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Abtract

Trust has become central in computing science research. The problem of

finding trust paths and estimating the trust one can place in a partner arises in

various application areas, including virtual organisations, authentication systems

and reputation-based trust systems. We study the use of peer-to-peer algorithms

for finding trust paths and probabilistically assessing trust values in systems

where trust is organised similar to the ‘web of trust’.

Many empirical results demonstrate that many real-life large networks and

systems are scale-free, that is, the node degree follows a power law distribution.

To be able to analyse such networks, “growth algorithms” have been devised that

generate scale-free networks by growing the size of the network in a manner that

intuitively resembles real networks. Interestingly, generation of scale-free net-

works with directed arcs has not been researched extensively, especially for the

case that avoids duplicate arcs as well as arcs that connect a node with itself (self

loops). Being able to easily generate scale-free networks with these properties al-

lows more accurate and efficient evaluation and simulation of routing algorithms

and applications. We consider various different graph algorithms, which modify

existing network generating models for directed graphs. A mathematical frame-

work is presented to prove under which conditions the algorithm can generate

networks with the scale-free feature. Since a complete proof is not feasible, we

evaluate if these algorithms generate scale-free networks using statistical tests.

We find that removing multiple arcs and self loops after an entire network has

been generated does not affect the scale-free character, but at the cost of the

growth nature of the algorithm.

To obtain reliable results with small enough confidence intervals through sim-

ulation, one needs to run many simulations and generate many networks and it is

therefore of importance to generate networks with the desired properties in rea-

sonable time. We implement a set of algorithms and compare them with respect

to CPU time and memory use, in terms of both theoretical complexity analysis

and experimental results. We show through experiments that using relatively

standard equipment networks with a million or more nodes can be generated in

mere seconds.
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Finally, we explore the suitability of using peer-to-peer algorithms for finding

trust paths and inferring the trust value of a set of trust paths discovered. We

employ discrete event simulation and Monte Carlo techniques to evaluate these

search algorithms. We implement all the relevant methods and search proto-

cols in the Peersim simulation environment. Our main conclusion is that many

peer-to-peer algorithms perform similarly, and only differ through (and are sen-

sitive to) parameter choices, such as the number of nodes to which a query is

forwarded. We also conclude that flooding is the most practical method if one

stresses the requirement for finding all the trust paths, and if networks are less

densely connected.
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Chapter 1

Introduction

1.1 Background

To motivate our work, consider a possibly large number of people or businesses

that want to collaborate, and not all players know each other. The internet and

business-to-business (B2B) technologies promise a world in which such collabo-

rations can be created almost instantly (called virtual organisations). One of the

challenges in creating such dynamic business interactions is the establishment of

trust, and assume therefore that each party maintains a list of trusted parties,

including a parameter quantifying the amount of trust placed in a party. In that

situation, parties may decide to trust each other and initiate business if a path of

trust relations exists between them (in both directions), and they may calculate

risks and decide about their actions depending on the trust values associated

with these paths.

Our trust model views the system similar to the Web of Trust, a network where

nodes are linked if they have a trust relation. We assume links are directed, that

is, a link or arc from A to B implies that A trusts B, but B does not necessarily

trust A. In our model, with each link is associated a value to represent the

amount of trust associated to the trust relation. This value shows the strength

of the trust relation. Every node maintains its trust relations associated with

other nodes, and since not all nodes of a network have direct interactions, trust

links do not exist between all pairs. If a node does not have a trust relation with

some other node, it can estimate trust indirectly. For instance, assume there is
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no arc from A to C, A can still establish trust in C if there exists at least one

path from A to C in the graph. This implies that trust is transitive in such a

model. Given a pair of request node and target node, which have no established

links, the request node can estimate the overall trust value, which is calculated

on a set of discovered trust paths between them, if existing. We will discuss this

in Chapter 6.

Due to the similarity of the structure of a web of trust network and an un-

structured peer-to-peer network, peer-to-peer search algorithms can be applied

to discover trust paths and probabilistically assess trust values. We employ a

model-based evaluation of peer-to-peer search algorithms in the context of the

web of trust. First a network model is considered to produce networks that have

properties similar to web of trust networks. Many empirical results demonstrate

that many real-life large networks and systems are scale-free, that is, the node

degree distribution follows a power law distribution. It has been shown that the

web of trust network also exhibits a scale-free nature (Guardiola et al., 2002).

Interestingly, generation of scale-free networks with directed arcs (as needed in

the web of trust) has not been researched extensively, especially for the case that

avoids duplicate arcs as well as arcs that connect a node with itself (self loops).

Therefore, we derive such algorithms in this dissertation.

1.2 Aims and Objectives

Our specific goals are as follows.

Firstly, we aim to address the generation of directed scale-free network to repro-

duce the scale-free nature of real-life networks. We consider graph algorithms

that modify an existing “growth algorithms”. Growth algorithms increase the

size of the generated network in each iteration according to same rules. Growth

algorithms are attractive because intuitively they match the way real networks

evolve. We aim to present a mathematical framework to prove under which con-

ditions the algorithm can generated networks with the scale-free feature. Since a

complete proof is not feasible, we also aim to evaluate if these algorithms generate

networks with the scale-free feature using statistical tests.
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Secondly, we aim to develop fast implementations of the algorithm. To obtain

reliable results with small enough confidence intervals through simulation, one

need to run many simulations and generate many networks and it is therefore of

importance to generate networks with the desired properties in reasonable time.

We aim to implement a set of algorithms and compare them with respect to

CPU time and memory use, in terms of both theoretical complexity analysis and

experimental results.

Finally we aim to analyse how peer-to-peer search algorithms perform when ap-

plied to finding trust paths and calculating trust values through simulations. We

collect existing peer-to-peer search algorithms and employ discrete event simu-

lation and Monte Carlo techniques to evaluate these search algorithms. The

metrics are defined that would be used in the simulations. The simulation

methodology including the sampling method and the trust computation method

is considered.

1.3 Contributions

Here we highlight the contributions of our research work.

1. A set of growth algorithms for generating scale-free directed networks with-

out multiple arcs and self loops.

A class of growth algorithms are developed to generate scale-free networks

by growing the size of the network in a manner that intuitively resembles

real networks.

2. An efficient implementation of the growth algorithms.

In order to generate sufficiently large networks for simulation, with the

desired characteristics in reasonable time, we design and implement a set

of algorithms. These algorithms are compared with respect to CPU and

memory use, using both theoretical complexity analysis and experimental

results. The derived approach allows networks with a million or more nodes

to be generated within seconds on current-day desktops.

3. A non-growth but attractive algorithm which generates directed scale-free

networks.

3



A non-growth algorithm is proposed to address the generation of directed

scale-free networks to reproduce the scale free feature of real-life networks

without multiple arcs and self loops.

4. A mathematical proof of the conditions for scale-freeness of algorithms.

For our set of growth algorithms, this mathematical framework enables one

to prove if the network algorithm can generate networks with the scale free

feature. It shows the conditions under which growth algorithms are power

law. A corrected proof of one given with is also presented to prove the

power law distribution of the generated networks for an existing growth

algorithm.

5. Statistical test of power law distribution of all algorithms.

Quantitive statistical tests are conducted on all network generating algo-

rithms with respect to power law hypothesis. The extensive tests are car-

ried out under different circumstances, such as taking into account various

parameters values. We also study how the scale-free feature evolves with

the network growth.

6. Evaluation of P2P algorithms in the context of web of trust.

We explore the suitability of using peer-to-peer search algorithms for find-

ing trust paths and probabilistically assessing trust values in systems where

trust is organised similar to the Web of Trust. We do this through discrete

event simulation of random as well as scale-free trust networks based on

flooding as well as selective search algorithms. The simulation methodol-

ogy including the sampling method and the trust computation method is

defined.

1.4 Structure of Thesis

The structure of this thesis is as follows: it starts with a general discussion and

definitions of trust, web of trust, followed by a survey of network generating

models, and reputation based trust systems in peer-to-peer networks from the

literature. The difference with the work in this thesis is also stated.

In Chapter 3, we explore the possibility of finding an algorithm that allows us to

generate directed scale-free networks that do not have multiple arcs or self loops.

4



It concerns some growth algorithms and a non-growth algorithm, which are the

modified versions of an existing network generating algorithm. Then we present

a generic mathematical framework for proving the power law of all algorithms.

In Chapter 4, we analyse all the algorithms by presenting statistical test results

for these algorithms. We also present the statistical test results of the empirical

data which is collected from the Wotsap Web of Trust project.

Chapter 5 then considers how to efficiently implement our growth algorithms,

which allows the network generating model to be effectively used in discrete-

event studies. We design and implement a set of algorithms and compare them

with respect to CPU and memory use, in terms of both theoretical complexity

analysis and experimental results.

Having established the underlying network, we turn to study the suitability of

using peer-to-peer algorithms for discovering trust paths and inferring the trust

value of a set of trust paths in the context of web of trust in Chapter 6. We

employ discrete event simulation and Monte Carlo techniques to evaluate the

performance of variations of flooding search algorithm, in random as well as

scale-free networks. We also analyse the performance and compare the cost,

considering the message overhead and the success rate.

1.5 Publication History

Here we will list the publications of the work in this thesis.

• Huqiu Zhang and Aad van Moorsel. Evaluation of P2P Algorithms for

Probabilistic Trust Inference in a Web of Trust. Computer Performance

Engineering: 5th European Performance Engineering Workshop, pages 242-

256, 2008.

• Huqiu Zhang and Aad P. A. van Moorsel. Fast Generation of Scale Free

Networks with Directed Arcs. Computer Performance Engineering: 6th

European Performance Engineering Workshop, pages 131-148, 2009

The work in Chapter 3 and Chapter 4 has not been published yet.
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Chapter 2

Background And Literature

Review

This chapter begins with a general discussion and definitions of trust, web of

trust and reputation based trust systems from the literature. Then we present

an overview of research areas and references in network generating models.

2.1 Trust

The study of trust spans several disciplines, including sociology (Luhmann,

1988), psychology (Bulter and Cantrell, 1984), political science (Williamson,

1993), business and economics (Granovetter, 1985; Husted, 1989). In order to

give the reader a reference point for understanding the trust, we present a list of

general definitions cited from existing research.

The Oxford English Dictionary defined trust as “confidence in or reliance on

some quality or attributes of a person or thing, or the truth of a statement.”

Sociologist Coleman (1990) defined trust as “an incorporation of risk into the

decision of whether or not to engage in the action” by acting based on estimates

of the likely future behaviour of others.

Mcknight and Chervany (1996) defined trust as “the extent to which one party is

willing to depend on the other party in a given situation with a feeling of relative

security, even though negative consequences are possible.”
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Grandison and Sloman (2000) described trust as “the firm belief in the compe-

tence of an entity to act dependably, securely, and reliably within a specified

context. ”

In this thesis we adopt the following definition proposed in (Mahoney et al.,

2005): “trust is one’s reasonable expectation of a positive outcome in a situation

where there is less than full control over the actions of the participants.”

Typically trust is established between two parties based on direct interactions

between them. This type of trust is called direct trust (Boeyen et al., 2004;

Mahoney et al., 2005). Direct trust is obtained without “reliance on intermedi-

aries”(Boeyen et al., 2004). As pointed out in (Jøsang and Pope, 2005), trust can

be transitive with certain semantic constraints. A simplified description of the

concept of transitive trust is that “assume that agent A trusts agent B, and that

agent B trusts agent C, then by transitivity, agent A trusts agent C” (Jøsang

and Pope, 2005). The trust agent A places on agent C is viewed as indirect trust

(Boeyen et al., 2004; Mahoney et al., 2005), which is derived from pre-existing

trust established with intermediaries. Also note that, as pointed out in (Ma-

honey et al., 2005), trust relations usually are one-way: agent A trusts agent B

does not mean agent B trusts agent A.

As trust is complex, personal, subjective and it changes over time, trust may be

quantified and computed in many different ways. As being represented that a

claim is true or false, a binary value is used in industry specifications, for instance

WS-Trust (Anderson et al., 2005) and the OASIS trust model guidelines (Boeyen

et al., 2004). Some approaches employ discrete values to measure the level of

trust. For example, in the PGP system (Zimmermann, 1995), the degree of trust

can be specified unknown, partial trust or complete trust. In (Carbone et al.,

2003) degrees of trust on an entity are described by a set of discrete values: low,

medium, or high. Some other approaches choose a continuous numerical range.

As an example, in (Jøsang, 2001) a subjective belief represented by a probability

results in a real number between 0 and 1.
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2.2 Web of Trust

The Web of Trust was introduced by Phil Zimmermann in 1992, as a concept

used in Pretty Good Privacy (PGP) (Zimmermann, 1995), the GNU Privacy

Guard (GnuPG) and openPGP systems (Callas et al., 2007). In such systems

any identity can verify another identity without the need of a Certification Au-

thority (CA). In public key systems, the CA is a trusted third party, which issues

digital certificates to authenticate the ownership of the public key. In the web of

trust, instead of using CA, each user is associated with a public/private key pair

and can issue certificates to others by signing others’ public key certificates with

their own private key. There are two trust categories in the PGP trust model:

the trustworthiness of the public key certificate and the trustworthiness of an

introducer (Abdul-Rahman, 1997). The trustworthiness of the public key certifi-

cate is about whether a public key certificate is valid or not, that is, whether the

public key actually belongs to the person who claims it. The trustworthiness of

an introducer is about how much one can trust the introducer to be a competent

signer of a public key certificate.

Figure 2.1: An example of the PGP web of trust

As an example of the PGP trust model, shown in Figure 2.1, nodes are public

keys which represent users and arcs are signatures. In particular, a directed arc

from Alice to Carol represents Alice signing a certificate which binds Carol to a

particular public key. When doing so, Alice checks identity papers of Carol (e.g.
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a passport), one can say that Alice trusts Carol, or more specifically, Alice trusts

that Carol is who she claims she is. We set up a scenario where Bob wants to

communicate with Carol whom he never met before. Assume that Bob knows

Alice and signed Alice’s public key. If Bob receives Carol’s public key certificate,

Bob does not know Carol, however Bob checks the signatures on the certificate

and sees if he trusts any of them. Based on this information Bob can decide if

he wishes to trust Carol’s public key certificate. Bob sees Alice is among Carol’s

public key certificate signers, one can imagine therefore, Bob can be confident

that Carol’s public key is authentic. At the current stage, a trust path is formed

from Bob to (the key of) Carol, which implies that Bob extends trust to the new

party. Furthermore, there are two trust paths from Bob to David: one list of keys

Bob→ Alice→ Carol→ David where Bob signed Alice, Alice signed Carol, etc.

That means Bob trusts Alice’s public key certificate, Alice trusts Carol’s public

key certificate, and so on. Another list of keys is Bob→ Eric→ Carol→ David

where Bob signed Eric, Eric signed Carol, Carol signed David. In this trust path,

Bob trusts Eric’s public key certificate, Eric trusts Carol’s public key certificate,

and so on. Based on these intermediaries, Bob may trust that the public key

labeled ‘David’ actually belongs to ‘David’. All these trust paths forms what is

called the web of trust. In this thesis our system is similar to the web of trust.

In the work of analysing the web of trust’s structure, the Wotsap project (Ced-

erlof, 2007) keeps daily track of the largest strongly connected set of OpenPGP

keys. More recently, Ulrich et al. (2011) present a thorough analysis of the

OpenPGP web of trust with a focus on determining various properties, for in-

stance, scale-free property, random removal of nodes, and community structure.

2.3 Peer-to-Peer Systems

To address the problem of finding one or more trust path, in (Ribeiro de Mello

et al., 2007), the authors indicate that peer-to-peer search algorithms can be

applied to discover trust paths, due to the similarity of the structure of a web

of trust network and an unstructured peer-to-peer network. Many definitions

regarding peer-to-peer (P2P) systems have been presented in the literature.

The commonly cited definition of peer-to-peer system is due to (Androutsellis-

Theotokis and Spinellis, 2004): “Peer-to-peer systems are distributed systems
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consisting of interconnected nodes able to self-organize into network topologies

with the purpose of sharing resources such as content, CPU cycles, storage and

bandwidth, capable of adapting to failures and accommodating transient pop-

ulations of nodes while maintaining acceptable connectivity and performance,

without requiring the intermediation or support of a global centralized server or

authority”. Without the need for central coordination by servers, every node

in a P2P network is both a supplier and a consumer of resources. Due to re-

source optimisations it enables on network efficiency, scalability and stability,

the decentralised nature results in P2P systems widely used in various areas: file

sharing networks (Gnutella, 2001; Vuze, 2003), communications networks (voice

over P2P application, (Skype, 2003), Instant messaging), science (bioinformat-

ics). P2P systems can be divided into several classes (Androutsellis-Theotokis

and Spinellis, 2004).

Centralized P2P systems Centralized P2P systems utilize a single central

server to manage the system. Napster is an example of centralized P2P system,

where a central server contains “a peer list and content directory” and is re-

sponsible for “peer discovery and content lookup” (Lui and Kwok, 2002). The

problem with such systems is that it has a single point of failure. If an attack

has been used to shut down the central server, the system becomes useless.

Decentralized structured P2P systems Decentralized structured P2P

systems have no central server, however these systems use structured overlays

to organize nodes and data items. A structured overlay means “the overlay

topology is tightly controlled and files are place at precisely specified locations”

(Androutsellis-Theotokis and Spinellis, 2004). In another way to say, content

objects are not placed to random nodes. In such systems, every node is assigned a

unique identifier and every data item is assigned a unique identifier. A distributed

hash table (DHT) is used to map a data item to a particular peer based on its

ID, both whose IDs fall into the same ID space. Structured systems provide

more efficient data lookup, compared to unstructured P2P systems (Shen et al.,

2009). Chord (Stoica et al., 2001) is a well-known DHT-based P2P system.

Partly-decentralized P2P systems Partly-decentralized P2P systems em-

ploy an hierarchical overlay, which consists of ordinary nodes and super nodes.

The selection of super nodes is concerned with high capacities (bandwidth, stor-

age space and computing power). Each supernode maintains indices of local

nodes as well as the information of other super nodes. The whole system can be
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viewed as a set of clusters of “ordinary peers with a single super peer”. Content

object searches are conducted on the super node level. An ordinary peer sends

a search query to its super peer. If content object is not found, the super peer

forwards the search query to other connected super peers. Kazaa (Kazaa, 2006)

is a typical example of this kind of systems.

Decentralized unstructured P2P systems Different from structured sys-

tems, an unstructured P2P system has the overlay topology which ”the place-

ment of content is completely unrelated to”. In such systems, data are distribut-

edly stored in the nodes and each node independently connects to a few other

nodes. Gnutella (Gnutella, 2001) is an example of unstructured P2P systems for

file sharing. File search in Gnutella is based on flooding. A request node sends a

search query to all its neighbours. If a node receives a search query, it forwards

the query to all its neighbours.

2.4 Reputation Based Trust Systems

Given the distributed application architecture, the performance of P2P systems

depends on the collaboration among distributed peers. Most P2P systems are

open system, where peers often interact with unknown peers. Therefore, P2P

systems need to consider the misbehavior and attacks from selfish and malicious

nodes. A node in an open P2P system needs to trust other unknown nodes to

exchange information and share files. Due to the autonomous and distributed

nature, a number of trust issues occur in P2P networks (Wallach, 2003). The

importance of mutual trust in P2P systems has been increasingly recognised. To

solve this problem, trust management in P2P systems are required in order to

enable peers to build trust on other unknown peers to cooperate, as well as avoid

untrustworthy peers and reduce risks.

Several reputation-based trust systems for P2P network have been proposed in

the literature, such as CORE (Michiardi and Molva, 2002), EigenTrust (Kam-

var et al., 2003), PeerTrust (Xiong and Liu, 2004), TrustGuard (Srivatsa et al.,

2005), Scrivener (Nandi et al., 2005), P2PRep (Aringhieri et al., 2006), Credence

(Walsh and Sirer, 2006), and PowerTrust (Zhou and Hwang, 2007). EigenTrust,

PeerTrust, and PowerTrust are all considered for Distributed Hash Table based

P2P system rather than unstructured P2P system. In reputation-based trust
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systems, a peer is assigned a reputation value, based on the transactions it per-

formed and feedbacks from other peers. The reputation value is used to build

trust among peers.

In (Hoffman et al., 2007), the authors present an analysis framework for rep-

utation systems, classify the known and potential attacks and describe defense

strategies. Our work differs from existing research, in that we do not consider

attacks, but discuss the performance of P2P algorithms for trust inference. More-

over, compared with existing research on performance evaluation of P2P algo-

rithms (e.g. (Lv et al., 2002)), our work differs by considering trust values and

multiple paths to the target.

2.5 Network Generating Models

The random graph model is introduced by mathematicians Pal Erdős and Alfred

Rényi (Erdős and Rényi, 1959), who assumed that complex networks were wired

randomly together. This hypothesis motivated extensive work on the study of

complex networks to discover the general features of real complex networks. This

includes the world wide web (Broder et al., 2000), citation network (Lehmann

et al., 2003), e-mail network (Ebel et al., 2002), web of trust (Guardiola et al.,

2002), Wikipedia (Holloway et al., 2005), and the empirical results demonstrate

that many real-life large networks have the scale-free topological property, which

means that the number of arcs in a node is power law distributed. Such networks

with this typical feature are called scale-free networks. We discuss this point

thoroughly in Section 3.2.

Barabási and Albert (Barabasi and Albert, 1999) first proposed an algorithm

for generating networks with a power-law degree distribution. In the Barabási-

Albert model a network grows by adding new nodes to the system with a constant

rate, and any new node is preferentially attached to the m old ones that already

have a large number of links at the moment. The scale-free nature of the resulting

network indicates that growth and preferential attachment reproduce the scale-

free feature observed in real networks. Growth here means that the number of

nodes in a network increases over time. Preferential attachment means that the

nodes that already have a large number of links are more likely to acquire new
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links (the “rich-get-richer” effect) (Caldarelli, 2007). The limit of the Barabasi-

Albert model is that due to its construction, each node has exactly m outgoing

edges, only the incoming degree distribution follows a power law.

Among the network generating models, growth network models are attractive and

popular, as the growth and preferential attachment is believed to exist widely

in real networks. Many modifications and alternatives to the Barabási-Albert

model have been developed. In (Caldarelli, 2007), the author classifies mod-

els into three categories: fitness based model, ageing process model and copy-

ing model. The fitness based model introduces a fitness effect (Bianconi and

Barabási, 2001), where each node has a specific feature called fitness, which the

preferential attachment takes into account. This fitness idea has been considered

in various ways, e.g. (Goh et al., 2001), (Caldarelli et al., 2002), and (Boguñá

and Pastor-Satorras, 2003).

The ageing process model introduces an ageing effect (Klemm and Egúıluz, 2002).

At a particular time a node can take one of two states, active or inactive. The

active nodes can still receive edges and modify their states, while the inactive

nodes are removed from the system over time.

In copying models, new nodes are attached to the nodes that are ‘copied’ as

neighbours from a randomly chosen node. This mechanism can be found in two

different context examples: Aiello et al. (2000) studied a graph generating model

to capture some behaviour of data in telecommunications. Vázquez et al. (2003)

proposed a graph generating model to represent protein interaction networks.

Other similar models were proposed by Berg et al. (2004) and Goh et al. (2005).

Most above mentioned models generate scale-free networks with undirected links.

For networks with directed arcs, we are aware of only two models, which are al-

most identical (Bollobás et al., 2003) and (Krapivsky et al., 2001). Both models

can be viewed as modifications to the Barabási-Albert model, which allow new

arcs to be added between existing nodes. Both models allow multiple arcs (dupli-

cate arcs with the same origin and destination) and self loops (arcs that connect

a node with itself) in the process of growing a network. Our study differs from

their work in that it aims to generate directed scale-free networks without mul-

tiple arcs and self loops.
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Similar to (Krapivsky et al., 2001), Capocci et al. (2006) considered the different

growth mechanism to be able to reproduce the features of the on-line encyclope-

dia Wikipedia by means of a statistical model. Recently, Fraiman (2008) studied

a particular growing directed network model where at each time step a new node

with Kout out-going edges joins the network, where Kout is a Poisson-distributed

random variable.
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Chapter 3

Algorithms for Generating

Directed Scale-Free Networks

3.1 Introduction

There exist a large number of algorithms to generate scale-free networks with

undirected links (see Section 2.5). For networks with directed arcs, however, we

are aware of only two algorithms, which are almost identical: Bollobás et al.

(2003) and Krapivsky et al. (2001). Both Bollobás et al. (2003) and Krapivsky

et al. (2001) show that the network algorithms they develop generate networks

with the distributions of in-degree and out-degree following a power law. Net-

works generated by using the above algorithms contain duplicate arcs with the

same origin and destination (‘multiple arcs’) and with the destination as the

same as the origin (‘self loops’). Note that we will base our work on the specific

algorithm from (Krapivsky et al., 2001) and named it as the KRR algorithm by

the algorithm creators’ names.

This chapter sets out a study of finding an algorithm that generates directed

scale-free networks that do not have multiple arcs or self loops. The absence

of self loops and multiple arcs is crucial for many real life applications as, for

instance, it does not make sense to imagine a node in a trust network to have

a trust relationship with itself. Being able to easily generate scale-free networks
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with these properties allows more accurate and efficient evaluation and simula-

tion of routing algorithms and application protocols, such as in the trust path

discovery in Chapter 6.

The key contributions of the chapter are: a set of growth algorithms for gener-

ating directed networks without multiple arcs and self loops, a non-growth but

attractive algorithm which generates directed scale-free networks, a corrected

mathematical proof of the KRR algorithm, and a mathematical framework for

determining the conditions under which the degree distribution is power law.

The rest of this chapter is organized in the following manner: we first present an

existing network generating algorithm that generates directed scale-free networks

(contain multiple arcs and self loops). In Section 3.3 we propose growth and

non-growth algorithms, which are the modified versions of the existing network

generating algorithm. All the algorithms are concerned to avoid multiple arcs

and self loops in a resulting network. In Section 3.4 we introduce a mathematical

generic framework to prove under which conditions the algorithm can generate

networks with the scale-free feature.

3.2 Scale-Free Networks

The key property of the algorithms we generate here is scale-freeness. We will

therefore give an intuitive and a mathematical description of this property. Intu-

itively, scale-free networks are networks where the vast majority of nodes possess

very few links but a few nodes possess many links. When, for instance, think-

ing of a university website, the main homepage would be highly connected since

there are links from many individual pages towards it directly and it links to

many pages itself. Conversely many individual pages may only contain a link or

two.

Mathematically a standard definition (Caldarelli, 2007) of scale-free networks

is that the distribution over the node degrees follows a power law form. A

nonnegative random variable X is said to have a power law distribution if the

Pr(X = x) ∝ x−α, (3.1)
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where ∝ means “is proportional to”, α is a constant parameter. In directed

scale-free networks, both in-degree distribution and out-degree distribution may

follow the power law distribution.

Based on empirical observations from many real-life networks, power law applies

in the degree values that are bigger than some minimum degree xmin, and α

lies between 2 and 3. The reason behind can be explained by looking at the

mean value and the variance value of number of arcs that a node has in the

network. In this case, the mean value is given by taking the product of each

possible value of x and its probability P (x), and then adding all these products

together, giving E(X) =
∑
xP (x). In probability theory and statistics, the

computational formula for the variance V ar(X) of a random variable X is the

formula V ar(X) = E(X2) − [E(X)]2, where E(X) is the expected value of X.

Considering the above probability formula, we have

E(X) =
∞∑
x=1

x P (x) =
∞∑
x=1

x x−α =
∞∑
x=1

x1−α, (3.2)

and

E(X2) =
∞∑
x=1

x2 P (x) =
∞∑
x=1

x2 x−α =
∞∑
x=1

x2−α. (3.3)

α = 2, E(X) =
∞∑
x=1

x1−2 =
∞∑
x=1

1

x
= 1 +

1

2
+

1

3
+ . . . =∞

α = 2, V ar(X) = E(X2)− [E(X)]2 =
∞∑
x=1

x2−2 −

(
∞∑
x=1

x1−2

)2

=
∞∑
x=1

1−

(
∞∑
x=1

1

x

)2

=
∞∑
x=1

1−
∞∑
x=1

x∑
y=1

1

x

1

y

=
∞∑
x=1

[
1− 1

x

(
x∑
y=1

1

y

)]
≥

∞∑
x=1

(
1− 1

2

)
=
∞∑
x=1

1

2

α = 3, E(X) =
∞∑
x=1

x1−3 =
∞∑
x=1

1

x2
= 1 +

1

22
+

1

32
+ . . . =

π2

6

α = 3, V ar(X) = E(X2)− [E(X)]2 =
∞∑
x=1

x2−3 −
(
π2

6

)2

=∞

α = 4, E(X) =
∞∑
x=1

x1−4 =
∞∑
x=1

1

x3
= 1 +

1

23
+

1

33
+ . . . ≈ 1.202
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α = 4, V ar(X) = E(X2)− [E(X)]2 =
∞∑
x=1

x2−4 − (1.202)2 ≈ 0.2

From the above calculations we can see that the value of α can only be in a

range of [2, 3] to guarantee the expected number of arcs of a node is finite and

the variance is infinite.

Note that a mathematical proof is about proving a power law distribution in

the infinite network. This is not sufficient if you have finite networks. We do

a statistical test in Chapter 4 to determine if a finite network is likely to be

sampled from a power law distribution.

3.3 The KRR Algorithm

In this chapter we consider four different algorithms modified versions of the

KRR algorithm. We introduce the following notation to represent the growing

network generated using these algorithms. A directed network grows by adding

an arc at discrete time steps. At each time step a node may or may not be added.

Let G0 be the initial directed graph. At each time step, there are n (n ≥ 1) nodes

and a set of arcs. We write i→ j to denote a directed arc from node i to node j,

i, j ≤ n and i 6→ j if no arc i → j exists. The algorithm terminates when there

are N nodes, with N > 0 some predefined target size of the generated network.

Figure 3.1: An example of the process of a growing network generated
by the KRR algorithm. At a particular time step, with probability p, a
new node 4 is attached to node 1, otherwise, with probability q = 1− p,
a new arc is added from node 3 to node 1.
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We turn now to the KRR algorithm, which generates directed scale-free networks

with multiple arcs and self loops. The main idea of the KRR algorithm is as

follows. Starting from a small network (or a single node), the algorithm adds

one arc at discrete time steps. At each time step with probability p, the algorithm

adds a node and one arc, which runs from the new node to an existing node, while

with probability q = (1 − p), an additional arc is added between two existing

nodes. Figure 3.1 illustrates the process of a growing network generated by the

KRR algorithm. If a new arc is added, it will be from node i to node j depending

on the out-degree value of the origin node i and in-degree value of the destination

node j. In particular, for any node i, let Ii be the in-degree of node i and Oi

the out-degree of node i, then the probability of adding an arc from node i to

node j is proportional to (µ + Oi)(λ + Ij), where λ and µ are constants: λ > 0

and µ > −1. This algorithm’s rules are presented in the pseudocode shown in

Algorithm 1.

Algorithm 1 KRR algorithm main()

Require: a network G0(V0, E0), n = |V0|, n ≥ 1

Ensure: n = N

1: repeat

2: a⇐ random[0, 1)

3: if a < p then

4: add a new node m

5: choose node j with a probability that is proportional to weights wi

6: generate an arc m→ j

7: update node m out-degree and weight: Om = Om + 1, vm = µ+Om

8: update node j in-degree and weight: Ij = Ij + 1, wj = λ+ Ij

9: increase network size by 1: n = n+ 1

10: else

11: choose node i with a probability that is proportional to weights vi

12: choose node j with a probability that is proportional to weights wi

13: generate an arc i→ j

14: update node i out-degree and weight: Oi = Oi + 1, vi = µ+Oi

15: update node j in-degree and weight: Ij = Ij + 1, wj = λ+ Ij

16: end if

17: until there are N nodes: n = N
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Algorithmically, introduce, in the n-th iteration for i = 1, ..., n the following

weights:

vi = µ+Oi

wi = λ+ Ii. (3.4)

Then generate an arc i → j by conducting weighted random sampling using

the weights vi to determine i and by conducting weighted random sampling

using the weights wi to determine j. In particular, the origin node is chosen

with a probability that is proportional to its weight vi at that moment and the

destination node is chosen with a probability that is proportional to its weight wi

at that moment. The algorithm terminates when the generated network reaches

the predefined target network size N . The algorithm introduces self loops and

multiple arcs. A self loop is an arc which connects a node to itself. Multiple arcs

are more than one arcs directed between the same two nodes.

3.3.1 A corrected mathematical proof

In (Krapivsky et al., 2001), the authors presented the analysis of the degree

distribution of the KRR algorithm and we base our partial proofs in this section

on this definition. To give the reader a clear understanding, we first introduce

their joint degree distribution equation, and then show our accurate equation for

the joint degree distribution. The accuracy of our equation is verified by showing

that the same theorem in (Krapivsky et al., 2001) can be proved through our

equation.

To verify the algorithm to generate networks with the power law node degree

distributions, Krapivsky et al. (2001) started their analysis by determining the

joint degree distribution. We introduce some basic definitions and assumptions

used in (Krapivsky et al., 2001). N(t) is defined as the total number of nodes in

the network at time t, K(t) and L(t) are defined as the sum of all in-degrees and

the sum of all out-degrees at time t, respectively. A(t) is defined as the number

of arcs in the network at time t. Nkl(t) is defined as the average number of nodes

with in-degree k and out-degree l at time t. According the network growth

process in the KRR algorithm, at each time step, the network grows by adding

an additional arc and/or a new node. As a result, K(t) = L(t) = A(t) = t,
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N(t) = pt. They derive the degree distribution Nkl(t) according to the rate

equations

dNkl

dt
= (p+ q) [

(k − 1 + λ)Nk−1,l − (k + λ)Nkl

K + λN
]

+q [
(l − 1 + µ)Nk,l−1 − (l + µ)Nkl

L+ µN
] + p δk0δl1. (3.5)

According to their explanation of the above equation, the first group of terms on

the right-hand side are the changes in the in-degree of destination nodes. A new

directed arc is added to a target node whose in-degree is k with a probability

proportional to (k + λ)Nkl. The denominator is simply the total normalization

factor
∑

k,l(k + λ)Nkl = K +λN , where the total in-degrees K =
∑

k,l kNkl and

out-degrees L =
∑

k,l lNkl. Similarly, the second group of terms accounts for

changes in out-degree. And the last term stands for changes in new nodes whose

in-degree is 0 and out-degree is 1.

The mistake in Equation (3.5) is that it does not reflect self-loops. When a self

loop of a node m is added, the values of both in-degree and out-degree of node

m are increased by 1, and hence, a self-loop implies a node with both in-degree

and out-degree changes, and this part is missed in Equation (3.5). Here we will

give the accurate equation for the joint degree distribution.

Lemma 3.1. The correct expression for
dNkl

dt
is

dNkl

dt
= p

(k − 1 + λ)Nk−1,l − (k + λ)Nkl

A+ λN
+ p δk0δl1

+ q
(k − 1 + λ)(l − 1 + µ)Nk−1,l−1 − (k + λ)(l + µ)Nkl

(A+ λN)(A+ µN)

+ q
[(k − 1 + λ)Nk−1,l − (k + λ)Nkl][A+ µN − (l + µ)]

(A+ λN)(A+ µN)

+ q
[(l − 1 + µ)Nk,l−1 − (l + µ)Nkl][A+ λN − (k + λ)]

(A+ λN)(A+ µN)
. (3.6)

Proof of the Lemma 3.1. To make the analysis process straightforward, we anal-

yse how in-degree and/or out-degree changes occur when a new directed arc is

added in one of three situations at each time step:

• case 1: a directed arc is added from a new node to an existing node
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• case 2: a directed arc is added between two existing nodes and this arc is

a self loop

• case 3: a directed arc is added between two existing nodes and this arc is

not a self loop

Now we need to understand how the degree distribution Nkl(t) evolves in each

situation. We introduce a probability r, defined as the probability that given an

arc is added, it is a self-loop:

r = Prob{the arc is a self-loop | an arc is added}

=
Prob{the arc is a self-loop ∧ an arc is added}

Prob{an arc is added}

= q

∑
nkl

(k + λ)(l + µ)∑
k,l

(k + λ)(l + µ)
, (3.7)

where nkl is any node with in-degree k and out-degree l. The prefactor q here is

the probability of adding an additional arc between existing nodes.

Case 1: with probability p, a new node is introduced and attached to one existing

node. In this situation, one existing node’s in-degree changes and the new node’s

out-degree changes. The change details are presented in the table 3.1.

The degree type Change

only in-degree p
(k − 1 + λ)Nk−1,l − (k + λ)Nkl∑

k,l (k + λ)Nkl

only out-degree p δk0δl1

in- and out-degrees 0

Table 3.1: in- and/or out-degree changes occur in the network in case 1

In case 1, the addition of a new node to the network leads to an increase in

the number of nodes with in-degree 0 and out-degree 1. The addition of a new

directed arc to a node with in-degree k leads to a loss in the number of such

nodes. This occurs with a probability (k + λ)Nkl, divided by the denominator∑
k,l (k + λ)Nkl. We obtain

∑
k,l (k + λ)Nkl = A + Nλ, where A is the number
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of arcs and N is the number of nodes in the network at that time as mentioned

above.

Case 2: with probability r, a new directed arc is added to the network, and this

arc is a self-loop. In case 2, a node’s in-degree as well as out-degree changes.

The addition of a self-loop to a node with in-degree k and out-degree l leads to

a loss of such nodes. The change details are presented in the table 3.2.

The degree type Change

only in-degree 0

only out-degree 0

in- and out-degrees r
(k − 1 + λ)(l − 1 + µ)Nk−1,l−1 − (k + λ)(l + µ)Nkl∑

nkl

(k + λ)(l + µ)

Table 3.2: in- and/or out-degree changes occur in the network in case 2

Case 3: a new directed arc is added to the network, and this arc is not a self-loop.

Then the changes that occur in the network are presented in the table 3.3.

The degree type Change

only in-degree (q − r) [(k − 1 + λ)Nk−1,l − (k + λ)Nkl] [A+ µN − (l + µ)]

(A+ λN)(A+ µN)−
∑
nkl

(k + λ)(l + µ)

only out-degree (q − r) [(l − 1 + µ)Nk,l−1 − (l + µ)Nkl] [A+ λN − (k + λ)]

(A+ λN)(A+ µN)−
∑
nkl

(k + λ)(l + µ)

in- and out-degrees 0

Table 3.3: in- and/or out-degree changes occur in the network in case 3

In case 3, the addition of a new directed arc to a node with in-degree k leads to

a loss in the number of such nodes. This occurs with rate (k+λ)Nkl[
∑

l(l+µ)−
l− µ], which is divided by the denominator. Here

∑
l(l+ µ)− l− µ represents a

node with out-degree equal to l is connected from any other node in the network

rather than itself. The denominator shown in the table 3.3 contains two terms.

The first term is the total weight
∑

k,l(k + λ)(l + µ)Nkl = (A + λN)(A + µN),

and the deducted term is the self loop weights
∑

nkl
(k + λ)(l + µ).
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Now, put all three situations (the changes are listed in tables 3.1, 3.2 and 3.3)

together, we get

dNkl

dt
= p

(k − 1 + λ)Nk−1 − (k + λ)Nk

A+ λN
+ p δk0δl1

+ q

∑
nkl

(k + λ)(l + µ)∑
k,l

(k + λ)(l + µ)
×

× (k − 1 + λ)(l − 1 + µ)Nk−1,l−1 − (k + λ)(l + µ)Nkl∑
nkl

(k + λ)(l + µ)

+ q

1−

∑
nkl

(k + λ)(l + µ)∑
k,l

(k + λ)(l + µ)

×
× [(k − 1 + λ)Nk−1,l − (k + λ)Nkl] [A+ µN − (l + µ)]

(A+ λN)(A+ µN)−
∑
nkl

(k + λ)(l + µ)

+ q

1−

∑
nkl

(k + λ)(l + µ)∑
k,l

(k + λ)(l + µ)

×
× [(l − 1 + µ)Nk,l−1 − (l + µ)Nkl] [A+ λN − (k + λ)]

(A+ λN)(A+ µN)−
∑
nkl

(k + λ)(l + µ)

= p
(k − 1 + λ)Nk−1,l − (k + λ)Nkl

A+ λN
+ p δk0δl1

+ q
(k − 1 + λ)(l − 1 + µ)Nk−1,l−1 − (k + λ)(l + µ)Nkl

(A+ λN)(A+ µN)

+ q
[(k − 1 + λ)Nk−1,l − (k + λ)Nkl][A+ µN − (l + µ)]

(A+ λN)(A+ µN)

+ q
[(l − 1 + µ)Nk,l−1 − (l + µ)Nkl][A+ λN − (k + λ)]

(A+ λN)(A+ µN)

to complete the proof of the lemma.

Now we use the above lemma 3.1 in the proof of the following theorem. Nk is

defined as the average number of node with in-degree k. Nl is defined as the

average number of node with out-degree l.
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Theorem 3.2. Let k ≥ 0, Nk = tN ′k. As k → ∞ we have N ′k ∼ k−νin, where

νin = 2 + pλ. Let l ≥ 0, Nl = tN ′l . As l → ∞ we have N ′l ∼ l−νout , where

νout = 2 + q−1 + µpq−1.

Proof of the Theorem 3.2. To prove the power laws for in- and out-degrees, let

us derive the change of the number of nodes with in-degree k

dNk

dt
=
∑
l

dNkl

dt

= p
(k − 1 + λ)Nk−1 − (k + λ)Nk

A+ λN
+ p δk0

+ q

(k − 1 + λ)
∑
l

(l − 1 + µ)Nk−1,l−1 − (k + λ)
∑
l

(l + µ)Nkl

(A+ λN)(A+ µN)

+ q


(k − 1 + λ)

∑
l

(A+ µN − l − µ)Nk−1,l

(A+ λN)(A+ µN)

−
(k + λ)

∑
l

(A+ µN − l − µ)Nkl

(A+ λN)(A+ µN)


= p

(k − 1 + λ)Nk−1 − (k + λ)Nk

A+ λN
+ p δk0

+ q
(k − 1 + λ)(A+ µN)Nk−1 − (k + λ)(A+ µN)Nk

(A+ λN)(A+ µN)

=
(k − 1 + λ)Nk−1 − (k + λ)Nk

A+ λN
+ p δk0. (3.8)

Following the same assumptions in (Krapivsky et al., 2001), we fill in A = t, as

well as N = Ap = tp,Nk = tN ′k, into Equation (3.8). Then we have,

[t− 1 + λ (t− 1) p] [t N ′k − (t− 1)N ′k] + (k + λ) (t− 1)N ′k

= (k − 1 + λ) (t− 1)N ′k−1 + p δk0 [(t− 1) + λ (t− 1) p] (3.9)

After simplifying the left side of Equation (3.9), we get

(t− 1) (1 + λ p)N ′k + (k + λ) (t− 1)N ′k = (k − 1 + λ) (t− 1)N ′k−1

+ p δk0 (1 + p λ) (t− 1) (3.10)
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(1 + λ p+ k + λ)N ′k = (k − 1 + λ)N ′k−1 + p (1 + p λ) δk0

(k + 1 + (1 + p) λ)N ′k = (k − 1 + λ)N ′k−1 + p (1 + p λ) δk0

(3.11)

which has become identical to Equation (6) in paper (Krapivsky et al., 2001).

Similarly we can calculate the change of the number of nodes with the out-degree

equal to l

dNl

dt
=
∑
k

dNkl

dt

= p δl1

+ q

(l − 1 + µ)
∑
k

(k − 1 + λ)Nk−1,l−1 − (l + µ)
∑
k

(k + λ)Nkl

(A+ λN)(A+ µN)

+ q


(l − 1 + µ)

∑
k

(A+ λN − k − λ)Nk,l−1

(A+ λN)(A+ µN)

−
(l + µ)

∑
k

(A+ λN − k − λ)Nkl

(A+ λN)(A+ µN)


= p δl1 + q

(l − 1 + µ)(A+ λN)Nl−1 − (l + µ)(A+ λN)Nl

(A+ λN)(A+ µN)

= q
(l − 1 + µ)Nl−1 − (l + µ)Nl

A+ µN
+ p δl1 (3.12)

Again, we fill in the assumptions mentioned: A = t, as well as N = Ap =

tp,Nl = tN ′l , into the above equation (3.12). Then we have,

[(t− 1) + µ (t− 1) p] [t N ′l − (t− 1)N ′l ] + q (l + µ) (t− 1)N ′l

= q (l − 1 + µ) (t− 1)N ′l−1 + p δl1 [(t− 1) + µ (t− 1) p] (3.13)

After simplifying both sides of Equation (3.13), we have

(t− 1) (1 + µ p)N ′l + q (l + µ) (t− 1)N ′l = q (l − 1 + µ) (t− 1)N ′l−1

+ p δl1 (1 + p µ) (t− 1) (3.14)

(1 + µ p+ q l + q µ)N ′l = q (l − 1 + µ)N ′l−1 + p (1 + p µ) δl1
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(q l + 1 + µ)N ′l = q(l − 1 + µ)N ′l−1 + p (1 + pµ) δl1(
l +

1

q
+
µ

q

)
N ′l = (l − 1 + µ)N ′l−1 + p

1 + p µ

q
δl1

(3.15)

which has become identical to Equation (7) in paper (Krapivsky et al., 2001).

Note that although Equation (3.5) is wrong, you get the same result as for the

correct Equation (3.1) when you sum all in- (/out-) degrees for the number of

nodes with out-degree l (/in-degree k) .

Following the same solution given in Krapivsky et al. (2001), the above recursion

Equations (3.11) and (3.15) are solved by the following ratios of gamma functions:

N ′k = N ′0
Γ(k + λ)Γ(1 + (1 + p)λ+ 1)

Γ(k + 1 + (1 + p)λ+ 1)Γ(λ)
, (3.16)

with N ′0 =
p(1 + pλ)

1 + (1 + p)λ
, and

N ′l = N ′1
Γ(l + µ)Γ(2 + q−1 + µq−1)

Γ(l + 1 + q−1 + µq−1)Γ(1 + µ)
, (3.17)

with N ′1 =
p(1 + pµ)

1 + q + µ
.

From the asymptotic of the gamma function, the in-degree and out-degree dis-

tributions have the power law forms,

N ′k ∼ k−νin , νin = 2 + pλ, (3.18)

N ′l ∼ l−νout , νout = 2 + q−1 + µpq−1. (3.19)

to complete the proof of the theorem.

This KRR algorithm generates a network for a given N , the number of nodes,

with the resulting expected number of arcs equals N/p. It introduces multiple

arcs and self loops in the process of growing the network. In order to generate a

network in the context of web of trust, we consider the following modified versions

of KRR algorithm where try to avoid adding multiple arcs and self loops in the

process of growing the network.
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3.4 The Proposed Algorithms

Having presented the KRR algorithm, in order to generate directed scale-free

networks without multiple arcs and self loops, we propose several different algo-

rithms which are the variations of the KRR algorithm. In the KRR algorithm,

the possibility of adding a multiple arc or self loop occurs in the process of adding

an arc between two existing nodes. Different from the KRR algorithm, the fol-

lowing algorithms take different actions to avoid adding a multiple arc or self

loop.

The following pseuducode of algorithm 2 presents algorithms A, B, and C.
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Algorithm 2 algorithms A, B, C main()

Require: a network G0(V0, E0), n = |V0|, n ≥ 1

Ensure: n = N

1: repeat

2: a⇐ random[0, 1)

3: if a < p then

4: add a new node m

5: choose node j with a probability that is proportional to weights wi

6: generate an arc m→ j

7: update node m out-degree and weight: Om = Om + 1, vm = µ+Om

8: update node j in-degree and weight: Ij = Ij + 1, wj = λ+ Ij

9: increase network size by 1: n = n+ 1

10: else

11: if E ≡ n(n− 1) then

12: go to line 4

13: else

14: choose node i with a probability that is proportional to weights vi

15: choose node j with a probability that is proportional to weights wi

16: if i→ j or i ≡ j then

17: algorithm A: go to line 11

18: algorithm B: go to line 4

19: algorithm C: continue

20: else

21: generate an arc i→ j

22: update node i out-degree and weight: Oi = Oi + 1, vi = µ+Oi

23: update node j in-degree and weight: Ij = Ij + 1, wj = λ+ Ij

24: end if

25: end if

26: end if

27: until there are N nodes: n = N

3.4.1 Algorithm A

To avoid multiple arcs or self loops being added, when a multiple arc or self loop

is chosen, algorithm A redraws the origin node and destination node until this
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arc is neither multiple arc nor self loop. If the network is fully connected, the

algorithm forces a new node to be added in the network. To check whether the

network is fully connected or not, we can define a variable A as the total number

of arcs in the network. The value of A increases by 1 when a new arc is created.

The redraw operation has a worst time complexity O(N2).

3.4.2 Algorithm B

Different from algorithm A, algorithm B does not redraw the origin node and

destination node when a multiple arc or a self loop is chosen. When it is, algo-

rithm B goes to the next iteration with a new node added and attached to the

network. Therefore, Algorithm B has a better time complexity than algorithm

A.

3.4.3 Algorithm C

In algorithm C, if a multiple arc or self loop is chosen, the algorithm will ignore

adding a new arc between two existing nodes and goes to the next iteration. The

difference between algorithm C and algorithm B is that when a multiple arc or

self loop is chosen, with probability p algorithm C starts the next iteration with

a new node. While Algorithm B starts the next iteration with a new node.

Algorithms A, B, and C behave in the same way of adding a new node to the

network but take different actions when adding a potential multiple arc or self

loop. The algorithms A, B and C all check if the potential arc is a multiple arc or

self loop at the time when adding an additional arc between two existing nodes,

and take different actions when it is. Also these three algorithms check if the

network is fully connected before adding an directed arc between two existing

nodes. If that happens, then the algorithms will force a new node to be added

into the network. By structure, the algorithms A, B and C are classified as the

growth algorithm.
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3.4.4 KRRNoLM algorithm

Rather than avoid multiple arcs or self loops being added, we consider to generate

a network first by using the KRR algorithm, and then at the end remove all

multiple arcs and self loops from the generated network. We call this KRRNoLM

(KRR No Loops or Multiple arcs) algorithm. In the KRRNoLM algorithm, the

multiple arcs and self loops are removed from the network after the network grows

to N nodes. therefore, KRRNoLM is a non-growth algorithm. The process of

the KRRNoLM algorithm is presented as Algorithm 3.

Algorithm 3 KRRNoLM algorithm main()

Require: a network G0(V0, E0), n = |V0|, n ≥ 1
Ensure: n = N
1: repeat
2: a⇐ random[0, 1)
3: if a < p then
4: add a new node m
5: choose node j with a probability that is proportional to weights wi
6: generate an arc m→ j
7: update node m out-degree and weight: Om = Om + 1, vm = µ+Om

8: update node j in-degree and weight: Ij = Ij + 1, wj = λ+ Ij
9: increase network size by 1: n = n+ 1
10: else
11: choose node i with a probability that is proportional to weights vi
12: choose node j with a probability that is proportional to weights wi
13: generate an arc i→ j
14: update node i out-degree and weight: Oi = Oi + 1, vi = µ+Oi

15: update node j in-degree and weight: Ij = Ij + 1, wj = λ+ Ij
16: end if
17: until there are N nodes: n = N
18: remove all multiple arcs and self loops

Compared to the KRR algorithm, a drawback of the KRRNoLM algorithm is

that it generates networks with an unpredictable number of arcs, since it is

unknown how many arcs are multiple arcs or self loops.

Before moving to the next section, let us compare the network properties gener-

ated by all algorithms and the order of all algorithms for CPU time complexity

in Table 3.4. In Table 3.4 for the network properties we concern the number

of nodes, the number of arcs, the estimated power law exponent values for in-

degree and out-degree, respectively. We also concern the pure growth feature.

The pure growth here means that whether an algorithm generates the resulting
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Algorithm Network Properties Com- Pure

#nodes #arcs αin αout plexity growth

KRR N N
p

2 + pλ 2 +
p(µ+ 1)

1− p
O(N) yes

A N unknown unknown unknown O(N3) yes

B N unknown unknown unknown O(N) yes

C N unknown unknown unknown O(N) yes

KRRNoLM N unknown unknown unknown O(N) no

Table 3.4: Network properties and order of CPU use for various algo-
rithms

growth networks or not. This feature is of importance, as growing the size of the

network in a manner that intuitively resembles real networks. We can see from

Table 3.4 in the first four columns that only the KRR algorithm can generate

a network with the expected number of arcs equals N
p

. For all other algorithms

the number of arcs is not available. For algorithms A, B, and C, the probabil-

ity of choosing a multiple arc or self loop is unpredictable. For the KRRNoLM

algorithm, the number of multiple arcs or self loops is unknown. It causes the

scale free exponents difficult to determine. In term of pure growth feature, the

KRR algorithm and algorithms A, B, and C are pure growth. The KRRNoLM

algorithm does not hold, as all multiple arcs and self loops are removed from

the generated network at the end. We also see from the table that algorithm

A has a worst time complexity which is caused by the redraw operation. Note

that the CPU time complexity does not include aspects that are required in all

algorithms, such as updates of in-degrees and out-degrees.

Typically the judgement of scale-free networks is based on visualisations. If the

degree distribution looks roughly a straight line on a log-log plot used in the

figure, one claims the network follow a power law. Here we plot the node in-

degree and out-degree distributions of networks generated by various algorithms

in a log-log figure. We consider all the algorithms with the same parameter

values used in paper (Krapivsky et al., 2001) and network size 100,000 nodes.

For each algorithm, we consider 100 network samples to be generated. Figures

3.2 and 3.3 present the average node in-degree and out-degree distributions of
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Figure 3.2: The average in-degree node distribution of networks gen-
erated by various algorithms, versus the in-degree of the networks with
100, 000 nodes. The data sets are plotted using logarithmic binning.

Figure 3.3: The average out-degree node distribution of networks gen-
erated by various algorithms, versus the out-degree of the networks with
100, 000 nodes. The data sets are plotted using logarithmic binning.
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the networks generated by various algorithms, respectively. It can be observed

that both the in-degree and out-degree distributions of each algorithm look

roughly straight on a log-log plot. The KRR algorithm has a few nodes with

large in-degree/out-degree.

3.5 A Mathematical Proof of Scale-Freeness of

Algorithms

In this section, we provide a mathematical framework to prove under which

conditions the algorithm can generate networks with the scale-free feature. Let

us recap the process of a growth network generated by the KRR algorithm. A

directed network grows by adding single arc at discrete time steps. At time t the

network Gt has At arcs, and N t nodes. From Gt to Gt+1, with probability p the

algorithm adds a new node together with an arc from the new node to an existing

node (called operation (i)), while with probability q = 1− p an additional arc is

added between existing nodes (called operation (ii)). The arc to be added to the

network depends on the weights of the origin and the destination nodes.

We start with the work on the node’s in-degree distribution. A list of definitions

is needed as follows.

t = a particular time step. At each time step, an arc is added

Gt = the growth network at a particular time t

At = the total number of arcs in Gt

N t = the total number of nodes in Gt

N t
in i = the number of nodes with in-degree i in Gt

N t
out j = the number of nodes with out-degree j in Gt

ptin i,out j : the probability that an arc is added from a particular node

with out-degree j to a particular node with in-degree i, given

an arc is added at t.

ptin i : the probability that an arc is added from any node to a part-

icular node with in-degree i, given an arc is added at t.

ptin i =
∑
out j

ptin i,out j
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ptout j : the probability that an arc is added from a particular node

with out-degree j to any node, given an arc is added at t.

ptout j =
∑
in i

ptin i,out j

N t
in i−1p

t
in i−1 = Prob{one of nodes with in-degree i− 1 in Gt becomes one

with in-degree i in Gt+1 | an arc is added in Gt}

N t
in ip

t
in i = Prob{one of nodes with in-degree i in Gt becomes one

with in-degree i+ 1 in Gt+1 | an arc is added in Gt}

N t
out j−1p

t
out j−1 = Prob{one of nodes with out-degree j − 1 in Gt becomes one

with out-degree j in Gt+1 | an arc is added in Gt}

N t
out jp

t
out j = Prob{one of nodes with out-degree j in Gt becomes one

with out-degree j + 1 in Gt+1 | an arc is added in Gt}

Giving p+q=1, as well as
∑

in i pin i = 1,
∑

out j pout j = 1, At = t, N t = pt,

N t
in i = tN ′in i, N

t
out j = tN ′out j, Now we consider how the number of nodes with

in-degree i in Gt changes as t increases by 1. Let Gt be given and in going from

Gt to Gt+1, the changes of the number of nodes with in-degree i could have come

from two cases: either a node with in-degree i−1 at time t had a new arc attached

to it at time t + 1, or a node with in-degree i at time t had a new arc attached

to it at time t+ 1. Given that from Gt to Gt+1 we perform operation (i) or (ii),

the probability that a particular node of in-degree i has its in-degree increased is

ptin i. Since Gt has the exactly N t
in i nodes of in-degree i, the chance that one of

these becomes a node of in-degree i+ 1 in Gt+1 is exactly (p+ q)N t
in ip

t
in i. With

probability (p + q)N t
in i−1p

t
in i−1 a node of in-degree i − 1 in Gt becomes a node

of in-degree i in Gt+1. Putting these effects together, the expected value of N t+1
in i

in Gt+1, which is defined as E(N t+1
in i |Gt), is

E(N t+1
in i |Gt) = N t

in i + (p+ q)(N t
in i−1p

t
in i−1 −N t

in ip
t
in i) + p1{in i=0}

= N t
in i +N t

in i−1p
t
in i−1 −N t

in ip
t
in i + p1{in i=0} (3.20)

where i ≥ 0 and we write 1A for the indicator function which is 1 if the event

A holds and 0 otherwise. p1{in i=0} means that a new node with in-degree 0 is

added to the network from time t to time t+ 1.

Similarly, for out-degrees, we consider for each j how N t
out j nodes of out-degree
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j in Gt changes as time t increases by 1. Given Gt, with probability p a new node

with out-degree 1 is added to the network at the next step, and with probability

q = 1− p the out-degree of an old node is increased. Given that from Gt to Gt+1

we perform operation (ii), the probability that a particular node of out-degree

j has its out-degree increased is ptout j. Since Gt has the exactly N t
out j nodes of

out-degree j, the chance that one of these becomes a node of out-degree j + 1

in Gt+1 is exactly qN t
out jp

t
out j. With probability qN t

out j−1p
t
out j−1 a node of out-

degree j − 1 in Gt becomes a node of out-degree j in Gt+1. Putting these effects

together, the expected value of N t+1
out j in Gt+1, which is defined as E(N t+1

out j|Gt),

is

E(N t+1
out j|Gt) = N t

out j + q(N t
out j−1pout j−1 −N t

out jpout j) + p1{out j=1}, (3.21)

where j ≥ 1 and p1{out j=1} means that a new node with out-degree 1 is added

to the network at time t+ 1.

Given the above definitions, now we apply it to the KRR algorithm and algorithm

A respectively, to show the conditions under which growth algorithms are power

law.

3.5.1 KRR algorithm

In KRR the arc to be added to the network depends on the weights of the origin

and the destination nodes. These weights wKRR
in i,out j are defined as follows:

wKRR
in i,out j = (i+ λ)(j + µ) (3.22)

where the weights i+ λ, j + µ are already introduced in Equation (3.4).

Theorem 3.3. Let i ≥ 0. As i → ∞ we have N ′in i ∼ i−νin. Let j ≥ 0. As

j →∞ we have N ′out j ∼ j−νout.

Proof of the Theorem 3.3. The probability pKRR
in i , that, given an arc is added to

the network, it is connected to a node with in-degree i is then given by

pKRR
in i =

∑
out j

pKRR
in i,out j =

∑
out j

wKRR
in i,out j∑
wKRR

in i,out j

(3.23)
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therefore,

E(N t+1
in i |Gt) = N t

in i +N t
in i−1p

KRR
in i−1 −N t

in ip
KRR
in i + p1{in i=0}

= N t
in i +N t

in i−1

∑
out j

pKRR
in i−1,out j −N t

in i

∑
out j

pKRR
in i,out j + p1{in i=0}

= N t
in i +N t

in i−1

∑
out j

wKRR
in i−1,out j∑
wKRR

in i,out j

−N t
in i

∑
out j

wKRR
in i,out j∑
wKRR

in i,out j

+ p1{in i=0}

= N t
in i +N t

in i−1

∑
out j w

KRR
in i−1,out j∑

wKRR
in i,out j

−N t
in i

∑
out j w

KRR
in i,out j∑

wKRR
in i,out j

+ p1{in i=0}

= N t
in i +N t

in i−1

i− 1 + λ

At + λN t
−N t

in i

i+ λ

At + λN t
+ p1{in i=0} (3.24)

Assuming the node in-degree of the KRR algorithm is power law distributed,

then N ′in i ∼ ivin . KRR algorithm satisfies N t
in i = tN ′in i, A

t = t, N t = pt, then

fill them in and we have

(t+ 1)N ′in i = tN ′in i + tN ′in i−1

i− 1 + λ

At + λN t
− tN ′in i

i+ λ

At + λN t
+ p1{in i=0} ⇒

N ′in i = tN ′in i−1

i− 1 + λ

t+ λpt
− tN ′in i

i+ λ

t+ λpt
+ p1{in i=0} ⇒

ivin = (i− 1)vin
i− 1 + λ

1 + λp
− ivin i+ λ

1 + λp
+ p1{in i=0} ⇒

(1 + λp+ i+ λ)ivin = (i− 1 + λ)(i− 1)vin + p(1 + λp)1{in i=0} (3.25)

Since i ≥ 1, then take logarithm in both sides of Equation (3.25), and we obtain

log(1 + λp+ i+ λ) + vin log i = log(i− 1 + λ) + vin log(i− 1) (3.26)

This equality is true if i→∞. In other words, N ′in i is power law if i→∞.

Now we consider the expected value of the number of nodes with out-degree j,

E(N t+1
out j|Gt) = N t

out j + q(N t
out j−1p

KRR
out j−1 −N t

out jp
KRR
out j) + p1{out j=1}

= N t
out j + (1− p)

(
N t

out j−1

∑
in i

pKRR
in i,out j−1 −N t

out j

∑
in i

pKRR
in i,out j

)
+ p1{in i=1}
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= N t
out j + (1− p)

(
N t

out j−1

∑
in i

wKRR
in i,out j−1∑
wKRR

in i,out j

− N t
out j

∑
in i

wKRR
in i,out j∑
wKRR

in i,out j

)
+ p1{out i=1}

= N t
out j + (1− p)

(
N t

out j−1

∑
in iw

KRR
in i,out j−1∑

wKRR
in i,out j

− N t
out j

∑
in iw

KRR
in i,out j∑

wKRR
in i,out j

)
+ p1{out i=1}

= N t
out j + (1− p)

(
N t

out j−1

j − 1 + µ

At + µN t
−N t

out j

j + µ

At + µN t

)
+ p1{out i=1} (3.27)

Assuming the node out-degree of the KRR algorithm is power law distributed,

then N ′out j ∼ jvout . KRR algorithm satisfies N t
out j = tN ′out j, A

t = t, N t = pt,

then fill them in and we have

(t+ 1)N ′out j = tN ′out j + (1− p)
(
tN ′out j−1

j − 1 + µ

At + µN t

− tN ′out j

j + µ

At + µN t

)
+ p1{out j=1} ⇒

N ′out j = (1− p)
(
tN ′out j−1

j − 1 + µ

t+ µpt
− tN ′out j

j + µ

t+ µpt

)
+ p1{out j=1} ⇒

jvout = (1− p)
(

(j − 1)vout
j − 1 + µ

1 + µp
− jvout j + µ

1 + µp

)
+ p1{out j=1} ⇒

(1 + µ+ (1− p)j)jvout = (1− p)(j − 1 + µ)(j − 1)vout + p(1 + µp)1{out j=1}

(3.28)

Since j ≥ 1, then take logarithm in both sides of the equation, and we obtain

log(1 +µ+ (1−p)j) + vout log j = log((1−p)(j−1 +µ)) + vout log(j−1) (3.29)

This equality is true if j →∞. In other words, N ′out j is power law if j →∞.
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3.5.2 Algorithm A

Now we move on to algorithm A. In algorithm A, not allowing multiple arcs or

self loops, weights are defined as follows:

wA(yin i, xout j) =

 (i+ λ)(j + µ) if xout j 6→ yin i

0 if xout j → yin i or x = y

The main difference on weights from the KRR algorithm is that wi,j is set to 0

in algorithm A if an arc already exists or if it is a loop. The probability p(yin i)
A,

that, given an arc is added to the network, it is connected to a node y with

in-degree i is then given by

pA(yin i) =
∑
xout j

pA(yin i, xout j) =
∑
xout j

wA(yin i, xout j)∑
wA(yin i, xout j)

(3.30)

therefore,

E(N t+1
in i |Gt) = N t

in i +N t
in i−1p

A(yin i−1)−N t
in ip

A(yin i) + p1{in i=0}

= N t
in i +N t

in i−1

∑
out j

pA(yin i−1, xout j)−N t
in i

∑
out j

pA(yin i, xout j)

+ p1{in i=0}

= N t
in i +N t

in i−1

∑
out j

wA(yin i−1, xout j)∑
wA(yin i, xout j)

−N t
in i

∑
out j

wA(yin i, xout j)∑
wA(yin i, xout j)

+ p1{in i=0}

= N t
in i +N t

in i−1

∑
out j w

A(yin i−1, xout j)∑
wA(yin i, xout j)

−N t
in i

∑
out j w

A(yin i, xout j)∑
wA(yin i, xout j)

+ p1{in i=0}

= N t
in i +N t

in i−1×

×
(i− 1 + λ)

(
At + µN t −

∑
x,y|x→y

∨
x=y(j + µ)

)
(At + λN t)(At + µN t)−

∑
x,y|x→y

∨
x=y(i+ λ)(j + µ)

−N t
in i

(i+ λ)
(
At + µN t −

∑
x,y|x→y

∨
x=y(j + µ)

)
(At + λN t)(At + µN t)−

∑
x,y|x→y

∨
x=y(i+ λ)(j + µ)

+ p1{in i=0} (3.31)

39



where, the probability
∑

x,y|x→y
∨

x=y((i+λ)(j+µ))∑
wA(yin i,xout j)

that, given an arc is chosen, it is

a multiple arc or self loop is unpredictable, so it is very difficult to simplify the

equation. If we know this probability, then we know if Algorithm A holds a

power law form on the in-degree distribution. Similarly for the out-degrees,

E(N t+1
out j|Gt) = N t

out j + q
(
N t

out j−1p
A(yout j−1)−N t

out jp
A(yout j)

)
+ p1{out j=1}

= N t
out j + q

(
N t

out j−1

∑
in i

pA(yin i, xout j−1)

− N t
out j

∑
in i

pA(yin i, xout j)

)
+ p1{out j=1}

= N t
out j + qN t

out j−1

∑
in i

wA(yin i, xout j−1)∑
wA(yin i, xout j)

− qN t
out j

∑
in i

wA(yin i, xout j)∑
wA(yin i, xout j)

+ p1{out j=1}

= N t
out j + qN t

out j−1

∑
in iw

A(yin i, xout j−1)∑
wA(yin i, xout j)

− qN t
out j

∑
in iw

A(yin i, xout j)∑
wA(yin i, xout j)

+ p1{out j=1}

= N t
out j

+ qN t
out j−1×

×
(j − 1 + µ)

(
At + λN t −

∑
x,y|x→y

∨
x=y(i+ λ)

)
(At + λN t)(At + µN t)−

∑
x,y|x→y

∨
x=y(i+ λ)(j + µ)

− qN t
out j

(j + µ)
(
At + λN t −

∑
x,y|x→y

∨
x=y(i+ λ)

)
(At + λN t)(At + µN t)−

∑
x,y|x→y

∨
x=y(i+ λ)(j + µ)

+ p1{out j=1} (3.32)

Again, if we know the probability that given an arc is chosen, it is a multiple

arc or self loop, then we know if algorithm A holds a power law form on the

out-degree distribution.
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3.6 Summary

In this chapter, we proposed several algorithms in order to generate directed scale

free networks without multiple arcs or self loops. All the algorithms which modify

an existing network generating algorithm can be classified in two groups: the

growth (Algorithms A, B and C) and non-growth (the KRRNoLM Algorithm)

algorithms. A corrected mathematical proof is presented to prove the power

law distribution of the generated networks using an existing network generating

algorithm. Also a mathematical framework is presented to prove under which

conditions the algorithm can generate networks with the scale-free feature. The

mathematical generic framework shows that the growth algorithms are power law

when the size of the networks as well as in-degree and out-degree go to infinity. In

the next chapter we will evaluate if these algorithms generate scale-free networks

using statistical tests.
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Chapter 4

Statistical Test for Power Law

Distribution Verification

The previous chapter presented a mathematical proof for the power law node

degree distribution of the generated network. The power law feature holds under

certain conditions, in particular, the size of the network, as well as in-degree

and out-degree go to infinity. Different from the theory, all real-life networks are

finite. Therefore, in this chapter we employ statistical tests on the experimental

data generated by each algorithm we mentioned in the previous chapter.

In the first part, in Section 4.1 we introduce the principled statistical framework

done by Clauset et al. (2009), and explain how it quantifies power-law behavior

in a particular data set. To demonstrate its use, in the Section 4.2, we apply the

statistical framework to some synthetic data sets drawn from the real power law

distribution, and analyse the test results. Section 4.3 presents the test results of

the experimental data generated by all the algorithms introduced in the previous

chapter. Lastly, we discuss the test results of the empirical data of OpenPGP

Web of Trust network in Section 4.4.

We base our work on (Clauset et al., 2009), in which power law distribution

verification is carried out using a statistical analysis framework, and name this

statistical framework as CSN statistical framework by the authors’ names. The

details of the statistical analysis process are as follows.
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4.1 CSN Statistical Framework

Suppose we have an original data set, which has m elements, A = {xi : i =

1, . . . ,m}. Assuming this original data set follows a power law distribution, the

CSN framework first estimates the two parameters xmin and α such that:

p(x) = Pr(X = x) = x−α for x ≥ xmin ·

Note that the original data set would typically be real network data, but here

for algorithms we introduced, and then the CSN framework determines whether

this power law hypothesis is plausible by quantitative testing. The approach

is to generate many synthetic data sets from the same power law distribution,

and measure how closely these synthetic data sets match the power law form

(the theoretical distribution) individually, and compare the measure results with

similar measurement on the original data. We write the synthetic data sets as:

C = {Ck : k = 1, . . . , n}, Ck = {zi : i = 1, . . . ,m},

where zi are the individual data points of the sample, m is as above (the size of

the data set) and n is a variable set in the test (e.q. n = 600 in our study).

The difference with the cases in (Clauset et al., 2009) is that here we can generate

as many data sets represent the “original data” as needed (whereas for real data,

there typically is only one data set). Note that each synthetic data set has the

same size m of the original data set. An algorithm to generate the synthetic data

can be found in (Clauset et al., 2009).

To measure the difference between two probability distributions, particularly in

use of the analysis of power law distributions, the CSN framework suggests that

the Kolmogorov-Smirnov statistic test (K-S test) gives excellent results. We

explain the process detail by using an example of measuring the original data

set A as above. Let B be a subset of the original data set A, written as:

B = {xj : xj ∈ A and xj ≥ xmin},
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where the individual data value not smaller than xmin. Denote S(x) as the

cumulative distribution function (CDF) of B:

S(x) =
|{y : y ≤ x and y ∈ B}|

|B|
,

and P (x) is the CDF of the hypothetic power law model p(x) as above,

P (x) = Pr(X ≤ x) =
x∑

x′=xmin

p(x′).

Then the measure for the discrepancy between two CDFs:

DA = max
x≥xmin

|S(x)− P (x)|.

Similarly, the measurement applies on synthetic data sets and we name DCk
for

each. Finally, the CSN framework calculates a ptest value, which is the fraction

of the number of synthetic data sets whose measurements on discrepancy are

larger than the original one.

ptest =
|{Ck : DCk

≥ DA}|
n

(4.1)

To obtain an accurate estimate of ptest, the value of n, the number of synthetic

data sets to generate needs to be considered. The authors in (Clauset et al.,

2009) point out that at least 1
4
ε−2 (ε is the variance of the estimated mean value

of ptest) synthetic data sets are needed if one wishes the ptest to be accurate to

within about ε of the true value. In our study, we generate 600 synthetic sets to

make sure our ptest to be accurate to about 0.02.

Once ptest is calculated, one can make a decision about whether reject the hy-

pothesis. The authors in (Clauset et al., 2009) made a conservative choice and

set the critical value of ptest to 0.1. If ptest is smaller than or equals 0.1, the

power law distribution hypothesis is rejected, because there is a probability of 1

in 10 or less that synthetic data set more poorly matches the power law model

than the original data set.
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4.2 Synthetic dataset test

Using the statistical framework outlined above, we first conduct statistical tests

on some synthetic data sets, which are generated from a true power law model

via setting α value. It is mainly to illustrate to the reader the statistical test

results of the data sets drawn from the real power law distribution. And it can

also be a reference to which we can compare to datasets generated from the

previous introduced algorithms.

In the tests, we consider the value for α in a range of [2, 3] as per previously

mentioned findings. In this case, the expected number of arcs of a node is finite

and the variance is infinite. Considering sample-to-sample variation, for each

α value we generate 100 synthetic data set samples. In each synthetic data

set we consider minimum degree value xmin = 1, the maximum degree value

xmax = 20000, and the sub-sample size 2500. The synthetic data sets can be

denoted mathematically as S = {Sk : k = 1, . . . , 100}, Sk = {xi : 1 ≤ xi ≤
20000}, |Sk| = 2500 . We set xmax value high enough to get the expected size of

Sk. The average statistical test result is derived:

ptest =

100∑
k=1

ptest(Sk)

100
,

where ptest(Sk) are the statistical test result for individual synthetic data set Sk.

The function to generate synthetic data sets is implemented in technical comput-

ing software MATLAB R2009b. All the synthetic data sets are sampled from a

power law model. Due to the random nature of the sampling process, there will

be always some deviations between synthetic data sets and the power law form.

A synthetic data sample is therefore not guaranteed to pass the test. When

significant number of synthetic data tests are taken, the value of ptest should

converge on the theoretical value of 0.5, demonstrating the power law hypothesis

is reasonable. When we fit the correct model to the data sets, the resulting ptest

is uniformly distributed, and the theoretical value of 0.5 is expected.

Figure 4.1 presents the synthetic data test results with different α values. In

Figure 4.1, we can see that the average ptest values only slightly deviate from 0.5,

45



Figure 4.1: The statistical test results of synthetic data sets drawn from
a power law model Pr[X = x] ∝ x−α, xmin = 1

which implies that all the synthetic data sets with α value between 2 and 3 pass

the test and the samples size we considered is big enough.

Next we will have a look at the results which are derived from the statistical

analysis for these algorithms.

4.3 Experimental Results

In this section, we will look at the statistical test results on the various networks

which are generated by using the algorithms discussed in Section 3.3 and Section

3.4.

All the network generating algorithms are implemented and executed within

the Java Peersim simulation environment for peer-to-peer networks (Jesi, 2004).

Details of how to generate the network by using these algorithms are presented

in Section 5.3.4. By running the simulations, the generated network data set

samples are used as an input of CSN framework in MATLAB code, which are
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available from the website (Clauset, n.d.). We use MATLAB for performing the

data calculations and plotting of graphs.

We first look at the node in-degree and out-degree distributions of networks

generated by using these algorithms in a log-log figure. We consider all the al-

gorithms with the same parameter values used in paper (Krapivsky et al., 2001)

p = 0.1333, λ = 0.75, µ = 3.55, as representative for web hyperlinks (Broder

et al., 2000) and network size 100, 000 nodes. To obtain the confidence inter-

vals for the results, for each algorithm, we consider 100 network samples to be

generated and tested in the CSN statistical analysis framework. Figure 4.2 and

4.3 show the average in-degree and out-degree distributions of 100 network sam-

ples generated by each algorithm respectively. In these two figures, we plot the

complementary cumulative distribution function for node degree distributions,

since the CDF is better than than the PDF against the fluctuations on sample

sizes on the visual form (Clauset et al., 2009). From Figure 4.2 the in-degree

distribution of each algorithm looks roughly straight on a log-log plot. But in the

tail of distribution, algorithms A, B and C do not have large in-degree nodes as

those in the KRR and the KRRNoLM algorithms. In Figure 4.3 the out-degree

node distributions of A, B and C algorithms bent downward when the out-degree

value gets bigger than 100. From the plot of the node out-degree distribution,

algorithms A, B and C seem not scale-free. We keep this in mind, and look at

the results from the statistical test aspect, for each algorithm respectively.

4.3.1 Network size

First of all we want to know how the network size impacts on the scale free

feature, because in theory it requires both the total number of nodes and the

in-degree and out-degree to go to infinity for the power law distribution to be

guaranteed (Bollobás et al., 2003; Krapivsky et al., 2001). Therefore we study

how the scale free feature evolves with the network growth. We conduct the tests

on dynamic networks with network growth from 100 to 10, 000 nodes. For each

algorithm 100 random network samples are studied in the test. Figure 4.4 and

4.5 show the test results of in-degree and out-degree distributions for different

algorithms. The confidence intervals plotted in Figures 4.4 onwards are at 95%

confidence level. For consistency we always label the curves in the same order as

the algorithms introduced before. According to Equation 4.1, if the test result
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Figure 4.2: The average complementary cumulative in-degree node dis-
tribution of networks generated by various algorithms, versus the in-
degree of the networks with 100, 000 nodes

Figure 4.3: The average complementary cumulative out-degree node
distribution of networks generated by various algorithms, versus the out-
degree of the networks with 100, 000 nodes
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Figure 4.4: The statistical test results of in-degree node distribution
of networks generated by various algorithms (p = 0.1333, λ = 0.75, µ =
3.55)

Figure 4.5: The statistical test results of out-degree node distribution
of networks generated by various algorithms (p = 0.1333, λ = 0.75, µ =
3.55)
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ptest is greater than 0.1, a power law distribution hypothesis is plausible. Based on

that criterion, KRR and KRRNoLM algorithms passed the test in both in-degree

and out-degree distributions. The KRR algorithm has already been proven to

be power law, so the KRR algorithm test results can be viewed as a reference

and show that it already holds during growth, not just at infinity. When the

network size gets bigger, the KRRNoLM algorithm results slightly change and

close to 0.5 in both Figure 4.4 and 4.5. It seems to imply that in the KRRNoLM

algorithm the network still maintains the power law distribution feature with

multiple arcs and self loops removal. The key insight gained from the tests for

the KRRNoLM algorithm is that removing the multiple arcs and self-loops after

the entire network is generated does not affect the scale-free character. Also the

scale-free feature exists on small networks, even with 100 nodes, generated by

the KRR or the KRRNoLM algorithm.

Now let us analyse algorithms A, B and C. First look at the test results of the

in-degree distribution shown in Figure 4.4, the algorithm B test results remain

greater than 0.1 with the size of the network, and the test results of algorithms

A and C are above 0.1 when network is large enough. It implies that algorithms

A, B and C seems scale-free in the in-degree distribution. Then in Figure 4.5

showing the out-degree distribution, all three algorithms actually get worse with

network size increase. In the preferential attachment rule, nodes with high out-

degree are likely connected to nodes with high in-degree (Krapivsky et al., 2001).

Algorithms A, B and C redraw an arc until it is neither a multiple arc nor a self

loop. This behavior increases the amount of nodes with a few out-degree/in-

degree and prevents nodes with extreme high out-degree to emerge, even in

bigger networks. From Figure 4.5, we can see that algorithms A, B and C’s

test results presult are below 0.1 even the network grows to 10, 000 nodes. It

implies that none of algorithms A, B, C generates networks with the power law

out-degree distribution.

4.3.2 Different probability values

Apart from testing the network size, we also consider the tests of each algorithm

with different probability p values from 0.1 to 0.7. Here p can be viewed as the

speed of adding a new node in the network. Within the same time period, the

higher probability p, the more nodes are introduced in the network, and the few-
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Figure 4.6: The statistical test results on in-degree distribution of net-
works generated by algorithms with various p (λ = 1, µ = 1)

Figure 4.7: The statistical test results on out-degree distribution of
networks generated by algorithms with various p (λ = 1, µ = 1)
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er arcs are added between existing nodes. Therefore, the chance of choosing

multiple arcs and self loops is less. If p is high enough, we will expect all the

algorithms will behave in a similar way. We set parameters λ = 1, µ = 1 and

network size 10, 000 nodes.

From Figure 4.6, we can see that when the value of p increases, ptest value of

algorithm A increases and is greater than 0.1. As p increases to 0.2, test results

of algorithms A, B and C are increased and above 0.1, and from p = 0.2 onwards,

the test results of each algorithm remain above 0.1. These results indicate that

algorithms A, B and C behave in a similar way if p is high enough. For algorithms

KRR and KRRNoLM, as p increases, the test results remain reasonably large

(> 0.1). We expect with high enough probability all the algorithms test results

will converge to the same point. This is illustrated in Figures 4.6 and 4.7. It

can be observed that A, B and C algorithms are plausible proved as a power law

model when probability p value is large enough (0.7). The insight gained from

the figures is that all algorithms are plausible to be scale-free if p is high enough.

4.3.3 Changing parameter values

We also studied the tests with parameters λ, µ changing. Parameters λ and µ are

introduced in Equation (3.4), where the weights are defined to be used in adding

arcs. We recap it. In the process of growing a network, introduce, at time t,

there are n nodes for i = 1, . . . , n the following weights: vi = µ+Oi, wi = λ+ Ii,

where Oi is the out-degree of node i, Ii is the in-degree of node i, λ and µ are

constants: λ > 0 and µ > −1. If a new arc is added, it will be from node i

to node j is given by
(µ+Oi)(λ+Ij)∑n

i=1

∑n
j=1((µ+Oi)(λ+Ij))

. Here the constants λ and µ ensure

nodes with small in-degree/out-degree have a chance to be attached or gain new

arcs. For instance, take λ = 0, nodes with in-degree equal to 0 remain without

incoming arcs.

Different λ: In this part, we only change the value of λ and set other parameters

µ = 1, p = 0.1333 and network size 10, 000 nodes. We vary the value of λ from

1 to 1000. With large value of λ, the choice of destination node doesn’t depend

on the in-degree value any more. That is because when the value of λ is much

bigger than the in-degree value, the weight wi in the above equation is mainly

determined by λ rather than the node’s in-degree value Ii. Since the value of
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Figure 4.8: The statistical test results for in-degree distribution of net-
works generated by various algorithms with different λ

µ is fixed and the choice of origin node mainly depends on its own out-degree

value, we will expect the out-degree might still hold a power-law distribution.

While about in-degree distribution, we expect in-degree distribution is power law

only when λ is small enough. Figure 4.8 presents test results in node in-degree

distribution of networks generated by various algorithms. It can be observed

that the test result presult values of Algorithms KRR and KRRNoLM are greater

than 0.1 until λ reaches 100. The test result of algorithm B is close to 0.1

until λ reaches 10. From λ = 100 onwards, the test results of algorithms KRR,

KRRNoLM and B remain 0. For algorithms A and C, the test result ptest goes

down and close to 0 till λ reaches 10. From λ = 10 onwards, the test results

remain 0.

We note that for the KRR algorithm, the node in-degree distribution is power

law with scaling parameter α = 2+pλ (see Equation (3.18)). When λ gets larger,

the value of α is far beyond 3. Let p be fixed, if λ is larger than some certain

value, the scale-free feature does not exist on networks generated using the KRR

algorithm.
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Figure 4.9: The statistical test results for out-degree distribution of
networks generated by various algorithms with different λ

The test results for out-degree distribution are presented in Figure 4.9. It can

be seen that the test results of the KRR and KRRNoLM algorithms are mostly

unchanged and the values remain close to 0.5, compared to algorithms A, B and

C. For the algorithms A, B and C, the test results increase and are above the

threshold with the increase of λ. The explanation could be that when adding new

arcs between two existing nodes, the choice of destination node are identically

distributed in the overall network. Then choosing multiple arcs or self loops

occurs much less in this situation. From λ = 10 onwards, algorithm A is similar

to the KRR and KRRNoLM algorithms.

Different µ: We set λ = 1 and increase µ value from 1 to 1000. Other pa-

rameters are set the same values as those in the experiments in the different λ

part. The test results for each algorithm are presented in Figures 4.10 and 4.11.

This time, with µ increasing and becoming larger than the out-degree value, the

out-degree value of a node is not influenced by its own out-degree value any

more. When µ is much larger, the choice of origin node for a new arc between

two existing nodes is identically distributed in all existing nodes rather than fol-

low preferential attachment. We expect that out-degree distribution for all the

algorithms do not follow a power law when µ becomes large enough. Now we l-
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Figure 4.10: The statistical test results for in-degree distribution of
networks generated by various algorithms with different µ

Figure 4.11: The statistical test results on out-degree distribution of
networks generated by various algorithms with different µ
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Figure 4.12: The statistical test results for in-degree distribution of
networks generated by various algorithms with different λ and µ

Figure 4.13: The statistical test results for out-degree distribution of
networks generated by various algorithms with different λ and µ

56



ook at out-degree distribution test results in Figure 4.11. It can be seen that

the test results of algorithms KRR and KRRNoLM are greater than 0.1 until µ

reaches 100. From µ = 100 onwards, the test results for each algorithm are close

to 0.

Figure 4.10 presents the in-degree distribution test results for all different algo-

rithms. One can see that the test results for algorithms KRR and KRRNoLM are

similar and close to 0.5 for each µ value. It can also be seen that, for Algorithms

A, B and C, the test results are greater than 0.1 when µ becomes large. That

means the in-degree distribution for algorithms A, B and C is power law when

µ is large enough (10 in this case).

Different λ and µ: In this test, we consider to vary both λ and µ. Figure

4.12 and 4.13 present the in-degree distribution and out-degree distribution test

results for each algorithm, respectively. From figure 4.12, it can be seen that the

test results of algorithms A, B and C are close to 0.1 until λ and µ reach 100,

while the test results of algorithms KRR and KRRNoLM are close to 0.5. From

λ = 100 and µ = 100 onwards, the test results of all the algorithms are close to

0. The results on Figure 4.13 is similar to those in Figure 4.12. That is because

with large value of λ and µ, the choice of both the origin node and destination

node does not follow preferential attachment at all. Therefore, when λ and µ

become large enough, none of all the algorithms are power law.

4.4 Empirical Data Results

4.4.1 Statistical results

Apart from studying experimental networks, we considered the empirical data as

well. We realize OpenPGP Web of trust network as a good case study of trust

networks exist in real world. The empirical data is collected from the Wotsap

project (Cederlof, 2007), where keeps daily track of the largest strongly connected

set of OpenPGP keys. In graph theory, a strongly connected component of a

directed graph is a subgraph where there is at least one directed path between

every node pair. We downloaded a snapshot of the key database of 28th June

2011 from Wotsap project as our data set. Figures 4.14 and 4.15 show the largest
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strongly connected component (LSCC) of OpenPGP network node in-degree and

out-degree distributions with the estimated power law parameter values.

Figure 4.14: node in-degree distribution in LSCC of OpenPGP network
on 28th June 2011

Figure 4.15: node in-degree distribution in LSCC of OpenPGP network
on 28th June 2011
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We conduct the statistical test on the empirical data in LSCC of OpenPGP Web

of Trust network. The statistical results are listed in the table 4.1. According to

the threshold of 0.1, a test result below this value will rule out the plausibility

of a power law distribution. From the test results in the table, we can see that

in the empirical data from the largest strongly connected set of OpenPGP web

of trust network, the node out-degree distribution follows a power law but node

in-degree does not have a power law distributed. In (Ulrich et al., 2011), the

authors also employed the same testing techniques on the data set they collected

from OpenPGP key database in December 2009 and found that none of node

in-degree and out-degree in LSCC of OpenPGP web of trust network follow a

power law distribution. New finding questions the web of trust network following

a power law distribution. Although the OpenPGP web of trust network does not

follow the power law form, it is the best approximation we know.

Degree α xmin ptest

in-degree 2.88 78 0.001

out-degree 3.04 93 0.122

Table 4.1: Statistical results of the Empirical Data (28th June 2011)

4.5 Summary

In this chapter, to demonstrate the power law distribution of all the algorithms,

an evaluation was carried out using statistical tests. From the test results of

the experimental data, several key insights are gained. The KRRNoLM is the

best under most circumstances. Removing the multiple arcs and self loops after

an entire network has been generated does not affect the scale-free character,

but the cost of the growth nature of the algorithm. We also found that the

scale-free feature can exist on networks even with hundred nodes under some

circumstances. All algorithms are plausible to be scale-free if p is high enough.

From the test results of changing the values of parameters λ and µ, we found

that none of algorithms hold the scale-free feature if parameters λ and µ are high

enough. From the test results on the empirical data, we find that the web of trust
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network exhibits a power law distribution for the out-degree with the estimated

parameter value 3.04. Although the OpenPGP web of trust network does not

follow a power law in the strict sense, the power law is the best approximation

we know.
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Chapter 5

Fast Algorithmic Implementation

5.1 Introduction

In the previous chapter, several algorithms to generate directed scale-free net-

works have been studied. Being able to reproduce the properties of real networks

allows much more accurate evaluation and simulation of routing algorithms and

applications. To evaluate novel protocols through discrete-event simulation one

first needs to generate networks of nodes and relationship between nodes. To

obtain reliable results with small enough confidence intervals, one needs to gen-

erate many of these networks and it is therefore of importance that one is able

to generate networks with the desired properties in reasonable time.

In this chapter, we will turn our attention to developing efficient implementa-

tions of the growth algorithms introduced in Chapter 3. The implementation

of network generating algorithm poses implementation challenges. Firstly, every

potential arc gets assigned a weight that may change when every arc is added.

Secondly, once the weights are determined, selecting the next arc corresponds to

weight random sampling, which in general requires computational effort similar

to a linear search. We will therefore design and implement a set of algorithms

and compare them with respect to computation time and memory consumption,

in terms of both theoretical complexity analysis and experimental results. We

will show through experiments that with the fastest algorithms networks with a

million or more nodes can be generated in mere seconds.
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In this chapter, we derive an algorithm that resolves both the problem of updat-

ing weights and of linear search. In what follows we first recap network growth

algorithms in Section 5.2. In Section 5.3 we then introduce implementation algo-

rithms. In Section 5.4 we analyse the complexity of the algorithms, theoretically

as well as experimentally.

5.2 Weights

We recap the network algorithms introduced in Chapter 3. Each arc gets assigned

to a weight. In particular, for any node i, let Ii be the in-degree of node i and

Oi the out-degree of node i, then in KRR algorithm, weights wi,j are defined as

follows:

wi,j = (µ+Oi)(λ+ Ij), (5.1)

where λ and µ are constants: λ > 0 and µ > −1. The probability pi,j that, given

an arc is added to the network, it is from i to j is then given by

pi,j =
wi,j∑n

i=1

∑n
j=1 wi,j

. (5.2)

The above implies that arcs between nodes with a high number of incoming or

outgoing arcs are more likely than between nodes with low number of arcs. Note

that if an arc is added from a new node i to an existing node, that the out-degree

Oi of the new node is zero, thus simplifying the weights to wi,j = λ + Ij (the

constant µ can be omitted).

In algorithm A, which is a modified version of the KRR algorithm by not allowing

multiple arcs or self loops, weights are defined as follows:

wi,j =

 (µ+Oi)(λ+ Ij) if i 6→ j and i 6= j

0 if i→ j or i = j
(5.3)

The main difference between the implementation according to algorithm A and

the KRR algorithm is that wi,j is set to 0 in algorithm A if an arc already exists

or if it is a loop. We can see the fact that we disallow multiple arcs and self

loops introduces several aspects that make it difficult to scale algorithm to large
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networks. We therefore design and implement a set of algorithms, using various

ideas to reduce computation time as well as memory consumption compared to a

‘Base’ algorithm–we term these ideas ‘Node Weights’, ‘Node Weights with Sub-

traction’, ‘Multi-sampling’ and ‘Reversed Look-up’, respectively, and introduce

these in the next section.

5.3 Generator Algorithms

Algorithm A poses considerably more challenging to implement in an efficient

manner. We will see a main challenge in making algorithm scalable lie in the

need to update weights wi,j in Equation (5.3). As a consequence, a straight-

forward implementation (termed the Base algorithm in Section 5.3.1) requires

considerable weights update after an arc is added. This issue we address first. A

second challenge is the selection of the arc once the weights are updated. This we

can only resolve in one specific algorithm, namely Multi-sampling, as we discuss

in Section 5.3.4 when we introduce Reversed Look-up.

For all algorithms we will compute the time and memory complexity. In the

complexity analysis we ignore updating of the in-degree and out-degree of a

node with every added arc–this has to be done in all algorithms. Similarly, we

do not consider the storage in memory of the actual networks with all its nodes

and arcs. This also has to be done in all cases, and it should be noted that

storage of the N nodes and N
p

arcs is of dominant order in all but the Base

algorithm.

5.3.1 Base implementation

The Base method is straightforward: store all elements wi,j in a matrix of size

N × N and update these weights after every addition of an arc. In particular,

if arc x → y is added, then wx,j needs to be updated for j = 1, . . . , n, and wi,y

needs to be updated for i = 1, . . . , n. That is, a complete row and a complete

column in the matrix needs to be updated. In addition, wx,y needs to be set to

0.
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To make this precise, we introduce the superscript + to denote the updated

weights when an arc is added. Similarly, we represent the increase of the out-

degree of a node i as O+
i and the increase of the in-degree of node j as I+

j .

Assume that x→ y is the last arc added, then O+
i = Oi + 1 if and only if i = x

and O+
i = Oi otherwise. Similarly, I+

j = Ij + 1 if and only if j = y and I+
j = Ij

otherwise. Hence, when x → y is the added arc, the weights in Equation (5.3)

need to be updated as follows:

w+
i,j =



wi,j + λ+ Ij if i = x and i 6→ j

wi,j + µ+Oi if j = y and i 6→ j

0 if i = x and j = y

wi,j otherwise

(5.4)

This process of updating weights has the following time complexity. If an arc

is added at iteration n, there are up to 2n − 1 (a row and a column) weights

updated. Since at each iteration 1
p

arcs are added, the total time complexity is
1
p

∑N
n=1(2n − 1) = O(N

2

p
) updates. A matrix is used to store the weights, thus

requiring O(N2) storage.

The second aspect to be considered is the time it takes to draw a weighted random

number according to the probabilities in Equation (5.2). The base algorithm for

weighted random sampling is to draw a random number r between 0 and 1 and

add up probabilities pi,j in Equation (5.2) in order until the sum exceeds r. (‘In

order’ may for instance be implemented through a double for loop: for (i=1)

to n do { for (j=1) to n do{. . . }})

This way of weighted random number generation has complexity similar to a

linear search through a list of size n×n: it requires on average 1
p
n2

2
operations at

iteration n, and summing this leads to the results for pyramid numbers, which

implies that the resulting time complexity is O(N
3

p
) operations in total. There is

no additional required memory for this way of drawing weighted random num-

bers.

We note that some algorithmic tricks can be thought off to speed up the drawing

of weighted random numbers, such as traversing the matrix backward when the

random number is larger than 0.5 (for instance). This, however, does not change
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the order of the algorithm. Similarly, as we already remarked, if a new node is

added, the out-degree of the new node is 0, and hence the weights in Equation

(5.3) simplify. We exploit this in our implementations to make the algorithms

more efficient when adding a node, but the order of the algorithm does not change

because of it. We therefore will not discuss such issues in more detail.

5.3.2 Node weights

Since the Base algorithm stores the complete matrix of weights its memory re-

quirement of O(N2) makes it less attractive for a large network size. Roughly

speaking, modern day personal computers may be expected to hold up to 109

doubles in memory, thus limiting N to about 30,000.

The Node Weights method resolves this issue, by storing and updating weights

per node, instead of per arc. This immediately implies that storage requirements

will go down to O(N). In particular, at iteration n, for each node i we store

wi =
n∑
j=1

wi,j. (5.5)

The probability pi that, given an arc is added to the network, it has i as the

origin is then given by:

pi =
wi∑n
i=1wi

. (5.6)

Furthermore, once the origin is determined, the destination is determined by

computing wi,j on the fly for given origin node i.

Important is that the node weights wi can be updated without knowing the

individual values wi,j, because otherwise there would be no gain from maintaining

node weights. This works in a similar manner as for the Base algorithm: if arc

x→ y is added we have again that O+
x = Ox + 1 and I+

y = Iy + 1, and we derive

that the updated node weights w+
i obey:

w+
i =


wx +

∑
j|x 6→j(λ+ Ij)− wx,y if i = x

wi + µ+Oi if i 6→ y and i 6= x, y

wi otherwise

(5.7)
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Updating the weights by above equations takes order n operations for each arc

in the n-th iteration, thus giving O(N
2

p
) overall complexity for updating, as in

the base case. However, selection of an arc through weighted random sampling

is an order less expensive than in the base case. A sequential search is used to

find the origin node, and for this origin node all possible destination nodes are

considered. (Again, we sum up probabilities pi and then probabilities pi,j until

they sum to r. To make this more precise would lead to cumbersome explanation

not necessary for the thrust of this paper.) As we remarked, for the chosen node

i, we generate the weights wi,j on the fly from Equation (5.3) since we do not store

the individual weights. The time complexity for the weighted random sampling

in the Node Weights algorithm is thus O(N
2

p
).

5.3.3 Node weights with subtraction

Node Weights with Subtraction is a variation of Node Weights in which we

decrease the number of updates. From Equation (5.7) one sees that weights wi

are updated for every node i that is not connected to y (i 6→ y). In Node Weights

with Subtraction we do the opposite, and update wi if and only if i → y. The

main observation behind the method is that the node weights in Equation (5.5)

can be rewritten as:

wi =
n∑
j=1

wi,j =
n∑

j=1|i 6→j,i6=j

(µ+Oi)(λ+ Ij)

=
n∑
j=1

(µ+Oi)(λ+ Ij)−
n∑

j=1|i→j∨i=j

(µ+Oi)(λ+ Ij)

= (µ+Oi)(nλ+ An)−
n∑

j=1|i→j∨i=j

(µ+Oi)(λ+ Ij),

where An is the total number of arcs at iteration n. For each node, we then keep

track of the term (µ + Oi)(nλ + An) (which we can easily track and update) as

well as of
∑n

j=1|i→j∨i=j(µ+Oi)(λ+ Ij). Since the latter term has fewer elements

in the sum it is less effort to update that term than it is to update the actual

values wi (as in the Node Weights method).

We will not write down the equivalent of Equation (5.7) to update the elements∑n
j=1|i→j∨i=j(µ + Oi)(λ + Ij). Note that although it can be expected that the
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Node Weights with Subtraction method is more efficient than Node Weights, the

time and memory complexity orders do not change.

5.3.4 Multi-sampling

The idea behind Multi-sampling is radically different from the previous ap-

proaches in that updates are no longer carried out. Instead of enforcing that no

multiple arcs or loops will be generated by setting weights to 0, Multi-sampling

allows an arc to be selected that leads to multiple arcs or a loop, but then ignores

it and retries the sampling for an arc. We will see that this implies a constant

computational complexity for updates in each iteration, but that it increases the

number of samples, thus resulting in O(N
fp

) computational complexity, where 1
f

is the average number of samples per iteration.

The algorithm works as follows. Introduce, for i = 1, . . . , n the following weights:

vi = µ+Oi,

wj = λ+ Ij. (5.8)

Then generate an arc x→ y by conducting weighted random sampling using the

weights vi to determine x and by conducting weighted random sampling using

the weights wi to determine y. If x → y already exists or if x = y, then repeat

the procedure until a new arc is added.

We now have to show that this procedure correctly implements our model, i.e.,

that it generates probabilistically equivalent networks as when the probability

of adding an arc x → y is given by Equation (5.2). This follows directly from

considering, for the Multi-sampling method, the conditional probability pMS
x,y :

pMS
x,y = Prob{arc x→ y is added |an arc is added}

=
Prob{arc x→ y is added ∧ an arc is added}

Prob{an arc is added}

If x→ y already exist, then an arc is not added, and so the numerator evaluates

to false, resulting in pMS
x,y = 0 if x→ y already exists. Similar, if x = y, an arc is

not added and pMS
x,y = 0. If x → y does not yet exist, then an arc is added and
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the numerator becomes

Prob{arc x→ y is added} =
viwj∑n

i=1

∑n
j=1 viwj

.

The denominator equals:

Prob{an arc is added} =

∑n
i=1

∑n
j=1|i 6→j,i6=j viwj∑n

i=1

∑n
j=1 viwj

.

As a result we obtain for the conditional probability that given an arc is added,

it is arc x→ y:

pMS
x,y =

viwj∑n
i=1

∑n
j=1|i 6→j,i6=j viwj

. (5.9)

Hence, filling in wi,j in Equation (5.2) and vi and wj in Equation (5.9) we find that

probabilistically Multi-sampling generates networks consistent with our model.

For the performance of the Multi-sampling method it will be important to de-

termine the amount of resampling that is required. Every time an arc x → y

is selected that already exists or x = y, a new attempt must be made (which

involves drawing a new random number, and selecting an arc according to the

procedure under Equation (5.8)). To determine the average number of resamples,

let f be the probability the sample is successful:

f =

∑n
i=1

∑n
j=1|i 6→j,i6=j viwj∑n

i=1

∑n
j=1 viwj

. (5.10)

Then the average number of tries until a sample is successful equals
∑∞

k=1 k(1−
f)k−1f = 1

f
. Obviously, the required number of samples gets high if the success

probability f is small. Since f is a potential bottleneck for the Multi-sampling

methods Section 5.4.3 shows experimental results for f .

Finally, we note that the storage requirements for Multi-sampling only involve

maintaining weights vi and wj in Equation (5.8). These weights can easily be

computed from the already stored in- and out-degrees, and therefore there is no

specific storage needed for the weights.
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5.3.5 Reversed look-up

Thus far the algorithms have dealt with the issue of updating weights, either

decreasing the storage needed for the weights or the time required for updates.

However, considerable computational effort is also required to sample weighted

random numbers once the weights are established. For the Multi-sampling ap-

proach, however, the weights are such that one can store the weights in such

a way that, given a random number, the appropriate weighted random number

can directly be read from the data structure.

We call this idea ‘Reversed Look-up’, and it has its origin in a commonly proposed

algorithm for weighted random sampling if all weights have integer values (see for

instance (jimt, n.d.) and also the BA algorithm implementation in Peersim (Jesi,

2004) for examples of this and related ideas). In our case, following Equation

(5.8), in iteration n weighted random sampling selects node i with probability pi

defined as:

pi =
vi∑n
i=1 vi

=
µ+Oi∑n
i=1(µ+Oi)

=
µ+Oi

nµ+ An
, (5.11)

where An is the total number of arcs at iteration n. We will now first deal

with the constants µ, before applying Reversed Look-up to the integer-valued

out-degrees Oi.

Let r be a random number between 0 and 1. To deal with the constant µ, we

select node x = 1, . . . , n, if µ(x−1)
nµ+An

≤ r < µx
nµ+An

. This means that if r < nµ
nµ+An

the origin node for the new arc is selected uniformly from all n nodes, since µ

contributes the same constant value to any probability pi. If, on the other hand,

r ≥ nµ
nµ+An

, the outgoing arc is not yet decided and the Reversed Look-up comes

into effect, as follows.

We maintain an array of size An with integer values, such that in each array

element a node number is stored. More precisely, the array has Oi elements with

value i. We then select any of the array elements with equal probability–since

there are Oi array elements for node i the likelihood that a node is chosen is

proportional to Oi (we make the correctness argument precise below).

To select an array element according to a uniform distribution, we first scale up

the random number r ≥ nµ
nµ+An

so it is a uniformly distributed number between

0 and An: rnew = r ∗ (nµ+An)−nµ. Then we select array index k as k = brnewc
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(the floor operator bc indicating rounding to the nearest lower integer). The

origin node is then the value of the array element at index k.

Once the origin node is determined, the destination node is determined similarly

by maintaining an array of AN = N
p

elements with nodes based on in-degrees Ij.

To demonstrate the correctness of the approach, node x is selected according

to a uniform distribution (that is, with probability 1
n
) if r < nµ

nµ+An
and with

probability Ox

An
if r ≥ nµ

nµ+An
. Together, this means that node x is the origin with

probability 1
n

nµ
nµ+An

+ Ox

An
(1− nµ

nµ+An
) = µ+Ox

nµ+An
, which confirms to Equation (5.11).

This idea of Reversed Look-up works because of the integer value of the weights

and because updates can be implemented very simply. For instance, it is not

easy (if at all possible) to efficiently implement Reversed Look-up when weights

may decrease, such as in the Node Weights method. When using Multi-sampling

updating the array is straightforward. Assume arc x→ y is last added, then we

add to the array for in-degrees one element with value y and to the array with

out-degrees one element with value x.

The time complexity of the Reversed Look-up method is minimal. To update the

array and read the right element from the array there are some operations each

time an arc is added, resulting in time complexity O(N
p

). Importantly, memory

use is increased through the use of two arrays of O(N
p

) elements.

We will see in the results section that the ability to use Reversed Look-up in

the Multi-sampling approach dramatically reduces the computational effort to

generate scale-free directed networks. We will see that networks with a million

or more nodes are feasible.

5.4 Evaluation of Generator Algorithms

Before discussing our experimental results, let us recap the theoretical complexity

results we derived in Section 5.3, by comparing the order of all algorithms in Table

5.1, for CPU time and memory consumption, respectively. In Table 5.1 the time

complexity is divided in two: the time an algorithm takes in updating weights,

and the time an algorithm takes in determining the correct arc to add based on

weighted random sampling. Note that the CPU time complexity does not include
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p

Node Weights N2

p
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p
N 0 N

p

Node Weights with Subtraction N2

p
N2

p
N 0 N

p

Multi-sampling 0 N
fp

0 0 N
p
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fp
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p
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Table 5.1: Orders of CPU and memory use for various algorithms

aspects that are required in all algorithms, such as updates of in-degrees and out-

degrees. The memory use is given for the same two aspects: storing weights and

memory used for selecting the arc through weighted random sampling. The table

also shows the memory requirement for the generated network itself, since this

is a dominant factor in the memory use of all algorithms.

We see from Table 5.1 in the first two columns on CPU time that we may

expect that Multi-sampling will outperform the Base and Node Weight methods,

unless the probability f becomes too small (f is the probability resampling is

not needed, and thus 1
f

is the expected number of samples for each added arc).

We will show in our experiments that Multi-sampling is indeed the preferred

method, and we will also experimentally show that the number of retries 1
f

decreases with the number of iterations to a small, almost constant, value. The

latter is important, since otherwise the method would break down because of

excessive resampling.

We also see from the table that a potential bottleneck exists for Multi-sampling

with Reversed Look-up in the use of memory to select the arc using weighted

random sampling. After all, the point of the Reversed Look-up method was

to trade memory for CPU. However, we will see that this use of memory is of
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the same order as that for storing the generated network itself, something all

algorithms need to do. This implies that the base and Node Weight methods

never really are competitive compared to Multi-sampling with Reversed Look-

up: even if memory use increases in Multi-sampling with Reversed Look-up, the

time the other algorithms take leaves them unattractive.

In what follows we analyze the results of our experiments. All the methods are

implemented and executed within the Java Peersim simulation environment for

peer-to-peer networks (Jesi, 2004). As a general-purpose P2P simulation environ-

ment Peersim is concerned with more than efficiency alone and one may expect

some performance or memory usage overhead compared to bespoke implementa-

tions. Nevertheless, we are convinced that our implementation and experiments

are indicative for typical use of the algorithms we developed.

To achieve fair results, all the experiments were conducted on the same machine.

It has a Pentium(R) processor, with CPU 3 GHz and 2 GB of RAM. Effectively,

we were able to use up to about 1.4 GB of memory in our experiments. All

experiments were repeated up to fifty times to create tight confidence intervals.

In general, results did not show much variance. Even in cases that computation

time for each data point was too high (up to one day) to do many experiments, we

still achieved relatively stable results. In order to collect the performance results,

we used the Java method System.currentTimeMillis() to give current system

time in milliseconds and added time stamps to the Java programming code to

measure the time the algorithm needs to generate the networks. To measure the

memory usage, we use two common Java methods Runtime.totalMemory() and

Runtime.freeMemory() to calculate how much space has been occupied by the

algorithm. Because memory allocation is managed by the Java Virtual Machine,

the results may be influenced by the working of the JVM. However, we will

see that the results can be satisfactory explained from our understanding of the

working of the algorithms and implementation.

5.4.1 Baseline performance comparison

We first compare the performance of the various algorithms for typical settings.

Since discrete-event simulation studies of peer-to-peer algorithms often concern

networks of some ten thousands of nodes (e.g., (Lv et al., 2002; Zhang and van
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Figure 5.1: CPU time for average networks (p = 0.1333)

Moorsel, 2008)), we vary the network size N from 10, 000 to 50, 000 nodes. In

addition, we use the parameter values derived in (Krapivsky et al., 2001) for

the world-wide web (in turn attributed to data from (Broder et al., 2000)):

p = 0.1333, λ = 0.75 and µ = 3.55. Note that the values of λ and µ do only

influence the CPU or memory use through the probability f in Equation (5.10),

but that p is a very important factor for all metrics and methods.

Figure 5.1 shows CPU time for the various methods. To simplify the under-

standing of the figures, we note that we always label the curves in the order they

appear in the graph (from top to bottom). In this case, the Base method only

generated a single point for N = 10, 000. The Base method does not complete

for larger values of N because it runs out of memory. The Base method thus

clearly performs worst. The two increasing curves in Figure 5.1 are for Node

Weights without and with Subtraction, respectively. In fact, the increase is

roughly quadratic in the number of nodes, as we expect from the complexity re-

sults in Table 5.1. Finally, the two Multi-sampling approaches easily outperform

the others, both demonstrating an almost flat line.

The memory consumption for the different methods is displayed in Figure 5.2
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Figure 5.2: Memory use for average networks(p = 0.1333, logarithmic
scale)

Figure 5.3: Memory use for average networks(p = 0.1333, linear scale)
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(notice the logarithmic scale) and Figure 5.3 (in linear scale). One sees that the

Base method indeed runs out of memory. As we remarked, we can effectively

use up to 1.4GB of memory, and for N = 10, 000 the Base method uses close to

1.0GB already. The other approaches all exhibit similar memory consumption–

this can explained from the fact that memory use in all cases is of order N
p

,

dominated by the storage of the network itself. Note that Multi-sampling with

Reversed Look-up consumes slightly more memory than either Multi-sampling

or Node Weights, but in essence all four methods are comparable.

In conclusion, we see that for a common range of parameter values, Multi-

sampling with or without Reversed Look-up clearly outperform the other meth-

ods with respect to the required computation time. Although the Node Weights

method is competitive when considering memory use, it does not dramatically

improve over either Multi-sampling method. Therefore, the results suggest that

the choice is be between the two variations of Multi-sampling. When generating

networks with a million or more nodes in Section 5.4.4, we will discuss in more

detail the CPU and memory implications of using Reversed Look-up or not (see

Figures 5.9 and 5.10).

5.4.2 Highly connected networks (p small)

Since the complexity numbers in Table 5.1 all tend to infinity when the probabil-

ity p ↓ 0 we now research the performance of the various approaches when p gets

small. For N = 10, 000 Figures 5.4 and 5.5 show the CPU and memory results,

respectively, for small values of p (note the logarithmic scales of the figures). For

a network with N nodes, the average number of arcs is N
p

and the maximum

number of arcs is N(N − 1). We thus see that realistically one should have p

considerable larger than 1
N−1

. In our network of size N = 10, 000 we let p get as

small as 0.001.

Figure 5.4 shows that only Multi-sampling (with or without Reversed Look-up)

can generate networks with p = 0.001. For instance, the Node Weight methods

require more than 10 hours to generate networks for p = 0.01, and networks for

smaller p can therefore not be generated in practice.

Even though Figure 5.5 demonstrates that the Node Weights method uses as little

memory as Multi-sampling, we see that the conclusions from Section 5.4.1 do not
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Figure 5.4: CPU time for highly connected networks (N = 10, 000)

Figure 5.5: Memory use for highly connected networks (N = 10, 000)
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change significantly compared to the results for small p values in this section.

Multi-sampling is so fast that the Node Weight methods cannot compete, even

though Node Weight is memory efficient. Note that based on Table 5.1 this was

not a foregone conclusion because of the unknown implications of the probability

f (which relates to the required amount of resampling) in the Multi-sampling

methods. We study this further in the next section.

5.4.3 Amount of resampling in multi-sampling methods

Table 5.1 shows the dependence of the CPU time needed for Multi-sampling

methods on the probability f , which is the probability an arc is successfully

added, as given in Equation (5.10). Unfortunately, we do not have expressions

or convergence results for f . We therefore experimentally investigate f as a

function of the iteration number.

We generate networks of up to 180, 000 nodes, count the number of resamples

over intervals of 20, 000 nodes and divide it by the number of arcs added in these

intervals. In doing so, we obtain 1
f
−1, the number of ‘wasted’ resamples for each

successfully added arc. (We note that using the Node Weight methods we can

numerically compute f precisely for any network, but the Node Weight method

is prohibitively slow for the small values of p and large N considered. Hence,

we used Multi-sampling with Reversed Look-up and sampled 1
f
, repeating the

experiment sufficiently often to gain tight enough confidence intervals.)

Figure 5.6 presents the average number of resamples as a function of the iteration

count. We show a curve for p = 0.01, p = 0.1 and p = 0.1333 (as in Section

5.4.1). Clearly, f depends very much on p, but in all cases the number of wasted

samples is small. For instance, for p = 0.01 the number of resamples is less than

1 per succesfully added arc, while for more regular values such as p = 0.1333 the

number of resamples is even less.

Importantly, however, all curves decrease as a function of the iteration count.

This implies that for larger network the danger decreases that f becomes a

bottleneck. This probably can be explained from the fact that with increasing

iteration count n the number of existing arcs n
p

becomes less and less significant

compared to the number n(n − 1) − n
p

of not yet existing arcs. However, this

depends on the actual values of the weights corresponding to existing arcs, so we
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Figure 5.6: Number of resamples

only suggest it as a possible explanation that remains to be proven. Clearly, it

would be of great interest to derive theoretical results for f or its convergence,

but this is beyond the scope of our current presentation.

5.4.4 Networks with a million nodes

Finally, we want to push the algorithms and generate as large a network as we can

using our current implementation in Peersim. We have already seen that only the

Multi-sampling methods should be considered for average sized networks, and

have identified that Multi-sampling with Reversed Look-up is superior in time,

while plain Multi-sampling is more memory efficient. Figure 5.7 and Figure 5.8

confirm this for N = 100, 000, and different values of p. More precisely, Reversed

Look-up takes about 20% more memory for the whole range of p values (200MB

for p = 0.01). On the other hand, computation time for Multi-sampling gets

considerably worse, and can differ more than a factor 10. So, an early conclusion

would be to exclusively use Multi-sampling with Reversed Look-up.

We see in Figures 5.9 and 5.10 how far we can push the two Multi-sampling

methods. As far as CPU use is concerned Reversed Look-up is clearly beneficial,

since Multi-sampling without Reversed Look-up takes close to 10 hours (Figure
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Figure 5.7: CPU time for the Multi-sampling variants (N = 100, 000)

Figure 5.8: Memory use for the Multi-sampling variants (N = 100, 000)
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Figure 5.9: CPU time for large networks (p = 0.1333)

Figure 5.10: Memory use for large networks (p = 0.1333)
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5.9). Considering memory usage, Figure 5.10 shows that the two methods do

not differ too much. Moreover, with 1 million nodes we are exactly at the limit

of the available memory of about 1.4GB. In other words, Multi-sampling with

Reversed Look-up is the preferred approach, allowing us to generate networks

with up to one million nodes in seconds (to be precise, 32 seconds for 1 million

nodes).

5.5 Summary

This chapter is particularly focused on the development of fast algorithms that

allow the model to be effectively used in discrete-event simulation studies. In

Section 5.2 we briefly recap the network algorithms and introduced the related

problems. In Section 5.3, We have derived an approach termed Multi-sampling

with Reversed Look-up that under almost all circumstances outperforms other

methods. The experiment results in Section 5.4 show that the amount of re-

sampling required in the method is bounded and does not significantly reduce

the applicability of the method across a broad parameter range. In addition,

although the method requires additional memory to speed up the process of

weighted random sampling, memory use does not much exceed that for main-

taining the network itself (necessary for all algorithms). As a consequence, using

Multi-sampling with Reversed Look-up one can generate networks with a million

or more nodes within seconds on current-day desktops.
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Chapter 6

Evaluation of P2P Algorithms

for Probabilistic Trust Inference

6.1 Introduction

The previous chapter describes several algorithmic implementations and presents

a quantitative comparison of their performance in theory, as well by simulation.

This is a basic contribution to build the underlying network of our trust model.

Let us recap our trust model here. Our trust model views the system similar to

Web of Trust, a network or graph where nodes are linked if they have a trust

relation. We assume links are directed, that is, a link or arc from A to B implies

that A trusts B, but not B does not necessarily trust A. The problem we address

is if, for a given pair of request node and target node, a trust path exists in

the trust network. We associate a probability with each link to represent the

trust value associated to the trust relation (either specified by the requester or

by the trusting party associated with an arc). The overall trust value of a trust

path is the product of the probabilities on the links. Moreover, when multiple

trust paths exist between requester and target, the problem of computing the

overall trust value translates to the network reliability problem, as pointed out

in (Jonczy et al., 2006).

Given the above trust model, we are interested in evaluating how peer-to-peer

algorithms perform when used for identifying trust paths. We quantify their

performance by comparing the overhead (in number of messages used) with the
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achieved success rate (in fraction of paths found). We then also compare the

achieved trust value with the trust value obtained if all trust paths are considered.

In all steps of this study we use Monte Carlo and discrete-event simulation: for

generating the networks, executing the peer-to-peer algorithms, and sampling

the resulting paths to obtain the trust value. This chapter builds on the earlier

work in the same area (Ribeiro de Mello et al., 2007), but that work was limited

to the question if at least one trust path could be found, thus not including the

overall success rates, nor introducing trust values and trust value computation.

The rest of the chapter is organized as follows. Section 6.1 provides an overview

of the problems and analysis and explore the potential solutions. The analytical

search algorithm technique are presented in Section 6.2. Numerical experiments

are detailed in Section 6.3. The performance and cost comparison among various

P2P algorithms to obtain probabilistic trust inference in Section 6.4. Section 6.5

gives a summary of the chapter.

6.2 Problem Definition

6.2.1 Trust path discovery problem

In abstract terms, one can model a web of trust as a directed graph G = (V,E),

in which the set of vertices V represent the nodes and the set of directed edges E

represent trust relations. A directed edge from i to j corresponds to i’s trust in

j. In terms of this trust relation, i is the truster (Jøsang et al., 2006), and j is the

trustee (Jøsang et al., 2006). As an example, in the PGP trust model (Jonczy

et al., 2006), vertices are public keys and edges are certificates. A directed edge

from i to j represents i signing a certificate which binds j to a key.

Assume trust relations exist between some of the nodes of a network, and based

on direct interactions between them, direct trust (Mahoney et al., 2005) is cre-

ated. But since not all nodes of a network have direct interactions, direct trust

links do not exist between all pairs. Nodes without direct interactions, how-

ever, can estimate trust depending on its trustees and so on. For instance, as in

(Ribeiro de Mello et al., 2007), assume there is no directed edge from A to C, A

can still trust C if there exists at least one path from A to C in the graph. That

is, it is accepted that trust is transitive in the trust model: if A trusts B, and B
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trusts C, then A trusts C. The trust A places on C is viewed as indirect trust

(Mahoney et al., 2005), which is derived from the beliefs of others. As pointed

out in (Mahoney et al., 2005), trust relations usually are one-way: A trusts B

does not mean B trusts A.

In our model, every node maintains its trust relations associated with other

nodes. If a node (called the requester) wants to establish the trustworthiness of

another node (called the target) with which he has had no direct interactions

before, the trust path discovery problem is to find one or more trust path to the

target. In (Ribeiro de Mello et al., 2007), the authors indicate that P2P search

algorithms can be applied to discover trust paths, due to the similarity of the

structure of a web of trust network and an unstructured P2P network. In what

follows, the process of finding trust paths is called a search phase. After the

search phase, and if such trust path exists, the requester requires some mathe-

matical method to estimate the trustworthiness of the target. How to develop a

reasonable trust measure is presented in the following subsection. On the other

hand, if no such trust path exists, the trustworthiness of a target cannot be

established from the requester’s point of view.

6.2.2 Trust inference problem

How to define a reasonable trust metric to estimate the trust placed on the

target? Our work follows the approach in (Jonczy et al., 2006), which shows

that the trust inference problem can be translated into the two-terminal network

reliability problem.

Network reliability concerns the performance study of computer networks, in

which components are subject to random failures. In network reliability analysis,

it is assumed that edges have probabilities of failure (Ball et al., 1995). That is,

at a particular time, an edge can take one of the two states, operative or failed.

The two-terminal network reliability is computed as a probability of establishing

at least one operating network path from s to t. Mapping the (s, t) network

reliability problem to web of trust context, requester-target trust inference is

viewed as determining the probability of establishing at least one trust path

from the requester to the target.
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To solve the network reliability problem, exact methods and approximate meth-

ods have been developed. In general, exact methods first calculate minimal

operating states, path sets or cut sets, and then apply inclusion-exclusion prin-

ciple to compute the result (Ball et al., 1995). However, exact methods suffer

from an exponential worst-case complicity (Ball et al., 1995). That is caused

by the computation of path sets or cut sets, which is an NP-hard problem (Ball

et al., 1995). A Monte-Carlo technique belonging to approximate methods is

commonly proposed and employed in network reliability computation (Fishman,

1995). This method is implemented in our experiments to compute the trust

value.

6.3 Methodology

6.3.1 Topologies

The topology of a P2P network may influence the effectiveness of various search

algorithms. We focus on two network topologies in our study: random graph

and scale-free graph. Random graph is generated by the approach provided by

Peersim (Jesi, 2004), while scale-free graph is generated by the approaches which

were presented in the previous sections.

Random Graph. Given the network size S (the number of nodes) and an

integer value d, PeerSim generates randomly d directed links out of each node.

The neighbours are chosen randomly without replacement from the nodes of the

network except the source node. We modified the basic algorithm in Peersim so

that the out-degree follows a truncated standard normal distribution around d.

Scale-free Graph. We use network generating algorithm KRRNoLM (referred

to Chapter 3) to generate directed scale-free networks without multiple arcs

and self loops. The fastest algorithms (referred to Chapter 5) of generating the

desired networks are implemented in Peersim. A set of parameters (S, p, λ, µ)

needs to be specified as the input of a simulation.

85



6.3.2 P2P search algorithms

The trust path discovery algorithms considered in this chapter all are variations

of flooding in unstructured P2P networks. More specifically, they are controlled

flooding algorithms. For these approaches in the context of file sharing, we refer

to (Lv et al., 2002).

Flooding. “Pure” Flooding has been mainly used in Gnutella networks (Gnutella,

2001). In this approach, a requester sends query messages to every node to which

it directly connects. Receiving a query message, if a node does not find infor-

mation being searched, it will forward this query message to all of its connected

neighbour nodes. To avoid unlimitedly propagating messages, every query mes-

sage is fixed with a time-to-live (TTL) parameter, which takes a positive integer

value. Each time the query is forwarded by a node, the TTL value is decre-

mented by 1. When the TTL value reaches zero, the query message will stop to

be forwarded. We will see later that setting the TTL value is a critical aspect

for the performance of the algorithm.

Random querying. In comparsion with Flooding, in Random querying, a

requester sends query messages to a subset of its neighbour nodes, which is set

to K percent of its neighbour nodes rounded below or rounded above. Upon

receiving the incoming query, a node then continues forwarding the messages to

its K percent randomly selected neighbour nodes. This method also relies on

TTL parameter to limit the search.

Selective querying. Rather than forwarding incoming queries to randomly

chosen neighbours, the Selective querying approach (Yang and Garcia-Molina,

2002) intelligently selects a subset of neighbours according to some specific crite-

rion, for instance, the latency of connection, number of results for past queries,

location and message queue capacity, etc. In the trust path searching, best

neighbours are nodes with the most trust relations.

6.3.3 Metrics

To measure the efficiency of these algorithms, we considered three aspects re-

flecting the fundamental characteristics of the algorithms.
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Success rate: the fraction of for which an algorithm successfully locates the

target.

Number of messages: overhead of an algorithm is measured as the total

number of search messages passed over the network during the search.

Trust inference value: A probability within a range [0, 1], where 0 denotes

no trust, and 1 denotes full trust. If no trust path exists, the trust value is 0,

otherwise, the probabilistic trust value is computed as the solution of the network

reliability problem as discussed in Section 6.2.2.

6.4 Simulation Methodology

In the following sections we show performance results of different P2P search

algorithms described in the previous section. To better understand the impact

of each algorithm in different scenarios, we used simulation, which allow us to

evaluate their performance. In this section, we explain details of our simulations.

6.4.1 Peersim

We use PeerSim for our simulations. PeerSim is a Peer-to-Peer simulation frame-

work, which is implemented in Java. It can be used to model any kind of P2P

search algorithms. PeerSim simulator consists of several different components

which can be easily plugged together by using an ASCII configuration file. It

can work in two different modes: cycle-based or event-based. The cycle-based

engine is a sequential simulation, in each cycle every node executes its own pro-

tocol’s actions in a global sequential order. In the event-based mode, events are

scheduled in different simulation time and nodes execute protocols according to

message delivery times (Jesi, 2004). A very detailed account of performance and

scalability comparison between these two modes is studied in (Defude, 2007). As

recommended in (Defude, 2007), cycle-based mode of the PeerSim simulator is

used in our study.
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6.4.2 Sampling method

As a network topology consists of an infinite number of possible network in-

stances, it is impossible to survey all its members to obtain the characteristics of

a network topology. But a small cautiously chosen sample can be used to achieve

the same aim.

In sampling technologies (Cochran, 1977), the term population denotes the com-

plete set of observations that one wants information about, while the term sample

stands for a subset of the population that we actually examine. In an experi-

ment, a sample is selected from the population and statistic is collected from

experimental samples in order to draw the conclusion about some properties of

the population. In our simulation, a particular network topology (e.g. random

network) is viewed as a population.

To simulate P2P search algorithms, the process of obtaining a sample is as fol-

lows: at first draw particular networks; then, within networks, select search

queries (requester-target pairs). This way of selecting sample is called the Sub-

sampling approach (Cochran, 1977). Sample selection is done in two steps: first

select a sample of units from the population, named the primary units, and for

each chosen primary unit, a sample of subunits are selected.

In the experiment, a particular network structure related to a specific network

is viewed as a primary unit; one specific query inside is treated as a subunit.

We use the symbol N to denote the population size, then a network topology

consists of N primary units. Within a particular network (size S), if every node

looks up all the other nodes, there will be a total of S(S − 1) query subunits

constituting a particular network unit.

The following notation is used for obtaining estimate sample means and variances

in Subsampling (Cochran, 1977):

n : number of primary unit samples

N : the total number of primary units

m : number of subunit samples per unit

M : the total number of subunits
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yi,j : value obtained for the jth subunit in the ith primary unit

ȳi = 1
m

∑m
j=1 yi,j = sample mean per subunit in the ith primary unit

¯̄y = 1
n

∑n
i=1 ȳi = over-all sample mean per subunit

f1 = n
N

= ratio of the size of the sample to the total of the primary units

f2 = m
M

= ratio of the size of the sample to the total of the subunits

s2
1 =

∑n
i=1(ȳi−¯̄y)2

n−1
= variance among primary unit means

s2
2 =

∑n
i=1

∑m
j=1(yi,j−ȳi)2

n(m−1)
= variance among subunits within primary units

v(¯̄y) = 1−f1
n
s2

1 + f1(1−f2)
mn

s2
2 = sampling variance

In sampling, sampling variance can be calculated to show the degree to which a

sample may differ from the population. As the total number of members in the

population N is infinite in our experiments, f1 = n
N

is negligible, and then we

obtain that the estimated variance can be computed as:

v(¯̄y) =
s2

1

n
=

∑n
i=1(ȳi − ¯̄y)2

n(n− 1)
,

and the estimated sample standard deviation is s( ¯̄y) =
√
v(¯̄y).

Given the estimated sample mean and sample standard deviation, if tc is the t

value associated with c%, then a c% confidence interval for the mean is equal to

y± tcs(ȳ). For instance, if the desired confidence probability is 95%, the tc value

is 1.96. Then we say that a 95% chance that the population mean is within a

range of [ȳ − tcs(ȳ), ȳ + tcs(ȳ)].

Statistics are collected from the n (number of primary unit samples) × m (num-

ber of subunit samples) queries. For the result we present in the paper, n=50

and m=50, which turns out to ensure small standard deviation in our results.

6.4.3 Trust computation

Given a pair of requester and target, if there is at least one trust path exists, the

trust value is computed based on the trust paths discovered. The overall trust

value of a trust path is the product of the probabilities on the links. Moreover,
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when multiple trust paths exist between requester and target, the problem of

computing the overall trust value translates to the network reliability problem.

A simple example is given below to demonstrate how the trust is computed when

multiple trust paths exist.

Figure 6.1: Example multiple trust paths exist between requester node
1 and target node 5

In Figure 6.1, there are 3 independent trust paths exist between requester node

1 and target node 5. The overall trust value is then computed as the probability

of at least one trust path existing, in other words, 1− the chance of no trust path

existing. We assume that each arc has the same probability value 0.8, therefore

the overall trust value is 1− (1− 0.8 ∗ 0.8)3.

As explained in Section 6.2.2, in our experiments, we implement the Monte-Carlo

method. The Monte-Carlo method is a computation which performs statistical

sampling to obtain the result (Fishman, 1995). As a consequence, the trust com-

putation effectively becomes ‘three-level-unit’ samples. The primary units are

the drawn particular networks, the secondary units are chosen random queries,

and finally the tertiary units are generated trust graph samples. As a conse-

quence, trust mean is:

¯̄̄y =
1

n

n∑
i=1

{ 1

m

m∑
j=1

(
1

l

l∑
k=1

yi,j,k)}.

For simplify, it is assumed that each edge has the same trust reliable value. In

the experiment, the value was set to 0.8. Experiment results and discussions on

interesting finding are presented in the following section.
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6.5 Experimental Results

In this section, we start with the overview of the network topologies generated

by the simulator, and then discuss performance results in random and scale-free

networks, respectively. We assume that the trust network graph does not change

during the simulation of the algorithms. Effectively, this implies that the time

to complete a search enough so that no nodes leave or enter the network. We

also assume testing the behaviour of a search algorithm in a stable environment,

where no node failures were induced.

Network Characteristics. Before discussing the algorithm performance, we

have a look at the networks on which the simulations perform. Figures 6.2 and 6.3

show the complementary cumulative distribution function for node in-degree and

out-degree distributions of directed scale free networks with different p values.

In log-log scale, the distributions visually look like a straight line.

Parameters Values. Our simulations were carried out in a network of size

S=10000. P2P search algorithms applications are tested on two types of network

topology: random and scale-free topology. In the random networks, the average

out-degree value is 7. The scale-free networks are drawn with three different p

values (0.05, 0.1333, 0.5), where p can be viewed as the speed of adding a new

node to the network. For Random and Selective querying algorithms, we chose

three different values (10%, 50%, 70%) for the fraction of neighbours to which

each query will be forwarded.

One can be interested in how the nodes link to each other. If there is at least

one path leading to node j from node i, then we say this node pair <i,j> is

connected. We use the term node pair connection ratio (connection ratio for

short) to present the fraction of node pairs being connected in a network. The

node pair connection ratio is strongly influenced by network topology and the

p value among scale free networks, which can be seen from Table 6.1. The

query samples are the secondary units, and the network samples are the primary

units. In the random networks, both in the query samples and network samples,

the node pair connection ratio is over 99%, which implies nearly every node is

connected to all the others. On the other hand, in the scale-free networks, the

connection ratio is much smaller, although it increases with lower p value. The

reason why the connection ratio is smaller is that the number of nodes with zero
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Figure 6.2: The average complementary cumulative node in-degree dis-
tribution of directed scale free networks generated with various p, versus
the in-degree of the networks with 10,000 nodes

Figure 6.3: The average complementary cumulative node out-degree
distribution of directed scale free networks generated with various p,
versus the out-degree of the networks with 10,000 nodes
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Topology Node Pair Connection Ratio, %

query samples network samples

Random network

out-degree=7 99.76 99.89

Scale-free network

p = 0.5 14.20 13.00

p = 0.1333 31.84 32.19

p = 0.05 38.96 38.26

Table 6.1: Node pair connection ratio in random and scale-free networks

in-degree value is large. That means many nodes are not reachable from other

nodes, resulting in a low success rate. To obtain a higher success rate, we look

at more possible higher connection ratios by given smaller p values (to achieve

higher average out-degree values). For random networks, the connection ratio is

satisfactory. It can also be seen from Table 6.1, that the connection ratio in the

query samples is similar to that in the network samples, which means the query

samples basically reflect the feature of the node pair connection in the network

samples.

6.5.1 Results in random networks

Figures 6.4 and 6.5 present messages overhead and probability of success as TTL

increases in random network. The shown lines are in the order they appear

in the graphs. It can be observed that Flooding always has higher overhead

and higher success rate than all the others, for identical TTL values. Random

querying (70%) and Selective querying (70%) achieve similar success rate, quite

a bit smaller than flooding until TTL reaches 5. From TTL=6 onwards, both

algorithms obtain similar success rate close to that of Flooding.

The key insight gained from our study is given in Figure 6.6, which combines

the results of the two Figures 6.4 and 6.5. It shows for each algorithm the

message overhead versus the success rate, and each curve consists of eight points,

with the results for TTL=2 until 9. It can be seen from Figure 6.6, that it

does not matter if one uses Flooding or Random querying/Selective querying.

For any success rate, the message overhead of the algorithms is similar. This
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Figure 6.4: Message overhead for different TTL values in random net-
work (lines are in the order they appear in the graphs)

Figure 6.5: Success probability for different TTL values in random net-
work (lines are in the order they appear in the graphs)
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Figure 6.6: Message overhead versus success rate in random network

implies that for a given algorithm, if one knows the TTL value that achieves

the desired success rate on message overhead, this algorithm will be close to

optimal. The problem is, of course, that the correct TTL value is not known

beforehand. Note furthermore that Flooding achieves the highest success rate

(as one would expect), but that the Selective/Random algorithm is competitive

if the percentage is set high enough (70% in our case). For lower percentage,

even very large TTL values may not provide the success rate achievable with

Flooding. This indicates a second complication in Selective/Random querying:

the percentage must be set, and the optimal value is (like in the case of the TTL

value) not known.

The exact trust value would be obtained if all trust paths would be considered.

As a consequence, all results in Table 6.2 are lower bounds for the trust value.

Since Flooding has the highest success probability, it is not surprising that it

also obtains the highest trust values. In particular, we see that the trust value

of random networks is at least 0.991. One also see from Table 6.2 that a TTL

value of at least 7 is needed for Selection/Random querying to give satisfactory

results, and that the percentage must be set to at least 50%.
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P2P Search Algorithm Trust Inference

TTL=6 TTL=7 TTL=8 TTL=9

Flooding 0.991 0.991 0.991 0.991

Random querying

10% 0 0.001 0.001 0.001

50% 0.388 0.845 0.968 0.981

70% 0.948 0.988 0.990 0.990

Selective querying

10% 0 0.001 0.001 0.001

50% 0.630 0.923 0.964 0.969

70% 0.961 0.986 0.987 0.988

Table 6.2: Probabilistic trust inference values in random networks

6.5.2 Results in scale-free networks

We consider scale-free networks with three different p values (0.5, 0.1333, 0.05).

Figure 6.7: Message overhead under various TTLs in scale-free networks
(p = 0.5)
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Figure 6.8: Success probability under various TTLs in scale-free net-
works (p = 0.5)

Figure 6.9: Message overhead under various TTLs in scale-free networks
(p = 0.1333)
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Figure 6.10: Success probability under various TTLs in scale-free net-
works (p = 0.1333)

Figure 6.11: Message overhead under various TTLs in scale-free net-
works (p = 0.05)
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Figure 6.12: Success probability under various TTLs in scale-free net-
works (p = 0.05)

Figure 6.13: Message overhead versus success rate in scale-free networks
(p = 0.5)
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Figure 6.14: Message overhead versus success rate in scale-free networks
(p = 0.1333)

Figure 6.15: Message overhead versus success rate in scale-free networks
(p = 0.05)
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Figures 6.7, 6.9, 6.11 show the number of messages propagated through scale-free

networks with different p values (0.5, 0.1333, 0.05), for different values of TTL.

Figures 6.8, 6.10, 6.12 present the success rate of searches. The y-axis of these

figures gives the success probability as well as a normalised success probability

between brackets. Since each algorithm finds only a subset of all trust paths,

the success probability of an algorithm is bounded by the percentage of node

pairs in a network for which a trust path exists. That maximum value is given

on the y-axis with 100 between brackets. The percentage between brackets is

thus a normalised success probability. For instance, in Figure 6.8 the success

probability of the network is 14%, and the flooding algorithm finds most existing

trust paths for high values of TTL. The shown lines are in the order they appear

in the graphs. Similar to random networks, for each TTL value Flooding has

the highest overhead and highest success rate. We can see from Figure 6.10

that flooding algorithm finds almost all the trust paths when TTL reaches 6. In

more connected scale free networks (p = 0.05), seen from Figure 6.12, Flooding

algorithm finds almost all trust paths when TTL arises to 4.

As we can see from Figures 6.10 and 6.12, Selective querying achieves a little

higher success rate than Random querying with the same K percent value until

TTL reaches 4. From TTL=5 upward, Selective querying could not achieve any

higher success rate, while Random querying keeps achieving a higher success

rate. Now we will explain why Selective querying performs better than Random

querying for small TTL but opposite is true for large TTL. Firstly, note that in

the networks with smaller p values, nodes are more connected to other nodes.

In Selective querying, nodes with more trust relations are chosen to forward

query messages. Therefore, for the same small TTL, Selective querying is more

likely to find target nodes. Note that we assume each node keeps track of every

query message seen and only forward each query message once. In scale-free

networks, high degree nodes tend to connect to other high-degree nodes. When

TTL gets large, selective querying could not achieve any higher success rate, as

query messages are forwarded to the nodes with more trust relations, which likely

have already forwarded the same query messages. In Random querying, nodes

are randomly selected to forward query messages. Therefore, Random querying

can achieve a higher success rate with large TTL. As for random networks,

we plotted success probability versus message overhead in Figures 6.13, 6.14,

6.15, we see that Flooding, Random querying(70%) and Selective querying(70%)

perform similarly, but importantly Flooding can obtain a higher success rate.
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Arguably, the difference between Flooding and other algorithms is even more

pronounced in scale-free networks than in random networks. Note again that in

the Selective/Random algorithms a high enough value for K (the percentage of

selected nodes) must be chosen to achieve a reasonable success rate.

Table 6.3 shows the computed trust values. As we can see, in scale-free networks,

the trust value is very low for all the search algorithms. This is caused by the low

node pair connection ratio of scale-free networks, see Table 6.1. With the decrease

of p, which increase the average out-degree value, the node pair connection ratio

increases and therefore, trust increases. Flooding obtains the highest values, as

can be expected, resulting in a lower bound of the trust value of 0.023, 0.094

and 0.206 for the respective p values. Random querying slightly outperforms

Selective querying, even for the case of p = 0.5, in which Selective querying

achieved a higher success rate.

6.5.3 Discussion

For both network topologies, we notice the amount of messages to obtain a high

success rate is very sensitive to the value of K, the number of nodes to which a

query is forwarded.

The main challenge in using any of the studied algorithms is to set the value of

TTL. To improve the performance, we need to consider how to assign the TTL

value when a search algorithm is initialized, and how to efficiently control or

avoid unnecessary messages being forwarded when the target has been located.

To avoid excessive messages being forwarded, adaptive termination can be con-

sidered. When a trust path is located, the requester broadcasts “stop search-

ing” messages to other nodes to terminate the search process by dropping query

messages whose TTL does not reach 0 yet. In terms of message overhead, the

Expanding Ring search algorithm (Lv et al., 2002) can be a potential solution.

The Expanding Ring algorithm starts searching with a small TTL value. When

TTL reaches 0 and the search is not completed, the TTL value is incremented

by 1 and the search is continued.

Perhaps surprising (since it contradicts a possible tendency to think that flooding

is expensive), our results show that these algorithms are largely equivalent when
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P2P Search Algorithm Trust Inference

TTL=6 TTL=7 TTL=8 TTL=9

p = 0.5

Flooding 0.048 0.059 0.067 0.071

Random querying

10% 0 0 0 0

50% 0.012 0.018 0.022 0.025

70% 0.028 0.033 0.038 0.043

Selective querying

10% 0.002 0.002 0.002 0.002

50% 0.019 0.021 0.022 0.023

70% 0.030 0.036 0.040 0.042

p = 0.1333

Flooding 0.241 0.242 0.242 0.242

Random querying

10% 0.098 0.107 0.107 0.108

50% 0.201 0.204 0.203 0.205

70% 0.217 0.219 0.219 0.219

Selective querying

10% 0.086 0.086 0.086 0.086

50% 0.163 0.163 0.163 0.163

70% 0.193 0.193 0.194 0.194

p = 0.05

Flooding 0.312 0.311 0.312 0.312

Random querying

10% 0.210 0.206 0.208 0.207

50% 0.281 0.281 0.281 0.281

70% 0.290 0.290 0.290 0.291

Selective querying

10% 0.199 0.198 0.198 0.199

50% 0.265 0.267 0.267 0.268

70% 0.282 0.281 0.282 0.281

Table 6.3: Trust inference values for different algorithms in scale-free
networks
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considering the overhead versus the success rate, provided one sets the configu-

ration parameters optimally. This holds true if the fraction of trust paths one

wants to find is not too high. However, if a high success rate is required, flooding

becomes superior, simply because it covers more paths. Selective and Random

querying algorithms do not find all trust paths, and the resulting computed trust

value is therefore lower than for pure flooding.

6.6 Summary

In this chapter, we used discrete event simulation and Monte Carlo techniques

to evaluate the suitability of using peer-to-peer algorithms for discovering trust

paths and inferring the trust value of a set of trust paths. The problems were de-

fined in Section 6.2. In Section 6.3, we presented variations of the flooding search

algorithm, and defined the metrics that would be used in the simulations. The

simulation methodology including the sampling method and the trust computa-

tion method is explained in Section 6.4. From the results discussed in Section

6.5, our main conclusion is that all the variants of flooding perform almost equal

when considering the message overhead for a certain probability of finding paths.

When close to all paths need to be found, flooding outperforms selective flooding

alternatives, since these alternatives miss out on certain paths.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis presents a study of algorithms to generate directed scale-free net-

works, their implementation in an efficient manner, and the performance of

peer-to-peer search algorithms for trust paths.

To create directed scale-free networks without multiple arcs and self loops, we

started with modifying an existing network generating algorithm, which was pre-

sented in Chapter 3. Based on this algorithm, we then developed growth and

non-growth algorithms for generating the directed scale-free networks without

multiple arcs and self loops in Section 3.3. We developed a mathematical generic

framework for determining the conditions under which the degree distribution

is power law. The mathematical generic framework shows that the growth al-

gorithms are power law when the size of the network as well as in-degree and

out-degree go to infinity.

To demonstrate the power law distribution of all the algorithms, an evaluation

was carried out using a statistical analysis framework, which was given in Sec-

tion 4.1. The experimental results in Section 4.3 show how the network size

impacts the scale-free nature of the networks, taking into account various pa-

rameter values. Among all the algorithms we studied, only one algorithm consis-

tently produces directed scale-free networks without multiple arcs or self loops.

Unfortunately, this algorithm does not possess the growth nature of intuitively

preferred algorithms. Statistical tests of the empirical data from OpenPGP was
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presented in Section 4.4, suggesting that the web of trust network exhibits a

power law distribution for the node out-degree, but not in-degree.

The growth algorithms we proposed in Chapter 3 pose implementation chal-

lenges. In Chapter 5 we reported our experiences in developing efficient im-

plementations. To reduce computation time and memory usage, we designed

and implemented a set of algorithms, presented in Section 5.3. Both theoret-

ical complexity analysis and experimental results in Section 5.4 show that the

Multi-sampling with Reversed Look-up approach far outperforms the others. It

generates networks with a million or more nodes within seconds on current-day

desktops.

Finally, we use the developed approach to generate networks for discrete-event

simulation studies of peer-to-peer search algorithms. An overview of problems

and potential solutions were addressed in Section 6.2, variations of the flood-

ing search algorithm were considered for the study of finding trust paths and

probabilistically assessing trust values. P2P search algorithms were evaluated

through simulation of random as well as scale-free networks. The performance

results presented in Section 6.4 show that algorithms perform equally in many

situations and only differ through (and are sensitive to) parameter choices.

7.2 Future Work

For further work, we would like to point out the following.

In Chapter 3, we presented a mathematical generic framework to establish condi-

tions for growth algorithms to generate networks with the power law node degree

distributions. However, we were not able to theoretically verify the conditions

for our algorithms. In particular, it is difficult to know the probability of adding

multiple arc or self loop. Therefore, additional formal analysis would be of in-

terest to analyse if power law degree distributions are generated by the proposed

growth algorithm.

In Chapter 6 variations of the flooding search algorithm have been studied for

probabilistic trust inference. In Section 6.5.3, we addressed the challenge in

using a class of flooding search algorithms. It would be of interest to study the

performance of some improved(/alternative) peer-to-peer search algorithm(s).
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To develope a network model to generate networks that have properties similar

to the Web of Trust network, one can do the analyses in the other way. First get

Web of Trust data. Next find the distribution of the data. Then design a model

from that distribution. Or better yet, one can study the growth of Web of Trust

over time and design a fitting model to generate similar networks.
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Erdős, P. and Rényi, A. (1959), “On random graphs. I”, Publ. Math. Debrecen ,

Vol. 6, pp. 290–297.

Fishman, G. S. (1995), Monte Carlo: concepts, algorithms, and applications,

Springer.

Fraiman, D. (2008), “Growing directed networks: stationary in-degree probabil-

ity for arbitrary out-degree one”, The European Physical Journal B - Con-

densed Matter and Complex Systems , Vol. 61, pp. 377–388.

Gnutella (2001), The Gnutella Protocol Specification v0.4.

Goh, K.-I., Kahng, B. and Kim, D. (2001), “Universal behavior of load distribu-

tion in scale-free networks”, Phys. Rev. Lett. , Vol. 87, p. 278701.

Goh, K., Kahng, B. and Kim, D. (2005), “Evolution of the protein interaction

network of budding yeast: Role of the protein family compatibility constraint”,

J. Korean Phys. Soc , Vol. 46, pp. 551–555.

Grandison, T. and Sloman, M. (2000), “A survey of trust in internet applica-

tions.”, IEEE Communications Surveys and Tutorials , Vol. 3, pp. 2–16.

Granovetter, M. (1985), “Economic action and social structure: The problem of

embeddedness”, American Journal of Sociology , Vol. 91, pp. 481–510.

Guardiola, X., Guimera, R., Arenas, A., Diaz-Guilera, A., Streib, D. and Ama-

ral, L. A. N. (2002), “Macro- and micro-structure of trust networks”, ArXiv

Condensed Matter e-prints .

Hoffman, K., Zage, D. and Nita-Rotaru, C. (2007), A survey of attack and defense

techniques for reputation systems, Technical report, Purdue University.

110

http://stromboli3.int-edu.eu/~bernard/ASR/projets/soutenances/Ranaivo-Sabourin/rapport-Simulation_P2P.pdf
http://stromboli3.int-edu.eu/~bernard/ASR/projets/soutenances/Ranaivo-Sabourin/rapport-Simulation_P2P.pdf
http://stromboli3.int-edu.eu/~bernard/ASR/projets/soutenances/Ranaivo-Sabourin/rapport-Simulation_P2P.pdf


Holloway, T., Bozicevic, M. and Börner, K. (2005), “Analyzing and visualiz-

ing the semantic coverage of wikipedia and its authors”, CoRR , Vol. ab-

s/cs/0512085.

Husted, B. W. (1989), “Trust in business relations: Directions for empirical

research”, Business and Professional Ethics Journal , Vol. 8, pp. 23–40.

Jesi, G. P. (2004), ‘Peersim: A peer-to-peer simulator’, http://peersim.

sourceforge.net.

jimt (n.d.), ‘Efficiently selecting a random, weighted element’, http://www.

perlmonks.org/?node id=577433. last visited on 14/12/2008.
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