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Abstract

In this thesis several topics in the numerical solution
of the initial value problem in first-order ordinary differerntial
equations are investigated.

Considefation is given initially to stiff differential
equations and their solution by stiffly-stable linear multistep
methods which incorporate second derivative terms. Attempts are
made to increase the size of the stability regions for these
methods both by particular choices for the third characteristic
polynomial and by the use of optimization techniques while
investigations are carried out regarding the capabilities of a
high order method.

Subsequent work is concerned with the development of
Runge-Kutta methods which include second-derivative terms and
are implicit with respect to y rather than k. Methods of
order three and four are proposed which are L-stable.

The major part of the thesis is devoted to the establishment
of recurrence relations for operators associated with Tinear
multistep methods which are based on a non-polynomial
representation of the theoretical solution. A complete set of
recurrence relations is developed for both implicit and
explicit multistep methods which are based on a representation
involving a polynomial part and any number of arbitrary functions.
The amount of work involved in obtaining multiste, metiuds by this

technique is considered and criteria are proposed to :lecide when
this particular method of derivation should be em:loyed.

The thesis is conclud2d by using Prony's method to develop
one-step methods and multistep methods which are exponentially
adaptive and as such can be useful in obtaining solutions to

problems which are exponential in nature.
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Chapter One

Introduction

The behaviour patterns of many:physical systems are governed
by differential equations. These equations may be either
ordinary or partial differential equations and in general it is
impossible to obtain an analytical solution for them. One way of
Sbtaining an approximate solution is to make use of numerical
methods. In this thesis we will be concerned solely with the
numerical solution of initial-value problems for first-order
ordinary differential equations. This type of problem occurs
commonly in areas such as chemistry [Robertson (1966)],
electrical engineering [Calahan (1968)], astronomy [Bettis and
Stiefe1[(1969)], and biology [Cooper (1969)].

1.1 Initial-Value Problems for First-Order Ordinary Differential Equations

The problem is described by the equation
¥t o= fxy) o y(@) =y, (1.1)
We will attempt to find a numerical solution to this problem at
various points in the interval [a, b].

Note that we are effectively restricting the problem since not
all first-order ordinary differential equations can be rearranged
into the form (1.1). Before attempting to find a solution
(theoretical or numerical) of an initial value problem it is
important to know whether a solution does exist and whether this
solution is unique. The following theorem which is given in
Henrici (1962) guarantees the existence of a unique solution to

the problem (1.1).

Theorem 1.1
If (i) f(x,y) is defined and continuous for a < x < b,

- w <y < » where a and b are finite and
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(i) Ja constant L(>0) such that for xe[a,b] and any
two numbers y;, Yo
[f(xsy1) = f(xsy2)] <Llyi-yal
then 3 a function y satisfying

(a) y is continuous and differentiable for xe[a, b]

)

(b) y'(x) = f(x,y(x)), Xe[a,b]
)
)

(c) y(a) =Yo

(d) y is a unique solution of the initial-value problem.

The condition (1.2) is known as a Lipschitz condition and the
constant L as a Lipschitz constant. The hypothesis that
f(x,y) be defined and continuous in the infinite interval

- <y < o is very restrictive. Many functions f(x,y) are
only continuous over a finite interval in y. In these
circumstances we can employ a modified version of Theorem 1.1
as given by Burkill (1962) to guarantee a unique solution to

the problem (1.1).

1.2 Numerical Solution of the Initial-Value Problem

To obtain a numerical solution the problem is discretized,
that is, we define the mesh points xg, Xy Xzs «ces Xx by -
Xo = 8, X = Xg+ nh (n=1, 2, ... N), Xy = b and the
parameter h, which for the moment is regarded as constant,
is called the step length. A numerical solution is then
sought on this discrete point set {ann =0, 1, 2, ..., N}.

The exact value of the theoretical solution at the mesh
point Xq is denoted by y(xn) and the numerical solution at
this point by Yoo In addition we define the numerical
solution fn which is an approximation to the first
derivative of y(x) at x = Xn by

(1.2)

(1.3)
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The two numerical methods used most frequently to
obtain approximate solutions to the first-order initial-value
problem are linear multistep methods and Runge-Kutta methods.
In the following two sections we outline the background
theory behind these methods so that we can refer to it when

necessary in later chapters.

1.3 Linear Multistep Methods

If the numerical values yn+j’ n+j

combined linearly in the form

k k
9 . = h . . = 'y 9 o e o

o # 0 laol + IBOI >0 (1.4)
where the o5 and Bj are constants then (1.4) is called a
Tinear multistep method with stepnumber k. Since (1.4) is
effectively unaltered by multiplying throughout by a constant,
the coefficients %55 Bj are arbitrary to the extent of a constant
multiplier. One commonly used convention which we will follow
unless otherwise stated is to normalize (1.4) by setting

o = 1. The differential equation (1.1) is thus replaced by

a difference equation and we attempt to find a numerical
solution of the differential equation by calculating a
sequence {yn} which is a solution of the difference
equation (1.4) for the starting values Yg, Y15 eces Ye-1°

The difference equation is non-linear and may not have a
solution while even if it does possess a solution this may
not be unique. When B = 0 however the linear multistep

method is called explicit and (1.4) can then be rearranged

into the form

Ynek = [oa1¥nek=1 = »o “%¥n + DB oy * oo
o0 8 + Bofn)]
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and this has a unique solution since the right hand side does
not depend on Ypek® When By # 0 the linear multistep method
is called implicit and (1.3) can then be arranged as

In+k ~ hBk fn+k +C (1.5)
where
C = [ropeiYneke1 = oor "0V ¥ RB Ty ¥ oo
cee + Bof )] (1.6)
Since fn+k = f(xn+k’ yn+k)’ Y4k OCCUrs on both sides of (1.5)

which in general is a non-linear equation for y and may

n+k
have one, several or no solutions. Rewriting (1.5) as

Ynek = Flna) (1.7)
where

FYne) = h8yfpp + (1.8)
and iterating this formula by

y(\)'i'.]_): F(y(\))) v =0, ]’ 2. e (].9)

where y(o) is a suitable first approximation then the
following theorem as given in Henrici (1962) guarantees
the existence of a unique solution to (1.7) and the
convergence of the iterative scheme (1.9) to this

solution.

Theorem 1.2
Let the function F(y) be defined for -= < y < = and let there
exist a constant K such that 0 < K < 1 and
[F(y*) - F(y)| < K|y*-y| (1.10)
for arbitrary y* and y. Then the following hold
(i) equation (1.7) has a unique solution y
(ii) for arbitrary y(o) the sequence defined by (1.10)

converges to y.

If F(y) is defined by (1.8) and, if f(x,y) satisfies a
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Lipschitz condition with respect to y and possesses a Lipschitz

constant L, then (1.10) is satisfied with
K = Lhlg,|
which is less than one for small enough h.
We also require that the unique solution {yn} generated
by the multistep method 'converges®' to the theoretical
solution y(x) as the steplength h tends to zero. Before

formally defining convergence we state certain definitions

which will be required later.

Definition 1.1

The associated linear difference operator L is defined by

k
L[z(x);h] = jZO [ajz(x+jh} - hsjz°(x+jh)]

where z(x) is an arbitrary test function infinitely

differentiable on [a,b].

It would be preferable to use the notation (Lhz)(x) since

we are discussing the application of an operator to a

function but we follow the commonly used notation in

this particular field of research and use L[z(x);h].
Expanding z(x+jh) and z'(x+jh) by Taylor series and

collecting terms gives

L{z(x);h] = EO Crhrzr(x)
r=

where
)
C = o
o) j=0 Jj
S
CY‘ = Fr\]éo (J aj"l'"J BJ) r=1, 2. .

Definition 1.2

The difference operator and associated linear multistep method

are said to be of order p if in (1.13)

(1.11)

(1.12)

(1.13)

(1.14)
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C =¢C

o 1° C, = e.=C_=0 but Cp+] £ 0.

2 p

Notice that by using an arbitrary test function which is
infinitely differentiable we can define the order of a
linear multistep method without making any assumptions on

the number of derivatives possessed by the theoretical

solution.

Definition 1.3

The local error at Xrak of the linear multistep method is

+
defined to be

by

k

LIy(x,)sh] = .Z a gy (x,+jh) - h.Z B3 (x,*3h),

j=0 J=0

The Tocal error at Xp+k is often denoted by Tn+k° If we
now assume that the theoretical solution y(x) is
sufficiently differentiable and that no previous local
errors have been made, that is
J=0,1, .c.y k=1

y = y(x

n+j n+j)
then it can be shown that for linear multistep methods of

order p

+2
Ynekd =Ygk = Cost Py (P (xp) + 0(hP™*)

wherethe left hand side of (1.18) is equal to Tk Cp+]
and Cp+]hp+]y(p+])(xn) are called the error constant and

principal local error respectively.

Definition 1.4

The global error is defined as

ek = Y Xnak) = Ynak

where no localizing assumptions are made and roundoff errors

are ignored.

(1.15)

(1.16)

(1.17)

(1.18)

1 (1.19)



Definition 1.5

Associated with the linear multistep method are the first

characteristic polynomial given by

k

- J
D(E) = JZ_-O GJE

and the second characteristic polynomial given by

X J
o(¢) = ] 8.,
j=0

We now formally define the convergence of a linear multistep

method by

Definition 1.6

The linear multistep method (1.4) is said to be convergent

if for all initial-value problems subject to the hypotheses

of Theorem 1.1

lim y. = y(x
 im n = Yix)
n»> «
nh = x=-a

holds for all xe[a,b] and for all solutions {y } of the

difference equation (1.3) which satisfy the starting

conditions

, =)

where

]. = = 9 eocey il
hl'g‘)“(h) 'yO H 0, 1, 2 k-1

This definition means that when k > 1 the extra starting
values required need not be exact solutions of the initial-
value problem (1.1) at the appropriate values for x but

only that regarded as functions of h they must all tend to

the given initial value Y, 28 h - 0.

(1.20)

(1.21)
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To obtain convergence we have to control both the magnitude
of the local error and the way in which this error is
propagated step by step as the calculation proceeds. This
is achieved if the method satisfies the following two

conditions called consistency and zero-stability.

Definition 1.7 (Consistency)
The linear multistep method (1.4) is said to be consistent
if the order of the associated linear difference operator

(1.12) is at least one, that is,p > 1 and hence C0 = C] = 0.

Definition 1,8 (Zero-Stability)

The linear multistep method (1.4) is said to be zero-
stable if no root of the first characteristic polynomial
p(&) has modulus greater than one and if every root of

modulus one is simple.

Consistency ensures that the multistep method
approximates the given differential equation while ajso
attempting to keep the magnitude of the local error
small at each step. Zero-stability ensures that zny
extra solutions of the difference equation for Y, (parasitic
solutions), which occur because a first-order differential
equation is being replaced by a higher order difference
equation, will be damped out in the limit as h » 0.
Zero-stability thus attempts to control the way in which
local errors are propagated. Convergence is then

guaranteed by the following theorem due to Dahlquist (1956).

Theorem 1.3
The necessary and sufficient conditions for a linear
multistep method to be convergent are that it be both

consistent and zero-stable.
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In addition to the method being convergent we would
1ike it to have as high an order as possible to reduce the
local error. The general k-step linear multistep method
(1.4) has 2k+2 coefficients aj, Bj’ J=0,1, «oos ko We
have normalized by setting ay = 1 so for an implicit
method there are therefore 2k + 1 free parameters while

for an explicit method there are only 2k parameters. For

an implicit method we might hope to achieve order 2k

by requiring C0 = C] S .. = CZk = 0 thus giving us a
set of 2k + 1 linear equations for the same number of
unknowns Gos eees Gp 7o Bos »oo By Unfortunately the
solution of these equations gives a method which is not
zero-stable. The following theorem, again due to
Dahlquist (1956), gives us a bound on the maximum order

attainable by a zero-stable method.

Theorem 1.4

No zero-stable linear multistep method of stepnumber k can

have order exceeding k + 1 when k is odd, or exceeding

k + 2 when k is even. A necessary and sufficient condition
for p to equal k + 2 is that k be even and all zeros of p(g)

lie on the unit circle in the complex plane.

It is common practice to choose an implicit formula
of order k +1. Implicit formulae have in general a much
smaller local error than an explicit method of the same
order and thus they are preferable even though more
computation is involved. At each step however an implicit
formula needs a starting value for yéga and one way of

obtaining this is to use an explicit formula to ‘predict'

a value for yégz. The implicit formula is then used



- 10 =
iteratively to ‘correct' the predicted value and the combination

is known as a Predictor-Corrector method.

1.4 Runge-Kutta Methods

The general one-step explicit method is defined as
Ype1 = Yp = h@(xn,yn;h) (1.22)
where @(x,y;h) is called the increment function and depends
not only on x and y but also on the stepsize h and the
differential equation.

We introduce the exact relative increment A by

A(x,2*3h) = | z(x+h) - 2(x) h #0
h (1.23)
f(x,2%) h =0
where z satisfies the same differential equation as the
theoretical solution y(x) but has a different initial
condition z(x) = z*.
Order, local error, global error and consistency are
then defined in the following manner,
Definition 1.9
The method (1.22) is said to have order p if p is the
largest integer for which
(x,z*3h) - A(x,2z*3h) = O(hP). (1.24)
Definition 1.10
The local error, Tn+1’ at X041 of the method (1.22) is
given by
Toe1 = Y(Xpep) = ¥(x0) = he(x ¥ (x )sh). (1.25)
If we make the localizing assumption that Yo = y(xn) then
Toel = Y(X041) = Y (1.26)

while if in addition we assume that the theoretical solution
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y(x) is sufficiently differentiable then

Toep = Oy (xR v o(hP*2) (1.27)
where y(x,y) and w(xn,y(xn))hp+] are known as the principal

error function and principal local error respectively.

Definition 1.11
The global error e ., of the method (1.22) at x ., is
defined by

€1 = Y(X1) - Yoy (1.28)

where no localizing assumptions are made and roundoff

errors are ignored.

Definition 1,12
The method (1.22) is said to be consistent if

¢(x,y30) = f(x,y). (1.29)

The following theorem as given in Henrici (1962)

guarantees the convergence of (1.22).

Theorem 1.5
If (i) the function ¢(x,y;h) is continuous jointly as a function
of its three arguments, in the region D defined by
x e[a,b], ¥ e(-w,2), h e[O,ho] where h > 0
(i1) e(x,y3h) satisfies a Lipschitz condition of the
form
| & (x,y*3h) = o(x,y3h)| < My*-y] (1.30)
then the method (1.22) is convergent if and only if it
is consistent.
Since the difference equation (1.22) is first-order
then it has no parasitic solutions. There is therefore
no need for zero-stability and so only consistency is

required to ensure convergence,
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If f(x,y) is assumed to be sufficiently differentiable

then by a Taylor series expansion we have

y(x+h) - y(x) = h£f+%T g1y %i fl2) | %; 3y

]
H_hg £(P=1) 4 o(nP)] (1.31)

where f and its derivatives f(1), cons f(p']) have arguments
(xs¥(x)).

One choice for the increment function is

P=1 .
o06y3h) = Fxy it B £ 00y + Jrr @ ype o P 0y (132)

This is known as a Taylor series method of order p. To

apply this method it is necessary to calculate not onrly

f but also all the higher derivatives f(]), f(z), cea

f(p-]). Obtaining the necessary higher derivatives is

usually complex and laborious. Hence we look at an

alternative choice for ¢ which does not require

derivatives of f but is a weighted combination of values

of f where the weights and the points at which f is

evaluated are chosen to make the order as high as possible.
The general R-stage explicit Runge-Kutta methed is thus

defined by taking ¢ to be of the form

o(Xsy3h) Z c.k. (1.33)
r-]
where
R
k, = f(x+har,yﬁwz b S) r=1,2,...R (1.34)
and - ? b r=1,2,...R, (1.35)
roogL4y s

These methods fall into two sub-classifications. If brs =0
for r < s then the functions kr are defined explicitly.

This type of method will be called k-explicit. Butcher (1965)
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has shown that for a k-explicit method the maximum order

p(R) which can be obtained by an R-stage method is given

by
p(R) = R R =1,2,3,4
p(R) = R-1 R = 5,6,7
(1.36)
p(R) = R-2 R = 8,9
p(R) < R-2 R > 10,
If b  #0 for r < s then the functions k. are defined by
a set of R implicit non-linear equations. This type of
method will be called k-implicit. In another paper
Butcher (1963) has shown that an R-stage k-implicit
method can have order 2R and that the system of R implicit
non-linear equations for the k's can be solved by using
the iteration:-
kiv+1) ] f(x+har'y+h:§:brsks(v+] )+hsgr o,k V)
v =0,1,2,.. r=1,2,...R (1.37)
provided
h < 1/L(u+v) (1.38)

where L is the Lipschitz constant of f with respect to y

and

?I | ZR | EI § I

U = maX{ b-' 1] lb (N Y b’.‘{ o/-oo, b N }
j=1 W j=2 23 j=3 Y j=R RJ

(1.39)

%I | §l I gl | :ill'] !

v = max{ bssl, b, Dyilseces ) !;h;‘}
a1 Ay T A PR

1.5 Contents of the Thesis

In chapter two we will present a short review of the
most important papers published since 1955 on the numerical
solution of the initial-value problem by linear multistep

methods and Runge-Kutta methods. The aim of this review is
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to show the different lines of investigation folilowed by the
various researchers interested in these particular methods.

The third chapter contains an outline of the background
stability theory for linear multistep methods. In particular
the theory of weak stability is developed to illustrate the
necessary requirements for errors in the numerical solution
to be damped out when a non-zero stepsize is used. This is
followed by a formal definition of 'stiff' systems of first-
order ordinary differential equations. These are equations
whose solution contains negative exponentials with widely
differing time constants. Many multistep methods can only
be used with a very small stepsize on this type of problem,
even when the magnitude of these exponential terms is
negligible, if the criteria imposed by weak stability are
to be met. We then discuss the appropriate types of
stability region necessary for such problems and suggest the
use of multistep methods which are known as 'stiffly-stabia.

In the fourth chapter we start with a discussion of a
particular class of stiffly-stable multistep methods due
to Gear (1968) and the modifications made by Jain and S rivastava
(1970) to these methods by taking different choices for the
second characteristic polynomial in order to increase the
size of the stability region. It is then shown that when
linear multistep methods are applied to stiff differential
equations difficulties are encountered in using the normal
corrector iteration and this leads to the use of a modified
corrector iteration which incorporates 3af/3y. Enright
(1972) therefore proposed the use of stiffly stable
multistep methdds which employ not only values of y and f

but also include the second derivative of y, f(]). (This
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type of method will often subsequently be referred to as a
second-derivative linear multistep method whereas the method
(1.4) will be termed a first-derivative multistep method).
We continue chapter four by discussing the work of Enright.
A logical progression, comparable with that made to the
first derivative methods of Gear, is to investigate the
modifications that can be made to the class of second
derivative methods proposed by Enright by suitable
alterations to the third characteristic polynomial
associated with second-derivative methods, This technique
however, although it does allow us to increase the
stability region of our stiffly-stable second-derivative
methods, is rather limiting in the number of choices that
can be made for the third characteristic polynomial and so
we then move on to show how the problem of maximizing the
size of the stability region can be viewed as a problem
of constrained optimization. A method, based on an
algorithm of Rosenbrock (1960), is outlined for
determining solutions to this optimization problem and
numerous results are given to illustrate the increases
that can be obtained in the size of the stability region.
Finally at the end of the chapter we investigate the
possibility of obtaining second-derivative multistep
methods having an order one higher than those proposed
by Enright and carry out some limited numerical
experiments to see how the higher order methods behave in
comparison.

In chapter five the application of Runge-Kutta
methods to solve stiff differential equations is

considered and it is shown that implicit Runge-Kutta
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methods suffer the same restrictions on the stepsize, due
to weak stability and convergence of the iteration process,
as do linear multistep methods. We then discuss the
desirable stability regions for Runge-Kutta methods and
suggest the use of methods which are 'L-stable'. In an
effort to obtain L-stable methods we investigate the use
of Runge-Kutta methods which include the second derivative
of y and we propose third and fourth-order ._-stable
methods which are implicit with respect to y rather than
the k's. We conclude the chapter by comparing this
fourth-order method numerically with an alternative fourth-
order method due to Butcher (1964).

The content of the sixth chapter is divorced from any
of the work detailed in chapters three, four or five. In
this chapter we consider the use of linear multistep
methods based on non-polynomial interpolants rather than
the conventional polynomial interpolant. It is shown how
multistep methods based on a general non-polynomial
interpolant can be derived by the use of recurrence
relations. The feasibility of using this technique for
the Jorivation is investigated and criteria, based mainly
on the number of arithmetic operations involved, are
presented for deciding when multistep methods should be
derived by recurrence. We illustrate numerically the
solution of several problems by multistep methods which
are based on non-polynomial interpolants and have been
derived by the recurrence relations.

In chapter seven we continue with methods based on
non-polynomial interpolants. Continuously adaptive

single-step methods and multistep methods, based on
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applying non-linear exponential fitting to the solution,
are derived by a technique which makes use of an idea
originally proposed by Prony [Hildebrand (1966)].
Sufficient numerical results are quoted to show that
these types of method warrant further consideration for
those problems having a solution which is exponential
in nature.

The final chapter, the eighth, summarises the
results and conclusions drawn from the previous four
chapters. We discuss the implications of these conslusions
and finish by suggesting possible extensions to various

aspects of the work carried out ir this thesis.
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Chapter Two

Introduction

Although various forms of the linear multistep methods
and Runge-Kutta methods had existed from before 1900
subsequent development was comparatively slow mainly due to
the lack of calculating facilities. The widespread
introduction of computers in the early 1950°s meant an
enormous increase in the size and complexity of problems
that could be tackled and this spurred on researchers into
developing both the background theory and the numerical
techniques involved. In this chapter we give a brief
bibliography of the more important papers published from
1955 onwards concerning the numerical solution of the first-
order initial-value problem. This bibliography, which is
not claimed to be comprehensive, is divided into two
sections. The first section deals with linear multistep

methods and the second with Runge-Kutta methods.

2.1 Developments in Linear Multistep Methods

Perhaps the most significant papers concerning linear
multistep methods were those produced by Dahiquist (1956,
1959) in which he formalized the definitions of convergence,
produced necessary and sufficient conditions for convergence
and obtained results on the maximum order attainable by
convergent explicit and implicit methods. This material
was then included in a book by Henrici (1962) which for
many years was commonly regarded as the definitive work on
the subject. Henrici's book was not restricted to linear
multistep methods and also included chapters on the

convergence and accuracy of Runge-Kutta methods. In a
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subsequent book Henrici (1963) generalized the theory behind
the use of linear multistep methods so that theoretical
results were directly applicable to the solution of systems
of first-order differential equations.

Much of Dahlquist’s work was concerned with the
behaviour of the numerical solution in the limiting case as
the stepsize h tended to zero. Interest was then focused on
ensuring that, when working with a finite stepsize h
greater than zero, any errors introduced at a particular
step would be damped out as the solution advanced. The
forms of numerical solution being employed were variants
of predictor - corrector methods and people who published
work on these aspects include Hamming (1959), Milne and
Reynolds (1959, 1960), Wilf (1959 , 1960) Hull and
Newberry (1959, 1961, 1962), Ralston (1961 , 1965), Chase
(1962), Crane and Lambert (1962), Hull and Creemer (1963),
Crane and Klopfenstein (1965), Stetter (1965a, 1965b, 1968),
Hall (1967), Klopfenstein and Millman (1968) and Lambert
(1971).

A different topic considered by various people was
whether a way could be found to circumvent the restrictions
imposed by the demands of zero-stability on the maximum order of
Tinear multistep methods. One technique suggested was to
use one or more off-step points which meant finding the
values of Yy and fr at points such as x + rh where r is not
an integer. This idea was proposed independently by Gear
(1964), Gragg and Stetter (1964), and Butcher (1965) while
further developments were made by Kohfeld and Thompson
(1967, 1968), Brush, Kohfeld and Thompson (1967), and
Lyche (1969).
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An alternative suggestion for obtaining higher order
methods was to alter previously computed values of y and f
and this was investigated by Nordsieck (1962), Gear (1967)
and Beaudet and Feagin (1975). The methods of both
Nordsieck and Gear involved making use of derivatives of y
higher than the first., Other people who have considered this
possibility include Lambert and Mitchell (1962), Liuigei and
Wiilourhby (1967), and Makinson (1968).

Yet another technique is that of using the so called

'block methods' where the solution is advanced by more
than one step at a time and involves the cycling of corrector

formulae. This idea has been investigated by Rosser (1967),
Shampine and Watts (1969) and Donaldson and Hansen (1970).

The use of splines in deriving multistep formulae has
been considered by the following, Loscalzo (1968a, 1968b),
Loscalzo and Schoenberg (1969), Loscalzo and Talbot (1967a,
1967b), Callender (1971), Byrne and Chi (1972), Andria,
Byrne and Hill (1973), and Hill (1975).

Modifying linear multistep methods so that the
coefficients are no longer constants but depend on the

stepsize h and 3af/sy is another idea for increasing the
maximum value of the stepsize that can safely be used.

This has received attention from Rahme (1969, 1970),
Lambert (1970) and Lambert and Sigurdsson (1972).

One of the most important techniques suggested for the
solution of the initial-value problem by multistep methods
is that of employing various step sizes to carry out a step
and then using extrapolation to obtain a more accurate
result. This strategy was originally proposed by Gragg

(1964) who put forward a method which was based on a
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modification of a two-step explicit multistep method. The
resultant method had a global error expansion which ascended
in powers of h? and was therefore eminently suitable for
use with extrapolation. Bulirsch and Stoer (1966) improved
on Gragg's original method by proposing that rational
extrapolation beused rather than polynomial extrapolation,
Their method which can vary both the order and stepsize as
necessary turns out to be one of the most efficient methods
currently available when the cost of making function
evaluations is small,

Other multistep methods which are regarded as being
efficient are those developed by Krogh (1969, 1970, 1971),
Gear (1971a, 1971b) and Sedgwick (1973). All these
formulations are variants of the well known Adams methods
with Krogh and Sedgwick making use of divided differences
to store information about the solution while Gear uses scaled
derivatives. A1l three methods can vary both the order and
stepsize as necessary and the difference between them in
addition to the way they store their information about
the solution is in the mode of application, the maximum
order available and their strategies for error control.

Over the last few years the development of new
methods and modifications to improve older techniques has
become less important and interest has turned to setting
up test standards by which methods might be compared for
efficiency and reliability and the comparison by these
standards of the various methods currently available. Test
criteria have been proposed by Hull (1967), Stewart (1968)
and Hull et al (1972). The first attempts at comparison
of methods were those of Clark (1968) and Crane and Fox (1969).
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These early efforts were rather limited in scope and 1t was
left to Hull et al (1972, 1974) to provide a full scale
comparison of methods to a common test standard. Hull and
his colleagues tested various types of methods including
multistep methods over a wide range of problems where all
the methods were forced to conform to a local error
tolerance per unit step. For each method on each problem
extensive statistics are taken relating to the time taken
by the method and the level of accuracy it attains. Among
the multistep methods considered the conclusion drawn is
that the method of Bulirsch and Stoer is the most efficient
if function evaluations are cheap to compute and that
otherwise the methods of Krogh or Sedgwick are preferable.

No mention has been made so far concerning the
“application of linear multistep methods to types of problem
which may create special difficulties such as problems with
a singularity in the solution or problems where the vale of
the stepsize has to be kept very small to stop the
propogation of errors even though there is no excessive
need for accuracy. The solutions of these types of
problem are the subjects of the chapters following this one
and discussion of the relevant papers is incorporated in
these later chapters and hence no references are given at

this stage.

2.2 Developments in Runge=Kutta Methods

We now consider the development of the Runge-Kutta methods
over the period of the last twenty years and we concentrate
exclusively in this section on explicit methods. In the late

1950°'s and early 1960's when storage was still an important
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consideration attention was focused on deriving methods which
required the minimum amount of storage. This approach
originally proposed by Gill (1951) was followed by Conte and
Reeves (1956), Blum (1962) and Fyfe (1966) where these authers
made choices for the free parameters present in most Runge-
Kutta methods so as to reduce the storage and in certain
cases round-off error. An alternative approach was to chocse
the free parameters in order to minimize the local errov.
This has been considered by - » Kuntzmann (1359),

. Ralston (1962), Hull and Johnson
(1964) and King (1966). A further development of this idea
is the proposal of methods which incorporate direct estimates
of the local error and hence provide a mechanism for stepsi:e
control. This has been suggested by Merson {1957),
Scraton (1964), Fehlberg (1964), Shintari (196%, 1960¢, 1966D)
and England (1969). This technique can itself be extended by
including or ‘embedding’ Tower order methods within higher
order methods to obtain an error control strategy. Fehlberg
(1964, 1968, 1969), Sarafyan (1966a, 1966b, 1967) and . szov
(1967) are among the people who have investigated thi: particular
approach.

Multistep versions of the Runge-Kutta methocs, wr.re we
incorporate function evaluations outside the interval
[Xn’xn+1]’ is a topic that has received attention [rom variocus
authors including Byrne and Lambert (1966), Ceshinc and
Kuntzmann (1966), Byrne (1967) and Rosen (1968),

Another approach considered by Lawson (1966, 1967), and
Lomax (1968) has been to choose the free parameters in various
Runge-Kutta methods in an attempt to increase the maximum

value of the stepsize that can safely be used.



..24-
Most attention over the period has been focused on the development
of methods of ever increasing order. The results of Butcher
(1965, 1975) give theoretical bounds on the minimum number of
function evaluations necessary to obtain a given order whiie
Cooper and Verner (1972) show that methods of order p can be
obtained with (p2-7p+14)/2 function evaluations. Other pecpic
who have produced high-order methods include Luther anu Konen
(1965), Luther (1966, 1968), Shanks (1966), Rosser (1967) and
Fehlberg (1968, 1969, 1970).

Various Runge-Kutta methods were considered by Hull et i
(1972, 1974) in their comparison of methods. They locked ct the
fourth, sixth and eighth order formulae of Runge (1895), Butcher
(1964) and Shanks (1966) respectively and the formulae of orders
four up to eight developed by Fehlberg (1968, 1969, 1070). In
their conclusions they recommended the methods of Fehlberg as
being the best of the various Runge-Kutta methods that were
tested with the lower order methods being the most competitive at
less stringent error tolerances and higher crdeir met*wiis the most
competitive at more strirgent tolerances. Thi. o socaeiviiy uie
to the fact that none of the methods cu. vuity the crder aad this
has to be regarded as a disadvantage. In comparison with the
multistep methods the methods of Fehlberg are cqualiy us
competitive as the extrepoiition method oV Suiiis .m0 ooolb hag
function evaluations are inexpensive althcugh ¢ . « o v Tl
case then the Adams multistep methods of Krogh and teuiwick are
preferable to any Runge-Kutta method.

Again no mention has been made in this section to those
problems which give rise to special difficuities. One application
of Runge-Kutta methods to a special problem is given in Chapter

Five and the relevant literature will be QUoted there. Finally it
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should be pointed out that there are cases when the linear
multistep methods and the Runge-Kutta methods overlap each
other. One example of this is in some of the 'block’
methods which can be expressed either in terms of Runge-Kutta

formulae or in terms of linear multistep methods.
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Chapter T.rce
Introduction

The background theory of convergence outlined in the first
chapter is concerned with the behaviour of the numerical solution as
the stepsize h tends to zero. In practice however we are working
with a non-zero stepsize and would like to have some measure of the
error involved and ideally a guarantee for damping out the error as
the calculation proceeds. In this chapter and the next one we will
be dealing only with linear multistep methods and for these Henrici
(1962) has proved the following theorem,

Theorem 3.1
If L[y(x);H] is a difference operator of order p > 0 then for all
functions y(x) which have p + 1 continuous derivatives in [a, b]

the bound on the local error is given by

Lly(x )sh]| <b " ey (3.1)
where ‘]
v=max P10 (3.2)
xefa, b]
and
1 (K
G = BT Jo |G(s)]|ds (3.3)
with
k -1
6(s) = I [o;(-5)5 - pe(3-s)8"]. (3.4)

Henrici also proves that under suitable assumptions the global
error is of order p. Thus the bound for the global error is an order
of magnitude greater than that of the local error due to a process of
accumulation. Therefore by increasing the order of the local error

we can raise the order of the global error. However this alone is
not enough to stop the global error increasing. We have also to
ensure that the errors are not allowed to build up as we proceed
step by step with the calculation. To do this another restriction

must be placed on the method and this we now discuss.

3.1 The Theory of Weak Stability

Consider the linear multistep method (1.4) and assume it to be
both consistent and zero-stable. The theoretical solution y(x) of

the initial value problem (1.1) satisfies
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K K
jéo ajy(x"+j) ='1jZo ij(xn+J’y(xn+j)) * Tn4k . (3.5)
Let {i} be a solution of (1.4) when a roundoff error R is

committed at the n-th application. Then
k . k

5 ayY:=hT B f(X .oy .:) +R ., (3.6)
§=0 J 7n+j 320 J n+j’ n+j n+k

If the total error is defined by
en = VX)) =y, (3.7)

subtracting (3.6) from (3.5) gives
k - k ~
jzo % ®n+j T h jéo gj [f(xn+j’y(xn+j)) ) f(xn+j’yn+j)] ¥ Pnek
where
btk = Tnek = Rnek (3.9)
Assuming that 5f/ay exists for all x e[a,b] and applying the mean-
value theorem gives
- - of
f(xn+j’y<xn+j)) ) f(xn+j’ yn+j) * ®n+j 3y (Xn+j'En+j) (3.10)
where En+j lies between y(xn+j) and yn+j'
Hence
k . k 3F -
jZO % Cn+j * hJZO Bj 3?'(xn+j’ En+j) €nej * On+k o (3.11)

Consider the representative linear differential equation
y' =y (3.12)
where A is a real constant.

From (3.12) we have
of _
e - (3.13)

Making the additional assumption

Prey = 0 (3.14)

where ¢ is a constant, (3.11) becomes

k

6 (3.15)

which has as~its géneral $olution

(3.8)
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e Lt —— o1

where the dS are arbitrary constants depending on the initial
errors, and the ro are the roots, assumed distinct, of the equation
k .
J (as=hag;)rd =0, (3.17)
j=0 J J
Using the first and second characteristic polynomials as defined in

(1.20) and (1.21) respectively (3.17) can be written as

m(r,h) =0 (3.18)
where

a(r,h) =o(r) -h o(r) (3.19)
and h = ha, (3.20)

w(r,ﬁ)‘ is known as the stability polynomial of the linear multistep
method.

From (3.16) it can be seen that the total error will grow only
if any of the roots of (3.17) have modulus greater than one. Hence
we have the following definitions as given in Lambert (1973).
Definition 3.1
The linear multistep method (1.4) is said to be absolutely stable for
a given h if for that h all the roots r  of (3.17) satisfy
Irl <1, 8 =1,2, ... k, and to be absolutely unstable otherwise.
Definition 3.2
An interval (x, B) of the real line is said to be an interval of
absolute stability if the method is absolutely stable for all
h e(as, 8). If the method is absolutely unstable for all h it is
said to have no interval of absolute stability.

We assumed that the roots of (3.17) were distinct but the
restrictionlrsl <1 in definition 3.1 will still cause the total
error to decay as n increases even if the roots were multiple.
If the linear multistep method (1.4) is applied directly to the

representative linear differential equation (3.12) we obtain
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; (a; = hAB3) ¥, 5 = 0. (3.21)

I e~1x

J
Hence the numerical solution {yn} satisfies the same difference
equation as the total error {én}° Thus if the numerical solution
is increasing then so must the total error and we can therefore
only achieve absolute stability if the solution is decreasing.

In developing the theory of weak stability we have used

a linear differential equation (3.12) to represent the
differential equation (1.1) which may or may not be linear.
If (1.1) is Tinear then absolute stability will guarantee the
damping out of the total error. We hope also that the behaviour
of the total error as determined from the representative linear
equation will give us an indication of the likely error
behaviour when solving a non-linear differential equation. How
good this indication is obviously depends on the degree of non-

lTinearity of the differential equation (1.1).

3.2 Applicability of Weak Stability Theory to Systems of

Differential Equations

With a system of m first-order ordinary differential

equations the representative linear equation is

y' = Ay (3.22)
T [ i [} ' 1 T
where y = (]y,zy,3y, ...,my) and y -(]y PUAREY ATERRR )
The Tinear multistep method as applied to a system of m
equations becomes
k k
i . = h . f (3.23)
jZO %3 ’Zn"'\] JZO BJ —ty
- T -~
where Ynij = (1yn+j’;yn+j’ vees myn+j) and fn+j = (lfn+j' 2fn+j""
mfn+j)

while the equation for the total error is



- 30 -

g

k . k )
jZOaJ Cntj T h_z B Lf(xn+j’¥lxn+j)) - fﬁxn+j’xn+jﬂ b (3.24)

e . = -y =T -
where En+j l(xn+j) Ln+j and Entk T -k Bn+k°

Applying the mean value theorem to (3.24) gives

k . k of .
jZO *iEn+j © hjzo B5 37 Eneg T ok (3.25)
where af/ay is the (m x m) Jacobian matrix which has as its
(1,J) element the partial derivative of F(Xy1Y32Ys eves my)
with respect to jy evaluated at some point between 1..y(xn_"].)
and i;n+j'
Making the assumptions
i’ (3.26)
3y
where J is an (m x m) matrix with constant coefficients and
Spek T 2 (3.27)
where ¢ is a vector of constants, (3.25) can be written as
k ~
jzo (aJ.I-heJ.J)_gn+j = ¢ (3.28)
where I is the (m x m) identity matrix.
If we also assume that the eigenvalues Aj, J=1,2, ...y m
of J are distinct then there exists a similarity transformation
such that
p7lap = D
where D = diag(Ay, Az, +ees Ap)e
Define
e, = Pd . (3.29)
Premultiplying (3.28) by P™' and substituting for & from
(3.29) gives
k
_Z (ajI—thD)gn+j =g (3.30)

j=0
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where

-1
g=P ¢.
Since I and D are both diagonal matrices (3.30) can be

rewritten as

3~

0 (aj"th)\i)i dn+j = _ig 1. = ]’2,...,mo

J
Each of these equations is independent of all the others and
each has the same form as the linearized error equation
(3.15) for a single differential equation with 1dn and A
corresponding to én and A respectively. From (3.29)
gn will grow or decay with n if and only if éﬂ does and so
all the theory developed for a single equation will hold
if xis taken as an eigenvalue of the Jacobian matrix J.

Since the Jacobian is usually unsymmetric its

eigenvalues are not necessarily real. Hence for a system
the parameter h appearing in the stability polynomial
(3.18) might be complex. We then have to consider a
region for h rather than an interval while in addition
any criteria involving h must be satisfied for all the
eigenvalues of the Jacobian. Therefore to extend the
concept of absolute stability to systems of differential

equations we again follow Lambert (1973) and modify the

earlier definition 3.1 of absolute stability to:-

Definition 3.3

A linear multistep method is said to be absolutely stable
in a region R of the complex plane if, for all h ¢ R, all
roots of the stability polynomial =(r,h) associated with

the method satisfy |r | < 1, s =1, 2, .05 k.

3.3 Calculation of the Region of Absolute Stability.

The roots of a polynomial -are continuous functions of

(3.31)

(3.32)
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the coefficients. Thus the roots of the stability polynomial
n(r,h) = 0 are continuous functions of h. If we denote the
boundary of the stability region by aR then h will lie on 3R
when one of the roots of w(r,ﬁ) = 0 lies on the boundary of
the unit circle. This happens when

p(exp(ig)) = ho(exp(ie)) = 0

= _plexp(is
R(s) = géaigfﬁgg%u (3.33)

Hence we can plot the boundary aR by evaluating h(e) from

that is,

(3.33) for various values of 6 running from zero to 2r
radians. This technique for determining the stability

region is known as the boundary locus method.

3.4 'Stiff' Systems of Ordinary Differential Equations

Consider the following linear system of m first-
order ordinary differential equations
y' = Ay +a(x) (3.34)
where the (m x m) matrix A is again assumed to have m
distinct eigenvalues Ai and corresponding eigenvectors

Cys t=1,2,..., m. This system has a general solution

of the form
m Atx
y(x) = } kpe = ¢, + B(x). (3.35)
- t=1
If in addition
Re A, < 0 t=1,2,...,M (3.36)
then
m X
) kt;t € >0 as  x=»e
t=1
m AgX
The term 7} kte Ct is called the transient solution
t=1 ”

while g(x) is known as the steady state solution. If any
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one of the eigenvalues of A, say Ay is large in magnitude
then to achieve absolute stability h will have to be kept
very small throughout the range of integration even though
the magnitude of the term involving A rapidly decays to
zero. This type of problem is usually termed 'stiff'. We
quote the following formal definition of 'stiff' as given

by Lambert (1973).

Definition 3.4
The Tinear system y' = Ay + a(x) is said to be stiff if
(i) Rea, < 0, t =1,2,...,m and

(i) max |ReAt|>> min lReAtl where X.,t=1,2,...m,

t=1,2,...,m t=1,2,...,m
are the eigenvalues of A. The ratio
max ReAt :[ min . Rer, || is calied the
t=1,2,...,m | . sM ’

t=1,2,..
stiffness ratio,

If the non-Tinear system y' = f(x,y) can be expanded by
a Taylor series about the point (i, 2) which is assumed

near to (x,y) then
of of af af

Y=gy (1) x* £G) - K gx (G)) - 57 (G + xgp(hl)

provided we ignore higher order terms., (3.37) is of the
same form as (3.34) with A corresponding to af(x, y)/ay.
Thus the non-linear problem can be approximated by a linear
problem over sufficiently small intervals in x and an
estimate of the stiffness ratio obtained by considering
the eigenvalues of the Jacobian matrix af(Xx,y)/ay.

For a system of equations the Lipschitz condition of

Theorem 1.1 is replaced by

[f(xsy) = £y} < Lly-y*|

(3.37)

(3.38)
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where || . || denotes a vector norm. If the partial
derivatives occurring in the Jacobian 3f/3y are continuous
and bounded in a region R, a < x < b, -= < Y <= i=1,2,
...sM then the Lipschitz constant of the system y'=f(x,y)

may be taken as

L = sup l of (3.39)
(X,yER) | 5"y‘
where || . || denotes the matrix norm subordinate to the

vector norm in (3.38). For any (m x m) matrix A and any

matrix norm
LAl 2 max [ ag ],
t=1,2,...,m
Stiff systems of equations have max |Re Atl >> 0
t=‘|’2’°‘lm

and hence L >> 0 and are consequently often referred to

as systems with large Lipschitz constants.

3.5 Desirable Stability Regions for Stiff Systems of Equations

To solve a stiff system of ordinary differential
equations we need a linear multistep method which is not so
restricted by the demands of absolute stability that we
have to use a small stepsize even after the initial transients
have decayed. Dahlquist (1963) proposed that methods for
stiff equations should be 'A-stable', a property he

defined by:-

Definition 3.5

A numerical method is said to be A-stable if its region of
absolute stability contains the whole of the left-hand
half-plane Re Ah < 0,

In addition Dahlquist subsequently proved the following theorem,
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Theorem 3.2
(i) An explicit linear multistep method cannot be A-stable.
(ii) The order of an A-stable implicit linear multistep
method cannot exceed two.
(ii1) The second order A-stable implicit linear multistep
method with the smallest error constant is the

Trapezoidal Rule.

A-stability thus turns out to be a very demanding requirement

and so Gear (1968) proposed the following:-

Definition 3.6

A numerical method is stiffly-stable if (i) its region of
absolute stability contains R] and R2 and (ii) it is
accurate for all h A eR2 when applied to the linear
representative equation y' = 1y, A a complex constant
with Re » < 0 where

R

n

1 = i | Re hx < =D}

R

) {hx | =D <Re hASa,, -bsf- Im h>\_<_bs}

and where D, ag and bs are positive constants.
We illustrate this definition by the following figure

Im(hx)

b

N

a Re(hx)

N

[]
o

@ erotes the region R, H// Denotes the region R,
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The eigenvalues with negative real parts and with large
moduli correspond to terms in the transient sclution which
decay rapidly. After the initial transients have died
away we no longer insist on an accurate representation
for these terms but only that they are not allowed to
cause instability. Hence hi for these rapid transients
will eventually come in the region R] where we only requirc
stability. A1l the other terms should be represented both
accurately and stably and by a suitable choice for h
these terms can have values of hi which come in the
region R2 where we insist on both accuracy and stability.

An additional complication arises with some wui': te;
methods whereby although the method is either A-stabie o:
stiffly-stable when it is applied with a constant stepsize
h to the linear representative equation y' = Ay, A a

complex constant with Re » < 0, we find

lim |y +> 1,
Mo n+1
ha->=w In

Thus Yq will decay to zero very slowly. Methods for whicn
this ratio tends to one (for example, the trapezoidal rule)
when applied to stiff differential equations can cause
some of the transients that decay rapidly tuv zerc in the
analytical solution to be represented in the numerical
solution as slowly damped or oscillatory components and
this can restrict the stepsize. This leads us on to «

further definition as given by Enright (1972).

Definition 3.7
A method is stable at infinity if, when it is applied to

y' = Ay, X a real negative constant, with a constant
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stepsize h, there exists real W < 0 such that

sup  lim y < 1,
ha<W  noe n+l

n

The condition (3.40) implies that Yo 0as n -+ =,
Since the total error and the numerical solution satisfy
the same difference equation this implies that the

error is decreasing as n » », The roots of a polynomial
are continuous functions of its coefficients therefore
as hi+-= so the roots of the stability polynomial tend
to those of o(¢) = 0. Hence for a linear multistep
method to be stable at infinity we require that the
roots of o(g) be less than one in magnitude.

Ideally we would like to have methods which were
both A-stable and stable at infinity but since A-stability
is so demanding we will settle for methods which are
stiffly stable and stable at infinity.

In this chapter we have defined the concept of
absolute stability for a single equation and for a
system of equations. Additionally we have defined
'stiff' differential equations and outlined the
desirable stability criteria for this type of problem.
In the next chapter we will detail some of the stiffly
stable methods that have already been proposed by

various researchers and suggest alternative methods.

(3.40)
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Chapter Four

4,1 Stiffly-Stable First-Derivative Multistep Methods

Following iz definition of stiff stability Gear (1968) went
on to propose a class of stiffly-stable multistep methods. He
suggested that for a k-step method the second characteristic
polynomial should be taken as

o(£) = £5. (4.1)
This choice for o(g) ensures that the method is stable at
infinity since the roots of o(g) = 0 are all zero, Thus Gear
normalizes his methods by taking B = 1 while by setting
Byr Bysevcs By to be zero the remaining k+1 coefficients
Qs Gpaeoes @) CAN be chosen to make the method have order
k without violating the condition of zero-stability. He then
showed that for this class of methods a k-step method could
have order k and be stiffly-stable for k = 1,2,3,...,6 but that
methods with k > 7 were not stiffly~stable.

In an attempt to derive stiffly-stable methods of higher
order Di11 (1969) proposed alternative choices for o(¢). To

obtain a seventh-order method he took k = 7 and o(g) = £5(£-0.99)

while for an eighth-order method he took k = 8 and a ()
£5(£2-1.8¢+.81).

Jain and Srivastava (1970) subsequently carried out a more
systematic approach by considering various classes of methods

based on different choices for o(g). Their choices were

o(e) = £ T(e-c)" r=1,2,...k  =lecel (4.2)

o(g) = zk'”(a‘"-c'“) r=2,...,k  =l<c<l (4.3)
k-r ¢ _r-i i

o(6) =& ' J & ¢ r=2,.,k -le<l,  (4.4)

With suitable choices for r and c (4.2) gives stiffly stable
methods up to order eleven while (4.3) and (4.4)
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only give stiffly-stable methods up to order seven and eight
respectively. Some of these methods give a larger stability
region than Gear's original choice for s(¢). Jain and

Srivastava give the coefficients of their more interesting
methods and plots of the corresponding stability regions in

their report,

4.2 Stiffly-Stable Second-Derivative Multistep Methods

When we apply an implicit first-derivative linear
multistep method to solve the first-order ordinary
differential equation (1.1) and attempt to calculate
Yn+k by using the iteration defined by (1.7), (1.8) and
(1.9) then from Theorem 1.2 this jteration will only

converge if

1

For a stiff differential equation L is large and we are
therefore restricted to using a small stepsize
throughout [a,b] to ensure convergence of the iteration.
One way to avoid this restriction is by applying the

Newton-Raphson method to (1.9) to give

(v+1) _ (v)
Yk yn+k (- thay n+k’yn+k 0 [ “Yn+ +h3 f(x n+k’yn+k )+C]  (4.5)

(v) . .
where yn+k is the value obtained for Y ek after the vth iteration.
This iteration is exact for a linear differential equation

and converges adequately for most stiff equations. For a

system of equations (4.5) takes the form

(1) 00) . rrong X 1y O) (v)
Ynsk Ynek = L Bkﬁ'_xn+k’-xn+k)] AL RICRRNANAL ) NI CN)

Since the Jacobian matrix aj/ax_is needed for the

iteration the possibility of developing a class of methods

which make use of the Jacobian has been considered by Enright
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(1972). He was interested in autonomous systems of first-
order ordinary differential equations, that is, systems of
the form

y' =1y (4.7)
as many stiff systems are encountered in an autonomous form
while those that are not can be made autonomous by adding
an extra equation m+]y' =1, ,qvia) =2 (which has the
solution y = x) and replacing all occurrences of x by

m+]y. For ar autonomous system

y' = [E] y' (4.8)
3y

and Enright proposed using multistep formulae which
incorporate the second derivative of y.

The general k-step second-derivative multistep
method for a single differential equation is

k k k

1)
T ay,.=hJ g.f . +h27 yfll) (4.9)
j=0 J'n+J j=0 J ntJ j=0 J N+
where
1 d
f£+2 ® X [f(x’y)1x=x
v N - S L -Sl']- .
7"t

Associated with the multistep method (4.9) is the linear

difference operator L defined by
k
L{z(x);h] = jéo [aJ.z(x+j h)-hBJ.z'(x+jh)-—h2yjz“(x+jh)] (4.10)
where z is an arbitrary test function infinitely
differentiable on [a,b].
Expanding z(x+jh), z'(x+jh) and z"(x+jh) by Taylor series

and collecting terms gives

Lz(x)3h] = 20 ¢ h"z{" (x) (4.11)
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where
) |
G = jéo %
k
C, = j{o (Jo5785) > (4.12)
ko p r-1 .r=2
C, = J_ZO [37a57rd" ayr(r-1)i ] re2,3, |

The difference operator and associated linear multistep

method (4.9) are then said to be of order p if in (4.11)

Co = Cy=evnne = Cp but Cp+1 # 0. (4.13)
Cp+] is again referred to as the error constant.
The local error at Xpek of the linear multistep method (4.9)
is given by
k
Ly (x,)sh] =j§0[ajy(X+jh)-h%y'(X+Jh)-hzvjy"(X+Jh)] (4.14)

where this is again often denoted by Tn+k'
Associated with the multistep method (4.9) are three
characteristic polynomials. The first and second are
given by (1.20) and (1.21) respectively while the third

is defined by
ve) = T vl (4.15)

Consistency and zero-stability are then necessary and
sufficient conditions for the convergence of the multistep
method (4.9).
If we follow the weak stability analysis of section
3.1 we find that for the second-derivative multistep method
(4.9) the error equation corresponding to (3.15) is
k
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and hence the stability polynomial now becomes

n(rsh) = p(r) - Ro(r) - R (r).
Thus  if the multistep method (4.9) is to be stable at
infinity the roots of y(g) = O must be less than one in
magni tude.

To ensure zero-stability Enright has chosen

o(g) = % - g~
while for stability at infinity he takes
b(E) = v, 8"

This enables him to determine BoysBysec-sBy and Yy SO that
his resultant method has order k+2. His methods are
stiffly stable for k = 1,2,...,7.

In Table 4.1 we quote for the methods of Gear and
Enright the appropriate values for D and bS (Definition
3.6) for each value of k. In addition for future
comparison purposes we give the error constant Cp+] for

Enright's methods after they have been normalized so that

Table 4.1

GEAR ENRIGHT

D bg k jorder| D bS Cp+1 K

0 |A-stable |1 1
0 |[A-stable |2 2
0.1 0.75 3 3 0 A-stable | .083 |1
0.7 0.75 4 4 0 A-stable | .039
2.4 €.75 5 5 0.1 2.0 .022
6.1 0.5 6 6 0.52 2.0 014
7 1.4 2.0 .010
8 2.7 2.0 .0074
9 5.3 1.9 .0057

Ny O AW N

(4.17)

(4.18)

(4.19)
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It would seem a logical progression to look at alternative

classes of second-derivative multistep methods to see whether

there are methods which have larger stability regions.

Analogously to the manner in which Jain and Srivastava

investigated possible modifications to Gear's first-

derivative multistep methods we will attempt initial

follow a similar approach with respect to Enright's second-

derivative methods.

The general second-derivative linear multistep method
(4.9) has one arbitrary coefficient. We normalize the method

by choosing Y, as the arbitrary coefficient and then setting

ly to

it equal to one, For consistency it is necessary that

k§2
o = =0y, - [+ 3OS
k=17 7% T L%

To ensure zero-stability while satisfying the consistency

condition (4.20) we set

o5 =0 J=0,1,.0.,k=2
and take

kT "=
so that

o(5) = a (65-KT),

Since all the roots of &) = 0 must be less than one in

magnitude to ensure stability at infinity we will investigate

in turn each of the following choices for y(&):

y(g) = ak'r(a-c)" r=1,2,...,k
v(e) = ak'”(er-cr) P o= 2500,k

r . .
o(g) = 5T 7 ™ =2k

Note that if ¢ iszero the three choices each reduce

Enright's method, while r starts at two in (4.23) and (4.24)

~1<c<1

~1<c<]

-1<e<]

to

(4.20)

(4.21)

(4.22)
(4.23)

(4.24)
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since taking r = 1 would give the same nethod as taking r = 1
in (4.22). The coefficients %s Bosenes By CAN then be
determined for each of the above choices for y(¢) so that
the method has order k + 2.

Although we have obtained stiffly-stable methods which
have an order of twelve and it may well be possible to
obtain still higher-order methods, we only give results
for those methods which have an order of nine or less.
hence since each of these classes of k-step method have
order k + 2 the maximum value of k will be taken as seven.
For each of the three choices for y(g) results have been
taken for values of ¢ running from -0.9 to 0.9 in steps of
0.2 except that when r is even (4.23) is symmetric in ¢
and thus we need only consider ¢ going from -0.9 to -0.1
in steps of 0.2. The quantities D and bS are determined
by using the boundary locus method usually with an
interval in 6 of five degrees although if it appeared
from the results that this interval was too large we
repeated the calculation using an interval in 6 of one
degree.

In Appendix 1 results are only given for those values
of ¢ for which we actually obtained a stiffly-stable nultistep
method having a value of less than ten for D. We quote in
tables A1.1, Al1.2, Al1.3, each table corresponding to one of
the three classes of method, the value of c and the
corresponding values for D, bS and the error constant Cp+].
To make an easier comparison of the various results we
include three additional tables, tables Al.4, Al.5, and
A1.6, each again corgesponding to a particular class of

method, which give the values of ¢ and Cp+] at the
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minimum value of D for each pair of values of r and k. Each
of these last three tables start from k equal to three since
for all three classes of multistep niethod k equal to one or
two and c equal to zero give A-stable methods which are
stable at infinity, and we therefore omit these from our
comparison.

Although it is impossible to draw any specific
conclusions from the results we can make some general
observations. From tables Al.1 and Al.4 we can see that the
choice of (4.22) for y(g) can give us stiffly-stable
methods up to order nine at least. It can also be seen that
for this particular choice, r equal to one usually gives
both the largest stability region, as measured by the value
of D, and the smallest error constant although the value of
c at which these are obtained tends towards one as k increases.
Intuitively we feel that a value of c too near one will give
us larger errors when working with bigger values of h. It is
certainly possible however with.r equal to oue and an
appropriate choice for ¢, without taking it too close to one,
to obtain stiffly-stable methods with larger stability
regions and smaller error constants than those of Enright.
Higher values of r in general give smaller stability regions
than when r is one and the error consfént tends to be larger
although the value of c at which we obtain the largest
stability region decreases.

If we now consider the second choice for y(£), given
in (4.23), it can be seen from the results in tables Al.2
and Al1.5 that the largest stability regions occur when r
is equal to k. Although the values of c are not too close

to one, the truncation errors are however much greater than
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when r is one.

Taking y(&) as defined by (4.24) the results in tables
A1.3 and Al1.6 indicate again that r being one gives the
largest stability regions and the smallest error constants,

Comparing between the three choices for y(£) we
observe that the best alternative choice of method between
(4.22) and (4.24) is the method for which

= Ek-](g-c)

v(£)
where an appropriate value for ¢ can be found from table
Al.1. The best choice of method from (4.23) is
obtained when

v(g) =& -c
where an appropriate value for c can be found from table
Al.2.

For the same stepnumber k the method determined by
the choice (4.26) for y(&g) always has a larger stability
region than the method obtained from the choice (4.25)
but it also has a much larger error constant. Recalling
also that when h is large the roots of the error equation
(4.16) tend towards those of y(£) we note that ¢ = ¢ is a
root of y(g) for both choices but,whereas the remaining
roots of y(g) in (4.25) are all zero,the other k - 1
roots of y(&) in (4.26) have magnitude c. We
therefore suspect that the choice of (4.26) for y(&) may
lead to much larger errors than (4.25).

With all three choices for y(&) we have obtained
stiffly-stable methods up to order nine which have larger
stability regions than Enright's methods. We suggest
that the best alternative method based on the choice of

(4.22), (4.23) or (4.24) for y(&) is the method which

(4.25)

(4.26)
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has y(&) given by (4.25).

4.3 The Use of Optimization Techniques to Increase the Stability

Region of Stiffly-Stable Second-Derivative Multistep Methods

In each of the three choices (4.22), (4.23) and (4.24)
for (&) we are imposing a particular form on the third
characteristic polynomial. It seems very uniikely that any one
of those three arbitrary choices for y(g) from the infinite
number that could be made would turn out to be a best possibie
choice from the viewpoint of stability, since the coefficients
of y(g) are constrained to vary in a very restrictive manner.
Ideally we would Tike to be able to allow some of the
coefficients to vary in such a way that they were more
directly related to increasing the stability region. This
leads us to an alternative viewing of the problem as being
essentially one of optimization since we have an objective,
the size of the stability region, which we wish to maximize
and this objective depends on the coefficients'yk_]-.;.. Yoo
One can therefore attempt to apply optimization techniques
to this problem. The idea of using optimization to
maximize stability regions has been proposed by Crane and
Klopfenstein (1965) who successfully used a steepest descent
method to increase the stability region of a particular

“predictor-corrector algorithm, Schoen (1971) has also used
optimization to extend stability regions.

Our objective then is to maximize the stability region
of stiffly-stable second-derivative multistep methods and
since D is our best measure of the size of this region the
problem is effectively to minimize D; D of course depends

on the coefficients and the order. If we still require
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that the order be k + 2 and again choose o (£) as in (4.21) so

ensuring zero-stability without violating the consistency
conditions we can then write
D= F(yo, Viseones > Y12 k+2)

This function is calculated numerically for a
particular set of coefficients y ., Yyeooes Yo and order
k + 2 by first determining the other coefficients
Ups Boreoos By and then using the boundary locus method
with an interval in o of five degrees, this having
previously been found adequate. It does mean however
that the function values are not calculated to very great
precision. In addition the multistep method should

'satisfy the constraint that it be stable at infinity.
Hence the zeros of y(&), which are denoted by £3’].....

53 K must be less than one in modulus.

Thus our problem is
minimize D = F(yo, Y seoos yk_].k+2)
subject to the constraints

|g3’j| <1 J=1.2,...,k.

The problem is therefore one of constrained
optimization of a function which is calculated numerically
to low precision., It is impossible to calculate
analytically the derivatives of the function (4.27) and
while it would be possible to calculate the derivatives
numerically by using differences this idea is rejected
because the function values are not very accurate. ' These
considerations drastically restrict the possible methods
open to us to carry out the optimization process. We need

therefore to look for a method which is applicable to

(4.27)

(4.28)

(4.29)
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constrained problems and uses only function values. This
virtually reduces the choice to two methods: one due to
Powell (1964) and the other due to Rosenbrock (1960).
Powell's method which makes use of conjugate directions is
more modern and almost certainly the more efficient.
Unfortunately to use it for constrained optimization
really requires the use of penalty functions. This approach
was considered but it was found impossible to develop the
right type of penalty function to suit this particular
problem. The problem is in fact even more difficult than
it may appear since there is no guarantee that the resultant
stability region will remain connected and the multistep
method stiffly-stable even when the coefficients are varied
in such a manner as to satisfy all the constraints,

Because of these difficulties it was decided to use the
optimization method of Rosenbrock. We will first describe
his basic technique for minimization and then show how it
has been adapted to finding a solution for our problem.

At the start of the Lth iteration let us suppose we
have an approximation lfl) = (yél), y%l).o... yﬁf%) to the

solution together with a set of k mutually orthogonal search

directions Q15 Qoaesealy and a set of k associated step
lengths 815 §55e0es e Starting from xfa) a step §, is

taken along the direction q%l). If this does not result

in an increase in the value of the function it is considered
to be a successful step and the new improved estimate for
the minimum retained and ¢, multiplied by a constant a > 1,
If however the function value does increase then the step

is regarded as a failure and is consequently rejected while

P is multiplied by a constant g where 0> 8 > -1. A
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common choice is to take n=3 with 8 = -3 which wili be the
values we use for o and 8. The search considers each
direction in turn until ail the k directions have been
explored, and then returns to the first direction q%Q) and
recycles through all the directions until a success
followed by a failure has been recorded at some time du~ing
the iteration for every direction. At this stage a new set
of orthogonal directions is calculated. The first of these
is taken to be the resultant of the steps taken with the
previous directions while the remaining directions are
calculated by a method due to Powell (1968). The aim
of this repeated orthogonalization is to align the first
direction a4y along the principal axis of the contours and

in general q along the best direction which can be found

r+l
normal to e Initially the search vectors are taken
along the coordinate directions.

To apply Rosenbrock's method we need to be able to
calculate the function value D for any given coefficient
vector y. This is carried out by first calculating the
coefficients as Byreees By and the error constant Cp+]
and then using an algorithm due to Duffin (1970) for testing
whether or not a polynomial is a Schur polynomial and
hence whether the constraints on y(g) have been violated.

If the constraints have been violated then that

particular step is simply regarded as a failure otherwise

the boundary locus method is used to calculate the value of

D. As a starting point for the whole process we take y(&) = Ek
and thus yé]) = y%]) = .. = y&l% = 0 since we know this
certainly gives us stiffly~-stable methods for k < 7.

The possibility that the stability region becomes disconnected
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during the optimization process always exists but it seems
reasonable to make the assumption that if this happened the
value for D would then be greater than the current lowest
estimate. Hence we take no special precautions to cope with
this other than to check that the final solution does give
us a connected stiffly-stable region.

The constraints (4.29) which we have applied in this
problem are those that are necessary for the multistep
method to be stable at infinity. We might however wish to
impose more stringent constraints on the roots of y(g) = 0
in the hope that when h is very large the errors will be
less. It might therefore be thought desirable to make the
constraints

|E3,j| < W J =12,k (4.30)
where w must certainly be less than one. It is then
straightforward to modify Duffin‘s algorithm for a given
value of w so that we can use this type of constraint in
the optimization process.

In Appendix 1 in Tables Al1.7 we give the results
obtained from the optimization process. We have again
taken results with values of k running from three up to
and including seven. With each value of k we have in
turn allowed there to be from one up to four variable
coefficients, except for k being three when a maximum
of three varying coefficients is allowed. If there is to
be only one varying coefficient we take it to be Y=1
since we have previously concluded from the results in
the first appendix that with a suitable choice for T-1
in (4.22) we could obtain larger stability regions than

those of Enright. In general if there are i varying
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coefficients where i < 4 these are taken to be
Y1000 Yiei while the remaining coefficients of y(&),
Yk=1-q *o s Yo 2re set equal to zero. With each value
of k and i we have used constraints of the form (4.30)
and we quote results for values of w running from 1.0
down to 0.1 in steps of 0.1,

It is mentioned previously that our intended
starting point for the optimization process was to be
v(g) = e, With most optimization problems it is very
difficult if not impossible to guarantee that we have
attained a global minimum rather than just a local
minimum. One possible partial check on this is to
take an alternative starting point aﬁd see whether in
fact we do get the same minimum. This is however rather
a negative test since even if we do get the same or a
worse estimate then we can not draw any positive
conclusions as to whether the original estimate is a
global minimum, while if we obtain a better minimum
then there is still no guarantee thatthis new estimate
is a global minimum,

Computations were performed for various starting
points selected from some of the results in the first
appendix. It was found that there was often a large
difference in the solutions obtained from the differing
starting points illustrating the previous comments on
local minima. In the results for each pair of values

of k and ¢ we quote only the best estimate we obtained

for the minimum value of D, the error constant Cp+]
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and the values of the coefficients Y1203 V=i at the
mininum, and the starting point for y(£). We do not
however claim that the estimate is necessarily a global

minimum.

The results show that as the number of varying
coefficients used in the optimization process increases
so dees the size of the stability region. It is
certainly possible using this optimization technique to
generate stiffly-stable second-derivative multistep
methods which have niuch larger stablity regions than
either those of Enright or any method resulting from

the choice of (4.25) for y(&).

4.4 Increasing the Order of Stiffly-Stable Second-

Derivative Multistep Methods

A11 the stiffly-stable second-derivative multistep
methods we have considered so far have had order k+2
for a k-step method. We might wish to question
whether in fact this is the highest order we
can obtain for a k-step method and still have
a reasonably large stability region. As a first
move towards looking at this problem we propose to
investigate the possibility of obtaining stiffly-
stable methods of order k + 3 where we will consider
values of k between one and six thus giving us orders
running from four to nine. To achieve this increase

in order we must sacrifice one of the coefficients
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Gossecs Gy _osYgscees Yy _1- Since there is no obvious
choice of coefficient to use, for each value of k we
take each oneof the coefficients e LI PLIEEY
Yi-1 in turn setting the renainder to be zero and

calculate the other coefficients o, A 12Byrcecr By

so that the resultant method is of order k + 3. We
then determine whether this resultant method is
zero-stable by determining the roots of the first
characteristic polynomial, whether it is stable

at infinity by determing the roots of the third
characteristic polynomial, and whether it is stiffly-
stable. Results of these tests for the various
values of k and choices of coefficients are given

in Table A1.8 in Appendix 1.

From the results we see that one particular
choice for the additional coefficients always gives
us the largest stability region. If we make use
of Yo to increase the order then we find that the
resultant methods of order k + 3 are always zero-
stable, have a connected stability region and are
stable at infinity when k > 2. When k is one the
resultant multistep method, although A-stable, is
not stable at infinity since a root of y(g) is one.
The following table gives the values of D, bS and
the error constant Cp+] for values of k from one to

six when the coefficient Yo is used to increase the

order,
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Table 4.2
k order D bS Cp+] D(ENR) Cp+1(ENR)
1 4 A-stable 0.017 |A-stable 0.039
2 5 0.2712.02 | 0.014 0.1 0.022
3 6 0.89]1.83 | 0.011 0.52 0.014
4 7 1.87 {1.86 | 0.008 1.4 0.010
5 8 3.4511.96 | 0.0062 2.7 0.0074
6 9 6.16 | 1.94 [-0.0015 5.3 0.0057

We have also given for comparison purposes the values of D

and C +] for Enright's method of comparable order. The

P

values of D for the new higher order method are larger than
those of Enright although this is counterbalanced to a certain

extent by the smaller error constant and use of a method which

always has one step less than that of_Enright.

In an attempt to test the possible usefulness of the new

higher order methods some small scale preliminary tests were

made with them on three linear problems: one quoted by Enright

and the other two quoted in a report by Hull et al (1972),

The three problems are:-

A) y' =

This linear problem has real distinct eigenvalues (-.1,-10,

-0.1
0
0
0

0
-10
0
0

0

0
-100

0

-100,-1000) with a modest spread.

0
0
0

-1000,

Yy » y(0)-= [

range [0,20]
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B) y'=[1 10 0 07 y » y() =1
-10 -1 0 0 1 .
range [0,20]

0 0 -100 100 1

| 0 0 -100 -100 1]

This linear problem has complex eigenvalues (-1+101,-100+1001)

- with a small spread.

oy

) y' =[-10v 103 o0 0] y » y(0) = [V
-10° -10% 0 0 1 range [0,20]
0 0 -10 100 1
L0 0 -100 -10] 1]

This Tinear problem has complex eigenvalues (-10%+103i,-10+1001)
with a large spread.

Results were obtained for each of these three problems using
both Enright's method and the new higher order method. The new
method employs the same formulation and error strategies as
Enright's published program in which his methods are incorporated
in a variable-step variable-order manner with the maximum order
restricted to six. Following the type of comparison statistics
which are given by Hull et al we quote for each method the
error tolerance t, which is meant to bound the local error/unit
step, the maximum local error/unit step M.L.E./U.S, the average

error/unit step AE/US, and the total problem state time T.T..

taken in seconds when using double precision on the I&ll 350/67
at Newcastle University. In addition we use h to denote the
stepsize, ENR to denote Enright's method, and NEW to denote
the new higher crder method. The following table, Table 4.3
gives the results obtained with *hes2 methods at three error
tolerances, where both the maximum local error/unit step and

the average error/unit step are given in units of the error

tolerance <.



Table 4.3

Problem A

Problem B

Problem C
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. h Method M.LE/us A.E./U.S. T.T.
10°¢ |1 ENR 611 .037 15
1 New | 95.3 | 13.3 .30

,0001 ENR 217 0058 | 1.19

.0001 NEW RER .0038 .95

10°% | 122 1070 | New 171 .0083 1.52
305 1074 | ENR 477 .014 1.76

.305 10°% | NEw .156 .0075 1.55

107° | .610 107% | NEW 1.13 .021 2.44
.763 10°° | ENR .764 .016 2.67

.763 1072 | New .359 .012 2.54

1072 | .781 1072 | new .856 .066 1.56
2195 1072 | enR 495 | .049 1.64

195 1072 | NEW 568 | .073 1.57

10°% | .195 107¢ | NEW .816 .043 2.90
.488.10°3 | ENR .806 .041 3.01

.488 1073 | NEW 422 ,036 2.98

107° | .a88 107 | New L54 ,037 5.66
122 1073 | ENR 1.26 ,040 5.80

122 1073 | New 654 .036 5.70

1072 {1.0 ENR 214 | 012 .14
11077 | New 490 .026 2.90

11077 | ew .400 .025 3.01

10| 911070 [ewm | 157 | w035 | 470
11077 | NEW .545 ,031 4.89

11077 ENR 539 | .034 4.97

10°° 1 .230 107° | ENR ,552 .029 9.40
1077 | New 607 | .040 8.92

11077 | ENR 620. | .037 9.34




. 58 -
From this limited set of results it is impossible to draw
any definite conclusions but we can make certain observations.
In problem A we see that at the largest error tolerance 10'2

and using the largest stepsizes that the methods will accept,
which in this case is h = 1 for both methods, the newer

method compares poorly with Enright's method in terms of
time taken and accuracy. If we take a smaller stepsize,

h = .0001, then the new method is both quicker and more
accurate than that of Enright. Considering next the
behaviour of the two methods at the two smaller error
tolerances we see that the new method can take a larger
initial stepsize than that of Enright and is faster in time,

4 the new method is more accurate

At the tolerance of 10~
but at the tolerance of 10'6 it is less accurate, If however
we run the new method at these two smaller tolerances taking
the same starting stepsize as Enright's method we find that
the new method is both faster and more accurate.

On problem B the new method can take a larger starting
stepsize than Enright's method at all three tolerances but
although the new method is always quicker, at the largest
~ tolerance 1072 it is less accurate, at the middle
tolerance 10"4 both methods are almost equally accurate
while at the smallest tolerance 10‘6 the new method is much
more accurate. If we then run the new method at each
tolerance taking the same starting stepsize as Enright's
method we find that at the largest tolerance Enright's
method is still more accurate but at both the smaller

tolerances the new method is much more accurate and in all

three cases it is faster,
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On the third problem, which has a much larger stiffness
ratio, Enright's method can take a larger stepsize at all
three tolerances and gives good accuracy at this larger
stepsize. If however we reduce the stepsize to a value
which is acceptable to both methods then at all three
tolerances the behaviour of the two methods is almost
exactly similar in accuracy although the new method is
slightly quicker.

From these results it would appear that the new method
is worthy of further consideration particularly for
problems where high accuracy is demanded. It is thought
that the reason the new method behaves less well at the
larger tolerance and on the third problem is due to the
fact that the fourth-order formulae of the new method,
which is the one it starts with, is not stable at
infinity since the root of y(g) = 0 for this order is
53’] = 1, If too large a stepsize is used for starting,
this causes oscillations to occur in the solution. This
type of behaviour is of course similar to that which can
occur with the trapezoidal rule. Hence at larger error
tolerances we would start with a larger stepsize and
might then expect oscillations in the solution which is
in fact the case. At the smaller error tolerances
however, where we would start with a smaller stepsize,
we tend to avoid this oscillatory behaviour except on
the third problem which is fairly stiff and hence would
require the use of a small stepsize to avoid these
oscillations.

There are two ways by which one might overcome this

problem, One way is to consider the possible use of a
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smoothing type of formula in conjunction with the new method.
This is a similar approach to that employed by Lindberg
(1971) with the trapezoidal rule. An alternative way might
be to combine the new method with that of Enright by making
use of Enright's third and fourth-order formulae and then
switching to the higher-order formulae in the new method

because of their smaller error constant.
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Chapter Five

Introduction

In the preceding chapter it was shown how the necessity
to keep the total error from growing and the problems
associated with the convergence of the corrector iteration led
us to the use of second-derivative stiffly-stable multistep
methods for solving stiff ordinary differential equations, We
will illustrate in this chapter how the same line of reasoning
leads us to propose the use of second-derivative Runge-Kutta

formulae which are implicit with respect to y rather than k.

5.1 Weak Stability as applied to Runge-Kutta Formulae

The conventional explicit Runge-Kutta formulae suffer from
the same weak stability disadvantages as explicit linear
multistep methods. If we consider, as an example, the fourth-

order explicit Runge-Kutta method

_h
Y1 ~ i "E(k1+2k2+2k3+k4)
where
k] = f(xn-ayn)
- h h
k2 f(xn+?, _yn + ?-k])
k = h

h
3 f(xn+-3 yn + ?kZ)

3

k4 f(xn+h,yn+hk3)
and apply this method to so]vg the representative linear
equation

y' =y
where A is a complex constant with Re X < 0, we obtain

Y1 = RNy,

(5.1)
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where
h = ha (5.5)
and
ik(h) =1+ h+ é§.+ %; + %; (5.6)
The solution of (5.3) tends to zero as x increases
and this can only occur in the numerical solution (5.4)
if R(h) is less than one in magnitude. It is easy to
show that the region of h for which |[R(h)| < 1 is small.
On the negative real axis, for instance, the interval of
absolute stability is (-2.7,0). The requirements of
absolute stability again restrict us to the use of a
small stepsize if |Re A| is large.
A one-step method will always give us an equation

of the form (5.4) for y_., where R(h) is determined from

n+1
the particular method. For an explicit method R(h) will
be a polynomial in h while for a method, which is implicit
in y or k, R(h) will be a rational function of h.

The definitions of the various types of stability
regions as given in Chapter Three are all applicable to
a one-step method. The type of stability region which

is usually sought for a one-step method howeveris given

in the following definition proposed by Ehle (1969).

Definition 5.1

A one-step numerical method is said to be L-stable if it
js A-stable and when applied to the linear representative
equation y' = Ay, where 1 is a complex constant with

Re A < 0 it yields y,,, = R(E)yn, where |R(h)| +0 as

n+1
Re h + ==,

In terms of our previous definitions Lsstability
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corresponds to combining A-stability with stability at
infinity. Since Lomax (1968 ) has shown that no explicit
Runge-Kutta method can be A-stable we are therefore
restricted in the search for L-stable methods to implicit
Runge-Kutta methods.

The quantity R(h) appearing in (5.4) is, for an
implicit Runge-Kutta method of order p, a rational
approximation to eﬁq Since the stability of the method
is dependent upon the value of R(ﬁ) we now quote several

definitions and theorems related to rational approximants.

Definition 5,2

If h is a complex scalar and R (h), u >0, v >0 is

u,v,p
given by

s; (R’
i=0

R () = :
RADK
i=0

withs =t =1
U,V,pP 0

0

where all the s. and t, are real then R (h) is said

uiv!p
to be a (u,v) rational approximation of order p to the

exponential eh if

=y _ h =p+l
Ru,v,p(h) =e +0(h" ")

The highest possible order is when p = u + v and

R h) is then called the (u,v) Padé approximant to

u,v,u+v(
e and will be denoted by P (). We have the following
definition due to Ehle (1969).

Definition 5.3
A rational approximant R is said to be
U,v,p

(i) A-acceptable if |R (h)| < 1 whenever Re h < 0

U,v,p
(ii) L-acceptable if it is A-acceptable and also satisfies
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IR (h)| ~ 0 as Re(h) » -=.

U,v,p

The following theorem, whose first part is due to
Birkhoff and Varga (1965), and second part to Ehle (1969),

gives some of the known information on Pad€ approximants.

Theorem 5.1

Let P, V(E) be the (u,v) Padé approximant to e, Then

(i) ifu=yv, Pu v is A-acceptable

u+lorvs=u+2 then Pu v is L-acceptable.

(ii) if v

If for a given implicit method we can show that R(h)
matches an appropriate Pad€ approximant then we can use
Theorem 5.1 to establish whether the method is A -stable
or L-stable.

Butcher (1963) has shown that there exist k-implicit
Runge-Kutta methods of order 2R which Ehle subsequently
proved were A-stable. Alternative high-order k-implicit
methods have been proposed by Ehle (1969) and Chipman (1971).
Ehle developed R-stage implicit methods of order 2R-1 which
are L-stable and methods of order 2R-2 which are A-stable
while Chipman proposed methods of order 2R-2 which are

L-stable.

5.2 Iteration Processes for k-Implicit Runge-Kutta Formulae

Although one can obtain much higher-order formulae with
k=implicit methods than with explicit methods,at each step
of the calculation it is necessary to solve a set of R
implicit non-linear equations for the k's. Butcher showed
that these equations could be solved by the direct iteration
method (1.37) provided condition (1,38) held., For stiff

equations the Lipschitz constant will be large and so the
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iteration (1.37) will only converge if h is very small. In
an attempt to avoid this restriction on the stepsize an
alternative form of iteration based on the Newton-Raphson
method has been suggested. If we let ki“) be the
approximation to kr after the v-th iteration the iteration

is defined by
L\ hb, &(xoha’,y,”_ b, c:n]( (:m) m)

\"' (X4 '\a”y + "‘Z b“kk\') Z"\b"( (\M) ol))
, 511

¥(x+ka,,,+ks_b )= k! vil, R (5.7)

When we are dealing with a system of m first-order differential
equations the iteration takes the form

I - hbndg") hb]ZJ]( Voo - hbyd (V)]

222 ,
t . ¢

| ~.

N | T A

{
]

t ] N
|

- TIEIN I thRJ(v)d
- [ R ]
—k-](vﬂl)_&%vﬂ - f(x+ha] l"'h Z b]sk(V)) - E_%\))
| 1
: (
! |
: |
El R 3
_El(zvﬂ)-ﬁ(lv)' _-f-(x+haR’x+hS£]bRs.'§§v)) _ E‘(zv)J (5.8)

vihere Jiv) is the matrix whose (i,j)th element is

] ? ( )

-:—-(x+ha ,th Z brs—s )
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Hence at each iteration we have to solve a set of mR

linear simultaneous equations.

If brS = 0 for r < s the resultant nethods are called

semi-explicit and the equations (5.8) can then be split

into n sets of k linear equations. Rosenbrock (1963)

proposed an alternative method which could be applied to stiff

differential equations in autonomous form. His method

which is based on the linearization of a semi-explicit

metnod 1is
Ynel = Yt Cqky + cpky * ey
where
ky = h[f(y, lgj(y ;]
k, = h[f(yn+b]k])+aZa;( +oikg )k,]
kg = hF(y, tbok +diky)+ 3g;(yn+c kp+e K, )k,)

Since each of the equations for k.i can be rearranged to
give ki explicitly there is no need to iterate.
Rosenbrock gave two possible cboices for the
coefficients, one of which gives a method of order two
while the other yields a third-order method. Haines
(1969) and Calahan (1968) have also investigated this

type of method.

5.3 Derivation of y-Implicit Second Derivative Runge-Kutta

4

Formulae
In his method Rosenbrock made use of 3f/3y. For an

autonomous systen we know that

regy

and we now consider whether implicit Runge-Kutta methods

(5.9)

> (5.10)
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which incorporate the second derivative of y can be
developed. In unpublished work Penna has developed
some implicit Kunge-Kutta methods which although they
only eniploy values of f are implicit with respect to y
ratner than k while similar types of formulae have been
suggested by Cash (1975). . Since these methods are
explicit with respect to k, at each step we need only
solve a set of m simultaneous non-linear equations to
obtain the value of ARE Our aim is to derive a
similar class of y-implicit Runge-Kutta methods which
incorporate both the first and second derivatives of
y. We will assume throughout that the differential
equation, or system of equations, is in autonomous form.

Lonsider initially the method

- 2
Yo+ Ghky # c,h l] + cghk, c,#0,c,#0,c,#0 (5.11)

Y+l 1770670 ¢3
where
k= TWha) 1
g, = f My ) > (5.12)
k, = f(yn+a2hk]+a3h22]) ]

We associate with the method defined by (5.11) and (5.12)

the difference operator M defined by
M [ () 33 =y (xetin)=y ()= E (y (xeh) )= 2 ) (y (o))

-c3hf[y(x)+azhf(y(x+h})+a3h2f(])(y(x+h))] (5.13)

Assuming that y(x) is sufficiently differentiable and
and recalling that we are interested in autonomous equations
we can expand each of the terms on the right hand side of

(5.13) in a Taylor series about x. Hence we have

y (e =y (x ey (xyoiley (@) () ey (30 gy () 3. (5.14)
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Fy(xeh))=y ' ()+hy ) ()l ) (ol B s (5.15)
0 1y Gern) )=y (8 sy B 0y e (5.16)

£y (x1+ahf (y (el razn2 (M) (y (xeh))]

= y'(x)+[a2hy‘(x+h)+a3h2y(2)(x+h)]fy(y(x))

Flaghy (ehysaghty @ (a)2e (y(x))

+§T[a2hy'(x+h)+a3h2y(2)(x+h)]3fyyy(y(x))+huac, (5.17)

Substituting in (5.17) for y'(x+h) and y"(x+h) from
(5.15) and (5.16) respectively and simplifying
yields

£y (x)ra hFly (eh) Jwagh2# ) (y(xeh) )]
2
= f+ha2f(1)+h2[(a2+a3)f(])fy+;gf2fyy]
h3] : fMg2, 22,0 o0, 2 22 3
(—ptag)f' fis (—pragradeanaq ) F2F F eg=f3f (5.18)

where each term on the right hand side has (y(x)) as

its argument.

Using (5.14), (5.15), (5.16) and (5.18) we obtain
Mly(x)sh] = [1-cy=cz]hf + [%—c]-cz-c3a2]h2f(])

S El-c ~cq(a,+a)]n3f s
B2 2 “3'%2"% v

2
1.9 8274 (5.19)
+ —"?_PCZ C3—2'Jh f fyy"' e

where again each term on the right hand side has (y(x))
as its argument. Defining the order of the method as
being one less than the power of h in the first non-
vanishing term in (5.19) we seek a third-order method
by equating the coefficients of h, h2 and h3 to zero.

This gives us the following equations
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C-I + C3 = ] ]
1

C.l + C2 + c3a2 = ':

4 1 ’

7 e * Sylegg) -

¢ a2 )

Tttt 5 d

If we take 3, 3s a parameter we can then solve for s

Cys a3 and Cy in terms of a, to give us

= 1 )
1. 1
¢ =1 3Za2~|$z
a% - 2a, >
a3 = T2
1. 1
CZ - -2. 3262"” .
Hence in terms of the parameter a, equations (5.12)
become
ky = f.('yn+1)
1
SRR AT P
(a3-2a,) ,
ky = f(y,+a hk+—— h2q,) )

and the resultant method is third-order.

Applying the method given by equations (5.11),
(5.21) and (5.22) to the representative linear equation
(5.3) yields

Y1 © R(h) In

where 1+ h iL
) - e
(1) + 72 ] Pl o
3(ay-1)2 < 3(a,-1)? 6(a,-1)?

(5.20)

(5.21)

(5.22)

(5.23)
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Since the (1,3) Pad€ approximant to eﬁ is
1+h/4
1~3h/4+h2/4-h3/24

we attempt to choose a value for the parameter a, such
that (5.23) agrees with (5.24). If we compare

coefficients of h in the numerator we find

a, =1+ -/_

and this choice for 8, also gives agreement for each of
the coefficients of h in the denominator. Hence

taking a, as given by (5.25) we can match the (1,3)
Pad€ approximant which from Theorem 5.1 is known to

be L-acceptable. Our third-order L-stable method is

thus
NI ST T
Y1 Yntgrky -+ 7 WX +ghk,
where
ky = Fpi)
- (1)
ky = 1, (1 e, J

This method is explicit with respect to k but implicit
in terms of Y+l

We now turn our attention to deriving a fourth-
order method. If we consider

- 2
Ypa17YpHeqhkq+eoh L]+c hk,+c,hk

372 743
where
ki = fWpay)
= (1)
21 f (yn+1) 5
ky = f(y +ahk,+azh? L)
ks = f(yn+b2hk]+b3hk +b4h L2 ) .

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)
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We associate with the method (5.28) the difference
operator M defined by
M [y (x)sh]

it

y (xrh)=y (x)=c,f (y () )= 26 )y (xen))

c3hf[y(x)+a2hf(y(x+h) )+a3|r-|2«f-'(‘I )(_Y(X+h) )1

c4thy(x)+b2hf(y(x+h))+b3hf(y(x)+a2hf(y(x+h))
ra h2 () (y () ) 0,026 0 (y (xen))] (5.30)

Assuming that y(x) is sufficiently differentiable
and again recalling that we are interested in autonomous
equations we proceed as before and expand each of the
terms on the right hand side of (5.30) in a Taylor
series about x. Since we already have the expansions
of most of these terms the only new expansion we need
is the one for the last term on the right hand side.
Thus we have after simplification

£y (x)#b I (y (x#h) Y0 NF(y (X )+ahf (y (x+h) agh? ) (y (x+h)))

+b, h2¢(! )(y(x+h))]

= f+h(b2+b3)f( )+h2[(b +baa b )f +-——1r-- f2f y]

+ ha[f(”fZ(bz b, (a,+as)+b )+f2f £ 2,1 & b
AV ISV ALK DALY RALRLIFAIVV bl a Aty
(b +b .
+(b2 )(b2+b3a2+b4 +—"T_f fyyy o0 (5‘3])

where again each term on the right hand side has

‘e r

argument (y(x)). 2
Using (5.14), (5.16), (5.18) and (5.31) we obtain
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M[\s(x); \.] = [V1-¢,~¢,- b 4[{ R X c4(bz+b3ﬂk’4")
A[E-§ - Camaanian) - G (burbya, e bR,
+[T" - gl —C;‘C3g’;. - %*(hz"' bs)z] ‘?"1;‘3‘

+{% -gc. - QS{ - Ca(%‘-* 334 31 + i)

¢ (Heb2 + by 4 (B 4by)(b by, b)) TN FA8,,
W -8 -G -Ca(2r +2)- € (Buab (2,00 bRV,

a-2-%- ‘f “$r (b WS 1y’ (5-32)

with each term on the right hand side having the
argument (y(x)). ¢ |
We seek a fourth-order method by equating the

coefficients of h, h2, h3 and h* to zero. This
gives us the following equations:
c]+c3+c4=1

_ 1
c]+c2+c3a2+c4(b2+b3)--2

a1

c a% C,

THCr ety (byths)=g-
. 1
2—*c2+c3(a2+a3)+c4(b2+b3az+b4)=E P (5.33)
4“’”’2"";3(’2“+ 3 “5‘22‘““‘2"“3)”‘:4(’z"’bs*’z+b +(by*b;) (by*052,%0, ) =g

1 S 3 b, 1
&tz rClzrag)te, (b (atagidy) = o7

¢ ag Cy .
T (2t03)° g
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Thus we have a set of seven non-linear equations in

nine unknowns. If we assume

a2

,—23=a2+a3
and

(b2+b3) b2+b3 2+b4
then setting

dy = by * by

and using the conditions (5.34) and (5.35) to

simplify equations (5.33) we obtain

G+ v, =)

€, +C+C2,+C, 4=
Sireas ca; + %.df :
i. &Cl-o-c,a:. + C&d

ok -

14
bt by (202 +b, = [ 5 - ‘3(

(5.34)

(5.35)

(5.36)

> (5.37)

4,52)]

2 CQ'
+ = Q

b, + by = d,

Our interest lies in obtaining a method which is
L-stable. If we consider applying the method defined
by equations (5.28), (5.29) and (5.37) to the
representative linear equation (5.3) it can be shown

that
Ype1 © R(h)yn
where

R“‘) [l+ﬁ(¢3+c¢)*‘ﬁ cab, ]

5.38)

[1-(Ret R (03,4 € b0 )+ B2 (254 B v, }*L“’c‘b,a,)}
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while the (2.4) Pade approximant to eh is

kS

1+ h+ b
-3 7"_’1 - (5.39)
1-2R+ B-B + B
3 5 360
If (5.38) and (5.39) are to correspond we must have
¢y = 2/3 (5.40)
and
ag = -1/12 (5.41)
while from (5.34) we can deduce that. -

ap =1+ /576 (5.42)
’Takihg-the first four equations in (5.37) it .
can be shown after some a1gebr31c manipulation

that
ar [ (e-Da-'+41 + 4 [-24(c ) (2,-) + 4 3,-9]

+ Nefa-)'+42,-93,+6 =0 (5.43)

With.c jand a, given by (5.40) and.(5.42) we can .
solve the quadratic equation (5.43) for d]. The
first three equations of (5.37) are then linear
simultaneous equations in the dﬁknoﬁns Cos Cg and
Cy and can be solved as such. Finally the last
three equations in (5.37) can be solved as linear
simultaneous equations for the unknowns bz. b3 and
b4. We can then check whether the solution gives
agreement between (5.38) and (5.39) and this
procedure has been carried out numerically using
double precision. If we take the negative square

root for a, in (5.42) then equation (5.43) has

2
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complex roots for d]u We therefore take the positive
square root for a, and obtain agreement between (5.38)

and (5.39) with the following set of coefficients.

a, =-0.8333 3333 3333 3333.10° ]
a, = 1.9128 7092 9175 276

b, =-0.1362 7939 3451 9903

by =0.1198 6226 6084 0889

b, =-0.9286 6889 8098  2830.107" ,
c, = 0.6666 6666 6666 6667

c, =-0.2677 6114 1824 5271

c,=0.5523 6360 6801 6865107

cy = 0.2780 9697 2653 1645 ]

Since (5.43) is a quadratic equation it must have
another real solution for d] but this solution is
omitted because some of the associated coefficients
are large in magnitude (for example, b2 would be
less than -55).

We have thus succeeded in deriving an L-stable
fourth order Runge-Xutta method which matches the
(2.4) Padé approximant and we note that this same
technique can be employed to derive methods for which

R(h) matches the (2.3) Padé approximant.

5.4 Iteration Process for y-Implicit Runge-Kutta Formulae

The iteration process employed in the y-{mplicit

formulae to find y is the Newton-Raphson method. We

n+l _
illustrate this by showing how it.is applied to the fourth-
order method. From (5.28) we set

F(yn+]) = Ype1 " Yy -(c]hk]+c2h2!.]+c3hk2+c4hk3)

(5.44)

(5.45)
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Differentiating (5.45) with respect to Yne1 WE obtain

4 (V41 (o ) nz,,—“‘ “r“z h;—dk3 ) (5.46)
n+1/=1-(c +C +C +C .
EK;nﬂ L dyn+] 2 Yn+1 3 yn+1 4 yn+1
If we set
- |df(y)
I = [637 _
Y4
- |9f(y)
I = [3? ] - 2
y—yn+a2hk]+a3h 2] (5.47)
_ |8f(y)
J = .
3 dy . 2
y-yn+b2hk]+b3hk2+b4h 2 1

then using (5.29) and (5.47) gives

i
1
[«

[ 5
Sk
i
[«

(5.48)

2,2
= Jz(ath]+a3h J])

3 . J.(b.hd tb.hd. (a.hd.+a.h d )b h2al
77, = J3(byhdy+bshds(ashd, +agh dy)+bgh Jy)

where we follow Liniger and Willoughby (1968) and Enright
(1972) and ignore all derivatives higher than the first.
Substituting from (5.48) into (5.46) and simplifying gives

AF (Y1) = 1- 2le, 92 .
ayon+l’ =1 [eyhdq+h (e pditeaa,d d54c,b,0,d,)

3 2 2 Y 2
+h (c3a3J]J2+c4b3a2J]J2J3+c4b4J]J3)+h J]J2J3c4bsa3] (5.49)
Hence 6ur jteration scheme is

dF (VF) +1
37,(,):?” . Wr‘.ﬁ] )'yr(l-\:]) ) = 'F(Y,(,L) ) (5.50)

where yé:% is the value obtained for y . after the vth

jteration.
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5.5 Numerical Testing of the y-Implicit Runge-Kutta Formulae

Although the theory in the previous two sections has been
developed in terms of a single differential equation it is
straightforward to show that the theory carries across to
systems of equations. In order to test the y-implicit
formulae we will attempt to find a numerical solution to the
same three systems of stiff differential equations given in
Chapter Four (p. 55-56). For comparison purposes we will
also find a solution using the fourth-order k-implicit Runge-
Kutta method proposed by Butcher (1964). Both methods are
programmed so that they employ a one full step, two half
step strategy to estimate the local error and hence regulate

the stepsize. Thus if Eest denotes the absolute value of the

difference between the two estimates for y and t is a

n+1
prescribed local error tolerance then the stepsize is halved
if

Eest >

3”5 L

the stepsize is doubled if

l-:est <X,
30h 64

and otherwise the stepsize is left unchanged. The iteration
process is judged to have converged if the maximum difference

between any two corresponding components in the latest two

aF
ayn+1

iterates is less than 2ht while we attempt to keep
constant for as long as possible by allowing up to four
iterations before it is re-evaluated.

In the following table, Table 5.1, we quote for each of

the three problems the error tolerance t, the starting stepsize

(5.51)

(5.52)



the maximum local error/unit step M.L.E./U.S. and the average

error/unit step A.E./U.S. both in units of the error tolerance
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and the total problem state time T.T. taken in seconds using

double precision on the I.B.M. 370/168 at Newcastle University.

We use y-IMP to denote the fourth-order y-implicit method and

BUT to denote Butcher's method.

Table 5.1
. h Method | M.L.E./U.S. | A.E./U.S. | T.T.
Problem A
1072 |1 y-mp | 74301072 [ .209.1073] 0316
1 BUT | 95.3 17.7 .0669
1074 .264x1073] y-mp | 136 .266.1072] .135
12241073 BuT .387 .208.10" 1| .374
106 | 24441073 y-MP | .200 .853.1072| .186
.610.107% BuT | 1.13 .441,10""|  .807
Problem B
10°2] 125 y-IMP | 772 2752107 .0777
.781.107%| BUT .856 502,107 1| 242
1074 19541072 y-Mp | .268 159x1071| .215
.195x1072] BUT .816 .510.1071| .667
1076 | .195.107%] y-vp | .378 239,107 415
.488%1073| BUT 588 593,107 1| 1.92
Problem C
1072 |1 y-IMp | .656.1072 | 17241072 L0244
.305.10"4| BUT 765 429,107 .506
1074 |1 y-IMP | .359 241,107V | .0249
.763x10"°| BUT 593 .493,1071| 1.29
1076 | .153.107% y-mp | .469 .229.1071| .705
.191.10"%] BUT 673 563101 | 2.45
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From the results in Table 5.1 it can be seen that on all
three problems the y-implicit method is much quicker, has a
smaller maximum local error/unit step, has a smaller average
error/unit step and usually takes a much larger starting
stepsize than Butcher's k-implicit method.

On these three problems therefore the y-implicit method
gives a significant improvement on Butcher's method. We note
however that all these three problems are linear and it would
be very dangerous to draw any firm conclusions without testing
the y-implicit method on various non-linear problems, since it
is only on non-linear problems that we will be able to
evaluate the effects of the iteration processes. This is a
topic on which we are currently engaged in further

investigations.
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Chapter Six

6.1 A Review of Methods based on Non-Polynomial Interpolants

The underlying assumption in linear multistep methods is
that the behaviour of the theoretical solution can be
adequately represented by a polynomial. When we try to raise
the order of a method this is equivalent to approximating the
theoretical solution by a higher degree polynomial in the
hope that we will obtain a better representation and hence a
more accurate numerical solution. For many practical
problems the polynomial assumption is not realistic. An
instance of this occurs when the solution is oscillatory
and we might then profit by assuming a representation
involving sines and cosines. A similar situation occurs
when the solution appears to be increasing or decreasing
.exponentially. In this case a representation involving
exponential functions might be beneficial. Another time
when a non-polynomial approximant may be used is when the
solution appears to be approaching a singularity.

Representation of the solution in terms of sines and
cosines was first proposed by Gautschi (1961) who was
interested in problems which he knew had an oscillatory
solution and where an estimate of the frequency was
available in advance. For this type of problem he
therefore derived trigonometric multistep methods which
integrated exactly trigonometric polynomials of a given
order and in addition he proved existence theorems for
these methods. Later work in this same field was
carried out by Bettis and Stiefel (1969). They were

concerned with an orbit problem in celestial mechanics
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and developed a technique applicable to second-order
differential equations of the form y(z) = f(x,y)
where by choosing in advance a set of frequencies Wi
k = 1,2,3 they derived a trigonometric multistep
method of Stdrmer type [Henrici (1962)] which would
integrate exactly cos wkt and sin wkt. k =1,2,3.
By considering various special cases, such as
confluent or zero frequencies, methods are also
derived which will integrate exactly the product of
algebraic polynomials with trigonometric polynomials.
In a subsequent paper Bettis (1969) developed the
technique both by increasing the total number of
frequencies one could incorporate and by extending
the idea to modify other types of multistep method
to trigonometric multistep methods with some of the
modified trigonometric methods being applicable to
first-order ordinary differential.equations. ' Lyche

(1972) extended some of the basic theory of linear

multistep methods to include smooth, stepsize-dependent

coefficients. In particular he dealt with methods
based on trigonometric and exponential functions and
~also the product of these functions with algebraic
polynomials.

Exponential fitting of the solution had first
been suggested by Brock and Murray (1952). It has
subsequently been proposed by Fowler and Warten
(1967), and Liniger and Willoughby (1967) all of
whom thought that it might be used in the numerical
solution of stiff equations. Makela et al (1971)

have also proposed the use of exponentially fitted
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multistep methods and have proved the existence and convergence
of certain classes of method.

There appears to have been little work previously done on
those problems which have a singularity in the solution.
Multistep methods tend to give poor results if they are used
too close to a singularity. Lambert and Shaw (1965)
therefore proposed representation of the solution by a
rational function in the belief that this would give a
better representation near the singularity and they derived
various explicit and implicit methods based on rational
functions. In a later paper, Lambert and Shaw (1966a),
they suggested a representation using a more general
function of the form

P N
) a;x + b|A+x|" . N¢{0,1,2,...,P}
i=0

(6.1)

.E agx' + blAsx|Mog [Atx|  Ne(0,1,....P}
< i=0
where P is a positive 1nteger,.ai,i=0.1.°°°.P and b are
regarded as undetermined coefficients, and A and N are
regarded as parameters which can if necessary be
determined adaptively by their method while Carrying
out the numerical solution. " Their resultant methods
‘are one-step explicit or implicit methods which
"necessitate the use of higher derivatives up to order
. (P+2) if both A and N are known in advance, up to
order (P+3) if only one of A and N is known and up
to order (P+4) if neither is known. To avoid the
labour involved in calculating these higher

derivatives Shaw (1967) subsequently derived multistep

methods based on the same representation (6.1).
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In yet another paper Lambert and Shaw (1966b) proposed
explicit and implicit multistep methods based on a
representation of the form

P-1 .
2 a].x1 + br(x)
i=0
where b is constant and w(x) is any arbitrary function
assumed sufficiently differentiable. The resultant
"multistep methods can be generated from polynomial based
formulae by means of recurrence relations.

This chapter is.concerned with extending this last
“~piece of work by Lambert and Shaw so that the basic

representation takes the form
P-N N
1.éoaix + jé]bjﬂj(X)
where again each bj is a constant and each nj(x) is an
arbitrary function assumed sufficiently differentiable.
We will be considering the class of multistep
difference formula

To ensure consistency we specify
k

With the class (6.4) we associate the operator‘jLK‘ given

by

~ £ k
i'm[z"")5°5;] = Z ze.sjk‘z.“)(:.a-jk) k21,021,

$:0 370

where z(x) is an arbitrary function assumed sufficiently

differentiable.

(6.3)

(6.4)

(6.5)

(6.6)
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The operator (6.6) is then said to have order p if the

coefficients Q.. are such that
J

1”_['2(*);&5-;} = Cp,.h"'z‘w)(‘) + QW) Con*0

where Ci is the coefficient of hi 2(1)(x) in the Taylor
expansion of (6.6) about the point x.

Noting that
i,k,_[""P3 c‘s;] =0 P

we can then say that the multistep method (6.4) will

~
o

give us the exact answer (in the absence of roundoff
errors) if the solution is a polynomial of degree less
than or equal to p.

We also define the linear operators 3?‘ and 'Ru by

? [l (=) 3 °°'1] =-2(x "kh)"’ (l-k,‘z-o.‘.)z(m(l(- Dh) +“{ a . zx+yh)
K 30 3 330 )

and

. % K
2“_[1(‘) ) °-s',] =2 Za‘j\\‘z‘”(x vih) a,*0, s:12,.,0

$21 0

where again z(x) is assumed sufficiently differentiable.

6.2 Implicit Non-Polynomial Operators

Initially we will be considering implicit operators
and we therefore define the imp]icit<operator )le applied

to any function z(x) by

A 20502 P [209;04) 4R, [29)50,))

where the f(k+1) coefficients asj,l <s<f,0<j=<k

can be determined as functions of the stability

(6.9)

(6.10)

(6.11)
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parameters aoj,Oijgk-Z by requiring

AL ag] =0 v=ly,...,P (6.12)
where
P = g(kel) (6.13)

The values Qsj which satisfy (6.12) are written as
o (a,,k,1) les<d, Ocjsk (6.14)

which for notational simplicity we will write as

Esj. The resultant operator_}ikl, which is zero-

stable, is then referred to as the stable (k,%)

implicit operator. Thus

AM[Z(x)] =Au[z(x);’d,j] B Y (6.15)
If however we set
Au L« Q,ﬂ= 0 +=12,...,0-2 (6.16)
“where

Q- (Ret)(kel) (6.17)

then we could have solved for ooj.O <J<k=2in
addition to the Qs 1<s<f,0<J<kand the values

of Goj and °5j which satisfy (6.16) are written as

Ess(k,l) O<sst,0¢ sk (6.18)
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which for notational simplicity we will write as asj.

The resu]tant=operatorjékt, which is generally not

zero-stable, is then referred to as the optimum (k,Q)

inplicit operator. Thus

Ak;[l(x)] = AK‘[z(x) -,'-d,s] A320, k21,

We would now Tike to derive multistep difference
“formulae based on the non-polynomial representation
(6.3).
For methods which are based on polynomials the

coefficients ag; are real constants but for a non-

polynomial representation the coefficients will
usually be functions of x. Since the derivation of
the recurrence formulae which will appear later in
this chapter are long and involve a complicated
notational system we attempt to prepare the reader
for what will follow by first giving a derivation
of the recurrence formulae necessary to determine
a particular non-polynomial based implicit operator.
"~ .~Consider then the zero-stable, implicit, non-

=(2)
polynomial operator 1 where

LS

A

;83 = P [, |+ R, [269;8%)]

3
and the coefficients af;’ » 0 < J < k are determined

as functions of the stability parameters'aoj by

making

(6.19)

(6.20)



AL:) [x';af?,}=0 r:12 (6.21)
and
-@)

ﬂ [ ) -@)] 0 L, (6.22)

Similarly the zero-stable implicit non-polynomial

operatorﬁé] is defined by

-
' A 3 [z(x) ;O 5..;) :’Pj_z(x) ;&o;;] +Ru[z(x) ; '6,(..: ] (6.23)

where the coefficientsv&‘-‘.;.). 0 < Jj < 3 are.determined

“as” functions of ‘the stability parameters aoj by

requiring
[’ “"] 0 12,3 (6.24)
and
- )
[w,(;) o.,l] 0. (6.25)

In addition we will. also) need the optimum.implicit non-
¥ (
polynomial operatorA as .defined by

=U) _
A [Z(x) .,,] ?[2() 6, (6.26)

where the coefficients 3;‘;.) are determined by making
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- (|)

[x;891-0
30
and
= () -
30".".'(1)’ -)] 0
Setting
- -\ - :
= . . O« ,¢
0y T %e T Sy )
where
€t = <
o) = 0 0‘;5 3

and substituting for a{:)in (6.20) .gives

-(2)
A, e ) Ble; B+ R Jat; 3+ 2

ﬂ [z(-x,),'m +R [7-(°°) CnJ
Since A‘;{[x‘*a‘.”] =0 forv = 1,2 (6.21) implies
R ['QC—T', Eu]=0 T2 \,)_

while from (6.22) we have

R, mese,1-0.

(6.

(6

.27)

.28)

29)

.30)

.31)

.32)

.33)
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Defining

3, = -,/ &, 0<j¢3, ¢, #0

means that (6.32) and (6.33) are equivalent to the

conditions

- CB‘\E o, ‘Z-(‘:H 3\'\) 0 z(x) = |,x,1r.'(x) .

Since 303 ==1 from (6.34) while (6.35) with z(x) = 1 implies

1
=1- J d,. then from (6.35) we have
j=o0 %

do2

R, [Z(n) c]‘-c hﬂ [z(x) Q. ]

We note that JQ [i e. ] is defined by replacing

each of the aqP1trary'n'funct1ons in the definition
(6.28) of.]q by their derivatives.

Thus we can now write

- (2)

A ;35 ﬂ zu),“"l e Alete, 3]

3

- The condition (6.22) with i = 2 will be satisfied if we

choose
- () )
z . Ay lme;3il
n' -0) -,o)

[?"i@‘)

(6.34)

(6.3¢)

(6.36)

(6.37)

(6.38)
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assuming the denominator is non-zero.
We have finally arrived at a recurrence formula

for the zero-stable implicit non-polynomial operator

Q)
Jﬂ Thus

31

()

-@) =) e
ﬁ( [z(x.) of’l] ﬂ& [ (x),'“,;] %—‘E{@-ﬁ% l\ﬂ '[¢e);3 )]

provided the denominator is non-zero.

To make use of the recurrence formula (6.39) w

0)

also need recurrence formulae for the operatorsJQ.
=0)

and\?qso . By a similar process to that given

previously it is straightforward to derive the

=\
following recurrence formula for J43] . Thus

= (1) =6

(6.39)

A T
A Tt Ayl Aam%sd | 50%eni] oo

h A Iwe; a:f;’]

again assuming the denominator to be non-zero. The
recurrence formula (6.40) can also be obtained
directly from formula (2.15) in Lambert and Shaw

- (o)
(1966b). The operators,‘l

and JQ 30 correspond
to the polynomial based- operatorsﬁ:” and’q
“respectively,
We now attempt to derive.a recurrence formula
2 (1)
. The 0perator,¢q is already

normalized so that



=0 =

o = o
Setting

=M = =
Qg = Oo ¥ Cy

and substituting for

= ()

= (1)
o)

a
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O<y=2

in (6.26) we obtain

A1 A3+ A JaesE, 1

Defining

= =
do, = "c'oJ/c'oz

°)

(6.43) becomes

“"[,_(x) e ﬂ [2); 39

= (0)
Since SQ

with (6.45) implies

(3501 -

01 ﬂ' 10[2 (I) ) i

0 for+ =0,1 (6.27) together

jﬁllnl}xr; Zio;]==()

From (6.44) d_. = -1and so the condition (6.46) is

oL
the definition of.JQ

becomes

% (0)

[:z(z);gﬁggl.

Tz 0,|

Hence (6.45)

o]

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)
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=0 = @) = @)

JQ. [1(1) ’0] A [z(r.) _@]‘C.,,_}Q [2(‘*-) _(,)] (6.47)

The condition (6.28) is then satisfied if we take

= () -
IJ£{:L‘[yrcx)‘Eff;]

A [m@; 3 a9

(g1l

oL (6.48)

provided the denominator 'is non-zero.
We have therefore the following recurrence
formula for the optimum implicit ncn-polynomial

operator Jq3 0° Thus

=W

2* 2591 = -
b A - S Ay

[me; 39

20 ©)

again assuming the denominator to be .non-zero.

Since

= ©
ﬂ [z(ar.) o.,i] —A'z(x) (6.50)

then (6.40) can be simplified to

JQ(.)[Z(*) ’1] ﬂ [z( 2 -«;] ﬂ%ﬂ@'“‘(t]-) hAZE) (6.1
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while (6.49) becomes

;Y =0 3 ZS?*%(I) >
A [7-(1—) “ = ‘(Aztx)-mAz(x)) (€.52)

If we obtain from tab]ei-;he coefficients of the
- (0
polynomial based operator.fq then the three

recurrence formulae (6.39),(6.51) and (6.52) enable @
= (2
us to determine the coefficients of the operator JQ

in the following manner. We use (6.51)

ﬁ° 2693 )- A [z< hae ix[;_ﬁ'“ b

Q)]
to find the coefficients of.ﬂq . Formula (6.52)

is then employed in the form

=
ﬂi 269, #o)= - (B260- M'T(("—;—Az'(ﬂ)
0 x

. =z,0) 'ﬁ“) .
to determine the coefficients eﬁol of 30 * Finally

we use (6.39)

—0)

-G ™ (x); G 0)
A [zbt.) ] A‘.[() “ _Z‘T[:(—)):l"‘" [(); o,\]

=(2)

to calculate the coefficients 3.:;') of ﬁ3].

Diagrammatically we represent this as
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= W)

A
ﬂ /‘ N \‘A?’U)
R N N

=(©) 2 () "2 (0)
ﬁ& ‘Aso ‘Azo
where the three elements at the base of the pyramid
are the polynomially-based operators.,

This example illustrates certain points that
can be employed to simplify the notation relating
to the general (k,l) case. Thus we observe that the
same superscripts are often attached to both the
operator and the coefficients in the operator, and
that when the operator is applied to the derivative
of a function the coefficients also contain a dash
superscript. We will therefore delete any reference
to the coefficients when it is thought obvious what
is intended. In passing it is noted that an.

alternative way of writing the operator
= (9) =)
A 2o [z00)] s ,A“[z(x)] where the subscript

before the operator 'A(.:; indicates that the_term
Z(x+3h) is omitted. Similarly the operator Z}.Q;;)
would have the terms z(x+3h) and z(x+2h) missing.
This use of the alternative form was not necessary
in the particular example we considered but it will
be required to indicate missing terms in the general
(k,Q) case.

We now proceed to the general case and define

the N-zero-stable implicit non-polynomial operator

by
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- (N)

ﬂk‘[z(x)] =ﬁ['z(x);a%] "’y.m[z(‘x.); &g’] L2\, R>1

N)
SJ’
functions of the stability parameters E,s by making

where the &' 1<s<0,0=<j<kare determined as

= (N)
‘t [m’] =0 r=12,...,-N  OsN<P

and if N> 0

= )
JQ@[W@] 0 vl _...,N 14NgP

with P given by (6.13). The superscript N on the
'operatoru;it: denotes the number of arbitrary
functions 'n](x),...,'rrN(X) incorporated in the non-
polynomial base.

Similarly we also have the N-optimum implicit

non-polynomial operator defined by

ﬂ [2(1-)] ?[2(1),0«,]*'3. [Z(x),'(')] >0,k>0

where the ;:',‘). 0<s<®,0<J<kare determined

J
by requiring

ﬂw[ = vzl ., 0-2-N OsN<Q-L

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)
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and if N> 0
=)
A [Tr-,(x.)] = Q '\.’-‘,.-.,N I$ N< Q-2 (6.58)
KR
= (W)
with Q given by (6.17). For k = 1 the operators .A
=(N)
and .A“ are identical while we define
=(o)
A, 26]=-2@) (6.59)

(“Co?sider now the (N+1)-zero-stable implicit operator
= (N

A

determined as functions of the stability parameters a,-,
by making

where the coefficients L&(:zo, 1<s<t, 0<j<k are

-(Nﬂ)
["‘] 0 a2l ..., P-N-| (6.60)
and
- (d+1)
e [T"-,(x-)]" 0 (R , N+l (6.61)

If we then set

- (N*Y) a(ul +

G T %7 7Y

Y

less, 0<yck (6.62)

(1) o (mt)

and substitute for a,J [z(:c)l ‘we obtain

= (Nv) - (N)
A el= A, Rl R J05e] (6.63)

Since A [x]:Ofor'r-]..... -N-1, .(6.60) is

equivalent to

\Rn[g', E,‘)]:O val, ..., P-N=1 (6.64)
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« (N11)

Substituting for asi n (6.61) from (6.62) and

simplifying shows that (6.61) is equivalent to the

conditions

:Ru[w;(x);iﬁk 0 vl .. ,N (6.65)
and

-M[ ()5 8y + €15 0 (6.66)
Defining

E'Ls_h:‘ = =%/ T less), 0y sk, T, #0 (6.67)

means that (6.64) implies

S P-N-2
‘KEZ dy \-\ z (:m,;h) = 0 2(x):1,x,..-.,% (6.68)

$=0 3=0

while (6,65) implies

g'i o\«,J\\s (’)(:u')k) 0 'z.(x\sw,'(x).-—-;tr,:(x) (6.69)

K sc0 30

Since dy, = -1 from (6 67) while (6.68) with z(x) = 1
implies_ao ket = Z d . then from (6.68) and

(6.69) we have
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- =, W)
1Q.leal(1) y C,ﬁi] = - C. ‘\J£l [z.tx) OLS ]

where the & 0 < 5 <R-1, 0. j < k are determined

by making

= (V) ‘
J¥i N ‘}z’czil 0 ‘Z&x):ac--.:!l' rr, (x), .1, (x)

Hence we can write

O]

)QWN)['Z('»] JQ [7-(%)] he,, A B

K2

The condition (6.66) will then be satisfied if we

choose
= (N)
¢ = Hulrtol N
%3 =)

.Jél,glq[a'uwl(’°:]

assuming that the denominator in (6.73) is non-zero.

Thus finally we arrive at the general recurrence
formula for the N-zero-stable implicit.non-polynomial

operators.

- (N+Y) ~ ) J{ F*m* ﬂ
[2)=A 6]~ “S— hA “‘( 7' (x))
jﬁ\Kl ] ‘}l L '\J£l 1'uﬂ( S]

(6.70)

(6.71)

(6.72)

(6.73)

(6.74)

21, k|
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again assumiing the denominator in (6.74) is non-zero.

Setting W = 0 in (6.74) corresponds to the recurrence
formula (2.15) given in Lambert and Shaw (1966b). We note

also that when N = 0 the coefficients Etéf) in
\?Q'(O) z"(x)] are the same as the ?-:\(o) occurring in
k( -1 5} I
= (&)
k AT [z ] since there are then no arbitrary functions
present.
We would now 1ike to derive a general recurrence fo;mu]a
N
for the N-optimum implicit non-polynomial operator Jﬁl
Before doing this it is necessary to introduce another

=(n)
optimum operator l'\'A'mL defined by

='0') L-q4l W -
M.AK.'[Z(‘:\] = g Z n&(:)s\\' ZG)(:‘.Q-Jh)

$10 20
“t)(rat) =)

- =) - Y (a-qn) .

):0 n%a- IR z (e (v J“\)
O6N% G-M-2,120,k3|
where
q, = endier[(M-)/R+i]} + ) ¢ M -2

={N)

and the coefficients Mcusl are determined by requiring

= (V)

'Akt[x'] 0 | +30,1,--- ,§-2-M-N

and

= (N) ‘
\AK,'[WL(:')]:O t=4...,N

(6.75)

(6.76)

(6.77)

(6.78)
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The right hand side of (6.75) is a linear combination of
values of z and its first (L-q+¢l) derivatives at
Xs...X + kh except that there are no z(!'Q+”terms at
X + khyo.oyx + (k-M+(g-1)(k+1)+1)h. An example of this

=W
would be the operator 2A3‘ given by

= 0\ =

[z(x)] itlz(:x.)-l- a z(x+\\)+ 3 z(x+2k)+ . osz(:u-Bk)

‘“ Yhe! )+, &0 he! (e k)

where the coefficients 2?"1:;) are obtained from the conditions
=M .
A [x]=0 r:0,1,2,3
2 31
and

o) [w.(x)] 0

Returning fio' the (N+1)-optimum implicit non=polynomial
= (Nl
operator ﬂ,m » k > 1, which is determined by

= (n+1)
KL [z'flso - va0,.. ,9-3-N (6.79)
~and
= ()
[‘"’ l‘*—)] =0 (2 VORI , N+1, (6.80)

we will now assume that this operator has been normalized

so that
= (N+l) = (W)
a L)

K- Q'l\( . (6.81)
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In addition we can set

=(N) =) = <k
5 = O o + CSI) Osss 2, Og,s=
where
¢, =0.

(N4 1) g (N4))

Substituting for °'s;‘ in ‘A'Kt [z(x)] we obtain

=(Nn)

= (W) -
A, )= R zle A e 57 ]

Defining

Qi

(6.84) becomes

= (Nw) =N

A, o] =R kw]-E, A Bwia, ],

=(N)
Since J‘l“[i?l =0 for v = 0,...,Q-2-N, using (6.79)

and (6.84) implies

Au[‘;;isﬂ’o *20,._..,03-N

A (N) )
while Au [?r‘_(x)] =0 for i =1,...,N together with
(6.80) and (6.84) implies

= = , =
sy cs;,/cl.,k—u Ossel,04j<k ,c,

(6.82)

(6.83)

(6.84)

(6.85)

(6.86)

(6.87)

(6.88)
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Conditions (6.87) and (6.88), with é!k = 0 from (6.85),
= (W)
are precisely the definition of the operator ]‘Akn, .

Hence (6.86) becomes

= (N+Y) = (n)

)q [7-(1)] jq [zm]—‘”“;l [2(0] (6.89)

We can then satisfy (6.80) by taking

"(N)

_ A, )
Aw[mJﬂ

assuming the denominator in (6.90) is non-zero.

ﬁll

020, k2| (6.90)

Thus the general recurrence formula for the

optimum implicit non-polynomial operator is

=)
=(N) v ()
A bels A frol- T 3%
K ,_[“'uﬂ(") 2%0,kz|

again assuming the denominator is non-zero,

When N = 0 (6.91) becomes

= () =(0) T = (0)
_Au [200) = jqu[z(,_ﬂ_ ‘%‘5&( .(:ﬂ:‘ | A;[z(x)] (6.92)

The formula (2.16) in Lambert and Shaw (1966b) should

correspond to (6.92), but does not because their
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formula (2.16) is in error.
Formula (6.91) holds when £ = 0 in which case it is helpful

to use the relation

) =(N)
MAKo[z(x)] = An—n,c‘;z(x)] )

To complete the recurrence relations for the implicit

operators we now derive a recurrence formula for the

Z(N+Y)
operator M ke ° Consider then the operator
2(N+1) =(N
nA“ whose coefficients M&(sr’ are determined by
making
= (W+)

A, ¥1=0 r20,l....,0-3-M-N

and
S (N+Y)

A, [r]=0 ve ., Nl

where we assume that this operator has been normalized

so that

= (v+1) _ =W
"\al-cwl,q(l(ﬂ)-ﬂ-l = Ma!.-tp-l,"(Kﬂ)—M-l *

Setting

= (N+1) =(N) .
- < 0si¢k
no‘sj = no‘s;, +nc'€j O<ss4, 0%}
where

(6.93)

(6.94)

(6.95)

(6.96)

(6.97)
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and > (6.98)
= 12 qlket)- M=)
PATIR O 32 qlk+t)
=(NH) 7 W)
we can then substitute for Masd. in MAKL [z. (x)]
to obtain
3 (N+1) =(N)
= .. 6.99
’V;{KL [z(?L] = n~}qx¢JEZ(’5]'* v}qurztx), " s;] , (6.99)
Defining

= 6.100
Md'fg - —HCS:\/NCL- q+!, q (Ret) =M=\ ( )
and using (6.100) to simplify (6.99) we get
=(v#y) =(N) A
- - . _ 6.101)
HA m,[z(")] MA“[z(x)] vA z6; ;] (
where
= C \3 %(kﬂ)) M-2
M &-v-l,q(mt)-n-z
and ? (6.102)
= oA
¥ HCL-Q,,k J
x (N)
Since H‘Am. [x*] =0 forr =0,1,...,Q-2-M=N
using (6.94) and (6.101) implies
Am,[f; ,.\dsj] =0 v=0),....,0-3-M-N (6.103)

=(N)
while MAK‘ [ar,()] = 0 for 1 = 1,...,N together
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with (6.92) and (6.98) implies

,AK,_[“'J"')},,?\SQ= O vl N (6.104)

Conditions (6.103) and (6.104) together with Mdsj

=,s>l-q+1ande =0, j > q(k+l) - M

2-q+1,J
correip?nd to the definition of the operator
= (N
M+1ﬁKL . Hence (6.101) becomes
-(N‘.'l) - (' )
A [2(13 A ['l(xﬂ Ym (‘x-)] (6.105)
M7 KR \

while (6.95) is satisfied if we take

=(N)
= lﬁ‘fiug[sr“*‘cxi]
S0
,‘”Jﬁlx&[57u+5’d]

provided the denominator is non-zero,

(6.106)

Hence the general recurrence relation for the
= (N+))

operator M ‘AKL is

"U)

;1 2] RA(N)[z( )] - A(.. Tl ,‘,.Jat::[zm] (6.107)

)
L) £20,k3|

again provided the denominator is ‘non-zero.

We note that by setting M = 0 in (6.107) we
“obtain (6.91). Hence (6.91) is a particular case
of (6.107). Thus the two formulae (6.74) and (6.107)

enable us to construct any implicit non-polynomial
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based operator solely from implicit polynomial based

operators. To illustrate this we now give two examples.

AQ
Example 1, ~£§i3

This operator is calculated in three stages starting
=(0) =(0) = (o)
from the polynomial based operators ﬂ“. .A.40 , .A«30
=(0)

(o)
and ﬁ where ]Q

Stage 1. Calculate \A [z(x)] from (6.74) and

_0) [z x)] ‘A [ x)] from (6.91)
Stage 2. Calculate [z(x)] from (6.74) and
=@)
A( [z (x] from (6.91).
..(3
Stage 3. Calculate [z(x)] from (6.74).

Diagrammatically we represent this by

=(3)

f

=(2)
Example 2. ﬂ 32

This operator is calculated in two stages starting

A2 e A
from the polynomial based operators 32 3] and Tarll
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Alh)
Ez(xi] from (6.74) and

[z'(x)] from (6.107).
= (2)
Stage 2. Calculate ,%Q Ez(le from (6.74).

Stage 1. Ca]cu]ate ﬂ

Diagrammatically we represent this by

=(2)

Ay,
W N
.ﬂ

TN \
A, . A,

We do not give an example for the construction of an
N-optimum implicit formula since it is thought unlikely
that such a formula would ever be used in practice
other than in obtaining zero-stable formulae by use of

the recurrence relations.

6.3 Explicit Non-Polynomial Operators

Our aim is to derive recurrence formulae for the
explicit non-polynomial operators and we will proceed
in a similar fashion to the implicit operators. We
define the explicit operator13 ke applied to any

function z(x) by

B 26336 ) = R lz6a;b J*+ R, [z b)

0)

where the £k coefficients b

sj,lisiﬁ.oijf_k-l

(6.108)
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can be determined as functions of the stability parameters

be ;

j? 0 <J=k~-2by requiring

:B [m bs,] 0 +=1,.....,R

where

R = fx.

The values bg. which satisfy (6.109) are written as
53

b.(bmk 9) lgs<h,0¢y¢K

) )

which for notational simplicity we denote by st.
The resultant operator Bk,., which is zero-stable,
is referred to as the stable (k,L) explicit operator,

That is

B [z60]=8 263 b))
If however we set

B =" ibg)= O )28
where

S - (L+1)k

then we could have solved for boj, 0<j<k=-2in

addition to the bgy, 1 <'s <®,0<3J <kland the

(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)
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values of boj and bsj which satisfy (6.110) are written

as

TD (k Q) Oss<),0¢3¢K (6115
sy

which we denote by Esj for convenience. The resultant
operatoerg, which is generally not zero-stable, is

then referred to as the optimum (k,Q) explicit operator:

‘EKL['Z(I)]'—‘-BM['Z(DL);ESS] : (6.116)

For the non-polynomial based operators we have the
(N)
N-zero-stable explicit non-polynomial operator 53

defined by

= 0 )
BKQ[Z(Iﬂ='E<[Z(I\35°3]+RK " J_ z(x); b( )] (6.117)

lzl,kzl

-~ (N
where the coefficients b‘(s;‘), T<s<h,0<j<k=-1

are determined as functions of the stability parameters

50j by making

gK(N:[IT]z O r=| 2,“ 5 R-N (6.118)
and

'B(N)[Wt(x)]_._o v=1_...,N (6.119)

while the N-optimum explicit non-polynomial operator
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is defined by

= (M)

B [Z(x)] P Z(") ] R [1(‘2), 53.) l?\,k’v\ (6.120)

=(N) : . .
where the b53 ,0<s<0,0<j<k=-1aredetermined
from
= (N)
B [‘IT]"'O l,....,5-N-1 O<NeS  (s.121)
KL
and
= (N)
- ‘s <N&S (6122
D me]0 it N 1N e
KL
~(N)  =(N)
For k = 1 the operators 13 and KL are identical,

Since the derivation of the recurrence formulae
for the explicit non-polynomial operators is very
similar to that of the implicit we relegate the proofs
to Appendix 2 and restrict ourselves here to quoting

the following results

:B(u*‘)[z()f.)] B(" [Z IS] B [ m.()-_l }‘A(:};,_‘tx)] (6.123)

("' ["‘m(x)]

n-l,t-l

271, k> 1, N+1<R

and
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=(N)
)

= (N0 [“,w )] =(N) ..
B [‘z_(x)] B [z(x)] '%'::) ﬁm azb&

[TrN + (x)-]

%1, R21, N+ &S

where we assume that the denominators in (6.123) and

(6.124) are both non zero

When using the recurrence formula (6.123) with k =1
we find that the operator ‘A(:)Q-l occurs. The general
recurrence formula (6.91) for the optimum implicit non-
polynomial operator is however only valid for k > 1,
Hence we need an additional recurrence formula to cover
the case when k = 0, The proof of this recurrence
formula is relegated to Appendix 2 and we only quote

the result:

..u)
=(w1)_ =N) x)]
Al }5 " e e
22,

where again the denominator is assumed non-zero.

The two formulae (6.123) and (6.124) together
with (6.91), (6.107) and (6.125) enable us to construct
any explicit non-polynomial operator directly from
explicit and implicit polynomial based operators. To

illustrate this construction we give two examples.

@
Example 1. 8.;

This operator is calculated in two stages starting

(6.124)

(6.126)
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from the polynomial based operators »

m
Stage 1., Calculate [z(x)] from (6.123) and A [ (x)]

from (6.91)
=(2
Stage 2, Calculate 3“3') [z@)] from (6.123).

Diagrammatically we represent this by

e 3‘\,(
@/ \ @/ \

31 10 ‘°

5(3)
Example 2. Bn

This operator is calculated in three stages starting

(o) (0) (0)
from the polynomial based operators 331, A » 9 SN, -

Stage 1, Calculate B’S‘l [z('x)] from (6.123) and

=(9) 2(0)
A e, ‘ﬁ_ [z '(x0)] from (6.107).

Stage 2, Ca]cu(])ate n[z(x)] from (6.123) and
= ()
2' [z (r.)] from (6.91).

Stage 3, Calculate Bn [z(x)] from (6.123).

Diagrammatically we represent this by



6.4 Stability Characteristics of the Non-Polynomial Based

Formulae
From their definitions the orders of the various non-

polynomial based operators are as follows

Operator Order
=(N) -
ﬁm[z(z)] P-N B >1,k>1  (6.126.1)

35.(::[7(1)] 0-N-2 R 20,k21  (6.126.2)

= ()

M,ﬁu [2(x)] Q-N-M-2 Q£ >0, k>1 (6.126.3)
=( (6.126)
B:: [z(x)] R-N L >1, k21 (6.126.4) ? '

§:<:) k)] s-N-T  f >1,k>1 (6.126.5)

ﬁ(::[l(x)] L-N-1 L >0, k>0 (6.126.6)

;(0)
where the order of oo is defined to be -1,

Our aim is to determine the stability characteristics
of the non-polynomial based operators., Initially we will

only consider the implicit zero-stable non-polynomial based



- 114 -
AN ,
operator Ke* From (6.74) we have the recurrence relation

2 (N)

= (1) = (V) [“'ma (x)] A
= - o f &)
AK! [Z( )] ‘AK‘[‘I( )] hﬁo‘s [",""(x)] ll\ K,2

K, -1

Using the order relations given in (6.126) we have

A [ o]
hAL [l (0]

: KL
21

= O(h)

This implies that the (N+1)-zero-stable implicit operator is an 0(h?)
perturbation of the N-zero-stable implicit operator. It follows
therefore that for any N > 0 the N-zero-stable implicit operator is an
0(h2) perturbation of the corresponding polynomial based operator.
Similar arguments can be used to show that, relative to the
corresponding polynomial based operators, the N-optimum implicit operator
is an 0(h) perturbation, the N-zero-stable explicit operator is an 0(h2)
perturbation and the N-optimum explicit operator is an O(h) perturbation.
Thus for the zero-stable operators the stability characteristics of
the associated non-polynomial based formulae are the same as those of
the corresponding polynomial based formulae. No conclusions can be drawn
regarding the stability characteristics of the optimum operators since
the non-polynomial based operators are only an O(h) perturbation of the

corresponding polynomial based operator.

6.5 Local Error Bound for the Non-Polynomial Based Formulae

The formulae (3.1), (3.2), (3.3) and (3.4) in the third

chapter give the local error bound for a first-derivative

operator. For the general operator i‘kl we have
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X. K‘[z(x); o.s;jz \\P“ LKG(O’) zfpﬂ)(x-t he)de

where

Gle)=3 3 a, Wok”

0§70 % (p-g)!

Since the function z(x) is assumed to be sufficiently
differentiable and continuous then if the kernel G(¢) is of
constant sign throughout 0 < o < k we can apply the first

mean-value theorem for integrals to obtain

(6.127)

(6.128)

ik 2[z(:c)] N\ (1)J:G (o)doe  Jelx,x+kh]. (6.129)

For r > f+ 1 we have

L X e v-8
C ZO%Q% (r-s))

Setting r = p + 1 in (6.130) and using this in (6.128) and
(6.129) gives

1 Kz,-’-(xﬂ = (PN ‘\P“Z(P“)('g)

If we denote the kernels of the non-polynomial based
ANY AN A (N) & (N N) & (N
operators 'Al(cl)"qlgl)’ iy 8 éa)' l(m)'a §a) by

N =(N N =(N N
Glan () Giah (020 B (@) BRAte)s EEA(o),

Géﬁi (s) respectively then for the zero-stable implicit

operator'di£2+]) we can write

(6.130)

(6.131)
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)= WL I G2 exho)

S-QK G(N) (0') 1%’-“")(:1. \\G ) &0’ j’ = (N) (@ N

- KERA h d
JK é"‘) ) tg’Q-N)(x«l-l\c) Ao ° ki“‘ A@ z (I.'i' 0) c‘}

KA (6.132)

={N+1)

Ae

(w) Z(w)
When K!Au) and GK (G’), 0 < o < k each have the same

sign (6.132) reduces to

A P-Nel ¢ (P-N+) *rr(:;:‘ N)( £.) gg.u)
Am [Z(I{I:Cp,m}‘ [7' (‘) W ( ﬂ (6.133)

k2|
where § e [x,x+kh] , 85 e [x,x+kh], § = 1,2.

Similar bounds to (6.132) and (6.133) exist for the
optimum implicit, zero-stable explicit and optimum

explicit non-polynomial operators.

6.6 Work Involved when using the Recurrence Formulae to

Derive the Non-Polynomial Based Operators

6.6.1 Arithmetic Operations

Using the recurrence formulae, given in the previous
sections, to derive a non-polynomial based operator is not
the only way of carrying out the derivation. One could
make the'operator exact for any given set of functions by
substituting these functions in the operator, equating to
zero, and solving the resultant set of linear simultaneous
equations directly for the coefficients. Obviously we would
wish to use the most efficient method to derive the operator

and we will therefore try to estimate the work involved
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in deriving an operator both by using recurrence formulae
and by the direct solution of the linear simultaneous
equations, In this section consideration is given to the
number of arithmetic operations involved and discussions
regarding the amount of storage necessary are left to a
later section, Since it is unlikely that anyone would
use the optimum operators in practice we omit these
completely from the rest of tie chapter.

Initially we consider the N-zero-stable implicit

operatorﬁé':) and its derivation by recurrence
formulae. There are essentially N stages in the

derivation of}]iﬁ:),ln the J-th stage we have to calculate

= (3-1)

= (34 =(@-) o | =(3-1) . ‘
ﬁ(:‘ )[‘T,(")] A, LA ,Jq.",.,{w, &),....., ,,_3%"‘!_.[1',(1)] (6.134)

in order to obtain

3)

= = =(3) =(3)
)q:’[z 0] ,R(K,‘_'[z'(x)], .ﬂ x,n-u[z‘(z)) yoo :u~3-\ﬂx,t-n[z‘(1)] (6.138)

The work involved in this is
(e )(k+)+ Dlksn)+ TR+ -3+ ... __+§R(ks1)-N+T3
+ R(ka)+ [R(ka)-1]+ _+1R(k+))-N+3]

operations where an.operation is regarded as equivalent to
a multiplication and an addition. There are also an
additional N-J+1 divisions which we overestimate as being

equivalent to N-J+1 operations. Hence at the J-th stage the
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total number of operations is

() (k+1) + (N-T+ 1) (2R (ke )= N+T+1) (6.136)

We must now sum (6.136) over J running from one to N.

Hence we have
N N
2 (2+1) (k1) + Z(N-—3+ {22 (k+1)- N+J + \) (6.137)
Iz I=

Evaluating (6.137) gives a total of
N(k+)(EN+22+1) - %(N*’\)(IN—S) (6.138)

operations for the calculation of the N-zero-stable implicit

-

N
operator "‘AKQ by means of recurrence formulae,

By a direct method using Gaussian elimination we would

need

L Lok 0] (0] - LR ()] 139

operations in carrying out the elimination and back
substitution. Hence we need to compare (6.138) and (6.139)
for any given set of k, & and N to determine the more
efficient method. The following table, Table 6.1, gives the
values of (6.138) and (6.139) for L =1, 23 N = 1,2,3,4 and
k =1,2,...,5 subject to the condition that Q(k+1) > N.
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Table 6.1

Direct (6.139)

Recurrence (6.138)

k

17
36
65

17
2)

106

25

21

17
36
65
106

31

41

51

61

17
36

52
70
88
106
102
130

65
106

36
65
106

158

36
106

15
22
29

N

232
430

36
43

716

36
106
232
430
716

37

55
73
91
109

d

[aY

od

36
106
232
430
716

64

97
130
163
196

cJd

36
106

94
146

232
430
716

198
250
302
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We summarise these results in Table 6.2 where we quote the

minimum value of k, for a given N and &, at which the

recurrence derivation becomes more efficient.

Table 6.2
' k
11 2
2 4
3 5
4 7
2 1
2 2
3 2
4 3

Hence when @ 1is one the minimum value of k increases
faster than linearly with N so that the recurrence
derivation would probably only be used when N equals
one and k is at least two. It is possible that when
N equals two or three we might employ the recurrence
derivation provided the value of k was at least four or
five respectively. If & 1is two however, the recurrence
derivation becomes more attractive to use since the
minimum value of k increases less than linearly with
respect to N. Larger values of £ would make use of the
recurrence derivation more efficient still in
comparison to the direct method.

ke now consider the N-zero-stable explicit operator
jé;:) which also has N stages in its derivation by
recurrence formulae. In the J-th stage we need to

calculate



- 121 -
3-1)

2@ R0 )
E‘s(x)l,ﬁ“ ,"!_'[f“';(‘)J,‘ﬁ by, . A Tme)] (6.100)

K-1,0-4 TTTINT KLU

= (3-1)

5,

2

in order to obtain

= (3) =(3) =(3)

2() 3
Bm[z(x)] ’ﬁx-a a-;[; ‘(x)]”ﬁ ‘[Z'(x)] A [z'(x)] (6.141)

K1, 21 LR ' MM XY K

The number of operations involved in this stage is

k(L)) + 1+ 0k +(Rk-1)4., +{2k-(N-3)]
+ Pk« (Ik-1)+....+ {2K-(N-3)] + N-3+] (6.142)

Summing (6.142) for J running from 1 to N yields
N N
S (K(L)+1) + D (N-3+)(20K-N+T) 6.143)
I=) I3

Evaluating (6.143) gives a total of

NK(AN+22+1) -%(zn”-an—lu) (6.144)

operations for the calculation of the N-zero-stable
= (N)
explicit operator 1BK!. by means of recurrence

formula. By the direct method we would use

%(Qk)a + (gk)z" “g(lk) (6.145)

Table 6.3 compares the number of operations as
given in (6.144) and (6.145) for = 1,24N=1,2,3,
4,k=1,2,3,4,5 subject to the condition Lk > N.
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Table 6.3

1 N k Recurrence (6.144) Direct (6.?ﬁ5)

1 1 2 10 0
1 3 14 17
1 4 18 36
1 5 22 65
2 2 23 6
2 3 33 17
2 4 43 36
2 5 53 65
3 3 55 17
3 4 73 36
3 5 91 65
4 4 106 36
4 5 134 65

2 1 2 16 36
1 3 23 106
1 4 30 232
1 5 37 430
2 2 39 36
2 3 57 106
2 4 75 232
2 5 93 43u
3 2 67 30
3 3 100 106
3 4 133 232
3 5 166 430
4 2 98 36
4 3 150 100
4 4 202 232
4 5 254 430

These results are summarised in the following table which
quotes the minimum value of k for a given N and & at

which the recurrence derivation becomes more efficient,
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<
=
b

N
SHw NN - Wy~
B W W N 0N W

The results for the N-zero-stable explicit operator follow
the same pattern as those of N-zero-stable implicit
operator. From Table 6.4 we can see that when £ is one
the minimum vaiue of k increases faster than linearly
with N so that the recurrence derivation would probably
only be used when N is either one or two in which case k
must be at least three or four respectively. If & is
two however then the minimum value of k increases less
than linearly with respect to N and the recurrence
derivation becomes more advantageous while larger values
for  make use of the recurrence derivation still more
efficient in comparison with the direct method.

A tentative conclusion for the values of N, k and &
that have been considered and based solely on the number
of arithmetic operations involved in the derivation of
both implicit and explicit zero-stable operators is that
the method employing recurrence relations should only be
used when either £ is one and N is sufficiently small
with respect to k as given in Tables 6.2, 6.4, or if &

is two then k must be greater than or equal to N.
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6. 6.2 Storage Space

With the vast development in computer technology over the
Tast twenty years and the consequent increase in the
available storage space in most computers one does not
usually have to worry unduly about storage space reguired
since this is no longer the restriction it once used to

be. However for completeness we will compare the amount

of storage space needed for both the recurrence derivation
and the direct method and show that the same conclusions that
were drawn from a comparison of the arithmetic operations can
also be drawn from a consideration of the storage space

required.
~(N)

Consider first the N-zero-stable implicit operator @
Since the recurrence technique can be used so that each
stage overwrites the previous stage,from (6.135) it is easy

to see that we need

(Qe(k+1) + Rl + o+ (k) -(N-D)]
+()L+I)(k+l) + Q(k-&l)ﬂm_,+fﬂ(k+\)-(N-))]*[f(k“)‘(N‘l)} (6.146)

storage locations. This is not the total number of locations
needed but it is judged to be the most relevant quantity to be
compared with the storage needed for the solution of the
linear simultaneous equations in the direct method. Both
methods do require a small amount of additional temporary
storage space but this is small in comparison and is
approximately equal in both methods and hence we ignore it.

The direct solution will require

[2(k+|)][9(k+ 1)+ 1] (6.147)
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storage locatiins. Simplifying (6.146) gives

(k1) (2AN+2+2) - (N‘l)l (6.148)

storage locations for the recurrence technique. Table
6.5 then gives a comparison of (6.148) and (6.147) for

§=1,25 N=1,2,3,4, k=1,2,3,4,5 subject to the

condition that £ (k+1) > N,

Table 6.5
2 N k Recurrence (6.148) Direct (6.147)
1 1 1 10 6
1 2 15 12
1 3 20 20
1 4 25 30
1 5 30 42
2 1 13 6
2 2 20 12
2 3 27 20
2 4 34 30
2 5 4] 42
3 2 23 12
3 3 32 20
3 4 41 30
3 5 50 42
43 35 20
PR 26 30
4 5 57 42
2 1 1 16 20
1 2 24 42
1 3 32 72
1 4 40 110
1 5 48 156
2 1 23 20
2 2 35 42
2 3 47 72
2 4 59 110
2 5 71 156
3 2 44 42
3 3 60 72
3 4 76 110
3 5 92 156
4 3 71 72
4 4 91 110
4 5 111 156

We summarize these results in Table 6.6 where we quote
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the minimum value of k for a given N and £ at which the

recurrence derivation becomes more efficient.

Table 6.6
g N k
. 3
2 5
37
4 8
2 1 1
2 2
3 3
4 3

Using these results for the N-zero-stable implicit operator
we can draw similar conclusions from the storage space
requirements to those drawn from the number of arithmetic
operations. Hence when £ is one the value of N has to be
sufficiently small with respect to k to make the recurrence
derivation more efficient while when £ 1is 2 the recurrence
derivation becomes more attractive since k need only be as
large as N. Higher values of § reflect better on the
recurrence derivation.

For the N-zero-stable explicit operator 'B::‘: W

restrict ourselves to quoting the storage requirements for

e

both methods of derivation, recurrence and direct, since
it isstraightforward but tedious to show that the
conclusions one obtains are the same as in the

» - ~
previous section. The operator ]B( !

Ke can be seen from (6.141)

[kt + Rk+ . + {2k=(N-2)}
Hieke 1] # Rk v ...+ D0k-(N-Df+ [Rk-(N-1)]

(6.149)
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storage locations for the recurrence derivation. This can

be simplified to
k(ZRN*Q+2)‘(Nz'2N‘|) (6.150)

while the direct solution requires

ﬂk(ﬂk*‘\) (6.151)

storage locations.

Although the results from this section back up the
evidence obtained from the comparison of the arithmetic
operations it is important to remember that the additional
storage space required for the recurrence derivation is
relatively small and hence our judgement of the method
to use should be based completely on the number of
arithmetic operations involved. This is particularly
important for methods based on arbitrary functions which
necessitate recalculating the operator at each step, Xn+k?

of the solution.

Finally it should be also noted that the recurrence
derivation of each of the operators.can be suitably
modified to cope with second-order ordinary differential

equations of the form
¥ = f(x.y) (6.152)

with appropriate initial conditions. In fact the recurrence
derivation can be applied to cope with any order differential

equation of the form
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y(r) = f(X,_y)

where r > 1,

(6.153)

t./ Numerical Testing of Methods Derived by Recurrence Formulae

As a numerical test of methods derived by recurrence

formulae we will attempt to find a solution to the following two

problems given in Bettis and Stiefel (1969):

A) Harmonic Oscillator

y=qy+igy
while at x = 0
=y
_I‘y‘:z.-)‘:

"
o

This problem has the solution

Y = cos x

2_y = sin x

Perturbed Harmonic Uscillator

y" +y = 0.001 exp(ix)

where

while at x = 0
Y = 1Y
Yoy =]

1
o

Range [0,40r]

Range [0,401]
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This problem has the solution

cosx+ 0.005 xsin x

1Y

2y sin x ~ 0.005 x cos x

Both of these problems are second-order differential
equations. We need therefore a multistep method which is
directly applicable to second-order differential equations.

&(N)

If we consider the N-zero-stable implicit operator Ck2

defined by

) e
C' L2605t ) RRoase] + R, B2

where the Egg). 0 < Jj < k, are determined as functions of

the stability parameters on by setting

=(
C::[x']=0 w22, ... ks2-N  N<K

and

=(N)
Cm[wt(x)-k 0

eu
z

)-="")

then it can be shown that the recurrence formula for the

N-zero-stable implicit operator is

C (N:\)[z(x)}-ti": (2] - -ﬁ(g%f—ﬂj k‘ﬁ(: EXE)

(6.154)

(6.155)

(6.156)

(6.157)
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provided the denominator is non-zero.
We note that the multistep method which has ﬁég)
as its associated operator is a fourth-order method of
Stérmer type:

_h2 (1) 106016 (1)

Yne2 ~ 2yn+1 - T?(fn+2 nel1tTy ")
while one multistep method which has ng) as its
associated operator is the sixth-order method of

Stbrmer type:

- 2 96D 204801105 g (1) (1)
Yneq W ne3"Y ne2 200 (lgfn+4+204fn+3+]4fn+2+4fn+]'fn )

In problem A we seek a multistep methed which is
exact for x, x2, sin x and cos x. We.can thus employ
the recurrence formulae (6.157),(6.91) and (6.107) to
construct the appropriate operator Cég). In problem B
we seek a multistep method which is exact for.x, x2,
sin x, cos x, x sin x and x cos x and so we can construct
the appropriate operator Cég) again using the recurrence
formulae (6.157), (6.91) and (6.107).

We apply the multistep methods determined from the
operators C(Z) and C(4) to problems A and B respect1ve1y
taking the stepsize alternately as «/18, »/9, n/6, /3
while the extra starting values requ}red are taken from

the theoretical solution. The calculations were performed
using double precision on the IBM 360/67 at Newcastle

University. In the following table, Table 6.7, we quote

for each problem and each stepsize the error in the
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numerical solution of 1Y and oY denoted by E] and E2

respectively
Table 6.7
Problem A Problem B
h 3 E, ‘, E,
/18 | -.806x10" 13 .293x10 12 | -.980x107 13 264107 %
-13 -13 13 -13
/9 | -.289x10 1353x107 13 | - 022410 .347:10
-13 13 14 -13
/6 | -.363%10 218x10713 | - 105410 268510
/3 | -.999x10715 -.236x10713 | -.135.10713 17041073

The erroré incurred in both problems are negligible and

we observe that on these two problems we do not experience

any loss of accuracy when deriving our methods by

recurrence formulae.
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Chapter Seven

Introduction

In the previous chapter we have outlined the idea of using
non-polynomial based formulae in the solution of the initial
value problem. It was shown how any linear combination of
arbitrary functions could be used as the non-polynomial base
and a method of obtaining non-polynomial based formulae from
polynomial based formulae by means of recurrence formulae
was derived. The use of this technique is however
restricted to those problems where we can surmise what the
appropriate combination of arbitrary functions is to be
before we start the numerical solution. If however we are faced
with a problem which has special difficulties, such as a
singularity in the solution, then we may prefer to work with
an adaptive formulae based on the representation (6.1)
as proposed by Lambert and Shaw (1966a) and Shaw (1967)
where the parameters, A and N, which control the position and
nature of any p-ssible singularity are continuously

modified througnout the solution.

In this chapter our aim is to investigate whether an
adaptive type of formula can be derived for an
interpolant of the form
Y(x) = E a.x + '§ b e "X b_# 0,% #0,m=1,...,i (7.1)
j=0 m=1 ™ " &
where the L + 1 constants ai(i=0,1...,L) are regarded as
undetermined coefficients while the 2N coefficients

byseeesbysrysec.siyare to be determined by the behaviour of

the particular differential equation whose solution is sought.
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7.1 One-Step Explicit Methods

Analogously to Lambert and Shaw (1966a)we start by
considering one-step explicit methods over the range [xn,xn+]].
To determine the L+1 undetermined coefficients TR in
(7.1) we need L + 2 equations. These equations are obtained
by observing that if the theoretical solution y(x), which we
approximate by the numerical solution, is to be represented by

the interpolant Y(x) in the range [xn.xn+1] the following must

hold
1
Y(x,) =¥,
Y(%p41) = Y >
d® (s-1)
£ ¥(x) = f, s =1,2,...,L ]
dx X=X
where ( (s-1)
-]) S=-
(s) _ [af S : af
) BET ) + 0BT )
X=X
y=y,
L i
If we set P(x) = ] a.x

then from (7.1) we must have

N
p()(x) = v8)(x) - mg} b Ase ™

S=0.].000.L
which using (7.2) yields

N
p)(x ) = £1571) L § paSetmn sar2, L,

m=1
Now

Y(x

N
1) = Plep) + Z] bmeNan+1 .
m=

Expanding P(xn+]) by a Taylor series about X gives

L
Vixap) = POx ) + 0P (x )y + Bp(@ x yei lpbix ) + o

N
F )b em¥nghnh
m
m=1

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)
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Substituting for the derivatives of P(x) from (7.6) and
using (7.2) we obtain after simplification the following

equation
L .S
N N ]

Since the term in the square brackets is the difference
between eAm'n and the first L + 1 terms of the Taylor

series for the same expression it follows that the
perturbation term is of order at least hL+]o Our definition

of the Jlocal error under the usual localizing and

differentiability assumptions is

Thel = Yne1 = y(xn+])
where
> ) v .Se(s=1)
Y (*p4) 2 ST vt Xp)=Yp * Sé]h fn

Hence subtracting (7.11) from (7.9) gives
hL+p

where N
_ _e(L#p-1) L+p _AmXn
Tp = -f, ) b.Ap €

In order to calculate b],ooo.bN,A],....AN we set

T, =T =T, =0

1727 TN
This gives us a set of 2N simultaneous non-linear
equations for 2N unknowns Am and bm' Writing these

equations out fully we have

£ § bt gimXn
n m=] MM

N

fr(1L+]) - 3 bm)‘rl;]+2 e mXn (7.15.2)

w _ Yo (7.15.1)

\

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.18)
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| |

(LN g b LT ey (7.15.N+1)
n mm
m=1
f(L+N+1) Z b \L+N+2 AmXn (7.15.N+2)
n m
n=
| i
| |
| I
I |
! |
F(LeaN-1) g b L LH2N (7.15.2N)
n m=1 mm

If we let Aps Agseccs Ap be the roots of the polynomial

- N-
AN - g]AN ]-92A 2-ono-gN_]A -gN = 0

then multiplying equation (7.15.1) by ~gy» (7.15.2) by
-gN_].o.,(7,]5.N) by -9 and adding the resulting equations
to (7.15.N+1) gives

- (L) _ (L+1). (L+N- 1 L+N)
IN fn IN-1 fn oo glf
N
L+1 eAmXn (g - - - N-1. N
me1 bm m " 9N gN-l"m tee glkm + Am)

From (7.16) the value of the bracket on the right hand side

is zero., Hence rearranging we have

(L) (L+1) (L+N=1) _ ((L+N)
ngn + Oy ]f cee + g]fn : fn

If we now multiply (7.15.2) by oD (7.15.3) by "ONa1es
(7.15.N+1) by 9y add the resultant equations to (7.15.N+2)

and simplify using (7.16) we obtain

ng§L+1) + Oy (L+2)

Starting one equation further down the set (7.15) each

+.. .4, f(L+N) (L+N+1)

time and repeating the above technique, which is known
as Prony's Method [Hildebrand (1956)], gives us the following

set of equations written in matrix form as

>

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)



By inspection it can be seen that the resultant set of
N simultaneous linear equations for the g's are symmetric
about the leading diagonal. Hence once we have solved (7.20)
for the g's this enables us to use (7.16) to find the values
of A.» m=l,...,N. The values of the b's can then be obtained
by solving the last N equations in (7.15) which are linear
simultaneous equations for the b's or alternatively one could
use a least squares technique on all the 2N equations.

It is possible that when solving a particular problem
some of the values obtained from (7.16) for the Am.m=1.....N
may be complex. Since the coefficients of (7.16) are real all
complex roots must occur in conjugate pairs, We must therefore
allow the values of the b's to be complex as well as the i's,
In practice this corresponds to modifying the form of the

interpolant (7.1) to include sine and cosine terms.

7.2 One-Step Implicit Methods

We now consider whether any one-step implicit methods
can be derived. In this section it will be shown that
various implicit methods can be derived by a similar
procedure to those for explicit methods. If (7.1) is again
taken to be the underlying interpolant we start by attempting

to satisfy the following equations

r 1 T
(L) (L+1) (L+N-1) _ [N T
£ () Hgl_l - |ft
(L+1) (L+2) (L+N) L+N+1
fo o L _f, T I
| ! ' |
] ! . t
! ] | ]
{ \ | | |
: | 1 ' |
) { i : '
[} [} 1 '
(L+N-1) - (L+2N-2)} | » L+2N-1
n T g 1O LS

(7.20)
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Y{Xpe1) = Ypeg ’

S
FL—X(X)] = £{&:) s = 1,2,....L,
dx® X=X

"0+l

Proceeding as before we can develop the formula

L
_ _ s-1 h® (s- ])
In¢1 ~ ¥ = sél( DA S S
N ® -1. htt9
Z bme)\mxn_._] E (-])L+q 1- h+ . AL+q
= q:] ~*q,.
with a locat. error given by
O R

T .=}
n+] p=1 (E+p$!
L+ -1 A X L+ (-1 2r+1

If we then set

where

T] = T2 S seees = T2N =0
in order to calculate b],....bN,A],..,AN we obtain the same
set of equations given in (7.15), We can thus employ the
same technique used in the derivation of the explicit methods
to derive various implicit methods.

The methods obtained by making (7.1) satisfy the
equations (7.21) are not the only one-step implicit methods
that can be derived by this technique. Instead of (7.21) we

might make (7.1) satisfy

(7.21)

(7.22)

(7.23)

(7.24)

(7.25)



+

We can then carry out a similar procedure to those previously

indicated to deri

effectively turns out to be a modification of the trapezoidal

rule,
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o.l o
x
-
—
x
e
x
i
>
S
+
——
n
-*'
=
-+
—

ve a one-step implicit method which

7.3 Explicit and Implicit Multistep Methods

The disadvantage of the one-step methods derived in the
previous two sections is the necessity to calculate higher
derivatives. Since this can'be very time ‘consuming for even

the simplest of functions f we now investigate whether we

can derive multistep methods based on (7.1) as the

underlying interpolant. The approach we follow is .

comparable to that in Shaw (1967).

We will assume that:the theoretical solution y(x)which

>

J

we again approximate by ‘the numerical solution, is to be

represented by the interpotant Y(x) in the range'[x

The following equations must thenbe satisfied

yn+t

LI

—r

where k' = k =

implicit methods.

= Y(x

n+t) t =O.].o...k

d '
'a'x- Y(X)] _ t = 0.].ooo’k
[ X=Xn+t

for explicit methods while k' = k for

If we set

n’xn+k1'

(7.26)

(7.27)
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LO
il

N
Z b e}\hx'i
m=1 m
and

U e
f. - b x_e’m™i
i me] mom

L
)
1]

then equations (7.28) and (7.29) can be combined with (7.27)

to give
Ly
Qn+t = .2 aixn"'t t = 0’],eoc’k
i=0
and
] = k . i'] = 1
Nt L 1a1.xn+t t =0,1,...,k

We will choose L = k' - 2N + 1 so that since L > O,
k' > 2N-1 while if L is zero the right hand side of (7.31)
is identically zero.

Introducing the real numbers L t =0,1,...,k and

Bt’ t = 0’]’uoo’k. Where

uk k
% =t§0at-1
implies K
} o, =0
t=0 °

Multiplying Qn+t in (7.30) by at,t = 0.1.....k,Q'n_|_t

in (7.31) by ~hg,, t = 0,1,...,k'and adding gives

K K

Lottlneth Z B8 et = 1Z % [ Z RAWRL Z Bt net
where (7.33) has been used to eliminate a, in (7.34) while
if L is zero the right hand side of (7.34) is zero.
Equating the coefficients ai,i = 1,..., L to zero yields

a system of k'-2N+1 equations in the k'+1 variables

ByreeesBy which can be solved in terms of the parameters
ars t =0,1,...,k-2. Since X, may be taken as zero

without any loss of generality we obtain the following

(7.28)

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)
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equations for the 8,, t = 0,1,...,k'

t

],coo’kl_2N+]

s k .
i-1, _ 1 i .
gt Bt-TZtat 1

In solving (7.35) any 2N of the Bt,t=0,1,....k' may be chosen
arbitrarily and we will choose BO’Bl""’BZN-1' Equation
(7.35) is then solved for Byst = 2N,...,k' in terms of
the parameters “o’“]""’ak’eo""’BZN-l' Finally
Bys««+sByy_7 @re chosen to be the solution of the 2N
equations obtained by setting i = k' - 2N+2,...,k'+1 in
(7.35). Hence (7.34) becomes

k k'

Lo %t Onet ML B0y = 0
(7.36) is thus a multistep method whose associated
operator is

k k'

L[Q(x);h] = tQ(x+th) -h z 8,Q' (x+th)

where the a, are the stability parameters and the Bt

are obtained from
l

Z ti-1g 1] th = 1,00.,k'+]
t t ge0e

it 1)

t=0
Since (7.38) implies that the order is k'+1 then the local

error of (7.37) is given by

L[Q(x);hﬂ = SzlCk.+]+shk'+1+so(k'+]+s)(x)

where
1, L
C =+ 320 J aJ-ZOrJ J) r=k'+s+1
Substituting in (7.36) from (7.28) and (7.29) we obtain
k' N k k'

Ja =hJgf +1b {7 aem¥nttey J g a etmintty
got Mt T Nt et L Pt % tZO tm

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)



- 141 -

If we now introduce the forward difference operator & where

Az = 2

Lo s .
, rel = Zp and use the fact that a z. = 0 if z is a

polynomial of degree less than or equal to L - 1 then we

can return to (7.31) to obtain
ALQ;+t =0 t =0,1,2,...,2N"1 (7.42)

This gives us a set of 2N equations from which we can

determine the 2N unknowns b],...,bN,A]..,.,AN. From

(7.29) we have

N

L L AmX4
o~ 7 b e’'Mm
mep mm

atqr = atr, -
i i
Hence (7.42) implies
abf =4t ? b_x_e*m¥n+t t =0, 2N-1 (7.43)
= slscees .
n+t map mom

It is straightforward to show that
at § b x e mXn+t _ § b, a_eMmXn(eAmn_y )L (7.44)
me] mom m=] mom ’

Combining (7.43) and (7.44) together gives

N
L AmXn 2 Amh_q 4L
B fpay = L bt T (ET Tt s 0 2] (7.45)

Writing these equations out fully we have
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N

Le _ MnXn s Amho1y b
s f, = Z b A e ™ (e"Mm7-1) (7.46.1)
m=1
L N men+] Amh L 7.46.2
A f o= Ibae (e"m"-1) (7.46.2)
m=1
atf = g b_a e*mxn+N(e*mh-1)L (7.46.N+1)
n+N mey mm e
ALs = g b e mXn+N-1 Amh-])L (7.46 .N+2)
n+N+1 = map mom (e
N
L . AXneoN-1 s mh_11L  (7.46.2N)
O7fruaN-1 = L. bype ™ EN-T(eT-1)
m=1
If we 1et'e}‘1h,-e>‘2h.....eANh be the roots of

- x(N-2)h
N _ g]_eA(N Hh _ g8 (N-2)h

then multiplying (7.46.1) by -9y (7.46.2) by ol [TRTEERY
(7.46.N) by -9 and adding the resultant equations to

(7.46.N+1) gives

L L, . _ L L
TR TR Frt1 ™o 90 T aN-10 N

Agh AgNh

N
= Z]bmkme)\mxn(elmh-])L{_gN-gN-]e -, es~€ m }
m=

From (7.47) the value of the bracket on the right hand

side is zero. Hence rearranging we have

L L L L
gNA fn + gN_]A fn+]+...+g]A fn+N_] A fn+N

If we now multiply (7.46.2) by gy (7.46.3) by o R TREED
(7.46.N+1) by -9qs add the resultant equations to (7.46.N+2)

and simplify using (7.47) we obtain

L L L - L
gNA fn+'l + gN-lA fn+2 oo # glA fn+N A fn+N+1

> (7.46)

(7.47)

(7.48)

(7.49)

(7.50)
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Starting one equation further down the set (7.46) each time
and repeating the same technique gives us the following set

of equations written in matrix form as

[\ L L . 1.t w
*n PP - — e - - A Fom-1 [[ON | T [2 Then
L L L L
4 fn+1 A fn+2 ------ -4 fn+N IN-1 4 fn+N+1
]
: ; : : (7.51)
1
I i '
| { : :
' [ Ll
L L] L g A-f
2 Fhen-1 R S | L B L

We note that this set of N simultaneous linear equations
for the I m=1,2,...N, is symmetric about the leading diagonal.
Hence once (7.51) has been solved for the gm.m=1,2.,..N we can
find the roots of (7.47) which is an N-th degree polynomial in
e)‘h and hence determine the value of each Ape The values of
the bm. m=1,2,...N can then be obtained either from the last
N equations in (7.46) which are linear simultaneous equations
for the b's or alternatively by using a least squares technique
on all the 2N equations.

The formula (7.41) can thus be used as modified multistep

method with a local error of ordar k for an explicit riethod and

order k+1 fcr an implicit meli:ad.

7.4 Numerical Testing of Exponentially Adaptive One-Step Methods

and Multistep Methods

As a test of the methods derived in this chapter we will
attempt to find numerical solutions for each of the following

three problems.
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Problem A

y' =x-y+ 2 range [0,1]
with

y(Q) =2
This problem has the theoretical solution

y=14+x+e¥X
Problem B

y' = Zl%ﬂl range [1,2]
with

y(1) = €3
This problem has the theoretical solution

y = e3x
Problem C

yi=y+ 22X 22 range [3,5]
with

y(3) =e'+ed3 +2

This problem has the theoretical solution

y=e*+ eX 42

Thus problem A is a linear differential
equation with a decreasing exponential in the.solution
while problem B is a non-linear equation with an increasing
exponential in the solution. .The third.problem is a linear
equation with two increasing exponentials in the solution.

Both the one-step and multistep methods we have
outlined require us to find at each step, the solution of
two sets of N simultaneous linear equations (one for the
9 and one for the bm) and the roots.of an N-th degree
polynomial. If, in addition, our method is implicit we
must repeat all this work on each iteration. We therefore

only consider explicit methods and keep the value of N as
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small as possible by setting it equal to one.
Solutions for the three problems A, B and C have been
obtained by each of the following methods:
the one-step adaptive method,
xxn(exh

v =y +hf ee (M pe 1-hp-n2AZ) (7.52)
ne1 Yttty 3 °

the Taylor series fourth-order method,

e w2 (13,03 (2) ht . (3)
ne1 Yttty Tty e, (7.53)

the multiscep adaptive metnod,

- h - -
yn+4_yn+3+?l[55fn+3 ngn+2+37fn+1 gfn]

+b[e*¥n+d_g**n+3

Y

+gzr-(55eAx“+3-59e““+2+37e“"+]-QeAx")] (7.54)
and the Adams fourth-order method
yn+4_.)n+3"2'z\ddfn+3 Jd1n+2+37fn+] 9fn) (7'55)

The calculations were carried out in double precision
on the IBM 360/67 at Newcastle University and the
extra starting values necessary for the multistep
methods (7.54) and (7.55) were taken from the
theoretical solution,

For each problem we quote in Table 7.1 the relative
error at the end of the range in the numerical solution
obtained by the methods (7.52), (7.53), (7.54) and
(7.55) and the corresponding value of the theoretical

solution.
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Table 7.1
Method
Problem| (7.52) (7.53) (7.54)  (7.55) |Theor. Soin.
A |.469 107 18], 141 107%].469 107'°] 444 107°]0.23679 10
8 |.141 10714}.211 1073|.705 10715{ .451 107%]0.40343 10°
¢ [.503 1078 |.117 1072].179 1076 |.258 107]0.32692 10’

From these results we can see that in problems A and B,
where we can exactly represent the theoretical solution by an
interpolant of the form (7.1) then the errors are negligible.
In problem C however where we only include one exponential in
our interpolant we observe that the numerical solution,
obtained by either the one-step method (7.52) or the multistep
method (7.54) is clearly more accurate than the solution
obtained with either the Taylor Series fourth-order method
or the Adams fourth-order method (7.56).

With such limited results it is impossible to draw any
definite conclusions. The results however do indicate that
this technique of adaptive exponential fitting may be
beneficial if the theoretical solution is exponential in
nature and we recommend that further investigations should

be made on this particular topic.
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Cha;czr Eight

Conclusions and Possible Future Extensions

3.1 Second-Derivative Stiffl, -Stablec !ultistep Methods

In chapter four we have shown that particular choices for the
third characteristic polynomial of second-derivative stiffly-stable
.multistep methods can result in a significant increase in the size
of the stability region. Larger increases can be obtained by the
use of optimization techniques where usually the size of the
stability region increases with the number of coefficients we allow
in the optimization process.

Subsequent work on this aspect might include alternative
choices for both the third characteristic polynomial and the
coefficients employed in the optimization. There is however no
need to restrict this to the third characteristic polynomial and
we could instead vary the first characteristic polynomial subject
always to the constraints imposed by zero-stability. In addition
we should like to test numerically many of the methods we have
obtained with larger stability regions. The optimization technique
could also be employed to maximize stability regions for first
derivative methods and in particular Gear's method.

The method of order k + 3 which we have developed would appear,
from the numerical results obtained, to have no real advantage over
the method of order k + 2 proposed by Enright and indeed with very
stiff problems it may be worse since the starting formula is not
stable at infinity. This can restrict us to a very small starting
stepsize. It may however be possible to combine both the order
(k+2) and order (k+3) method to overcome this difficulty and take

advantage of the smaller error constants of the higher order method.

8.2 Second-Derivative y-Implicit Runge-Kutta Methods
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In Chapter five we have proposed L-stable second-derivative
Runge-Kutta methods of orders three and four thch are implicit
with respect to y. This means that at each step of the calculation
we need only solve a set of m simultaneous non-linear equations in
contrast to the conventional k-implicit methods where we have to
solve a set of mR simultaneous non-linear equations. The m non-
linear equations for Y41 2T then solved by an iteration process
based on the Newton-Raphson method.

Our fourth-order method is compared numerically with a fourth-
order method of Butcher and we have shown that on the linear
problems tested the new method performs considerably better than
Butcher's method. We are currently engaged in further numerical
testing of this new method in order to see how it compares on non-

linear problems and we see this topic as a suitable area for

further research,

8.3 Recurrence Relations for Non-Polynomially Based Operators -

In Chapter six we have developed a complete set of recurrence
relations for explicit and implicit operators associated with those
linear multistep methods which are based on a representation
involving a polynomial part and any number of arbitrary functions.
Estimates of the work incurred in deriving these operators are
formed in terms of the number of arithmetic operations involved
and the amouﬁt of storage required. These estimates were compared
with the corresponding quantities for obtaining the operator
directly by the solution of a set of linear simultaneous eguations
and we showed that the conclusions are the same whether we consider
arithmetic operations or storage. Tables are given to enable us to
decide which method of derivation should be employed.

Although the work in the chapter is almost complete possible



- 149 -
extensions might include examining whether the structure of the
recurrence formulae can be simplified in those cases when the
non-polynomial part is comprised of a set of similar functions

such as exponentials.

8.4 Exponentially Adaptive One Step Methods and Multistep Methods

In chapter seven we have derived, using Prony's method, one-
step methods and multistep methods which are exponentially
adaptive. We note that the amount of work involved at each step
if we are using N exponentials is large since it includes the
solution of two sets of N linear simultaneous equations and the
determination of the roots of an N-th degree polynomial. It is
therefore recommended that N be kept as small as possible and
preferevly set equal to one.

The numerical results we have taken appear to indicate that
this type of method may be useful for problems which are
exponential in nature. Any further work on this topic should
initially consist of taking additional numerical results in order

to properly evaluate the worth of this type of method.
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Second-Derivative Multistep Methods
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Table Al.4

Summary of the Largest Stability Regions obtained for

Second-Derivative Multistep Methods when the Third

Characteristic Polynomial is given by

o) = ¢ g - o)f

k r o D Cp+]
3 1 .5 .075 .018
.1 .088 .020

N .089 .019

4 1 .9 .32 .010
2 .3 .39 01

3 N .41 .013

4 A .40 .012

5 1 .9 .66 .008
2 .3 .80 .008

3 .1 .99 .009

4 . .92 .009

5 .1 .88 .008

6 1 .9 1.18 .006
2 .3 1.44 .006

3 .3 1.29 .005

4 .l 1.73 .007

5 .1 1.56 .006

6 .1 1.45 .006

7 1 9 1.99 .005
2 .5 1.67 .004

3 .3 1.79 .004

4 | 3.03 .005

5 . 2.67 .005

6 .1 2.36 .005

7 | 2.13 .005
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Table A1.5

Summary of the Largest Stability Regions obtained for Second-
Derivative Multistep Methods when the Third Characteristic

Polynomial is given by

b(e) = e (e - )

k r c D Cp+]
3 1 5 075 .018
2 -3 097  .025

-.3 071 .026

4 1 9 .32 .010
2 -1 .53 .015

3 -7 40 .022

4 -7 18 .043

5 1 .9 .66 .008
2 -1 1.34 .010

3 A 1.33 .010

4 -7 0.87 014

5 -7 .46 .028

6 1 9 1.18 .006
2 - 2.73 .007

3 3 2.68 .007

4 -7 2.59 .008

5 -7 1.79 .010

6 -7 0.86 .008

7 1 9 1.99 .005
2 -1 5.15 .006

3 7 4.49 .005

4 -1 5.10 .006

5 -7 4.95 .006

6 -7 3.77 .007

7 -7 1.36 .013
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Table A1.6

—

Summary of the Largest Stability Regions obtained for Second-
Derivative Multistep Methods when the Third Characteristic

Polynomial is given by

o(g) = gk°r g Er-i !
i=0

k r c D Cp+1
3 1 .5 .075 .018
-.1 .095 .021

-1 .097 .021

4 1 .9 .32 .010
2 -.3 43 .012

3 -.1 .48 .014

4 -.1 .48 .014

5 1 .9 .66 .008
2 -.5 .94 .008

3 -.3 1.02 .009

4 -.3 1.05 .009

5 i 1 .026

6 1 .9 1.18 .006
2 -.5 1.52 .006

3 -.5 1.75 .006

4 -.3 1.88 .007

5 -.3 1.90 .007

6 -.3 1.92 .007

7 1 .9 1.99 .005
2 -.5 2.45 .005

3 -.5 2.48 .005

4 -.5 2.62 .005

5 -.5 2.75 .005

6 -.5 2.85 .004

7 7 2.29 .013




Optimized Stability Regions for Second-Derivative Multistep

Methods.

We will use i to denote the number of coefficients in y(g)

that were used in the optimization process and w(o)(g) to

Tab]e Al.7
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denote the starting value of y(&).

Table A1.7.1
k=3i=1
0
W 0 Gy )
1.0 -.61 074,017 £3
.9 -.61 .074  .017 g3
.8 -.61 .074  .017 g3
.7 -.61 074  .017 g3
.6 -.597 .074 .017 g3
.5 -.497 .075 .018 g3
4 -.397 .077 .019 £3
.3  -.297 .081 .020 g3
.2 -.197  .086 .021 £3
1 -.097  .094 .021 £3
Table A1.7.2
k=31=2
y
v ooom o b oy W
1.0 -.743 -.257 .0376 .022 &(£-0.15)2
.9 -.655 -.,220 .0423 .022 £(g-0.15)2
.8 -.,523 -.222 .0482 .023 g3
.7 -.489 -.148 ,0539 .022 ¢g(£-0.15)2
.6 =,397 -,122 .0605 022 g3
.5 =-,343 -.078 .0676 .021 &(g-0.15)2
4 -,272 -.051 .0745 .021 g3
.3 -.298 ~-.000 .0806 .020 £(&-0.15)2
.2 =312 -.022 .0853 .019 g(&-0.15)2
1 -.099 -.000 .0941 .021 } g3

/
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Table A1.7.3
k=31i-=3
0
w Y2 Y] YU D Cp+] w( )(g)
1.0 -.696 .122 .172 .0089 .035 £3
.9 -.696 .122 .172 .0089 .035 £3
.8 -.696 .122 .172 .0089 .035 g3
.7 -.696  .122 .172 .0089 .035 £3
.6 -.677 .0894 .102 .013 .027 (£-0.15)3
.5 -.559 -.163 .105 .018 .035 £3-.343£2-78¢
.4 -.464 -.0641 .047 .030 .026 (£-0.15)3
.3 -.358 -.046 .021  .049 .023 £3-.33782+.011¢
.2 -.325 -.016 .0025 .079 .019 (£-0.15)3
.1 -.130 -.004 .0007 .094 .021 g3
Table Al.7.4
k=41i=1]
0
RS
1.0 -.859 .316 .010 £3
.9 -.859 .316 .010 g3
.8 -.797 .320 .010 £3
.7 -.697 .328 011 g3
.6 =.597  .341 .012 g3
.5 -.497 .358 .012 g3
4 -,397 381 013 g3
.3 -.297  .407 .013 g3
.2 -,197  .438 .014 g3
.1 -.097 .478 .014 g3
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k = 4 i 2
w Y3 o U Cp*] w(o) (¢)
1.0 -.845 -.155  .265 .012 £
.9 -.765 -.121 .283 .012 £
8 -.678 -.098 .302 .012 g
7 -.658 -.029 .322 .012 £
6 -.586 -.0085 .339 .012 g"
5 -.516 .0080 .356 .012 r2(e-0.25)°
4 -.525 .050 .371 .012 g"
~.506  .062 .379 .012 £2(£-0.25)2
-.388 .038 .391 .012 gt
-.176  .0076 .446 .014 £
Table A1.7.6
k=4 §=3
Wovg oo 0 Gy v
1.0 -.542 .138 .309 .174 .017 £(£-0.15)3
. -.582 138 .309 174 .017 £(£-0.15)°
.8 -.542 .138 .309 .174 .017 ¢£(£-0.15)3
7 -.786 .067 .154 .182 .013 ¢£(£-0.15)3
6 -.860 -.045 .122  .186 .013 £(£-0.15)
5 .63 -.110 .090 .244 .014 ¢(£-0.15)°
4 -.540 -.007 .035 .307 .013 £(£-0.15)3
3 -.519 .02 .007 .358 .012 £(£-0.15)°
.2 -.395 .038 .0002 .389 .012 gl
.1 -.176 .0076 .000 .446 .014 g




Table AY.7.7

k =4 1 =4
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R BV R "0 D Lo W)
1.0 -.420 .004 -.165 -.157 .081 .027 (z-0.1)%
9 -.479 .094 -.165 -.157 .081 .027 (g-0.1)%
9 -.439 .16 -.121  -.147  .081 .026 (¢-0.1)
7 -.483 157 .206 -.105 .098 .028 (£-0.1)"
6 -.782 .061 .16 -.061 .092 .020 (£-0.1)%
5 -.771 .053  .128 -.043 .103 .018 (£-0.1)"
4 -.492 -.037 -.079 -.020 .208 .016 (£-0.1)
3 -.492 -.014  .320 -.107 .273 .014 (g-0.1)%
2 -.443 .057 -.0007 -.0002 -387 .012 (£-0.1)%
] -.176 .0076 .000  .000 .446 .012 b
Table A1.7.8
k=56 =1
w0y W
1.0 -.997 .634 .0073 £3
.9 -.897 .664 .0077 g5
.8 -.797 .701 .0079 g5
.7 -.697 .741 .0082 g5
.6 -,597 .793 .0084 g3
.5 -.497  .853 .0087 g3
4 -.397  .921 .0090 £>
.3 -.297 1.00 .0093 g3
.2 -.197 1.09  .0095 g3
.1 -.097 1.20 .0098 £3
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Table A1.7.9
k=5 i=2
Wy Y3 D Cot1 +le)
1.0 -.974 -.026  .631 .0075 5
.9 -.893 -.0059 .663 .0077 £>
.8 -.862 .034  .692 .0076 &5
.7 -.783  .058  .722 .0077 &5
.6 -.779 108  .747 .0075 gs
5 -.739 120 .766 .0076 £3(£10.3)°
4 -.747 133 .778 .0075 5
.3 -.480 .054  .861 .0086 g3
.2 -.313 .00  .981 .0091 5
1 -.318  .0099 1.15 .0097 €5
Table A1.7.10
k=5 i=3
ooy o 0 Gy )
1.0 -.909 -.062 .136  .556 .0087 E2(£-0.1)3
.9 -.909 -.062 .136  .566 .0087 £2(£-0.1)°
.8 -.909 -.062 .136  .556 .0087 g2(£-0.1)3
.7 -.835 .030 .173  .560 .0087 £2(g-0.1)3
.6 -.864 -.040 .120  .581 .0086 5
.5 -.639 -.065 .082  .719 .0091 &2(£-0.1)
4 -.693 .074 .017  .741 .0080 £2(£-0.1)3
.3 -.539 .054 .0054 .822 .0084 &2(§-0.1)°
.2 -.409 .047 -.0007 .909 .0088 £2(£-0.1)°
.1 -.158  .006 .0002 1.13  .0096 s
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Table AT1.7.11
k=5 {=-4
Wy, Y3 Yy g D o+l w(o)(a)
1.0 -.595 .099 .212 ~-.143 .481 .012 g(£-0.1)%
9 -.595 .099 .212 -.143 .481 .012 e(g-0.1)°
.8 -.595 .099 .212 -.143 .481 .012 ¢(e-0.1)"
.7 -.595 099 .212 -.143 .481 .012 g(£-0.1)%
.6 -.435 .107 .044 ~-.101 .614 .010 s
.5 -.629 .044 126 -.058 .576 .0099 £(£-0.1)%
4 -.686 .061 .076 -.022 .632 .0088 £(e-0.1)
.3 -.520 .069 .018 -.006 .805 .0086 &(&-0.1)%
.2 -.485 .060 -.003  .000 .B86 .0086 ¢(£-0.1)%
.1 -.158 .006 .0002 .000 1.13 .0096 €S
Table A1.7.12
k=6 i=1
TR o9 (g)
1.0 -.997 1.103 .0057  £6
.9 -.897 1.183 .0058 g6
.8 -.797 1.274 .0060 5
.7 -.697 1.376 .0062 €6
.6 -.597 1.490 .0064 5
.5 -.497 1.621 .0065 g8
.4 -.397 1.772 .0067 g8
.3 -.297 1.947 .0069 g6
.2 -.197 2.151 .007 g6
.1 -.097 2.404 .0072 g6




Table A1.7.13
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k=6 i=2
W v a0 Cq e
1.0 -1.076 .093 1.048 .0054 £
9 -1.056 .141 1.071 .0053 £6
8 -1.018 .175 1.102 .0063 £(£-0.3)
.7 -0.990 .204 1.131 .0053 6
6 -0.920 192 1.165 .0054 £(£-0.3)
.5 -0.946 .224 1.164 .0053 £*(£-0.3)2
4 -0.786 .155 1.256 .0088 £*(£-0.3)%
.3 -0.330 .090 1.813 .0067 6
.2 -0.313 .040 1.882 .0068 £6
1 -0.138 .010 2.277 .0072 g6
Table Al.7.14
k=6 i=3
Wy Yq Y3 D CP+1 w(o)(a)
1.0 -1.076 .093 .000 1.048 .0054 £6
9 -0.979 .126 .064 1.057 .0056 g6
8 -0.979 .126 .064 1.057 .0056 g6
7 -0.979 .126 .064 1.057 .0056 6
6 -0.979 .126 .071 1.061 .0057 £6
& -0.921 .239 .003 1.181 .0054 £3(£-0.3)3
4 -0.916 .254 -.019 1.237 .0053 £3(£-0.3)°
.3 -0.764 .204 -.018 1.299 .0057 g6
.2 -0.348 .030 .001 1.830 .0068 £
.1 -0.171 .009 .000 2.199 .0071 g6




Table A1.7.15
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k=6 1=

WY vy 13 T s P
1.0 -1.076 .093 .000  .000 1.048 .0054 £6

.9 -0.979 .126 064 .000 1.057 .0056 g6

.8 -0.979 .126 .064  .000 1.057 .0056 g8

.7 -0.979 .126 .064  .000 1.057 .0056 g8

.6 =-0.970 .126 .071 .000 1.061 .0057 g6

.5 -0.806 .178 .075 -.042 1.110 .0060 £2(e-0.1)%
4 -0.916 .254 -.019  .000 1.237 .0053 £3(£-0.3)°
.3 -0.764 .204 -.018  .000 1.299 .0057 gb

.2 -0.494 .072 .0001 -.0005 1.582 .0064 £2(£-0.1)
.1 -0.171 .009 .000 .000 2.199 .0071 g8
Table Al1.7.16
k=7 1=

Woovg b Gy v {0 ¢e)
1.0 -.997 1.843 .0045 g7

.9 -.897 1.999 .0045 £7

.8 -.797 2.175 .0047 g7

.7 -.697 2.375 .0049 g7

-6 -.597 2.604 .0050 g7
.5 -.497 2.868 .0051 g7

4 -.397 3.176 .0052 g7

.3 -.297 3.539 .0053 g7

2 -.197 3.971 .0054 g7

.1 -.097 4.492 .0056 g7




Table A1.7.17
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k=7 i-=

W Ye Yr L o+ w(o)(a)

1.0 -1.098 .160 1.602 .0042 ¢’

.9 -1.090 .172 1.605 .0042 &7

.8 -1.068 .215 1.621 .0042 &7

.7 -1.003 .263 1.660 .0042 £5(£-0.5)°

.6 -1.003 .263 1.660 .0082 £5(£-0.5)°

.5 -0.997 .248 1.675 .0042 g7

.4 -0.745 .159 2.003 .0046 g7

.3 -0.330 .090 3.190 .0052 &7

.2 -0.313 .040 3.377 .0053 &7

.1 -0.138 .010 4.228 .0085 g7
Table A1.7.18
k=7 1=

W vg Y5 Yq b Con o (e)
1.0 -1.098 .160 .000 1.602 .0042  ¢7

.9 -1.090 .172 .000 1.605 .0042 &7

.8 -1.056 .245 -.028 1.618 .0041 g7

.7 -1.034 .249 -.010 1.635 .0042 ¢’
.6 -1.025 .222 .021 1.649 .0043 £*(£-0.3)°
.5 -0.997 .263 -.003 1.667 .0042 &7

4 -0.939 .282 -.025 1.73¢ .0042 £*(£-0.3)3
.3 -0.407 .126 -.003 2.857 .0050 ¢’

.2 -0.313 .040 .000 3.371 .0053 g7

.1 -0.234 .018 -.0005 3.743 .0054 £’




Table A1.7.19.
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k=7 =4

Wove ts Y Y3 D o

1.0 -1.100 .215 -.033 .001 1.585 .0041
.9 -1.100 .215 -.033 .001 1.585 .0041
.8 -1.056 .245 ~.028 .000  1.618 .0041
.7 -1.034 .249 ~.010 .000 1.635 .0042
.6 -1.025 .222 .021 .000 1.649 .0043
.5 -0.997 .263 ~.003 .000 1.667 .0042
.4 -0.939 .282 -.025 .000 1.734 .0042
.3 -0.407 .126 -.003 .000 2.857 .0050
.2 -0.313 .040 .000 .000 3.371 .0053
.1 -0.252 .021 .000 .000 3.660 .0054
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Table Al1.8

A Search for Order k+3- Stiffly~Stable Second-Derivative

Multistep Methods.

Once anything is found which would preclude use of the method

the remaining information is omitted.

We use A.P to denote

the additional parameter used in fitting the increased

order while N.S.S. denotes not stiffly-stable.

k A.P. maxla]jl max[gBj[ D b,
Yo 1.0 1.0 A-stable

2 g 1.0 0.0 .51 2.01
Yo 1.0 0.55 .27 2.02
Y 1.0 1.75

3 % 1.0 0.0 1.21 1.87
o 1.0 0.0 1.80 2.08
Yo 1.0 0.56 0.89 1.83
Y1 1.0 0.93 9.67 1.95
Yy 1.0 2.43

4 g 1.0 0.0 2.12 1.89
o 1.6
al 1.0 0.0 3.60 2.25
Yo 1.0 0.59 1.87 1.86
" 1.0 0.88 6.25 1.92
Yy 1.0 1.29
Y3 1.0 3.07

5 ag 1.0 0.0 4.05 1.95
oy 1.0 0.0 4.78 2.07
a, 5.4
dq 1.0 0.0 N.S.S.
Yo 1.0 0.62 3.45 1.96
Y, 1.0 0.88 8.03 1.97
Y 1.0 1.18
Y3 1.0 1.64
4 1.0 3.67
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Table A1.8 (Cont'd.)

J

A.P maxlg]ji max|g3j| D b
aq 1.0 0.0 6.66 1.93
o 1.5 ’
oy 1.0 0.0 N.S.S.
oq 14.7
oy 1.1
Yo 1.0 0.0 6.16 1.94
Y1 1.0 0.89 10.64 1.92
Yy 1.0 1.15
Y3 1.0 1.48
Yq 1.0 1.98

1.0 4.26
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AEEendix 2

Additional Recurrence Relations for Non-Polynomial Based Operators
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A2.1 Recurrence Relation for the N-Zero-Stable Explicit Operator
= (N*)

Consider the (N+1)-zero-stable implicit operator ]3

where the coefficients bgﬂ 1) 1<s<®,0<j<k-1are
J

determined as functions of the stability parameters BOj by

making
(NN)
[ ] 0 1—=\,-....,R~N-I (A2.1)
and
-(m)
[-,1—(1)] O L=, N, (A2.2)
If we set
=) TN o )
bsj =st +Cy lgs<f O<¢j<k-| (A2.3)

= (N+) A INH :
and substitute for b(.*) in 13 )EZCx)] we obtain

(W)

B, )= BKQ[Z(I)PR Tyl (h2.4)
Since 3'“[!-]‘40 for r = 1,..., R-N-1 (A2.1) is equivalent to

Rm [ 24]= O v=1 _....R-N-| (h2.5)

Substituting for b(N+]) in (A2.2) from (A2.3) and simplifying
shows that (A2.2) is equivalent to the conditions

RK_",.["-.(I)‘,ESQ=O v*l,...,N (A2.6)
and
= (N1) ~ _
B Trnn(x) GS*CS;J ’-0, (A2.7)
Defining
asq,s == Es.‘ /E,'K-' less h, Oésék-\,'é,,,;‘o



- 203 -

means that (A2.5) implies

-1 KA _ | RN
-t 22 d. K =0 Z()=\ %, . x (A2.9)
I’K" 50 :\50 S“

while (A2.6) implies

..c zi gd, l\ (S)(th) z ()= T (%), .. 77, (¥) . (A2.10)

‘50 20

Since ao k=1° -1 from (A2.8) while (A2.9) with z(x)=1 implies

k-2
ao’k_]- 1- ZO dOJ thep from (A2.9) and (A2.10) we have
=(N) , = (N)
RK":L[ ( ) ] l K hﬁk_|'!_|[z (X), 0‘5." ] R (A2.11)

Hence we can write

= (¥1) — (N)

B [2(2‘-)] B [Z( ) - "\C Q:‘“['( N (A2.12)

The condition (A2.7) will then be satisfied if we choose
-()-

- _ B m.6)]

] _"""—‘s (A2.13)
he (“ P"un (")]

assuming the denominator is non-zero.
Thus finally we arrive at the general recurrence
formula for the N-zero-stable explicit non-polynomial

operators.

=

N =(N) : = (N)
B(“ | 2(x)= B [Z("’] BK(‘E‘-"H?](:\] }‘ﬁg..,a..[z' ) IR
n-t,:.-n NRAT

2% k2|, N+I€R

assuming again the denominator is non-zero.
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A2.2 Recurrence Relation for the N-Optimum Explicit Operator
= (N41)

Consider the (N+1)-optimum explicit operator B

N+1)

where the coefficients 5( 0<s<@,0x<J<k-1are

determined by making

& (N) . |
‘Bxg [x]:o "‘0»\1""35"‘1'1
and
= (N+))_
B, me)]-0 b=, .., N+,
If we set
f,‘""’: EM+E Q<ss<l, O<j<k-l
s} 55 8§ '
= (N+1)
and substitute for B(N“) S we obtain
= (N+1)

= () -
B, Ew]=B 200+ R, e, ] .
Defining asj = -ésj/éo,k_] 0_5_;12, 0<j<k-1

(A.29) becomes

..(mltz(x) 3 [-zb_ﬂ gk.l n[z o ), s;‘

(N) "
Since ]=0for T = 0,...55-N-2 using (A2.15) and
(A2.20) 'lmphes
v =
ﬁx-u,n.[x ; a’azo 7:0,...-5-N-2

=(N
while 3(.(:_[“1(1)] =0 for i = 1,...,N together with
(A2.16) and (A2.20) implies

ﬁk_“,’[“'& (x); a5y} = 0 i=1,... N,

Conditions (A2.21) and (A2.22) together with dgx= -1 from
Z0)

(A2.20) are precisely the definition of the operator ﬁH ¢
¢

(A2.15)

(A2.16)

(A2.17)

(A2.18)

(A2.19)

(A2.20)

(A2.21)

(A2.22)
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Hence (A2.20) becomes

= (N+Y) = (N) - =(N)
B )= B, Bl - TR 2000

We can satisfy (A2.16) by taking

=(N)
- - BKQ [’"Nﬂ ('X)]
o~ Z(

§QK_”QE“ﬁwH(?£i]

assuming the denominator is non zero.
Thus we have the general recurrence formula for

the N-optimum explicit non-polynomial operator

= (NH) =(N)

=)
wn (X)) R
Bu [z0]=8 m[‘z(x)] - %Z:,[ Pl 0] ﬁm“[z

fik;bg[aTﬁ4s(15]

—
~

again assuming the denominator is non-zero

2.3 Recurrence Relation for the N-Optimum Implicit Operator J\.‘

Consider the (N+1)-optimum implicit non-polynomial operator

(N+v)
oL R > 1 which is determined by

;,(::‘)[x']z 0 T =0,...,0-N-2
and

S (Nt

\A"'twt(x)] = 0 i = T,004,N+1

We will assume that this operator has been normalized so that

st - &

and set
=(N+]) _ =(N) =
%0 " %0 * Cso
where
E!O =0
2(N+)

Substituting for &gg”) in ’Au [zb;) we obtain

(A2.23)

(A2.24)

(A2.25)

221, k2

(A2.26)

(A2.27)

(A2.28)

(A2.29)

(A2.30)
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= (Wet) =) , -
ol = Bl A, T269:20]
Defining
iﬁ“é“/éoo 0<S=<i-

(A2.31) becomes

A(M)[Z(xﬂ ﬁ [z(z)] -c,., Au {2y dg,

Since ﬁ“{‘fl O forr
and (A2.33) implies
Au_‘[ ,d 120 Po= 0,.0yL-N-2
A oeEilx)] =0 for i =
and (A2.33) implies

while ‘A’
ﬁolz,‘[wb(x);a’“-] = O i = ]’e..N
Conditions (A2.34) and (A2.35) are precisely the

= W)
definition of the operator AoH. Hence (A2.33) Lecumes
/]

= (N4Y) = (w) = 2
A [z = 8, [2@]-T, A, 2]
We can then satisfy (A2.27) by taking
(L)
A [“'nn (‘x')-l
a . t- \[-“'N'H (")]

assuming the denominator is non-zero.

.s L-N-1 using (A2.26)

-
e

,...N together with (A2.27)

coo =

The recurrence formula for the optimum implicit non-

polynomial operator is thus

(A2.32)

(A2.33)

(A2.34)

(A2.35)

(A2.36)

(A2.37)

A(:: ]l.z( )= A(::[z ) - %“&mm‘l ﬁ, . 2\ (re.e)

,,'Sﬁfnu\F51

again assuming the denominator is non-zero.

120 k=z\



