion power up to 50%. As 

mentioned above, all calculations are based on a bundle level:  

Table 3.10: FNT modification comparisons for t = 3, Ft = 257, N = 16 

1 I/P 77 16 65 112 84 37 19 53 2 107 41 72 35 22 96 87 

2 O/P 154 3 61 44 18 184 7 83 170 18 85 223 193 147 201 155 

3 I/P 77 16 65 108 84 37 19 53 2 107 41 72 35 22 96 87 

4 O/P 150 228 62 52 82 182 248 212 174 50 84 215 129 149 217 26 

5 I/P 78 116 45 114 84 37 19 53 4 107 41 74 35 22 96 87 

6 O/P 235 124 142 79 97 124 46 29 51 253 137 200 156 112 33 201 

7 I/P 77 216 65 112 84 37 19 53 2 164 41 72 35 22 96 87 

8 O/P 154 32 61 160 18 134 7 140 170 246 85 107 193 197 201 98 

9 I/P 79 16 65 117 84 37 19 53 4 107 41 77 35 22 96 87 

10 O/P 168 3 191 44 119 184 51 83 164 18 220 223 100 147 165 155 
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1. Cases that provide good diffusion power 

a. Modifying single elements 

NMNT: Modifying single elements at odd locations, gives levels of diffusion 

between 75-100%, depending on the number of elements with zero value at 

that row in the kernel matrix corresponding to the position of the modifying 

element. Modifying single elements at even locations produces 

   %100/2  NN  diffusion (100% for N = 4), and the diffusion level 

increasing with larger transform length, for instance, 87.5% for N = 16, and 

98.44% for N = 128. 

FNT: Modifying single elements at any locations achieves 100% diffusion. 

b. Modifying paired elements 

Modifying any numbers of paired elements  xNii 2/,   at any location with 

any value and x > 1, results in a minimum diffusion level of 50%.  

NMNT: The lower bounds increase with larger values of x and modulus, as 

well as improving for larger transform lengths for elements modified at even 

locations.  

FNT: The lower bound increases with larger values of x, modulus and 

transform length. 

c. Modifying unpaired elements 

NMNT: Modifying even numbers of unpaired elements at any location with 

any value gives diffusion levels between 50-100%, increasing to 68-100% 

when modifying odd numbers of unpaired elements.  

FNT: Modifying even numbers of unpaired elements at any location with any 

value leads diffusion to vary between 62-100%, increasing to 75-100% when 

modifying odd numbers of unpaired elements.  

For both cases the lower bounds increase in most cases with larger values of 

modulus and/or transform length.  

d. Modifying all elements 

NMNT and FNT: Modifying any number of paired elements with any value 

at any location and all other elements modified randomly offers levels of 

diffusion between 50-100%. In general levels exceeding 75% increase with 

larger values of modulus and transform length.  

2. Cases that produce low diffusion power 

a. Modifying paired elements  
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Modifying any number of paired elements  xNii 2/,   for just x = 1 and 

leaving all other elements unchanged at any location with the same values for 

each pair, or different values with a total sum equal to the modulus for each 

pair, gives diffusion levels in the best cases of 50%. The probability of a single 

pair arising is  1  ModulusModulusN N
, it is increased when the number 

of modified pairs is increasing, maximum is achieved when modifying N/4 

pairs. 

NMNT: The lower bounds approach the upper bounds at 50% when modifying 

pairs at even locations with larger values of modulus and/or transform length.  

FNT: The lower bounds increase with larger values of modulus and/or 

transform length.  

For both transforms, the diffusion power improves when x increase to greater 

than 1. 

b. Modifying all input elements 

NMNT and FNT: modifying all input elements with the same value gives a 

diffusion level of %1001N . The probability of this case occurring is 

 1 ModulusModulus N
. 

c.   Modifying all even input elements or all odd input elements 

NMNT: modifying all even input elements with the same value, or all odd 

input elements with the same value, or different values with their sum equal to 

the modulus, with the same values for all modified pairs, the diffusion 

percentage achieved is %1002 1 N . The probability of this case appearing is

      422/
2112

N

p

N

p

N

pP

N

p MMMMM 


.  

FNT: modifying these elements with the same value, the level of diffusion 

resulting is %1002 1 N . The probability of this case is  12 


t

N

t FF .  

The probabilities of occurrence of the last two cases (points b and c) can be 

reduced by increasing the values of modulus and/or the transform length. 

 

 

3.6 Discussion 

The diffusion power of both the NMNT and FNT have been considered in this chapter 

using two different techniques in order to evaluate their suitability for secure 

applications.  
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The branch number of the transforms which is discussed on the first technique 

indicates that the transforms can provide maximum diffusion power in most cases, with 

the exception of mostly for even input weight and up to the half of the transform length. 

However, the analysis from the second technique explains deeply this case which 

obviously arises with very low probability when modifying pairs of elements 

 xNii 2/,   (just for x = 1) with only the same value or different values with their sum 

equal to the modulus. 

The results achieved with the second technique are classified into two classes. In 

the cases providing good diffusion power over 50%, the lower bounds are further 

increased with increasing values of modulus and/or transform length. However, cases 

where the diffusion power provides is less than 50% can be avoided by involving other 

layers in the design, or alternatively the probability of those cases arising can be 

reduced by increasing the values of the modulus and/or transform length. In general, 

increasing the modulus and/or transform length is beneficial as it either improves the 

diffusion power or reduces the probability of such cases arising. It is important to ensure 

that diffusion power improves with larger block sizes or key lengths, which may be 

achieved by increasing the modulus and/or the transform length. This will facilitate the 

design by providing the possibility of changing the block size or key length so as to 

achieve the required level of security without the need to alter the algorithm itself. At 

the same time the number of rounds required can be fixed for different sizes, which 

would support the compatibility of the algorithm on different platforms.  

 

 

3.7 Conclusions 

The diffusion power of the NMNT and FNT is evaluated in this chapter. Although the 

results demonstrate that in certain cases the transforms provide lower diffusion than the 

maximum possible, due to matrix symmetry which could be avoided in the design, it 

can be concluded that the transforms have many features making them suitable in the 

design of a secure cryptosystem. Advantages include: parameterisation, providing 

flexibility to change the block size and key length to meet the required level of security; 

and sensitivity, the diffusion power has been proven in general it is good [97-99]; 

having a long transform length (of the power of two); these operations are performed 

without the errors that normally arise through using floating-point operations; finally, 

they are suitable for real time implementation as fast algorithms can be adapted to them 

to speed up processing.  
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Chapter 4 

 

Substitution Box Analysis 

 

 

 

The previous chapter has explained the details of the transforms responsible for 

providing diffusion in the design. This chapter turns to the function of confusion, which 

is achieved in the design through the use of the S-box. The methods of S-box 

construction are briefly described, along with the mechanism used to analyse its non-

linear properties.  The chapter is organised as follows: section 4.2 presents different 

ways of building an S-box. The methods used to analyse the non-linear properties of an 

S-box are explained in section 4.3. The non-linear properties of S-boxes employed in 

the previous and current standard algorithms are then analysed in sections 4.4 and 4.5, 

respectively. In the subsequent two sections, new S-boxes are generated based on the 

AES S-box. Finally, the conclusions of the chapter are outlined in section 4.8. 

 

 

4.1 Introduction 

The security of most block cipher cryptosystems relies heavily on the strength of the S-

boxes involved. Therefore an S-box with strong non-linear properties is essential to 

ensure high resilience against attacks, especially those deploying differential and linear 

cryptanalysis and their variants. The S-box is usually preceded with n×m dimensions, 

where n is the number of input bits to the S-box and m is the number of output bits, and 
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n and m may be equal or unequal. For instance, the DES algorithm [2] has eight 6×4 S-

boxes, the AES [16] uses one 8×8 S-box and Blowfish [17] has four 8×32 S-boxes. A 

larger S-box is more resistant to attacks, but at the same time a larger look-up table is 

needed and the size of the look-up table increases exponentially with larger values of n. 

Hence, for practical purposes in implementation, the value of n is limited to between 8 

and 10 [12]. 

 

 

4.2 Methods of S-box Construction 

S-boxes can be constructed using several different techniques which may be 

summarised as follows: 

 

1. Random / Random and key-dependent 

The elements of such an S-box are chosen completely at random. Smaller S-boxes 

can be insecure and vulnerable to attacks. One of the methods used to make the 

appearance of the S-box random is the key-dependent scheme, which alters the 

contents using a key [12]. The Blowfish [17] is one of the prominent algorithms 

using this approach to generate S-boxes. 

2. Random followed by testing 

In this scheme, the S-box entries are also chosen randomly. However, the elements 

are tested and only accepted if they pass certain criteria. This scheme has been used 

in many algorithms, such as CAST [19, 20], DES [2], Mars [23], Serpent [27], and 

Twofish [29]. 

3. Algebraic constructions 

S-boxes generated based on algebraic constructions offer more resistance to 

differential and linear cryptanalysis, because good non-linear properties can be 

achieved. Various techniques have been proposed for algebraic construction; for 

example, a combination of an inverse function in GF(2
n
) and an affine 

transformation, as with the AES [3], Camellia [18], Shark [37] and Square [38] 

algorithms.  

Although, S-boxes carefully generated using algebraic construction are secure 

against differential and linear cryptanalysis they are, to some extent, subject to 

algebraic attacks if weak functions are used. 
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To build a reliable secure cryptosystem, it is important to be certain that all of the 

S-boxes involved in the design have good non-linear properties, meaning that it should 

not be possible to derive an S-box output as a linear function of the input. In addition, 

the designed S-box should actively responses to the SAC. 

 

 

4.3 Analysis of Non-linear Properties of an S-box 

The S-box plays a crucial role in the overall security of an algorithm, and hence it is 

important to evaluate the strength of all of the S-boxes involved in the design by 

analysing and enumerating their non-linear properties. In order to achieve this, it is 

necessary to calculate the DPPmax and the IOCmax as well as the robustness of the S-box. 

These calculations are needed to verify the resistance of the algorithm to differential and 

linear cryptanalysis and other related attacks, which are explained in detail in chapter 6. 

To illustrate the procedures used to calculate the required values, it is useful to start by 

considering a small S-box for the purposes of simplicity. For instance, the 3×3 S-box 

shown in Table 4.1 maps 3 input bits to 3 output bits, the procedures used with it are 

explained in the following sections [100]. 

 

 

Table 4.1: 3×3 S-box representation 

I/P O/P 

000 0 011 3 

001 1 010 2 

010 2 111 7 

011 3 101 5 

100 4 001 1 

101 5 110 6 

110 6 000 0 

111 7 100 4 

 

 

4.3.1 Maximum Difference Propagation Probability 

The calculation of the DPPmax is achieved by first building the XOR distribution table. 

This is not a straightforward process, and passes through a number of stages as follows: 
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1. Calculate the input XOR difference, by XORing all possible input pairs (2
3
×2

3
), 

as shown in Tables 4.2 and 4.3 for binary and decimal representation, 

respectively. 

2. Separate input pairs into groups according to their input XOR values (columns 1 

and 2, Table 4.4). 

3. Map all input pairs through the S-box to derive their corresponding output pairs 

(column 3). 

4. Calculate the output XOR difference, by XORing all output pairs (column 4). 

 

 

 

Table 4.2: Input XOR difference (binary) 

I/P XOR 

Difference 
000 001 010 011 100 101 110 111 

000 000 001 010 011 100 101 110 111 

001 001 000 011 010 101 100 111 110 

010 010 011 000 001 110 111 100 101 

011 011 010 001 000 111 110 101 100 

100 100 101 110 111 000 001 010 011 

101 101 100 111 110 001 000 011 010 

110 110 111 100 101 010 011 000 001 

111 111 110 101 100 011 010 001 000 

Table 4.3: Input XOR difference (decimal) 

I/P XOR 

Difference           

0 

         

1 

         

2 

        

3 

         

4 

        

5 

        

6 

       

7 

0 0 1 2 3 4 5 6 7 

1 1 0 3 2 5 4 7 6 

2 2 3 0 1 6 7 4 5 

3 3 2 1 0 7 6 5 4 

4 4 5 6 7 0 1 2 3 

5 5 4 7 6 1 0 3 2 

6 6 7 4 5 2 3 0 1 

7 7 6 5 4 3 2 1 0 



4.3           Analysis of Non-linear Properties of an S-box 

77 

 

Table 4.4: Output XOR difference 

I/P XOR I/P Pairs O/P Pairs O/P XOR 

0 0,0 3,3 0 

 1,1 2,2 0 

 2,2 7,7 0 

 3,3 5,5 0 

 4,4 1,1 0 

 5,5 6,6 0 

 6,6 0,0 0 

 7,7 4,4 0 

1 (0,1) , (1,0) (3,2) , (2,3) 1 

 (2,3) , (3,2) (7,5) , (5,7) 2 

 (4,5) , (5,4) (1,6) , (6,1) 7 

 (6,7) , (7,6) (0,4) , (4,0) 4 

2 (0,2) , (2,0) (3,7) , (7,3) 4 

 (1,3) , (3,1) (2,5) , (5,2) 7 

 (4,6) , (6,4) (1,0) , (0,1) 1 

 (5,7) , (7,5) (6,4) , (4,6) 2 

3 (0,3) , (3,0) (3,5) , (5,3) 6 

 (1,2) , (2,1) (2,7) , (7,2) 5 

 (4,7) , (7,4) (1,4) , (4,1) 5 

 (5,6) , (6,5) (6,0) , (0,6) 6 

4 (0,4) , (4,0) (3,1) , (1,3) 2 

 (1,5) , (5,1) (2,6) , (6,2) 4 

 (2,6) , (6,2) (7,0) , (0,7) 7 

 (3,7) , (7,3) (5,4) , (4,5) 1 

5 (0,5) , (5,0) (3,6) , (6,3) 5 

 (1,4) , (4,1) (2,1) , (1,2) 3 

 (2,7) , (7,2) (7,4) , (4,7) 3 

 (3,6) , (6,3) (5,0) , (0,5) 5 

6 (0,6) , (6,0) (3,0) , (0,3) 3 

 (1,7) , (7,1) (2,4) , (4,2) 6 

 (2,4) , (4,2) (7,1) , (1,7) 6 

 (3,5) , (5,3) (5,6) , (6,5) 3 

7 (0,7) , (7,0) (3,4) , (4,3) 7 

 (1,6) , (6,1) (2,0) , (0,2) 2 

 (2,5) , (5,2) (7,6) , (6,7) 1 

 (3,4) , (4,3) (5,1) , (1,5) 4 
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5. Count the number of pairs that give different output XORs for corresponding 

input XORs. The complete table is shown in Table 4.5, which represents the 

input-output XOR distribution table or, in short the XOR distribution table, 

which is also referred to as the difference distribution table.  

6. Compute the DPPmax by dividing the maximum value in the XOR distribution 

table generated (ignoring the value in the top left corner) by the total elements 

(2
n
), where n is the element length in bits. Hence, the DPPmax for this S-box is 

4/8 = 2
-1

. 

 

Table 4.5: XOR distribution table 

I/P-O/P 

XOR 

Difference 

0 

          

1 

         

2 

         

3 

        

4 

         

5 

        

6 

        

7 

       

0 8 0 0 0 0 0 0 0 

1 0 2 2 0 2 0 0 2 

2 0 2 2 0 2 0 0 2 

3 0 0 0 0 0 4 4 0 

4 0 2 2 0 2 0 0 2 

5 0 0 0 4 0 4 0 0 

6 0 0 0 4 0 0 4 0 

7 0 2 2 0 2 0 0 2 

 

From Table 4.5 the probability of the occurrence of any particular input-output 

difference (XOR) can be determined. For example, an input difference of 2 may result 

in an output difference 4 with a probability of 2/8. While, input difference 2 may NOT 

cause output difference 3 as its probability is 0. For an ideally randomising S-box, the 

probability of any particular output difference occurring with any particular input 

difference is 1/2
n
 [100], which is mathematically not possible. For differential 

cryptanalysis to be possible, the cryptanalyst must search for a particular input 

difference that gives a particular output difference with a high probability. 

All XOR distribution tables share the following properties. Firstly, the sum of 

elements in every row is equal to the total input elements (for S-boxes that have the 

same number of input and output bits, the sum in every column is equal to the total as 

well). Secondly, the values of all elements are even, providing that a pair of (x, x´) 

element values has the same difference as a pair of (x´, x) element values. Finally, for 

an input difference of zero, the resulting output difference can only be zero. 
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It is worth mentioning that if the elements of an S-box or just their order are 

changed, the DPPmax and overall XOR distribution table will be changed accordingly.  

For example, if the first two output elements of the S-box in Table 4.1 are swapped, i.e. 

2 become the output for an input of 0 and 3 the output for an input of 1, the XOR 

distribution table for this modified S-box is shown in Table 4.6. The maximum value in 

the table is 2, giving a DPPmax of 2/8 = 2
-2

, which is less than the maximum value for 

the original S-box and therefore has improved the S-box. Thus caution should be 

exercised when changing, for example, the appearance of the elements of an S-box or 

their order since this could degrade its non-linear properties. 

 

Table 4.6: XOR distribution table (modified S-box) 

I/P-O/P XOR 

Difference 
0 1 2 3 4 5 6 7 

0 8 0 0 0 0 0 0 0 

1 0 2 2 0 2 0 0 2 

2 0 2 2 0 0 2 2 0 

3 0 0 0 0 2 2 2 2 

4 0 2 0 2 0 2 0 2 

5 0 0 2 2 2 2 0 0 

6 0 0 2 2 0 0 2 2 

7 0 2 0 2 2 0 2 0 

 

 

4.3.2 Maximum Input-Output Correlation 

To examine the linear vulnerability of an S-box, the probability bias or input-output 

correlation for each linear approximation represented in equation 4.1 needs to be 

computed, where Xi represents the i
th

 bit of the input X to the S-box and Yj is the j
th

 bit of 

the output Y from the S-box, respectively, and   denotes bitwise XOR operation. 

 

                              (4.1) 

 

All possible combinations of input and output bits in the S-box shown in Table 4.1 

are represented in Tables 4.7 and 4.8, respectively. The probability bias is calculated by 

counting the number of matches between input and output combinations over all 2
n
 

minus 0.5 for each linear expression, n is the element length in bits. For instance, 
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considering all values for the linear expression        , which is equivalent to 

     , the number of matches between the input and output combinations can be 

counted. There are precisely 2 cases out of 8 that hold the above expression true, and so 

the probability bias for this expression is  
 

 
 

 

 
  

 

 
 . Similarly, for the linear 

expression         , the probability bias is 
 

 
 

 

 
 

 

 
 , whereas for the linear 

expression          the probability bias is  
 

 
 

 

 
  .  

 

 

 

Table 4.7: Possible S-box input combinations 

Initial I/P All possible I/P combinations 

x2 x1 x0 x0 x1       x2                      

0 0 0 0 0 0 0 0 0  0 

0 0 1 1 0 1 0 1 0 1 

0 1 0 0 1 1 0 0 1 1 

0 1 1 1 1 0 0 1 1 0 

1 0 0 0 0 0 1 1 1 1 

1 0 1 1 0 1 1 0 1 0 

1 1 0 0 1 1 1 1 0 0 

1 1 1 1 1 0 1 0 0 1 

Table 4.8: Possible S-box output combinations 

Initial O/P All possible O/P combinations 

y2 y1 y0 y0 y1       y2                      

0 1 1 1 1 0 0 1 1 0 

0 1 0 0 1 1 0 0 1 1 

1 1 1 1 1 0 1 0 0 1 

1 0 1 1 0 1 1 0 1 0 

0 0 1 1 0 1 0 1 0 1 

1 1 0 0 1 1 1 1 0 0 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 1 1 1 1 
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A complete input/output linear approximation is shown in Table 4.9, where the 

probability bias of any particular linear combination of input and output bits represents 

the value in the table over 2
n
 (total number of elements 2

3
 = 8). Each value represents 

the number of matches in the linear expression between the input and output 

combinations minus 2
n-1

 (where minus 2
n-1

 = 4 followed by dividing over all is 

equivalent to subtraction of 0.5).  The maximum value in Table 4.9 (by ignoring the 

value in the top left corner) is 4, indicating that the maximum bias probability is 4/8=2
-1

. 

For linear cryptanalysis to be possible, the cryptanalyst searches for a linear expression 

that holds a linear probability further away from 0.5, which is the probability for 

random values. On the other hand, the correlation between input and output 

combinations is equal to their inner products divided by their norms [3]. Where the 

norm is equal to the square root of the domain size, i.e. 2
n/2

. This can be computed by 

summing the products of all inner values over the total for each particular input-output 

combination, replacing each 0 with 1 and each 1 with -1. The input-output correlation is 

exactly twice the bias. 

It should be noted that, in the linear approximation table, the sum of elements in 

every column is equal to the absolute value of the half of the total input elements, i.e., 

2
n-1

 (for S-boxes that have the same number of input and output bits, the sum in every 

row is equal to the total as well) and the top left value is always 2
n-1

 providing a 

probability bias of 0.5, which represents the case of a linear combination with no input-

output bits. 

 

 
Table 4.9: Linear approximation table 

 
Output Sum 

0 1 2 3 4 5 6 7 

In
p
u
t 

S
u
m

 

0 4 0 0 0 0 0 0 0 

1 0 -2 0 2 2 0 2 0 

2 0 0 -2 -2 2 -2 0 0 

3 0 -2 2 0 0 -2 -2 0 

4 0 -2 -2 0 0 2 -2 0 

5 0 0 -2 2 -2 -2 0 0 

6 0 2 0 2 2 0 -2 0 

7 0 0 0 0 0 0 0 4 
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As in the previous case, changing the values of elements in an S-box, or just their 

order, will generally change the maximum bias probability, IOCmax and overall linear 

approximation table.  For example, if the first two output elements of the S-box in Table 

4.1 are swapped, so that 2 become the output for input 0 and 3 is the output for input 1, 

the linear approximation table for this modified S-box is shown in Table 4.10. The 

maximum value is |2|, giving a maximum bias probability of 2/8 = 2
-2

, which is less than 

the maximum value for the original S-box. Thus, again, caution should be exercised 

when changing the order or values of elements in an S-box as this could degrade its 

non-linear properties.  

 

Table 4.10: Linear approximation table for modified S-box 

 
Output Sum 

0 1 2 3 4 5 6 7 

In
p
u
t 

S
u
m

 

0 4 0 0 0 0 0 0 0 

1 0 0 0 0 2 2 2 -2 

2 0 0 -2 -2 2 -2 0 0 

3 0 0 2 -2 0 0 -2 -2 

4 0 -2 -2 0 0 2 -2 0 

5 0 2 -2 0 -2 0 0 -2 

6 0 2 0 2 2 0 -2 0 

7 0 2 0 -2 0 2 0 2 

 

4.3.3 Robustness of the S-box 

This is a measure of the resistance of an S-box to differential cryptanalysis. The 

robustness, Rs, is defined in equation 4.2 [101], and is based on the two variables nNZ 

and Dmax which are derived from the XOR distribution table: nNZ is the number of non-

zero elements in the first column (excluding the first element), and Dmax is the 

maximum value in the table. The value of nNZ is very important, as it represents the 

number of cases that give no output change for an input change. An S-box with a higher 

value of Rs is more resistant to differential cryptanalysis [101]. 

 

      
   

  
    

    

  
  (4.2) 

 

where n is the number input bits to the S-box 
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4.4 Analysis of the DES S-boxes 

The DES algorithm consists of a set of eight different 6×4 S-boxes. Mapping 6 input 

bits and produces 4 output bits, each S-box is a two dimensional array of 64 elements 

with 4-bit each, distributed in 4 rows and 16 columns. The mapping is achieved by 

combining the first and last input bits to identify the row number and then the inner 

input bits are used to select the column number. These S-boxes are shown in Table 4.11. 

For example, a decimal input of 48, which is equivalent to 110000 in binary form, is 

mapped to the decimal 15 through the first S-box (S1), where the row number is 10 in 

base 2 from the first and last input bits and the column number is 1000 in base 2 from 

the middle input bits.  

 

4.4.1 Analysis of the Non-linear Properties of DES S-boxes 

The non-linear properties of all DES S-boxes can be examined by following the same 

procedures described in section 4.3. Tables 4.12 and 4.13 are samples for the XOR 

distribution and linear approximation tables for the first S-box (S1), respectively. 

The maximum values found in the XOR distribution and linear approximation 

tables for all DES S-boxes are summarised in Table 4.14. The DPPmax is the same for all 

of the S-boxes, at 16/64 = 2
-2

, and the maximum bias probability of -20/64 is found in 

the fifth S-box (S5).  

 

4.4.2 Robustness of DES S-boxes 

The values of robustness for all of the DES S-boxes are calculated by applying equation 

4.2 and are shown in Table 4.15.  The results indicate that all of the S-boxes are 

approximately have the same robustness, and that S4 can be more resistance to 

differential cryptanalysis.  
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Table 4.11: DES S-boxes 

                   

   Column Number 

 R  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

                   
S

-b
o
x
 1

 0  14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 

1  0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 

2  4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 

3  15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 

                   

S
-b

o
x
 2

 0  15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 

1  3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 

2  0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15 

3  13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9 

                   

S
-b

o
x
 3

 0  10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 

1  13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 

2  13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 

3  1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 

                   

S
-b

o
x
 4

 0  7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 

1  13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 

2  10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 

3  3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 

                   

S
-b

o
x
 5

 0  2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 

1  14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 

2  4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 

3  11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3 

                   

S
-b

o
x
 6

 0  12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 

1  10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 

2  9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 

3  4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13 

                   

S
-b

o
x
 7

 0  4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 

1  13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 

2  1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 

3  6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 

                   

S
-b

o
x
 8

 0  13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 

1  1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 

2  7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 

3  2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11 
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  Table 4.12: DES - XOR distribution table (S1) 

  Output Difference 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

In
p
u
t 

D
if

fe
re

n
ce

 
0 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4 

2 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2 

3 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0 

4 0 0 0 6 0 10 10 6 0 4 6 4 2 8 6 2 

5 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6 

6 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12 

7 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4 

8 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4 

9 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12 

10 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10 

11 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12 

12 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2 

13 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2 

14 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8 

15 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8 

16 0 0 0 0 0 0 2 14 0 6 6 12 4 6 8 6 

17 6 8 2 4 6 4 8 6 4 0 6 6 0 4 0 0 

18 0 8 4 2 6 6 4 6 6 4 2 6 6 0 4 0 

19 2 4 4 6 2 0 4 6 2 0 6 8 4 6 4 6 

20 0 8 8 0 10 0 4 2 8 2 2 4 4 8 4 0 

21 0 4 6 4 2 2 4 10 6 2 0 10 0 4 6 4 

22 0 8 10 8 0 2 2 6 10 2 0 2 0 6 2 6 

23 4 4 6 0 10 6 0 2 4 4 4 6 6 6 2 0 

24 0 6 6 0 8 4 2 2 2 4 6 8 6 6 2 2 

25 2 6 2 4 0 8 4 6 10 4 0 4 2 8 4 0 

26 0 6 4 0 4 6 6 6 6 2 2 0 4 4 6 8 

27 4 4 2 4 10 6 6 4 6 2 2 4 2 2 4 2 

28 0 10 10 6 6 0 0 12 6 4 0 0 2 4 4 0 

29 4 2 4 0 8 0 0 2 10 0 2 6 6 6 14 0 

30 0 2 6 0 14 2 0 0 6 4 10 8 2 2 6 2 

31 2 4 10 6 2 2 2 8 6 8 0 0 0 4 6 4 

32 0 0 0 10 0 12 8 2 0 6 4 4 4 2 0 12 

33 0 4 2 4 4 8 10 0 4 4 10 0 4 0 2 8 

34 10 4 6 2 2 8 2 2 2 2 6 0 4 0 4 10 

35 0 4 4 8 0 2 6 0 6 6 2 10 2 4 0 10 

36 12 0 0 2 2 2 2 0 14 14 2 0 2 6 2 4 

37 6 4 4 12 4 4 4 10 2 2 2 0 4 2 2 2 

38 0 0 4 10 10 10 2 4 0 4 6 4 4 4 2 0 

39 10 4 2 0 2 4 2 0 4 8 0 4 8 8 4 4 

40 12 2 2 8 2 6 12 0 0 2 6 0 4 0 6 2 

41 4 2 2 10 0 2 4 0 0 14 10 2 4 6 0 4 

42 4 2 4 6 0 2 8 2 2 14 2 6 2 6 2 2 

43 12 2 2 2 4 6 6 2 0 2 6 2 6 0 8 4 
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44 4 2 2 4 0 2 10 4 2 2 4 8 8 4 2 6 

45 6 2 6 2 8 4 4 4 2 4 6 0 8 2 0 6 

46 6 6 2 2 0 2 4 6 4 0 6 2 12 2 6 4 

47 2 2 2 2 2 6 8 8 2 4 4 6 8 2 4 2 

48 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4 

49 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8 

50 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0 

51 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4 

52 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6 

53 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0 

54 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0 

55 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4 

56 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10 

57 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0 

58 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0 

59 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2 

60 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0 

61 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4 

62 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4 

63 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2 

 

 

 

  Table 4.13: DES - Linear approximation table (S1) 

  Output Sum 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

In
p
u
t 

S
u
m

 

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 -2 -2 -4 -2 0 -4 6 2 0 0 6 4 -2 -6 4 

3 0 -2 -2 -4 -2 0 -4 6 2 8 0 -2 4 6 -6 -4 

4 0 2 -2 -4 -2 0 -4 -6 -2 4 8 2 0 -2 -6 12 

5 0 -2 -2 0 -2 -4 -4 -2 2 -4 -4 2 4 -10 -2 -4 

6 0 0 0 4 0 4 0 0 0 -4 4 4 0 0 -4 -8 

7 0 -4 0 8 0 0 0 4 4 -4 -8 -4 4 0 0 0 

8 0 4 -2 6 -6 -6 0 -4 -4 -4 2 -2 2 -2 0 0 

9 0 0 6 -6 -2 -6 4 -4 0 -4 -2 6 2 -6 0 -4 

10 0 -2 0 2 0 6 8 2 -2 0 -2 4 -2 0 -2 4 

11 0 2 -8 -2 -4 -10 4 2 -6 8 2 4 -2 -4 -2 0 

12 0 -2 0 6 0 2 0 2 2 0 6 -4 2 -4 6 0 

13 0 6 0 6 4 -2 -4 -2 2 0 6 4 -2 8 -6 -4 

14 0 0 -2 -2 2 2 0 0 4 4 6 -2 2 2 -4 4 

15 0 0 -2 6 -2 -2 4 -4 -4 -4 -2 -2 -2 -2 0 0 

16 0 2 2 0 -2 0 4 -6 0 6 2 -4 6 -4 -4 -18 

17 0 2 -2 -4 2 -4 -4 10 -4 2 2 -4 -2 -4 0 -6 

18 0 4 0 0 -4 4 0 4 -6 2 2 6 2 6 6 -10 
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19 0 4 -4 -4 0 0 -8 -12 -2 -2 -6 6 2 6 2 2 

20 0 4 0 4 -8 -4 4 0 2 6 -2 2 6 2 -2 2 

21 0 0 4 -4 -4 4 4 -4 10 2 2 2 -6 2 6 -2 

22 0 6 2 0 2 -4 0 2 4 2 2 0 -2 0 0 2 

23 0 2 6 -8 6 4 0 -2 -12 -2 -2 0 -6 0 0 -2 

24 0 2 8 2 0 6 4 2 4 -2 4 6 0 -2 -4 2 

25 0 -2 4 -6 0 -6 0 2 4 -6 8 6 0 2 0 -6 

26 0 0 -6 2 -2 -2 4 4 -2 -2 0 0 -4 4 2 2 

27 0 4 6 2 -10 2 -8 4 -2 -6 4 0 4 0 -2 2 

28 0 -4 2 2 2 -6 0 -4 -2 -2 4 0 0 4 2 2 

29 0 4 -2 -2 2 -6 -4 0 2 2 -4 0 -12 0 -6 -6 

30 0 2 0 -2 4 -2 0 -2 0 6 -4 -2 0 -2 0 2 

31 0 2 -4 2 -4 -2 4 2 4 -6 4 -2 -4 2 0 2 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

34 0 2 -2 0 2 0 0 6 -2 0 -4 6 4 10 10 0 

35 0 2 -2 0 2 0 0 6 6 0 4 -10 -4 -6 2 0 

36 0 2 -6 -8 2 4 4 2 2 0 0 2 0 6 -10 0 

37 0 -2 2 4 2 0 -4 -2 -2 0 4 2 -4 6 -6 0 

38 0 4 4 -4 8 -8 4 0 0 -8 0 -4 0 4 0 0 

39 0 0 -4 -8 -8 4 -4 -4 4 -8 -4 -4 4 4 -4 0 

40 0 4 -2 -2 -2 -2 -4 0 4 4 2 6 -2 -6 12 4 

41 0 0 -2 -6 2 -2 -8 8 0 -4 -2 -2 6 -2 -4 0 

42 0 2 0 -2 0 2 0 -2 2 -8 -6 -4 2 0 2 -4 

43 0 -10 0 2 -4 2 4 6 -2 0 -10 4 2 -4 -6 0 

44 0 6 -4 2 8 2 4 6 -2 -4 -2 12 -2 -8 -2 0 

45 0 -2 -4 2 -4 -2 0 2 -2 -4 -2 4 -6 4 2 -4 

46 0 -4 2 6 6 -6 -8 4 -4 0 2 6 6 2 4 0 

47 0 -4 2 -2 2 -10 12 0 -4 0 2 -2 10 6 0 4 

48 0 -2 -2 0 -2 4 0 2 0 2 6 4 6 0 0 -2 

49 0 -2 2 4 2 0 0 -6 -4 -2 -2 -4 -2 0 -4 2 

50 0 -4 -4 -4 0 0 0 4 -2 -2 -6 -2 -6 6 2 2 

51 0 -4 0 0 4 -4 0 -4 -6 2 2 -2 2 -2 -2 -2 

52 0 8 -8 8 4 4 0 0 -2 -2 2 -6 6 6 -2 -2 

53 0 4 -4 0 -8 -4 0 -4 -2 2 -2 2 2 -2 -2 2 

54 0 6 2 -8 2 -4 8 2 4 -6 2 0 6 0 0 2 

55 0 2 -10 0 6 4 8 -2 4 6 -2 0 2 0 0 -2 

56 0 -10 4 2 -4 -2 4 -2 4 2 0 6 -4 6 -4 -2 

57 0 2 0 -6 -4 2 0 -2 -4 6 -4 -2 4 2 8 -2 

58 0 0 6 -2 6 6 0 0 2 2 0 0 8 0 2 2 

59 0 4 2 -2 -2 10 4 0 -14 -2 4 0 0 -4 -2 2 

60 0 0 10 -2 -6 -2 0 8 -6 6 0 -8 -4 4 -2 2 

61 0 8 -2 2 -6 -2 4 4 -2 -6 0 0 0 0 -2 2 

62 0 2 0 -2 -8 2 4 2 0 -2 4 -2 -4 2 4 -2 

63 0 -14 -12 -6 0 2 0 -2 -4 -6 12 -2 0 -2 4 -2 
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Table 4.14: Summary of the non-linear properties of DES S-boxes 

S-Box Dmax (XOR Dist. Table) Lmax (Linear Appr. Table) 

S1 16 -18 

S2 16 -16 

S3 16 16 

S4 16 ±16 

S5 16 -20 

S6 16 ±14 

S7 16 -18 

S8 16 ±16 

 

Table 4.15: Robustness of DES S-boxes 

S-Box nNZ Dmax Rs 

S1 37 16 0.316 

S2 33 16 0.363 

S3 37 16 0.316 

S4 24 16 0.469 

S5 31 16 0.387 

S6 33 16 0.363 

S7 35 16 0.340 

S8 36 16 0.328 

 

 

4.5 Analysis of the AES S-box 

The AES S-box is an 8×8 non-linear invertible substitution box constructed 

mathematically by applying two transformations in order to ensure high security against 

attacks, especially those of differential and linear cryptanalysis. The second 

transformation is added to further strengthen the algorithm against algebraic attacks 

such as an interpolation attack [102]. The process of generating the S-box is as follows: 

1. Taking the multiplicative inverse in the GF(2
8
) where the elements are 

represented in a polynomial form with a degree less than 8 and the coefficients 

in the GF(2). The multiplication is done modulo the irreducible polynomial 

                 . The element {00}h is mapped to itself. 

2. Applying the following affine transformation over GF(2): 

 

                                                               (4.3) 

 

for 0 ≤ i < 8, where xi is the ith bit of the byte, and ci is the ith bit of a byte c with 

the value {63}h.  
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In matrix form, the affine transformation element of the S-box is expressed as 

follows: 

 

 
 
 
 
 
 
 
 
    
    
    
    
    
    
    
     

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
                        
                        
                        
                        
                        
                        
                        
                         

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
    
    
    
    
    
    
    
     

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
   
   
   
   
   
   
   
    

 
 
 
 
 
 
 

 (4.4) 

 

The AES S-box is shown in Table 4.16, and the elements of the table are 

represented in hexadecimal format such that the value {xy}h in hexadecimal form 

represents the decimal value (16x + y), and x and y stand for the table’s row and column 

indices. For example, the input {81}h to the S-box is mapped to {0c}h by the 

intersection of the row index 8 and the column index 1.  

 

Table 4.16: AES S-box 

 
Column No. 

Row 

No. 
0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 63  7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 

1 ca  82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 

2 b7  fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 

3 04  c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 

4 09  83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 

5 53  d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 

6 d0  ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 

7 51  a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 

8 cd  0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 

9 60  81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 

a e0  32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 

b e7  c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 

c ba  78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 

d 70  3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e 

e e1  f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 

f 8c  a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 
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The AES Inverse S-Box is obtained by applying the inverse of the affine 

transformation as specified in equation 4.5 followed by taking the multiplicative inverse 

in GF(2
8
). 

 

 
 
 
 
 
 
 
 
    
    
    
    
    
    
    
     

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
                        
                        
                        
                        
                        
                        
                        
                         

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
    
    
    
    
    
    
    
     

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
   
   
   
   
   
   
   
    

 
 
 
 
 
 
 

 (4.5) 

 

The AES inverse S-box is shown in Table 4.17. 

 

Table 4.17: AES inverse S-box 

 
Column No. 

Row 

No. 
0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 52  09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb 

1 7c  e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb 

2 54  7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e 

3 08  2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25 

4 72  f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92 

5 6c  70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84 

6 90  d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06 

7 d0  2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b 

8 3a  91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73 

9 96  ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e 

a 47  f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b 

b fc  56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4 

c 1f  dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f 

d 60  51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef 

e a0  e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61 

f 17  2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d 
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4.5.1 Analysis of the Non-linear Properties of the AES S-box 

The non-linear properties of the AES S-box are examined by following the steps 

discussed earlier in section 4.3.  The XOR distribution and linear approximation tables 

are first built, but their large sizes of 256×256 dimensions mean that they are too big to 

reproduce here in full. Therefore, only a sample of one row with all columns from each 

table is shown below. For instance, from the XOR distribution table, a randomly 

selected row number 100 with all columns is shown in Table 4.18. All other rows have 

the same values with different distributions. The maximum value in the table is 4, and 

thus the DPPmax is  4/2
n
  =  4/2

8
  =  2

-6
. 

 

Table 4.18: Part of XOR distribution table of the AES S-box 

 

0 2 0 2 0 0 0 0 2 2 0 0 0 2 2 2 

2 0 0 2 2 0 0 2 0 2 0 2 0 2 2 0 

2 2 2 2 2 0 2 2 0 0 0 0 2 2 0 2 

0 0 2 0 0 0 0 2 0 0 0 0 2 0 2 2 

2 0 2 2 0 2 0 0 2 2 2 2 2 2 2 2 

2 0 0 0 0 2 2 2 2 2 0 0 0 0 0 2 

2 2 2 0 0 2 0 2 2 0 2 2 0 2 2 2 

0 2 0 2 0 2 2 2 0 0 0 0 0 2 2 2 

0 2 2 2 0 0 2 2 2 0 2 2 2 2 2 2 

2 0 0 0 2 0 2 2 4 2 0 0 0 2 2 0 

0 0 0 2 0 0 2 2 0 0 0 2 2 2 0 0 

2 0 2 0 0 0 0 0 0 0 2 2 0 2 0 0 

0 2 2 2 0 0 0 2 2 0 0 2 0 0 2 0 

2 2 2 0 0 2 2 2 0 0 2 0 2 2 2 0 

0 2 0 0 0 2 0 0 0 2 0 2 0 0 2 0 

0 0 2 0 0 2 0 2 0 2 0 2 0 0 2 0 

 

Part of the linear approximation table for the same row number is displayed in 

Table 4.19. The remaining rows of the table have the same values with different 

distributions, and the maximum value in the table is |16|, resulting in a maximum 

probability bias (PBmax) equal to 16/2
n
 = 16/2

8
 = 2

-4
. The IOCmax is equal to 2

-3
, since as 

mentioned earlier the input-output correlation is twice the bias. 
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Table 4.19: Part of linear distribution table of the AES S-box 

 

0 0 6 6 -14 2 -8 16 14 -2 12 -12 12 -4 2 2 

-14 -10 12 8 0 -12 2 6 -4 -16 -2 2 -2 2 -16 12 

-4 0 -2 2 6 2 8 12 10 -2 -4 -8 0 -4 10 6 

6 -2 -4 -4 -4 12 -6 10 -8 0 14 6 2 2 8 0 

-4 -8 -2 2 -10 10 -8 -4 6 10 0 -12 12 8 -2 2 

6 -2 -12 12 -4 12 2 10 -12 4 -6 -14 -2 -10 4 12 

-12 4 2 10 6 -10 -12 4 6 14 -12 12 -12 -4 -6 10 

-2 -6 8 4 12 8 14 2 -4 0 6 2 14 2 -8 12 

-10 -6 -12 0 8 4 14 -6 8 4 -2 10 -2 -14 4 0 

4 4 -2 -2 -6 -14 -12 4 10 2 -4 -4 12 12 -10 6 

-10 6 8 -16 -16 0 10 -6 8 0 -6 2 6 -2 8 8 

-4 -8 -6 -10 -6 -10 -8 12 -6 -2 -8 -12 4 -8 -6 14 

14 -10 0 -8 0 8 -6 -6 12 4 6 6 2 10 12 -12 

-4 -8 2 6 2 -2 -8 -12 6 2 4 0 -8 -12 -2 2 

2 6 8 -4 -4 8 10 14 -8 12 -2 10 6 -14 -4 -8 

0 8 -6 -6 -2 14 8 8 -6 2 4 12 -12 4 6 -2 

 

 

4.5.2 Robustness of the AES S-box 

The robustness of the AES S-box can be calculated by applying equation 4.2.  The 

results reflect the high resistance of this S-box to differential cryptanalysis. 

      
   

  
    

    

  
   0.984, where nNZ = 0 and Dmax = 4. 

 

 

4.6 Generation of the 8×8 S-box 

Three different S-boxes can be derived from the initial AES S-box by changing the 

order of the output bytes, such that they are circularly shifted with different offsets. All 

possible offsets are considered and only three cases result in the same characteristics 

and high non-linear properties as those of the AES S-box. These offsets are 64, 128 and 

192. Accordingly, four different S-boxes can be used in the algorithm, while only one 

look-up table is actually constructed, and this will be reflected in the efficiency of the 

system in terms of its security and complexity.  
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4.7 Generation of the 7×7 S-box 

A 7×7 S-box is generated by following the same steps used in the construction of the 

AES S-box, replacing both the degree-8 irreducible polynomials )1( 348  xxxx  

to degree-7 ( 17  xx  ) [103, 104] and the degree-8 reduction polynomials ( 18 x ) to 

degree-7 )1( 7 x , respectively. The non-linear properties are calculated such that the 

maximum value in the XOR distribution table is 2, providing a DPPmax = 2
-6

 and a 

maximum value in the linear approximation table of ±10, thus giving a PBmax = 2
-3.678

 or 

an IOCmax = 2
-2.678

. The forward and inverse S-boxes in hexadecimal format are shown 

in Tables 4.20 and 4.21, respectively. In addition, another three S-boxes are generated 

from this S-box which have the same non-linear properties of the original by changing 

the order of the output elements with different offsets of rotation of 32, 64 and 96. 

 

4.7.1 Robustness of the 7×7 S-box 

The robustness of the S-box generated can be computed by applying equation 4.2, and 

the result is exactly the same as for the robustness of the AES S-box, which is 0.984. 

This result reflects the robustness of this S-box to differential cryptanalysis. 

 

 

 

 

Table 4.20: 7×7 S-box 

 

 Column No. 

Row 

No. 
0 1 2 3 4 5 6 7 8 9 a b c d e f  

0 63 7C 33 3 54 43 53 35 27 2E 73 6B 64 8 48 16 

1 5E 5A 5 38 74 24 67 50 20 25 9 58 29 71 6 70 

2 22 7 3F 76 4F 52 0E 6D 37 65 0 4B 7E 60 3A 69 

3 1D 44 5F 0B 56 40 3E 4C 46 72 75 4A 11 59 2A 21 

4 1C 5D 4E 23 4D 78 36 0A 6A 2F 3B 6C 15 6E 7B 79 

5 49 14 7F 1 0D 51 77 5B 32 13 3D 1B 0F 41 66 17 

6 5C 1F 30 55 7D 7A 57 47 26 0C 2D 39 12 3C 34 19 

7 31 1A 2B 6F 68 2 28 62 45 10 61 1E 18 4 42 2C 
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 Table 4.21: 7×7 Inverse S-box 

 

 Column No. 

Row 

No. 
0 1 2 3 4 5 6 7 8 9 a b c d e f 

0 2A 53 75 3 7D 12 1E 21 0D 1A 47 33 69 54 26 5C 

1 79 3C 6C 59 51 4C 0F 5F 7C 6F 71 5B 40 30 7B 61 

2 18 3F 20 43 15 19 68 8 76 1C 3E 72 7F 6A 9 49 

3 62 70 58 2 6E 7 46 28 13 6B 2E 4A 6D 5A 36 22 

4 35 5D 7E 5 31 78 38 67 0E 50 3B 2B 37 44 42 24 

5 17 55 25 6 4 63 34 66 1B 3D 11 57 60 41 10 32 

6 2D 7A 77 0 0C 29 5E 16 74 2F 48 0B 4B 27 4D 73 

7 1F 1D 39 0A 14 3A 23 56 45 4F 65 4E 1 64 2C 52 

 

 

 

4.8 Conclusions 

In this chapter several objectives have been achieved as follows: 

 The non-linear properties of both the DES and AES S-boxes are examined and 

determined by computing the DPPmax and PBmax or IOCmax, in addition to the 

robustness of the S-boxes. All of these calculations are conducted after building 

the XOR distribution and linear approximation tables.  

 Three different S-boxes are derived from the AES S-box by changing the order 

of the output bytes. The S-boxes derived have the same non-linear properties as 

those of the original AES S-box. 

 A new 7×7 S-box is generated which is similar to the AES S-box in structure, in 

order to meet the security requirements of the proposed cipher. The non-linear 

properties of this new S-box are good compared to the current state-of-the-art 

AES S-box, where the DPPmax is the same for both S-boxes which is 2
-6

 and the 

IOCmax is 2
-2678

, whereas it is 2
-3

 for the AES. Moreover, another three S-boxes 

are generated from this S-box by changing the order of the output elements, and 

the same non-linear properties result. 
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Chapter 5 

 

Design of the Proposed Algorithms 

 

 

 

In this chapter a secure and efficient block cipher, based on the SPN and the NMNT, is 

designed according to Shannon’s principles [15] and modern cryptographic theorems. 

The chapter is organised as follows. Section 5.1 gives a brief introduction to the topic 

and section 5.2 discusses the design of the proposed algorithms. Section 5.3 explains the 

generation of the keys, and the implementation of the algorithm and test vectors are 

presented in sections 5.4 and 5.5, respectively. The complexity of the algorithm is 

computed in section 5.6, and a discussion of the system is given in section 5.7. Another 

algorithm based on the FNT is then outlined in section 5.8, and finally the conclusions 

of the chapter are drawn in section 5.9. 

 

 

5.1 Introduction 

Fundamental principles when designing a secure block cipher are relate to confusion 

and diffusion [15], which remain the most widely accepted principles to design secure 

cryptosystems. In addition, the steps necessary to build efficient diffusion had been 

proposed [3], which can be constructed by combining two steps. The first step provides 

high local diffusion, by using a transform having a high branch number which works on 

a limited number of bundles. Examples here include the Mix column transform in AES 

[3], the MDS transform in Twofish [29], and the PHT in SAFER [26]. The second step 

provides high dispersion once the first step is implemented, the locations of elements 
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   rd Rounds 

Plaintext 

Ciphertext 

Initial Key Addition 

Element Substitution 

Variable Addition 

NMNT 
 

Round Key Addition 
 

Figure 5.1: Block diagram of the proposed algorithm 

 

 

Shifts Transform 

that are too close are changed. Confusion can be achieved by mapping the values of 

element through the use of a substitution box. The design of the proposed algorithm 

follows this sequence, as illustrated in the following sections.  

 

 

5.2 Algorithm Design 

The proposed algorithm is an iterated symmetric-key block cipher based on the SPN 

with variable block size, key length and word length. The block size and key length 

ranging from 16×P-bit up to 256×P-bit with a power of two, for a word length P = 7, 

31, 61, or 127. The general block diagram for the proposed forward algorithm 

(encryption) is shown in Figure 5.1. It starts with an initial key addition, followed by rd 

identical rounds. The number of rounds is 10, however this can vary. The round 

functions consist mainly of the following five layers: element substitution; shifts 

transform; variable addition; NMNT; and, finally, round key addition. This order of 

operations is for encryption, and for decryption the algorithm and the round keys are run 

in reverse order, with inverse functions applied instead. High level descriptions of both 

the encryption and decryption are provided in Algorithms 5.1 and 5.2, respectively.  
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/* Initial key addition */ 

a = ( PT + Kr(0) ) % Mp;  /* PT: Plaintext block, Kr: round key */ 

/* Loop 10 times (10 : total number of rounds) */ 

for ( i = 1; i ≤ 10 ; i++ )  

{ 

/* Elements Substitution*/ 

a = S ( a ); 

/* Shifts Transform*/ 

a = ST ( a ); 

/* Variable addition */ 

a = VA ( a ) % Mp; 

/* NMNT*/ 

a = NMNT ( a ); 

/* Round keys addition */ 

a = ( a + Kr(i) ) % Mp; 

} 

CT = a; 

/* CT: Output Ciphertext block */ 

 

Algorithm 5.1: Encryption Algorithm (High Level Description) 
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/* CT: Input Ciphertext block */ 

a = CT; 

/* Loops 10 times in descending order (10 : total number of rounds) */ 

for ( i = 10; i > 0 ; i-- ) 

{ 

/* Round keys subtraction */ 

a = ( a - Kr(i) ) % Mp; 

/* Inverse NMNT*/ 

a = Inv_NMNT ( a ); 

/* Variable Subtraction */ 

a = VS ( a ) % Mp; 

/* Inverse Shifts Transform*/ 

a = Inv_ST ( a ); 

/* Inverse Elements Substitution*/ 

a = SI ( a ); 

} 

/* Initial key Subtraction */ 

PT = ( a - Kr(0) ) % Mp; 

/* PT: Output Plaintext block */ 

 

Algorithm 5.2: Decryption Algorithm (High Level Description) 
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5.2.1 Block Size 

Both the block size and key length of the proposed algorithm are variable. A block 

consists of a number of elements with a P-bit word length distributed in a two 

dimensional array, where the number of rows (R) can be 4, 8, or 16 and the number of 

columns is represented by the NMNT length (N), which can be 4, 8, or 16 as shown in 

Figure 5.2. Here, the number of rows is either the same as or half of the transform length. 

The block sizes are chosen carefully such that by processing the data the highest possible 

levels of diffusion are achieved.  

 

(4×4)×P (4×8)×P

(8×8)×P

(16×16)×P

(8×16)×P

a0,0 a0,1

a1,1

a0,N-1

a1,0 a1,N-1

aR-1,0 aR-1,1
aR-1 

,N-1

• 

• 

• • 

• 

• 

• 

• • 

• 

• 

• 

• 

• • 

• • 

• 

• • 

• • 

• • 

• • 

• • • 

• 

 

Figure 5.2: Proposed block sizes 

 

 

The message is converted into a number of blocks, onto which the elements are 

vertically mapped starting from the top left corner (top to bottom and left to right), that 

is, in the order a0,0, a1,0 ... aR-1,0, a0,1, a1,1 ... aR-1,1, ... , a0,N-1, a1,N-1 ... aR-1,N-1. 
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The selection of key length and block size as well as word length is usually agreed 

between the communicating parties before exchanging information. However, the system 

is built up in such a way that either these parameters are agreed beforehand or they are 

efficiently set by the system. The system is initially configured with default values of P = 

7 for word length and 16×P for both key and block length. The system can select word 

length depending on the length of the processor registers in the machine that carries out 

the encryption. The block size is equivalent to the key length and is chosen depending on 

the message length such that the final block padding required is minimal, noting that a 

larger block is selected for the case of equal padding on different block sizes (the details 

are explained in Algorithm 5.3). This means that different plaintexts can have different 

block and key sizes depending on their length. So not only is block size variable, but its 

value is kept secret to increase the overall security of the system and to render the task of 

cryptanalysis as hard as possible. The values of block size and word length are encrypted 

and sent within the ciphertext at a random location depending on the key, in order to be 

used later in the decryption phase. 

 

/* ml is the number of elements in the message (including 1 byte padding) */ 

ml = ceil ((nM + 8) / (P - 1));   /* nM is the message length in bits */ 

c = 256 - ml % 256;   /* modulo number of elements of larger block size */ 

/* nb is the block size in bits, P: word length */ 

nb = 256 × P; 

for (i = 7; i > 3; i--) { 

if (pow (2 , i) - ml % pow (2 , i) < c) { 

c = pow (2 , i) - ml % pow (2 , i); 

nb = pow (2 , i) × P; 

} 

} 

 

Algorithm 5.3: Chosen a block size of the system 
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5.2.2 Components of the Design 

The structure of the design as shown in Figure 5.1 starts with the initial key addition 

layer followed by round transformation which, as mentioned earlier, consists of five 

layers identical for all rounds. In addition, there are supplementary padding and 

conversion layers. The former is used to force the length of the plaintext to be a multiple 

of block size by padding at the end of the message with a number of bytes with zero 

value. The conversion layer is used to convert each word from one length to another and 

also to convert a vector to an array and vice versa. The elements are processed rd times 

throughout the round transformations until it is ensured that the ciphertext is resilient to 

attacks, taking into consideration predetermined safety margins. The components of the 

design are explained below. 

1. Padding 

The padding layer starts with the insertion of a byte at the end of the plaintext with a 

value of 1. This indicates the end of the message, which is very useful when 

removing padded bytes. Next, a number of bytes with a value of 0 are padded at the 

end if necessary in order that the length of the plaintext is a multilpe of the block 

size. This step can be conducted after the size of the block and word length has been 

determined. The maximum number of padded bytes can be any value up to one 

block. The number of padded bytes (nZ) required to fill the gaps in the final block is 

calculated using equation 5.1. Noting that there is a 1-bit is reserved at each element 

for error avoidnace, as explained later in this chapter. 

 

                  
    

  
  (5.1) 

 

where nP is the plaintext length in bytes and ib is derived in equation 5.2, 

which represents the number of required input bytes per block. 

 

    
    

 
         (5.2) 

 

where R and N stand for the block dimensions; R representing the number of 

rows, and N is column length (which is the transform length), and P is word 

length. 
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2. Conversion of  Elements 

In this layer the elements are converted from one length to another. In the encryption 

phase after the padding layer, the input bytes are converted from 8-bit to P-1-bit, and 

then converted into a number of blocks of predetermined size. Later, after the round 

transformation, the output is converted back from the transform domain (P-bit) into 

bytes (8-bit). Another conversion is needed inside the round transformation before 

and after the element substitution layer, in case the word length is greater than the 

default value. So for P ≠ 7, each element is converted into a number of sub-elements 

with S-boxes input lengths which could be 7 or 8-bit or a combination of both, and 

then later the converted sub-elements are return back to the original length after 

substituting them. The conversion is achieved by converting the elements into a 

binary form, concatenating them all and then slicing them into the required length. 

In the decryption phase, each element is converted from bytes to P-bit and later 

from P-bit to bytes after removing the zero bits added at the beginning. 

3. Initial Key Addition 

Starting and ending the cipher with a key addition, sometimes referred to as whitening 

[53], is important in the design, since any other layers before the first or after the last 

key additions could be peeled off without prior knowledge of the key, for instance in 

the initial and final permutations in the DES algorithm [3, 53]. In addition, this 

operation obstructs a cryptanalysis by hiding the required information in specific 

rounds. Initial key addition is applied in several designs, such as AES [3], Blowfish 

[17], IDEA [42], Khufu/Khafre [33], SAFER [26], and Twofish [29]. 

4. Element Substitution 

This is the non-linear part of the proposed algorithm which plays a crucial role in the 

overall security of the system, where its strength is strongly influenced by that of the 

S-boxes involved. The strength of the S-box is evaluated according to the strength of 

its non-linear properties, as discussed in detail in chapter 4. Confusion is achieved in 

this layer by non-linearly mapping the elements through the destination S-boxes. The 

number of S-boxes used in this layer depends on the selection of word length. For 

example, for P = 7, one 7×7 S-box is used, while for word lengths greater than 7 a 

combination of 7×7 S-boxes and 8×8 S-boxes are utilised. 
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5. Shifts Transform 

Elements are redistributed in this layer to satisfy the function of dispersion [3], where 

the columns of the array are cyclically shifted with different offsets such that the 

resultant elements in each row are a combination of elements from all rows.  

6.  Variable Addition  

In this layer, a set of variable values are added to certain elements in the array and 

then the results are multiplied by 2 according to equation 5.3, where the addition and 

multiplication are modular operations. One element is modified from each row, and 

the locations of the modified elements are very important. All elements in the kernel 

matrix at row/column N/4+1 have no zero value, and consequently modifying 

elements at such locations ensure after processing the NMNT layer the effect of the 

elements modification is achieved. While modifying elements in other places except 

those mentioned in point 6, section 3.4.1, a maximum of N/4 elements in the worst 

cases could be unmodified in each row. The value of the variable is a function of the 

row number, the round number and the block number. Three purposes are achieved in 

this layer. Firstly, by adding the variables to the intermediate results ensure that the 

cases where the NMNT provides low diffusion are eliminated by eliminating 

symmetries in the correlated elements. Secondly, the addition of variables with 

different values to different elements results in a ciphertext consisting of different 

elements corresponding to a plaintext made up of the same elements. Thirdly, the 

involvement of the value of block number in the calculation of the variable results in 

different values for different blocks, which ensures that two different ciphertext 

blocks are obtained when encrypting two identical plaintext blocks using the same 

cipher key. Secure output is thus gained by implementing a simple mode of operation, 

which is then reflected in the efficiency of the system in terms of speed and 

complexity. 

 

                                        
   

                        (5.3) 

 

where a´ is the updated element value and a is the original element value, N 

is the transform length, bn is the block number, R is the maximum number of 

rows and rd is the maximum number of rounds 
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7. New Merssene Number Transform 

The NMNT is used in the design in order to ensure high diffusion. This transform was 

investigated in Chapter 3 and shown to exhibit good diffusion characteristics [97, 99]. 

Prior to the development of differential and linear cryptanalysis a simple permutation 

alone was sufficient to diffuse data. As new analytic systems evolved, more complex 

techniques were required, such as the use of a linear transformation which improves 

the avalanche characteristic of the cipher and increases its resistance to such attacks 

[105]. 

8. Round Key Addition 

In this layer, the round keys that are derived from the cipher key when applying the 

key schedule algorithm are added modulo the Mp to the intermediate result at each 

round, as explained in equation 5.4. The length of the round key is the same as the 

block length. 

                           
   

                             (5.4) 

 

where a´ is the updated element value, a is the original element value, kr is 

the round key, R is the maximum number of rows, N is the transform length 

and rd is the maximum number of rounds 

 

5.2.3 Number of Rounds 

The number of rounds is determined by investigating in which round the system can be 

successfully broken, and adding then a sufficient number of rounds to achieve the 

security margins required. Schneier has suggested that, if a system can be broken in n 

rounds, it should be designed with 2n or 3n rounds [5]. In addition, he recommended a 

minimum number of rounds for the current standard as follows: 16 rounds for AES-128; 

20 rounds for AES-192; and 28 rounds for AES-256. The formula proposed for this is 

shown in equation 5.5 [55]. For instance, for AES-128, d = 1, nb = 128, and w = 8, 

resulting in rd  ≥ 16 as suggested by Schneier. In another example for Twofish [29], d = 

2 (Feistel structure, half of the data is processed in the confusion stage at each round), nb 

= 128, and w = 8, producing rd  ≥ 32. Both values resulting from this formula have larger 

values than those proposed by the algorithm designers. 

 
             (5.5) 
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where rd is the number of rounds, d is the maximum number of rounds 

required to process all words of a block in the confusion stage, nb is the 

block size, and w is the minimum word size input to the confusion stage. 

In the proposed algorithm, both differential and linear cryptanalysis have been 

investigated as explained in Chapter 6 and it has been proven that the system is secure 

against such attacks from round three regardless of block or key size. Accordingly, 10 

rounds have been suggested, taking into consideration other possible types of attack and 

sufficient safety margins. 

 

 

5.3 Generation of Cipher Key and Round Keys 

This section deals with the generation of the necessary sub-keys. In the first part an 

algorithm is proposed for deriving the cipher key from the secret key, and the second 

part deals with the key schedule algorithm as the mechanism for deriving round keys 

from the cipher key. Two key schedule algorithms are proposed. Both combine high 

diffusion and non-linearity of properties in order to generate round keys with high 

resistance to attacks such as the related-key attack. 

 

5.3.1 Cipher Key Generation 

A cipher key (  ) is generated from the secret key or password supplied by the user, 

which can be of any length, by padding the key if necessary to the block length by 

applying equation 5.6, which is derived from [3]. If the secret key provided has a length 

longer than required, then the cipher key is derived by truncating the key to the required 

length.  

                          
                          (5.6) 

 

where i is the location of the processed element, nc is the number of elements 

in the provided secret key, bl is the block length (elements). 

 

For example, if bl = 16 and the secret key = 1 2 3 4 5 6 7 8, then the padded cipher 

key is kc = 1 2 3 4 5 6 7 8 9 11 14 18 23 29 36 44. If kc = 1 2 3 4 5 6 7 8 9, then the 

cipher key generated is 1 2 3 4 5 6 7 8 9 10 12 15 19 24 30 37. 

Padding the cipher key according to this method results in a more random 

appearance than just padding with zero elements, as applied in existing techniques. 
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5.3.2 Round Keys Generation 

Round keys are derived from the cipher key by means of a key schedule algorithm. The 

lengths of the cipher key and round keys are the same as the block length. The total 

number of round keys is equal to the number of rounds. Two techniques are used in 

generating the round keys, as explained below. 

1. Key schedule algorithm (first technique) 

The first key schedule algorithm applies the same round transformation of the cipher 

for easy analysis and implementation, where the input to the cipher is the cipher key 

and each round is used to generate one round key. This means generating all round 

keys equivalent to encrypting one block of data. The round transformation is 

modified in such a way that the initial key addition layer is eliminated and, the 

variable addition layer is a function of only row and round numbers. In addition, 

rather than adding a single round key at each round in the round key addition layer 

an accumulation of all previously generated round keys are added. Thus each round 

key generated is a function of all previously generated round keys, in addition to the 

cipher key and the round number [3]. For example, the key that is used in the round 

key addition layer to generate the first round key is the modular addition of the 

cipher key and the number 1 for round number one. The second round key is then the 

modular addition of the cipher key, the first generated round key and the number 2. 

For the final round, the key generated is the modular addition of the cipher key, and 

the first up to the ninth round keys and the number 10 for round number ten.  

For example, if P = 7, block size is 16×P, and the password or secret key is 

“Dell Laptop”, then the ASCII representations for the secret key with 8-bit each is Ks 

= 68   101  108  108  32  76  97  112  116  111  112, where 32 is the ASCII code for 

the space character. Next, the cipher key will be derived from the secret key by 

applying equation 5.6 if necessary. The length of the cipher key is 16 P-bit or 16×P/8 

= 14 bytes, i.e. Kc = 68  101  108  108  32  76  97  112  116  111  112  180  25  133. 

Then, the 14 bytes of Kc are converted into 16 7-bit elements to be compatible with 

the transform domain. The converted Kc = 34  25  45  70  97  1  24  97  56  29  13  

119  5  80  51  5. The conversion is achieved by converting Kc elements into binary 

representation, concatenating all of the elements and then slicing them into 7-bit 

each. The detailed sequence of the generation process for the first three round keys is 

shown in Table 5.1. The final round keys generated are shown in Table 5.2, in 

addition to the cipher key, which is represented in the first row in the table. 
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Table 5.1: Three round keys generation using first technique 

 Round 1  Round 2  Round 3 

In
p
u
t 

K
ey

 

34 97 56 5  81 38 91 75  40 5 3 59 

25 1 29 80  121 62 77 4  51 102 70 10 

45 24 13 51  54 69 22 13  38 81 67 50 

70 97 119 5  45 52 97 104  76 107 56 98 

               

E
le

m
en

ts
 S

u
b
. 

 

63 31 70 67  20 14 27 108  55 67 3 74 

37 124 113 73  16 42 110 84  11 87 54 115 

96 32 8 11  62 120 103 8  14 20 35 95 

54 31 98 67  96 86 31 38  21 57 70 48 

               

S
h
if

ts
 T

ra
n
sf

. 54 32 113 67  96 120 110 108  21 20 54 74 

63 31 8 73  20 86 103 84  55 57 35 115 

37 31 98 11  16 14 31 8  11 67 70 95 

96 124 70 67  62 42 27 38  14 87 3 48 

               

V
ar

ia
b
le

 A
d
d
. 

 

54 66 113 67  96 117 110 108  21 46 54 74 

63 78 8 73  20 77 103 84  55 35 35 115 

37 116 98 11  16 9 31 8  11 42 70 95 

96 122 70 67  62 86 27 38  14 50 3 48 

               

N
M

N
T

 

46 67 34 69  50 122 108 104  68 66 82 122 

95 60 47 50  30 37 89 51  113 67 67 100 

8 44 8 88  64 113 30 111  91 15 71 121 

101 81 104 98  86 83 92 114  115 13 46 9 

               

A
cc

u
m

u
l.

 K
ey

 35 98 57 6  117 10 22 82  31 16 26 15 

26 2 30 81  21 65 108 86  73 41 52 97 

46 25 14 52  101 95 37 66  13 50 105 117 

71 98 120 6  117 24 91 111  67 5 21 83 

               

A
d
d
in

g
 K

ey
 81 38 91 75  40 5 3 59  99 82 108 10 

121 62 77 4  51 102 70 10  59 108 119 70 

54 69 22 13  38 81 67 50  104 65 49 111 

45 52 97 104  76 107 56 98  55 18 67 92 
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Table 5.2: Round keys generation using first technique 

Kc 34 25 45 70 97 1 24 97 56 29 13 119 5 80 51 5 

Kr1 81 121 54 45 38 62 69 52 91 77 22 97 75 4 13 104 

Kr2 40 51 38 76 5 102 81 107 3 70 67 56 59 10 50 98 

Kr3 99 59 104 55 82 108 65 18 108 119 49 67 10 70 111 92 

Kr4 106 33 48 107 29 60 53 69 0 70 62 90 52 38 116 44 

Kr5 65 80 73 16 57 12 0 64 23 123 67 16 30 31 27 111 

Kr6 9 5 32 98 74 68 106 53 68 104 67 93 97 3 16 119 

Kr7 27 70 107 82 91 33 47 106 53 56 23 16 18 17 118 93 

Kr8 52 39 40 3 41 82 97 16 39 8 0 88 107 14 24 75 

Kr9 66 65 32 41 2 22 123 18 101 65 72 102 22 3 65 72 

Kr10 77 26 101 65 3 64 87 124 55 107 24 80 8 85 58 117 

 
 

2. Key schedule algorithm (second technique) 

The second proposed key schedule algorithm is key-dependent. With a structure 

similar to that of the first technique, it is achieved by replacing both the shifts 

transform layer and the variable addition layer with key-dependent permutation and 

key-dependent addition layers. These two layers are processed by first building up 

two arrays with the block size length at each round for each layer; these arrays 

represent the row and column indices, respectively.  For the key-dependent addition 

layer, a key-dependent modular addition is applied to all elements, where the two 

arrays generated are used to determine for each element the location of the 

corresponding element that will be added to it. The first array, which is called the 

Addition row indices array (Ar), is generated by applying equation 5.7. It is achieved 

by modularising the key of the previous round (Krd-1) for modulo equal to the total 

number of rows after mapping it to the element substitution layer. 

 

                           

                                (5.7) 

 

where      for element substitution, R is the total number of rows, rd is the 

total number of rounds and N is the transform length.  
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The second array, known as the Addition column indices array (Ac), is generated 

according to equation 5.8, by modularising the accumulated key (ka) at that round 

with modulo equal to the transform length. The accumulated key at each round 

represents the summation of the cipher key and all round keys generated before that 

round. 

 

                     

                               (5.8) 

 

For the key-dependent permutation layer, the locations of the elements are 

changed based on a key. Two arrays, Pr and Pc, are generated, which are used to 

determine the new location for each element. They are built by first filling up the 

arrays with an initial sequence of indices values, and then the sequence of the indices 

is continuously changed based on the values in the Ar and Ac arrays until all 

elements have been processed.  

A simple illustration of this is shown in Table 5.3, consider a key K(n) as a 

vector of 16-elememts with a single dimension. The corresponding Addition indices 

vector A(n) is calculated by modularising the key K(n) for modulo equal to the total 

number of elements, i.e. 16. The permutation indices vector P(n) is initially filled 

with indices in sequence from 1 to the total number of elements, 16. Then the 

sequence of indices are changed based on the corresponding values in the A(n) 

vector. For example, for A(1) = 2 the index in P(1) is swapped with the index in 

P(2), for A(2) = 9 the updated index in P(2) is swapped with the index in P(9), and 

the generation process are continue in the same manner until processing all P(n) 

elements with respect to A(n) elements, where the last row represents the new indices 

of the elements at that round. 

By taking the same parameters and the same secret key as the example in the 

first proposed structure, the cipher key is derived by following the same procedures 

by padding it to the required length. A summary of all round keys generated in 

addition to the cipher key is shown in Table 5.4. The generation process for the first 

three round keys is explained in Table 5.5. 

Many important properties are used in the key schedule designs in order to make 

successful related-key and other types of attack more difficult. Such properties 

include the use of a round number to eliminate symmetries, and the generation of any 
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round key depending on all previously generated round keys and the cipher key. This 

means that knowing part of the cipher key or one or more full round key will not be 

sufficient to generate the cipher key or other round keys. In addition, high diffusion 

and non-linearity are achieved. 

 

Table 5.3: Generation of key-dependent permutation index array 

K(n)  34 25 45 70 97 1 24 97 56 29 13 119 5 80 51 5 

A(n)  2 9 13 6 1 1 8 1 8 13 13 7 5 16 3 5 

P1(n)  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

P2(n)  2 1               

P3(n)  5 9 13 6 2 4   1    3    

.  4     5 8 7         

.  7       4         

.         1 4 3   10    

.        12    10 8 11    

.    15  11        2 16 13 14 

.      14           11 

Pj(n)  7 9 15 6 14 5 12 1 4 3 10 8 2 16 13 11 

 

 

Table 5.4: Round keys generation using second technique 

Kc 34 25 45 70 97 1 24 97 56 29 13 119 5 80 51 5 

Kr1 103 107 77 2 73 88 43 119 49 40 93 35 56 117 11 95 

Kr2 70 121 8 118 105 44 50 38 91 112 20 40 34 48 91 52 

Kr3 2 80 74 17 54 25 26 83 25 66 43 61 39 104 61 36 

Kr4 100 97 29 42 83 23 86 51 104 70 14 64 8 98 90 61 

Kr5 118 54 78 111 0 100 52 54 25 38 50 48 36 123 76 83 

Kr6 114 2 67 58 60 85 32 8 35 96 12 43 22 24 86 36 

Kr7 27 82 108 124 33 14 43 51 21 125 37 109 27 3 113 12 

Kr8 121 19 108 52 110 38 77 41 79 67 38 115 99 58 20 8 

Kr9 74 19 96 121 41 112 30 14 81 25 44 78 89 103 30 47 

Kr10 64 60 84 53 93 62 51 25 2 21 60 26 125 7 52 49 
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Table 5.5: Three round keys generation using second technique 

 Round 1  Round 2  Round 3 

In
p
u
t 

K
ey

 
34 97 56 5  103 73 49 56  70 105 91 34 

25 1 29 80  107 88 40 117  121 44 112 48 

45 24 13 51  77 43 93 11  8 50 20 91 

70 97 119 5  2 119 35 95  118 38 40 52 

               

E
le

m
en

ts
 

S
u
b
st

it
u
te

  

63 31 70 67  71 47 68 70  54 12 27 63 

37 124 113 73  57 50 55 2  16 126 49 29 

96 32 8 11  110 75 65 107  39 95 116 27 

54 31 98 67  51 98 118 23  40 14 55 86 

               

K
d
 P

er
m

u
t.

 

R
o
w

 I
n
d
ex

 2 3 2 1  1 1 4 2  2 1 3 3 

3 3 4 1  4 2 4 3  4 2 4 1 

1 4 3 1  2 3 3 4  3 3 1 1 

4 2 2 4  1 2 3 1  4 2 2 4 

               

K
d
 P

er
m

u
t.

 

C
o
l.

 I
n
d
ex

 

3 1 4 3  4 1 1 1  4 1 1 3 

2 3 3 2  2 3 3 2  4 3 1 3 

1 4 4 4  4 4 3 4  2 4 2 4 

1 2 1 2  2 2 1 3  3 2 1 2 

               

K
d
 A

d
d
it

io
n
 

R
o
w

 I
n
d
ex

 3 3 2 3  3 3 4 2  2 4 3 3 

1 4 1 1  1 2 3 2  4 2 1 1 

4 4 4 3  2 3 1 3  3 3 4 3 

2 3 2 3  3 2 2 3  4 2 3 2 

               

K
d
 A

d
d
it

io
n
 

C
o
l.

 I
n
d
ex

 

2 1 4 1  2 3 1 1  4 1 1 3 

1 1 1 4  1 1 1 2  2 3 2 2 

1 4 1 3  2 3 2 2  3 1 2 2 

2 1 3 1  4 1 3 4  3 4 3 1 

               

K
d
 

P
er

m
u
ta

ti
o

n
 113 96 73 70  70 71 51 57  29 54 39 116 

32 8 98 31  98 55 118 75  86 49 40 27 

63 67 11 67  2 107 65 23  95 27 12 63 

54 124 37 31  47 50 110 68  55 126 16 14 
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K
d
 A

d
d
it

io
n

 53 32 104 6  50 9 98 28  56 109 7 1 

85 62 24 37  21 76 120 24  85 89 22 9 

117 98 65 5  78 45 74 68  107 7 11 70 

116 114 61 21  115 71 103 9  71 8 27 99 

               

N
M

N
T

 

68 102 119 50  58 60 111 98  46 30 80 68 

81 86 10 36  114 80 41 103  78 16 9 110 

31 18 79 86  11 108 39 27  68 33 41 32 

58 21 42 89  44 74 11 77  78 80 118 8 

               

A
cc

u
m

u
la

te
d
 

K
ey

 

35 98 57 6  12 45 107 63  83 24 72 98 

26 2 30 81  7 91 71 72  129 9 57 121 

46 25 14 52  124 69 108 64  6 120 129 29 

71 98 120 6  74 91 29 102  66 3 70 28 

               

A
d
d
in

g
 K

ey
 103 73 49 56  70 105 91 34  2 54 25 39 

107 88 40 117  121 44 112 48  80 25 66 104 

77 43 93 11  8 50 20 91  74 26 43 61 

2 119 35 95  118 38 40 52  17 83 61 36 

 

 

5.4 Algorithm Implementation 

The hardware implementation of the algorithm is discussed in detail in Chapter 7. 

However in this section the processing steps of encryption are explained in two examples 

of text message and an image using round keys generated in the last section. Tables 5.6 

and 5.7 represent the processing steps for encrypting blocks of data, for instance the 

Plaintext = “Blue Lines” using the round keys listed in Table 5.2. The implementation of 

the round functions for the first three rounds are explained in detail in Table 5.6 using the 

actual block size. A summary of the encryption, including the intermediate results for all 

rounds, is given in Table 5.7. The first row represents the plaintext followed by the 

ASCII representation of the plaintext. Then the padding process starts by adding 1, as an 

indication of the end of the message followed by the number 0 so as to achieve the 

required length. Next, the conversion process converts the input into a number of blocks 

with P-1-bit element length.  
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Table 5.6: Three rounds encryption using round keys generated from first technique 

 Round 1  Round 2  Round 3 

R
o
u
n
d
’s

 I
n
p
u
t 50 122 82 33  80 1 47 23  28 33 11 46 

63 19 51 1  24 117 91 31  78 102 119 99 

94 25 70 55  18 36 96 13  17 120 76 24 

123 109 29 5  119 31 61 114  110 99 115 33 

               

E
le

m
en

ts
 S

u
b
. 

 

95 97 44 7  73 124 105 80  41 7 107 58 

33 56 11 124  32 2 27 112  123 87 98 85 

102 37 54 76  5 79 92 8  90 69 21 32 

30 60 113 67  98 112 89 43  52 85 111 7 

               

S
h
if

ts
 T

ra
n
sf

. 30 37 11 7  98 79 27 80  52 69 98 58 

95 60 54 124  73 112 92 112  41 85 21 85 

33 97 113 76  32 124 89 8  123 7 111 32 

102 56 44 67  5 2 105 43  90 87 107 7 

               

V
ar

ia
b
le

 A
d
d
. 

 

30 78 11 7  98 37 27 80  52 19 98 58 

95 11 54 124  73 4 92 112  41 93 21 85 

33 123 113 76  32 104 89 8  123 51 111 32 

102 115 44 67  5 8 105 43  90 52 107 7 

               

N
M

N
T

 

126 90 83 75  115 28 8 114  100 42 73 120 

30 55 14 27  27 0 49 89  113 28 11 12 

91 94 74 0  106 39 9 101  63 31 24 120 

74 106 91 10  34 119 59 62  2 28 11 65 

               

R
o
u
n
d
 K

ey
 81 38 91 75  40 5 3 59  99 82 108 10 

121 62 77 4  51 102 70 10  59 108 119 70 

54 69 22 13  38 81 67 50  104 65 49 111 

45 52 97 104  76 107 56 98  55 18 67 92 

               

A
d
d
in

g
 K

ey
 80 1 47 23  28 33 11 46  72 124 54 3 

24 117 91 31  78 102 119 99  45 9 3 82 

18 36 96 13  17 120 76 24  40 96 73 104 

119 31 61 114  110 99 115 33  57 46 78 30 
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Table 5.7: Encryption processing steps using round keys generated from first technique 

1 B l u e  L i n e s       

2 66 108 117 101 32 76 105 110 101 115       

3 66 108 117 101 32 76 105 110 101 115 1 0     

4 16 38 49 53 25 18 1 12 26 22 57 37 28 48 4 0 

5 50 63 94 123 122 19 25 109 82 51 70 29 33 1 55 5 

6 80 24 18 119 1 117 36 31 47 91 96 61 23 31 13 114 

7 28 78 17 110 33 102 120 99 11 119 76 115 46 99 24 33 

8 72 45 40 57 124 9 96 46 54 3 73 78 3 82 104 30 

9 39 31 63 74 77 3 0 27 47 124 104 103 99 86 115 72 

10 62 96 97 19 90 95 41 26 65 20 28 35 67 90 68 5 

11 51 11 5 89 68 124 70 105 116 10 6 96 110 76 0 70 

12 83 69 50 110 67 78 116 72 11 118 97 76 104 82 79 53 

13 27 76 44 17 114 96 71 69 121 35 24 97 58 67 121 125 

14 50 98 39 1 24 48 36 65 25 18 42 45 71 89 5 118 

15 15 107 29 67 38 107 70 99 121 89 3 116 84 105 106 32 

16 31 172 236 52 218 227 99 243 100 31 74 154 117 32   

17  ¬ ì 4 Ú ã c ó d  J š u    

18 Û = Ñ ô É  } +  Ú  A â Ž   

 

In this example the message only has one block and, for illustration purposes, the 

block is represented in one dimension. Row 5 is the result of the initial key addition layer 

which performs modular addition between the input prepared and the initial key. Data is 

then processed through successive rounds, where rows 6-15 are the outputs from each 

round after processing the round functions. In row 16 the output from the previous round 

is converted from the transform domain into 8-bit for each element. Row 17 is the ASCII 

representation of the Ciphertext, while the final row is the ciphertext for the same 

plaintext encrypted with round keys listed in Table 5.4. The decryption process is the 

same as encryption except that the layers are implemented in reverse order, in addition 

inverse round functions are required and the round keys are used in reverse order. 
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Figure 5.3 illustrates a case of image encryption, where the image in Figure 5.3.b is 

the result of the encryption procedure for the image in Figure 5.3.a. The image in Figure 

5.3.c is the recovered image after decrypting the encrypted image using the correct key. 

The encrypted image is decrypted again using an incorrect key with only one bit 

changed from the correct key. The image as shown in Figure 5.3.d is completely 

unrecognizable, reflecting the power of this system. 

 

 

a. Original image 

 

b. Encrypted image 

 

c. Decrypted image with the correct key 

 

d. Decrypted image with incorrect key 

 

Figure 5.3: Image encryption and decryption with the correct and incorrect key 
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5.5 Test Vectors 

In this section a number of test vectors are run to verify the correctness of the algorithm 

implementation. It includes three categories of tests; the KAT, the MMT, and the MCT. 

These validation tests were initially designed by NIST [106] to validate the 

implementations under test (IUT) for conformance to the AES algorithm as specified in 

the FIPS 197: AES [16]. In addition to determining conformance, it is used to detect 

implementation flaws, including pointer problems, the insufficient allocation of space, 

improper error handling, and other incorrect behaviour [106]. The complete results of 

the tests for encryption (which can also be applied to the decryption phase) for block 

size and key length of 16×P, (P = 7) and the ECB mode of operation are listed in 

Appendix C. Descriptions and sample results for each test are given below.  

 

5.5.1 The Known Answer Test 

Two types of KAT are applied: 

1. Variable Text 

In this test, the cipher key is fixed to zero for all iterations and the plaintext 

is variable. It starts at zero and is changed by setting one bit to 1 at each 

iteration within the bits of the elements from left to right starting from the 

first element. For instance, in Table 5.8, the first element in the plaintext for 

the first iteration is set to 64 which is equivalent to 1000000 in binary form 

and all other elements are zero. At the second iteration only the first element 

is changed and become 96 which is equivalent to 1100000 in binary form. 

The first element continues to change at each iteration until it becomes 126, 

which is equivalent to 1111110 in binary form, and the final bit is not set to 

1 due to the modulo. Next, the same procedure is repeated for the second 

element until all elements have been processed.  

It is obvious from the results of this test that if a single bit in the input is 

changed, the resulting output (ciphertext-CT) is completely different. This 

reflects the power of the system in diffusing the data and producing totally 

different outputs for nearly the same inputs, even in the worst cases where 

most of the elements are zero for both the key and the plaintext. The 

following is a sample of the test: 
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Table 5.8: Sample of the variable text known answer test 

 

Kc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
                

PT 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 52 104 96 49 102 66 37 120 23 8 4 38 104 91 100 20 

PT 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 66 87 59 38 14 103 38 50 105 80 1 79 94 126 97 35 

PT 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 80 29 122 35 21 1 26 6 83 122 93 35 61 120 120 110 

PT 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 44 4 50 114 18 13 120 114 29 122 35 50 107 19 43 103 

PT 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 117 52 0 31 68 33 94 81 22 99 44 72 77 45 78 72 

PT 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 106 108 77 46 44 71 73 4 109 77 70 5 25 79 121 85 

PT 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 15 122 74 91 71 97 62 100 16 117 6 14 122 94 98 70 

PT 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 106 69 110 4 99 90 110 46 68 56 118 82 79 112 81 111 

PT 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 120 29 113 19 8 109 13 54 22 26 85 72 59 121 68 94 

PT 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 70 103 28 36 97 93 22 108 74 82 54 14 7 124 93 13 

 

 

2. Variable Key 

This test follows the same procedure as the previous one, replacing the positions 

of the cipher key and the plaintext. The plaintext is accordingly set to zero for all 

iterations and the key is variable, the latter being changed based on the 

procedure explained in the previous test. The results again confirm the power of 

the system, since changing a single bit in the key results in drastic changes in the 

output. Below is a sample of the test. 
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Table 5.9: Sample of the variable key known answer test 

 

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
                

Kc 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 114 120 13 82 8 8 59 107 19 13 40 18 46 71 2 3 

Kc 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 55 49 36 51 75 92 88 89 81 96 78 106 100 36 101 53 

Kc 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 53 57 38 69 116 66 50 119 94 71 50 47 31 53 62 57 

Kc 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 32 31 29 74 20 9 31 121 81 112 21 102 11 76 57 100 

Kc 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 114 95 101 119 56 113 37 61 92 19 74 40 114 13 96 72 

Kc 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 96 102 21 20 74 53 91 125 111 115 64 23 126 107 15 68 

Kc 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 92 73 35 70 22 93 58 42 0 98 116 106 78 84 97 106 

Kc 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 97 13 21 13 0 122 99 21 56 110 102 77 33 25 64 23 

Kc 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 78 21 28 95 26 104 8 96 8 26 46 64 86 52 57 65 

Kc 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 115 118 90 90 42 113 89 31 41 6 26 123 65 59 71 9 

Kc 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 47 84 46 83 19 7 93 52 33 90 16 40 82 92 110 79 

Kc 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 97 78 12 75 2 68 86 59 32 13 105 87 51 117 122 31 
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5.5.2 The Multi-block Message Test 

The MMT is applied to check the capability of the implementation to process 

messages with many blocks. Here, depending on the mode of operation, a 

processing between the blocks could be imposed. The test is run on 10 different 

messages whose lengths are different. The first message consists of one integral 

block of data, and the length of the second message is expanded into two full 

blocks of data, so that the length of the message is incremented by full one block 

of data after each following message. Thus the final message is built up from ten 

integral blocks of data. The following is a sample data set where the same key is 

used in the encryption of all of the messages.   

 

 

Table 5.10: Sample of the multi-block message test 

 
                

Kc 45 118 71 35 98 63 121 56 72 51 49 104 37 64 89 93 

 
                

1 Block 

PT 49 48 49 119 119 67 117 47 89 50 35 123 110 77 47 94 

CT 14 123 66 69 99 84 34 54 35 37 17 116 16 85 14 10 

 

2 Blocks 

PT 93 67 72 53 37 87 73 68 83 67 125 64 78 83 77 50 

 47 45 73 39 35 48 110 65 62 109 49 50 104 100 97 78 

CT 24 6 81 84 41 31 45 31 55 62 1 90 35 35 2 89 

 1 26 43 69 76 90 109 62 23 0 98 85 93 25 7 118 

 

3 Blocks 

PT 77 80 80 123 44 74 110 77 120 37 75 78 120 112 117 115 

 65 41 98 119 53 67 120 81 42 80 114 54 122 84 68 41 

 62 78 71 101 49 78 58 47 83 63 68 39 59 87 86 67 

CT 48 50 13 116 87 81 60 49 57 21 35 111 114 19 50 81 

 114 15 99 6 101 30 42 92 15 120 29 73 42 96 25 92 

 124 109 11 16 85 40 30 59 17 36 39 11 0 73 61 10 
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5.5.3 The Monte Carlo Test 

In the MCT 100 pseudorandom texts are encrypted. The initial values of both the 

key and the plaintext are pseudo randomly generated, and next each text is 

processed 1000 times, where the output of each iteration is assigned as the input 

for the next iteration. The final output resulting from processing the text 1000 

times is passed on as the next new text, and the new key is generated by XORing 

its value with the output, so that in total 100000 iterations are processed for all 

texts.  

The basic idea behind the MCT is to give indication that no combinations 

of irregular inputs exist that participates in terminating the test oddly. In 

addition, the test verifies that neither the key nor the plaintext would be exposed 

if the implementation goes wrong. Moreover, any obvious operational errors can 

be identified. The sample data set for the MCT is shown in Table 5.11.   

 

 

Table 5.11: Sample of the Monte Carlo test 

Count = 1 

Kc 78 88 64 55 85 64 68 101 115 119 59 70 65 77 55 79 

PT 74 58 110 97 48 69 103 100 95 83 90 40 126 86 37 48 

CT 110 21 88 67 42 123 115 37 51 4 122 56 110 93 2 59 

Count = 2 

Kc 32 77 24 116 127 59 55 64 64 115 65 126 47 16 53 116 

PT 110 21 88 67 42 123 115 37 51 4 122 56 110 93 2 59 

CT 12 55 15 73 114 1 72 42 121 65 109 100 38 22 88 7 

Count = 3 

Kc 44 122 23 61 13 58 127 106 57 50 44 26 9 6 109 115 

PT 12 55 15 73 114 1 72 42 121 65 109 100 38 22 88 7 

CT 61 28 61 28 0 10 61 58 83 64 6 98 0 12 29 5 

Count = 4 

Kc 17 102 42 33 13 48 66 80 106 114 42 120 9 10 112 118 

PT 61 28 61 28 0 10 61 58 83 64 6 98 0 12 29 5 

CT 76 109 26 11 77 31 11 63 27 122 0 32 106 126 83 73 
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5.6 Algorithm Complexity 

The complexity of the algorithm is calculated by counting the total number of operations. 

The complexity of the forward NMNT for the split-radix fast algorithm can be derived 

from equations 5.9 and 5.10 for the numbers of multiplication and addition operations, 

respectively [107].Therefore, the complexity for transform lengths of 4, 8, and 16 is 

displayed in Table 5.12. Accordingly, the complexity of the overall forward algorithm 

(for encryption) for different block sizes is shown in Table 5.13.  
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Table 5.13: Complexity of the overall encryption algorithm 

Block Size Addition (AN) Multiplication (MN) Shift 

16×P 536 0 30 

32×P 1272 80 60 

64×P 2544 160 70 

128×P 6608 960 140 

256×P 13216 1920 150 

 

The complexity of the inverse algorithm (for decryption) is exactly the same as the 

forward algorithm, the only difference is in the number of multiplications, where the 

transformed elements are multiplied by 1/N. In addition, subtraction is applied instead of 

addition in the variable and key addition layers. 

Table 5.12: Complexity of the NMNT 

N 
NMNT 

AN MN 

4 8 0 

8 22 2 

16 64 12 
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The number of different S-boxes used in the algorithm depends on the word length. 

For the default length of P = 7 only 7×7 S-boxes are used, but for word lengths greater 

than 7 both 7×7 S-boxes and 8×8 S-boxes are used. 

 

 

5.7 Discussion of the System 

Flexibility is one of the pillars of the design. For instance, key length, block length and 

word length are variable and can be set by the user or the system to provide efficient 

implementation and high levels of security. The default values are P = 7 for word length 

and 16×P for block and key length. However, if these parameters are set by the system, 

they are initialised based on the processor register length and message length. These 

parameters can be encrypted and embedded in a random location depending on the key, 

making it almost impossible for cryptanalysis to attack the system without prior 

knowledge of these parameters. 

After determining the above-mentioned parameters, a byte with a value of 1 is added 

at the end of the message. This indication of the end of the massage will be useful in the 

recovery process. Then the massage is padded if necessary to make its length a multiple 

of the chosen block size. Next, the plaintext is converted into a number of blocks with 

word length of P-bit. However, because the modulus is a power of two minus one, the 

problem may arise that the zero value and the Mp value are retrieved as a zero. This 

would only occur at the plaintext conversion stage, while all round transformations apply 

modular arithmetic operations. This problem can be avoided by using the CTR, OFB, or 

CFB mode as a mode of operation; otherwise, in order to overcome this possible 

problem two solutions have been proposed. The first solution imposes the insertion of 

one bit with a value of 0 at the beginning of each element, while the second solution 

depends on placing the addresses of elements with the value of Mp at the end of the 

ciphertext. The first method is accomplished by splitting the message into a number of 

blocks with P-1-bit elements and inserting a bit with a value of 0 at the beginning of each 

element, so that the element word length becomes P-bit. In this case the padding is based 

on the P-1-bit. This method guarantees that no elements enter the transform with the 

value of Mp; however, the actual data transfer in the block is a function of P, as shown in 

equation 5.11. For instance, for P = 7, the actual data transfer represents 85.7% of the 

total block size, and for P = 31 it is 96.8%. The second method is based on placing the 
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element addresses that have the value of Mp at the end of the message, in order to update 

their values at the final stage of the decryption phase.  

 

%100)
1

( 



p

p
ADT   (5.11) 

 

where ADT is the actual data transferred. 

 

At this stage the blocks are ready for processing, which starts by the initial key 

addition followed by a round transformation that runs rd times. The layers of the round 

functions are selected very carefully to ensure high diffusion throughout the rounds. 

After element substitution, a shifts transform is applied in order to shuffle the elements 

such that each resulting row holds elements from all rows. Then variable values are 

added to the elements at location N/4+1 from each row in the array in order to further 

complicate the correlation between the related elements and to eliminate cases that 

provide low diffusion in the transform so as to provide higher diffusion.  Next, the 

NMNT is applied to each row individually to mix all row elements, where each output 

element is a function of all input elements. Finally, a round key is added, which is 

derived from the key schedule algorithm.     

Using the transform accompanied by other layers in the process of generating round 

keys excludes the possibility that two different user-supplied keys may yield the same 

round keys. In addition, adding round numbers [3] will eliminate symmetries and thus 

prevent potential weak-key and related-key attacks.  

For CTR, OFB and CFB modes, the decryption procedures are applied in exactly the 

same as those for encryption, while for other modes of operation; they are applied in the 

reverse order. In addition, inverse functions are used instead, and the round keys are 

utilised in the reverse order. 

The default value for word length is appropriate for different platforms, such as on 

8-bit processor. For larger lengths of processor register, such as in the case of 32-bit, it is 

possible to retain the default value or utilise larger values of P such as P = 31, so as to 

increase the actual data transfer at each block and at the same time reduce the complexity 

which results from using a larger block size for the same amount of data. Accordingly, a 

larger amount of data is encrypted with higher levels of security and lower complexity. 

Likewise, for a 64-bit processor, an even larger P can be used, i.e. 61.  
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5.8 Algorithm Based on FNT 

The other proposed algorithm is exactly the same as the one proposed earlier regarding 

its structure in both directions and the generation of the keys; the only difference is in 

the transform that is used to provide local diffusion. In this algorithm the FNT is used 

instead of the NMNT and all other layers remain unchanged. The FNT is explained in 

detail in Chapter 3, and from the levels of diffusion power found in analysis it has been 

proven that the transform has good diffusion power [98].  

The integer t is chose to be 3, and therefore the modulus is               

and word length           bits. The selection of these parameters has a clear 

advantage during the implementation of the algorithm. The need for the conversion of 

elements at the beginning and end of the algorithm is eliminated, hence reducing the 

complexity resulting from this layer.  

The complexity of the forward transform using the split-radix fast algorithm is 

shown in equations 5.12 and 5.13 for the number of multiplications and additions, 

respectively [108]. Accordingly, the numbers of multiplications and additions for 

transform lengths 4, 8, and 16 are shown in Table 5.14. Consequently, the complexity of 

the overall forward algorithm (encryption) for different block sizes is shown in Table 

5.15. By setting the value of the kernel α to 2 or a power of 2, the multiplication 

operation can be implemented by shift and addition operations. 

 

    22/3log2/ 2  NNNMN

 (5.12) 

 

    42/5log2/3 2  NNNAN

 (5.13) 

 

 

 

 

 

 

 

 

 

Table 5.14: FNT complexity 

 FNT 

 N AN MN 

 4 6 0 

 8 20 2 

 16 60 10 
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Table 5.15: Complexity of the overall encryption algorithm (FNT) 

Block Size Addition (AN) Multiplication (MN) Shift 

16×P 456 0 30 

32×P 1192 80 60 

64×P 2384 160 70 

128×P 6288 800 140 

256×P 12576 1600 150 
 

The round keys generated by applying the key schedule algorithms are listed in 

Tables 5.16 and 5.17 for the first and second proposed techniques, respectively. The 

cipher key is “Dell Laptop”, which is used earlier in the example of the algorithm that is 

based on NMNT. 

A summary of encryption, including the intermediate results for all rounds, is given 

in Table 5.18 and the detailed implementation of the round transformation covering all 

round functions for the first three rounds is shown in Table 5.19 using the round keys 

listed in Table 5.16. The implementation is exactly the same as that with NMNT; the 

only difference is in eliminating the rows related to word length conversion. Row 16 in 

Table 5.18 is the ciphertext for the plaintext “Blue Lines” in row 1, while row 17 is the 

ciphertext for the same input encrypted with the round keys generated in the second 

technique as listed in Table 5.17.  

 

Table 5.16: Round keys generation using first technique based on FNT 

Kc 68 101 108 108 32 76 97 112 116 111 112 180 25 133 241 17 

Kr1 238 25 137 161 121 198 66 42 187 148 7 67 19 162 146 214 

Kr2 95 142 8 249 157 92 214 98 172 207 65 45 76 167 198 157 

Kr3 206 61 256 55 187 41 82 227 230 70 155 119 22 174 247 225 

Kr4 163 47 43 9 71 249 28 78 103 116 96 237 190 12 88 222 

Kr5 133 256 74 137 226 211 205 179 207 190 107 52 137 193 56 154 

Kr6 8 65 5 177 249 146 72 62 34 178 193 159 241 80 16 28 

Kr7 227 138 75 54 182 169 171 227 201 130 206 167 76 93 138 237 

Kr8 138 209 104 62 100 131 145 151 1 48 196 160 100 38 205 4 

Kr9 11 71 115 253 226 12 113 112 71 184 109 36 38 254 197 174 

Kr10 26 195 103 253 37 137 78 27 160 215 203 33 97 167 52 109 



5.8            Algorithm Based on FNT 

126 

 

Table 5.17: Round keys generation using second technique based on FNT 

Kc 68 101 108 108 32 76 97 112 116 111 112 180 25 133 241 17 

Kr1 207 224 189 40 43 242 147 72 190 93 1 112 74 212 26 140 

Kr2 45 29 83 65 129 150 43 221 169 179 173 32 78 197 124 48 

Kr3 158 157 114 141 109 91 174 155 77 55 94 71 116 112 198 64 

Kr4 52 23 214 48 255 54 91 173 228 121 180 66 248 25 147 43 

Kr5 146 126 79 1 173 40 209 58 217 31 90 204 87 186 3 63 

Kr6 179 249 99 95 135 113 100 208 11 157 72 171 116 21 180 204 

Kr7 34 152 256 4 149 70 43 63 185 131 162 122 51 66 154 21 

Kr8 110 26 98 29 118 34 233 93 210 227 177 40 165 51 243 60 

Kr9 229 254 153 137 71 39 144 75 188 128 67 122 173 254 39 233 

Kr10 111 37 53 104 248 150 150 48 138 50 22 112 22 7 38 117 

 

Table 5.18: Encryption step for algorithm based on FNT 

1 B l u e  L i n e s       

2 66 108 117 101 32 76 105 110 101 115       

3 66 108 117 101 32 76 105 110 101 115 1 0 0 0 0 0 

5 134 209 225 209 64 152 202 222 217 226 113 180 25 133 241 17 

6 129 226 61 91 158 188 137 164 210 152 232 225 59 239 174 225 

7 17 198 254 149 169 32 124 7 247 228 105 71 38 198 96 221 

8 126 36 105 6 153 34 239 2 90 82 215 236 187 200 130 102 

9 193 69 245 22 136 88 139 170 38 94 157 74 90 117 187 248 

10 102 25 11 248 84 172 42 193 42 78 47 124 245 27 11 106 

11 51 136 152 226 27 214 166 99 215 251 245 140 242 72 57 133 

12 105 233 91 137 49 197 94 61 143 114 11 252 226 252 150 1 

13 201 114 1 174 104 78 213 48 143 213 197 135 45 246 102 248 

14 227 164 108 6 238 190 102 31 60 94 33 247 219 186 33 16 

15 20 227 127 87 112 107 40 104 50 209 19 58 68 239 28 236 

16  ã  W p k ( h 2 Ñ  : D ï  ì 

17 M ‘  ? w Ð «  š 8 [ Õ È  ‚ Š 
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Table 5.19: Three rounds encryption based on FNT using keys from first technique 

 Round 1  Round 2  Round 3 

R
o
u
n
d
’s

 I
n
p
u
t 134 64 217 25  129 158 210 59  17 169 247 38 

209 152 226 133  226 188 152 239  198 32 228 198 

225 202 113 241  61 137 232 174  254 124 105 96 

209 222 180 17  91 164 225 225  149 7 71 221 

               

E
le

m
en

ts
 S

u
b
. 

 

68 9 53 212  12 11 181 226  130 211 104 247 

62 70 152 151  152 101 70 223  180 183 105 180 

248 116 163 161  39 167 155 228  187 16 249 208 

62 29 141 130  57 73 248 248  42 197 160 193 

               

S
h
if

ts
 T

ra
n
sf

. 62 116 152 212  57 167 70 226  42 16 105 247 

68 29 163 151  12 73 155 223  130 197 249 180 

62 9 141 161  152 11 248 228  180 211 160 208 

248 70 53 130  39 101 181 248  187 183 104 193 

               

V
ar

ia
b
le

 A
d
d
. 

 

62 236 152 212  57 83 70 226  42 40 105 247 

68 76 163 151  12 180 155 223  130 187 249 180 

62 74 141 161  152 132 248 228  180 72 160 208 

248 13 53 130  39 203 181 248  187 238 104 193 

               

N
M

N
T

 

148 37 23 40  179 12 75 219  177 223 117 165 

201 247 4 77  56 197 21 31  232 250 12 26 

181 71 225 28  246 167 40 155  106 157 60 140 

187 122 158 11  157 166 26 64  208 32 117 134 

               

R
o
u
n
d
 K

ey
 238 121 187 19  95 157 172 76  206 187 230 22 

25 198 148 162  142 92 207 167  61 41 70 174 

137 66 7 146  8 214 65 198  256 82 155 247 

161 42 67 214  249 98 45 157  55 227 119 225 

               

A
d
d
in

g
 K

ey
 129 158 210 59  17 169 247 38  126 153 90 187 

226 188 152 239  198 32 228 198  36 34 82 200 

61 137 232 174  254 124 105 96  105 239 215 130 

91 164 225 225  149 7 71 221  6 2 236 102 
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The algorithm can also be used efficiently to encrypt images, Figure 5.4 shows an 

example of the encryption of a medical image, where the image in Figure 5.4.b is the 

result of the encryption of the image in Figure 5.4.a, and the image in Figure 5.4.c is the 

decrypted image which is exactly the same as the original using the correct key. While 

in Figure 5.4.d the encrypted image is decrypted with the correct key. However, one of 

the key bits is flipped, and the decrypted image is totally different from the original. 

 

 
a. Original image 

 
b. Encrypted image 

 
c. Decrypted image with the correct key 

 
d. Decrypted image with incorrect key 

 

Figure 5.4: Image encryption/decryption with correct/incorrect key based on FNT 

 

 

5.9 Conclusions 

A new iterated symmetric-key block cipher based on the NTT has been designed and a 

number of test vectors have been run to verify its correctness. The flexibility of the 

design makes the cipher suitable for implementation on different platforms and levels of 

security required. The cipher has a variable block size and key length, with a size range 
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of (16, 32, 64, 128, or 256)×P, where the word length P can be 7, 31, 61, or 127. The 

possibility that the system can secretly select an appropriate block size and word length 

increases the security of the overall system by hiding those parameters from the 

attacker. The cipher is fully parameterised for word length, key length and block size. 

Even the number of rounds, although identified here as ten, it can be changed to adhere 

to security requirements, so as to ensure practical usage for the proposed lifetime. The 

general structure of the cipher is based on the SPN, which alternately implementing 

confusion layers represented by the S-boxes and diffusion layers which process the 

NTT to provide a high local diffusion, in addition, to the shifts transformation to 

disperse the elements. 
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Chapter 6 

 

Cryptanalysis 

 

 

 

In this chapter the main types of cryptanalytic attacks, namely those arising from the use 

of differential and linear cryptanalysis, are described and considered in relation to the 

proposed NMNT based cipher. The chapter is organised as follows: after the 

introduction a classification of types of attacks is presented in section 6.2. Then, in 

section 6.3 the criteria of attacks are listed while in sections 6.4 and 6.5 general 

descriptions of differential and linear cryptanalysis are given, respectively. Section 6.6 

discusses in detail the differential and linear cryptanalytic attacks on the proposed 

algorithm. Sections 6.7-6.9 explain related-key, slide and brute-force attacks, 

respectively. Weak keys are discussed in section 6.10, and finally the conclusions of the 

chapter are presented in section 6.11. 

 

 

6.1 Introduction 

The objective of an attack is to recover a plaintext from a given ciphertext without prior 

knowledge of a key, or it may attempt to find a cipher key in order to recover all 

ciphertexts encrypted with this key. Generally, a system is considered broken if the 

cryptanalyst can succeed in recovering the plaintext having used less computational 
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effort than that required for an exhaustive key search, even if this success is only 

theoretical, since as unfeasible amount of data, memory or time could be required. 

Therefore, the cryptanalyst’s efforts are focused on analysing the cipher in order to 

search for possible weaknesses that could be exploited in attacking it at a level of 

complexity less than an exhaustive key search [109]. 

Two well-known powerful types of attacks can be considered: differential and 

linear cryptanalysis. Differential cryptanalysis [43] is a chosen-plaintext attack which 

mainly observes the differences in ciphertext pairs as a function of a particular 

difference in a plaintext pair. This can then be exploited to allocate probabilities to 

potential keys. On the other hand, linear cryptanalysis [56] is a known-plaintext attack 

which tends to construct an expression of linear approximations for a given algorithm, 

resulting in a high probability of estimating one or more of the key bits. 

Consideration of these two types of attack plays a crucial role in the design and 

development of the infrastructure of the cipher ranging from selecting the components 

and their order to producing the final model. The possibility of other types of attacks 

may later require a minor modification to the final design [3] or the addition of extra 

rounds [110]. 

Resistance to differential and linear cryptanalysis have now almost become 

benchmarks in assessing the robustness of an algorithm. Hence, for any suggested 

algorithm, a verification of robustness against such attacks is considered essential. 

 

 

6.2 Classification of Attacks 

In chapter 2, attacks were classified on the basis of what resources are available to the 

cryptanalyst, considering that the cryptanalyst has full details of the algorithm. In this 

section attacks are classified in another way, based on additional information related to 

the physical properties of the implementation. So, in general, attacks can be classified 

into three categories as follows: 

1. Brute-force attacks 

This type of attack can be applied to any block cipher regardless of its strength. 

It does not depend on the internal structure of the cipher, but instead the attacker 

considers the cipher as a black box. The complexity of such attacks depends on 

the length of the key. The attack, also known as an exhaustive key search, 

requires one or a few known plaintext-ciphertext pairs encrypted with the same 

key. The key will be recovered by trying every possible key until the correct text 
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is obtained. In the worst cases, all possible keys would be checked, i.e. 2
nk

, 

where nk is the number of key bits, and on average half of all possible keys are 

tried until the key is recovered, 2
nk-1

. Therefore the key space of the system 

should be large enough to frustrate this attack, and this represents the upper 

bound for the security of the system. The lower bounds for computationally 

equivalent key sizes for different cryptosystem have been recommended with an 

acceptable security margin for the years ranging from 1982 to 2050 [111], as 

shown in Table 6.1. The authors of this study predicted that the computational 

complexity required to attack an 86-bit symmetric key in 2020 would be 

considered impracticable, as was the case with the DES in 1982.  

 

Table 6.1: Equivalent key sizes  

Year 
Symmetric Key 

Size 

Classical Asymmetric 

Key Size 

Elliptic Curve Key 

Size 

1982 56 417 105 

1990 63 622 117 

2000 70 952 132 

2010 78 1369 146 

2020 86 1881 161 

2030 93 2493 176 

2040 101 3214 191 

2050 109 4047 206 

 

Despite the recommended key lengths cited in Table 6.1 [111], current 

cryptosystems have larger key spaces, providing more security. In the current 

standard the AES, the key space is 128-bit and it can support 192 and 256-bit.  

Table 6.2 shows the time required to recover a key for different algorithms 

and various key spaces as calculated in a subsequent study [12]. The results in 

column 3 are calculated by assuming that each decryption is performed in 1 

microsecond, whereas the results in the right-hand column consider that the key 

can be recovered by processing 1 million decryptions per microsecond, 

assuming that the operations are performed in parallel with access to a network 

with a huge number of machines. It is clear from the results that the DES 

algorithm can currently be subject to exhaustive key search attacks and, 
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accordingly, it is no longer considered secure. The other calculations are for the 

AES and for the proposed algorithm, where for the latter the results are 

computed for a default word length of P = 7. For longer words even longer times 

are obtained. 

 

Table 6.2: Require time for exhaustive key search  

Algor. 
Key size 

(bits) 
Key Space 

Time required at 

1 decryption/µs 

Time required at 

10
6
 decryption/µs 

     

DES 56 2
56

 = 7.2 × 10
16

 2
55

 µs = 1142 years 10.01 hours 

AES 

 

128 

 

2
128

 = 3.4 × 10
38

 

 

2
127

 µs = 5.4 × 10
24 

years 

 

5.4 × 10
18

 years 

192 2
192

 = 6.3 × 10
57

 2
191

 µs = 9.9 × 10
43 

years 9.9 × 10
37 

years 

256 2
256

 = 1.2 × 10
77

 2
255

 µs = 1.8 × 10
63 

years 1.8 × 10
57

 years 

NMNT 

 

112 

 

2
112

 = 5.2 × 10
33

 

 

2
111

 µs = 8.2 × 10
19 

years 

 

8.2 × 10
13

 years 

224 2
224

 = 2.7 × 10
67

 2
223

 µs = 4.3 × 10
53 

years 4.3 × 10
47

 years 

448 2
448

 = 7.3 × 10
134

 2
447

 µs = 1.2 × 10
121 

years 1.2 × 10
115 

years 

896 2
896

 = 5.3 × 10
269

 2
895

 µs = 8.4 × 10
255 

years 8.4 × 10
249 

years 

1792 2
1792

 = 2.8 × 10
539

 2
1791

 µs = 4.4 × 10
525 

years 4.4 × 10
519 

years 

 

2. Shortcut attacks 

Shortcut attacks are concerned with the internal structure of the cipher. The 

attacker mathematically analyses the interior components of the cipher to 

diagnose undesirable probabilistic characteristics that can be exploited in 

attacking the system in an attempt to deduce the key being used. The well-

known attacks of differential and linear cryptanalysis fall into this category.  

3. Side-Channel attacks 

This attack is also known as an implementation attack, exploiting the physical 

properties of the cipher’s implementation in addition to its mathematical 

characteristic. For instance, a timing attack [112] investigates the execution time 

of the algorithm in order to derive the key. This type of attack is applicable to a 

cipher if the execution time is not the same for all processed data, but is a 

function of the data itself and/or the key. Another type of such an attack is power 
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analysis [113] which derives key information by considering the power 

consumption of the machine that is processing the encryption algorithm. 

 

 
6.3 Criteria of Attack Success 

The success of an attack is evaluated based on three criteria: the time, memory and data 

complexity required to conduct the attack successfully [114].  

 

a. Time complexity refers to the number of computational steps required to attack 

an algorithm successfully.  

b. Memory complexity concerns the amount of memory necessary for processing 

the attack on an algorithm. 

c. Data complexity is the number of data items of known, chosen or adaptively 

chosen plaintext and/or ciphertext required by the cryptanalyst to attack the 

algorithm effectively. 

 

Accordingly, an attack is considered successful and the cipher is considered broken 

if the key can be recovered in a period of time shorter than would be required for an 

exhaustive key search, i.e. requiring time complexity of significantly less than 2
nk

, 

where nk denotes the number of key bits. On the other hand, the cipher is considered 

partially broken if part of the plaintext is revealed in the same time period. 

In a similar manner, the cipher can be characterised by encrypting all different 

plaintexts with the same key, this lead to the determination of an upper bound of 2
nb

 for 

the data complexity to a successful attack, where nb is the block length in bits.  

According to the above, an attack is considered successful if it requires a time 

complexity of significantly less than 2
nk

 or a data complexity of significantly less than 

2
nb

 [114]. 

It is also possible to assess the robustness of an algorithm by quoting the maximum 

number of rounds an attacker has successfully broken the reduced-round version of the 

cipher. For instance, the AES algorithm has been attacked with a maximum of 7 rounds 

for reduced-round version AES-128 with 2
110

 time complexity and 2
106

 data complexity 

[49], a maximum of 8 rounds for reduced-round AES-192 with 2
185

 time complexity 

and 2
126

 data complexity [50], and also 8 rounds for reduced-round AES-256 with 2
209

 

time complexity and 2
126

 data complexity [50]. 
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6.4 Differential Cryptanalysis 

Differential cryptanalysis is one of the most powerful types of attack against block 

ciphers, and was initially proposed by Biham and Shamir in 1990 [43] as a method of 

attacking the DES algorithm and a variety of DES-like cryptosystems.  

Differential cryptanalysis is a chosen-plaintext attack which uses only the resultant 

ciphertext to derive the key; it requires a large number of plaintext-ciphertext pairs with 

a particular input difference to allocate the right values to the key bits. The technique 

investigates the consequence of certain differences in plaintext pairs on differences in 

the resulting ciphertext pairs, which can be exploited to assign probabilities to the 

values and locations of possible key bits.  

The mechanism used in the attack can be described as follows. Firstly, an n-round 

characteristic with high probability has to be built. An n-round characteristic represents 

the values of difference gathered from XORing a pair of plaintexts, then XORing its 

resultant ciphertexts, and finally XORing its inputs to each round and its outputs from 

each round. The probability of the characteristic is then the probability that a plaintext 

pair with a particular difference has the round and ciphertext differences represented in 

the characteristic. Secondly, from the characteristics an intermediate difference is 

assumed at the input of the last round (in general) for each pair. This value along with 

the absolute value of the output pairs determines the number of key bits to be counted. 

If the assumed value and the absolute value match, then this pair is called the ‘right 

pair’, which suggests a number of right and wrong subkey values. The number of 

suggested values differs from pair to pair. Each suggested value is assigned to a 

counting table and, after processing a sufficient number of pairs, the right subkey can be 

identified since its value is suggested more frequently. Those pairs whose values of 

absolute output do not match the assumed values are called ‘wrong pairs’, and usually 

their suggested values are incorrect as they suggest random values. 

An essential requirement for this attack to be successful is to find a high probability 

characteristic, in addition to provide a sufficient number of ciphertext pairs.    

Differential cryptanalysis has succeeded in breaking the full DES version with a 

complexity of 2
47

 for chosen plaintext, which is less than that needed in an exhaustive 

key search which required in the worst case 2
56

 steps [40]. The attack also succeeded in 

breaking a 4-round reduced version of the current standard AES with a time complexity 

of 2
40

 [115]. 
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6.5 Linear Cryptanalysis 

Linear cryptanalysis [56] is a known-plaintext attack. It approximates the cipher in a 

linear manner by constructing expressions of an effective linear approximation for the 

entire algorithm with a high probability of identifying one or more of the key bits. The 

expression of linear approximation that the attacker seeks to construct is shown in 

equation 6.1. For a successful attack, the bias for a given expression should be large 

enough, that is, the probability should be away from 1/2. The bias, which represents the 

effectiveness of equation 6.1, is shown in equation 6.2. 

 

                      (6.1) 

 

               (6.2) 

 

where PT, CT and K stand for the plaintext, ciphertext and key, respectively. 

[  ] denotes the bitwise XORing of a number of bits in fixed bit locations. 

  and Pr represent the bias and probability of the expression. 

 

Two algorithms were proposed in a previous study [56] for identifying the key bits 

from given expressions of a linear approximation holding a high probability. The 

concept of the two algorithms is the same where the algorithm counts the number of 

pairs from the total number of pairs that makes the left side of equation 6.1 equal to 

zero. Then the bit value of the key can be deduced based on the maximum likelihood 

method. In the second algorithm more than one bit from the key bits can be deduced 

resulting in practice in a more efficient algorithm.    

Linear cryptanalysis has succeeded in breaking the full DES cipher by finding 14-

bit of the key using 2
47

 known-plaintexts, where the remaining key bits can be 

recovered completely at a level of complexity less than that needed for an exhaustive 

key search.  

For the AES algorithm, it has been concluded [116] that linear cryptanalysis can be 

effective in deducing key bits only for the reduced-round version and up to the first 

three rounds, due to the small bias of its S-box. 
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6.6 Differential and Linear Cryptanalytic Attacks 

The nature of differential and linear cryptanalysis, as explained in sections 6.4 and 6.5 

has been taken into consideration in the present design. The robustness of the algorithm 

against these two types of attacks has been examined based on the calculation of two 

main parameters: the non-linear properties of all of the S-boxes involved; and the lower 

bounds for the number of active S-boxes at each round. The S-box is considered active 

if its input difference pattern or output selection pattern are non-zero. 

The proposed cipher is designed based on the wide trail design strategy [3]. This 

ensures that both the maximum probability of the differential characteristics and the 

IOCmax of the linear characteristics are low. To achieve this, it is important to design an 

S-box with highly non-linear properties, such that the DPPmax and the IOCmax are both at 

a minimum, in addition to finding a mechanism to maximise the number of active S-

boxes [3]. 

In order to build a system which is secure against differential cryptanalysis, the 

probability of the characteristic should be smaller than 2
1-nb

, where nb is the block size 

in bits. To achieve this the number of rounds should be chosen in such a way that there 

are no differential characteristics with a weight lower than nb [3], where a differential 

characteristic consists of a sequence of difference patterns whose weight represents the 

sum of the weights of all patterns concerned. In other words, the weight of the 

differential characteristic can be computed by summing the weights of all active S-

boxes involved. This can be reformulated as the result of multiplying the number of 

active S-boxes and the minimum differential weight per S-box.  

Furthermore, the system can resist linear cryptanalysis if the amplitude of the input-

output correlation is smaller than 2
-nb/2

. This can be achieved by increasing the number 

of rounds such that there are no linear characteristics with a correlation over nk
-1

2
-nb/2

 

[3], where nk stands for the key length in bits. Similarly to the differential characteristic, 

a linear characteristic consists of a sequence of patterns whose weight represents the 

sum of the weights of all patterns concerned. The weight of the linear characteristic can 

be computed by summing the weights of all active S-boxes involved. Therefore, it is the 

result of multiplying the number of active S-boxes and the minimum correlation weight 

per S-box. 

Therefore, to construct a secure system, it is required first to count the number of 

rounds necessary to make the system secure against differential and linear cryptanalysis, 

and then to add a few additional rounds to guard against other possibly attacks and for 
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security margins. For instance, the analysis of the security of the AES algorithm with a 

128-bit key length indicated that the algorithm is secure against differential and linear 

cryptanalysis from round four; however a saturation attack [117] can break the reduced-

rounds versions up to six rounds. Hence, additional rounds are added that provide 

double full diffusions as a security margin, making in total 10 rounds. 

In order to determine the number of rounds necessary to make the cipher secure 

against differential and linear cryptanalysis, it is first required to calculate the non-linear 

properties of all S-boxes involved. This can be achieved, as explained in Chapter 4, by 

building up the XOR distribution and linear approximation tables. From these, the 

DPPmax and the IOCmax can be calculated. These two values have already been 

computed in Chapter 4 for the S-boxes concerned, which are the 7×7 S-box and the 8×8 

S-box. For the 7×7 S-box, the DPPmax = 2
-6

 and the PBmax = 2
-3.678

 or the IOCmax = 2
-2.678

. 

For the 8×8 S-box, the DPPmax = 2
-6

 and PBmax = 2
-4

 or the IOCmax = 2
-3

. 

In the proposed cipher the arithmetic operations are performed modulo Mp, because 

the value of the modulus is 2
P
-1, hence there is a possibility that a value of 2

P
 will 

appear after mapping the elements through the S-boxes. Therefore, to avoid such a 

possible problem from arising, all S-boxes involved are modified so that the maximum 

value is swapped to map to itself in order to prevent its appearance after mapping. 

 

The swapping in the 7×7 S-box and its inverse is as follows: 

        s_box(82) = 44;         inv_s_box(44) = 82; 

        s_box(127) = 127;    inv_s_box(127) = 127; 

 

For 8×8 S-box and its inverse the swapping is as follows: 

        s_box(125) = 22;         inv_s_box(22) = 125; 

        s_box(255) = 255;    inv_s_box(255) = 255; 

 

Although one element is only swapped at each S-box, the non-linear properties then 

need to be recalculated since this change could have a positive or negative effect on 

those properties. Accordingly, the XOR distribution and linear approximation tables for 

both the 7×7 S-box and the 8×8 S-box have been rebuilt, and the DPPmax and the IOCmax 

are recalculated. For the 7×7 S-box, the DPPmax is 2
-5

, or in weight form it is equal to 5, 

observing that the weight is the negative of the binary logarithm of DPPmax. The IOCmax 

from the linear distribution table is 20/128, equivalent to 2.678 in weight form. For the 
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modified 8×8 S-box, the DPPmax is 6/256, or in weight form equal to 5.415, and the 

IOCmax is 36/256, equivalent to 2.83 in weight form. For larger values of P, the weight 

is calculated by summing the weights of the S-boxes involved. It is clear from the 

results that the swapping of elements has slightly reduced the non-linear properties of 

the S-boxes. This, however, cannot be avoided yet at the same time the resulting non-

linear properties can still be considered to be good. 

Once the non-linear properties have been calculated, it is then possible to compute 

the minimum number of active S-boxes required to make the system secure against 

differential and linear cryptanalysis. This can be achieved directly using equations 6.3 

and 6.4, respectively, which are derived from [3]. The minimum number of active S-

boxes required for different block sizes is shown in Table 6.3: 

 

                             (6.3) 

 

                   
                     (6.4) 

 

where Bmin is the minimum active S-boxes for differential (DC) and linear 

(LC) cryptanalysis, nb is the block size, nk is the key size, and W is the 

weight of the DPPmax and IOCmax.  

 

The next step is to determine the lower bounds for the number of active S-boxes at 

each round; this can be achieved by using equation 3.18. This step is implemented by 

processing only the linear parts of the algorithm in addition to excluding the initial key 

addition and the round key addition layers. The simulation results for an input weight of 

2 and for different block sizes are shown in Table 6.4. The input weight of 2 was chosen 

since it produces the worst level of diffusion.  

By comparing the results in Table 6.4 with those in Table 6.3, it can be concluded 

that the algorithm is secure against differential and linear cryptanalysis from round three 

for all block sizes.  

The simulation results also confirm that no 3-round differential characteristic and 

linear characteristic exists with a probability greater than the approximate results listed in 

Table 6.5 for different block sizes and word lengths. 
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Table 6.4: The lower bounds of the number of active S-boxes per round 

Round 

Number 

Block Size 

16×P 32×P 64×P 128×P 256×P 

1 2 2 2 2 2 

2 10 18 50 98 226 

3 26 50 112 223 477 

4 42 81 174 350 728 

5 57 113 238 477 947 

6 73 144 302 603 1197 

7 88 176 365 729 1449 

8 104 208 429 855 1701 

9 120 239 493 980 1951 

10 135 271 557 1105 2204 

 

Table 6.5: 3-Round differential and linear characteristics 

Block Size P = 7 P = 31 P = 61 P = 127 

DPP IOC DPP IOC DPP IOC DPP IOC 

16 × P 2
-130 

2
-70 

2
-552 

2
-290 

2
-1094 

2
-577 

2
-2242 

2
-1173 

32 × P 2
-250 

2
-134 

2
-1062 

2
-558 

2
-2104 

2
-1109 

2
-4311 

2
-2256 

64 × P 2
-560 

2
-300 

2
-2379 

2
-1251 

2
-4712 

2
-2485 

2
-9657 

2
-5054 

128 × P 2
-1115 

2
-597 

2
-4738 

2
-2490 

2
-9383 

2
-4947 

2
-19228 

2
-10064 

256 × P 2
-2385 

2
-1277 

2
-10134 

2
-5327 

2
-20070 

2
-10582 

2
-41129 

2
-21526 

Table 6.3: Minimum number of active S-boxes required 
  

Block Size 

Minimum number of active S-boxes required to make the 

system secure against: 

Differential cryptanalysis Linear cryptanalysis 

16×P 23 24 

32×P 45 45 

64×P 90 87 

128×P 179 171 

256×P 359 339 
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To evaluate the results obtained, the same procedures are followed with the 

Rijndael AES algorithm, Table 6.6 represents the number of active S-boxes necessary to 

make the Rijndael AES secure against differential and linear cryptanalysis, and Table 

6.7 gives the simulation results for the lower bounds of the number of active S-boxes at 

each round, for an input weight equal to 2. By comparing the results in Tables 6.6 and 

6.7, it can be concluded that, for a block size of 128-bit, four rounds is enough to secure 

the algorithm from these two attacks, while for a block size of 256 a further round is 

required. This is the reason for increasing the number of rounds with larger key or block 

sizes with the Rijndael AES, which is not the case with the proposed algorithm. 

 

Table 6.6: Minimum number of active S-boxes required for Rijndael AES 

Block Size 

Minimum number of active S-boxes required to make the 

system secure against: 

Differential cryptanalysis Linear cryptanalysis 

128 22 24 

256 43 46 

 

 

 

Table 6.7: The lower bounds of the number of active S-boxes per round for 

Rijndael AES 

Round Number 
Block Size 

128 256 

1 2 2 

2 5 5 

3 17 17 

4 30 43 

5 32 74 

6 40 105 

7 52 128 

8 60 136 

9 62 138 

10 70 146 
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In Figure 6.1 the results from both the proposed algorithm and the Rijndael AES 

algorithm for all block sizes are represented graphically. The horizontal lines represent 

the boundaries for differential and linear cryptanalysis, which are nearly the same for 

both algorithms. The system is considered secure when the curves pass these 

boundaries. It is clear from the figure that the proposed algorithm exhibits good 

diffusion and is secure against both differential and linear cryptanalysis from round 

three, regardless of block size. 
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Figure 6.1: Minimum number of active S-boxes for different rounds and block sizes 
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6.7 Related-key Attacks 

A different type of attack had been developed [118] which is based on the structure of 

the key schedule algorithm. This attack exploits the relationship between the keys to 

attack the cipher, and it demonstrates the importance of the key schedule algorithm to 

the overall security of the cipher so that care in this regard should be taken in the design. 

The attack was successful in attacking the LOKI [34] and Lucifer [119] algorithms. 

However it does not work with the DES [2] algorithm since the shift pattern used in the 

key schedule algorithm differs from round to round. In the AES [3] algorithm, round 

numbers are added in the process of the generation of the key schedule algorithm, which 

eliminate symmetries so as to prevent potential related-key attacks. 

In the proposed cipher, the key schedule algorithm is designed to be strong enough 

to survive against this type of attack. It is designed with high diffusion and non-

linearity, and in addition each round key generated depends on all previously generated 

keys as well as the cipher key and the round number. Together these measures exclude 

the possibility of weak-key and related-key attacks. 

 

 

6.8 Slide Attacks 

The slide attack [120, 121] is a powerful attack applicable to iterative block ciphers with 

a high degree of self-similarity, where the attack is independent of the number of 

rounds. In order to build a cipher resilient to such an attack, it is important to eliminate 

symmetry in the key schedule or in the round transformation in the main algorithm. 

The proposed cipher is designed to be immune to such an attack by adding a 

variable addition layer in the round functions. The value of the variable is a function of 

the row number, the round number and the block number, and the value changes 

accordingly from round to round as well as from block to block. In addition, a round 

constant is added in the key schedule algorithm. 

 

 

6.9 Brute-Force Attacks 

The complexity of exhaustive key search attacks depends on the length of the cipher 

key, which is the key length to the power of 2 or on average half of this amount. Table 

6.8 summarises the general levels of complexity associated with the exhaustive key 

search for different block sizes and variable word length.  
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Table 6.8: Exhaustive key search complexity 

Block Size 16×P 32×P 64×P 128×P 256×P 

Complexity 2
16×P

 2
32×P

 2
64×P

 2
128×P

 2
256×P

 

Average 2
(16×P)-1

 2
(32×P)-1

 2
(64×P)-1

 2
(128×P)-1

 2
(256×P)-1

 

 

 
 

6.10 Weak Keys 

Weak keys are those which produce output with detectable weaknesses, such as could 

occur if the non-linear parts of the cipher are key-dependent, which is not the case with 

the proposed cipher. A good example of weak keys are those found in the IDEA [122]. 

 

 

6.11 Conclusions 

The security of the proposed algorithm against both differential and linear cryptanalysis 

has been considered, and security has been evaluated against the upper bounds of the 

probabilities of maximum differential characteristics and maximum linear 

characteristics, based on the DPPmax, IOCmax, and the minimum numbers of active S-

boxes. The simulation results confirm that the cipher is secure against such attacks from 

round three regardless of the block sizes and word lengths  
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Chapter 7 

 

Architecture Design and FPGA Implementation 

 

 

 

In this chapter efficient hardware architectures for the proposed cipher are designed and 

implemented using Xilinx FPGA technology. The chapter is organised as follows. 

Section 7.1 gives a brief introduction to the topic. Section 7.2 lists the specifications of 

the target FPGA device. The design of the system is described in detail in section 7.3 

and its correctness is verified in section 7.4. The implementation of the system is carried 

out in section 7.5 and device configuration is outlined in the following section.  The 

results are discussed in section 7.7, and the complexity of the design is mentioned in 

section 7.8. Finally, the conclusions of the chapter are drawn in section 7.9.  

 

 

7.1 Introduction 

A hardware description language (HDL), such as VHDL or Verlog is usually used in the 

design flow to program FPGA boards. However, in order to reduce the complexity and 

design time, Xilinx System Generator is used, which allows a rapid development of the 

algorithm using the Matlab and Simulink data flow environment. System Generator is a 

powerful development tool that allows the designer to model a design entirely in a 

graphical environment. It consists of a Simulink library called the Xilinx Blockset 

which has direct mapping to HDL. The steps in the design are illustrated below. 
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7.2 Device Specifications 

The target device is Virtex-6 XC6VLX130T-2FF484, which is chosen based on the 

amount of resources the design required. This device is implemented in 40nm CMOS 

process technology with a core voltage of 1.0V. It is volatile, since the device is based 

on SRAM technology, and therefore device configuration file must be reloaded 

whenever the FPGA is powered up. 

The internal structure of this device can be summarised as follows. Each 

configurable logic block (CLB) consists of two slices, and each slice contains 4 LUTs, 8 

flip-flops, a multiplexer and arithmetic carry logic. The LUT can be configured as either 

6-input LUT (64-bit ROMs) with one output, or as two 5-input LUTs (32-bit ROMs) 

with 2 outputs. The LUTs of up to half of the available slices also can be used as a 

distributed 64-bit RAM or as a 32-bit shift register (SRL32) or dual SRL16s. The device 

consists of the following resources: 

 10,000 CLB (20,000 Slices and 1740 Kb Distributed RAM). 

 480 DSP48E1 Slices, each containing a 25×18 bit 2’s complement multiplier, 

adder and a 48-bit accumulator, which can operate at 600 MHz. 

 9504 Kb Block RAM Blocks; each Block RAM is either 36Kb or 18Kb.  

 5 CMTs (Clock Management Tiles). 

 4 Ethernet MACs (Media Access Control). 

 20 GTX Transceivers (ultra-fast serial data transmission that combines 

transmitter and receiver and can operate at a data rate up to 6.6 Gbits/sec). 

 15 I/O Banks (40 pins per bank). 

 

 

7.3 System Design 

The proposed algorithms are efficiently designed using Xilinx FPGA System Generator 

which is a visual programming environment. This is a system-level design tool that 

allows system developer to utilise graphical data entry.  

 

7.3.1 Design of the Components  

The description of all components and layers involved in the design of the encryption 

and decryption modules as well as in the generation of the round keys for block size of 

16×7 bits are illustrated below. 
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 Padding and Preparing the Plaintext 

In this layer the plaintext is read from memory and converted from serial to parallel 

form with a predetermined block size of 12 bytes, where the plaintext should enter the 

cipher as a sequence of full blocks. The last block is padded with a byte of the value of 

1 as an indication of the end of the message, and then it is padded with a number of 

bytes with a value of 0 if necessary to fill the block. This layer is illustrated in Figure 

7.1. 

 

 

 

Figure 7.1: Preparing the plaintext 

 
 

First of all, sufficient locations are reserved for the plaintext and the padded bytes 

in the Xilinx Single Port RAM shown in Figure 7.1. This is achieved as shown in Figure 

7.2 by setting the depth of the memory according to the following formula:    

     
                  

  
 . These two extra bytes are added to the length of the message, 

so as to take into account the insertion of a byte which indicates the end of the message 

and another which is imposed as a result of that insertion. The actual values of the 

plaintext are assigned to the memory through the initial value vector.  
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Figure 7.2: Memory setting 

 

The Xilinx Counter block, which is titled ‘Counter1’ in Figure 7.1, is used to 

allocate locations in the memory for read/write data. It counts from 0 up to the total 

number of bytes in the plaintext including the padded bytes. The setting of the counter 

is shown in Figure 7.3, for instance the parameter ‘Count to value’ is set according to 

the same formula used in setting the depth of the memory minus 1, as the counter counts 

from 0. 

The Xilinx Relational block ‘Relational1’ is used as a comparator. It compares the 

counter’s value of ‘Counter1’ with the constant ‘Constant1’ whose value is set to the 

total number of bytes of the plaintext without considering the padded bytes. If there is 

no matching, the data is continuously read from the memory according to the addresses 

pointed to by the counter. If they match, that is, at the end of the message, a byte of the 

value of 1 is written in the memory at that location. This can be achieved by passing the 

value of 1 to the memory read/write control signal to set write mode and to the data 

input port to write this value after converting the data type from Boolean to an unsigned 

integer number 8-bit in length through the casting block.  

The Xilinx Relational block ‘Relational2’ compares the counter’s value of 

‘Counter2’ that counts from 0 to 13 with the constant ‘Constant2’ whose value is set to 

12 based on the block size which is 12 bytes. Both memory and first counter ‘Counter1’ 

remain enabled if the value of Counter2 is less than the value in Constant2. This step is 

used to make the number of cycles required for reading and converting each input block 

from serial to parallel 14 instead of 12 cycles.  
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Figure 7.3: Counter1 setting 

 

 

Figure 7.4: Time division demultiplexer 

setting 

 

 

The bytes of each block are then down-sampled by using the Xilinx Time Division 

Demultiplexer block, which accepts input serially and presents it to parallel outputs. 

The last two bits from the 14-bit in the frame sampling pattern are set to 0, as shown in 

Figure 7.4, therefore only the first 12 input values from each input data frame (block) 

are down sampled at a rate of 14. This step, along with that related to Counter2, are 

essential to make the required time for reading each input block 14 instead of 12 cycles, 

so as to be compatible with the time required for reading one block of key or ciphertext 

data.  

 

 Conversion of Elements 

In this layer the bytes of the block are converted from 8 to P-1 bits (6-bit). This is 

achieved by converting the bytes into a binary form, concatenating them all and then 

slicing them into the required length, as shown in Figure 7.5. The Xilinx Concat block 
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performs a concatenation of the 12 input bytes of the unsigned integer numbers. The 

slicing is then achieved using the Xilinx Slice block, which slices off a sequence of 6-

bit. The result of this operation is a block of 16 elements of 6-bit each. The setting of 

the slice block is shown in Figure 7.6, where the parameter ‘Offset of top bit’ is set to 0 

for the first sliced element, -6 for the second, -12 for the third, and so on. 

 

 

Figure 7.5: Conversion of elements 

 

The last step in this layer is to convert the length of the elements from 6 to 7-bit by 

inserting a bit with the value of 0 at the most significant bits (MSB) from each element. 

This step can be achieved using the Xilinx Convert block (cast), which is set according 

to Figure 7.7.  
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Figure 7.6: Slice setting 

 

 

Figure 7.7: Convert setting 

 

 Elements Addition 

All arithmetic operations performed in the cipher are modular operations. Since in 

NMNT the modulus Mp is a power of 2 minus 1, modular addition is achieved by 

adding the carry bit after the addition, as shown in Figure 7.8 [123, 124]. 

 

 

Figure 7.8: Modular addition 

 

For instance, consider the case for P = 7. The modulus is then Mp = 2
7
-1 = 127, and 

let a = 100 and b = 30. Accordingly:        
                           

In hardware this operation is performed as follows: 

100 in binary form is:           1100100 

  30 in binary form is:           0011110   + 

Their sum                 :        1 0000010 

By adding the carry  :                        1   + 

                                                     0000011  =  3 in decimal form 

 

For FNT the modulus is a power of 2 plus 1, since the modular addition is achieved 

by adding the elements and then subtracting the carrier instead [81, 125]. 
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 Elements Subtraction 

In cases where the cipher is based on the NMNT, the modular subtraction is 

implemented in exactly the same way as when implementing modular addition, first 

negating the subtrahend simply by complementing it, as shown in Figure 7.9. 

For instance, for Mp = 127, a = 100 and b = 30,        
                  

In hardware this operation is performed as follows: 

  30 in binary form is:           0011110    

100 in binary form is:           1100100 

-30                             :           1100001    + 

                                                  1 1000101   

By adding the carry  :                        1   + 

                                                     1000110  =  70 in decimal form 

 

 

Figure 7.9: Modular subtraction 

 

For FNT negating is achieved by first complementing the positive integer and then 

adding 2. 

 

 Element Substitution 

In this layer the elements are non-linearly mapped into other elements through the S-

box. The S-box is represented as a look-up table and stored in a read-only memory 

(ROM) using the Xilinx ROM block. The ROM is initialised by storing the values of 

the elements of the S-box in the parameter ‘Initial value vector’, as shown in Figure 

7.10. For an inverse S-box a different look-up table is used, and accordingly the 

parameter ‘Initial value vector’ is replaced by the relevant values. 

 

 Shifts Transform 

The elements in the first three columns of the array are cyclically shifted over different 

numbers of offset in this layer. In hardware this layer as well as the inverse shifts 

transform layer is simply hardwired without involving logics. 
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Figure 7.10: ROM setting for S-box 

 

 Variable Addition 

In the variable addition layer, the variable values are added to the elements at location 

N/4+1 from each row in the array and then the results are multiplied by 2. The value of 

the variable is a function of a row number, round number and a block number. The 

values of the row and round numbers are pre-computed and added to the intermediate 

elements as a constant, then the block number is added to the results, and finally the 

output is multiplied by 2, as shown in Figure 7.11. The multiplication is achieved by 

using the Xilinx Shift block which shifts the input signal according to the required 

direction and offset. In this case it is left-shifted 1-bit and then the outputs of the two 

registers are added after slicing them, as shown in Figures 7.12. The setting of the 

properties of the Xilinx shift block is explained in Figure 7.13. 

 

 Variable Subtraction 

The steps of the variable addition are here processed in reverse order and inverse 

functions are used instead. Hence it starts by multiplying the input element by ½, and 

then the block number is subtracted from the result which is then subtracted from the 

constant as shown in Figure 7.14. Multiplying by ½ is achieved by left-shifting the 

elements by 6-bit (2
-1+7

) and then adding the values of the two registers after slicing 

them. If the elements are right-shifted 1-bit instead, the outputs are only correct if the 

result of their multiplication is below the modulus value. 
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Figure 7.11: Variable addition 

 

 

Figure 7.12: Multiplication by 2 

 

  

Figure 7.13:  Properties setting of Xilinx shift’s block 

 

 

Figure 7.14: Variable Subtraction 
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 New Mersenne Number Transform 

In the present work, the NMNT is implemented by applying the split-radix decimation 

in time (DIT) algorithm, which was initially introduced for the fast calculation of the 

DFT [126]. This algorithm is considered one of the most efficient algorithms in 

computing fast transforms. It applies the radix-2 decomposition to even-indexed 

samples and radix-4 decomposition to odd-indexed samples of X(k). 

Therefore, the calculation of the forward NMNT in equation 3.2 is modified 

according to equation 7.1 [127]. 

 

                        
 7.1 

 

where Xev (k) and Xod (k) are the even and odd-indexed samples, 

respectively, given below: 
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The Xod (k) in equation 7.3 can be further decomposed as shown in equation 7.4 

using the trigonometric identity represented in equation 7.5. 
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Accordingly, )(kX can be written as: 
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where        is N/2-point 1-D NMNT and          and          are N/4-

point 1-D NMNTs. 
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The other transformations )4/( kNX  , )2/( kNX  and )4/3( kNX  were also 

derived [127]: 
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The in-place butterfly of the 1-D NMNT for split-radix DIT algorithm is shown in 

Figure 7.15 [127]. 
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Figure 7.15: In-place butterfly of the split-radix DIT for the 1-D NMNT 
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The 4-points 1-D NMNT signal flow graph is shown in Figure 7.16 and the 

architecture design of the NMNT following this graph is presented in Figure 7.17. 
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Figure 7.16:  4-points NMNT signal flow graph 

 

 

Figure 7.17:  NMNT design for transform length (N) = 4 

 

The signal flow graph of the 8-points 1-D NMNT is shown in Figure 7.18 and its 

architecture design is explained in Figure 7.19. 

The top left quarter of the signal flow graph represented in Figure 7.18 is exactly 

similar to that in Figure 7.16, hence in the design shown in Figure 7.19 this part is 

replaced by a block titled NMNT 4 for transform length 4, which is based on Figure 

7.17. The bottom left quarter of Figure 7.18 is designed and combined in a subsystem as 

shown in Figure 7.19, and the internal structure of this subsystem is displayed in Figure 

7.20. 
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Figure 7.18:  8-points NMNT using the split-radix DIT algorithm (Mp = 127) 

 

 

Figure 7.19:  NMNT design for N = 8 using the split-radix DIT algorithm 
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Figure 7.20:  The internal structure of the Subsystem 

In Figure 7.18 the signal x(1)-x(5) as well as x(3)-x(7) are multiplied by β(1), which 

has a value of -16. This can be achieved in the design by first negating these signals 

using inverters as shown in Figure 7.20 (inverters 2 and 5), and then multiplying by 16. 

Because 16 is an integer of a power of 2, this multiplication can be replaced by a left 

shift operation with a 4-bit offset.  

Finally, the 16-points 1-D NMNT signal flow graph is shown in Figure 7.21 and its 

architecture design is presented in Figure 7.22. 
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β1(1) = 106,  β2(1) = -24, β1(2) = β2(2) = -8, β(2) = β1(2)+β2(2) = -16, β1(3) = -24, β2(3) = -21 

 
Figure 7.21:  16-points NMNT using the split-radix DIT algorithm (Mp = 127) 
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Figure 7.22:  NMNT design for N = 16 using the split-radix DIT algorithm 
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The top left quarter of the signal flow graph is an NMNT of length 8, and 

accordingly a block of the NMNT with this length is placed in the design as shown in 

Figure 7.22.  

The bottom left quarter of Figure 7.21 which is represented as subsystem1 on the 

design in Figure 7.22 is further described in detail in Figure 7.23. 

 

 

Figure 7.23:  The internal structure of the Subsystem1 

 

The internal structure of Subsystem2 is explained in Figure 7.24 while Subsystem3 

has the same structure, swapping the external multiplication blocks with the internal, i.e. 

24 and 21. 

Multiplying by 24 or 21 can be achieved either by using the Xilinx multiplier block 

as shown in Figure 7.25 to multiply the two elements and then the values of the two 

registers are combined after slicing them, or by using a sequence of shift and addition 

operations. The former option requires 3 latencies, as shown in the parameter setting in 

Figure 7.26. The second option costs 0 latency, and can be achieved by decomposing 

the constants into a number of integers of the power of 2, and therefore the integer 24 

can be decomposed into 16+8 = 2
4
+2

3
 and integer 21 into 16+4+1 = 2

4
+2

2
+2

0
.  
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Accordingly, multiplying by 24 can be achieved as shown in Figure 7.27 by left-shifting 

the element 4-bit and then the original element is left-shifted 3-bit and the result is 

achieved by combining the shifted elements. The same applies for multiplying by 21, 

which is achieved by left-shifting the element 4-bit and then the original element is left-

shifted this time 2-bit, the shifted elements are combined and the value of the original 

element is added to the combination to achieve the result as illustrated in Figure 7.28.  

 

 

Figure 7.24:  The internal structure of the Subsystem2 

 

 

Figure 7.25:  Modular multiplication 
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Figure 7.26:  Xilinx multiplier block setting 

 

 

 

  

Figure 7.27:  Design for multiplying by 24 Figure 7.28:  Design for multiplying by 21 
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 Round Transformation 

The round transformation, as mentioned in Chapter 5, consists of five layers: element 

substitution, shifts transform, variable addition, NMNT, and finally, round key addition. 

The design of one round transformation as shown in Figure 7.29 can be achieved by 

combining the layers previously described in this section, where the elements of each 

layer are processed in parallel. Each S-box block composes of four look-up tables, the 

shifts transform is hardwired, and the variable addition block is explained in Figure 

7.30. Finally the NMNT blocks are based on the design of Figure 7.17, and the elements 

of the intermediate results are added to the round key elements through the round key 

block which is explained in Figure 7.8.  

The design of the round transformation for the decryption circuit is given in Figure 

7.31, which follows the same steps in designing the encryption circuit in reverse order 

and inverse functions are used instead. It starts with a round key subtraction which is 

the same as addition by negating the subtrahend using an inverter. Then the processing 

of the inverse NMNT, this is achieved by implementing the forward NMNT followed 

by a multiplication with a 1/N, which is a 5-bit left-shifting (2
-2+7

). This is followed by 

the variable subtraction layer as described in Figure 7.32 and inverse shifts transform 

which is hardwired. Finally, the inverse S-box which maps elements using the look-up 

table. 

 
Figure 7.29:  Design of forward round transformation 
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Figure 7.30:  Design of variable addition layer 

 

 

Figure 7.31:  Design of reverse round transformation (decryption) 
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Figure 7.32:  Design of variable subtraction layer 

 

7.3.2 Design Based on Loop Unrolling Architecture for Block Size of 16×7-bit 

In the design the focus was on throughput rather than on area, and therefore this 

architecture has been chosen which duplicates the hardware required to implement each 

round. The complete encryption circuit of block size 16×7-bit accompanied by the key 

generation is shown in Figure 7.33. The blocks in the bottom row (blue) is the 

encryption part, where the first block is used to pad and prepare the plaintext as 

illustrated in Figure 7.1. The plaintext is read from memory and converted from serial to 

parallel form according to the specified block size. In the following block the elements 

are converted from 8 to 6-bit, and then to 7-bit by inserting a bit with the value of 0 at 

the MSB of each element, making plaintext blocks ready for processing. This is 

explained in Figure 7.5. The third block in Figure 7.33 is the initial key addition layer, 

which simply adds the cipher key elements to the elements of the plaintext. The fourth 

block up to block thirteen are the rounds transformations presented in Figure 7.29. 

These blocks are identical apart from the values of the variable addition layer and the 

round keys. The inputs to these blocks as shown in Figure 7.33 are in addition to the 

elements from the previous round and the round keys a value from a counter which 

represents the value of the block number that is needed in the calculation of the variable 

value in the variable addition layer. As this counter counts for the block number, its 
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value should be incremented every 14 cycles, and accordingly the parameter explicit 

period should be set to 14 in the counter setting window. 

 

Figure 7.33:  Algorithm design for encryption based on loop unrolling architecture 

After processing all rounds, the elements of the block are converted from the 

transform domain length to bytes. This is achieved by concatenating all block elements 

and slicing them off into 8-bit each, which is shown in Figure 7.33 by the dark blue 

block. In the following final stage, the elements are converted from parallel into serial 

form using the Xilinx bus multiplexer block.   

The round keys are derived from the cipher key by means of the key schedule 

algorithm which is processed on-the-fly in parallel with the encryption algorithm. This 

is achieved by processing the blocks in the top row (pink). First the secret key or 

password supplied by the user, depending on its length, is either padded or truncated if 

necessary to the required key length which is 14-byte. This step is performed in 

software by implementing the codes shown in Algorithm 7.1, which is run in the 

hardware model by specifying this function in the callback pane of the model 

initialisation properties. Next, the 14-byte generated for the cipher key are read from the 

memory and converted to parallel form and then to a transform length which is 7-bit for 

each element. These steps are performed in the first two blocks in the diagram. After 

that, ten rounds of transformation are applied, and at each round one round key is 

generated, with the design of the round transformation shown in Figure 7.34.  
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function SecretKey = SecretKeyGen 

  
% This function is used to input secret key and pad or truncate its   

% length according to the required length 

  
%Input Secret key 
Key = double(input('Enter Secret Key up to 14 strings : ', 's')); 

  
while numel(Key) < 2 
    Key = double(input('Enter Secret Key up to 14 strings : ', 's')); 
end 

  
nc = numel(Key); 

  
if nc > 14 
    SecretKey = Key(1:14); 
else 
    %pad password to the required length rNxNxP/8 
    for i= nc+1:14 
        Key(i)=mod(Key(i-1)+Key(i-nc),256); 
    end 
    SecretKey = Key; 
end 

Algorithm 7.1 Secret Key Generation 

 

 

Figure 7.34:  Design of round transformation for round keys schedule algorithm 
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The round transformation used in the design of the key schedule algorithm is 

similar to that used in the design of the encryption algorithm. The block number, which 

is one of the parameters used in computing the value of the variable in the variable 

addition layer, is eliminated. Then, rather than adding a single round key at each round 

in the round key addition layer, an accumulation of all previously generated round keys 

are added in addition to the cipher key and the round number, which is achieved in the 

design by adding a ‘Prev Key Add’ block. In this block, at each round, the value of the 

last generated key is added to the values of all previously generated keys. 

The design of the decryption algorithm is shown in Figure 7.35. It has the same 

structure as that in the encryption algorithm but is processed in reverse order as well as 

the order of the rounds key. In addition inverse transformations are used instead. The 

ciphertext is read from memory and every 14-byte are converted from serial to parallel, 

which is achieved in the first block. In the second block the element length is changed 

from bytes to 7-bit. Then ten rounds are processed, and each round block is based on the 

round transformation illustrated in Figure 7.31. After that, the initial key is subtracted 

from the processed elements. Next, the elements are converted from 7 to 6-bit so as to 

remove the 0 bit added at the beginning of each element, and then the elements are 

converted to bytes. Finally, the elements are converted from parallel to serial form 

representing the resulting plaintext. 

  

 

Figure 7.35:  Algorithm design for decryption based on loop unrolling architecture 
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The Xilinx Resource Estimator block shown in Figure 7.35 is used to provide an 

estimation of the resources necessary to implement a model in hardware. The other 

block, the System Generator (token) is used to ensure control over the system during 

simulation and to handle the specified code generation and simulation. 

 

7.3.3 Design Based on Loop Unrolling Architecture for Block Size of 32×7-bit 

The design of the round transformation circuits for both encryption and decryption are 

shown in Figures 7.36 and 7.37, respectively. The differences between these circuits 

and those previously designed for a block size of 16×7-bit shown in Figures 7.29 and 

7.31 are that the former involves an NMNT of length 8 instead of 4, and uses nearly 

double the resources.   

 

 

 

Figure 7.36:  Design of round transformation for block size 32×7 
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Figure 7.37:  Design of inverse round transformation for block size 32×7 

 

7.4 Verification and Simulation 

This step is carried out to verify the correctness of the architecture according to the 

specifications in the design. It operates by simulating the model in the Simulik 

environment. If the results are unsatisfactory or the simulation is interrupted, for 

instance due to unassigned block connections, a design revision is necessary. Otherwise 

the design is ready for implementation. To make the process of checking easy to follow 

and to correct any errors pointed out by the verification, individual completed functions 

have to be verified first, then a combination of functions, until the whole system is 

verified. 

 
 

7.5 Implementation 

The following step after verifying the performance of the design is the implementation, 

which translates the final design into an HDL code (VHDL or Verilog) or into a form 
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that can be used later to configure the device. This is achieved by clicking ‘Generate’ in 

the Xilinx system generator block which automatically processes a sequence of 

operations starting from producing a bit-accurate and cycle-true synthesised netlist to 

translate, map, and place and route operations. 

The parameter specific to the system generator block consists of compilation and 

clocking options, as shown in Figure 7.38. Compilation options allow the designer to 

choose the appropriate: compilation, part, target directory, synthesis tool, HDL, and the 

possibility to create a testbench if required. Compilation specifies the type of output, 

which could be Netlist files, bitstream, hardware co-simulation, or timing and power 

analysis. The appropriate FPGA device is selected through the part option, and the 

possible tools that could be used to synthesise the design are: Synplify Pro, Synplify, 

and Xilinx’s XST. Finally, in the HDL option the type of hardware description language 

to be used for the compilation of the design is specified, which could be VHDL or 

Verilog. In the clocking options, for instance, the designer can set the appropriate 

system clock period whether for a single or multi-rate design. In addition, the FPGA 

system clock period can be derived from the Xilinx digital clock manager (DCM) input 

block period which is an external hardware-defined input. 

 

 

 

Figure 7.38:  Parameter specific to the system generation block (token) 
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7.6 Configuration 

After the FPGA design is completely placed and routed, the final step in the design flow 

is to configure the FPGA by generating a bitstream file and downloading it into the 

internal memory (PROM) of the target device using the iMPACT software which is part 

of the Xilinx tools installation. Once this file is downloaded, the FPGA is configured 

every time it is powered up. The procedures for configuring the FPGA device are 

illustrated below: 

 Run the Generate Programming File from the ISE Project Navigator in the 

Processes pane (see Figure 7.39), which in turn will run the Xilinx bitstream 

generation program (BitGen) to prepare the design information and produces a 

bitstream file to configure the FPGA device. Before running the generation it is 

possible to set the properties of the process, such as for example, allow an 

encryption option or enable bitstream compression. 

 Open ISE iMPACT software which is used to configure the target device as well 

as to generate configuration files for the Xilinx FPGA and PROMs. Through the 

Boundary Scan add the target device, or initialise JTAG chain to assign the 

target device from all detected devices on the chain, in this case the FPGA 

device has to be connected to the computer through a Xilinx download cable.  

 Generate a PROM file (.mcs) which contains the PROM configuration 

information. This can be generated each time the Configure Target Device 

process is run by setting the Automatically Run Generate  Target  PROM / ACE 

 

 

Figure 7.39:  ISE project navigator 
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file process property. Alternatively, the appropriate storage device can be 

selected through the Create PROM File Formatter in the iMPACT Flow panel, 

as shown in Figure 7.40. This will format the configuration bitstream file into a 

PROM which is used later to configure the FPGA device once it is powered up. 

By running the Generate File in the iMPACT processes panel, as shown in 

Figure 7.41, iMPACT will generate the PROM files depending on the 

specifications that have been identified. 

 

 

Figure 7.40:  PROM File Formatter 

 

 

Figure 7.41:  Generating PROM File 
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7.7 Results 

The hardware implementation of the proposed cipher is carried out on the target FPGA 

device of: family, Xilinx 6; port, xc6vlx130t; package, ff484; and speed grade, -2. Two 

circuits are designed; one for encryption and the other for decryption for a block size of 

16×7 bits. In addition another two circuits are designed for a block size of 32×7 bits. 

The architectures of block size of 16×7 bits are implemented also on a smaller device to 

compare the effect of device on throughput and power consumption. The results of 

hardware implementations are summarised in Tables 7.1 and 7.2 for encryption and 

decryption circuits, respectively, which contain the amount of resources utilised, 

maximum clock frequency, power consumption, throughput and efficiency. These 

results, in addition to encryption and decryption, include the generation of the round 

keys. In the decryption circuits, a delay is imposed due to executing the round keys 

before starting decryption, as the key should be used in reverse order. In contrast, in the 

encryption circuit both parts are run in parallel. The results are obtained from the ISE 

12.4 Project Navigator shown in Figure 7.39, and a power analysis is shown in Figure 

7.42 for an encryption circuit of block size 16×7 bits.  

 

 

 

 

Figure 7.42:  Power analysis for encryption circuit of block size 16×7 bits 
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Table 7.1: FPGA implementation results for encryptions 

Encryption 

Block Size 16×7 bits Block Size 32×7 bits 

FPGA Vertix 5 

xc5vlx85t-3ff1136 

FPGA Vertix 6 

xc6vlx130t-2ff484 

FPGA Vertix 6 

xc6vlx130t-2ff484 

No. of Registers 519 out of 51800 509 out of 160000 962 out of 160000 

No. of LUTs 26132 out of 51800 26140 out of 80000 58176 out of 80000 

No. of Slices 7371 out of 12960 8030 out of 20000 17685 out of 20000 

No. of bonded IOBs 9 out of 480 9 out of 240 9 out of 240 

Max. Frequency (MHz) 441.112 467.727 431.034 

Dynamic Power (W) 0.355 0.295 0.633 

Quiescent Power (W) 0.913 1.535 1.548 

Total Power (W) 1.268 1.830 2.181 

Output every (cycles) 1 1 1 

Throughput (Gbits/sec) 42.347 44.902 82.759 

Thro./Area (Mb/s/slice) 5.745 5.592 4.680 

Energy/bit (nJ/bit) 0.03 0.041 0.026 

 

Table 7.2: FPGA implementation results for decryptions 

Decryption 

Block Size 16×7 bits Block Size 32×7 bits   

FPGA Vertix 5 

xc5vlx85t-3ff1136 

FPGA Vertix 6 

xc6vlx130t-2ff484 

FPGA Vertix 6 

xc6vlx130t-2ff484 

No. of Registers 515 out of 51800 518 out of 160000 1260 out of 160000 

No. of LUTs 27364 out of 51800 27359 out of 80000 60904 out of 80000 

No. of Slices 7706 out of 12960 8366 out of 20000 18392 out of 20000 

No. of bonded IOBs 9 out of 480 9 out of 240 9 out of 240 

Max. Frequency (MHz) 333.890 373.552 329.489 

Dynamic Power (W) 0.386 0.299 0.676 

Quiescent Power (W) 0.914 1.535 1.549 

Total Power (W) 1.300 1.834 2.225 

Output every (cycles) 1 1 1 

Throughput (Gbits/sec) 32.053 35.861 63.262 

Thro./Area (Mb/s/slice) 4.159 4.287 3.440 

Energy/bit (nJ/bit) 0.041 0.051 0.035 
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The throughput which represents the speed of encryption or decryption process is 

calculated according to equation 7.10.  

 

 

           
                                     

                             
                    

 

 

The throughput per area (TPA) which represents the efficiency of implementation 

in terms of performance, gives an indication of the hardware resource cost related to the 

throughput achieved. 

The cipher itself is processed in one clock cycle regardless of direction (i.e., 

encryption or decryption) and block size. Although there is a delay of 14-cycle for block 

size 16×7-bit and 28-cycle for block size 32×7-bit for input conversion from serial to 

parallel form, this has not been considered in the calculation of the throughput since this 

step represents the preparation of the input for processing which can be performed in 

advance in software. 

The results of FPGA implementation of the proposed architecture and comparison 

with AES approaches for encryption core with block size and key length of 128-bit are 

summarised in Table 7.3. 

 

 

Table 7.3: Performance comparison of the proposed architecture and AES 

Design Device 
Frequency 

(MHz) 

Area 

(Slices) 

Throughput 

(Gbits/sec) 

TPA 

(Mbits/s/slice) 

Sklavos [68] XCV1000 28.5 17314 3.7 0.21 

Hodjat [69] XC2VP30 168.3 12450 21.5 1.70 

Iyer [70]  XC2VP30 206.8 11720 26.5 2.26 

Li [71] XC2V2000 102.8 3223 1.3 0.40 

Thongkhome [72]  XC2VP7X 481.3 3119 6.2 1.99 

Standaert [128] XCV3200E 145.0 15112 18.6 1.23 

Ours 
XC5VLX85T 441.1 7371 42.3 5.75 

XC6VLX130T 467.7 8030 44.9 5.59 
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7.8 Complexity 

The overall complexity of the hardware design for the proposed architectures is 

summarised in Table 7.4. The look-up tables are used to store the values of the 

substitution and inverse substitution boxes which are used to non-linearly map the value 

of the elements in order to satisfy the concept of confusion. The NMNTs are designed 

based on the split-radix fast algorithm. For transform lengths 8 the multiplication 

operation is replaced by shift and addition operations, and accordingly the only 

operations used in the architectures are shift, addition and inverter (NOT). 

 

Table 7.4: Overall system complexity 

 Block size 16×7 bits Block size 32×7 bits 

Encryption Decryption Key Encryption Decryption Key 

Word size (bits) 7 7 7 7 7 7 

Key size (bits) 16×7 16×7 16×7 32×7 32×7 32×7 

Subkey size (bits) 1232 1232 1232 2464 2464 2464 

Look-up tables/  

Table size 

160 

(7×7) 

160 

(7×7) 

160 

(7×7) 

320 

(7×7) 

320 

(7×7) 

320 

(7×7) 

Shift 40 200 40 120 440 120 

ADD 1192 1352 1688 2744 3064 3816 

NOT 160 386 160 520 922 520 

 

 

7.9 Conclusions 

Efficient hardware architectures for the proposed cipher have been designed and 

implemented on the target FPGA device XC6VLX130T-2FF484. The Xilinx System 

Generator of the ISE version 12.4 development suite, which is a system level modelling 

tool, has been used to facilitate hardware design and reduces design time providing 

efficient and fast FPGA prototypes. 

The design of the proposed cipher, which includes encryption and decryption 

modules and the key schedule algorithm, is based on the parallel loop-unrolling 

architecture. Two block sizes and key lengths are considered of 16×7 and 32×7 bits, 

while the algorithm is designed to support a wide range of lengths. The mode of 

operation used in the design is a generalised electronic code book, where a block 

number with other parameters are used in the calculation of the values of the variables 
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in the variable addition layer, providing different variables for different blocks 

encrypted with the same key. With this novel improvement a simple mode of operation 

is implemented with a high level of security, which is reflected in the performance of 

the system regarding speed and complexity. 

There is a trade-off between throughput and area represented by the amount of 

resources utilised. The cipher starts with an initial key addition followed by ten identical 

rounds. Each round consists of five sequential layers: element substitution, shifts 

transform, variable addition, NMNT, and round key addition. The design of the 

proposed architectures targets throughput, and hence the hardware resources of a single 

round including the S-boxes are duplicated ten times providing what is known as a 

loop-unrolling architecture. In addition, the elements within the layers are implemented 

in parallel so as to further increase the speed of implementation. The round keys are 

generated on-the-fly on the same device, thus allowing less complexity and resource 

utilisation. Using such architecture a high throughput is achieved at the cost of area, 

where a throughput of 44.9 Gbits/sec is achieved with a power consumption of 1.83 W 

for implementing the encryption module with a key and block lengths of 16×7 bits. This 

power can be reduced to 1.27 W using a smaller device and the throughput achieved is 

42.3 Gbits/sec. For larger block and key lengths (32×7 bits), 82.8 Gbits/sec throughput 

is achieved for 2.18 W power consumption. In addition, the results of the 

implementation are compared with those of the AES, and it has been shown that the 

proposed cipher can run at a higher throughput with a reasonable usage of resources. 
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Chapter 8 

 

Conclusions and Further Work 

 

 

 

This chapter summarises the results of the research presented in this thesis and 

suggestions are proposed to extend the current research in further work. 

 

 

8.1 Summary of Research and Results 

The following are the major achievements made in the research: 

 A new iterated symmetric-key block cipher based on the SPN and NTT with 

variable block size, key length and word length has been proposed. The block 

size and key length ranging from 16×P up to 256×P-bit with a power of two, for 

a word length P = 7, 31, 61 or 127-bit. These parameters can be efficiently 

determined by the system depending on the message length and processor 

registers length, by undisclosed these values the task of cryptanalysis becomes 

almost impossible. 

 The NMNT and FNT have been extensively analysed in Chapter 3 to evaluate 

their diffusion power using two different techniques. The first technique is based 

on the branch number, while the second technique is based on probabilities. The 

results confirm that these transforms exhibit generally good diffusion power that 

in most cases is at a minimum of 50%. The cases that provide low levels of 
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diffusion less than 50% which obviously arise due to the symmetrical structure 

of the transforms are overcome in the design by including a variable addition 

layer. This layer participates also in providing two different ciphertext blocks for 

the encryption of two identical plaintext blocks using the same cipher key. 

Consequently, a simple mode of operation can be implemented with high levels 

of security, which will be reflected in the efficiency of the system regarding 

speed and complexity. 

 Two solutions have been suggested to sort the problem that may arise due to the 

value of the modulus of the NMNT, where the zero value and the Mp value are 

retrieved as a zero. This can be avoided either by inserting one bit with a value of 

0 at the beginning of each element or by reserving the addresses of the elements 

that have the Mp value at the end of the ciphertext in order to update their values 

at the final stage of decryption. In addition, all S-boxes involved in the design 

based on the NMNT are modified such that the maximum value is swapped to 

map to itself in order to prevent its appearance after mapping. 

 The non-linear properties of all of the S-boxes in the previous standard DES, as 

well as in the current standard AES, have been analysed in Chapter 4. 

Consequently the DPPmax and IOCmax have been computed for each S-box after 

building up the XOR distribution and linear approximation tables. All S-boxes 

of the DES have the same DPPmax which is equal to 2
-2

, but the IOCmax is not the 

same for all the 8 S-boxes. The best probability was found in S-box 6, which is 

2
-1.193

, and the worst was in S-box 5 which is equal to 2
-0.678

, with the 

probabilities of the other S-boxes in between. For the AES S-box the DPPmax = 

2
-6

 and IOCmax = 2
-3

.  

 A new 7×7 S-box is generated with DPPmax = 2
-6

 and IOCmax = 2
-2.678

, by 

following the same procedures used in the construction of the AES S-box. 

Furthermore, other S-boxes are derived from the new S-box generated as well as 

from the AES S-box preserving the same non-linear properties but reordering 

the output elements with different offsets. 

 Two different key schedule algorithms are proposed to generate round keys from 

a cipher key. The first applies the same round transformation of the cipher for 

ease of analysis and implementation, while the second is key dependent. It is 

achieved by replacing both the shifts transform and variable addition layers with 

key dependent permutation and key dependant addition layers. Both algorithms 
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extensively use the non-linear mapping and high diffusion mixing to exclude the 

potential of weak-key and related-key attacks. 

 Three categories of test vectors are run in Chapter 5 to verify the correctness of 

algorithm implementation from any possible error. The results of all of the tests 

are promising. These tests include the KAT, the MMT, and the MCT, which 

were initially designed by the NIST to validate the IUT for conformance to the 

AES algorithm as specified in FIPS 197: AES.  

 Differential and linear cryptanalysis have been analysed in Chapter 6 and it has 

been proven that the proposed cipher is secure against these two powerful well-

known types of attack from round three for all block sizes and key lengths. 

Considering the possibility of these two attacks at the design stage has a major 

impact on selecting the layers and in constructing the final model. The 

subsequent consideration of all other types of attack may require minor 

modifications to the final design, which could be made secure by adding further 

rounds. However, in order to secure the cipher from other possible attacks and to 

allow for extra security margins, 10 rounds is determined.  

 Parallel loop-unrolling architectures for the proposed cipher are designed and 

implemented using the FPGA system generator, the details of which are 

explained in Chapter 7. Using such architecture a high throughput at the cost of 

area is achieved. For instance, a maximum frequency of 467.727 MHz, a 

throughput of 44.902 Gbits/sec and a power consumption of 1.83W using 8030 

slices is achieved for a block size and key length of 16×P, (P = 7) on Xilinx 

Virtex 6 (XC6VLX130T-2FF484) board. 

 

  

8.2 Recommendations for Further Work 

The following suggestions would extend the current research in further work: 

 The number of rounds of the algorithm has been chosen to be 10 based on the 

results obtained from the analysis of differential and linear cryptanalysis, after 

adding extra rounds in case of stronger attacks and for security margins. 

However, to choose the right number of rounds precisely, it is required to 

consider all variants of differential and linear cryptanalysis as well as other types 

including side-channel attacks, such as power analysis, for example. 
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 The cipher is designed to work efficiently with variable block sizes and key 

lengths as well as word lengths. The analysis was carried out on five different 

sizes, however the hardware architectures are designed only for the first two 

block sizes with the standard cipher word length of P = 7. Implementing other 

possible word lengths or block sizes can be a task for further work. Where 

implementing larger block size, the same structure is used with extra resources. 

While for larger word lengths, in addition to resources, would require extra 

layers of a word length conversion before and after elements mapping through 

the element substitution layer.  

 The focus in the hardware design was on achieving fast implementation, and 

parallel loop-unrolling architectures have been designed accordingly which are 

characterised by high throughput. However, it would be worth to implement the 

basic architecture as a trade-off between throughput and area usage. 

Implementing such a scheme with a smaller circuit would have the advantage of 

reducing the power consumption of the system.  

 The FNT has been analysed and it has been proven that it has good diffusion 

power mostly over 50%, and in addition an example for image encryption has 

been provided. The structure of the cipher is the same as that based on the 

NMNT, eliminating the conversion layer, realising a practically faster cipher. A 

hardware implementation of this scheme can be another task for further work. 

 To further complicate the task of cryptanalysis, it is recommended that a 

compression layer is added at the beginning before processing the encryption; 

hence the data will be compressed and then ciphered. This layer will provide 

extra protection against attacks by complicating the statistical analysis of the 

cipher through eliminating the redundancy in the data. In addition, it will reduce 

the amount of data processed, which will help in improving system performance.  

 Finally, in order to build a complete practical system, it is suggested that the 

design should be expanded not only provide data confidentiality but also to 

cover data integrity for authentication purposes. 
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Appendix A 

 

NMNT Diffusion Analysis Results 

 

 

 

The NMNT diffusion analysis results based on the probabilities (second technique) for 

different modulus and transform lengths are attached in this appendix. 
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Table A.1: NMNT diffusion for P = 7, Mp = 127, N = 4 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+2 

i-even (x = 1) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-odd (x = 1) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-mix (x = 1) 

Odd - - - 

Even - - - 

All 25% 50% 75-100% 

Paired elements 

i, i+1 

i-even (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Paired elements 

i, i+1 

i-odd (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Paired elements 

i, i+1 

i-mix (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd - - - 

Even - - - 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd - - - 

Even - - - 

Unpaired elem. 

Mix 

Odd - - - 

Even - - - 

i, i+2,  

random for others 

Odd 50-100% 50-100% 75-100% 

Even - - - 
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Table A.2: NMNT diffusion for P = 7, Mp = 127, N = 8 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+4 

i-even (x = 1) 

Odd 50% 25% 75% 

Even - - - 

All 25% 50% 75-100% 

Paired elements 

i, i+4 

i-odd (x = 1) 

Odd 50% 50% 100% 

Even - - - 

All 25% 50% 75-100% 

Paired elements 

i, i+4 

i-mix (x = 1) 

Odd 50% 37.5-50% 75-100% 

Even 25% 37.5-50% 62.5-100% 

All 12.5% 37.5-50% 75-100% 

Paired elements 

i, i+2 

i-even (x = 2) 

Odd - - - 

Even - - - 

All 75% 75% 100% 

Paired elements 

i, i+2 

i-odd (x = 2) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-mix (x = 2) 

Odd - - - 

Even - - - 

All 62.5% 62.5-75% 75-100% 

Unpaired elem. 

Even 

Single 75% 75% 75% 

Odd - - - 

Even 75% 75% 75-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd - - - 

Even 50% 50% 50-100% 

Unpaired elem. 

Mix 

Odd - - - 

Even 75% 75% 75-100% 

i, i+4,  

random for others 

Odd 62.5-100% 75-100% 75-100% 

Even 62.5-100% 75-100% 75-100% 
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Table A.3: NMNT diffusion for P = 7, Mp = 127, N = 16 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+8 

i-even (x = 1) 

Odd 37.5% 37.5-50% 75-100% 

Even 25- 37.5% 25-50% 62.5-100% 

All 12.5% 37.5-50% 75-100% 

Paired elements 

i, i+8 

i-odd (x = 1) 

Odd 50% 25-50% 75-100% 

Even 25% 37.5-50% 75-100% 

All 12.5% 25-50% 75-100% 

Paired elements 

i, i+8 

i-mix (x = 1) 

Odd 37.5-50% 25-50% 68.8-100% 

Even 12.5-43.8% 31.3-50% 75-100% 

All 6.25% 43.8-50% 87.5-100% 

Paired elements 

i, i+4 

i-even (x = 2) 

Odd 75% 62.5% 62.5-87.5% 

Even - - - 

All 62.5% 62.5-75% 75-100% 

Paired elements 

i, i+4 

i-odd (x = 2) 

Odd 50-75% 50-75% 100% 

Even - - - 

All 62.5% 62.5-75% 75-100% 

Paired elements 

i, i+4 

i-mix (x = 2) 

Odd 75% 62.5-75% 81.3-100% 

Even 62.5% 62.5-75% 81.3-100% 

All 56.25% 56.3-75% 87.5-100% 

Unpaired elem. 

Even 

Single 87.5% 87.5% 87.5% 

Odd 87.5% 75-87.5% 75-100% 

Even 62.5-87.5% 62.5-87.5% 62.5-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 75-87.5% 75-100% 

Even 50-75% 50-87.5% 50-100% 

Unpaired elem. 

Mix 

Odd 75-100% 75-93.8% 75-100% 

Even 62.5-93.8% 62.5-93.8% 75-100% 

i, i+8,  

random for others 

Odd 81.3-100% 81.3-100% 81.3-100% 

Even 75-100% 75-100% 75-100% 
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Table A.4: NMNT diffusion for P = 7, Mp = 127, N = 32 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+16 

i-even (x = 1) 

Odd 43.8-50% 25-50% 68.8-100% 

Even 12.5- 50% 25-50% 56.3-100% 

All 6.25% 37.5-50% 87.5-100% 

Paired elements 

i, i+16 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 62.5-100% 

Even 12.5-43.8% 25-50% 50-100% 

All 6.25% 31.3-50% 81.3-100% 

Paired elements 

i, i+16 

i-mix (x = 1) 

Odd 37.5-50% 34.4-50% 71.9-100% 

Even 18.8-50% 34.4-50% 81.3-100% 

All 3.125% 43.8-50% 90.6-100% 

Paired elements 

i, i+8 

i-even (x = 2) 

Odd 68.75% 56.3-75% 81.3-100% 

Even 62.5-68.8% 62.5-75% 68.8-100% 

All 56.25% 62.5-75% 87.5-100% 

Paired elements 

i, i+8 

i-odd (x = 2) 

Odd 50-75% 50-75% 62.5-100% 

Even 62.5% 62.5-75% 75-100% 

All 56.25% 62.5-75% 87.5-100% 

Paired elements 

i, i+8 

i-mix (x = 2) 

Odd 68.8-75% 62.5-75% 84.4-100% 

Even 56.3-71.9% 62.5-75% 84.4-100% 

All 53.125% 65.6-75% 90.6-100% 

Unpaired elem. 

Even 

Single 93.8% 93.75% 93.75% 

Odd 93.8% 68.8-93.8% 68.8-100% 

Even 56.3-100% 56.3-93.8% 68.8-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 68.8-93.8% 75-100% 

Even 50-93.8% 50-93.8% 50-100% 

Unpaired elem. 

Mix 

Odd 71.9-100% 68.8-96.9% 62.5-100% 

Even 56.3-100% 50-96.9% 68.8-100% 

i, i+16,  

random for others 

Odd 84.4-100% 87.5-100% 87.5-100% 

Even 84.4-100% 84.4-100% 87.5-100% 
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Table A.5: NMNT diffusion for P = 7, Mp = 127, N = 64 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+32 

i-even (x = 1) 

Odd 43.8-50% 37.5-50% 78.1-100% 

Even 9.4- 50% 34.4-50% 75-100% 

All 3.125% 46.9-50% 93.8-100% 

Paired elements 

i, i+32 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 62.5-100% 

Even 12.5-50% 25-50% 62.5-100% 

All 3.125% 43.8-50% 90.6-100% 

Paired elements 

i, i+32 

i-mix (x = 1) 

Odd 35.9-50% 37.5-50% 75-100% 

Even 21.9-50% 40.6-50% 84.4-100% 

All 1.56% 46.9-50% 95.3-100% 

Paired elements 

i, i+16 

i-even (x = 2) 

Odd 65.6-75% 62.5-75% 84.4-100% 

Even 56.3-75% 62.5-75% 78.1-100% 

All 53.125% 68.8-75% 93.8-100% 

Paired elements 

i, i+16 

i-odd (x = 2) 

Odd 50-75% 50-75% 62.5-100% 

Even 56.3-71.9% 62.5-75% 81.3-100% 

All 53.125% 68.8-75% 90.6-100% 

Paired elements 

i, i+16 

i-mix (x = 2) 

Odd 65.6-75% 65.6-75% 84.4-100% 

Even 57.8-75% 64.1-75% 90.6-100% 

All 51.56% 71.9-75% 95.3-100% 

Unpaired elem. 

Even 

Single 96.9% 96.9% 96.9% 

Odd 90.6-100% 71.9-96.9% 75-100% 

Even 59.4-100% 62.5-96.9% 78.1-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 71.9-100% 68.8-96.9% 75-100% 

Even 50-100% 50-96.9% 62.5-100% 

Unpaired elem. 

Mix 

Odd 73.4-100% 68.8-98.4% 73.4-100% 

Even 62.5-100% 62.5-98.4% 81.3-100% 

i, i+32,  

random for others 

Odd 87.5-100% 90.6-100% 87.5-100% 

Even 89.1-100% 87.5-100% 90.6-100% 
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Table A.6: NMNT diffusion for P = 7, Mp = 127, N = 128 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+64 

i-even (x = 1) 

Odd 45.3-50% 37.5-50% 82.8-100% 

Even 10.9- 50% 40.6-50% 82.8-100% 

All 1.563% 46.9-50% 95.3-100% 

Paired elements 

i, i+64 

i-odd (x = 1) 

Odd 35.9-50% 25-50% 68.8-100% 

Even 9.4-50% 25-50% 62.5-100% 

All 1.563% 48.4-50% 95.3-100% 

Paired elements 

i, i+64 

i-mix (x = 1) 

Odd 36.7-50% 43.8-50% 75-100% 

Even 23.4-50% 43.8-50% 92.2-100% 

All 0.781% 47.7-50% 97.7-100% 

Paired elements 

i, i+32 

i-even (x = 2) 

Odd 67.2-75% 65.6-75% 85.9-100% 

Even 54.7 – 75% 62.575% 89.1-100% 

All 51.56% 71.9-75% 95.3-100% 

Paired elements 

i, i+32 

i-odd (x = 2) 

Odd 50-75% 50-75% 62.5-100% 

Even 56-75% 62.5-75% 68.8-100% 

All 51.56% 71.9-75% 95.3-100% 

Paired elements 

i, i+32 

i-mix (x = 2) 

Odd 66.4-75% 68.8-75% 86.7-100% 

Even 60.9% 68.8-75% 92.2-100% 

All 50.78% 72.7-75% 96.9-100% 

Unpaired elem. 

Even 

Single 98.4% 98.4% 98.4% 

Odd 92.2-100% 81.3-98.4% 85.9-100% 

Even 60.9-100% 73.4-98.4% 73.4-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 68.8-98.4% 71.4-100% 

Even 50-100% 50-98.4% 81.3-100% 

Unpaired elem. 

Mix 

Odd 75-100% 75-99.2% 87.5-100% 

Even 73.4-100% 73.4-99.2% 85.9-100% 

i, i+64,  

random for others 

Odd 93.8-100% 93-100% 93-100% 

Even 93-100% 93-100% 93-100% 
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Table A.7: NMNT diffusion for P = 17, Mp = 131071, N = 4 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+2 

i-even (x = 1) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-odd (x = 1) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-mix (x = 1) 

Odd - - - 

Even - - - 

All 25% 50% 100% 

Paired elements 

i, i+1 

i-even (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Paired elements 

i, i+1 

i-odd (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Paired elements 

i, i+1 

i-mix (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd - - - 

Even - - - 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd - - - 

Even - - - 

Unpaired elem. 

Mix 

Odd - - - 

Even - - - 

i, i+2,  

random for others 

Odd 100% 100% 100% 

Even - - - 
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Table A.8: NMNT diffusion for P = 17, Mp = 131071, N = 8 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+4 

i-even (x = 1) 

Odd 50% 25% 75% 

Even - - - 

All 25% 50% 100% 

Paired elements 

i, i+4 

i-odd (x = 1) 

Odd 50% 50% 100% 

Even - - - 

All 25% 50% 100% 

Paired elements 

i, i+4 

i-mix (x = 1) 

Odd 50% 50% 100% 

Even 25% 37.5-50% 100% 

All 12.5% 37.5-50% 100% 

Paired elements 

i, i+2 

i-even (x = 2) 

Odd - - - 

Even - - - 

All 75% 75% 100% 

Paired elements 

i, i+2 

i-odd (x = 2) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-mix (x = 2) 

Odd - - - 

Even - - - 

All 62.5% 75% 100% 

Unpaired elem. 

Even 

Single 75% 75% 75% 

Odd - - - 

Even 75% 75% 100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd - - - 

Even 50% 50% 100% 

Unpaired elem. 

Mix 

Odd - - - 

Even 75% 75% 100% 

i, i+4,  

random for others 

Odd 100% 100% 100% 

Even 100% 100% 100% 
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Table A.9: NMNT diffusion for P = 17, Mp = 131071, N = 16 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+8 

i-even (x = 1) 

Odd 37.5% 50% 87.5-100% 

Even 25- 37.5% 50% 87.5-100% 

All 12.5% 50% 100% 

Paired elements 

i, i+8 

i-odd (x = 1) 

Odd 50% 25-50% 75-100% 

Even 25% 50% 100% 

All 12.5% 50% 100% 

Paired elements 

i, i+8 

i-mix (x = 1) 

Odd 37.5-50% 43.8-50% 93.8-100% 

Even 12.5-43.8% 37.5-50% 93.8-100% 

All 6.25% 50% 100% 

Paired elements 

i, i+4 

i-even (x = 2) 

Odd 75% 62.5% 87.5% 

Even - - - 

All 62.5% 75% 87.5-100% 

Paired elements 

i, i+4 

i-odd (x = 2) 

Odd 50-75% 50-75% 100% 

Even - - - 

All 62.5% 75% 100% 

Paired elements 

i, i+4 

i-mix (x = 2) 

Odd 75% 75% 100% 

Even 62.5% 75% 100% 

All 56.25% 75% 100% 

Unpaired elem. 

Even 

Single 87.5% 87.5% 87.5% 

Odd 87.5% 87.5% 100% 

Even 62.5-87.5% 62.5-87.5% 87.5-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 87.5% 100% 

Even 50-75% 50-87.5% 100% 

Unpaired elem. 

Mix 

Odd 75-100% 75-93.8% 100% 

Even 62.5-93.8% 87.5-93.8% 93.8-100% 

i, i+8,  

random for others 

Odd 93.8-100% 100% 93.8-100% 

Even 93.8-100% 93.8-100% 93.8-100% 
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Table A.10: NMNT diffusion for P = 17, Mp = 131071, N = 32 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+16 

i-even (x = 1) 

Odd 43.8-50% 50% 93.8-100% 

Even 12.5- 50% 43.8-50% 87.5-100% 

All 6.25% 50% 100% 

Paired elements 

i, i+16 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 75-100% 

Even 12.5-43.8% 43.8-50% 87.5-100% 

All 6.25% 50% 100% 

Paired elements 

i, i+16 

i-mix (x = 1) 

Odd 37.5-50% 43.8-50% 93.8-100% 

Even 18.8-50% 43.8-50% 93.8-100% 

All 3.125% 50% 100% 

Paired elements 

i, i+8 

i-even (x = 2) 

Odd 68.75% 75% 93.8-100% 

Even 62.5-68.8% 75% 93.8-100% 

All 56.25% 75% 93.8-100% 

Paired elements 

i, i+8 

i-odd (x = 2) 

Odd 50-75% 50-75% 87.5-100% 

Even 62.5% 75% 100% 

All 56.25% 75% 100% 

Paired elements 

i, i+8 

i-mix (x = 2) 

Odd 68.8-75% 71.9-75% 96.9-100% 

Even 56.3-71.9% 71.9-75% 96.9-100% 

All 53.125% 75% 96.9-100% 

Unpaired elem. 

Even 

Single 93.75% 93.75% 93.75% 

Odd 93.8-100% 81.3-93.8% 93.8-100% 

Even 56.3-100% 68.8-93.8% 93.8-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 81.3-93.8% 87.5-100% 

Even 50-93.8% 50-93.8% 87.5-100% 

Unpaired elem. 

Mix 

Odd 75-100% 81.3-96.9% 81.3-100% 

Even 56.3-100% 81.3-96.9% 93.8-100% 

i, i+16,  

random for others 

Odd 96.9-100% 96.9-100% 96.9-100% 

Even 93.8-100% 96.9-100% 96.9-100% 
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Table A.11: NMNT diffusion for P = 17, Mp = 131071, N = 64 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+32 

i-even (x = 1) 

Odd 46.9-50% 43.8-50% 90.6-100% 

Even 9.4-50% 43.8-50% 90.6-100% 

All 3.125% 50% 100% 

Paired elements 

i, i+32 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 75-100% 

Even 12.5-50% 37.5-50% 87.5100% 

All 3.125% 50% 100% 

Paired elements 

i, i+32 

i-mix (x = 1) 

Odd 37.5-50% 46.9-50% 75-100% 

Even 21.9-50% 46.9-50% 87.5-100% 

All 1.563% 50% 100% 

Paired elements 

i, i+16 

i-even (x = 2) 

Odd 71.9-75% 71.9-75% 96.9-100% 

Even 56.3-75% 71.9-75% 90.6-100% 

All 53.125% 75% 100% 

Paired elements 

i, i+16 

i-odd (x = 2) 

Odd 50-75% 50-75% 87.5-100% 

Even 56.3-71.9% 71.9-75% 93.8-100% 

All 53.125% 71.9-75% 100% 

Paired elements 

i, i+16 

i-mix (x = 2) 

Odd 68.8-75% 71.9-75% 87.5-100% 

Even 59.4-75% 71.9-75% 96.9-100% 

All 51.56% 73.4-75% 98.4-100% 

Unpaired elem. 

Even 

Single 96.9% 96.9% 96.9% 

Odd 96.9-100% 84.4-96.9% 90.6-100% 

Even 59.4-100% 71.4-96.9% 90.6-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 81.3-96.9% 93.8-100% 

Even 50-100% 50-96.9% 87.5-100% 

Unpaired elem. 

Mix 

Odd 75-100% 75-98.4% 90.6-100% 

Even 62.5-100% 87.5-98.4% 93.8-100% 

i, i+32,  

random for others 

Odd 98.4-100% 98.4-100% 98.4-100% 

Even 96.9-100% 96.9-100% 96.9-100% 
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Table A.12: NMNT diffusion for P = 17, Mp = 131071, N = 128 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+64 

i-even (x = 1) 

Odd 48.4-50% 46.9-50% 95.3-100% 

Even 10.9-50% 46.9-50% 95.3-100% 

All 1.563% 48.4-50% 100% 

Paired elements 

i, i+64 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 75-100% 

Even 9.4-50% 46.9-50% 87.5-100% 

All 1.563% 50% 100% 

Paired elements 

i, i+64 

i-mix (x = 1) 

Odd 37.5-50% 48.4-50% 98.4-100% 

Even 23.4-50% 48.4-50% 98.4-100% 

All 0.781% 50% 99.2-100% 

Paired elements 

i, i+32 

i-even (x = 2) 

Odd 73.4-75% 71.9-75% 95.3-100% 

Even 54.7-75% 71.9-75% 95.3-100% 

All 51.56% 75% 100% 

Paired elements 

i, i+32 

i-odd (x = 2) 

Odd 50-75% 50-75% 87.5-100% 

Even 56.3-75% 71.9-75% 93.8-100% 

All 51.56% 75% 100% 

Paired elements 

i, i+32 

i-mix (x = 2) 

Odd 68.8-75% 73.4-75% 98.4-100% 

Even 60.9-75% 73.4-75% 98.4-100% 

All 50.78% 75% 100% 

Unpaired elem. 

Even 

Single 98.4% 98.4% 98.4-100% 

Odd 98.4-100% 87.5-98.4% 95.3-100% 

Even 60.9-100% 73.4-98.4% 95.3-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 81.3-98.4% 93.8-100% 

Even 50-100% 50-98.4% 87.5-100% 

Unpaired elem. 

Mix 

Odd 75-100% 87.5-99.2% 95.3-100% 

Even 73.4-100% 96.9-99.2% 98.4-100% 

i, i+64,  

random for others 

Odd 98.4-100% 98.4-100% 98.4-100% 

Even 99.2-100% 99.2-100% 98.4-100% 
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Table A.13: NMNT diffusion for P = 17, Mp = 131071, N = 256 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+128 

i-even (x = 1) 

Odd 49.2-50% 48.4-50% 97.7-100% 

Even 21.1-50% 48.4-50% 97.7-100% 

All 0.781% 50% 100% 

Paired elements 

i, i+128 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 75-100% 

Even 18.8-50% 43.8-50% 87.5-100% 

All 0.781% 50% 100% 

Paired elements 

i, i+128 

i-mix (x = 1) 

Odd 37.5-50% 49.2-50% 99.2-100% 

Even 24.2-50% 49.2-50% 99.2-100% 

All 0.391% 50% 100% 

Paired elements 

i, i+64 

i-even (x = 2) 

Odd 73.4-75% 73.4-75% 97.7-100% 

Even 55.5-75% 73.4-75% 97.7-100% 

All 50.78% 75% 100% 

Paired elements 

i, i+64 

i-odd (x = 2) 

Odd 50-75% 50-75% 87.5-100% 

Even 54.7-75% 73.4-75% 93.8-100% 

All 50.78% 75% 100% 

Paired elements 

i, i+64 

i-mix (x = 2) 

Odd 68.8-75% 74.2-75% 99.2-100% 

Even 61.7-75% 74.2-75% 78.8-100% 

All 50.39% 74.6-75% 100% 

Unpaired elem. 

Even 

Single 99.2% 99.2% 99.2% 

Odd 98.4-100% 87.5-99.2% 97.7-100% 

Even 71.1-100% 74.2-99.2% 97.7-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 75-100% 87.5-99.2% 95.3-100% 

Even 50-100% 50-99.2% 87.5-100% 

Unpaired elem. 

Mix 

Odd 87.5-100% 87.5-99.6% 98.4-100% 

Even 86.7-100% 98.4-99.6% 99.2-100% 

i, i+128,  

random for others 

Odd 99.2-100% 99.2-100% 99.2-100% 

Even 99.2-100% 99.2-100% 99.2-100% 
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Table A.14: NMNT diffusion for P = 17, Mp = 131071, N = 512 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+256 

i-even (x = 1) 

Odd 49.2-50% 49.2-50% 98.8-100% 

Even 23.8-50% 49.2-50% 98.8-100% 

All 0.391% 50% 100% 

Paired elements 

i, i+256 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 75-100% 

Even 18.8-50% 49.2-50% 87.5-100% 

All 0.391% 50% 100% 

Paired elements 

i, i+256 

i-mix (x = 1) 

Odd 37.5-50% 49.6-50% 99.6-100% 

Even 24.6-50% 49.6-50% 99.6-100% 

All 0.195% 50% 100% 

Paired elements 

i, i+128 

i-even (x = 2) 

Odd 73.8-75% 74.2-75% 98.8-100% 

Even 60.5-75% 74.2-75% 98.8-100% 

All 50.39% 75% 100% 

Paired elements 

i, i+128 

i-odd (x = 2) 

Odd 50-75% 50-75% 87.5-100% 

Even 59.4-75% 73.4-75% 93.8-100% 

All 50.39% 75% 99.8-100% 

Paired elements 

i, i+128 

i-mix (x = 2) 

Odd 68.8-75% 74.6-75% 99.6-100% 

Even 62.1-75% 74.6-75% 99.4-100% 

All 50.195% 74.8-75% 99.8-100% 

Unpaired elem. 

Even 

Single 99.61% 99.61% 99.61% 

Odd 98.8-100% 93-99.6% 98.8-100% 

Even 74.6-100% 74.6-99.6% 98.8-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 87.5-100% 87.5-99.6% 96.9-100% 

Even 50-100% 50-99.6% 87.5-100% 

Unpaired elem. 

Mix 

Odd 96.9-100% 96.9-99.8% 99.2-100% 

Even 96.5-100% 99.2-99.8% 99.6-100% 

i, i+256,  

random for others 

Odd 99.6-100% 99.6-100% 99.6-100% 

Even 99.6-100% 99.6-100% 99.6-100% 
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Table A.15: NMNT diffusion for P = 17, Mp = 131071, N = 1024 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Mp = 0 

Different Modifi. 

modulo Mp ≠ 0 

Paired elements 

i, i+512 

i-even (x = 1) 

Odd 49.4-50% 49.6-50% 99.4-100% 

Even 24.4-50% 49.6-50% 99.4-100% 

All 0.195% 50% 100% 

Paired elements 

i, i+512 

i-odd (x = 1) 

Odd 37.5-50% 25-50% 75-100% 

Even 18.8-50% 49.6-50% 87.5-100% 

All 0.195% 50% 100% 

Paired elements 

i, i+512 

i-mix (x = 1) 

Odd 37.5-50% 49.8-50% 99.8-100% 

Even 24.8-50% 49.8-50% 99.8-100% 

All 0.0977% 50% 100% 

Paired elements 

i, i+256 

i-even (x = 2) 

Odd 74.4-75% 74.6-75% 99.4-100% 

Even 61.9-75% 74.6-75% 99.4-100% 

All 50.2% 75% 99.8-100% 

Paired elements 

i, i+256 

i-odd (x = 2) 

Odd 50-75% 50-75% 87.5-100% 

Even 59.4-75% 74.2-75% 93.8-100% 

All 50.2% 75% 100% 

Paired elements 

i, i+256 

i-mix (x = 2) 

Odd 68.8-75% 74.8-75% 99.8-100% 

Even 62.3-75% 74.8-75% 99.8-100% 

All 50.1% 75% 99.9-100% 

Unpaired elem. 

Even 

Single 99.8% 99.8% 99.8% 

Odd 99.4-100% 96.7-99.8% 99.4-100% 

Even 74.8-100% 74.8-99.8% 99.4-100% 

Unpaired elem. 

Odd 

Single 75-100% 75-100% 75-100% 

Odd 96.9-100% 96.9-99.8% 99.6-100% 

Even 50-100% 50-99.8% 93.8-100% 

Unpaired elem. 

Mix 

Odd 99.1-100% 98.4-99.9% 99.6-100% 

Even 98.3-100% 99.6-99.9% 99.8-100% 

i, i+512,  

random for others 

Odd 99.7-100% 99.8-100% 99.8-100% 

Even 99.8-100% 99.8-100% 99.8-100% 
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Appendix B 

 

FNT Diffusion Analysis Results 

 

 

 

This appendix provides the diffusion analysis results of the FNT based on the 

probabilities (second technique) with different modulus and transform lengths. 
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Table B.1: FNT diffusion for t = 3, Ft = 257, N = 4 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+2 

i-even (x = 1) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-odd (x = 1) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-mix (x = 1) 

Odd - - - 

Even - - - 

All 25% 25-50% 75-100% 

Paired elements 

i, i+1 

i-even (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Paired elements 

i, i+1 

i-odd (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Paired elements 

i, i+1 

i-mix (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd - - - 

Even - - - 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd - - - 

Even - - - 

Unpaired elem. 

Mix 

Odd - - - 

Even - - - 

i, i+2,  

random for others 

Odd 50-100% 50-100% 75-100% 

Even - - - 
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Table B.2: FNT diffusion for t = 3, Ft = 257, N = 8 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+4 

i-even (x = 1) 

Odd 50% 50% 100% 

Even - - - 

All 25% 25-50% 75-100% 

Paired elements 

i, i+4 

i-odd (x = 1) 

Odd 50% 50% 100% 

Even - - - 

All 25% 25-50% 75-100% 

Paired elements 

i, i+4 

i-mix (x = 1) 

Odd 50% 37.5-50% 87.5-100% 

Even 37.5% 37.5-50% 87.5-100% 

All 12.5% 25-50% 87.5-100% 

Paired elements 

i, i+2 

i-even (x = 2) 

Odd - - - 

Even - - - 

All 75% 75% 75-100% 

Paired elements 

i, i+2 

i-odd (x = 2) 

Odd - - - 

Even - - - 

All 75% 75% 75-100% 

Paired elements 

i, i+2 

i-mix (x = 2) 

Odd - - - 

Even - - - 

All 62.5% 62.5-75% 75-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd - - - 

Even 75% 75% 75-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd - - - 

Even 75% 75% 75-100% 

Unpaired elem. 

Mix 

Odd - - - 

Even 87.5% 87.5% 87.5-100% 

i, i+4,  

random for others 

Odd 75-100% 75-100% 75-100% 

Even 75-100% 75-100% 87.5-100% 
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Table B.3: FNT diffusion for t = 3, Ft = 257, N = 16 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+8 

i-even (x = 1) 

Odd 50% 37.5-50% 87.5-100% 

Even 25- 37.5% 25-50% 75-100% 

All 12.5% 25-50% 87.5-100% 

Paired elements 

i, i+8 

i-odd (x = 1) 

Odd 50% 37.5-50% 75-100% 

Even 25-37.5% 25-50% 75-100% 

All 12.5% 25-50% 87.5-100% 

Paired elements 

i, i+8 

i-mix (x = 1) 

Odd 50% 37.5-50% 87.5-100% 

Even 18.8-50% 25-50% 81.3-100% 

All 6.25% 43.8-50% 81.3-100% 

Paired elements 

i, i+4 

i-even (x = 2) 

Odd 75% 75% 75-100% 

Even - - - 

All 62.5% 62.5-75% 75-100% 

Paired elements 

i, i+4 

i-odd (x = 2) 

Odd 75% 75% 75-100% 

Even - - - 

All 62.5% 62.5-75% 75-100% 

Paired elements 

i, i+4 

i-mix (x = 2) 

Odd 75% 68.8-75% 87.5-100% 

Even 68.75% 68.8-75% 87.5-100% 

All 56.25% 62.5-75% 87.5-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 100% 75-87.5% 75-100% 

Even 62.5-87.5% 75-87.5% 75-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 100% 75-87.5% 75-100% 

Even 62.5-87.5% 75-87.5% 75-100% 

Unpaired elem. 

Mix 

Odd 100% 75-93.8% 75-100% 

Even 62.5-100% 75-93.8% 81.3-100% 

i, i+8,  

random for others 

Odd 87.5-100% 81.3-100% 87.5-100% 

Even 81.3-100% 81.3-100% 87.5-100% 
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Table B.4: FNT diffusion for t = 3, Ft = 257, N = 32 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+16 

i-even (x = 1) 

Odd 50% 37.5-50% 87.5-100% 

Even 12.5- 50% 25-50% 50-100% 

All 6.25% 43.8-50% 87.5-100% 

Paired elements 

i, i+16 

i-odd (x = 1) 

Odd 50% 31.3-50% 87.5-100% 

Even 12.5-50% 25-50% 75-100% 

All 6.25% 43.8-50% 87.5-100% 

Paired elements 

i, i+16 

i-mix (x = 1) 

Odd 50% 37.5-50% 87.5-100% 

Even 21.9-50% 37.5-50% 87.5-100% 

All 3.125% 43.8-50% 93.8-100% 

Paired elements 

i, i+8 

i-even (x = 2) 

Odd 75% 62.5-75% 75-100% 

Even 62.5-68.8% 62.5-75% 87.5-100% 

All 56.25% 62.5-75% 87.5-100% 

Paired elements 

i, i+8 

i-odd (x = 2) 

Odd 75% 62.5-75% 75-100% 

Even 62.5-68.8% 62.5-75% 87.5-100% 

All 56.25% 68.75-75% 87.5-100% 

Paired elements 

i, i+8 

i-mix (x = 2) 

Odd 75% 65.63-75% 90.6-100% 

Even 59.4-75% 65.6-75% 90.6-100% 

All 53.125% 68.75-75% 93.8-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 100% 75-93.8% 75-100% 

Even 62.5-100% 75-93.8% 75-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 100% 75-93.8% 75-100% 

Even 62.5-100% 75-93.8% 75-100% 

Unpaired elem. 

Mix 

Odd 93.8-100% 75-96.9% 84.4-100% 

Even 62.5-100% 75-96.9% 81.3-100% 

i, i+16,  

random for others 

Odd 90.6-100% 90.6-100% 90.6-100% 

Even 87.5-100% 90.6-100% 90.6-100% 
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Table B.5: FNT diffusion for t = 3, Ft = 257, N = 64 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+32 

i-even (x = 1) 

Odd 50% 37.5-50% 81.3-100% 

Even 12.5- 50% 25-50% 75-100% 

All 3.125% 43.8-50% 93.8-100% 

Paired elements 

i, i+32 

i-odd (x = 1) 

Odd 50% 37.5-50% 87.5-100% 

Even 12.5-50% 25-50% 75-100% 

All 3.125% 46.9-50% 93.8-100% 

Paired elements 

i, i+32 

i-mix (x = 1) 

Odd 46.9-50% 42.2-50% 89.1-100% 

Even 23.4-50% 37.5-50% 90.6-100% 

All 1.563% 48.4-50% 95.3-100% 

Paired elements 

i, i+16 

i-even (x = 2) 

Odd 71.9-75% 65.6-75% 75-100% 

Even 56.3-75 62.5-75% 87.5-100% 

All 53.125% 68.8-75% 93.8-100% 

Paired elements 

i, i+16 

i-odd (x = 2) 

Odd 71.9-75% 62.5-75% 75-100% 

Even 56.3-75 62.5-75% 87.5-100% 

All 53.125% 68.8-75% 93.8-100% 

Paired elements 

i, i+16 

i-mix (x = 2) 

Odd 71.9-75% 68.8-75% 92.2-100% 

Even 60.9-75% 62.5-75% 89.1-100% 

All 51.56% 70.3-75% 95.3-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 93.8-100% 75-96.9% 81.3-100% 

Even 62.5-100% 75-96.9% 75-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 93.8-100% 75-96.9% 75-100% 

Even 62.5-100% 75-96.9% 75-100% 

Unpaired elem. 

Mix 

Odd 95.3-100% 75-98.4% 87.5-100% 

Even 68.8-100% 75-98.4% 87.5-100% 

i, i+32,  

random for others 

Odd 90.6-100% 92.2-100% 90.6-100% 

Even 90.6-100% 90.6-100% 90.6-100% 
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Table B.6: FNT diffusion for t = 3, Ft = 257, N = 128 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+64 

i-even (x = 1) 

Odd 46.9-50% 37.5-50% 87.5-100% 

Even 12.5- 50% 25-50% 75-100% 

All 1.563% 46.9-50% 96.9-100% 

Paired elements 

i, i+64 

i-odd (x = 1) 

Odd 46.9-50% 37.5-50% 87.5-100% 

Even 12.5-50% 25-50% 75-100% 

All 1.563% 46.9-50% 96.9-100% 

Paired elements 

i, i+64 

i-mix (x = 1) 

Odd 47.7-50% 45.3-50% 93-100% 

Even 24.2-50% 46.1-50% 94.5-100% 

All 0.781% 47.7-50% 96.9-100% 

Paired elements 

i, i+32 

i-even (x = 2) 

Odd 71.9-75% 67.2-75% 75-100% 

Even 56.3-75% 62.5-75% 87.5-100% 

All 51.56% 71.9-75% 96.9-100% 

Paired elements 

i, i+32 

i-odd (x = 2) 

Odd 71.9-75% 62.5-75% 75-100% 

Even 56.3-75% 62.5-75% 87.5-100% 

All 51.56% 70.3-75% 96.9-100% 

Paired elements 

i, i+32 

i-mix (x = 2) 

Odd 71.9-75% 70.3-75% 93-100% 

Even 61.7-75% 70.3-75% 94.5-100% 

All 50.78% 73.4-75% 97.7-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 95.3-100% 75-98.4% 87.5-100% 

Even 68.8-100% 75-98.4% 75-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 95.3-100% 75-98.4% 87.5-100% 

Even 68.8-100% 75-98.4% 75-100% 

Unpaired elem. 

Mix 

Odd 96.1-100% 75-99.2% 87.5-100% 

Even 74.2-100% 93-99.2% 94.5-100% 

i, i+64,  

random for others 

Odd 93.8-100% 93.8-100% 93.8-100% 

Even 94.5-100% 93.8-100% 94.5-100% 
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Table B.6: FNT diffusion for t = 3, Ft = 257, N = 256 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+128 

i-even (x = 1) 

Odd 47.7-50% 37.5-50% 87.5-100% 

Even 21.9- 50% 25-50% 75-100% 

All 0.781% 48.4-50% 97.7-100% 

Paired elements 

i, i+128 

i-odd (x = 1) 

Odd 47.7-50% 37.5-50% 87.5-100% 

Even 21.9-50% 25-50% 75-100% 

All 0.781% 48.4-50% 97.7-100% 

Paired elements 

i, i+128 

i-mix (x = 1) 

Odd 48-50% 46.5-50% 96.5-100% 

Even 24.6-50% 43-50% 93-100% 

All 0.391% 48.8-50% 98.4-100% 

Paired elements 

i, i+64 

i-even (x = 2) 

Odd 71.9-75% 62.5-75% 75-100% 

Even 56.3-75% 68.8-75% 87.5-100% 

All 50.78% 71.9-75% 97.7-100% 

Paired elements 

i, i+64 

i-odd (x = 2) 

Odd 71.9-75% 68.8-75% 75-100% 

Even 56.3-75% 62.5-75% 87.5-100% 

All 50.78% 72.7-75% 96.9-100% 

Paired elements 

i, i+64 

i-mix (x = 2) 

Odd 72.3-75% 71.5-75% 96.1-100% 

Even 62.1-75% 71.1-75% 96.1-100% 

All 50.39% 73.4-75% 98.4-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 96.1-100% 75-99.2% 87.5-100% 

Even 74.2-100% 75-99.2% 87.5-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 96.1-100% 75-99.2% 87.5-100% 

Even 74.2-100% 75-99.2% 75-100% 

Unpaired elem. 

Mix 

Odd 96.9-100% 87.5-99.6% 90.6-100% 

Even 92.6-100% 95.7-99.6% 93.8-100% 

i, i+128,  

random for others 

Odd 96.5-100% 96.5-100% 96.5-100% 

Even 96.5-100% 96.1-100% 96.1-100% 
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Table B.7: FNT diffusion for t = 4, Ft = 65537, N = 4 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+2 

i-even (x = 1) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-odd (x = 1) 

Odd - - - 

Even - - - 

All 50% 50% 100% 

Paired elements 

i, i+2 

i-mix (x = 1) 

Odd - - - 

Even - - - 

All 25% 50% 100% 

Paired elements 

i, i+1 

i-even (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Paired elements 

i, i+1 

i-odd (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Paired elements 

i, i+1 

i-mix (x = 2) 

Odd - - - 

Even - - - 

All - - - 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd - - - 

Even - - - 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd - - - 

Even - - - 

Unpaired elem. 

Mix 

Odd - - - 

Even - - - 

i, i+2,  

random for others 

Odd 100% 100% 100% 

Even - - - 
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Table B.8: FNT diffusion for t = 4, Ft = 65537, N = 8 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+4 

i-even (x = 1) 

Odd 50% 50% 100% 

Even - - - 

All 25% 50% 100% 

Paired elements 

i, i+4 

i-odd (x = 1) 

Odd 50% 50% 100% 

Even - - - 

All 25% 50% 100% 

Paired elements 

i, i+4 

i-mix (x = 1) 

Odd 50% 50% 100% 

Even 37.5% 50% 100% 

All 12.5% 50% 87.5-100% 

Paired elements 

i, i+2 

i-even (x = 2) 

Odd - - - 

Even - - - 

All 75% 75% 100% 

Paired elements 

i, i+2 

i-odd (x = 2) 

Odd - - - 

Even - - - 

All 75% 75% 100% 

Paired elements 

i, i+2 

i-mix (x = 2) 

Odd - - - 

Even - - - 

All 62.5% 75% 100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd - - - 

Even 75% 75% 100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd - - - 

Even 75% 75% 100% 

Unpaired elem. 

Mix 

Odd - - - 

Even 87.5% 87.5% 100% 

i, i+4,  

random for others 

Odd 100% 100% 100% 

Even 87.5-100% 100% 87.5-100% 
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Table B.9: FNT diffusion for t = 4, Ft = 65537, N = 16 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+8 

i-even (x = 1) 

Odd 50% 50% 87.5-100% 

Even 25- 37.5% 50% 100% 

All 12.5% 50% 100% 

Paired elements 

i, i+8 

i-odd (x = 1) 

Odd 50% 50% 100% 

Even 25-37.5% 50% 100% 

All 12.5% 50% 100% 

Paired elements 

i, i+8 

i-mix (x = 1) 

Odd 50% 43.8-50% 93.8-100% 

Even 18.8-50% 43.8-50% 93.8-100% 

All 6.25% 50% 100% 

Paired elements 

i, i+4 

i-even (x = 2) 

Odd 75% 75% 100% 

Even - - - 

All 62.5% 75% 87.5-100% 

Paired elements 

i, i+4 

i-odd (x = 2) 

Odd 75% 75% 100% 

Even - - - 

All 62.5% 62.5-75% 100% 

Paired elements 

i, i+4 

i-mix (x = 2) 

Odd 75% 75% 100% 

Even 68.75% 68.8-75% 100% 

All 56.25% 75% 93.8-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 100% 87.5% 87.5-100% 

Even 62.5-87.5% 75-87.5%  100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 100% 87.5% 87.5-100% 

Even 62.5-87.5% 75-87.5% 100% 

Unpaired elem. 

Mix 

Odd 100% 87.5-93.8% 87.5-100% 

Even 62.5-100% 87.5-93.8% 93.8-100% 

i, i+8,  

random for others 

Odd 93.8-100% 93.8-100% 93.8-100% 

Even 93.8-100% 93.8-100% 93.8-100% 
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Table B.10: FNT diffusion for t = 4, Ft = 65537, N = 32 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+16 

i-even (x = 1) 

Odd 50% 43.8-50% 93.8-100% 

Even 12.5- 50% 43.8-50% 93.8-100% 

All 6.25% 50% 100% 

Paired elements 

i, i+16 

i-odd (x = 1) 

Odd 50% 43.8-50% 93.8-100% 

Even 12.5-50% 43.8-50% 93.8-100% 

All 6.25% 50% 100% 

Paired elements 

i, i+16 

i-mix (x = 1) 

Odd 50% 46.9-50% 96.9-100% 

Even 21.9-50% 46.9-50% 96.9-100% 

All 3.125% 50% 100% 

Paired elements 

i, i+8 

i-even (x = 2) 

Odd 75% 68.8-75% 93.8-100% 

Even 62.5-68.8% 75% 100% 

All 56.25% 75% 100% 

Paired elements 

i, i+8 

i-odd (x = 2) 

Odd 75% 68.8-75% 93.8-100% 

Even 62.5-68.8% 75% 100% 

All 56.25% 75% 100% 

Paired elements 

i, i+8 

i-mix (x = 2) 

Odd 75% 71.9-75% 96.9-100% 

Even 59.4-75% 71.9-75% 96.9-100% 

All 53.125% 75% 96.9-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 100% 87.5-93.8% 93.8-100% 

Even 62.5-100% 75-93.8% 93.8-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 100% 87.5-93.8% 93.8-100% 

Even 62.5-100% 75-93.8% 93.8-100% 

Unpaired elem. 

Mix 

Odd 100% 87.5-96.9% 87.5-100% 

Even 62.5-100% 87.5-96.9% 93.8-100% 

i, i+16,  

random for others 

Odd 96.9-100% 96.9-100% 96.9-100% 

Even 96.9-100% 96.9-100% 96.9-100% 
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Table B.11: FNT diffusion for t = 4, Ft = 65537, N = 64 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+32 

i-even (x = 1) 

Odd 50% 43.8-50% 87.5-100% 

Even 12.5- 50% 43.8-50% 93.8-100% 

All 3.125% 50% 100% 

Paired elements 

i, i+32 

i-odd (x = 1) 

Odd 50% 43.8-50% 93.8-100% 

Even 12.5-50% 43.8-50% 93.8-100% 

All 3.125% 50% 100% 

Paired elements 

i, i+32 

i-mix (x = 1) 

Odd 50% 48.4-50% 96.9-100% 

Even 23.4-50% 48.4-50% 96.9-100% 

All 1.563% 48.4-50% 100% 

Paired elements 

i, i+16 

i-even (x = 2) 

Odd 75% 71.9-75% 96.9-100% 

Even 56.3-75% 71.9-75% 96.9-100% 

All 53.125% 71.9-75% 100% 

Paired elements 

i, i+16 

i-odd (x = 2) 

Odd 75% 71.9-75% 96.9-100% 

Even 56.3-75% 71.9-75% 96.9-100% 

All 53.125% 75% 96.9-100% 

Paired elements 

i, i+16 

i-mix (x = 2) 

Odd 75% 71.9-75% 98.4-100% 

Even 60.9-75% 73.4-75% 98.4-100% 

All 51.56% 73.4-75% 98.4-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 100% 87.5-96.9% 87.5-100% 

Even 62.5-100% 75-96.9% 93.8-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 100% 87.5-96.9% 93.8-100% 

Even 62.5-100% 75-96.9% 93.8-100% 

Unpaired elem. 

Mix 

Odd 98.4-100% 87.5-98.4% 93.8-100% 

Even 68.8-100% 87.5-98.4% 93.8-100% 

i, i+32,  

random for others 

Odd 96.9-100% 98.4-100% 96.9-100% 

Even 96.9-100% 96.9-100% 96.9-100% 
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Table B.12: FNT diffusion for t = 4, Ft = 65537, N = 128 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+64 

i-even (x = 1) 

Odd 50% 46.9-50% 93.8-100% 

Even 12.5- 50% 43.8-50% 96.9-100% 

All 1.563% 50% 100% 

Paired elements 

i, i+64 

i-odd (x = 1) 

Odd 50% 37.5-50% 93.8-100% 

Even 12.5-50% 43.8-50% 93.8-100% 

All 1.563% 50% 100% 

Paired elements 

i, i+64 

i-mix (x = 1) 

Odd 48.4-50% 49.2-50% 98.4-100% 

Even 24.2-50% 49.2-50% 98.4-100% 

All 0.781% 50% 100% 

Paired elements 

i, i+32 

i-even (x = 2) 

Odd 75% 71.9-75% 96.9-100% 

Even 56.3-75% 73.4-75% 96.9-100% 

All 51.56% 75% 100% 

Paired elements 

i, i+32 

i-odd (x = 2) 

Odd 75% 73.4-75% 98.4-100% 

Even 56.3-75% 71.9-75% 96.9-100% 

All 51.56% 75% 100% 

Paired elements 

i, i+32 

i-mix (x = 2) 

Odd 74.2-75% 73.4-75% 98.4-100% 

Even 61.7-75% 73.4-75% 98.4-100% 

All 50.78% 75% 100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 98.4-100% 87.5-98.4% 93.8-100% 

Even 68.8-100% 75-98.4% 87.5-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 98.4-100% 87.5-98.4% 96.9-100% 

Even 68.8-100% 75-98.4% 93.8-100% 

Unpaired elem. 

Mix 

Odd 98.4-100% 75-99.2% 93.8-100% 

Even 74.2-100% 97.7-99.2% 98.4-100% 

i, i+64,  

random for others 

Odd 98.4-100% 98.4-100% 98.4-100% 

Even 98.4-100% 98.4-100% 98.4-100% 
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Table B.13: FNT diffusion for t = 4, Ft = 65537, N = 256 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+128 

i-even (x = 1) 

Odd 48.4-50% 46.9-50% 93.8-100% 

Even 21.9-50% 46.9-50% 96.9-100% 

All 0.781% 49.2-50% 100% 

Paired elements 

i, i+128 

i-odd (x = 1) 

Odd 48.4-50% 48.4-50% 98.4-100% 

Even 21.9-50% 46.9-50% 96.9-100% 

All 0.781% 50% 100% 

Paired elements 

i, i+128 

i-mix (x = 1) 

Odd 49.2-50% 49.2-50% 99.2-100% 

Even 24.6-50% 49.2-50% 99.2-100% 

All 0.391% 50% 99.6-100% 

Paired elements 

i, i+64 

i-even (x = 2) 

Odd 74.2-75% 73.4-75% 98.4-100% 

Even 56.3-75% 71.9-75% 96.9-100% 

All 50.78% 75% 100% 

Paired elements 

i, i+64 

i-odd (x = 2) 

Odd 74.2-75% 73.4-75% 96.9-100% 

Even 56.3-75% 73.4-75% 96.9-100% 

All 50.78% 75% 99.2-100% 

Paired elements 

i, i+64 

i-mix (x = 2) 

Odd 74.2-75% 74.2-75% 99.2-100% 

Even 62.1-75% 73.8-75% 99.2-100% 

All 50.39% 74.6-75% 99.6-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 98.4-100% 87.5-99.2% 96.9-100% 

Even 74.2-100% 75-99.2% 98.4-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 98.4-100% 87.5-99.2% 96.9-100% 

Even 74.2-100% 75-99.2% 98.4-100% 

Unpaired elem. 

Mix 

Odd 98.4-100% 93.8-99.6% 98.4-100% 

Even 93.4-100% 98.8-99.6% 99.2-100% 

i, i+128,  

random for others 

Odd 99.2-100% 99.2-100% 99.2-100% 

Even 99.2-100% 99.2-100% 99.2-100% 
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Table B.14: FNT diffusion for t = 4, Ft = 65537, N = 512 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+256 

i-even (x = 1) 

Odd 49.2-50% 46.9-50% 93.8-100% 

Even 24.6-50% 49.2-50% 99.2-100% 

All 0.391% 50% 100% 

Paired elements 

i, i+256 

i-odd (x = 1) 

Odd 49.2-50% 48.4-50% 96.9-100% 

Even 24.6-50% 49.2-50% 98.8-100% 

All 0.391% 50% 99.6-100% 

Paired elements 

i, i+256 

i-mix (x = 1) 

Odd 49.6-50% 49.6-50% 99.6-100% 

Even 24.8-50% 49.6-50% 99.4-100% 

All 0.195% 50% 99.8-100% 

Paired elements 

i, i+128 

i-even (x = 2) 

Odd 74.2-75% 73.4-75% 98.4-100% 

Even 60.9-75% 73.4-75% 98.4-100% 

All 50.391% 75% 100% 

Paired elements 

i, i+128 

i-odd (x = 2) 

Odd 74.2-75% 71.9-75% 96.9-100% 

Even 60.9-75% 73.4-75% 98.4-100% 

All 50.391% 75% 99.6-100% 

Paired elements 

i, i+128 

i-mix (x = 2) 

Odd 74.6-75% 74.6-75% 99.6-100% 

Even 62.3-75% 74.6-75% 99.6-100% 

All 50.195% 74.8-75% 99.8-100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 98.4-100% 93.8-99.6% 98.4-100% 

Even 75-100% 75-99.6% 99.2-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 98.4-100% 93.8-99.6% 98.4-100% 

Even 75-100% 75-99.6% 99.2-100% 

Unpaired elem. 

Mix 

Odd 98.4-100% 96.9-99.8% 98.4-100% 

Even 98.2-100% 99.2-99.8% 99.6-100% 

i, i+256,  

random for others 

Odd 99.4-100% 99.6-100% 99.4-100% 

Even 99.6-100% 99.4-100% 99.6-100% 
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Table B.15: FNT diffusion for t = 4, Ft = 65537, N = 1024 

Location 
No. Modified 

elements 

Same 

Modification 

Different Modifi. 

modulo Ft = 0 

Different Modifi. 

modulo Ft ≠ 0 

Paired elements 

i, i+512 

i-even (x = 1) 

Odd 49.2-50% 49.2-50% 98.4-100% 

Even 24.8-50% 49.6-50% 99.6-100% 

All 0.195% 50% 100% 

Paired elements 

i, i+512 

i-odd (x = 1) 

Odd 49.2-50% 49.2-50% 98.4-100% 

Even 24.8-50% 49.6-50% 99.6-100% 

All 0.195% 50% 100% 

Paired elements 

i, i+512 

i-mix (x = 1) 

Odd 49.8-50% 49.8-50% 99.8-100% 

Even 24.9-50% 49.8-50% 99.8-100% 

All 0.098% 50% 100% 

Paired elements 

i, i+256 

i-even (x = 2) 

Odd 74.6-75% 74.2-75% 98.4-100% 

Even 62.3-75% 74.6-75% 99.4-100% 

All 50.195% 74.8-75% 100% 

Paired elements 

i, i+256 

i-odd (x = 2) 

Odd 74.6-75% 73.4-75% 98.4-100% 

Even 62.3-75% 74.6-75% 99.6-100% 

All 50.195% 75% 100% 

Paired elements 

i, i+256 

i-mix (x = 2) 

Odd 74.8-75% 74.7-75% 99.8-100% 

Even 62.4-75% 74.8-75% 99.7-100% 

All 50.098% 75% 100% 

Unpaired elem. 

Even 

Single 100% 100% 100% 

Odd 98.4-100% 98.4-99.8% 99.2-100% 

Even 75-100% 75-99.8% 99.6-100% 

Unpaired elem. 

Odd 

Single 100% 100% 100% 

Odd 98.4-100% 96.9-99.8% 99.2-100% 

Even 75-100% 75-99.8% 99.6-100% 

Unpaired elem. 

Mix 

Odd 99.6-100% 99.2-99.9% 99.6-100% 

Even 99.4-100% 99.6-99.9% 99.8-100% 

i, i+512,  

random for others 

Odd 99.7-100% 99.8-100% 99.8-100% 

Even 99.8-100% 99.8-100% 99.8-100% 
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Appendix C 

 

Test Vectors Using NMNT 

 

 

 

The following are the three vector tests, namely: the known answer test with its two 

parts, the variable text and the variable key; the multi-block message test; and the 

Monte Carlo test. These tests are run on the algorithm based on the NMNT in order to 

verify its correctness. 
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1. The Known Answer Tests (KAT) 

 
a. Variable Text 

 

Kc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
                

PT 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 52 104 96 49 102 66 37 120 23 8 4 38 104 91 100 20 

PT 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 66 87 59 38 14 103 38 50 105 80 1 79 94 126 97 35 

PT 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 80 29 122 35 21 1 26 6 83 122 93 35 61 120 120 110 

PT 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 44 4 50 114 18 13 120 114 29 122 35 50 107 19 43 103 

PT 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 117 52 0 31 68 33 94 81 22 99 44 72 77 45 78 72 

PT 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 106 108 77 46 44 71 73 4 109 77 70 5 25 79 121 85 

PT 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 15 122 74 91 71 97 62 100 16 117 6 14 122 94 98 70 

PT 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 106 69 110 4 99 90 110 46 68 56 118 82 79 112 81 111 

PT 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 120 29 113 19 8 109 13 54 22 26 85 72 59 121 68 94 

PT 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 70 103 28 36 97 93 22 108 74 82 54 14 7 124 93 13 

PT 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 106 119 122 97 91 37 61 115 74 16 20 33 61 115 15 14 

PT 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 25 2 115 45 33 39 75 124 121 47 91 82 105 86 111 102 

PT 126 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 89 47 103 24 28 80 95 80 92 124 18 70 87 76 91 99 

PT 126 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 55 70 43 9 21 99 46 48 58 7 0 33 44 107 118 107 

PT 126 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 39 124 110 60 57 99 57 71 93 51 99 99 120 62 71 82 

PT 126 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 100 38 107 34 93 81 10 93 33 40 18 63 19 13 23 30 

PT 126 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 96 19 87 38 52 46 63 65 112 57 110 88 63 123 33 82 

PT 126 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 27 7 19 14 116 15 49 71 114 111 18 116 5 11 16 97 

PT 126 126 126 64 0 0 0 0 0 0 0 0 0 0 0 0 

CT 117 10 9 67 24 111 98 117 84 111 28 6 6 94 26 80 

PT 126 126 126 96 0 0 0 0 0 0 0 0 0 0 0 0 

CT 102 70 47 122 28 104 108 117 116 111 22 98 71 15 9 50 

PT 126 126 126 112 0 0 0 0 0 0 0 0 0 0 0 0 

CT 58 19 32 59 20 72 106 91 45 25 111 27 75 69 36 80 

PT 126 126 126 120 0 0 0 0 0 0 0 0 0 0 0 0 

CT 14 64 103 34 39 89 100 55 80 16 104 99 122 16 7 61 
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PT 126 126 126 124 0 0 0 0 0 0 0 0 0 0 0 0 

CT 26 100 124 48 3 75 32 102 75 37 81 72 27 28 89 111 

PT 126 126 126 126 0 0 0 0 0 0 0 0 0 0 0 0 

CT 103 118 26 125 101 43 117 102 88 71 14 112 39 58 0 21 

PT 126 126 126 126 64 0 0 0 0 0 0 0 0 0 0 0 

CT 31 70 104 21 48 10 110 87 76 99 35 60 47 26 94 21 

PT 126 126 126 126 96 0 0 0 0 0 0 0 0 0 0 0 

CT 19 88 6 112 84 68 38 85 88 49 32 65 49 116 110 43 

PT 126 126 126 126 112 0 0 0 0 0 0 0 0 0 0 0 

CT 86 72 43 95 6 126 104 74 103 120 60 85 84 89 17 122 

PT 126 126 126 126 120 0 0 0 0 0 0 0 0 0 0 0 

CT 19 11 4 4 31 87 113 36 84 6 82 103 111 36 74 103 

PT 126 126 126 126 124 0 0 0 0 0 0 0 0 0 0 0 

CT 3 44 117 104 15 69 118 87 82 44 93 80 49 119 59 74 

PT 126 126 126 126 126 0 0 0 0 0 0 0 0 0 0 0 

CT 41 104 11 52 13 100 122 86 56 114 14 16 108 73 75 15 

PT 126 126 126 126 126 64 0 0 0 0 0 0 0 0 0 0 

CT 36 106 82 71 20 102 47 107 46 72 97 17 116 115 108 84 

PT 126 126 126 126 126 96 0 0 0 0 0 0 0 0 0 0 

CT 98 112 37 52 69 114 122 78 7 22 40 96 76 71 54 123 

PT 126 126 126 126 126 112 0 0 0 0 0 0 0 0 0 0 

CT 23 60 121 36 103 45 81 39 125 45 19 34 80 83 106 24 

PT 126 126 126 126 126 120 0 0 0 0 0 0 0 0 0 0 

CT 43 116 81 88 64 21 92 43 118 24 19 10 39 88 22 38 

PT 126 126 126 126 126 124 0 0 0 0 0 0 0 0 0 0 

CT 4 97 60 37 37 88 48 17 56 36 41 96 54 118 73 71 

PT 126 126 126 126 126 126 0 0 0 0 0 0 0 0 0 0 

CT 118 122 107 20 126 50 73 100 82 103 59 27 98 10 68 123 

PT 126 126 126 126 126 126 64 0 0 0 0 0 0 0 0 0 

CT 112 72 33 69 50 7 11 102 20 117 63 41 109 6 2 89 

PT 126 126 126 126 126 126 96 0 0 0 0 0 0 0 0 0 

CT 53 73 123 38 9 36 126 33 104 27 91 83 3 116 52 81 

PT 126 126 126 126 126 126 112 0 0 0 0 0 0 0 0 0 

CT 18 75 69 50 55 94 2 3 15 84 10 98 114 22 49 28 

PT 126 126 126 126 126 126 120 0 0 0 0 0 0 0 0 0 

CT 95 27 48 14 81 105 35 15 116 53 105 78 102 57 29 102 

PT 126 126 126 126 126 126 124 0 0 0 0 0 0 0 0 0 

CT 119 110 26 52 56 118 23 69 89 90 6 50 20 82 77 29 

PT 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0 0 

CT 53 35 5 122 49 66 10 111 40 74 76 42 35 114 14 13 

PT 126 126 126 126 126 126 126 64 0 0 0 0 0 0 0 0 

CT 124 87 106 44 41 19 85 89 6 122 91 26 70 25 34 46 

PT 126 126 126 126 126 126 126 96 0 0 0 0 0 0 0 0 

CT 31 34 104 13 89 120 30 59 38 104 82 83 109 85 69 121 

PT 126 126 126 126 126 126 126 112 0 0 0 0 0 0 0 0 

CT 10 92 55 88 69 57 67 85 20 42 69 38 68 6 9 46 

PT 126 126 126 126 126 126 126 120 0 0 0 0 0 0 0 0 

CT 105 118 1 99 82 112 6 20 126 83 33 27 14 56 45 80 

PT 126 126 126 126 126 126 126 124 0 0 0 0 0 0 0 0 

CT 32 29 44 12 15 53 39 55 23 118 113 82 18 18 48 95 
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PT 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0 

CT 55 2 72 9 50 15 3 100 76 8 38 121 20 84 109 81 

PT 126 126 126 126 126 126 126 126 64 0 0 0 0 0 0 0 

CT 121 73 59 43 81 39 107 12 94 36 79 99 122 17 5 97 

PT 126 126 126 126 126 126 126 126 96 0 0 0 0 0 0 0 

CT 68 114 96 32 99 33 69 9 117 73 116 48 84 82 27 85 

PT 126 126 126 126 126 126 126 126 112 0 0 0 0 0 0 0 

CT 76 11 3 23 126 70 62 83 30 102 14 102 84 20 113 75 

PT 126 126 126 126 126 126 126 126 120 0 0 0 0 0 0 0 

CT 107 100 45 123 119 98 11 107 36 116 47 25 5 19 88 61 

PT 126 126 126 126 126 126 126 126 124 0 0 0 0 0 0 0 

CT 78 40 104 84 10 20 115 39 89 62 43 18 6 57 65 122 

PT 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0 

CT 101 27 114 78 22 50 82 42 12 42 61 75 43 126 14 113 

PT 126 126 126 126 126 126 126 126 126 64 0 0 0 0 0 0 

CT 57 107 81 90 10 49 42 65 98 46 29 27 89 113 31 50 

PT 126 126 126 126 126 126 126 126 126 96 0 0 0 0 0 0 

CT 36 9 66 112 24 109 93 67 113 57 89 109 86 82 70 11 

PT 126 126 126 126 126 126 126 126 126 112 0 0 0 0 0 0 

CT 14 71 104 35 86 11 93 81 63 72 82 30 111 12 51 112 

PT 126 126 126 126 126 126 126 126 126 120 0 0 0 0 0 0 

CT 71 113 53 102 68 30 112 73 35 125 63 67 105 14 13 112 

PT 126 126 126 126 126 126 126 126 126 124 0 0 0 0 0 0 

CT 17 15 44 115 123 41 27 48 2 45 51 49 48 58 77 1 

PT 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0 

CT 57 95 6 92 92 111 51 28 4 60 110 1 112 88 1 46 

PT 126 126 126 126 126 126 126 126 126 126 64 0 0 0 0 0 

CT 62 7 14 10 35 43 122 85 73 1 44 13 14 120 30 50 

PT 126 126 126 126 126 126 126 126 126 126 96 0 0 0 0 0 

CT 20 125 116 124 103 103 36 98 27 34 101 11 119 26 121 93 

PT 126 126 126 126 126 126 126 126 126 126 112 0 0 0 0 0 

CT 60 125 103 85 109 90 117 102 5 26 10 29 58 72 12 120 

PT 126 126 126 126 126 126 126 126 126 126 120 0 0 0 0 0 

CT 0 52 22 73 112 83 43 106 113 18 3 92 126 77 24 58 

PT 126 126 126 126 126 126 126 126 126 126 124 0 0 0 0 0 

CT 126 37 68 92 40 26 103 70 29 51 0 68 52 71 104 45 

PT 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0 

CT 32 114 26 117 110 18 35 4 33 109 114 55 125 11 125 98 

PT 126 126 126 126 126 126 126 126 126 126 126 64 0 0 0 0 

CT 45 2 57 102 55 58 102 97 11 28 122 102 9 16 47 116 

PT 126 126 126 126 126 126 126 126 126 126 126 96 0 0 0 0 

CT 3 49 40 15 48 33 113 98 91 8 11 56 47 12 109 88 

PT 126 126 126 126 126 126 126 126 126 126 126 112 0 0 0 0 

CT 54 117 76 109 88 81 111 103 4 55 2 31 122 30 78 24 

PT 126 126 126 126 126 126 126 126 126 126 126 120 0 0 0 0 

CT 55 13 14 77 82 102 6 89 104 103 26 66 29 19 46 36 

PT 126 126 126 126 126 126 126 126 126 126 126 124 0 0 0 0 

CT 50 90 65 14 0 78 80 94 17 38 44 103 116 64 86 12 

PT 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0 

CT 62 15 68 79 32 101 126 17 52 33 66 25 101 77 110 0 
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PT 126 126 126 126 126 126 126 126 126 126 126 126 64 0 0 0 

CT 39 110 80 104 110 13 39 124 1 5 45 123 47 66 112 102 

PT 126 126 126 126 126 126 126 126 126 126 126 126 96 0 0 0 

CT 98 125 43 11 118 102 51 74 19 19 104 89 27 5 24 88 

PT 126 126 126 126 126 126 126 126 126 126 126 126 112 0 0 0 

CT 1 55 12 97 33 42 106 1 14 56 65 28 19 3 67 17 

PT 126 126 126 126 126 126 126 126 126 126 126 126 120 0 0 0 

CT 20 118 104 114 123 106 101 30 72 83 86 97 83 112 28 64 

PT 126 126 126 126 126 126 126 126 126 126 126 126 124 0 0 0 

CT 25 5 36 23 58 82 77 46 19 38 106 76 65 42 3 64 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0 

CT 27 29 27 99 8 66 125 106 82 18 121 21 103 80 62 125 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 64 0 0 

CT 93 89 54 63 43 1 51 15 82 89 10 123 118 123 69 2 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 96 0 0 

CT 81 13 6 17 15 62 103 0 106 74 84 67 73 100 47 1 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 112 0 0 

CT 110 55 70 73 77 58 55 12 74 77 116 95 53 95 30 54 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 120 0 0 

CT 73 79 58 91 24 35 83 58 97 67 110 125 64 109 62 34 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 124 0 0 

CT 20 47 35 19 75 112 121 74 109 106 0 44 43 114 38 1 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 0 0 

CT 61 114 20 12 40 29 84 78 42 76 122 26 69 101 114 41 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 64 0 

CT 67 122 87 6 65 72 42 108 111 38 67 32 87 1 17 7 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 96 0 

CT 2 59 14 22 93 64 61 19 81 58 83 43 0 107 101 93 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 112 0 

CT 69 11 97 89 70 63 38 31 49 28 29 115 45 70 90 6 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 120 0 

CT 44 93 115 91 61 56 27 120 125 7 107 58 112 113 97 126 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 124 0 

CT 62 112 68 124 65 30 43 125 27 38 20 101 101 88 17 117 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 0 

CT 4 59 3 125 109 24 112 57 7 80 0 120 60 26 40 16 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 64 

CT 64 2 21 36 123 48 64 93 124 45 23 116 17 93 4 80 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 96 

CT 33 10 47 27 120 26 79 98 100 81 36 118 66 99 2 18 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 112 

CT 112 63 96 106 115 35 117 74 91 84 47 120 46 28 120 120 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 120 

CT 102 78 63 66 47 7 27 31 62 10 76 6 81 40 107 119 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 124 

CT 40 60 115 119 11 109 118 54 4 89 12 73 32 24 41 50 

PT 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 

CT 40 86 125 47 110 0 38 27 91 97 32 54 39 75 45 57 
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b. Variable Key 

 

 

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
                

Kc 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 114 120 13 82 8 8 59 107 19 13 40 18 46 71 2 3 

Kc 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 55 49 36 51 75 92 88 89 81 96 78 106 100 36 101 53 

Kc 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 53 57 38 69 116 66 50 119 94 71 50 47 31 53 62 57 

Kc 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 32 31 29 74 20 9 31 121 81 112 21 102 11 76 57 100 

Kc 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 114 95 101 119 56 113 37 61 92 19 74 40 114 13 96 72 

Kc 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 96 102 21 20 74 53 91 125 111 115 64 23 126 107 15 68 

Kc 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 92 73 35 70 22 93 58 42 0 98 116 106 78 84 97 106 

Kc 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 97 13 21 13 0 122 99 21 56 110 102 77 33 25 64 23 

Kc 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 78 21 28 95 26 104 8 96 8 26 46 64 86 52 57 65 

Kc 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 115 118 90 90 42 113 89 31 41 6 26 123 65 59 71 9 

Kc 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 47 84 46 83 19 7 93 52 33 90 16 40 82 92 110 79 

Kc 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 97 78 12 75 2 68 86 59 32 13 105 87 51 117 122 31 

Kc 126 126 64 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 99 45 7 102 68 15 100 80 31 52 49 116 89 38 7 96 

Kc 126 126 96 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 111 66 54 35 120 107 121 62 117 57 53 111 67 95 11 29 

Kc 126 126 112 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 49 59 77 106 56 16 116 50 61 1 108 44 58 13 86 38 

Kc 126 126 120 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 40 23 23 100 19 107 113 125 34 63 84 67 84 84 70 101 

Kc 126 126 124 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 101 90 57 68 113 11 42 115 105 110 62 9 124 103 62 107 

Kc 126 126 126 0 0 0 0 0 0 0 0 0 0 0 0 0 

CT 4 64 100 101 38 110 113 36 51 67 120 67 3 22 57 114 

Kc 126 126 126 64 0 0 0 0 0 0 0 0 0 0 0 0 

CT 83 106 109 48 51 52 63 81 97 22 42 93 109 96 76 78 

Kc 126 126 126 96 0 0 0 0 0 0 0 0 0 0 0 0 

CT 92 16 61 41 40 46 105 114 95 73 44 104 60 57 31 124 

Kc 126 126 126 112 0 0 0 0 0 0 0 0 0 0 0 0 

CT 71 96 55 28 94 18 97 101 15 120 120 97 103 78 42 81 

Kc 126 126 126 120 0 0 0 0 0 0 0 0 0 0 0 0 

CT 59 16 78 85 107 63 59 4 116 102 3 87 49 32 80 0 

Kc 126 126 126 124 0 0 0 0 0 0 0 0 0 0 0 0 

CT 122 112 126 31 74 58 32 105 39 13 28 14 105 35 122 51 
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Kc 126 126 126 126 0 0 0 0 0 0 0 0 0 0 0 0 

CT 99 70 78 15 112 93 35 50 103 87 10 113 60 52 2 71 

Kc 126 126 126 126 64 0 0 0 0 0 0 0 0 0 0 0 

CT 57 34 71 15 70 29 45 45 48 125 63 108 50 65 119 74 

Kc 126 126 126 126 96 0 0 0 0 0 0 0 0 0 0 0 

CT 72 65 74 92 85 38 54 20 105 50 122 126 89 35 7 80 

Kc 126 126 126 126 112 0 0 0 0 0 0 0 0 0 0 0 

CT 0 33 124 84 89 104 34 4 23 103 67 14 69 86 98 28 

Kc 126 126 126 126 120 0 0 0 0 0 0 0 0 0 0 0 

CT 69 90 4 55 78 43 123 104 118 113 113 46 115 56 80 42 

Kc 126 126 126 126 124 0 0 0 0 0 0 0 0 0 0 0 

CT 63 5 115 32 73 3 63 97 119 118 69 34 67 75 41 37 

Kc 126 126 126 126 126 0 0 0 0 0 0 0 0 0 0 0 

CT 113 49 66 30 83 3 59 77 119 30 53 100 22 123 60 55 

Kc 126 126 126 126 126 64 0 0 0 0 0 0 0 0 0 0 

CT 106 61 41 11 86 14 121 53 36 113 83 56 87 88 126 119 

Kc 126 126 126 126 126 96 0 0 0 0 0 0 0 0 0 0 

CT 65 100 22 86 47 19 66 118 115 105 36 2 22 58 121 126 

Kc 126 126 126 126 126 112 0 0 0 0 0 0 0 0 0 0 

CT 75 105 13 110 46 24 58 99 67 79 99 9 50 115 104 111 

Kc 126 126 126 126 126 120 0 0 0 0 0 0 0 0 0 0 

CT 30 61 121 123 1 58 36 25 92 111 46 117 15 101 1 108 

Kc 126 126 126 126 126 124 0 0 0 0 0 0 0 0 0 0 

CT 105 27 76 65 65 27 48 25 89 104 30 40 69 32 31 38 

Kc 126 126 126 126 126 126 0 0 0 0 0 0 0 0 0 0 

CT 6 100 4 24 94 91 107 3 110 65 83 93 38 0 116 91 

Kc 126 126 126 126 126 126 64 0 0 0 0 0 0 0 0 0 

CT 36 112 82 1 113 82 99 38 9 44 27 47 8 120 82 104 

Kc 126 126 126 126 126 126 96 0 0 0 0 0 0 0 0 0 

CT 15 77 92 45 14 69 75 28 46 24 43 45 115 37 56 64 

Kc 126 126 126 126 126 126 112 0 0 0 0 0 0 0 0 0 

CT 21 93 83 46 2 46 11 41 46 36 78 103 113 69 35 62 

Kc 126 126 126 126 126 126 120 0 0 0 0 0 0 0 0 0 

CT 10 35 114 65 87 32 80 15 62 45 50 85 62 5 17 52 

Kc 126 126 126 126 126 126 124 0 0 0 0 0 0 0 0 0 

CT 50 55 18 103 108 83 47 42 96 82 58 124 106 75 69 44 

Kc 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0 0 

CT 88 58 23 125 35 117 126 75 63 0 65 9 90 105 75 29 

Kc 126 126 126 126 126 126 126 64 0 0 0 0 0 0 0 0 

CT 26 47 49 59 54 80 9 120 33 83 118 41 46 68 126 13 

Kc 126 126 126 126 126 126 126 96 0 0 0 0 0 0 0 0 

CT 77 126 5 113 117 112 126 118 52 63 108 94 124 57 61 86 

Kc 126 126 126 126 126 126 126 112 0 0 0 0 0 0 0 0 

CT 64 84 71 25 45 69 63 69 2 41 34 18 95 46 9 77 

Kc 126 126 126 126 126 126 126 120 0 0 0 0 0 0 0 0 

CT 109 16 24 84 83 65 62 51 51 81 6 45 72 112 37 119 

Kc 126 126 126 126 126 126 126 124 0 0 0 0 0 0 0 0 

CT 119 5 46 106 92 75 3 8 76 30 90 101 125 71 117 125 

Kc 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0 

CT 80 103 119 44 105 88 99 7 98 12 45 119 1 50 35 76 
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Kc 126 126 126 126 126 126 126 126 64 0 0 0 0 0 0 0 

CT 44 45 57 101 91 92 70 2 89 116 64 6 81 27 50 98 

Kc 126 126 126 126 126 126 126 126 96 0 0 0 0 0 0 0 

CT 17 123 7 5 87 14 107 92 121 91 54 12 13 118 113 123 

Kc 126 126 126 126 126 126 126 126 112 0 0 0 0 0 0 0 

CT 32 67 11 28 11 63 79 121 99 45 15 98 15 88 50 33 

Kc 126 126 126 126 126 126 126 126 120 0 0 0 0 0 0 0 

CT 42 22 47 13 118 41 63 31 47 29 9 114 86 60 16 53 

Kc 126 126 126 126 126 126 126 126 124 0 0 0 0 0 0 0 

CT 21 23 32 76 115 98 28 77 1 89 18 63 66 10 76 121 

Kc 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0 

CT 11 122 41 94 1 28 125 93 88 50 99 42 80 99 59 78 

Kc 126 126 126 126 126 126 126 126 126 64 0 0 0 0 0 0 

CT 42 81 86 49 50 6 12 78 93 0 107 32 51 82 15 13 

Kc 126 126 126 126 126 126 126 126 126 96 0 0 0 0 0 0 

CT 117 64 87 79 18 50 120 15 15 82 17 89 98 23 41 73 

Kc 126 126 126 126 126 126 126 126 126 112 0 0 0 0 0 0 

CT 8 54 7 1 125 121 1 30 39 8 49 48 55 28 43 41 

Kc 126 126 126 126 126 126 126 126 126 120 0 0 0 0 0 0 

CT 20 64 32 107 88 80 71 96 6 103 117 19 89 0 97 63 

Kc 126 126 126 126 126 126 126 126 126 124 0 0 0 0 0 0 

CT 37 27 123 110 29 82 77 57 17 51 61 30 81 1 10 3 

Kc 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0 

CT 9 119 101 32 17 27 59 100 23 3 22 16 8 44 24 84 

Kc 126 126 126 126 126 126 126 126 126 126 64 0 0 0 0 0 

CT 43 68 113 2 62 83 44 20 29 54 91 100 122 102 33 21 

Kc 126 126 126 126 126 126 126 126 126 126 96 0 0 0 0 0 

CT 35 122 50 80 50 80 43 94 3 117 69 52 24 109 1 41 

Kc 126 126 126 126 126 126 126 126 126 126 112 0 0 0 0 0 

CT 9 35 89 91 16 116 97 15 30 113 61 79 84 16 53 79 

Kc 126 126 126 126 126 126 126 126 126 126 120 0 0 0 0 0 

CT 34 74 105 95 81 17 84 54 5 12 41 37 118 23 14 31 

Kc 126 126 126 126 126 126 126 126 126 126 124 0 0 0 0 0 

CT 71 36 0 122 2 17 125 4 82 44 38 102 70 62 110 118 

Kc 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0 

CT 20 3 112 40 93 40 47 81 85 88 103 93 108 52 120 49 

Kc 126 126 126 126 126 126 126 126 126 126 126 64 0 0 0 0 

CT 39 26 121 60 50 0 13 71 2 22 76 68 4 89 24 72 

Kc 126 126 126 126 126 126 126 126 126 126 126 96 0 0 0 0 

CT 57 93 91 46 38 81 68 7 24 117 13 71 123 33 29 69 

Kc 126 126 126 126 126 126 126 126 126 126 126 112 0 0 0 0 

CT 24 8 42 26 85 69 29 99 43 63 66 78 72 63 82 73 

Kc 126 126 126 126 126 126 126 126 126 126 126 120 0 0 0 0 

CT 15 109 65 16 11 82 24 102 7 78 40 40 66 49 22 29 

Kc 126 126 126 126 126 126 126 126 126 126 126 124 0 0 0 0 

CT 111 29 94 93 71 47 106 25 17 119 98 29 119 22 90 8 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0 

CT 101 65 124 16 67 109 22 102 81 92 66 115 32 31 64 80 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 64 0 0 0 

CT 112 26 113 115 9 7 47 74 3 24 121 62 86 6 89 102 
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Kc 126 126 126 126 126 126 126 126 126 126 126 126 96 0 0 0 

CT 117 17 19 113 105 102 112 100 17 73 9 79 120 100 29 11 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 112 0 0 0 

CT 85 14 65 100 60 23 27 113 55 19 33 12 78 20 26 59 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 120 0 0 0 

CT 30 66 63 65 107 6 10 80 107 40 115 116 18 62 36 94 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 124 0 0 0 

CT 90 36 18 95 92 52 116 34 125 91 73 16 124 25 106 78 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0 

CT 80 18 91 41 52 6 10 67 109 108 65 39 118 103 92 89 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 64 0 0 

CT 122 56 98 71 45 66 4 99 45 36 47 20 122 83 100 67 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 96 0 0 

CT 14 62 56 112 27 7 112 31 17 61 54 109 30 49 40 30 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 112 0 0 

CT 25 76 21 93 51 39 64 27 96 83 102 0 11 125 99 20 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 120 0 0 

CT 29 12 9 116 28 106 60 20 26 51 10 36 121 84 45 24 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 124 0 0 

CT 7 82 32 33 56 120 38 101 47 85 103 15 84 115 35 52 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 0 0 

CT 15 117 55 71 68 120 33 5 91 61 65 40 60 95 123 1 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 64 0 

CT 17 16 60 21 29 15 59 114 85 50 71 99 93 22 44 121 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 96 0 

CT 104 104 123 126 35 63 22 98 126 125 73 107 9 42 76 41 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 112 0 

CT 24 65 55 43 53 109 92 125 112 124 111 105 17 69 100 23 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 120 0 

CT 98 122 62 107 97 82 87 35 106 0 115 39 38 36 109 19 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 124 0 

CT 109 31 39 60 29 111 37 77 87 34 85 32 96 68 83 30 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 0 

CT 50 36 116 55 62 8 0 56 6 119 117 67 61 72 78 65 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 64 

CT 36 28 122 98 30 41 12 119 31 38 30 5 44 2 33 108 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 96 

CT 95 59 81 26 36 77 126 7 18 103 24 90 1 27 10 55 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 112 

CT 64 48 17 47 26 89 65 121 29 33 39 41 28 18 45 56 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 120 

CT 91 28 89 5 96 96 105 69 83 70 5 88 22 3 64 120 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 124 

CT 66 52 30 104 126 44 87 47 43 68 19 18 20 47 121 28 

Kc 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 

CT 90 24 107 64 105 96 7 95 45 20 67 16 111 35 12 0 
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2. The Multi-block Message Test (MMT) 

 

Kc 45 118 71 35 98 63 121 56 72 51 49 104 37 64 89 93 

 
                

1 Block 

PT 49 48 49 119 119 67 117 47 89 50 35 123 110 77 47 94 

CT 14 123 66 69 99 84 34 54 35 37 17 116 16 85 14 10 

2 Blocks 

PT 93 67 72 53 37 87 73 68 83 67 125 64 78 83 77 50 

 47 45 73 39 35 48 110 65 62 109 49 50 104 100 97 78 

CT 24 6 81 84 41 31 45 31 55 62 1 90 35 35 2 89 

 1 26 43 69 76 90 109 62 23 0 98 85 93 25 7 118 

3 Blocks 

PT 77 80 80 123 44 74 110 77 120 37 75 78 120 112 117 115 

 65 41 98 119 53 67 120 81 42 80 114 54 122 84 68 41 

 62 78 71 101 49 78 58 47 83 63 68 39 59 87 86 67 

CT 48 50 13 116 87 81 60 49 57 21 35 111 114 19 50 81 

 114 15 99 6 101 30 42 92 15 120 29 73 42 96 25 92 

 124 109 11 16 85 40 30 59 17 36 39 11 0 73 61 10 

4 Blocks 

PT 53 89 94 84 40 66 78 77 91 60 55 46 46 96 120 124 

 106 46 58 114 68 78 47 107 87 96 61 64 96 41 57 108 

 62 35 61 99 71 68 71 104 37 59 80 107 77 91 97 44 

 49 68 80 75 116 95 113 89 101 117 95 66 70 97 81 71 

CT 28 43 1 116 110 99 113 60 8 51 15 3 116 13 17 24 

 31 2 7 74 86 16 120 111 85 23 45 27 109 101 95 98 

 9 105 37 24 91 109 94 58 45 86 31 51 57 10 24 2 

 58 11 6 93 73 93 124 64 6 50 115 125 105 92 27 77 

5 Blocks 

PT 52 125 96 58 48 126 94 55 86 89 117 64 52 114 115 47 

 102 114 121 80 44 87 109 36 44 67 62 36 60 66 83 107 

 93 43 90 55 96 54 87 97 97 98 83 84 94 125 116 103 

 77 92 101 52 79 71 87 57 67 103 46 94 119 45 103 65 

 109 84 59 78 111 82 35 121 36 122 82 65 86 77 83 123 

CT 126 35 81 88 74 15 38 54 61 98 104 30 83 13 94 25 

 45 37 54 46 60 18 103 54 104 27 42 114 13 66 86 58 

 54 23 84 61 29 3 115 111 84 58 40 37 61 106 10 75 

 4 11 39 49 44 48 8 93 74 23 97 27 90 35 55 113 

 6 29 113 19 35 32 2 9 15 109 35 44 96 25 69 105 
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6 Blocks 

PT 124 99 124 91 59 58 62 68 82 114 100 85 125 62 82 105 

 110 78 114 53 105 114 111 59 68 49 81 85 91 94 59 89 

 124 122 77 47 55 115 97 41 82 34 47 42 99 70 99 124 

 40 115 105 75 46 89 119 97 46 57 97 119 116 37 120 72 

 105 106 102 42 57 77 51 40 34 83 75 119 115 89 118 85 

 116 76 67 96 81 99 84 88 84 117 113 53 86 94 90 102 

CT 47 6 14 46 4 123 20 51 30 88 92 45 23 86 26 10 

 61 2 72 35 78 20 116 7 81 19 9 39 126 41 3 56 

 63 47 2 15 71 26 57 36 76 124 120 96 65 118 30 71 

 19 7 3 41 57 92 112 15 73 82 38 122 122 24 20 122 

 10 17 72 103 104 42 49 40 76 4 33 97 50 63 117 63 

 9 50 38 57 38 22 8 28 85 39 6 16 6 107 18 40 

7 Blocks 

PT 44 112 57 88 77 85 87 46 111 49 89 44 72 81 87 60 

 120 63 103 125 119 66 92 104 60 77 70 67 109 35 47 33 

 79 103 36 54 109 102 101 69 101 97 40 100 116 121 38 86 

 109 41 54 69 87 75 116 126 124 92 62 43 94 106 80 60 

 55 118 64 120 87 92 70 35 90 34 44 50 66 95 54 107 

 34 126 36 102 57 83 78 52 53 95 44 52 38 104 48 70 

 94 125 71 106 52 117 92 102 113 124 79 118 92 80 88 80 

CT 42 110 95 65 122 110 122 53 95 88 74 59 34 105 42 79 

 72 36 79 73 30 90 14 87 106 89 28 67 80 24 119 84 

 74 111 90 105 91 71 56 123 34 108 88 60 0 2 54 9 

 89 74 20 51 67 21 54 114 81 18 120 20 77 61 64 108 

 56 13 75 105 76 121 86 26 87 112 54 17 72 80 35 36 

 20 106 117 24 112 5 12 13 75 69 89 126 1 80 30 77 

 27 63 105 52 27 81 108 55 46 40 15 61 55 66 75 46 

8 Blocks 

PT 126 103 91 95 102 94 93 122 52 124 120 52 90 67 68 96 

 107 56 89 118 120 37 90 74 99 72 52 33 111 36 71 116 

 36 40 99 108 54 100 62 122 46 101 88 116 37 49 115 121 

 102 50 81 55 38 78 85 63 115 63 47 91 83 33 105 93 

 61 35 84 121 43 51 86 40 80 83 90 33 88 115 114 72 

 42 100 46 117 53 102 80 48 72 87 88 41 60 36 87 41 

 60 40 71 100 77 62 74 95 96 66 119 118 44 98 117 60 

 78 112 106 75 121 33 35 79 94 79 33 50 50 90 73 54 

CT 85 69 52 69 108 119 17 50 16 23 83 29 33 44 115 105 

 16 49 121 32 93 39 33 81 52 67 59 97 103 111 89 111 

 67 48 70 47 14 112 34 51 81 85 92 61 65 126 123 72 

 84 117 0 121 117 0 23 30 59 120 77 117 122 32 6 88 

 12 52 106 53 68 58 70 104 8 27 13 93 6 96 5 22 

 52 75 83 13 125 117 102 27 57 117 58 45 116 33 126 43 

 24 62 22 78 3 45 88 9 1 34 73 68 70 120 17 95 

 87 40 75 119 60 2 101 66 66 25 98 73 102 34 74 46 
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9 Blocks 

PT 59 64 40 88 70 45 106 106 75 121 48 89 41 105 47 106 

 39 55 58 43 109 71 46 51 116 67 58 48 49 99 60 49 

 117 117 72 79 83 75 58 52 69 89 106 83 100 55 51 98 

 108 99 58 69 60 113 116 118 66 105 95 100 55 71 120 124 

 43 44 58 82 62 68 51 55 112 125 121 108 115 68 84 59 

 64 59 110 54 73 76 69 86 42 51 108 36 93 112 54 82 

 98 77 75 112 60 50 85 82 74 75 115 125 108 82 115 63 

 69 109 105 48 109 95 36 74 88 41 89 73 121 106 98 85 

 118 105 124 39 82 108 36 105 125 108 119 105 84 74 49 39 

CT 56 23 66 12 0 66 106 47 35 51 98 29 92 100 72 92 

 61 3 113 12 63 94 10 72 99 80 74 7 65 30 98 96 

 86 85 17 123 63 101 101 4 123 36 75 25 70 37 40 17 

 35 11 116 60 26 107 101 99 57 18 25 78 3 94 81 59 

 26 75 83 98 31 54 82 70 49 59 13 29 21 30 113 98 

 4 69 5 62 17 103 104 12 102 94 121 32 25 30 31 76 

 57 21 49 117 71 75 25 25 54 74 53 56 126 44 104 105 

 83 107 117 109 52 66 29 59 76 84 70 75 55 124 90 105 

 88 34 52 77 0 69 104 80 51 72 63 102 50 104 5 106 

10 Blocks 

PT 106 88 79 96 69 38 69 94 76 49 57 109 51 85 40 75 

 95 51 126 109 87 97 94 41 124 111 73 112 99 33 66 100 

 117 100 68 126 78 119 38 73 58 61 72 111 100 44 43 105 

 74 94 41 77 63 39 41 69 107 102 94 107 49 51 121 98 

 65 122 124 42 74 121 96 72 70 76 62 72 89 112 85 35 

 43 106 85 100 72 57 53 68 101 48 49 107 98 58 90 87 

 54 71 107 55 83 110 36 78 110 125 116 35 43 74 68 75 

 47 57 104 110 116 37 71 120 112 37 58 76 118 48 83 41 

 52 100 114 34 83 54 95 118 64 61 114 56 86 52 84 82 

 90 95 60 60 35 54 52 104 99 57 75 63 37 119 113 64 

CT 85 94 104 71 56 26 42 38 55 13 32 91 97 73 33 42 

 23 51 85 37 57 46 71 40 64 126 87 16 41 59 82 61 

 121 120 18 12 101 87 60 73 47 71 14 80 98 28 48 110 

 89 118 35 92 31 87 69 32 92 50 20 71 94 14 69 92 

 12 45 38 67 4 61 3 49 52 57 67 80 118 99 117 57 

 120 72 64 47 70 30 120 109 86 117 44 101 116 29 75 24 

 80 15 57 49 76 32 119 42 43 82 18 120 104 44 41 108 

 113 4 33 65 99 6 126 28 118 17 116 93 122 121 37 19 

 8 34 13 26 93 78 83 79 119 16 124 84 74 117 76 55 

 87 82 58 108 36 101 35 113 96 91 66 28 110 14 31 8 
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3. The Monte Carlo Test (MCT) 

 
Count = 1 

Kc 78 88 64 55 85 64 68 101 115 119 59 70 65 77 55 79 

PT 74 58 110 97 48 69 103 100 95 83 90 40 126 86 37 48 

CT 110 21 88 67 42 123 115 37 51 4 122 56 110 93 2 59 

Count = 2 

Kc 32 77 24 116 127 59 55 64 64 115 65 126 47 16 53 116 

PT 110 21 88 67 42 123 115 37 51 4 122 56 110 93 2 59 

CT 12 55 15 73 114 1 72 42 121 65 109 100 38 22 88 7 

Count = 3 

Kc 44 122 23 61 13 58 127 106 57 50 44 26 9 6 109 115 

PT 12 55 15 73 114 1 72 42 121 65 109 100 38 22 88 7 

CT 61 28 61 28 0 10 61 58 83 64 6 98 0 12 29 5 

Count = 4 

Kc 17 102 42 33 13 48 66 80 106 114 42 120 9 10 112 118 

PT 61 28 61 28 0 10 61 58 83 64 6 98 0 12 29 5 

CT 76 109 26 11 77 31 11 63 27 122 0 32 106 126 83 73 

Count = 5 

Kc 93 11 48 42 64 47 73 111 113 8 42 88 99 116 35 63 

PT 76 109 26 11 77 31 11 63 27 122 0 32 106 126 83 73 

CT 75 20 105 18 126 38 106 89 4 92 19 108 72 80 123 53 

Count = 6 

Kc 22 31 89 56 62 9 35 54 117 84 57 52 43 36 88 10 

PT 75 20 105 18 126 38 106 89 4 92 19 108 72 80 123 53 

CT 108 66 16 67 92 36 58 21 61 82 37 61 0 64 76 13 

Count = 7 

Kc 122 93 73 123 98 45 25 35 72 6 28 9 43 100 20 7 

PT 108 66 16 67 92 36 58 21 61 82 37 61 0 64 76 13 

CT 45 52 81 109 35 51 8 100 111 98 61 22 28 101 95 19 

Count = 8 

Kc 87 105 24 22 65 30 17 71 39 100 33 31 55 1 75 20 

PT 45 52 81 109 35 51 8 100 111 98 61 22 28 101 95 19 

CT 7 58 88 8 119 17 87 46 107 120 60 113 81 107 13 70 

Count = 9 

Kc 80 83 64 30 54 15 70 105 76 28 29 110 102 106 70 82 

PT 7 58 88 8 119 17 87 46 107 120 60 113 81 107 13 70 

CT 41 115 62 3 59 7 17 81 43 29 65 14 123 45 18 78 

Count = 10 

Kc 121 32 126 29 13 8 87 56 103 1 92 96 29 71 84 28 

PT 41 115 62 3 59 7 17 81 43 29 65 14 123 45 18 78 

CT 58 31 56 11 65 7 100 66 33 31 126 116 95 63 59 118 

Count = 11 

Kc 67 63 70 22 76 15 51 122 70 30 34 20 66 120 111 106 

PT 58 31 56 11 65 7 100 66 33 31 126 116 95 63 59 118 

CT 29 121 43 77 63 62 83 69 26 11 40 79 126 95 72 13 

Count = 12 

Kc 94 70 109 91 115 49 96 63 92 21 10 91 60 39 39 103 

PT 29 121 43 77 63 62 83 69 26 11 40 79 126 95 72 13 

CT 92 75 53 19 72 7 78 47 67 30 98 121 13 92 83 25 

 



C.            Test Vectors Using NMNT 

239 

 

Count = 13 

Kc 2 13 88 72 59 54 46 16 31 11 104 34 49 123 116 126 

PT 92 75 53 19 72 7 78 47 67 30 98 121 13 92 83 25 

CT 47 115 44 12 119 2 71 2 32 52 49 2 50 112 34 108 

Count = 14 

Kc 45 126 116 68 76 52 105 18 63 63 89 32 3 11 86 18 

PT 47 115 44 12 119 2 71 2 32 52 49 2 50 112 34 108 

CT 0 8 54 82 57 36 29 43 12 77 103 108 113 122 115 14 

Count = 15 

Kc 45 118 66 22 117 16 116 57 51 114 62 76 114 113 37 28 

PT 0 8 54 82 57 36 29 43 12 77 103 108 113 122 115 14 

CT 88 50 101 100 122 82 38 37 17 73 17 13 49 28 12 73 

Count = 16 

Kc 117 68 39 114 15 66 82 28 34 59 47 65 67 109 41 85 

PT 88 50 101 100 122 82 38 37 17 73 17 13 49 28 12 73 

CT 22 107 117 79 86 83 57 71 7 100 120 84 94 94 74 27 

Count = 17 

Kc 99 47 82 61 89 17 107 91 37 95 87 21 29 51 99 78 

PT 22 107 117 79 86 83 57 71 7 100 120 84 94 94 74 27 

CT 75 20 23 52 12 13 104 89 81 97 23 5 80 88 31 5 

Count = 18 

Kc 40 59 69 9 85 28 3 2 116 62 64 16 77 107 124 75 

PT 75 20 23 52 12 13 104 89 81 97 23 5 80 88 31 5 

CT 34 60 101 8 77 7 10 83 14 95 54 62 90 34 21 44 

Count = 19 

Kc 10 7 32 1 24 27 9 81 122 97 118 46 23 73 105 103 

PT 34 60 101 8 77 7 10 83 14 95 54 62 90 34 21 44 

CT 28 19 36 105 65 79 110 64 114 119 47 11 4 57 76 1 

Count = 20 

Kc 22 20 4 104 89 84 103 17 8 22 89 37 19 112 37 102 

PT 28 19 36 105 65 79 110 64 114 119 47 11 4 57 76 1 

CT 79 79 22 75 77 107 32 120 25 78 120 68 35 50 100 12 

Count = 21 

Kc 89 91 18 35 20 63 71 105 17 88 33 97 48 66 65 106 

PT 79 79 22 75 77 107 32 120 25 78 120 68 35 50 100 12 

CT 28 46 78 106 94 98 18 34 116 59 1 80 28 97 86 93 

Count = 22 

Kc 69 117 92 73 74 93 85 75 101 99 32 49 44 35 23 55 

PT 28 46 78 106 94 98 18 34 116 59 1 80 28 97 86 93 

CT 15 49 111 12 17 110 52 126 92 29 105 87 75 8 42 31 

Count = 23 

Kc 74 68 51 69 91 51 97 53 57 126 73 102 103 43 61 40 

PT 15 49 111 12 17 110 52 126 92 29 105 87 75 8 42 31 

CT 88 115 23 87 113 89 87 99 97 63 64 33 60 13 29 109 

Count = 24 

Kc 18 55 36 18 42 106 54 86 88 65 9 71 91 38 32 69 

PT 88 115 23 87 113 89 87 99 97 63 64 33 60 13 29 109 

CT 84 73 107 10 40 69 115 83 74 2 29 80 105 57 35 55 
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Count = 25 

Kc 70 126 79 24 2 47 69 5 18 67 20 23 50 31 3 114 

PT 84 73 107 10 40 69 115 83 74 2 29 80 105 57 35 55 

CT 0 82 104 41 115 51 34 21 119 97 89 84 28 121 76 102 

Count = 26 

Kc 70 44 39 49 113 28 103 16 101 34 77 67 46 102 79 20 

PT 0 82 104 41 115 51 34 21 119 97 89 84 28 121 76 102 

CT 56 34 97 86 84 21 110 0 15 98 79 53 125 8 1 6 

Count = 27 

Kc 126 14 70 103 37 9 9 16 106 64 2 118 83 110 78 18 

PT 56 34 97 86 84 21 110 0 15 98 79 53 125 8 1 6 

CT 11 99 99 96 14 111 16 68 20 91 94 116 0 122 99 103 

Count = 28 

Kc 117 109 37 7 43 102 25 84 126 27 92 2 83 20 45 117 

PT 11 99 99 96 14 111 16 68 20 91 94 116 0 122 99 103 

CT 56 27 72 102 118 31 4 15 77 109 2 17 113 10 115 79 

Count = 29 

Kc 77 118 109 97 93 121 29 91 51 118 94 19 34 30 94 58 

PT 56 27 72 102 118 31 4 15 77 109 2 17 113 10 115 79 

CT 40 32 7 37 97 71 117 101 74 17 82 124 1 70 28 17 

Count = 30 

Kc 101 86 106 68 60 62 104 62 121 103 12 111 35 88 66 43 

PT 40 32 7 37 97 71 117 101 74 17 82 124 1 70 28 17 

CT 25 97 74 77 88 120 53 39 19 125 119 20 69 114 42 65 

Count = 31 

Kc 124 55 32 9 100 70 93 25 106 26 123 123 102 42 104 106 

PT 25 97 74 77 88 120 53 39 19 125 119 20 69 114 42 65 

CT 17 44 120 109 94 31 59 15 89 19 112 117 88 86 59 82 

Count = 32 

Kc 109 27 88 100 58 89 102 22 51 9 11 14 62 124 83 56 

PT 17 44 120 109 94 31 59 15 89 19 112 117 88 86 59 82 

CT 77 64 44 87 24 110 15 110 94 22 70 24 15 14 32 25 

Count = 33 

Kc 32 91 116 51 34 55 105 120 109 31 77 22 49 114 115 33 

PT 77 64 44 87 24 110 15 110 94 22 70 24 15 14 32 25 

CT 3 118 79 0 41 120 93 82 29 12 62 54 86 11 17 45 

Count = 34 

Kc 35 45 59 51 11 79 52 42 112 19 115 32 103 121 98 12 

PT 3 118 79 0 41 120 93 82 29 12 62 54 86 11 17 45 

CT 21 61 79 65 36 18 94 105 80 46 34 97 79 124 69 78 

Count = 35 

Kc 54 16 116 114 47 93 106 67 32 61 81 65 40 5 39 66 

PT 21 61 79 65 36 18 94 105 80 46 34 97 79 124 69 78 

CT 122 55 58 106 115 68 12 124 58 69 79 64 55 124 22 45 

Count = 36 

Kc 76 39 78 24 92 25 102 63 26 120 30 1 31 121 49 111 

PT 122 55 58 106 115 68 12 124 58 69 79 64 55 124 22 45 

CT 116 92 20 121 114 14 107 110 76 22 38 51 28 122 110 113 
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Count = 37 

Kc 56 123 90 97 46 23 13 81 86 110 56 50 3 3 95 30 

PT 116 92 20 121 114 14 107 110 76 22 38 51 28 122 110 113 

CT 33 5 0 55 23 119 62 98 71 119 91 117 126 67 88 77 

Count = 38 

Kc 25 126 90 86 57 96 51 51 17 25 99 71 125 64 7 83 

PT 33 5 0 55 23 119 62 98 71 119 91 117 126 67 88 77 

CT 50 91 69 56 77 46 3 73 125 46 21 79 121 99 114 122 

Count = 39 

Kc 43 37 31 110 116 78 48 122 108 55 118 8 4 35 117 41 

PT 50 91 69 56 77 46 3 73 125 46 21 79 121 99 114 122 

CT 63 84 52 11 58 105 72 81 76 74 116 13 85 113 116 107 

Count = 40 

Kc 20 113 43 101 78 39 120 43 32 125 2 5 81 82 1 66 

PT 63 84 52 11 58 105 72 81 76 74 116 13 85 113 116 107 

CT 111 103 98 15 111 52 80 88 67 84 34 21 115 21 72 3 

Count = 41 

Kc 123 22 73 106 33 19 40 115 99 41 32 16 34 71 73 65 

PT 111 103 98 15 111 52 80 88 67 84 34 21 115 21 72 3 

CT 31 82 92 24 83 74 37 59 35 90 111 41 10 55 14 107 

Count = 42 

Kc 100 68 21 114 114 89 13 72 64 115 79 57 40 112 71 42 

PT 31 82 92 24 83 74 37 59 35 90 111 41 10 55 14 107 

CT 42 40 70 47 84 86 44 119 107 26 26 113 126 19 115 30 

Count = 43 

Kc 78 108 83 93 38 15 33 63 43 105 85 72 86 99 52 52 

PT 42 40 70 47 84 86 44 119 107 26 26 113 126 19 115 30 

CT 91 19 90 63 106 122 53 77 8 21 124 43 100 95 28 13 

Count = 44 

Kc 21 127 9 98 76 117 20 114 35 124 41 99 50 60 40 57 

PT 91 19 90 63 106 122 53 77 8 21 124 43 100 95 28 13 

CT 113 22 65 115 79 80 114 9 108 41 113 67 72 32 5 113 

Count = 45 

Kc 100 105 72 17 3 37 102 123 79 85 88 32 122 28 45 72 

PT 113 22 65 115 79 80 114 9 108 41 113 67 72 32 5 113 

CT 110 69 16 33 80 34 15 110 81 121 64 37 59 125 77 71 

Count = 46 

Kc 10 44 88 48 83 7 105 21 30 44 24 5 65 97 96 15 

PT 110 69 16 33 80 34 15 110 81 121 64 37 59 125 77 71 

CT 87 114 10 31 8 122 121 26 17 44 36 31 118 25 5 32 

Count = 47 

Kc 93 94 82 47 91 125 16 15 15 0 60 26 55 120 101 47 

PT 87 114 10 31 8 122 121 26 17 44 36 31 118 25 5 32 

CT 0 96 2 5 4 88 85 86 76 33 64 79 49 12 125 94 

Count = 48 

Kc 93 62 80 42 95 37 69 89 67 33 124 85 6 116 24 113 

PT 0 96 2 5 4 88 85 86 76 33 64 79 49 12 125 94 

CT 33 73 113 125 126 44 102 95 54 47 44 71 110 15 89 56 
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Count = 49 

Kc 124 119 33 87 33 9 35 6 117 14 80 18 104 123 65 73 

PT 33 73 113 125 126 44 102 95 54 47 44 71 110 15 89 56 

CT 37 95 57 38 98 112 32 111 124 95 33 32 65 113 71 22 

Count = 50 

Kc 89 40 24 113 67 121 3 105 9 81 113 50 41 10 6 95 

PT 37 95 57 38 98 112 32 111 124 95 33 32 65 113 71 22 

CT 93 102 92 89 46 72 41 20 38 13 113 13 58 33 51 16 

Count = 51 

Kc 4 78 68 40 109 49 42 125 47 92 0 63 19 43 53 79 

PT 93 102 92 89 46 72 41 20 38 13 113 13 58 33 51 16 

CT 39 44 66 86 33 38 32 50 44 49 10 75 87 62 110 110 

Count = 52 

Kc 35 98 6 126 76 23 10 79 3 109 10 116 68 21 91 33 

PT 39 44 66 86 33 38 32 50 44 49 10 75 87 62 110 110 

CT 85 72 17 74 64 40 42 104 107 53 36 13 26 21 91 85 

Count = 53 

Kc 118 42 23 52 12 63 32 39 104 88 46 121 94 0 0 116 

PT 85 72 17 74 64 40 42 104 107 53 36 13 26 21 91 85 

CT 41 0 79 51 17 84 25 53 13 17 84 100 64 57 78 72 

Count = 54 

Kc 95 42 88 7 29 107 57 18 101 73 122 29 30 57 78 60 

PT 41 0 79 51 17 84 25 53 13 17 84 100 64 57 78 72 

CT 85 97 99 83 70 76 5 40 44 48 90 19 90 106 24 78 

Count = 55 

Kc 10 75 59 84 91 39 60 58 73 121 32 14 68 83 86 114 

PT 85 97 99 83 70 76 5 40 44 48 90 19 90 106 24 78 

CT 22 119 14 94 68 85 84 22 99 80 123 100 119 9 34 33 

Count = 56 

Kc 28 60 53 10 31 114 104 44 42 41 91 106 51 90 116 83 

PT 22 119 14 94 68 85 84 22 99 80 123 100 119 9 34 33 

CT 125 118 17 87 102 24 102 55 97 37 97 18 29 58 105 16 

Count = 57 

Kc 97 74 36 93 121 106 14 27 75 12 58 120 46 96 29 67 

PT 125 118 17 87 102 24 102 55 97 37 97 18 29 58 105 16 

CT 119 39 55 10 92 45 118 73 85 72 125 60 21 72 23 17 

Count = 58 

Kc 22 109 19 87 37 71 120 82 30 68 71 68 59 40 10 82 

PT 119 39 55 10 92 45 118 73 85 72 125 60 21 72 23 17 

CT 6 107 110 2 123 29 111 19 66 55 17 16 59 50 97 52 

Count = 59 

Kc 16 6 125 85 94 90 23 65 92 115 86 84 0 26 107 102 

PT 6 107 110 2 123 29 111 19 66 55 17 16 59 50 97 52 

CT 109 80 60 117 64 51 11 65 29 7 46 32 99 69 71 111 

Count = 60 

Kc 125 86 65 32 30 105 28 0 65 116 120 116 99 95 44 9 

PT 109 80 60 117 64 51 11 65 29 7 46 32 99 69 71 111 

CT 99 28 126 0 79 118 91 26 64 65 14 46 105 121 92 24 
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Count = 61 

Kc 30 74 63 32 81 31 71 26 1 53 118 90 10 38 112 17 

PT 99 28 126 0 79 118 91 26 64 65 14 46 105 121 92 24 

CT 24 113 23 122 99 102 86 91 119 53 117 45 10 13 106 125 

Count = 62 

Kc 6 59 40 90 50 121 17 65 118 0 3 119 0 43 26 108 

PT 24 113 23 122 99 102 86 91 119 53 117 45 10 13 106 125 

CT 57 118 107 86 62 116 96 10 59 57 122 26 25 77 83 57 

Count = 63 

Kc 63 77 67 12 12 13 113 75 77 57 121 109 25 102 73 85 

PT 57 118 107 86 62 116 96 10 59 57 122 26 25 77 83 57 

CT 108 124 29 48 44 74 79 21 109 122 69 109 72 106 54 40 

Count = 64 

Kc 83 49 94 60 32 71 62 94 32 67 60 0 81 12 127 125 

PT 108 124 29 48 44 74 79 21 109 122 69 109 72 106 54 40 

CT 20 82 81 110 72 62 40 15 85 59 98 99 75 20 51 31 

Count = 65 

Kc 71 99 15 82 104 121 22 81 117 120 94 99 26 24 76 98 

PT 20 82 81 110 72 62 40 15 85 59 98 99 75 20 51 31 

CT 23 103 49 96 74 55 108 79 65 101 19 52 49 102 59 19 

Count = 66 

Kc 80 4 62 50 34 78 122 30 52 29 77 87 43 126 119 113 

PT 23 103 49 96 74 55 108 79 65 101 19 52 49 102 59 19 

CT 22 101 40 74 119 116 89 68 15 28 17 88 47 21 105 109 

Count = 67 

Kc 70 97 22 120 85 58 35 90 59 1 92 15 4 107 30 28 

PT 22 101 40 74 119 116 89 68 15 28 17 88 47 21 105 109 

CT 11 70 123 92 32 25 5 79 110 51 124 12 1 85 97 14 

Count = 68 

Kc 77 39 109 36 117 35 38 21 85 50 32 3 5 62 127 18 

PT 11 70 123 92 32 25 5 79 110 51 124 12 1 85 97 14 

CT 89 94 17 56 57 7 77 113 62 41 126 100 95 72 21 26 

Count = 69 

Kc 20 121 124 28 76 36 107 100 107 27 94 103 90 118 106 8 

PT 89 94 17 56 57 7 77 113 62 41 126 100 95 72 21 26 

CT 14 34 47 98 53 64 61 34 75 80 42 7 94 62 53 29 

Count = 70 

Kc 26 91 83 126 121 100 86 70 32 75 116 96 4 72 95 21 

PT 14 34 47 98 53 64 61 34 75 80 42 7 94 62 53 29 

CT 72 67 115 16 120 42 99 41 62 93 47 57 32 103 106 13 

Count = 71 

Kc 82 24 32 110 1 78 53 111 30 22 91 89 36 47 53 24 

PT 72 67 115 16 120 42 99 41 62 93 47 57 32 103 106 13 

CT 18 2 78 28 6 95 111 23 18 75 52 63 94 18 25 30 

Count = 72 

Kc 64 26 110 114 7 17 90 120 12 93 111 102 122 61 44 6 

PT 18 2 78 28 6 95 111 23 18 75 52 63 94 18 25 30 

CT 104 54 86 63 32 41 76 126 46 81 20 119 60 49 55 2 
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Count = 73 

Kc 40 44 56 77 39 56 22 6 34 12 123 17 70 12 27 4 

PT 104 54 86 63 32 41 76 126 46 81 20 119 60 49 55 2 

CT 25 73 62 113 0 0 67 117 117 86 98 17 30 94 89 88 

Count = 74 

Kc 49 101 6 60 39 56 85 115 87 90 25 0 88 82 66 92 

PT 25 73 62 113 0 0 67 117 117 86 98 17 30 94 89 88 

CT 99 60 1 30 76 79 84 12 32 35 34 93 91 93 51 35 

Count = 75 

Kc 82 89 7 34 107 119 1 127 119 121 59 93 3 15 113 127 

PT 99 60 1 30 76 79 84 12 32 35 34 93 91 93 51 35 

CT 77 40 29 37 20 6 59 97 53 24 41 78 89 107 80 113 

Count = 76 

Kc 31 113 26 7 127 113 58 30 66 97 18 19 90 100 33 14 

PT 77 40 29 37 20 6 59 97 53 24 41 78 89 107 80 113 

CT 94 64 122 10 37 118 65 100 32 105 22 61 88 98 57 70 

Count = 77 

Kc 65 49 96 13 90 7 123 122 98 8 4 46 2 6 24 72 

PT 94 64 122 10 37 118 65 100 32 105 22 61 88 98 57 70 

CT 18 122 22 19 85 89 37 88 106 111 96 58 110 87 22 62 

Count = 78 

Kc 83 75 118 30 15 94 94 34 8 103 100 20 108 81 14 118 

PT 18 122 22 19 85 89 37 88 106 111 96 58 110 87 22 62 

CT 12 71 105 49 34 124 99 94 21 4 13 85 97 80 101 16 

Count = 79 

Kc 95 12 31 47 45 34 61 124 29 99 105 65 13 1 107 102 

PT 12 71 105 49 34 124 99 94 21 4 13 85 97 80 101 16 

CT 9 124 63 126 56 125 70 95 28 4 88 115 17 8 76 120 

Count = 80 

Kc 86 112 32 81 21 95 123 35 1 103 49 50 28 9 39 30 

PT 9 124 63 126 56 125 70 95 28 4 88 115 17 8 76 120 

CT 43 67 9 26 88 60 112 95 28 73 16 1 2 82 65 42 

Count = 81 

Kc 125 51 41 75 77 99 11 124 29 46 33 51 30 91 102 52 

PT 43 67 9 26 88 60 112 95 28 73 16 1 2 82 65 42 

CT 12 77 16 11 3 56 53 108 2 84 75 4 43 53 6 119 

Count = 82 

Kc 113 126 57 64 78 91 62 16 31 122 106 55 53 110 96 67 

PT 12 77 16 11 3 56 53 108 2 84 75 4 43 53 6 119 

CT 33 118 59 90 106 25 13 52 105 23 25 115 94 28 40 54 

Count = 83 

Kc 80 8 2 26 36 66 51 36 118 109 115 68 107 114 72 117 

PT 33 118 59 90 106 25 13 52 105 23 25 115 94 28 40 54 

CT 113 4 56 59 74 115 5 52 83 81 21 100 39 24 68 20 

Count = 84 

Kc 33 12 58 33 110 49 54 16 37 60 102 32 76 106 12 97 

PT 113 4 56 59 74 115 5 52 83 81 21 100 39 24 68 20 

CT 57 68 96 14 22 27 23 66 63 67 105 34 123 109 74 101 
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Count = 85 

Kc 24 72 90 47 120 42 33 82 26 127 15 2 55 7 70 4 

PT 57 68 96 14 22 27 23 66 63 67 105 34 123 109 74 101 

CT 59 79 44 47 71 84 41 60 20 111 32 6 70 56 98 40 

Count = 86 

Kc 35 7 118 0 63 126 8 110 14 16 47 4 113 63 36 44 

PT 59 79 44 47 71 84 41 60 20 111 32 6 70 56 98 40 

CT 39 55 57 84 88 59 101 41 65 5 37 17 2 85 55 67 

Count = 87 

Kc 4 48 79 84 103 69 109 71 79 21 10 21 115 106 19 111 

PT 39 55 57 84 88 59 101 41 65 5 37 17 2 85 55 67 

CT 84 112 40 54 52 66 99 56 113 4 78 15 15 45 100 57 

Count = 88 

Kc 80 64 103 98 83 7 14 127 62 17 68 26 124 71 119 86 

PT 84 112 40 54 52 66 99 56 113 4 78 15 15 45 100 57 

CT 7 73 114 100 66 73 79 125 17 77 78 90 43 70 22 39 

Count = 89 

Kc 87 9 21 6 17 78 65 2 47 92 10 64 87 1 97 113 

PT 7 73 114 100 66 73 79 125 17 77 78 90 43 70 22 39 

CT 9 54 45 30 94 77 46 33 83 42 61 11 32 98 3 25 

Count = 90 

Kc 94 63 56 24 79 3 111 35 124 118 55 75 119 99 98 104 

PT 9 54 45 30 94 77 46 33 83 42 61 11 32 98 3 25 

CT 120 16 53 41 123 54 36 48 33 56 91 8 78 109 19 70 

Count = 91 

Kc 38 47 13 49 52 53 75 19 93 78 108 67 57 14 113 46 

PT 120 16 53 41 123 54 36 48 33 56 91 8 78 109 19 70 

CT 88 57 10 95 121 102 44 74 30 91 65 44 107 72 51 12 

Count = 92 

Kc 126 22 7 110 77 83 103 89 67 21 45 111 82 70 66 34 

PT 88 57 10 95 121 102 44 74 30 91 65 44 107 72 51 12 

CT 71 119 40 34 86 123 9 51 82 12 88 70 38 56 92 35 

Count = 93 

Kc 57 97 47 76 27 40 110 106 17 25 117 41 116 126 30 1 

PT 71 119 40 34 86 123 9 51 82 12 88 70 38 56 92 35 

CT 12 81 4 112 104 37 31 122 81 125 58 71 66 120 104 5 

Count = 94 

Kc 53 48 43 60 115 13 113 16 64 100 79 110 54 6 118 4 

PT 12 81 4 112 104 37 31 122 81 125 58 71 66 120 104 5 

CT 33 85 120 123 120 15 34 78 35 13 33 85 82 23 113 4 

Count = 95 

Kc 20 101 83 71 11 2 83 94 99 105 110 59 100 17 7 0 

PT 33 85 120 123 120 15 34 78 35 13 33 85 82 23 113 4 

CT 6 1 4 21 15 102 120 9 121 126 35 12 52 116 15 94 

Count = 96 

Kc 18 100 87 82 4 100 43 87 26 23 77 55 80 101 8 94 

PT 6 1 4 21 15 102 120 9 121 126 35 12 52 116 15 94 

CT 66 103 33 70 121 41 7 36 103 5 49 53 29 69 105 9 
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Count = 97 

Kc 80 3 118 20 125 77 44 115 125 18 124 2 77 32 97 87 

PT 66 103 33 70 121 41 7 36 103 5 49 53 29 69 105 9 

CT 50 5 9 10 124 100 115 62 87 60 34 58 43 102 103 55 

Count = 98 

Kc 98 6 127 30 1 41 95 77 42 46 94 56 102 70 6 96 

PT 50 5 9 10 124 100 115 62 87 60 34 58 43 102 103 55 

CT 79 44 50 63 21 95 39 99 68 0 30 14 79 7 48 81 

Count = 99 

Kc 45 42 77 33 20 118 120 46 110 46 64 54 41 65 54 49 

PT 79 44 50 63 21 95 39 99 68 0 30 14 79 7 48 81 

CT 37 120 33 110 54 35 0 83 25 126 114 32 12 68 61 18 

Count = 100 

Kc 8 82 108 79 34 85 120 125 119 80 50 22 37 5 11 35 

PT 37 120 33 110 54 35 0 83 25 126 114 32 12 68 61 18 

CT 80 46 55 104 108 89 100 73 74 57 72 40 120 3 27 84 

 


