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Abstract 

Traditionally the problem of calculating the motion responses of a ship in a 

seaway has been formulated in frequency domain in terms of linear potential 

theory. By using the potential flow method in roll calculation, the fluid is 

assumed to be ideal, irrotational and viscous effects are neglected.  

Experiments have shown that the roll amplitude responses of rectangular 

bodies floating in beam waves are overestimated when calculated by potential 

flow method. This is largely attributable viscous effects [1]. For this reason 

seakeeping calculation methods introduce empirical factors to account for 

viscous effects. On the other hand, much of the nonlinear forces and moments 

experienced by ship in a seaway may be due to the viscous effects leading to 

flow separation and generation of vortices [2]. 

One approach to modelling flow separation and vortex shedding is to solve 

the Navier-Stokes equations. However, for moving bodies in the presence of a 

free surface at high Reynolds numbers (which implies the use of fine 

computational meshes) the software and hardware resources required, 

supposing the problem is even viable, are often so large as to be prohibitive. 

Another approach is to use methods based on vortex dynamics for modelling 

separated flows about bluff bodies. These methods were developed as a means 

of modelling high Reynolds number flows in which the vorticity is confined to 

small sub-domains of otherwise irrotational flows [2]. 

This work concerns development of a purely theoretical model for estimating 

the roll response of vessels that takes these effects into account. The objective of 
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this thesis is to develop a model including viscous effects that can be used in 

seakeeping and survivability calculations.  

The idea being proposed is to match a local discrete vortex based method to a 

global model of a body floating with six degrees of freedom. A software is 

developed that can be bolted on to conventional seakeeping software so that the 

motions of sharp edged bodies floating in waves can be calculated without 

recourse to empirical methods. 

The theoretical approach to predict roll damping for a three-dimensional 

barge shaped floating vessel in the frequency domain is described here. The 

approach consists of matching a simple discrete vortex method (DVM) 

describing local separated flow, to an inviscid three-dimensional seakeeping 

code. Model tests have been carried out to validate the theoretical model and 

the associated add-on software. 

As demonstrated in this report, there is a good agreement between the model 

test RAO and the damped RAO indicating the theoretical method provides a 

good estimate of the viscous damping of the vessel due to vortex shedding 

from its edges. 

Although viscous damping in sway and heave motions is not as significant as 

for the roll for a barge the same methodology can be used to calculate viscous 

damping for both sway and heave as well. 

As tangential relative fluid velocities are used in this method the same final 

relative velocities can be used to calculate skin friction damping component. In 

this study skin friction damping is considered to be negligible and is ignored in 

the final calculated damped RAO. 
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Abbreviations 

! Angular velocity  

! Angular velocity amplitude 

!! Vortex induced added mass coefficient 

! Breadth of the barge 

!! Vortex induced damping coefficient 

!! Coefficient representing the lever arm of the vortex roll moment 

! Gravity 

! Draught of the barge 

!! Wave number 

! Total relative fluid velocity at the shedding edge calculated for the combined 

six degree of freedom motion 

! !  Source density 

!! Total relative velocity at the shedding edge calculated in the forced roll motion 

mode 

! Distance from edge to centre of the facet in which the velocity is calculated 

! Width of the facet along the length 

!! Wave amplitude 

!!" Added mass matrix component in mode ! due to motion in mode ! 

! ! !"  Vortex force coefficient calculated with the Discrete Vortex Method for an 

infinite right angle edge, which is equal to 1.566-i0.157 
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!" Aspect ratio of the barge cross section 

!!! Drag coefficient 

!!! Inertia coefficient 

!!" Vortex force coefficient 

!!" Restoring matrix component in mode ! due to motion in mode ! 

!! Complex amplitude of exciting force in mode ! with the force/moment 

components given by the real part of !!!!!!! 

!! Vortex force component 

!!" Sway vortex force  

!!" Heave vortex force  

!!" Vortex shedding roll moment 

! Wave height 

!! Keulegan-Carpenter number 

! Length scale 

!!" Generalized mass matrix component in mode ! due to motion in mode ! 

!! Atmospheric pressure 

! Strength of a source in potential theory 

! !!  Wave spectrum value at the !-th circular frequency 

! Period of oscillation 

! Free stream velocity with amplitude !! 

! Damping torque  

!! Phase angle of the !-th wave component of the irregular wave 

! Wave propagation angle of the wave 

!! Motion in mode ! 

!! Velocity in mode ! 
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!! Acceleration in mode ! 

! Schwartz-Christoffel ratio 

! Fluid field density 

! Velocity potential 

!! Incident wave potential 

!! Diffracted wave potential 

!! Radiated wave potential 

!! Velocity potential at the vertical side of the shedding edge 

!! Velocity potential at horizontal side of the shedding edge 

! Wave excitation frequency 

!! Wave frequency 

!!! Distance between points in the ! plane on either side of the edge 

! !  Dimensionless vortex force coefficient 
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1 Introduction 

 

 

 

 

oll motion is oscillatory motion of a vessel along its longitudinal axis. 

Extreme roll motions compromise the stability of a floating body. It 

affects structural integrity, crew comfort, machinery operations and ultimately 

the safety of a vessel. If the roll motion can be predicted the vessel can be 

designed to cope with the imposed dynamic motions in response to the 

environmental loads. While underestimation of roll motion can potentially 

cause disasters, its overestimation results in a commercially unviable design 

that leads to increase of the steel weight and limits operability of the floating 

body. Hence accurate estimation of the roll motion is of great importance. 

For a vessel rolling due to a single excitation force in calm water the 

kinematic energy is dissipated until the vessel converges to a stationary state. 

The dissipation of the cinematic energy is known as damping. Rolling of a 

vessel in seas is formulated by the mass spring damper equation. The best 

known method for predicting the roll motion is to include an equivalent linear 

viscous roll damping coefficient in the motion equation. Accurate estimation of 

damping directly affects the outcome of this equation. 

Roll damping is estimated by model tests and mathematical approaches. 

Model tests provide a baseline estimation of the roll damping. However, they 

are expensive, complex and not always feasible. Mathematical approaches 

provide a reasonable estimation of roll damping at fraction of cost and 

implementation complexities. Further, mathematical approaches are 

R 
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particularly useful where model tests are practically impossible such as ad-hoc 

operational assessment of already existing vessels. 

One of mathematical methods makes use of the discrete vortex method which 

is a technique for analysing two-dimensional separated flows in the time 

domain. Graham [3] implemented a simple discrete vortex analysis for flow 

about an infinite wedge in oscillatory flows in which the flow in an infinite half-

plane, the !-plane, was transformed to flow about an isolated edge. The method 

enabled him to calculate a generalised vortex force on the infinite wedge from 

which he inferred the total force on a finite body with flow separation from its 

edges. The approach was further developed by Downie et al. [4], [5]. 

In this work the same technique is used to model separated flow from a barge 

shaped vessel to provide input to an inviscid three dimensional seakeeping 

program. The roll RAO is then calculated in frequency domain including vortex 

shedding.  

The roll RAOs predicted by this approach are compared with model test 

results to assess their validity. The comparison shows a good agreement 

between the model tests and theoretical calculations [6], [7]. 

 

1.1. Problem Statement 

Accurate estimate of the roll damping especially for floating offshore 

installations at a fixed location such as FPSOs is becoming more and more 

important. Roll motion has direct effect on design of topside foundation, risers 

and their connection to the floating system, turret structure and bearings, 

efficiency of process equipment, comfort of crew on board, operations such as 

helicopter landing, loading and unloading of supplies, oil offloading and 

sloshing in cargo tanks. 

Growing price of oil has made it economically desirable to keep the 

production plant of the FPSOs functional as long as possible. Accurate estimate 
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of the motions of a floating production system increases the reliability of the 

topside process machinery and results in more accurate economical estimation 

of the production. Further, hull structural cracks usually occur due to lack of 

adequate strength and fatigue capacity of the structural details. Repair of the 

cracks on station can have a significant effect on the up-time of the floating 

production facility. Accurate estimate of loads and motions is a key factor to 

better design of the structure. 

Noting the desire in the oil and gas industries to explore deeper seas and in 

the same time noting the importance of safety and reliability of the structure of 

the floating systems, accurate estimate of the motions and accelerations of the 

vessel becomes vital in structural and process machinery design of floating 

systems. 

 

1.2. Research Objectives 

This work aims to provide a procedure to calculate the viscous roll damping 

of a floating body in waves. This purely mathematical procedure is developed 

based on [5]. Model test comparisons are conducted to validate results of the 

procedure. 

The method involves calculating potential gradients of the fluid around the 

floating body in a diffraction-radiation hydrodynamic software and using them 

as an input to the above referenced methodology to calculate the viscous 

damping component. Then the viscous damping component is inputted back to 

the equation of motion to recalculate RAOs of the vessel accounting for 

viscosity. 

The procedure is developed for a simple boxed shape vessel (rectangular 

bilge) however, it can be developed for general curved ship shaped vessels with 

rounded bilge. 
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The viscous roll damping procedure is coded as a black box with potential to 

be used with any diffraction-radiation hydrodynamic software available as an 

add-on. 

 

1.3. Main Contributions of the Work 

The procedure presented here allows designers to estimate in particular roll 

and potentially sway and heave motions of a floating body more accurately in 

early stages of the design and in absence of dedicated expensive model tests. 

The procedure can be used with any industry standard three dimensional 

hydrodynamic packages. 

The viscous damping calculation procedure is developed and implemented 

for a box shaped barge in regular waves. Further attempt is made to apply the 

method to irregular waves. 

 

1.4. Layout of the Thesis 

The first chapter of this thesis provides introduction to the researched topic 

and the general issues surrounding it. 

The second chapter aims to provide a background in to the viscous damping 

of floating bodies and effort of researchers whom have tried to estimate this 

phenomenon as accurate as possible. 

In the third chapter the fundamental methodology which was developed 

prior to this work is explained. 

The newly developed formulations and mathematical model are presented in 

Chapter 4.  

Chapter 5 explains application of the method presented in Chapter 4 and the 

code developed to calculate the roll viscous damping base on this method. This 



 5 

chapter also includes the application procedure of the method including 

flowcharts and step-by-step definition. Further to the method developed to 

calculate the viscous damping in regular waves an attempt is made to apply the 

method to calculation of viscous roll damping in irregular waves. 

The preliminary validation study and further confirmatory model test 

conducted during this work is presented in Chapter 6. 

Chapter 7 presents the results and discussions related to application of the 

method explained in Chapter 4 to Chapter 6. This includes comparison of the 

numerical results with model test data to demonstrate validity of the 

procedure. 

Finally the main conclusions on the results and recommendations for future 

work are presented in Chapter 8. 
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2 Literature Survey 

 

 

 

 

rediction of roll damping has always been a challenging task for naval 

architects. Accurate estimate of the roll damping for floating offshore 

installations is important as the transversal loads are governed by roll motion 

and this has direct impact on design of hull, topside structures and process 

plant on board. In case of more conventional sea going vessels small amplitude 

of roll motion can cause discomfort for passengers of a cruise liner or result in 

structural problems due to sloshing of liquid cargo in cargo tanks of a tanker. 

Attempts in managing the roll motion of floating vessels go back to 

thousands of years ago when Greeks were using flat plate keels on their ships 

to reduce the roll motion of their vessels. This is considered to be the oldest and 

simplistic roll damping device. Recent roll damping devices include fin 

stabilizers, rudders, gyroscopic stabilisers and anti-roll tanks. These devices 

have different levels of complexity, effectiveness and cost. 

The challenge is to develop a reliable method for calculating the equivalent 

linearized roll damping which enables the required response statistics to be 

calculated in the frequency domain for operational strength and fatigue 

analysis. This challenge is recognised recently by leading classification societies 

and is reflected in their rules and regulations applicable to floating offshore 

installations at a fixed location. In particular the Lloyd's Register Response 

Based Analysis (RBA) methodology requires linearized roll damping of a 

floating system to be calculated and included in the spectral analysis of vessel 

P 
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motions for given sea states. Det Norske Veritas also requires the effects of 

neglecting viscous damping to be investigated if this is going to be the case in 

the design.  

Roll damping is estimated by experimental and numerical methods. The 

experimental methods are usually followed by derivation of empirical formula 

from experimental data to allow for generalisation of the experiments. The 

numerical methods require model tests to demonstrate applicability of the 

method and assess validity of the results. 

An overview of experimental and numerical approaches in estimation of the 

viscous damping is presented in this chapter.  

 

2.1. Experimental Roll Damping Estimation 

The most common practice in estimating the roll damping is model test. 

There are generally two experimental procedures for estimating the roll 

damping using model test. One experimental procedure is to conduct a decay 

test of the model in calm water by giving an initial roll to the model and 

allowing the model to oscillate freely until the roll motion is decayed. The roll 

time history is recorded during the decay. Using a linearized form of motion 

equation and assuming the nonlinear damping is of quadratic type, the 

equivalent linearized damping is estimated. The linearization procedure is 

based on the assumption that the same quantity of energy dissipates by the 

nonlinear and equivalent linear damping. 

The other experimental procedure is the forced roll oscillation test. In this 

procedure the dissipated energy is measured during a forced roll oscillation of 

the model in calm water and the roll damping is then related to these 

measurements. This method is however more complicated and is used less in 

the industry. 
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The two model test practices mentioned above are conducted in calm water. 

Therefore the calculated linearized roll damping may not be an accurate 

representation of the roll damping of a floating vessel in waves [8]. 

Froude [9] was one of the first scholars to provide an overview on the rolling 

of ships and the roll damping phenomena. Froude formulated the roll damping 

in a linear plus quadratic velocity dependent form to account for dissipation of 

energy during roll motion. He studied the effect of wave height and steepness 

on the rolling of ships and the influence of this phenomenon on the design of 

ship hull shape. Based on this work he suggested designing the hull in a way to 

move the roll natural frequency of the ship away from synchronisation with the 

excitation waves. His work also lead to use of bilge keels for ships in order to 

stabilize the ship for roll. He was also one of the pioneers in using passive anti 

rolling tanks in ships. 

Vugts [10] conducted several experimental assessments to determine 

hydrodynamic coefficients of swaying, heaving and rolling cylinders in free 

fluid surface. His work was used as the basis for numerous research works 

assessing the roll damping of floating bodies. 

Himeno [12] provided a good overview of the roll damping phenomena. His 

method which is widely used in the industry is based on several decay model 

tests of ship shaped bodies for which he fitted a formula to the results. He 

divide the total viscous roll damping into several components such as wave 

radiation damping, skin friction damping and eddy damping, lift damping and 

bilge keel damping which itself consists of normal force damping, hull pressure 

damping and wave damping due to the bilge keels. He concluded that viscous 

effects are mostly due to flow separation and eddy formation at the shedding 

edge and the skin friction has a minimal effect in viscous damping. 

Since the roll response for traditional ship forms is known to be nonlinear 

and quadratic, use of cubic models to fit curves through experimental data 

results in good prediction of the roll damping especially for ships in seaways. 
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Noting this, Faltinsen [13] developed the equivalent cycle linearization method 

in which the coefficients where obtained through decay tests. 

Souza et al. [14] realised that uniform matching through roll decay time series 

of a floating system with unusually large bilge keels is not adequate and the 

matching should be different between large roll angles and smaller roll angles. 

Later on Oliveira [15] conducted several model tests following a bilinear 

approach suggested by Fernandes et al. [16] and demonstrated that the 

Keulegan-Carpenter effects are different between large and small roll angles. 

His work showed that the strong vortex attracted to the hull bottom in large roll 

angles result in stronger damping however at small roll angles the vortices are 

shed. 

Model tests were conducted by Standing [17] to investigate the viscous roll 

damping and effect of sway and heave motions on roll response of a 

transportation barge. By comparing motions from the computer model with the 

data collected from model tests in regular and irregular waves, he concluded 

that the results from numerical studies compare well with data determined for 

roll damping from forced roll or free decay model tests. His calculation was 

done in time domain as well as frequency domain.  

Noting criticality of correct estimation of roll responses in floating production 

units, a study was conducted by Choi et al. [18] on roll response of a barge type 

LNG FPSO in three different loading conditions in which the damping 

coefficients where determined through decay tests. Choi et al. [18] conducted 

free roll decay tests to estimate nonlinear roll damping of a barge shaped LNG 

FPSO in different loading conditions. They determined the roll RAO by 

conducting model tests with wide banded wave spectrum. The quadratic 

damping was then assumed in the calculations as an equivalent linear 

damping. They demonstrated that the theoretical results compare well with the 

model test data using an appropriate equivalent linear damping. 

Full scale measurements of the motions of the Girassol FPSO was carried out 

off coast of West of Africa over period of a year by Van Dijk et al. [19] in order 
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to tune their estimates of viscous damping from their numerical models to full 

scale results.  

Series of systematic model tests were performed by Park et al. [20] to estimate 

roll damping of a tanker FPSO. The experiments were carried out in a two 

dimensional wave tank. Scale effects where taken in to account in these 

experiments. Furthermore, effect of bilge keel, bilge radius and forced roll was 

considered in the tests. The results were then compared with numerical data 

calculated using commercial software that utilise potential theory. Based on the 

comparisons empirical viscous damping factors where determined for further 

use. 

Model test experiments conducted for two FPSOs where reported by van’t 

Veer et al. [21]. There work showed that the appendages such as riser balcony at 

side of the FPSOs contribute to the overall roll damping characteristic of the 

vessels. The behaviour of the vessel was modelled through a CFD model and 

the results where compared. This provided a good understanding of the fluid 

behaviour around the FPSO appendages.  

Velocity field around a ship in forced roll motion was investigated by Aloisio 

et al. [22]. In order to get a better understanding of the fluid dynamics, model 

tests were carried out. The model test results were used to calibrate a CFD 

model. The flow field along the bilge keel of the vessel was presented. There 

work quantified the flow field around the bilge keel and provided 

understanding of interaction between the generated vortices and the hull. 

van Kessel et al. [23] looked in to the effect of nonlinear damping in operation 

of a pipe lay/heavy lift vessel. They conducted model tests and compared the 

results with numerical calculation. Interaction between the roll response of the 

vessel and operational requirements were investigated demonstrating the close 

relationship between them and the importance of accurate estimation of the roll 

damping. 

Jung et al. [24] conducted several experiments in a two dimensional wave 

tank to evaluate vortex generation due to regular waves passing a rectangular 
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barge. The barge was set up in a way to allow for roll motion only. Images were 

taken from the velocity field around the barge to capture behaviour of the fluid 

field. They demonstrated that the characteristics of vortices shed from the 

shedding edge of the barge vary for different incident regular waves. Their 

work provided better understanding of near field pressure distribution around 

a flat bottomed vessel. This lead to a better insight of the roll damping 

simulation.  

Effect of large liquid tanks in prediction of roll damping of floating vessels 

was investigated by Huang et al. [25]. Their work concluded that the roll 

damping is sensitive to motion of the fluid in cargo tanks. In order to accurately 

estimate the damping it was suggested to explicitly model the liquid motion in 

large tanks. 

Series of model tests were conducted by Kwang et al. [26] to investigate effect 

of viscous damping in roll motion of a rectangular barge. The tests were done in 

a two dimensional wave tank and the waves were applied to the beam of the 

model. Velocity field in vicinity of the structure was captured by Particle Image 

Velocimetry (PIV) method. Further they investigated the roll damping for 

incident waves with periods shorter than the natural period of the model as 

well as waves with periods longer than natural period of the model.  

Model tests were done by Xiaorong et al. [27] to investigate the nonlinear roll 

damping of a ship in regular and irregular waves. They used the random 

decrement method to obtain the nonlinear roll damping. Accuracy of this 

method was shown to be dependent on the values of the threshold and segment 

number. Decay curves in calm water obtained by Xiaorong et al. [27] were 

similar to the ones measured by Kwang et al. [26]. 

The effect of bilge on roll damping of ship shaped Floating Production and 

Storage Offloading Vessel (FPSO) was investigated by Rae et al. [28]. The wave 

damping component of the step model as well as the viscous damping 

component of the step model of the FPSO was shown to be increasing in 

comparison to the section with bilge.  
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 Douglas [29] showed that increase in forward speed results in increase in roll 

damping coefficient. In order to determine the influence of vessel forward 

speed on its roll damping coefficient he conducted series of trials on a bare hull 

model in the Massachusetts Institute of Technology towing tank. The Froude 

numbers were varied from zero to 0.40. Further, theoretical calculations were 

done and the results were compared with the experimental data. Douglas [29] 

showed that the wave radiation damping of the barge increases from zero 

speed condition to normal operating speed condition by a factor of 2 to 3. As a 

result he concluded that the roll damping of a vessel can be increased in seaway 

by increasing speed of the vessel.  

The wave damping component is dominant in the heave, pitch, sway and 

yaw damping hence the viscous damping components can be usually ignored. 

Therefore these damping values are usually calculated by a potential flow 

theory. However, in the roll damping the viscous damping components play an 

important role because the wave damping component is usually much smaller 

than other components created by the viscosity of fluid. Therefore in the 

theoretical calculation it is difficult to predict a realistic roll damping. Due to 

this experimental results or predicted results by any empirical method are 

commonly used to predict the roll damping coefficient. Ikeda et al. [30] 

measured roll damping of high-speed craft by forced oscillation experiments. 

Comparison with damping values calculated from a linear potential flow 

theory showed that the experimental dampings were significantly under 

estimated. They suggested that the cause may be due to the fact that the 

prediction method does not take in to account the vertical lift force acting on the 

craft. They devised a method to predict the contributions of the vertical lift 

force in to the roll damping. They were able to confirm that the predicted 

results are in fairly good agreement with the measured ones. A prediction 

method of heave damping of the craft was also deduced on basis of same quasi-

static principle assumption. 
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2.2. Numerical Roll Damping Estimation 

Noting the calculation limitations and time constraints for conducting motion 

analysis of a floating vessel in the time domain, frequency domain calculations 

have become the norm in the industry. Although most vessel responses can be 

calculated with acceptable accuracy in the frequency domain, this is more 

difficult for roll response due to the nonlinear behaviour of roll damping. 

Incecik [31] provided a procedure for calculating loads, motions and 

structural responses of floating offshore platforms. He investigated 

hydrodynamic characteristics of circular cylindrical members of offshore 

floating bodies to devise their structural responses due to wave excitation. 

Further, the method was implemented into computer codes and was verified by 

comparing the results with model tests including a full scale semi-submersible 

motion and response measurement.  

Theoretically the total roll damping of a floating vessel can be divided into 

potential and viscous components. The potential component can be predicted 

accurately since it has a linear characteristic however, the viscous component is 

nonlinear and prediction of this is more problematic. 

Kerwin [32], Haddara [33], Dalzell [34], Haddara [35] and Nayfeh et al. [36] 

conducted fundamental research work in calculating the roll damping. 

Analytical models that were based on classical linear plus quadratic form were 

replaced by Haddara [33] by linear-plus-cubic velocity dependent roll damping 

moment. This improved the analytical models. Dalzell [34] used the slowly 

varying parameters method and a least-square technique to study the cubic and 

quadratic models. Haddara [35] used the same roll decay data to suggest 

different roll damping models.  

Usually the viscous roll damping is predicted using empirical formula. 

Peyton Jones et al. [37] classified the empirical viscous roll damping methods to 

perturbation method, asymptotic method, multiple time scaling and the 

harmonic balance method.  
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If motion of a floating body in waves can be assumed to be linear, strip theory 

can be used to calculate wave induced motions of the ship. In the strip theory 

method hydrodynamic forces and moments are calculated from two 

dimensional potential solutions of cross sections along the length of the vessel. 

By integrating these forces and moments the three dimensional hydrodynamic 

characteristics of the floating body are calculated. Since the strip theory is based 

on potential flow theory the viscous effects are neglected. This results in 

unrealistic prediction of vessel responses at resonance frequencies. In motion 

calculation methods such as strip theory method or potential flow calculation 

the roll damping should be estimated and accounted for accurately if a 

reasonable response is expected to be predicted, especially in vicinity of the roll 

natural frequency. In order to resolve this issue viscous roll damping is 

estimated using empirical formulations. Journée [38] provided a good overview 

of empirical formulation used to estimate the damping in surge and roll for 

strip theory calculations. Journée [39] developed hydrodynamic software based 

on strip theory which delivers information on ship motions and added 

resistance within a very short computation time. Further, he conducted 

comparative validation studies with validated computer programs. 

Schmitke [40] developed a theoretical model based on strip theory to predict 

ship lateral motions in oblique seas. Focusing on the roll characteristic of the 

ship in beam seas, behaviour of the numerical model in long waves relative to 

beam of the ship was investigated. Comparison between the results of 

numerical calculation and model test was done to assess validity of the 

theoretical model. 

A simplified analytical procedure was provided by Lee et al. [41] to estimate 

the hydrodynamic radiation damping of a rectangular barge using strip theory. 

Frequency domain calculations were conducted by combining the two 

dimensional energy conservation principal with Haskind-Newman relation. 

Results were compared with experimental data to assess validity of the method. 

Free surface waves have effect on the vortex generation whereas the shear 

layers do not have a noticeable influence on the free surface waves. A numerical 
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method was suggested by Arne et al. [42] to include both the effect of free 

surface waves and vortex shedding based on a time step integration method. In 

this potential flow theory a potential flow boundary value problem outside the 

thin free shear layers was solved in each time step. This method can be applied 

to any forced body mode. The limitation of this method is that it can only be 

applied to sharp corner bodies in order for the separation points to be well 

defined, hence eliminating the need to conduct the calculation for the boundary 

layer. Both the surface effects which are usually included in any theory based 

on potential theory and vortex shedding which is usually neglected in 

theoretical procedure were included in his method. The results from this 

potential theory showed that roll damping due to eddy making and wave 

generation cannot be separated. 

Chakrabarti [43] investigated the possible roll damping components and their 

empirical contributions. He showed that radiation damping is adequate for the 

accurate prediction of the rigid body motions of an offshore structure in waves 

however, this prediction was not true for the roll motion of a long floating 

structure. This is because for a ship, barge and similar long offshore structures 

the roll damping is highly nonlinear and the radiation damping is generally 

quite small compared to the total damping in the system. Chakrabarti [43] 

identified five roll damping components namely hull friction damping, hull 

eddy damping, free surface wave damping, lift force damping and barge keel 

damping. He also took in to account the scale effects. 

An inappropriate selection of damping and restoring terms may lead to 

serious discrepancies with reality especially in peak roll amplitudes. A form of 

nonlinear equation governing the motion of a rolling ship subjected to beam 

waves was presented by Taylan [44]. He utilized the generalized Duffing 

method to investigate effect of roll motion in capsizing of a ship. The Duffing 

method is one of the several approximation methods for solving nonlinear 

differential equations in either time or frequency domain. Four distinctive 

vessel types were studied for comparison purposes to have comparative results 

of nonlinear roll responses and restoring forces. The results show that using the 
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proposed nonlinear equation of roll motion with three different nonlinear 

damping terms for each vessel type, the peak amplitudes differ from one to 

another significantly. The peak factors at resonances are the most important 

factors leading to ship’s capsizing. Taylan [44] suggested that the best way to 

verify the estimated amplitudes is to carry out experiments. The experimental 

results were compared with the theoretical results. 

Vortex flow forces and potential flow forces are the two components of 

hydrodynamic loading. Further, the potential flow forces are of second order in 

amplitude of ambient velocity fluctuations. This was investigated and validated 

by Lighthill [45]. 

For waves with a period longer than the roll natural period of the structure 

vortices are generated near the structure corners and act in opposite direction to 

wave radiation damping. Kwang et al. [46] conducted a quantitative study of 

the flow pattern to explain the coupled interaction between the rectangular 

body motion and the waves as oppose to the qualitative studies presented by 

Kwang et al. [26]. 

Oshkai et al. [47] showed that for a cylinder submerged sufficiently deep the 

orbital nature of the wave motion results in multiple sites of vortex 

development along the surface of the cylinder followed by distinctive types of 

shedding from the cylinder. They concluded that decreasing the depth of 

submergence delays the orbital migration of shed concentrations of vorticity 

about the cylinder. Therefore submergence of the cylinder beneath the wave 

has a pronounced effect on the pattern of vorticity concentrations. 

Santiago [48] showed that among heave, pitch and roll motions of a ship in 

sea which have some analogies with a spring-mass damper system, the roll 

motion is the one which presents less damping and therefore it is most probable 

one to enter resonance, thus drastically increasing the amplitude of motion. In 

this study roll motion was introduced and it served as a basis in understanding 

anti-rolling systems focusing on the study of bilge keels from constructive and 

operative point of view. Problems with rolling of ships increased from the 
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second half of the 19th century when steam machines replaced sailing 

propulsion and iron replaced wood. This led to design modifications in ships 

affecting transversal stability. Santiago [48] suggested that bilge keels with no 

moving parts are the simplest and cheapest element that may be incorporated 

on a ship to reduce the rolling. Bilge keels reduced rolling by increasing 

damping moment resulting from the viscous eddy flows around the bilge keel 

surface, the pressure resistance around it and the hydrodynamic lift in the 

forward sections of the bilge keels. 

Nonlinear nature of viscous roll damping makes it difficult to model this 

phenomenon. Ray-Qing et al. [49] devised a new method for modelling the 

bilge keel roll damping effect based on the blockage mechanisms of an object in 

the potential flow. This method of blocking mechanisms describes the 

resistance of a solid object in a flow. 

Korpus et al. [50] described a numerical technique for analysing the viscous 

unsteady flow around oscillating ship hulls. This technique was based on 

Reynolds-Averaged Navier-Stokes (RANS) capability and was intended to 

generate viscous roll moment data for incorporation of real flow effects into 

potential flow based ship motion programs. The roll moment component was 

breakdown in isolation into viscosity effect, vorticity and potential flow 

pressures. 

El-Bassiouny [51] investigated effect of ship roll motions for determining the 

conditions under which a ship can experience dynamic capsizing. The 

technique employed is analytical but numerical in nature. The equation for 

relative roll angle in this study was expanded using different orders of its 

mathematical terms. He grouped the wave radiation and the viscous damping 

as linear term and damping due to frictional resistance and eddies behind the 

keels and hard bilge corners as cubic term. The averaging method and multiple 

time scale method were used. The viscous roll damping was considered to be 

linear in his computation. 
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Mulk et al. [52] looked in to the roll motion and its role in capsizing of ships. 

He studied the complete Euler’s equation of six degrees of freedom. Since roll 

was considered to be the most critical ship motion of all the six modes of 

motion, emphasis was made on nonlinear roll motion. Interaction between roll 

and other modes of motion were considered in the studies. He showed that all 

six modes of motion affect one another. He made it clear that to study vessel’s 

motion all the six degrees of freedom must be simultaneously studied. He also 

suggested that although nonlinear coupling of roll to heave and pitch 

quantitatively affect the roll, they do not have any qualitative effect on roll. 

Roll damping coefficients calculated using Navier-Stokes solver are larger 

than the radiation damping coefficients evaluated by the linear potential theory 

due to viscous and vortex effect. Bangun et al. [53] applied the Navier-Stokes 

solver to laminar flows using the linear wave theory while the free surface 

condition was approached. Bangun et al. [53] were able to show that the values 

of the added mass and damping coefficients depend on the amplitude of the 

roll motion. The results from Navier-Stokes solver compare well with those 

obtained from the linear potential theory for both cases of floating body with 

and without bilge keels. The values of added mass were not much influenced 

by fluid viscosity. 

Robert et al. [54] also explored the coupling between nonlinear roll motion 

and other motions such as sway, pitch and heave. He devised a new method of 

estimating the damping and excitation moments. The method employed was 

based on estimating the drift and diffusion coefficients from roll response data 

and using the estimates in conjunction with the theoretical expression for the 

response data. 

Ikeda [55] modified his method to improve its accuracy and extend its 

applicability to different ship types. His method was based on components in 

which each component was predicted by both theoretical and empirical 

solutions. He used the new method to determine optimum size and location of 

bilge keels. The original method he proposed was based on simple cross section 

and location of bilge keels. The pressure on the hull surface was integrated over 
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the simply assumed hull shape. His assumption was found to cause large errors 

because the cross section and the location of bilge keels sometimes significantly 

differ from the simple assumption. He therefore improved his prediction to be 

able to take into account the cross section and exact location of bilge keels. 

Viscous forces on the appendages are important and the nonlinear nature of 

roll response requires time domain modelling. Klaka et al. [56] studied the roll 

motion of a yacht at zero Froude number (zero speed). Due to the limitations of 

existing theoretical models of roll motion for application to bodies with large 

appendages, the appendages were treated as fully submerged flat plates. The 

calculation of the forces acting on the appendages was based on a strip wise 

Morison formulation. A time domain single degree of freedom roll motion was 

developed in order to identify the dominant excitation and damping sources. A 

series of full scale validation experiments was conducted in calm water and in 

ocean waves. Their results show that the keel, rudder and sail dominated the 

damping whilst the canoe body contributed very little. The hydrodynamic 

damping was nonlinear with respect to wave amplitudes. 

Yuck et al. [57] assumed two components for roll damping namely wave 

making component which was determined from a far field momentum method 

and viscous component which was the result of subtracting the wave making 

component from the total damping. They determined roll damping of a series 

of unconventional midship sections and showed that a conventional barge 

midship section would experience more roll than a barge with a “top hat” 

shaped midship section referred to as a step section, due to decrease in vortex 

shedding. 

Inoue and Islam [58] used far field and near field approach to determine 

slowly varying drift forces. Using the method they investigated the relationship 

between viscous roll damping and drift forces of multi-body floating systems in 

which the viscous damping was added empirically. Their work showed that 

accuracy of the predicted second order drift forces in regular and irregular 

waves depends on accuracy of the assumed viscous roll damping. 
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Seakeeping of high speed craft is dependent on estimation of viscous roll 

damping. de Jong et al. [59] used a free surface Green’s function in a time 

domain boundary element method to assess seakeeping of a fast ship. In order 

to satisfy the two boundary conditions of zero normal flow on the body and the 

transom stern flow based on unsteady Bernoulli equation, they applied a 

combined source doublet formulation. They initially solved the source system 

in absence of the transom condition and then solved the doublet strength 

incorporating the previous source strength. They concluded that the small 

potential damping in seakeeping assessment of high speed ships signifies the 

importance of viscous damping in hydrodynamic characteristics of these 

vessels. The effect of viscous damping becomes more dominant around peak of 

the heave motion in which the vortex forces due to flow separation in the bilge 

region are significant. The oscillation frequency, Froude number and section 

shape were considered to be the parameters affecting magnitude of the vortex 

forces. 

In recent years use of computational fluid dynamic (CFD) methods in 

calculating roll damping has become more possible due to developments in 

computing power however, this is still a hardware intensive method and the 

results require to be validated. The CFD calculation includes simulating motion 

of oscillatory bodies in real time.  

Further attempts in predicting viscous damping of floating systems include a 

joint industry project named Roulis 2 which was set up to increase the accuracy 

of roll damping estimation methodologies especially for floating systems 

operating in deep water developments off West Coast of Africa using both 

numerical modelling and experimental measurements. Ledoux et al. [60] 

presented the main findings of this study. Their study demonstrated the 

significant effect of risers and moorings on roll damping of floating systems in 

deep waters. In this process a general purpose CFD code based on Pseudo-

unsteady system was used to model the roll motion of a barge. 

In industrial assessments usually the roll damping is calculated for a single 

wave or sea state and it is assumed that the calculated damping remains 
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constant for other sea states. Gachet et al. [61] investigated a method in which 

the roll damping was assessed for each sea state in a given scatter diagram. This 

was used to look in to the operability of a vessel. Their calculation showed that 

the roll damping is sea state dependent. 

Following the work of Rott [62] and Brown et al. [63] Graham [64] developed 

an expression for the vortex force that makes allowance for an axial component 

of the flow. On this basis a theoretical method could be constructed to predict 

the viscous damping of body with zero forward speed. The analysis was based 

on replacing the operator !"!" for transverse sections of a slender body in steady 

forward speed ! by !!" for a 2-D body equal to one of these transverse sections 

in time dependent flow and zero forward speed. This is a standard analogy 

which can be thought of as taking a series of snap shots following the slender 

body cross section as it moves rearwards along the slender hull at the free 

stream speed !. A study was carried out later by Al-Hukail [65] on using the 

vortex method to calculate roll damping on a slender ship with non-zero 

forward motion. In that case the operator was revised to !!" !
!"
!" . The sections 

along the hull were linked by the developing vortex shedding [66]. 

Further investigation by Wright et al. [67] showed that the roll damping in 

vicinity of the natural roll period is considerable and appropriate prediction of 

the roll damping around natural roll period is difficult. 

A mathematical model was developed by Das et. al. [68] to investigate 

damping moment of nonlinear roll and yaw motions of a floating body in time 

domain under the action of sinusoidal waves. They approximated the time 

dependent coefficients to approximate the added mass and damping. 

Perturbation technique as well as Runge-Kutta method with adaptive step-size 

algorithm was used in their model to calculate the closed form solutions and 

higher order cases respectively. The results were then compared with model 

test results. The work showed that the roll damping is highly dependent on 

viscous effects while added mass variation affects yaw damping.  
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For the case of a rolling box shaped floating vessel vortex shedding is the 

dominant roll damping component. In order to estimate the vortex force on the 

shedding edge of a box shaped model Graham [3] implemented a simple 

discrete vortex analysis for flow about an infinite wedge in oscillatory flow in 

which the flow in an infinite half-plane, the !-plane, was transformed to flow 

about an isolated edge. In this method in order to satisfy the Kutta condition 

discrete vortices at each time step were introduced at the trailing edge of the 

infinite wedge. The discrete vortices were moved away from the shedding edge 

and rolled up to form vertical structures under the influence of the ambient 

flow (low Keulegan Carpenter oscillatory flow) and any other vortices present 

in the flow. His method was developed for sharp edges in a flow with no 

forward speed. The method enabled him to calculate a generalised vortex force 

on the infinite wedge in terms of length scale and velocity scale. By matching 

the flow about its edge to the local flow about the edge of a body of finite 

dimensions, a process which fixes the length and velocity scales, he was able to 

calculate a generalised vortex force and express it in form of Morison like 

equations. He then inferred the total force on a finite body with flow separation 

from its edges. He calculated the total force on the body due to separation from 

all its edges by repeating this process at each edge of the finite body. Downie 

[69] used Graham’s method in a theoretical approach to calculate the roll 

response of a box shaped barge.  

Subsequently Cozens [70] investigated vortex shedding of a rounded infinite 

wedge flow as well as an infinite wedge with a bilge keel both by using discrete 

vortex method and the cloud in cell method. He used Graham’s dimensionless 

vortex force functions to express the vortex force calculated through his studies. 

Theoretically the potential flow solution in Graham’s method [3] turns out to 

be singular when the radius of the corner of the floating barge tends to zero. 

However Taylor et al. [71] used a high order panel method to calculate wave 

diffraction and radiation by a moving body with a small steady flow speed. 

They described the body surface by a sharp corner in a practical calculation. 
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Results were computed for different corner radii of series of truncated cylinders 

with the same radius and draught. 

Downie et al. [4] developed Graham’s method further by matching the local 

flow about the edge of the infinite wedge with the local flow about one corner 

of the barge on the basis that the vortex force should be same on both and 

provided a methodology for calculating the vortex force shed from bilge of a 

two dimensional floating barge. Based on this study Downie et al. [5] advanced 

the two dimensional vortex force calculation methodology to generate a 

methodology applicable for calculation of vortex force shed from a three 

dimensional floating body.  

Noting that the total force imposed on an oscillating hull by a bilge keel is 

made up of two components of drag and inertia Downie et al. [81] investigated 

effect of maximizing drag component of bilge keel on the viscous roll damping. 

This study showed that the viscous roll damping increased by use of perforated 

plates which maximized the length of shedding edge per unit area.  

Later on Graham et al. [72] used a Helmholtz split of velocity field to insert an 

inner viscous flow field within an outer potential flow. They then modelled the 

inner rotational flow filed using modified Navier Stokes equations and solved 

the equations using a spectral element code. In this process it was assumed that 

the inner rotational flow field is driven by the outer flow that is computed from 

a seakeeping program. 

Hajiarab et al. [6] used Downie et al. [5] methodology to calculate a damped 

roll RAO of a box shaped barge and for the first time practically applied it to a 

three dimensional diffraction-radiation hydrodynamic model. They 

demonstrated that the produced results compare well with model test results in 

regular waves. In order to eliminate any uncertainty in the model test results 

used in [6] further model tests were conducted to validate application of this 

methodology in regular waves. In this study the roll damping was linearized 

for a given wave amplitude in each frequency [7]. The numerically calculated 

damped RAO was demonstrated to agree well with experimental data for a box 
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shaped floating barge. Furthermore they attempted to estimate the viscous roll 

damping of a box shaped floating body in irregular waves as well as in regular 

waves. 

This dissertation provides detail insight in to the work presented in [6] and 

[7]. 
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3 Background Theory 

 

 

 

 

ccurate estimate of roll motion may not be a driving factor in design of 

seagoing ships however, it is one of the challenging issues to predict in 

design of floating offshore installations. It also plays a significant role in 

offshore operation activities such as transportation and installation of offshore 

jackets. This is due to the fact that unlike seagoing ships which are designed to 

be able to manoeuvre flexibly in sea, offshore floating installations generally 

have a passive weathervaning characteristic. In case of offshore operation and 

transportation again due to restrictions in manoeuvring during operation it is 

common to define set of limiting operational criteria such as roll, pitch and 

accelerations of the transportation barge which are then transformed to 

estimation of set of limiting environmental conditions in which the operation 

can be conducted safely. 

Several numerical and experimental campaigns have been conducted to 

develop a method to estimate motions of a floating body as accurate as possible. 

However limitations of each method in estimating the floating vessel motions 

should be appreciated. 

In this report the discrete vortex methodology which was originally 

developed by Graham [3] to predict viscous damping of a two dimensional 

body moving in waves is used as a basis. The method is expanded to make it 

compatible with current industry standard inviscid three dimensional 

seakeeping codes. 

A 



 26 

Since a three dimensional diffraction-radiation code is used in this work to 

calculate the velocities at the vortex shedding edge of an oscillating barge, a 

brief description of potential theory which is the basis of the code is presented 

in Section 3.1. Basis of the vortex shedding methodology developed by Graham 

[3] and the advancements made by Downie et al. [5] is presented in Sections 3.2 

and 3.3 respectively. 

 

3.1. Potential Theory 

Assuming the fluid under study is incompressible, inviscid and irrotational 

the potential theory can be used to calculate wave loads on fixed structures and 

motions of a body floating in the fluid. The fluid in the potential theory is 

described by a velocity potential ! from which the fluid characteristics such as 

fluid velocity, fluid acceleration, fluid pressure and surface elevation can be 

found. Since fluid is assumed to be ideal in the potential theory, calculation of 

phenomena such as viscous damping, slamming pressure and forces on slender 

structures from this theory are not reliable. This is due to the fact that these 

phenomena are directly related to fluid behaviours such as viscosity, vortex 

shedding and compressibility. However these nonlinear phenomena can be 

considered in the theory by adding viscous terms.  

Assuming the fluid is irrotational and incompressible the Laplace equation 

stands, where: 

!!! ! !!!
!!! !

!!!
!!! !

!!!
!!! ! ! 

Equation 3-1 

Since the velocity potential is defined to describe the fluid velocity this is one 

of the conditions that should be satisfied for a floating oscillatory body, hence: 
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! ! !! ! ! !"!" ! !
!"
!" ! !

!"
!" ! !! !! !  

Equation 3-2 

where !, !, and ! are unit vectors in !, ! and ! direction. By taking derivation of 

the equation in time the accelerations can be calculated as: 

! ! !
!" !!  

Equation 3-3 

Using the Bernoulli equation the associated pressure in the fluid field can be 

defined as: 

! ! !! !"
!" !

!
! ! ! ! !" ! !! 

Equation 3-4 

in which ! is the density of the fluid, ! is the gravity and !! is the atmospheric 

pressure. By linearizing Equation 3-4 and neglecting the atmospheric pressure 

the fluid pressure proportional to first order wave amplitude can be written as: 

! ! !! !"!" ! !"# 

Equation 3-5 

Knowing the fluid field pressure the forces on a floating body can be 

calculated. However the fluid field is defined by physical boundary conditions 

that should be considered in the calculations. These include free surface 

condition, body boundary condition and sea bottom boundary condition. 

The free surface condition consists of two boundary conditions namely the 

dynamic boundary condition and the kinematic boundary condition. Since the 

pressure at the free surface should be equal to the atmospheric pressure, the 

dynamic boundary condition can be defined from Equation 3-5. Hence for 

surface of a wave with small amplitude of ! we have: 
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!! !"!" ! !"# ! !! !!!"!" ! !" ! !! 

Equation 3-6 

Since the fluid particle on the free surface is expected to remain on the free 

surface, by derivation of a function ! the kinematic boundary condition can be 

derived as: 

!"
!" !

!"
!" ! ! ! !! 

Equation 3-7 

By defining the surface elevation as ! ! ! !!!! ! , and the function 

! !!!! !! ! ! ! ! ! !!!! ! ! ! and removing the higher order terms, it can be 

concluded that: 

!"
!" !

!"
!" !!!!!!"!!!!! ! ! 

Equation 3-8 

Combining the kinematic boundary condition with the dynamic boundary 

condition results in: 

!!!
!!! ! !

!"
!" ! !!!!!"!!!! ! ! 

Equation 3-9 

For an oscillatory velocity potential with frequency of ! the equation can be 

written as: 

!!!! ! ! !"!" ! !!!!!"!!!! ! ! 

Equation 3-10 

The body boundary condition limits fluid motion through the body. 

Therefore the kinematic body boundary condition can be written as: 



 29 

!"
!" ! ! ! !! 

Equation 3-11 

where ! is the normal vector of the body surface pointing into the fluid and !! is 

the local velocity at the body surface. 

The sea bottom boundary condition restricts the fluid motion through the 

seabed. In this case for a horizontal seabed in depth ! the seabed boundary 

condition can be defined as: 

!"
!" !!!!

! ! 

Equation 3-12 

The simplifications on the boundary conditions stated above are based on the 

assumption that the wave amplitude and floating body oscillation are small. 

This allows for the terms proportional to the higher order wave amplitudes to 

be neglected. Further, this assumption allows for calculation of the mean 

position of the body instead of the actual position in the fluid. The potential 

theory boundary conditions are shown in Figure 3-1. 

 

 

Figure 3-1: Potential theory boundary conditions [99] 

! !!!
!!! ! !

!"
!" ! !!

!"
!" ! ! ! !! !
!

!"
!" !!!!

! !!
!
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If the sea can be simply defined with a regular wave the issue of a floating 

body in regular wave can be divided to two separate phenomena of diffraction 

and radiation. 

For the diffraction case the excitation forces and moments can be 

characterised by Froude-Krylov load and diffraction load. The Froude-Krylov 

load is derived from the pressure of the wave field with no body present. 

However the diffraction load is the change in load due to the effect of structure 

on the fluid. By super positioning the total fluid potential can be written as: 

! ! !! ! !! ! !! 

Equation 3-13 

where !! is the incident wave potential, !! is the diffracted wave potential and 

!! is the radiated wave potential. 

In reality the sea waves do not follow characteristics of a regular wave. In 

order to characterize the irregular waves it is assumed that the irregular wave 

can be represented by super positioning of many regular waves with different 

amplitudes and frequencies. In this case an irregular wave propagating in ! 

direction can be defined as: 

! ! !! !"# !!! ! !!! ! !!
!

!!!
 

Equation 3-14 

where !! is the wave amplitude, !! is the wave frequency, !! is the wave 

number and !! is the phase angle of the !-th wave component of the irregular 

wave. In this case assuming all the component regular waves are in the same 

direction the irregular wave can be assumed as a long crested wave. 

Wave spectrum is used to represent energy of an irregular wave. The wave 

spectrum is a function of wave frequency and is described as following: 
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!
!!!

! ! ! !! !! 

Equation 3-15 

where ! !!  is the wave spectrum value at the  !-th circular frequency. Further, 

the total area under the wave spectrum will be representative of the total 

energy of the irregular wave. Principals of transfer of waves in to response are 

presented in Figure 3-2. 

 

Figure 3-2: Principle of Transfer of Waves into Responses [95] 

In order to consider directional characteristic of waves where ! is the wave 

propagation angle of the wave, the wave spectrum can be represented as: 

! !!! ! ! ! ! !  

Equation 3-16 

In this case the surface of a short crested wave can be defined as: 
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! ! !! !! !!! !!!!!! !"# !!! ! !!! !"#!! ! !! !"#!! ! !!"
!

!!!

!

!!!
 

Equation 3-17 

In order to calculate characteristics of a floating body in waves using the 

velocity potentials, the boundary conditions need to be solved. The most 

common method used in hydrodynamic packages to solve the velocity 

potential boundary conditions is the panel method. In this method the body 

surface boundary condition is defined by combination of source, sinks and 

dipoles to define the wetted surface of the floating body, hence the method is 

suitable for modelling unconventional hull shapes. The method is based on 

potential theory, hence oscillations are assumed to be small relative to the cross-

sectional dimensions of the body. Using finite number of elements to define the 

body surface boundary the added mass, potential damping and restoring forces 

are calculated from the radiation waves and the exciting forces are calculated 

from diffraction waves. 

Assuming that the strength of a source in potential theory can be defined by 

! the velocity potential of a three-dimensional point source in still water with a 

radial distance of ! from a point ! can be written as: 

! ! ! !
!!" 

Equation 3-18 

In this case if !" is a surface element of a spherical surface with its centre at 

the source the velocity flux through the spherical surface can be written as: 

!"
!" !" !

!
!!

!
!! !!!!

! 

Equation 3-19 
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3.1.1 Two Dimensional Potential Theory 

For a two dimensional body oscillating in an infinite fluid the two 

dimensional point source can be written as: 

! ! !
!! !"# ! 

Equation 3-20 

By distributing the sources over the body surface the velocity potentials can 

be written as: 

! !! ! ! ! ! !"# ! ! ! ! ! ! ! ! ! ! !

!
!" 

Equation 3-21 

where ! !  and ! !  are coordinates on the body surface, ! is an integration 

variable along the body surface and ! and ! are coordinates in the fluid 

domain. ! is the body surface and ! !  is a source density. The source density 

! !  is found from satisfying the body boundary condition. The total velocity 

potential must satisfy all boundary conditions. In case of infinite fluid the only 

condition is the body boundary condition. 

In order to solve the body boundary condition the body surface is 

approximated in to ! straight elements as shown in Figure 3-3: 

 

Figure 3-3: Two dimensional body surface  approximation [99] 
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Then it is assumed that the source density over each element is constant. By 

this assumption the Equation 3-21 can be numerically solved as: 

! ! !! !"# ! ! ! ! ! ! ! ! ! ! !

!
!" !! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !"# ! ! ! ! ! ! ! ! ! ! !

!
!" 

Equation 3-22 

The time dependent can then be separated and the equation can be solved for 

the body boundary condition on the midpoint of each element. The normalised 

source density for an oscillating body can be defined as: 

! ! ! !! ! !!!!! !"#!" 

Equation 3-23 

Furthermore, the body boundary condition can be defined from the body 

geometry. This results in the body boundary equation to become linear as: 

!!"!! ! !! 

Equation 3-24 

where ! and ! define number of elements. In this case from 1 to 10, see Figure 

3-3, the surface integrals over each element in the surface are defined by matrix 

!. The normalised source densities are defined by ! vector and the body 

geometry condition is characterised by ! vector. In order to fulfil the surface 

boundary condition and avoid fluid penetration through the surface, the 

normal velocity from the source in !! ! !!  is set to opposite and equal to the 

normal velocity found from oscillation. 

By defining the normalised velocity potential and solving the equation for ! 

the normalised radiation velocity potential can be found as: 
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! ! !!! ! !!!!!!! !"#!" 

Equation 3-25 

Using the normalised velocity potential the dynamic pressure from 

Bernoulli’s equation can be calculated as: 

! ! !! !"!" ! !!!!!!!!! !"#!" 

Equation 3-26 

The added mass and damping terms can then be calculated from pressure 

distribution of the radiation case. 

3.1.2 Three Dimensional Potential Theory 

Following on from the two dimensional potential method the three 

dimensional potential method is used to calculate the linear wave induced 

motions and loads on large floating structures. Since the fluid field is not 

infinite further boundary conditions should be satisfied to resolve the velocity 

potential equation.  

In this case for a ship with an oscillatory heave motion in waves and zero 

forward speed the velocity potential can be defined from the three dimensional 

Laplace equation, the linear free surface boundary condition for harmonic 

oscillation and the body boundary condition. 

For deep waters the sea bottom condition will tend to infinity as: 

!! ! !!!!!!!!"!!!!!! ! !!  

Equation 3-27 

The radiation condition should be considered in the three dimensional 

velocity potential to account for the waves moving away from the floating 

body. For a point far away from the body with distance ! ! !! ! !! this is 

represented by: 
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!!!!
!"

! !"# !" ! !! ! !  

Equation 3-28 

The hull of the floating body is represented in the three dimensional fluid 

field by quadrilateral panels. The source strength is considered constant over 

the panel. However in this case the source potential is different in comparison 

to the infinite fluid case since it should take the mean free surface boundary 

condition, the infinite water depth boundary condition and the radiation wave 

condition. Therefore the source density strength can be calculated from the 

body boundary condition to ensure no flow will pass through the body surface. 

The velocity potential for infinite water depth was calculated by Havelock [96] 

[97] as following: 

! !!!! !! !! !! ! !!!"# ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
!
!! !

!!
! ! !"# ! ! ! ! ! ! !"# ! ! ! !

!

!

!! !"
!! ! !! !" 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"!! !!! !! !" ! !!!"!! !!! !! !" !!!!"# 

Equation 3-29 

where ! is the complex unit and !! !! !  are the coordinates on the body surface. 

Further: 

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

Equation 3-30 

!! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 

Equation 3-31 

! ! ! ! ! ! ! ! ! ! ! 

Equation 3-32 
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! ! !!

!  

Equation 3-33 

In Equation 3-29 zero order Bessel function of the first kind is shown by !!, 

zero order Bessel function of the second kind is shown by !! and !! is the 

modified Bessel function of zero order.  

The Bessel functions were explained further by Abramowitz et al. [98]. They 

used asymptotic expansions for the Bessel function for large ! values to satisfy 

the radiation condition with the Green function: 

!" !!! !" ! !!! !" !!!"# ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" ! !
!"# !"# !" ! !! ! ! !

!"# !"# !" ! !! !!!"# ! 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !
!"# !"# !" ! !" ! !!  

Equation 3-34 

The three dimensional velocity potential which was explained here can be 

generalised to calculate oscillatory motion of a floating body in any degree of 

freedom. However in comparison to two dimensional methods the three 

dimensional velocity potential requires more boundary conditions to be 

satisfied. Further the source densities in the three dimensional method are more 

complex. The source expressions in this case are more complicated and there is 

possibility of occurrence of irregular frequencies in the calculation which is a 

numerical problem. Finally the velocities close to the body and at sharp corners 

cannot be correctly represented due to singularities and lack of possibility of 

modelling boundary layer separation in the method. 

Further accuracy of the calculated responses from the panel method depends 

on density of the panels representing the body surface. Dense panel grid results 

in long solution time while light panel grid density results in uncertain 
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responses. Hence an ideal panel density is the one that produces good enough 

results in a reasonable amount of time. 

Dynamic motion characteristics of a floating body can be calculated by 

solving the dynamic equilibrium equation of the body for regular waves with 

different frequencies. For a floating body in waves the dynamic equilibrium 

equation for six degrees of freedom can be established from Newton’s 2nd law 

as: 

!!" ! !!" !! ! !!"!! ! !!"!! ! !!
!

!!!
!!!"#!!!!!!! ! ! !! ! 

Equation 3-35 

where !! is motion in mode !, !! velocity in mode !, !! is acceleration in mode 

!, !!" is the generalized mass (inertia) matrix component in mode ! due to 

motion in mode !, !!" is the added mass(inertia) matrix component in mode ! 
due to motion in mode !, !!" is the restoring matrix component in mode ! due to 

motion in mode !, !! is the complex amplitude of exciting force in mode ! with 

the force/moment components given by the real part of !!!!!!! and ! is the 

wave excitation frequency. 

In order to calculate the transfer functions of the vessel the equation system 

should be solved for different frequencies. By normalising the calculated 

responses for the incident wave amplitude the response amplitude operators 

(RAO) of the motion are calculated. This requires the mass, added mass, 

damping and restoring matrixes and excitation forces to be defined. 

The excitation forces are due to the waves that result in an oscillatory force on 

the body. Using diffraction theory the excitation forces are calculated directly 

from pressure distribution.  

The mass matrix consists of the generalized mass and inertia terms. These 

terms are multiplied by acceleration to generate the inertia force or moment. 

Added mass is defined as an addition to the body’s mass or inertia. This is due 
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to the accelerated fluid surrounding the oscillating body. The added mass can 

be represented with a finite addition of the mass in the motion equation.  

Damping defines dissipation of the energy of an oscillatory body in the fluid. 

The total damping of a floating body consists of potential damping and viscous 

damping. The potential damping is calculated from solving the radiation 

problem. However since in the potential theory the fluid is assumed to be ideal 

the viscous damping cannot be calculated from the potential method. Hence the 

viscous damping should be considered in the calculation separately. In the roll 

motion viscous damping can have a significant effect on the response especially 

around its natural frequency. Hence a viscous damping term is added to the 

potential damping term in form of: 

!!"!"!!!"#$%& ! !!!!! !!  

Equation 3-36 

In order to include the viscous damping term in the equation of motion, it 

needs to be linearized hence the linear viscous damping term is defined as 

following: 

!!"!"#$%& ! !!!! !! 

Equation 3-37 

The brief potential theory methodology explained here is the basis used in the 

diffraction-radiation software to calculate hydrodynamic characterises of a 

floating body. The aim is to define a linearized viscous damping to approximate 

the viscous effects in roll motion of a floating box shaped barge. 

 

3.2. Vortex Shedding Phenomena 

Oscillation of a body in a still fluid can be assumed to be kinematically same 

as oscillatory flow of fluid around a fixed body including Froude-Krylov forces. 

These Froude-Krylov forces represent the pressure gradient of the imposed 
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flow on the body and are in phase with the body accelerations. Therefore in 

order to understand the flow on shedding edge of an oscillatory barge the 

oscillatory flow interacting with a sharp edged bluff cylinder may be 

investigated. 

Displacement of fluid particles in undisturbed flow is small in comparison 

with the scale of the body at low Keulegan-Carpenter numbers. This results in 

vortices moving away from the shedding edge under the influence of other 

vortices. Hence it can be assumed that the vortex shedding from one edge may 

be independent from other vortex shedding edges. On this basis it can be 

concluded that the local flow could be equal to an infinite wedge subjected to 

an oscillatory flow. 

Singh [84] conducted experiments on sharp edged bluff cylinders and 

concluded that the frequency of vortex shedding from a single isolated edge is 

one vortex per shed per cycle in low Keulegan-Carpenter numbers. The vortex 

shed in a half cycle is then swept back in the next half cycle to create a pair with 

a new growing vortex. As soon as both vortices gain the same strength the first 

vortex then moves rapidly away from the body. 

Keulegan and Carpenter [85] used the flow field of a standing water wave to 

study oscillatory flow around both flat plates and circular cylinders. They 

showed that the drag coefficient !!! and the inertia coefficient !!! for a 

measured force in flow direction in Morison’s equation were functions of the 

Keulegan-Carpenter number !! ! !!!!! as stated in Equation 3-38 below: 

! ! !
!!" ! !!! !

!
!!"!!

!!! 

Equation 3-38 

where ! is the free stream velocity with amplitude !!, ! is the period of 

oscillation, ! the fluid density and ! the body diameter. 

Graham [3] conducted a discrete point vortex analysis assuming that the 

regular vortex shedding from an isolated edge should occur in Keulegan-
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Carpenter numbers less than 10. The point vortices were calculated as they shed 

sequentially from an infinite wedge and traced as they moved with the fluid 

particles of an oscillatory flow. He attempted to provide a prediction of the 

vortex force component !! which should be added to the flow inertia 

component as shown in Equation 3-39: 

! ! !
!!"!!!!

!! ! !! 

Equation 3-39 

In this case Graham demonstrated that as !! ! ! and by defining the in-line 

vortex force coefficient as: 

!!" !
!!

!
!!!!

!!
 

Equation 3-40 

where ! ! !!!"# !!"
!  for oscillatory flow we would have: 

!!" ! !!
!!!!
!!!!!!!!!! 

Equation 3-41 

where ! is a dimensionless function and ! depends on the internal angle of the 

edge of the body at the separation point. Therefore the Morison’s equation 

presented in Equation 3-38 can be written as: 

! ! !
!!"!!

!!!! !
!
!!!!

!!!!
!!!!
!!!!!!!!!! 

Equation 3-42 

By taking a Fourier integral of Equation 3-42 for a rectangular wedge over 

one cycle of the flow Graham showed that the coefficients in Equation 3-38 are: 
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!! ! !!!
!!!!
!!!!    where  ! ! !!

! ! ! !"# !!" !"!
!  

Equation 3-43 

and 

!! ! !!! ! !!!
!

!!!!   where  ! ! !
!! ! ! !"# !!" !!!

!  

Equation 3-44 

In this case for an inviscid analysis to be valid the Reynolds number !!!!! 

should remain sufficiently large while the Keulegan-Carpenter number !!!!! 

should be small. 

Graham [3] concluded that for a cylinder in an oscillatory flow the vortex 

force and drag coefficients are proportional to !!
!!!!!!!!!! where !! is the Keuligan-

Carpenter number. 

 

3.3. Rolling Barge in Potential Flow 

Downie et al. [4] presented Equation 3-43 as: 

!! !
!!
!!

!! !
!

!
!!!!

!!
!"# !!

! ! !"
!

!
 

Equation 3-45 

where the parameters are same as the one defined for Equation 3-38 and ! is a 

length scale that is characteristic of the body.  

They used a Schwartz-Christoffel conformal transformation to map a semi-

rectangle in to a half plane in order to represent a rectangular barge in a 

complex plane. 

 



 43 

 

Figure 3-4: Box shaped barge transformation 

Noting the notation in Figure 3-4 the complex conformal transformation used 

was defined as: 

! ! !! ! !!!
!! ! !!!

!
!
!"

!

!
 

Equation 3-46 

For a body rotating anticlockwise about the point O in z-plane with angular 

velocity of ! Downie et al. [4] calculated the instantaneous velocity directed 

towards the fluid at any point of the body as following: 

!! !
!"!
!!
!!"!

!
! !
! !
!! !

!!!!!!!!!!!!!!
! ! !

! ! !
!!!!!!!!!!

! ! !
! ! !
! ! !

 

Equation 3-47 

The corresponding velocity in !-plane is then given as: 

!!! ! !!
!"
!" 

Equation 3-48 

A source distribution along the ! axis with strength per unit length of !!!! 
was assumed in !-plane to represent the instantaneous boundary conditions as: 

! ! ! !!!! 

 Equation 3-49 
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Therefore the velocity ! at any point !!!on the ! axis of the transformed panel 

was demonstrated to be: 

! ! !
!!

! !
!! ! !

!"
!!

!!
 

Equation 3-50 

From Figure 3-4 it is noted that the shedding edge in the real plane is at !!. 

Hence the velocity !! at the corresponding point !! in the transformed plane 

was demonstrated as: 

!! ! !!" ! !!" ! !!"

! !
!!

!! ! !! ! !
!
!

!!! ! !
!
! !!! ! !

!
! ! ! !!

!
!
! !! ! ! !! ! !!

!
!

!!! ! !!
!
! !!!!

!
! ! ! !!

!
!
!"

!!

!!

! !!! ! ! !! ! !!
!!! ! !!

!
! !!!!

!
!

! !
!!

!! ! !! ! !
!
!

!! ! !
!
! !!! ! !!

!
!
! !! ! ! !!!

!
!

!! ! !
!
! !!! ! !!!

!
!
!"

!!

!!

! !!! ! ! !!!
!
! !! ! !!

!
!

!!! ! !!!
!
!

! !
!!

!! ! !! ! !
!
!

! ! !!
!
! !!! ! !!

!
!
! !! ! ! !! ! !!

!
!

!! ! !!
!
! !!!

!
! !! ! !

!
!
!"

!!

!!

! !!! ! ! !! ! !!
!
!

!!!
!
!

 

Equation 3-51 

where: 

!! ! ! !! !! ! !!!
!!! ! !!

!
!
!"

!!

!!
 

Equation 3-52 
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!! ! ! ! !!! ! !!
!!! ! !!

!
!
!"

!

!
 

Equation 3-53 

!! ! ! !! !! ! !!!
!!! ! !!

!
!
!"

!

!!
 

Equation 3-54 

Downie et al. [4] then derived the local velocity of the fluid relative to the 

point !! in the transformed plane for a body rotating anticlockwise about any 

point P in the real plane as: 

! ! !! ! ! !! ! ! 

Equation 3-55 

Hence for a barge rolling with an oscillatory motion about point P, for which 

the oscillatory motion can be expressed as ! ! !!!"#!!"!, the relative fluid 

velocity was: 

!! ! !!! ! ! !!! !! ! !!!= !!
!

!! !
!!
!! !! ! !"! 

Equation 3-56 

where !! ! !!! !! , ! ! !!! , ! ! !!! and ! ! !!
! .  

Since the forces on the isolated edge associated with the vortex shedding are 

known in terms of drag coefficient as presented in Equation 3-45, in order to 

calculate the drag coefficient Downie et al. [5] had to match the two flows in the 

immediate vicinity of the shedding edge. In order to do this a conformal 

transformation was used as below to map an infinite wedge into a half plane, 

see Figure 3-5: 

!! ! !!!
!
!!!

!
!!

!
!  

Equation 3-57 
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Figure 3-5: The 90° infinite wedge transformation 

Noting that the distance of any point z from the shedding edge of the barge 

located at !! in the real plane is: 

! ! !! !
! ! !! ! ! !!
! ! !! ! ! !!

!
!
!"

!

!!
 

Equation 3-58 

close to the shedding edge where ! ! !!  the distance from the shedding edge 

is: 

!! ! !!!
!
!

!!!
!!! ! !!!

!
!
!!
!
! 

Equation 3-59 

where ! ! !! and ! ! !! were presented as !! and !! respectively. Hence in 

order for Equation 3-57 to become equal to Equation 3-59 it was concluded that: 

! ! !
!
!! !!
!! !! 

Equation 3-60 

where !! ! !" and !! ! !!, or: 

!
! !

!
!!!

!! !!
!!  

Equation 3-61 
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It was demonstrated from Equation 3-61 that: 

!! ! !!
!"
!" !!!!!!!!!!!

 

Equation 3-62 

concluding that if the ratio of the length scale !!   is equal to !!!!
!!!!
!!  and if the 

velocity !! is same in both cases the velocity field in the near vicinity of the 

infinite wedge is identical to the local velocity field round the shedding edge of 

the rolling barge. 

Noting the geometry presented in Figure 3-6 which demonstrates the 

relationship between the damping torque ! and the vortex force in single edge 

!! Downie et al. [4] concluded that: 

! !!! ! ! !!! !!! !"#$ ! ! !! !! !!
!

!! !! ! !! !!!  

Equation 3-63 

 

Figure 3-6: Damping torque 

The earlier analysis indicates that the !! acts near the edge and perpendicular 

to the edge’s bisector. By rewriting Equation 3-63 as a Fourier series: 

!
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! !!! ! !!!!!!! !! !"# !"#  

Equation 3-64 

and assuming the barge motion will follow equation of !! ! !! ! !!!" ! ! the 

equivalent linearized damping force was demonstrated to be: 

! ! !"!!!!! ! !!"!!! !!!
! !!!
!!!!!!!

!

!
!"# !" !" 

Equation 3-65 

Finally Downie et al. [4] presented the following expression for the damping 

coefficient:  

!! ! ! !!!
!! !

!!
!! !! ! !!!

!! !
!!
!! !! ! !! !"

!

!! !! !  

Equation 3-66 

where ! is constant dependent on geometry of the barge and is given by: 

! ! !!!"# !! !!
!!!  

Equation 3-67 

Noting Figure 3-4, for shedding edges of D and E in z-plane Downie et al. [5] 

presented Equation 3-46 as: 

!! ! !!
!! ! !!
!! ! ! !" ! !! ! !! ! !! ! !! !! ! !! ! !!

!

!
 

Equation 3-68 

!! ! !! ! !!!
!! ! !!
!! !! !" ! !! ! !!! ! !! !! ! !!! !! !!

!

!
 

Equation 3-69 

therefore: 
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! ! !!! ! !! ! !! !! ! !! ! !!!!! 

Equation 3-70 

! ! !! ! !! !! ! !!! !! !! ! !!!! 

Equation 3-71 

where ! ! !!!!!, ! ! !!!! and K and E are complete elliptical integrals of first 

and second kind respectively.  

The body matching parameter !!" was defined in terms of elliptical integrals 

as: 

!!" ! ! !
!!

!! ! !!!
!
!

! ! !! !! ! !!!
!
!
!" ! !

! !!! ! !!
!

!
 

Equation 3-72 

where !! ! !" !!  and !! ! !" !! !! . 

In a same manner the edge matching parameter was presented as: 

! ! !
!
!! ! !
!!

!
!!!

 

Equation 3-73 

In line with Equation 3-40 the vortex force at one edge of a floating body was 

stated to be: 

!! !
!
!!!!

!!! ! !!" !
!
!!!!

!! !!
!! !!
!!

!
!
!! ! !"!
!!!

! !  

Equation 3-74 

Downie et al. [5] assumed that if the potentials !! and !! are calculated at a 

point either side of a shedding edge the !! at the shedding edge must be equal 

to !! ! !! ! !!  where !! is the distance between the corresponding points in 

!-plane. In this case the vortex shedding roll moment !!! was formulated as: 
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!!! !
!
!!!!!

!
!
!! ! !!
!!

!
!!!! 

Equation 3-75 

in which !! is a coefficient representing the lever arm for the vortex roll 

moment, !! is the velocity potential at the vertical side of the shedding edge, !! 

is the velocity potential at horizontal side of the shedding edge, !! is the 

distance between points in the !-plane on either side of the edge and !!!! is the 

dimensionless vortex force coefficient which is pre-calculated using the discrete 

vortex method [3]. 

In a similar manner the sway vortex force !!! and the heave vortex force !!! 

was stated to be: 

!!! !
!
!!!!!

!
!
!! ! !!
!!

!
!!!! 

Equation 3-76 

!!! !
!
!!!!!

!
!
!! ! !!
!!

!
!!!! 

Equation 3-77 
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4 Viscous Damping Mathematical 

Development 

 

 

 

 

he methodology explained in Section 3.3 is used in this work as a basis 

to develop a practical procedure for calculating the vortex force due to 

sway, heave and roll motions of a box shaped barge in regular waves. The 

procedure is then advanced further to include calculation of the viscous roll 

damping in irregular waves. 

As outlined previously Downie et al. [5] demonstrated that the oscillatory 

motion of a boxed shape vessel could be reasonably predicted by use of discrete 

vortex method including the viscous effects. In their method the relative fluid 

velocity at the shedding edge was calculated directly. This required several 

assumptions to be made in order to estimate the relative fluid velocity from the 

mathematical model of the rolling barge. Therefore significant amount of effort 

was made to estimate the relative velocity which was then used in a final step 

to calculate the final viscous damping. 

The new development was based on use of conventional diffraction radiation 

software to calculate the velocity at the shedding edge. Therefore the 

mathematical developments are needed to be such to allow integration of the 

method with the utilised diffraction radiation software.  

T 
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The latest mathematical formulation based on the background methodology 

explained in Section 3.3 is presented here. Implementation of the method as an 

add-on black box software is explained in Chapter 5. 

 

4.1. Mathematical Linearization for Regular Waves 

A rectangular body with oscillating flow around its boundaries is shown in 

Figure 4-1. 

 

Figure 4-1: Oscillating body 

Noting the transformation methodology outlined in Chapter 3 a conformal 

transformation can be used to map an infinite wedge into a half plane as shown 

in Figure 3-5.  

We consider the case of a general rectangular hull with beam !, draught ! and 

apply the Schwartz-Christoffel transformation between the physical !-pannel 

and the transformed !-plane as outlined in Chapter 3.  

From [3] or by considering the relative size of the !! term in the pressure 

which !! ! relatively as !! ! and as ! ! !! !! where ! is constant on the 

body we have: 

!

!!

!!!"#$!!!"#!

"!
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! ! !! !!!" ! !! !"!" !"!!"#$
 

Equation 4-1 

Consider a vortex shed from the edge !, strength ! and position !! (or !!). 

Since ! is linear in ! the effects of many vortices can be added together. The 

vortex at !! (position in !-plane) has an image ! ! at !!!  where !!!  is complex 

conjugate of !!. Note that the vortex strength ! is preserved in a conformal 

transformation. Therefore the complex potential representing the flow field due 

to the vortex is: 

!! !
!!
!! !" ! ! !! ! !" ! ! !!!  

Equation 4-2 

The free stream only contributes to the inertia !!. It can now be assumed that 

the force comes from the pressure field over the whole of the body not just close 

to the edge which will be shown to be true. Therefore since we are assuming 

small amplitude motion and noting the notation shown in Figure 3-5, for most 

of the ! contribution to the forces we have ! ! !! ! !! ! !! . Therefore by 

expanding the logs we have: 

!!
!!! ! ! !!!
!! ! ! !!

 

Equation 4-3 

hence: 

! ! ! !"
!!

!
!" ! !! ! !!

! !
! ! !!

 

Equation 4-4 

The singularity is a dipole along the real axis ! ! !. The potential distribution 

has a discontinuity at ! ! !! which represents the jump !" ! ! that occurs at 

the path crossing the vortex sheet joining ! to the edge. This jump is correct for 
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the potential and is consistent with the pressure to be continuous across the 

edge when the !! term is considered. Assuming constant total pressure of: 

!!
! ! !!!

!" ! !! !!
! ! !!

! ! !!!
!"  

Equation 4-5 

since !! ! ! (stagnation) on the underside of the sheet and 

!!
!" !

!
! !!

! 

Equation 4-6 

therefore if !! !!! ! !, then: 

!! ! !! 

Equation 4-7 

The dipole discontinuity in ! at ! is infinite but it does overall correctly 

approximate the result for the vortex plus image at a finite distance from the 

edge. In particular both distributions show that ! ! at large distances from 

the edge at a rate proportional to !!! ! ! !"#$%  i.e. !!
!
! . The force on the 

edge !" is therefore: 

!!" ! ! !"#
!

!
! ! !

!!
!
!" ! !! ! !!

! !
! ! !!

!"
!" !"

!!

!!
 

Equation 4-8 

Using the Schwartz-Christoffel formula for !"!" we have: 

!!" ! ! !"
!!

!
!" ! !! ! !!

! ! ! !
! ! ! !! ! !!

!
!
!"

!

!
 

Equation 4-9 
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where ! !
! !

!!
!!

 , ! ! !
!!

! ! !
!!

 and !! ! !!! is imaginary. Note in this last 

expression that there is a degree of ambiguity as to whether !! or ! ! should be 

taken. It is assumed that !! gives the correct solution, similarly: 

!!" ! ! !
!!

!
!" ! !! ! !!

! ! ! !
!! ! !! ! !!

!
!
!"

!

!!
 

Equation 4-10 

!!" ! ! !"
!!

!
!" ! !! ! !!

! !! ! !
!! ! !! ! !!

!
!
!"

!!

!!
 

Equation 4-11 

!!" ! ! !"
!!

!
!" ! !! ! !!

! ! ! !
! ! ! !! ! !!

!
!
!"

!

!
 

Equation 4-12 

Combining these we have: 

!! ! !!" ! !!" !
!"
!!

!
!" ! !! ! !!

! !
!! ! ! !! ! !!

!
!
!!"!

!

!
 

Equation 4-13 

It should be noted that the force is suction on !" and pressure on !". By 

substituting !! ! !! !! ! ! !"#! ! we have: 

!! !
!"
!
!
!" ! !! ! !!

!  

Equation 4-14 

This is half the result given in [3] for a closed body which is same for all !!  . 

Then the vertical force is: 

!! ! !!" !
!
!
!
!" ! !! ! !!

! !" !!  

Equation 4-15 
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where ! is an elliptic integral. For !" ! ! (i.e. ! ! !
! and ! ! !

!), ! !! ! !!!"# , 

so:  

!! ! !!!"#! !!" ! !! ! !!
!  

Equation 4-16 

Moments about ! where ! is in the middle of !" may be similarly evaluated 

as: 

!!" ! !!" !!!!" ! !!" !!!" !!!" 

Equation 4-17 

where !!"  , !!" and !!" represent moments due to force acting on these faces 

and: 

!!" !!!"

! ! !"!!!!
!
!" ! !! ! !!

! !!
!! ! ! !! ! !!

!
!

!!" ! !
!! ! !!"

!
!!

!
!!! !"

!

!
 

Equation 4-18 

!!" !
!"!!
!!

!
!" ! !! ! !!

! !!
!! !! !! ! !!

!
!

!! !!"
!! ! !!"

!
!!

!
!!! !"

!

!
 

Equation 4-19 

Therefore the moment about the axis at the free surface is given by: 

!! ! !!" ! !!! !
!"!
!

!
!" ! !! ! !!

! !! ! !!" ! !!"#$
! ! !! !! ! !!! !! !!  

Equation 4-20 

where ! and ! are elliptical integrals and: 
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!!" !
!!

!! !! !! ! !!
!
!

!! !!"
!! ! !!"

!
!!

!
!!! !"

!

!
 

Equation 4-21 

!!"#$ !
!!

!! ! ! !! ! !!
!
!

!!" ! !
!! ! !!"

!
!!

!
!!! !"

!

!
 

Equation 4-22 

The roll moment about the origin ! (middle of base) is given by: 

!!" !
!!!
!!

!
!" ! !! ! !!

! !!" ! !!"#$  

Equation 4-23 

Note the change of sign as !! and !! exert opposite moments at !. Using the 

fact that !! ! !
!
!
!" ! !! ! !!

! , the conventional moment about the centre of the 

barge at the mean free surface is:  

!! !
!"!
!!

!
!" ! !! ! !!

! ! ! ! !!" ! !!"#$
! !! !! ! !!! !! !!  

Equation 4-24 

This is the moment over the whole barge hull due to shedding from edge !, 

hence: 

!! !"#!!!"#!$ ! !"!
!

!
!" ! !! ! !!

! ! ! ! !!" ! !!"#$
! !! !! ! !!! !! !!  

Equation 4-25 

The moment is generated by !!!
!
! at the shedding edge. Generally for a 

rectangular edge body with edge angle of 90° if !! is assumed to be the force 

due to vortex shedding on one edge of the body, from the scaling analysis we 

have: 
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!!!"#$ !!!"#!
!! !!"#!!!!"#!

!
!!!

!
!

!"#$

!

!!!
!
!

!"#!!!!"#!

! !
!!!!"#!!!!"#!
!!!!"#$

 

Equation 4-26 

where ! is the distance along the surface from edge in physical plane and !! is 

the surface velocity generated by potential flow (i.e. diffraction-radiation code) 

at a distance of ! from the edge.  

Noting Equation 4-26 it can be written that: 

!!"!!"#$ !
!!!!"#$

!
!!!!!"#$

! !
 

Equation 4-27 

where ! is a length scale of body. Then using the analysis for a flow past an 

infinite edge it can be concluded that: 

!!"!!!"# !
!"!
!!

!!!
!
!

!!
!"#$

!

 

Equation 4-28 

Hence to calculate the force on the body edge it is just necessary to evaluate 

the following equation: 

!!"!!"#$ !
!"!
!

!!
!!

!
!

!
!

!"#$

!

 

Equation 4-29 

where ! is a pre-calculated factor by Graham [3]. 

It should be noted that in this case as ! ! ! the !! becomes singular but !!!
!
! 

tends to a finite value. 
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Continuing from Equation 4-26 and from the Schwartz-Christoffel 

transformation expanding !"!! near ! ! !!, ! ! !! ! ! ! where ! is the distance 

from the edge we have: 

!!!!"#!!!!"#! !
!
! !!!

!
!
!"#!!!!"#!

!
  

Equation 4-30 

and  

!!!!"#$ !"#$! !!"" ! !!!
!!!!!!!

!
! !!!

!
!
!"#$

!  

Equation 4-31 

Also 

!! !!"#!!!!"#! !
!
! !!!

!
!"#!!!!"#! ! !  

Equation 4-32 

where ! is the coefficient given in [3]. Then:  

!!!"#$ !!!"#! ! !!!"#!" !
!! ! !

!
!
!!!

!
!

!"#$

!
! !! 

Equation 4-33 

However !! !!"#!!!!"#! which is given in [3] is obtained by integrating using the 

Residue Theorem around a closed contour. This is not possible for a body 

floating at the free surface. In the case of floating hull !! and !! come from 

integration of the pressure ! !"
!"  along the finite open line !"#$% or 

!!! ! ! ! ! ! ! !!!. Hence the results given above for !! and !! on a 

rectangular hull replace the result in [3] !!! !! !!!!!! ! !! ! !
!" ! !! ! !!

! , 

hence: 
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!!!!"" !!!"#! ! !! !!"#!!!!"#!
!
! !
!
!! !!  

Equation 4-34 

These are the two components !! !!!  of !! and the ! coming from the fact 

that !! !!"#!!!!"#! is perpendicular to the bisector of the !"! edge. Similarly: 

!!!!"" !!!"#! ! !
! !! ! !!" ! !!"#$

! ! !! !! ! !!! !! !! !! !!"#!!!!"#! ! ! 

Equation 4-35 

Therefore for a floating hull with two sharp !"! edges we have: 

!! !"#$ ! !!!"#!"
!
! ! !

! !! !! ! !!! !! !!

!
!

!!!
!
!

!
! !

!
! 

Equation 4-36 

!! !!"#! ! !!!"#!" !" !!
!

!
! ! !

! !! !! ! !!! !! !!

!
!

!!!
!
!

!
! !

!
! 

Equation 4-37 

!! !"## ! !!!"#!" !! ! !!" ! !!"#$
! ! !! !! ! !!! !! !!  

!
! ! !

! !! !! ! !!! !! !!

!
!

!!!
!
!

!
!
!
! 

Equation 4-38 

For a box shaped barge defined in Figure 4-2 !!" is defined as the force per 

unit length due to vortex shedding where ! is index of the motion under study 

i.e. ! ! ! indicates sway, ! ! ! indicates heave and ! ! ! indicates roll of the 

barge, hence !! !"#$ ! !!! , !! !!"#! ! !!! and !! !"## ! !!!.  
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Noting that the beam and draught of the barge are defined by ! and ! 

respectively the barge cross sectional aspect ratio can be defined as ! ! !
!" . 

 

Figure 4-2: Barge geometry 

The tangential fluid velocity at body surface relative to axes fixed in body is 

denoted by ! where ! ! !! ! !"!! in which ! is the oscillatory motion 

frequency and !! is the !-th degree of freedom of the barge.  

The distance from the vortex shedding edge in which the relative velocity is 

calculated is shown by !.  

The vortex force coefficient ! ! !" from discrete vortex method pre-

calculated for an infinite right angle edge is taken to be !!!""! !!!"#!. The 

Schwartz-Christoffel ratio ! as defined in Section 3.3 can be calculated by 

iterative method for a given !".  

 Noting Equation 3-70 from which !! is defined as ! !! ! !! !! ! !!  in 

which K and E are complete elliptical integrals of first and second kind 

respectively, the sway and heave vortex shedding forces as well as roll vortex 

shedding moment can be defined as: 

!

!!
"!

!!

"##!

"#$!

$#%!

%!

&!

&!

"#%!
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!!! ! !! ! !!! !
!
!
!

!
!
!

! ! !"
!! !" !! !!

!!!

!
! !
!

!!
!
!

!
!
!

!!!
!
!

!
!
!

!
! ! 

Equation 4-39 

!!! ! !! ! !!! !
!
!
!

!
!
!

! ! !"
!! !" !! !!

!!!

!
!
!" !! !!

!
!

!
!
!

!!!
!
!

!
!
!

!
! ! 

Equation 4-40 

!!! ! !! ! !!! !
!
!
!

!
!
!

! ! !"
!! !" !! !!

!!!

!
! !"!!
!!!

!!
!
!

!
!
!

!!!
!
!

!
!
!

!
! ! 

Equation 4-41 

where !! is the vortex induced added mass and !! is the vortex induced 

damping coefficient. 

Applying the formulation to a three dimensional hydrodynamic model of a 

box shaped barge in an industry standard inviscid seakeeping code, ! is the 

total fluid velocity relative to the body at the shedding edge calculated for the 

combined six degree of freedom motion and !! is the total velocity relative to 

the body at the shedding edge calculated in the forced motion mode for the 

degree of freedom under study. In this case ! is the distance from vortex 

shedding edge to centre of the facet in which the velocity is calculated, ! is 

width of the facet along the length and ! is the height of the regular wave for 

which the viscous damping is linearized. 

Since the Schwartz-Christoffel ratio ! can be calculated by iteration for a 

given aspect ratio and noting the aspect ratio of the cross section of the barge 

which is defined as !" ! !
!"  from a Schwartz-Christoffel transformation it can 

be shown that !" ! !!
!!
! ! !! ! !!!! ! !! !

! !!!! !!!! !!!!   [5]. 

Finally if ! ! !
! then: 
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!! !
!!! ! !
!! ! !!!

!
!!

!
!!! !"!!!

!! ! !! !! ! !
!
!
!!!

!

!
 

! !! !!!
!!! ! !!

!
!!

!
!"! !!!!"

!! ! !! !! !!
!
!

!

!
 

Equation 4-42 

The velocity at the tip of the shedding edge becomes singular in the sharp 

edged potential flow model. Therefore the velocity of the fluid at the edge for 

combined motion (i.e. !) and the forced mode motion (i.e. !!) are calculated 

using weighted averaging of the velocity at the two facets on each side of the 

vortex shedding edge. Weights are based on the distance between the centres of 

the facets to the shedding edge (i.e. !). This will eliminate the problem of 

having a singularity in the calculation of relative fluid velocity at the tip of the 

shedding edge. 

By integrating the calculated vortex force on assumed vortex shedding strips 

along the length of the barge the total vortex shedding force can be calculated. 

It should be noted that since the relative velocity between the body and the 

fluid is not same in portside and starboard side of the vessel, the calculated 

vortex forces in either sides are different.  

 

4.2. Mathematical Linearization for Irregular Waves 

After developing the numerical model for the regular waves, an attempt was 

made to apply the method to calculation of the vortex shedding damping in 

irregular waves. 

Initial investigation was based on the equivalent linearization method 

introduced by Kaplan [86]. For the equation of the roll motion of a floating 
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vessel Kaplan [86] assumed that the nonlinearity is to be in form of velocity 

square damping as following: 

!! ! !!!! ! !!! !! ! !!!! ! !!!! !  

Equation 4-43 

where ! !  is an arbitrary random function equivalent to the effective wave 

slope. Kaplan then provided the mathematical formulation for estimation of the 

equivalent linear roll damping coefficient in a given irregular wave spectrum. 

Following successful implementation of the methodology stated in Section 

5.2.1 and noting Kaplan’s methodology [86] preliminary investigation of roll 

damping linearization in irregular waves was done which consisted of 

discretising the given wave spectrum to several regular waves and calculating 

the roll RAO amplitude for the estimated representative regular waves.  

This approach was based on the assumption that if an irregular wave can be 

deconstructed to several regular waves as shown in Figure 4-3 then the viscous 

damping can be calculated for each representative regular wave individually. 

In this case the damped RAO linearized for variation of regular wave heights 

within the irregular wave frequency range can be calculated. 

 

Figure 4-3: Connectione between frequency domain and time domain representation of waves [13] 
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However since the calculated roll damping is dependent on the assumed 

regular wave height amplitude and the amplitude of the regular wave height 

depends on the assumed width of the frequency bin on the wave spectrum the 

method did not seem to be sound. This was due to the fact that change in 

number of discretisation frequency bins on the irregular wave spectrum 

resulted in change in amplitude of the calculated wave heights for each bin. 

Consequently the calculated viscous damping for each bin varied resulting in 

an inconsistent damped RAO. 

Based on this experience it was concluded that any viscous roll damping 

linearization for an irregular wave spectrum should be such that variations in 

wave spectrum frequency discretisation do not affect the final calculated RAO 

amplitude for each assumed frequency bin. 

In this regards for calculating the viscous roll damping for a given wave 

spectrum the mathematical development presented in Section 4.1 was modified. 

The modification included calculation of the additional viscous damping 

demonstrated in Equation 4-41 using the root mean square of the velocities. 

These are the relative fluid velocities ! and !! calculated for all of the frequency 

bins assumed along the frequency range of the irregular wave. In this case the 

damping assumed in each hydrodynamic iteration is constant for all the 

assumed frequency bins. 

As explained above the methodology for linearization of the motion RAOs 

for a given wave spectrum utilises the exact same mathematical formulation 

provided in Section 4.1 but the sequence of the procedure is different to the 

regular wave linearization. This is explained in detail in Section 5.3. 
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5 Viscous Damping Calculation Code 

Development 

 

 

 

 

he code development outlined in this chapter is based on the 

mathematical development explained in Chapter 4. The procedure 

utilises a three dimensional diffraction-radiation hydrodynamic code to 

calculate relative velocity between an oscillating body and surrounding fluid at 

its vortex shedding edge. Furthermore, the procedure is coded as an add-on 

black box with potential to be used with any conventional three dimensional 

diffraction-radiation hydrodynamic software. 

 

5.1. Investigation on the available hydrodynamic software 

Initial investigation was conducted to assess possibility of using three 

different linear diffraction-radiation hydrodynamic codes in calculating the 

referenced relative velocity at bilge of a floating box shaped barge. The 

hydrodynamic codes studied initially where ANSYS AQWA, MARTEC FD-

Waveload and PRECAL.  

Noting the flexibility and unlimited access to functionalities of FD-Waveload 

provided by MARTEC, this code was chosen for further development of the 

viscous roll damping black box. However it should be noted that the developed 

black box has the potential to be used with any diffraction-radiation 

T 
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hydrodynamic code as long as the input module of the black box is modified to 

enable it to take in the velocity calculations from the hydrodynamic code and 

there is access from hydrodynamic code to allow automatic input of the 

calculated additional damping into the iterative hydrodynamic calculation. 

In order to calculate the potential on the model in a linear diffraction-

radiation hydrodynamic code the fluid is assumed to be ideal and irrotational 

which allows potential theory to be used. The other assumption is that the 

incident wave acting on the body is of small amplitude when compared to its 

length (i.e. small slope). The theory may be used to calculate the active wave 

excitation on fixed bodies and the reactive wave forces on floating bodies. 

Since the theory is first order the linear theory may be used to formulate the 

velocity potential within the fluid domain. The fluid flow field to be 

characterised by a velocity potential can be defined as: 

! !! !!!! ! ! ! !!!!! !!!"# 

Equation 5-1 

This complex potential function ! may be separated into contributions from 

the six modes of body motion, the incident wave field and the diffracted or 

scattered wave field. The problem can be considered to be a combination of two 

separate problems. Since the linear super position holds then this is acceptable.  

The two problems may be viewed as:  

• The problem of a floating body undergoing harmonic oscillations in 

still water. The body motions will cause the fluid to react on the body 

and this is the cause of the reactive body forces. It should be noted that 

these reactive forces will then be a function of motions and are 

commonly written in terms of added mass and wave damping 

coefficients. 

• The problem of a fixed body being subjected to a regular incident 

wave train. The wave forces acting on the fixed body are considered to 

be the wave excitation forces. Again it is worth noting that these are 
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usually broken down into two components being the Froude-Krylov 

and wave diffraction force components. 

The potential may therefore be written as: 

! !!!!! !!!"# ! !! ! !! ! !!!!
!

!!!
!!!"# 

Equation 5-2 

where:  

!! is the incident wave potential 

!! is the diffracted wave potential 

!! is the potential due to !-th motion 

!! !is the !-th motion (per unit wave amplitude) 

! is the frequency of incident wave 

The potential for the undisturbed incident wave field at a point !!!!!  in the 

fluid domain is known and may be written as: 

!! !
!! ! ! ! !"#$ ! ! ! ! !!" ! !"#!!! !"#! !!!"#

! !"#$ !"  

Equation 5-3 

where: 

! is the depth of water 

! is the wave number (i.e. !!/wavelength) 

! is the wave direction (0 degrees along +! axis) 

This incident wave function represents a cosine wave travelling in the 

positive ! direction. The relationship between the wave number ! and the 

angular frequency ! is given by: 
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!! ! ! ! ! ! !"#$ !"  

Equation 5-4 

The potential functions are complex but the resultant physical quantities such 

as fluid pressure and body motions will be obtained by considering the real 

part only. However the imaginary part contains the phase information.   

The equation should be solved for the unknown potentials and this is done 

by using Green's Theorem together with the required boundary conditions on 

the surfaces which enclose the fluid domain. The potentials are solved at a 

discrete number of points on the wetted body surface. 

A simplistic box shaped barge model was developed in the hydrodynamic 

software referenced above to assess possibility of calculating the fluid velocity 

relative to the body motion in the vortex shedding edge. Outline of the model is 

presented in Figure 5-1 below. 

 

Figure 5-1: Simplistic box shaped barge model 

The AQWA-Line output files were post-processed using AQWA-Flow 

software to calculate the fluid velocity and the body velocity defined points at 

centre of facets along the length of the barge and adjacent to the vortex 
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shedding edge. The same parameters where calculated from MARTEC FD-

Waveload and PRECAL software using Macros developed in this study. 

During this process strip of facets where defined along the length of the 

model separately in portside and starboard side. Each strip consists of two 

facets at the side and two facets at the bottom of the model. For example 

referring to Figure 5-2, one of the strips along the length of the model consist of 

facet numbers 180 and 184 at side and facet numbers 164 and 168 at the bottom 

on starboard side.  

In each frequency the fluid velocity from potential calculations is defined in 

centre of each facet as well as the body velocity. By deducting these velocities 

the relative velocity between the oscillating body and the fluid is calculated at 

centre of each facet. These velocities are then combined using weighted 

averaging to calculate the representative velocity at the tip of the shedding 

edge. 

 

Figure 5-2: Details of the vortex shedding edge 

Since in each iteration the calculated viscous damping is required to be input 

back in to the equation of motion, it is crucial to be able to conduct this process 

automatically. 
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Among the initially chosen hydrodynamic software only MARTEC provided 

access to FD-Waveload source code and allowed implementation of the 

automatic damping inputting function. Hence FD-Waveload was chosen in this 

study for further development of the black box.  

After identifying the most appropriate code, a preliminary roll damping 

calculation exercise was conducted to estimate viscous roll damping for set of 

existing model test data in regular waves [82]. Details of this exercise is 

discussed in Section 6.1. 

 

5.2. Code Development for Regular Waves 

Use of diffraction-radiation hydrodynamic codes in calculating motion of a 

floating body in regular waves is a common practice. There are several 

commercially available codes that use the linear potential theory to calculate 

motion characteristics of a vessel. The motion characteristics are normally 

presented in form of Response Amplitude Operators (RAO) and are normalised 

for incident regular waves within a range of frequencies and unit amplitude. 

Since the roll RAO is the most sensitive to the assumed damping value 

among other responses, this section of the dissertation concentrates on 

application of Equation 4-41 in estimate of roll damping coefficient. The 

calculated damping coefficient can then be used in a conventional linear 

diffraction-radiation hydrodynamic code as an additional linear roll damping. 

The same procedure is applicable to estimate of sway and heave damping 

coefficients using the formulation given in Equation 4-39 and Equation 4-40.  

Noting Equation 4-41, the key parameter in calculating roll damping is the 

relative velocity of the fluid at the shedding edge in combined six degree of 

freedom motion (i.e. !) and in forced roll mode (i.e. !!!. 
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5.2.1 Step-by-Step Viscous Roll Damping Calculation in Regular Waves 

Calculation of the final roll RAO with viscous damping consists of following 

steps for each frequency within the assumed frequency range individually: 

Step 1: 

A potential flow calculation is conducted and equations of motion are solved 

to calculate the fluid velocity relative to the vessel at the centre of facets along 

the shedding edge in a six degree of freedom coupled motion for a given 

frequency. This consists of calculating the velocity in the fluid field at centre of 

the facets adjacent to the shedding edge as well as calculating velocity of the 

floating body at centre of the same facets in each frequency. By deducting the 

fluid velocity from the body velocity the relative velocity between fluid and the 

body at centre of the facets adjacent to the shedding edge is calculated. 

Step 2: 

The fluid velocity relative to the vessel at the centre of the facets along the 

shedding edge in forced roll mode is calculated separately. This follows the 

same procedure as in Step 1 above but the software control parameters are 

modified to conduct the potential calculations in a one degree of freedom mode. 

In this case the degree of freedom is the degree under study i.e. roll, heave or 

sway. 

Step 3: 

Since the relative fluid velocity at tip of the shedding edge becomes singular 

from diffraction-radiation calculations the relative fluid velocity at the tip of the 

shedding edge is assumed to be equal to the weighted average of the relative 

fluid velocity at four facets in each strip i.e. two vertical facets and two 

horizontal facets adjacent to the tip. In this process the weight is defined based 

on the distance from centre of the facet to the vortex shedding tip. The process 

is conducted separately for velocities calculated in Step 1 and Step 2 above and 

individually for each frequency. 
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Step 4: 

Based on the vortex shedding edge velocities calculated from Step 3, the !! 

(i.e. vortex shedding damping) value is calculated using Equation 4-41 for each 

strip of facets separately on the port and starboard sides. The !! values 

calculated are then integrated along the full length of the model and in port side 

as well as the starboard side of the model to calculate the total vortex shedding 

damping. 

Step 5: 

The calculated total vortex shedding damping is then compared with the 

damping value used in the potential calculations in Steps 1 and 2. If the 

difference between the damping values is more than the pre-defined 

convergence tolerance, the new viscous damping value is put back in to the 

hydrodynamic model for motion calculation in Steps 1 and 2 above. 

Step 6: 

Steps 1 to 5 are iterated for the regular wave frequency under study until the 

difference in the calculated additional roll damping from successive iterations is 

within a pre-defined limit. If this is the case then convergence is assumed and 

the RAO from the last iteration is assumed to be the final damped RAO. 

The procedure is repeated separately for each frequency. Flowchart of the 

viscous roll damping procedure is presented in Figure 5-3. 
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Figure 5-3: Flowchart for viscous roll damping calculation procedure for a given regular wave frequency 
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Calculate relative fluid velocity in 
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each strip along the length for a given 

frequency 

Calculate weighted average 

of the relative velocities on 

each strip 

Calculate weighted average 

of the relative velocities on 

each strip 

Calculate the vortex shedding 

damping for each strip along the 

length 

Is the difference between 

calculated total damping and 

utilised value less than the 

required set tolerance? 

Finish 

Integrate the vortex shedding 

damping along the length in port and 

starboard sides 

No 

Yes 



 75 

5.3. Code Development for Irregular Waves 

Noting the viscous damping formulation presented in Section 4.1 and using 

the code developed for the approach explained in Section 5.2.1 a new step-by-

step methodology was developed to estimate viscous roll damping of a floating 

body for a given irregular wave spectrum. 

The methodology in Section 5.2.1 consists of running the code for a set of 

regular wave frequencies. This results in computing the barge responses and 

hence the averaged velocity values of a shedding edge at a set frequency. These 

velocity values are obtained for every element at the edge along both bilges of 

the barge and are summed over the incident and diffracted waves for both six 

degree of freedom mode and forced motion mode separately. The values are 

then stored for each frequency and a nonlinear component of damping is 

computed for each frequency. Finally this process is repeated iteratively by 

inserting the calculated damping value from each iteration into the dynamic 

equation corresponding to each frequency until the response converges. This 

process results in calculating a viscous damping for a given frequency.  

In order to apply the same methodology to irregular wave the hydrodynamic 

code is run for range of frequencies representing frequency range of the 

Irregular wave spectrum simultaneously. This requires discretization of the 

irregular wave spectrum and identification of the representative frequency for 

each frequency bin. This is normally chosen to be the midpoint of the frequency 

bin.  

The barge responses are then computed resulting in calculation of the relative 

velocity values for each edge and in each frequency. These velocity values are 

obtained for every element of edge along both bilges of the barge and are 

summed over the incident and diffracted waves. Same as before this is done 

separately in the six degree of freedom mode as well as the forced mode.  

Since in this process the relative velocities are calculated simultaneously for 

all the frequencies in each iteration a mean square over all frequencies can then 
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be calculated from these sinusoidal values as below and is stored for each strip 

along the shedding edge: 

!!"# ! ! !
!

!
! !! ! ! !"#$ ! !! !  

Equation 5-5 

where ! denotes the assumed strip at the shedding edge and ! denotes the 

number of frequencies representing the full frequency range of the irregular 

wave spectrum. 

Then the nonlinear component of damping is calculated from ! ! !!"# ! , 

which is independent of the frequency.  

Regarding the value of ! Borgman [83] has the same relationship (See 

Equation 69 of [83]) to get an equivalence between ! !  and                                   

! ! ! ! !!"# where ! is the velocity and ! ! !! !"# !. If this is substituted into the 

relationship and both sides are multiplied by !"# !, by integrating over the flow 

cycle of ! to !" the result will be ! ! !
!" ! !!!. This weighting of the integral 

corresponds to weighting by the velocity that in turn corresponds to what is 

done in Morison’s equation to evaluate the drag coefficient. 

An alternative would be to multiply by the sign of the velocity and just 

equate to mean of the two sides equivalent to equating means over each half 

cycle. In that case the result will be ! !
! .  

Borgman’s assumption to get to the value of ! ! !
!  in [83] is not clear. It 

may be in order to get to this bigger value he is assuming that the waves have 

higher extremes and he is incorporating some nonlinear wave theory. 

In this dissertation ! is assumed to have a value somewhere in the range 1.2 

to !. 
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The process is iterated by inserting the calculated viscous damping value into 

the dynamic equation for each frequency until response is converged. It should 

be noted that unlike the regular wave viscous damping calculation procedure 

the same viscous damping value is used for all frequencies and it only changes 

for each iteration step. 

In contrast to the regular wave case in which the absolute values of edge 

velocities in each frequency are used in the calculation, in the irregular wave 

case the root mean square of the edge velocities which is a universal value for 

all frequencies at each edge element is used in calculating the damping. 

5.3.1 Step-by-Step Viscous Roll Damping Calculation in Irregular Waves 

The process starts with a known irregular wave spectrum for which the 

viscous damping needs to be linearized. The wave spectrum is then divided in 

to several frequency bins along its frequency range. Each frequency bin consists 

of two frequencies denoting beginning and end of the assumed bin. The 

frequency at the centre of the bin is considered to be the representative 

frequency of the bin and used in the viscous damping calculation. The 

amplitude of a regular wave which is representative of the assumed frequency 

bin (i.e. !!!"!!!can then be calculated from Equation 5-6 as below: 

!!"#! ! ! ! ! ! !! 

Equation 5-6 

The !!"#! of each frequency bin is then used individually to calculate the 

relative fluid velocity at the shedding edge at each associated frequency 

however, the velocities are then averaged to calculate a single damping value 

that is applicable to the wave spectrum frequency range. 

Noting the procedure explained in Section 5.3 calculation of final roll RAO 

including viscous damping linearized for a given irregular wave spectrum is 

defined in a step-by-step process below: 
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Step 1: 

A potential flow calculation is conducted and equations of motion are solved 

to calculate the fluid velocity relative to the vessel at the centre of facets along 

the shedding edge in a six degree of freedom coupled motion. This is done for 

range of frequencies representing the frequency band of the given irregular 

wave spectrum. This consists of calculating the velocity in the fluid field at 

centre of the facets adjacent to the shedding edge. Velocities of the floating 

body at centre of the same facets in each frequency are calculated using same 

damping value in each iteration for all the frequencies in the range but for the 

!!"#! values associated to each frequency bin. By deducting the fluid velocities 

from the body velocities the relative velocities between fluid and the body at 

centre of the facets adjacent to the shedding edge are calculated for all 

frequencies using a damping value constant for the iteration.  

Step 2: 

The fluid velocities relative to the vessel at the centre of the facets along the 

shedding edge in forced roll mode are calculated separately. This follows the 

same procedure as in Step 1 above but the software control parameters are 

modified to conduct the potential calculations in a one degree of freedom mode. 

In this case the degree of freedom is the degree under study i.e. roll, heave or 

sway. 

Step 3: 

Since the relative fluid velocity at tip of the shedding edge becomes singular 

from diffraction-radiation calculations the relative fluid velocity at the tip of the 

shedding edge is assumed to be equal to the weighted average of the relative 

fluid velocity at four facets in each strip (i.e. two vertical facets and two 

horizontal facets adjacent to the tip). In this process the weight is defined based 

on the distance from centre of the facet to the vortex shedding tip. The process 

is conducted separately for velocities calculated in Step 1 and Step 2 above and 

individually for each frequency. 
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Step 4: 

A root mean square average is taken over the weighted averaged velocities 

calculated in all frequencies within the iteration. This is done separately for the 

six degree of freedom mode as well as the forced motion mode. The process 

results in a root mean square average velocity representing the average relative 

velocity at the tip of the shedding edge over all frequencies. 

Step 5: 

Using the root mean square averaged velocities calculated for the free 

floating mode and forced mode from Step 4 the !! (i.e. vortex shedding 

damping) value is calculated using Equation 4-41 for each strip of facets 

separately on the port and starboard sides. The !! values calculated are then 

integrated along the full length of the model and in port side as well as the 

starboard side of the model to calculate the total vortex shedding damping. 

Step 6: 

The calculated total vortex shedding damping is then compared with the 

damping value used in the potential calculations in Steps 1 and 2. If the 

difference between the damping values is more than the pre-defined 

convergence tolerance the new viscous damping value is put back in to the 

hydrodynamic model for motion calculation in Steps 1 and 2 above. 

Step7: 

Steps 1 to 6 are iterated using a constant damping value for all frequencies in 

each iteration until the difference in the calculated additional roll damping from 

successive iterations is within a pre-defined limit. If this is the case then 

convergence is assumed and the RAO from the last iteration is assumed to be 

the final damped RAO. 

Flowchart of the viscous roll damping procedure in irregular waves is 

presented in Figure 5-4. 
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Figure 5-4: Flowchart for viscous roll damping calculation procedure in a given irregular wave frequency 
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6 Implementation of the Numerical Model 

 

 

 

 

oting the viscous damping calculation development outlined in 

Chapter 4 and using the code development outlined in Chapter 5 an 

initial attempt was made to apply the method in calculation of viscous roll 

damping coefficient. The calculated roll damping value representing the 

viscous effects was then used in linear diffraction-radiation hydrodynamic 

software to calculate the damped RAO in regular weaves. This was to conduct 

preliminary assessment of validity of the procedure in comparison to set of 

available model test data [82] before embarking on a dedicated model test 

campaign. The initial numerical results were confirmed to agree well with the 

available model test data. Details of this initial assessment are presented in 

Section 6.1. 

Following a good agreement achieved between the theoretical calculation and 

the existing model test data an independent model test campaign was 

conducted to eliminate any ambiguity from outcome of the preliminary 

comparisons. This assessment consisted of building a physical model of a new 

box shaped barge as well as the associated hydrodynamic model. The model 

test campaign was conducted in the Newcastle University model test facilities. 

Further details on this assessment are provided in Section 6.2.  

 

N 
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6.1. Preliminary Validation Study 

Initially a comparison was conducted between theoretical results and model 

test data for a sharp keel-edge profile provided by Brown et al. [82]. This 

consisted of preparation of a three dimensional diffraction-radiation potential 

hydrodynamic model based on the main characteristics presented by Brown et 

al. [82]. The main characteristics of the model are presented in Table 6-1. The 

model was used to calculate the required relative velocities at the shedding 

edges for a given frequency in each iteration as outlined in Section 4.1. 

Table 6-1: Main characteristics of the Brown et al. [82] model 

Main characteristic - 

Length (m) 2.4 

Beam (m) 0.8 

Draught (m) 0.105 

Mass (kg) 200.8 

Longitudinal Centre of Gravity from AP (m) 1.2 

Vertical Centre of Gravity from keel (m) 0.111 

Roll Radius of Gyration (m) 0.244 

Pitch Radius of Gyration (m) 0.688 

Yaw Radius of Gyration (m) 0.598 

 

Using the calculated relative velocities in Equation 4-41 the viscous roll 

damping was calculated. The viscous roll damping was then input back in to 

the software as additional roll damping iteratively until the damping was 

converged within defined tolerances. Consequently the final damped Response 

Amplitude Operator (RAO) was calculated. The set damping tolerance in this 

case was equal to a variation of ±1° between the calculated RAO amplitudes in 

every two consecutive iteration. 

The hydrodynamic model associated to parameters defined in Table 6-1 is 

presented in Figure 6-1 showing the boundary element panel discretisation. 
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Figure 6-1: Hydrodynamic model of the Brown et al. [82] barge 

Outcome of the comparison form this assessment is presented in Section 7.1. 

 

6.2. Independent Model Test 

Noting the good agreement achieved between the model test data and the 

calculated damped RAO amplitudes presented in Figure 7-3, attempt was made 

to conduct a dedicated model test campaign to confirm the validity of the 

procedure further and eliminate any ambiguity in the RAO comparison.  

The model test was conducted in the Newcastle University Marine 

Hydrodynamics Laboratory. The laboratory consists of a towing tank that is 

equipped with wave maker. The wave maker can be used to generate regular 

waves up to 0.12m height and wave periods in range of 0.5 to 2 seconds. It can 

also be used to generate long crested random seas using variety of wave 

spectra. 

Dimensions of the towing tank are presented in Table 6-2. 

Table 6-2: Dimensions of the towig tank 

Length (m) 37 

Width (m) 3.7 

Water depth (m) 1.25 
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In this exercise an optical motion sensor (Qualisys IR Tracking System) was 

used to measure motion of the floating barge in waves. The system consisted of 

two infrared optical cameras emitting a beam of infrared light to a set of three 

retro-reflective markers located on the barge. Sensors on the cameras capture 

the reflected infrared lights from the markers. These digital data are then used 

to calculate motion of the floating body. The post processed data is presented in 

form of six degree of freedom motion time series.  

Furthermore a wave height probe was used in vicinity of the floating barge to 

measure height of the incident wave in each test.  

The waves generated in the tank by a group of paddle wave makers located 

at one end of the tank. Layout of the tank together with the wave making 

paddles at the end is shown in Figure 6-2. 

 

Figure 6-2: Tank layout and wave maker paddles 

A wedge type beach at the other end of the tank absorbs the generated waves. 

The beach consists of energy absorbing sheets that eliminate reflection of the 
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waves from opposite side of the tank. Figure 6-3 demonstrates the energy 

absorbing sheets arrangement in the tank. 

 

Figure 6-3: Energy absorbing sheets in the towing tank 

A boxed shape model was built and used for the model test activities. Extent 

of the model is presented in Figure 6-4. The barge was built from 4 mm thick 

polyvinyl chloride (PVC) sheets. The main characteristics of the box shaped 

model with rectangular bilge keels are outlined in Table 6-3. 
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Figure 6-4: Extent of the box shaped model 

 

Table 6-3: Main characteristics of the model 

Main characteristic - 

Length (m) 1.538 

Beam (m) 0.403 

Draught (m) 0.064 

Mass (kg) 39.67 

Longitudinal Centre of Gravity from AP (m) 0.004 

Vertical Centre of Gravity from keel (m) 0.032 

Roll Radius of Gyration (m) 0.1405 

Pitch Radius of Gyration (m) 0.4306 

Yaw Radius of Gyration (m) 0.4306 
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Hydrostatic characteristics of the model including weight, centre of gravity, 

radius of gyration and calculation of metacentric height were done in the 

laboratory in advance of positioning the model in to the tank. Figure 6-5 shows 

part of the measurements conducted on the model before placing it in to the 

tank. 

 

Figure 6-5: Measurmnet of hydrostatic charactristics of the model 

Figure 6-6 shows the model during model test in regular waves. The model 

was secured in its place using four strings including a soft spring in each string. 

The strings were connected to pins in both ends of the model. This ensured the 

heading of the model remains beam to the incident waves. 

A wave amplitude probe was situated in vicinity of the model to measure the 

incident wave amplitude generated by the wave maker. The probe is visible in 

Figure 6-6. The measured incident wave height was then used in linearization 

of the measured roll amplitudes in each frequency to accurately calculate the 

roll RAO in each tested frequency. 
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Figure 6-6: The model during model test 

Two separate model tests were conducted to measure the response of the 

model in regular waves and irregular waves. Results of the model test exercises 

are presented in Sections 7.2 and 7.3. 
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7 Results and Discussions 

 

 

 

 

he numerical calculations together with associated preliminary model 

test data and the data generated from independent model test 

campaign are presented in this chapter. The results consist of roll RAOs from 

potential calculations and the roll RAOs calculated for the estimated viscous 

damping. No additional damping is assumed to represent the viscous damping 

in potential calculations however, the estimated viscous damping is considered 

in calculation of the damped RAOs as additional linear damping. 

Details of preliminary application of the viscous roll damping procedure and 

final confirmation of validity of the procedure are discussed in this chapter. 

Calculations are done for regular waves as well as irregular waves. The resulted 

roll RAOs for regular wave calculations are presented in Sections 7.1 and 7.2. 

The calculated RAOs are compared with model test data for the preliminary 

validation and the independent model test data respectively. The results and 

comparisons for irregular waves are presented in Section 7.3. 

 

7.1. Preliminary Assessment Results 

Results of the preliminary assessment from numerical calculation were 

compared with the model test roll RAOs presented by Brown et al. [82].  

T 
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Figure 7-1 shows the potential roll RAO calculated from a hydrodynamic 

model of the Brown et al. barge as defined in Table 6-1 without any additional 

viscous roll damping. 

The vertical axis in Figure 7-1 demonstrates the roll RAO amplitude that is 

normalised for the incident wave height. Hence the unit for the vertical axis 

demonstrates the roll angle per millimetre wave height of the incident wave 

(i.e. deg./mm). The longitudinal axis in Figure 7-1 represents frequency of the 

incident wave in radians per second (i.e. rad/s).  

Figure 7-1: Potential roll RAO in beam seas for Brown et al. [82] model 

Tabulated values associated to Figure 7-1 are presented in Table 7-1 below: 

Table 7-1: Tabulated values of the potential RAO for Brown et al. [82] model 

Freq. 
(rad/s) 

3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 

Amp. 
(deg./mm) 

0.0538 0.06368 0.07472 0.08721 0.1016 0.1186 0.1395 0.1664 0.2035 

 
Freq. 

(rad/s) 
5.25 5.5 5.75 5.80 6 6.25 6.5 6.75 7.00 

Amp. 
(deg./mm) 

0.2589 0.3487 0.4852 0.511101 0.5235 0.362 0.2355 0.1632 0.11929 
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The damped RAO in each frequency including effect of the additional viscous 

damping calculated using the procedure outlined in Section 4.1 is presented in 

Figure 7-2.  

Since viscous damping is a function of incident wave height the damped 

RAO was calculated for a 24mm regular wave height. In this calculation the 

calculated damped RAO amplitude in each frequency is converged to a 

tolerance of 0.1 degree per meter of incident wave height. 

Figure 7-2: Damped roll RAO in beam seas for Brown et al. [82] model 

Tabulated values associated to Figure 7-2 are presented in Table 7-2 below: 

Table 7-2: Tabulated values of the damped RAO for Brown et al. [82] model 

Freq. 
(rad/s) 

4 5 5.5 5.7 6 7 8 

Amp. 
(deg./mm) 

0.10136 0.1902 0.24423 0.2497 0.2315 0.1045 0.0419 

 

The RAOs shown in Figure 7-1 and Figure 7-2 represent the roll RAOs in 

beam seas for a 1:36 scale model with a sharp keel-edge profile. The associated 

model test roll RAO in beam seas from the Brown et al. [82] paper is presented 

in Appendix Figure A- 1. These RAOs are represented in Figure 7-3 for ease of 
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comparison. Effect of additional viscous damping can be clearly seen in 

comparison between the potential RAO and the damped RAO.  

Furthermore the calculated damped RAO seems to be agreeing well with the 

model test data recovered from Brown et al. [82]. 

Figure 7-3: Comparison of roll RAO in Beam Seas for Brown et al. [82] model 

7.2. Roll Response in Regular Waves 

A new hydrodynamic model of the barge given in Table 6-3 was built in FD-

Waveload hydrodynamic software to calculate the potential roll RAO of the 

independent model test assessment. 

During post processing the model test data the measured regular incident 

wave amplitudes and the measured motion responses were used to calculate 

the model test RAO for each frequency. 

The calculated potential roll RAO of the model is presented in Figure 7-4. No 

additional damping is considered in calculation of the potential RAO.  
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Figure 7-4: : Potential roll RAO in beam seas for the Hajiarab et al. [7] model 

Tabulated values associated with the roll RAO presented in Figure 7-4 are 

provided in Table 7-3. 

Table 7-3: Tabulated values of the potential RAO for Hajiarab et al. [7] model 

Freq. 
(rad/s) 

3 4 5.02 5.34 5.97 6.28 6.59 

Amp. 
(deg./mm) 

0.05 0.10 0.17 0.20 0.29 0.35 0.44 

 
Freq. 

(rad/s) 
6.91 7.22 7.54 7.85 8.17 8.8 9.42 

Amp. 
(deg./mm) 

0.58 0.80 1.05 0.94 0.64 0.33 0.20 

 
Freq. 

(rad/s) 
10.05 11 12 12.56 13 14 15 

Amp. 
(deg./mm) 

0.13 0.07 0.04 0.03 0.02 0.01 0.01 

 

The same hydrodynamic model is used together with the viscous roll 

damping procedure outlined in Section 5.2 to calculate the damped roll RAO of 

the model characterised in Table 6-3. The calculated damped roll RAO is 

presented in Figure 7-5. 
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Figure 7-5: Damped roll RAO in beam seas for Hajiarab et al. [7] model 

The tabulated data associated to Figure 7-5 are presented in Table 7-4 below: 

Table 7-4: Tabulated values of the damped RAO for Hajiarab et al. [7] model 

Freq. 
(rad/s) 5.02 5.34 5.65 5.96 6.28 6.59 
Amp. 

(deg./mm) 0.17 0.20 0.24 0.28 0.34 0.41 
 

Freq. 
(rad/s) 6.91 7.22 7.53 7.85 8.16 8.79 
Amp. 

(deg./mm) 0.47 0.53 0.62 0.46 0.37 0.26 
 

Freq. 
(rad/s) 9.42 10.05 11 12 12.56 
Amp. 

(deg./mm) 0.19 0.12 0.07 0.04 0.03 

 

The RAO amplitudes in each frequency in the damped RAO presented in 

Figure 7-5 are individually linearized for the wave heights measured during the 

model test for each frequency.  
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Figure 7-6: Model test roll RAO in beam seas for Hajiarab et al. [7] model 

The wave height amplitudes for which the damping is linearized are 

presented in Table 7-5 together with the tabulated model test RAO data 

associated to Figure 7-6. 

Table 7-5: Measured model test RAO and incident wave amplitudes for Hajiarab et al. [7] model 

Freq. 
(rad/s) 

5.03 5.34 5.65 5.97 6.28 

Amp. 
(deg./mm) 

0.14 0.17 0.19 0.23 0.23 

Wave Amp. 
(mm) 

10.73 11.59 10.86 9.07 10.09 

 
Freq. 

(rad/s) 
6.60 6.91 7.23 7.54 7.85 

Amp. 
(deg./mm) 

0.31 0.30 0.50 0.65 0.55 

Wave Amp. 
(mm) 

9.45 12.97 11.14 7.27 12.23 

 
Freq. 

(rad/s) 
8.17 8.80 9.42 10.05 12.57 

Amp. 
(deg./mm) 

0.42 0.33 0.27 0.15 0.06 

Wave Amp. 
(mm) 

14.43 13.98 8.66 9.27 4.90 
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The roll RAO amplitudes are calculated by post processing the measured roll 

amplitude time series in each incident wave frequency. The roll motion of the 

barge is measured in time steps of 0.01 second. Same time step is used for 

measurement of the incident wave amplitudes. 

The measured model test RAO and the calculated Damped RAO together 

with the Potential RAO are compared in Figure 7-7. 

Figure 7-7: Comparison of Roll RAOs in Beam Seas for Hajiarab et al. [7] model 

Since the calculated viscous damping is dependent on the assumed incident 

wave height further calculation was done to assess effect of wave height on the 

final damped RAO. A range of damped RAOs linearized for regular wave 

amplitudes of 5mm, 8mm, 10mm, 12mm and 14mm were calculated to assess 

effect of damping linearization with respect to wave amplitude. Outcome of 

these calculations are presented in Figure 7-8. 

Effect of variation in the assumed linearization wave height on the final 

damped RAO is clear in Figure 7-8. Increase in the assumed linearization wave 

height results in decrease in the damped roll RAO amplitude, demonstrating 

generation of higher viscous damping accordingly. 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

2 3 4 5 6 7 8 9 10 11 12 13 14 

A
m

p
l.(

d
eg

./m
m

) 

Freq. (rad/s) 

Comparison of the Roll RAOs in Beam Seas 

Potential RAO 

Damped RAO 

Model Test RAO 



 97 

Figure 7-8: Comparison of roll RAOs damped for different incident wave amplitudes 

It should be noted that the calculation converges after few iterations for 

frequencies away from the peak frequency. As the calculation approaches to the 

peak frequency, number of iterations to converge the calculation increases 

significantly. This determines the time needed to conduct the calculation in 

each frequency. 

 

7.3. Roll Response in Irregular Waves 

In order to utilise the viscous damping procedure outlined in Section 5.3 to 

estimate the damped RAO in irregular waves represented by an irregular wave 

spectrum, a wave spectrum was assumed as the incident wave. This wave 

spectrum was a Pierson-Moskowitz spectrum with !! ! !!!" meter and peak 

frequency of ! ! !!!" rad/s. 

Frequency bins were considered along the frequency axis of the spectrum. 

The frequency bins are shown in Figure 7-9. For each frequency bin the 

associated regular wave amplitude is calculated using Equation 5-6.  
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Figure 7-9: The incident Pierson-Moskowitz irregular wave spectrum and frequency bins 

Using the methodology in Section 5.3 the calculated damped roll RAO 

linearized for the given Pierson-Moskowitz spectrum is shown in Figure 7-10. 

The calculated damped roll RAO demonstrated in Figure 7-10 confirmed 

convergence of the method outlined in Section 5.3.  

In order to assess sensitivity of the method to variation in frequency bin sizes 

further two bin sizes were assumed for the same given Pierson-Moskowitz 

spectrum namely Bin#2 and Bin#3. The size of the frequency bins in Bin#2 and 

Bin#3 are half and twice of the frequency bin sizes assumed in the initial 

assessment (i.e. Bin#1) presented in Figure 7-10 respectively. 
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Figure 7-10: Calculated damped roll RAO associated to the Pierson-Moskowitz spectrum 

A comparison between calculated damped RAOs for the three bin sizes is 

presented in Figure 7-11. 

Figure 7-11: Sensitivity of the method to variation in frequency bin sizes 

The tabulated data associated to the damped RAO for frequency bin sizes of 

Bin#1 are provided in Table 7-6. 
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Table 7-6: Tabulated data associted to damped RAO calculation for Bin#1 

Freq. 
(rad/s) 

Frequency Bin Bin Wave 
Amplitude 

(m) 

Damped RAO 
(deg/mm) Lower Limit Upper Limit 

3.00 2.50 3.50 3.07E-08 5.43E-02 

4.00 3.50 4.51 9.97E-05 1.00E-01 

5.02 4.51 5.18 6.57E-04 1.72E-01 

5.34 5.18 5.66 1.43E-03 2.03E-01 

5.97 5.66 6.13 2.07E-03 2.87E-01 

6.28 6.13 6.44 2.15E-03 3.48E-01 

6.59 6.44 6.75 2.39E-03 4.31E-01 

6.91 6.75 7.07 2.55E-03 5.57E-01 

7.22 7.07 7.38 2.64E-03 7.29E-01 

7.54 7.38 7.70 2.66E-03 8.82E-01 

7.85 7.70 8.01 2.64E-03 7.98E-01 

8.17 8.01 8.49 3.25E-03 5.83E-01 

8.80 8.49 9.11 3.40E-03 3.16E-01 

9.42 9.11 9.74 3.11E-03 1.95E-01 

10.05 9.74 10.53 3.15E-03 1.27E-01 

11.00 10.53 11.50 2.90E-03 7.31E-02 

12.00 11.50 12.28 2.23E-03 4.21E-02 

12.56 12.28 12.78 1.63E-03 3.15E-02 

13.00 12.78 13.50 1.79E-03 2.50E-02 

14.00 13.50 14.50 1.79E-03 1.17E-02 

15.00 14.50 15.44 1.48E-03 1.16E-02 

 

A comparison of the calculated potential roll RAO with the calculated 

damped RAOs for the three different assumed frequency bin sizes is presented 

in Figure 7-12. 
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Figure 7-12: Comparison of roll RAOs for an irregular wave 
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8 Conclusions and Recommendations 

 

 

 

 

esults of implementing the developed methodology to calculating the 

viscous roll damping in regular waves was presented in Chapter 7. 

This chapter also included the results of numerical assessments on application 

of the viscous damping methodology to an irregular wave spectrum. 

Conclusions on the presented results and recommendations for future work are 

presented in this chapter. 

 

8.1. Main Conclusions 

As demonstrated in Figure 7-3 initial comparisons showed that there is a 

good agreement between the model test RAO and the damped RAO in regular 

waves. This indicated that the theoretical method provides a good estimate of 

the viscous damping of the vessel due to vortex shedding from its edges. 

Further comparison with dedicated model test data and new model 

characteristics presented in Figure 7-7 provided further assurance that the 

developed methodology provides reliable estimation of the damped roll RAO 

in regular waves. The good agreement between the model test RAO and the 

damped RAO presented in Figure 7-7 provides further evidence of the 

applicability of the Discrete Vortex Method for calculating the viscous roll 

damping of an oscillating box shaped vessel due to vortex shedding from its 

edges in regular waves.  

R 
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Noting the potential RAO, damped RAO and the model test RAO presented 

in Figure 7-7 it can be seen that the effect of the viscous damping is considerable 

within certain frequency range. In this study the frequency range was shown to 

be between 6.3 rad/s and 9.5 rad/s.  

Figure 7-8 demonstrates further the effect of roll damping linearization for a 

range of constant wave amplitudes. It can be observed that the effect of viscous 

damping increases with increase in the regular wave amplitude for which the 

damping is linearized especially in the peak region of the RAO. This is an 

expected relationship between the amplitude of the linearization wave and the 

roll RAO amplitude.  

It can also be observed from Figure 7-8 that the amplitude of the roll RAO 

varies with wave amplitude in a certain frequency band only. The frequency 

band in this case lies between 6.3 rad/s and 9.5 rad/s same as what was 

observed in Figure 7-7. Therefore it can be concluded that the effect of 

linearization of roll damping for a sea state seems to be focused on a frequency 

band around the peak of the RAO. Outside of this frequency band the effect of 

viscous damping becomes insignificant. 

Although sway and heave motions are not as sensitive as the roll motion to 

the assumed viscous damping, the same methodology can be used to calculate 

viscous damping for both sway and heave as well. In order to do this the same 

methodology as the one outlined for the roll viscous damping calculation can 

be used but the viscous damping values outlined in Equation 4-39 and Equation 

4-40 shall be used. 

As tangential relative fluid velocities are used in the method the same final 

velocities can be used to calculate skin friction damping. In this study skin 

friction damping is considered to be negligible and is ignored in calculation of 

the damped roll RAOs presented in this report. 

Noting the above, attempt was made to apply the method to calculating a 

damped roll RAO that is linearized for a given irregular wave spectrum. 

Outcome of this attempt is shown in Figure 7-10. The roll RAO presented in 
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Figure 7-10 confirmed that the revised method in considering effect of all 

frequencies in the irregular wave spectrum frequency band in calculating the 

damped roll RAO does converge. This was done for a set of assumed frequency 

bins within the frequency range of the irregular wave. 

The next step was to assess sensitivity of the method to variation in size of 

frequency bins. This was done for two different bin sizes, one twice the size of 

the original bin sizes and the other half of the size of the original bin sizes. 

Outcome of this assessment is presented in Figure 7-11.  

A considerable difference between calculated damped RAOs associated to 

Bin#1 and Bin#2 can be noted in Figure 7-11. Size of the frequency bins in the 

case of Bin#2 is half the bin sizes in the case of Bin#1. However by increasing 

the frequency bin sizes to twice the original bin sizes (i.e. Bin#3) the variation in 

the final damped roll RAO is minimal. 

Comparing the calculate damped roll RAOs with the associated potential 

RAO in Figure 7-12 shows that although the amplitude of the potential RAO is 

reduced to the calculated damped RAOs due to the assumed additional viscous 

damping within certain range in vicinity of the peak of the RAO, the reduction 

in RAO amplitude is not as much as what is seen for linearization for a regular 

wave. 

Further dedicate model tests and mathematical investigations in irregular 

waves are required to precisely calibrate the method for calculating the viscous 

damping in irregular waves. 

 

8.2. Recommendations for Future Work 

The study conducted demonstrates applicability of the discrete vortex 

method to the viscous roll damping problem. Since the developed method can 

be coded as a black box it can be used as an add-on together with any 

conventional hydrodynamic package to calculate viscous damping of a floating 
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system. This eliminates use of empirical formula or the need for conducting 

dedicated model tests. The methodology is also much simple in comparison to 

computational fluid dynamic (CFD) application. 

The methodology presented in this report should however be considered as a 

basis for further development of the method.  

8.2.1 Application of the Method to Rounded Bilge Vessels 

Application of the discrete vortex method to box shaped floating vessel using 

a hydrodynamic diffraction-radiation code was demonstrated in this report to 

be successful. However, most of the vessels especially the offshore floating 

systems such as FPSOs consist of a rounded bilge. 

It is known that an oscillatory rounded bilge sheds weaker vortexes in 

comparison to a rectangular edge hence resulting in less roll damping 

relatively. In practice this is compensated by addition of bilge keels to the 

vessel. 

The development presented in this work can be used as a basis to develop the 

method for application to floating vessels with a round bilge and furthermore 

to a floating vessel with round bilge with bilge keels. This should include 

conducting dedicated model tests to validate the development.  

Similar to this study the development can include estimation of the viscous 

damping for regular waves as well as irregular waves. 

8.2.2 Calibration of the Method for Irregular Waves 

Although the method was demonstrated to be converging for calculating the 

viscous damping in irregular waves, dedicated model test measurements 

should be conducted to calibrate the method for this application. This could 

consist of measuring the incident irregular wave spectrum and the associated 

roll response. The measured irregular wave spectrum can be used to calculate a 

damped roll RAO that is linearized for the measured wave spectrum. The 

damped RAO and the irregular wave spectrum can then be used to calculate a 
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response spectrum associated to the calculated damped RAO. Comparison of 

the response spectrum from measurements with the one calculated from the 

damped RAO can provide further understanding of calibration of the method 

in irregular waves. 

8.2.3 Use of Dipole Element to Represent Vortex Force 

Noting the vortex shedding basis explained in [3] if a vortex shedding in a 

transformed plane can be defined by !! then the vortex force associated to the 

shedding could be formulated accordingly. In this case the potential due to the 

shedding at a point far away from the edge can be written in transformed 

plane. This will be the potential due to a dipole.  

The source-sink dipole can be represented by a sheet element of length !! in 

physical z-plane lying along bisector of the shedding edge. 

Assuming the total strength of this sheet element is defined by !! then the 

dipole density can be defined as !!!!!
 . This can be thought of as equivalent to a 

vortex of strength !! ! !!!
!!

 at each end of the sheet element. In this case if the 

transformation local to the rectangular vortex shedding edge is defined as 

! ! !!
!
!, then the sheet element corresponding to vortex !! at the point !! ! !!

!

!
! 

in ! plane can be formulated accordingly. 

Assuming the dipole sheet element can be implemented in a hydrodynamic 

package the vortex shedding forces at a shedding edge in a hydrodynamic 

model can be calculated directly using these predefined elements. 
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Appendix Figure A- 1: Roll transfer function reported by Brown et al. [82] 
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ABSTRACT 
This paper describes a theoretical approach to predict roll 

damping for a three-dimensional barge shaped vessel in the 
frequency domain by matching a simple discrete vortex method 
(DVM), describing local separated flow, to an inviscid 3-D 
seakeeping code.  

The results are compared with model test experiments to 
demonstrate validity of the method. A good agreement between 
the model test RAO and the damped RAO is achieved. 
 
INTRODUCTION 

One of the most important subjects in FPSO design is 
prediction of roll motion. The best known method for 
predicting the roll motion is to include an equivalent linear 
viscous roll damping coefficient in the motion equation. 
Traditionally the roll damping coefficient has been determined 
by model testing. This is not always practical in the early stages 
of design and there are difficulties in scaling the results to full 
scale. Hence, several numerical methods have been developed 
to predict the roll damping without model testing.  

One of these methods makes use of the discrete vortex 
method which is a technique for analysing two-dimensional 
separated flows in the time domain. Graham [1] implemented a 
simple discrete vortex analysis for flow about an infinite wedge 
in oscillatory flows in which the flow in an infinite half-plane, 
the ! -plane, was transformed to flow about an isolated edge. 
The method enabled him to calculate a generalised vortex force 
on the infinite wedge from which he inferred the total force on 
a finite body with flow separation from its edges. The approach 
was developed further by Downie et al. [2, 3]. 

In the present work the same technique is used to model 
separated flow from  a barge shaped vessel to provide input to 
an inviscid 3-D seakeeping program to calculate its roll RAO, 
including vortex shedding, in frequency domain.  

The roll RAOs predicted by this approach are compared 
with model test results to assess its validity. The comparison 

shows a good agreement between the model tests and 
theoretical calculations. 

METHODOLOGY 
Downie et al. [2, 3] demonstrated that for the 2-D barge as 

defined in Figure 1, rolling about point "O" with an oscillatory 
angular velocity described by ( )tSinaa !! ""= ˆ! where a!  is the 
angular velocity and â  is the angular velocity amplitude, the 
vortex shedding roll moment Fv4 can be formulated as: 

( )tbcF hv
v !

"

#
$$=
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*
3
4

44 2
1

%

&&
'   (1) 

in which !  is the fluid field density, 4c  is a coefficient 
representing the lever arm for the vortex roll moment, b is the 
breadth of the barge, h  is the draught of the barge, v! is the 
velocity potential at the vertical side of the shedding edge, h!  
is the velocity potential at horizontal side of the shedding edge, 

*!" is the distance between points in the ! plane on either side 
of the edge and ( )t!  is the dimensionless vortex force 
coefficient which is pre-calculated using the discrete vortex 
method [1]. 

 

 
 

Figure 1: Definition of the cross section of a typical barge 
 

The vortex roll force presented in Equation (1) can be 
transformed in to the frequency domain as: 
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where 4a is the vortex induced added mass, 4b is vortex 
induced damping coefficient, ( )iBA+ is the vortex force 
coefficient calculated with the DVM for an infinite right angle 
edge and which is equal to 1.566-i0.157, q  is the total fluid 
velocity at the shedding edge calculated for the combined six 
degree of freedom motion, jq  is the total velocity at the 
shedding edge calculated in the forced roll motion mode, s  is 
the distance from edge to centre of the facet in which the 
velocity is calculated, x  is width of the facet along the length, 
H  is the wave height and µ  is Schwartz-Christoffel ratio 
which can be calculated by iteration for a given aspect ratio. In 
this case if the aspect ratio of the cross section of the barge is 

defined as 
h
bAR
2

= , then from a Schwartz-Christoffel 

transformation it can be shown that [3]: 
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where E  and K are elliptic integrals of the first and second 
kind respectively.  
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In this case the velocity at the tip of the shedding edge 
becomes singular in the sharp edged potential flow model. 
Therefore the velocity of the fluid at the edge for combined 
motion, (i.e. q ), and the forced roll mode, (i.e. jq ) are 
calculated using weighted averaging of the velocity at the two 
facets on each side of the vortex shedding edge. Weights are 
based on the distance between the centre of the facet to the 
shedding edge (i.e. s ). 

CASE STUDY 
A comparison was conducted between theoretical results 

and model test data for a sharp keel-edge profile provided by 
Brown et al. [4]. 

The main characteristics of the model are presented in 
Table 1. A 3-D diffraction radiation potential hydrodynamic 
model was used to calculate the required velocities at the 
shedding edges and the final damped Response Amplitude 
Operator (RAO). The hydrodynamic model showing the 
boundary element panel discretisation is presented in Figure 2. 

 
Table 1: Main characteristics of the model 

Main characteristic - 

Length (m) 2.4 

Beam (m) 0.8 

Draught(m) 0.105 

Mass (kg) 200.8 

Longitudinal Centre of Gravity from AP (m) 1.2 

Vertical Centre of Gravity from keel (m) 0.111 

Roll Radius of Gyration (m) 0.244 

Pitch Radius of Gyration (m) 0.688 

Yaw Radius of Gyration (m) 0.598 

 

 
Figure 2: Hydrodynamic model of the barge 

 
Calculation of the final roll RAO with viscous damping 

consists of the following steps: 
1) A potential flow calculation is conducted and the 

equations of motion solved to calculate the fluid 
velocity relative to the vessel at the centre of facets 
along the shedding edge in a six degree of freedom 
coupled motion. 

2) The fluid velocity relative to the vessel at the centre of 
the facets along the shedding edge in forced roll mode 
is calculated separately. 

3) Based on the velocities calculated in steps 1 and 2, the 
4b (vortex shedding damping) value is calculated from 

Equation (2) for each strip of facets separately on the 
port and starboard sides. 

4) The 4b values calculated in step 3 are integrated for 
the full model and the total value is put back in to the 
hydrodynamic model and motion calculation in steps 1 
and 2 above. 

5) Steps 1 to 4 are iterated until the difference in the 
calculated roll amplitude from successive iterations is 
within acceptable limit. Convergence is then assumed 
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and the procedure is repeated separately for each 
frequency. 

RESULTS 
The results from the calculation are compared with the 

model test roll RAOs [4] and the potential flow roll RAOs in 
Figure 3. 
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Figure 3: Comparison of Roll RAO in Beam Seas 

 
The model test data shown in Figure 3 represent the roll 

RAOs in beam seas for a 1:36 scale model with a sharp keel-
edge profile. The reported roll RAO in beam seas in the Brown 
et al. paper is shown in Appendix-Figure 1. 

The viscous damping for the damped RAO, which is a 
function of the wave height since it is non-linear, is calculated 
here for a 24mm wave height and is converged to an error of 
0.1 degree in the roll angle. 

DISCUSSIONS AND RECOMMENDATIONS 
As demonstrated in Figure 3, there is a good agreement 

between the model test RAO and the damped RAO indicating 
that the theoretical method provides a good estimate of the 
viscous damping of the vessel due to vortex shedding from its 
edges. 

Although viscous damping in pitch and heave motions is 
not as significant as for the roll for a barge, the same 
methodology can be used to calculate viscous damping for both 
pitch and heave as well. 

As tangential relative fluid velocities are used in this 
method, the same final velocities can be used to calculate skin 
friction damping. In this study skin friction damping is 
considered to be negligible and is ignored in the damped RAO. 

Further specific model test studies are taking place in 
Newcastle University towing tank facilities to measure the roll 
RAO of a barge shaped vessel for further comparison and 
validation of the method. 
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Appendix-Figure 1: Roll transfer function reported by 
Brown et al. [4] 
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SUMMARY 
 
This paper presents a study on viscous roll damping of a floating box-shaped vessel in the frequency domain. The 
application of the discrete vortex method (DVM) for calculation of the viscous roll damping in regular seas has been 
validated by model tests. Equivalent roll RAOs associated with a range of regular wave amplitudes are calculated to 
assess behaviour of the viscous roll damping in relation to incident wave amplitude linearisation. A model test is 
conducted using the model test facilities of the Marine Hydrodynamics Laboratory at Newcastle University to validate 
the applicability of the DVM in calculating the roll RAO in regular waves and to study the application of this method to 
irregular waves. Results of these model tests are presented in this paper.  
 
 
NOMENCLATURE 
 
µ  Schwartz-Christoffel ratio 
! Density of the fluid field 
a4 Vortex induced added mass coefficient 
b4 Vortex induced damping coefficient 
b Breadth of the barge 
ƒv4 Vortex force at shedding edge 
ƒ(t) Time series 
h Draught of the barge 
q Coupled motion fluid velocity at shedding edge  
qj Forced motion fluid velocity at shedding edge  
s Distance of shedding edge to centre of the facet  
x Width of the facet 
AR Aspect ratio of the barge cross section 
H Linearised damping wave height 
N Number of samples in time series 
S(w) Power spectrum in frequency domain 
 
1. INTRODUCTION 
 
Prediction of roll damping has been a challenging task 
for naval architects. Froude [1] studied the effect of wave 
height and steepness on the rolling of ships and the 
influence of this phenomenon on the design of ship hull 
shape.  
For floating offshore installations accurate estimate of 
the roll damping is important as the roll motion governs 
the transverse loads and this has direct impact on the 
design of hull, topside structures and process plant on 
board. Furthermore, noting the calculation limitations 
and time constraints for conducting motion analysis of a 
floating vessel in the time domain, frequency domain 
calculations have become the norm in the industry. 
Although most vessel responses can be calculated with 
acceptable accuracy in the frequency domain, this is 

more difficult for roll response due to the nonlinear 
behaviour of roll damping.  
Theoretically the total roll damping of a floating vessel 
can be divided into potential and viscous components. 
The potential component can be predicted accurately 
since it has a linear characteristic, however the viscous 
component is non-linear and prediction of this is more 
problematic. 
The challenge is to develop a reliable method for 
calculating the equivalent linearised roll damping which 
enables the required response statistics to be calculated in 
the frequency domain for operational strength and fatigue 
analysis. 
It is a common practice to divide the viscous roll 
damping into several components such as vortex 
shedding damping, skin friction damping, eddy damping, 
etc. [2]. For the case of a rolling box shaped floating 
vessel, vortex shedding is the dominant roll damping 
component. 
In order to estimate the vortex force on the shedding 
edge of a box shaped model, Graham [3] implemented a 
simple discrete vortex analysis for flow about an infinite 
wedge in oscillatory flow in which the flow in an infinite 
half-plane, the "-plane, was transformed to flow about an 
isolated edge. The method enabled him to calculate a 
generalised vortex force on the infinite wedge from 
which he inferred the total force on a finite body with 
flow separation from its edges. The approach was 
developed further by Downie et al. [4, 5]. Hajiarab et al. 
[6] applied the method to a 3-D numerical model for 
wave diffraction and demonstrated that it produces 
results that compare well with model test results in 
regular waves. 
In order to eliminate any uncertainty in the model test 
results used in [6], further model tests were conducted to 
validate the application of this methodology in regular 
waves. In this case the roll damping has been linearised 



for a given wave amplitude in each frequency. Results of 
these model tests are presented in this paper. 
In line with the Lloyd's Register Response Based 
Analysis (RBA) methodology [7], the longer term 
objective of this work is to develop a procedure for 
linearization of the roll damping to enable spectral 
analysis of response to be undertaken for given seastates. 
The progress made towards this is presented in this 
paper.  
 
2. METHODOLOGY 
 
As outlined in [6], the generated vortex force due to roll 
at the shedding edge of the box shaped vessel can be 
formulated as: 
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where µ , the Schwartz-Christoffel ratio, can be calculated 
by iteration for a given barge aspect ratio. In this case if 
the aspect ratio of the cross section of the barge is 
defined as: 

h

b
AR

2
=  

 
then from a Schwartz-Christoffel transformation it can be 
shown [5] that: 
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where E and K are elliptic integrals of the first and 
second kind respectively.  
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In order to compute the strength of the velocity 
singularity at the tip of the shedding edge in the sharp 
edged potential flow model, weighted averaging of the 
velocity at the two facets on each side of the vortex 
shedding edge is employed to calculate q and qj. The 

weights are based on the distance between the centre of 
the facet to the shedding edge, s. 
The extent of the hydrodynamic panel model of the barge 
is presented in Figure 1. 

 

Figure1: Hydrodynamic model of the barge 

 
In this method, for each frequency q and qj are calculated 
individually for each strip of panels along the length of 
the barge and at each iteration. Then by using the 
weighted averaging approach, the fluid velocity relative 
to the vessel at the shedding edge is estimated. The 
estimated relative fluid velocity is then used to calculate 
the vortex induced damping coefficient for each strip of 
panels on the port and starboard side of the model. These 
vortex induced damping coefficients are summed up 
along the length of the model to calculate the total vortex 
induced damping coefficient for the frequency under 
investigation. Finally the total vortex induced damping is 
inserted back into the hydrodynamic model for the next 
iteration of calculations. This process is repeated 
iteratively until the difference in calculated roll RAO in 
two consecutive iterations is less than 0.1 degrees per 
meter. 
 
3. CASE STUDY 
 
A box shaped model was used in this study to conduct 
model tests in the Marine Hydrodynamics Laboratory at 
Newcastle University. The main characteristics of the 
model are outlined in Table 1. 
 

Table 1: Main characteristics of the model 
Main characteristic - 

Length (m) 1.538 

Beam (m) 0.403 

Draught(m) 0.064 

Mass (kg) 39.67 

Longitudinal Centre of Gravity from midship (m) 0.004 

Vertical Centre of Gravity from keel (m) 0.032 

Roll Radius of Gyration (m) 0.1405 

Pitch Radius of Gyration (m) 0.4306 

Yaw Radius of Gyration (m) 0.4306 

 
Two separate model tests were conducted to measure the 
response of the model in regular waves and irregular 
waves. A wave amplitude probe was situated in the 
vicinity of the model to measure the incident wave 
amplitude generated by the wave maker. The motion 



response of the model was measured using an optical 
tracking system. 
 
4. RESULTS 
 
4.1 ROLL RESPONSE IN REGULAR WAVES 
 
The measured regular incident wave amplitudes and the 
measured motion responses were used to calculate the 
Model Test RAO for each frequency. Comparison of the 
measured Model Test RAO and the calculated Damped 
RAO together with the Potential RAO are presented in 
Figure 2. The measured incident wave amplitudes at each 
frequency are presented in Table 2. The measured 
incident wave amplitudes were used to calculated the 
Damped RAO. 

 
Table 2: Measured incident wave amplitudes at each 

frequency 
Freq. 

(rad/s) 
5.03 5.34 5.65 5.97 6.28 6.60 

Wave 
Amp. 
(mm) 

10.73 11.59 10.86 9.07 10.09 9.45 

 

Freq. 
(rad/s) 

6.91 7.23 7.54 7.85 8.17 8.80 

Wave 
Amp. 
(mm) 

12.97 11.14 7.27 12.23 14.43 13.98 

 
Freq. 

(rad/s) 
9.42 10.05 12.57    

Wave 
Amp. 
(mm) 

8.66 9.27 4.90    
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Figure 2: Comparison of Roll RAO in Beam Seas 

 
4.2 ROLL RESPONSE IN IRREGULAR WAVES 
 
Further to the model test in regular waves, an irregular 
wave train was generated in the wave maker and the time 
series of the incident irregular wave as well as the roll 
response were recorded. Using the Fast Fourier 
Transformation (FFT) technique the incident irregular 
wave and the associated roll time series were 
transformed to a power spectrum using: 
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The calculated incident irregular wave and the associated 
roll response spectra are presented in Figures 3 and 4. 
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Figure 3: Incident Irregular Wave Power Spectrum 
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Figure 4: Roll Response Power Spectrum 

 
Assuming a linear system response, the relationship 
between the incident wave spectrum and the response 
spectrum may be considered as: 
 

waveresponse
wSRAOwS Equivalent )()(

2
×=  

 
and the roll RAO associated with the recorded response 
(i.e. Equivalent RAO) calculated.  
Noting the good agreement of the mathematical model in 
predicting the Damped RAO in Figure 2, a range of 
Damped RAOs, linearised for regular wave amplitudes 
of 5mm, 8mm, 10mm, 12mm and 14mm were calculated 
to assess the effect of linearizing with respect to wave 
amplitude. These RAOs are illustrated in Figure 5 
together with the Equivalent RAO from the model test. 
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Figure 5: Comparison of Roll RAO database 

 
5. DISCUSSIONS AND CONCLUSIONS 
 
The good agreement between the Model Test RAO and 
the Damped RAO presented in Figure 2, provides further 



evidence of the applicability of the DVM for calculating 
the viscous roll damping of an oscillating box shaped 
vessel due to vortex shedding from its edges in regular 
waves. Although the skin friction damping is considered 
to be negligible and is ignored in the damped RAO in 
this study, as tangential relative fluid velocities are used 
in this method, the same final velocities could be used to 
calculate skin friction damping. 
Investigation of the applicable roll RAO of the box 
shaped vessel in irregular wave is presented in Figures 5.  
Figure 5 demonstrates the effect of roll damping 
linearisation for a range of constant wave amplitudes. It 
can be observed that the effect of viscous damping 
increases with increase in the regular wave amplitudes, 
especially in the peak region of the RAO. This is an 
expected relationship between the amplitude of the 
linearisation wave and the roll RAO. It can be observed 
from Figure 5 that the amplitude of the roll RAO varies 
with wave amplitude in a certain frequency band only. 
The frequency band in this case lies between 6.3 rad/s 
and 9.5 rad/s. The same frequency band can be observed 
in Figure 2 between the Potential RAO and the Model 
Test and Damped RAOs. Therefore it can be concluded 
that the effect of linearisation of roll damping for a sea 
state may be focused on a frequency band around the 
peak of the RAO. 
Further study will be undertaken to confirm the validity 
of assuming a linear systems approach (i.e. RAOEquivalent) 
between the incident wave spectrum (i.e. S(w)wave) and 
the response spectrum (i.e. S(w)response) for non-linear 
behaviour such as roll damping. If such an assumption 
can be shown to provide the correct roll response 
statistics then a design methodology can be established 
for strength and fatigue analyses based on spectral 
methods. 
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