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ABSTRACT 

 

 

This thesis is concerned with parameters identification and winding fault detection in 

induction motors using three different stochastic optimisation algorithms, namely 

genetic algorithm (GA), tabu search (TS) and simulated annealing (SA). 

Although induction motors are highly reliable, require low maintenance and have 

relatively high efficiency, they are subject to many electrical and mechanical types 

of faults. Undetected faults can lead to serious machine failures. Fault identification 

is, therefore, essential in order to detect and diagnose potential failures in electrical 

motors. Conventional methods of fault detection usually involve embedding sensors 

in the machines, but these are very expensive. The condition monitoring technique 

proposed in this thesis flags the presence of a winding fault and provides information 

about its nature and location by using an optimisation stochastic algorithm in 

conjunction with measured time domain voltage, stator current data and rotor speed 

data. This technique requires a mathematical ABCabc model of the three-phase 

induction motor.  

The performance of the three stochastic search methods is evaluated in this thesis for 

their use to identify open-circuit faults in the stator and rotor windings of a three-

phase induction motor. The proposed fault detection technique is validated through 

the use of experimental data collected under steady-state operating conditions. 

Time domain terminal voltages and the rotor speed are used as input data for the 

induction motor model while the outputs are the calculated stator currents. These 

calculated currents are compared to the measured currents to produce a set of current 

errors that are integrated and summed to give an overall error function. Fault 
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identification is achieved by adjusting the model parameters off-line using the 

stochastic search method to minimise this error function. The estimate values for the 

winding parameters give the best possible match between the performance of the 

faulty experimental machine and its mathematical ABCabc model. These estimates 

of the values of the motor winding parameters are used in the detection of the 

development of faults by identifying both the location and the nature of the winding 

fault. The effectiveness of the three stochastic methods to identify stator and rotor 

winding faults are compared in terms of the required computation resources and their 

success rates in converging to a solution. 
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CHAPTER 1  

INTRODUCTION 

 

 

The three-phase induction motor is used in a wide variety of applications because of 

its simple, rugged construction, easy maintenance, low cost and good operating 

characteristics. It is an electromechanical energy device in which the energy is 

converted from electrical to mechanical form. Although induction motors are highly 

reliable and have relatively high efficiency, they are subject to many types of faults. 

The ability to test the integrity of the motor through this process results in lower 

maintenance costs and an overall lowered risk of malfunction. Conventional methods 

of condition monitoring are based on a variety of technologies including vibration 

analysis and current signature analysis.  

Condition monitoring of induction motor is usually applied to detect various types of 

electrical and mechanical faults. It is important to be able to detect faults while they 

are still developing. This called incipient failure detection. A fault that is not 

identified in the initial stage may become catastrophic and the induction motor may 

suffer severe damage.  Thus, undetected motor faults may result in motor failure and 

complete shutdown of the machine. Such shutdowns are very costly in terms of lost 

production time, wasted raw materials and maintenance costs. Condition monitoring 

is necessary for identifying machine defects and their location. Knowledge of the 

motor condition allows the operator to review the physical state of the motor so as to 

prevent machine damage by stopping the process and carrying out the required 

maintenance at an appropriate time. The application of condition monitoring in 

plants results in savings in maintenance costs, and improved safety. Therefore, many 

condition monitoring techniques have been proposed and applied to the fault 
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detection of three-phase induction motors [1-15]. 

A new method for detecting induction motor faults based on global random 

optimisation methods has recently been developed [16]. This technique has the 

potential to identify a wide variety of faults without the need for knowledge of 

various fault signatures. However, this method requires the measurement of the rotor 

position angle θ, limiting the potential use of this approach because of the implied 

extra cost and complexity. In this work, this technique is developed and is also 

applied for inverter-fed induction motor using different stochastic methods; no rotor 

position is required for the proposed technique. The proposed technique uses only 

terminal voltages, stator currents and rotor speed data obtained during steady state 

with load disturbances.  

Fault identification is implemented by adjusting the induction machine model 

parameters off-line, using a stochastic search method; Genetic Algorithm (GA), 

Tabu Search (TS) and Simulated Annealing (SA) to estimate values of the winding 

parameters which are those that give the best possible match between the 

performance of the faulty experimental machine and its mathematical ABCabc 

model. The changes in these parameters help in the detection of the development of 

faults, thus identifying both the location and the nature of the winding fault.  

 

1.1 Overview of thesis 

The thesis consists of eight chapters and three appendices. The work presented in the 

thesis investigates the performance of genetic algorithm, tabu search and simulated 

annealing for parameter identification and fault identification in induction motors. 

The thesis is structured as follows: 

Chapter 1 gives a general introduction of the main work. Chapter 2 provides a 

review of literature in this area of research. The literature review contains an 

overview of condition monitoring and fault diagnostics of induction machines to 

show what has been done by other researchers, as well as a discussion of induction 

motor failures and methods of detection of motor faults. A brief overview of 
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stochastic optimisation methods are also presented in this chapter. 

In chapter 3, three standard stochastic optimisation methods (GA, TS and SA) are 

described and their ability to locate global optima demonstrated using simple 

function. This chapter is divided into three parts - part one presents the GA, part two 

presents the TS, and part three presents the SA. 

Chapter 4 gives details of the condition monitoring scheme and experimental 

machine set-up used for parameter identification and, to emulate the presence of 

machine winding faults in this investigation.  

Experimental verification of the GA algorithm for the induction machine parameter 

identification and fault detection are presented in Chapter 5. For parameter 

identification, the performance of the identification scheme is demonstrated with 

measured data obtained from a healthy machine at steady-state and the electric 

parameters obtained using this method and the other two methods are evaluated and 

compared with parameters obtained from IEEE standard tests. For fault detection, 

the GA algorithm was used in conjunction with steady-state loaded data sets from a 

faulty machine. This is to demonstrate the proposed fault identification method using 

Matlab/Simulink as a software platform.  

Chapter 6 presents the application of TS algorithm using the same experimental data 

and conditions for same faults and for parameter identification while Chapter 7 

presents the application of SA algorithm.  Chapter 8 concludes the work presented in 

the thesis and an overall discussion of the results. Also presents some suggestions for 

future work followed by the list of references and the Appendices. Source codes for 

the GA, TS and SA algorithms can be found in Appendix A, B and C respectively 

 

1.2 Contributions 

The main aim of the research work is to develop a technique [16] for detecting 

induction motor winding faults by estimating its parameters. The proposed technique 

is based on the application of GA, TS and SA algorithms to identify the machine 
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parameters which relate to a given set of measured current and voltage waveforms at 

steady state condition for supply-fed and inverter-fed induction machine. The 

required model for this identification scheme is very simple and the used stochastic 

algorithms are easy to implement with the help of Matlab/Simulink environment. 

The contributions of this research are summarised as follows:  

 

 Develop a technique for the induction machine parameter identification and 

fault detection  

 Demonstrate the application of this technique using three stochastic 

optimisation algorithms (GA, TS and SA) for parameter identification and 

fault detection 

 Evaluate the performance of the three stochastic algorithms when used in 

conjunction with machine experimental data sets acquired under steady-state 

conditions 

  The performance of the three stochastic algorithms when used in 

conjunction with an inverter-fed induction machine is also examined, using 

simulation data only. 
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CHAPTER 2                                                     

LITERATURE REVIEW  

 

 

2.1 Introduction 

In this chapter, the literature on condition monitoring of electrical machine is 

reviewed. Induction motors like other rotating electrical machines are subject to 

mechanical and electromagnetic forces which could lead to the development of a 

fault. The widespread use of electric motors is becoming ever more common in 

various industries, resulting in an increased demand for fault detection methods. 

There is a wide variety of research conducted in motor condition monitoring and 

fault diagnostics, and there are many different ideas and techniques for performing 

motor condition monitoring. 

One of the simplest methods to protect electrical machines is by using different types 

of protection relays, which sense serious disruptions of the current flowing in the 

windings and operate to trip or disconnect the machine once a fault such as an over-

voltage, an over-current or an earth-fault has occurred. Conventional techniques for 

induction machine conditional monitoring usually involves sensors embedded in the 

machine which is very expensive. These sensors are used to measure and detect data 

such as temperature and vibration and help detect developing faults [17]. 

Additionally, these conventional methods of fault detection are not favourable for 

smaller-sized electric machines.  They are widely used in larger machines but they 

fall short in their application in smaller machines as a result of limitations such as the 

size of the sensing-device and financial considerations [18]. Furthermore, sensors are 

also limited in their ability to detect some kinds of faults. The stator current 

monitoring can provide the same indications without requiring any access to the 
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motor. This technique uses results of spectral analysis of the stator current of an 

induction motor for fault detection [19]. 

The major faults in electrical machines can be classified as follows [6] 

 Stator faults resulting in the opening or shorting of one or more stator coils 

or phase windings, 

 Broken rotor bars or cracked end-rings, 

 Static and/or dynamic air-gap eccentricities, 

 Bent shaft, 

 Shorted rotor field winding, 

 Bearing and gearbox failures. 

 

These faults produce one or more of the following symptoms: 

 Unbalanced voltages and line currents, 

 Increased torque pulsation, 

 Decreased average torque, 

 Increased losses and reduction in efficiency, 

 Excessive heating, 

 Vibrations. 

 

Different techniques of fault identification have been developed and used effectively 

to detect the machine faults at an early stage using different machine quantities, such 

as current, voltage, speed, efficiency, temperature and vibrations. To identify the 

above faults, the diagnostic methods may involve several fields of science and 

technology [6]. Due to the prevalent increase in automated machines alongside the 

reduction in human supervision of system operations, the need for condition 

monitoring is paramount [20].  

Many methods have been developed for the purpose of detecting mechanical and 

electrical faults in induction motors, either directly or indirectly, such as motor 

current signature analysis [21], vibration monitoring and analysis of the negative 

sequence components of the stator current. The monitoring and fault detection of 
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electrical machines has moved in recent years from traditional techniques towards 

artificial intelligence (AI) techniques such as artificial neural networks (ANNs) and 

fuzzy logic systems (FLS) [22]. Heuristic optimisation techniques which are 

dependent on the idea of neighbourhood searches are also used in the fault detection 

of induction motors [16, 23]. Many papers have been published presenting methods 

for induction motor fault identification by using different techniques [24-35].  

 

2.2 Induction Machine Faults 

Although induction motors are reliable electric machines, they are subject to many 

electrical and mechanical types of faults and these failures can be classified as been 

the result of internal or external factors. Internal factors originate from the motor 

itself and arise in one of the three main induction machine components; the stator, 

the rotor or the bearings. There are a few failure types in the induction motor caused 

by external factors such as cooling, insulation, environmental and manufacturing 

problems.  

Electrical faults include short circuits in stator windings, open circuits in stator 

windings, and open circuits in rotor windings, while mechanical faults include 

bearing failures and rotor eccentricities. The risk of failure can be decreased if these 

faults are recognised and corrected. In general, these  faults can be classified as stator 

related, rotor related and bearing related faults with the percentages of total failure [36] 

as shown in Figure 2.1, 

 Stator winding faults 38% 

 Bearing failures 40% 

 Rotor faults 10% 

 Other faults 12% 
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Figure 2.1.  Types of induction machine faults [36]. 

 

2.2.1 Electrical faults 

The most common faults related to the stator winding of induction motors are turn-

to-turn, phase-to-phase, coil-to-coil and coil-to-ground faults. The broken bar and 

end ring faults of squirrel cage rotors can also occur. Furthermore, short circuit of 

rotor laminations is also a common fault. 

 

2.2.1.1 Stator faults 

The stator faults are identified in terms of health and quality of the insulation 

between the turns and phases of the individual turns and coils inside the motor. 

Stator faults of induction motor represent 38% of total induction machine failures as 

shown in Figure 2.1. The stator faults, resulting in the opening or shorting of one or 

more stator phase windings as illustrated in Figure 2.2. The stator winding is 

subjected to various stresses due to high temperature, mechanical vibrations, and 

voltage spikes.  The thermal stresses of induction motor cause insulation failures and 

short circuit winding faults. For every o10 C increase above the stator winding 

temperature limit, the life of the insulation is reduced by 50%. Stator winding faults 

are often caused by insulation failure between two adjacent turns in a coil. This is 

called a turn-to-turn fault or shorted turn.  
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Figure 2.2.  Possible failure modes in induction machine stator windings. 

 

  

2.2.1.2 Rotor Faults 

The failures in the rotor are motivated by a combination of various stresses such as 

electromagnetic, thermal, dynamic, environmental and mechanical which act on the 

rotor [37]. These faults such as a broken rotor bar, cracked rotor end-rings, short 

circuit of rotor laminations and open circuit [38-40] represent 10% of the most 

commonly reported faults as shown in Figure 2.1.  

 

2.2.2 Mechanical Faults 

Mechanical stresses are caused by overloads and sudden load changes, which can 

produce bearing faults and rotor bar breakage. These faults are referred to rotor faults 

because they are related to the moving parts of the machine. Mechanical faults in the 

rotor include eccentricity (static or dynamic) and misalignment faults. Stator 

eccentricity and core slacking are the major types of mechanical faults in the stator 

and these faults produce problems such as vibration and noise.  

 

2.2.2.1 Bearing Faults 

In the induction motor, the bearings on both sides of the rotor shaft allow the rotor to 

spin freely inside the stator. Rolling element bearings consist of two rings - an 
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inner and an outer, between which a set of balls or rollers rotate in raceways. The 

temperature of a bearing should not exceed a certain amount in order to protect the 

grease and the bearing itself. A schematic view of a typical rolling element bearing is 

shown in Figure 2.3. Bearing faults [41-43] account for over 40% of all machine 

breakdowns. Bearing faults (inner raceway defects, outer raceway defects and ball 

defects) cause machine vibration. This vibration results in air gap eccentricity. The 

first signs of deterioration are noisy bearings. Any oscillations in air gap length can 

cause variation in flux density which can affect the machine inductances and 

generate harmonics in stator currents.  

 

Outer race

Inner race

Shaft

Cage

Roller elements

 

Figure 2.3.  A schematic view of rolling element bearings 

 

2.2.2.2 Eccentricity fault 

The space between the stator and the rotor in the induction motor is called the air 

gap. If any damage happens to the bearing, the rotor becomes eccentric causing a 

degree of static or dynamic eccentricity. Static eccentricity can be caused by the 

incorrect positioning of the stator or the rotor [44, 45]. Dynamic eccentricity occurs 

when the centre of the rotor is not at the centre of rotation and the minimum air gap 

revolves with the rotor. Dynamic eccentricity could be caused by a bent shaft, 

mechanical resonances at critical speeds, or bearings and movement. The combined 

static and dynamic eccentricity is called mixed eccentricity. Bearing faults lead to air 

gap eccentricity and affects the resultant magnetic field. This also causes an increase 
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in vibration as the shaft dynamics are affected by the altered air gap. For static 

eccentricity the position of minimum radial air gap length is fixed in space while 

dynamic eccentricity is a function of space and time (see Figure 2. 4 to Figure 2.6 ).  

 

Stator

Rotor
Air gap

b a
 

Figure 2. 4.  Cross section of a healthy induction motor; (a) Initial position (b) After half a revolution. 

b a
 

Figure 2.5.  Static eccentricity; (a) Initial position (b) After half a revolution. 

b a
 

Figure 2.6.  Dynamic eccentricity; (a) Initial position (b) After half a revolution. 
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2.2.3 Other Faults 

A small number of failures in induction motors are linked to external factors. These 

faults can be caused by environmental, cooling, installation or manufacturing 

problems. 

 

2.3 Fault detection Methods  

There are numerous methods of induction motor fault diagnosis were developed in 

the last decades such as motor current signature analysis, temperature measurements, 

vibration monitoring, chemical analysis, artificial intelligence and stochastic 

optimisation techniques. These diagnostic methods may involve several different 

fields of science and technology.  

 

2.3.1 Motor current signature analysis 

MCSA is one of the most powerful methods of online fault diagnosis due to its low 

cost and simplicity [21]. Motor current signature analysis (MCSA) is based on 

current monitoring of an induction motor. The MSCA uses current spectrum of the 

machine for locating characteristic fault frequencies. Fast Fourier Transform and 

Wavelet transform are used to analyse motor current signature by identifying fault 

spectrum and extracting unique features for fault diagnosis.  

Stator current contains unique fault frequency components that can be used for 

detection of various faults of motor. When a fault is present, the frequency spectrum 

of the line current becomes different from the healthy machine. The motor faults 

could be diagnosed through the comparison of recorded stator current signals and the 

reference signals in the frequency domain. MCSA can easily detect the common 

machine fault such as rotor fault, short winding fault, bearing  fault, air gap 

eccentricity fault, etc [46, 47]. Schoen and et al. addressed the application of MSCA 
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for detection of rolling-element bearing damage [48]. 

 

2.3.2 Artificial Intelligence diagnoses 

The main idea behind Artificial Intelligence (AI) is to mimic natural human 

intelligence in the form of a computer program to tackle problems that are hard to 

solve by traditional methods 

 

2.3.2.1 Neural Networks 

Artificial neural networks are modelled on the neural connections in the human 

brain. Each artificial neuron accepts several inputs, applies preset weights to each 

input and generates a non-linear output based on the result. The neurons are 

connected in layers between the inputs and outputs. The application of artificial 

intelligence methods [49, 50], like neural networks, is rather easy to develop and to 

perform. Neural networks can be applied when the information about the process is 

obtained by measurements, which later can be used in the training procedures of 

neural nets. This method is an on-line technique and doesn’t use a mathematical 

model. Neural detectors can be designed using the data acquired from simulation or 

experimental tests [22]. 

 

2.3.2.2 Fuzzy Logic 

Fuzzy logic utilizes human knowledge by giving the fuzzy or linguistic descriptions 

a definite structure. A fuzzy logic approach may help to diagnose induction motor 

faults [51, 52]. In fact, fuzzy logic is reminiscent of human thinking processes and 

natural language enabling decisions to be made based on vague information. Fuzzy 

logic allows items to be described as having a certain membership degree in a set. 

This allows a computer, which is normally constrained to 1 and 0, to delve into the 

continuous realm.   
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2.3.3 Park’s Vector Approach  

This method is based on the visualization of the motor current Park’s vector 

representation which is based on the identification of a specified current pattern 

obtained from the transformation of the three-phase stator currents to an equivalent 

two-phase system [53].  

A healthy machine shows a perfect circle in Park’s vector representation while an 

elliptical pattern is observed if the machine is faulty. Park’s vector method can  be 

used for diagnosing many types of induction motor faults such as air gap 

eccentricity, stator winding short-circuits, occurrence of rotor cage fractures, open 

wound rotor and bearing damages [54-56]. Cruz [53] has used Park’s vector 

approach to detect several types of rotor faults. The main advantage of this method is 

that the change in the shape of the line current phasor can be clearly observed, 

making it easy to diagnose machine faults. The main disadvantage is that it is not 

effective for load faults and broken rotor bar faults. 

 

2.3.4 Stochastic optimisation search methods 

These optimisation techniques depend on the idea of neighbourhood search and there 

is no mathematical model of the system involved. Heuristic techniques seek near 

optimal solutions without being able to guarantee either feasibility or optimality of 

the solution [57]. The principles of heuristic techniques are easy to understand, 

implement and use. The heuristic optimisation is very popular in applications. Every 

method uses a different search rule of finding optimal or near optimal solutions. The 

space of all feasible solutions is called the search space. Each and every point in the 

search space represents one possible solution. Therefore each possible solution is 

represented by one point in the search space. In effect, this technique searches 

through the solution space and moves in the direction of a known solution until a 

suitable solution is found or time bound is elapsed.  

Every stochastic method has different mechanism to escape from local minimum. 
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Many stochastic algorithms have been developed in recent years to address 

optimisation problems.  The most popular algorithms are: 

 Genetic Algorithms (GA) 

 Ant Colony Optimisation (ACO) 

 Simulated Annealing (SA) 

 Particle Swarm Optimisation (PSO) 

 Tabu Search (TS) 

 Bacterial Forging Optimisation (BFO) 

 

Many researchers have used these techniques; Zakaria [16] has used SA algorithm 

for induction machine fault detection. Ethny [58] has also used PSO and compare it 

with SA and BFO algorithms for induction machine fault identification. A tabu 

search algorithm has been used by Montane [59] for the vehicle routing problem. Cai 

[60] is applied GA for speed estimation of induction motor. In this study, GA, TS 

and SA algorithms were used because they are some of the most widely used 

algorithms and have proven to be very effective and robust in a wide range of 

applications. A brief description of the three algorithms used in this thesis is 

presented in the following subsection, 

 

2.3.4.1 Tabu search  

Tabu Search (TS) is a new a stochastic optimisation procedure and has traditionally 

been used for optimisation problems [61]. TS has the power to avoid being trapped 

in local minima by using a tabu list. This tabu list constitutes the short-term memory 

which records any repeated solutions as a forbidden move. At each iteration, a set of 

candidate moves is extracted from the neighbourhood for evaluation and the best 

move is selected as a new solution. If the new solution is not tabu, it is accepted as a 

current solution, even if it is not a better solution. The tabu list is then updated with a 

new set of solutions. The advanced mechanisms of TS include the uses of 

intensification and diversification; by using the intensification mechanism, the 

algorithm does a more comprehensive exploration of attractive regions which may 

direct it to a local optimal point and by using the diversification mechanism, the 
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search is moved to previously unvisited regions to avoid cycling. This process of TS 

continues until the stopping criterion has been reached whereby the determined 

optimal solution for that specific problem is selected.    

 

2.3.4.2 Genetic Algorithm 

Genetic algorithm (GA) is a stochastic search technique inspired by the mechanism 

of evolution, and natural selection. GA is successful at avoiding local minima and 

has been proven to be effective in solving difficult combinatorial optimisation 

problems. Traditional optimisation techniques use a single candidate and use 

repeated search techniques. However, the GA approach searches a population of 

candidates across several areas of a solution space simultaneously. The population 

consists of individuals or chromosomes which can be represented by strings of real 

or binary numbers. This population represents points in the solution space. The 

chromosomes evolve through successive iterations called generations. A new set of 

solutions, called offsprings, are created in a new generation. The basic operators in 

GA are selection, crossover and mutation. During each generation, the individuals 

are evaluated according to their objective and fitness functions. Following several 

generations, the algorithm then converges to the best chromosome that represents the 

optimal or near optimal to the problem.  

 

2.3.4.3 Simulated Annealing  

Simulated annealing (SA) is an optimisation technique which has been widely used 

in large combinatorial optimisation problems. SA mimics the annealing process for 

crystalline solids. The annealing process starts with melting the solid by heat 

treatment and slowly decreasing the annealing temperature. The SA algorithm views 

the cost function being minimised as equivalent to the energy state of a physical 

system, and the process of reaching equilibrium is equivalent to repeatedly accepting 

or rejecting changes in energy from one state to another.  The algorithm starts from a 

randomly generated initial point and simulates a walk through the solution space; a 

candidate configuration is accepted if its cost is less than the current configuration, 
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while deteriorating steps are only accepted with a certain probability. As the 

temperature parameter is decreasing, the algorithm accepting only good solutions 

until converges to a solution very close to optimality [62]. 

 

2.4 Summary 

The most prevalent faults in induction motors are described in this chapter. The use 

of electric motors is becoming ever more common in various industries, resulting in 

an increased demand for fault detection methods. This chapter has provided a 

general review of existing induction motor fault detection methods. Relevant 

information about stochastic search algorithms used in this study has also been 

presented. In the next chapter, the three stochastic algorithms (Genetic Algorithms, 

Tabu Search and Simulated Annealing) will be explained in more details. 
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CHAPTER 3  

STOCHASTIC OPTIMISATION 

ALGORITHMS 

 

3.1 Introduction   

This chapter introduces the concepts involved in the various stochastic optimisation 

algorithms (SOA) that have been investigated. Optimisation problems are defined by 

a set of solutions and an objective function associated with each solution. The goal 

when addressing an optimisation problem is to optimise the objective function to 

find solutions that are optimal or near-optimal in a reasonable amount of time. 

Conventional optimisation methods suffer from the problem of local minima 

trapping. This problem can be circumvented by using stochastic optimisation 

methods such as Genetic Algorithm (GA), Simulated Annealing (SA) and Tabu 

Search (TS). Many efforts have been directed toward developing efficient heuristic 

algorithms. SOA have been applied to a wide variety of combinatorial optimisation 

problems with great success. Several stochastic search techniques have been 

proposed in the literature. Figure 3.1 shows a simple classification of some 

stochastic optimisation methods according to their algorithmic structure [63]. In this 

work, three standard stochastic optimisation methods: genetic algorithm, tabu search 

and simulated annealing are used to identify induction machine winding faults. 

These stochastic algorithms are implemented using the MATLAB language on a PC. 

When using stochastic algorithms, the search process is repeated until a stopping 

criterion has been reached. There are various kinds of termination conditions such as 
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the use of a fixed number of iterations, fixed number of generations, fixed amount of 

time, when the objective value reaches a pre-specified value, or when there is no 

improvement of the objective function. The simplest form of stopping criterion is a 

fixed number of iterations or generations. The search is terminated once a preset 

maximum number of iterations have been reached. The best solution found in this 

period will be the result of the search.  
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Figure 3.1.  Classification of stochastic optimisation algorithms [63]. 
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3.2 Genetic Algorithm 

3.2.1 Introduction 

Genetic algorithm (GA) is a stochastic search technique inspired by the mechanisms 

of evolution and natural selection. Like other evolutionary algorithms, GA is a 

population-based metaheuristic* optimisation algorithm that uses biology-inspired 

mechanisms such as mutation, crossover, natural selection and survival of the fittest 

(Figure 3.2). GA was introduced in 1975 by a team led by John Holland and was 

later developed by De Jong Goldberg and many other researchers. There are many 

different GA algorithms but the basic idea, which is based on Darwin’s theory of 

survival of the fittest, is the same [64, 65]. GA is successful in avoiding local 

minima and has proved to be effective in solving difficult combinatorial optimisation 

problems. GA is efficient, reliable and robust. It finds widespread applications in 

system optimisation problems in science, economy and many other fields. GA has 

been successfully applied to numerous combinatorial problems such as the travelling 

salesman problem [66], scheduling problems [67], graph colouring [68] and many 

others. Traditional optimisation techniques use a single candidate and repeated 

search techniques. The GA approach on the other hand searches a population of 

candidates across several areas of a solution space simultaneously. The population 

consists of individuals or chromosomes which can be represented by strings of real 

or binary numbers. GA uses fitness functions for evaluation rather than derivatives. 

This technique is generally able to find the optimal or near-optimal solutions to the 

considered optimisation problems. One of the drawbacks of GA is their complex 

computational requirements as they can be very slow in some applications. This 

problem can be overcome by using faster computers. Sastry et al. give a good 

introduction to genetic algorithms [69]. In this section, the basic principle of genetic 

algorithm is described, followed by a simple example showing the use of a genetic 

algorithm to find the optimum parameters of a given problem. 

* The term metaheuristic derives from the composition of two Greek words: heuristic means “to find” 

while the prefix meta means “beyond, in an upper level.” It refers to the set of strategies that guide the 

iterative search process. 
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Figure 3.2.  The basic cycle of Evolutionary Algorithms. 

 

3.2.2 Basic concept of genetic algorithm  

In Genetic Algorithm only two kinds of operations are executed: evolutionary 

operations (selection) and genetic operations (crossovers and mutations). The GA 

starts with a random population of potential individuals, each representing one 

possible solution to the problem. A population is made up of a set of individuals, and 

evolution from one generation to the next takes place by the deletion of existing 

individuals and the creation of new ones. During each generation, the individuals are 

evaluated according to the objective and fitness functions. After obtaining the fitness 

of all individuals, a selection process is used to choose individuals for reproduction. 

Individuals with higher fitness should have a higher probability of being selected as 

parents so that the more successful individuals will have more chances to mate and 

generate offspring. The least fit individuals in each population are then replaced by 

the offspring so that the population size remains constant and another generation 

starts. Through an iterative process, the population evolves towards better regions of 

the search space. After many generations, the algorithm reaches convergence 

towards the best chromosome, or the individual which signifies the optimal solution 

or the nearest optimal solution to the problem [70]. The algorithm stops once the 

termination criteria is met. These processes are described in more detail in the 

following subsections. The basic steps of simple genetic algorithm can be described 

as follows:  
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Step 1: Generate an initial population randomly. 

Step 2: Evaluate the fitness value of each individual in the population. 

Step 3: Select parent individuals from a population that have higher fitness values to 

generate new offspring. 

Step 4: Crossovers and mutations are applied to the selected offspring. 

Step 5: Replace the worst part of the population by new offspring. 

Step 6: If the stopping criterion has been reached, stop; otherwise save the best 

solution and proceed to Step 2.  

Figure 3.3 shows the flowchart for the GA algorithm. 

 

 

Figure 3.3.  GA flowchart. 
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3.2.2.1 Initialisation 

To start the GA algorithm, a specified number of individuals, a maximum number of 

generations and the type of chromosome coding are chosen. The chromosomes are 

encoded as either binary or real numbers. However, by using binary strings, the 

chromosomes may become long, due to the number of digits that may be required to 

form one single variable. By using real numbers, the chromosome length is reduced 

and becomes easier to understand, as each allele or gene of the chromosome or 

individual is represented by its real value. The initial set of random solutions is 

known as the initial population. The number of individuals in the population is called 

the population size which is usually recommended to be between 30 and 100 [71]. It 

has been noted that too large a population slows down the optimisation, while a 

small population does not utilise the genetic operators effectively. The crossover and 

mutation rates for the reproduction function should also be defined as should the 

selection method. 

 

3.2.2.2 Objective function and fitness functions 

The objective function is a function associated with an optimisation problem that 

would determine the merit of the solution. For example, the function indicates that 

the best individuals would be the ones with the lowest value of objective function in 

the problem of minimisation and vice versa in the case of maximisation. Every 

individual in the population has its gene representation, called its code, and 

performance evaluation, called its fitness value; the fitness calculation is a measure 

of how good a particular solution to the problem is, so that different solutions can be 

compared based on the values obtained from the fitness function. This means that 

individuals with higher fitness value will have higher probability of being selected as 

candidates for the next generation.  

 

3.2.2.3 Selection  

A selection operator is executed to choose parents from the current population (set of 
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solutions) for generating offspring. This process is based upon their fitness values. 

This is achieved by assigning better solutions a higher probability of being chosen 

for recombination. It is also very important to allow a few less-fit individuals to 

increase the diversity of the population. A number of different selection strategies 

have been implemented in different algorithms including roulette wheels, local 

tournaments, various ranking schemes, etc. A simple reproduction operator is the 

roulette wheel selection where each individual in a population has a roulette wheel 

slot sized in proportion to its fitness; for example, if there are five individuals in the 

population with fitness values of 9, 3, 6, 5 and 8, the corresponding probabilities for 

these individuals are 29.03%, 9.68%, 19.35%, 16.13% and 25.81%, respectively. 

Figure 3.4 shows the selection probability for the 5 individuals. Individual 1 is the 

most fit individual and occupies the largest interval, whereas individual 2 is the 

weakest and correspondingly occupies the smallest interval. In order to select an 

individual, a random number is generated within the range (0, Sum). The variable 

Sum is determined as the sum of the row fitness values over all the individuals in the 

current population [72]. The individual whose segment of the wheel spans the 

number is selected. This process is repeated several times until the required number 

of individuals has been selected with the selection probability of an individual being 

proportional to its fitness value [73].  

 

 

 

 

 

 

 

 

 

Figure 3.4.  An example of roulette wheel selection. 
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3.2.2.4 Crossover  

The process of crossover, which represents mating (recombination) of two parent 

individuals, is carried out by exchanging parts of their chromosomes to create new 

offspring. Each offspring shares genes with its parents. The process of crossover is 

applied with a certain probability referred to as the crossover rate. The crossover rate 

generally ranges from 0.25 to 0.95. The crossover operation is necessary to ensure 

convergence of the GA to an optimal solution. After selecting a pair of parents, the 

algorithm implements crossover only if a randomly generated variable is greater than 

the crossover rate, otherwise, the parents remain unchanged. Each offspring inherits 

genes from its parents. This is achieved by slicing the chromosomes and crossing 

over their genes. The simplest and most popular implementations of this process are 

one-point crossover and two-point crossover where the chromosome string of each 

parent organism is randomly split at one or two points, respectively. The crossover 

point is chosen at random in the range of [1, Lst -1] where Lst is the length of the 

string. To generate new offspring using one-point crossover, a cut point is chosen 

randomly and the genetic information to the left of the cut of point in parent A are 

combined with the genetic information to the right of the cut of point in parent B. A 

second offspring can also be generated by using the right hand side string of parent 

A with the left hand side string of parent B. For a two-point crossover, two cut of 

points are set randomly and the section between the two points is taken from one 

parent and combined with the outer sections from the other parent. In the following 

example, the crossover point is set after the second bit in the case of one-point 

crossover. In the case of two-point crossover, the two crossover points are set after 

the second and fifth bits respectively. This operation is illustrated in Figure 3.5. 
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Figure 3.5.  The GA crossover operation. 

 

3.2.2.5 Mutation  

Mutation takes place by randomly changing a few bits in the chromosome of the 

resulting offspring. This prevents the solutions from falling into a local optimum and 

can also help in exploring new regions of the solution space. The mutation operation 

does not occur as frequently as the crossover function. This is achieved by using a 

low mutation probability (a value fixed throughout the whole search process) that 

represents how often parts of a chromosome will be mutated. First, the mutation 

point is selected randomly (Figure 3.6). After mutation, the resulting solutions 

become the current population. In the case of binary encoding, mutation is simulated 

by flipping bits at random, using a low probability in the range [0.001- 0.05]; for this 

work, a mutation probability of 0.05 was chosen. A gene can be mutated by 

swapping its value from 0 to 1 or 1 to 0. For real-value encoding, the mutation 

operator can be implemented by random replacement (i.e., the original value is 

replaced with a new randomly generated value). An illustration of the process of 

mutation in GA is shown in Figure 3.6. The mutation operator is more important at 

the final stages of the optimisation process when the majority of the individuals in 

the population possess similar qualities. 
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Figure 3.6.   Illustration of mutation in Genetic Algorithms. 

 

3.2.3 Reinsertion 

The fitness of the new individuals is determined once a new population has been 

produced. A generation gap may occur where fewer individuals are produced and 

this may cause a difference between the old and new population sizes. Some of the 

new individuals need to be reinserted in the old population to maintain the original 

population size. 

 

3.2.4 Application of GA to simple example  

In this Section, the GA algorithm was implemented using Matlab on the following 

function (Equation 3.1) which has one global minimum of (0.846) at x = 2.388 as 

can be seen in Figure 3.7.    

 4150.59426.47927.12473.00116.0)( 234  xxxxxf                                (3.1) 

The task of the GA algorithm is to optimise the variable x to minimise the objective 

function and to confirm the ability of GA to avoid becoming trapped in the local 

minimum of 1.5 at x = 8. The search range for variable x is set from -20 to 20. The 

Matlab code for this exercise is given in Appendix A1. Figure 3.8 shows that the GA 
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algorithm terminates after 50 generations at the global minimum. The computational 

time was 1.965 sec and the value of x is 2.388.  

 

 

Figure 3.7.  Function with a local minimum. 

 

 

Figure 3.8.  Value of potential solution and objective function obtained by GA. 
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3.3 Tabu Search 

3.3.1 Introduction  

Tabu Search (TS) is a stochastic optimisation procedure originally proposed by F. 

Glover in the early 1980s. TS is a non-random metaheuristic algorithm [74] which 

has been applied with success to a number of complex problems in science and 

engineering [75, 76]. TS has traditionally been used for combinatorial optimisation 

problems [61] and differs from the other optimisation techniques in the use of 

memory. A simple tabu search algorithm is based on short-term memory with a tabu 

list and an aspiration criteria as well as more advanced techniques such as 

intensification and diversification. TS has the power to avoid being trapped in local 

minima by using a tabu list. This tabu list constitutes the short-term memory which 

records any repeated solutions as forbidden moves, thus preventing the algorithm 

from cycling to a recently visited solution. The use of memory in the search process 

is a major factor in the success of the tabu search method. The role of the memory 

can change as the algorithm proceeds. The efficiency of the TS method is strongly 

dependent on the proper selection of its parameters, i.e. initial solution, 

neighbourhood, tabu list and stopping condition.  

 

3.3.2 Tabu Search Procedure 

The basic idea here is to randomly generate an initial solution using a normal 

distribution with a suitable mean and standard deviation; then the procedure moves 

to a new solution in the neighbourhood that improves the objective function (i.e. a 

set of moves are defined that may be applied to the current solution to produce a list 

of candidate solutions using a Mean Gaussian Distribution with a suitable variance). 

At each iteration, a set of candidate moves is extracted from the neighbourhood for 

evaluation. If a move produces the best overall value for the objective function, it 

becomes the candidate move and is selected as the new solution. If the new solution 

is not tabu, it is accepted as a current solution for the next iteration. Otherwise, its 
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aspiration criterion is checked. This criterion is introduced in tabu search routines to 

determine when tabu activation rules can be overridden. Tabu may prohibit moves 

leading to attractive solutions even when there is no danger of cycling; this problem 

can be overcome by using aspiration criteria. The aspiration criterion is performed to 

override the tabu status of a move; however, if the new solution is tabu and the 

aspiration criterion is not satisfied, the move is not performed. The simplest method 

of achieving this is to allow the move even if it is tabu when the current solution is 

better than the best solution. 

If the condition of the aspiration criterion is satisfied, it becomes the current solution. 

The tabu list is always updated with a new set of solutions. After a predefined 

number of iterations, old moves are removed from the tabu list. The overall 

procedure iterates until one of the stopping criteria is satisfied. The final state is then 

the optimal solution selected for that particular problem. The general TS procedure is 

defined below. 

Step 1: Generate a random initial solution initialx , Set bestx  = initialx = currentx . 

Assign the tabu list memory and set the aspiration criterion.    

Step 2: Generate trial solutions in the neighbourhood of the current solution N(X).  

Step 3: Compute the objective function for the trial solutions and compare them to 

the best solution objective function value. If a better solution is obtained then bestx  

= trialx . 

Step 4: If trialx  is not tabu, set currentx = trialx  , update the tabu list and go to Step 7. 

If trialx  is tabu, go to Step 5. 

Step 5: If the condition of the aspiration criterion is satisfied, then the tabu status is 

overridden, set currentx = trialx  , update tabu list and go to Step 7. Otherwise, go to  

Step 6: Go to Step 3 to check all trial solutions. 

Step 7: Check whether the stopping criterion is satisfied. If the answer is yes (e.g i  > 

max iteration), then stop. Otherwise, go to Step 2. 
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 These steps are illustrated in the flowchart of Figure 3.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9.  The flowchart for tabu search algorithm. 

                                       

3.3.3 The Tabu List  

One of the most important aspects of tabu search is the tabu list. The tabu search 

algorithm overcomes the problem of entrapment in a local optimum by avoiding a 

previously visited solution. In this way, the algorithm is forced to explore new 

regions of the solution space. This is achieved by using memory restriction referred 

to as a tabu list. The tabu list is updated after each iteration by adding a new element 
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to the bottom of the list. When the tabu list becomes full, the oldest element on the 

list drops from the top. The duration for which a solution remains on the tabu list is 

called the tabu tenure. The length of the tabu list (Ls) is an important parameter in 

most tabu search algorithms. Short tabu lists may not prevent cycling (i.e. 

entrapment in a local optimum), resulting in information loss, while long tabu lists 

may excessively prevent neighbourhood searches so that moves are limited to some 

extent. Glover [61] suggested that 7 would be a good value for L; this value has been 

empirically found to be effective in many applications. Anderson et al. [77] reported 

that list lengths can be between 7 and 15. 

 

3.3.4 Intensification and diversification  

The tabu search alternates between intensification and diversification strategies 

through the use of memory structures and candidate lists [61]. Long-term memory 

helps to implement diversification and intensification mechanisms. Both 

intensification and diversification are considered advanced functions of tabu search 

and they can be added to a basic tabu search with a short memory and aspiration 

criterion. The intensification mechanism helps the tabu search to explore specific 

areas more thoroughly while the diversification mechanism moves the search to 

unvisited regions of the search space in order to avoid cycling. 

 

3.3.5 Application of TS to a simple example  

In this section, the TS algorithm described above is implemented in Matlab to locate 

the global minimum of the function expressed by Equation (3.1). 

The algorithm was run for 50 iterations using a tabu list size of seven and a 

neighbourhood size of eight. Figure 3.10 shows the accepted configurations. The 

final function value obtained is for a global minimum of 0.844 at x = 2.3642, with 

1.133 sec computational time. By using the tabu list, the algorithm can avoid getting 

stuck in a local minimum. Matlab code for this exercise is given in Appendix B1. 
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Figure 3.10.  Value of potential solution and objective function obtained by TS. 

 

3.4 Simulated annealing 

3.4.1 Introduction  

Simulated annealing (SA) is one of the most commonly used stochastic global 

optimisation algorithms. The SA algorithm, which originally took its motivation 

from the simulation of the physical annealing of melted metals, was introduced by 

Kirkpatrick et al. in 1983 [78]. SA mimics the annealing process for crystalline 

solids. The annealing process starts by melting the solid by heat treatment and 

cooling it down by slowly decreasing the annealing temperature. The SA algorithm 

views the cost function being minimised as equivalent to the energy state of a 

physical system, and the process of reaching equilibrium is equivalent to repeatedly 

accepting or rejecting changes in energy from one state to another. Typically, the 

temperature is high at the initial stage and decreases as moves are accepted. The 

adjustment of the temperature should be gradual enough to ensure that the global 

minimum is reached slowly; otherwise, the annealing process may converge to a 

local minimum [79]. The drawback of applying SA is that it requires a long period of 

computation time.  
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3.4.2 Basic concepts of simulated annealing  

The algorithm starts from a randomly generated initial point and simulates a walk 

through the solution space; a candidate configuration is accepted if its cost is less 

than the current configuration, while deteriorating steps are only accepted with a 

certain probability.  The probability function used has an exponential decay which 

mimics the cooling of a crystal solution. The ability to perform uphill moves allows 

simulated annealing to avoid the system getting stuck in a meta-stable state 

representing a local minimum of energy. The process contains the following two 

stages: 

 The starting value for temperature needs to be high enough for the solid to 

melt. 

 The temperature then needs to be decreased carefully until the ground solid 

state is reached.  

 

The difference between the evaluation value of the current solution and the 

evaluation value of the new solution is called the energy difference E  (considered 

here as cost function). If E  is negative or equal to zero, the new solution is 

accepted and replaces the current solution. If the difference is positive, the new 

solution may be accepted according to the Metropolis acceptance probability which 

is lowered gradually as the algorithm proceeds [62]. The following probability is 

calculated in performing the acceptance test,     

                           Pm = 






 

TK

E

B

exp                                                                    (3.2)      

Where T represents the current temperature value and KB is a physical constant 

known as Boltzmann constant. The temperature is decreased only if the candidate 

solution is accepted. The total process of SA algorithm is repeated until a frozen 

state is achieved at T = 0. If the cooling is not performed sufficiently slowly, the 

solid will be frozen into a meta-stable state rather than into a ground state [62]. The 

procedure is finished when the searching process of the last temperature is over. In 
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the SA algorithm, each trial involves the following steps: 

Step 1: Select an initial temperature and set the current configuration. 

Step 2: Generate a new configuration from the neighbourhood using a random 

perturbation. 

Step 3: Calculate the difference between the costs of the current and the new 

configurations. 

Step 4: Decide whether the new configuration should be accepted using the 

Acceptance probability (PA) and Swap probability (Ps). Replace the current 

configuration with the new one if this is the case. 

Step 5: Reduce the temperature according to the cooling scheme and return to Step 

2. The process then repeats itself until a minimum criterion or some other limit such 

as time or maximum iterations is met. In this way, the final configuration with 

minimum cost can be obtained. 

The basic flowchart of the Simulated Annealing algorithm used throughout this 

research is shown in Figure 3.11. 
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Figure 3.11.  The flowchart of the Simulated Annealing algorithm. 

 

3.4.3 SA procedure  

SA starts at an initial random state (configuration) X and an initial temperature Ts 

equal to the cooling temperature T. The algorithm then generates a new 

configuration Y by applying a perturbation mechanism in the neighbourhood of the 

first configuration X. The perturbation mechanism is a method of exploring the 

neighbourhood of the current solution by creating small changes in the current 

solution. At each iteration, the objective function values for the two solutions (the 
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current solution and a newly generated solution) are compared. Improving solutions 

are always accepted, to increase the rate of convergence; the configurations must be 

within the allowed solution space and are defined by the relation,     

                             






 


,...2,1

2
minmax )(

N

NN

N

YY
range                                      (3.3) 

Where N is the number of solution parameters. 

The displacement, which is the distance between the two configurations X and Y, is 

calculated as follows, 

                           
 











 


,....2,1N

NN

N
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ntdisplaceme                                         (3.4) 

The acceptance probability (PA) is then calculated according to the relation, 

                           
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P s

A exp                                           (3.5) 

The PA is compared with a randomly generated number in the interval [0-1]. If the 

random number is greater than the acceptance probability, the solution Y is rejected 

and the generation mechanism is repeated. When the random number is smaller than 

the acceptance probability, the solution Y is accepted. When the annealing 

temperature T is high, there is a high probability of all values of displacement 

accepting any potential solution in the search space. The ability to perform uphill 

moves allows simulated annealing to avoid being trapped in a local optimal. As 

cooling proceeds, T is reduced according to annealing temperature schedule and PA 

is reduced for a given displacement. The search is then concentrated on potential 

solutions which are very close to the existing solution.  

The calculation error E  between the X and Y configurations is used to calculate the 

swap probability function (Ps), 
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where E (n+1) corresponds to configuration Y and En corresponds to configuration X.  

 

The Ps is then compared to a random number in the interval [0 -1]. If the random 

number is greater than Ps, the original solution X is retained, and if it less than Ps, the 

new solution Y is accepted and X is replaced by Y. At the same time En is replaced by 

E (n+1) as the new objective function value and the process starts again. When E (n+1) 

< En, the swap probability is greater than 0.5. At a lower temperature, the Ps tends 

towards 1, and any improved solution is generally accepted. In the case of E (n+1) > 

En, the swap probability falls below 0.5. So, there is always a probability that a 

worse solution will be swapped. However, with the decrease in the annealing 

temperature, the probability of such an occurrence is reduced.  

 

3.4.4 Cooling schedule  

The performance of SA is very sensitive to the choice of cooling schedule [80]. The 

algorithm begins with a high initial temperature sT  which is then lowered gradually 

until convergence to steady state occurs. Ts must be high enough to allow moves to 

almost neighbourhood state. The acceptance probability PA is proportional to the 

temperature T of the annealing process. Initially, when the temperature is high, the 

algorithm is likely to accept all solutions, while a low temperature only allows the 

acceptance of better-quality solutions; finally, when the temperature tends to zero, no 

deteriorations are accepted. If an appropriate cooling schedule is used, the SA 

algorithm will reach a stable status with low system cost and a globally optimal 

solution. The SA process requires an initial temperature variable Ts and a cooling 

schedule. Many cooling schedules exist in the literature to implement SA [76, 78, 

81]. The simplest and most common temperature decrement rule is: 
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oldnew TT                                                           (3.7) 

where   is the temperature reduction rate (close to, but smaller than 1). This 

decrement equation was used in this work. The major drawback of this decrement 

function is its slow convergence, especially when the controlling temperature 

becomes very small. Therefore, many alternative cooling temperature schedules have 

been suggested in the literature [82, 83]. German and German [83] derive another 

cooling schedule which is inversely proportional to a logarithmic function of time    

)ln(
)(

k

T
kT s                                                          (3.8) 

where T(k) is the temperature at iteration k, k =1, 2, 3, ...etc.  

 

The initial temperature is often determined by trial and error [81]. The logarithmic 

cooling schedule is very slow and therefore requires a long time to converge to the 

globally optimal solution. In order to accelerate the convergence rate of SA, a faster 

annealing schedule was proposed by Szu and Hartley [82] which is inversely 

proportional to the iteration number, as follows:           

 
k

T
kT s                                                     (3. 9) 

 

3.4.5 Application of SA to simple examples   

To show the capability of SA, the SA algorithm is implemented on the function 

given by Equation (3.1) in the Matlab software environment. 

The initial temperature Ts was set as 40 and the reduction function is, oldnew TT   

(refer to code in appendix C1). Figure 3.12 shows the accepted configurations. The 

final function value obtained is the global minimum of 0.844 (x = 2.353), with 1.216 

sec computational time. 
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Figure 3.12.  Value of potential solution and objective function obtained by SA. 

 

3.5 Summary 

In this chapter, three stochastic optimisation algorithms, GA, TS and SA, have been 

briefly described, and their application to find the global minimum of a mathematical 

function has been demonstrated. The main features of these algorithms are an ability 

to avoid becoming trapped at local minima and an ability to find an optimal solution, 

even for complex problems. Every algorithm has a different mechanism to avoid 

cycling. In the next chapters, these three algorithms will be used to identify different 

induction machine winding faults. 
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CHAPTER 4  

CONDITION MONITORING SCHEME, 

EXPERIMENTAL SET-UP AND TEST DATA 

 

 

4.1 Introduction  

The previous chapter has illustrated the basic concepts of the three standard 

stochastic algorithms GA, TS and SA. This chapter gives details about the condition 

monitoring method presented in this thesis and the experimental set-up that were 

used to gather the required data (terminal voltages, stator currents and rotor speed) 

for the parameter estimation process.  

A series of experiments were conducted to collect the data needed to verify the 

technique proposed for parameter identification and fault detection. Tests were 

carried out under steady-state operating conditions for a directly connected induction 

machine. A wound rotor type was used in the investigation. Rotor speed was 

measured using a digital tachometer. Stator currents and voltages were measured 

using current probe amplifiers and differential voltage probes, respectively. The 

current and voltage waveforms were captured using a digital oscilloscope. A general 

description of the experimental rig used in this investigation is given below. 

 

4.2 Condition monitoring scheme 

The proposed condition monitoring scheme is shown schematically in Figure 4.1. 

Experimental measurements of the three-phase stator voltages (VA,VB,VC), three-

phase stator currents (IA, IB, IC) and speed of electric machine (r) are recorded by 
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using a digital oscilloscope and saved in the computer memory. The recorded three-

phase voltages and the rotor speed are fed to the mathematical ABCabc model in 

order to calculate the stator currents (IsA, IsB, IsC). As is shown in Figure 4.2, these 

stator currents are compared with the actual recorded stator currents (IA, IB, IC) to 

produce a set of current errors that are integrated and summed to give an overall 

calculation error that is considered to be a cost function. Fault identification is then 

implemented to minimise the cost function in order to predict the machine condition. 

This is achieved by adjusting the parameters of the machine model using the 

stochastic algorithms until there is a close correlation between the measured and 

simulated data. The new set of the model parameters indicates if the machine 

winding is healthy or if there is a fault and also the location and the nature of this 

fault. The induction motor is tested to see whether it is in a healthy working 

condition and whether there any fault conditions. For a healthy machine, the overall 

error will be very small and the stochastic algorithm should identify the nominal 

parameters for the induction motor. It worth mentioning, that the skin effect was 

taken into consideration by multiplying the measured DC stator resistance of the 

machine by a factor of 1.1. The primary assumption made in the ABC/abc model is 

that of negligible magnetic saturation in the machine. 

In the case of a faulty machine, there will be a large error which indicates that a 

winding fault of some type is present and also its location; for example, an increased 

value in the resistance of a rotor winding indicates a developing open-circuit fault in 

this circuit, and so on. This stochastic approach does not require any expert prior 

knowledge of the type of fault or its location. 
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Figure 4.1.  Schematic representation of the fault identification technique. 

 

 

Figure 4.2.  Simulink model showing machine mathematical model combined with practical data. 
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The mathematical ABCabc model of an induction motor is developed using 

Simulink software and is used with the stochastic algorithms for identifying machine 

winding faults. This ABCabc model is obtained from the standard machine ABCabc 

voltage equations and represented by Equation (4.1) [84].  
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where (VsA, VsB, VsC) ,(IsA, IsB, IsC) are stator winding voltages and currents, (Vra, Vrb, 

Vrc), (Ira, Irb, Irc) are rotor winding voltages and currents, (RsA, RsB, RsC), (Rra, Rrb, Rrc) 

are stator and rotor winding resistances, Lss/Lrr are stator and rotor winding self 

inductance, Mss/Mrr are the mutual inductance between pairs of stator and rotor 

windings, Msr is the peak value of the rotor position dependent mutual inductance 

between stator and rotor winding pairs, r  is the rotor angle, 3/21   rr , 

3/42   rr  and dtdP /  is the differential operator. 

 

4.3 Test rig  

The experimental test rig used in this investigation consisted of a three-phase 240 V, 

1.5 kW wound rotor induction machine coupled to a 3 kW DC machine used as a 

generator to provide the necessary load torque. Stator and rotor windings of the 

machine are brought out to external terminals as shown in Figure 4.3. The stator of 

the experimental machine consists of a single-layer 2-pole AC winding arranged in 

24 slots. The terminal points of all the 12 coils are brought out to the 24 terminals. 

The complete arrangement is in the form of two concentric circles. The rotor of the 

experimental machine comprises a 2-pole full-pitch lap winding which is arranged in 

36 slots and brought out to six slip rings each of which has 2 brushes [85]. The 
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experimental rig is shown in Figure 4.4. For loading purpose, a resistor load bank is 

connected across the armature of the DC machine as shown in Figure 4.4. As shown 

in Figure 4.5, the induction motor had a star connected stator windings and a short 

circuited delta connected rotor winding [F1, E2, and D3]. A photograph of the front 

plate showing winding terminations is given in Figure 4.6. 

Stator voltage and current data were collected using two four channel Tektronix 

(MSO/DPO4000) digital storage oscilloscopes with isolated current probe amplifier 

(Tektronix A622), and high voltage differential probes (P5200). The data was 

collected and saved in (csv) file format for further analysis. Rotor speed was 

measured using a digital tachometer RS-445-9557.  

 

A{
B{

D
C

 

Figure 4.3.  Schematic diagram of the experimental set-up [85]. 
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Figure 4.4.  The experimental test rig. 

 

  

 

Figure 4.5.  Induction machine connection diagram [85]. 
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Figure 4.6.  View of test machine front plate. 

 

The nominal values of the induction machine equivalent circuit parameters were 

calculated using the IEEE standard [86] and then used for fault identification. Table 

4.1 states the machine parameters obtained from the results of a no-load test, a 

locked-rotor test, and measurements of the DC resistances of the stator windings. 

The experiment work is conducted in a three-phase, 50 Hz, 240 V and the data is 

collected over a time window of 0.2 sec, and a sampling interval of 1 ms, as the 

machine is operating during steady-state. The calculated stator current waveforms 

obtained by using the IEEE standard does not agree closely with the measured one as 

can be noticed in Figure 4.7.  
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Table 4.1.  Induction motor model parameters. 

Stator resistances Rs = 4. 417 (Ω) 

Rotor resistances  Rr = 5.173 (Ω) 

Stator self-inductances  Lss = 0.691 (H) 

Rotor self-inductances  Lrr = 0.691 (H) 

Mutual inductances between the 

stator windings 

Mss = 0.334 (H) 

Mutual inductances between the 

rotor windings 

Mrr = 0.334 (H) 

Mutual inductance between 

stator and rotor winding pairs 

Msr = 0.668 (H) 

Mrs= Msr 

 

 

Figure 4.7.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator current waveforms using the 

estimated parameters obtained from IEEE standard tests. 
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4.4 Experimental results  

The measurements that need to be taken are input voltages, stator currents and the 

rotor speed of the induction machine; this is done by using voltage differential 

probes (P5200), current probe amplifier (Tektronix Ac22) and a digital tachometer. 

Data is collected over a time window of 0.2 sec. The sampling interval is 1 ms; data 

is then saved in csv files format for different winding fault conditions using a digital 

oscilloscope. The oscilloscope was set to be triggered from the voltage channel for 

both current and voltage measurements.  

 

4.4.1 Healthy Machine Tests  

These tests were carried out to ensure that the stochastic algorithm is able to find the 

parameters of the induction motor when it is in healthy condition. Figure 4.8 shows a 

diagram of the healthy stator and rotor windings.  
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Figure 4.8.  Healthy conditions. 

 

The machine was operating at steady state with load of about 50% of full load at a 

speed r  of 2878 rpm. Figure 4.9 and Figure 4.10 show the measured voltage and 

current waveforms obtained from the induction motor at steady-state when it is fed 

from the three phase mains supply.  
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Figure 4.9.  Measured stator voltage waveforms; supply-fed machine, healthy conditions. 

 

 

Figure 4.10.  Measured stator current waveforms; supply-fed machine, healthy conditions. 
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4.4.2 Stator open-circuit winding fault  

As shown in Figure 4.11, an external resistance (7 Ω) was placed in series with a 

phase winding B to emulate an open-circuit stator winding fault.  The selected 7 Ω 

resistance value represents the smallest value to produce a noticeable open-circuit 

fault in the machine. Figure 4.12 and Figure 4.13 show measured supply voltage 

waveforms and stator currents waveforms.  
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Figure 4.11.  Developing stator winding open-circuit fault; test circuit. 
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Figure 4.12.  Measured stator voltage waveforms; developing stator open-circuit winding fault.  

 

 

Figure 4.13.  Measured stator current waveforms; developing stator open-circuit winding fault. 
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4.4.3 Rotor open-circuit winding fault  

As shown in Figure 4.14, an external resistance (7 Ω) was placed in series with the 

line connected to the two ends of the a-b rotor delta windings, to emulate an open- 

circuit rotor winding fault. 

Figure 4.15 and Figure 4.16 show the measured voltage waveforms and the 

measured current waveforms obtained from the faulty motor fed from three phase 

supply. 

 

7 Ω

Rrc

Rra

Rrb

Rotor  

Figure 4.14.  Developing rotor winding open-circuit fault; test circuit. 
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Figure 4.15.  Measured stator voltage waveforms; developing rotor open-circuit winding fault. 

 

 

Figure 4.16.  Measured stator current waveforms; developing rotor open-circuit winding. 
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4.5 Summary  

This Chapter has described the condition monitoring scheme and the experimental 

test rig used in this investigation. The laboratory machine set employed in this study 

was used to emulate different stator and rotor winding faults. Stator voltage and 

current waveforms were collected to be used by stochastic optimisation algorithms 

(GA, TS and SA) for induction machine faults detection and parameter 

identification, the verification of these algorithms and a the results of the parameter 

estimation process are presented in the next three Chapters.  
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CHAPTER 5  

USE OF GENETIC ALGORITHM FOR 

INDUCTION MOTOR FAULT DETECTION 

AND PARAMETER IDENTIFICATION 

 

5.1 Introduction  

The basic concept of the use of genetic algorithm (GA) as an optimisation tool has 

been explained in chapter 3. This chapter deals with the application of GA in fault 

detection and parameter identification. This stochastic method is implemented using 

the induction motor ABCabc model for estimating values of induction machine 

parameters and identifying machine winding faults. The Matlab/Simulink software 

environment is used to implement this stochastic algorithm. The performance of the 

identification scheme is demonstrated with measured steady-state induction machine 

data. The measured waveforms are the three terminal voltages, three stator currents 

and rotor speed, collected over a time window of 0.2 sec using a sampling interval of 

1 ms. 

Before the GA could be used with the experimental test data, two important aspects 

should be considered: the coding of chromosomes and defining the evolution criteria. 

The chromosomes can be encoded as either binary or real values. In this study, the 

parameters are encoded with real values to alleviate errors in decimal-to-binary and 

binary-to-decimal conversions. 

The evolution criteria deal with evaluating each chromosome’s fitness using an 

appropriate measure. In this study, performance is assessed by using the integral of 
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absolute error (IAE) where the best parameters are associated with the smallest IAE. 

The parameters of the GA algorithm are shown in Table 5.1.  

 

Table 5.1.  GA parameter values. 

Description Value 

Population size 12 

Crossover rate 0.7 

Mutation rate 0.05 

Generation gap 0.9 

Precision of variables 20 

Number of generations 100 

 

5.2 Induction machine parameter identification using GA 

The measured waveforms obtained from the healthy machine tests (Figure 4.9 and 

Figure 4.10) are used here to show that this technique can be used for induction 

motor parameter identification. The parameters obtained using this technique are 

compared with the parameters obtained using IEEE standard tests.  

The objective of the identification is to determine a vector of seven parameters, 

which represent the resistances and inductances of the motor, 

Chromosome = (Rs, Rr, Lss, Lrr, Mss, Mrr, Msr) 

The definition of the problem is formulated so as to find the parameters with a given 

set of measurements: 

• Three-phase stator voltages and currents 
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• Rotor speed of the motor 

Each chromosome represents a candidate solution for the parameters that can be 

applied to the induction motor model to calculate the cost function. The search space 

is empirically set to maximise the effectiveness algorithm (see Table 5.2). After the 

encoding and evolution criteria are chosen, the step to crossover and mutation can be 

carried out as outlined in Chapter 3. The GA code is provided in Appendix A2. 

 

Table 5.2.  Search space for machine parameters. 

Rs (Ω) Rr (Ω) Lss (H)              Lrr  (H)              Mss (H)               Mrr (H)                Msr(H)               

1-20 1-20 0.01-1.2 0.01-1.2 0.01-1.2 0.01-1.2 0.01-1.2 

 

Figure 5.1 and Figure 5.2 illustrate the evolution of the estimated stator and rotor 

winding resistances, self and mutual inductances parameters obtained using GA 

while Table 5.3 gives the final estimated values of these parameters.  
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Figure 5.1.  Estimated stator and rotor resistances obtained using GA.  
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Figure 5.2.  Estimated stator and rotor self and mutual inductances obtained using GA. 

 

Table 5.3.  Final values of machine parameters obtained using GA. 

Rs (Ω) Rr (Ω) Lss (H)        Lrr (H)        Mss (H)        Mrr (H)        Msr (H)        

6.241 4.638 0.238 0.146 0.853 0.924 0.689 

 

Around 30 investigations of potential solutions are required to obtain convergence of 

machine parameters. The error corresponding to the existing best solution is shown 

in Figure 5.3. The calculation error falls from maximum value of 0.164 A.s to 0.021 

A.s. It can be seen from Figure 5.4 that the measured (IA, IB, IC) and calculated (IsA, 

IsB, IsC) stator currents using the final parameter values obtained by the GA algorithm 

are in good agreement. The parameter values obtained through these methods are 

compared with those obtained from IEEE standard tests. Based on the results, the 

conclusion can be drawn that the GA algorithm is able to provide reliable results.  
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Figure 5.3.  Estimated calculation error for parameter estimation obtained using GA. 

 

 

Figure 5.4.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator current waveforms using the 

estimated parameters obtained from GA. 
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5.3  Winding fault detection  

When trying to identify open-circuit winding faults, the number of variables needs to 

be reduced to six parameters, namely the three stator resistances (RsA, RsB, RsC) and 

three rotor resistances (Rra, Rrb, Rrc), in order to allow the algorithm to converge 

within the designated stop criteria. The other machine parameters are maintained at 

the values identified earlier based on the GA identification process (Table 5.3 ). The 

computational complexity of the analysis is related to the number of variables, the 

size of the search space and the operating characteristics of the algorithm itself. By 

repeating an experiment a number of times it is possible to determine the average 

convergence time and the success rate of the algorithm.  

  

5.3.1 Supply-fed induction motor 

In these tests, the induction motor is supplied directly from the 50 Hz three-phase 

supply. The 2-pole induction motor has a nominal phase voltage of 240 V. Tests are 

carried out emulating stator and rotor open-circuit winding fault conditions. 

 

5.3.1.1 Stator open-circuit winding fault  

This experiment is conducted by replicating a stator open-circuit fault. A developing 

stator open-circuit winding fault is emulated by connecting a 7- resistor in series 

with a stator phase winding (winding B), as shown in Figure 5.5. Then, the GA 

algorithm is implemented in conjunction with the measured waveforms to estimate 

the machine winding parameters as a means of detecting this fault, as previously 

described. 
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Figure 5.5.  Developing stator winding open-circuit fault; test circuit. 

 

The six winding resistances (RsA, RsB, RsC, Rra, Rrb, Rrc) are the parameters to be 

optimised. The type and location of the fault are identified by adjusting the ABCabc 

model parameters. 

As shown in Figure 5.6, there is a much higher estimated value of winding resistance 

(13.937 ) in stator phase B while the other estimated stator resistances are at 

approximately their nominal values, indicating the presence of a stator open circuit 

winding fault. At the same time, the estimated three rotor resistances are all at their 

nominal values (Figure 5.7), indicating a healthy state for the rotor winding. Figure 

5.8 shows the corresponding values of the IAE function.  
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Figure 5.6.  Estimated stator resistances obtained using GA for operation of induction motor with 

stator open-circuit fault. 
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Figure 5.7.  Estimated rotor resistances obtained using GA for operation of induction motor with 

stator open-circuit fault. 
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Figure 5.8.  Estimated calculation error obtained using GA for operation of induction motor with 

stator open-circuit fault. 

 

The number of investigations of potential solutions required to obtain convergence 

with this data set was 16. The final values of the stator and rotor resistances obtained 

at the end of the GA optimisation process are listed in Table 5.4. 

 

Table 5.4.  Final values of winding resistances obtained using GA with stator open-circuit fault. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra (Ω) Rrb (Ω) Rrc (Ω) 

6.937 13.964 6.369 6.991 6.311 6.387 

 

Figure 5.9 shows the measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator currents 

using the final parameter values obtained by the GA algorithm revealing good 

agreements between the two current waveforms. This gives confidence in the ability 

of the GA algorithm not only to identify the presence of the open-circuit winding 

fault but also to accurately estimate the resulting parameter values.  
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Figure 5.9.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator current waveforms using the 

estimated resistances obtained from GA for operation of induction motor with stator open-circuit 

fault. 

 

5.3.1.2 Rotor open-circuit winding fault  

A developing open-circuit rotor winding fault is emulated by connecting an external 

7-  resistor in series with the line connected to the two ends of the Rrb – Rra rotor 

delta windings. This arrangement is shown in Figure 5.10. 
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Rotor  

Figure 5.10.  Developing rotor winding open-circuit fault; test circuit. 
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The GA algorithm is implemented to identify the presence of a developing rotor 

winding open-circuit fault based on the experimental measurements. In this test, the 

six winding resistances (RsA, RsB, RsC, Rra, Rrb, Rrc) are again the parameters to be 

optimised in order to minimise the IAE.  

Figure 5.11 shows the estimated stator resistances during the optimisation process. It 

is clear from this figure that there is a rotor winding open-circuit fault as indicated by 

the high values of Rra and Rrb compared with Rrc. On the other hand, the three stator 

resistances give nearly the same values; showing the healthy state of the stator 

(Figure 5.12).  
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Figure 5.11.  Estimated rotor resistances obtained using GA for operation of induction motor with 

rotor open-circuit fault. 
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Figure 5.12.  Estimated stator resistances obtained using GA for operation of induction motor with 

rotor open-circuit fault. 

 

The number of investigations of potential solutions required to obtain convergence 

with this data set was 20. Figure 5.13 shows the error corresponding to the best 

solution under this rotor open-circuit fault condition. The error falls from a 

maximum value of 0.843 A.s to 0.449 A.s. The final estimated values of the stator 

and rotor resistances are listed in Table 5.5. The measured (IA, IB, IC) and calculated 

(IsA, IsB, IsC) stator currents waveforms when using the final parameter values 

obtained by the GA algorithm are shown in Figure 5.14.  

 

Table 5.5.   Final values of winding resistances obtained using GA with rotor open-circuit fault. 

RsA (Ω) RsB (Ω)  RsC (Ω) Rra (Ω) Rrb (Ω) Rrc (Ω)        

6.695 7.074 6.953 12.982 13.232 5.216 
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Figure 5.13.  Estimated calculation error obtained using GA for operation of induction motor with 

rotor open-circuit fault. 

 

 

Figure 5.14.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator current waveforms using the 

estimated resistances obtained from GA for operation of induction motor with rotor open-circuit fault. 
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5.3.2 Inverter-fed induction motor 

Measured PWM inverter output voltage waveforms are not used in this part of the 

study because it was not possible to sample the waveform at a sufficiently high rate 

to avoid aliasing effects. To demonstrate the operation of the GA algorithm when 

used in conjunction with an inverter fed induction motor, a simple computer model 

of the inverter PWM output voltage waveform is used to supply the model of 

induction motor to obtain one set of results (machine current waveforms, IA, IB, IC) 

while the second set of results (machine currents IsA, IsB, IsC) is supplied from the 

induction machine model with the PWM modulating signal (with the appropriate 

adjustment for the magnitude of the voltages) used as the input voltage (see Figure 

5.15). The task of the stochastic algorithm is to estimate the values of the stator and 

rotor resistances values which give the currents (IsA, IsB, IsC) that produce the 

minimum error value between the two sets of currents. 

 

Figure 5.15  Simulink model arrangement used to assess the operation of the stochastic algorithms in 

conjunction with an inverter-fed machine 
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5.3.2.1 Stator open-circuit winding fault 

A developing stator open-circuit winding fault is once again emulated by connecting 

an external resistance in series with a stator phase. Then a test is conducted to 

estimate the machine winding parameters as previously described.  

In this test, the stator was supplied at a frequency of 40 Hz which is equivalent to a 

synchronous speed of 2400 rpm. It can be seen from Figure 5.16 that there is an 

obvious increase in the value of RsB to 12.923  while the other estimated stator 

resistances are approximately at their nominal values. There is no change in rotor 

resistance values because no fault was introduced into those windings (see Figure 

5.17). The corresponding values of the IAE function are shown in Figure 5.18. The 

calculation error has a maximum of 0.0438 A.s before settling down to 0.008 A.s.  
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Figure 5.16.  Estimated stator resistances obtained using GA for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 
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Figure 5.17.  Estimated rotor resistances obtained using GA for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 
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Figure 5.18.  Estimated calculation error obtained using GA for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 

 

About 50 investigations of potential solutions were required to obtain convergence 

with this data set. The stator and rotor resistances obtained at the end of the 

optimisation process are shown in Table 5.6. Figure 5.19 shows that the two sets of 

stator currents (IA, IB, IC) and (IsA, IsB, IsC), using the final parameter values obtained 

by the GA algorithm, are in good agreement.  
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Table 5.6.  Final values of winding resistances obtained using GA with stator open-circuit fault at 40 

Hz stator frequency. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra  (Ω) Rrb (Ω) Rrc (Ω) 

12.922  5.864 5.058 6.898 5.768 6.868 

 

 

 

Figure 5.19.  Stator current waveforms (IA, IB, IC) and (IsA, IsB, IsC) for inverter-fed induction motor 

with stator open-circuit fault; GA algorithm, 40 Hz stator frequency. 
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5.3.2.2 Rotor open-circuit winding fault 

A rotor winding open circuit fault was emulated and tests conducted to estimate the 

machine winding resistances, as previously described for the stator fault results.  

Figure 5.20 and Figure 5.21 show the results when the stator was run at a frequency 

of 40 Hz (equivalent to a synchronous speed of 2400 rpm). Clearly, the GA 

algorithm can successfully identify the presence of the rotor winding fault as 

indicated by the high values of Rrb and Rra compared with Rrc while the stator 

resistances remain at approximately their nominal values. The number of 

investigations of potential solutions required to obtain convergence with this data set 

was 16. The error corresponding to the existing best solution is shown in Figure 

5.22.  
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Figure 5.20.  Estimated rotor resistances obtained using GA for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 
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Figure 5.21.  Estimated stator resistances obtained using GA for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 
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Figure 5.22.  Estimated calculation error obtained using GA for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 

 

The stator and rotor resistance values obtained at the end of the optimisation process 

are listed in Table 5.7. It is clear from Figure 5.23 that there is reasonable agreement 

between the two sets of currents (IA, IB, IC) and (IsA, IsB, IsC).  
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Table 5.7   Final values of winding resistances obtained using GA with rotor open-circuit fault at 40 

Hz stator frequency. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra (Ω) Rrb (Ω) Rrc (Ω) 

5.912 6.166 4.836 12.498 10.997 7.195 

 

 

 

Figure 5.23.  Stator current waveforms (IA, IB, IC) and (IsA, IsB, IsC) for inverter-fed induction motor 

with rotor open-circuit fault; GA algorithm, 40 Hz stator frequency. 

 

 

5.4  Summary  

In this chapter, GA is used in fault detection and the determination of equivalent 

circuit parameters of the induction motor. Based on the results obtained, it can be 

concluded that the GA algorithm is successful in terms of machine parameter 

estimation and also identifying the presence and location of an open-circuit winding 

fault of an induction motor. The success rate of the algorithm is calculated as the 

number of successes in finding the optimal solution in after a number of trials; for 
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example, if the algorithm converges to the global optimum 14 times out of 20 trials, 

the success rate is 70%. In this investigation the probability of success for the GA 

algorithm for parameter identification and stator faults was found to be about 70% 

while the success rate for identifying rotor faults was found to be about 60%. In the 

next two chapters, the same process will be repeated using the TS and the SA 

algorithms. 
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CHAPTER 6                                 

USE OF TABU SEARCH FOR INDUCTION 

MOTOR FAULT DETECTION AND 

PARAMETER IDENTIFICATION 

 

6.1  Introduction  

This Chapter reports the performance of the Tabu Search (TS) algorithm for 

parameter identification and identifying stator and rotor open-circuit winding faults 

using the experimental test data and technique used previously. 

As mentioned in Chapter 3, the idea of TS is to allow the acceptance of non-

improved solutions in order to avoid being trapped in local optima. To prevent a 

return to recently visited solutions, memory is used to record the moves made in the 

recent past of the search. The memory list with restricted moves is called a Tabu 

List. The TS algorithm is implemented first to estimate the parameters of the 

induction motor and then to detect the presence of a developing open-circuit fault in 

the stator and rotor winding of the induction motor when it is either supply-fed or 

inverter-fed. At the commencement of optimisation, the TS algorithm requires an 

initial set of values for the six parameters (RsA, RsB, RsC, Rra, Rrb, Rrc). The initial 

solution can be formed as a random generated number and a new solution can be 

obtained from the perturbation mechanism. The perturbation mechanism is defined 

as the method of creating new solutions from the current solution. 
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6.2 Induction machine parameter identification using TS 

In this section, TS is employed to identify the induction motor parameters. The data 

used to determine these parameters are measured stator currents, stator voltages and 

rotor speed as previously described when illustrating the use of the GA algorithm. 

To implement the TS algorithm, random values are first chosen as current solutions 

at the beginning of the iteration process which represent a set of solution candidates 

for the parameters (Rs, Rr, Lss, Lrr, Mss, Mrr, Msr). These random solutions can be 

applied to the induction motor model to calculate the cost function, and then it is 

possible to obtain new solutions using the perturbation mechanism.  

If the new solution is not tabu, it will become the current solution even if it is worse 

than the previous one. This is done by using a memory that allows TS to explore the 

search space while preventing cycles in the search. The search space in TS has been 

set as with the GA algorithm. The length of the tabu list is a very important 

parameter in TS and is chosen in this study as 7 [61]; if the tabu list is too long the 

quality of the solution starts to deteriorate. The implementation of the TS algorithm 

has been described in Chapter 3 and shown in a flow chart in Figure 3.3. The code 

comprising the TS algorithm is included in Appendix B2. 

Around 20 investigations of potential solutions are required within the search space 

to obtain convergence of machine parameters when the algorithm finally settles on 

the final values of the machine parameters, which are shown in Table 6.1. 

 

Table 6.1.  Final values of machine parameters obtained using TS algorithm. 

Rs  (Ω)                Rr (Ω)        Lss  (H)        Lrr (H)        Mss (H)        Mrr (H)         Msr (H)        

5.601 7.510 0.896 0.507 0.185 0.771 0.751 

 

Figure 6.1 and Figure 6.2 show the results of the search. The TS algorithm has a 

shorter convergence time than the GA algorithm. The TS algorithm needed about 15 

evaluations of potential solutions to obtain convergence. Figure 6.3 shows how the 
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integral absolute error (IAE) decreases from a maximum value of 1.214 A.s to the 

minimum of 0.032 A.s. using 540 sec of computational time. 
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Figure 6.1.  Estimated stator and rotor resistances obtained using TS algorithm. 
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Figure 6.2.  Estimated stator and rotor self and mutual inductances obtained using TS. 
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Figure 6.3.  Estimated calculation error for parameter estimation obtained using TS. 

 

Figure 6.4 shows good agreement between the measured and calculated stator 

current waveforms. These results strongly suggest that the TS algorithm is able to 

identify machine parameters with good accuracy. 

 

 

Figure 6.4.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator current waveforms using the 

estimated parameters obtained from TS. 
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6.3 Winding Fault detection 

As described in Chapter 5, when using GA to detect the presence of a developing 

open-circuit in the stator and rotor windings, the same experimental test data was 

used by TS algorithm to estimate the values of the six winding resistances (RsA, RsB, 

RsC, Rra, Rrb, Rrc) of the induction motor that satisfy the condition of minimum 

integral absolute error (IAE). The many trial runs carried out identify that the stator 

and rotor resistances should be investigated while the other parameters are 

maintained at the values identified earlier based on the TS identification process 

(Table 6.1). 

 

6.3.1 Supply-fed induction motor 

6.3.1.1  Stator winding open-circuit fault  

Figure 6.5 shows that the TS algorithm identifies the presence of the stator winding 

fault based on the resistance values obtained from the estimation. The fact that RsB 

has a high value, 14.863  compared to RsA and RsC, locates the stator winding fault 

in phase B and identifies it as an open-circuit fault. Alternatively, the estimated rotor 

resistances RsA and RsC, are approximately nominal values, as shown in Figure 6.6. 

This indicates that these rotor windings are in a healthy state. By optimising the 

parameters of the ABCabc model a very small relative value of IAE was obtained. 

Figure 6.7 shows the integral absolute error (IAE) decreases from a maximum value 

of 0.139 A.s to the minimum of 0.039 A.s. 

The number of investigations of potential solutions required to obtain convergence 

with this data set was 30. The final estimated values of the stator and rotor 

resistances are listed in Table 6.2 
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Figure 6.5.  Estimated stator resistances obtained using TS for operation of induction motor with 

stator open-circuit fault. 
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Figure 6.6.  Estimated rotor resistances obtained using TS for operation of induction motor with stator 

open-circuit fault. 
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Figure 6.7.  Estimated calculation error obtained using TS for operation of induction motor with stator 

open-circuit fault. 

 

Table 6.2.  Final values of winding resistances obtained using TS with stator open-circuit fault. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra  (Ω) Rrb (Ω) Rrc (Ω) 

7.752 14.863 6.476 6.802 7.062 6.904 

 

 

Figure 6.8 show good agreement between the measured stator currents (IA, IB, IC) 

produced by a motor with a developing opened-circuit fault in the stator winding and 

the calculated stator currents (IsA, IsB, IsC) when using the final TS parameter values.  
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Figure 6.8.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC ) stator current waveforms using the 

estimated resistances obtained from TS for operation of induction motor with stator open-circuit fault. 

 

6.3.1.2  Rotor winding open-circuit fault  

In this test, The TS algorithm is implemented to identify the presence of a 

developing rotor winding open-circuit fault based on the same experimental 

measurements. The six winding resistances (RsA, RsB, RsC, Rra, Rrb, Rrc) are again the 

parameters to be optimised so that the IAE is minimised. It can be seen from Figure 

6.9 that there is an open-circuit fault in the rotor phases A and B; this is because of 

the high values Rra and Rrb compared with Rrc while the stator resistances are in a 

healthy state (Figure 6.10). 
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Figure 6.9.  Estimated rotor resistances obtained using TS for operation of induction motor with rotor 

open-circuit fault. 
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Figure 6.10.  Estimated stator resistances obtained using TS for operation of induction motor with 

rotor open-circuit fault.  

 

The number of investigations of potential solutions required to obtain convergence 

with this data set was 36. The calculated IAE error falls from a maximum value of 

0.368 A.s to 0.007 A.s as shown in Figure 6.11. The Final values of the estimated 

stator and rotor resistances are listed in Table 6.3. 
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Figure 6.12 compares the measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator 

currents obtained by the TS algorithm and show reasonable agreement between the 

two current waveforms. 
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Figure 6.11.  Estimated calculation error obtained using TS for operation of induction motor with 

rotor open-circuit fault. 

 

Table 6.3.  Final values of winding resistances obtained using TS with rotor open-circuit fault. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra  (Ω) Rrb (Ω) Rrc (Ω) 

6.147 6.618 6.525 12.240 12.222 5.054 
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Figure 6.12.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC ) stator current waveforms using the 

estimated resistances obtained from TS for operation of induction motor with rotor open-circuit fault. 

 

6.3.2 Inverter-fed induction motor  

6.3.2.1 Stator winding open-circuit fault 

In this simulation test, the stator was supplied at a frequency of 40 Hz which is 

equivalent to a synchronous speed of 2400 rpm (see section 5.3.2 for a description of 

the test arrangement). The TS algorithm uses the stator currents (IsA, IsB, IsC ) to 

estimate the stator and rotor winding resistances (RsA, RsB, RsC, Rra, Rrb, Rrc). It can be 

seen from Figure 6.13 that the stator resistance of phase A is high at 15.472  

compared to the other two resistances which are at approximately their nominal 

values. Figure 6.14 shows that all identified rotor resistances are approximately at 

the same value, close to their nominal values, confirming that rotor resistances are 

not affected by the presence of the open-circuit fault in the stator windings. The type 

and location of the fault was identified by adjusting the ABCabc model parameters 

until the IAE was minimised.  
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Figure 6.13.  Estimated stator resistances obtained using TS for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 
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Figure 6.14.  Estimated rotor resistances obtained using TS for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 

 

 

The number of investigations of potential solutions required to obtain convergence 

with this data set was 20. The corresponding values of the IAE function are shown in 

Figure 6.15. The final values of the stator and rotor resistances obtained at the end of 

the optimisation process are listed in Table 6.4. The stator currents (IA, IB, IC) show 
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reasonable agreement with (IsA, IsB, IsC) when using the final parameter values 

obtained by the TS algorithm, as illustrated in Figure 6.16. 
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Figure 6.15.  Estimated calculation error obtained using TS for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 

 

Table 6.4.  Final values of winding resistances obtained using TS with stator open-circuit fault at 40 

Hz stator frequency. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra  (Ω) Rrb (Ω) Rrc (Ω) 

15.472 6.151 6.165 7.297 6.089 6.759 
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Figure 6.16.  Stator current waveforms (IA, IB, IC) and (IsA, IsB, IsC) for inverter-fed induction motor 

with stator open-circuit fault; TS algorithm, 40 Hz stator frequency. 

 

6.3.2.2 Rotor winding open-circuit fault 

In this simulation test, the stator was supplied at a frequency of 40 Hz (equivalent to 

a synchronous speed of 2400 rpm). As previously stated, stator currents (IA, IB, IC) 

and (IsA, IsB, IsC) are calculated and used to identify the presence of a developing 

rotor winding open-circuit fault. Figure 6.17 shows high values of Rrb and Rra 

compared with Rrc, and indicates that there is a fault has occurred at phases A and B. 

On the other hand, the stator resistances remain at approximately their nominal 

values, see Figure 6.18 
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Figure 6.17.  Estimated rotor resistances obtained using TS for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 
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Figure 6.18.  Estimated stator resistances obtained using TS for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 

 

Table 6.5 shows the final values of the estimated stator and rotor resistances. The 

number of investigations of potential solutions required to obtain convergence with 

this data set was 60. Figure 6.19 shows the error corresponding to the best solution 

under this rotor open-circuit fault condition. As it can be seen from Figure 6.20, that 
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there is a good agreement between (IA, IB, IC) and (IsA, IsB, IsC), calculated using the 

final TS parameter values. 

 

Table 6.5.  Final values of winding resistances obtained using TS with rotor open-circuit fault at 40 

Hz stator frequency. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra  (Ω) Rrb (Ω) Rrc (Ω) 

5.595 5.975 5.664 12.071 11.682 7.588 
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Figure 6.19.  Estimated calculation error obtained using TS for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 
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Figure 6.20.  Stator current waveforms (IA, IB, IC) and (IsA, IsB, IsC) for inverter-fed induction motor 

with rotor open-circuit fault; TS algorithm, 40 Hz stator frequency. 

 

 

6.4  Summary  

This chapter has demonstrated the capability of TS in parameters identification and 

for identifying the presence of stator and rotor open-circuit faults in an induction 

motor. The results given in this chapter show that the TS is successful in identifying 

the parameters of an induction motor with a higher accuracy  

TS had success rate of about 80% in identifying and locating the presence of open-

circuit fault in both the stator and rotor windings of an induction motor in reasonable 

time. The next chapter presents the implementation of SA algorithm in parameter 

identification and fault detection. 
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CHAPTER 7                                                                        

USE OF SIMULATED ANNEALING FOR 

INDUCTION MOTOR FAULT DETECTION 

AND PARAMETER IDENTIFICATION 

 

7.1 Introduction  

Simulated annealing (SA) is implemented using the same experimental test data and 

technique used previously with the GA and TS algorithms for fault detection and 

induction motor parameter identification. For fault detection, SA is used to detect the 

presence of a developing open-circuit fault in the stator and rotor winding when the 

motor is either supply-fed or inverter-fed. The initial temperature in the SA 

algorithm is set to 30 degrees.  

Because the SA algorithm accepts poor solutions at high annealing temperatures, the 

integral absolute error (IAE) is initially at a high value. As the annealing temperature 

is lowered, the IAE gradually decreases as the search is concentrated in the area 

around the solution. In SA, the following steps are required: 

- An initial solution for the stator and rotor resistances (RsA, RsB, RsC, Rra, Rrb, Rrc) is 

chosen and the cost function is evaluated. 

- A new solution is generated from the current one by applying a generation 

mechanism (randomly). 

- The difference in cost functions between the two solutions is calculated to decide 

whether or not the new solution can be accepted. 

- The decision to accept new solutions is based on an acceptance criterion. 
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7.2 Induction machine parameter identification using SA 

As explained in the previous chapters when illustrating the use of the GA and TS 

algorithms, the solution candidate for the parameters (Rs, Rr, Lss, Lrr, Mss, Mrr, Msr) is 

applied to the induction motor model to calculate the cost function. The search space 

for SA is set as in GA and TS algorithms and the initial temperature, Ts was set to 30 

degrees. The SA algorithm uses the acceptance probability, swap probability and 

cooling strategy to guide the optimisation process. The SA algorithm uses a random 

perturbation mechanism to generate a new solution from the current solution.  

The acceptance probability, swap probability and the decrement function of 

temperature used in this work are given by Equations (3.4), (3.5) and (3.6), 

respectively, in Chapter 3. The SA code is provided in Appendix C2.   

In this investigation, the SA fails to obtain convergence. These experiments are 

repeated for different types of temperature schedules and different values of the 

initial temperature but there are no improvements in the results. It is noted that 

increasing the number of iterations does not have an effect on the final solution.  

 

7.3 Winding fault detection 

The many trial runs carried out identify that the stator and rotor resistances should be 

investigated while the other machine parameters are maintained at the values 

identified earlier based on the TS identification process (Table 6.1). 

 

7.3.1 Supply-fed induction motor 

7.3.1.1 Stator winding open circuit fault  

In this test, the same experimental test data is used as was described previously when 

illustrating the use of the GA and TS algorithms for stator winding open-circuit fault.  
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Figure 7.1 shows the estimated stator winding resistances obtained by the SA 

algorithm. From these results, it can be seen that there is an open-circuit fault in 

stator phase B while the other stator resistances are at approximately their nominal 

values. The three estimated rotor resistance are at their nominal values indicating a 

healthy state of the rotor windings (see Figure 7.2). Hence, it may be concluded that 

the SA algorithm can identify the presence of an open-circuit stator winding fault.  
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Figure 7.1.  Estimated stator resistances obtained using SA for operation of induction motor with 

stator open-circuit fault. 
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Figure 7.2.  Estimated rotor resistances obtained using SA for operation of induction motor with stator 

open-circuit fault. 
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The final values of the estimated stator and rotor resistances obtained by the SA 

algorithm are listed in Table 7.1. Figure 7.3 shows the error function corresponding 

to the best solution under the stator open- circuit fault condition, the error falls from 

a maximum value of 0.129 A.s to 0.016 A.s. 

The number of investigations of potential solutions required to obtain convergence 

with this data set was 40. Figure 7.4 shows that the measured (IA, IB, IC) and 

calculated (IsA, IsB, IsC) stator currents using the final SA parameter values are in a 

very good agreement. 

 

Table 7.1.  Final values of winding resistances obtained using SA with stator open-circuit fault. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra (Ω) Rrb (Ω) Rrc (Ω) 

5.363 14.933 7.386 6.955 6.835 6.808 
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Figure 7.3.  Estimated calculation error obtained using SA for operation of induction motor with 

stator open-circuit fault. 

 



CHAPTER-7                  Use of SA for induction motor fault detection and parameters identification 

   

 

98 

 

Figure 7.4.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator current waveforms using the 

estimated resistances obtained from SA for operation of induction motor with stator open-circuit fault 

 

 

7.3.1.2 Rotor winding open-circuit fault  

The performance of the SA algorithm in identifying open-circuit faults in the rotor 

using the same experimental test data is presented in this section. Figure 7.5 and 

Figure 7.6 show the resulting estimated rotor and stator resistances, respectively. The 

value of Rrc is equal to 5.769 , and the other rotor resistances are at relatively high 

values (Rra = 11.091  , Rrb = 11.084 ); this indicates that there is an open circuit 

fault in both phases A and B while the stator resistances may be considered healthy. 
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Figure 7.5.  Estimated rotor resistances obtained using SA for operation of induction motor with rotor 

open-circuit fault. 
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Figure 7.6.  Estimated stator resistances obtained using SA for operation of induction motor with rotor 

open-circuit fault. 

 

Around 50 investigations of potential solutions are required to obtain convergence. 

The values of the estimated stator and rotor resistances obtained at the end of the 

optimisation process are listed in Table 7.2. Figure 7.7 shows the value of the error 

corresponding to the number of steps when determining the best solution under the 
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rotor open-circuit fault condition. The error falls from a maximum value of 0.854 A.s 

to 0.458 A.s. 

Figure 7.8 compares the measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator 

currents using the final SA parameter values, and shows good agreement between 

the two current waveform sets.  

 

Table 7.2.  Final values of winding resistances obtained using SA with rotor open-circuit fault. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra (Ω) Rrb (Ω) Rrc (Ω) 

5.970 6.420 6.259 11.091 11.084 5.769 
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Figure 7.7.  Estimated calculation error obtained using SA for operation of induction motor with rotor 

open-circuit fault. 
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Figure 7.8.  Measured (IA, IB, IC) and calculated (IsA, IsB, IsC) stator current waveforms using the 

estimated resistances obtained from SA for operation of induction motor under a rotor open-circuit 

fault.  

 

7.3.2  Inverter-fed induction motor 

7.3.2.1 Stator winding open-circuit fault 

Using the same simulation test described previously in section 5.3.2, Figure 7.9 

shows that convergence occurred after around 46 investigations of potential solutions 

when using the 40 Hz waveforms. There was an obvious increase in value of stator 

resistance to a steady level of 12.453  for phase A, while the values of the other 

two resistances were approximately at their nominal values. Figure 7.10 shows that 

the rotor resistances also have nominal values indicating a healthy state for the rotor 

windings. The maximum IAE is 0.134 A.s while the final value of IAE is 0.016 A.s, 

see Figure 7.11. 
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Figure 7.9.  Estimated stator resistances obtained using SA for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 
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Figure 7.10.  Estimated rotor resistances obtained using SA for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 
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Figure 7.11.  Estimated calculation error obtained using SA for operation of inverter-fed induction 

motor with stator open-circuit fault at 40 Hz stator frequency. 

 

The final estimated values of the stator and rotor resistances are listed in Table 7.3. 

Figure 7.12 shows (IA, IB, IC) and (IsA, IsB, IsC), calculated using the final SA 

parameter values. The results indicate reasonable agreement between the two current 

waveforms.  

Table 7.3.  Final values of winding resistances obtained using SA with a stator open-circuit fault at 40 

Hz stator frequency. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra (Ω) Rrb (Ω) Rrc (Ω) 

12.453 6.084 7.623 6.320 6.622 6.265 
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Figure 7.12.  Stator current waveforms (IA, IB, IC) and (IsA, IsB, IsC) for inverter-fed induction motor 

with stator open-circuit fault; SA algorithm, 40 Hz stator frequency. 

 

7.3.2.2 Rotor winding open-circuit fault 

In this investigation, the SA algorithm fails to obtain convergence and is stuck after 

number of steps of potential solutions. These tests were repeated for different types 

of temperature schedules and different values of the initial temperature but there 

were no improvements in the results. Figure 7.13 and Figure 7.14 show the results 

when the stator was supplied at a frequency of 40 Hz. Although the error falls from a 

maximum value of 0.166 A.s to 0.014 A.s., the final values of the stator and rotor 

resistances estimated during the optimisation process were not correct (see Figure 

7.15 and Table 7.4). 
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Figure 7.13.  Estimated rotor resistances obtained using SA for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 
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Figure 7.14.  Estimated stator resistances obtained using SA for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 
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Table 7.4.  Final values of winding resistances obtained using SA with rotor open-circuit fault at 40 

Hz stator frequency. 

RsA (Ω) RsB (Ω) RsC (Ω) Rra (Ω)  Rrb (Ω) Rrc (Ω) 

7.425 8.494 4.834 17.456 10.499 9.951 
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Figure 7.15.  Estimated calculation error obtained using SA for operation of inverter-fed induction 

motor with rotor open-circuit fault at 40 Hz stator frequency. 

 

7.4 Summary  

SA, like other stochastic search methods, does not always converge to an optimum 

solution. The results presented in this chapter show that SA often failed when used to 

identify the presence of stator and rotor open-circuit faults. The SA probability of 

success was found to be about 60% for stator winding faults and 50% for rotor 

winding faults. 
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CHAPTER 8                                                                  

THESIS CONCLUSION AND FUTURE 

WORK 

 

8.1 Conclusion 

This thesis has been concerned with an identification scheme for fault detection in 

induction motors using three different stochastic optimisation algorithms: genetic 

algorithm (GA), tabu search (TS) and simulated annealing (SA). The aim of this 

work is to demonstrate the proposed technique for parameter identification and stator 

and rotor winding fault detection using GA, TS and SA algorithms where the 

optimum solution is determined by the criterion of the integral of the absolute error 

and best performance is associated with the smallest value of IAE.  

The data required for the proposed method are motor terminal voltages, stator 

currents and rotor speed obtained during steady state operation. Tests were carried 

out for a supply-fed induction machine. The data acquired are then processed off-line 

using the GA, TS and SA algorithms used in conjunction with an ABCabc induction 

motor model to determine the effective motor parameters. A series of experiments 

were conducted to collect the data needed to verify the technique proposed for 

parameter identification and fault detection. The experimental test rig used in this 

investigation consisted of a three-phase 240 V, 1.5 kW wound rotor induction 

machine coupled to a 3 kW DC machine used as a generator to provide the necessary 

load torque. 

In this technique, the calculated stator currents obtained from the ABCabc induction 

motor model are compared with the actual measured stator currents to produce a set 

of current errors that are integrated and summed to give an overall calculation error 
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that is then used as the cost function for the stochastic optimisation algorithm. Fault 

identification is then implemented by minimising the cost function in order to predict 

the machine condition. This is achieved by adjusting the parameters of the machine 

model using the stochastic algorithms until there is a close agreement between the 

measured and simulated data. The new set of the model parameters indicates if the 

machine winding is healthy or if there is a fault and also the location and the nature 

of this fault. 

Firstly, these stochastic algorithms were used in conjunction with steady-state data 

obtained from healthy induction motor to determine the equivalent circuit parameters 

of this motor. Based on the results obtained, it can be concluded that GA and TS 

algorithms were successful in identifying the parameters of the induction motor 

while the SA algorithm failed to converge. Experiments for SA were repeated for 

different types of temperature schedules and different values of the initial 

temperature but there were no improvement in the results. It is noted that increasing 

the number of iterations did not have an effect on the final solution. TS is most 

successful in terms of accuracy and computational time achieving a success rate of 

about 80% while the GA algorithm achieves a success rate of about 70%. 

Secondly, open-circuit stator winding fault was tested. To emulate this winding fault, 

an external 7  resistance was connected in series with a phase winding. In this 

investigation, all the three stochastic algorithms were able to identify the presence 

and location of an open-circuit winding fault in the stator of the induction motor, 

when fed directly from the three phase supply or via a voltage-fed variable-

frequency, variable-voltage converter. The probability of success for the GA, TS and 

SA algorithms were found to be about 70%, 80% and 60% respectively. TS and GA 

have faster computational time to converge while SA required a relatively long 

computational time because of its’ one agent search feature. 

Thirdly, a rotor open-circuit winding fault which was emulated by connecting a 7  

resistor in series with the line connected to the two ends of the a-b rotor delta; the 

stochastic algorithms were able to identify the presence and location of an open-

circuit winding fault in the rotor of the induction motor. TS had a success rate of 
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about 80% with less computational time. The probability of success for the GA and 

SA algorithms were found to be about 60% and 50%, respectively.  

Finally, it can be concluded that the proposed scheme is able to confirm that the 

three-phase induction motor windings are healthy or indicate that there is a winding 

fault and can identify the type and location of fault without the need for knowledge 

of various fault signatures. The three stochastic algorithms used in this investigation 

are very simple to implement using the Matlab/Simulink environment. 

 

8.2 Future work 

To extend the work presented in this thesis to cover other machine faults such as 

short-circuit winding faults and mechanical faults. Machine inductances and other 

model parameters should be included in this optimisation process. 

The identification scheme described in this thesis is basically an off-line technique. It 

needs to be devolved and possibly combined with other fault detection schemes to be 

used for on-line condition monitoring. 
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APPENDIX 

 

Code for GA, TS and SA algorithms 

A1- M.file code for GA algorithm (simple example) 

 
% This program is for simple example (one variable) 
clc 
clf 
clear all 
NIND = 10;                         % Number of individuals           
MAXGEN = 50;                      % Maximum no. of generations 
NVAR =1;                           % No. of Variables                   
PRECI = 40;                         % Precision of variables 
GGAP = 0.9;                        % Generation gap 
% Build Fielf Descriptor 
FieldD = [rep([PRECI],[1,NVAR]);rep([-

5;5],[1,NVAR]);rep([1;0;1;1],[1,NVAR])]; 
% Initialise population 
Chrom = crtbp(NIND , NVAR*PRECI); 
gen=0;                 % counter 
x=bs2rv(Chrom,FieldD); 
          for i=1:NIND 

     

  
Chr=x(i,:); 
a=Chr(1,1); 

  
% Evaluate initial population 
%ObjV(i) = objfun16(a(i)); 

 

%objfun12(a); 
 

function ObjVal=objfun12(a); % if is one parameter (a) 

 
ObjVal=0.0116*a^4-0.2473*a^3+1.7927*a^2- 4.9426*a+5.4150;   

 
ObjV(i) = objfun12(a); 
          end 
ObjV=ObjV'; 
% Generational loop 

   
  while gen < MAXGEN 

  
% Assign fitness values to entire population 
FitnV = RANKING(ObjV); 
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% Select individuals for breeding 
SelCh = select('sus',Chrom,FitnV,GGAP); 

  
% Recombine individuals (crossover) 
SelCh = recombin('xovsp',SelCh,0.7); 

  
% Apply mutation 
SelCh = mut(SelCh); 

  
% Evaluate offspring, call objective function 
w=bs2rv(SelCh,FieldD); 
for i=1:(NIND-1) 
Chr=w(i,:); 
a=Chr(1,1); 

  
%ObjVSel(i) = objfun16(a(i)); 
ObjVSel(i) = objfun12(a); 
end 

  

  
% Reinsert offspring into population 
[Chrom ObjV]= reins(Chrom,SelCh,1,1,ObjV,ObjVSel'); 
y=bs2rv(Chrom,FieldD); 
 minV= min(ObjV); 
for p=1:NIND 
    if minV==ObjV(p) 
        ind=p; 
    end  
end 

  
figure(1) 
k=min(ObjV); 
k1=y(ind,1); 
subplot(2,1,1),plot(gen,k1,'*'),hold on 
subplot(2,1,2),plot(gen,k,'*'),hold on 
% Increment counter 
gen = gen+1; 

   
end   
 toc 
          k1(end) 

       
          k(end) 

           

          
  

 

 

 

 

 

 

 

 

 

 



Appendix 

   

 

118 

A2- M.file code for GA algorithm (fault identification) 

%This test is for a healthy machine with six parameters 
clear all 
clc 
clf 
tic 
NIND =12;                         % Number of individuals           
MAXGEN =151;                      % Maximum no. of generations 
NVAR =6;                          % No. of Variables                   
PRECI = 20;                       % Precision of variables 
GGAP =0.9;                        % Generation gap 
%------------------------------------------------------------------- 
% Build Fiele Descriptor 

 
FieldD = 

[rep([PRECI],[1,NVAR]);rep([2;30],[1,NVAR]);rep([1;0;1;1],[1,NVAR])]; 
FieldDR=[2 2 2 2 2 2;30 30 30 30 30 30];  
%------------------------------------------------------------------- 
% Initialise population 

  
Chrom = crtbp(NIND,NVAR*PRECI); 
Gen=1               % counter 
RsAm=1;RsBm=5;RsCm=RsC(n);Rram=3;Rrbm=2;Rrcm=7; 
%------------------------------------------------------------------- 
% Other machine parameters 

 
LsAm=0.896;LsBm=LsAm;LsCm=LsAm; 
%------------------------------ 
MssABm=0.185;MssACm=MssABm;MssCBm=MssABm;MssBAm=MssABm;MssBCm=MssABm

;MssCAm=MssABm; 
%------------------------------ 
Mrrabm=0.771;Mrracm=Mrrabm;Mrrbam=Mrrabm;Mrrbam=Mrrabm;Mrrbam=Mrrabm

;Mrrbcm=Mrrabm;Mrrcam=Mrrabm;Mrrcbm=Mrrabm; 
%------------------------------ 
MsrBam=0.751;MsrAam=MsrBam;MsrAbm=MsrAam;MsrAcm=MsrAam;MsrBam=MsrAam

;MsrBbm=MsrAam;MsrBcm=MsrAam;MsrBam=MsrAam;MsrBbm=MsrAam;MsrBcm=MsrA

am;MsrCam=MsrAam;MsrCcm=MsrAam;MsrCbm=MsrAam; 
%------------------------------ 
MrsaAm=0.751;MrsaBm=MrsaAm;MrsaCm=MrsaAm;MrsaBm=MrsaAm;MrsaCm=MrsaAm

;MrsbAm=MrsaAm;MrsbBm=MrsaAm;MrsbCm=MrsaAm;MrscAm=MrsaAm;MrscBm=Mrsa

Am;MrscCm=MrsaAm; 
%----------------------------- 
Lrcm=0.507;Lram=Lrcm;Lrbm=Lrcm; 
%------------------------------------------------------------------- 
%Experimental data, armature voltages  

  
V1=csvread('vp1.csv',2,0,[2,0,999,1]);TimeVSA=V1(:,1);min(TimeVSA);T

imeVSA=TimeVSA-min(TimeVSA);VSA=V1(:,2); 

  
V2=csvread('vp2.csv',2,0,[2,0,999,1]);TimeVSB=V2(:,1);min(TimeVSB);T

imeVSB=TimeVSB-min(TimeVSB);VSB=V2(:,2); 
V3=csvread('vp3.csv',2,0,[2,0,999,1]);TimeVSC=V3(:,1);min(TimeVSC);T

imeVSC=TimeVSC-min(TimeVSC);VSC=V3(:,2); 
%------------------------------------------------------------------- 
%Experimental data, armature currents 
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IA=csvread('p1.csv',2,0,[2,0,999,1]);TimeISA=IA(:,1);min(TimeISA);Ti

meISA=TimeISA-min(TimeISA);ISA=IA(:,2); 
IB=csvread('p2.csv',2,0,[2,0,999,1]);TimeISB=IB(:,1);min(TimeISB);Ti

meISB=TimeISB-min(TimeISB);ISB=IB(:,2); 
IC=csvread('p3.csv',2,0,[2,0,999,1]);TimeISC=IC(:,1);min(TimeISC);Ti

meISC=TimeISC-min(TimeISC);ISC=IC(:,2); 
%------------------------------------------------------------------- 
% Rotor speed 

 wr=301.5                      
%-------------------------------------------------------------------  
sim('Healthy_Machine'); 
k1=RsAm;k2=RsBm;k3=RsCm;k4=Rram;k5=Rrbm;k6=Rrcm;k7=E;                    
figure(1) 
plot(Gen,k1,'bx',Gen,k2,'rh',Gen,k3,'go'),ylabel('RsA,RsB,RsC');hold 

on 
figure(2) 
plot(Gen,k4,'bx',Gen,k5,'rh',Gen,k6,'go'),ylabel('Rra,Rrb,Rrc');hold 

on 
figure(3) 
plot(Gen,k7,'bx'),ylabel('Error');hold on 

  
mem(Gen,1:7)=[k1,k2,k3,k4,k5,k6,k7]; 
Gen=2              % counter 
x=bs2rv(Chrom,FieldD); 
for i=1:NIND    
Chr=x(i,:); 
RsAm=Chr(1,1);RsBm=Chr(1,2);RsCm=Chr(1,3);Rram=Chr(1,4);Rrbm=Chr(1,5

);Rrcm=Chr(1,6);                                                                                   
sim('Healthy_Machine'); 
    ObjV(i)=E;   
          end 
ObjV=ObjV'; 
minV= min(ObjV); 
for p=1:NIND 
    if minV==ObjV(p) 
        ind=p; 
    end  
end 
k1=x(ind,1);k2=x(ind,2);k3=x(ind,3);k4=x(ind,1);k5=x(ind,2);k6=x(ind

,3);k7=min(ObjV);  
figure(1) 
plot(Gen,k1,'bx',Gen,k2,'rh',Gen,k3,'go'),ylabel('RsA,RsB,RsC');hold 

on 
figure(2) 
plot(Gen,k4,'bx',Gen,k5,'rh',Gen,k6,'go'),ylabel('Rra,Rrb,Rrc');hold 

on 
figure(3) 
plot(Gen,k7,'bx'),ylabel('Error');hold on 
mem(Gen,1:7)=[k1,k2,k3,k4,k5,k6,k7]; 
Gen=3 
% Generational loop 

 
 while Gen < MAXGEN 
%-------------------------------------------------------------------     
%Assign fitness values to entire population 

 
FitnV = RANKING(ObjV); 
%-------------------------------------------------------------------   
% Select individuals for breeding 
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SelCh = select('sus',x,FitnV,GGAP);  
%------------------------------------------------------------------- 
% Recombine individuals (crossover) 

 
SelCh = recombin('xovsp',SelCh,0.7); 
%------------------------------------------------------------------- 
% Apply mutation 

 
SelCh = mutbga(SelCh,FieldDR);  
%------------------------------------------------------------------- 
%Evaluate offspring, call objective function 

 
for i=1:(NIND-1)   
Chr=SelCh(i,:);  
RsAm=Chr(1,1);RsBm=Chr(1,2);RsCm=Chr(1,3);                      
sim('Healthy_Machine');                   
ObjVSel(i) = E;   
end 
%------------------------------------------------------------------- 
% Reinsert offspring into population 

[x ObjV]= reins(x,SelCh,1,1,ObjV,ObjVSel'); 
 minV= min(ObjV); 
for p=1:NIND 
    if minV==ObjV(p) 
        ind=p; 
    end  
end 
k1=x(ind,1);k2=x(ind,2);k3=x(ind,3);k4=x(ind,4);k5=x(ind,5);k6=x(ind

,6);k7=min(ObjV);                         
figure(1) 
plot(Gen,k1,'bx',Gen,k2,'rh',Gen,k3,'go'),ylabel('RsA,RsB,RsC');hold 

on 
figure(2) 
plot(Gen,k4,'bx',Gen,k5,'rh',Gen,k6,'go'),ylabel('Rra,Rrb,Rrc');hold 

on 
figure(3) 
plot(Gen,k7,'bx'),ylabel('Error');hold on 
mem(Gen,1:7)=[k1,k2,k3,k4,k5,k6,k7]; 
%------------------------------------------------------------------- 
%Increment counter 

 
Gen = Gen+1 
          end          
 toc 
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B1 - M.file code for TS algorithm (simple example) 

%using of tabu search for one variable. 
clear all 
clc 
clf 
tic 
format short 
i_max =300;% maximum iterations 
n=1; 
nn=1; 
A(n)=2; 

  
 ObjV(n)= 0.0116*A(n)^4-0.2473*A(n)^3+1.7927*A(n)^2- 

4.9426*A(n)+5.4150;  

      
   C(n)=min(ObjV); 
%  initialize tabu list 
N=7; % proposed by Glover 
TL=zeros(N,1); 

  
k=1; % counter works every 10 iterations for changing the value of 

standrad deviation 'S' 
S=0.2; % Standard deviation 
f=1;   % counter for best solution 

                    
                 k1=A(n); 

              
                 k8=C(n); 
figure (1)                
plot(f,k1,'bx'),hold on 
figure (2) 
plot(f,k8,'bx'),hold on 

  

  
 BS(f,:)=[k1,k8]% Best solution 

  
    TL(N,:)=C(n);  

  

  
while (n <=i_max) 
 w=abs([Normrnd(A(n),S); Normrnd(A(n),S); Normrnd(A(n),S); 

Normrnd(A(n),S);Normrnd(A(n),S) ;Normrnd(A(n),S) ;Normrnd(A(n),S);No

rmrnd(A(n),S)])   

  

  
 for i=1:8 

    
Chr=w(i,:); 
a=Chr(1,1); 

  
%--------------------- 

                      
ObjVsel(i) = objfun12(a);   
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end 

  
     minV= min(ObjVsel); 
for p=1:8 
     if minV==ObjVsel(p) 
        ind=p; 
      end  

             
end 

   
   C(n+1)=min(ObjVsel); 
   A(n+1) =w(ind,1); 

  

    
 if nn >20 
     if (k/nn)> 0.2 
      S=0.1; 

   
      elseif (k/nn)==0.2 
      S=0.5; 

    
      else 
      S=1; 
     end  
       nn=nn-21; 
      k=0; 
 end 

  
 xx=true; 
 for g=1:N 
        if C(n+1)==TL(g,1) 
         xx=false; 
         end 

  
 end 

  
 if xx==true  

  
       for j=1:N-1                  % Swap the element inside the TL 
       TL(j,1)=TL(j+1,1); 
       end 
       TL(N,1)=C(n+1); 

  
            if C(n+1) < C(n) 

  
                  k=k+1 

  
                C(n)= C(n+1); 
                 A(n)=A(n+1); 

                 
                 % --------------- 

                 
                 k1=A(n+1); 
                 k8= C(n+1); 

                  
                  f=f+1                  
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figure (1)                
plot(f,k1,'bx'),hold on 
figure (2) 
plot(f,k8,'bx'),hold on 

  
                 BS(f,:)=[k1,k8];% Best solution 
            end 

                      
  end    

    
% Increment counter 
       n=n+1; 
       nn=nn+1; 
end 
 toc 
k1(end) 
k8(end) 
TL; 
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B2- M.file code for TS algorithm (fault identification) 

% using of tabu search for healthy machine with six variables for 
clear all 
clc 
clf 
tic 
format short 
i_max =170;% maximum iterations 
n=1; 
nn=1; 
RsA(n)=2;RsB(n)=3;RsC(n)=1;Rra(n)=3;Rrb(n)=5;Rrc(n)=1; 
RsAm=RsA(n);RsBm=RsB(n);RsCm=RsC(n);Rram=Rra(n);Rrbm=Rrb(n);Rrcm=Rrc

(n); 
%------------------------------------------------------------------- 
% Other machine parameters 

 
LsAm=0.896; 
LsBm=LsAm;LsCm=LsAm; 
%------------------------------ 
MssABm=0.185;MssACm=MssABm;MssCBm=MssABm;MssBAm=MssABm;MssBCm=MssABm

;MssCAm=MssABm; 
%------------------------------ 
Mrrabm=0.771;Mrracm=Mrrabm;Mrrbam=Mrrabm;Mrrbam=Mrrabm;Mrrbam=Mrrabm

;Mrrbcm=Mrrabm;Mrrcam=Mrrabm;Mrrcbm=Mrrabm; 
%------------------------------ 
MsrBam=0.751;MsrAam=MsrBam;MsrAbm=MsrAam;MsrAcm=MsrAam;MsrBam=MsrAam

;MsrBbm=MsrAam;MsrBcm=MsrAam;MsrBam=MsrAam;MsrBbm=MsrAam;MsrBcm=MsrA

am;MsrCam=MsrAam;MsrCcm=MsrAam;MsrCbm=MsrAam; 
%------------------------------ 
MrsaAm=0.751;MrsaBm=MrsaAm;MrsaCm=MrsaAm;MrsaBm=MrsaAm;MrsaCm=MrsaAm

;MrsbAm=MrsaAm;MrsbBm=MrsaAm;MrsbCm=MrsaAm;MrscAm=MrsaAm;MrscBm=Mrsa

Am;MrscCm=MrsaAm; 
%----------------------------- 
Lrcm=0.507; 
Lram=Lrcm;Lrbm=Lrcm; 
%------------------------------------------------------------------- 
%Experimental data, armature voltages  

  
V1=csvread('vp1.csv',2,0,[2,0,999,1]);TimeVSA=V1(:,1);min(TimeVSA);T

imeVSA=TimeVSA-min(TimeVSA);VSA=V1(:,2); 
V2=csvread('vp2.csv',2,0,[2,0,999,1]);TimeVSB=V2(:,1);min(TimeVSB);T

imeVSB=TimeVSB-min(TimeVSB);VSB=V2(:,2); 
V3=csvread('vp3.csv',2,0,[2,0,999,1]);TimeVSC=V3(:,1);min(TimeVSC);T

imeVSC=TimeVSC-min(TimeVSC);VSC=V3(:,2); 
%------------------------------------------------------------------- 
%Experimental data, armature currents 

  
IA=csvread('p1.csv',2,0,[2,0,999,1]);TimeISA=IA(:,1);min(TimeISA);Ti

meISA=TimeISA-min(TimeISA);ISA=IA(:,2); 
IB=csvread('p2.csv',2,0,[2,0,999,1]);TimeISB=IB(:,1);min(TimeISB);Ti

meISB=TimeISB-min(TimeISB);ISB=IB(:,2); 
IC=csvread('p3.csv',2,0,[2,0,999,1]);TimeISC=IC(:,1);min(TimeISC);Ti

meISC=TimeISC-min(TimeISC);ISC=IC(:,2); 
%------------------------------------------------------------------- 
% Rotor speed 
 wr=301.5                      



Appendix 

   

 

125 

%------------------------------------------------------------------- 
sim('Healthy_Machine'); 
error(n)=E 

%------------------------------------------------------------------- 
%  initialize tabu list 

 
N=7; % proposed by Glover 
TL=zeros(N,1); 

  
k=1; % counter works every 10 iterations for changing the value of 

standrad deviation 'S' 
S=6; % Standard deviation 
f=1;   % counter for best solution 
k1=RsA(n);k2=RsB(n);k3=RsC(n);k4=Rra(n);k5=Rrb(n);k6=Rrc(n);k7=error

(n); 

                     
 figure(1) 
 subplot(2,1,1),plot(f,k1,'bx',f,k2,'rh',f,k3,'go'),hold on; 
 subplot(2,1,2),plot(f,k7,'bx'),hold on; 
 figure(2) 
 subplot(2,1,1),plot(f,k4,'bx',f,k5,'rh',f,k6,'go'),hold on; 
 subplot(2,1,2),plot(f,k7,'bx'),hold on; 
 mem(f,1:7)=[k1,k2,k3,k4,k5,k6,k7];    
 TL(N,:)=error(n)   

  
while (n <=i_max) 
%-------------------------------------------------------------------

------- 
%Generate new solution 
w=abc([Normrnd(RsA(n),S) Normrnd(RsB(n),S) Normrnd(RsC(n),S) 

Normrnd(Rra(n),S) Normrnd(Rrb(n),S) Normrnd(Rrc(n),S); 

Normrnd(RsA(n),S) Normrnd(RsB(n),S) Normrnd(RsC(n),S) 

Normrnd(Rra(n),S) Normrnd(Rrb(n),S) Normrnd(Rrc(n),S); 

Normrnd(RsA(n),S) Normrnd(RsB(n),S) Normrnd(RsC(n),S) 

Normrnd(Rra(n),S) Normrnd(Rrb(n),S) Normrnd(Rrc(n),S); 

Normrnd(RsA(n),S) Normrnd(RsB(n),S) Normrnd(RsC(n),S) 

Normrnd(Rra(n),S) Normrnd(Rrb(n),S) Normrnd(Rrc(n),S); 

Normrnd(RsA(n),S) Normrnd(RsB(n),S) Normrnd(RsC(n),S) 

Normrnd(Rra(n),S) Normrnd(Rrb(n),S) Normrnd(Rrc(n),S); 
Normrnd(RsA(n),S) Normrnd(RsB(n),S) Normrnd(RsC(n),S) 

Normrnd(Rra(n),S) Normrnd(Rrb(n),S) Normrnd(Rrc(n),S); 

Normrnd(RsA(n),S) Normrnd(RsB(n),S) Normrnd(RsC(n),S) 

Normrnd(Rra(n),S) Normrnd(Rrb(n),S) Normrnd(Rrc(n),S); 

Normrnd(RsA(n),S) Normrnd(RsB(n),S) Normrnd(RsC(n),S) 

Normrnd(Rra(n),S) Normrnd(Rrb(n),S) Normrnd(Rrc(n),S)]); 
for i=1:8   
Chr=w(i,:); 
RsAm=Chr(1,1);RsBm=Chr(1,2);RsCm=Chr(1,3);Rram=Chr(1,4);Rrbm=Chr(1,5

);Rrcm=Chr(1,6); 

  
sim('Healthy_Machine');                
ObjVsel(i) = E;   
end 
     minV= min(ObjVsel); 
for p=1:8 
     if minV==ObjVsel(p) 
        ind=p; 
      end      
end 
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 error(n+1) =min(ObjVsel) 
    RsA(n+1) =w(ind,1) 
    RsB(n+1) =w(ind,2) 
    RsC(n+1) =w(ind,3) 
    Rra(n+1) =w(ind,4) 
    Rrb(n+1) =w(ind,5) 
    Rrc(n+1) =w(ind,6) 
%------------------------------------------------------------------- 
%Change value of S 

 
 if nn >30 
     if (k/nn)> 0.2 
      S=0.01  
      elseif (k/nn)==0.2 
      S=0.05  
      else 
      S=0.1  
     end  
       nn=nn-31 
      k=0 
end 

     
  xx=true; 
 for g=1:N 
        if error(n+1)==TL(g,1) 
         xx=false; 
        end 
 end 
 %------------------------------------------------------------------ 
 % Swap the element inside the TL 
 if xx==true  
       for j=1:N-1                   
       TL(j,1)=TL(j+1,1) 
       end 
       TL(7,1)=error(n+1) 

  
            if error(n+1) < error(n) 
                  k=k+1 
                error(n)= error(n+1); 
                 

RsA(n)=RsA(n+1);RsB(n)=RsB(n+1);RsC(n)=RsC(n+1);Rra(n)=Rra(n+1); 
Rrb(n)=Rrb(n+1);Rrc(n)=Rrc(n+1); 
k1=RsA(n+1);k2=RsB(n+1);k3=RsC(n+1);k4=Rra(n+1);k5=Rrb(n+1);k6=Rrc(n

+1);k7=error(n+1); f=f+1         
 figure(1) 
 subplot(2,1,1),plot(f,k1,'bx',f,k2,'rh',f,k3,'go'),hold on; 
 subplot(2,1,2),plot(f,k7,'bx'),hold on; 
 figure(2) 
 subplot(2,1,1),plot(f,k4,'bx',f,k5,'rh',f,k6,'go'),hold on; 
 subplot(2,1,2),plot(f,k7,'bx'),hold on; 
 mem(f,1:7)=[k1,k2,k3,k4,k5,k6,k7];            
            end               
  end    
% Increment counter 
       n=n+1 
       nn=nn+1 
end 
toc 
k1(end);k2(end);k3(end);k4(end);k5(end);k6(end);k7(end);TL; 
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C1- M.file code for SA algorithm (simple example) 

%The test for simple function with one variable 

 
clear 
clc   
n=1; 
k=1; 
%------------------------------------------------------------------- 
% Search space 
a=-5:1:5; 
range_a=(max(a)-min(a))^2; 
%------------------------------------------------------------------ 
% Initial temperature 

   
Ts=10; T=Ts;    
a(n)=1;                            

                                                                 
f(n)= 0.0116*a(n)^4-0.2473*a(n)^3+1.7927*a(n)^2- 4.9426*a(n)+5.4150;  

  
%------------------------------------------------------------------ 
 while n < 100         
   a(n+1)=5-10*rand;  

  
f(n+1)= 0.0116*a(n+1)^4-0.2473*a(n+1)^3+1.7927*a(n+1)^2- 

4.9426*a(n+1)+5.4150;  
 %---------------------------------------------------------------            
 % Calculate of the displacement  
    d1=(a(n+1)-a(n))^2;                                
    dista=d1;    
 %----------------------------------------------------------------- 
 % Caculation of acceptance probabilty  
    r1=dista/range_a; 
    r2=Ts/T;                          
    PA=exp(-r1*r2);                   
    PAr=rand;                                                    
    if PA > PAr;                        
 %-----------------------------------------------------------------            
 % Calculation of swap probabilty 
     Error=f(n+1)-f(n);                                            
     Ps_exp=exp(Error*r2);  
     Ps=1/(1+Ps_exp);                  
     Psr=rand; 
     if Ps > Psr                         
            f(n)=f(n+1);  a(n)=a(n+1);  
 %-----------------------------------------------------------------                      
 % Temperature decrement function     

                 
            T=0.9*T;             
            n=n+1                                                      
        end 
    end 
   k=k+1 
end 
figure(1) 
plot(f); grid 
xlabel('Accepted iterations'); 



Appendix 

   

 

128 

ylabel('f') 
title('Results of simulated annealing'); 
hold on; 

  
figure(2) 
plot(a); grid 
xlabel('Accepted iterations'); 
ylabel('a'); 
hold on; 
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C2- M.file code for SA algorithm (fault identification) 

%This test is for healthy machine with six variables 

  
clear all 
clc 
clf 
tic 
n=1 
C=1 
H=1 
format short; 
%------------------------------------------------------------------- 
% Initial temperature 
Tstr=50;T=Tstr;  
%------------------------------------------------------------------- 
X11=2;X12=20;X21=2;X22=20;X31=2;X32=20;X41=2;X42=20;X51=2;X52=20;X61

=2;X62=20; 
%------------------------------------------------------------------- 
% Search space 
 rg=sqrt(((X12-X11)^2+(X22-X21)^2+(X32-X31)^2+((X42-X41)^2+(X52-

X51)^2+(X62-X61)^2)/6); 

  
 RsA(n)=4;RsB(n)=1;RsC(n)=0.1;Rra(n)=5;Rrb(n)=2;Rrc(n)=7; 
%------------------------------------------------------------------- 
% Other machine parameters 
LsAm=0.896;LsBm=LsAm;LsCm=LsAm; 
%------------------------------ 
MssABm=0.185;MssACm=MssABm;MssCBm=MssABm;MssBAm=MssABm;MssBCm=MssABm

;MssCAm=MssABm; 
%------------------------------ 
Mrrabm=0.771;Mrracm=Mrrabm;Mrrbam=Mrrabm;Mrrbam=Mrrabm;Mrrbam=Mrrabm

;Mrrbcm=Mrrabm;Mrrcam=Mrrabm;Mrrcbm=Mrrabm; 
%------------------------------ 
MsrBam=0.751;MsrAam=MsrBam;MsrAbm=MsrAam;MsrAcm=MsrAam;MsrBam=MsrAam

;MsrBbm=MsrAam;MsrBcm=MsrAam;MsrBam=MsrAam;MsrBbm=MsrAam;MsrBcm=MsrA

am;MsrCam=MsrAam;MsrCcm=MsrAam;MsrCbm=MsrAam; 
%------------------------------ 
MrsaAm=0.751;MrsaBm=MrsaAm;MrsaCm=MrsaAm;MrsaBm=MrsaAm;MrsaCm=MrsaAm

;MrsbAm=MrsaAm;MrsbBm=MrsaAm;MrsbCm=MrsaAm;MrscAm=MrsaAm;MrscBm=Mrsa

Am;MrscCm=MrsaAm; 
%----------------------------- 
Lrcm=0.507;Lram=Lrcm;Lrbm=Lrcm; 
%------------------------------------------------------------------- 
%Experimental data, armature voltages  
V1=csvread('vp1.csv',2,0,[2,0,999,1]);TimeVSA=V1(:,1);min(TimeVSA);T

imeVSA=TimeVSA-min(TimeVSA);VSA=V1(:,2); 
V2=csvread('vp2.csv',2,0,[2,0,999,1]);TimeVSB=V2(:,1);min(TimeVSB);T

imeVSB=TimeVSB-min(TimeVSB);VSB=V2(:,2); 
V3=csvread('vp3.csv',2,0,[2,0,999,1]);TimeVSC=V3(:,1);min(TimeVSC);T

imeVSC=TimeVSC-min(TimeVSC);VSC=V3(:,2); 
%------------------------------------------------------------------- 
%Experimental data, armature currents 

  
IA=csvread('p1.csv',2,0,[2,0,999,1]);TimeISA=IA(:,1);min(TimeISA);Ti

meISA=TimeISA-min(TimeISA);ISA=IA(:,2); 
IB=csvread('p2.csv',2,0,[2,0,999,1]);TimeISB=IB(:,1);min(TimeISB);Ti

meISB=TimeISB- min(TimeISB);ISB=IB(:,2); 
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IC=csvread('p3.csv',2,0,[2,0,999,1]);TimeISC=IC(:,1);min(TimeISC);Ti

meISC=TimeISC-min(TimeISC);ISC=IC(:,2); 
%------------------------------------------------------------------- 
% Rotor speed 
 wr=301.5                      
%------------------------------------------------------------------- 
RsAm=RsA(n);RsBm=RsB(n);RsCm=RsC(n);Rram=Rra(n);Rrbm=Rrb(n);Rrcm=Rrc

(n); 

  
                     sim('Healthy_Machine'); 
                     % This is count the number of model run 
                     C=C+1;  
              error(n)=E; 
   minimum=0; 
      k=1; 
%------------------------------------------------------------------- 
U1=RsA(n);U2=RsB(n);U3=RsC(n);U4=Rra(n);U5=Rrb(n);U6=Rrc(n);U7=error

(n); 

                     
figure(1) 
                

subplot(2,1,1),plot(n,U1,'bx',n,U2,'rh',n,U3,'go'),hold on; 
subplot(2,1,2),plot(n,U7,'bx'),hold on; 
figure(2) 
                

subplot(2,1,1),plot(n,U4,'bx',n,U5,'rh',n,U6,'go'),hold on; 
subplot(2,1,2),plot(n,U7,'bx'),hold on; 
mem(H,1:7)=[U1,U2,U3,U4,U5,U6,U7];                          
%-------------------------------------------------------------------   
  while C <2000;                          

       
        r=rand; 
        RsA(n+1)=2+ 18*rand; 
        RsB(n+1)=2+ 18*rand; 
        RsC(n+1)=2+ 18*rand; 
        Rra(n+1)=2+ 18*rand; 
        Rrb(n+1)=2+ 18*rand; 
        Rrc(n+1)=2+ 18*rand; 

        
%-------------------------------------------------------------------          
% Calculate of the displacement                        
   dX1=RsA(n+1)-RsA(n);dX2=RsB(n+1)-RsB(n);dX3=RsC(n+1)-RsC(n); 

            
   dX4=Rra(n+1)-Rra(n);dX5=Rrb(n+1)-Rrb(n);dX6=Rrc(n+1)-Rrc(n); 
   displace=sqrt((dX1^2 + dX2^2+ dX3^2)/3); 
%------------------------------------------------------------------- 
% Caculation of acceptance probabilty   
  PA = exp(-(displace/rg)*(Tstr/T)); 
      r=rand;  
      if r<PA 

                            
RsAm=RsA(n+1);RsBm=RsB(n+1);RsCm=RsC(n+1);                
Rram=Rra(n+1);Rrbm=Rrb(n+1);Rrcm=Rrc(n+1); 

  
      sim('Healthy_Machine'); 
             C=C+1 
             error(n+1)=E; 
%-------------------------------------------------------------------           
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% Calculation of swap probabilty 
  dif1=abs(error(n+1)-minimum);dif2=abs(error(n)-

minimum);dif3=(dif1-dif2)/dif2; 
  Pswap=1/(1+exp(dif3*(Tstr/T))); 

      
          if r< Pswap 

                        
error(n)=error(n+1);RsA(n)=RsA(n+1);RsB(n)=RsB(n+1);RsC(n)=RsC(n+1);

Rra(n)=Rra(n+1); 
Rrb(n)=Rrb(n+1);Rrc(n)=Rrc(n+1); 
%-------------------------------------------------------------------                      
% Temperature decrement function                        

                          
        T=0.9*T; 

                         
U1=RsA(n);U2=RsB(n);U3=RsC(n);U4=Rra(n);U5=Rrb(n);U6=Rrc(n);U7=error

(n);                    
figure(1)               

subplot(2,1,1),plot(n,U1,'bx',n,U2,'rh',n,U3,'go'),hold on; 
subplot(2,1,2),plot(n,U7,'bx'),hold on; 
figure(2)                

subplot(2,1,1),plot(n,U4,'bx',n,U5,'rh',n,U6,'go'),hold on; 

subplot(2,1,2),plot(n,U7,'bx'),hold on;   
                  H=H+1 
                mem(H,1:7)=[U1,U2,U3,U4,U5,U6,U7];    

                
                            n=n+1  
          end 
                          end 
end 
toc 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


