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ABSTRACT 
 

The effect of manufacturing process variations has become a major issue regarding the 

estimation of circuit delay and power dissipation, and will gain more importance in the 

future as device scaling continues in order to satisfy market place demands for circuits 

with greater performance and functionality per unit area. Statistical modelling and 

analysis approaches have been widely used to reflect the effects of a variety of variational 

process parameters on system performance factor which will be described as  probability 

density functions (PDFs).  At present most of the investigations into statistical models 

has been limited to small circuits such as a logic gate. However, the massive size of 

present day electronic systems precludes the use of design techniques which consider a 

system to comprise these basic gates, as this level of design is very inefficient and error 

prone.   

This thesis proposes a methodology to bring the effects of process variation from 

transistor level up to architectural level in terms of circuit delay and leakage power 

dissipation. Using a first order canonical model and statistical analysis approach, a 

statistical cell library has been built which comprises not only the basic gate cell models, 

but also more complex functional blocks such as registers, FIFOs, counters, ALUs etc. 

Furthermore, other sensitive factors to the overall system performance, such as input 

signal slope, output load capacitance, different signal switching cases and transition types 

are also taken into account for each cell in the library, which makes it adaptive to an 

incremental circuit design.   

The proposed methodology enables an efficient analysis of process variation effects on 

system performance with significantly reduced computation time compared to the Monte 

Carlo simulation approach. As a demonstration vehicle for this technique, the delay and 

leakage power distributions of a 2-stage asynchronous micropipeline circuit has been 

simulated using this cell library. The experimental results show that the proposed method 

can predict the delay and leakage power distribution with less than 5% error and at least 

50,000 times faster computation time compare to 5000-sample SPICE based Monte Carlo 

simulation. 
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The methodology presented here for modelling process variability plays a significant role 

in Design for Manufacturability (DFM) by quantifying the direct impact of process 

variations on system performance. The advantages of being able to undertake this 

analysis at a high level of abstraction and thus early in the design cycle are two fold. First, 

if the predicted effects of process variation render the circuit performance to be outwith 

specification, design modifications can be readily incorporated to rectify the situation. 

Second, knowing what the acceptable limits of process variation are to maintain design 

performance within its specification, informed choices can be made regarding the 

implementation technology and manufacturer selected to fabricate the design.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

In order to satisfy the market place demand for circuits with greater performance and 

functionality per unit area, the semiconductor and fabrication technology has been rapidly 

developed during the last century, which has lead to the continuous shrinking of transistor 

dimensions.  According to Moore’s Law [1], the number of transistors that can be 

fabricated on an integrated circuit doubles approximately every two years. This trend has 

continued for more than half a century, and is expected to continue until at least 2015 or 

2020 [2]. Figure 1-1 shows the plot of CPU transistor counts against dates from 1971 to 

2011. 

 

Figure 1-1  Plot of CPU transistor counts against dates of introduction [3]. 

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Transistor_count
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As a result of technology scaling and the increase in circuit density, process and 

environmental variation effects have been highlighted as the main reasons for the 

uncertainty in circuit behavior. Electronic systems are becoming more susceptible to these 

variations which not only impact on system performance but also on system reliability. 

System reliability issues are of growing concern due to the range of applications in which 

electronic systems are used, for example in automotive, aerospace and medical 

applications. 

In this chapter, a general introduction to the manufacturing process variations will be 

outlined; the subsequent sections are organized as follows: Section 1.2 will give a general 

introduction to impact of device scaling. Section 0 will present the classification of the 

variation sources and Section 1.4 will illustrate the different components of these 

variations. In Section 1.5 the impact of variation on performance parameters will be 

discussed; followed by the motivation and contributions of this thesis in Section 1.6; the 

chapter will conclude with a description of the roadmap of the thesis in Section 1.7.  

  

1.2 Impact of Device Scaling 

In order to satisfy the market demand for high performance electronic systems, the circuit 

implementation requires the transistor density per unit area to be as high as possible. This 

results in a chip with the same functionality occupying a smaller area, or a chip in the 

same area with more functionality. Since the costs for fabricating a semiconductor wafer 

are relatively fixed, then the cost of an integrated circuit (IC) is mainly related to the 

number of chips which can be packed on a wafer. Hence, smaller ICs allow more chips on 

a wafer, reducing the price per chip.  

In fact, the number of transistors per chip has been doubled every 2-3 years following the 

Moore’s law during last 3 decades as described in section 1.1. The transistor dimensions 

have been scaled down dramatically which keep pushing the semiconductor technology to 

new nodes. The scaling of the MOSFET dimensions into the Deep Sub-Micro (DSM) 

regime gives significant improvement in system performance, and will continue 

progressively in the future according to the International Technology Roadmap for 

Semiconductors (ITRS) [4].  Figure 1-2 shows an example which compares the physical 
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size of the old and modern electronic devices. In Figure 1-2, the larger device is an 

Osborne Executive portable computer from 1982 with a Zilog Z80 4MHz CPU; and the 

smaller one is an Apple iPhone 3GS with a 412MHz ARM11 CPU which released in 

2009. The new iPhone is almost 100 times lighter in weight and 500 times smaller in 

volume than the old Osborne Executive computer. On the other hand, it is also, at least, 

100 times faster and 10 times cheaper. Obviously, electronic systems definitely benefit 

from the device scaling. 

 

Figure 1-2 Size difference between old computers and modern ones. 

 

In general, there are 2 basic type of scaling: constant-field scaling and constant-voltage 

scaling. In constant-field scaling (also referred to full scaling), the internal electric field 

in devices are preserved when the physical dimensions such as gate length L, width W and 

oxide-thickness Tox scale down by a factor S. To maintain the constant field the voltage 

VGS, VDS and VT must also be scaled down. Furthermore, the substrate doping must also be 

scaled to maintain the internal electric field of devices. However, because of the external 

voltage-level constrains, the constant-field scaling is not practical. As a consequence 

constant-voltage scaling has been preferred. In constant-voltage scaling, all dimensions 

are reduced by a factor S, the power supply and terminal voltages remaining unchanged. 

Constant-voltage scaling can provide voltage compatibility with older circuit 

technologies but enhance the internal electric field, which can cause a lot of reliability 

problems. Based on the literature [5], the constant-voltage scaling increases the device 
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power density and drive current density by a factor of S3. Such a huge increase in power 

and current density may eventually lead to hot-carrier degradation, electro-migration, and 

oxide breakdown etc. Table 1-1 lists the scaling factors of the main MOSFET device 

parameters for constant-field scaling and constant-voltage scaling. Table 1-2 compares 

the effects of constant-field scaling and constant-voltage scaling upon key MOSFET 

device characteristics [5]. 

Table 1-1: Comparison of constant-field scaling and constant-voltage scaling of main device 

parameters[5]. 

Device Parameter Symbol Constant-Field 

Scaling 

Constant-Voltage 

Scaling 

Channel length L 1/S 1/S 

Channel width W 1/S 1/S 

Oxide thickness Tox 1/S 1/S 

Junction depth Xj 1/S 1/S 

Supply voltage Vdd 1/S 1 

Threshold voltage Vth 1/S 1 

Doping densities NA,ND S S2 

 

Table 1-2 Comparison of effect of constant-field scaling and constant-voltage scaling upon 

key MOSFET device characteristics[5]. 

Device Parameter Symbol 
Constant-Field 

Scaling 

Constant-Voltage 

Scaling 

Oxide capacitance Cox S S 

Drain current Id 1/S S 

Power dissipation P 1/S2 S 

Power density P/Area 1 S3 

 

 

1.3 Source of Variations 

A robust circuit design ensures that the estimated performance deviation is within the 

limits of an acceptable yield. However, the variability introduced during a process will 

lead to the fluctuations in the values of system behavioural parameters, such as delay and 
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power. The difficult part of performance prediction is that the fluctuation does not result 

from a single variation source. In order to study the impact of variation during the design 

process, the first step is to distinguish different variation phenomena.  Figure 1-3 

illustrates three types of variations introduced during the corresponding steps in the 

design of a system. 

 

Figure 1-3 Steps of the design process and their resulting variations [6]. 

 

1.3.1 Model Variation 

Modelling variation is mainly caused by the fact that the delay and power models, such as 

SPICE model, cannot perfectly capture the characteristics of the devices during the design 

analysis and optimization procedures. The inaccuracy of these models will result in a 

deviation between the predicted system performance and its expected performance in 

terms of delay and power dissipation. The aggressive models which lead to an under 

estimated prediction will cause yield loss. The conservative models which lead to an over 

estimated prediction will make it harder to meet design specifications, however, these 

models, typically, guarantee that the system performance is within a certain range of 

specifications.   

 

1.3.2 Process Variation 

Process variations result from a wide range of factors during fabrication such as threshold 

voltage adjustment implantation energy, High-k dielectric thickness, substrate doping etc. 

The fluctuation in the values of the uncontrollable fabrication parameters leads to the 

deviation of device parameters with respect to their expected value. These variations will 
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affect the device after fabrication no matter the operating conditions. With the 

semiconductor technology shrinking into the nanometer range, the resulting process 

variability due to fabrication parameters or statistical variations of a small number of 

dopants, becomes increasingly important [4, 7, 8]. Some performance-sensitive device 

parameters such as transistor effective length (Leff), width (W), oxide thickness (Tox) and 

threshold voltage (Vth) show a significant amount of variation in nanometer regions [4, 9, 

10]. The consequence of larger variations is that the device characteristics deviate 

strongly from its expected values. These effects will spread across the whole die and 

cause an undesirable spread of system performance affecting the parametric yield, which 

is defined as the percentage of dies that satisfy specific frequency and power constrains 

[8],  a significant yield-loss will increase the unit cost of the product.  

 

1.3.3 Environmental Variations 

The environmental variations comprise the variations in switching activity which is 

defined by the input vectors, the variation of supply voltage (Vdd) and the variation of the 

operating temperature (T). Integrated circuit designs require the devices to work within a 

specific temperature range, because the increase of temperature will degrade the system 

performance. The typical solution to this problem is to use a lower supply voltage. 

However, the reduced Vdd will not only decrease the device driving strength hence 

degrade the system performance again, but also enhance the variation effects of the 

environmental factors [9].  

The supply voltage is usually suffering a power drop off caused by the leakage current 

flow in devices even when the circuit is in the stand-by state; this effect could be 

neglected before nanometer technology. However, with the continuous shrinking of 

transistor dimensions and supply voltage, the fluctuation magnitude of leakage current is 

becoming larger. As a consequence, the variation of supply voltage becomes more 

significant with respect to circuit performance. At the same time, the operating 

temperature is also showing a large amount of variation since this factor is highly related 

to Vdd and leakage current. Interestingly, the leakage currents themselves also increase 

strongly with an increase in temperature, just as increasing leakage currents may result in 
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a higher temperature [11], which brings more uncertainty to the overall circuit 

performance. Unlike process variations, the environmental variations depend on the 

work-load of the processor and are hence time-dependent. Therefore these variation 

sources can only temporarily affect the system performance [12] and circuit failures occur 

only intermittently during its operational life time [9]. 

 

Figure 1-4 The propagation of the variation effects. 

 

As shown in Figure 1-4, the uncertainties of both the operating environments and the 

device physical parameters which are caused by the process variation, will lead to the 

fluctuation of the electrical parameters such as transistor saturation current, gate 

capacitance, threshold voltage, etc. Subsequently, the fluctuations of electrical parameters 

will result in the variation of the circuit performance in terms of delay, power and yield.  

 

1.3.4 Other Sources of Variation 

The categories described above cover the majority of the sources of variation, however, 

there are also other sources which introduce the uncertainty into circuits with time. 

Negative Bias Temperature Instability (NBTI) and the Hot Carrier Injection (HCI) 

phenomena are the key reliability issues for MOSFET transistors. Their effects will result 

in an increase in the transistor threshold voltage, which leads to the device performance 

degradation even failure [13, 14]. On the other hand, the interconnect also suffers a 

negative impact from the electromigration phenomenon. This effect will cause a reduction 

in the width of wires, thus increase its resistance, resulting in an open circuit in the worst 
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case [15]. These time dependent sources of variation are closely associated with the 

fabrication environment, and the effects will only become apparent in the field some time 

in the future. Therefore these effects are extremely difficult to model and analyze. 

Techniques such as burn-in can be used to test device reliability by accelerating their life 

time and detecting early-life failures. However, this kind of testing approach is very 

expensive and time consuming.  

1.4 Components of Process Variation 

For design analysis purposes, the components of process variation have to be studied first 

since they will influence the circuit performance differently. The general taxonomy of 

process variations is shown in Figure 1-5. 

 

Figure 1-5 Taxonomy of process variations [6]. 

 

1.4.1 Systematic and Non-Systematic Variations 

In general, sources of process variation can be classified into 2 groups based on whether 

they are deterministic or truly random, and are referred to as systematic and 

non-systematic variations respectively. 

1) The systematic variations follow a known behaviour with the system layout. This 

kind of variation can be introduced during a number of steps in the manufacturing 

process. These include optical lithography (Photolithography) which is used to 

selectively remove parts of a thin film or the bulk of a substrate, the chemical 
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mechanical polishing (CMP) which is used to planarize insulating oxides and metal 

lines, and the associated metal fill which is typically added to design data during chip 

finishing just before tape-out [16-18]. The systematic variations are layout-dependent 

and can be modelled pre-manufacturing using a full layout analysis, thus this kind of 

variation effect can be predicted at the later stage of design cycle [19, 20]. However, 

since the layout information and the models required for analysis of the systematic 

variations are normally unavailable to the designer at the beginning of design process, 

it commonly treats these variations statistically.  

2) The non-systematic variation is also known as random variation, which represent the 

true uncertain components of process variation. This kind of uncertainty cannot be 

predicted deterministically, and only the statistical characteristics are known at design 

time. Examples of  sources of non-systematic variation include the line edge 

roughness (LER) which describes the uniformity of a single line along a limited 

length [21], and the random dopant fluctuations (RDF) which is a form of process 

variation resulting from variation in the implanted impurity concentration [22]. 

Both systematic and non-systematic variations are commonly assumed as random 

quantities at the early stage of the design process. When the design process moves to the 

next stage, the detail layout information will be obtained. If design analysis capability 

allow, the systematic variation can be modeled deterministically, thus the overall 

variability of the design will be reduced. 

 

1.4.2 Inter-Die and Intra-Die Variations 

The non-systematic variations can be further classified into 2 categories based on how the 

sources of variation act on different spatial scales.  
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Figure 1-6 Process variability at different levels of manufacturing [23]. 

 

Some parameters shift when the equipment is loaded with a new wafer or between 

processing one lot of wafers to the next; on the other hand, some shift can occur between 

different dies in a wafer; finally the shift can also occur in between devices in a same die. 

Figure 1-6 shows the different spatial scales of variation as described above.  

 

1) Inter-die variations (also referred to as die-to-die or global variation) affect the device 

physical parameters on the same die in a same way, and they occur from lot-to-lot, 

wafer-to-wafer and die-to-die. All the transistors in a given circuit are influenced 

uniformly by the inter-die variations, e.g., the effective channel length (Leff) of all the 

transistors in a single die will shift in the same direction (increase or decrease) due to 

inter-die variations. Therefore it will not cause a mismatch between different 

transistors in a die. 

The sources of inter-die variations include the effective gate-length and oxide 

thickness variations due to the fluctuation in the time of exposure during fabrication. 

For design analysis purposes, it is usually assumed that each inter-die contribution is 

caused by different and independent sources [23, 24].  
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Inter-die variations have been a longstanding issue for several decades and the 

designers have made a lot of effort to try model this kind of uncertainty in order to 

make their circuits robust. The typical solution is to simulate the circuit not at one 

design point, but a small number of “corners” [24], which are chosen to encapsulate 

the behaviour of the design under worst-case conditions. This technique served the 

designer well in the past. However, since the semiconductor technology merged into 

the nanometer regions, the traditional corner-based analysis approach suffers from 

some major limitations, and the statistical technique becomes a potential solution for 

analyzing process variation effects. Details will be discussed in Chapter 2.  

2) Intra-die variations (also referred to as within-die or local variation) are the 

deviations occurring spatially within a die, which affect the different die in a different 

way. These variations may have a variety of sources depending on the physics of the 

manufacturing process [23-25], which were negligible before technology scaled 

down to the nanometer regime. Nowadays, since the nanometer technology has been 

widely used and transistor dimensions continue to shrink towards to the next node, 

the intra-die variations become significant and can no longer be ignored. (In some 

cases even larger than inter-die variations [26].) 

Intra-die variations are mainly caused by imperfections in the mask-making process 

and the interaction between the lithography process and the density of shapes in a 

given region of the layout [27]. These variations may cause the process parameters of 

devices in the same die to shift in different directions, e.g., Leff will increase for some 

transistors and decrease for the others [28]. Therefore, with the existence of intra-die 

variations, some part of the chip may speed up when other parts may slow down.  

Intra-die variations are design independent and in most cases related to equipment 

properties, wafer placement, processing temperatures etc. [29]. It is obvious that 

intra-die variations will result in a dimensionality problem for corner-based variation 

analysis since every transistor in a die requires extra corners. Since it is 

computationally very expensive to generate all the possible corners with such a huge 

increase of dimensionality, the traditional statistical analysis methodology using the 

Monte Carlo method becomes impractical when the intra-die variations are 



~ 12 ~ 

significant. Furthermore, the deterministic approaches fail to capture the effect of 

intra-die variations completely [9].  

 

1.4.3 Spatially Correlated and Independent Variations 

Intra-die variations can be further categorized into two groups based on whether they are 

spatially correlated or not. 

1) Spatially correlated variation is when the process parameter deviation changes 

gradually from one location in a die to the next which may be caused by many 

underlying fabrication process steps. Therefore, these variations tend to affect the 

spatially adjacent devices in a similar manner, thus the they have more similar 

characteristics than those which are placed far apart [6]. 

2) Independent variations (also referred to as random variations) are the intra-die 

variation component of a device which is statistically independent from all others. 

They occur due to the inherent unpredictable phenomena in the semiconductor 

fabrication process such as random dopant fluctuations (RDF) [30, 31]. A run-time 

variation such as the supply voltage and operating temperature can also be treated as 

random components. Independent variations are hard to characterize and will cause a 

significant mismatch of transistors in a die.  

 

1.5 The Impact of Process Variation 

In this section, a brief survey of the impact of process variations on performance 

parameters will be discussed. Figure 1-7 shows the relationship between processing and 

device parameters and their effect on circuit and system performance. The uncertainties 

introduced during semiconductor fabrication as well as the operating environmental noise 

will be propagated all the way to the performance of system, thus affecting the product 

yield and cost. The scaling of CMOS devices to ultra deep sub-micron (DSM) regime will 

aggravate the issue of variability, which has already become a major concern in 

evaluating the reliability of circuits [4, 5, 23, 32]. 
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Figure 1-7 Relationship between process and device parameters and circuit and system 

performance. 
 

There are a huge number of physical device parameters which can vary, it is essential to 

establish the components of variation that dominate each of the device and interconnect 

parameters. According to the literature [33, 34], the effective gate-length (Leff) variation is 

probably the most critical device variation. The inter-die variation in gate-length is caused 

by the fluctuation in the duration of exposure and the intra-die variation in gate-length 

results from lens aberration and other lithographic effects. Both of these are significant in 

nanometer technology. On the other hand, device parameters such as zero-biased 

threshold voltage (Vth0), gate-oxide thickness (Tox) etc, are also significant as MOSFETs 

are very sensitive to them. All these variations in the physical device parameters have a 

direct impact on the device current characteristics and threshold voltage, and 

subsequently the circuit characteristics such as delay and power. Figure 1-8 shows the 

trends in the magnitude of process variation based on the International Technology 

Roadmap for Semiconductors (ITRS) [35]. Virtually all technology parameters such as 

transistor length (Leff), width (Weff) and oxide thickness (Tox), along with the interconnect 

parameters such as wire width (W), wire height (H) and resistivity (ρ) show an increasing 

variability over the semiconductor technology roadmap (as measured by the ratio of 

standard deviation over the mean value). 
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Figure 1-8 Variability trends in key process parameter with scaling process technology[35]. 

 

Although each of these parameters is important on its own, the resulting impact on the 

threshold voltage is what counts most from a digital circuit design perspective. As shown 

in Table 1-3, the threshold voltage variability is rising from 4% to 16% while evolving 

from 250nm to 45nm CMOS technologies. One may assume that this variation primarily 

results from the increasing deviations in channel length as VTH is quite sensitive to 

variations in L. The resulting impact on both performance and power metrics is quite 

substantial [36]. 

 

L (nm) 250 180 130 90 65 45 

VTH (mV) 450 400 330 300 280 200 

σ(VTH) (mV) 21 23 27 28 30 32 

σ(VTH)/VTH 4.7% 5.8% 8.2% 9.3% 10.7% 16% 

Table 1-3 Variation impact on device threshold voltage with scaling process technology[35].  

 

Figure 1-9 shows the normalized distribution of the clock frequency and the leakage 

current of Intel microprocessors on a single wafer [37]. It can be seen that the variations 

in device parameters have resulted in more than a 30% frequency spread and 20x 
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variation in the total leakage current of the chip. The highest operating frequency chips 

with a large leakage current and those low frequency chips with a reasonably high 

leakage current will have to be discarded, affecting the overall yield and cost. 

 

Figure 1-9 Frequency and leakage variation [37]. 

 

1.6 Motivation and Research Goals 

In this chapter, an overview of process variation in semiconductor manufacturing has 

been given. The different sources of variations such as physical parameter variation, 

environmental parameter variation, model variation have been outlined. Furthermore the 

catalogue of different components of process variations such as inter-die and intra-die 

variations has also been outlined, followed by the introduction to the impact of these 

variations and how they propagate through the different levels of abstraction.  

Process variations during manufacture will cause fluctuations in the values of the physical 

parameters of transistors, which is the main reason for the uncertainty in circuit delay and 

power dissipation. The circuit delay variation is widely recognized as the major limit to 

the system speed growth in today’s nanometre technologies. On the other hand, the 

leakage power has become a significant contributor of the total circuit power 

consumption because of the continuous shrinking of transistor dimensions and the 

demand for lower power supply voltages. According to International Technology 

Roadmap for Semiconductors (ITRS), leakage power is expected to increase to 50% of 
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the total chip power consumption and to dominate the switching power of a circuit over 

the next few technology generations. The variation of the circuit delay and leakage power 

consumption will significantly affect the system performance and yield. Hence there is a 

need to model and analyze process variation effects early in the design cycle, then 

modifications can be made to ameliorate these effects. With this objective in mind, the 

main goals and contributions of this thesis are outlined as below: 

 Provide a statistical methodology to model the process variation effects at a 

high level of design abstraction (architectural level) in terms of propagation 

delay time and leakage power dissipation.  

 Implement a process variability aware cell library which not only contains basic 

gate cells, but also more complicated functional blocks such as registers, ALUs 

and FIFOs in MatLab Simulink.  

 Demonstrate the use of the cell library to study process variations effect for 90 

nm technology on circuit delay and leakage power.  

 Undertake a full timing and leakage power analysis for a 2-stage pipeline circuit 

using the proposed cell library, traditional statistical analysis approach and 

Monte Carlo simulations. 

 Validate the proposed methodology through Monte Carlo simulation. 

 Demonstrate the computational efficiency of the cell library compared to 

traditional statistical timing/power analysis and Monte Carlo technique.  

It is considered that the above contributions advance the state of the art technique to 

analyse the effects of process variations at higher levels of abstraction. 

 

1.7 Thesis Organization 

The subsequent chapters in this thesis are organised as follows:  

In Chapter 2, an overview of the analysis techniques for the effects of process variation 

will be outlined. The traditional worst case and Monte Carlo analysis approaches, as well 

as their variants, will be introduce first. The corresponding limitations of these techniques 

will also be discussed. Subsequently the statistical analysis methodologies will be 
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described. The work of this thesis is based on device-to-circuit variation analysis and 

extends it to an architectural level, which estimates the circuit performance parameter 

distributions, such as delay and leakage power, due to the device parameter variations. 

However, the general approaches for the process-to-device variation analysis, which 

abstracts the variation effects during the fabrication process on the device parameters will 

also be briefly introduced in this chapter. The advantages and disadvantages of each 

analysis technique for process variation effects will be discussed.  

In Chapter 3, the details of how to characterize the delay models for the standard cells, 

such as logic gates, will be outlined. The statistical delay model and analysis techniques 

will be employed. The statistical timing analysis approaches can be divided into two types: 

block-based and path-based techniques. The reason for using the block-based statistical 

timing analysis over the path-based approaches will be discussed first. Secondly, the 

commonly-used statistical delay models will be described and compared; thereafter 

details of the corresponding timing analysis methodologies using these delay models will 

be discussed. Subsequently, the effects of circuit operation conditions, such as input 

signal slope and output load capacitance, on cell delay distributions will be discussed and 

the corresponding cell characterization algorithm will be presented.  

In Chapter 4, the leakage power characterization for the standard cells will be outlined. 

First, the leakage current mechanisms, which cause the unwanted leakage power 

dissipation when the device at a off or stand-by state, will be introduced. Followed by a 

comparison between the analytical and statistical leakage power models and the 

discussion on why the latter technique is employed. Subsequently, the statistical power 

analysis methodologies will be described. Several popular analysis techniques will be 

discussed and compared. The cell leakage power characterization algorithm will be 

presented at the end of this chapter.  

In Chapter 5, the implementation of a statistical cell library comprising a variety of 

functional blocks will be outlined first. Any desired circuit can be constructed using the 

cell library and the process variation effects on its delay and leakage power performance 

can be analyzed accurately and efficiently. The methodology to characterize the higher 

level circuit blocks using the existing standard cells, which were introduced in Chapters 3 

and 4, will be described first. The cell library implementation environment and simulation 
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process flow will subsequently be described. Thereafter, a demonstration of using the cell 

library to analyze the process variation effects on the delay and leakage power 

performance of an example pipeline circuit will be outlined. The experimental results and 

the corresponding discussion will be shown in the end of this chapter.  

Finally, Chapter 6 concludes the thesis with a summary of the results and possible 

directions for future work in this area.  
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CHAPTER 2  

 

VARIABILITY MODELING AND ANALYSIS 

 

 

2.1 Introduction 

As outlined in Chapter 1, the variations which occur in the semiconductor manufacturing 

process of an IC can have a significant effect on its performance. Consequently it is 

essential to establish what the potential impact of the variations will be and so determine 

of the circuits will meet the specification requirements before the circuits are 

manufactured and tested. If the prediction indicates that the design specifications will not 

be satisfied it may be necessary to redesign parts of the circuit use of process with tighter 

tolerances or relax specifications.  

With the increase in complexity of not only the manufacturing process but also the circuit 

designs it is essential to develop tools and techniques which enable the potential effects of 

process variations to be propagated and efficiently analysed throughout the design 

hierarchy. In this chapter process variability modelling and analysis techniques will be 

outlined and discussed. First of all, in section 2.2 the traditional deterministic 

variability-aware analysis methodologies, such as worst case and corner analysis, will be 

introduced; followed by a review and comparison of the Monte Carlo sampling technique 

and its variant approaches in section 2.3. Subsequently, several statistical techniques 

which have played a significant role in analyzing process variation effects will be 

described in sections 2.4 and 2.5, including sensitivity analysis, design of experiment 

(DoE) and response surface modelling (RSM). Section 2.6 outlines the process-to-device 

variability modelling flow based on DoE and RSM; the rest of the chapter will focus on 

process-to-device variability modelling methodologies such as statistical static timing and 

power analysis.  A brief introduction to the SPICE circuit level simulator and compact 

models, which are the essential tools in analyzing process variation effects in higher 

levels of abstraction. The chapter ends with some concluding comments. 
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2.2 Worst Case and Corner Analysis  

It is well known that the inherent fluctuations during the integrated circuit (IC) 

manufacturing process results in the variation of the electrical performance of ICs. In 

order to make sure the circuits will behave within the design specification, it is necessary 

to evaluate their potential performance before fabrication. However this task is 

prohibitively costly in reality. The traditional solution to predict the performance of an 

integrated circuit is to model the process variation effects under extreme or worst case 

conditions which are called corners, and assuming that the IC which functions and 

performs satisfactorily at these extreme cases should perform properly at normal or 

nominal conditions [1-3]. The process of determining these worst-case conditions, and the 

corresponding worst-case performance, is called worst case analysis (WCA) [2]. 

Typically there are 4 corners for MOS transistors, FF, FS, SF and SS; “F” standing for 

fast indicating the best case and “S” for slow representing the worst case. Usually the first 

letter of the corner is associated with N-type transistors and the second letter is for P-type 

transistors. For example, “FS” means the all the N-type devices in the circuit are working 

at the best condition and all the P-type devices are working at the worst conditions. 

 
Figure 2-1 Worst case device model 

parameter. 

Figure 2-2 All possible corners of a 

transistor. 

 

As shown in Figure 2-1, 5 different bins are defined by the 2-letter acronyms describing 

the relative performance characteristics of N- and P-type devices generated in accordance 

with the maximum and minimum values of the saturation currents and threshold voltages 

of the transistor [4]. When taking the correlation among process parameters into account, 
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it is necessary to consider all the possible corners during circuit analysis since it is 

difficult to say which corner is the best or worst case in circuit operation. Figure 2-2 

shows a 3-dimensional view of all the possible 8 corners of a device when 3 variation 

sources, Vth, Tox and △L are considered.  

However, the traditional corner based WCA can no longer satisfy the demand of 

analyzing IC performance under process variations since it has several limitations. First 

of all, since the impact of process variations has grown, the number of the critical 

variation sources such as process parameters which influence the circuit behaviour has 

significantly increased; furthermore, the environmental variational factors such as circuit 

operating temperature and supply voltages have also become large contributors to the 

uncertainty of system performance. Therefore the total number of parameters used in 

WCA is large. According to [5], there are, at present, approximately 5 to 10 process 

parameters under variation for each type of transistor. Consequently, too many corners 

need to be handled when applying WCA to evaluate the circuit performance. Furthermore, 

the number of corners grows exponentially with the increase in the number of process 

parameters considered, making the corner-based WCA very computationally expensive in 

verifying present day nanometre technology circuits.  

Secondly, WCA assumes that all the devices in a circuit work at the best and worst 

conditions at the same time. However, this case is extremely rare in circuit operation. 

Consequently the result of a WCA has a significant tendency to over or underestimate the 

impact of process variations on the design. Underestimation may lead to 

manufacturability problems and eventual loss in yield. On the contrary, overestimation 

makes it harder for circuits to meet their design specification leading to an increased 

design effort.  

Finally, WCA is limited in its ability to provide designers with quantitative information 

about the robustness and sensitivities of their designs [6-9]. Furthermore, the corner 

analysis method cannot easily handle intra-die variations. All these critical limitations 

have resulted in significant interest in statistical modelling techniques that can be used to 

enable statistical analysis and performance optimization to be performed. These 

techniques will be discussed in the following sections. 
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2.3 Monte Carlo Techniques 

Monte Carlo (MC) methods are a class of statistical computation algorithms that rely on 

repeated random sampling to compute their results. The MC method is especially useful 

for simulating systems with many coupled degrees of freedom, which make it the most 

straight forward approach [10] for characterizing random process variations, and hence 

finds extensive application in areas such as yield estimation. For a given function y=f(x), 

where x is the variation source and y is the performance factor, the distribution of y due to 

the variation in x can readily be computed using MC analysis. 

When performing an MC analysis, it is assumed that values of x can vary within the 

interval [xL, xU] where xL and xU are the lower and upper bounds respectively. MC 

sampling selects a random value of x that lies in the interval. The outputs are computed 

for each set of input samples over hundreds or thousands of trials and the distribution for 

y is generated. The MC sampling approach can be readily extended to an n-dimensional 

design space [xL, xU]n in which the sample site is an ordered n-tuple. Figure 2-3 shows 

MC samples in a two-dimensional design space for the interval [0, 1]2. 

 

Figure 2-3 An example of Monte Carlo sampling in a two-dimensional design space for 

variables x1 and x2 . 

 

Obviously, the accuracy of the MC analysis is highly dependent on the number of 

sampling trials. If the sample space is large enough, it can almost cover all possible 

combination cases of variable values and gives a highly accurate result. However, the 
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simplicity and accuracy of the MC technique is compromised by its expensive 

computational cost. Hence the computational inefficiency of MC analysis may be 

acceptable for small but not for larger circuits.  

Due to the random and independent nature of the sample sites produced by a random 

number generator, sometimes a set of MC samples can often leave large regions of the 

design space unexplored. In order to address this drawback and improve the 

computational efficiency of the MC technique, several modern MC variant methods have 

been developed, some of which are described in the following subsections.  

 

2.3.1 Stratified Monte Carlo Sampling  

The stratified Monte Carlo sampling method was developed in an effort to provide a more 

uniform sampling of the design space as compared to the basic MC sampling approach 

[11, 12]. In the stratified MC approach, each of the n intervals of the design space [xL, 

xU]n has been divided into subintervals or “bins” of equal probability. All the design 

variables are uniformly distributed and all the bins are of equal size. After defining all the 

bins, a sample site then is randomly selected within each bin.  

 

Figure 2-4 Stratified MC sampling with bin sizes having uniform probability and a sample 

placed randomly in each bin. 
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An example of using stratified MC technique is shown in Figure 2-4, where there are 2 

uniformly distributed variables x1 and x2. The interval along each of the variables has 

been subdivided into 3 bins with equal size. Therefore, there are 9 bins in the interval [0, 

1]2. The advantage of this method is that it provides a better overall coverage of the 

design space compared with the basic MC analysis. Additionally it also gives flexibility 

in choosing the number of subintervals along each variable, which controls the number of 

bins in the design space. This allows the user to adjust their sampling strategy matching 

the available computational budget.  

 

2.3.2 Latin Hypercube Sampling 

Latin hypercube sampling (LHS) is a popular sampling strategy and another option to the 

MC sampling method which was first described by McKay [12] in 1979. In the context of 

statistical sampling, a square grid containing sample positions is a Latin square if (and 

only if) there is only one sample in each row and column. A Latin hypercube is the 

generalisation of this concept to an arbitrary number of dimensions, whereby each sample 

is the only one in each of the axis-aligned hyperplanes containing it.  

 

Figure 2-5 Latin Hypercube Sampling with four bins for each of the variable x1 and x2 . 
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In LHS, when sampling a function of n variables, the range of each variable has been 

divided into m equal intervals. Random samples are then selected in the design space to 

satisfy the requirements of the Latin hypercube, which means that the number of divisions, 

m, is the same for each variable. Figure 2-5 demonstrates the LHS method applied to a 

two-dimensional design space for variables x1 and x2, which are all uniformly distributed 

in the interval [0, 1]. As shown in the figure, m is equal to 4, which means there are 4 

partitions in x1 and x2, giving a total of 16 bins. When applying LHS to this design space, 

the 4 samples are randomly selected with the following two conditions: 

(1) Each sample is randomly placed inside a bin 

(2) For all one-dimensional projections of the m samples and bins, there will 

be one and only one sample in each bin. 

LHS allows the users to decide on the number of samples to match the available 

computational budget. The number of sample points, m, must be determined before 

sampling. On the other hand, LHS does not require more samples for more dimensions 

(variables). This independent characteristic is one of the main advantages of LHS. An 

LHS design can be built with any number of samples and not restricted to sample size that 

are specific multiples or powers of n. This computational efficiency makes LHS usable 

for many input variables [11]. 

The drawback to LHS is that there is more than one possible way to place samples in the 

bins in the design space to satisfy the conditions of becoming a Latin hypercube. For 

example, the 4 samples in Figure 2-5 can be placed in the 4 bins along either of the 2 

diagonals, which leads to a nearly co-linear sample site (not random sampling anymore). 

In statistical jargon, this is known as highly spatial correlation. Consequently, the 

resulting distribution of LHS may not reflect the real characteristics of the performance 

parameters. 

 

2.3.3 Quasi-Monte Carlo Sampling  

The Quasi-Monte Carlo (QMS) sampling technique has recently become popular within 

the area of modelling variability in nanoscaled integrated circuits. In numerical analysis, 
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the QMS approach is a method for numerical integration that is based on low discrepancy 

sequences (also called quasi-random or sub-random sequence). This is in contrast to the 

regular MC methods, which are based on sequences of pseudorandom numbers. The 

prefix “Quasi” refers to a sampling approach to generate sample sites in an n-dimensional 

space. Consequently, the selected points placed in the sampling space are as close as 

possible to a uniform sampling [11]. Figure 2-6 shows an example which compares the 

normal MC and QMC sampling in a two dimensional sampling space in the interval [0, 

1]2. 

Normal Monte Carlo 

 

Quasi-Monte Carlo 

 

Figure 2-6 100 points from normal MC and Quasi-MC sampling. 

 

Although a number of MC approaches or their variants (as described in this section) have 

been applied to analyzing the impact of process variability on circuit performance, this 

class of numerical analysis is still computationally very expensive regards to the massive 

size of nanoscaled integrated circuit and the increasing number of variation sources.  In 

order to maintain a good coverage of such a large multi-dimensional design space, a huge 

number of sampling trails is required which could take hours, days or even weeks to run 

on a very large scaled integrated circuit. New statistical analysis techniques are 

desperately needed in the area of evaluating large electronic system performance. 

Typically the MC method plays a role as the reference for other process variation analysis 

techniques for validation purposes, and some of these methods are described in 

subsequent sections. 
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2.4 Sensitivity Analysis 

Sensitivity analysis (SA) is simply the study of how the uncertainty in the output of a 

model can be apportioned to different sources of uncertainty in the model inputs [13]. 

Generally speaking, the SA technique investigates the robustness of a study when the 

study includes some form of statistical modelling. Therefore, SA can be very useful in 

evaluating the uncertainty of circuit performance from multiple process variation sources 

in a statistical manner.  

For a given variation source x and a performance parameter y, the variability of x has 

been transmitted or propagated to y by an analytical function f, where y=f(x). For any 

change in the input parameter x, there will be a corresponding variation in the output 

parameter y as shown in Equation 2.1.  

   △       △    (2.1) 

Assuming x and y are linearly associated, then the sensitivity of x with respect to y is the 

1st order derivative of the function f(x), and the standard deviation of x will be propagated 

to y as shown in Equation 2.2. △x and △y are the standard deviations of the parameters 

x and y. Equations 2.3 shows the variance propagation from x to y in the same manner.  

△      
  

  
 △   (2.2) 

  
     

  

  
 
 

  
  (2.3) 

The numerical method used to compute the 1st derivative of the response function in 

sensitivity analysis is the finite difference technique. The finite difference approach is a 

mathematical method for approximating the solutions to differential equations using finite 

difference equations to approximate derivatives. For a given linear expression of the form 

y=f(x), if the interested interval of x is [-△x, △x] then the derivatives of f(x) in this 

interval can be obtained by taking the difference quotient of the 2 sampled values of y at 
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x=-△x and x=△x. The mathematical expression of this algorithm is shown in Equation 

2.4, assuming y=f(x),  

  

  
 
     

  
 
    △        △   

 △  
 (2.4) 

The sensitivity analysis can be extended to model non-linear or multiple-order effects 

between the input and output parameters. However, it will lose its computational 

superiority due to the increase in complexity in solving the necessary high order 

differential equations. Additionally, the number of required samples for the numerical 

solution of an SA grows exponentially with the increase in the order of the response 

function f(x), which will further lead to an unacceptable computational cost. Therefore, 

the sensitivity-based approaches are always preferred to solve low-order relationships of 

parameters for most applications.  

 

2.5 Design of Experiments and Response Surface Modelling 

Design of Experiment (DoE) technique and Response Surface Methodology (RSM) 

[14-16] are well-established branches of statistics and have been successfully adopted 

since the 1920s in many manufacturing fields [14, 15]. In these techniques, a systematic 

method for experiment planning is used to conduct the experiments in an efficient way 

and enable designers to construct empirical models from which the output responses can 

be determined as a function of the input factors or parameters. 

 

2.5.1 Design of Experiments (DoE) 

DoE is widely used in multidisciplinary design for quality and product enhancement [14, 

17], which is a procedure for choosing a set of samples in the design space, with the 

general goal of maximizing the amount of information gained from a limited number of 

samples. Statistical DoE helps to build approximations or models which yield an insight 

into the functional relationship between the input parameters and the performance 

responses of interest. The greatest advantage of DoE over MC approaches is its 
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computational efficiency. DoE only requires a handful of experiments or simulation runs 

to investigate the effects of variability, which is easier and hence more feasible to 

generate a model for performance prediction.  A designed experiment is normally 

described by a matrix “X”, in which the rows indicate experiment runs or simulation runs, 

and the columns represent the particular settings of the factors or parameters for each run. 

Typically, each input parameter for the experiment is represented by two levels, high (+1) 

and low (-1). Figure 2-7 shows an example in a design view of a 2-level DoE for 3 input 

parameters (x, y, z) with the design matrix which is shown in Table 4. 

 

Figure 2-7 Two-level full factorial design for three factors (2
3
) [18]. 

 

Table 4 Design matrix for 2
3
 factorial design. 

Run 
Parameter 

Labels 
X Y Z 

1 -1 -1 -1 -(xyz) 

2 1 -1 -1 x 

3 -1 1 -1 y 

4 1 1 -1 xy 

5 -1 -1 1 z 

6 1 -1 1 xz 

7 -1 1 1 yz 

8 1 1 1 xyz 
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2.5.2 Response Surface Methodology (RSM) 

In statistics, response surface methodology (RSM) explores the relationship between 

several independent variables and one or more response variables [14]. The method was 

introduced by G. E. P. Box and K. B. Wilson in 1951. For the response of interest, y and 

the vector of independent variables x included in the experimental design, influencing y, 

the relationship between x and y is described by Equation 2.5.  

             (2.5) 

where ε represents the random error which is assumed to be normally distributed with a 

zero mean and unity standard deviation. The response surface function f(x) is 

approximated or predicted by a function   =g(x), where    is the approximation of y. 

Typically g(x) is expressed by a low-order polynomial. The 1st and 2nd order RSM forms 

are shown in Equation 2.6 and 2.7 respectively. 

                

 

   

 (2.6) 

                        
           

 

   

 

   

 

   

 

   

 (2.7) 

where, k is the number of independent input variables, xi is the ith input variable, and β is 

the RSM coefficient which is calculated using least squares regression analysis to fit the 

response approximation   . 

The basic RSM approach is started from a set of designed experiments. An appropriate 

DoE technique is selected and applied to the input variables. Figure 2-8 (a) shows a DoE 

example with 25 sampling points of an arbitrary response function z=f(x,y), where x and y 

are the input variables and z is the response parameter. 
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(a)  Designed experiments for z=f(x,y)

 

 

(b)  2
nd

-order Response surface for z

 

 

Figure 2-8 DoE and RSM in variability analysis. 

 

After obtaining the experimental results, it is sufficient to determine which independent 

variables have an impact on the response variable(s) of interest. Consequently, a 

parameter screening step is usually required to identifying the most significant process 

parameters which will produce the greatest fluctuation in device electrical performance. 

Statistical techniques such as Pareto analysis can be used for parameter screening 

purposes, which compares the relative magnitude of the influence of all the main input 

parameters on the output responses, and arranges them in order of the decreasing absolute 

value of the effect. Once it is recognised that only significant variables are left, an 

appropriate RSM technique can be applied to model the relationship between input 

variables and response parameter(s) using low-order polynomials. Figure 2-8 (b) shows 

the 2nd order RSM based on the DoE sampling points in Figure 2-8 (a). 

 

2.6 Process-to-Device variability modelling 

The statistical variation analysis approaches used from process variability to device 

performance are commonly based on the Design of Experiment (DoE) techniques and 

Response Surface Methodology (RSM).  In these techniques, a systematic method for 

experiment planning is used to conduct the experiments in an efficient way and enable 

designers to construct empirical models from which the output responses can be 

determined as a function of the input factors or parameters. Based on this concept, the 
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uncertainty introduced by a variety of variation sources during the manufacturing process, 

such as the ion implantation energy and substrate doping concentration, can be modelled 

as variations in the physical device parameters such as the gate channel length and 

threshold voltage. These variables then can be subsequently used in further circuit-level 

analysis to evaluate system performance parameters such as delay, power and yield.  

 

2.6.1 The role of Technology CAD (TCAD) 

Technology CAD (or Technology Computer Aided Design, or TCAD) is a branch of 

electronic design automation (EDA) that models semiconductor fabrication and 

semiconductor device operation. They are commonly used to assess the performance and 

the yield of an IC which is the key to the success of the IC manufacturing industry in 

terms of cost and time [19].  The TCAD tools are used to model the process steps, such 

as diffusion and ion implantation, and modelling the electrical behaviour of the devices 

based on the fundamental physics, such as the threshold voltage and physical dimension 

of the devices. TCAD may also include the creation of compact models, such as the well 

known SPICE transistor model, which captures the electrical behaviour of devices. The 

details of compact modeling will be discussed in Section 2.6.2. 

TCAD tools are the essential environment for applying DoE and RSM to model process 

variability, which plays a significant role in Design for Manufacturing (DFM), especially 

after the semiconductor technology scaled down into the nanometer regime. It helps the 

equipment, process and circuit designer to predict the possible complications arising 

during the process development phase. TCAD tools contain a variety of models for device 

design (process models), which simulate the manufacturing steps and provide a 

microscopic description of device “geometry” to the device simulator. The term 

“geometry” means not only the device dimensions, such as the length and width of the 

transistor gate-channel, or whether the gate is planar, but also details inside the device 

structure, such as doping profiles after manufacturing.  Figure 2-9 shows the output from 

a semiconductor process simulation for a MOSFET based on the process models used in 

the TCAD tools. The input to the simulator is a description of the semiconductor 
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fabrication process and the result is the final geometry and the doping profile of the 

device.  

 

Figure 2-9 An example result from semiconductor process simulation using TCAD [20]. 

 

The use of TCAD tools starts from the physical description of integrated circuit devices, 

considering both physical configuration and related device performance, and then 

building the links between the broad range of physical and electrical behavioral models 

that support circuit design [20]. Physics-based modelling is an essential part of the IC 

process development which seeks to quantify an underlying understanding of the 

technology and abstract that knowledge to the device level design, such as the extraction 

of the key parameters that support statistical circuit performance analysis. The key 

advantage of TCAD is that the defined variations can simply be inserted into a computer 

simulation run to analyze their impact on performance. Comparatively, the experimental 

study of the impact of such variation is very expensive and difficult in reality.  

 

2.6.2 Compact Model 

The compact transistor model parameters are the output parameters from the process 

models used in the TCAD based process simulations. These models can be used by 

analogue circuit simulators such as SPICE to predict the electrical behaviour of a circuit 

being designed. The compact models include device physical parameters such as gate 

length and width, DC current-voltage characteristics, parasitic device capacitances, 

resistance and inductance, temperature effects and so on. Such models have allowed 
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engineers to create advanced designs with first-pass success, without the need for 

multiple prototypes and design iterations.  

The compact models for devices continuously evolve to keep up with changes in 

semiconductor technology. In order to standardize the model parameters used in different 

simulators an industry working group, called Compact Model Council (CMC) [21], was 

formed to maintain and promote the use of standard models. One of the famous set of 

compact models supported by CMC is BSIM (Berkeley Short-channel IGFET Model) 

series models, which have served the industry for more than 20 years. It was developed 

by the BSIM research group in the Department of Electrical Engineering and Computer 

Sciences (EECS) at the University of California, Berkeley [22-24]. BSIM3 and BSIM4 

industry standard models have been widely used for the simulation of planar bulk 

MOSFETs. As semiconductor technology dramatically scaled, new BSIM compact 

models have also been developed such as BSIMSOI which used to capture the electrical 

characteristics of partially-depleted, fully-depleted and dynamically-depleted SOI 

devices. 

 

2.6.3 TCAD-based statistical variability modelling approach 

The general statistical approach based on TCAD and statistical techniques, DoE and RSM, 

to model the impact of process variation effects on device performance is presented in 

this section. The general methodology for studying variability is shown in Figure 2-10 

and involves three main steps: parameter screening, model building and model analysis. 

The methodology begins with the calibration of the TCAD process and device electrical 

characteristics with the experimental data, and the extraction of the compact model 

parameters, such as gate channel length L and zero-biased threshold voltage Vth0, for 

given devices. This is followed by the identification of the uncontrollable process 

parameters which have the greatest impact on the output response being analysed, these 

parameters will subsequently be included in the compact model of the device. 

In order to investigate the effects of process variation on a given device response, an RS 

model has to be created. In the RSM step, the simulation experiments are designed to 

thoroughly investigate and model the output responses in terms of the initially identified 



~ 38 ~ 

process parameters, or the most significant process parameters obtained from screening. 

Due to the fact that performing RSM analysis for a large input space requires a very large 

number of experimental runs (in the order of (2n+2n+1), where n is the number of 

parameters [14], it becomes computationally inefficient. In other words, screening 

analysis is adopted to overcome the deficiency of the RSM techniques by reducing the 

dimensionality of the input space. Therefore, RSM is preceded by the screening step, 

wherein the relatively insignificant input parameters are eliminated, since not all the input 

variables are influential with regard to the output response to the same degree. 

 

Figure 2-10 Flow chart of variability analysis utilising DoE and RSM statistical 

techniques[18]. 
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Finally, the RS model validity is assessed in terms of statistical residual analysis [14] 

such as  ‘goodness’ of fit, which describes how well the models fit a set of observations. 

Measures of goodness of fit typically summarize the discrepancy between observed value 

and the values expected under the model in question. In the validation of the RSM model 

for process variability, the 2nd order fit such as such as R2 (R-square) [14, 15] is used, 

where R2 is a statistical measure between 0 to 1, which indicates how close the regression 

line is to the actual data points. If the value of R2 for the RSM model is 1, which indicates 

a perfect estimation of the output response with no errors, the response surface plots can 

be generated to visualise and study the behaviour of device responses under various 

process variations. 

In this section, a general methodology for modelling process variability from 

manufacturing process steps to device level parameters has been outlined. The statistical 

techniques of DoE and RSM are employed in a TCAD based simulation environment. 

The process variation effects can be visualised from the resulting response surface plots, 

and propagated to the device level in terms of the variation in the compact model 

parameters such as Vth0. However, present day IC designs contain a large number of 

transistors, it is not sufficient to analyze the impact of process variability at such a low 

level. The uncertainty of circuit performance parameters such as propagation delay time 

and leakage power dissipation must be evaluated at the early stage of the design cycle in 

order to prevent the possibility of significant yield loss. During the last decade, a lot of 

effort into statistical methodologies has been made in order to cope with the 

device-to-circuit variability analysis. The distributions of circuit performance parameters 

such as propagation delay and leakage power dissipation have been generated using 

statistical static timing and power analysis approaches respectively. The following 

sections of this chapter will give a brief introduction to these statistical techniques which 

tend to model the effects of process variation at a circuit level.  

 

2.7 The role of SPICE in process variability analysis 

Before introducing the device to circuit analysis approaches, variability-aware simulation 

tools will be discussed in this section. Most of the statistical analysis techniques for 
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analyzing process variation effect from device level to circuit level are based on SPICE 

(Simulation Program with Integrated Circuit Emphasis)[25, 26]. SPICE is a 

general-purpose, open source analogue electronic circuit simulator developed at the 

Electronics Research Laboratory of the University of California, Berkeley by Laurence 

Nagel and Prof. Donald Pederson. It is a popular and powerful program which is widely 

used in integrated circuit design to determine the integrity of circuit design and to predict 

circuit behaviour.  

With the scaling of technology down into nanometre dimensions and the increase in IC 

complexity, it is not practical to breadboard integrated circuits before manufacture. 

However, it is essential to ensure that the circuit design meets its specifications first time, 

as the cost of a “re-spin” is high not only in terms of the overall manufacturing costs but 

also lost revenues due to the delay in the product entering the market place. It should be 

noted, however, that with present day circuit complexities SPICE simulations of a 

complete design is impractical. Consequently its use is limited sub-circuits comprising 

several tens of transistors. When considering a complete design higher levels of 

simulations are invoked at either gate, Register Transfer Level (RTL) or VHDL. 

SPICE, or its variants, has almost been universally accepted as a circuit analysis tool due 

to its versatility. It is not only capable of running DC, AC, transient, noise and sensitivity 

analysis in a same program, but also can adopt built-in models for diodes, bipolar 

transistors, JFETs and MOSFETs, including the BSIM compact models. Additionally, 

SPICE also provides capability to perform a worst-case sweep, Monte Carlo sweep, and 

automatic measurement etc., which makes it very useful and efficient in analyzing 

process variation effects. With the above features, difficult problems can be simulated and 

solved more quickly and with fewer manual errors.  
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Figure 2-11 SPICE environment for integrated circuit designers. 

 

Figure 2-11 shows the typical integrated circuit designer’s environment using the SPICE 

simulator. In order to run a single process - single circuit simulation, first of all, the 

transistor technology of the circuit needs to be selected by loading, for example, the 

BSIM compact models. Secondly, the circuit netlist has to be generated. Circuit macro 

definitions can be used in SPICE to build up the system in a hierarchical order. 

Subsequently, the circuit initialisation conditions need to be defined, including circuit 

temperature, load conditions and input stimulus. Finally, the simulation and measurement 

options need to be setup in order to decide the simulation type, case and how to process 

the result data. Nowadays the SPICE program can also support multiple processes – 

multiple circuits simulations. In this case, different sub-circuits in the system are treated 

as a local part with independent temperature, operating conditions, technology models 

etc.  

SPICE plays a very important role in process variability analysis since it allows users to 

modify the values of the built-in compact model parameters and predict the corresponding 

circuit response in terms of delay, power and yield etc. This builds a link between the 

device parameter variation effects and the resulting uncertainties of the circuit 

characteristics. The physically measurable model parameters are called skew parameters, 

as shown in Figure 2-11, because they are skewed from a statistical mean to obtain the 
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predicted performance variation. Skew parameters are generally chosen to be independent 

of each other so that combinations of skew parameters can be used to represent worst 

cases for corner analysis. The typical skew parameters for CMOS technology include 

transistor critical dimensions, gate oxide thickness, threshold voltage etc. On the other 

hand, the environmental parameter variations such as the skew of supply voltage and 

operating temperature are also taken into account in SPICE.  

 

Figure 2-12 Worst case simulation using SPICE for an inverter circuit. 

 

Figure 2-12 shows an example of the worst case analysis using SPICE when considering 

the variation in the gate channel length Leff in an inverter circuit. The compact model used 

in this simulation is BSIM4.0 standard 90nm technology. The circuit has been simulated 

3 times for different Leff values: the minimum value (Lmin), nominal value (Lmean) and 

maximum value (Lmax). The variation of the inverter circuit characteristics can be 

observed from transient simulation results shown in Figure 2-12. The output voltage (Vout) 

waveform can indicate the delay performance and the Vdd current (Ivdd) waveform can 

reflect the power consumption of the inverter circuit.  

The model parameter skew option in SPICE provides flexibility for the designer to 

analyse process variation effects using worst-case, corner and sensitivity analysis. SPICE 

also allows compact model parameter to be a Gaussian variable and provide multiple 

sampling techniques, which makes it capable of running Monte Carlo simulations to 

analyse the effects of device parameter variations.  
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Figure 2-13 Monte Carlo simulation using SPICE for an inverter circuit. 

 

Figure 2-13 shows the Monte Carlo simulation result of the same inverter circuit, in 

which 100 normally distributed random values of Leff are selected. Different responses for 

Vout and Ivdd can be observed from the waveforms, and the measurement data can be post 

processed in order to plot the circuit performance PDFs. Figure 2-14 shows a delay PDF 

based on the experimental result in Figure 2-13. The more sample values are used, the 

closer the simulation results are to the actual delay distribution. 
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Figure 2-14 Delay PDF of an inverter circuit based on a 100 sampled MC simulation. 

 

With the help of the SPICE program, it is possible to analyze process variation effect 

from transistor level to higher circuit level using a variety of approaches such as corner 

analysis and Monte Carlo analysis. However, as mentioned in the previous sections, these 

techniques are limited by their own drawbacks. During the last decade, a lot of research 

effort into using SPICE based statistical analysis techniques to analyze process variation 

effects have been made, which directly attacks the disadvantages of traditional 

approaches. The following 2 sections will give a brief introduction to statistical static 

timing and power analysis, which are the major contributions of statistical methodology 

to evaluate circuit reliability due to effects of process variations.  

 

2.8 Statistical Static Timing Analysis 

Since the early 1990s, static timing analysis (STA) has been widely adopted in industry to 

verify the speed of very-large-scale-integrated chip designs. STA is not only a universal 

timing sign-off tool but also plays a significant important role in numerous timing 

optimization techniques. STA is a deterministic approach which computes the circuit 

delay for a specific process condition. The fundamental weakness of STA is that, even 

though the global deviation in the process (inter-die variations) can be approximated 

using multiple corners, there is no statistical solution for modelling variations across a die 

(intra-die variations). Furthermore, since the semiconductor technology merges into the 

nanometre region, the intra-die variation has already become more and more significant 

and non-negligible in the total variation. In addition to the growing importance of 

intra-die process variations, the total number of process parameters that exhibit significant 

variation has also increased[27]. Consequently, even modelling of only inter-die variation 

in present day VLSI designs, it requires a massive number of corners[28]. Consequently, 

it will increase the effective runtime of STA exponentially. Finally, STA’s desirable 

property of being conservative may be either overly pessimistic or optimistic when 

predicting circuit performance [29].  
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Figure 2-15 Gaussian distribution [30]. 

 

There is a need for the efficient modelling of process variations in timing analysis, which 

has led to extensive research in statistical STA (SSTA) during the last decade. SSTA 

attacks all the limitations of STA more or less directly. In SSTA, the variation sources are 

modelled as well known distributed variables, such as Gaussian variable for most of the 

cases since they are truly random. Gaussian distribution, also called the normal 

distribution, shown in Figure 2-15 is a continuous probability distribution that has a 

bell-shaped PDF, known as the Gaussian function or informally the bell curve [31]. The 

mathematical expression of Gaussian function is shown in Equation 2.8. 

            
 

    
  

 
 
 
   
 

 
 

 (2.8) 

where μ is the mean value or nominal value of a variable x,  σ is the standard deviation 

of x which indicates how far the variation shifts from μ. From Figure 2-15, it can be 

observed that about 95% of the values lie within ±2 standard deviations; and about 99.7% 

are within ±3 standard deviations. Hence, in practice it is assumed that all values of the 

Gaussian distribution are within the ±3σ range, which is called 3-sigma rule [31].  

SSTA uses sensitivities to find correlations among delays, and then it uses these 

correlations when computing how to add statistical distributions of delays. Hence, the 

computational complexity of SSTA grows linearly with the increase in the number of 

variational parameters, and intra-die variation component has been taken into account in 
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SSTA delay models. Additionally, a statistical delay distribution of a given circuit will be 

generated in SSTA rather than the worst case corners in STA. Therefore, more 

information is contained in SSTA results which provide more options for designers to 

modify their designs and balance product yields.  

The initial research works for SSTA dates back to the very beginning of timing analysis 

in the 1960s [32] as well as the early 1990s [33, 34]. However, the majority of research 

work on SSTA has been done during the last 10 years with hundreds of papers published 

in this field since 2001. In this section, a brief review of SSTA will be outlined. It starts 

with the introduction to the gate delay models including first-order and higher-order 

forms. A description of SSTA calculation options such as “add” and “max” will follow. 

Finally, the classification of SSTA, path-based and block-based approaches, will be 

explained with the discussion of their respective advantages and disadvantages.  

 

2.8.1 Statistical gate delay model for SSTA 

In statistical gate delay modelling, the earlier solutions [44-46] are based on using 

discretized PDFs to handle probability distributions. However, the large number of 

samples in the discrete delay PDF increases the computational requirements of timing 

analysis and tends to degenerate into a traditional STA approach. Recently the low-order 

polynomial delay models [35-37, 41] have become more and more popular which can 

reduce a significant amount of complexity of timing analysis. In this methodology, each 

variation source is represented by a Random Variable (RV), which is usually distributed 

normally with its mean value μ and variance σ2. These variation sources can be the 

physical parameters of transistors such as effective gate channel length Leff, threshold 

voltage Vth etc; or the circuit environmental parameters such as operating temperature T, 

supply voltages Vdd etc. On the other hand, the response parameter with respect to the 

source RVs is the gate performance in terms of propagation delay. If the response 

parameter is a close-to-linear combination of the source RVs, then it is also assumed to be 

normal variable. By using sensitivity analysis, the sensitivities of the source variables 

with respect to the response variable can be calculated using a small number of designed 



~ 47 ~ 

experiments (SPICE simulation runs). This enables the use of a first-order polynomial 

(Canonical form) to represent the gate delay distributions, shown in Equation 2.9 [35]:  

                  

 

   

          (2.9) 

where μD is mean delay time of the gate. Gi represents the ith global variational source 

(Inter-die); these RVs are shared by all the gates in the same die. R is the sum of all the 

local RVs in the gate (Intra-die); these RVs are independent among different gates so that 

they can be combined into one RV. βD‘s are the sensitivity coefficients for all the RVs in 

this delay model. All the RVs in a canonical gate delay model follow a normal 

distribution (Gaussian). Since the linear combination of normal RVs is still normal, then 

the gate delay modelled by Equation 2.9 is also a normal RV.  

Zhang et al [36] points out that if the parameter variation is greater than 30% of its mean 

value (3σ/μ>30%), then the first order delay model will become inaccurate; consequently, 

a higher order quadratic delay model is required. Equation 2.10 shows the form of the 

quadratic gate delay model [37]:  

              
      

               (2.10) 

where δg = [G1, G2, …, Gp]
* is the variable vector for ‘p’ global variation sources, and “*” 

represents the transpose operation. The vector βg and matrix Гg are only vectorized 

representation of the Taylor expansion coefficients as shown in Equation 2.11 [37].  

      
   

   
                 

 

 

    

      
 (2.11) 

Since the intra-die variation is independent and behaves close to linearly, the intra-die 

variation component in the quadratic delay form is the same as it is in the canonical form 

(Equation 2.9). However, the complexity of both the polynomial fitting and delay 

calculations using the quadratic model grows exponentially with the increase in the 

number of variation sources. This drawback has emphasised the major limitation of SSTA 
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compared with STA, the high computational complexity, which is heavily criticised by 

industry. Therefore, most of the SSTA approaches tend to use the 1st order canonical 

delay form.  

 

2.8.2 Timing graph and SSTA operations 

The timing analysis procedure requires an abstraction of a timing graph from the circuit 

under analysis. A timing graph is a directed acyclic graph (DAG) which has no directed 

cycles. That is, it is formed by a number of nodes and directed edges and each edges is 

connected between 2 nodes, there is no way to start at some node x and follow a sequence 

of edges that eventually loops back to x again [38]. The nodes in the timing graph 

represent the gate input and output pins. The weights of the edges represent the timing 

parameters in the circuit, namely the gate input pin-output pin delay and wire delay 

between gates. Figure 2-16 shows an example of a combinational circuit and its timing 

graph. Typically, in a timing graph, all the primary input signals are connected to a virtual 

source node and all the primary output signals are connected to a virtual sink node as 

shown in Figure 2-16.Therefore, the resulting timing graph has a signal source and sink 

node for computational convenience.  

 

Figure 2-16 Example circuit in (a) and its timing graph in (b). 

 



~ 49 ~ 

The timing graph constructed for a sequential circuit is similar. Figure 2-17 shows an 

example of a sequential circuit and the corresponding timing graph. The path delay has 

been divided into several combinational delay parts by the clock signal. All the delays 

including clock-to-q delay and setup times of the sequential elements are again modelled 

using weights on their corresponding graph edges. The virtual source node corresponds to 

the input driver of the on-chip clock network. The virtual sink node also corresponds to 

the clock input driver, and the capture path is represented by nodes with negative 

weighted edges in the timing graph. 

 

Figure 2-17 Timing elements of a sequential circuit path (a) and its timing graph (b) [29]. 

 

In SSTA, device parameters such as gate length, oxide thickness and doping 

concentrations are modelled as RVs. In order to extend the concept of the timing graph to 

a statistical abstraction, the weight of each delay edge must be treated as a function of 

these variational parameters. The definition of statistical timing graph is as follows: 

“A timing graph G = {N, E, ns, nf} is a directed graph having exactly one 

source node ns and one sink node nf, where N is a set of nodes, and E is a set of 

edges. The weight associated with an edge corresponds to either the gate delay 

or the interconnect delay. The timing graph is said to be statistical timing graph 

if ith edge weight di is an RV [29].” 
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There are 2 types of basic operations in SSTA, “Add” and “Max”. The “Add” operation is 

used in the summation of all the weights of the delay edges in the same signal path. If all 

the timing quantities are modelled as normal variables, the result of an “Add” is also a 

normal variable. The main difficulty with SSTA is focused on the statistical “Max” 

operation, which is used to compute the output delay distribution in SSTA when multiple 

edges converge on the same node. Since the output result of the non-linear “max” 

operation is no longer in the original polynomial form as the given input signal, the 

timing analysis cannot continue to the next node. Most of the proposed solutions are to 

match the first two moments of the “max” result polynomial to their analytical values, 

whose expressions are derived by C. E. Clark [39] in 1961as shown in Equations 2.12 - 

2.16: 

                              
     

 
       (2.12) 

              

   
    

          
    

                  
     

 
                   

(2.13) 

Where  

            
 

  

 (2.14) 

     
 

   
      

  

 
  (2.15) 

     
    

         
 
  (2.16) 

The goal of doing this is to re-express the non-normal “max” result back to a normal form 

again, then keep the SSTA alive through the whole circuit under analysis. Therefore, the 

resulting distributions of SSTA can only be approximated.   
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2.8.3 Block-based and path-based SSTA 

A lot of research into statistical timing analysis has been made during the last decade 

[35-37, 40-43]. In SSTA the variational process parameters are described as random 

variables (RV), such as normal Gaussian variables in most of the cases; the gate delay is 

usually modelled as low-order polynomials of all the RVs, which can take both inter-die 

(global) and intra-die (local) variations into account [40]. Basically, SSTA can be sorted 

into 2 classes; first path based SSTA [42] wherein propagation delay times of all possible 

paths in the circuit will be calculated respectively, then the slowest path can be identified. 

The computational complexity of the path-based approach is low because it requires only 

one “max” operation no matter how large the circuits are. However it is very difficult to 

establish all the possible paths of a circuit especially for very large ICs. Additionally, the 

correlation between signal paths is totally ignored in path-based SSTA. Furthermore, path 

based methodology does not lend itself to incremental processing so that it will lose 

efficiency when applied to larger circuits. The second class of SSTA is the block based 

approach [35-37, 41] which can propagate delay distribution from primary inputs to the 

primary outputs of cells or functional blocks in topological order. The block-base SSTA 

can lead to incremental processing making it easy to analyze the circuit in a hierarchical 

manner, and there is no need for path selection. The biggest disadvantage of block-based 

SSTA is that it requires running statistical “max” operation frequently, which is 

mathematically a hard technical problem normally with a high computational complexity. 

Most of the research work into block-based SSTA focuses on how to solve the statistical 

“max” operation. Recently, a simplified Monte Carlo based SSTA has been proposed [43], 

which could be a new solution to SSTA. These SSTA techniques will be compared and 

discussed in detail in Chapter 3.  

 

2.9 Statistical Leakage Power Analysis 

The static or leakage power dissipation has become a significant contributor of the total 

circuit power consumption because of the continuous shrinking of transistor dimensions 

and the demand for lower power supply voltages. According to the International 
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Technology Roadmap for Semiconductors (ITRS), leakage power is expected to increase 

to 50% of the total chip power consumption and to dominate the switching power of a 

circuit over the next few generations. 

Similar to the timing analysis issues, the traditional corner-based analysis technique can 

no longer satisfy the demands of leakage power characterization in modern CMOS 

integrated circuits since the analysis result is either too pessimistic or optimistic, and it 

cannot easily handle the correlations between parameters. A number of research works 

into statistical power analysis (SPA) has been carried out during the last decade in order 

to meet the shortfalls of the corner-based approach. 

SPA is used to calculate the total circuit power dissipation by taking the summation of the 

power consumption of every cell in the circuit. Just like SSTA, SPA also uses RVs to 

represent device parameter variations and the gate leakage power models are treated as 

low-order polynomials. However the leakage current, which is the cause of the undesired 

power dissipation when circuits are in a static state, has an exponential relationship with 

most of the sensitive device parameters. Consequently, the distribution of leakage power 

dissipation due to the normal distributed process variation has a lognormal form. The 

canonical gate leakage power model is shown in Equation 2.17 below: 

              

 

   

          (2.17) 

The model is very similar to the canonical gate delay form in Equation 2.9 as discussed in 

the previous section. μ is mean leakage power of the gate. Gi represents the ith global 

variational source (Inter-die) and R is the sum of all the local RVs in the gate (Intra-die); 

βi is the sensitivity coefficient for the corresponding RVs in this leakage power model. 

By contrast, the amount of investigation into SPA is small compared to the research into 

SSTA since the power analysis is mathematically easier than timing analysis without 

nonlinear “Max” operation. The basic SPA approach is based on Wilkinson’s method [47] 

and its extension [48], both of these approaches provide good accuracy but with an 

overall complexity equal to O(n2), where n is the number of gates in the circuit. A 

recursive technique has been reported in [49-52], which can significantly reduce the 
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computation time of SPA; this makes it possible to apply SPA in a large circuit. The 

details about SPA methodologies will be introduce in Chapter 4.  

 

2.10 Summary  

The traditional worst case and corner based analysis approaches have been reviewed. 

These deterministic techniques are suffering from some major limitations, as discussed in 

Section 2.2, for analyzing IC performance when process variation effects become more 

serious in nanometre technology implementations. The Monte Carlo technique could be 

an alternative solution for variability-aware analysis. However, MC methodology requires 

a significantly long computational time in order to maintain the accuracy of the analysis 

results for larger circuits. Under this circumstance, the statistical analysis technique 

becomes a better choice for evaluating the effects of process variation on circuit 

performance.  

The process-to-device variation analysis is commonly based on the design of experiments 

and response surface modelling approaches. This type of analysis can extract the 

variability effects from the process parameters to device parameters. DoE and RSM is 

more efficient than the analytical approach since the most accurate models are based on 

simulation. Moreover, these techniques provide a reasonable balance between accuracy 

and the computational efficiency as compared to MC simulations. 

The device-to-circuit variation analysis can predict the distributions of the circuit 

performance parameters such as delay and leakage power. Typically, the basic cell in this 

analysis is a logic gate whose performance is commonly modeled as a low-order 

polynomial (canonical model). The variational sources for the polynomials are the device 

parameters represented by Gaussian variables. The circuit delay and leakage power 

performance can be evaluated by SSTA and SPA based on the canonical model. 

Higher-order models can be applied in order to improve the accuracy but the 

computational complexity will increase exponentially. SSTA is used to propagate the 

timing variations through the timing graph and SPA is used for summing the leakage 

power dissipation for all the gates in a circuit. However, analyzing circuit performance at 
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such a low level, such as gate level, is inefficient because of the massive size of the 

present day ICs. Therefore, higher level analysis is essential. 

The work in this thesis is aiming to model process variation effects at a architectural level, 

the device parameter variations being assumed given. The propagation delay and leakage 

power dissipation are chosen to be performance parameters of system. Hence, the 

canonical model and SSTA/SPA introduced in this chapter are fundamental to achieving 

this goal.  
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CHAPTER 3  

 

CELL CHARACTERIZATION FOR DELAY 

 

3.1 Introduction 

Based on the statistical models and analysis techniques introduced in Chapter 2, a cell 

library can be constructed in order to analyze process variation effects on circuit 

performance at a higher level of design abstraction. In this chapter, a detailed description 

about how to characterize the basic library cell, such as logic gate, for delay analysis due 

to process variation effects will be given. Firstly, Section 3.2 will discuss which type of 

SSTA is suitable for constructing a cell library; followed by, in Section 3.3, a review of 

the corresponding delay models and a discussion about which model is the better choice 

to employ. Subsequently, the tightness probability based SSTA approach will be 

introduced in Section 3.4 since this technique provides a great trade-off between 

modelling accuracy and computational time. Section 3.5 will describe the specific 

methodology to characterize delay distributions of a library cell considering the different 

operating conditions. Summary will be outlined at the end of the chapter.  

 

3.2 Why Using Block-Based SSTA? 

As introduced in Chapter 2, the SSTA approaches can be sorted into 2 types, the 

path-based and block-based techniques. The key difference between the two approaches 

is where in the algorithm the ‘maximum’ function is invoked. The path-based SSTA 

mainly focuses on finding the critical path within a circuit. It uses a normal-distributed 

RV to model the distribution of the operating clock frequency of a chip [1, 2], which 

corresponds to the distribution of critical path delay. Consider the critical path of a circuit; 

if all the gates in the path are modelled as Gaussian RVs, then the total delay of the path 

is the sum of these RVs, which can still be expressed as a normal form. Assuming there 

are n gates in a path P, the mean delay value is μi. Furthermore, consider the delay of each 

gate to be subject to inter-die and intra-die variations, with a standard deviation σgi and σri, 
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respectively. Since the nominal value of path delay will not change no matter how large 

the variation is, the mean delay value of path P, μp, can be calculated using Equation 3.1: 

                (3.1) 

It is important to note that, the intra-die variation of a path grows with the increase in the 

depth of the path in terms of the number of gates. This results from the fact that intra-die 

variation is a truly random variable component and is independent across gates. Therefore, 

the standard deviation of the intra-die variation of the path P, σintra, can be expressed as 

Equation 3.2: 

            
       

        
  (3.2) 

On the other hand, the inter-die variation is a variable shared by all the gates in the same 

die. Thus the standard deviation of the inter-die variation of path P, σinter, can be 

expressed as Equation 3.3: 

                       (3.3) 

Based on Equations 3.2 and 3.3, it can be concluded that the contribution of intra-die 

variation to the total path variation will decrease with the increase of the path depth. 

Assuming all the gates along path P have the same standard deviations for inter-die and 

intra-die, σg and σr, then: 

     
      

  
  

    
 (3.4) 

In a large circuit, normally there will be multiple paths which are expected to have a 

significant probability of becoming critical and strongly influence the overall delay 

performance. The goal of path-based SSTA is to estimate the ‘maximum’ of a selected set 

of critical paths in order to compute circuit delay PDF, which is a crucial step in SSTA. 

The ‘minimum’ operation is also needed for the computation of the shortest path delay 

distribution. However, it can be derived from the ‘maximum’ operation. 
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Figure 3-1 shows a general view of performing a path-based SSTA for a given circuit. It 

is a depth-first traversal of the timing graph. The basic advantage of this approach is its 

low complexity, since the analysis is clearly split into two parts: the computation of path 

delays and one statistical maximum operation. Hence, much of the initial research into 

SSTA was focussed on path-based approaches [3-9].  

 

Figure 3-1 General view of path-based SSTA. 

 

The major difficulty of the path-based approaches is that there is no efficient algorithm 

available to establish critical paths in a circuit. It is unclear how to select the initial set of 

paths before performing SSTA. Even though path-based approaches provide a simplified 

statistical computation since only the ‘add’ operation is executed during analysis, the 

complexity of the pre-analysis work is actually huge. Additionally, for a large circuit, the 

number of paths that must be considered can be very high. This makes the path selection 

problem even more complicated. On the other hand, the lower computational complexity 

of the path-based SSTA is made under the assumption that all the critical path delay 

distributions are independent of each other. If taking correlations into account the analysis 

tends to lose its computational efficiency. Therefore, most of the later research has 

focused on the block-based approaches. Most importantly, if considering using a cell 

library to analyse circuit delay performance, library cells must be characterized before 

being used in the circuit. When constructing the cells, there is no information available 

about the structure of the circuit being designed and whether or not it involves a critical 

path. Thus, it is quite difficult to characterise circuit cells which will be used in 

path-based SSTA. Therefore, the block based SSTA becomes a better delay PDF 

propagating algorithm for building a statistical cell library.  
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Figure 3-2 General view of block-based SSTA. 

 

The block-based SSTA is closer to the traditional STA algorithm which propagates the 

delay PDF through a circuit in a topological manner. It is a breadth first traversal of the 

timing graph. The general view of the block-based SSTA approach is shown in Figure 3-2. 

Two types of signal arrival times (rise and fall) will be propagated at each node in a 

circuit, resulting in a runtime that is linear with circuit size. As described in Chapter 2, the 

timing distributions at each node are computed using two basic operations: addition and 

maximum. There is no difficulty in summing two variables; however, as mentioned in 

previous section, computing the statistical maximum of two correlated arrival times is 

complicated. Obviously, performing a block-based SSTA in a circuit requires the 

‘maximum’ operation more frequently compared to a path-based approach. This will lead 

to an increase in the computational complexity. However, block-based approaches do not 

require establishing critical paths before performing the analysis, therefore, its 

computational time is more predictable than the path-based approaches. Due to its 

runtime advantage, many current research and commercial efforts have adopted the 

block-based approach. Furthermore, block-based SSTA lends itself to an incremental 

analysis, which is a huge advantage not only for the characterization of library cells in a 

hierarchical manner, but also diagnostic and optimization applications. Under these 

conditions, the block-based SSTA is employed for constructing the statistical cell library. 

 

3.3 Delay Models for Block-Based SSTA 

Having established the type of delay analysis algorithm to be used, the corresponding 

models need to be discussed. There are a number of models available to capture the 
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timing characteristics of circuits. As discussed in Chapter 2, the signal arrival time and 

gate delay time are modeled as worst case and corners in traditional static timing analysis 

(STA). When the timing analysis merges into the statistical domain, the research efforts 

are focused on directly representing gate delays with RVs characterized by their 

distributions or statistical characteristics [10]. This section will introduce the different 

gate delay models available for SSTA, followed by a discussion about the proper model 

to construct the library cells for the analysis of process variation effects at a higher level 

of abstraction.  

 

3.3.1 Discrete delay models 

In order to handle probability distributions in SSTA, the first effort was made by L. 

Jing-Jia, et al [11] who proposed a model using discrete PDFs to represent the delay 

variation. Similar approaches are also proposed in [12, 13]. This technique performs 

SSTA in a computationally deterministic fashion rather than random sampling based 

approaches, such as Monte Carlo simulation. The gate delay PDF is generated by 

sampling a continuous distribution with a user-defined sampling step as shown in Figure 

3-3.  

 

Figure 3-3 Sampling a continuous PDF of delay to generate a discrete PDF. 

 

The continuous delay PDF is assumed to be given and could be pre-generated by the 

Monte Carlo technique before the sampling. The discrete PDF needs to be renormalized 

after sampling to ensure that the sum of the probability pulses is equal to one. The 

sampling step provides a trade-off in terms of computational time and modeling accuracy. 

If the sampling step is small, the shape of the discrete PDF will be very close to the 
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original distribution. However, the large number of samples in the model will increase the 

computational complexity of SSTA. A larger sampling step will speed up the analysis but 

lose accuracy. If the sampling window is larger than the width of the delay PDF, it 

becomes the worst case model. Thus, choosing the sampling step to generate discrete 

PDF is always a difficult and tricky procedure. 

 

Figure 3-4 Shifting gate delay PDF by degenerate input signal delay. 

 

When performing an addition operation in a timing analysis using the discrete delay 

model, the output signal distribution is obtained by simply shifting the gate delay 

distribution by the input delay. Figure 3-4 shows how to propagate the delay distribution 

through an inverter circuit when the input signal is degenerate, that is when the signal is 

primary input and without variation. The numbers on the x-axis represent the delay value 

associated with the particular discrete probability distribution sample. However, in the 

case where the input signal delay is non-degenerate, a set of shifted output PDFs will be 

generated as shown in Figure 3-5.  
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Figure 3-5 Shifting gate delay PDF by non-degenerate input signal delay. 

 

Each of the shifted delay PDFs corresponds to a discrete event in the input signal PDF. 

The final output delay distribution is obtained by combining these shifted PDFs using 

Bayes’ theorem [14]. The gate delay PDFs need to be scaled by a factor which is the 

probability of the input signal event occurring before the shifting. Subsequently, all the 

shifted discrete distributions will be grouped by summing their probabilities at each time 

point. It needs to be noted that, the sum of all the probability events in a PDF should be 

equal to 1. Therefore the actual probability of an event in a PDF will be computed by 

dividing its total value by the sum of the numbers corresponding to all the events in the 

same PDF. The overall computation can be expressed as Equation 3.5: 

                                   

 

    

 (3.5) 

The operator “*” represents convolution and “f” represents the PDF of the corresponding 

RV. When performing an addition of 2 discrete RVs x and y, the sum, s = x + y, can be 

expressed as a convolution of their PDFs. 

The statistical maximum of two RVs modeled in discrete form can be computed using 

Equation 3.6 [15, 16]: 
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                               (3.6) 

Where z = max(x, y), and F represents the cumulative distribution function (CDF) of the 

corresponding RV. The two RVs x and y are assumed to be independent of each other.  

Based on the Equations 3.5 and 3.6, each multiplication in the convolution and max 

computation results in a quadratic function, generating a total computational complexity 

of O(n2) [1], where n is the number of events in the discrete delay model. This makes this 

modeling technique less feasible to be applied in a large circuit. On the other hand, 

Equations 3.5 and 3.6 are only valid under the condition that the processing RVs are 

independent of each other. The modeling of inter-die and intra-die variations is totally 

ignored. Furthermore, the discrete modeling technique assumes the gate delay distribution 

is already known before sampling, which requires extra simulation runs to compute the 

actual PDFs of the gate. Therefore, the model characterization work becomes too 

cumbersome. Most importantly, the gate delay distributions could be significantly 

different when considering different variational sources and the amount of deviation of 

each RV. Consequently, it may be needed to model each delay PDF under different 

variation conditions using discrete models, which makes the analysis process even more 

complicated. Consequently, a more efficient and feasible model is needed for 

constructing the cell library.  

 

3.3.2 Canonical delay model 

In recent research work into SSTA, the canonical gate delay form becomes more and 

more popular and has been used in many SSTA approaches [17-20]. This modeling 

technique use RVs to represents device parameter variations, such as gate length and 

oxide thickness, rather than the total gate delay distribution in discrete models. For most 

of the cases, the RVs are assumed to be Gaussian and each RV of the corresponding 

parameter can be divided into 2 components: inter-die and intra-die variations. Therefore 

it only needs 3 parameters to represent the normal-distributed RV: the expected or 

nominal parameter value (mean value) and the 2 user-defined standard deviations for 

global and random variation components respectively as shown in Equation 3.7. 
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                           (3.7) 

The Gaussian approximation for delay is based on the assumption that variations in the 

process parameters are typically small and their impact on gate/circuit delay is linear. The 

gate delay distribution can be obtained by the weighted addition of these device 

parameter RVs. Each RV will be multiplied by a sensitivity factor to move the variation 

effects from the device level to gate level. Additionally, the environmental sources of 

variation can be modeled in the same fashion. Assuming the variation in parameter x will 

cause the gate delay d to deviated by its mean value, and x is a Gaussian RV with a 

normal value μx and standard deviation σx. Therefore, d = f(x). The sensitivity factor β of 

x with respect to d can be computed using Equation 3.8: 

   
                     

   
 (3.8) 

Now the only unknown factor in the expression above is the function f whose complexity 

will directly affect the further timing analysis efficiency. The common solution to derive f 

is using SPICE simulation runs to find the response delay performance with different 

values of variational source. Figure 3-6 shows an example for computing the sensitivity 

factor for the transistor gate length Leff with respect to the inverter circuit fall time delay 

using SPICE simulations. 

In Figure 3-6, V(in) is the input signal to the inverter circuit; V(out)1 is the output signal 

when Leff deviates to its one sigma value and V(out)2 is the output signal when Leff 

deviates to its negative one sigma value; a is the timing point when V(in) drops down to 

50% of Vdd value; b1 and b2 are the timing points when V(out)1 and V(out)2 also drop 

down to 50% of Vdd value respectively. The two delay responses required in Equation 3.8 

can be measured as (b1-a) and (b2-a). Therefore, the sensitivity factor for Leff can be 

simply obtained using two SPICE runs. 
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Figure 3-6 Sensitivity analysis for gate channel length. 

 

For a given variation source, the sensitivity factor is the same for both inter-die (global) 

and intra-die (random) components. Thus the gate delay distribution can be expressed as 

Equation 3.9: 

                 

 

   

             

 

   

 (3.9) 

where n is the total number of the RVs in the model.           can be combined using 

Equation 3.2 which is introduced in Section 3.2. Let Gi be inter-die component ith 

variation source and R be combined intra-die variable with a new sensitivity factor βn+1, 

then the final expression for the gate delay polynomial is shown in Equation 3.10, which 

is called the canonical model [20-22].  

                  

 

   

          (3.10) 

The canonical gate delay model is in the form of a 1st order variable polynomial. It is 

simple to characterize by SPICE based simulation and easy to apply to the block-based 

timing analysis. That is why it has been widely used in most of the SSTA approaches. 
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However, the canonical model has been criticized for its accuracy especially when the 

parameter variation is huge and the delay distribution response tends to be non-linear. As 

a potential solution, high-order model has been proposed as described in the following 

section.  

 

3.3.3 Quadratic delay model 

If the gate delay’s dependency on the global variation sources is nonlinear, Taylor series 

could be a potential solution to analyze such a nonlinear function systematically [23]. 

In mathematics, a Taylor series is a representation of a function as an infinite sum of 

terms that are calculated from the values of the function's derivatives at a single point [24]. 

Let G1, G2, … ,Gn be the n standard Gaussian RVs with zero mean and unity variance, the 

Taylor expansion of the delay distribution can be expressed as equation 3.11: 

                 
 

  
    

 

   
 

 

   

 

 

     
    

   

 

   
  
      

   

  (3.11) 

where R is the local variation and m is the delay value if no variation has occurred, 

m=D(0, 0, … , 0). If the Taylor expansion is truncated at the first order, Equation 3.10 

becomes the canonical form, and the value of m is the mean value of delay distribution 

(μD). However, for the higher order model, m may not be equal to μD. Since the local 

variable R represents the overall effect of all the localized variations, it is normally 

assumed to be Gaussian according to the “law of large numbers [25].” 

Obviously the accuracy of the model can be improved by increasing the order of the 

Taylor expansion but at a penalty of computational cost. A reasonable trade-off has to be 

made. In [23] the author states that, based on their experiments, for parameter variation 

up to 30% of the nominal value (3σ < 30%) the 1st order canonical expression can 

maintain the accuracy for modelling delay variation. If the parameter variation is larger 

than 30%, the modelling error of canonical form becomes unreasonable. Therefore a 

quadratic delay model has been proposed in order to analyse large process variation 

effects efficiently [23].  

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Series_(mathematics)
http://en.wikipedia.org/wiki/Derivative
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In the quadratic model, the gate delay D is a nonlinear function of the global variations. 

The Taylor expansion in Equation 3.1 will be truncated up to the second order as 

Equation 3.12: 

       
  

  
  

  

  
    

 

 
 
   

   
    

   

    
   

 

 
 
   

   
    (3.12) 

where m is a constant and L, V … are the global variations. The variational parameters 

are pre-defined before analysis. The coefficients in this Taylor expansion can be 

analytically extracted from the designed SPICE simulations using the finite difference 

method, just like the sensitivity analysis used in characterizing the canonical model. After 

fitting all the coefficients for the corresponding variables, the Taylor expansion can be 

re-expressed as Equation 3.13, which is called quadratic gate delay model [23, 26]. The 

full expression of quadratic model has been described in Chapter2, Section 2.8.1. 

              
      

               (3.13) 

Figure 3-7 shows the CDF and PDF plots of an example inverter circuit with three 

different modeling techniques, Monte Carlo, canonical and quadratic. The parameter 

variations are set to 30% of their nominal value.  

 

Figure 3-7 Inverter delay CDFs and PDFs with parameter variation σ/μ=30% [23]. 

 

The Monte Carlo analysis result is the closest prediction to the real circuit delay 

distribution. Therefore it is normally used as a reference to compare the modeling 
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accuracy of the other techniques. From the graphs above, it can be observed that the 

quadratic model captures more delay characteristics of the inverter when the parameter 

variations are large.  

 

3.3.4 Why use the canonical model? 

In order to perform a timing analysis using the quadratic delay model, it requires 

‘addition’ and ‘maximum’ operations using second-order polynomial expressions. 

However, the complexity of both the polynomial coefficient fitting and delay distribution 

calculation using the quadratic model grows exponentially with the increase in the 

number of variation sources. According to[27], there are approximately 5 to 10 sensitive 

process parameters under variation, which have significant effects on circuit performance, 

for each type of transistor as present. Thus it is too time-consuming to implement the 

quadratic delay model in a very large circuit, and less feasible to construct a cell library 

using the higher order delay models which take a large number of simulations runs to 

characterize a cell.  

On the other hand, according to the 90nm technology parameter variations outlined in the 

ITRS roadmap [28], only a few parameters such as the effective channel length has 3 

sigma value much greater than 30% of their mean values, some other delay sensitive 

parameters such as threshold voltage Vth, supply voltage Vdd and gate oxide thickness Tox 

are only 15% of average variation. Consequently the actual delay distribution of a circuit 

should show much more linearity. Table 5 lists the roadmap variations for the device 

parameters which have most impact on the circuit performance.  

Table 5 Technology road map. 

Parameter Variations (3σ/μ) 

Year 1997 1999 2002 2005 2006 

Leff 32% 33% 38% 40% 47% 

Weff 25% 30% 28% 30% 26% 

Vdd 10% 10% 10% 10% 10% 

Vth 10% 10% 10% 11% 13% 

Tox 8% 8% 9% 12% 16% 
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In order to illustrate the characteristics of the circuit delay distribution under reasonable 

variations, Figure 3-8, as an example, shows the delay probability density function (PDF) 

of an inverter circuit with the ITRS 90nm technology variation specification. The 

histogram is generated by Monte Carlo simulation and the solid line represents the first 

order polynomial fitting graph. 

 

Figure 3-8 Inverter delay PDFs of 90nm technology. 

 

It can be observed from the graph above, the 2 PDFs are well matched. It indicates that 

the delay distribution shows a lot of normality and is quite close to the Gaussian 

distribution. Thus the first order canonical delay model is sufficiently accurate to capture 

the effects of process variations on delay even with a small number of highly variational 

parameters. On the other hand, the first order polynomial form of delay distribution 

representation can save a significant amount of modelling and computational time over 

the quadratic expressions, making it more feasible for use in implementing a cell library. 

Under these conditions, first order canonical gate delay model becomes the better choice 

to use. 
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3.4 Tightness Probability Based SSTA 

As discussed in the previous section, the first-order canonical model will be employed for 

each cell in a circuit which considers both global and local components of variation. In 

performing a timing analysis for a given circuit, the delay distributions are calculated for 

each active signal path from the primary inputs to the primary outputs in a circuit using 

block-based SSTA. The main difficulty with the canonical model based SSTA is focussed 

on how to re-express the non-normal statistical maximum result into a canonical form 

again so that the delay distribution can be propagated through the circuit. C. 

Visweswariah et al [20] have proposed a tightness probability based approach which 

becomes one of the most popular solutions for SSTA using 1st order canonical model, 

because of its computational efficiency. In this section, the concept of tightness 

probability will be introduced first, followed by a description of the key idea of the timing 

analysis approach.  

 

3.4.1 Concept of tightness probability  

Tightness is also called “binding probability” [29]. For two given variables A and B, the 

tightness probability TA of A is the probability that it is larger than or dominates B, and TB 

= (1- TA). If given n variables, then the tightness probability of each variable is the 

probability that it is larger than or dominates all the others [20]. Assuming A and B are in 

the 1st order canonical form as shown in Equations 3.14 and 3.15:  

           

 

   

          (3.14) 

           

 

   

          (3.15) 

Then the covariance matrix of A and B can be expressed as Equation 3.16. 

The variance of a variable is a measure of the dispersion of the values taken by the 

variable around its mean value, and the covariance matrix generalizes the concept of 

variance to multiple dimensions. 
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 (3.16) 

where V is the (n+1)×( n+1) covariance matrix of all the variables of the selected 

parameters in canonical forms. Assuming all the (n+1) variables in each canonical model 

are independent, then V becomes a unity matrix. Thus Equation 3.16 can be simplified 

into Equation 3.17: 

           

 
 
 
 
 
 
    

 

   

   

       

 

   

       

 

   

    
 

   

    
 
 
 
 
 

   
  
      

       
   (3.17) 

where σA and σB are the standard deviations of A and B which can be computed by 

matching the two 2×2 matrices in Equation 3.17. The value of the correlation coefficient 

ρ can be derived in the same fashion.  

Let: 
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Then the tightness probability TA can be expressed as Equation 3.21: 

    
 

  

 

  

  
    
  

   
 
    
  

    
    
  

 

     
       

     
 

  (3.21) 
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Based on the expression of tightness probability, the analytical solutions for the first two 

moments (mean and variance) of the statistical maximum operation, which has been 

introduced in Chapter 2 Section 2.8.2, can be re-expressed as Equations 3.22 and 3.23 [30, 

31]: 

                              
     

 
  (3.22) 

              

   
    

        
    

                   
     

 
                   

(3.23) 

Therefore, with the concept of tightness probability the expected value and variance of 

the statistical maximum operation Max(A, B) can be computed analytically and efficiently. 

The statistical minimum result can be derived by Min(A, B)=－Max(－A, －B). 

Therefore, in this thesis and most of the proposed papers about SSTA, only the details of 

Max operation are stated. The time for computing E[Max(A, B)] and Var[Max(A, B)] is 

linear with the number of variation sources.   

 

3.4.2 Application of tightness probability in SSTA 

In block-based SSTA, the Gaussian delay PDFs in the 1st order canonical form are 

propagated through the circuit by estimating the distributions at each node. The crucial 

step is to maintain the node delay PDFs, which are calculated by the statistical “Add” or 

“Max” operation, in the same canonical form. Thus the SSTA can be kept alive traversing 

the timing graph. As discussed in the previous section, the sum of multiple normal 

variables is still a normal variable. Therefore, performing a statistical “Add” operation for 

canonical models is straightforward. However, the “Max” result of Gaussian variables is 

no longer Gaussian, whose shape is more like a normal distribution but with a skewness. 

Consequently, the “Max” result can only be approximated in order to keep it in canonical 

form, where the tightness probability concept can be applied.  
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Figure 3-9 An example circuit and the corresponding timing graph to illustrate the “Add” 

and “Max” operations in SSTA. 

 

Figure 3-1 shows an example circuit and its corresponding timing graph. The two falling 

input signal of the circuit will cause a rising signal transition at the output. In order to 

perform a block-based SSTA, it requires both the statistical “Add” and “Max” operations 

performed on the signal transition case shown in the above figure. The distributions of all 

the input signal arrival times and gate delay times are modeled as 1st order canonical 

forms. The polynomial at node G can be derived using Equation 3.24: 
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where A and B are the variables for the input signals of the circuit shown in Figure 3-9, B 

and D represent the delay distributions of the two inverters, X and Y indicate the summed 

polynomials of (A+C) and (B+D). The local variables are treated in a root of the sum of 

the squares (RSS) fashion in the “Add” operation, because of their independent 

randomness. As discussed in the beginning of this chapter, the local variation reduces the 

spread of delay of a long path consisting of many stages.  

The variable summing process has been demonstrated in Equation 3.24. The next step is 

to find the “Maximum” of the X and Y. In traditional static timing analysis, when multiple 
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signals converge to the node G, the one with larger delay value will pass through for all 

downstream purposes, the characteristics of the dominant potential arrival time 

determines the arrival time at G, and all the other potential arrival times are ignored. It is 

as if the slowest arrival signal has a tightness probability of 100%, the tightness 

probability for others is 0%. When the delay model moves into the probabilistic domain, 

the characteristics of the arrival time at G can be expressed from X and Y in the 

proportion of their tightness probabilities. For example, if TX=0.6 and TY=0.4, then the 

delay distribution at G can be computed by a weighted-sum of X and Y with a 3:2 

sensitivity ratio. Therefore, the sensitivities of the global variations of Max(X, Y) can be 

computed from Equation 3.25:  

                    (3.25) 

The mean value of Max(X, Y) can be derived by Clark’s analytical solution in Equation 

3.22, the only remaining part of Max(X, Y) is the sensitivity factor for the local RV, βG(n+1). 

Since local RVs are combined in an RSS fashion which is not a linear function, it cannot 

be computed using Equation 3.25. The way to calculate βG(n+1) is to find a value which 

makes the variance of the fitted “Max” result equal to the variance of the analytical “Max” 

result which can be obtained using Equation 3.23. It was shown that a valid value of 

βG(n+1) always exists as the residue    
      

  
     is always greater than or equal to 0. 

Now the result of Max(X, Y) has been re-expressed in its canonical form again. When 

there are more than 2 timing edges converging at a node, only two of them are “Maxed” 

at a time, then the result will be used to perform the next “max” operation with other 

timing variables, and so on. 

The key idea of the tightness probability based SSTA has been described in this section. 

According to the literature [10, 20], this approach can effectively compute the first two 

moments of a non-linear “Max” operation result in SSTA, and maintain an acceptable 

error rate within 5%. The major computational complexity trade off of tightness 

probability based SSTA makes it one of the most popular timing analysis techniques 

using 1st order canonical delay model. That is also the main reason why this approach is 

employed in the proposed cell library. Having established the delay modeling and 

analysis techniques, the statistical cell library can be constructed on this basis.  
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3.5 Cell Characterization in Different Operating Conditions 

In this section a description of the characterization of the process variation effects on the 

delay in a library cell will be outlined. The 1st order canonical delay model can capture 

the gate delay uncertainty caused by process variations. However, the delay distributions 

of a gate under the same variation specifications, will behave differently under different 

circuit operating conditions.  

 

Figure 3-10 Inverter delay PDFs with different Tin and CL. 

 

 

The major circuit factors which cause this difference in the delay PDFs are the gate input 

signal transition time Tin and the output load capacitance CL. In order to illustrate the 

effects of Tin and CL, a number of delay PDFs for an example inverter circuit are shown in 

Figure 3-10 for comparison purposes. The inverter gate is under the variation effect from 

Leff with a sigma value equal to 10% of the mean. The distributions in Figure 3-10 (a) are 

measured with the same Tin but different CL conditions, the distributions in Figure 3-10 (b) 

are measured with a same CL but different Tin values. It is observed that the delay PDFs 

show significant difference in each case. 

It is very difficult to model the operating condition effects (Tin and CL) on propagation 

delays expressed in canonical form, typically the table look-up approach will solve this 

problem [17], where the delay time is sampled with respect to a wide range of CL and Tin 

values, then saved in memory. A huge number of delay samples are required to model 

one gate delay in order to cope with every value of CL and Tin, which makes the library 
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cell characterization onerous and inefficient. Additionally, the huge amount of data 

associated with a single cell model also makes the whole cell library very costly in terms 

of memory space. Simplified tables are desperately needed in order to increase the 

practical applicability of the statistical cell library. 

 

Figure 3-11 Inverter delay versus CL responses. 

 

In order to investigate the relationship between the gate delay characteristic and the 

circuit operating conditions, a number of inverter delay versus CL responses were plotted 

as shown in Figure 3-11. Similarly, the inverter delay versus Tin responses graphs are 

shown in Figure 3-12. 

 

Figure 3-12 Inverter delay versus Tin responses. 
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Based on the observations from Figure 3-11 and Figure 3-12, the overall graphs are 

smooth, which means gate delay has a close-to-linear relationship with CL and Tin. For 

this reason, a piecewise linear function can be used to fit the delay samples for different 

drive and load conditions in order to simplify these tables. Only a few delay values are 

sampled as break points at some typical values of CL and Tin, any delay values in close 

proximity to these will be estimated from the linear function of its adjacent break points.  

 

Figure 3-13 Sample delay breaking point. 

 

Figure 3-13 shows how to characterize the simplified look-up table for basic cells. The 

buffer at the input node of gate under test will provide a realistic input signal slope. The 

gate delay time will be sampled at 7 output load values as shown in Figure 3-13, where 

the unit load means the static input capacitance of an inverter circuit. The load 

capacitance of a gate can be approximated as the input capacitance of the successive gates, 

as shown in Figure 3-16. In CMOS circuits, the value of CL at any node in a circuit can be 

a multiple of the unit load [32, 33].  

 

 

Figure 3-14 Schematization of two cascade inverters. 
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The existence of the device parameter variations will also affect the input capacitance 

value of gate Cin, which means the potential gate load capacitance value could be a 

variable.  Fortunately, it was found that the Cin value variation of static logic gates is 

typically very small. Based on the experimental results of the extensive Monte Carlo 

simulations on several gates with different sizes in a 90nm CMOS technology [32, 33], 

the relative variation σ/μ of Cin is within 0.5% under both the inter-die and intra-die 

variations. Figure 3-15 shows the statistical distribution of the static input capacitance 

values of an inverter circuit, the sigma-to-mean ratio is 0.5%. Interestingly, the relative 

variation for larger-sized gates than inverter was found to be even lower. Therefore, the 

Cin values of logic gates can be treated as constants when modeling the circuit operating 

condition effects on cell delay.  

 

Figure 3-15 Statistical distribution of the input capacitance values of an inverter. 

On the other hand, the input signal slope of a gate cannot be easily controlled in a real 

circuit, so that the input signal slope of a test vector in Figure 3-13 is obtained by 

adjusting the capacitance values at the input node of the gate (using the same 7 

capacitance values). It, therefore, needs 49 simulation runs to build the look-up table for 

gate delay, which are the mean values in canonical delay form. Figure 3-16 (a) shows the 

relationship between propagation delay and operating conditions for the inverter circuit, 

and Figure 3-16 (b) shows the result of inverter delay fitting using the simplified tables. 
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Figure 3-16 (a) Inverter delay vs. different conditions, (b) Piecewise linear fitting of 

inverter delay. 

 

The sensitivity factors in the canonical delay model can be characterized in the same 

manner. Each variable in the canonical form needs an independent table to store its 

sensitivity coefficients calculated by applying the previous sampling method. 

Furthermore, it also needs an extra table in the delay model to store the gate output signal 

slopes under different operating conditions, because output signal slope will become the 

input signal slope for the next gate,  which is an essential input parameter to the 

statistical cell. Figure 3-17 shows a general view of the table look-up methodology for 

modelling the delay variations of library cells. The rows of each page of the 3D look-up 

table represent the 7 typical input signal slope values, and the columns indicate the 7 

typical load capacitance values of the cell. The first page of the model stores the cell 

mean time delay values for different operating conditions and second page stores the 

corresponding output signal slopes. The other pages of the model contain the cell 

sensitivity factors at different Tin and CL values for a number of variational sources. If n 

device and environmental parameters need to be modelled, then it will be (n+2) pages 

included in the 3-D look up table shown in Figure 3-17. 

(a) (b) 
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Figure 3-17 The look-up tables for modelling cell delay. 

As an example, the delay model of a 2-input NAND gate cell is shown in Figure 3-18 (a) 

- (d). The effective gate channel length Leff and supply voltage Vdd are selected to be the 

variational sources of the cell delay, whose sensitivities are demonstrated in (c) and (d) 

respectively. Graph (a) is for the mean delay times and (b) is for the output signal slopes 

of the NAND gate in different operating conditions.  

 

Figure 3-18 Delay model for a 2-inpu NAND gate. 

(a) (b) 

(d) (c) 
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On the other hand, it is necessary to distinguish the different input conditions applied to a 

gate in cell delay modelling, as this factor will also significantly affect its performance. 

The same signal transition at different gate inputs can cause varied gate delay PDF since 

the capacitance of each gate input is different from each other.  

 

Figure 3-19 (a) Delay PDF of a NAND gate with different input stimulus, (b) Delay PDF of 
a NAND gate with different output transition cases. 

 

Consider a 3-input NAND gate with 3 different input patterns, all of which will cause the 

gate output to transit from a logic low to a logic high. For each input pattern, only one 

signal is switching, and the other two inputs stay at a logic high. The delay PDFs for the 

gate in each case is different from the other two, which is shown in Figure 3-19 (a). 

Similarly, the delay performance is also quite different during rise and fall (charge and 

discharge) transitions of the gate output. In Figure 3-19 (b), the rise and fall delay PDFs 

of the same 3-input NAND gate when only the first input signal is switching and the other 

two stay at a logic high, is shown again to be significantly different from each other. 

Consequently, it is necessary to characterize the cell for each gate input condition and 

transition case when modelling the library cell.  

For a modelled cell in the library, it is easy to compute its delay distribution when the 

device variation specifications, input and load conditions are given. Algorithm 1, shown 

below, lists all the steps to construct a logic cell in the library of standard gate types. By 

using this Algorithm, all the basic cells for the logic gates in the library can be created, 

these include an inverter, 2-input NAND NOR OR AND gates, 3-input NAND NOR OR 

AND gates and XOR gate.  
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Algorithm 1: Statistical gate cell characterization 

Input:  

 

Output: 

Gate Boolean input, desired process parameters under 

variation and their sigma values, input signal slope and output 

load of gate 

Canonical gate delay form and gate output signal slope 

1 

2 

3 

 

4 

5 

6 

For each gate, each input condition, each output transition 

case 

For each specific input signal slope and output load 

Sample the gate mean delay and output slope 

End For 

For each desired process parameter under variation 

For  each input signal slope and output load 

Calculate its sensitivity coefficient 

End for 

End for 

End for 

 

Figure 3-20 shows several analysis delay PDFs using the characterized NAND gate cell: 

 

Figure 3-20 Predicted delay PDFs vs. Monte Carlo results of a NAND gate. 

(b) (a) 

(c) (d) 
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In the graphs above, the histograms are generated by 5000 sampled Monte Carlo 

simulation and the solid line is predicted using the library cell. In (a), the input signal 

transition time is set to 30ps and the load capacitance is set to 2fF. The operating 

conditions in (b) are: Tin = 60ps, and CL= 8fF. Both graphs (a) and (b) are the delay 

distributions when the output signal of the NAND gate is a falling transition. Graphs (c) 

and (d) are PDF results under the same operating conditions as (a) and (b) respectively, 

but the output signal is a rising transition. From the PDFs matching results in Figure 3-20, 

it can be observed that the proposed library cell models can precisely capture the gate 

delay characteristics in different operating conditions and switching cases. 

 

3.6 Summary 

In this chapter, a standard cell characterization methodology has been described which 

takes device and environmental variation effects on circuit delay performance into 

account. This cell library is aimed to modeling process variation at a higher level of 

abstraction where the size of the circuit is large, so that lower modeling and analysis 

complexity is the first priority in constructing the cells. Therefore, the 1st order canonical 

delay model and tightness probability based SSTA technique is employed in the cell 

library because of their computational efficiency. The cell delay models introduced in this 

chapter also take different operating conditions and gate switching cases into 

consideration, multiple simplified look-up tables are used to capture gate delay 

characteristics. The approach to characterize higher level block and experimental result 

including the accuracy analysis will be discussed in Chapter 5. The following chapter will 

introduce the technique to characterize cell leakage power performance due to the process 

variations.  
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CHAPTER 4  

 

CELL CHARACTERIZATION FOR LEAKAGE POWER 

 

4.1 Introduction 

Chapter 3 outlined the methodology for modelling the process variation effects on gate 

delay. In nanometer technology, the uncertainty in another important circuit performance 

parameter, namely power dissipation, due to process variability is also becoming a major 

issue. There are two main components of power dissipation, dynamic and static power.  

Dynamic power, which is also known as switching power, corresponds to power 

dissipated during the signal transition of nodes in a circuit and is spent in charging 

capacitances associated with the transistors and wires [1]. However, the modelling of 

dynamic power dissipation becomes more complicated when spurious transitions or 

glitches are taken into consideration [2], these are the unnecessary signal transitions 

caused by input signals switching. There is still not an efficient model available in the 

literature which leads to an hierarchical design style. Most of the research into dynamic 

power estimation is focused on the fixed-delay model [3-5], however this model is invalid 

when considering the effects of process variation. Some research has been undertaken to 

model process variation effects on dynamic power [6, 7], but is limited to very simple 

models, in which only the mean values of the power dissipation are considered. Therefore, 

there are still major difficulties for characterizing dynamic power dissipation at a higher 

level of design abstraction.  

On the other hand, the static power, which is also known as leakage power, has grown 

significantly with the drastic scaling of semiconductor technology and contributes a huge 

fraction of the total power budget. A study from the Intel Corporation shows that leakage 

power will contribute approximately 50% of the total power dissipation at the 90nm 

technology node [1], and the percentage will grow larger in more advanced technologies. 

Thus the effect of process variability on such an important and variability-sensitive 

parameter needs more attention. Therefore, the power dissipation modelling work in this 

thesis is only focused on the leakage power.  
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The organization of this chapter is as follow: a brief overview of leakage current 

mechanism will be outlined in Section 4.2, including its main components and causes. In 

Section 4.3 and 4.4, the leakage power modelling and analysis techniques which will be 

employed in the cell library will be described with discussions on why they are selected. 

The methodology to characterize leakage power performance of a library cell will be 

introduced in Section 4.5 and summary will be outlined at the end of this chapter.  

 

4.2 Overview of Leakage Power 

The leakage power or static power is refers to the unwanted energy dissipation when the 

electronic device is in an off or standby mode. It is caused by the leakage current flow 

which should be zero ideally. There are a number of phenomena which contribute to the 

generation of the device leakage current Ioff, which is the reason for the unexpected static 

power dissipation. Eight different leakage current mechanisms have been listed in [8]. 

However, not all of these components of leakage current are significant. The main 

contributors to the device leakage current are the subthreshold leakage (Isub) and gate 

leakage current (Igate).  

The subthreshold leakage, which is also known as subthreshold conduction or 

subthreshold drain current, is the current that flows between the source and drain of a 

MOSFET when the transistor is in the subthreshold region, or weak-inversion region, that 

is when the gate-to-source voltage falls below the threshold voltage. Figure 4-1 (a) 

illustrates the subthreshold leakage current flow in an n-type MOSFET. The reason for 

the growing importance of subthreshold leakage is that the supply voltage is continued to 

be scaled down in order to keep the electrical field inside smaller devices low and thus 

maintain their reliability. Consequently there is less gate voltage swing below threshold 

voltage to turn the device off. Since Isub varies exponentially with gate voltage, it becomes 

more and more significant as MOSFETs shrink in size.  
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Figure 4-1 Leakage current mechanisms: (a) subthreshold leakage, (b) gate leakage. 

 

Another component of the gate leakage current results from the tunneling of electrons 

(holes) from the substrate to the gate of a NMOS (PMOS) device through the gate oxide 

layer as shown in Figure 4-1 (b). The gate oxide serves as an insulator between the gate 

and the channel of devices and ideally can block the any current flow. However, in order 

to satisfy the aggressive scaling of semiconductor technology to respond to the market 

demand for better device performance, the oxide layer should be made as thin as possible. 

Unfortunately, the possibility of electron tunneling occurring will increase with the 

continued shrinking of the oxide thickness Tox, which leads to a larger leakage power 

dissipation. Since the gate leakage current has an exponential relationship with Tox, which 

is one the most sensitive device parameters under process variation effects, the resulting 

leakage current distribution is also quite significant and cannot be neglected.  

Additionally, due to the exponential relationship between Ioff and Vth, the leakage current 

of a device not only grows rapidly but also shows large fluctuations from die to die and 

even from gate to gate. This is especially true in nanometre technology where controlling 

Vth is extremely difficult because of the drain-induced barrier lowering effects (DIBL) [9]. 

DIBL has become a serious problem which limits the MOSFET performance since the 

device channel length first reached submicron dimensions, and it is exacerbated in 

sub-100nm devices by fundamental scaling limitation on oxide thickness [10].  

(a) (b) 
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Figure 4-2 Leakage power distribution of an inverter. 

 

The estimation of leakage power distributions becomes difficult with the growing 

uncertainty in leakage current due to the variational device parameters, such as threshold 

voltage and gate oxide thickness. The traditional worse-case and corner-based approaches 

become impractical for the leakage power analysis, because the leakage power has a very 

wide distribution. Figure 4-2 shows the static power PDF of an inverter circuit with the 

device gate length Leff deviating ±15% from its nominal value, where Leff is assumed to be 

a Gaussian variable. It can be seen that the power leakage of the circuit could be almost 4 

times larger than its nominal value. Additionally, the nominal values of process variation 

parameters do not correspond to the average value of leakage power, since, as shown in 

Figure 4-2, the distribution is no longer normal with respect to the Gaussian source 

variable. Such characteristics of the distribution become crucial in the analysis of circuit 

leakage power dissipations. 

The worse-case model files for leakage current can easily exhibit 10-100 times larger Ioff 

than a nominal device [11]. This will lead to an overly conservative analysis result and 

unnecessarily raise the power specification of a circuit design. On the other hand, the 

leakage power variation also cannot be ignored. A small number of very leaky devices 

can easily dominate the static power consumption in a circuit block. Figure 4-3 shows 

that the average leakage current can be much larger (~30% for PMOS with L 3σ/μ=12.5%) 

than the nominal leakage due to the exponential dependence of current on the gate length 
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[10]. The results also shows that the gate length variation effects on PMOS are much 

greater than on NMOS, this is because DIBL effects in PMOS devices are typically more 

significant than in NMOS devices [12]. 

 

 

Figure 4-3 Dependence of mean and standard deviation of leakage current on 3σ variation 

in gate-length [10]. 
 

Based on the discussion in this section, the leakage power has becomes a major problem 

due to the aggressive increase in device leakage current. The traditional worst-case model 

fails to cope with the widely distributed Ioff and provide a reasonable analysis result. 

Monte Carlo techniques can precisely predict the leakage power performance of a circuit 

but are very expensive in terms of computational time and complexity. Thus an efficient 

static power analysis technique for circuits is needed so that power dissipation can be 

estimated before circuit are fabricated. The following sections will discuss the leakage 

power modelling and analysis methodologies in detail.  

 

4.3 Leakage Current and Power Models 

In this section, the analytical leakage current models will first be introduced, using the 

equations to model the subthreshold current and gate leakage current. Followed by a 
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description of the statistical leakage power modelling technique, in which both inter-die 

and intra-die variations are considered. An explanation will then be given to justify why 

the latter approach is more appropriate for building up the cell library.  

 

4.3.1 Analytical leakage models 

The starting point for traditional models for static power analysis are the analytical 

equations for computing leakage current Ioff. As discussed in the previous section, there 

are 2 main components in Ioff ; the subthreshold current and gate leakage current. The 

subthreshold current is the current that flows between the source and drain of a device 

when the device is turned off, and it can be expressed as Equations 4.1 and 4.2 [8]:  

             
       

   
         

    
  

   (4.1) 

where 

            
 

    
    

       (4.2) 

and μ0 is the charge-carrier effective mobility,  n is the subthreshold slope factor and Cox 

is the gate oxide capacitance. VT=KT/q is the thermal voltage, where K is the Boltzmann 

constant, T is the absolute temperature and q is the electron charge. Vth is the device 

threshold voltage which can be expressed as Equation 4.3 [8]: 

              
  
   

                          (4.3) 

Where Vfb is the flat-band voltage, ϕp is the surface potential,  b is the body effect factor, 

Nch is the channel doping concentration,  s is the permittivity of silicon and  d is the DIBL 

coefficient.  

On the other hand, the gate leakage current, which is caused by electron tunnelling 

phenomenon, is composed of several components as shown in Figure 4-4. Igos and Igod are 

the leakage current flow through the gate-to-source/drain extension overlap regions, Igcs 
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and Igcd are the leakage currents between the gate and source/drain diffusion through the 

channel region, and Igb is the leakage current between gate and body.  

 

Figure 4-4 Components of gate tunnelling current 

 

The key dependency of gate leakage current on the process parameters can be expressed 

as Equation 4.4 [8], where Ag and Bg are process dependent physical parameters. This 

equation shows that the gate leakage current is an exponential function of the gate oxide 

thickness. 

          
   
   

 
 

       
   
   

  (4.4) 

Most of the analytical approaches to estimate circuit static power dissipation are based on 

the above leakage current models from Equation 4.1 to 4.4 [10, 13, 14]. However, these 

approaches are faced with some drawbacks. Firstly, the analytical equations introduced in 

this subsection are the simplified expressions, the actual BSIM model used to compute 

leakage current in SPICE is much more complicated. It is shown in [10] that the above 

equations are not very accurate for 0.18μm technology. Therefore the predicted result for 

leakage current based on the analytical models is very suspect. On the other hand, the 

computational complexity of the analytical models in Equations 4.1 to 4.4 is still quite 

high when considering the analysis of leakage power in a large circuit which contains 

thousands of transistors, even though these are already in simplified forms. Therefore, a 

much more efficient and accurate leakage power model is needed for characterizing 

library cells.  
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4.3.2 Statistical gate leakage power models 

Similar to the canonical gate delay model, the gate leakage power dissipations can also be 

modelled as low-order polynomials in a statistical manner. All the variational sources are 

assumed to be Gaussian variables. Since the leakage current has an exponential 

relationship to the device parameters, the distribution of the leakage power is in a close to 

lognormal form. The 1st order gate leakage power model is shown in Equation 4.5 [15]:  

                               

 

   

           (4.5) 

The terms inside “exp()” is exactly the same form as the 1st order canonical delay model. 

The dependency of gate leakage power on a process parameter can be simply represented 

by a sensitivity factor, which saves a huge amount of computational time. On the other 

hand, the values of βps are computed by finite different approach based on the SPICE 

simulation results which are much more accurate than the analytical models. Therefore, 

the estimated distribution of gate leakage power using the canonical model is more 

reliable. The expression for βp of the corresponding variable x is shown Equation 4.6: 

   
                            

   
 (4.6) 

where μx and σx are the mean value and standard deviation of the variable x, f represents 

the SPICE response of the circuit static power for a given device parameter value.  

In order to demonstrate the accuracy of the canonical model, Figure 4-5 shows the Monte 

Carlo simulation result of an inverter leakage power distribution and the corresponding 

lognormal fitting plot with the ITRS 90nm technology variation specifications, which are 

indicated inside the graph. The two plots in the figure are well matched, which illustrates 

that the distribution of gate leakage power dissipation can be approximated as a 

lognormal model using Equation 4.5 with reasonable accuracy.  
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Figure 4-5 Inverter leakage power PDFs of 90nm technology. 

 

Due to the great trade off between the modelling accuracy and computational complexity, 

the 1st order canonical gate leakage power model will be used for characterising the 

library cell to analyze the process variation effects on circuit leakage power. In the 

following section, the analysis approach to estimate leakage power PDFs when a circuit 

comprises multiple gates will be discussed in detail.  

 

4.4 Statistical Analysis for Leakage Power 

Computing the total leakage power dissipation of a circuit which contains multiple gates 

comprises, simply, adding the individual gate leakage power values together. Since the 

gate leakage power model moves from the deterministic domain to the statistical domain 

in order to take process variation effects into account, the total leakage power of a circuit 

can be expressed as the sum of gate model variables represented by a probability 

distribution. As described in the previous section, the cell leakage power can be modelled 

as a lognormal variable, then the total static power can be expressed as Equation 4.7: 

                            (4.7) 



~ 99 ~ 

where Xi represent the ith independent lognormal gate model in a circuit. The leakage 

power analysis does not need the non-linear statistical maximum operation as in SSTA. 

However, the variable addition is not straightforward since the variables are in a 

non-linear lognormal form. Theoretically, the sum of multiple lognormal distributed 

variables has no close-form expression. Various approaches have been proposed to 

estimate the sum result of multiple lognormal variables. A full comparison of a number of 

lognormal summation approaches has been undertaken [16], the conclusion is that the 

simple Wilkinson’s approximation [17] is more accurate than other complex techniques 

for computing the leakage power PDFs based on matching the first two moments. In 

Wilkinson’s approximation, the mean value and standard deviation of the sum of n 

independent lognormal gate leakage power models can be expressed as Equation 4.8 and 

Equation 4.9 respectively: 

                       (4.8) 

         
    

      
  (4.9) 

where μi and σi represents the mean value and standard deviation of ith individual gate 

leakage power model. Each lognormal variable can be expressed as Equation 4.10: 

      
 

     
    

           

   
  (4.10) 

where α and β are the parameters which define the shape of a lognormal PDF. If Y(u, σ) is 

a Gaussian variable and its corresponding lognormal form is expressed as X=exp(Y), then 

the parameters α and β in X are the mean value and standard deviation of Y. These 

parameters can be used to compute the mean value and variance of the lognormal variable 

X as Equation 4.11 and 4.12: (Note that the mean and sigma value of the Gaussian 

variable Y are not the same as in the corresponding lognormal variable Y) 

                  (4.11) 

                              (4.12) 



~ 100 ~ 

Similarly, the mean value and variance of X can also be used to compute the mean and 

sigma values (α and β) of Y using Equations 4.13 and 4.14.  

   
 

 
    

     

            
  (4.13) 

       
            

     
  (4.14) 

Based on the equations above, the lognormal parameters of the S, which is the sum of 

multiple lognormal variables shown in Equations 4.8 and 4.9, can be obtained permitting 

S to be re-expressed into lognormal form. It is interesting to note that if the value of n is 

large which indicates the size of the circuit under analysis, the leakage power PDF will 

approach a Gaussian distribution theoretically due to the central limit theorem [18]. This 

characteristic is also true in real circuit power analysis..  

 

Figure 4-6 PDFs of a 200-gate inverter chain circuit.  

 

Figure 4-6 shows the Monte Carlo simulation result (histogram) and its normal fitting 

graph (solid line) for the total static power distribution of a 200-gate inverter chain. All 

the inverters in the circuit are identical. The total distribution in the graph shows a high 

degree of normality and is quite close to a Gaussian distribution even though each 
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individual inverter leakage power PDF is lognormally distributed which has already been 

shown in Figure 4-2 and Figure 4-5.  

The Wilkinson’s approximation can provide good modelling accuracy for computing the 

sum of the gate leakage power models which are independent (intra-die). The inter-die 

variations are totally ignored. In [19], the author proposed a expanded approach to power 

analysis based on Wilkinson’s approximation, which uses the 1st order canonical form as 

the gate leakage power model so that both inter- and intra-die variation effects are 

considered. However, in this technique, the RVs associated with all the cells in a circuit 

must be summed in a single step and the summed result cannot be re-expressed back into 

a canonical form. Since this power analysis technique involves n-by-n matrix 

multiplications, where n is the number of the gates in a circuit, the overall complexity will 

be O(n2) [20]. Additionally, this approach cannot be used in an incremental design such 

as building up the cell library.  

A second extension of Wilkinson’s approximation [15] has been proposed as a simplified 

leakage power analysis approach, which uses a recursive technique to reduce the 

computation complexity of the summation of lognormal (canonical form) power RVs; 

only two RVs are summed in one step, and then the sum will be re-expressed in a 

canonical form for the next summation step. Therefore, the computational complexity has 

been reduced to O(n). Assuming each gate leakage power distribution, Px, in a circuit is 

modelled in the 1st order canonical form in Equation 4.5, then its mean and variance can 

be computed using Equations 4.15 and 4.16:  
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The correlation of the leakage power of cell x with the lognormal variable associated with 

the global component Gj in the canonical leakage power model,  as shown in Equation 

4.5, is computed using Equation 4.17. 
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                  (4.17) 

Assuming Pa is the sum of the leakage power of two cells b and c, it needs to be 

expressed into the canonical form as in Equation 4.18 for further calculations using 

leakage power analysis. 

                      

 

   

           (4.18) 

The covariance of the leakage power of b and c can be obtained from Equations 4.19 and 

4.20 below: 
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    (4.20) 

Finally, all the coefficients of Pa can be computed by using Equations 4.21 – 4.22: 
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 (4.23) 

Figure 4-7 shows the flowchart for computing the total leakage power dissipation of a 

circuit. For a given netlist, the canonical leakage power models for all the gates will be 

identified and placed into a model vector, ready to be processed. Only two of models are 
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summed at a time using Equations 4.15 to 4.23. The expected values and variances of A 

and B (A and B could be any two models in the model vector) will be computed first, 

these values can be used to further calculate the correlation and covariance of A and B. 

Subsequently the two lognormal models can be added using the previously obtained 

interim results. The sum of A and B is still in canonical form and will be placed back into 

the model vector. The whole calculation process continues until there is only one model 

remaining in the model vector, which is the expression of the total circuit leakage power 

distribution.  

 

Figure 4-7 Flowchart for computing the total leakage power of a circuit. 

 

Based on this simplified power analysis technique, the distribution of the total leakage 

power dissipation for a multiple-gate circuit can be estimated efficiently. Based on the 

experimental results in [15], this approach also provides a reasonable accuracy with an 

average error rate of less than 5%. Most importantly, it leads to an incremental design 

style making it possible to be employed in the cell library characterization. Having 

established the approaches to model gate static power and compute the total gate leakage 
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power distribution due to the process variation effects, the leakage power performance of 

the library cells can be characterized, the corresponding methodology will be introduced 

in the next section.  

 

4.5 Cell Characterization for Leakage Power 

When characterising the gate leakage power dissipation, Pleak, there is no need to consider 

the input signal slope because there are no signal transitions occurring in the static circuit 

state. Additionally, the effects of load capacitances on the gate leakage power distribution 

are very small and negligible.  

 

Figure 4-8 Leakage power PDFs for an inverter with different gate states.  

 

However, as discussed in Section 4.2, the leakage current behaves differently for N and P 

type transistors. Furthermore, the transistor gate voltage is also a major factor which 

affects the cell leakage current distribution, and there could be several different gate input 

conditions for a cell. Therefore, leakage power distribution of a logic gate cannot be 

represented using a single model. Pleak is very dependent on the different gate static states. 

Figure 4-8 shows the leakage power PDFs of an inverter circuit when the input signal is at 



~ 105 ~ 

a logic low and high respectively. Significant differences in the two PDFs can be seen 

from the graph.  

In order to capture the cell leakage power characteristics, each input state of a logic gate 

needs an independent model. Assuming n is the number of inputs to a gate; it will be n2 

possible states and requires n2 canonical polynomials to model its leakage power 

distributions. If k variational sources need to be considered in the leakage power model, 

then k+1 values (k sensitivity coefficients for all the variation sources and 1 mean leakage 

power value in the lognormal canonical form) need to be stored in the memory for each 

canonical polynomial. Algorithm 2 shows the process to characterize the leakage power 

consumption for the statistical library cell. 

Algorithm 2: Statistical gate leakage power characterization 

Input:  

 

Output: 

Gate static state, desired process parameters under variation 

and their sigma values 

Canonical polynomial of the logarithm of gate leakage power  

1 

2 

3 

4 

 

 

For each gate, each static state 

Sample the gate leakage power and do logarithm 

For each desired process parameter under variation 

Calculate the logarithm of its sensitivity coefficient 

End for 

End for 

 

One look-up-table (LUT) is sufficient to model the process variation effects on cell 

leakage power dissipation. Figure 4-9 shows the general view of the cell leakage power 

model. The rows of the LUT represent different cell states; the first column is for storing 

the mean leakage power values and the other columns indicate all the necessary 

coefficients of the 1st order lognormal canonical form for different variation sources.  
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Figure 4-9 Look-up-table for modelling cell leakage power dissipation. 

 

 

Figure 4-10 shows the LUT, as an example, which stores the coefficients of cell leakage 

power models for a 3-input NAND gate.  

 

Figure 4-10 Leakage power models for a 3-input NAND gate. 
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Figure 4-11 Predicted leakage power PDFs vs. Monte Carlo results of a 2-input NAND gate 

with different input states. 

Figure 4-11 shows the leakage power PDFs of a 2-input NAND gate for the all possible 4 

input states. The histogram is generated by 5000-sampled Monte Carlo simulation as the 

reference distribution, and the solid line is predicted values using the characterized library 

cell. It can be seen that these PDFs are well matched which validates accuracy of the 

proposed leakage power models.  

 

4.6 Summary 

A detailed description for characterising gate leakage power distribution due to the 

process variation effects is outlined in this chapter. The switching power is not considered 

in the cell library because there are still some technical difficulties in modelling this 

performance parameter, especially when taking glitch effects into account. Furthermore, 

the literature shows that the contribution of the leakage power to the total circuit power 
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dissipation is over 50% in the 90nm technology node, and the percentage will easily go 

up with the continuous shrinking of the transistor dimensions. This indicates that the 

unwanted leakage power dissipation has already become a major problem in VLSI 

designs and needs to be modelled before the circuit is fabricated. Therefore, this thesis 

only focuses on the characterization of leakage power dissipation.  

The leakage power is caused by the undesired current flow inside the devices when they 

are in off mode. The subthreshold current and gate leakage current are the two major 

component of the total device leakage current. The traditional simplified analytical 

models for the gate leakage current lose its accuracy when the devices become smaller 

and their characteristics become more complicated. Therefore, the estimation of gate 

leakage power distribution based on these analytical leakage current models becomes 

suspect. On the other hand, the statistical leakage power model, such as the lognormal 

canonical model, becomes more and more popular since it drives the sensitivity of each 

considered variation source based on the SPICE simulation results using BSIM model 

parameters, which are the most accurate data available Furthermore, the computational 

complexity of the statistical models are also much lower than the analytical methods, 

which makes it easier to implement in the cell library.  

The total leakage power distribution of a circuit is the sum of all the individual gate static 

power consumption. Since the leakage power PDF of a gate is in a lognormal shape and 

the sum of lognormal variables has no closed form, the total static power dissipation can 

only be approximated. The recursive static power analysis technique based on the 

Wilkinson’s approximation is employed in the proposed cell library because of its lower 

computational complexity compared with other approaches. All the possible input states 

of a gate will be considered when characterising the cell leakage power distributions, and 

the gate leakage power PDF in each state will be represented by an independent 

lognormal canonical model. Experimental results show that the proposed static power 

modelling approach can precisely capture the leakage characteristics of different gates.  
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CHAPTER 5  

 

CELL LIBRARY IMPLEMATATION AND 

EXPERIMENTAL RESULTS 

 

5.1 Introduction 

In this chapter, the implementation of the cell library and the corresponding experimental 

results will be outlined. The methodology to characterize the higher level digital blocks in 

the cell library will be introduced first in Section 5.2. Having expanded the library to 

include a variety of cells whose complexity ranges from 1 gate to more than 3000 gates, 

large circuit designs can subsequently be efficiently constructed and analyzed with 

respect to the process variation effects. A Computer-Aid Design (CAD) tool has been 

developed using MATLAB [1] and SIMULINK [2] to implement the proposed cell 

library. The details of how to use this tool for the analysis of process variation effects on 

circuit delay and leakage power performance will be described in Section 5.3. 

Subsequently, in Section 5.4, the accuracy and speed of the proposed technique will be 

demonstrated on a 2-stage micropipeline circuit, together with the PDF comparison 

results for all the blocks used in the demonstration circuit. For validation purposes, all the 

experimental results are compared with SPICE based Monte Carlo data. Additionally, the 

pipeline circuit has also been analyzed using traditional flattened SSTA and SPA for 

comparison purposes, which will emphasize the speed advantage of using the cell library 

approach. The final section concludes with a summary of the work outlined in this 

chapter. 

 

5.2 Characterization of Higher Level Blocks 

Having characterized all the standard cells in the library, any circuit can be constructed 

and the corresponding delay performance at each circuit output and the total leakage 

power dissipation distribution can be estimated. However, as the size of present day 

circuit designs is typically very large which may comprise hundreds of thousands of gates, 
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it is inconvenient and inefficient to design and evaluate the circuits at such a low level. 

More complicated functional blocks, such as registers, multiplexers, ALU, decoders etc., 

need to be included in the cell library, so that the process variation effects on circuit 

performance in terms of delay and leakage power can be analyzed at a higher level of 

abstraction, namely architectural level.  

As described in the previous chapters, the characterization of gate cells is based on the 

SPICE simulation runs. The SPICE simulator provides a very accurate prediction of the 

circuit characteristics, but the simulation has been limited to a small circuit, such as logic 

gates, by its computational time. It is very time consuming to run SPICE simulations for 

larger circuits, thus using SPICE based sensitivity to characterise higher level digital 

blocks in the cell library is not feasible. On the other hand, since all the standard gate 

cells have already been established, the higher level digital blocks can be modelled using 

SSTA/SPA analysis results from lower level cells, instead of using SPICE runs. Figure 

5-1 shows a schematic view of variability aware cell modelling framework, which 

illustrates process variation effects propagating from transistor level to architectural level.  

 

Figure 5-1 Schematic view of variability aware cell modelling. 

 

The higher level blocks can be characterised using exactly the same delay and leakage 

power sensitivity analysis algorithms as the standard cell. The only difference is that the 

circuit response environment has changed from the SPICE simulator to the 

variability-aware cells which have already been calibrated in the library. Once a digital 

block has been characterized, it can be used as the standard cell to perform SSTA/SPA at 
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a higher level in a more complex circuit, expanding the cell library to architectural level 

blocks in a hierarchical manner. Since only the variability calibrated results of top level 

digital blocks are used, the models permit a very fast delay analysis to be performed, 

which also makes it more suitable for scaling up to a larger system. Figure 5-2 shows an 

example of the library block characterization flow from standard cell to a ripple carry 

adder. 

 

Figure 5-2 Characterization Flow from Standard Cells to 4-bit Adder. 

 

The only problem is that a more complex block has many input terminals, which may 

lead to a large number of different switching cases. Even though only active switching 

cases of a circuit block, which are the input signal transitions causing the output signal 

change in a circuit, need to be considered in the delay modelling, there still could be 

many of them in some circuits. (If an input signal transition of a circuit causes no change 

on its outputs, then this transition is inactive and the circuit is assumed to be delay free in 

this switching case.) Consequently the memory requirement to model the delay 

distributions in all possible switching cases of a complicated block may be very large. 

However, larger functional blocks always have a lot of symmetry and multiple 

occurrences in the circuit. In Figure 5-2, the ripple carry adder is actually a serial 

connection of multiple full adders, so it can be characterized just by the full adder model. 

During the work of constructing the whole library, most of the blocks can be represented 

using a smaller circuit model, the output delay time is simply a matter of the proportions 

of the model.  
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On the other hand, the memory space for storing the leakage power models of a larger 

circuit block is not as much as for storing the delay models. A completed delay model of 

a block for each switching case is represented by a 3-dimensional LUT as described in 

Chapter 3, and the leakage power model of a block for each static state is just a vector. 

Even though all the possible states of a block need to consider for characterizing its 

leakage power performance, each LUT for leakage model is much smaller than the one 

for the delay model, thus it will not consume too much memory resources. Furthermore the 

output signals of each block used in a circuit will be propagated together with the leakage power 

models. Therefore all gates in the circuit are set into the correct states making the estimation of 

the circuit leakage power distribution as accurate as possible. 

Figure 5-3 and Figure 5-4 show the flow chart for constructing the cell library. Firstly, a 

library contains all the commonly used standard cells needed to be constructed. It begins 

with identifying the sensitive device and environmental parameters under the effects of 

process variations, which will be propagated to high level of design abstraction and 

interfere with the reliability of circuit performance parameters, such as delay and leakage 

power dissipation. In the proposed cell library, theses parameters are assumed as 

Gaussian variables and their variation specification should be predefined before the 

circuit simulation. 

 

Figure 5-3 Flow chart for constructing the standard cell library. 
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Figure 5-4 Flow chart for constructing the function library. 

 

As described in Chapter 2, the process variation effects on the device parameters can be 

extracted from the process-to-device analysis using DoE and RSM techniques in a TCAD 

simulation environment. The compact models for NMOS and PMOS transistors can be 

subsequently generated which contains the mean and sigma values for a variety of device 

parameters. However, the process-to-device variation analysis is omitted in this work, the 

variances of the desired device and environmental parameters are assumed known and 

can be user defined in the cell library. 

Having identified the desired parameters whose variation effects on the circuit delay and 

leakage power dissipation need to be considered, the next step, as shown in Figure 5-3, is 

to create the standard cells. The sensitivity of each identified parameter with respect to 

the circuit delay and leakage power dissipation can be derived using SPICE based 

sensitivity analysis as described in Chapters 3 and 4. The distribution of circuit delay and 

leakage power dissipation can be modelled as a weighted sum of the device and 

environmental parameter variables by their sensitivity factors. These sensitivity values 

will be stored in terms of multiple LUTs for each standard cell. The delay LUTs need to 

be generated considering different input signal slope and output load capacitance values 
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in each switching case. The leakage power LUTs need to be generated for different static 

cell states. The SSTA and SPA protocols are also needed in characterizing the standard 

cells for propagating their delay and leakage power distributions to other cells in the next 

stage of a circuit. As shown in Figure 5-3, the SPICE based sensitivity analysis of 

different standard cells will be continually executed until there is no other gates need to 

be characterized. A standard cell library has now been created which can be used to build 

up any desired circuit and subsequently analyze the effects of process variation on its 

delay and leakage power performances. 

In order to analyze the process variation at a higher level of design abstraction, a function 

library comprising more complicated digital blocks needs to be characterized as shown in 

Figure 5-4. The created standard cell library in Figure 5-3 will become a sub-library and 

the foundation models for the new function library. New digital blocks will be 

characterized using the existing cells in the library using the same methodology as for the 

standard cell, but in an SSTA and SPA simulation environment. The SPICE simulator 

will lose its computational efficiency when performing sensitivity analysis for a larger 

circuit. Memory space optimization may be needed for some circuit blocks with a large 

number of inputs which requires more LUTs to consider all possible delay and leakage 

power distributions. The number of LUTs required for the circuit blocks with more 

symmetry and identical subcircuits can be optimized to be very small, thus a large amount 

of memory space can be saved. Each characterized digital block will be inserted in the 

function library and used to create new blocks. Circuit blocks with different complexities 

will be built up step by step. Smaller blocks can be modeled using gate cells, and larger 

blocks can be modeled using smaller blocks, and so on. Therefore, the function library 

can thus be expanded until all the necessary blocks for the desired circuit designs are 

included in it. 

Figure 5-5 shows the entity of a circuit block in the proposed function library, which 

illustrates a general view of its input and output terminals. Like the circuit blocks in other 

CAD tools, the library cell should be able to perform its normal functionality when 

needed in a circuit. Therefore, the input and output pins of the Boolean digital signals are 

included in each block in the library. Furthermore, in order to analyze the process 

variation effects on circuit delay, the arrival time distributions of all the input signals are 
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also required for a circuit block. The input signal slopes and output load capacitances 

need to be specified to address the correct delay models inside the block. Based on the 

SSTA protocol and the corresponding built-in delay LUTs of the block, the delay 

distribution of each output signal can be computed. On the other hand, the leakage power 

distribution of the block can be generated based on the Boolean signal inputs and the 

built-in leakage power LUTs. Each static state of the block corresponds to an independent 

leakage power LUT, which can be outputted for further SPA. Finally, each output signal 

of a functional block in the library needs to be outputted together with its transition times 

for the SSTA in the next stage of a circuit.  

 

Figure 5-5 Circuit block entity in the library. 

 

All the main cells which have been characterized in the proposed cell library are listed in 

Table 5-1, with the complexity ranging from a single gate to more than 3272 gates. For 

demonstration purposes, a 2-stage pipeline circuit will be analyzed using this cell library 

and the experimental results will be shown and discussed in Section 5.4 
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Cell Type Cell Name 
No. of 

gates 

No. of 

transistors 

Logic Gate 

Inverter 1 2 

2-input and 3-input NAND gate 1 4 / 6 

2-input and 3-input NOR gate 1 4 / 6 

2-input and 3-input AND gate 1 4 / 6 

2-input and 3-input OR gate 1 4 / 6 

2-input XOR gate 1 10 

Buffer (The length is user defined) variable variable 

Storage Element 

D-flip-flop 6 34 

T flip flop 6 36 

Register (The word length is user defined) variable variable 

16x16 Register File 2370 9430 

Decoder 
3-8 Decoder 21 112 

4-16 Decoder 46 243 

Multiplexer 

4-1 Multiplexer 12 42 

8-1 Multiplexer 28 96 

16-1 Multiplexer 60 198 

Asynchronous 

Element 

Muller-C Element 1 6 

Asynchronous Switch 2 10 

Capture and Pass Latch 3 36 

Toggle Element 13 84 

Pipeline Register 46 247 

Other Blocks 

16-bit Adder 178 832 

ALU 578 2788 

2-stage pipeline circuit 3272 18902 

Table 5-1 Main blocks in the cell library. 

 

5.3 Using the Cell Library and the Corresponding Tools 

The proposed cell library is implemented in MATLAB and SIMULINK. MATLAB 

(matrix laboratory) is a numerical computing environment and fourth-generation 

programming language. It allows matrix manipulations, plotting of functions, processing 

data and implementation of algorithms, which are very useful and convenient in 
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developing the cell library. SIMULINK is a commercial tool for modeling, simulating 

and analyzing multidomain dynamic systems. The main advantage of using SIMULINK 

in developing the cell library is that it provides a graphical block diagramming interface 

and a set of customizable block libraries, which permits the visualization of all modeled 

functional blocks and the schematic of the circuit. On the other hand, SIMULINK shares 

the processing environment of MATLAB and can either drive MATLAB or be scripted 

from it. Therefore, a set of MATLAB functions can be created for the presetting and post 

data processing of the circuit analyzed using the cell library. 

 

Figure 5-6 Flowchart for the analysis of process variation effects using the cell library. 

 

Figure 5-6 shows the flowchart for the analysis of the process variation effects on circuit 

delay and leakage power dissipation using the cell library. It begins with an initialization 

process for setting up the circuit simulation environment. The LUTs for all the library 

cells will be subsequently loaded. The following step is to build up a circuit using the 

existing library cells, and set the pre-simulation parameters, such as input signal stimulus, 

input signal slopes and output load capacitances. The delay distribution of each circuit 

output signal and the leakage power distribution of the whole circuit can be generated 

after simulation, and the PDFs can be plotted using the corresponding functions in the 

proposed cell library tool set. In the following subsections, details about using the cell 
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library and a variety of functional tools for the analysis of process variation effects on 

circuit delay and leakage power performance will be outlined below. 

 

5.3.1 Initialization function “init” 

Before using the cell library, several settings need to be initialized. Basically there are 4 

sets of parameters that need to be defined by the user in the initialization phase which is 

achieved using the “init” function in the cell library tool suite. These initialization settings 

are shown below: 

(1) Choose which parameters are to be the global variation sources. 

(2) Set the range of variation for the global variables. 

(3) Choose which parameters are to be the local variation sources. 

(4) Set the range of variation for the local variables. 

For demonstration purposes, the variation sources comprise 5 device and environmental 

parameters, namely, supply voltage Vdd, operating temperature T, effective transistor 

channel length Leff, threshold voltage for N-type device Vthn and threshold voltage for 

P-type device Vthp. Firstly, the desired global variation sources need to be chosen for the 5 

available parameters. Thereafter the range of variation for each global parameter is 

defined. Normally, the parameter variation should be within 30% of its mean values, if it 

is over 30%, the library cells can still work but the analysis accuracy cannot be 

guaranteed. The next 2 steps of the initialization program are exactly the same as the first 

2 steps, but define the specification for local variables. When the initialization is finished, 

a MATLAB data file “Ini_data.mat” will be loaded into MATLAB workspace and 

imported by the cell library automatically. This file comprises the delay and leakage 

power LUTs for the corresponding library cells which may be used for the further process 

variation effect analysis. The data file can be modified by users in cases of adding new 

cells to the library or changing the semiconductor technology nodes. On the other hand, 

the parameters predefined during initialization process will also be loaded into each 

circuit block in the cell library, thus only the LUTs for the selected parameters will be 

active, the LUTs for the unselected parameters will be disabled to improve the 

computational efficiency. 
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5.3.2 Circuit construction using the library cell 

An example of the SIMULINK cell library interface is shown in Figure 5-7. Since 

SIMULINK shares the work space with MATLAB, the pre-loaded LUTs for the delay 

and leakage power models during the initialization can be used for all library cells. As 

described in the previous subsection, all the user defined parameters are also stored in the 

MATLAB workspace. Therefore, all this data can be treated globally which leads to a 

significant saving in memory space. 

 

Figure 5-7 Cell library in SIMULINK. 

 

Each cell in the library has an extra output pin, Leak, which represents the leakage power 

dissipation. The library cells can be directly dragged from the library into a new 

SIMULINK model file to build up any desired circuit. Figure 5-8 shows an example 2-1 

multiplexer circuit constructed using the library of standard cells. 

 

Figure 5-8 Constructing a 2-1 multiplexer using the library cells.  
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As shown in the above figure, the leak terminals of all the cells in a circuit are required to 

be connected together, then is achieved using the matrix concatenate block in 

SIMULINK. Therefore, the leakage power distributions of all the cells in the circuit will 

be outputted as a data matrix, where each row represents an independent leakage power 

model, and the number of the rows is the number of the cells used in the circuit. This 

matrix will be automatically loaded into the MATLAB workspace, the total leakage 

power distribution of the circuit will be further computed by summing all the individual 

power models together in MATLAB. Since the computational speed of MATLAB is 

much faster than SIMULINK, it is more efficient to take the summation of all the leakage 

power models in MATLAB workspace rather than in SIMULINK. 

 

5.3.3 Pre-simulation setting 

After building up the desired circuit, a number of pre-simulation setting processes are 

required to specify the input and operating conditions for the simulation. First of all, the 

input stimulus needs to be defined. All the signals including the input stimulus of a circuit 

built using the cell library are modeled as a matrix, S, as shown in Figure 5-9. The signal 

matrix contains the information of the Boolean signal data, the signal transition times and 

the signal arrival time distribution models which are in the same canonical polynomial 

form as the cell delay models. 

The first row of the Matrix S represents the digital signal data sequence, in which there 

are only two legitimate logic values, ‘1’ and ‘0’. The red broken line in the figure is the 

signal represented by the Row 1 in Matrix S. The index of the columns in S indicates the 

corresponding normalized signal timing intervals. Since the circuit timing and power 

analysis using the cell library only focuses on the delay time during signal transition and 

the circuit in the static state, the time difference between two adjacent digital signal 

values is not important. However, a real time signal can be defined in MATLAB and 

SIMULINK if it is necessary. The second row of the signal matrix shown in Figure 5-9 is 

the signal transition time for the corresponding digital data in the first row. If there is no 

transition for the data located at S(1, x), the value S(2,x) should be zero. 
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Figure 5-9 Matrix representation of the digital signals for library cells. 

 

The coefficients of the signal arrival time model are stored from the 3rd row to the last row 

of the Matrix S. The 3rd row of Matrix S represents the mean delay time of the signal, the 

last row represents the combined local delay variables of the signal arrival time 

distribution for the corresponding transition, and the rest of the rows from Row 4 and 

Row (n+3) are for storing the n global delay variables, where n is user defined value 

during the initialization process, in this case the maximum value of n is 5 (Vdd, Leff, T, Vthp 

and Vthn) as described in the previous subsection. 

The input stimulus for a circuit should be in the same matrix format shown in Figure 5-9. 

However, since this matrix is for the primary inputs of a circuit, since no variation exists, 

all the values below Row 2 of the matrix should be zeros. The function “InputGen” in the 

cell library tool set is used to generate the input matrix of a circuit under simulation, 

which defines the primary input signal sequences and their slopes. Figure 5-10 shows an 

example of using “InputGen” to generate a “0 1 1 0 1 0” data sequence, as a primary input 

stimulus to a circuit, with a rising transition time equal to 0.6ns and falling transition time equal 

to 0.8ns. 



~ 124 ~ 

 

Figure 5-10 Using “InputGen” to generate input signal for a circuit under simulation. 

 

Additionally, in order to make the statistical timing analysis result as accurate as possible, 

the load capacitance of each cell in a circuit needs to be defined. As the load capacitance 

of a cell is the sum of the input capacitances of the fan-out cells, the input capacitance 

values of all input terminals of all cells in the library are also stored in the initialization 

data file, which has already been loaded into the workspace in MATLAB. This makes it 

easier when setting the load capacitance of each cell. A meaningful constant name can be 

used rather than input a capacitance value which probably needs to be evaluated in other 

CAD tools, such as SPICE. Additionally, the mathematical expressions, such as addition, 

can be directly used to combine multiple fan-out load capacitances when setting the cell 

load condition in a circuit. 

 

5.3.4 Circuit simulation and PDF plotting 

Having finished all the pre-simulation setting, the circuit built using the library cells is 

ready for the simulation. To illustrate the analysis principle of the process variation 

effects on circuit delay and leakage performance, the block diagram of an example of a 

2-input NAND gate, shown in Figure 5-11, will be considered. All the circuit blocks in 

the cell library are constructed in a similar structural manner to the NAND cell, but with 

different signal routing and LUT addressing protocols corresponding to their 

functionalities.  

As shown in the figure, there are 2 inputs and 2 output terminals for the NAND gate cell. 

A and B are the two input signals, and the Out is the output signal of the NAND gate. All 

these 3 signals are in a data matrix form as shown in Figure 5-9. The leak terminal, as 
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described before, will output the gate leakage power distribution model. The gate cell is 

generally divided into two parts, namely, leakage power and delay segments which are used to 

generate the leakage power and delay distributions due to the selected process parameter 

variations respectively. 

 

Figure 5-11 SIMULINK model file of a 2-input NAND gate. 

 

As shown in Figure 5-11, the leakage power segement includes a static power LUT block 

(SP_lookup) and a matrix concatenate. When signal A and B arrive at the NAND gate cell, 

they will be assigned to the SP_lookup block. Subsequently, the corresponding canonical 

leakage power polynomial comprising the values of mean leakage power and the 

coefficients for the selected global and local variation sources defined during the 

initialization process, will be addressed from all the possible gate leakage power models 

according to the input signals A and B. The matrix concatenate block is used to combine 

the individual components of the leakage power model into a complete model in a matrix 

form, as the output power distribution of the cell at its Leak terminal. The output leakage 

power distributions of all the cells in a circuit are in the same matrix form, and they will 

be summed together using SPA technique to calculate the total leakage power distribution 

of the circuit after simulation. 
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The delay segement in the NAND gate cell is more complicated than the leakage power 

segement, which comprises the NAND gate function block, delay LUT block 

(Delay_Lookup), statistical max block and statistical summation block. The NAND block 

in Figure 5-11 is used to generate the cell output digital signal, which is the first row of 

the signal matrix as described in Section 5.3.4. The output values also play an important 

role in the protocol of delay LUT selection for the whole cell, since output transition case 

not only depends on the input signals, but also the previous output value. Therefore, both 

the input and output signals of the NAND block are assigned to the delay LUT block. The 

output delay distribution of the cell should be the statistical sum of the cell delay and the 

input signal arrival time, since the input of the cell may not be from a primary input and a 

number of cell delay times have already been accumulated on the input signal. When 

there are multiple input signals merging into a cell, a statistical maximum operation, 

achieved using the statistical max block, is needed to combine the timing distributions of 

multiple input signals of the cell into a single canonical delay model. Subsequently, the 

input timing distribution models and the addressed cell delay models can be summed via 

the statistical summation block to compute the final output signal arrival time distribution 

of the NAND cell. Additionally, another matrix concatenate is used to combine the 

output timing model with the output values and the output signal transition times together 

into the standard signal matrix at the final stage of the cell construction. 

 

Figure 5-12 A general view of the simulation of a 2-1 multiplexer circuit. 

 

All the circuit blocks in the cell library are built in the same structural manner as Figure 

5-11, then the delay and leakage power distributions can be propagated in a similar way 
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through the circuit during simulation so that the process variation effects on them can be 

analyzed. Figure 5-12 shows a general view of the simulation of a 2-1 multiplexer circuit 

built using the library cells in SIMULINK. 

The red-coloured part of the above figure represents the summation of leakage power 

distribution using SPA technique for all the cells in the circuit, and the green-colored part 

indicates the timing distribution propagation through the circuit using block-base SSTA 

approach during simulation. On the other hand, the functionality of the circuit can also 

been simulated using the proposed cell library tool set.  

 

Figure 5-13 Simulation results of the 2-1 multiplexer circuit (a) Delay PDF plot;  

(b) Leakage power PDF plot. 

 

 

Figure 5-14 PDF plots comparison with MC data (a) Delay distribution;  

(b) Leakage power distribution. 
 

(a) (b) 

(a) (b) 
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The delay and leakage power distribution of a simulated circuit cannot be viewed directly 

in SIMULINK, since they are in a data matrix form. However, these parametric models 

can be transferred from SIMULINK into the MATLAB workspace. The functions 

“PlotDelay” and “PlotSP” in the cell library tool set can be used to plot the delay and 

leakage power PDF results of the circuit simulation respectively based on the transferred 

matrices from SIMULINK. Figure 5-13 shows two examples of PDF plots for the 2-1 

multiplexer circuit. Additionally, the SPICE based Monte Carlo results of a circuit can be 

loaded into MATLAB. The functions “HistDelay” and “HistSP” in the cell library tool set 

can be used to generate the histogram of delay and leakage power distributions based on 

the imported MC data. These histograms can be subsequently used to match the 

corresponding simulated PDF results using the cell library for validation purpose. Figure 

5-14 shows the PDF comparison graphs of the same multiplexer circuit. 

In this section, the full analysis flow of the process variation effects on circuit delay and 

leakage power performance using the proposed cell library tools has been outlined. It 

starts with an initialization process, where the variation sources and the corresponding 

variation specifications can be defined for every cell in the library. Subsequently, the 

desired circuit can be constructed using the library cells and a set of pre-simulation 

settings will be followed, including the generation of inputs signal stimulus and load 

capacitance specification of each cell in the circuit. The properly setup circuit can be 

simulated in SIMULINK. The functional output signals and the corresponding delay 

distributions of the circuit will be stored in a data matrix form. The leakage power 

distributions will be outputted through a leak terminal. The functional simulation results 

can be viewed directly in SIMULINK, and the PDF results can be plotted in MATLAB 

by using the corresponding functions in the cell library tool set. Histograms of MC data 

can also be generated for validation purpose. In order to illustrate the use of the proposed 

cell library in a larger circuit, a 2-stage pipeline circuit has been simulated. In the next 

section, a number of experimental results will be shown, and the accuracy and speed 

analysis compared with MC and traditional flattened statistical approaches will also be 

discussed. 
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5.4 Experimental Results  

As the demonstration vehicle, a 2-stage pipeline circuit has been constructed and 

simulated using the cell library. The experimental results for the main blocks used in the 

pipeline circuit will be shown and discussed in this section. For initialization purposes, 

the supply voltage Vdd and effective channel length Leff were chosen as the global variation 

sources; n-type threshold voltage Vthn and p-type, Vthp, are selected as local variation 

sources. The mean and 3 sigma values of these parameters are shown Table 5-2. All these 

variables are assumed to have a Gaussian distribution. All the simulations are run using 

an Intel dual core 2.0 GHz processor. 

Parameter Mean value 3 sigma value Variation 

Vdd 1 v 0.15 v ±15% 

Leff 45 nm 9 nm ±20% 

Vthn 0.397 v 0.0595 v ±15% 

Vthp 0.339 v 0.0508 v ±15% 

Table 5-2 Experimental parameters and the range of variations.  

 

 

The block diagram of the 2-stage pipeline circuit is shown in Figure 5-15, which is an 

event-controlled two-phase bounded data system [3]. Both the falling and rising signal 

transitions can trigger this pipeline circuit. When the request (req) signal event from the 

previous stage is sent to the pipeline cell, an acknowledgement (ack) signal event will be 

generated back to the previous stage. Simultaneously, a delayed ack signal event will be 

sent to the next stage as the request signal event of the current pipeline cell, and then a 

new ack signal event will be fed back to the pipeline cell from the next stage. Only if both 

the req event from previous stage and the ack event from the next stage have been 

received by the pipeline cell, the new data which is assumed to be ready during the last 

pipeline cycle will be latched into pipeline registers beginning a new pipeline cycle. The 

delay element between each pipeline stage must be larger than the delay of combinational 

logic circuit at each stage in order to make sure all the input data is stable at the beginning 

of each cycle. 
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Figure 5-15 Block diagram of the 2-stage pipeline circuit. 

 

In Figure 5-15 the pipeline cell is implemented using Muller-C elements, Toggle 

elements and Capture-Pass Flip Flops (CP Flip Flop) [1]. The instruction contains two 

4-bit addresses for the two operands A and B, a 4-bit destination address for the ALU 

result, and a 3-bit operation code. The instruction decoder is used to decode the 3-bit 

operation code into an 8-bit one-hot op code for the ALU; the register file contains 16 

registers with 16-bit word width (16x16 bits) and two 4-to-16 address decoders for 

storing and addressing the operands A and B; the ALU circuit can execute 8 operations 

which are addition, left/right shift, rotation, inversion, logic AND, logic OR and exclusive 

OR (XOR). 

The rest of this section will discuss the experimental PDF results for the delay and 

leakage power performance of all the blocks used in the pipeline circuit. For validation 

purposes, the demonstration circuit is also constructed using the SPICE simulator, and the 

corresponding process variation effects on its delay and leakage power performance are 

analyzed using the MC simulation with 5000 samples, whose results are used as the 

reference distributions of the circuit performance parameters. Therefore, the predicted 

PDFs can be matched with MC data so that the accuracy of the simulation results using 

the cell library can be verified. The PDF comparison graph will be shown block by block 

in the following subsections. The numerical results in terms of comparisons of the mean 

and sigma values between predicted distributions and MC data will be listed at the end of 

this section, as well as the corresponding computational time for both analysis techniques. 

Additionally, the computational time for the traditional flattened statistical analysis of the 
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demonstration circuit will also be listed. By comparing these experimental results, it can 

be shown that the proposed cell library can maintain an acceptable error rate of mean and 

sigma values, within 5% compared with MC data, for all the circuit blocks used in the 

pipeline circuit, and a rapid analysis speed which is at least 50 times faster than traditional 

statistical approaches. 

 

5.4.1 Register 

The instruction register in the pipeline circuit is used to store the instruction data for the 

next processing unit, which is made up of D-flip-flops. The D-flip-flop captures the value 

of the D-input at a sensitive edge of the clock cycle, such as rising and falling edges, and 

the captured value becomes the Q output. At other times, the output Q does not change. 

Figure 5-16 shows the circuit and symbol of a positive-edge-triggered D-flip-flop. 

Typically, most D-flip-flops in IC design have the preset and clear function, which forces 

the output Q to be set or reset.  

 

Figure 5-16 A positive-edge-triggered D-flip-flop [4]. 

 

 

For the sequential elements, such as the D-flip-flop, their circuits normally involve 

several feedback signals. This make the statistical timing analysis more complicated. For 

a gate in a sequential circuit, the statistical maximum of it inputs signal arrival time 

distributions need to consider the output signal delay distributions of the same gate, 

which will be fedback to the input gate terminals in a very short time. Therefore, when 

the sensitive clock edge arrives, it may require numerous statistical operations to calculate 

the output delay response using SSTA. On the other hand, the complicated correlations 

among the internal signals in the sequential circuits make the accuracy of SSTA decrease 
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under the linear assumption of the statistical maximum operations. Additionally, the 

signal routing protocol for such a complicated block in timing estimation also becomes 

more difficult to write. In order to improve the timing analysis accuracy and 

computational efficiency, all the sequential elements in the cell library are modelled as 

the standard cells, which use the SPICE based sensitivity analysis results to model their 

delay distributions rather than SSTA using the existing gate cells. Since the typical circuit 

size of sequential elements, such as flip flops, is quite small (normally comprises 4 to 8 

logic gates), running the SPICE simulations on them will not consume too much time.  

 

Figure 5-17 Delay PDFs of a D-flip-flop when (a) Q is rising and Cload=4 Cunit;  

(b) Q is falling and Cload=2 Cunit. 

 

Figure 5-17 shows two PDFs comparison graphs between the 5000 sample Monte Carlo 

simulation results and the predicted delay distributions of output signal Q of a D-flip-flop 

at different input and load conditions. The output signal Q of the D-flip-flop is at rising 

and falling transition in Figure 5-17 (a) and (b), and the load capacitance (Cload) of Q is 

set to 4 and 2 unit load values (Cunit) respectively, where the unit load is the input 

capacitance value of a static CMOS inverter circuit which has been introduced in Chapter 

3. It can be seen from the above graphs that the predicted delay PDFs and the MC data 

are well matched, which indicates that the D-flip-flop block in the cell library can 

accurately model the delay characteristics of the actual circuit. On the other hand, the 

leakage power model of the D-flip-flop block in the library can also be constructed using 

SPICE based sensitivity analysis. Figure 5-18 show two leakage power PDF comparison 

graphs of the D-flip-flop block at different static states.  

(a) (b) 
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Figure 5-18 Leakage power PDFs of a D-flip-flop when (a) all inputs are at logic high;  
(b) all inputs are at logic low. 

 

The instruction register in the pipeline circuit is made up of 16 D-flip-flops. The global 

signals, clock, preset and clear, are shared by all the flip flops in the register. The register 

is used to store the 16-bit instruction for every pipeline cycle, comprising a 3-bit 

operation code which defines the task for the following computing process, two 4-bit 

addresses for the operands, a carry bit and a 4-bit destination address for the computation 

result. 

 

5.4.2 Decoder 

The instruction decoder in the pipeline circuit is a 3-8 decoder, which is used to convert 

the 3-bit operation code into an 8-bit one hot code for the ALU circuit in the next pipeline 

stage.  

 

Figure 5-19 The circuit of 3-8 decoder [5]. 

 

(a) (b) 
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The decoder circuit is shown in Figure 5-19. The input signals S0, S1’ and S2’ are used 

for enable purposes, the decoder is only active when S0=’1’ and S1’=’0’ or S2’=’0’. The 

input signals A0 to A2 indicate a 3-bit binary number, in which A0 represents the least 

significant bit and A2 represents the most significant bit. The 8-bit output signal from Y0 

to Y7 indicates the corresponding 8 numbers represented by the binary input.  

Figure 5-20 shows the delay and leakage power PDF comparison graphs of the decoder 

block. The delay distributions are generated at the most significant bit of the decoder 

output signals (Y7). The leakage power distributions are generated when all the input 

signals of the decoder are at logic high state. 

 

Figure 5-20 (a) Delay PDF comparison graph of a 3-8 decoder; (b) Leakage power PDF 

comparison graph of a 3-8 decoder. 
 

The 3-8 decoder block in the cell library can be further used to model the 4-16 decoder as 

the circuit shown in Figure 5-21 which will be used to decode the 4-bit data address for 

the register file. 

 

Figure 5-21 Constructing a 4-16 decoder using two 3-8 decoders [5]. 
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5.4.3 Register File 

The Register File (RF) block in the pipeline circuit is the made up of 16 registers. Each 

register can store a 16-bit data. Therefore, it requires 256 D-flip-flops in this block and a 

4-bit signal to address each register. Figure 5-22 shows the block diagram of the RF 

circuit with two 16-bit outputs for exporting stored data to the external circuit (Read) and 

a 16-bit input for writing external data to the RF (Write). The write enable signal (WR) 

controls the read/write state of the RF: WR=0 indicates “Read” and WR=1 indicates 

“Write”.  

 

Figure 5-22 Block diagram for the Register File circuit. 

 

 

Figure 5-23 (a) Delay PDF comparison graph of the register file; (b) Leakage power PDF 

comparison graph of the register file. 
 

Figure 5-23 shows the delay and leakage power PDF comparison graphs of the RF block. 

The delay distributions are generated at one stage of the register when its data is being 
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read. The leakage power distributions are generated when the write enable (WR) signal is 

at logic low state and all the other input signals of the RF are at logic high state. 

 

5.4.4 ALU 

The ALU in the pipeline circuit can perform 8 operations as shown in Figure 5-24. It is 

controlled by an 8-bit one hot operation code. The word length of the two operands and 

the output data of the ALU circuit is 16 bits. There is also a flag bit at the ALU output as 

the carry signal for the Add operation.  

 

Figure 5-24 Block diagram for the ALU circuit. 

 

 

Figure 5-25 (a) Delay PDF comparison graph of the ALU circuit; (b) Leakage power PDF 

comparison graph of the ALU circuit. 
 

Figure 5-25 shows the PDF comparison graphs for the ALU circuit. The delay 

distributions are generated at the most significant bit of the ALU output signal when the 

add operation is processed. The active signal path of the adder inside the ALU circuit is 
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longer than the other functional blocks. The leakage power distributions are generated 

when all the input signals to the ALU circuit are at a logic high state.  

 

5.4.5 Asynchronous pipeline register 

The demonstration pipeline circuit is an asynchronous system, and the pipeline registers 

are controlled by signal events rather than the specific sensitive signal edges, such as 

rising and falling edges. The basic asynchronous cell used in the pipeline circuit is the 

well-known Muller C-element, whose circuit is shown in Figure 5-26. The Muller 

C-element acts as an AND element for events. When both inputs to a C-element are in the 

same logic state, the logic state will be propagated to the output signal. If the two inputs 

of a C-element differ, it will use the internal storage to retain its previous state and the 

output value also remains unchanged. The C-element is typically used in the pipeline 

circuit to capture both events of the request and acknowledge signal so allowing the 

register to pass data and be processed during a pipeline cycle. 

 

Figure 5-26 Circuit for a Muller C-element [6]. 
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Figure 5-27 Switch element for the asynchronous pipeline register [3].  

 

Figure 5-27 shows another basic element in the asynchronous pipeline circuit, the 

event-controlled switch [3], which will be further used in constructing an event-controlled 

storage element. In the transistor implementation of the switch is made of both the true 

and the complement forms of its control signal, C and ~C, which implies an inversion of 

the control signal not shown explicitly in the figure. The rising and falling transitions of 

the control signal C will let the input data X and Y propagate to the output Z alternately.  

Using the switch circuit, an event-controlled storage element with the pre-clear terminal 

can be constructed as shown in Figure 5-28, which is also known as CP (Capture and Pass) 

flip flop [3]. Each pipeline register contains a number of event-controlled storage 

elements, each flip flop has a clear terminal which can be used to pre-reset the register for 

initialization purposes. The signals C (Capture) and P (pass) act like the request (req) and 

the acknowledgement (ack) for the pipeline register in a hand shaking protocol, which are 

connected to a XOR gate. When an event on C arrives which indicates a request to 

transfer data, it will trigger the switch circuits to capture the input data into the flip flops. 

After a certain timing period, the event on the signal P will arrive which indicates the 

acknowledgement of the data transfer. Subsequently, it triggers the switch circuit back to 

an internal inverter loop which will let the data pass and be processed during the 

corresponding pipeline cycle. The toggle element in Figure 5-28, which alternately steers 
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events to its outputs starting with the dot, is used to generate the capture done (Cd) and 

pass done (Pd) signals for the handshake signals to the previous and next pipeline stages. 

 

Figure 5-28 Event-controlledled storage register.  

 

Figure 5-29 shows the micropipeline without processing, which is built up using the 

event-controlled registers. The circuit uses the bundled data interface, in which the delay 

time between any adjacent pipeline stages should be longer than the required processing 

time of the combinational logic circuit between two pipeline registers. This allows the 

registers enough time to capture the valid input data during each pipeline cycle. Figure 

5-30 shows the functional simulation result of an event-controlled pipeline register. 

 

Figure 5-29 Micropipeline circuit without processing [3]. 
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Figure 5-30 Functional simulation result of the asynchronous pipeline register. 

 

Figure 5-31 shows the delay and leakage power PDF comparison graphs for a pipeline 

register block with a delay element using inverters. The delay distribution analysis results 

due to the process variation effects of the pipeline register and the corresponding 

processing circuits can be estimated using the proposed cell library blocks. This will help 

the designer to decide how much delay is needed in each pipeline stage to make the whole 

system work without timing errors.  

 

Figure 5-31 (a) Delay PDF comparison graph of the pipeline register; (b) Leakage power 

PDF comparison graph of the pipeline register. 

 

5.4.6 Analytical experimental results 

Table 5-3 and Table 5-4 list the mean/sigma values of the predicted delay and leakage 

power PDFs using the cell library and the reference PDFs generated by Monte Carlo 
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simulation for the main blocks used in the pipeline circuit, as well as the corresponding 

error analysis. 

Blocks 
Number 

of Gates 

Cell Library 
Monte Carlo  

(5000 sample) 
Error (%)  

μ (ps) σ (ps) μ (ps)  σ (ps)  μ σ 

Muller C Element 1 146.81 21.60 146.13 21.28 0.46 1.48 

D-flip-flop 6 131.76 8.87 133.14 9.30 1.03 4.67 

Toggle Element 13 245.53 19.36 249.77 20.27 1.70 4.50 

3-to-8 Decoder 21 191.04 12.95 188.64 12.34 1.26 4.65 

Pipeline Registers 46 196.42 17.62 197.41 16.35 0.50 4.78 

Delay Element 50 988.16 77.65 980.61 82.50 0.77 4.88 

Multiplexer 60 525.43 46.67 513.99 45.97 2.22 1.51 

Full Adder 178 404.91 22.86 404.78 22.28 0.03 2.25 

ALU 578 781.43 61.03 776.61 62.48 0.62 2.32 

Register File 2370 318.16 28.32 315.68 27.79 0.79 1.90 

 Pipeline Circuit 3272 1380.2 98.45 1364.75 96.64 1.14 1.88 

Average Error 0.96 3.53 

Table 5-3 Delay accuracy comparison with SPICE-based Monte Carlo simulation. 

 

Blocks 
Number 

of Gates 

Cell Library 
Monte Carlo 

(5000 sample) 
Error (%)  

μ (w) σ (w) μ (w) σ (w) μ σ 

Muller C Element 1 10.04 n 3.88 n 10.06 n 4.02 n 0.26 3.48 

D-flip-flop 6 48.85 n 16.19 n 48.47 n 16.64 n 0.78 2.70 

Toggle Element 13 120.07 n 34.59 n 119.85 n 35.88 n 0.18 3.60 

3-to-8 Decoder 21 304.37 n 75.65 n 301.94 n 76.95 n 0.80 1.69 

Pipeline Registers 46 522.83 n 136.61 n 525.09 n 140.77 n 0.43 2.96 

Delay Element 50 318.49 n 80.23 n 317.95 n 82.11 n 0.17 2.29 

16-to-1 Multiplexer 60 706.20 n 171.68 n 702.47 n 176.61 n 0.53 2.79 

Full Adder 178 1.24 μ 0.30 μ 1.23 μ 0.31 μ 0.75 1.31 

ALU 578 5.60 μ 1.30 μ 5.56 μ 1.32 μ 0.72 1.52 

Register File 2370 19.03 μ 4.68 μ 18.77 μ 4.74 μ 1.39 1.27 

 Pipeline Circuit 3272 27.14 μ 4.86 μ 26.32 μ 4.93 μ 3.12 1.42 

Average Error 0.83 2.28 

Table 5-4 Leakage power accuracy comparison with SPICE-based Monte Carlo simulation. 

 

The simulation results of the pipeline circuit using the proposed cell library compared 

favourably in terms of accuracy with respect to 5000 sample Monte Carlo simulations. 
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The error in the mean and standard deviation predictions for propagation delay were less 

than 2% and 5% respectively, although in the later case it was typically less than 3%. 

Regarding the leakage power the maximum error of the mean value was just over 3% but 

typically below 1%, the error in standard deviation was in general less than 3%.  

Blocks 
Number 

of Gates 

Computation Time  

(Days: Hours: Minutes: Seconds) 

Speed-up Factor 

compared with 

Cell Library MC SSTA/SPA MC SSTA/SPA 

Muller C Element 1 0.34 s 15m: 29s 0.34 s 2,732 1 

D-flip-flop 6 0.38 s 40m: 23s 3.25 s 6,376 8.5 

Toggle Element 13 0.49 s 58m: 50s 6.67 s 7,204 13.6 

3-to-8 Decoder 21 0.80 s 2h 7m: 14s 11.8 s 9,543 14.8 

Pipeline Reg 46 0.55 s 4h: 46m: 26s 7.01 s 31,247 12.7 

Delay Element 50 0.33 s 2h: 54m: 59s 15.67s 31,815 47.5 

16-to-1 

Multiplexer 
60 0.99 s 6h: 24m: 21s 21.45 s 23,294 21.7 

Parallel Adder 178 1.79 s 1d: 10h: 29m 25.4 s 69,352 14.2 

ALU 578 2.50 s 3d: 4h: 8m 33.9 s 109,632 13.56 

Register File 2370 0.96 s 13d: 0h: 30m 98.7s 1,171,875 102.8 

Pipeline Circuit 3272 3.27 s 33d: 15h: 49m 166.1 s 889,340 50.8 

Table 5-5 Computational time comparison. 

 

Furthermore, the proposed cell library is also much more efficient compared with MC 

simulation in analyzing the process variation effects on circuit performance; it would take 

a month to run a 5000 sampled MC simulation for the pipeline circuit whereas the cell 

library only requires a few seconds. Table 5-5 lists the computation time comparison 

results for both the cell library and Monte Carlo PDF generation techniques. 

Additionally Table 5-5 also compares the CPU time between the cell library and 

traditional flatten SSTA and SPA approaches; it shows that using the cell library is also 

much faster in computing the delay and leakage power distribution of circuits over 

traditional SSTA and SPA approaches. The speed-up factor is highly related to the 

regularity of the circuits. For example, the computation time for the performance analysis 

of the Register File (RF) block is at least 100 times faster than SSTA and SPA; this is 

because there are a large number of identical digital blocks (registers) in the circuit of the 

RF which can be represented by a single model block. On the other hand the speed-up 

factor for the decoder block is only around 10 since most of the decoder circuit is 
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modelled at gate level. The experimental results show that the overall speed-up factor for 

the whole demonstration pipeline circuit is more than 50. On the other hand, since the 

circuit blocks in the library are characterised using the SSTA and SPA based sensitivity 

analysis technique, the accuracy of the analysis of process variation effects using 

flattened SSTA and SPA should be the same as the analysis using the cell library, which 

is shown in Tables 5-3 and 5-4. Figures 5-32 to 5-34 show the graphic views of the 

analytical experimental results for the main blocks using in the pipeline circuit, including 

the error analysis and computational time comparison. 

 

Figure 5-32 Error analysis of the experimental results. 
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Figure 5-33 Computational speed compared with MC simulation. 

 

Figure 5-34 Computational speed compared with flattened statistical analysis. 
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blocks in Table 5-3 has obtained by running the simulation only for the signal paths with 

signal transitions, instead of simulating the whole circuit wherein most of the gates are 

inactive. On the other hand, the Monte Carlo runs for leakage power are much faster since 

only static simulation is required. All of the MC simulation results for leakage power 

shown in Table 5-4 were completed within a day. The computation times listed in Table 

5-5 is the time needed for both delay and leakage power simulations. The CPU times for 

the larger blocks in Table 5-5 are actually predicted by timing the first 50 simulation runs, 

and then multiplying the resulting CPU time by 100; these predicted times are probably 

underestimated since the MC simulations will usually suffer a speed deceleration during 

the computation process.  

 

 

5.5 Summary 

The implementation of the cell library and experimental results of a demonstration 

pipeline circuit constructed using the library blocks are outlined in this chapter. The 

methodology to characterise higher level blocks has been described first. All the 

commonly used standard cells are constructed using SPICE based sensitivity analysis and 

each cell provides the statistical analysis protocol. In order to improve the computational 

efficiency of the cell library, the higher level blocks can be characterised using SSTA and 

SPA results using the existing circuit blocks in the library.  

All the library cells are implemented in MATLAB SIMULINK, which provides a friendly 

graphic user interface. Any desired circuit can be built up using the cell library blocks and 

the process variation effects on its delay and leakage power performance can be analyzed. 

After a initialization process which defines the variational sources and their range of 

variations, and a pre-simulation setting which setups circuit input and load conditions, the 

circuit simulation can be performed in a SIMULINK environment. All the simulation 

results, including the functional waveform and performance parameter distributions, can 

be plotted using the corresponding MATLAB functions in the cell library tool set.  
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A full analysis has been demonstrated on a 2-stage micropipeline circuit; where it has 

been shown that this technique can achieve an accuracy comparable to that obtained from 

a Monte Carlo simulation with the errors less than 5%, as well as saving a significant 

amount of computation time. On the other hand, the analysis speed of the proposed cell 

library is also relatively faster than the traditional flattened SSTA and SPA techniques, 

the speed up factors for the main blocks using in the demonstration pipeline circuit are 

ranged from 10 to 150 depend on their circuit regularity. Since the cell library using the 

SSTA and SPA techniques to characterize higher level blocks, the accuracy of the 

analysis results using both the cell library and fattened statistical approaches should be no 

difference.  
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CHAPTER 6  

 

CONCLUSION AND FUTURE WORK 

 

This concluding Chapter summarizes the salient points presented in this thesis and 

highlights important conclusions. This is followed by few key points for future work.  

 

6.1 Summary and Conclusions 

Variability in the delay and leakage power consumption of CMOS devices, circuit and 

systems arises from scaling VLSI circuit technologies beyond the ability to control 

specific speed-dependent and power-dependent parameters. This erosion in device 

parameter values, as well as the already-critical problem of the environmental parameter 

uncertainty, has elevated variability to a major limitation to continued technology scaling. 

Attempts to improve target parameter values in the manufacturing process are now 

confronted by atomistic-level constraints, which make the achievement of target values 

extremely difficult, especially at the nanometer technology node. Therefore, the circuit 

delay and leakage power performance have to face the accuracy problem, which makes 

these parameter values deviate in a certain range with respect to their nominal values, 

caused by the process variation effects introduced during fabrication and the operating 

environment. Consequently, the performance parameters, such as delay and leakage 

power dissipation, of present day circuit designs, must be evaluated before fabrication in 

order to predict any possible yield loss due to the process variation effects.  

An architectural level modeling methodology for circuit propagation delay and leakage 

power dissipation prediction is proposed in this thesis. A statistical cell library has been 

built in order to provide both speed and efficiency in analyzing circuit delay and leakage 

power performance. The thesis started with a review of the background on semiconductor 

technology scaling and the impact of the consequent process variation effects on device 

and circuit performance. The different source and components of variations were also 

discussed in this chapter. Generally speaking, there are two main types of variaitonal 

sources which significantly affect the circuit performance. One is manufacturing process 
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variation which involves a wide range of process parameters during fabrication, such as 

threshold voltage adjustment implantation energy, High-k dielectric thickness, substrate 

doping etc. These parameters cannot be easily controlled as fixed values, and will cause 

the fluctuations in terms of the manufactured devices parameters thus having a permanent 

affect on the circuit design. The other type of variational sources comes from the circuit 

operating environment, such as the supply voltage and temperature, which will cause 

temporary variations in circuit performance parameters.  Each variational source can be 

divided into two components, inter-die and intra-die variations, which affect the circuit 

performance in different ways. The inter-die variation refers to the difference in variation 

effects between lots, wafers and dies. On the other hand, the intra-die variation captures 

the independent variation effects within each die. Furthermore, since the semiconductor 

technology has merged into the nanometer range, the intra-die variations become more 

and more significant and can no longer be neglected. In order to model and analyze the 

process variation effects on the present day circuit performance, both variation 

components must be taken into consideration.  

In Chapter 2, the different methodologies and approaches used for modeling process 

variability has been reviewed. The variability aware analysis can be roughly divided into 

2 steps: process-to-device and device-to-circuit analysis. The process-to-device analysis is 

used to abstract effects of the process parameter variations on the device physical 

parameter values, which is commonly achieved using TCAD tool based on DoE and RSM 

techniques. The work in this thesis is based on the second class of analysis, 

device-to-circuit variability analysis, and extended to the architectural level. The variation 

information on device parameters are assumed to be given and the environmental 

variation sources are also considered in this work. The effects of these variation sources 

on circuit performance parameter, such as delay and leakage power dissipation, will be 

estimated after the analysis.  

The traditional variability aware analysis approaches are based on the worst case corner 

model, in which the device parameter variations are represented using its best and worst 

corners. Therefore the corresponding circuit parameters are also modeled using their 

performance boundaries after the Worst Case Analysis (WCA). This modeling technique 

provides a low computational complexity and rapid analysis speed, so it has been widely 



~ 150 ~ 

used in the industry to evaluate the circuit performance in order to meet the design 

specifications. However, it confronts some major limitations which have been especially 

exacerbated in nanometer technology. The main drawback of WCA is that it considers the 

circuits perform under conditions (best and worst) which rarely happen. Therefore the 

analysis results of WCA will be either pessimistic or optimistic. Furthermore, the WCA 

result only provides the variation range of the circuit performance parameters, but no 

information about how they are distributed in this range. On the other hand, the WCA 

completely ignores the intra-die variations. In order to meet all these drawbacks of WCA, 

the variability analysis techniques have been developed towards the statistical domain 

during the last decade, which characterize the circuit performance parameter variations as 

probability distributions.  

The simplest and most accurate statistical analysis technique for the process variation 

effects on circuit performance parameters is the Monte Carlo approaches, which performs 

random sampling repeatedly in a finite space (variational device parameters) and 

constructs the corresponding probability distribution based on the samples. However, the 

MC approaches are computational very costly in order to maintain a reasonable analysis 

accuracy. It requires numerous simulation runs to sample the random values of circuit 

performance parameters and becomes unfeasible to perform on a very large system. 

Therefore, the MC techniques are usually used as the reference results to verify other 

statistical analysis techniques and not as an efficient solution to analyze process variation 

effects on a very large circuit.  

The other statistical approaches, such as Statistical Static Timing Analysis (SSTA) and 

Statistical Power Analysis (SPA) have been developed extensively during the last decade, 

where the variational parameters are modeled as Gaussian variables. The gate delay and 

power distributions are represented as low-order polynomials of these variable parameters, 

and the circuit delay and power distributions will be computed from these individual gate 

models. However, the analysis at such a low level (gate level) of design abstraction is 

inefficient and error prone because the present day circuit designs are very large. The 

models for more complicated circuit blocks, such as register, FIFOs and ALUs etc., 

should be available in order to analyze the process variation effects on circuit 

performance at a higher level of design abstraction. The proposed cell library 
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characterization methodology in this thesis can perform an architectural level analysis of 

the process variation effects on the delay and leakage power distributions. The details of 

how to characterize the standard gate cells are described in Chapters 3 and 4.  

A first-order canonical delay model was employed to characterize the process variation 

effects for a single cell in the statistical cell library which takes both the inter-die and 

intra-die variations into consideration. The signal arrival time at each input node and the 

delay time of each cell in a circuit are represented as a first-order polynomial of multiple 

normal RVs with respect to the variation sources. The leakage power of each cell is also 

modelled as a canonical variable but in logarithmic form because of the exponential 

relationship between the process parameters and leakage current of a device. The 

higher-order modelling approach can provide better accuracy when the variations grow 

larger (over 30% of the mean value); however, the high computation complexity and 

large amount of fitting experiments required makes it too difficult to implement in a very 

large circuit. Furthermore, in reality, there are only a small number of process parameters 

which vary over 30% of their mean values, the typical delay and power PDF of a cell is 

much closer to a normal distribution. Consequently the first-order polynomial is 

sufficiently accurate and computational feasible to characterize the process variation 

effects.  

The cell delay PDFs are not only dependant on the process parameters, but also on many 

other factors such as the  slope of the input signal, load capacitance and different input 

conditions. The statistical cell library takes all of these factors into account by 

characterizing a cell using a table look-up approach. The different delay values together 

with the corresponding coefficients with respect to a range of input signal slopes, Tin, and 

output load capacitances, Cload, of a basic cell were modelled using a three-dimensional 

look up table. Each cell requires several independent tables to cope with all the input 

conditions and output transition cases.  In order to reduce the number of SPICE 

simulation runs to generate each look-up table, a piecewise linear fitting approach was 

employed in which only 7 typical values are sampled for Tin and Cload respectively. On the 

other hand, the leakage power distributions of a gate due to the process variation effects 

only differ with its static states. Therefore, the LUT for storing the gate leakage power 
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models is much smaller than the one for storing delay models. A two-dimensional LUT 

can handle all the possible gate leakage power distribution cases.  

All the standard cells in the library have been built with the SSTA and SPA protocols in 

order to propagate their delay and leakage power models through the circuit. The 

tightness probability based timing analysis technique and the Wilkinson’s approximation 

based recursive power analysis approach is employed. The key idea of both the delay and 

power analysis methodologies is to re-express the non-normal internal operation results 

into the normal canonical form by matching the first two moments with the analytical 

results. This will keep the SSTA and SPA alive in the circuits. With the help of the 

moments matching based statistical timing and power analysis techniques, any desired 

circuit can be constructed using the standard cells in the library and the impact of process 

variation effects on the circuit delay and leakage power performance can be analyzed.  

The methodology to characterize the higher-level functions blocks, such as registers, 

decoders, multiplexers, FIFOs, ALUs etc., is outlined in Chapter 5. The SPICE 

simulation based sensitivity analysis, which is used to characterize the standard cells, is 

no longer required. Since all the necessary gate cells are already available in the library, 

the higher-level blocks can be characterized using the SSTA and SPA results of the 

existing cells in a hierarchical manner. Once a new block has been constructed, it can be 

further used to characterize other larger blocks. Since only the top level blocks are used 

for the next-level circuit characterization, the characterized block provides a much faster 

analysis speed than the flattened SSTA and SPA using the standard cells. The more 

complicated circuit blocks with a larger number of inputs may require a massive memory 

space to store the LUTs for all possible switching cases. However, it can be optimised to 

a variable degree according to the regularity of the circuit. With the proposed 

characterization approach, the cell library has been expanded to comprise most of the 

commonly-used circuit blocks with the complexity ranging from a single gate to more 

than 3272 gates, which are listed in Table 5-1 of Chapter 5.  

The whole cell library is implemented in MATLAB SIMULINK. The simulation process 

of the circuit constructed using the library cells are introduced in the second section of 

Chapter 5. It starts with an initialization process for choosing the desired global and local 

variation sources and setting the corresponding variation ranges. There are 5 process and 
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environmental parameters available to be chosen: the supply voltage, operating 

temperature, effective channel length, the NMOS threshold voltage and PMOS threshold 

voltage. Since the sensitivities of parameters are derived independently, it is simple to add 

any other desired parameters as variational sources into the cell library tools if necessary. 

After the setup of the input signal and load capacitance, the constructed circuit using the 

library cells can be simulated in SIMULINK. The resulting delay and leakage power 

PDFs of the circuit under simulation can be plotted using the corresponding MATLAB 

functions in the cell library tool set.  

To demonstrate the feasibility of this modeling approach, a variety of logic blocks of 

complexities ranging from a single gate to several thousand gates were analyzed with 

respect to the effects of process variation on propagation delay and leakage power 

consumption. The experimental results are shown in the Section 5.3 of Chapter 5.The 

technique compared favorably in terms of accuracy with respect to 5000 sample Monte 

Carlo simulations. The error in the mean and standard deviation predictions for 

propagation delay were less than 2% and 5% respectively, although in the later case it 

was typically less than 3%; regarding the leakage power the maximum error of the mean 

value was just over 3% but typically below 1%, the error in standard deviation was in 

general less than 3%. Furthermore the proposed cell library can save a huge amount of 

computational time compared to the MC simulations with the speed-up factor ranging 

from several thousands to one million depending on the circuit size. On the other hand, 

the experimental results using the cell library have also been compared with the 

traditional flatten SSTA and SPA techniques. It has been shown that the cell library offers 

a rapid analysis of process variation effects on circuit delay and leakage power dissipation 

with up to 150 times faster computational speed for the large blocks.  

Based on the experimental results, the delay errors of the circuits involving sequential 

elements, such as flip flops, toggle element and pipeline register etc., are usually larger 

than the combinational circuit blocks with a similar size. The signal flows in sequential 

circuits are typically complex because of the existence of feedback signals from their 

outputs. Therefore, the delay models for these sequential blocks are characterized directly 

from the SPICE simulation based sensitivity analysis instead of the SSTA based analysis 

using the existing gate cells in the library. However, the delay distribution of the 
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characterized blocks still show slightly larger errors than the combinational logic blocks 

since their actual delay characteristics deviate away from the normal models. These 

modeling errors are not very significant (still within 5% for most cases), and their 

corresponding effect on analysis accuracy will decrease when the circuit size grows larger 

and the contribution of the sequential element to the total path delay becomes smaller. On 

the other hand, the experimental results also show the leakage power errors of the blocks 

decrease with the growth of their circuit size. This is because the static power 

distributions of small circuits are very wide due to the exponential relationship between 

the leakage current and process parameter values. These distributions are closed to 

lognormal form, and the small errors during the sensitivity analysis will be emphasized 

after the logarithm transfer. However, as discussed in Chapter 4, the leakage power 

distributions of a circuit will develop towards to the normal distribution with the increase 

in circuit size. Therefore, the larger blocks show smaller leakage power modeling errors.  

As described in Chapter 5, the demonstration circuit has been analyzed using three 

techniques: the proposed cell library, Monte Carlo simulation and the fattened statistical 

approach for the comparison of their computational times. (The MC simulation results are 

also used for the purposes of accuracy verification). The MC simulations are 

computationally very costly, hence not feasible to evaluate a very large circuit. It may 

take weeks to analyze the demonstration pipeline circuit. Both the cell library and the 

traditional flatten statistical approach (SSTA and SPA) can save a significant amount of 

computational time compared to the MC technique. Since these two methodologies use 

the same mathematical algorithms, the corresponding analysis accuracies are similar. 

However, since the cell library characterized the library circuit blocks in a hierarchical 

manner, it offers faster computational speed compared with the flattened analysis. The 

run time for the SSTA and SPA grows with the increase of circuit size, which still takes a 

few minutes to analyze the whole pipeline circuit. If the circuit under analysis, for 

example is a large processor system, it may cost hours to run SSTA and SPA on it. The 

analysis using the cell library, on the other hand, remains a steady low speed since the 

internal circuit of an existing block requires no SSTA and SPA computation, instead 

using the pre-characterized LUTs. The analysis speeds of the functional blocks in the 

library depend on the regularity of the actual circuits. Highly regular circuits (more 

identical circuit segments) require a small number of LUTs to characterize its delay and 
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leakage power distributions, and the simulation requires less memory load time thus 

shortening the overall computational time, vice versa. For example, the Register File (RF) 

circuit contains a large number of identical signal paths with the same delay 

characteristics, so they can be represented by one model which saves a large amount of 

memory space so speeds up the analysis process. As listed in Table 5-5 in Chapter 5, the 

speed of the RF block (2370 gates) is more than twice faster than the ALU block (578 

gates), whose internal LUTs cannot be optimized much due to the lack of regularity in the 

circuit. Furthermore, the speed for estimating the circuit delay and leakage power 

distributions also depends on how the circuit is constructed. If the desired circuit is built 

up only using basic gate cells, the analysis becomes the flattened SSTA and SPA, which 

gives up the computational efficiency of the cell library. Therefore, keeping the design 

abstraction level of blocks used in a circuit as high as possible will speed up the whole 

analysis of the effects of process variation on circuit delay and leakage power dissipation 

as efficient as possible.  

It is considered that the technique outlined in this thesis, permits designers to efficiently 

assess the effects of variations in processing parameters, such as effective gate length and 

threshold voltage, together with supply voltage, on a design in terms of their potential 

impact on specification parameters such as propagation delay and leakage power early in 

the design cycle. The circuit under analysis can be constructed using higher level blocks 

instead of using basic gate cells. The constructed circuit can be characterized as a new 

block and saved back in the library for further expansion. On the other hand, as discussed 

previously, the cell library is portable for additional process parameters, which can be 

simply achieved by loading in the delay and leakage power sensitivity LUTs of the new 

parameters during the initialization process. Subsequently, the designer can choose which 

technology or cell library should be used to implement the design, for a given application, 

to ensure its robustness to the effects of process variation.  

The propose cell library tool set not only provides a good tradeoff between accuracy and 

computation speed in estimating the process variation effects on circuit delay and leakage 

power performance, but also offers a degree of flexibility which allows users to run the 

circuit analysis at a architectural level. The methodology presented in this thesis, in 

general, can be applied to any process technology and capable of adopting any device and 
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environmental parameters whose variation effects will significantly affect the circuit 

delay and leakage power performance. Moreover, the method can be very useful for 

optimizing circuit design to achieve better performance and higher yield.  

 

6.2 Future Work  

The methods or techniques for variability modeling and analysis will continue to be an 

important area of research in future technologies. The following section highlights the 

key points for future work in this area.  

 The cell library presented in this thesis is mainly focused on the delay and 

leakage power modeling, but does not take the dynamic power into 

consideration because the high characterization complexity. More efficient 

dynamic power models need to be proposed so that they can be used in the 

cell library to fill the gap in dynamic power analysis.  

 

 The work presented in this thesis is based on the first-order canonical delay 

and leakage power model. However, if the device parameter variations are 

larger than 30% of their mean values, the proposed cell library can still run the 

simulation and estimate the circuit delay and leakage power distributions but 

the accuracy of the results is not guaranteed. Higher-order models can provide 

better accuracy but accruing the penalty of high exponential complexity with 

respect to the number of process parameters under analysis. The tradeoff 

problem between the analysis accuracy and complexity of process variation 

effects on circuit performance parameters due to its importance will be 

addressed by other researches, so that it may lose the limitation of the 

proposed cell library to cope with larger parameter variations.  

 

 All the parameter variations in the proposed cell library are assumed to be 

Gaussian distributions. However, the real distributions of these process 

parameters are very difficult to estimate, and they could be non-normally 

distributed. Therefore, the cell library models may take other types of 
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parameter distributions, such as uniform and Poisson distribution etc., into 

consideration in the future work.  

 

 The proposed cell library does not take the interconnect between devices into 

consideration, where the delay times are assumed to be zero. The proper 

interconnect delay model and analysis technique is needed in order to make 

the cell library robust in evaluating circuit performance due to the process 

variation effects.  
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APPENDIX A 

USER GUIDE OF THE CELL LIBRARY TOOL SET 

 

A.1  Initialization function “init” 

Before using the cell library, there are several settings need to be initialized. In this 

subsection, the use of the initialization function for predefining process variation 

specifications will be introduced.  

 

Figure A-1 Location of the “init.m” file. 

 

If the current folder of MATLAB is browsed to the proposed cell library tools, an m-file 

can be found in the “current folder” window called “init.m” as shown in Figure A-1. In 

order to run this program, typing “run init” in the command window, the introduction 

message will appear which shows the main steps for the cell library initialization as 

shown in Figure A-2.  



~ 159 ~ 

 

Figure A-2 Running the cell library initialization program. 

 

Basically there are 4 set of parameters need user to define in the initialization program as 

shown in the above figure. Firstly, it asks which process parameters are selected as the 

global variation sources. For demonstration purpose, there are 5 device and 

environmental parameters available in the cell library: supply voltage Vdd, operating 

temperature T, effective transistor channel length Leff, threshold voltage for N-type device 

Vthn and threshold voltage for P-type device Vthp. Each parameter has been assigned with a 

number from 1 to 5. Choosing the desired parameters can be simply done by typing the 

indicated numbers in a vector form in the command window. Figure A-3 (a) shows an 

example in where the 1st and 3rd parameters (Vdd and Leff) in the menu are selected as 

global variation sources. The program will ask how much variation specified for each 

global parameter in the following step. The percentage of the 3 sigma values of the global 

variation sources can be defined using the same form as the previous step. As shown in 

Figure A-3 (a), Vdd and Leff are set to deviate 15% and 20% to their mean values 

respectively. The next 2 steps of the initialization program are exactly the same as the 

first 2 steps, but defining the specification for local variables. Figure A-3 shows an 

example in where Vthn and Vthp are selected as the local variation sources and the 3 sigma 

values are set to 10% and 25% with respect to their mean values respectively.  
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Figure A-3 (a) Initialization for global variables; (b) Initialization for global variables. 

 

 

After defining all the variation specifications, a summery sheet will be generated as 

shown in Figure A-4. That is for the final check of the initialization. If any error happens 

by mistake when tying the command, the whole process can be go over again by entering 

“n”. If nothing is wrong, the initialization can be finished by entering “y”. 

 

Figure A-4 Summery sheet for the initialization. 

When the initialization is finished, a MATLAB data file “Ini_data.mat”, which can be 

founded in the current folder window, will be loaded into workspace automatically as 

shown in Figure A-5. This file comprises the delay and leakage power LUTs for all the 

(a) (b) 
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library cells which may be used for the further process variation effects analysis. The data 

file can be modified by users in cases of adding new cells to the library or changing the 

semiconductor technology nodes.  

 

Figure A-5 Loading LUTs for delay and leakage models of cell library. 

 

Additionally, a notice message will show up in the end of the initialization program, 

which notices the users that a variable called “InputSize” is generated and its default value 

is 1. This variable together with the “InputGen” function are for defining the input signal 

for a circuit, which will be described in detail in the following subsections.  

 

A.2  Circuits construction using the library cell 

The cell library interface can be opened by click the file “Cell_Lib_90nm.mdl” in the 

current folder windows. A SIMULINK library interface will pump up as shown in Figure 

A-6. Since SIMULINK shares the work space of MATLAB, the pre-loaded LUTs for the 

delay and leakage power models during the initialization can be used for all library cells. 

As described in the previous subsection, all the user defined parameters are also stored in 

the MATLAB workspace. Therefore, all these data can be treated globally which lead to a 

significant memory space saving. Additional, since the computational speed of MATLAB 

is much faster than SIMULINK, it is more efficient to store LUTs and argument 

parameters in MATLAB and perform further calculation. 
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Figure A-6 Cell library in SIMULINK. 

 

Each cell in the library has an extra output pin, Leak, which represent the leakage power 

dissipation. The library cells can be directed dragged from the library widow into a new 

SIMULINK model file to build up any desired circuit. Figure A-7 shows an example 2-1 

multiplexer circuit constructed using the library standard cells.  

 

Figure A-7 Constructing a 2-1 multiplexer using the library cells.  

 

As shown in the above figure, the leak terminals of all the cells in a circuit need to be 

connected to a vector combiner for further the calculation of the total circuit leakage 

power distribution. On the other hand, in order to make the statistical timing analysis 

result as accurate as possible, the load capacitance of each cell in a circuit needs to be 

defined. As the load capacitance of a cell is the sum of the input capacitances of the 

fan-out cells, the the input capacitance values of all input terminals of all cells in the 
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library are also stored in the initialization data file, which have already loaded into the 

workspace of MATLAB. This makes it easier when setting the load capacitance of each 

cell. A meaningful constant name can be used rather than input a capacitance value which 

probably needs to be evaluated in other CAD tools, such as SPICE. Figure A-8 shows an 

example of how to set the load capacitance of the inverter in the 2-1 multiplexer circuit. 

“AND_A” is the input capacitance value of a AND gate cell at input terminal A, which is 

stored in the initialization data file and loaded into the workspace. Additionally, the 

mathematical expression, such as addition, can be directly used to combine multiple 

fan-out load capacitances when setting the cell load condition in a circuit. 

 

Figure A-8 Load capacitance setting for the inverter in the circuit. 

 

The inputs and outputs of each library cell are not just digital signals, but the data 

matrixes which contains the signal delay distribution model with respect to the defined 

process parameter variations during the initialization process. Therefore, the total delay 

distributions will be indicated from the output terminals of the circuit after simulation.  
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A.3  Circuit simulation using the library cell 

The function “InputGen” in the cell library tool, which can be located in the current 

folder window, is used for generating the primary input data sequence for the cell library. 

The function format of “InputGen” is shown in Equation 5.1: 

Input Matrix =InputGen (InputData, R_time, F_time)  

There are 3 input parameters for “InputGen”, InputData represents input digital data 

sequence which is the first row of the input signal matrix as described before, R_time and 

F_time indicate the rising and falling time of the inputs signal respectively. The function 

will return a signal matrix and load it into workspace, thus is can be used directly in 

SIMULINK. Since the generated matrix is for the primary input of a circuit, there is no 

variation exist and the all values below Row 2 of the matrix are zeros. If the input signal 

of a circuit is generated by “InputGen”, the parameter InputSize, which will be used in 

further analysis and simulation internally, is automatically set to row length of the input 

signal matrix. If the input signal can also be created manually in MATLAB, InputSize 

should also be set to an appropriate value manually. Otherwise there will be errors during 

simulation. Figure A-9 shows an example for using “InputGen” to generate a “0 1 1 0 1 0” 

data sequence with rising transition time equal to 0.6s and falling transition time equal to 

0.8s.  

 

Figure A-9 Using “InputGen” to generate input signal for a circuit under simulation.  

 

After setting up the input stimulus, the circuit can be simulated by clicking the “Start 

Simulation” button in the upper tool bar of SIMULINK model file as shown in Figure 

A-10.  
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Figure A-10 How to start a circuit simulation. 

 

After simulation, the delay distribution at each output of the circuit and the total leakage 

power distribution will be loaded to the workspace in data matrix forms.  

 

A.4  Result PDF plotting 

The PDF of simulation delay and leakage power results, which already loaded to the 

workspace, can be plotted using the MATLAB functions in the tool set as below:  

“Plotting Delay PDF” =PlotPDF (delay_matrix)  

“Plotting Leakage Power PDF” =PlotSP (SP_matrix)  

These two functions will not retune any values, the delay and leakage power PDF graphs 

will be automatically plotted in the new graph windows. The function to generate the 

histogram of MC data is also available in the cell library tool set as shown below: 

“Plotting MC histogram” =HistMC (MC data)  
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APPENDIX B 

ADDITIONAL EXPERIMENTAL RESULTS 

 

B.1  XOR gate 

 



~ 167 ~ 

B.2  Capture-Pass Flip Flop 

 

 

 

B.3  Toggle Element 
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B.4  16-1 Multiplexer 
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B.5  Delay Element 

 

 

 

B.6  Muller-C Element 
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