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Abstract

Traditionally the problem of calculating the motion responses of a ship in a
seaway has been formulated in frequency domain in terms of linear potential
theory. By using the potential flow method in roll calculation, the fluid is

assumed to be ideal, irrotational and viscous effects are neglected.

Experiments have shown that the roll amplitude responses of rectangular
bodies floating in beam waves are overestimated when calculated by potential
flow method. This is largely attributable viscous effects [1]. For this reason
seakeeping calculation methods introduce empirical factors to account for
viscous effects. On the other hand, much of the nonlinear forces and moments
experienced by ship in a seaway may be due to the viscous effects leading to

flow separation and generation of vortices [2].

One approach to modelling flow separation and vortex shedding is to solve
the Navier-Stokes equations. However, for moving bodies in the presence of a
free surface at high Reynolds numbers (which implies the use of fine
computational meshes) the software and hardware resources required,

supposing the problem is even viable, are often so large as to be prohibitive.

Another approach is to use methods based on vortex dynamics for modelling
separated flows about bluff bodies. These methods were developed as a means
of modelling high Reynolds number flows in which the vorticity is confined to

small sub-domains of otherwise irrotational flows [2].

This work concerns development of a purely theoretical model for estimating

the roll response of vessels that takes these effects into account. The objective of
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this thesis is to develop a model including viscous effects that can be used in

seakeeping and survivability calculations.

The idea being proposed is to match a local discrete vortex based method to a
global model of a body floating with six degrees of freedom. A software is
developed that can be bolted on to conventional seakeeping software so that the
motions of sharp edged bodies floating in waves can be calculated without

recourse to empirical methods.

The theoretical approach to predict roll damping for a three-dimensional
barge shaped floating vessel in the frequency domain is described here. The
approach consists of matching a simple discrete vortex method (DVM)
describing local separated flow, to an inviscid three-dimensional seakeeping
code. Model tests have been carried out to validate the theoretical model and

the associated add-on software.

As demonstrated in this report, there is a good agreement between the model
test RAO and the damped RAO indicating the theoretical method provides a
good estimate of the viscous damping of the vessel due to vortex shedding

from its edges.

Although viscous damping in sway and heave motions is not as significant as
for the roll for a barge the same methodology can be used to calculate viscous

damping for both sway and heave as well.

As tangential relative fluid velocities are used in this method the same final
relative velocities can be used to calculate skin friction damping component. In
this study skin friction damping is considered to be negligible and is ignored in

the final calculated damped RAO.
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Angular velocity

Angular velocity amplitude

Vortex induced added mass coefficient

Breadth of the barge

Vortex induced damping coefficient

Coefficient representing the lever arm of the vortex roll moment
Gravity

Draught of the barge

Wave number

Total relative fluid velocity at the shedding edge calculated for the combined

six degree of freedom motion
Source density

Total relative velocity at the shedding edge calculated in the forced roll motion

mode

Distance from edge to centre of the facet in which the velocity is calculated
Width of the facet along the length

Wave amplitude

Added mass matrix component in mode j due to motion in mode k

Vortex force coefficient calculated with the Discrete Vortex Method for an

infinite right angle edge, which is equal to 1.566-i0.157
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Nk

Nk

Aspect ratio of the barge cross section

Drag coefficient

Inertia coefficient

Vortex force coefficient

Restoring matrix component in mode j due to motion in mode k

Complex amplitude of exciting force in mode j with the force/moment

components given by the real part of Fje 't

Vortex force component

Sway vortex force

Heave vortex force

Vortex shedding roll moment

Wave height

Keulegan-Carpenter number

Length scale

Generalized mass matrix component in mode j due to motion in mode k
Atmospheric pressure

Strength of a source in potential theory

Wave spectrum value at the j-th circular frequency

Period of oscillation

Free stream velocity with amplitude U,

Damping torque

Phase angle of the j-th wave component of the irregular wave
Wave propagation angle of the wave

Motion in mode k

Velocity in mode k
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Acceleration in mode k

Schwartz-Christoffel ratio

Fluid field density

Velocity potential

Incident wave potential

Diffracted wave potential

Radiated wave potential

Velocity potential at the vertical side of the shedding edge
Velocity potential at horizontal side of the shedding edge
Wave excitation frequency

Wave frequency

Distance between points in the { plane on either side of the edge

Dimensionless vortex force coefficient
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Introduction

oll motion is oscillatory motion of a vessel along its longitudinal axis.
R Extreme roll motions compromise the stability of a floating body. It
affects structural integrity, crew comfort, machinery operations and ultimately
the safety of a vessel. If the roll motion can be predicted the vessel can be
designed to cope with the imposed dynamic motions in response to the
environmental loads. While underestimation of roll motion can potentially
cause disasters, its overestimation results in a commercially unviable design
that leads to increase of the steel weight and limits operability of the floating

body. Hence accurate estimation of the roll motion is of great importance.

For a vessel rolling due to a single excitation force in calm water the
kinematic energy is dissipated until the vessel converges to a stationary state.
The dissipation of the cinematic energy is known as damping. Rolling of a
vessel in seas is formulated by the mass spring damper equation. The best
known method for predicting the roll motion is to include an equivalent linear
viscous roll damping coefficient in the motion equation. Accurate estimation of

damping directly affects the outcome of this equation.

Roll damping is estimated by model tests and mathematical approaches.
Model tests provide a baseline estimation of the roll damping. However, they
are expensive, complex and not always feasible. Mathematical approaches
provide a reasonable estimation of roll damping at fraction of cost and

implementation complexities. Further, mathematical approaches are



particularly useful where model tests are practically impossible such as ad-hoc

operational assessment of already existing vessels.

One of mathematical methods makes use of the discrete vortex method which
is a technique for analysing two-dimensional separated flows in the time
domain. Graham [3] implemented a simple discrete vortex analysis for flow
about an infinite wedge in oscillatory flows in which the flow in an infinite half-
plane, the {-plane, was transformed to flow about an isolated edge. The method
enabled him to calculate a generalised vortex force on the infinite wedge from
which he inferred the total force on a finite body with flow separation from its

edges. The approach was further developed by Downie et al. [4], [5].

In this work the same technique is used to model separated flow from a barge
shaped vessel to provide input to an inviscid three dimensional seakeeping
program. The roll RAO is then calculated in frequency domain including vortex

shedding.

The roll RAOs predicted by this approach are compared with model test
results to assess their validity. The comparison shows a good agreement

between the model tests and theoretical calculations [6], [7].

1.1. Problem Statement

Accurate estimate of the roll damping especially for floating offshore
installations at a fixed location such as FPSOs is becoming more and more
important. Roll motion has direct effect on design of topside foundation, risers
and their connection to the floating system, turret structure and bearings,
efficiency of process equipment, comfort of crew on board, operations such as
helicopter landing, loading and unloading of supplies, oil offloading and

sloshing in cargo tanks.

Growing price of oil has made it economically desirable to keep the

production plant of the FPSOs functional as long as possible. Accurate estimate



of the motions of a floating production system increases the reliability of the
topside process machinery and results in more accurate economical estimation
of the production. Further, hull structural cracks usually occur due to lack of
adequate strength and fatigue capacity of the structural details. Repair of the
cracks on station can have a significant effect on the up-time of the floating
production facility. Accurate estimate of loads and motions is a key factor to

better design of the structure.

Noting the desire in the oil and gas industries to explore deeper seas and in
the same time noting the importance of safety and reliability of the structure of
the floating systems, accurate estimate of the motions and accelerations of the
vessel becomes vital in structural and process machinery design of floating

systems.

1.2. Research Objectives

This work aims to provide a procedure to calculate the viscous roll damping
of a floating body in waves. This purely mathematical procedure is developed
based on [5]. Model test comparisons are conducted to validate results of the

procedure.

The method involves calculating potential gradients of the fluid around the
floating body in a diffraction-radiation hydrodynamic software and using them
as an input to the above referenced methodology to calculate the viscous
damping component. Then the viscous damping component is inputted back to
the equation of motion to recalculate RAOs of the vessel accounting for

viscosity.

The procedure is developed for a simple boxed shape vessel (rectangular
bilge) however, it can be developed for general curved ship shaped vessels with

rounded bilge.



The viscous roll damping procedure is coded as a black box with potential to
be used with any diffraction-radiation hydrodynamic software available as an

add-on.

1.3. Main Contributions of the Work

The procedure presented here allows designers to estimate in particular roll
and potentially sway and heave motions of a floating body more accurately in
early stages of the design and in absence of dedicated expensive model tests.
The procedure can be used with any industry standard three dimensional

hydrodynamic packages.

The viscous damping calculation procedure is developed and implemented
for a box shaped barge in regular waves. Further attempt is made to apply the

method to irregular waves.

1.4. Layout of the Thesis

The first chapter of this thesis provides introduction to the researched topic

and the general issues surrounding it.

The second chapter aims to provide a background in to the viscous damping
of floating bodies and effort of researchers whom have tried to estimate this

phenomenon as accurate as possible.

In the third chapter the fundamental methodology which was developed

prior to this work is explained.

The newly developed formulations and mathematical model are presented in

Chapter 4.

Chapter 5 explains application of the method presented in Chapter 4 and the

code developed to calculate the roll viscous damping base on this method. This
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chapter also includes the application procedure of the method including
flowcharts and step-by-step definition. Further to the method developed to
calculate the viscous damping in regular waves an attempt is made to apply the

method to calculation of viscous roll damping in irregular waves.

The preliminary validation study and further confirmatory model test

conducted during this work is presented in Chapter 6.

Chapter 7 presents the results and discussions related to application of the
method explained in Chapter 4 to Chapter 6. This includes comparison of the
numerical results with model test data to demonstrate validity of the

procedure.

Finally the main conclusions on the results and recommendations for future

work are presented in Chapter 8.



Literature Survey

rediction of roll damping has always been a challenging task for naval
P architects. Accurate estimate of the roll damping for floating offshore
installations is important as the transversal loads are governed by roll motion
and this has direct impact on design of hull, topside structures and process
plant on board. In case of more conventional sea going vessels small amplitude
of roll motion can cause discomfort for passengers of a cruise liner or result in

structural problems due to sloshing of liquid cargo in cargo tanks of a tanker.

Attempts in managing the roll motion of floating vessels go back to
thousands of years ago when Greeks were using flat plate keels on their ships
to reduce the roll motion of their vessels. This is considered to be the oldest and
simplistic roll damping device. Recent roll damping devices include fin
stabilizers, rudders, gyroscopic stabilisers and anti-roll tanks. These devices

have different levels of complexity, effectiveness and cost.

The challenge is to develop a reliable method for calculating the equivalent
linearized roll damping which enables the required response statistics to be
calculated in the frequency domain for operational strength and fatigue
analysis. This challenge is recognised recently by leading classification societies
and is reflected in their rules and regulations applicable to floating offshore
installations at a fixed location. In particular the Lloyd's Register Response
Based Analysis (RBA) methodology requires linearized roll damping of a

floating system to be calculated and included in the spectral analysis of vessel
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motions for given sea states. Det Norske Veritas also requires the effects of
neglecting viscous damping to be investigated if this is going to be the case in

the design.

Roll damping is estimated by experimental and numerical methods. The
experimental methods are usually followed by derivation of empirical formula
from experimental data to allow for generalisation of the experiments. The
numerical methods require model tests to demonstrate applicability of the

method and assess validity of the results.

An overview of experimental and numerical approaches in estimation of the

viscous damping is presented in this chapter.

2.1. Experimental Roll Damping Estimation

The most common practice in estimating the roll damping is model test.
There are generally two experimental procedures for estimating the roll
damping using model test. One experimental procedure is to conduct a decay
test of the model in calm water by giving an initial roll to the model and
allowing the model to oscillate freely until the roll motion is decayed. The roll
time history is recorded during the decay. Using a linearized form of motion
equation and assuming the nonlinear damping is of quadratic type, the
equivalent linearized damping is estimated. The linearization procedure is
based on the assumption that the same quantity of energy dissipates by the

nonlinear and equivalent linear damping.

The other experimental procedure is the forced roll oscillation test. In this
procedure the dissipated energy is measured during a forced roll oscillation of
the model in calm water and the roll damping is then related to these
measurements. This method is however more complicated and is used less in

the industry.



The two model test practices mentioned above are conducted in calm water.
Therefore the calculated linearized roll damping may not be an accurate

representation of the roll damping of a floating vessel in waves [8].

Froude [9] was one of the first scholars to provide an overview on the rolling
of ships and the roll damping phenomena. Froude formulated the roll damping
in a linear plus quadratic velocity dependent form to account for dissipation of
energy during roll motion. He studied the effect of wave height and steepness
on the rolling of ships and the influence of this phenomenon on the design of
ship hull shape. Based on this work he suggested designing the hull in a way to
move the roll natural frequency of the ship away from synchronisation with the
excitation waves. His work also lead to use of bilge keels for ships in order to
stabilize the ship for roll. He was also one of the pioneers in using passive anti

rolling tanks in ships.

Vugts [10] conducted several experimental assessments to determine
hydrodynamic coefficients of swaying, heaving and rolling cylinders in free
fluid surface. His work was used as the basis for numerous research works

assessing the roll damping of floating bodies.

Himeno [12] provided a good overview of the roll damping phenomena. His
method which is widely used in the industry is based on several decay model
tests of ship shaped bodies for which he fitted a formula to the results. He
divide the total viscous roll damping into several components such as wave
radiation damping, skin friction damping and eddy damping, lift damping and
bilge keel damping which itself consists of normal force damping, hull pressure
damping and wave damping due to the bilge keels. He concluded that viscous
effects are mostly due to flow separation and eddy formation at the shedding

edge and the skin friction has a minimal effect in viscous damping,.

Since the roll response for traditional ship forms is known to be nonlinear
and quadratic, use of cubic models to fit curves through experimental data

results in good prediction of the roll damping especially for ships in seaways.



Noting this, Faltinsen [13] developed the equivalent cycle linearization method

in which the coefficients where obtained through decay tests.

Souza et al. [14] realised that uniform matching through roll decay time series
of a floating system with unusually large bilge keels is not adequate and the
matching should be different between large roll angles and smaller roll angles.
Later on Oliveira [15] conducted several model tests following a bilinear
approach suggested by Fernandes et al. [16] and demonstrated that the
Keulegan-Carpenter effects are different between large and small roll angles.
His work showed that the strong vortex attracted to the hull bottom in large roll

angles result in stronger damping however at small roll angles the vortices are

shed.

Model tests were conducted by Standing [17] to investigate the viscous roll
damping and effect of sway and heave motions on roll response of a
transportation barge. By comparing motions from the computer model with the
data collected from model tests in regular and irregular waves, he concluded
that the results from numerical studies compare well with data determined for
roll damping from forced roll or free decay model tests. His calculation was

done in time domain as well as frequency domain.

Noting criticality of correct estimation of roll responses in floating production
units, a study was conducted by Choi et al. [18] on roll response of a barge type
LNG FPSO in three different loading conditions in which the damping
coefficients where determined through decay tests. Choi et al. [18] conducted
free roll decay tests to estimate nonlinear roll damping of a barge shaped LNG
FPSO in different loading conditions. They determined the roll RAO by
conducting model tests with wide banded wave spectrum. The quadratic
damping was then assumed in the calculations as an equivalent linear
damping. They demonstrated that the theoretical results compare well with the

model test data using an appropriate equivalent linear damping.

Full scale measurements of the motions of the Girassol FPSO was carried out

off coast of West of Africa over period of a year by Van Dijk et al. [19] in order

9



to tune their estimates of viscous damping from their numerical models to full

scale results.

Series of systematic model tests were performed by Park et al. [20] to estimate
roll damping of a tanker FPSO. The experiments were carried out in a two
dimensional wave tank. Scale effects where taken in to account in these
experiments. Furthermore, effect of bilge keel, bilge radius and forced roll was
considered in the tests. The results were then compared with numerical data
calculated using commercial software that utilise potential theory. Based on the
comparisons empirical viscous damping factors where determined for further

use.

Model test experiments conducted for two FPSOs where reported by van’t
Veer et al. [21]. There work showed that the appendages such as riser balcony at
side of the FPSOs contribute to the overall roll damping characteristic of the
vessels. The behaviour of the vessel was modelled through a CFD model and
the results where compared. This provided a good understanding of the fluid

behaviour around the FPSO appendages.

Velocity field around a ship in forced roll motion was investigated by Aloisio
et al. [22]. In order to get a better understanding of the fluid dynamics, model
tests were carried out. The model test results were used to calibrate a CFD
model. The flow field along the bilge keel of the vessel was presented. There
work quantified the flow field around the bilge keel and provided

understanding of interaction between the generated vortices and the hull.

van Kessel et al. [23] looked in to the effect of nonlinear damping in operation
of a pipe lay/heavy lift vessel. They conducted model tests and compared the
results with numerical calculation. Interaction between the roll response of the
vessel and operational requirements were investigated demonstrating the close
relationship between them and the importance of accurate estimation of the roll

damping.

Jung et al. [24] conducted several experiments in a two dimensional wave

tank to evaluate vortex generation due to regular waves passing a rectangular
10



barge. The barge was set up in a way to allow for roll motion only. Images were
taken from the velocity field around the barge to capture behaviour of the fluid
field. They demonstrated that the characteristics of vortices shed from the
shedding edge of the barge vary for different incident regular waves. Their
work provided better understanding of near field pressure distribution around
a flat bottomed vessel. This lead to a better insight of the roll damping

simulation.

Effect of large liquid tanks in prediction of roll damping of floating vessels
was investigated by Huang et al. [25]. Their work concluded that the roll
damping is sensitive to motion of the fluid in cargo tanks. In order to accurately
estimate the damping it was suggested to explicitly model the liquid motion in

large tanks.

Series of model tests were conducted by Kwang et al. [26] to investigate effect
of viscous damping in roll motion of a rectangular barge. The tests were done in
a two dimensional wave tank and the waves were applied to the beam of the
model. Velocity field in vicinity of the structure was captured by Particle Image
Velocimetry (PIV) method. Further they investigated the roll damping for
incident waves with periods shorter than the natural period of the model as

well as waves with periods longer than natural period of the model.

Model tests were done by Xiaorong et al. [27] to investigate the nonlinear roll
damping of a ship in regular and irregular waves. They used the random
decrement method to obtain the nonlinear roll damping. Accuracy of this
method was shown to be dependent on the values of the threshold and segment
number. Decay curves in calm water obtained by Xiaorong et al. [27] were

similar to the ones measured by Kwang et al. [26].

The effect of bilge on roll damping of ship shaped Floating Production and
Storage Offloading Vessel (FPSO) was investigated by Rae et al. [28]. The wave
damping component of the step model as well as the viscous damping
component of the step model of the FPSO was shown to be increasing in

comparison to the section with bilge.

11



Douglas [29] showed that increase in forward speed results in increase in roll
damping coefficient. In order to determine the influence of vessel forward
speed on its roll damping coefficient he conducted series of trials on a bare hull
model in the Massachusetts Institute of Technology towing tank. The Froude
numbers were varied from zero to 0.40. Further, theoretical calculations were
done and the results were compared with the experimental data. Douglas [29]
showed that the wave radiation damping of the barge increases from zero
speed condition to normal operating speed condition by a factor of 2 to 3. As a
result he concluded that the roll damping of a vessel can be increased in seaway

by increasing speed of the vessel.

The wave damping component is dominant in the heave, pitch, sway and
yaw damping hence the viscous damping components can be usually ignored.
Therefore these damping values are usually calculated by a potential flow
theory. However, in the roll damping the viscous damping components play an
important role because the wave damping component is usually much smaller
than other components created by the viscosity of fluid. Therefore in the
theoretical calculation it is difficult to predict a realistic roll damping. Due to
this experimental results or predicted results by any empirical method are
commonly used to predict the roll damping coefficient. Ikeda et al. [30]
measured roll damping of high-speed craft by forced oscillation experiments.
Comparison with damping values calculated from a linear potential flow
theory showed that the experimental dampings were significantly under
estimated. They suggested that the cause may be due to the fact that the
prediction method does not take in to account the vertical lift force acting on the
craft. They devised a method to predict the contributions of the vertical lift
force in to the roll damping. They were able to confirm that the predicted
results are in fairly good agreement with the measured ones. A prediction
method of heave damping of the craft was also deduced on basis of same quasi-

static principle assumption.
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2.2. Numerical Roll Damping Estimation

Noting the calculation limitations and time constraints for conducting motion
analysis of a floating vessel in the time domain, frequency domain calculations
have become the norm in the industry. Although most vessel responses can be
calculated with acceptable accuracy in the frequency domain, this is more

difficult for roll response due to the nonlinear behaviour of roll damping.

Incecik [31] provided a procedure for calculating loads, motions and
structural responses of floating offshore platforms. He investigated
hydrodynamic characteristics of circular cylindrical members of offshore
floating bodies to devise their structural responses due to wave excitation.
Further, the method was implemented into computer codes and was verified by
comparing the results with model tests including a full scale semi-submersible

motion and response measurement.

Theoretically the total roll damping of a floating vessel can be divided into
potential and viscous components. The potential component can be predicted
accurately since it has a linear characteristic however, the viscous component is

nonlinear and prediction of this is more problematic.

Kerwin [32], Haddara [33], Dalzell [34], Haddara [35] and Nayfeh et al. [36]
conducted fundamental research work in calculating the roll damping.
Analytical models that were based on classical linear plus quadratic form were
replaced by Haddara [33] by linear-plus-cubic velocity dependent roll damping
moment. This improved the analytical models. Dalzell [34] used the slowly
varying parameters method and a least-square technique to study the cubic and
quadratic models. Haddara [35] used the same roll decay data to suggest

different roll damping models.

Usually the viscous roll damping is predicted using empirical formula.
Peyton Jones et al. [37] classified the empirical viscous roll damping methods to
perturbation method, asymptotic method, multiple time scaling and the

harmonic balance method.
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If motion of a floating body in waves can be assumed to be linear, strip theory
can be used to calculate wave induced motions of the ship. In the strip theory
method hydrodynamic forces and moments are calculated from two
dimensional potential solutions of cross sections along the length of the vessel.
By integrating these forces and moments the three dimensional hydrodynamic
characteristics of the floating body are calculated. Since the strip theory is based
on potential flow theory the viscous effects are neglected. This results in
unrealistic prediction of vessel responses at resonance frequencies. In motion
calculation methods such as strip theory method or potential flow calculation
the roll damping should be estimated and accounted for accurately if a
reasonable response is expected to be predicted, especially in vicinity of the roll
natural frequency. In order to resolve this issue viscous roll damping is
estimated using empirical formulations. Journée [38] provided a good overview
of empirical formulation used to estimate the damping in surge and roll for
strip theory calculations. Journée [39] developed hydrodynamic software based
on strip theory which delivers information on ship motions and added
resistance within a very short computation time. Further, he conducted

comparative validation studies with validated computer programs.

Schmitke [40] developed a theoretical model based on strip theory to predict
ship lateral motions in oblique seas. Focusing on the roll characteristic of the
ship in beam seas, behaviour of the numerical model in long waves relative to
beam of the ship was investigated. Comparison between the results of
numerical calculation and model test was done to assess validity of the

theoretical model.

A simplified analytical procedure was provided by Lee et al. [41] to estimate
the hydrodynamic radiation damping of a rectangular barge using strip theory.
Frequency domain calculations were conducted by combining the two
dimensional energy conservation principal with Haskind-Newman relation.

Results were compared with experimental data to assess validity of the method.

Free surface waves have effect on the vortex generation whereas the shear

layers do not have a noticeable influence on the free surface waves. A numerical
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method was suggested by Arne et al. [42] to include both the effect of free
surface waves and vortex shedding based on a time step integration method. In
this potential flow theory a potential flow boundary value problem outside the
thin free shear layers was solved in each time step. This method can be applied
to any forced body mode. The limitation of this method is that it can only be
applied to sharp corner bodies in order for the separation points to be well
defined, hence eliminating the need to conduct the calculation for the boundary
layer. Both the surface effects which are usually included in any theory based
on potential theory and vortex shedding which is usually neglected in
theoretical procedure were included in his method. The results from this
potential theory showed that roll damping due to eddy making and wave

generation cannot be separated.

Chakrabarti [43] investigated the possible roll damping components and their
empirical contributions. He showed that radiation damping is adequate for the
accurate prediction of the rigid body motions of an offshore structure in waves
however, this prediction was not true for the roll motion of a long floating
structure. This is because for a ship, barge and similar long offshore structures
the roll damping is highly nonlinear and the radiation damping is generally
quite small compared to the total damping in the system. Chakrabarti [43]
identified five roll damping components namely hull friction damping, hull
eddy damping, free surface wave damping, lift force damping and barge keel

damping. He also took in to account the scale effects.

An inappropriate selection of damping and restoring terms may lead to
serious discrepancies with reality especially in peak roll amplitudes. A form of
nonlinear equation governing the motion of a rolling ship subjected to beam
waves was presented by Taylan [44]. He utilized the generalized Duffing
method to investigate effect of roll motion in capsizing of a ship. The Duffing
method is one of the several approximation methods for solving nonlinear
differential equations in either time or frequency domain. Four distinctive
vessel types were studied for comparison purposes to have comparative results

of nonlinear roll responses and restoring forces. The results show that using the
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proposed nonlinear equation of roll motion with three different nonlinear
damping terms for each vessel type, the peak amplitudes differ from one to
another significantly. The peak factors at resonances are the most important
factors leading to ship’s capsizing. Taylan [44] suggested that the best way to
verify the estimated amplitudes is to carry out experiments. The experimental

results were compared with the theoretical results.

Vortex flow forces and potential flow forces are the two components of
hydrodynamic loading. Further, the potential flow forces are of second order in
amplitude of ambient velocity fluctuations. This was investigated and validated

by Lighthill [45].

For waves with a period longer than the roll natural period of the structure
vortices are generated near the structure corners and act in opposite direction to
wave radiation damping. Kwang et al. [46] conducted a quantitative study of
the flow pattern to explain the coupled interaction between the rectangular
body motion and the waves as oppose to the qualitative studies presented by

Kwang et al. [26].

Oshkai et al. [47] showed that for a cylinder submerged sufficiently deep the
orbital nature of the wave motion results in multiple sites of vortex
development along the surface of the cylinder followed by distinctive types of
shedding from the cylinder. They concluded that decreasing the depth of
submergence delays the orbital migration of shed concentrations of vorticity
about the cylinder. Therefore submergence of the cylinder beneath the wave

has a pronounced effect on the pattern of vorticity concentrations.

Santiago [48] showed that among heave, pitch and roll motions of a ship in
sea which have some analogies with a spring-mass damper system, the roll
motion is the one which presents less damping and therefore it is most probable
one to enter resonance, thus drastically increasing the amplitude of motion. In
this study roll motion was introduced and it served as a basis in understanding
anti-rolling systems focusing on the study of bilge keels from constructive and

operative point of view. Problems with rolling of ships increased from the
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second half of the 19th century when steam machines replaced sailing
propulsion and iron replaced wood. This led to design modifications in ships
affecting transversal stability. Santiago [48] suggested that bilge keels with no
moving parts are the simplest and cheapest element that may be incorporated
on a ship to reduce the rolling. Bilge keels reduced rolling by increasing
damping moment resulting from the viscous eddy flows around the bilge keel
surface, the pressure resistance around it and the hydrodynamic lift in the

forward sections of the bilge keels.

Nonlinear nature of viscous roll damping makes it difficult to model this
phenomenon. Ray-Qing et al. [49] devised a new method for modelling the
bilge keel roll damping effect based on the blockage mechanisms of an object in
the potential flow. This method of blocking mechanisms describes the

resistance of a solid object in a flow.

Korpus et al. [50] described a numerical technique for analysing the viscous
unsteady flow around oscillating ship hulls. This technique was based on
Reynolds-Averaged Navier-Stokes (RANS) capability and was intended to
generate viscous roll moment data for incorporation of real flow effects into
potential flow based ship motion programs. The roll moment component was
breakdown in isolation into viscosity effect, vorticity and potential flow

pressures.

El-Bassiouny [51] investigated effect of ship roll motions for determining the
conditions under which a ship can experience dynamic capsizing. The
technique employed is analytical but numerical in nature. The equation for
relative roll angle in this study was expanded using different orders of its
mathematical terms. He grouped the wave radiation and the viscous damping
as linear term and damping due to frictional resistance and eddies behind the
keels and hard bilge corners as cubic term. The averaging method and multiple
time scale method were used. The viscous roll damping was considered to be

linear in his computation.
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Mulk et al. [52] looked in to the roll motion and its role in capsizing of ships.
He studied the complete Euler’s equation of six degrees of freedom. Since roll
was considered to be the most critical ship motion of all the six modes of
motion, emphasis was made on nonlinear roll motion. Interaction between roll
and other modes of motion were considered in the studies. He showed that all
six modes of motion affect one another. He made it clear that to study vessel’s
motion all the six degrees of freedom must be simultaneously studied. He also
suggested that although nonlinear coupling of roll to heave and pitch

quantitatively affect the roll, they do not have any qualitative effect on roll.

Roll damping coefficients calculated using Navier-Stokes solver are larger
than the radiation damping coefficients evaluated by the linear potential theory
due to viscous and vortex effect. Bangun et al. [53] applied the Navier-Stokes
solver to laminar flows using the linear wave theory while the free surface
condition was approached. Bangun et al. [53] were able to show that the values
of the added mass and damping coefficients depend on the amplitude of the
roll motion. The results from Navier-Stokes solver compare well with those
obtained from the linear potential theory for both cases of floating body with
and without bilge keels. The values of added mass were not much influenced

by fluid viscosity.

Robert et al. [54] also explored the coupling between nonlinear roll motion
and other motions such as sway, pitch and heave. He devised a new method of
estimating the damping and excitation moments. The method employed was
based on estimating the drift and diffusion coefficients from roll response data
and using the estimates in conjunction with the theoretical expression for the

response data.

Ikeda [55] modified his method to improve its accuracy and extend its
applicability to different ship types. His method was based on components in
which each component was predicted by both theoretical and empirical
solutions. He used the new method to determine optimum size and location of
bilge keels. The original method he proposed was based on simple cross section

and location of bilge keels. The pressure on the hull surface was integrated over
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the simply assumed hull shape. His assumption was found to cause large errors
because the cross section and the location of bilge keels sometimes significantly
differ from the simple assumption. He therefore improved his prediction to be

able to take into account the cross section and exact location of bilge keels.

Viscous forces on the appendages are important and the nonlinear nature of
roll response requires time domain modelling. Klaka et al. [56] studied the roll
motion of a yacht at zero Froude number (zero speed). Due to the limitations of
existing theoretical models of roll motion for application to bodies with large
appendages, the appendages were treated as fully submerged flat plates. The
calculation of the forces acting on the appendages was based on a strip wise
Morison formulation. A time domain single degree of freedom roll motion was
developed in order to identify the dominant excitation and damping sources. A
series of full scale validation experiments was conducted in calm water and in
ocean waves. Their results show that the keel, rudder and sail dominated the
damping whilst the canoe body contributed very little. The hydrodynamic

damping was nonlinear with respect to wave amplitudes.

Yuck et al. [57] assumed two components for roll damping namely wave
making component which was determined from a far field momentum method
and viscous component which was the result of subtracting the wave making
component from the total damping. They determined roll damping of a series
of unconventional midship sections and showed that a conventional barge
midship section would experience more roll than a barge with a “top hat”

shaped midship section referred to as a step section, due to decrease in vortex

shedding.

Inoue and Islam [58] used far field and near field approach to determine
slowly varying drift forces. Using the method they investigated the relationship
between viscous roll damping and drift forces of multi-body floating systems in
which the viscous damping was added empirically. Their work showed that
accuracy of the predicted second order drift forces in regular and irregular

waves depends on accuracy of the assumed viscous roll damping.
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Seakeeping of high speed craft is dependent on estimation of viscous roll
damping. de Jong et al. [59] used a free surface Green’s function in a time
domain boundary element method to assess seakeeping of a fast ship. In order
to satisfy the two boundary conditions of zero normal flow on the body and the
transom stern flow based on unsteady Bernoulli equation, they applied a
combined source doublet formulation. They initially solved the source system
in absence of the transom condition and then solved the doublet strength
incorporating the previous source strength. They concluded that the small
potential damping in seakeeping assessment of high speed ships signifies the
importance of viscous damping in hydrodynamic characteristics of these
vessels. The effect of viscous damping becomes more dominant around peak of
the heave motion in which the vortex forces due to flow separation in the bilge
region are significant. The oscillation frequency, Froude number and section
shape were considered to be the parameters affecting magnitude of the vortex

forces.

In recent years use of computational fluid dynamic (CFD) methods in
calculating roll damping has become more possible due to developments in
computing power however, this is still a hardware intensive method and the
results require to be validated. The CFD calculation includes simulating motion

of oscillatory bodies in real time.

Further attempts in predicting viscous damping of floating systems include a
joint industry project named Roulis 2 which was set up to increase the accuracy
of roll damping estimation methodologies especially for floating systems
operating in deep water developments off West Coast of Africa using both
numerical modelling and experimental measurements. Ledoux et al. [60]
presented the main findings of this study. Their study demonstrated the
significant effect of risers and moorings on roll damping of floating systems in
deep waters. In this process a general purpose CFD code based on Pseudo-

unsteady system was used to model the roll motion of a barge.

In industrial assessments usually the roll damping is calculated for a single

wave or sea state and it is assumed that the calculated damping remains
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constant for other sea states. Gachet et al. [61] investigated a method in which
the roll damping was assessed for each sea state in a given scatter diagram. This
was used to look in to the operability of a vessel. Their calculation showed that

the roll damping is sea state dependent.

Following the work of Rott [62] and Brown et al. [63] Graham [64] developed
an expression for the vortex force that makes allowance for an axial component
of the flow. On this basis a theoretical method could be constructed to predict

the viscous damping of body with zero forward speed. The analysis was based

on replacing the operator Z—Z for transverse sections of a slender body in steady

forward speed U by % for a 2-D body equal to one of these transverse sections

in time dependent flow and zero forward speed. This is a standard analogy
which can be thought of as taking a series of snap shots following the slender
body cross section as it moves rearwards along the slender hull at the free
stream speed U. A study was carried out later by Al-Hukail [65] on using the

vortex method to calculate roll damping on a slender ship with non-zero
forward motion. In that case the operator was revised to % + Z—Z . The sections

along the hull were linked by the developing vortex shedding [66].

Further investigation by Wright et al. [67] showed that the roll damping in
vicinity of the natural roll period is considerable and appropriate prediction of

the roll damping around natural roll period is difficult.

A mathematical model was developed by Das et. al. [68] to investigate
damping moment of nonlinear roll and yaw motions of a floating body in time
domain under the action of sinusoidal waves. They approximated the time
dependent coefficients to approximate the added mass and damping.
Perturbation technique as well as Runge-Kutta method with adaptive step-size
algorithm was used in their model to calculate the closed form solutions and
higher order cases respectively. The results were then compared with model
test results. The work showed that the roll damping is highly dependent on

viscous effects while added mass variation affects yaw damping.
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For the case of a rolling box shaped floating vessel vortex shedding is the
dominant roll damping component. In order to estimate the vortex force on the
shedding edge of a box shaped model Graham [3] implemented a simple
discrete vortex analysis for flow about an infinite wedge in oscillatory flow in
which the flow in an infinite half-plane, the {-plane, was transformed to flow
about an isolated edge. In this method in order to satisfy the Kutta condition
discrete vortices at each time step were introduced at the trailing edge of the
infinite wedge. The discrete vortices were moved away from the shedding edge
and rolled up to form vertical structures under the influence of the ambient
flow (low Keulegan Carpenter oscillatory flow) and any other vortices present
in the flow. His method was developed for sharp edges in a flow with no
forward speed. The method enabled him to calculate a generalised vortex force
on the infinite wedge in terms of length scale and velocity scale. By matching
the flow about its edge to the local flow about the edge of a body of finite
dimensions, a process which fixes the length and velocity scales, he was able to
calculate a generalised vortex force and express it in form of Morison like
equations. He then inferred the total force on a finite body with flow separation
from its edges. He calculated the total force on the body due to separation from
all its edges by repeating this process at each edge of the finite body. Downie
[69] used Graham’s method in a theoretical approach to calculate the roll

response of a box shaped barge.

Subsequently Cozens [70] investigated vortex shedding of a rounded infinite
wedge flow as well as an infinite wedge with a bilge keel both by using discrete
vortex method and the cloud in cell method. He used Graham’s dimensionless

vortex force functions to express the vortex force calculated through his studies.

Theoretically the potential flow solution in Graham’s method [3] turns out to
be singular when the radius of the corner of the floating barge tends to zero.
However Taylor et al. [71] used a high order panel method to calculate wave
diffraction and radiation by a moving body with a small steady flow speed.

They described the body surface by a sharp corner in a practical calculation.
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Results were computed for different corner radii of series of truncated cylinders

with the same radius and draught.

Downie et al. [4] developed Graham’s method further by matching the local
flow about the edge of the infinite wedge with the local flow about one corner
of the barge on the basis that the vortex force should be same on both and
provided a methodology for calculating the vortex force shed from bilge of a
two dimensional floating barge. Based on this study Downie et al. [5] advanced
the two dimensional vortex force calculation methodology to generate a
methodology applicable for calculation of vortex force shed from a three

dimensional floating body.

Noting that the total force imposed on an oscillating hull by a bilge keel is
made up of two components of drag and inertia Downie et al. [81] investigated
effect of maximizing drag component of bilge keel on the viscous roll damping.
This study showed that the viscous roll damping increased by use of perforated

plates which maximized the length of shedding edge per unit area.

Later on Graham et al. [72] used a Helmholtz split of velocity field to insert an
inner viscous flow field within an outer potential flow. They then modelled the
inner rotational flow filed using modified Navier Stokes equations and solved
the equations using a spectral element code. In this process it was assumed that
the inner rotational flow field is driven by the outer flow that is computed from

a seakeeping program.

Hajiarab et al. [6] used Downie et al. [5] methodology to calculate a damped
roll RAO of a box shaped barge and for the first time practically applied it to a
three dimensional diffraction-radiation hydrodynamic model. They
demonstrated that the produced results compare well with model test results in
regular waves. In order to eliminate any uncertainty in the model test results
used in [6] further model tests were conducted to validate application of this
methodology in regular waves. In this study the roll damping was linearized
for a given wave amplitude in each frequency [7]. The numerically calculated

damped RAO was demonstrated to agree well with experimental data for a box
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shaped floating barge. Furthermore they attempted to estimate the viscous roll

damping of a box shaped floating body in irregular waves as well as in regular

waves.

This dissertation provides detail insight in to the work presented in [6] and

[7].
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Background Theory

A ccurate estimate of roll motion may not be a driving factor in design of
seagoing ships however, it is one of the challenging issues to predict in
design of floating offshore installations. It also plays a significant role in
offshore operation activities such as transportation and installation of offshore
jackets. This is due to the fact that unlike seagoing ships which are designed to
be able to manoeuvre flexibly in sea, offshore floating installations generally
have a passive weathervaning characteristic. In case of offshore operation and
transportation again due to restrictions in manoeuvring during operation it is
common to define set of limiting operational criteria such as roll, pitch and
accelerations of the transportation barge which are then transformed to
estimation of set of limiting environmental conditions in which the operation

can be conducted safely.

Several numerical and experimental campaigns have been conducted to
develop a method to estimate motions of a floating body as accurate as possible.
However limitations of each method in estimating the floating vessel motions

should be appreciated.

In this report the discrete vortex methodology which was originally
developed by Graham [3] to predict viscous damping of a two dimensional
body moving in waves is used as a basis. The method is expanded to make it
compatible with current industry standard inviscid three dimensional

seakeeping codes.

25



Since a three dimensional diffraction-radiation code is used in this work to
calculate the velocities at the vortex shedding edge of an oscillating barge, a
brief description of potential theory which is the basis of the code is presented
in Section 3.1. Basis of the vortex shedding methodology developed by Graham
[3] and the advancements made by Downie et al. [5] is presented in Sections 3.2

and 3.3 respectively.

3.1. Potential Theory

Assuming the fluid under study is incompressible, inviscid and irrotational
the potential theory can be used to calculate wave loads on fixed structures and
motions of a body floating in the fluid. The fluid in the potential theory is
described by a velocity potential ¢ from which the fluid characteristics such as
fluid velocity, fluid acceleration, fluid pressure and surface elevation can be
found. Since fluid is assumed to be ideal in the potential theory, calculation of
phenomena such as viscous damping, slamming pressure and forces on slender
structures from this theory are not reliable. This is due to the fact that these
phenomena are directly related to fluid behaviours such as viscosity, vortex
shedding and compressibility. However these nonlinear phenomena can be

considered in the theory by adding viscous terms.

Assuming the fluid is irrotational and incompressible the Laplace equation

stands, where:

. 0% 0%¢p 0%
VXV = o2 + 3y + 572 0

Equation 3-1

Since the velocity potential is defined to describe the fluid velocity this is one

of the conditions that should be satisfied for a floating oscillatory body, hence:
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Equation 3-2

where i, j, and k are unit vectors in x, y and z direction. By taking derivation of

the equation in time the accelerations can be calculated as:

2
a =a(v¢)

Equation 3-3

Using the Bernoulli equation the associated pressure in the fluid field can be

defined as:

= agb+1|l7|2+ +P
=0 (G gl o) +r
Equation 3-4

in which p is the density of the fluid, g is the gravity and P, is the atmospheric
pressure. By linearizing Equation 3-4 and neglecting the atmospheric pressure
the fluid pressure proportional to first order wave amplitude can be written as:

__,09
p=—p5-—pgz

Equation 3-5

Knowing the fluid field pressure the forces on a floating body can be
calculated. However the fluid field is defined by physical boundary conditions
that should be considered in the calculations. These include free surface

condition, body boundary condition and sea bottom boundary condition.

The free surface condition consists of two boundary conditions namely the
dynamic boundary condition and the kinematic boundary condition. Since the
pressure at the free surface should be equal to the atmospheric pressure, the
dynamic boundary condition can be defined from Equation 3-5. Hence for

surface of a wave with small amplitude of { we have:
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Equation 3-6

Since the fluid particle on the free surface is expected to remain on the free

surface, by derivation of a function F the kinematic boundary condition can be

derived as:
DE _oF +V-VF
Dt at

Equation 3-7

By defining the surface elevation as z={(x,y,t), and the function

F(x,y,z,t) = z—{(x,y,t) = 0 and removing the higher order terms, it can be

concluded that:
a{ 0d¢
E = E at z=0

Equation 3-8

Combining the kinematic boundary condition with the dynamic boundary

condition results in:

’¢ 09
W+gg—0 at z=0

Equation 3-9

For an oscillatory velocity potential with frequency of w the equation can be

written as:

d
—w2¢>+ga—(§=0 at z=0

Equation 3-10

The body boundary condition limits fluid motion through the body.

Therefore the kinematic body boundary condition can be written as:

28



Q)| D
SRS
Il
31
o~

Equation 3-11

where 1 is the normal vector of the body surface pointing into the fluid and V, is

the local velocity at the body surface.

The sea bottom boundary condition restricts the fluid motion through the
seabed. In this case for a horizontal seabed in depth h the seabed boundary
condition can be defined as:

99

=0
on zZ=—h

Equation 3-12

The simplifications on the boundary conditions stated above are based on the
assumption that the wave amplitude and floating body oscillation are small.
This allows for the terms proportional to the higher order wave amplitudes to
be neglected. Further, this assumption allows for calculation of the mean
position of the body instead of the actual position in the fluid. The potential

theory boundary conditions are shown in Figure 3-1.

¢ 09 _
otz 9%z "

99

=0
on z=—h

Figure 3-1: Potential theory boundary conditions [99]
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If the sea can be simply defined with a regular wave the issue of a floating
body in regular wave can be divided to two separate phenomena of diffraction

and radiation.

For the diffraction case the excitation forces and moments can be
characterised by Froude-Krylov load and diffraction load. The Froude-Krylov
load is derived from the pressure of the wave field with no body present.
However the diffraction load is the change in load due to the effect of structure

on the fluid. By super positioning the total fluid potential can be written as:

b =¢;+Pp + dp

Equation 3-13

where ¢, is the incident wave potential, ¢, is the diffracted wave potential and

¢r is the radiated wave potential.

In reality the sea waves do not follow characteristics of a regular wave. In
order to characterize the irregular waves it is assumed that the irregular wave
can be represented by super positioning of many regular waves with different
amplitudes and frequencies. In this case an irregular wave propagating in x

direction can be defined as:

N
(= ZA]- sin(a)jt — kjx + sj)
j=1

Equation 3-14

where 4; is the wave amplitude, w; is the wave frequency, k; is the wave
number and ¢; is the phase angle of the j-th wave component of the irregular
wave. In this case assuming all the component regular waves are in the same

direction the irregular wave can be assumed as a long crested wave.

Wave spectrum is used to represent energy of an irregular wave. The wave

spectrum is a function of wave frequency and is described as following:
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SA7 = S(w;)Aw

Equation 3-15
where S(w;) is the wave spectrum value at the j-th circular frequency. Further,
the total area under the wave spectrum will be representative of the total

energy of the irregular wave. Principals of transfer of waves in to response are

presented in Figure 3-2.
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Figure 3-2: Principle of Transfer of Waves into Responses [95]

In order to consider directional characteristic of waves where 8 is the wave

propagation angle of the wave, the wave spectrum can be represented as:
S(w,0) = S(w)f(6)
Equation 3-16

In this case the surface of a short crested wave can be defined as:
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Equation 3-17

In order to calculate characteristics of a floating body in waves using the
velocity potentials, the boundary conditions need to be solved. The most
common method used in hydrodynamic packages to solve the velocity
potential boundary conditions is the panel method. In this method the body
surface boundary condition is defined by combination of source, sinks and
dipoles to define the wetted surface of the floating body, hence the method is
suitable for modelling unconventional hull shapes. The method is based on
potential theory, hence oscillations are assumed to be small relative to the cross-
sectional dimensions of the body. Using finite number of elements to define the
body surface boundary the added mass, potential damping and restoring forces
are calculated from the radiation waves and the exciting forces are calculated

from diffraction waves.

Assuming that the strength of a source in potential theory can be defined by
Q the velocity potential of a three-dimensional point source in still water with a

radial distance of r from a point P can be written as:

Equation 3-18

In this case if ds is a surface element of a spherical surface with its centre at

the source the velocity flux through the spherical surface can be written as:

ff&ds = Er—z 4mtr

Equation 3-19
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3.1.1 Two Dimensional Potential Theory

For a two dimensional body oscillating in an infinite fluid the two
dimensional point source can be written as:
Q
=—logr
¢ =-_log
Equation 3-20

By distributing the sources over the body surface the velocity potentials can

be written as:

60n2) = [ a@1og (v - 1)’ + (2 = )’ ds

S

Equation 3-21

where 7n(s) and {(s) are coordinates on the body surface, s is an integration
variable along the body surface and y and z are coordinates in the fluid
domain. S is the body surface and q(s) is a source density. The source density
q(s) is found from satisfying the body boundary condition. The total velocity
potential must satisfy all boundary conditions. In case of infinite fluid the only

condition is the body boundary condition.

In order to solve the body boundary condition the body surface is

approximated in to N straight elements as shown in Figure 3-3:

(}’1'21)

(y6'26)

Figure 3-3: Two dimensional body surface approximation [99]
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Then it is assumed that the source density over each element is constant. By

this assumption the Equation 3-21 can be numerically solved as:

¢ = qlf log\/((y —n())* + (z - ((s))z) ds + -

S

+auo [[10g (=1 + (= 45))°) s

Equation 3-22

The time dependent can then be separated and the equation can be solved for
the body boundary condition on the midpoint of each element. The normalised

source density for an oscillating body can be defined as:

q(s) = —q(s)nz,qw cos wt
Equation 3-23

Furthermore, the body boundary condition can be defined from the body

geometry. This results in the body boundary equation to become linear as:
Aijq, = B
Equation 3-24

where i and j define number of elements. In this case from 1 to 10, see Figure
3-3, the surface integrals over each element in the surface are defined by matrix
A. The normalised source densities are defined by g vector and the body
geometry condition is characterised by B vector. In order to fulfil the surface
boundary condition and avoid fluid penetration through the surface, the
normal velocity from the source in (y;,z;) is set to opposite and equal to the

normal velocity found from oscillation.

By defining the normalised velocity potential and solving the equation for g

the normalised radiation velocity potential can be found as:
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b = dnz = —P1z,aw cos wt
Equation 3-25

Using the normalised velocity potential the dynamic pressure from

Bernoulli’s equation can be calculated as:

) _
p= —pa—f = —pPn3,,w? sin wt

Equation 3-26

The added mass and damping terms can then be calculated from pressure

distribution of the radiation case.

3.1.2 Three Dimensional Potential Theory

Following on from the two dimensional potential method the three
dimensional potential method is used to calculate the linear wave induced
motions and loads on large floating structures. Since the fluid field is not
infinite further boundary conditions should be satisfied to resolve the velocity

potential equation.

In this case for a ship with an oscillatory heave motion in waves and zero
forward speed the velocity potential can be defined from the three dimensional
Laplace equation, the linear free surface boundary condition for harmonic

oscillation and the body boundary condition.
For deep waters the sea bottom condition will tend to infinity as:
|V¢p| - 0 when 2z - —o
Equation 3-27

The radiation condition should be considered in the three dimensional

velocity potential to account for the waves moving away from the floating

body. For a point far away from the body with distance r = /y? + z2 this is
represented by:
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kz

7

sin(kr — wt + €)

Equation 3-28

The hull of the floating body is represented in the three dimensional fluid
field by quadrilateral panels. The source strength is considered constant over
the panel. However in this case the source potential is different in comparison
to the infinite fluid case since it should take the mean free surface boundary
condition, the infinite water depth boundary condition and the radiation wave
condition. Therefore the source density strength can be calculated from the
body boundary condition to ensure no flow will pass through the body surface.
The velocity potential for infinite water depth was calculated by Havelock [96]
[97] as following;:

G(x,y,2;&,n,{)e ™t =

1+1 4v °°[ K(z+0) — ksink(z + )]Ko(kr)
[R R 7, vecosk(z+ ¢ sink(z+¢ R

dk

—2mveV @Y, (vr) + i2nveY @O, (vr)]e i@t
Equation 3-29

where i is the complex unit and (§, 1, ¢) are the coordinates on the body surface.

Further:

R=\J(x-2+ @ -2+ (z-)?

Equation 3-30

R=J@-*+ @ -m?+(z+0?

Equation 3-31

r=yJ@-9*+ -’

Equation 3-32
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S

Equation 3-33

In Equation 3-29 zero order Bessel function of the first kind is shown by J,,
zero order Bessel function of the second kind is shown by Y, and K, is the

modified Bessel function of zero order.

The Bessel functions were explained further by Abramowitz et al. [98]. They
used asymptotic expansions for the Bessel function for large r values to satisty

the radiation condition with the Green function:

Re{(=Yo(vr) + iJo(vr))e~ @t} ~

Re —\/%sin(vr—%)-&-i\/ﬂi;cos(vr—%) eTlwt h —
—\/ﬂi;sin(vr—wt—%)

The three dimensional velocity potential which was explained here can be

Equation 3-34

generalised to calculate oscillatory motion of a floating body in any degree of
freedom. However in comparison to two dimensional methods the three
dimensional velocity potential requires more boundary conditions to be
satisfied. Further the source densities in the three dimensional method are more
complex. The source expressions in this case are more complicated and there is
possibility of occurrence of irregular frequencies in the calculation which is a
numerical problem. Finally the velocities close to the body and at sharp corners
cannot be correctly represented due to singularities and lack of possibility of

modelling boundary layer separation in the method.

Further accuracy of the calculated responses from the panel method depends
on density of the panels representing the body surface. Dense panel grid results

in long solution time while light panel grid density results in uncertain
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responses. Hence an ideal panel density is the one that produces good enough

results in a reasonable amount of time.

Dynamic motion characteristics of a floating body can be calculated by
solving the dynamic equilibrium equation of the body for regular waves with
different frequencies. For a floating body in waves the dynamic equilibrium
equation for six degrees of freedom can be established from Newton’'s 2nd law

as:

6
Z[(Mjk + Ajie )ik + Bixtiie + Cirie] = Fre™™@t,j=1..6
k=1

Equation 3-35

where 1y is motion in mode k, 1y velocity in mode k, ijy is acceleration in mode
k, Mjy is the generalized mass (inertia) matrix component in mode j due to
motion in mode k, Ay is the added mass(inertia) matrix component in mode j
due to motion in mode k, Cj is the restoring matrix component in mode j due to
motion in mode k, F; is the complex amplitude of exciting force in mode j with
the force/moment components given by the real part of Fje™* and w is the

wave excitation frequency.

In order to calculate the transfer functions of the vessel the equation system
should be solved for different frequencies. By normalising the calculated
responses for the incident wave amplitude the response amplitude operators
(RAO) of the motion are calculated. This requires the mass, added mass,

damping and restoring matrixes and excitation forces to be defined.

The excitation forces are due to the waves that result in an oscillatory force on
the body. Using diffraction theory the excitation forces are calculated directly

from pressure distribution.

The mass matrix consists of the generalized mass and inertia terms. These
terms are multiplied by acceleration to generate the inertia force or moment.

Added mass is defined as an addition to the body’s mass or inertia. This is due
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to the accelerated fluid surrounding the oscillating body. The added mass can

be represented with a finite addition of the mass in the motion equation.

Damping defines dissipation of the energy of an oscillatory body in the fluid.
The total damping of a floating body consists of potential damping and viscous
damping. The potential damping is calculated from solving the radiation
problem. However since in the potential theory the fluid is assumed to be ideal
the viscous damping cannot be calculated from the potential method. Hence the
viscous damping should be considered in the calculation separately. In the roll
motion viscous damping can have a significant effect on the response especially
around its natural frequency. Hence a viscous damping term is added to the

potential damping term in form of:

Fnon—linear
VD

= ByalalMal
Equation 3-36

In order to include the viscous damping term in the equation of motion, it
needs to be linearized hence the linear viscous damping term is defined as

following;:
Figeer = Bl
Equation 3-37

The brief potential theory methodology explained here is the basis used in the
diffraction-radiation software to calculate hydrodynamic characterises of a
floating body. The aim is to define a linearized viscous damping to approximate

the viscous effects in roll motion of a floating box shaped barge.

3.2. Vortex Shedding Phenomena

Oscillation of a body in a still fluid can be assumed to be kinematically same
as oscillatory flow of fluid around a fixed body including Froude-Krylov forces.

These Froude-Krylov forces represent the pressure gradient of the imposed
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flow on the body and are in phase with the body accelerations. Therefore in
order to understand the flow on shedding edge of an oscillatory barge the
oscillatory flow interacting with a sharp edged bluff cylinder may be

investigated.

Displacement of fluid particles in undisturbed flow is small in comparison
with the scale of the body at low Keulegan-Carpenter numbers. This results in
vortices moving away from the shedding edge under the influence of other
vortices. Hence it can be assumed that the vortex shedding from one edge may
be independent from other vortex shedding edges. On this basis it can be
concluded that the local flow could be equal to an infinite wedge subjected to

an oscillatory flow.

Singh [84] conducted experiments on sharp edged bluff cylinders and
concluded that the frequency of vortex shedding from a single isolated edge is
one vortex per shed per cycle in low Keulegan-Carpenter numbers. The vortex
shed in a half cycle is then swept back in the next half cycle to create a pair with
a new growing vortex. As soon as both vortices gain the same strength the first

vortex then moves rapidly away from the body.

Keulegan and Carpenter [85] used the flow field of a standing water wave to
study oscillatory flow around both flat plates and circular cylinders. They
showed that the drag coefficient €, and the inertia coefficient C,, for a
measured force in flow direction in Morison’s equation were functions of the

Keulegan-Carpenter number K, = U,T/d as stated in Equation 3-38 below:

1 1 .
F = EpUlUldCd + Zﬂ.’pUdZCm
Equation 3-38

where U is the free stream velocity with amplitude Uy, T is the period of

oscillation, p the fluid density and d the body diameter.

Graham [3] conducted a discrete point vortex analysis assuming that the

regular vortex shedding from an isolated edge should occur in Keulegan-
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Carpenter numbers less than 10. The point vortices were calculated as they shed
sequentially from an infinite wedge and traced as they moved with the fluid
particles of an oscillatory flow. He attempted to provide a prediction of the
vortex force component F, which should be added to the flow inertia
component as shown in Equation 3-39:

1 .
F = 27pCrod®U +F,

Equation 3-39

In this case Graham demonstrated that as K. = 0 and by defining the in-line

vortex force coefficient as:

E

CFU = 1

Equation 3-40
where U = U,Sin (%) for oscillatory flow we would have:

3-268
CFU = KC26_1 lp(?)

Equation 3-41

where ¥ is a dimensionless function and § depends on the internal angle of the
edge of the body at the separation point. Therefore the Morison’s equation

presented in Equation 3-38 can be written as:

1 . 1 3-28
F = anUdZCmO + EpUgd1<C25—1 YD)

Equation 3-42

By taking a Fourier integral of Equation 3-42 for a rectangular wedge over

one cycle of the flow Graham showed that the coefficients in Equation 3-38 are:
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3-26

Cp = AKZ where A= %ﬂ J, ¥ (@)Sin(2nt)de
Equation 3-43
and
2 2 1
Cm = Cpo + BK2*™* where B = ;fo Y(t)Cos(2mt)dT

Equation 3-44

In this case for an inviscid analysis to be valid the Reynolds number Uyd /v

should remain sufficiently large while the Keulegan-Carpenter number U,T /d

should be small.

Graham [3] concluded that for a cylinder in an oscillatory flow the vortex

3-268
force and drag coefficients are proportional to K,**~* where K, is the Keuligan-

Carpenter number.

3.3. Rolling Barge in Potential Flow

Downie et al. [4] presented Equation 3-43 as:

t
3m TFv(T) 2
CD = E 1 Sin <Tt> dt

Equation 3-45

where the parameters are same as the one defined for Equation 3-38 and L is a

length scale that is characteristic of the body.

They used a Schwartz-Christoffel conformal transformation to map a semi-
rectangle in to a half plane in order to represent a rectangular barge in a

complex plane.
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Figure 3-4: Box shaped barge transformation

Noting the notation in Figure 3-4 the complex conformal transformation used

was defined as:

1
_(F(2-%Y
Z‘fo <€2—€§> “

Equation 3-46

For a body rotating anticlockwise about the point O in z-plane with angular
velocity of @ Downie et al. [4] calculated the instantaneous velocity directed

towards the fluid at any point of the body as following;:

iyd 1{z} x <0 y<0
v, =| xa |=|R{z}|a y=0
—iya —I{z} x>0 y <0

Equation 3-47

The corresponding velocity in {-plane is then given as:

Equation 3-48

A source distribution along the ¢ axis with strength per unit length of m({)

was assumed in {-plane to represent the instantaneous boundary conditions as:
m({) = 2V,

Equation 3-49
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Therefore the velocity g at any point ¢, on the ¢ axis of the transformed panel

was demonstrated to be:

1 e m(@@)

2m 9 b9

d¢

Equation 3-50

From Figure 3-4 it is noted that the shedding edge in the real plane is at zp.
Hence the velocity g4 at the corresponding point {; in the transformed plane

was demonstrated as:

Qd = qbc + ch + Qde

:g[fc{ AQG =02 AQLG 52 }dc
2m ey (=3, = 0)2(=0, — D2QC = )2 (0o — 4)2(=28)2( — )2

\ 2hOLG~ ) ]
(=3, — 4)2(=20,)?

a

o

fd{ LOG D A1) } «
o \Gu-0rz-7  @u-03qz- g

267G~ @3]

(52 - G2z
f@{ EQG+9?  H@IGa+ ) } «
ta (€= 22 =7 (G — 22002 — )2

a
2T

+

d

2@+ 72
(24,2

Equation 3-51
where:

1

-q 2 _ 72\2
£ = —2 L (gz_g‘é) d

Equation 3-52
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1
4 2 _ 72\2
£@) =2 fo (—2‘;_22) dg

Equation 3-53
1
¢ 7% —2\?
©=-2 (—d) @
RO==2) \a=¢
Equation 3-54

Downie et al. [4] then derived the local velocity of the fluid relative to the
point {; in the transformed plane for a body rotating anticlockwise about any

point P in the real plane as:
u=qg+h(1-2Aa
Equation 3-55

Hence for a barge rolling with an oscillatory motion about point P, for which
the oscillatory motion can be expressed as a = waSin(wt), the relative fluid

velocity was:

up = [qaa + a1 - Dlwa = 2+ %1 - 1) lwa
Equation 3-56
where q; = qgad ,l=1'a,h=h'aand w = ZT”

Since the forces on the isolated edge associated with the vortex shedding are
known in terms of drag coefficient as presented in Equation 3-45, in order to
calculate the drag coefficient Downie et al. [5] had to match the two flows in the
immediate vicinity of the shedding edge. In order to do this a conformal
transformation was used as below to map an infinite wedge into a half plane,

see Figure 3-5:

.TC 1 3

7 =e 2L202
Equation 3-57
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z-Plane {-Plane
Figure 3-5: The 90 ° infinite wedge transformation

Noting that the distance of any point z from the shedding edge of the barge

located at zj, in the real plane is:

G+ E - D)2
77 = Ld{(uze)(z—ze)} %

Equation 3-58

close to the shedding edge where { — {; the distance from the shedding edge
is:

1

w28 \? 3
Z=e 2<cz—d<§> ¢

Equation 3-59

where z —z, and { — {; were presented as z' and {’ respectively. Hence in

order for Equation 3-57 to become equal to Equation 3-59 it was concluded that:

9 (4 —u?
L—Z< 2# )a

Equation 3-60

where {; = pua and {, = 2a, or:

L 9 (4—yp?
14U\ 2u

Equation 3-61
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It was demonstrated from Equation 3-61 that:

Equation 3-62

concluding that if the ratio of the length scale Yis equal to i, (ﬂ) and if the
l 41 2u

velocity U, is same in both cases the velocity field in the near vicinity of the

infinite wedge is identical to the local velocity field round the shedding edge of

the rolling barge.

Noting the geometry presented in Figure 3-6 which demonstrates the
relationship between the damping torque x and the vortex force in single edge

F, Downie et al. [4] concluded that:

x(t/T) = 2[RE,(t/T)CosB] = Lll + l

2h (1—1)]1?(1: T)
7 ; v (t/

Equation 3-63
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Figure 3-6: Damping torque

The earlier analysis indicates that the F, acts near the edge and perpendicular

to the edge’s bisector. By rewriting Equation 3-63 as a Fourier series:
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x(t/T) = pw?l*@? Z)?n Sin(nwt)
Equation 3-64

and assuming the barge motion will follow equation of /& + ed + w?Ia = 0 the

equivalent linearized damping force was demonstrated to be:

s S22 (T @/
e = pwltay, = pwl*a Tfo m&n(mt)dt

Equation 3-65

Finally Downie et al. [4] presented the following expression for the damping

[pra-a e
where c is constant dependent on geometry of the barge and is given by:

4_ 42
c= 0.529( a )
ul'

Noting Figure 3-4, for shedding edges of D and E in z-plane Downie et al. [5]

coefficient:

R

Equation 3-66

Equation 3-67

presented Equation 3-46 as:

u 2 _ 4,2
zp =G f (rrz “l)drﬂh:@[E(u2>—(1—u2)1<(u2)]+ih

Equation 3-68

1/,.2 _ 2
Zg :ZD_i(ef (T‘ = )dT:ZD — il [E(1 — p?) — p?K(1 — u?)]
u

1—1r2?
Equation 3-69

therefore:
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1 =20 [EW?) — (1 - p)KWH)] = 281,

Equation 3-70
h=0EQ—p?) — K1 —p)] =L

Equation 3-71

where u = {;/{,, v = {/{, and K and E are complete elliptical integrals of first

and second kind respectively.

The body matching parameter agp, was defined in terms of elliptical integrals

as:

1
GRS

1
afv 27_[ 1dT‘ :_(ll3 _14_)

P @ -d(?- ")
Equation 3-72
where I; = uK(u?) and I, = uK (1 — u?).
In a same manner the edge matching parameter was presented as:

Qu?—-11

L= —
4 2u 21,

Equation 3-73

In line with Equation 3-40 the vortex force at one edge of a floating body was

stated to be:

1 1 9 1 - #2 1 13 - lI4_
= — 2 = — 21— —
fo =5 PUSLY ()ay, sz014< o >n< >‘P(t)

Equation 3-74

Downie et al. [5] assumed that if the potentials ¢, and ¢, are calculated at a
point either side of a shedding edge the U, at the shedding edge must be equal
to |¢, — @dnl/|Al| where A( is the distance between the corresponding points in

{-plane. In this case the vortex shedding roll moment F,, was formulated as:
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1 4

_ 2
Fpy = EP%E by — n

7 YO

Equation 3-75

in which ¢, is a coefficient representing the lever arm for the vortex roll

moment, ¢, is the velocity potential at the vertical side of the shedding edge, ¢,

is the velocity potential at horizontal side of the shedding edge, A{ is the

distance between points in the {-plane on either side of the edge and W(t) is the

dimensionless vortex force coefficient which is pre-calculated using the discrete

vortex method [3].

In a similar manner the sway vortex force F,, and the heave vortex force F,;

was stated to be:

1 11¢,— ¢p|

F,, =§pczl3 vA—(h Y(t)
1 1 ¢v - ¢h g

Fos = 5 pesls AL ¥(t)
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Equation 3-77



Viscous Damping Mathematical

Development

he methodology explained in Section 3.3 is used in this work as a basis
T to develop a practical procedure for calculating the vortex force due to
sway, heave and roll motions of a box shaped barge in regular waves. The
procedure is then advanced further to include calculation of the viscous roll

damping in irregular waves.

As outlined previously Downie et al. [5] demonstrated that the oscillatory
motion of a boxed shape vessel could be reasonably predicted by use of discrete
vortex method including the viscous effects. In their method the relative fluid
velocity at the shedding edge was calculated directly. This required several
assumptions to be made in order to estimate the relative fluid velocity from the
mathematical model of the rolling barge. Therefore significant amount of effort
was made to estimate the relative velocity which was then used in a final step

to calculate the final viscous damping.

The new development was based on use of conventional diffraction radiation
software to calculate the velocity at the shedding edge. Therefore the
mathematical developments are needed to be such to allow integration of the

method with the utilised diffraction radiation software.
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The latest mathematical formulation based on the background methodology
explained in Section 3.3 is presented here. Implementation of the method as an

add-on black box software is explained in Chapter 5.

4.1. Mathematical Linearization for Regular Waves

A rectangular body with oscillating flow around its boundaries is shown in

Figure 4-1.
y
A
A B E F
.ﬁ- r—@
©
3
; A
............ \Z L2
C < - > D
UOBodye twt
( ............................. l ............................. )

Figure 4-1: Oscillating body

Noting the transformation methodology outlined in Chapter 3 a conformal
transformation can be used to map an infinite wedge into a half plane as shown

in Figure 3-5.

We consider the case of a general rectangular hull with beam [, draught h and
apply the Schwartz-Christoffel transformation between the physical z-pannel

and the transformed {-plane as outlined in Chapter 3.

From [3] or by considering the relative size of the g® term in the pressure

which g% - 0 relatively as K, —» 0 and as W = ® + {¥ where ¥ is constant on the

body we have:
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o aw
P P ot P ot on body

Equation 4-1

Consider a vortex shed from the edge D, strength I' and position z, (or ).

Since W is linear in I' the effects of many vortices can be added together. The

vortex at {, (position in {-plane) has an image -T at {; where {; is complex
conjugate of {,. Note that the vortex strength T is preserved in a conformal
transformation. Therefore the complex potential representing the flow field due

to the vortex is:

i
W, =5 {In@ = &) = In¢ = 33}
Equation 4-2

The free stream only contributes to the inertia Cy. It can now be assumed that
the force comes from the pressure field over the whole of the body not just close
to the edge which will be shown to be true. Therefore since we are assuming
small amplitude motion and noting the notation shown in Figure 3-5, for most
of the p contribution to the forces we have | — (4| » |{;, — {4|. Therefore by

expanding the logs we have:

—ir(¢ -4
o= %
Equation 4-3
hence:
P =g (TG0 = )=
Equation 4-4

The singularity is a dipole along the real axis { = £. The potential distribution
has a discontinuity at § = {; which represents the jump A® =T that occurs at

the path crossing the vortex sheet joining I' to the edge. This jump is correct for
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the potential and is consistent with the pressure to be continuous across the

edge when the g term is considered. Assuming constant total pressure of:

pr , 0Py 1 , p, 0D,

p Jt +2q1_p+6t

Equation 4-5
since q, = 0 (stagnation) on the underside of the sheet and
ar 1,
at 2%

Equation 4-6
therefore if ®; — ®, =T, then:
P1=D2

Equation 4-7

The dipole discontinuity in @ at D is infinite but it does overall correctly
approximate the result for the vortex plus image at a finite distance from the

edge. In particular both distributions show that p —» 0 at large distances from

the edge at a rate proportional to [§71({ — plane)] i.e. s73 . The force on the
edge DE is therefore:

e 1 %d
¢, @D dq

For =i [ pdz = =22 (16~ )]

Equation 4-8
Using the Schwartz-Christoffel formula for Z—; we have:

1

A (c+1) 2
Fpg +2—a[ (G0 — )]L <(0_ 1)(12 _02)> do

Equation 4-9
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a a

where = > 7 ) and {, — {; is imaginary. Note in this last
d

expression that there is a degree of ambiguity as to whether +i or -i should be

taken. It is assumed that +i gives the correct solution, similarly:

3 1 1 %
Fop = + [ (¢ - CS‘)]f ((1 —(cfa)(J:12 )— 02)> “

2m ot 1
Equation 4-10

1

_ipd x —o—1
Fge = +§&[F(fo —4o)] f—/l <(1 —0)(A% - 02)> do

Equation 4-11

ip 0 ) A (c+1) %
+—a[r(fo - 50)]f1 ((a - 1% - 02)> “

Frp =
DE 27_[

Equation 4-12

Combining these we have:

1
1 2

8 A
E = Fpg + Fgc = %a[r((o - (3)]]1 <(02 “ Dz - 02)> 20do

Equation 4-13

It should be noted that the force is suction on DE and pressure on BC. By
substituting 6% = 1 + (4% — 1)(sin 6)? we have:

ip 0 .
Fe=—= 1 = )]
Equation 4-14

This is half the result given in [3] for a closed body which is same for all % .

Then the vertical force is:

0
Fy = Fop = 2 [T — G)IHK(u?)

Equation 4-15
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where K is an elliptic integral. For AR = 1 (i.e. h = é and pu = %), K(u*) = 1.845,

SO:

0
Fy, = 0417p=[[(G — ¢3)]
Equation 4-16

Moments about O where 0O is in the middle of CD may be similarly evaluated

as:
MUO = —lpfpz*dz = MBC + MDE + MCD

Equation 4-17

where My , Mcp and Mpy represent moments due to force acting on these faces

and:
MBC+MDE
1
iply 0 o [ 20 (62 —1\2 |
Z—Tda[r((o_(o)]f 1 f (/12— 2 do’ o do
" t {02 - D@2 - oD}z (1 ’

Equation 4-18

1

_%i = 1 20 0<1_0_12>§ ,
Mcp = o 9t [T (¢ (0)]]0 (1 — 0?7 — 02)}% fo 12— g2 do' ;do

Equation 4-19

Therefore the moment about the axis at the free surface is given by:

ulcp — Igcpe) l
m(E(1 — p?) — p?K(1 — pu?))

iph 0 .
Mv = Mvo + Fxh = Ta{F(ZO - (0)} 1+

Equation 4-20

where E and K are elliptical integrals and:
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1

1 20 7(1-0""\2 |
Iep = f 1 f g7 do' ;do
0 {1 - 022 — g2}z (7

Equation 4-21

A 20 /5% —1\2
Igcpe :f 1 f (/1—2 —a’2> do' tdo
L {02 - 12— 02}z 1

Equation 4-22

The roll moment about the origin O (middle of base) is given by:

_pSq 0

vo — E&‘U‘((O - (5)}[ICD - IBCDE]

Equation 4-23

Note the change of sign as F, and F, exert opposite moments at 0. Using the

fact that E, = %% {T'(¢y, — ¢5)}, the conventional moment about the centre of the

barge at the mean free surface is:

ulcp — Igcpr)
(E(1 —p?) — p2K(1 — p?))

iph 0
M, = 2= (TG — 3} | +

Equation 4-24

This is the moment over the whole barge hull due to shedding from edge D,

hence:

ulcp — Igcpe)
(E(1 —p?) — p2K(1 — p?))

iph 0 .
M, (both edges) = ?a{r((o — (o)} |+

Equation 4-25

The moment is generated by g.sz at the shedding edge. Generally for a
rectangular edge body with edge angle of 90° if F, is assumed to be the force
due to vortex shedding on one edge of the body, from the scaling analysis we

have:
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1\ 3

q s§>

FUBody(1 edge) . < ¢ Body Uo Inf. edge
- 3

FU Inf. edge <q S%) UO Body

e

Inf. edge

Equation 4-26

where s is the distance along the surface from edge in physical plane and g, is
the surface velocity generated by potential flow (i.e. diffraction-radiation code)

at a distance of s from the edge.
Noting Equation 4-26 it can be written that:

_ Fv Body
CFU Body — 1

2
2 p UOBody d
Equation 4-27

where d is a length scale of body. Then using the analysis for a flow past an
infinite edge it can be concluded that:
1\ 3

27A( q.s3
CFU Body = 8d U
0

Body
Equation 4-28

Hence to calculate the force on the body edge it is just necessary to evaluate

the following equation:

()¢

3

]Body

where A is a pre-calculated factor by Graham [3].

27A
CFU Body = T

Equation 4-29

1
It should be noted that in this case as s — 0 the q, becomes singular but g,s3

tends to a finite value.
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Continuing from Equation 4-26 and from the Schwartz-Christoffel
transformation expanding j—z near { = {4, z = zp, *+ (i)s where s is the distance

from the edge we have:

1.3

U = 3( 55)
0Inf. edge ~ 2 e Inf. edge

Equation 4-30

and
1
3¢ 3 1
U, Body(rect. hull) = <((§—§§)> (qESS)BOdy
Equation 4-31

Also

K, = 2 pU? ‘A

V Inf. edge zp 0 Inf. edge

Equation 4-32

where A4 is the coefficient given in [3]. Then:

Wl

2

1 1
FUBody(l edge) = 1.170pA <‘l? — 1) <qu3>Body {4

Equation 4-33

However E

Y Inf. eage WHich is given in [3] is obtained by integrating using the

Residue Theorem around a closed contour. This is not possible for a body

floating at the free surface. In the case of floating hull F, and M,, come from
integration of the pressure (p aa—V:) along the finite open line BCODE or
—{, <¢ (E ER(()) < +{,. Hence the results given above for F, and M, on a

rectangular hull replace the result in [3] Z, (i.e. F,) = (—i)p%{[‘((o -4},

hence:

59



1pu
thull(1 edge) = Fv Inf. edge [E';K(HZ)]

Equation 4-34

These are the two components (Fy, F,) of F, and the V2 coming from the fact

that B, |, - 4. 1S perpendicular to the bisector of the 90° edge. Similarly:

ulcp — Ipcpr)

1
M ledge) ==|1+ F “h
Uhull( g ) 2 T[(E(l _ #2) _ uzK(l —_ ‘MZ)) VInf. edge
Equation 4-35
Therefore for a floating hull with two sharp 90" edges we have:
1
1 3
F lsway] = 1.170pA [ ( 1>2 5
swa = 1. S3 * N3
e P\ Ea—w —w2ka-w) | \*
Equation 4-36
1
1 3
uK (u?) n M < 1)2 1
F,lheave| = 2.340pA s3) -h3
heave] £ EQ—w®) -2k —u2) | \"
Equation 4-37
#(sp — lappE)
M,|roll] = 1.170pA (1 +
slrot] P T R -2 — w2k - )
1
1 3
T 1\? o
S3 3
(EQ—12) — iK1 - u2)) (0:5%)

Equation 4-38

For a box shaped barge defined in Figure 4-2 F,; is defined as the force per
unit length due to vortex shedding where j is index of the motion under study
i.e. j = 2 indicates sway, j = 3 indicates heave and j = 4 indicates roll of the

barge, hence F.[sway] = F,, , F,[heave] = F,; and M, [roll] = F,,.
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Noting that the beam and draught of the barge are defined by [ and h
l

respectively the barge cross sectional aspect ratio can be defined as R = —

.ﬁ' 1
My, 0O
L V __ B
H Al
1 F‘U3 S
Y . v Foq
é ( .......... )
q S
( ............................. l ............................ }

Figure 4-2: Barge geometry
The tangential fluid velocity at body surface relative to axes fixed in body is
denoted by q where q =} q; = Y iwn; in which w is the oscillatory motion
frequency and 7; is the j-th degree of freedom of the barge.
The distance from the vortex shedding edge in which the relative velocity is

calculated is shown by s.

The vortex force coefficient A +iB from discrete vortex method pre-

calculated for an infinite right angle edge is taken to be 1.566 — 0.157i. The

Schwartz-Christoffel ratio u as defined in Section 3.3 can be calculated by

iterative method for a given AR.
Noting Equation 3-70 from which [, is defined as [E(¢*) — (1 — p*)K(u?)] in
which K and E are complete elliptical integrals of first and second kind

respectively, the sway and heave vortex shedding forces as well as roll vortex

shedding moment can be defined as:
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5
33(A+iB) [1—u?\3m |qs3|[qps3\H
Fpy =a, +ib, =— P( S5 1 T Y
3 2 ul, {2} 3 3 2
Equation 4-39
5( ) . 1 1
. 33(A+iB 1—p\3 qs3| [ gzs3 \H
Fy3 =az +ib; =— T2 Pl< I ) {uK (u*)} 1 31 Ex
23 Hh 3|\ 3
Equation 4-40
5 1 1 1
F, +ip, = 2 (A+iB) (1 — u2>3 ull;) [gs3| [ qus3 \H
va = Qg T 1Dy = —3 { } 1 R
3 2 ul, 41, 3 3

Equation 4-41

where a; is the vortex induced added mass and b; is the vortex induced

damping coefficient.

Applying the formulation to a three dimensional hydrodynamic model of a
box shaped barge in an industry standard inviscid seakeeping code, q is the
total fluid velocity relative to the body at the shedding edge calculated for the
combined six degree of freedom motion and q; is the total velocity relative to
the body at the shedding edge calculated in the forced motion mode for the
degree of freedom under study. In this case s is the distance from vortex
shedding edge to centre of the facet in which the velocity is calculated, x is
width of the facet along the length and H is the height of the regular wave for

which the viscous damping is linearized.

Since the Schwartz-Christoffel ratio u can be calculated by iteration for a

given aspect ratio and noting the aspect ratio of the cross section of the barge

which is defined as AR = ﬁ from a Schwartz-Christoffel transformation it can

_ L _ E(u?)-(1-p?)K(u?)
be shown that AR = = )RR () [5].

Finally if k = i then:
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| /g% —1)\2 20 do
IC :f f 2 2 dO" 1
1 (Je \OTO [(x* —02)(0% —1)]2
1

Wref1-a0%\2 20 do
+f f —5—— | do I
o (AT (2 ~ o) (A ~ 02)]2

Equation 4-42

The velocity at the tip of the shedding edge becomes singular in the sharp
edged potential flow model. Therefore the velocity of the fluid at the edge for
combined motion (i.e. q) and the forced mode motion (i.e. q;) are calculated
using weighted averaging of the velocity at the two facets on each side of the
vortex shedding edge. Weights are based on the distance between the centres of
the facets to the shedding edge (i.e. s). This will eliminate the problem of
having a singularity in the calculation of relative fluid velocity at the tip of the

shedding edge.

By integrating the calculated vortex force on assumed vortex shedding strips
along the length of the barge the total vortex shedding force can be calculated.
It should be noted that since the relative velocity between the body and the
fluid is not same in portside and starboard side of the vessel, the calculated

vortex forces in either sides are different.

4.2. Mathematical Linearization for Irregular Waves

After developing the numerical model for the regular waves, an attempt was
made to apply the method to calculation of the vortex shedding damping in

irregular waves.

Initial investigation was based on the equivalent linearization method

introduced by Kaplan [86]. For the equation of the roll motion of a floating
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vessel Kaplan [86] assumed that the nonlinearity is to be in form of velocity

square damping as following:

1y + 2an, + Brigls] + win = wif (t)

Equation 4-43

where f(t) is an arbitrary random function equivalent to the effective wave
slope. Kaplan then provided the mathematical formulation for estimation of the

equivalent linear roll damping coefficient in a given irregular wave spectrum.

Following successful implementation of the methodology stated in Section
5.2.1 and noting Kaplan’s methodology [86] preliminary investigation of roll
damping linearization in irregular waves was done which consisted of
discretising the given wave spectrum to several regular waves and calculating

the roll RAO amplitude for the estimated representative regular waves.

This approach was based on the assumption that if an irregular wave can be
deconstructed to several regular waves as shown in Figure 4-3 then the viscous
damping can be calculated for each representative regular wave individually.
In this case the damped RAO linearized for variation of regular wave heights

within the irregular wave frequency range can be calculated.

S(w)

FREQUENCY DOMAIN
Al ﬂ\v a\\/[\ ;A /\\//\ » TIME

‘WAVE SPECTRUM SUM SUM SUM

REGULAR WAVE
COMPONENTS WITH
RANDOM PHASE
ANGLES

TIME DOMAIN.
RANOOM WAVE ELEVATION

Figure 4-3: Connectione between frequency domain and time domain representation of waves [13]
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However since the calculated roll damping is dependent on the assumed
regular wave height amplitude and the amplitude of the regular wave height
depends on the assumed width of the frequency bin on the wave spectrum the
method did not seem to be sound. This was due to the fact that change in
number of discretisation frequency bins on the irregular wave spectrum
resulted in change in amplitude of the calculated wave heights for each bin.
Consequently the calculated viscous damping for each bin varied resulting in

an inconsistent damped RAO.

Based on this experience it was concluded that any viscous roll damping
linearization for an irregular wave spectrum should be such that variations in
wave spectrum frequency discretisation do not affect the final calculated RAO

amplitude for each assumed frequency bin.

In this regards for calculating the viscous roll damping for a given wave
spectrum the mathematical development presented in Section 4.1 was modified.
The modification included calculation of the additional viscous damping
demonstrated in Equation 4-41 using the root mean square of the velocities.
These are the relative fluid velocities q and g, calculated for all of the frequency
bins assumed along the frequency range of the irregular wave. In this case the
damping assumed in each hydrodynamic iteration is constant for all the

assumed frequency bins.

As explained above the methodology for linearization of the motion RAOs
for a given wave spectrum utilises the exact same mathematical formulation
provided in Section 4.1 but the sequence of the procedure is different to the

regular wave linearization. This is explained in detail in Section 5.3.
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Viscous Damping Calculation Code

Development

he code development outlined in this chapter is based on the
T mathematical development explained in Chapter 4. The procedure
utilises a three dimensional diffraction-radiation hydrodynamic code to
calculate relative velocity between an oscillating body and surrounding fluid at
its vortex shedding edge. Furthermore, the procedure is coded as an add-on
black box with potential to be used with any conventional three dimensional

diffraction-radiation hydrodynamic software.

5.1. Investigation on the available hydrodynamic software

Initial investigation was conducted to assess possibility of using three
different linear diffraction-radiation hydrodynamic codes in calculating the
referenced relative velocity at bilge of a floating box shaped barge. The
hydrodynamic codes studied initially where ANSYS AQWA, MARTEC FD-
Waveload and PRECAL.

Noting the flexibility and unlimited access to functionalities of FD-Waveload
provided by MARTEC, this code was chosen for further development of the
viscous roll damping black box. However it should be noted that the developed
black box has the potential to be used with any diffraction-radiation
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hydrodynamic code as long as the input module of the black box is modified to
enable it to take in the velocity calculations from the hydrodynamic code and
there is access from hydrodynamic code to allow automatic input of the

calculated additional damping into the iterative hydrodynamic calculation.

In order to calculate the potential on the model in a linear diffraction-
radiation hydrodynamic code the fluid is assumed to be ideal and irrotational
which allows potential theory to be used. The other assumption is that the
incident wave acting on the body is of small amplitude when compared to its
length (i.e. small slope). The theory may be used to calculate the active wave

excitation on fixed bodies and the reactive wave forces on floating bodies.

Since the theory is first order the linear theory may be used to formulate the
velocity potential within the fluid domain. The fluid flow field to be

characterised by a velocity potential can be defined as:

QX,Y,Z,t) = ¢p(X,Y,Z)e™'"
Equation 5-1

This complex potential function ¢ may be separated into contributions from
the six modes of body motion, the incident wave field and the diffracted or
scattered wave field. The problem can be considered to be a combination of two

separate problems. Since the linear super position holds then this is acceptable.
The two problems may be viewed as:

* The problem of a floating body undergoing harmonic oscillations in
still water. The body motions will cause the fluid to react on the body
and this is the cause of the reactive body forces. It should be noted that
these reactive forces will then be a function of motions and are
commonly written in terms of added mass and wave damping
coefficients.

* The problem of a fixed body being subjected to a regular incident
wave train. The wave forces acting on the fixed body are considered to

be the wave excitation forces. Again it is worth noting that these are
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usually broken down into two components being the Froude-Krylov

and wave diffraction force components.
The potential may therefore be written as:

6
O(X,Y,Z)e" it = |(¢; + by) + z dm; | et
j=1

j
Equation 5-2
where:
¢, is the incident wave potential
¢4 is the diffracted wave potential
@; is the potential due to j-th motion
n; is the j-th motion (per unit wave amplitude)
w is the frequency of incident wave

The potential for the undisturbed incident wave field at a point (X, Y, Z) in the

fluid domain is known and may be written as:

—i - g- COSh[k(d + Z)]eik(Xcos 6+Y sin 9)e—iwt
¢ = w cosh(kd)

Equation 5-3
where:
d is the depth of water
k is the wave number (i.e. 2 /wavelength)
8 is the wave direction (0 degrees along +X axis)

This incident wave function represents a cosine wave travelling in the
positive X direction. The relationship between the wave number k and the

angular frequency w is given by:
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w? = g - k - tanh(kd)
Equation 5-4

The potential functions are complex but the resultant physical quantities such
as fluid pressure and body motions will be obtained by considering the real

part only. However the imaginary part contains the phase information.

The equation should be solved for the unknown potentials and this is done
by using Green's Theorem together with the required boundary conditions on
the surfaces which enclose the fluid domain. The potentials are solved at a

discrete number of points on the wetted body surface.

A simplistic box shaped barge model was developed in the hydrodynamic
software referenced above to assess possibility of calculating the fluid velocity

relative to the body motion in the vortex shedding edge. Outline of the model is

presented in Figure 5-1 below.

Figure 5-1: Simplistic box shaped barge model

The AQWA-Line output files were post-processed using AQWA-Flow
software to calculate the fluid velocity and the body velocity defined points at

centre of facets along the length of the barge and adjacent to the vortex
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shedding edge. The same parameters where calculated from MARTEC FD-
Waveload and PRECAL software using Macros developed in this study.

During this process strip of facets where defined along the length of the
model separately in portside and starboard side. Each strip consists of two
facets at the side and two facets at the bottom of the model. For example
referring to Figure 5-2, one of the strips along the length of the model consist of
facet numbers 180 and 184 at side and facet numbers 164 and 168 at the bottom

on starboard side.

In each frequency the fluid velocity from potential calculations is defined in
centre of each facet as well as the body velocity. By deducting these velocities
the relative velocity between the oscillating body and the fluid is calculated at
centre of each facet. These velocities are then combined using weighted
averaging to calculate the representative velocity at the tip of the shedding

edge.

IN20H

N201

Figure 5-2: Details of the vortex shedding edge

Since in each iteration the calculated viscous damping is required to be input
back in to the equation of motion, it is crucial to be able to conduct this process

automatically.
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Among the initially chosen hydrodynamic software only MARTEC provided
access to FD-Waveload source code and allowed implementation of the
automatic damping inputting function. Hence FD-Waveload was chosen in this

study for further development of the black box.

After identifying the most appropriate code, a preliminary roll damping
calculation exercise was conducted to estimate viscous roll damping for set of
existing model test data in regular waves [82]. Details of this exercise is

discussed in Section 6.1.

5.2. Code Development for Regular Waves

Use of diffraction-radiation hydrodynamic codes in calculating motion of a
floating body in regular waves is a common practice. There are several
commercially available codes that use the linear potential theory to calculate
motion characteristics of a vessel. The motion characteristics are normally
presented in form of Response Amplitude Operators (RAO) and are normalised

for incident regular waves within a range of frequencies and unit amplitude.

Since the roll RAO is the most sensitive to the assumed damping value
among other responses, this section of the dissertation concentrates on
application of Equation 4-41 in estimate of roll damping coefficient. The
calculated damping coefficient can then be used in a conventional linear
diffraction-radiation hydrodynamic code as an additional linear roll damping.
The same procedure is applicable to estimate of sway and heave damping

coefficients using the formulation given in Equation 4-39 and Equation 4-40.

Noting Equation 4-41, the key parameter in calculating roll damping is the
relative velocity of the fluid at the shedding edge in combined six degree of

freedom motion (i.e. g) and in forced roll mode (i.e. q,).
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5.2.1 Step-by-Step Viscous Roll Damping Calculation in Regular Waves

Calculation of the final roll RAO with viscous damping consists of following

steps for each frequency within the assumed frequency range individually:
Step 1:

A potential flow calculation is conducted and equations of motion are solved
to calculate the fluid velocity relative to the vessel at the centre of facets along
the shedding edge in a six degree of freedom coupled motion for a given
frequency. This consists of calculating the velocity in the fluid field at centre of
the facets adjacent to the shedding edge as well as calculating velocity of the
floating body at centre of the same facets in each frequency. By deducting the
fluid velocity from the body velocity the relative velocity between fluid and the
body at centre of the facets adjacent to the shedding edge is calculated.

Step 2:

The fluid velocity relative to the vessel at the centre of the facets along the
shedding edge in forced roll mode is calculated separately. This follows the
same procedure as in Step 1 above but the software control parameters are
modified to conduct the potential calculations in a one degree of freedom mode.
In this case the degree of freedom is the degree under study i.e. roll, heave or

sway.
Step 3:

Since the relative fluid velocity at tip of the shedding edge becomes singular
from diffraction-radiation calculations the relative fluid velocity at the tip of the
shedding edge is assumed to be equal to the weighted average of the relative
fluid velocity at four facets in each strip i.e. two vertical facets and two
horizontal facets adjacent to the tip. In this process the weight is defined based
on the distance from centre of the facet to the vortex shedding tip. The process
is conducted separately for velocities calculated in Step 1 and Step 2 above and

individually for each frequency.
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Step 4:

Based on the vortex shedding edge velocities calculated from Step 3, the b,
(i.e. vortex shedding damping) value is calculated using Equation 4-41 for each
strip of facets separately on the port and starboard sides. The b, values
calculated are then integrated along the full length of the model and in port side
as well as the starboard side of the model to calculate the total vortex shedding

damping.
Step 5:

The calculated total vortex shedding damping is then compared with the
damping value used in the potential calculations in Steps 1 and 2. If the
difference between the damping values is more than the pre-defined
convergence tolerance, the new viscous damping value is put back in to the

hydrodynamic model for motion calculation in Steps 1 and 2 above.
Step 6:

Steps 1 to 5 are iterated for the regular wave frequency under study until the
difference in the calculated additional roll damping from successive iterations is
within a pre-defined limit. If this is the case then convergence is assumed and

the RAO from the last iteration is assumed to be the final damped RAO.

The procedure is repeated separately for each frequency. Flowchart of the

viscous roll damping procedure is presented in Figure 5-3.
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Hydrodynamic

Model

Calculate relative fluid velocity in

combine six degree of freedom mode

i.e. q on facets in each strip along the

length for a given frequency

Calculate weighted average
of the relative velocities on

each strip

Calculate relative fluid velocity in
forced roll mode i.e. q; on facets in
each strip along the length for a given

frequency

Calculate weighted average
of the relative velocities on

each strip

Calculate the vortex shedding

damping for each strip along the

length

Integrate the vortex shedding

damping along the length in port and

starboard sides

Is the difference between

calculated total damping and

utilised value less than the

required set tolerance?

Figure 5-3: Flowchart for viscous roll damping calculation procedure for a given regular wave frequency
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5.3. Code Development for Irregular Waves

Noting the viscous damping formulation presented in Section 4.1 and using
the code developed for the approach explained in Section 5.2.1 a new step-by-
step methodology was developed to estimate viscous roll damping of a floating

body for a given irregular wave spectrum.

The methodology in Section 5.2.1 consists of running the code for a set of
regular wave frequencies. This results in computing the barge responses and
hence the averaged velocity values of a shedding edge at a set frequency. These
velocity values are obtained for every element at the edge along both bilges of
the barge and are summed over the incident and diffracted waves for both six
degree of freedom mode and forced motion mode separately. The values are
then stored for each frequency and a nonlinear component of damping is
computed for each frequency. Finally this process is repeated iteratively by
inserting the calculated damping value from each iteration into the dynamic
equation corresponding to each frequency until the response converges. This

process results in calculating a viscous damping for a given frequency.

In order to apply the same methodology to irregular wave the hydrodynamic
code is run for range of frequencies representing frequency range of the
Irregular wave spectrum simultaneously. This requires discretization of the
irregular wave spectrum and identification of the representative frequency for

each frequency bin. This is normally chosen to be the midpoint of the frequency

bin.

The barge responses are then computed resulting in calculation of the relative
velocity values for each edge and in each frequency. These velocity values are
obtained for every element of edge along both bilges of the barge and are
summed over the incident and diffracted waves. Same as before this is done

separately in the six degree of freedom mode as well as the forced mode.

Since in this process the relative velocities are calculated simultaneously for

all the frequencies in each iteration a mean square over all frequencies can then
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be calculated from these sinusoidal values as below and is stored for each strip

along the shedding edge:

1
Qrms(i) = \[Z Eq(l']) ' COTl](q(l,]))

Jj
Equation 5-5

where i denotes the assumed strip at the shedding edge and j denotes the
number of frequencies representing the full frequency range of the irregular

wave spectrum.

Then the nonlinear component of damping is calculated from K- qns(),

which is independent of the frequency.

Regarding the value of K Borgman [83] has the same relationship (See
Equation 69 of [83]) to get an equivalence between v|v| and
K- v - vrus where v is the velocity and v = v, cos 6. If this is substituted into the
relationship and both sides are multiplied by cos 8, by integrating over the flow

V2

cycle of 0 to 2m the result will be = 83_11 = 1.2. This weighting of the integral

corresponds to weighting by the velocity that in turn corresponds to what is

done in Morison’s equation to evaluate the drag coefficient.

An alternative would be to multiply by the sign of the velocity and just

equate to mean of the two sides equivalent to equating means over each half

cycle. In that case the result will be = -

5l

Borgman’s assumption to get to the value of K = \/% in [83] is not clear. It

may be in order to get to this bigger value he is assuming that the waves have

higher extremes and he is incorporating some nonlinear wave theory.

In this dissertation K is assumed to have a value somewhere in the range 1.2

to \/E.
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The process is iterated by inserting the calculated viscous damping value into
the dynamic equation for each frequency until response is converged. It should
be noted that unlike the regular wave viscous damping calculation procedure
the same viscous damping value is used for all frequencies and it only changes

for each iteration step.

In contrast to the regular wave case in which the absolute values of edge
velocities in each frequency are used in the calculation, in the irregular wave
case the root mean square of the edge velocities which is a universal value for

all frequencies at each edge element is used in calculating the damping.

5.3.1 Step-by-Step Viscous Roll Damping Calculation in Irregular Waves

The process starts with a known irregular wave spectrum for which the
viscous damping needs to be linearized. The wave spectrum is then divided in
to several frequency bins along its frequency range. Each frequency bin consists
of two frequencies denoting beginning and end of the assumed bin. The
frequency at the centre of the bin is considered to be the representative
frequency of the bin and used in the viscous damping calculation. The
amplitude of a regular wave which is representative of the assumed frequency

bin (i.e. A;p ) can then be calculated from Equation 5-6 as below:

Ay, = J 2 z S(w) - Aw

Equation 5-6

The A,., of each frequency bin is then used individually to calculate the
relative fluid velocity at the shedding edge at each associated frequency
however, the velocities are then averaged to calculate a single damping value

that is applicable to the wave spectrum frequency range.

Noting the procedure explained in Section 5.3 calculation of final roll RAO
including viscous damping linearized for a given irregular wave spectrum is

defined in a step-by-step process below:
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Step 1:

A potential flow calculation is conducted and equations of motion are solved
to calculate the fluid velocity relative to the vessel at the centre of facets along
the shedding edge in a six degree of freedom coupled motion. This is done for
range of frequencies representing the frequency band of the given irregular
wave spectrum. This consists of calculating the velocity in the fluid field at
centre of the facets adjacent to the shedding edge. Velocities of the floating
body at centre of the same facets in each frequency are calculated using same
damping value in each iteration for all the frequencies in the range but for the
Ayep. values associated to each frequency bin. By deducting the fluid velocities
from the body velocities the relative velocities between fluid and the body at
centre of the facets adjacent to the shedding edge are calculated for all

frequencies using a damping value constant for the iteration.
Step 2:

The fluid velocities relative to the vessel at the centre of the facets along the
shedding edge in forced roll mode are calculated separately. This follows the
same procedure as in Step 1 above but the software control parameters are
modified to conduct the potential calculations in a one degree of freedom mode.
In this case the degree of freedom is the degree under study i.e. roll, heave or

sway.
Step 3:

Since the relative fluid velocity at tip of the shedding edge becomes singular
from diffraction-radiation calculations the relative fluid velocity at the tip of the
shedding edge is assumed to be equal to the weighted average of the relative
fluid velocity at four facets in each strip (i.e. two vertical facets and two
horizontal facets adjacent to the tip). In this process the weight is defined based
on the distance from centre of the facet to the vortex shedding tip. The process
is conducted separately for velocities calculated in Step 1 and Step 2 above and

individually for each frequency.
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Step 4:

A root mean square average is taken over the weighted averaged velocities
calculated in all frequencies within the iteration. This is done separately for the
six degree of freedom mode as well as the forced motion mode. The process
results in a root mean square average velocity representing the average relative

velocity at the tip of the shedding edge over all frequencies.
Step 5:

Using the root mean square averaged velocities calculated for the free
floating mode and forced mode from Step 4 the b, (i.e. vortex shedding
damping) value is calculated using Equation 4-41 for each strip of facets
separately on the port and starboard sides. The b, values calculated are then
integrated along the full length of the model and in port side as well as the

starboard side of the model to calculate the total vortex shedding damping.
Step 6:

The calculated total vortex shedding damping is then compared with the
damping value used in the potential calculations in Steps 1 and 2. If the
difference between the damping values is more than the pre-defined
convergence tolerance the new viscous damping value is put back in to the

hydrodynamic model for motion calculation in Steps 1 and 2 above.
Step7:

Steps 1 to 6 are iterated using a constant damping value for all frequencies in
each iteration until the difference in the calculated additional roll damping from
successive iterations is within a pre-defined limit. If this is the case then
convergence is assumed and the RAO from the last iteration is assumed to be

the final damped RAO.

Flowchart of the viscous roll damping procedure in irregular waves is

presented in Figure 5-4.
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Figure 5-4: Flowchart for viscous roll damping calculation procedure in a given irregular wave frequency
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Implementation of the Numerical Model

oting the viscous damping calculation development outlined in
Chapter 4 and using the code development outlined in Chapter 5 an

initial attempt was made to apply the method in calculation of viscous roll
damping coefficient. The calculated roll damping value representing the
viscous effects was then used in linear diffraction-radiation hydrodynamic
software to calculate the damped RAO in regular weaves. This was to conduct
preliminary assessment of validity of the procedure in comparison to set of
available model test data [82] before embarking on a dedicated model test
campaign. The initial numerical results were confirmed to agree well with the
available model test data. Details of this initial assessment are presented in

Section 6.1.

Following a good agreement achieved between the theoretical calculation and
the existing model test data an independent model test campaign was
conducted to eliminate any ambiguity from outcome of the preliminary
comparisons. This assessment consisted of building a physical model of a new
box shaped barge as well as the associated hydrodynamic model. The model
test campaign was conducted in the Newcastle University model test facilities.

Further details on this assessment are provided in Section 6.2.
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6.1. Preliminary Validation Study

Initially a comparison was conducted between theoretical results and model
test data for a sharp keel-edge profile provided by Brown et al. [82]. This
consisted of preparation of a three dimensional diffraction-radiation potential
hydrodynamic model based on the main characteristics presented by Brown et
al. [82]. The main characteristics of the model are presented in Table 6-1. The
model was used to calculate the required relative velocities at the shedding

edges for a given frequency in each iteration as outlined in Section 4.1.

Table 6-1: Main characteristics of the Brown et al. [82] model

Main characteristic =
Length (m) 24
Beam (m) 0.8
Draught (m) 0.105
Mass (kg) 200.8
Longitudinal Centre of Gravity from AP (m) 1.2
Vertical Centre of Gravity from keel (m) 0.111
Roll Radius of Gyration (m) 0.244
Pitch Radius of Gyration (m) 0.688
Yaw Radius of Gyration (m) 0.598

Using the calculated relative velocities in Equation 4-41 the viscous roll
damping was calculated. The viscous roll damping was then input back in to
the software as additional roll damping iteratively until the damping was
converged within defined tolerances. Consequently the final damped Response
Amplitude Operator (RAO) was calculated. The set damping tolerance in this
case was equal to a variation of +1° between the calculated RAO amplitudes in

every two consecutive iteration.

The hydrodynamic model associated to parameters defined in Table 6-1 is

presented in Figure 6-1 showing the boundary element panel discretisation.
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Figure 6-1: Hydrodynamic model of the Brown et al. [82] barge

Outcome of the comparison form this assessment is presented in Section 7.1.

6.2. Independent Model Test

Noting the good agreement achieved between the model test data and the
calculated damped RAO amplitudes presented in Figure 7-3, attempt was made
to conduct a dedicated model test campaign to confirm the validity of the

procedure further and eliminate any ambiguity in the RAO comparison.

The model test was conducted in the Newcastle University Marine
Hydrodynamics Laboratory. The laboratory consists of a towing tank that is
equipped with wave maker. The wave maker can be used to generate regular
waves up to 0.12m height and wave periods in range of 0.5 to 2 seconds. It can
also be used to generate long crested random seas using variety of wave

spectra.

Dimensions of the towing tank are presented in Table 6-2.

Table 6-2: Dimensions of the towig tank

Length (m) 37

Width (m) 3.7

Water depth (m) 1.25
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In this exercise an optical motion sensor (Qualisys IR Tracking System) was
used to measure motion of the floating barge in waves. The system consisted of
two infrared optical cameras emitting a beam of infrared light to a set of three
retro-reflective markers located on the barge. Sensors on the cameras capture
the reflected infrared lights from the markers. These digital data are then used
to calculate motion of the floating body. The post processed data is presented in

form of six degree of freedom motion time series.

Furthermore a wave height probe was used in vicinity of the floating barge to

measure height of the incident wave in each test.

The waves generated in the tank by a group of paddle wave makers located

at one end of the tank. Layout of the tank together with the wave making

paddles at the end is shown in Figure 6-2.

Figure 6-2: Tank layout and wave maker paddles

A wedge type beach at the other end of the tank absorbs the generated waves.

The beach consists of energy absorbing sheets that eliminate reflection of the
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waves from opposite side of the tank. Figure 6-3 demonstrates the energy

absorbing sheets arrangement in the tank.

Figure 6-3: Energy absorbing sheets in the towing tank

A boxed shape model was built and used for the model test activities. Extent
of the model is presented in Figure 6-4. The barge was built from 4 mm thick
polyvinyl chloride (PVC) sheets. The main characteristics of the box shaped

model with rectangular bilge keels are outlined in Table 6-3.

85



Figure 6-4: Extent of the box shaped model

Table 6-3: Main characteristics of the model

Main characteristic

Length (m) 1.538
Beam (m) 0.403
Draught (m) 0.064
Mass (kg) 39.67
Longitudinal Centre of Gravity from AP (m) 0.004
Vertical Centre of Gravity from keel (m) 0.032
Roll Radius of Gyration (m) 0.1405
Pitch Radius of Gyration (m) 0.4306
Yaw Radius of Gyration (m) 0.4306
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Hydrostatic characteristics of the model including weight, centre of gravity,
radius of gyration and calculation of metacentric height were done in the
laboratory in advance of positioning the model in to the tank. Figure 6-5 shows
part of the measurements conducted on the model before placing it in to the

tank.

Figure 6-5: Measurmnet of hydrostatic charactristics of the model

Figure 6-6 shows the model during model test in regular waves. The model
was secured in its place using four strings including a soft spring in each string.
The strings were connected to pins in both ends of the model. This ensured the

heading of the model remains beam to the incident waves.

A wave amplitude probe was situated in vicinity of the model to measure the
incident wave amplitude generated by the wave maker. The probe is visible in
Figure 6-6. The measured incident wave height was then used in linearization
of the measured roll amplitudes in each frequency to accurately calculate the

roll RAO in each tested frequency.
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Figure 6-6: The model during model test

Two separate model tests were conducted to measure the response of the
model in regular waves and irregular waves. Results of the model test exercises

are presented in Sections 7.2 and 7.3.
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Results and Discussions

he numerical calculations together with associated preliminary model
T test data and the data generated from independent model test
campaign are presented in this chapter. The results consist of roll RAOs from
potential calculations and the roll RAOs calculated for the estimated viscous
damping. No additional damping is assumed to represent the viscous damping
in potential calculations however, the estimated viscous damping is considered

in calculation of the damped RAOs as additional linear damping.

Details of preliminary application of the viscous roll damping procedure and
final confirmation of validity of the procedure are discussed in this chapter.
Calculations are done for regular waves as well as irregular waves. The resulted
roll RAOs for regular wave calculations are presented in Sections 7.1 and 7.2.
The calculated RAOs are compared with model test data for the preliminary
validation and the independent model test data respectively. The results and

comparisons for irregular waves are presented in Section 7.3.

7.1. Preliminary Assessment Results

Results of the preliminary assessment from numerical calculation were

compared with the model test roll RAOs presented by Brown et al. [82].
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Figure 7-1 shows the potential roll RAO calculated from a hydrodynamic

model of the Brown et al. barge as defined in Table 6-1 without any additional

viscous roll damping.

The vertical axis in Figure 7-1 demonstrates the roll RAO amplitude that is

normalised for the incident wave height. Hence the unit for the vertical axis

demonstrates the roll angle per millimetre wave height of the incident wave

(i.e. deg./mm). The longitudinal axis in Figure 7-1 represents frequency of the

incident wave in radians per second (i.e. rad/s).

0.6

Roll RAO in Beam Seas

0.5 1

Amplitude (deg,/mm)

0.1

04

0.3 1

0.2 1

—&— Potential RAO

Figure 7-1: Potential roll RAO in beam seas for Brown et al. [82] model

5

Freq. (rad/s)

Tabulated values associated to Figure 7-1 are presented in Table 7-1 below:

Table 7-1: Tabulated values of the potential RAO for Brown et al. [82] model

Iy 3 3.5 35 375 4 425 45 475 5
(rad/s)
LTS 0.0538 | 0.06368 | 0.07472 | 008721 | 01016 | 0.1186 | 0.1395 | 0.1664 | 0.2035
(deg,/mm)
LErce 5.25 55 5.75 5.80 6 6.25 6.5 6.75 7.00
(rad/s)
Amp.

02589 | 03487 | 04852 | 0511101 | 05235 | 0362 | 0.2355 | 0.1632 | 0.11929
(deg,/mm)
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The damped RAO in each frequency including effect of the additional viscous
damping calculated using the procedure outlined in Section 4.1 is presented in

Figure 7-2.

Since viscous damping is a function of incident wave height the damped
RAO was calculated for a 24mm regular wave height. In this calculation the
calculated damped RAO amplitude in each frequency is converged to a

tolerance of 0.1 degree per meter of incident wave height.

Roll RAO in Beam Seas
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£
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<
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]
]
B
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g 0.1
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0.05
0 T T T T T T
2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00
Frequency (rad/s)

Figure 7-2: Damped roll RAO in beam seas for Brown et al. [82] model
Tabulated values associated to Figure 7-2 are presented in Table 7-2 below:

Table 7-2: Tabulated values of the damped RAO for Brown et al. [82] model

Freq.
4 5 5.5 57 6 7 8
(rad/s)
Amp.
0.10136 0.1902 0.24423 0.2497 0.2315 | 0.1045 | 0.0419
(deg,/mm)

The RAOs shown in Figure 7-1 and Figure 7-2 represent the roll RAOs in
beam seas for a 1:36 scale model with a sharp keel-edge profile. The associated
model test roll RAO in beam seas from the Brown et al. [82] paper is presented

in Appendix Figure A- 1. These RAOs are represented in Figure 7-3 for ease of
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comparison. Effect of additional viscous damping can be clearly seen in

comparison between the potential RAO and the damped RAO.

Furthermore the calculated damped RAO seems to be agreeing well with the

model test data recovered from Brown et al. [82].

Comparison of Roll RAOs in Beam Seas
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Figure 7-3: Comparison of roll RAO in Beam Seas for Brown et al. [82] model

7.2. Roll Response in Regular Waves

A new hydrodynamic model of the barge given in Table 6-3 was built in FD-
Waveload hydrodynamic software to calculate the potential roll RAO of the

independent model test assessment.

During post processing the model test data the measured regular incident
wave amplitudes and the measured motion responses were used to calculate

the model test RAO for each frequency.

The calculated potential roll RAO of the model is presented in Figure 7-4. No

additional damping is considered in calculation of the potential RAO.
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Figure 7-4: : Potential roll RAO in beam seas for the Hajiarab et al. [7] model

Tabulated values associated with the roll RAO presented in Figure 7-4 are
provided in Table 7-3.

Table 7-3: Tabulated values of the potential RAO for Hajiarab et al. [7] model

Freq.
4 02 34 97 62 6.59

(tad/s) 3 5.0 5.3 59 8 5

LTI 0.05 0.10 0.17 0.20 0.29 035 0.44
(deg,/mm)

Freq. 6.91 7.22 7.54 7.85 8.17 8.8 9.42

(rad/s)

LTS 0.58 0.80 1.05 0.94 0.64 033 0.20
(deg,/mm)

LErce 10.05 11 12 12.56 13 14 15

(rad/s) ' '

Y, 0.13 0.07 0.04 0.03 0.02 0.01 0.01
(deg,/mm)

The same hydrodynamic model is used together with the viscous roll
damping procedure outlined in Section 5.2 to calculate the damped roll RAO of
the model characterised in Table 6-3. The calculated damped roll RAO is

presented in Figure 7-5.
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Figure 7-5: Damped roll RAO in beam seas for Hajiarab et al. [7] model
The tabulated data associated to Figure 7-5 are presented in Table 7-4 below:

Table 7-4: Tabulated values of the damped RAO for Hajiarab et al. [7] model

Freq.
(rad/s) 5.02 5.34 5.65 5.96 6.28 6.59
Amp.

(deg./mm) 0.17 0.20 0.24 0.28 0.34 0.41
Freq.
(rad/s) 6.91 7.22 7.53 7.85 8.16 8.79
Amp.

(deg./mm) 0.47 0.53 0.62 0.46 0.37 0.26
Freq.
(rad/s) 9.42 10.05 11 12 12.56
Amp.

(deg,/mm) 0.19 0.12 0.07 0.04 0.03

The RAO amplitudes in each frequency in the damped RAO presented in
Figure 7-5 are individually linearized for the wave heights measured during the

model test for each frequency.
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Roll RAOs in Beam Seas
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Figure 7-6: Model test roll RAO in beam seas for Hajiarab et al. [7] model

The wave height amplitudes for which the damping is linearized are

presented in Table 7-5 together with the tabulated model test RAO data

associated to Figure 7-6.

Table 7-5: Measured model test RAO and incident wave amplitudes for Hajiarab et al. [7] model

Freq.
5.03 534 5.65 597 6.28
(rad/s)
g 0.14 0.17 0.19 0.23 0.23
(deg/mm)
U L 10.73 11.59 10.86 9.07 10.09
(mm)
Freq.
6.60 6.91 7.23 7.54 7.85
(rad/s)
AT 031 0.30 0.50 0.65 0.55
(deg/mm)
U L 9.45 12.97 11.14 7.27 12.23
(mm)
Freq.
8.17 8.80 9.42 10.05 12,57
(rad/s)
AT 0.42 0.33 0.27 0.15 0.06
(deg/mm)
U L 14.43 13.98 8.66 9.27 4.90
(mm)
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The roll RAO amplitudes are calculated by post processing the measured roll
amplitude time series in each incident wave frequency. The roll motion of the
barge is measured in time steps of 0.01 second. Same time step is used for

measurement of the incident wave amplitudes.
The measured model test RAO and the calculated Damped RAO together

with the Potential RAO are compared in Figure 7-7.

Comparison of the Roll RAOs in Beam Seas
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Figure 7-7: Comparison of Roll RAOs in Beam Seas for Hajiarab et al. [7] model

Since the calculated viscous damping is dependent on the assumed incident
wave height further calculation was done to assess effect of wave height on the
final damped RAO. A range of damped RAOs linearized for regular wave
amplitudes of 5mm, 8mm, 10mm, 12mm and 14mm were calculated to assess
effect of damping linearization with respect to wave amplitude. Outcome of

these calculations are presented in Figure 7-8.

Effect of variation in the assumed linearization wave height on the final
damped RAO is clear in Figure 7-8. Increase in the assumed linearization wave
height results in decrease in the damped roll RAO amplitude, demonstrating

generation of higher viscous damping accordingly.
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Roll RAOs in beam seas damped for different wave heights
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Figure 7-8: Comparison of roll RAOs damped for different incident wave amplitudes

It should be noted that the calculation converges after few iterations for
frequencies away from the peak frequency. As the calculation approaches to the
peak frequency, number of iterations to converge the calculation increases
significantly. This determines the time needed to conduct the calculation in

each frequency.

7.3. Roll Response in Irregular Waves

In order to utilise the viscous damping procedure outlined in Section 5.3 to
estimate the damped RAO in irregular waves represented by an irregular wave
spectrum, a wave spectrum was assumed as the incident wave. This wave
spectrum was a Pierson-Moskowitz spectrum with Hg; = 0.03 meter and peak

frequency of w = 7.54 rad/s.

Frequency bins were considered along the frequency axis of the spectrum.
The frequency bins are shown in Figure 7-9. For each frequency bin the

associated regular wave amplitude is calculated using Equation 5-6.
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Irregular wave spectrum
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Figure 7-9: The incident Pierson-Moskowitz irregular wave spectrum and frequency bins

Using the methodology in Section 5.3 the calculated damped roll RAO

linearized for the given Pierson-Moskowitz spectrum is shown in Figure 7-10.

The calculated damped roll RAO demonstrated in Figure 7-10 confirmed

convergence of the method outlined in Section 5.3.

In order to assess sensitivity of the method to variation in frequency bin sizes
further two bin sizes were assumed for the same given Pierson-Moskowitz
spectrum namely Bin#2 and Bin#3. The size of the frequency bins in Bin#2 and
Bin#3 are half and twice of the frequency bin sizes assumed in the initial

assessment (i.e. Bin#1) presented in Figure 7-10 respectively.
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Damped roll RAO for Irregular wave spectrum
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Figure 7-10: Calculated damped roll RAO associated to the Pierson-Moskowitz spectrum

A comparison between calculated damped RAOs for the three bin sizes is

presented in Figure 7-11.

Damped roll RAO for Irregular wave spectrum
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Figure 7-11: Sensitivity of the method to variation in frequency bin sizes

The tabulated data associated to the damped RAO for frequency bin sizes of
Bin#1 are provided in Table 7-6.
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Table 7-6: Tabulated data associted to damped RAO calculation for Bin#1

Freq. ey B Bin Wave Damped RAO
(rad/s) Lower Limit Upper Limit Amlzllli;ude (deg/mm)
3.00 2.50 3.50 3.07E-08 5.43E-02
4.00 3.50 4.51 9.97E-05 1.00E-01
5.02 4.51 5.18 6.57E-04 1.72E-01
5.34 5.18 5.66 1.43E-03 2.03E-01
5.97 5.66 6.13 2.07E-03 2.87E-01
6.28 6.13 6.44 2.15E-03 3.48E-01
6.59 6.44 6.75 2.39E-03 4.31E-01
6.91 6.75 7.07 2.55E-03 5.57E-01
7.22 7.07 7.38 2.64E-03 7.29E-01
7.54 7.38 7.70 2.66E-03 8.82E-01
7.85 7.70 8.01 2.64E-03 7.98E-01
8.17 8.01 8.49 3.25E-03 5.83E-01
8.80 8.49 9.11 3.40E-03 3.16E-01
9.42 9.11 9.74 3.11E-03 1.95E-01
10.05 9.74 10.53 3.15E-03 1.27E-01
11.00 10.53 11.50 2.90E-03 7.31E-02
12.00 11.50 12.28 2.23E-03 4.21E-02
12.56 12.28 12.78 1.63E-03 3.15E-02
13.00 12.78 13.50 1.79E-03 2.50E-02
14.00 13.50 14.50 1.79E-03 1.17E-02
15.00 14.50 15.44 1.48E-03 1.16E-02

A comparison of the calculated potential roll RAO with the calculated
damped RAOs for the three different assumed frequency bin sizes is presented

in Figure 7-12.
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Figure 7-12: Comparison of roll RAOs for an irreqular wave
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Conclusions and Recommendations

esults of implementing the developed methodology to calculating the
R viscous roll damping in regular waves was presented in Chapter 7.
This chapter also included the results of numerical assessments on application
of the viscous damping methodology to an irregular wave spectrum.
Conclusions on the presented results and recommendations for future work are

presented in this chapter.

8.1. Main Conclusions

As demonstrated in Figure 7-3 initial comparisons showed that there is a
good agreement between the model test RAO and the damped RAO in regular
waves. This indicated that the theoretical method provides a good estimate of

the viscous damping of the vessel due to vortex shedding from its edges.

Further comparison with dedicated model test data and new model
characteristics presented in Figure 7-7 provided further assurance that the
developed methodology provides reliable estimation of the damped roll RAO
in regular waves. The good agreement between the model test RAO and the
damped RAO presented in Figure 7-7 provides further evidence of the
applicability of the Discrete Vortex Method for calculating the viscous roll
damping of an oscillating box shaped vessel due to vortex shedding from its

edges in regular waves.
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Noting the potential RAO, damped RAO and the model test RAO presented
in Figure 7-7 it can be seen that the effect of the viscous damping is considerable

within certain frequency range. In this study the frequency range was shown to

be between 6.3 rad/s and 9.5 rad/s.

Figure 7-8 demonstrates further the effect of roll damping linearization for a
range of constant wave amplitudes. It can be observed that the effect of viscous
damping increases with increase in the regular wave amplitude for which the
damping is linearized especially in the peak region of the RAO. This is an
expected relationship between the amplitude of the linearization wave and the

roll RAO amplitude.

It can also be observed from Figure 7-8 that the amplitude of the roll RAO
varies with wave amplitude in a certain frequency band only. The frequency
band in this case lies between 6.3 rad/s and 9.5 rad/s same as what was
observed in Figure 7-7. Therefore it can be concluded that the effect of
linearization of roll damping for a sea state seems to be focused on a frequency
band around the peak of the RAO. Outside of this frequency band the effect of

viscous damping becomes insignificant.

Although sway and heave motions are not as sensitive as the roll motion to
the assumed viscous damping, the same methodology can be used to calculate
viscous damping for both sway and heave as well. In order to do this the same
methodology as the one outlined for the roll viscous damping calculation can

be used but the viscous damping values outlined in Equation 4-39 and Equation

4-40 shall be used.

As tangential relative fluid velocities are used in the method the same final
velocities can be used to calculate skin friction damping. In this study skin
friction damping is considered to be negligible and is ignored in calculation of

the damped roll RAOs presented in this report.

Noting the above, attempt was made to apply the method to calculating a
damped roll RAO that is linearized for a given irregular wave spectrum.

Outcome of this attempt is shown in Figure 7-10. The roll RAO presented in
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Figure 7-10 confirmed that the revised method in considering effect of all
frequencies in the irregular wave spectrum frequency band in calculating the
damped roll RAO does converge. This was done for a set of assumed frequency

bins within the frequency range of the irregular wave.

The next step was to assess sensitivity of the method to variation in size of
frequency bins. This was done for two different bin sizes, one twice the size of
the original bin sizes and the other half of the size of the original bin sizes.

Outcome of this assessment is presented in Figure 7-11.

A considerable difference between calculated damped RAOs associated to
Bin#1 and Bin#2 can be noted in Figure 7-11. Size of the frequency bins in the
case of Bin#2 is half the bin sizes in the case of Bin#1. However by increasing
the frequency bin sizes to twice the original bin sizes (i.e. Bin#3) the variation in

the final damped roll RAO is minimal.

Comparing the calculate damped roll RAOs with the associated potential
RAO in Figure 7-12 shows that although the amplitude of the potential RAO is
reduced to the calculated damped RAOs due to the assumed additional viscous
damping within certain range in vicinity of the peak of the RAO, the reduction
in RAO amplitude is not as much as what is seen for linearization for a regular

wave.

Further dedicate model tests and mathematical investigations in irregular
waves are required to precisely calibrate the method for calculating the viscous

damping in irregular waves.

8.2. Recommendations for Future Work

The study conducted demonstrates applicability of the discrete vortex
method to the viscous roll damping problem. Since the developed method can
be coded as a black box it can be used as an add-on together with any

conventional hydrodynamic package to calculate viscous damping of a floating
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system. This eliminates use of empirical formula or the need for conducting
dedicated model tests. The methodology is also much simple in comparison to

computational fluid dynamic (CFD) application.

The methodology presented in this report should however be considered as a

basis for further development of the method.

8.2.1 Application of the Method to Rounded Bilge Vessels

Application of the discrete vortex method to box shaped floating vessel using
a hydrodynamic diffraction-radiation code was demonstrated in this report to
be successful. However, most of the vessels especially the offshore floating

systems such as FPSOs consist of a rounded bilge.

It is known that an oscillatory rounded bilge sheds weaker vortexes in
comparison to a rectangular edge hence resulting in less roll damping
relatively. In practice this is compensated by addition of bilge keels to the

vessel.

The development presented in this work can be used as a basis to develop the
method for application to floating vessels with a round bilge and furthermore
to a floating vessel with round bilge with bilge keels. This should include

conducting dedicated model tests to validate the development.

Similar to this study the development can include estimation of the viscous

damping for regular waves as well as irregular waves.

8.2.2 Calibration of the Method for Irregular Waves

Although the method was demonstrated to be converging for calculating the
viscous damping in irregular waves, dedicated model test measurements
should be conducted to calibrate the method for this application. This could
consist of measuring the incident irregular wave spectrum and the associated
roll response. The measured irregular wave spectrum can be used to calculate a
damped roll RAO that is linearized for the measured wave spectrum. The

damped RAO and the irregular wave spectrum can then be used to calculate a
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response spectrum associated to the calculated damped RAO. Comparison of
the response spectrum from measurements with the one calculated from the
damped RAO can provide further understanding of calibration of the method

in irregular waves.

8.2.3 Use of Dipole Element to Represent Vortex Force

Noting the vortex shedding basis explained in [3] if a vortex shedding in a
transformed plane can be defined by I}, then the vortex force associated to the
shedding could be formulated accordingly. In this case the potential due to the
shedding at a point far away from the edge can be written in transformed

plane. This will be the potential due to a dipole.

The source-sink dipole can be represented by a sheet element of length [, in

physical z-plane lying along bisector of the shedding edge.

Assuming the total strength of this sheet element is defined by u, then the

dipole density can be defined as “Z . This can be thought of as equivalent to a

™
vortex of strength I, = ’;—Z at each end of the sheet element. In this case if the

transformation local to the rectangular vortex shedding edge is defined as

2
Ly

5 2
z = c{z, then the sheet element corresponding to vortex I}, at the point {, = (?)3

in { plane can be formulated accordingly.

Assuming the dipole sheet element can be implemented in a hydrodynamic
package the vortex shedding forces at a shedding edge in a hydrodynamic

model can be calculated directly using these predefined elements.

106



[1]

[2]

[3]

[4]

[5]

[6]

References and Bibliography

Salvesen, N., Tuck, E.O., and Faltinsen, O, 1970, “Ship motions and sea
loads,” Transactions of The Society of Naval Architects and Marine

Engineers, 78, pp. 250-287.

Downie, M.]., 1987, “The discrete vortex method and the calculation of
ship motions,” International Seminar on Engineering Applications of the

Surface and Cloud Vorticity Methods, 2, pp. 1-18.

Graham, ].M.R., 1980, “The forces on sharp-edged cylinders in oscillatory
flow at low Keulegan-Carpenter number,” Journal of Fluid Mechanics,

97(1), pp. 331-346.

Downie, M.].,, Graham J.M.R., Bearman, P.W., 1987, “The effect of vortex
shedding on the roll damping of rectangular barge,” Fluid Loading Report
No. F.L.42, Department of Aeronautics, Imperial College London.

Downie, M.]., Jillians, W., Graham J.M.R., 1996, “Theoretical prediction of
the viscous damping and response of three-dimensional floating
structures,” EPSRC Grant Reference GR/J23631 (Newcastle), Newcastle
University, UK.

Hajiarab, M., Graham, J.M.R., Downie, M.J., 2010, “Prediction of roll
damping in the frequency domain using the discrete vortex method,”

Proceedings of the ASME 2010 29th International Conference on Ocean,

107



Offshore and Arctic Engineering, Shanghai, China, OMAE2010-21000, 3,
pp-625-627, ISBN 978-0-7918-4909-5.

[7] Hajiarab M., Downie M., Graham J.M.R, 2010, “A study on viscous roll
damping of a box-shaped vessel in the frequency domain using the
discrete vortex method,” Transactions of the Royal Institution of Naval

Architects Part A: International Journal of Maritime Engineering, 153, pp.

149-152.

[8] Orozco, J.M., Raposo, C.V., 2002, “A practical procedure for the evaluation
of the roll motions of FPSO’s including the non-potential damping,”
OTC14234, Offshore Technology Conference, Houston, Texas, ISBN 978-1-
55563-249-6.

[9] Froude, W., 1861, “On the rolling of ships,” Transactions of the Institution
of Naval Architects, 2, pp. 180-227.

[10] Vugts, J.H., 1968, “The hydrodynamic coefficients for swaying, heaving
and rolling cylinders in a free surface,” International Shipbuilding

Progress, 15(167), pp. 251- 276.

[11] Vugts, J.H., 1967, “Pitch and heave with fixed and controlled bow fins,”
International Shipbuilding Progress, 15(3), pp. 191-215.

[12] Himeno, Y., 1981, “Prediction of ship roll damping - State of the art,”
Research Project Report no. 239, College of Engineering, The University of
Michigan.

[13] Faltinsen, O., 1990, “Sea loads on ships and offshore structures,”
Cambridge University Press, UK, ISBN 0 521 45870 6.

[14] Souza, J.R., Fernandes, A.C., Masetti, 1.Q., daSilva, S., Kroft, S.A.B., 1998,
“Nonlinear roll of an FPSO with larger than wusual bilge keels,”
Proceedings of the ASME 1998 17th International Conference on Ocean,
Offshore and Arctic Engineering, Lisbon, Portugal, OMAE98-0412.

[15] Oliveira, A.C., 2003, “Investigacoes sobre a teoria bilinear na analise do

108



blnco transversal de FPSOs (Investigation about the bilinear theory for the
analysis of FPSO Rolling),” Ocean Engineering, Federal University of Rio

de Janeiro (In Portuguese).

[16] Fernandes, A.C., Kroft, S.A.B., 2000, “Bi-linear modelling of wider, longer
and continues bilge keels for FPSOs roll motion control,” Proceedings of
the ASME 2000 19th International Conference on Ocean, Offshore and
Arctic Engineering, New Orleans, USA, OMAE2000-OFT-4072.

[17] Standing, R.G., 1991, “Prediction of viscous roll damping and response of
transportation barges in waves,”
Offshore and Polar Engineering Conference, Edinburgh, UK, ISBN O0-

9626104-61, 3, pp. 409-420.

Proceedings of the 1st International

[18] Choi, Y.R., Kim, ]J.H., Song, M.]., Kim, Y.S., 2004, “An experimental and
numerical study of roll motions for a barge type LNG FPSO,” Proceedings

of the 14th International Offshore and Polar Engineering Conference,

Toulon, France, 1, pp. 672-675.

[19] Van Dijk, R.R.T., Quiniou_Ramus, V., Le-Marechal, G., 2003, “Comparison
of full scale measurements with calculated motion characteristics of a west
of Africa FPSO,” ASME 2003 22nd International Conference on Offshore
Mechanics and Arctic Engineering, Cancun, Mexico, OMAE2003-37182, pp.
335-339.

[20] Park, LK., Shin, H.S., Ham K.S., Cho J.W., 1999, “ An experimental study on
roll damping for tanker-based FPSO,” Proceeding of the 9th International
Offshore and Polar Engineering Conference, Brest, France, ISBN 1-880653-
39-7.

[21] van 't Veer, R,, Fathi, F., 2011, “On the roll damping of an FPSO with riser
balcony and bilge keels,” Transactions RINA, International Journal

Maritime Engineering, Part A2, 153.

[22] Aloisio, G., Di Felice, F., 2006, “PIV analysis around the bilge keel of a ship
model in free roll decay,” XIV Convegno Nazionale A.IVE.LA, Roma,
109



Italy.

[23] van Kessel, J.L.F., van der Velde, W.]., 2008, “The effect of dual drift hull
on the motion behaviour of a pipelay/heavylift vessel,” Proceedings of the
ASME 27th International Conference on Offshore Mechanics and Arctic
Engineering, Estoril, Portugal, OMAE2008-57357.

[24] Jung, K.H., Chang K.A., Chen H.C., Huang, E.T., 2003, “Flow analysis of
rolling rectangular barge in beam sea condition,” Proceeding of the 13th

International Offshore and Polar Engineering Conference, Honoluluy,

Hawaii, ISBN 1-880653-60-5.

[25] Huang, Z.]J., Esenkov, O.E., O’'Donnell, B.J., Yung T.W., Sandstrom, R.E.,
2007, “Improved prediction of full scale roll motions for vessels with large

liquid tanks,” Proceeding of the 17th International Offshore and Polar
Engineering Conference, Lisbon, Portugal, ISBN 978-1-880653-68-5.

[26] Kwang, H.J., Kuang-An, C, Hyo, ].J., 2006, “Viscous Effect on the Roll
Motion of a Rectangular Structure,” Journal of Engineering Mechanics,

132(2), pp. 190-200, ISSN 0733-9399.

[27] Wu, X,, Tao, L., Li, Y., 2005, “Nonlinear Roll Damping of Ship Motions in
Waves,” Journal of Offshore Mechanics and Arctic Engineering, 127(3), pp.
205-211, ISSN 1528-896X.

[28] Rae, H.Y., Dong, H.L., Hang, S.C., 2003, “A study on Roll Damping of 2-D
Cylinders,” International Journal of Offshore and Polar Engineering, 13(3),

pp. 205-208, ISSN 1053-5381.

[29] Douglas, B.C., 1982, “The Effect of Forward Speed on Ship Roll Damping,”

M.Sc. dissertation, Memorial University of Newfoundland.

[30] Ikeda, Y., Katayama, T., 2000, “Roll Damping Prediction Method for a
High-Speed Planning Craft,” Proceedings of the 7th International
Conference on Stability of Ship and Ocean Vehicles, B, pp. 532-541.

[31] Incecik, A., 1982, “Design aspects of the hydrodynamic and structural
110



loading on floating offshore platforms under wave excitation,” Ph.D.
thesis, Department of Naval Architecture and ocean Engineering, Glasgow

University.

[32] Kerwin, J.E., 1955, “Notes on rolling in longitudinal waves,” International

Shipbuilding Progress, 2, pp. 597-614.

[33] Haddara M.R., 1971, “On the stability of ship motion in regular oblique
waves,” International Shipbuilding Progress, 18(207), pp. 416-434.

[34] Dalzell, ].F., 1978, “Note on the form of ship roll damping,” Journal of Ship
Research, 22(3), pp. 178-185.

[35] Haddara, M.R., 1984, “A note on the effect of damping moment form on
rolling response,” International Shipbuilding Progress, 31(363), pp. 285-
290.

[36] Nayfeh, A.H.Khdeir, A.A., 1986, “Nonlinear rolling of ships in regular
beam seas,” International Shipbuilding Progress, 33, pp. 40-49.

[37] Peyton Jones, J.C., Cankaya, 1., 1986, “The effect of constant heeling
moment on the main and super-harmonic roll response of ship in regular

beam seas,” International Shipbuilding Progress, 33, pp. 84-93.

[38] Journée, ].M.]., 2001, “Theoretical Manual of SEAWAY,” Delft University
of Technology, Ship hydromechanics Laboratory.

[39] Journée, J.M.]. , 1992, “Quick strip theory calculations in ship design”,
PRADS’92, Conference on Practical Design of Ships and Mobile Structures,
Vol. I, Newcastle upon Tyne, UK.

[40] Schmitke, R.T., 1978, “Ship sway, roll and yaw motions in oblique seas,”
SNAME Transactions, 86, pp. 26-46.

[41] Lee, J.H., Incecik, A., 2007, “The simplified method for the prediction of
radiation damping coefficients,” Proceedings of the Sixteenth International

Offshore and Polar Engineering Conference, Lisbon, Portugal, pp. 2178-

111



2183, ISBN-13 978-1-880653-68-5.

[42] Arne, B, Faltisen O.M., 1988, “ Application of a Vortex Tracking Method to

4

Roll Damping,” Advances in Underwater Technology and Offshore

Engineering, Technology Common to Aero and Marine Engineering, 15,

pp. 177-193, ISBN 1-85333-054-X.

[43] Chakrabarti, S., 2001, “Empirical Calculation of Roll Damping for Ships
and Barges,” Ocean Engineering, 28(7), pp. 915-932.

[44] Taylan, M., 2000, “The Effect of Nonlinear Damping and Restoring in Ship
Rolling,” Ocean Engineering, 27(9), pp. 921-932.

[45] Lighthill, J. ,1986, “Fundamentals Concerning Wave Loading on Offshore
Structures,” Journal of Fluid Mechanics, 173, pp. 667-681, ISSN 8600-1313.

[46] Kwang, H.J., Kuang-An, C., Erick, T.H., 2004, “Two-Dimensional Flow
Characteristics of Wave Interactions with a Free-Rolling Rectangular

Structure,” Ocean Engineering, 32(1), pp. 1-20.

[47] Oshkai, P., Rockwell, D., 1999, “Free Surface Wave Interaction with a
Horizontal Cylinder,” Journal of fluids and structures, 13(7-8), pp. 935-954,
ISSN 1999-0237.

[48] Santiago, I.B. ,2008, “Roll Motion of a Ship and the Roll Stabilising Effect of
Bilge Keels,” The Journal of Navigation, 61, pp. 667-689, ISSN 0800-4931.

[49] Ray-Qing, L., Weija, K., 2008, “Modelling nonlinear roll damping with a
self- consistent, strongly nonlinear ship motion model,” Journal of Marine

Science and Technology, 13, pp. 127-137, ISSN 00773-007-0262-9.

[50] Korpus, R.A., Falzarano, J.M., 1997, “Prediction of Viscous Ship Roll
Damping by Unsteady Navier- Stokes Techniques,” Journal of Offshore
Mechanics and Arctic Engineering, 119(2), pp. 108-113, ISSN 1.2829050.

[51] El-Bassiniouny, A.F., 2007, “Nonlinear Analysis for a Ship with a General
Roll- Damping Model,” Physica Scripta, 75, pp. 691-701, ISSN 0031-8949.

112



[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Mulk, M.T.U., Falzarano, J., 1994, “Complete Six-Degrees-of-Freedom
Nonlinear Ship Rolling Motion,” Journal of Offshore Mechanics and Arctic
Engineering, 116(4), pp. 191-201.

Bangun, E.P., Utsunomiya, T., 2008, “Evaluation of Viscous Forces Acting
on a Moving Body by Navier-Stoke Solver,” OCEANS'08 MTS/IEEE Kobe-
Techno-Ocean Conference, pp. 1-8, ISSN 978-1-4244-2125-1.

Robert, ]J.B.,, Vasta, M., 2000, “Markov Modelling and Stochastic
Identification for Nonlinear Ship Rolling in Random Wave,” Philosophical
Transaction of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 358, pp. 1917-1941, ISSN 2000-0621.

Ikeda, Y., 2004, “Prediction Methods of Roll Damping of Ships and Their
Application to Determine Optimum Stabilization Devices,” Marine

Technology, 41, pp. 89-93, ISSN 0025-3316.

Klaka, K., Krokstad, J., Renilson, M.R., 2001, “Prediction of Yacht Roll
Motion at Zero Forward Speed,” 14th Australasian Fluid Mechanics
Conference, Adelaide, Australia, pp. 1-4.

Yuck, RH., Lee, D.H., Choi, HSS., 2003, “Estimation of roll damping
coefficients for non-conventional midship sections,” Proceedings of 13th

International Offshore and Polar Engineering Conference, Honoluluy,

Hawaii, 3, pp. 540-543, ISBN 1-880653-60-5.

Inoue, Y., Islam, R., 2001, “Effect of viscous roll damping on drift forces of
multi-body floating systems in waves,” Proceedings of 11th International
Offshore and Polar Engineering Conference, Stavanger, Norway, 1, pp.
279-285.

de Jong, P., van Walree, F., 2008, “Hydrodynamic lift in a time-domain
panel method for the seakeeping of fast ships,” 6th International

Conference on High Performance Marine Vehicles, Naples, Italy.

Ledoux, A., Molin, B., de Joutte, C., Coudray, T., 2004, “FPSO roll damping

113



prediction from CFD and 2D and 3D model test investigations,”
Proceedings of 14th International Offshore and Polar Engineering

Conference, Toulon, France, 1, pp. 687-695.

[61] Gachet, M., Kherian, J.G., 2008, “Impact of linearization of bilge keel
damping on the early assessment of vessel operability,” Proceedings of the
ASME 27th International Conference on Offshore Mechanics and Arctic
Engineering, Estoril, Portugal, OMAE2008-57255.

[62] Rott, N., 1956, “Diffraction of a weak shock with vortex generation,”
Journal of Fluid Mechanics, 1(01), pp. 111-128.

[63] Brown, C.E., Michael, W.H., 1955, “On Slender Delta Wings with Leading
Edge Separation,” National Advisory Committee for Aeronautics,

Technical Note 3430.

[64] Graham, J].M.R., 1977, “Vortex shedding from sharp edges,” Imperial
College University, London, Aero report No. 77-06, ISSN 0308-7247.

[65] Al-Hukail, Y.O.I, 1992, “Roll damping due to vortex shedding from
slender ship hulls in forward motion,” PhD Thesis, Imperial College

London (University of London).

[66] Graham, ].M.R., Al-Hukail, Y.O., Bearman, P.W., Zhao, Y.D., Downie, M.].,
1994, “Numerical Prediction of the Effect of Forward Speed on Roll
Damping,” Proceedings of 20th Symposium on Naval Hydrodynamics,
Santa Barbara, USA, pp. 657-668.

[67] Wright, ].H.G., Marshfield, W.B., 1980, “Ship roll response and capsize
behaviour in beam seas,” Transactions of Royal Institute of Naval

Architects, 122, pp. 129-148.

[68] Das, S.K., Das, S.N., 2007, “Modelling of coupled roll and yaw damping of
a floating body in waves,” Mathematical Problems in Engineering, 2007,

Article ID 96373.

[69] Downie, M.]., Bearman, P.W., Graham J.M.R., 1987, “The effect of vortex
114



shedding on the coupled roll response of bodies in waves,” Journal of fluid

mechanics, 189, pp. 243-264.

[70] Coznes, P., 1987, “Numerical modelling of the roll damping of ships due to
vortex shedding,” PhD thesis, Imperial College University, London.

[71] Taylor, R.E., Teng, B., 1993, “The effect of corners on diffraction/radiation
forces and wave drift damping,” 25th Annual Offshore Technology
Conference, Houston, Texas, OTC 7187, ISBN 978-1-61399-089-6.

[72] Graham, J.M.R., Sherwin, S.J., Kendon, T.E., Downie M.].,, 2005, “The
prediction of the viscous damping of large floating bodies in waves,” 20th

International Workshop on Water Waves and Floating Bodies, Spitzbergen.

[73] Cardo, A., Francescutto A., Nabergoj, R., 1982, “On damping models in
free and forced rolling motion,” Ocean Engineering, 9(2), pp. 171-179.

[74] Mathisen, ].B., Price, W.G., 1985, “Estimation of ship roll damping
coefficients,” Transactions of Royal Institution of Naval Architects, 127, pp.

295-307, ISSN 0035-8967.

[75] Spouge, J.R., 1988, “Nonlinear analysis of large-amplitude rolling
experiments,” International Shipbuilding Progress, 35(403), pp. 271-320.

[76] Roberts, ].B., 1985, “Estimation of nonlinear ship roll damping from free-
decay data,” Journal of Ship Research, 29(2), pp. 127-138.

[77] Bass, D.W., Haddara, M.R.,, 1988, “Nonlinear models of ship roll
damping,” International Shipbuilding Progress, 35(401), pp. 5-24.

[78] Haddara, M.R., Bennett, P., 1989, “A study of the angle dependence of roll
damping moment,” Ocean Engineering, 16(4), pp. 411-427.

[79] Haddara, M.R., Bass, D.W., 1990, “On the form of roll damping moment
for small fishing vessels,” Ocean Engineering, 17(6), pp. 525-539.

[80] Chun, H.H., Chun, S.H., Kim, S.Y., 2001, “Roll damping characteristics of a

small fishing vessel with a central wing,” Ocean Engineering, 28(12), pp.

115



1601-1619.

[81] Downie, M.J., Graham J.M.R., Wang, J., 1999, “Effects of porous and solid
bilge keels on the response of FPSOs in regular and random waves,”
Proceedings of 18th International Conference on Offshore Mechanics and

Arctic Engineering, St. John’s, Newfoundland, Canada.

[82] Brown, D.T., Eatock Taylor, R., Patel, M.H., 1983, "Barge motions in
random seas - a comparison of theory and experiment,” Journal of Fluid

Mechanics, 129, pp. 385-407.

[83] Borgman, L.E., 1967, “Ocean Wave Simulation for Engineering Design,”
Hydraulic Engineering Laboratory, College of Engineering, University of

California.

[84] Singh, S., 1979, “Forces on bodies in oscillatory flow,” PhD Thesis, Imperial
College London.

[85] Keulegan, G.H., Carpenter, L.H., 1958, “Forces on cylinders and plates in
an oscillating fluid,” Journal of Research of the National Bureau of

Standards, 60(5), pp. 423-440.

[86] Kaplan, R., 1966, “Lecture notes on nonlinear theory of ship roll motion in
a random sea,” Proceedings of 11t International Towing Tank Conference,

Tokyo, Japan, pp. 393-396.

[87] Bhattacharyya, R., 1978, “Dynamics of marine vehicles,” John Willey &
Sons, New York, ISBN-13: 978-0471072065.

[88] Nayfeh, A.H., 1981, “Perturbation methods,” John Willey & Sons, New
York, ISBN-13: 978-0471399179.

[89] Bass, D.W., Haddara, M.R.,, 1988, “Nonlinear models of ship roll
damping,” International Shipbuilding Progress, 35, pp. 5-24.

[90] Cardo, A., Ceschia, M., Francescutto, A. and Nabergoj, R., 1980, “Effects of

the angle-dependent damping on the rolling motion of ships in regular

116



beam seas,” International Shipbuilding Progress, 27, pp. 135-138.

[91] Cardo, A., Francescutto, A. and Nabergoj, R., 1981, “Ultra-harmonics and
sub-harmonics in the rolling motion of a ship: steady-state solution,”

International Shipbuilding Progress, 28, pp. 234-251.

[92] Cardo, A., Francescutto, A. and Nabergoj, R., 1982, “On damping models

in free and forced rolling motion,” Ocean Engineering, 9, pp. 171-179.

[93] Cardo, A., Francescutto, A. and Nabergoj, R., 1984, “Nonlinear rolling
response in a regular seas,” International Shipbuilding Progress, 31, pp.

204-208.

[94] Haddara, M.R., 1973, “On nonlinear rolling of ships in random seas,”
International Shipbuilding Progress, 20, pp. 377-387.

[95] Journée, J.M.]., Massie, W.W., 2001, “Offshore Hydromechanics,” Delft
University of Technology.

[96] Havelock, T.H., 1942, “The damping of the heaving and pitching motions
of a ship,” Philosophical Magazine Series, 33(7), pp. 666-673.

[97] Havelock, T.H., 1955, “Waves due to floating sphere making periodic
heaving oscillations,” Proceedings of the Royal Society of Mathematical,

Physical and Engineering Science, 231(1184), pp. 1-7.

[98] Abramowitz, M., Stegun, I.A., 1964, “Handbook of Mathematical Functions
with Formulas, Graphs and Mathematical tables,” U.S. Department of

Commerce, National Bureau of Standards.

[99] Karlsen, S.H., 2012, “Barge Transportation of heavy objects,” Master’s

Thesis, Norwegian University of Science and Technology.

[100] Bakare, A.A., 2009, “The Influence of Viscous Effects on the Roll Motion
of an Offshore Jacket Transport/Launching Barge in Waves,” Master’s

Thesis, Newcastle University, School of Marine Science and Technology.

117



Appendix A: Preliminary Model Test Data
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Appendix Figure A- 1: Roll transfer function reported by Brown et al. [82]
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ABSTRACT

This paper describes a theoretical approach to predict roll
damping for a three-dimensional barge shaped vessel in the
frequency domain by matching a simple discrete vortex method
(DVM), describing local separated flow, to an inviscid 3-D
seakeeping code.

The results are compared with model test experiments to
demonstrate validity of the method. A good agreement between
the model test RAO and the damped RAO is achieved.

INTRODUCTION

One of the most important subjects in FPSO design is
prediction of roll motion. The best known method for
predicting the roll motion is to include an equivalent linear
viscous roll damping coefficient in the motion equation.
Traditionally the roll damping coefficient has been determined
by model testing. This is not always practical in the early stages
of design and there are difficulties in scaling the results to full
scale. Hence, several numerical methods have been developed
to predict the roll damping without model testing.

One of these methods makes use of the discrete vortex
method which is a technique for analysing two-dimensional
separated flows in the time domain. Graham [1] implemented a
simple discrete vortex analysis for flow about an infinite wedge
in oscillatory flows in which the flow in an infinite half-plane,
the ¢ -plane, was transformed to flow about an isolated edge.

The method enabled him to calculate a generalised vortex force
on the infinite wedge from which he inferred the total force on
a finite body with flow separation from its edges. The approach
was developed further by Downie et al. [2, 3].

In the present work the same technique is used to model
separated flow from a barge shaped vessel to provide input to
an inviscid 3-D seakeeping program to calculate its roll RAO,
including vortex shedding, in frequency domain.

The roll RAOs predicted by this approach are compared
with model test results to assess its validity. The comparison

J Michael R Graham
Imperial College London
United Kingdom

Martin Downie
Newcastle University
United Kingdom

shows a good agreement between the model tests and
theoretical calculations.

METHODOLOGY
Downie et al. [2, 3] demonstrated that for the 2-D barge as

defined in Figure 1, rolling about point "O" with an oscillatory

angular velocity described by a =w-a- Sin(a)t)where a is the

angular velocity and & is the angular velocity amplitude, the

vortex shedding roll moment F,4 can be formulated as:

¢V - ¢h

Ac”

4 2
F,, =%p-c4-b3 w(r) (1)

in which p is the fluid field density, ¢, is a coefficient
representing the lever arm for the vortex roll moment, b is the
breadth of the barge, / is the draught of the barge, ¢, is the
velocity potential at the vertical side of the shedding edge, ¢,
is the velocity potential at horizontal side of the shedding edge,
Ag*is the distance between points in the ¢ plane on either side
of the edge and lp(t) is the dimensionless vortex force

coefficient which is pre-calculated using the discrete vortex
method [1].

Figure 1: Definition of the cross section of a typical barge

The vortex roll force presented in Equation (1) can be
transformed in to the frequency domain as:

1 Copyright © 2010 by ASME
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where a,is the vortex induced added mass, b,is vortex
induced damping coefficient, (A+iB)is the vortex force
coefficient calculated with the DVM for an infinite right angle
edge and which is equal to 1.566-10.157, ¢ is the total fluid
velocity at the shedding edge calculated for the combined six
degree of freedom motion, ¢; is the total velocity at the
shedding edge calculated in the forced roll motion mode, s is
the distance from edge to centre of the facet in which the
velocity is calculated, x is width of the facet along the length,
H is the wave height and w« is Schwartz-Christoffel ratio

which can be calculated by iteration for a given aspect ratio. In
this case if the aspect ratio of the cross section of the barge is
defined as AR = %, then from a Schwartz-Christoffel

transformation it can be shown that [3]:
ar ot 2 Elw)=li-w el
I E(l - uz)— yzK(l - ‘uz)
where E and K are elliptic integrals of the first and second
kind respectively.

Finally if A = 1 then:
u
I
20-do

g?-1)\*
(m) do 1
-2 )o -1k

1

Q%>~

A
IC=[

)

12

W

20-do

o hook

In this case the velocity at the tip of the shedding edge
becomes singular in the sharp edged potential flow model.
Therefore the velocity of the fluid at the edge for combined
motion, (i.e.q), and the forced roll mode, (ie.q;) are

1

calculated using weighted averaging of the velocity at the two
facets on each side of the vortex shedding edge. Weights are
based on the distance between the centre of the facet to the
shedding edge (i.e. s).

CASE STUDY

A comparison was conducted between theoretical results
and model test data for a sharp keel-edge profile provided by
Brown et al. [4].

The main characteristics of the model are presented in
Table 1. A 3-D diffraction radiation potential hydrodynamic
model was used to calculate the required velocities at the
shedding edges and the final damped Response Amplitude
Operator (RAO). The hydrodynamic model showing the
boundary element panel discretisation is presented in Figure 2.

Table 1: Main characteristics of the model

Main characteristic -
Length (m) 24
Beam (m) 0.8
Draught(m) 0.105
Mass (kg) 200.8
Longitudinal Centre of Gravity from AP (m) 12
Vertical Centre of Gravity from keel (m) 0.111
Roll Radius of Gyration (m) 0.244
Pitch Radius of Gyration (m) 0.688
Yaw Radius of Gyration (m) 0.598

Figure 2: Hydrodynamic model of the barge

Calculation of the final roll RAO with viscous damping

consists of the following steps:

1) A potential flow calculation is conducted and the
equations of motion solved to calculate the fluid
velocity relative to the vessel at the centre of facets
along the shedding edge in a six degree of freedom
coupled motion.

2) The fluid velocity relative to the vessel at the centre of
the facets along the shedding edge in forced roll mode
is calculated separately.

3) Based on the velocities calculated in steps 1 and 2, the
b, (vortex shedding damping) value is calculated from

Equation (2) for each strip of facets separately on the
port and starboard sides.
4) The b,values calculated in step 3 are integrated for

the full model and the total value is put back in to the
hydrodynamic model and motion calculation in steps 1
and 2 above.

5) Steps 1 to 4 are iterated until the difference in the
calculated roll amplitude from successive iterations is
within acceptable limit. Convergence is then assumed

2 Copyright © 2010 by ASME



and the procedure is repeated separately for each
frequency.

RESULTS

The results from the calculation are compared with the
model test roll RAOs [4] and the potential flow roll RAOs in
Figure 3.

Roll RAO in Beam Seas
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Figure 3: Comparison of Roll RAO in Beam Seas

The model test data shown in Figure 3 represent the roll
RAOs in beam seas for a 1:36 scale model with a sharp keel-
edge profile. The reported roll RAO in beam seas in the Brown
et al. paper is shown in Appendix-Figure 1.

The viscous damping for the damped RAO, which is a
function of the wave height since it is non-linear, is calculated
here for a 24mm wave height and is converged to an error of
0.1 degree in the roll angle.

DISCUSSIONS AND RECOMMENDATIONS

As demonstrated in Figure 3, there is a good agreement
between the model test RAO and the damped RAO indicating
that the theoretical method provides a good estimate of the
viscous damping of the vessel due to vortex shedding from its
edges.

Although viscous damping in pitch and heave motions is
not as significant as for the roll for a barge, the same
methodology can be used to calculate viscous damping for both
pitch and heave as well.

As tangential relative fluid velocities are used in this
method, the same final velocities can be used to calculate skin
friction damping. In this study skin friction damping is
considered to be negligible and is ignored in the damped RAO.

Further specific model test studies are taking place in
Newcastle University towing tank facilities to measure the roll
RAO of a barge shaped vessel for further comparison and
validation of the method.
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Appendix-Figure 1: Roll transfer function reported by
Brown et al. [4]
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A study on viscous roll damping of a box-shaped vessel in the frequency domain using the
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SUMMARY

This paper presents a study on viscous roll damping of a floating box-shaped vessel in the frequency domain. The
application of the discrete vortex method (DVM) for calculation of the viscous roll damping in regular seas has been
validated by model tests. Equivalent roll RAOs associated with a range of regular wave amplitudes are calculated to
assess behaviour of the viscous roll damping in relation to incident wave amplitude linearisation. A model test is
conducted using the model test facilities of the Marine Hydrodynamics Laboratory at Newcastle University to validate
the applicability of the DVM in calculating the roll RAO in regular waves and to study the application of this method to
irregular waves. Results of these model tests are presented in this paper.

NOMENCLATURE

u Schwartz-Christoffel ratio

P Density of the fluid field

ay Vortex induced added mass coefficient

by Vortex induced damping coefficient

b Breadth of the barge

fua Vortex force at shedding edge

f(t) Time series

h Draught of the barge

q Coupled motion fluid velocity at shedding edge
q Forced motion fluid velocity at shedding edge
s Distance of shedding edge to centre of the facet
x Width of the facet

AR Aspect ratio of the barge cross section

H Linearised damping wave height

N Number of samples in time series

S(w) Power spectrum in frequency domain
1. INTRODUCTION

Prediction of roll damping has been a challenging task
for naval architects. Froude [1] studied the effect of wave
height and steepness on the rolling of ships and the
influence of this phenomenon on the design of ship hull
shape.

For floating offshore installations accurate estimate of
the roll damping is important as the roll motion governs
the transverse loads and this has direct impact on the
design of hull, topside structures and process plant on
board. Furthermore, noting the calculation limitations
and time constraints for conducting motion analysis of a
floating vessel in the time domain, frequency domain
calculations have become the norm in the industry.
Although most vessel responses can be calculated with
acceptable accuracy in the frequency domain, this is

more difficult for roll response due to the nonlinear
behaviour of roll damping.

Theoretically the total roll damping of a floating vessel
can be divided into potential and viscous components.
The potential component can be predicted accurately
since it has a linear characteristic, however the viscous
component is non-linear and prediction of this is more
problematic.

The challenge is to develop a reliable method for
calculating the equivalent linearised roll damping which
enables the required response statistics to be calculated in
the frequency domain for operational strength and fatigue
analysis.

It is a common practice to divide the viscous roll
damping into several components such as vortex
shedding damping, skin friction damping, eddy damping,
etc. [2]. For the case of a rolling box shaped floating
vessel, vortex shedding is the dominant roll damping
component.

In order to estimate the vortex force on the shedding
edge of a box shaped model, Graham [3] implemented a
simple discrete vortex analysis for flow about an infinite
wedge in oscillatory flow in which the flow in an infinite
half-plane, the ¢-plane, was transformed to flow about an
isolated edge. The method enabled him to calculate a
generalised vortex force on the infinite wedge from
which he inferred the total force on a finite body with
flow separation from its edges. The approach was
developed further by Downie et al. [4, 5]. Hajiarab et al.
[6] applied the method to a 3-D numerical model for
wave diffraction and demonstrated that it produces
results that compare well with model test results in
regular waves.

In order to eliminate any uncertainty in the model test
results used in [6], further model tests were conducted to
validate the application of this methodology in regular
waves. In this case the roll damping has been linearised



for a given wave amplitude in each frequency. Results of
these model tests are presented in this paper.

In line with the Lloyd's Register Response Based
Analysis (RBA) methodology [7], the longer term
objective of this work is to develop a procedure for
linearization of the roll damping to enable spectral
analysis of response to be undertaken for given seastates.
The progress made towards this is presented in this

paper.
2. METHODOLOGY

As outlined in [6], the generated vortex force due to roll
at the shedding edge of the box shaped vessel can be
formulated as:
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where u, the Schwartz-Christoffel ratio, can be calculated
by iteration for a given barge aspect ratio. In this case if
the aspect ratio of the cross section of the barge is
defined as:

aR=2
2h

then from a Schwartz-Christoffel transformation it can be

shown [5] that:
AR=I_2= E(/‘z)_(l_.uz)Kcuz)
o El-p)- k(- )

where E and K are elliptic integrals of the first and
second kind respectively.

1
Finally if A =— then:
y7j

In order to compute the strength of the velocity
singularity at the tip of the shedding edge in the sharp
edged potential flow model, weighted averaging of the
velocity at the two facets on each side of the vortex
shedding edge is employed to calculate g and g;. The

weights are based on the distance between the centre of
the facet to the shedding edge, s.

The extent of the hydrodynamic panel model of the barge
is presented in Figure 1.

Figurel: Hydrodynamic model of the barge

In this method, for each frequency ¢ and g; are calculated
individually for each strip of panels along the length of
the barge and at each iteration. Then by using the
weighted averaging approach, the fluid velocity relative
to the vessel at the shedding edge is estimated. The
estimated relative fluid velocity is then used to calculate
the vortex induced damping coefficient for each strip of
panels on the port and starboard side of the model. These
vortex induced damping coefficients are summed up
along the length of the model to calculate the total vortex
induced damping coefficient for the frequency under
investigation. Finally the total vortex induced damping is
inserted back into the hydrodynamic model for the next
iteration of calculations. This process is repeated
iteratively until the difference in calculated roll RAO in
two consecutive iterations is less than 0.1 degrees per
meter.

3. CASE STUDY

A box shaped model was used in this study to conduct
model tests in the Marine Hydrodynamics Laboratory at
Newcastle University. The main characteristics of the
model are outlined in Table 1.

Table 1: Main characteristics of the model
Main characteristic -

Length (m) 1.538
Beam (m) 0.403
Draught(m) 0.064
Mass (kg) 39.67

Longitudinal Centre of Gravity from midship (m) 0.004

Vertical Centre of Gravity from keel (m) 0.032
Roll Radius of Gyration (m) 0.1405
Pitch Radius of Gyration (m) 0.4306
Yaw Radius of Gyration (m) 0.4306

Two separate model tests were conducted to measure the
response of the model in regular waves and irregular
waves. A wave amplitude probe was situated in the
vicinity of the model to measure the incident wave
amplitude generated by the wave maker. The motion



response of the model was measured using an optical
tracking system.

4. RESULTS
4.1 ROLL RESPONSE IN REGULAR WAVES

The measured regular incident wave amplitudes and the
measured motion responses were used to calculate the
Model Test RAO for each frequency. Comparison of the
measured Model Test RAO and the calculated Damped
RAO together with the Potential RAO are presented in
Figure 2. The measured incident wave amplitudes at each
frequency are presented in Table 2. The measured
incident wave amplitudes were used to calculated the
Damped RAO.

Table 2: Measured incident wave amplitudes at each

frequency
Freq. 5.03 5.34 5.65 5.97 6.28 6.60
(rad/s)
Wave
Amp. 10.73 11.59 10.86 9.07 10.09 9.45
(mm)
Fregq.
(rad/s) 6.91 7.23 7.54 7.85 8.17 8.80
Wave
Amp. 12.97 11.14 7.27 12.23 14.43 13.98
(mm)

Fregq.
) 9.42 10.05 12.57
Wave
Amp. 8.66 9.27 4.90
(mm)

Comparison of the Roll RAOs in Beam Seas

—e— Potential RAO
—s— Damped RAO
® Model Test RAO
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Figure 2: Comparison of Roll RAO in Beam Seas
4.2 ROLL RESPONSE IN IRREGULAR WAVES

Further to the model test in regular waves, an irregular
wave train was generated in the wave maker and the time
series of the incident irregular wave as well as the roll
response were recorded. Using the Fast Fourier
Transformation (FFT) technique the incident irregular
wave and the associated roll time series were
transformed to a power spectrum using:

S(w) = [FFT(f(t)) / ﬂ

The calculated incident irregular wave and the associated
roll response spectra are presented in Figures 3 and 4.

Incident Irregular Wave Power Spectrum
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Figure 3: Incident Irregular Wave Power Spectrum
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Figure 4: Roll Response Power Spectrum

Assuming a linear system response, the relationship
between the incident wave spectrum and the response
spectrum may be considered as:

S(w)  =RAO PxS(w)

response Equivalent

and the roll RAO associated with the recorded response
(i.e. Equivalent RAO) calculated.

Noting the good agreement of the mathematical model in
predicting the Damped RAO in Figure 2, a range of
Damped RAOs, linearised for regular wave amplitudes
of Smm, 8mm, 10mm, 12mm and 14mm were calculated
to assess the effect of linearizing with respect to wave
amplitude. These RAOs are illustrated in Figure 5
together with the Equivalent RAO from the model test.

Roll RAOs in Beam Seas
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Figure 5: Comparison of Roll RAO database

5. DISCUSSIONS AND CONCLUSIONS

The good agreement between the Model Test RAO and
the Damped RAO presented in Figure 2, provides further



evidence of the applicability of the DVM for calculating
the viscous roll damping of an oscillating box shaped
vessel due to vortex shedding from its edges in regular
waves. Although the skin friction damping is considered
to be negligible and is ignored in the damped RAO in
this study, as tangential relative fluid velocities are used
in this method, the same final velocities could be used to
calculate skin friction damping.

Investigation of the applicable roll RAO of the box
shaped vessel in irregular wave is presented in Figures 5.
Figure 5 demonstrates the effect of roll damping
linearisation for a range of constant wave amplitudes. It
can be observed that the effect of viscous damping
increases with increase in the regular wave amplitudes,
especially in the peak region of the RAO. This is an
expected relationship between the amplitude of the
linearisation wave and the roll RAO. It can be observed
from Figure 5 that the amplitude of the roll RAO varies
with wave amplitude in a certain frequency band only.
The frequency band in this case lies between 6.3 rad/s
and 9.5 rad/s. The same frequency band can be observed
in Figure 2 between the Potential RAO and the Model
Test and Damped RAOs. Therefore it can be concluded
that the effect of linearisation of roll damping for a sea
state may be focused on a frequency band around the
peak of the RAO.

Further study will be undertaken to confirm the validity
of assuming a linear systems approach (i.e. RAOgguivaient)
between the incident wave spectrum (i.e. S(W),a) and
the response spectrum (i.e. S(W),esponse) fOr non-linear
behaviour such as roll damping. If such an assumption
can be shown to provide the correct roll response
statistics then a design methodology can be established
for strength and fatigue analyses based on spectral
methods.
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