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Abstract
In this thesis several topics in the numerical solution

of the initial value problem in first-order ordinary diff'erentlal
equations are investigated,

Consideration is given initially to stiff differential
equations and their solution by stiffly-stable linear multistep
methods which incorporate second derivative terms. Attempts are
made to increase the size of the stability regions for these
methods both by particular choices for the third characteristic
polynomial and by the use of optimization techniques while
investigations are carried out regarding the capabilities of a
high order method.

Subsequent work is concerned with the development of
Runge-Kutta methods which include second-derivative terms and
are implicit with respect to y rather than k. Methods of
order three and four are proposed which are L-stable.

The major part of the thesis is devoted to the establishment
of recurrence relations for operators associated with linear
multistep methods which are based on a non-polynomial
representation of the theoretical solution. A complete set of
recurrence relations is developed for both implicit and
explicit multistep methods which are based on a representation
involving a polynomial part and any number of arbitrary functions.
The amount of work involved in obtaining mulc iste, :ne::l'lJds by this
technique is considered and criteria are proposed to Jecide when
this particular method of derivation should be em~loyed.

The thesis is conclud~d by using Prony's method to develop
one-step methods and multistep methods which are exponentially
adaptive and as such can be useful in obtaining solutions to
problems which are exponential in nature.
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Chapter One
Introduction

The behaviour patterns of many~physical systems are governed
by differential equations. These equations may be either
ordinary or partial differential equations and in general it is
impossible to obtain an analytical solution for them. One way of
~btaining an approximate solution is to make use of numerical
methods. In this thesis we will be concerned solely with the
numerical solution of initial-value problems for first-order
ordinary differential equations" This type of problem occurs
commonly in areas such as chemistry [Robertson (1966)J,
electrical engineering [Calahan (1968)]. astronomy [Bettis and
Stiefel [(1969)], and biology [Cooper (1969)].

1.1 Initial-Value Problems for First-Order Ordinary Differential Equations
The problem is described by the equation

y(a) = y •o
We will attempt to find a numerical solution to this problem at

y' = f(x,y) (1. 1)

vari ous points in the interva 1 [a, bJ.
Note that we are effectively restricting the problem since not

all first-order ordinary differential equations can be rearranged
into the form (1.1). Before attempting to find a solution
(theoretical or numerical) of an initial value problem it is
important to know whether a solution does exist and whether this
solution is unique. The following theorem which is given in
Henrici (1962) guarantees the existence of a unique solution to
the problem (1.1).

Theorem 1.1
If (i) f(x,y) is defined and continuous for a ~ x ~ b.

- ~ <y < ~ where a and b are finite and
; .I . I • ...
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(ii) "3 a constant L(>O) such that for xe:[a,bJ and any

two numbers y l' Y 2

If(X,Yl) - f(x'Y2)1 <LIYI-Y21
then3 a function Y satisfying

(a) Y is continuous and differentiable for xe:[a,bJ

(1 02)

(b) y'(x) = f(x,y(x)), xe:[a,bJ
(c) y(a) = Yo
(d) Y is a unique solution of the initial-value problem.

The condition (1.2) is known as a Lipschitz condition and the
constant L as a Lipschitz constant. The hypothesis that
f(x,y) be defined and continuous in the infinite interval
-~ < y < ~ is very restrictive" Many functions f(x.y) are
only continuous over a finite interval in y. In these
circumstances we can employ a modified version of Theorem 1,1
as given by Burkil1 (1962) to guarantee a unique solution to
the problem (101),

1,2 Numerical Solution of the Initial-Value Problem
To obtain a numerical solution the problem is discretized,
that is, we define the mesh points xO' xl' x2' .0.' xN by .
Xo = a, x = Xo + nh (n=l, 2, .,. N), x. = b and then N

parameter h, which for the moment is regarded as constant,
is called the step lengtho A numerical solution ;s then
sought on this discrete point set {xn~n = 0, 1,2, •. OJ N}.

The exact value of the theoretical solution at the mesh
point xn is denoted by y(xn) and the numerical solution at
this point by Yn' In addition we define the numerical
solution fn which is an approximation to the first
derivative of y(x) at x = xn by

fn = f(xn'Yn) (1..3)
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The two numerical methods used most frequently to
obtain approximate solutions to the first-order initial-value
problem are linear multistep methods and Runge-Kutta methods.
In the following two sections we outline the background
theory behind these methods so that we can refer to it when
necessary in later chapters.

1.3 Linear Multistep Methods
If the numerical values Yn+j' fn+j, j = 0, " 2, 0.0' k are
combined linearly in the form

k k
I a j Y +' = hIe. fn+J' n = 0, 1, 2,j=O n J j=O J

Ctk ., 0 laol + 1801 > 0 (1.4)

where the a. and e. are constants then (1.4) ;s called a
J J

linear multistep method with stepnumber k. Since (1.4) is
effectively unaltered by multiplying throughout by a constant,
the coefficients Ctj, Sj are arbitrary to the extent of a constant
multiplier. One commonly used convention which we will follow
unless otherwise stated is to normalize (1.4) by settlng
Ctk = 1. The differential equation (1.1) is thus replaced by
a difference equation and we attempt to find a numerical
solution of the differential equation by calculating a
sequence {Yn} which is a solution of the difference
equation (1.4) for the starting values Yo, Yl ••••• Yk-l.

The difference equation is non-linear and may not have a
solution while even if it does possess a solution this may
not be unique. When 13k= 0 however the linear multistep
method is called explicit and {1.4} can then be rearranged
into the form

yn+k = [-ak-1Yn+k-l - ••• -aoYn + h(Sk-lfn+k_l +
••• + eOfn)]

...
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and this has a unique solution since the right hand side does
not depend on Yn+k' When ek f 0 the linear multistep method
is called implicit and (1.3) can then be arranged as

yn+k = hek fn+k + C (1 .5)

where
c = [-ak~lYn+k-l - ••• -~oYn + h(Sk-lfn+k-l + .•.

• • 0 + eOfn)I (l.6 )
Since fn+k = f(xn+k, Yn+k)' Yn+k occurs on both sides of (1.5)
which in general is a non-linear equation for Yn+k and may
have one. several or no solutions. Rewriting (1.5) as

(1. 7)

where
F(Yn+k) = hSkfn+k + C

and iterating this formula by
(1.8)

\1=0,1.2 ••.• (1 .9)

where y(O) is a suitable first approximation then the
following theorem as given in Henrici (1962) guarantees
the existence of a unique solution to (1.7) and the
convergence of the iterative scheme (1.9) to this
solution.

Theorem 1.2
Let the function F(y) be defined for -= < Y < = and let there
exist a constant K such that 0 < K < 1 and

iF(y*) - F(y)i ~ Kly*-yl
for arbitrary y* and y. Then the following hold
(i) equation (1.7) has a unique solution y

(ii) for arbitrary y(O) the sequence defined by (1.10)

(1. 10)

converges to y.

If F(y) is defined by (1.8) and. if f(x.y) satisfies a
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Lipschitz condition with respect to y and possesses a Lipschitz
constant L, then (1,10) is satisfied with

(1, 11)

which is less than one for small enough h,
We also require that the unique solution {y } generatedn

by the multistep method !converges! to the theoretical
solution y(x) as the steplength h tends to zero, Before
formally defining convergence we state certain definitions
which will be required later.

Definition 1.1
The associated linear difference operator L is defined by

k
L[z(x);h] = I [a .z(x+jh} - he .z'(x+jh)]

j=O J J

where z(x) is an arbitrary test function infinitely
differentiable on [e,b].

(1.12)

It would be preferable to use the notation (Lhz)(x) since
we are discussing the application of an operator to a
function but we follow the commonly used notation in
this particular field of research and use L[z(X)ih].

Expanding z(x+jh) and Zl (x+jh) by Taylor series and
collecting terms gives

(1.13)

where
k

Co = Lex.
j=O J

1 ~ (.r •r-l )er = "::"rrt: J a. -rJ s . r = 1 t 2 t •••
o j =0 J. J

(1.14)

Definition 1.2
The difference operator and associated linear multistep method
are said to be of order p if in (1.13)
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Co = Cl = C2 = ... = Cp : 0 but Cp+ 1 1= 0 •

Notice that by using an arbitrary test function which is
infinitely differentiable we can define the order of a
linear multistep method without making any assumptions on
the number of derivatives possessed by the theoretical
solutiono

Definition 1.3

The local error at x k of the linear multistep method isn+
defined to be

k k
= L a.y(xn+jh) - h L 8.y'(x +jh).j=O J j=O J n

The local error at xn+k ;s often denoted by Tn+k' If we
now assume that the theoretical solution y(x) is
sufficiently differentiable and that no previous local
errors have been made, that is

Y = Y (x) J' = 0 t 1. • ••• k-ln+j n+j
then it can be shown that for linear multistep methods of
order p

y(x ) - y = C hP+1y(p+l) (x ) + O(hP+2)n+k n+k p+l n
where the 1eft hand side of (1, 18) is equa 1 to Tn+k ' Cp+1
and C hP+ly(P+l)(x) are called the error constant andp+l n
principal local error respectively,

Definition 1.4
The global error is defined as

en+k = y(xn+k) - yn+k
where no localizing assumptions are made and roundoff errors
are ignored,

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)
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Defin;tion 1.5

Associated with the linear multistep method are the first
characteristic polynomial given by

and the second characteristic polynomial given by

We now formally define the convergence of a linear multistep
method by

Definition 1.6

The linear multistep method (1.4) is said to be convergent
if for all initial-value problems subject to the hypotheses
of Theorem 1.1

lim Yn = y(xn)h -+ 0
n -+ 00

nh 1: x-a
holds for all x&[a.b] and for all solutions {Yn} of the
difference equation (1.3) which satisfy the starting
condi tions

where
1im'l (h) = y
h+O ~ 0

~ = O. 1, 2, •••• k-1.

This definition means that when k > 1 the extra starting
values required need not be exact solutions of the initia1-
value problem (1.1) at the appropriate values for x but
only that regarded as functions of h they must all tend to
the given initial value Yo as h -+ O.

(1. 20)

(1. 21 )
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To obtaln convergence we have to control both the magnitude
of the local error and the way in which this error is
propagated step by step as the calculation proceedso This
is achieved if the method satisfies the following two
conditions called consistency and zero-stability,

Definition 1.7 (Consistency)
The linear multistep method (1,4) is said to be consistent
if the order of the associated linear difference operator
(1.12) is at least one, that is,p ~ 1 and hence Co = Cl = 0,

Definition 1.B (Zero~Stability)
The linear multistep method (1.4) is said to be zero-
stable if no root of the first characteristic polynomial
p(~) has modulus greater than one and if every root of
modulus one is simple,

Consistency ensures that the multistep method
approximates the given differential equation while also
attempting to keep the magnitude of the local error
small at each step, Zero-stability ensures that any
extra solutions of the difference equat10n for Yn (parasitic
solutions). which occur because a first-order differential
equation is being replaced by a higher order difference
equation. will be damped out in the limit as h ~ O.
Zero-stability thus attempts to control the way in which
local errors are propagated. Convergence is then
guaranteed by the following theorem due to Dahlquist (1956).

Theorem 1,3

The necessary and sufficient conditions for a linear
multistep method to be convergent are that it be both
consistent and zero-stable.
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In addition to the method being convergent we would

like it to have as high an order as possible to reduce the
local error. The general k-step linear multistep method
(1.4) has 2k....2 coefficients Ct., s·, j = 0,1, •.,' k. We

J J
have normalized by setting Ctk = so for an implicit
method there are therefore 2k + free parameters while
for an explicit method there are only 2k parameters. For
an implicit method we might hope to achieve order 2k
by requiring Co = Cl = 0 •• = C2k = 0 thus giving us a
set of 2k + 1 linear equations for the same number of
unknowns (to' ••,. (tk-lt So' •.0 Sk. Unfortunately the
solution of these equations gives a method which is not
zero-stable. The following theorem. again due to
Dahlquist (1956). gives us a bound on the maximum order
attainable by a zero-stable method.

Theorem 1.4
No zero-stable linear multistep method of stepnumber k can
have order exceeding k + 1 when k is odd, or exceeding
k + 2 when k is even. A necessary and sufficient condition
for p to equal k + 2 is that k be even and all zeros ofp(~)

lie on the unit circle in the complex plane.

It is common practice to choose an implicit formula
of order k +1. Implicit formulae have in general a much
smaller local error than an explicit method of the same
order and thus they are preferable even though more
computation is involved. At each step however an implicit
formula needs a starting value for y~~~ and one way of
obtaining this is to use an ex~l;cit formula to Dpredict'
a value for y~~~. The implicit formula ;s then used
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iteratively to °correctl the predicted value and the combination
is known as a Predictor-Corrector method.

10 4 Runge·-Kut ta Methods
The general one-step explicit method is defined as

yn+l - Yn = h~(xn!yn;h)
where ~(x,y;h) is called the increment function and depends

(1 .22)

not only on x and y but also on the stepsize h and the
differential equation.

We introduce the exact relative increment ~ by
il(X,z*;h) '"{Z(X+h) - z{x)

h

f(x,z*)

h F 0
(1. 23)

h = 0

where Z satisfies the same differential equation as the
theoretical solution y(x) but has a different initial
condition z(x) ~ z*.

Order, local error, global error and consistency are
then defined in the following manner.

Definition 109
The method (1.22) is said to have order p if p i~ the
largest integer for which

~(xtz*;h) - A(x,z~;h) = O(hP)o (1.24)

Definition 1.10
The local error, Tn+l' at xn+l of the method (1022) is
given by

(1. 25)

If we make the localizing assumption that y = y(x ) thenn n
Tn+l = y(xn+l) - Yn+l

while if in addition we assume that the theoretical solution
(1. 26)
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y(x) is sufficiently differentiable then
Tn+1 : ~(xn.Y(Xn))hP+1 + O(hP+2)

where w(x,y) and w(xn,Y(Xn))hP+l are known as the principal
error function and principal local error respectively.

Definition loll

The global error en+l of the method (1.22) at xn+l is
defined by

en+1 = y(xn+,) - yn+l
where no localizing assumptions are made and roundoff
errors are ignored.

Def;nition 1. 12

The method (1.22) is said to be consistent if
<P (x ,y; 0) = f (x ,y) •

The following theorem as given in Henrici (1962)
guarantees the convergence of (1.22).

Theorem 1.5

If (i) the function <p(x,y;h) is continuous jointly as a function
of its three arguments, in the region 0 defined by
x E[a,bJ. y e:(-oo,oo), h E[a,ho] where ho > 0

(ii) ~(x,y;h) satisfies a Lipschitz condition of the
form

I~(x.y*;h) - <p(x.y;h)l~ Mly*-yl
then the method (1.22) is convergent if and only if it
is consistent.

Since the difference equation (1.22) is first-order
then it has no parasitic solutions. There is therefore
no need for zero-stability and so only consistency is
required to ensure convergence.

(1.27 )

(1,28)

(1. 29)

(1.30)
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If f(x,y) is assumed to be sufficiently differentiable
then by a Taylor series expansion we have

y(x+h) - y(x) -= h[f+~: f(l} + ~ f(2} + ~ r(3) +

p-l
.00 ~ f(p-l) + O(hP)]p.

where f and its derivatives f(l), ••. , f(p-l) have arguments

(1.31 )

(x,y(x)).
One choice for the increment function is

h (1) h2 (2) hP=l p··l \<I>(x,y;h)= f(x,y)+ 2T f (x,y) + jTf (x,y)+ •..+ ---p;f (x .y) (1.32)

This is known as a Taylor series method of order p. To
apply this method it is necessary to calculate not only
f b t 1 11 th h" h d "t" f(l) f(2)u a so a e, g er en va ,ves , , ••0

f(p-l). Obtaining the necessary higher derivatives is
usually complex and laborious. Hence we look at an
alternative choice for ~ which does not require
derivatives of f but is a weighted combination of values
of f where the weights and the points at which f is
evaluated are chosen to make the order as high as possible.

The general R-stage explicit Runge-Kutta ffiethod is thus
defined by taking ~ to be of the form

R
~(x,y;h) = L crkrr·l

(1. 33)

where
r = 1,2 ••• .R (1. 34)

and r = 1.2 .... R. (1. 35)

These methods fall into two sub-classifications. If brs = 0
for r !. s then the functions kr are defined explicitly.
This type of method will be called k-explicit. Butcher (1965)
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has shown that for a k-explicit method the maximum order
p(R) which can be obtained by an R-stage method is given
by

a set of R implicit non-linear equations. This type of
method will be called k-implicit. In another paper
Butcher (1963) has shown that an R-stage k-imp1icit
method can have order 2R and that the system of R implicit
non-linear equations for the k1s can be solved by using
the iteration:-
(v+1) r-1 R

kr = f(x+ha ,y+h I b k (v+1)+h I b k~(v))
r s=l rs s s=r rs ~

v=O.1.2, •• r=1.2 ••••R
provided

h < l/L(u+v)
where L is the Lipschitz constant of f with respect to y
and

1.5 Contents of the Thesis
In chapter two we will present a short review of the

most important papers published since 1955 on the numerical
solution of the initial-value problem by linear multistep
methods and Runge-Kutta methods. The aim of this review is

(1. 37 )

(~.38)

(1. 39)
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to show the different lines of investigation fol~owed by the
various researchers interested in these particular methods.

The third chapter contains an outline of the background
stability theory for linear multistep methods. In particular
the theory of weak stability is developed to illustrate the
necessary requirements for errors in the numerical solution
to be damped out when a non-zero stepsize is used. This is
followed by a formal definition of 'stiff' systems of first-
order ordinary differential equations. These are equations
whose solution contains negative exponentials with widely
differing time constants. Many multistep methods can only
be used with a very small stepsize on this type of problem,
even when the magnitude of these exponential terms is
negligible, if the criteria imposed by weak stability are
to be met. We then discuss the appropriate types of
stability region necessary for such problems and suggest the
use of multistep methods which are known as 'stiffly-stabl~.

In the fourth chapter we start with a discussion of a
particular class of stiffly-stable multistep methods due
to Gear (1968) and the modifications made by Jain and Srivastava
(1970) to these methods by taking different choices for the
second characteristic polynomial in order to increase the
size of the stability region. It is then shown that when
linear multistep methods are applied to stiff differential
equations difficulties are encountered in using the normal
corrector iteration and this leads to the use of a modified
corrector iteration which incorporates af/ay. Enright
(1972) therefore proposed the use of stiffly stable
multistep methods which employ not only values of y and f
but also include the second derivative of y, f(l). (This
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type of method will often subsequently be referred to as a
second-derivative linear multistep method whereas the method
(104) will be termed a first-derivative multistep method}.
We continue chapter four by discussing the work of Enright.
A logical progression, comparable with that made to the
first derivative methods of Gear, is to investigate the
modifications that can be made to the class of second
derivative methods proposed by Enright by suitable
alterations to the third characteristic polynomial
associated with second-derivative methods. This technique
however, although it does allow us to increase the
stability region of our stiffly-stable second-derivative
methods, is rather limiting in the number of choices that
can be made for the third characteristic polynomial and so
we then move on to show how the problem of maximizing the
size of the stability region can be viewed as a problem
of constrained optimization. A method, based on an
algorithm of Rosenbrock (1960), is outlined for
determining solutions to this optimization problem and
numerous results are given to illustrate the increases
that can be obtained in the size of the stability region.
Finally at the end of the chapter we investigate the
possibility of obtaining second-derivative multistep
methods having an order one higher than those proposed
by Enright and carry out some limited numerical
experiments to see how the higher ut'.:.ierme thod, b~ha.'4e1ft
comparison.

In chapter five the application of Runge-Kutta
methods to solve stiff differential equations is
considered and it is shown that implicit Runge-Kutta
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methods suffer the same restrictions on the stepsize, due
to weak stability and convergence of the iteration process,
as do linear multistep methods. We then discuss the
desirable stability regions for Runge-Kutta methods and
suggest the use of methods which are 'L-stable'. In an
effort to obtain L-stable methods we investigate the use
of Runge-Kutta methods which include the second derivative
of y and we propose third and fourth-order ~-stable
methods which are implicit with respect to y rather than
the k's. We conclude the chapter by comparing this
fourth-order method numerically with an alternative fourth-
order method due to Butcher (1964).

The content of the sixth chapter is divorced from any
of the work detailed in chapters three, four or five. In
this chapter we consider the use of linear multistep
methods based on non-polynomial interpolants rather than
the conventional polynomial interpolant. It is shown how
multistep methods based on a general non-polynomial
interpolant can be derived by the use of recurrence
relations. The feasibility of using this technique for
the J'::;1vationis investigated and criteria, based mainly
on the number of arithmetic operations involved, are
presented for deciding when multistep methods should be
derived by recurrence. We illustrate numerically the
solution of several problems by multistep methods which
are based on non-polynomial interpolants and have been
derived by the recurrence relations.

In chapter seven we continue with methods based on
non-polynomial interpolants. Continuously adaptive
single-step methods and multistep methods, based on
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applying non-linear exponential fitting to the solution,
are derived by a technique which makes use of an idea
originally proposed by Prony [Hildebrand (1956)Jo

Sufficient numerical results are quoted to show that
these types of method warrant further consideration for
those problems having a solution which is exponential
in nature.

The final chapter, the eighth, summarises the
results and conclusions drawn from the previous four
chapters, We discuss the implications of these conslusions
and finish by suggesting possible extensions to various
aspects of the work carried out in this thesis.
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Chaeter Two
Introduction

Although various forms of the linear multistep methods
and Runge- Kutta methods had exi sted from befote 1900
subsequent development was comparatively slow mainly due to
the lack of calculating facilitieso The widespread
introduction of computers in the early 19500s meant an
enormous increase in the size and complexity of problems
that could be tackled and this spurred on researchers into
developing both the background theory and the numerical
techniques involved. In this chapter we give a brief
bibliography of the more important papers published from
1955 onwards concerning the numerical solution of the first-
order initial-value problem. This bibliography, which is
not claimed to be comprehensive, is divided into two
sections. The first section deals with linear multistep
methods and the second with Runge-Kutta methods.

2.1 Developments in Linear Multistep Methods
Perhaps the most significant papers concerning linear

multistep methods were those produced by Dahlquist (1956,
1959) in which he formalized the definitions of convergence,
produced necessary and sufficient conditions for convergence
and obtained results on the maximum order attainable by
convergent explicit and implicit methods. This material
was then included in a book by Henrici (1962) which for
many years was commonly regarded as the definitive work on
the subject. Henrici's book was not restricted to linear
multistep methods and also included chapters on the
convergence and accuracy of Runge-Kutta methods. In a
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subsequent book Henrici (1963) generalized the theory behind
the use of linear multistep methods so that theoretical
results were directly applicable to the solution of systems
of first-order differential equations.

Much of DahlquistUs work was concerned with the
behaviour of the numerical solution in the limiting case as
the stepsize h tended to zero. Interest was then focused on
ensuring that, when working with a finite stepsize h
greater than zero, any errors introduced at a particular
step would be damped out as the solution advanced. The
forms of numerical solution being employed were variants
of predictor - corrector methods and people who published
work on these aspects include Hamming (1959). Milne and
Reynolds (1959, 1960), Wilf (1959 t 1960) Hull and
Newberry(1959, 1961, 1962), Ralston (1961 ,1965), Chase
(1962), Crane and Lambert (1962). Hull and Creemer (1963),
Crane and Klopfenstein (1965), Stetter (1965a. 1965b, 1968),
Hall (1967), Klopfenstein and Millman (1968) and Lambert
(1971 ).

A different topic considered by various people was
whether a way could be found to circumvent the restrictions
imposed by the demands of zero-stability on the maximum order of
linear multistep methods. One technique suggested was to
use one or more off-step points which meant finding the
values of Yr and fr at points such as x + rh where r is not
an integer. This idea was proposed independently by Gear
(1964). Gragg and Stetter (1964), and Butcher (1965) while
further developments were made by Kohfe1d and Thompson
(1967,1968). Brush, Kohfeld and Thompson_(1967). and
Lyche (1969).
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An alternative suggestion for obtaining higher order

methods was to alter previously computed values of y and f
and this was investigated by Nordsieck (1962), Gear (1967)
and Beaudet and Feagin (1975). The methods of both
Nordsieck and Gear involved making use of derivatives of y
higher than the first. Other people who have considered this
possibility include Lambert and Mitchell (1962), Li'iiSd a.id

Wi ~1()~~hby (1967). and liakinson (1968).
Yet another technique is that of using the so called

ib10ck methods' where the solution is advanced by more
than one step at a time and involves the cycling of corrector
formulae. This idea has been investigated by Rosser (1967),
Shampine and Watts (1969) and Donaldson and Hansen (1970).

The use of s~lines in deriving multistep formulae has
been considered by the following, Loscalzo (1968a. 1968b),
Loscalzo and Schoenberg (1969). Loscalzo and Talbot (1967a.
1967b), Callender (1971), Byrne and Chi (1972). Andria,
Byrne and Hill (1973)~ and Hill (1975).

Modifying linear multistep methods so that the
coefficients are no longer constants but dep~nd on the
s~epsize hand af/ay is another idea for increasing the
maximum value of the stepsize that can safely be used.
This has received attention from Rahme (1969. 1970)~
Lambert (1970) and Lambert and Sigurdsson (1972).

One of the most important techniques suggested for the
solution of the initial-value problem by multistep methods
is that of employing various step sizes to carry out a step
and then using extrapolation to obtain a more accurate
result. This strategy was originally proposed by Gragg
(1964) who put forward a method which was based on a
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modification of a two-step explicit multistep method. The
resultant method had a global error expansion which ascended
in powers of h2 and was therefore eminently suitable for
use with extrapolation. Bulirsch and Stoer (1966) improved
on Gragg's original method by proposing that rational
extrapolation beused rather than polynomial extrapolation.
Their method which can vary both the order and stepsize as
necessary turns out to be one of the most efficient methods
currently available when the cost of making function
evaluations is small.

Other multistep methods which are regarded as being
efficient are those developed by Krogh (1969, 1970, 1971).
Gear (1971a, 1971b) and Sedgwick (1973). All these
formulations are variants of the well known Adams methods
with Krogh and Sedgwick making use of divided differences
to store information about the solution while Gear uses scaled
derivatives. All three methods can vary both the order and
stepsize as necessary and the difference between them in
addition to the way they store their information about
the solution is in the mode of application, the maximum
order available and their strategies for error control.

Over the last few years the development of new
methods and modifications to improve older techniques has
become less important and interest has turned to setting
up test standards by which methods might be compared for
efficiency and reliability and the comparison by these
standards of the various methods currently available. Test
criteria have been proposed by Hull (1967). Stewart (1968)
and Hull et al (1972). The first attempts at comparison
of methods were those of Clark (1968) and Crane and Fox (1969).
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These early efforts were rather limited in scope and 1t was
left to Hull et al (1972, 1974) to provide a full scale
comparison of methods to a common test standard. Hull and
his colleagues tested various types of methods including
multistep methods over a wide range of problems where all
the methods were forced to conform to a local error
tolerance per unit step. For each method on each problem
extensive statistics are taken relating to the time tdken
by the method and the level of accuracy it attains. Among
the multistep methods considered the conclusion drawn is
that the method of Bulirsch and Stoer is the most efficient
if function evaluations are cheap to compute and that
otherwise the methods of Krogh or Sedgwick are preferable.

No mention has been made so far concerning the
.application of linear multistep methods to types of problem
which may create special difficulties such as problems with
a singularity in the solution or problems where the vale of
the stepsize has to be kept very small to stop the
propogation of errors even though there is no excessive
need for accuracy. The solutions of these types of
problem are the subjects of the chapters following this one
and discussion of the relevant papers is incorporated in
these later chapters and hence no references are given at
this stage.

2.2 Developments in Runge~KuttaMethods
We now consider the development of the Runge=Kutta-methods

over the period of the last twenty years and we concentrate
exclusively in this section on explicit methods. In the late
19500s and early 19600s when storage was still an important
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consideration attention was focused on deriving methods which
required the minimum amount of storage. This approach
originally proposed by Gill (1951) was followed by Conte and
Reeves (1956)~ Blum (1962) and Fyfe (1966) where these authors
made choices for the free parameters present in most Runge-
Kutta methods so as to reduce the storage and in cer tot II
cases round-off error. An alternative approach was to choese
the free parameters in order to minimize the local error.
This has been considered by , Kuntzmann (1959),

• Ralston (1962), Hull and Johnson
(1964) and King (1966)0 A further development of this ide~
is the proposal of methods which tncorporate direct estimates
of the local error and hence provide a mechanism for step~i:e
control. This has been suggested by MeY':)on(1957),
Scraton (1964)~ Fehlberg (1964), Shintard (19GE~ ·l96G.:., 19660)

and England (1969). This technique can itself be extended by
including or uembeddingD lower order methods within higher
order methods to obtain an error control strategy. Fehlberq
(1964, 1968, 1969), Sarafyan (1966a, 1966b, 1967) and .-.j::,.;: ....:'

(1967) are among the people who have investigated thi~ partic~lar
approach.

Multistep versions of the Runge-Kutta methocs , '·.or .;~'C I'!':

incorporate function evaluations outside the interval
[xn,xn+1J, is a topic that has received attention from various
authors including Byrne and Lambert (1966), Cesh Ino ollh!

Kuntzmann (1966), Byrne (1967) and Rosen (1968).
Another approach considered by Lawson (1966, 1967), and

Lomax (1968) has been to choose the free parameters in various
Runge-Kutta methods in an attempt to increase the maximum
value of the stepsize that can safely be used.
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Most attention over the period has been focused on the development
of methods of ever increasing order. The results of Butcher
(1965, 1975) give theoretical bounds on the minimum number of
function evaluations necessary to obtain a given order whiie
Cooper and Verner (1972) show that methods of order p c~n be
obtained with (p2-7p+14)/2 func tion evaluations. Other peeple
who have produced high-order methods include Luther ana Kot1E:11

(1965), Luther (1966, 1968), Shanks (1966), Rosser (1967) ~nd
Fehlberg (1968, 1969, 1970).

Vari ous Runge- Kutta methods were considered by Hull et .~~i
(1972, 1974) in their comparison of methods. They locked a c the
fourth, sixth and eighth order formulae of Runge (1895), Butcher
(1964) and Shanks (1966) respectively and the formulae of orders
four up to eight developed by Fehlberg (1968, 1969, 1970). In
their conclusions they recommended the methods of Fel11berg as
being the best of the various Runge- Kutta methods that were
tested with the lower order methods being the most con~etitive at
less stringent error tolerances and higher order nlE-::":r:b the rnost
competitive at more stringent tol€;rances. 11H . v •• "

,~ ,..;,j.~I....;.",,'iv.'iw· ....~,...:

to the fact that none of the methods cu., '/(",",/ ~:H:; .1'Je: c.ftJ this
has to be regarded as a disadvantage. In comparf scn wi th the
multistep methods the methods of Fehlberg are cqu~lly ~s
competitive as the extrapo licion metnod \'''1: 3u'j :j'~ .~, .. ....,.,....1'· n~::.l

function evaluations are inexpensive alth0,lgh; " w \ ',_: :.I.~. Lt.

case then the Adams mul tistep methods of Krogh and :;'i.!I..~·,Yi ck are
preferable to any Runge-Kutta method.

Again no mention has been made in thi~ $ection to those
problems which give rise to special difficulties. One applic~tion
of Runge-Kutta methods to a special problem is given in Chapt~r
Five and the relevant literature will be quoted there. Finally it
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should be pointed out that there are cases when the linear
multistep methods and the Runge-Kutta methods overlap each
other. One example of this ;s in some of the nblock'
methods which can be expressed either in terms of Runge-Kutta
formulae or in terms of linear multistep methods.
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Chapter -;-'ir2e

Introduction
The background theory of convergence outlined in the first

chapter is concerned with the behaviour of the numerical solution as
the stepsize h tends to zero. In practice however we are working
with a non-zero stepsize and would like to have some measure of the
error involved and ideally a guarantee for damping out the error as
the calculation proceeds. In this chapter and the next one we will
be dealing only with linear multistep methods and for these Henrici
(1962) has proved the following theorem.
Theorem 3.1
If L[y(x) ;h] is a difference operator of order p :> 0 then for all

functions y(x) which have p + 1 continuous derivatives in [a, bJ

the bound on the local error is given by
IL[y(xn);hJI ~h r'+1 GY (3. 1)

where
Y = rnax Iy(p+ 1 ) (x ) I

xe:[a, bJ
(3.2)

and
1 JkG = '::T
p. 0

IG (s) Ids (3.3)

with
k

G(S) = .L [aJ.(j-s)~ - PBJ.(j-S}~-l]. (3.4)
J=O

Henrici also proves that under suitable assumptions the global
error is of order p. Thus the bound for the global error is an order
of magnitude greater than that of the local error due to a process of
accumulation. Therefore by increasing the order of the local error
we can raise the order of the global error. However this alone is
not enough to stop the global error increasing. We have also to
ensure that the errors are not allowed to build up as we proceed
step by step with the calculation. To do this another restriction
must be placed on the method and this we now discuss.
3.1 The Theory of Weak Stability

Consider the linear multistep method (1.4) and assume it to be
both consistent and zero-stable. The theoretical solution y(x) of
the initial value problem (1.1) satisfies
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k k

j~O cxjY(xn+j) =hj~O Sjf(xn+j'Y(xn+j)) + Tn-fk • (3.5)
~

Let {Yn} be a solution of (104) when a roundoff error Rn+k is
committed at the n-th application. Then

k ~ k ~
,L cxJ'Yn+J, = h,I SJ'f(xn+J"yn+J,) + Rn+k -J=O J=0

(3.6 )

If the total error is defined by
~ ~
e = y(x ) - yn n n (3.7)

subtracting (3.6) from (3.5) gives
k k

j~O aj en+j = h j~O Sj [f(xn+j·y(xn+j)) - f(xn+j·Yn+j)] + ~n+k (3.8)

where
(3.9)

Assuming that af/ay exists for all x E[a,b] and applying the mean-
value theorem gives

~
where tn+j lies between y(xn+j) and Yn+j'

Hence

(3.11)

Consider the representative linear differential equation
yl = AY

where A is a real constant.
(3.12)

From (3012) we have
afay = A •

Making the additional assumption

(3.13)

(3.14)

where. is a constant, (3,11) becomes
k ~

j~O (aj-hABj) en+j = • (3.15)

which has as-its general .so lut ion
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(3.16)

where the ds are arb itrary constants dependiny on the initial
errors, and the rs are the roots, assumed distinct, of the equation

k .
I (a. - hx e . ) rJ = O.r-o J J

(3.17)

Using the first and second characteristic polynomials as defined in
(1.20) and (1021) respectively (3.17) can be written as

'Ir{r,ii)= 0 (3.18)

where

and
'Ir{r,ii)= p(r) - h a{r)
ii = hx ,

(3.19)

(3.20)
'Ir{r,h) is known as the stability polynomial of the linear multistep
method.

From (3.16) it can be seen that the total error will grow only
if any of the roots of (3.17) have modulus greater than one. Hence
we have the following definitions as given in Lambert (1973).
Definition 3.1
The linear multistep method (1.4) is said to be absolutely stable for
a given h if for that h all the roots rs of (3.17) satisfy
Irsl < 1, s = 1,2, ••• k, and to be absolutely unstable otherwise.

Definition 3.2
An interval (a, a) of the real line is said to be an interval of
absolute stability if the method is absolutely stable for all
h €(a, a). If the method is absolutely unstable for all h it is
said to have no interval of absolute stability.
We assumed that the roots of (3.17) were distinct but the
restriction IrsI <1 in definition 3.1 will still cause the total
error to decay as n increases even if the roots were multiple.
If the linear multistep method (1.4) is applied directly to the
representative linear differential equation (3.12) we obtain
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k
L (aJ. - hA8J.) Yn+J' = O.

j=O
(3.21 )

Hence the numerical solution {y } satisfies the same differencen-equation as the total error {en}. Thus if the numerical solution
;s increasing then so must the total error and we can therefore
only achieve absolute stability if the solution is decreasing.

In developing the theory of weak stability we have used
a linear differential equation (3.12) to represent the
differential equation (1.1) which mayor may not be linear.
If (101) is linear then absolute stability will guarantee the
damping out of the total error. We hope also that the behaviour
of the total error as determined from the representative linear
equation will give us an indication of the likely error
behaviour when solving a non-linear differential equation. How
good this indication is obviously depends on the degree of non-
linearity of the differential equation (1.1).

3.2 Applicability of Weak Stability Theory to Systems of
Differential Equations
With a system of m first-order ordinary differential

equations the representative linear equation is
t = Al

wh ( )T d I - (I I Iere l = 1Y'~'JY' ."'mY an l - 1Y 'iY '3Y •

(3.22)
I )T••• y •

In

The linear multistep method as applied to a system of m
equations becomes

k
La. V . =

j=O J x..n+J

k
h L 8. f
j=O J ~1+J

(3.23)

T= (lYn+j'2Yn+j' •••• mYn+j) and !n+j =
f )T

m n+j

while the equation for the total error is

where In+j
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.I aJ.~+J' = h L SJ' [!(xn+J',~(xn+J')) - !(xn+J''~+J' n + !n+k
J =0 j=O

where ~+j = l(xn+j) - ~+j and !n+k = In+k - Bn+ko
Applying the mean value theorem to (3.24) gives

k _ k af _
\ a.e . = h \ 13· -= e . + ~ k.L J-n+J .L J av-n+J ~+J=O J=O L

where aflal is the (m x m) Jacobian matrix which has as its
(i,j) element the partial derivative of i f(X'1Y'2Y' ...• mY}
with respect to jY evaluated at some point between iY(xn1j)...
and iYn+J '

Making the assumptions
af-= = Jax.

where J is an (m x m) matrix with constant coefficients and

!.n+k = $.

where 1is a vector of constants, (3.25) can be written as
k ...
L (a.I-he.J}e +' = ~j=O J J -n J -

where I is the (m x m) identity matrix.
If we also assume that the eigenvalues AjJ j=1.2 ••••• m

of J are distinct then there exists a similarity transformation
such that

p-1Jp = D

where D = diag(Al' ~2' ••••Am)·
Define

.!n = P~ •
Premultiplying (3028) by p-1 and substituting for!n from
(3.29) gives

k
I (a.I-ha.D}d +' = ij=O J J ~ J

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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where

_[=p-'t·
Since I and 0 are both diagonal matrices (3.30) can be
rewritten as

k
I

j=O
(a.-hS.;\·). d . = .gJ J 1 1 n+J ,

i :;l,2,,, .. m,

Each of these equations is independent of all the others and
each has the same form as the linearized error equation
(3.15) for a single differential equation with idn and Ai
corresponding to en and" respectively. From (3.29)

-~ will grow or decay with n if and only if ~ does and so
all the theory developed for a single equation will hold
if "is taken as an eigenvalue of the Jacobian matrix J.

Since the Jacobian is usually unsymmetric its
eigenvalues are not necessarily real. Hence for a system
the parameter h appearing in the stability polynomial
(3.18) might be complex. We then have to consider a
region for h rather than an interval while in addition
any criteria involving h must be satisfied for all the
eigenvalues of the Jacobian. Therefore to extend the
concept of absolute stability to systems" of"differential
equations we again follow Lambert (1973) and modify the
earlier definition 3.1 of absolute stability to:-

Definition 3.3
A linear multistep method ;s said to be absolutely stable
in a region R of the complex plane if, for all hER, all
roots of the stability polynomial ~(r,h) associated with
the method satisfy Irs! < 1, s = 1,2, •••, k.

3.3 Calculation of the Region of Absolute Stability.
The roots of a polynomial are continuous functions of

(3031 )

(3.32)
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the coefficients, Thus the roots of the stability polynomial
rr(r.~) = 0 are continuous functions of~. If we denote the
boundary of the stability region by aR then Fi will lie on aR

when one of the roots of n(rth) = 0 lies on the boundary of
the unit circle. This happens when

p(exp(ie)) - hcr(exp(ie)) = 0
that; s,

h (e) (3.33)

Hence we can plot the boundary aR by evaluating h(e) from
(3.33) for various values of e running from zero to 2rr
radians. This technique for determining the stability
region is known as the boundary locus method.

3.4 nStiffn Systems of Ordinary Differential Equations
Consider the following linear system of m first-

order ordinary differential equations
t = At_. + ~(x)

where the (m x m) matrix A is again assumed to have m
distinct eigenvalues Ai and corresponding eigenvectors
£t' t = 1,2,•••, m. This system has a general solution
of the form

(3.34)

(3.35)

If in aeldition
Re At < 0 t = 1,2 t ••• ,m (3.36)

then
m \XI kte £t -+ 0 as x -+ 00.

t=l
m A x

The term I kte t £t is called the transient solution
t=l

while !(x) is known as the steady state solution. If any
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one of the eigenvalues of A, say A , is large in magnitudev

then to achieve absolute stability h will have to be kept
very small throughout the range of integration even though
the magnitude of the term involving Av rapidly decays to
zero. This type of problem is usually termed 'stiffi 0 We
quote the following formal definition of 'stiff' as given
by Lambert (1973).

Definition 3.4
The linear system y. = Al + ~(x) is said to be stiff if
(i) Re At < 0, t = 1,2,.oe,m and
(ii) max, IReAtl» min IReAtlt=1,2,,,.,m t=1,2,,,.,m where At,t=1,2, •••m.

are the eigenvalues of A. The ratio

[t=l,~~~ .•,mIReAt~: [t=l,~!~.~,mIReAtll
stiffness ratio.

is called the

If the non-linear system'll = f(x,l) can be expanded by
a Taylor series about the point (X, r) which is assumed
near to (x,'l) then

af
Vi = ,,- (x,y) v + f(x,y)
L. 0'l _L. --

(3.37)

provided we ignore higher order terms. (3.37) is of the
same form as (3.34) with A corresponding to af(x, i)/a1o
Thus the non-linear problem can be approximated by a linear
problem over sufficiently small intervals in x and an
estimate of the stiffness ratio obtained by considering
the eigenvalues of the Jacobian matrix af(x.i)/a1'

For a system of equations the Lipschitz condition of
Theorem 1.1 is replaced by

(3.38)
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where II 0 II denotes a vector norm. If the part; a1
derivatives occurring in the Jacobian a!!al are continuous
and bounded in a region R, a < x < b, -~ < .y < ~, i = 1,2,- - ,
o.o,m then the Lipschitz constant of the system l~=!(x.l)
may be taken as

L = sup
(x,y€:R)

(3.39)

where II • II denotes the matrix norm subordinate to the
vector norm in (3.38). For any (m x m) matrix A and any
matrix norm

II A II > max I At I •
t=1.2, .••• m

Stiff systems of equations have max IRe Atl » 0
t=l ,2, .•• m

and hence L » 0 and are consequently often referred to
as systems with large Lipschitz constants.

3.5 Desirable Stability Regions for Stiff Systems of Equations
To solve a stiff system of ordinary differential

equations we need a linear multistep method which is not so
restricted by the demands of absolute stability that we
have to use a small stepsize even after the initial transients
have decayed. Dahlquist (1963) proposed that methods for
stiff equations should be 'A-stable'. a property he
defined by:-

Definition 3.5
A numerical method is said to be A-stable if its region of
absolute stability contains the whole of the left-hand
half-plane Re Ah < O.

In addition Dahlquist subsequently proved the following theorem.
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Theorem 3.2
(i) An explicit linear multistep method cannot be A-stable.

(ii) The order of an A-stable implicit linear multistep
method cannot exceed two.

(iii) The second order A-stable implicit linear multistep
method with the smallest error constant is the
Trapezoidal Rule.

A-stability thus turns out to be a very demanding requirement
and so Gear (1968) proposed the following:-

Definition 3.6
A numerical method ;s stiffly-stable if (i) its region of
absolute stability contains Rl and R2 and (ii) it is
accurate for all h A £R2 when applied to the linear
representative equation y' = Ay, A a complex constant
with Re A < 0 where

Re hx < -D}

-0 < Re hA < a ,-b < 1m hx < b }- -. s- - s

and where 0, as and bs are positive constants.

We illustrate this definition by the following figure

1m(hA)

(hI.)

III Denotes the region Rl ~;I/ Denotes the region R2
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The eigenvalues with negative real parts and with Ltl'ge

moduli correspond to terms in the transient solution which
decay rapidly. After the initial transients have died
away we no longer insist on an accurate representation
for these terms but only that they are not allowed to
cause instability. Hence hA for these rapid transients
will eventually come in the region Rl where we only r€(iu'irc
stability. All the other terms should be represented both
accurately and stably and by a suitable choice for h
these terms can have values of hA which come in the
region R2 where we insist on both accuracy and stability.

An additional complication arises with some ,fiuj'.,;,b:.>i·,

methods whereby although the method is either A-stable Oi

stiffly-stable when it is applied with a constant stepsize
h to the linear representative equation y' = AY, A a

complex constant with Re A < 0, we find
lim Yn+l ~ 1.
rH-oo

hA'+--ooY n
Thus y will decay to zero very slowly. Methods f0Y' \~hieh

n

this ratio tends to one (for example, the trapezoidal rule)
when applied to stiff differential equations can caus~
some of the transients that decay rapidly to zero in the
analytical solution to be represented in the numerical
solution as slowly damped or oscillatory componentc and
this can restrict the stepsize. This leads us on to L~

further definition as given by Enright (1972).

Definition 3.7
A method is stable at infinity if, when it is applied to
y' = Ay. A a real negative constant, with a constant
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stepsi ze h, there exists real W < Osuch that

sup 1im yn+l < 1 (3.40)hA<W n~ --Yn

The condition (3040 ) implies that Yn-+ o as n -+ 00.

Since the total error and the numerical solution satisfy
the same difference equation this implies that the
error is decreasing as n -+ 00. The roots of a polynomial
are continuous functions of its coefficients therefore
as hA~oo so the roots of the stability polynomial tend
to those of cr(~) = O. Hence for a linear multistep
method to be stable at infinity we require that the
roots of cr(~) be less than one in magnitude.

Ideally we would like to have methods w~ich were
both A-stable and stable at infinity but since A-stability
is so demanding we will settle for methods which are
stiffly stable and stable at infinity.

In this chapter we have defined the concept of
absolute stability for a single equation and for a
system of equations. Additionally we have defined
Istiff' differential equations and outlined the
desirable stability criteria for this type of problem.
In the next chapter we will detail some of the stiffly
stable methods that have already been proposed by
various researchers and suggest alternative methods.



- 38 -

Chapter Four
4.1 Stiff1y-Stable First-Derivative Multistep Methods

Following ·is definition of stiff stability Gear (1968) went
on to propose a class of stiffly-stable multistep methods. He
suggested that for a k-step method the second characteristic
polynomial should be taken as

o(~) = ~k,

This choice for o(~) ensures that the method is stable at
infinity since the roots of a(;) = 0 are all zero. Thus Gear
normalizes his methods by taking Sk = 1 while by setting
So' 81, .••, 8k-1 to be zero the remaining k+1 coefficients
~o' ~l'·o., ~k can be chosen to make the method have order
k without violating the condition of zero-stability. He then
showed that for this class of methods a k-step method could
have order k and be stiffly-stable for k = 1,2,3, •••,6 but that
methods with k ~ 7 were not stiffly-stable.

In an attempt to derive stifflY4stable methods of higher
order Dill (1969) proposed alternative choices for a(~). To
obtain a seventh-order method he took k = 7 and a(~) = ~6(~-0.99)
while for an eighth-order method he took k = 8 and a(~) =

Jain and Srivastava (1970) subsequently carried out a more
systematic approach by considering various classes of methods
based on different choices for o(~). Their choices were

o(~) = ~k-r(~_c)r r = 1,2, •.•k -l<c<l (4.2)
(4.3)o(~) = ~k-r(~r_cr) r = 2 •.•.•k -l<c<l

k-r r r-i io(~) = F,; .L ~ c r = 2, •••,k -t-e-r ,
1=0

(4.4)

With suitable choices for rand c (4.2) gives stiffly stable
methods up to order eleven while (4.3) and (4.4)
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only give stiffly-stable methods up to order seven and eight
respectively. Some of these methods give a larger stability
region than Gearas original choice for o(~). Jain and
Srivastava give the coefficients of their more interesting

methods and plots of the corresponding stability regions in
thei r report.

4.2 Stiffly-Stable Second-Derivative Multistep Methods
When we apply an implicit first-derivative linear

multistep method to solve the first-order ordinary
differential equation (1.1) and attempt to calculate
yn+k by using the iteration defined by (1.7), (1.8) and
(1.9) then from Theorem 1.2 this iteration will only
converge if

h < 1
L I 13k I ·

For a stiff differential equation L is large and we are
therefore restricted to using a small stepsize
throughout [a,b] to ensure convergence of the iteration.
One way to avoid this restriction is by applying the
Newton-Raphson method to (1.9) to give

y~~~l) _ Y~~~ = [l-hSk~;(Xn+kty~~~)]-l[_y~~'+hBkf(Xn+ktY~~~)+Cl (4.5)

where y~~, is the value obtained for Yn+k after the vth iteration.
This iteration is exact for a linear differential equation
and converges adequately for most stiff equations. For a
system of equations (4.5) takes the form

Since the Jacobian matrix af/al is needed for the
iteration the possibility of developing a class of methods
which make use of the Jacobian has been considered by Enright
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(1972). He was interested in autonomous systems of first-
order ordinary differential equation~ that is, systems of
the form

(4.7)
as many stiff systems are encountered in an autonomous form
while those that are not can be made autonomous by adding
an extra equation m+1Y' = 1, m+ly(a) = a (which has the
solution y = x) and replacing all occurrences of x by
m+1Y' For a~ aut0nomous system

c = [:;]l'
and Enright proposed using multistep formulae which
incorporate the second derivative of y.

(4.8)

The general k-step second-derivative multistep
method for a single differential equation is

k k k
J.L=oaJ'YntJ·= h L S.f t' t h2 L y.f(l~j=O J n J jeO J ntJ

where
ft~~.~:: ~x rf(X,y)lx=x ... .'.I'=j~~]

Associated with the multistep method (4.9) is the linear
difference operator L defined by

k
L [z (x);h] = L [a .z (x+j h)-he .z I (x+jh )-h2y .z "(x+jh)] (4.10)j=O J J J

where z is an arbitrary test function infinitely
differentiable on [a,b1.
Expanding z(x+jh), z'(x+jh) and zll{xtjh) by Taylor series
and collecting terms gives

(4.11)
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where
k

Co = I a·r-e J

k
Cl = l (ja.-e.)

j=O J J

k
C \' [ . r .r- 1 (1 ) . r-2 ]= I.. J a. - rJ 13 • - r r- J Y •
r j=O J J J

r=2, 3, 0 I) ••

The difference operator and associated linear multistep
method (4.9) are then said to be of order p if in (4.11)

Co = C1=····· = Cp but Cp+1 F O.
Cp+l is again referred to as the error constant.
The local error at xn+k of the linear multistep method (4.9)
is given by

k
L[Y(x );hJ = I [a .y(x+jh )-hB.yI (x+jh )-h2y .y"(x+jh)1

n j=O J .'J J ~

where this is again often denoted by Tn+k'
Associated with the multistep method (4.9) are three
characteristic polynomials. The first and second are
given by (1.20) and (1.21) respectively while the third
is defined by

Consistency and zero-stability are then necessary and
sufficient conditions for the convergence of the multistep
method (4.9).

If we follow the weak stability analysis of section
3.1 we find that for the second-derivative multistep method
(4.9) the error equation corresponding to (3.15) is

k _
j~O (aj-hASj-h2A2 Yj)en+j = ~

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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and hence the stability polynomial now becomes

1T ( r,fi) = p (r) - ha (r) - h 21jJ (r) •
Thus if the multistep method (4.9) is to be stable at
infinity the roots of ~(~) = 0 must be less than one in
magnitude.

To ensure zero-stability Enright has chosen
p (~) = ~ k _ ~k-l

while for stability at infinity he takes
k

~(~) = Yk~

This enables him to determine ao.al ••.••ak and Yk so that
his resultant method has order k+2. His methods are
stiffly stable for k = 1.2 ••••• 7.

In Table 4.1 we quote for the methods of Gear and
Enright the appropriate values for D and bs (Definition
3.6) for each value of k. In addition for future
comparison purposes we give the error constant Cp+1 for
Enright's methods after they have been normalized so that
Yk = 1.
Table 4.1

GEAR ENRIGHT
D bs k order D bs Cp+l k

0 A-stable 1 1
0 A-stable 2 2

o. 1 0.75 3 3 0 A-stable .083 1

0.7 0.75 4 4 0 A-s tab 1e .039 2
2.4 0.75 5 5 O. 1 2.0 .022 3
6.1 0.5 6 6 0.52 2.0 .014 4

7 1.4 2.0 .010 5

8 2.7 2.0 .0074 6

9 5.3 1.9 .0057 7

(4. 17)

(4.18)

(4.19)
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It would seem a logical progression to look at alternative
classes of second-derivative multistep methods to see whether
there are methods which have larger stability regions.
Analogously to the manner in which Jain and Srivastava
investigated possible modifications to Gear's first-
derivative multistep methods we will attempt initially to
follow a similar approach with respect to Enrightis second-
derivative methods.

The general second-derivative linear multistep method
(4.9) has one arbitrary coefficient. We normalize the method
by choosing Yk as the arbitrary coefficient and then setting
it equal to one. For consistency it is necessary that

k-2
ak-1 = -ak - .r aJ.•J=O

To ensure zero-stability while satisfying the consistency
condition (4.20) we set

a. = 0
J

j = O.1 ••••• k-2
and take

so that
k k-lp(~) = ak(~ -~ ).

Since all the roots of~~) = 0 must be less than one in
magnitude to ensure stability at infinity we will investigate
in turn each of the following choices for ~(~):

w(~) = ~k-r(~_c)r r = 1.2 •.••• k -l<c<l
~(~) = ~k-r(t·r_cr) r = 2, •••• k

W(t) = ~k-r f ~r-ici r = 2 ••••• k
i=O

-l<c<.l

-l<c<l

Note that if c iszero the three choices each reduce to
Enright's method, while r starts at two in (4.23) and (4.24)

(4.20)

(4.21)

(4.22)
(4.23)

(4.24)
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since taking r : 1 would give the same h~thod as taking r =
in (4.22). The coefficients ak, So"'" Bk can then be
determined for each of the above choices for w(~) so that
the method has order k + 2.

Although we have obtained stiffly-stable methods which
have an order of twelve and it may well be possible to
obtain still higher-order methods, we only give results
for those methods which have an order of ni~e or lesso
Hence since each of these classes of k-step method have
order k + 2 the maximum value of k will be taken as seven.
For each of the three choices for w(~) results have been
taken for values of c running from -0.9 to 0.9 in steps of
0.2 except that when r is even (4.23) is symmetric in c
and thus we need only consider c gOing from -0.9 to -0.1
in steps of 0.2. The quantities 0 and bs are determined
by using the boundary locus method usually with an
interval in e of five degrees although if it appeared
from the results that this interval was too large we
repeated the calculation using an interval in e of one
degree.

In Appendix 1 results are only given for those values
of c for which we actually obtained a stiffly-stable ~:ultistep
method having a value of less than ten for O. ~e quote in
tables Al. 1, Al.2, Al.3. each table corresponding to one of
the three classes of method. the value of c and the
corresponding values for 0, bs and the error constant Cp+1'
To make an easier comparison of the various results we
include three additional tables, tables Al.4, Al.S, and
Al.~each again cor(esponding to a particular class of
method, which give the values of c and Cp+l at the
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minimum value of D for each pair of values of rand k. Each
of these last three tables start from k equal to three since
for all three classes of multistep ~ethod k equal to one or
two and c equal to zero give A-stable methods which are
stable at infinity, and we therefore omit these from our
comparison.

Although it is impossible to draw any specific
conclusions from the results we can make some general
observations. From tables Al.l and Al.4 we can see that the
choice of (4.22) for ~(~) can give us stiffly-stable
methods up to order nine at least. It can also be seen that
for this particular choice, r equal to one usually gives
both the largest stability region, as measured by the value
of D, and the smallest error constant although the value of
c at which these are obtained tends towards one as k increases.
Intuitively we feel that a value of c too near one will give
us larger errors when working with bigger values of h. It is
certainly possible however withr equal to aile unli ar,
appropriate choice for c, without taking it too close to one,
to obtain stiffly-stable methods with larger stability
regions and smaller error constants than those of Enright.
Higher values of r in general give smaller stability regions
than when r is one and the error constant tends to be larger
although the value of c at which we obtain the largest
stability region decreases.

If we now consider the second choice for ~(~), given
in (4.23), it can be seen from the results in tables Al.2
and Al.5 that the largest stability regions occur when r
is equal to k. Although the values of c are not too close
to one, the truncation errors are however much greater than
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whenr is one,

Taking ~(~) as defined by (4,24) the results in tables
Al.3 and Al,6 indicate again that r being one gives the
largest stability regions and the smallest error constants.

Comparing between the three choices for ~(~) we
observe that the best alternative choice of method between
(4.22) and (4,24) is the method for which

~(~) = ~k-l(~_c)
where an appropriate value for c can be found from table
Al.l. The best choice of method from (4,23) is
obtained when

k k~(~) = ~ - c

where an appropriate value for c can be found from table
Al. 2.

For the same stepnumber k the method determined by
the choice (4.26) for ~(~) always has a larger stability
region than the method obtained from the choice (4,25)
but it also has a much larger error constant. Recalling
also that when h is large the roots of the error equation
(4.16) tend towards those of ~(~) we note that t = c is a
root of ~(~) for both choices but,whereas the remaining
roots of .(~) in (4.25) are allzero,the other k - 1
roots of ~(~) in (4,26) have magnitude c. We
therefore suspect that the choice of (4.26) for .{~) may
lead to much larger errors than (4.25).

With all three choices for .(t) we have obtained
stiffly-stable methods up to order nine which have-larger
stability regions than Enright's methods. We suggest
that the best alternative method based on the choice of
(4.22). (4.23) or (4.24) for ~(~) is the method which

(4.25)

(4.26)
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has w(~) given by (4025),

4.3 The Use of Optimization Techniques to Increase the Stability
Region of Stiffly-Stable Second-Der;vativeMultistep Methods
In each of the three choices (4022), (4.23) and (4,24)

for ~(~) we are imposing a particular form on the third
characteristic polynomial, It seems very unlikely that anyone
of those three arbitrary choices for ~(~) from the infinite
number that could be made would turn out to be a best possible
choice from the viewpoint of stability, since the coefficients
of ~(~) are constrained to vary in a very restrictive manner.
Ideally we would like to be able to allow some of the
coefficients to vary in such a way that they were more
directly related to increasing the stability region. This
leads us to an alternative viewing of the problem as'being
essentially one of optimization since we have an objective.
the size of the stability region, which we wish to maximize
and this objective depends on the coefficients Yk-l •••.• Yo'
One can therefore attempt to apply optimization techniques
to this problem. The idea of using optimization to
maximize stability regions has been proposed by Crane and
Klopfenstein (1965) who successfully used a steepest descent
method to increase the stability region of a particular
predictor-corrector algorithm. Schoen (1971) has also used
optimization to extend stability regions.

Our objective then is to maximize the stability region
of stiffly-stable second-derivative multistep methods and
since D is our best measure of the size of this region the
problem is effectively to minimize 0, 0 of course depends
on the coefficients and the order. If we still require
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that the order be k + 2 and again choose p(~) as in (4,21) so
ensuring zero-stability without violating the consistency
conditions we can then write

0= F(yo' "!'·lPo •• q Yk-l' k+2)

This function is calculated numerically for a
particular set of coefficients Yo' yl'···. Yk-l and order
k + 2 by first determining the other coefficients
ak, So' ••o, Sk and then using the boundary locus method
with an interval in e of five degreest this having
previously been found adequate. It does mean however
that the function values are not calculated to very great
precision. In addition the multistep method should
satisfy the constraint that it be stable at infinity.
Hence the zeros of ~(~), which are denoted by ~3,1' •••'
~3,k' must be less than one in modulus.

Thus our problem is
minimize 0 = F(yo' Yl'.'o, Yk_l,k+2)

subject to the constraints
1~3 ·1 < 1,J j=1,2 ••••,k.

The problem is therefore one of constrained
optimization of a function which is calculated numerically
to low precision. It is impossible to calculate
analytically the derivatives of the function (4.27) and
while it would be possible to calculate the derivatives
numerically by using differences this idea is rejected
because the function values are not very accurate. These
considerations drastically restrict the possible methods
open to us to carry out the optimization process. We nead
therefore to look for a method which is applicable to

(4,27)

(4.28)

(4.29)
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constrained problems and uses only function values. This
virtua lly reduces the choice to two methods: one due to
Powell (1964) and the other due to Rosenbrock (1960),
Powell is method which makes use of conjugate direc t+ons r s
more modern and almost certainly the more efficient,
Unfortunately to use it for constrained optimization
really requires the use of penalty functions. This approach
was considered but it was found impossible to develop the
right type of penalty function to suit this particular
problem. The problem is in fact even more difficult than
it may appear since there ;s no guarantee that the resultant
stability region will remain connected and the multistep
method stiffly~stable even when the coefficients arevar;ed
in such a manner as to satisfy all the constraints.

Because of these difficulties it was decided to use the
optimization method of Rosenbrock. We will first describe
his basic technique for minimization and then show how it
has been adapted to finding a solution for our problem.

At the start of the Ith iteration let us suppose we
(1) (t) (1) (2)have an approximation ~ = (Yo ..•Yl " ••, Yk-l) to the

solution together with a set of k mutually orthogonal search
directions qli q2, ••.•qk and a set of k associated step
lengths 01' 02"'" ok' Starting from x(l) a step 01 is
taken along the direction q~l). If this does not result
in an increase in the value of the function it is considered
to be a successful step and the new improved estimate for
the minimum retained and 01 multiplied by a constant ~ > 1.
If however the function value does increase then the step
is regarded as a failure and is consequently rejected while
01 is multiplied by a constant 6 where 0 > 6 > -1. A
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common choice is to take rx=3 with 8 = -~ which will be tre
values we use for a and 8. The search considers each
direction in turn until all the k directions have been
explored, and then returns to the first directi on q~Q.) )nd

I

recycles through all the directions until a success
followed by a failure has been recorded at some time dui'ing
the iteration for every direction. At this stage a new set
of orthogonal directions is calculated. The first of these
is taken to be the resultant of the steps taken with the
previous directions while the remaining directions are
calculated by a method due to Powell (1968). The aim
of this repeated orthogonalization ;s to align the first
direction ql along the principal axis of the contours and
in general qr+l along the best direction which can be found
normal to qr' Initially the search vectors are taken
along the coordinate directions.

To apply Rosenbrock's method we need to be able to
calculate the function value 0 for any given coefficient
vector y. This;s carried out by first calculating the
coefficients ak, 80"", ek and the error constant Cp+1
and then using an algorithm due to Duffin (1970) for testing
whether or not a polynomial is a Schur polynomial and
hence whether the constraints on ~(~) have been violatedo
If the constraints have been violated then that
particular step is simply regarded as a failure otherwise
the boundary locus method is used to calculate the value of
D. As a starting point for the whole process we take ~(~; = ~k
and thus y~l) = y{l) = •.• = y~~~ = 0 since we know this
certainly gives us stiffly-stable methods for k < 7.
The possibility that the stability region becomes disconnected
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during the optimization process always exists but it seems
reasonable to make the assumption that if this happened the
value for D would then be greater than the current lowest
estimate. Hence we take no special precautions to cope with

this other than to check that the final solution does give
us a connected stiffly-stable region.

The constraints (4.29) which we have applied in this
problem are those that are necessary for the multistep
method to be stable at infinity. We might however wish to
impose more stringent constraints on the roots of ~(~) ; 0
in the hope that when h is very large the errors will be
less. It might therefore be thought desirable to make the
constraints

j = 1,2,. •. ,k

where w must certainly be less than one. It is then
straightforward to modify Duffin's algorithm for a given
value of w so that we can use this type of constraint in
the optimization process.

In Appendix 1 in Tables Al.7 we give the results
obtained from the optimization process. We have again
taken results with values of k running from three up to
and including seven. With each value of k we have in
turn allowed there to be from one up to four variable
coefficients, except for k being three when a maximum
of three varying coefficients is allowed. If there is to
be only one varying coefficient we take it to be Yk-l
since we have previously concluded from the results in
the first appendix that with a suitable choice for Yk-l
in (4.22) we could obtain larger stability regions than
those of Enr iqht, In general if there are i varying

(4.30)
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coefficients where i < 4 these are taken to be
Yk-l' ••• ' Yk-i while the remaining coefficients of ~(~),
Yk-l-i '0 •• ' Yo are set equal to zero. With each value
of k and i we have used constraints of the form (4.3U)
and we quote results for values of w running from 1.0
down to 001 in steps of 0.10

It is mentioned previously that our intended
starting point for the optimization process was to be
~(~) = ~k. With most optimization problems it is very
difficult if not impossible to guarantee that we have
attained a global minimum rather than just a local
minimum. One possible partial check on this is to
take an alternative starting point and see whether in
fact we do get the same minimum. This is however rather
a negative test since even if we do get the same or a
worse estimate then we can not draw any positive
conclusions as to whether the original estimate is a
global minimum, while if we obtain a better minimum
then there is still no guarantee thatthis new estimate
is a global minimum.

Computations were performed for various starting
points selected from some of the results in the first
appendix. It was found that there was often a large
difference in the solutions obtained from the differing
starting points illustrating the previous comments on
local minima. In the results for each pair of values
of k and c we quote only the best estimate we obtained
for the minimum value of 0, the error constant Cp+1
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and the values of the coefficients Yk-l"'"' Yk-i at the
minimum, and the starting point for w(e;), We do not
however claim that the estimate is necessarily a global
minimum,

The results show that as the number of varying
coefficients used in the optimization process increases
so does the size of the stability region, It is
certainly possible using this optimization technique to
generate stiffly-stable second-derivative multistep
methods which have much larger stablity regions than
either those of Enright or any method resulting from
the choice of (4,25) for 1jJ(e;).

4.4 Increasing the Order of Stiffly-Stable Second-
Derivative Multistep Methods

All the stiffly-stable second-derivative multistep
methods we have considered so far have had order k+2
for a k-step method. We might wish to question
whether in fact this is the highest order we
can obtain for a k-step method and still have
a reasonably large stability region. As a first
move towards looking at this problem we propose to
investigate the possibility of obtaining stiffly-
stable methods of order k + 3 where we will consider
values of k between one and six thus giving us orders
running from four to nine. To achieve this increase
in order we must sacrifice one of the coefficients
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Since there is no obvious
choice of coefficient to use, for each value of k we
take each oreof the coefficients elo,···,elk-2' Yo' .•"
Yk-l iiiturn setting the reL1ainder to be zero and
calculate the other coefficients elk' elk-l,Bo"'" Bk

so that the resultant method is of order k + 3. We
then determine whether this resultant method is
zero-stable by determining the roots of the first
characteristic polynomial, whether it is stable
at infinity by determing the roots of the third
characteristic polynomial, and whether it is stiff1y-
stable. Results of these tests for the various
values of k and choices of coefficients are given
in Table A1.S in Appendix 1.

From the results we see that one particular
choice for the additional coefficients always gives
us the largest stability region. If we make use
of Yo to increase the order then we find that the
resultant methods of order k + 3 are always zero-
stable, have a connected stability region and are
stable at infinity when k > 2. When k is one the
resultant multistep method, although A-stable. is
not stable at infinity since a root of 1jI(~) is one.
The following table gives the values of D. bands
the error constant Cp+1 for values of k from one to
six when the coefficient Yo is used to increase the
order.
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Table 4.2

k order 0 b Cp+-l D(ENR) Cp+l(ENR)s
1 4 A-stable 0.017 A-stable 0.039
2 5 0.27 2.02 0.014 O.1 0.022
3 6 0.89 1.83 0.011 0.52 0.014
4 7 1.87 1.86 0.008 1.4 0.010
5 8 3.45 1.96 0.0062 2.7 0.0074
6 9 6.16 1.94 -0.0015 5.3 0.0057

We have also given for comparison purposes the values of D
and Cp+1 for Enright's method of comparable order. The
values of 0 for the new higher order method are larger than
those of Enright although this is counterbalanced to a'certain
extent by the smaller error constant and use of a method which
always has one step less than that of',Enright.

In an attempt to test'the possible'usefulnessofthe new
higher order methods some small scale preliminary tests were
made with them on three linear problems: 'one quoted by Enright
and the other two quoted in a report by Hull et a1 (1972).
The three problems are:-
A) .1,' = -0.1 0 0 0 s. , l(O) :;: 1

0 -10 0 0
0 0 -100 0

range (0,20]

0 0 0 -1000 1
This linear problem has real distinct eigenvalues (-.1.-10,
-100,-1000) with a modest spread.
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B) li = -1 10 0 0 I , I(O) = 1

-10 -1 0 0
range [0,20]

0 0 -100 100 1
0 0 -100 -100 1

This linear problem has complex eigenvalues (-1:,10;,-lOa_:!:100; )
with a small spread.
C) t = -104 103 0 0 l ' l(O) = 'r

-103 -104 0 0 range to, 201
0 0 -10 100 1
0 0 -100 -10

This linear problem has complex eigenvalues (-104_:!:103i,-10_:!:100i)
with a large spread.

Results were obtained for each of these three problems using
both Enright's method and the new higher order method. The new
method employs the same formulation and error strategies as
Enright's published program in which his methods are incorporated
in a variable-step variable-order manner with the maximum order
restricted to six. Following the type of comparison statistics
which are given by Hull et a1 we quote for each method the
error tolerance ", which is meant to bound the local error/unit
step, the maximum local error/unit step M.L.E./U.S, the average
error/unit step AE/US, and the total ~roblem state time T.T •.
taken in seconds when using double precision on the I2.r1360/67
at Newcastle University •. In addition we use h to denote the
st~psize, ENR to denote Enright's method, and nEW to denote
the new higher crdar method. The following tdb1e, Table 4.3
gives the results obtained with ~hes~ methods at three error
tolerances) where both the maximum local error/unit step and
the average error/unit step are given in units of the error
tolerance T.
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Problem A

Problem B

Problem C
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T h Method M.l.E·/u.~. A.E./U.S. T. T.

10-2 1 ENR .611 .037 •15
1 NEW 95.3 13.3 .30
.0001 ENR .217 .0058 1.19
.0001 NEW 0111 .0038 .95

10-4 .122 10-3 NEW .171 .0083 1.52
.3U~ 10-4 ENR .477 .014 1.76
.305 10-4 NEW .156 .0075 1.55

10-0 .610 10-4 NEW 1.13 .021 2.44
.763 10-5 ENR .764 .016 2.67
.763 10-5 NEW .359 .012 2.54

10-2 .78110-2 NEW .856 .066 1.56
.195 10-2 ENR .495 .049 1.64
.195 10-2 NEW .568 .073 1.57

10-4 .195 10-2 NEW .816 .043 2.90
. -3 ENR .806 .041 3.01.4~8.10

.488 10-3 NEW .422 .036 2.98
10-6 .488 10-3 NEW .f..54 .037 5.66

.122 10-3 ENR 1.26 .040 5.80

.122 10-3 NEW .654 .036 5.70

10-2 1.0 ENR .214 .012 •14.
•1 10-7 NEW .4~ .026 2.90
.1 10-7 ENR .40G .025 3.01

10-4 .191 10-5 ENR 1.57 .035 4.70
.1 10-7 NEW .545 .031 4.89
.1 10-7 ENR .539 .034 4.97

10-0 "I?' 10-6 ENR .5!:i2 .029 9.40• L. -.)1 ...

•1 10-7 NEW .607 .040 8.92
.1 10-7 ENR .620 .037 9.34
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From this limited set of results it is impossible to draw
any definite conclusions but we can make certain observations.
In problem A we see that at the largest error tolerance 10-2

and using the largest stepsizes that the methods will accept,
which in this case is h = 1 for both methods, the newer
method compares poorly with EnrightDs method in terms of
time taken and accuracy. If we take a smaller stepsize,
h = .0001, then the new method is both quicker and more
accurate than that of Enright. Considering next the
behaviour of the two methods at the two smaller error
tolerances we see that the new method can take a larger
initial stepsize than that of Enright and is faster in time.
At the tolerance of 10-4 the new method is more accurate
but at the tolerance of 10-6 it is less accurate. If however
we run the new method at these two smaller tolerances taking
the same starting stepsize as Enright's method we find that
the new method is both faster and more accurate.

On problem B the new method can take a larger starting
stepsize than Enright's method at all three tolerances but
although the new method is always quicker, at the largest
tolerance 10-2 it is less accurate, at the middle
tolerance 10-4 both methods are almost equally accurate
while at the smallest tolerance 10-6 the new method is much
more accurate. If we then run the new method at each
tolerance taking thesame"starting-stepsize as Enright's
method we find that at the largest tolerance Enright's
method is sti 11 more accurate but at both the smaller

tolerances the new method is much more accurate and"in all
three cases it is faster.



- 59 -
On the third problem, which has a much larger stiffness

ratio, Enright's method can take a larger stepsize at all
three tolerances and gives good accuracy at this larger
stepsize. If however we reduce the stepsize to a value
which is acceptable to both methods then at all three
tolerances the behaviour of the two methods is almost
exactly similar in accuracy although the new method is
slightly quicker.

From these results it would appear that the new method
is worthy of further consideration particularly for
problems where high accuracy is demanded. It is thought
that the reason the new method behaves less well at the
larger tolerance and on the third problem is due to the
fact that the fourth-order formulae of the new method,
which is the one it starts with, is not stable at
infinity since the root of ~(~) = 0 for this order is
~3, 1 = 1. If too large a stepsize is used for starting,
this causes oscillations to occur in the solution. This
type of behaviour is of course similar to that which can
occur with the trapezoidal rule. Hence at larger error
tolerances we would start with a larger stepsize and
might then expect oscillations in the solution which ;s
in fact the case. At the smaller error tolerances
however, where we would start with a smaller-stepsize.
we tend to avoid this oscillatory behaviour except on
the third problem which is fairly stiff and hence would
require the use of a small stepsize to avoid these
oscillations.

There are two ways by which one might overcome this
problem, One way is to consider the possible use of a
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smoothing type of formula in conjunction with the new method.
This is a similar approach to that employed by Lindberg
(1971) with the trapezoidal rule. An alternative way might
be to combine the new method with that of Enright by making
use of Enright's third and fourth-order formulae and then
switching to the higher-order formulae in the new method
because of their smaller error constant.
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Chapter Five
Introduction

In the preceding chapter it was shown how the necessity
to keep the total error from growing and the problems
associated with the convergence of the corrector iteration led
us to the use of second-derivative stiffly-stable multistep
methods for solving stiff ordinary differential equations. We
will illustrate in this chapter how the same line of reasoning
leads us to propose the use of second-derivative Runge-Kutta
formulae which are implicit with respect to y rather than k.

5.1 Weak Stability as applied to Runge-Kutta Formulae
The conventional exp~icit Runge-Kutta formulae suffer from

the same weak stability disadvantages as explicit linear
multistep methods. If we consider, as an example, the fourth-
order explicit Runge-Kutta method

hYn+l - Yn = !(kl+2k2+2k3+k4) (5. 1 )

where
kl = f{xn·'Yn)

h hk2 = f{xn~' Yn + 7kl)
(5.2)

k3 = f{Xn~' Yn + ~2)

k4 = f(xn+h'Yn+hk3)

and apply this method to solve the representative linear
equation

y' = Ay {5.3}

where A is a complex constant with Re A < O. we obtain
Y 1 = R{h)yn+ n (5.4)
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where
fi = hA (5,5)

(5.6)

The solution of (5,3) tends to zero as x increases
and this can only occur in the numerical solution (5.4)

if R{h) is less than one in magnitude. It is easy to
show that the region of h for which IR(h}1 < 1 is small"
On the negative real axis, for instance, the interval of
absolute stability is (-2.7,0). The requirements of
absolute stability again restrict us to the use of a
small stepsize if IKe A I is larqe .

A one-step method will always give us an equation
of the form (5.4) for yn+l where R(h} is determined from
the particular method. For an explicit method R(h} will
be a polynomial in h while for a method, which is implicit
in y or k, R{h} will be a rational function of h,

The definitions of the various types of stability
regions as given in Chapter Three are all applicable to
a one-step method. The type of stability region which
is usually sought for a one-step method however" is given
in the following definition proposed by Ehle" {1969},

Definition 5.1
A one-step numerical method is said to be L-stable if it
is A-stable and when applied to the linear representative
equation yi = Ay, where Ais a complex constant with
Re A < 0 it yields yn+l = R(h}Yn' where IR{h)1 +0 as
Re h + -00.

In terms of our previous definitions L-stability
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corresponds to comlJining A-stability with stability at
infinity, Since Lomax (1968 ) has shown that no explicit
Runge-Kuttamethod can be A-stable we are therefore
restricted in the search for L-stable methods to implicit
Runge-Kutta methods.

The quantity R(fi) appearing in (5.4) is, for an
implicit Runge-Kutta method of order p, a rational

. t' t fiapproxlma lon 0 e Q Since the stability of the method
is dependent upon the value of R(h) we now quote several
definitions and theorems related to rational approximants.

Definition 5.2

If h is a complex scalar and Ru,v,p(h), u ~ 0, v > 0 is
given by

u .
L s.(h)l
. 0 11=R p(ii) =----with So = t =u,v, v. 0
L ti(fi)l
i=0

where all the si and ti are real then Ru.v,p (h) is said
to be a (u,v) rational approximation of order p to the
exponential eh if

R (h) = eh + O(hP+1)U,V,p
The highest possible order is when p = u + v and

Ru,v,u+v(fi) is then called the (u,v) Pad~ approximant to

eh and will be denoted by P (h). We have the followingu,v
definition due to Ehle (1969).

Definition 5.3
A rational approximant Ru.v,p is said to be
(i) A=acceptable if IRu,v,p(n)1 < 1 whenever Re h < 0

(ii) L-acceptable if it is A-acceptable and also satisfies
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IR (h)1 ~ 0 as He(h) ~ -~ou,v,p

The following theorem, whose first part is due to
Birkhoff and Varga (1965), and second part to Ehle (1969),
gives some of the known information on Pad~ approximants.

Theorem 5.1
Let P (h) be the (u,v) Pade approximant to eh,U,v
(i) if u = v, P is A-acceptableu,v

(ii) if v = u + 1 or v = u + 2 then

Then

P v is L-acceptable.
Ut

If for a given implicit method we can show that R(h)
match~s an appropriate Padl approximant then we can use
Theorem 5.1 to establish whether the method is A -stable
or L-stab1e.

Butcher (1963) has shown that there exist k-implicit
Runge-Kutta methods of order 2R which Ehle subsequently
proved were A-stable. Alternative high-order k-imp1icit
methods have been proposed by Ehle (1969) and Chipman (1971).
Eh1e developed R-stage implicit methods of order 2R-l which
are L-stable and methods of order 2R-2 which are A-stable
while Chipman proposed methods of order 2R-2 which are
L-stable.

5.2 Iteration Processes for k-Implicit Runge-Kutta Formulae
Although one can obtain much higher-order formulae with

k-imp1icit methods than with explicit methods,at each step
of the calculation it is necessary to solve a set of R
implicit non-linear equations for the k's. Butcher showed
that these equations could be solved by the direct iteration
method (1.37) provided condition (1.38) held. For stiff
equations the Lipschitz constant will be large and so the
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iteration (1,37) will only converge if h is very small. In
an attempt to avoid this restriction on the stepsize an
alternative form of iteration based on the Newton-Raphson
method has been suggested. If we let k(v) be ther
approximation to kr after the v-th iteration the iteration
is defined by
- A l"" ] l"'tl) ""))L'-hb \.~()(+ha,." ...hi\:'r.tc, (ky -\(yrr ~ • .1 ,~.

" ""') R l".l) l"" )'_ !f(x ..ha.r,'Y+hI. br,k, )Lhb"(~1 - ks
) ~~I 'si
'1 ~11'

r( I It l~» lv)
:: ,. lI.+ hcl.1" ":I + ",1. bfiks - ky

So2'

When we are dealing with a system of m first-order differential
equations the iteration takes the form
I - hb J(v) - hb J(v) hb J(v)11 1 12 1 •.• - - .. -- - 1R 1

I - hb J(v)22 2- hb J(v)
21 2 - - - - - - - - - ..-- _... - -

I

'., ...

... I

I ~hb J (v)- - RR R
R ()= f(x+ha1,l+h I bls~ v )s=l

,
- hb J(v)Rl R

k(v+l)_k(v)
-1 1-1

I

- k (V)1
-1

Rf(x+ha ,v+h L b k(v)) - k(v)
- R :t.. 1 Rs-s .:!Rs=

\'/hereJ~v) is the matrix whose (i,j)th element is

(5.8 )
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hence at each iteration we have to solve a set of mR

linear simultaneous equations.

If b = 0 for r < s the resultant n.ethods are calledrs
semi-explicit and the equations (5.8) can then be split

into nl sets of k linear equations, Rosenbrock (1963)

proposed an alternative method which could be applied to stiff.

differential equations in autonomous form, His method

which is based on the linearization of a senri-exp l icit

metnod is

(5.9)

where

kl = h[f(Yn)+al:;(Yn)k11
k, = h[f(Yn+b1kl)+a~~;(Yn+c1kl)k2J

(5.10)

Since each of the equations for ki can be rearranged to

give k. explicitly there is no need to iterate.,
Rosenbrock gave two possible c~oices for the

coefficients, one of which gives a method of order two

while the other yields a tnird-order method. Haines

(1969) and Calahan (1968) have also investigated this

type of method,

ti.3 Derivation of y-Implicit Second Derivative Runge-Kutta

Formulae

In .his method Rosenbrock made use of af/ay. For an

autonomous sys ten. we know that

1.11 = ~ II

and we now consider whether implicit Runge-Kutta methods
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which incorporate the second derivative of y can be
developed. In unpublished work Penna has developed
some implicit f<unge-Kutta methods which although they
only employ values of f are implicit with respect to y
rather than k wht le similar types of formulae have been
suggested by Cash (1975), Since these methods are
explicit with respect to k. at each step we need only
solve a set of m simultaneous non-linear equations to
obtain the value of ~+l' Our aim 1S to derive a
similar class of y-iniplicit Runge-Kutta methods which
incorporate both the first and second derivatives of
y. We will assume throughout that the differential
equation. or system of equations, is in autonomous form.

cons icer initially the method
yn+l = Yn + clhkl + c2hZ!1 + c3hk2 (5.11)

where
kl = f{Yn+l)

11 = f{1 )(y )n+ 1
k2 = f(Yn+a2hkl+a3h2fl)

(5.12)

We associate with the method defined by (5.11) aud (5,12)
the difference operator M defined by
M [y (x) ;h]=y (x+h )-y (x )-c1 hf (y (x+h) )-C2:12 f{ 1 )(y(x+lI))

-C31'1f[y(x)+a~hf{y{x+hj)+a3h?f(1) (y(x+h))]

Assuming that y{x) is sufficiently differentiable and

(5.13)

and recalling that we are interested in autonomous equations
we can expand each of the terms on the right hand side of
(ti.13) in a Taylor series about x. Hence we have
y{x+h )=y(x)+hy I (x)+~y(2) (x) I~~~(3) (X){y(4) (x)+ ••..• (5.14)
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f (y (x+h ) )=y i ( x )+hy (2) (x) +~;:Y(3) (x) +~;:Y(4) (x )+ -,

f(l ) (y (x+h) )=y(2) (x)+hy(3) (x )+~y(4) (x)+o" ".

f [y (x )+a2hf (y (x+h))+a 3h2 f (1 ) (y (x+h ) )]

= yl (X)+[a2ilY'(X+h)+a3h2y(2)(X+h)1fy(Y(X))

4- [a2hy I (x+h )+a3h2y (2) (x+h)} 2f yy (y(x)}

+. [a2hy H (x+h )+a3h2y (2) (x+h)] 3fyyy (y (x) )+ '" , c •

Substituting in (S,17) fory'(x+h) andy"(x+h) from

(5,15) and (5,16) respectively and simplifying

yields

f [y (x )+a2h fey (x+h) )+a3h
2f( 1 ) (y( x+h) )]

a2
= f+ha f(l )+h2 [(a +a )f(l)f ...J.f2f 12 ~ 3 y ~ yy

a a a3
h3[(..!ra )f(l )f2+(~a +a2+a a )f2f f J+-1.f3f~ 3 y ~ 3 2 2 3 Y yy b yyy

where each term on the right hand side has (y(x)) as

its argument.

Usi ng (5. 14), (50 15). (50 16) and (5.'8) we obtai n

M[y(x) ;h] :: [1-c,-c3]hf + ri-c,-c2-c3a2]h2f(1)
1 cl ] 3 (1)

+[rrcZ-c3(a2+a3) h· f fy

21 cl a2
+Ii-rCz-c3-tJh3f2fyy+'" o.

where again each term on the right hand side has (y(x))

as its argument, Uefining the order of the method as

being one less than the power of h in the first non-

vanishing term in (S ..lY) we seek a third-order method

by equating the coefficients of h, h2 and h3 to zero,

This gives us the following equations

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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If we take a2 as a parameter we can then solve for cl'
c2' a3 and c2 in terms of a2 to give us

_ 1
c3 - 3(a2-1)2

1cl = 1 - 3(a2-1)2
a~ - 2a2a3 = 2

1 1
c2 = - 7 - 3(a2-1)

Hence in terms of the parameter a2 equations (5.12)
become

k1 = f(Yn+l)
_ (1)

11 - f (Yn+l)

and the resultant method is third-order.
Applying the method given by equations (5,.11).

(5.21) and (5.22) to the representative linear equation
(5.3) yields

Yn+1 = R(h) Yn
where

(5.20)

(5.21 )

(5.22)

(5.23)
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Since the (113) Padl approximant to eh is
1+h/4

we attempt to choose a value for the parameter a2 such
that (5023) agrees \'/ith(5024}0 If we compare
coefficients of h in the numerator we find

a2 = 1 + ~ 13

and this choice for a2 also gives agreement for each of
the coefficients of h in the denominatoro Hence
taking a2 as given by (5.25) we can match the ('i3)

Pade approximant which from Theorem 5,,1 is known to
be L-acceptab1eo Our third-order L-stab1e method is
thus

where
k, = f(yn+,)

j,1 = f (1) (yn+1 )
213 , ~k2 = f(Yn+(1+3)hk,+ih 1,)

This method is explicit with respect to k but impllcit
in terms of Yn+"

We now turn our attention to deriving a fourth-
order method, If we consider

yn+,=yn+c,hk,+c2h2 i,+c3hk2+c4hk3
where

k, = f(yn+,)

11 = f (' )(yn+1)

k2 = f(Yn+a2hk,+a3h2 1.,)

k3 = f(Yn+b2hk,+b3hk2+b4h2R.,)

(5024 )

(5025)

(5.26 )

(5.27)

(5.28)

(5.29)
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We associate with the method (5.28) the difference
operator M defined by

M [y(x);h1 = Y(X+h)-Y(X)-c,hf(Y(X+h))-C2h2f(l )(y(x+h))

- c3hf[y(x)+a2hf(y(x+h) )+a3h2f(1 )(y(x+h))}

- c4hf[y(x)+b2hf(y(x+h))+b3hf(y(x)+a2hf(y(x+h))

+a3,,2f(1)(y(x+h))) +b4h2f(1 )(y(x+h))] (5.30)

Assuming that y(x) is sufficiently differentiable
and again recalling that we are interested in autonomous
equations we proceed as before and expand each of the
terms on the right hand side of (5.30) in a Taylor
series about x. Since we already have the expansions
of most of these terms the only new expansion we need
;s the one for the last term on the right hand side.
Thus we have after simplification
fry (x)+b2hf(y (x+h) )+b3hf(y(x )+a2hf(y (x+h) )+a3h2f '1) (y(x+h)))

+b4h2f(1)(Y(X+h))]
( ) (b +b )2

= f+h(b +b )f 1 +h2[(b, +b a +b )f(l)f + 2 3 f2f J2 3 2 3 2 4 y 2 11
." ,

b b a2+ h3[f(T)f2(~b (a +a )+b )+f2f f (~b ~bY ~ 3 2 3 4 y yy z 3 ~ 4
(b2+b2)3+(b2+b2) (b2+b3a2+b4))+ 6 f3fyyy1+u .•• o (5.31)

where again each term on the right hand side has
argument (y(x)). 'J

Using (5.14). (5.16), (5.18) and (5.31) we obtain
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+[1+ -~. -1J. -ell ~J. +a.) - '4 (~J..btCa~.a;).~4)1h4r')~~
+[J. - s.. - ~a. - c1a"J, -'.tb +h\l]h4Jl.f. +. (5.32)

1.4 ,2. "" J. IJ 'S'3~ •.••

with each term on the right hand side having the
,.

argument (y(x)). " .~

We seek a fourth-order me~od by equating the
coefficients of h. h2• h3 and h4 to zero. This
gives us the following equations:
c,+c3+c4='

c,+c2+c3a2+c4(bz+b3)=~
2c, a2 c4 !l. ,

~c2+c3~(b2+b3)iO~

(5.33)" 1~c2+c3(a2+a3)+c4(b2+b3a2+b4)ib

c, c2 a2 b2 a~ 4
~~c3(~a3+a~+aZa3)+c4(~b3~b4+{b2+b3){b2+b3a2+b4))~
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Thus we have a set of seven non-linear equations in
nine unknowns, If we assume

(5.34 )
and

(5.35 )

then setting
d, = b2 + b3 (5.36)

and using the conditions (5034) and (5035) to
simplify equations (5033) we obtain

C, + (1'" c... : ,

C, ... Cl. ... Cl a.J, ... c~4," 1.
e ~,. J.1,,,"c&+cla,.+\4d, = ,

~, -+ Cl +c~!!+ S~d.) :. ..L
" (,.. I 1.

\a1+ ~(a& .. ?j.))+b.. : [~ - i' - ~1. .. C1( a~i:a.1o)1

bl." b,aJ. + b4

hI.+ b~ = cl,

Our interest .1ies in obtaining a method which is

L-stable. If we consider applying the method defined
by equations (5.28), (5.29) and (5.37) to the
representative linear equation (5.3) it can be shown
that

where

(5.37)
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while the (204) Pade approximant to eh is

(5039)

If (5.38) and (5.39) are to correspond we must have
c.l = 2/3 (5.40)

and
a3 = -1/12

wh i1e from (5034) we can deduce .th a._t ."

!2 = 1 + IrJT6

(5.41)

(5.42)

'Tak1ngthe first four equatf cns irl (5.37) it
can be shown after some algebr;\c m~niRulation

- \ _'-:.

that

With .I,C fl\ ~n~" a2 given by (5.40) and. (_5,..~) we can
solve the quadratic equation (5.43) ,for dl• The
first three equations of (5037) are then linear

1\
• J

I; .1simultaneous equations in the unknowns c2' c3 and
c4 and can be solved as such. Finally the last
three equations in (5.37) can be solved as linear
simultaneous equations for the unknowns b2t b3 and
b4• We can then check whether the solution gives
agreement between (5.38) and (5.39) and this
procedure has been carried out numerically using
double precision. If we take the negative square
root for a2 in (5.42) then equation (5.43) has
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complex roots for d1" We therefore take the positive
square root for a2 and obtain agreement between (5,38)
and (5.39) with the following set of coefficientso

a3 =-0.8333 3333 3333 3333.10-1

a2 = 1.9128 7092 9175 276

b2 =·0. 1362 7939 3451 9903

b3 = 0.1198 6226 6084 0889

b4 =-0.9286 6889 8098 2830.10-1 (5.44)

cl = 0.6666 6666 6666 6667

c2 --0.2677 6114 1824 5271

c3 = 0.5523 ()360 6801 6865.10-1

c4 = 0.2780 9697 2653 1645

Since (5.43) is a quadratic equation it must have
another real solution for dl but this solution is
omitted because some of the associated coefficients
are large in magnitude (for example, b2 would be
less than -55).

We have thus succeeded in deriving an L-stable
fourth order Runge-Kutta method which matches the
(2.4) Pad~ approximant and we note that this san~
technique can be employed to der; ve methods for whi ch
R(h) matches the (2.3) Pad~ approximant.

5.4 Iteration Process for y-Implicit Runge-KuttaFormulae
The iteration process employed in the y-i:rnpltctt

formulae to find Yn+l is the Newton·Raphson -method. We
illustrate this by showing how it. is appltedto the fourth-
order method. From (5.28) we set
F(Yn+l) = Yn+l - Yn -(clhkl+c2h2l.1+c3hk2+c4hk31 (5.45)
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Differentiating (5045) with respect to Yn+, we obtain
df () dk cit, dk2 dk3
~ Yn+1 =1-(C1hdy' +C2h~ +C3~Y +C4~Y )n+1 n+l In+1 n+1 n+1

(5046 )

If we set

J2 = [{f(Y)}
y Y=Yn+a2hkl+a3h2!1

r~{,Y)]J3 = Lav. Y Y=Y n+b2hk1+b3hk2+b4h2 ~ 1

then using (5.29) and (5.47) gives
&tk1
ry~~l = J1

(5,47 )

(5.48)

cl k3 2 2 2 2~ = J3(b2hJ1+b3hJ2(a2hJ1+a3h J1)+b4h J1)Yn+l
where we follow Liniger and Willoughby (1968) and Enright
(1972) and ignore all derivatives higher than the first.
Substituting from (5.48) into (5.46) and simplifying gives

Hence our iteration scheme is

d~F(Y~~ij (y(\I+1)_y(\I» = -F(y(\I»
y n+ 1 > n+1 n+1 n+1 (5.50 )

where y~~~ 1s the value obtained for yn+1 after the \loth

iteration.
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505 Numerical Testing of the y-Implicit Runge-Kutta Formulae

Although the theory in the previous two sections has been
developed in terms of a single differential equation it is
straightforward to show that the theory carries across to
systems of equations. In order to test the y-implicit
formulae we will attempt to find a numerical solution to the
same three systems of stiff differential equations given in
Chapter Four (po 55-56). For comparison purposes we will
also find a solution using the fourth-order k-imp1icit Runge-
Kutta method proposed by Butcher (1964). Both methods are
programmed so that they employ a one full step, two half
step strategy to estimate the local error and hence regulate
the stepsizeo Thus if Eest denotes the absolute value of the

difference between the two estimates for Yn+l and T is a
prescribed local error tolerance then the stepsize is halved
if

(5.S1)

the stepsize is doubled if

(5.S2)

and otherwise the stepsize is left unchanged. The iteration
process is judged to have converged if the maximum difference
between any two corresponding components in the latest two
iterates is less than 2hT while we attempt to keep ;yF

n+1
constant for as long as possible by allowing up to four
iterations before it is re-evaluated.

In the following table, Table 5.1. we quote for each of
the three problems the error tolerance T, the starting stepsize
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the maximum local error/unit step M.L.E./U.S. and the average
error/unit step A.Eo/U.S. both in units of the error tolerance
and the total problem state time T.T. taken in seconds using
double precision on the I.B.M. 370/168 at Newcastle University.
We use y-IM~ to denote the fourth-order y-implicit method and
BUT to denote ButcherDs method.
Table 5.1

Problem C

1" h Method M.L.L/U.S. A.E./U.S. T.T.

10-2 1 y-IMP -2 -3 .0316.743,,10 .299,,10

1 BUT 95.3 17.7 .0669
10-4 -3 y-IMP .136 -2 .135.244"10 .266.10

-3 BUT .387 -1 .374.122..10 .208.10
10-6 -3 y-IMP .290 -2 .186.244..10 .853.10

-4 BUT 1.13 -1 .807.610.10 .44L.l0

10-2 •125 y-IMP .772 -1 .0777.275 ..10
-2 BUT .856 -1 .242.7811(10 .502.10

10-4 -2 y-IMP .268 -1 .215.1951110 .159.10
-2 BUT .816 -1 .667.195..10 .510..10

10-6 -2 y-IMP .378 -1 .415.195,,10 .239,.10
-3 BUT .588 -1 1.92.488.10 .593.10

10-2 1 y-IMP -2 -2 .0244.656.10 .172.10
-4 BUT .765 -1 .506.305.10 .429.10

10-4 1 y-IMP .359 -1 .0249.241.10
-5 BUT .593 -1 1.29.763.10 .493,10

10-6 -4 y-IMP .469 -1 .705.153 ..10 .229,,10
-5 BUT .673 -1 2.45.19hlO .563~10

Problem A

Problem B
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From the results in Table Sol it can be seen that on all
three problems the y-implicit method is much quicker, has a
smaller maximum local error/unit step, has a smaller average
error/unit step and usually takes a much larger starting
stepsize than ButcherDs k-implicit method.

On these three problems therefore the y-implicit method
gives a significant improvement on ButcherDs method. We note
however that all these three problems are linear and it would
be very dangerous to draw any firm conclusions without testing
the y-implicit method on various non-linear problems, since it
is only on non-linear problems that we will be able to
evaluate the effects of the iteration processes. This is a
topic on which we are currently engaged in further
investigations.
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Chapter Six

6.1 A Review of Methods based on Non-Polynomial Interpolants
The underlying assumption in linear multistep methods is

that the behaviour of the theoretical solution can be
adequately represented by a polynomial. When we try to raise
the order of a method this is equivalent to approximating the
theoretical solution by a higher degree polynomial in the
hope that we will obtain a better representation and hence a
more accurate numerical solution. For many practical
problems the polynomial assumption is not realistic. An
instance of this occurs when the solution is oscillatory
and we might then profit by assuming a representation
involving sines and cosines. A similar situation occurs
when the solution appears to be increasing or decreasing
exponentially. In this case a representation involving
exponential functions might be beneficial. Another time
when a non-polynomial approximant may be used is when the
solution appears to be approaching a singularity.

Representation of the solution in terms of sines and
cosines was first proposed by Gautschi (1961) who was
interested in problems which he knew had an oscillatory
solution and v/here an estimate of the frequency was
available in advance. For this type of problem he
therefore derived trigonometric multistep methods which
integrated exactly tr1gonometric polynomials of a given
order and in addition he proved existence theorems for
these methods, Later work in this same field was
carried out by Bettis and Stiefel (1969). They were
concerned with an orbit problem in celestial mechanics
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and developed a technique applicable to second-order
differential equations of the form y(2) = f(x,y)
where by choosing in advance a set of frequencies wk'
k = 1,2,3 they derived a trigonometric multistep
method of St"Ormer type [Henri ci (1962)J whi ch wou1 d
integrate exactly cos wkt and sin wkt, k = 1.2.3,
By considering various special- cases, such as
confluent or zero frequencies, methods are also
derived which will integrate exactly the product of
algebraic polynomials with trigonometric polynomials.
In a subsequent paper Bettis (1969) developed the
technique both by increasing the total number of
frequencies one could incorporate and by extending
the idea to modify other types of multistep method
to trigonometric multistep methods with some of the
modified trigonometric methods being applicable to
first-order ordinary differential equations, .Lyche
(1972) extended some of the basic theory of linear
multistep methods to include smooth, stepsize-dependent
coefficients. In particular he dealt with methods
based on tri'gonometric and exponential functions and
also the product of these functions with algebraic
polynomials.

Exponential fitting of the solution ~ad first
been suggested by Brock and Murray (1952). It has
subsequently been proposed' by Fowler and Warten
(1967). and Liniger and Willoughby (1967) all of
whom thought that it might be used in the numerical
solution of stiff equations. Makela et al (1971)
have also proposed the use of exponentially fitted
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multistep methods and have proved the existence and convergence
of certain classes of method.

There appears to have been little work previously done on
those problems which have a singularity in the solution.
Multistep methods tend to give poor results if they are used
too close to a singularity. Lambert and Shaw (1965)
therefore proposed representation of the solution by a
rational function in the belief that this would give a
better representation near the singularity and they derived
various explicit and implicit methods based on rational
functions. In a later paper, Lambert and Shaw (1966a),
they suggested a representation using a more general
function of the form

P. NL a.x' + blA+xl
. 0 11=

(6. 1)P. N.L aix' + blA+xl log IA+xl N€{O,l, ...•P}
1=0

where P is a positive integer,. ai'i=O,l,oo .•P and bare
regarded as undetermined coefficients, and A and N are
regarded as parameters which can if necessary be
determined adaptively by their' method while carrying
out the' numerical solution.' Their resultant methods
areone~step explicit or implicit methods which

.necessitate the use of higher derivatives up to order
. (P+2) if both A and N are known in advance, up to
order (P+3) if only one of A and N is known and up
to order (P+4) if neither is known. To avoid the
labour involved in calculating these higher.
derivatives Shaw (1967) subsequently derived multistep
methods based on the same representation (6.1).
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In yet another paper Lambert and Shaw (1966 b) proposed
explicit and implicit multistep methods based on a
representation of the form

P-l .
I a.x' + biT(x)
. 0 1,= (6.2)

where b is constant and ;r(X) is any arbitrary function
assumed sufficiently differentiable. The resultant

-multistep-methods can be generated from polynomial based
formulae by means of recurrence relations.

This chapter t s .ccncerned with extending this last
--piece of work by Lambert and Shaw so that the basic

representation takes the form
P-N . N
L a.x' + I b.~.(x)

i=O ' j~l J J

where again each bj is a constant and each iTj(x) is an
arbitrary function assumed sufficiently differentiable.

We will be considering the class of multistep
difference formula

(6.3)

I. kL Ia hSy(s~ = 0
s=0 j =0 sj n+J

To ensure consistency we specify

(6.4)

k

2 (10\ -= o.
.1:0 "

With the class (6.4) we associate the operator ik1 given
by

(6.5)

where z(x) is an arbitrary function assumed sufficiently
differentiable.
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The operator (6.6) is then said to have order p if the
coefficients Us' are such that

J

ik1(Z{X.); afl~ '::.C,..,h'tI..(~i")(x.) (P+I"* 0 (6.7)

where C; is the coeffi cient of hi 'Z (i) (x) in the Taylor
expansion of (6.6) about the point x.

Not; ng that
..f [~P. Cl.] : 0cJ....kt I fI~ r~ 0 (6.8)

we can then say that the multistep method (6.4) will
give us the exact answer (in the absence of roundoff
errors) if the solution is a polynomial of degree less
than or equal to p.

We also define the linear operators ~ and ~k .. by

and

(6.l0)

where again z{%) is assumed sufficiently differentiable.

6.2 Implicit Non-Polynomial Operators
Initially we will be considering implicit operators

and we therefore define the implicit operator J4kl applied
to any function z{x) by

(6.11)

where the !(k+l) coefficients Qsj,l ~ s ~ l.O ~ j ~ k
can be determined as functions of the stability
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parameters ao.,O<j<k-2 by requiring
J --

A [-::t.T• Cl. ·1-:.0
kA. ' ~J

(6.12)

where

(6.13)

The values QSj which satisfy (6.12) are written as

(6.14)

which for notational simplicity we will write as
QSj" The resultant operator .Ak1, whi ch is zero-

stable, is then referred to as the stable (k.i)
implicit operator. Thus

(6.1S)

If however we set

,., \,2r_··,Q"2 (6.16)

where

(6.17)

then we could have solved for Cloj'O ~j ~ k -z tn

addition to the Qsj• 1 ~ s ~ 2, a!.. j ~ k and the values

of Goj and QSj which satisfy (6.16) are written as

(6.18)
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which for notational simplicity we will write as aSj•
The resultant, operator.Ak1, which is generally not
zero-stable, is then referred to as the optimum (k.t)
in,~licit operator. Thus

(6.19)

We would now like to derive multistep difference
formulae based on the non-polynomial representation
(6.3).

For methods which are based on polynomials the
coefficients nSj are real constants but for a non-

polynomial representation the coefficients will
usually be functions of x. Since the derivation of
the recurrence formulae which will appear later in
this chapter are long and involve a complicated
notational system we attempt to prepare the reader
for what will follow by first giving a derivation
of the recurrence formulae necessary to determine
a particular non-polynomial based implicit operator.

'Consider then the zero-stable, implicit, non-
-(1)

polynomial operator~l where

(6.20)

and the coeff; cients 0..(,~) • 0 < j < k are determi ned
J --

as functions of the stability parameters QOj by
making
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T ~ \,1 (6.21)

and

i.~',l. (6.22)

Similarly the zero-stable implicit non-polynomial
-(l)

operator 1\jl is defined by

(6.23)

where the coefficients ~',.~~ 0 < j < 3 are.determined
J --

as' functions of the stability parameters o.Oj by

requiring

(6.24)

and

(6.25)

In addition we wi 11 also .need the optimum .implicit non-
: (')

polynomial operator A30 as defined by

= U)
_(j [ =U)1- I{) [ =U)1.;-t ao -z(x.); Q.o~ - Sl 'Z ('X) ; Q"o~ (6.26)

h h . . =c', . .were t e coeffi ctents QOj are determlned"by maklng
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(6.27)

and

(6.28)

Setting

(6.29 )

where

(6.30)

and substituting-for a~:)in(6.20) gives

(6.31)

T~ \,1 (6.32) i

while from (6.22) we have

(6.33) I
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Defining

(6.34)

means that (6.32) and (6.33) are equivalent to the
conditions

(6 •3~ )

Since do3 =-1 from (6.34) while (6.35) with z(x) = 1 implies

1
d02 = 1 - oL dOJo then from (6.35) we have

J=O

(6.36 )

j(l) _ ,a,
We note that .1'\30 [ZI(X)ja.'Oj ] is defined by replacing

each of the arbitrary '1f functions in the definition
=~a)

(6.28) of A30 by their derivatives.
Thus we can now write

(6.37)

The condition (6.22) with i = 2 will besatisf1ed if we
choose

(6.38)
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assuming the denominator is non-zero.
We have finally arrived at a recurrence formula
for the zero-stable implicit non-polynomial operator
- t1.)
Jl31 • Thus

(6.39 )

provided the denominator is non-zero.
To make use of the recurrence formula (6.39) we

- (t)
also need recurrence formulae for the operators~3l

;:: ll>
and A30 • By a similar process to that given
previously it is straightforward to derive the

-\1)
following recurrence formula for ~l . TRUS

(6.40)

again assuming the denominator to be non-zero. The
recurrence formula (6.40) can also be obtained
directly from formula (2.15) in Lambert and Shaw

-ll) =.)
(1966b). The operators Ajl and ..A30 correspond

:I

to the polynomial baSed"OperatorsA3l and A30
"respecti vely.

We now attempt to derive a recurrence formula
= Cl' :I ll)

for,~o. The operator~30 is already
normalized so that
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:: Q)

(l..o~ •Q. :::. (6,41)o~

Setting
-:::l') - - o ~1~1- - (6.42)Q. ~ o..oJ -+ c. 0..)°l

d subst t . f ;;.(I) in (6.26) we obtainan su stf tut tnq or (l0J

(6.43)

Defining

(6.44)

(6.43) becomes

(6.45)

j (0) [ .,. • (0)]Since )"\30 1jo.o.. = 0 for T = 0.1 (6.2l) together
with (6.45) implies

(6.46)

-From (6.44) dL01= -1 and so the condition (6.46) is
a (0)

the definition of AlO [oz(x.hi':ll. Hence (6.45)
becomes
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(6.47)

The condition (6.28) is then satisfied if we take

(6.48)

provided the denominator is non-zero.
We have therefore the following recurrence

formula for the optimum implicit non-polynomial= (l)
operator .A3•0• Thus

again assuming the denominator to be .non-zero.
Since

(6.50)

then (6.40) can be simplified to

(6.51)
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while (6.49) becomes

(E. 52)

If we obtain from tables the coefficients·of the
- (..0)

polynomial based operatorJt~1 then the three
recurrence formulae (6.39),(6.51) and (6,52) enable

-(1)
us to determine the coefficients of the operator ~31

in the following manner. We use (6.51)

- (I)
to find the coefficients of A31• Formula (6.52)

is then employed in the form

: l') ~ '() a. )
Jj r 1:"'\.0/1.J: - (tS:z.'(?<,) - H"'I X. IS. -,.'('1)

.Jt,)A lZ t~) o~ d"Tf
I
' (x.)

( ) . ~ (I)
to determine the coefficients ~o~ Of~30. Finally
we use (6.39)

- ('2.)
to calculate the coefficients ~~~) of ~3l.
Diagrammatically we represent this as



where the three elements at the base of the pyramid
are the polynomially-based operators.

This example illustrates certain points that
can be employed to simplify the notation relating
to the general (k.t) case. Thus we observe that the
same superscripts are often attached to both the
operator and the coefficients in the operator, and
that when the operator ;s applied to the derivative
of a function the coefficients also contain a dash
superscript. We will therefore delete any reference
to the coefficients when it is thought obvious what
is intended. In passing it is noted that an·'
alternative way of writing the operator
= lo) = lo)A 1 [z(x)]; s .A30 r '2 (x)] where the subscript

o " (Q)before the operator t~lQ indicates that the term
= (0)

z(x+3h) is omitted. Similarly the operator l.A!O

would have the terms z(x+3h) and z(x+2h) missing.
This use of the alternative form was not necessary
in the particular example we considered but it will
be required to indicate missing terms in the general
(k.t) case.

We now proceed to the general case and define
the N-zero-stable implicit non-polynomial operator
by
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where the Q.(:~,1 ~ s ~ l, 0 .::.j ~ k are determi ned as
functions of the stability parameters 4o~ by making

o~N'!: P

and if N > 0

with P given by (6.13). The superscript Non the
- (N)-operator..A.kl denotes the number of arb1trary

functions ~l(x)' •••'~N(x) incorporated in the non-
polynomial base.

Similarly we also have the N~optimum implicit
non-polynomial operator defined by

-= lM)
Ak"[Z('X.~:& 'Pk('Zl'X.); a.o~l+ 11(J,[Z(x.); l~] t~o,k~O

::hl)where the Cl... , 0 ~ s ~Q., 0 ~ j ~ k are determined
~

by requirin9

= (JI)
Jj [~]: 0
Jl. \<1.

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)
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and if N > 0

'" ':.\, __. I N (6.58)

- eN'
with Q given by (6.17). For k = 1 the operators ~~~

-ltd
and .AKa. are identical while we define

={,o)A [z(x.)] ~ - Z (x.)
00

(6.59)

Consider now the (N+1)-zero-stab1e implicit operator
- (~tl) .A k.t where the coeffi ct'ents :a..<:11), l~s~l. O~j~k are

detennined as functions of the stability parameters o..ol
by making

l' J ',_. _ •• » P- N- , (6.60)

and

i.~I,_ •• ", lit'. (6.61)

If we then set

(6.62)

. -C .... 'Jand substitute for ~~j in

- (H.. ,) -ttl)A. [~(1.~:..A&(ox.)]"'l r'Z(~);'C.,]
Kt. Kt Kt •

- l.fl)
Since AIC1[~] la 0 forT. 1••••• P-N!''.1.-{6060) is

(6.63)

equivalent to

(6.64)
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S b . . f - OH I)
U st t tut inq or o.~l in (6.61) from (6.62) and

simplifying shows that (6.61) is equivalent to the
conditions

(6.65)

and

(6.66)

Defining

(6.67)

means that (6.64) implies

(6.68)

while (6.65)'implies

Since dOk = -1 from (6.67) while (6.68) with z(x) • 1
k-2

implies aO•k .. , • 1 - .r dOj then from-'(6.68} and
J=O

(6.69) we have
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where the a:~;) 0 .::.s ~.1'" 1,O~ j ~k .ara de.termined

by making

Hence we can write

The condition (6.66) will then be satisfied if we
choose

-

assuming that the denominator;n (6.73) is non-zero.

Thus finally we arrive at the general recurrence
formula for the N-zero-stable implicit.non-polynomial
operators.

(6,70)

(6.71)

(6.72)

(6.73)

(6.74)
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again assuming the denominator in (6.74) is non-zero,

Setting Ii = 0 in (6,74) corresponds to tilerecurrence
formula (2.15) given in Lambert and Shaw (1966b), We note
also that when N = 0 the coefficients ~~:) in
.s (0) [ , -(0)~k,t-l Z9(:x.)j are the same as the a~.. occurring in
=(~ ~

~k,t-l [z(~)1since there are then no arbitrary functions

present,
We would now like to derive a general recurrence formula= (N)

for the N-optimum implicit non-polynomial operator ~Kl 0

Before doing this it is necessary to introduce another
=CH,

optimum operator ~~Kl defined by

where

and the coefficients M~:lare determined by requiring

and

(6.7S)

(6.76)

(6.77)

(6.78)
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The right hand side of (6.75) is a linear combination of
values of z and its first (L-q+l) derivatives at
x, •••x + kh except that there are no z(t-q,+I)terms at
x + kh, ••• ,x + (k-M+(q-l )(k+l)+l)h. An example of this= la)
woul d be the operator 2A.31 given by

.1 \l) r 1 =t'l ::ta, =(,) :0(" \
1.n~ L-z.(X.)J :: 20.00 Z(:Jt.) .... 1.Q.~IZ(X+h)+:a. o.~ 'Z.(~+2~)+1Q.01'Z(x. ...3~J

... Q.l') hz.' {x.) + Q.l') h-z' (:x....h)
1 U~ ..1 II

where the coefficients lii!~)are obtained from the conditions

and

Return; n9 to the (N+l )-opt1mum'impli cit· non-polynomia 1
C(tI+\)

operator A.l<t • k ~ 1. which is determined by

(6.79)

ar.d

l- \r _._,,)N+I , (6.S0)

we will now assume that this operator has been normalized
so that

(6.S1)
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In addition we can set

(6.82)

where

--
til< :: 0 . (6.83)

-(tit') ~ ("'+1)
Substituting for iis.~ in .n.l<t [z(x)] we obtain

(6.84)

Defining

(6.84) becomes

:. (t",) = lM) _

A'C! [Z(x.)] = ~"l [zl'X.~ - C~,lC'".A.d.['1(x.)>> d.'J1. (6.86)

=IN)
Since A.u [x, = 0 for T 1:1 0 ••••• Q-2-N. using (6.79)

and (6.8~ implies

A,u.['X.T; d,sl1:0 ..." O, .,Q-l-N
• (N)

while Alet fni.('JC,)] 1:1 0 for i = 1 ••••• N together wi th

(6.80) and (6.84) implies

(6.87)

(6.88)
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Conditions (6.87) and (6.88), with a1k = 0 from (6.85),= eN)are precisely the definition of the operator lA" s :
Hence (6.86) becomes

We can then satisfy (6.80) by taking

--C
.t,IC-1

assuming the denominator in (6~90) is non~zero.

Thus the general recurrence formula for the
optimum implicit non-polynomial operator is

again assuming the denominator is non-zero.
When N = 0 (6.91) becomes

:lo)
.AKt[z{x.j]

The formula (2.16) in Lambert and Shaw (1966b) should
correspond to (6.92). but does not because their

(6089)

(6.90)

(6.92)
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formula (2.16) is in error.
Formula (6.91) holds when 1= 0 in which case it is helpful
to use the relation

To complete the recurrence relations for the implicit
operators we now derive a recurrence formula for the

=(H ..,)
operator M .A1<2 0 Consi der then the operator
1h'+I) -(If-.,)M~ a(.t. whose coeffi dents ",Q.:&j are determi ned by

making

.,.::0, ',".".19-3- M-N

and

where we assume that this operator has been normaHzed
so that

= ltd
= Mat_,....,\(k+')-M-' •

Setting

= (N+I) = (N)
Q.r' = Q. + C .

fI\ vJ 11\ 'l "SJ

(6.93)

(6.94)

(6.95)

(6.96)

(6.97)

1
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and (6.98)

to obtain

= (pi"") = (tI)A [~(x.)1::. A ["%('X.~ + ~ [Z('X.); AA c. S.] . (6.99)
P\ Kt. 1 M Kl. ~.L r, ~

Defining

(6.100 )

and using (6.100) to simplify (6.99) we get

(6.101)

where

(6.102 )and

't = C.
tI\ .t.-\,\(

-= (N)
Since t1.AI<t. [x'1'] = 0 for T = 0.1 ••••• Q-2-M-N

using (6.94) and (6.101') implies

T ~ O,I, .,Q-3-M-N (6.103)

-=(N)
while MAkt [Wi.ex)] = 0 for i = 1••••• N together
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with (6.92) and (6098) implies

Conditions (6.103) and (6.104) together with MdSj

= 0, s > 1- q + 1 and Mdi-Q+l,j = 0, j ~ Q(k+l) - M
correspond to the definition of the operator

:: (III)
M+1AKJ..' Hence (6.101) becomes

(6.105)

while (6.95) is satisfied if we take
= (tI)

_ M .A le &. ['11"N+I (-x.)]
't - =(10A [WII.1('X.)]"'1 Kt

provided the denominator is non-zero.

(6.106)

Hence the general recurrence relation for the
= ("'+l)

operator M ..A Kt. is

again provided the denominator" is-non-zero.

We note that by setting M'= 0 in'(6.107) we
.obtain (6.91). Hence (6.91) is a particular case
of (6.107). Thus the two formulae (6.74) and (6.107)
enable us to construct any implicit non-polynomial
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based operator solely from implicit polynomial based

operators. To illustrate this we now give two examples.

Examele 1.

This operator is calculated in three stages starting
-(0) = (0) = (0)

from the polynomi a 1 based opera tors A41 t Jt 40 t ..A., 30
::. (0) =(.0)

and A20 where Ako is 6k•

-(a)
Stage 1. Calculate A..., [z(x») from (6.74) and

Al')[Zi(X)], Ala) Izl(x)l from (6.91).
40 30

-(1.)
Stage 2. Calculate J{ [z(x)] from (6.74) and

=(2.) 4'A [z I (x)] from (6.91).
~ -(1)

Stage 3. Calculate A<4-lfz(X)] from (6.74).

Diagrammatically we represent this by

-('1.)
Example 2. ~32

This operator is calculated in two stages starting
CP> ~lO) jlo)

from the polynomial based operators ~32 J=l3i and 1~3l'
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- <I)

Calculate.A [z(x)l from (6,,74) and
=h) h
A3\ ['%-' (1)] from (6.107).

-h)
Calculate ~ [~(~)] from (6.74).

32
Stage 2.

Diagrammatically we represent this by

We do not give an example for the construction of an
N-optimum implic'it formula since it is thought unlikely
that such a formula would ever be used in practice
other than in obtaining zero-stable formulae by use of
the recurrence relations.

6.3 Explicit Non-Polynomial Operators
Our aim is to derive recurrence formulae for the

explicit non-polynomial operators and we will proceed
in a similar fashion to the implicit operators. We
define the explicit operator ~ kt applied' to any
functi on z (x) by

where the 1k coeffi cients bSj t 1 ~ s ~ 1. 0 ~ j ~ k-l

(6.108)
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can be determined as functions of the stability parameters
bOj~ 0 ~ j < k - 2 by requiring

where

R ~ jJ< .

The values bSj which satisfy (6.109) are written as

which for notational simplicity we denote by 6s .•
J

The resultant operator ~kl' which is zero-stable.
is referred to as the stable (k.t) explicit operator.
That is

If however we set

where

then we could have solved for bo .• 0 < j < k - 2 in
J --

addition to the bsj, 1 ~ s ~t. 0 ~ j ~k-Iand the

(6,109)

(6.110)

(6,111)

(6.112)

(6.113)

(6.114)
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values of bOj and bSj which satisfy (6.110) are written
as

(6,115)

which we denote by 6sj for convenience. The resultant
operatorBk2, which is generally not zero-stable, is
then referred to as the optimum (k,t) explicit operator:

(6,116)

For the non-polynomial based operators we have the
- eN)

N-zero-stable explicit non-polynomial operator SkI.
defined by

- CH)where the coefficients lr f.~' 1 ~ s ~ I, 0 ~ j ~k - 1

are determined as functions of the stability parameters
bOj by making

(6.118)

and

(6.119)

while the N-optimum explicit non-polynomial operator
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is defined by

=(M)where the bs. ,0< s < t. 0 < j < k - ')are determinedl - - --
from

(6.121)

and

(6,122)

- CH) ::. (N)
For k = 1 the operators ~Kt and i3Kl are identical.

Since the derivation of the recurrence formulae
for the explicit non-polynomial operators is very
similar to that of the implicit we relegate the proofs
to Appendix 2 and restrict ourselves here to quoting
the following results

and
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(6.124)

i');.'J~~'J N"'~S
where we assume that the denominators in (6.123) and
(6.124) are both non zero

When using the recurrence formula (6.123) with k =
·(H)

we find that the operator Ao i-I occurs. The general
I

recurrence formula (6.91) for the optimum implicit non-
polynomial operator is however only valid for k ~ 1.
Hence we need an additional recurrence formula to cover
the case when k = O. The proof of this recurrence
formula is relegated to Appendix 2 and we only quote
the result:

(6.125)

where again the denominator is assumed non-zero.
The two formulae (6.123) and (6.124) together

with (6.91). (6.107) and (6.125) enable us to construct
any explicit non-polynomial operator directly from
explicit and implicit polynomial based operators. To
illustrate this construction we give two examples.

-('.1.)
Example 1. ~ll

This operator is calculated in two stages starting
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from the polynomial based operators

Stage 1. - (l) At\)
Calculate ]~, [z (x)] from (6,123) and 20[Z' ~»)
from (6,91)

- (1.)Stage 2. Calculate !Ol [z(x)l from (6,,123),

Diagrammatically we represent this by

Example 2.
-(3)B;
11

This operator is calculated in three stages starting
;f\(o) = (0) ~ (0)

from the po lynomi a1 based ope rators.D ..A. ,J=l .
31 • 11 '1 1.

-(tl
Stage 1. Calculate 'B~l [zC"ltij from (6.123) and

=(6) -to)Al..['z,· (~)] , ,A l,[z'(%)jfrom (6.107).
- (2.)

Stage 2. Calculate ~ -n [z(~)l from (6.123) and
=(.).A1•[z I (:Ie)1 from (6.91).

-('1)
Stage 3. Calculate B' [2(X)] from (6.123).

II
Diagrammatically we represent this by



6.4 Stability Characteristics of the Non-Polynomial Based
Formulae

From their definitions the orders of the various non-
polynomial based operators are as follows

O~erator Order
A(tI)[ Jz(x) P-N 1 ~ 1, k > 1 (6.126.1)kt
-(N);t [~(~)]Q-N-2 1~ 0, k > 1 (6.126.2)
Kt

= fI')A [-z(xij Q-N-M-2 t ~ 0, k > 1 (6.126.3)
M, Kt

-CN) (6.126 )
j3 [z(~)] R-N 1 ~ 1, k > 1 (6.126.4)1<1
S(t#) [z (x)1 S-N-1 1. ~ 1, k > 1 (6.126.5)Kt
·(N,1\ [z(x)] !-N-1 l,. ~ 0, k > 0 (6.126.6)

01
-(0)

where the order of ~oo is defined to be -1.
Our aim is to determine the stability characteristics

of the non-polynomial based operators. Initially we will
only consider the implicit zero-stable non-polynomial based
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-(N)

operator Au. From (6.74) we have the recurrence relation

Using tne order relations given in
- (PI).A.
k1

[ 1TNH (~)]

C."
hAte 1_'[ rr~t, (x)],

(6.126) we have

::. O(h)

This implies that the (N+l)-zero-stable implicit operator is an O(h2)
perturbation of the N-zero-stable implicit operator. It follows
therefore that for any N > 0 the N-zero-stable implicit operator is an
O(h2} perturbation of the corresponding polynomial based operator.

Similar arguments can be used to show that, relative to the
corresponding polynomial based operators, the N-optimum implicit operator
is an O(h} perturbation, the N-zero-stable explicit operator is an O(h2}
perturbation and the N-optimum explicit operator is an O(h) perturbation.

Thus for the zero-stable operators the stability characteristics of
the associated non-polynomial based formulae are the same as those of
the corresponding polynomial based formulae. No conclusions can be drawn
regarding the stability characteristics of the optimum operators since
the non-polynomial based operators are only an O(h) perturbation of the
corresponding polynomial based operator.

6.5 Local Error Bound for the Non-Polynomial Based Formulae
The formulae (3.1), (3.2), (3.3) and (3.4) in the third

chapter give the local error bound for a first-derivative
operator. For the general operator t kl we have
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(60127)

where

(6.128)

Since the function z(x) is assumed to be sufficiently
differentiable and continuous then if the kernel G(a) is of
constant sign throughout 0 ~ a ~ k we can apply the first
mean-value theorem for integrals to obtain

For r ~ J + 1 we have

·~-sJ (6.130)
(r- 5)!

Setting r = p + 1 in (6.130) and using this in (6.128) and
(6.129) gives

(6.131)

If we denote the kernels of the non-polynomial based
operators ..3(N) 1(N) _E (N) 1) (N) ~ (N) a (N) by"'kt 'n kt ' Ml'l kt • (1 kR •J) kl. ." at.

G~~~ (a), G~~~ (a). MG~~~(0), G~~'(a). G~~~(a)t

Gd~~(a) respectively then for the zero-stable implicit

operator A ~~+1) we can wri te



-tN) =(w)When GkU(o) and (.~ ( 0"), 0 <: cr < k each have the same
".. "'K I-Ia --, I

sign (60132) reduces to

k~l
where i. E:[x,x+kh] t ... E.[x,X+kh], j = 1,2.

J .lJ

Similar bounds to (6.132) and (6.133) exist for the
optimum implicit, zero-stable explicit and optimum
explicit non-polynomial operators.

6.6 Work Involved when using the Recurrence Formulae to
Derive the Non-Pol1nomial Based Operators

6.6.1 Arithmetic O~erations
Using the recurrence formulae, given in the previous

sections, to derive a non-polynomial based operator is not
the only way of carrying out the derivation. One could
make the operator exact for any given set of functions by
substituting these functions in the operator, equating to
zero, and solving the resultant set of linear simultaneous
equations directly for the coefficients. Obviously we would
wish to use the most efficient method to derive the operator
and we will therefore try to estimate the work involved
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in deriving an operator both by using recurrence formulae
and by the direct solution of the linear simultaneous
equations. In this section consideration is given to the
number of arithmetic operations involved and discussions
regarding the amount of storage necessary are left to a
later section. Since it is unlikely that anyone would
use the optimum operators in practice we omit these
completely from the rest of ti'e chapter.

Initially we consider the N-zero-stable implicit
operator..A ~~) and ;ts der ivation by recurrence
formulae. There are essentially N stages in the
derivation of .A~:).In the J-th stage we have to calculate

in order to obtain

-\1) :(1) = ('3') =(1)
11' rz(~)' ~ [z'(x)] ~ it It [z'(x~, ,"'"'l ,Jr ..•['ZI(X)] (6.135)
}1.ka.l U) I(,l-l ' , k,"-' "N". Jicl••

The work involved in this is

(!+I)(k+I)-t 1(k.\).+ fR(k+.I)-IJ+ _.•... __+t2(k4\)-~+jl

+ l(k+I)+[1(\(+')-11+ ... _ ...+{l(ktl}-N+'l]

operations where an operation is .regarded as equivalent to
a multiplication and an addition. There are also an
additional N-J+l divisions which we overestimate as being
equivalent to N-J+l operations. Hence at the J-th stage the
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total number of operations is

We must now sum (6.136) over J running from one to N.
Hence we have

H N2. (i+ \)(\<t \) -+2.(N-J+ t){21tK+l)- N-t j + l)
"3~' '3::1

Evaluating (60137) gives a total of

N (k+ 1)(1N+ 21 + I) - ~ (tJ+ 1){2N- 5)

operations for the calculation of the N-zero-'stable implicit
"'(N)operator .)\I(t by means of recurrence formulae.

By a direct method using Gaussian elimination we would
need

operations in carrying out the elimination and back
sUbstitution. Hence we need to compare (6.138) and (6.139)
for any given set of k ,2 and N to determi ne the more
efficient method. The following table, Table 6.1. gives the
values of (6.138) and (6.139) for 1= 1,2; N = 1,2,3,4 and
k = 1,2,•••,5 subject to the condition that R(k+l) ~ N.

(6 136)

(6_137)

(6.138 )

(6.139)
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Tab1e6,1

-,,_~ ~-
1 N k Recurrence (6,138) LJi reet (6,139)
1 1 1 9 6

1 1 2 13 17

1 1 3 17 36
1 1 4 21 65
1 1 5 25 106

1 2 1 21 6

1 2 2 31 17
1 2 3 41 36
1 2 4 51 65
1 2 5 61 106
1 3 2 52 17

1 3 3 70 36
1 3 4 88 65
1 3 5 106 106
1 4 3 102 36
1 4 4 130 65
1 4 5 158 106
2 1 1 15 36
2 1 2 22 106
2 1 3 29 232
2 1 4 36 430
£: 1 5 43 716

2 2 1 37 36
" 2 2 55 106c:

2 2 3 73 232
2 2 4 91 430
2 2 5 109 716
2 3 1 64 36
2 3 2 97 106
2 3 3 130 232
2 3 4 163 430
" 3 5 196 716'"
2 4 1 94 36
2 4 2 146 106
2 4 3 198 232
2 4 4 250 430
2 4 5 302 716
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We summarise these results in Table 6.2 where we quote the
minimum value of k. for a given Nand t. at which the
recurrence derivation becomes more efficient.

1 N k

2

2 4

3 5
4 7

2
2 2
3 2
4 3

Hence when Q is one the minimum value of k increases
faster than linearly with N so that the recurrence
derivation would probably only be used when [~equals
one and k is at least two, It is possible that when
[~equals two or three we might employ the recurrence
derivation provided the value of k was at least four or
five respectivelyo If 1 is two however. the recurrence
derivation becomes more attractive to use since the
minimum value of k increases less than linearly with
respect to N, Larger values of I would make use of the
recurrence derivation more efficient still in
comparison to the direct method.

~e now consider the N-zero-stable explicit operator
- eN)~kl which also has J~ stages in its derivation by
recurrence formulae. In the J-th stage we need to
calculate



in order to obtain

The number of operations involved in this stage is

k(i+l)'" .. lk +(lk-l) :t(ik-(N-1)J

... Rk + (ik-\)'" t {lk - (N-J)j + N-Jt' (6,142 )

Summing (6,142) for J running from 1 to N yields
.N H

~ (\\(1+1)+ I) + ~ (~-J+1)(22\<- N+j+ \)
J~' 3:\

(6.143)

Evaluating (6.143) gives a total of

(6.144)

operations for the calculation of the N-zero-stable
- (N)explicit operator 13,< .. by means of recurrence

formula, By the direct method we would use

Table 603 compares the number of operations as
given in (60144) and (6.145) for 1 = 1.2\N=1.2.3.
4.k=1.2.3.4,5 subject to the condition tk ~ N.
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Table 6,3

~ .. ~-.~.~. -."" ......___. -",<"_"~,,......,__,..,~ \.-.;.--

N k Recurrence (6 c 144) iJ;rect
p-:_..,_.-----~

2 10 6

3 14 17

1 4 18 3b

1 !:) 22 65
2 2 23 6
2 3 33 17
2 4 43 36
2 5 53 65
3 3 55 17

3 4 73 36
3 5 91 65
4 4 106 36
4 b 134 65

2 J 2 16 36

1 3 23 106
1 4 30 232

5 37 430
2 2 39 36
2 3 57 106
2 4 75 232
2 5 93 43u
3 2 67 3b
3 3 100 106
3 4 133 232
3 5 166 430
4 2 98 36
4 3 150 ios
4 4 202 232
4 5 254 430

These results are sunvnarised in the following table which
quotes the minimum value of k for a given Nand J at
whi ch the recurrence deri va tion becomes more effi ctent ,
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Table 604

1 N k

1 1 3

2 4

3 7

4 8

2 1 2

2 3

3 3

4 4

The results for the N-zero-stable explicit operator follow
the same pattern as those of N-zero-stable implicit
operator. From Table 6.4 we can see that when 1 t s one
the minimum value of k increases faster than linearly
with N so that the recurrence derivation would probably
only be used when N is either one or two in which case k
must be at least three or four respectively. If 1 is
two however then the minimum value of k increases less
than linearly with respect to N and the recurrence
derivation becomes more advantageous while larger values
for R make use of the recurrence derivation still more
efficient in comparison with the direct method.

A tentative conclusion for the values of N. k and t
that have been considered and based solely on the number
of arithmetic operations involved in the derivation of
both implicit and explicit zero-stable operators is that
the method employing recurrence relations should only be
used when either 1 is one and N'is sufficiently small
with respect to k as given in Tables 6.2, 6.4. or if 1
is two then k must be greater than or equal to No
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6 6,2 3tora,9.eSpace
With the vast development in computer technology over the
ldst twenty years and the consequent increase in the
available storage space in most computers one does not
usually have to worry unduly about storage space required
since this is no longer the restriction it once used to
be. However for completeness we will compare the amount
of storage space needed for both the recurrence derivation
and the direct method and show that the same conclusions that
were drawn from a comparison of the arithmetic operations can
also be drawn from a consideration of the storage space
required,

-(M)
Consider first the N-zero-stable implicit operator !:liet.

Since the recurrence technique can be used so that each
stage overwrites the previous stage,from (60135) it is easy
to see that we need

(~+1)( k+ I).. ~ (k...I) t .~ fj lk+ \) -(N -1)1

+(1+I)(k+l) + 1(k·.I)+_._,... + ti(k+\) -(N-1)J ~[l(kil)- (N-I)) (6.146)

storage locations. This is not the total-number of locations
needed but it is judged to be the most relevant quantity to be
compared with the storage needed for the solution of the
linear simultaneous equations in the direct method, Both
methods do require a small amount of additional temporary
storage space but this is small in comparison and is
approximately equal in both methods and hence we ignore it"
The direct solution will require

(6.147)
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storage locati )ns, Simplifying (6.146) gives

(k+I)(2tN-t t+ 2) - (N-I)). (6,148)

storage locations for the recurrence technique, Table
6c5 then gives a comparison of (6,148) and (60147) for
R =- 1,2~ Nc:::l,2,3,4,k::::l,2.3,4~5 subject to the
condition thati(k+l):- No

Table 6.5
~

R N k Recurrence (6.148) Direct (6,147)
1 1 1 10 6

1 2 15 12
1 3 20 20
1 4 25 30
1 5 30 42
2 1 13 6
2 2 20 12
2 3 27 20
2 4 34 30
2 5 41 42
3 2 23 12
3 3 32 20
3 4 41 30
3 5 50 42
4 3 35 20
4 4 46 30
4 5 57 422 1 1 16 20
1 2 24 42
1 3 32 72
1 4 40 110
1 5 48 156
2 1 23 20
2 2 35 422 3 47 72
2 4 59 110
2 5 71 1563 2 44 423 3 60 72
3 4 76 110
3 5 92 1564 3 71 72
4 4 91 110
4 5 111 156

We summarize these results in Table 6.6 where we quote
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the minimum value of k for a given Nand 2 at which the
recurrence derivation becomes more efficient.
Table 6,6

.2 N k

1 1 3

2 5

3 7
4 8

2 1 1
2 2
3 3

4 3

Using these results for the N-zero-stable implicit operator
we can draw similar conclusions from the storage space
requirements to those drawn from the number of arithmetic
operations. Hence when L is one the value of N has to be
sufficiently small with respect to k to make the recurrence
derivation more efficient while when R is 2 the recurrence
derivation becomes more attractive since k need only be as
large as N. Higher values of t reflect better on the
recurrence derivation.

- eN)For the N-zero-stable explicit operator ~kt we
restrict ourselves to quoting the storage requirements for
both methods of derivation, recurrence and direct, since
it is straightforward but tedious to show that the
conclusions one obtains are the same as in the

-(N)previous section. The operator ~~L can be seen from (6.141)
to requi re

{(l.l)k+1] + ~k+. + {lk-(N·-2)]
-4-f~·+')k· .. tJ~lk·t. __. _.~(Jk-(N-l)] .. [R.k-(N-')1 (6.149)
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storage locations for the recurrence derivation, This can
be simplified to

k(2tNt R +2) - (N2- 2N-I)

while the direct solution requires

storage locations.
Although the results from this section back up the

evidence obtained from the comparison of the arithmetic
operations it is important to remember that the additional
storage space required for the recurrence derivation is
relatively small and hence our judgement of the method
to use should be based completely on the number of
arithmetic operations involved. This is particularly
important for methods based on arbitrary functions which
necessitate recalculating the operator at each step, xn+k'
of the solutiono

Finally it should be also noted that the recurrence
derivation of each of the operators can be suitably
modified to cope with second-order ordinary differential
equations of the form

(6.151)

y" = f(x,y) (60152)

with appropriate initial conditions. In fact the recurrence
derivation can be applied to cope with any order differential
equation of the form
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y (r) = f (x.y) (6e153)

where r > 1.

u,7 Numerical Testing of Methods Derived b,t_Recurrence Formulae
As a numerical test of methods derived by recurrence

formulae we will attempt to find a solution to the following two
problems given in Bettis and Stiefel (1969):

A) Harmonic Oscillator
y" ::;:-y Range [0, 401T]

where

y = lY + i 2Y

whi 1e at x = 0

= 1

This problem has the solution

lY = cos x

~ = sin x

B) Perturbed Harmonic uscillator

y" + y = 0.001 exp(ix) Range [0,401TJ

where

while at x = 0
~ = lyi = 0

lY = 2:"0 = 1
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This problem has the solution

lY = COS)( + 0,005 )(sin x

2Y = sin x - 0,005 x cos x

Both of these problems are second-order differential
equations. We need therefore a multistep method which is
directly applicable to second-order differential equations.
If we consider the N-zero-stable implicit operator E~~)
defined by

where the C~J)'0 ~ j ~k. are determined as functions of
the stability parameters COj by setting

_,.::.2, .. ,k+2-N N~k

and

then it can be shown that the recurrence formula for the
N-zero-stab1e implicit operator is

(6. 154)

(6.155)

(6.156)

(6.157)
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provided the denominator is non-zero.

We note that the multistep method which has c~~)
as its associated operator is a fourth-order method of
St'Ormer type;

2 + = h 2 ( f (1)+10 f (1)+f (1))yn+2 - yn+l Yn ~ n+2 n+1 n

while one multistep method which has ci~)as its
associated operator is the sixth-order method of
Stbrmer type:

In problem A we seeka.multistep method which is
exact for x, X2, sin x and cos x.We can thus employ
the recurrence formulae (6.l5~). (6.91) and (6.107) to
construct the appropriate operator c~~).In problem B
we seek a multistep method which is exact for.x. X2,

sin x, cos x. x sin x and x cos x and so we can construct
the appropriate operator CJ~)again using the recurrence
formulae (6.157), (6.91) and (60107).

We apply the multistep methods determined from the
operators c(~~and c1~)to problems A and B respectively
taking the stepsize alternately as ~/18, v/9, ~/6. ~/3

,

while the extra starting values required are taken from
the theoretical solution. The calculations were performed
using double precision on the IBM 360/67 at Newcastle
University. In the following table, Table 6.7, we quote
for each problem and each stepsize the error in the
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numerical solution of 1Y and 2Y denoted by El and E2
respect ively

Problem A Prob 1em B
h El E2 1::1 E2

TIIl8 -•806 J'10-13 .293.'0- rz -,980.10-13 ,264,,10-12
TI/9 -0289,.10-13 ,353lC10-13 -,U22.10-13 ,347.10-l3
rr/6 -.363,,10-13 ,211j,,1O-13 _,105.10-14 ,2881'10-13
TI/3 -0999.10-15 -,236_10-13 _,135.10-13 ,110.10-13

The errors incurred in both problems are negligible and
we observe that on these two problems we do not experience
any loss of accuracy when deriving our methods by
recurrence formulae,
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Chapter Seven
Introduction

In the previous chapter we have outlined the idea of using
non-polynomial based formulae in the solution of the initial
value problem. It was shown how any linear combination of
arbitrary functions could be used as the non-polynomial base
and a method of obtaining non-polynomial based formulae from
polynomial based formulae by m~ans of recurrence formulae
was derived. The use of this technique is however
restricted to those problems where we can surmise what the
appropriate combination of arbitrary functions is to be
before we start the numerical solution. If however we are faced
with a problem which has special difficulties. such as a
singu~arity in the solution. then we may prefer to work with
an adaptive formulae based on the representation (6.1)
as proposed by Lambert and Shaw (196~) and Shaw (1967)
where the parameters, A and N, which control the position and
nature of any possible singularity are continuously
modified throughout the solution.

In this chapter our aim is to investigate whether an
adaptive type of formula can be derived for an
interpolant of the form

Y(x)
L

= li=O
(7.1)

where the L + constants ai(i=O,l •••,L) are regarded as
uade termtned coefficients while the 2N coefficients
b1 •••••bN,Al'.o.,ANare to be determined by the behaviour of
the particular differential equation whose solution is sought.
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7,' One-Step Explicit Methods
Analogously to Lambert and Shaw (1966a) 'lIe start by

considering one-step explicit methods over the range [xn,xn+11.
To determine the L+l undetermined coefficients ao,.,.,aL in
(7,1) we need L + 2 equations. These'equations are obtained
by observing that if the theoretical solution y(x"). which we
approximate by the numerical solution. is to be represented by
the interpolant Vex) in the range [xn'xn+l] the' following must
hold

V(xn) :: Yn

V(xn+l) = Yn+l (7.2)

[d
S
s V (X)]

dx X=X
n

= f(s-l)
n s = 1.2 ..... L

where

[
(s-l) , . (s-1) ~f~S) = * (x.y) +f(X.y)* (x,y) (7.3)

X=Xy=yn
n

If we set
L .

P(x) = l a.x'. 0 11=
(7.4)

then from (7.1) we must have

s=0. 1 ••••• L (7.5)

which using (7.2) yields
N

P( s )(x ) = f (S- 1) _ L bAs e Amxn s= 1 • 2 ••••• L • ( 7 • 6 )n n m=l m m
Now

(7.7)

Expanding P(xn+l) by a Taylor series about xn gives

V(xn+l) = P(x ) + hP(l)(x ) + ~(2)(X )+o••~L(X ) + '0.n n Z:- nL:- n
N

••• + L b eAnixneAmh
mel m (7.8)
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Substituting for the derivatives of P(x) from (7.6) and
using (7,2) we obtain after simplification the following
equation

Since the term in the square brackets is the difference
between eA~h and the first L + 1 terms of the Taylor
series for the same expression it follows that the
perturbation term is of order at least hL+lo Our definition
of the local error under the usual localizing and
differentiability assumptions is

(7.10)
where

(7.11)

Hence subtracting (7.11) from (709) gives
co T hL+p

= I Pc+p!p=l
(7.12)

where
NT = _f(L+p-l) + I b AL+p AmXn

p n 1\')",1 m m e (7.13)

In order to calculate bl'o ••,bN,A1' ••••AN we set
Tl = T2 = ••• = T2N = 0

This gives us a set of 2N simultaneous non-linear
equations for 2ttunknowns Am and bm• Writing these
equations out fully we have

f(L) = I b AL+l eAmXn
n m=l m m

(7.14)

f{L+l)
n

N
= I b AL+2 eAmXn

m=l m m,,
t

(7.15.2)

(7.15.1)
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f(L+N)
n

N
= L

m=]

(7,15,N+2)

f(L+2N-1 )
n

(7.15.2N)

If we let A1' A2"o., AN be the roots of the polynomial
N N-l N-2A - 91A -92A -···-gN-1A -gN = 0

then multiplying equation (7.15.1) by -gN' (7,15.2) by
-gN_l,••,(7.l5.N) by -gl and adding the resulting equations
to (7.l5.N+l) gives

_9 fell _ g f(l+l)_ _ g f(l+N-l )+f(L tN) ,.
N n N-l n • • • 1 n n

N~ b AL+l eAmXn (-g -g A - ••• _ g AN-l+ AN)m~l m m N N-l m 1 m m
From (7.16) the value of the bracket on the right hand side
is zero. Hence rearranging we have

9 fell + g f(l+l) + + 9 f(l+N-l) • f(L+N)N n N-l n •.• 1 n n
If we now multiply (7.15.2) by -gN' (7.15.3) by -gN-l ..••
(7.l5.N+l) by -gl' add the resultant equations to (7.15.N+2)
and simplify using (7.16) we obtain

g f(l+l) + g f(l+2) + +g f(l+N) = f(l+N+l)N n N-1 n ••• 1 n n
Starting one equation further down the set (7.15) each
time and repeating the above technique. which is known
as Prony's Method [Hildebrand (1956)]. gives us the following
set of equations written in matrix form as

{7.15)

(7.16)

(7.17)

(7.18)

(7.19)
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I
If(L+N-l)
n
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f(L+l) f(L+N-l)
0.. = fL+Nn - - - - - n n!I

f(L+2) - - - - f(L+N)
CJ" 1

fL+N+l
n - - - - n lI- n

I II (7,20)I
I

I I

f(L+2N-2) I l+2N-l
------- - - -- - - n gl n..

rf (L)
I n

If~L+l)
I

By inspection it can be seen that the resultant set of
N simultaneous linear equations for the gls are symmetric
about the leading diagonal. Hence once we have solved (7,20)
for the gas this enables us to use (7.16) to find the values
of Am' m=l, •••,N. The values of the b's can then be obtained
by solving the last N equations in (7.15) which are linear
simultaneous equations for the b's or alternatively one could
use a least squares technique on all the 2N equations.

It is possible that when solving a particular problem
some of the values obtained from (7.16) for the Am.m=l •••••N
may be complex. Since the coefficients of (7.16) are real all
complex roots must occur in conjugate pairs. We must therefore
allow the values of the bls to be complex as well as the AIS.
In practice this corresponds to modifying the form of the
interpolant (7.l) to include sine and cosine terms.

7.2 One-Step Implicit Methods
We now consider whether anyone-step implicit methods

can be derived. In this section it will be shown that
various implicit methods can be derived by a similar
procedure to those for explicit methods. If (7.1) is a~ain
taken to be the underlying interpolant we start by attempting
to satisfy the following equations
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Y(Xn) = Yn

Y(xn+1) = Yn+1

[d
S
Sy (X)]

dx xex n+l
s = 1.2 •••• ,L.

Proceeding as before we can develop the formula
L s

_ Y =. \' (_l)s~l,g.,_f(s-l)+
Yn+1 n s~1 s. n+1

N ~ L+q\'bmeAmXn+ 1 \' (-1 )L+q-l h L+q
t: c (I +q \ ' Amel q=l ~ "

with a 'oelll~ error given by
00 T hL+p

Tn+1 = I ~p=1 (L+P);
where

(L+ 1) N 'x L+ L (-1 )r+1T = [-f p- + l beAm nx p] L --p n m=l m m reO (L+p-r)!r!
If we then set

T1 = T2 = ••••. = T2N = 0
in order to calculate bl' ••••bN.Al' •••AN we obtain the same
set of equations given in (7.15). We can thus employ the
same technique used in the derivation of the explicit methods
to derive various implicit methods.

The methods obtained by making (7.1) satisfy the
equations (7.21) are not the only ~ne-step implicit methods
that can be derived by this technique. Instead of (7.21) we
might make (7.1) satisfy

(7,21)

(7.22)

(7.23)

(7.24)

(7.25)
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~ [V(X)] = f
U)I. x=x n

n

~ IV (x)]._ = fn+1x-xn+l
We can then carry out a similar procedure to those previously
indicated to derive a one-step implicit method which
effectively turns out to be a modification of the trapezoidal
rule.

7.3 Exelicit and Imelicit Multistee Methods
The disadvantage of the one-step methods derived in the

previous two sections is the necessity to calculate higher
derivatives. Since this can be very time 'consuming for even
the simplest of functions f we now investigate whether we
can derive multistep methods'basedon'(1~1)as the
underlyi ng interpolant. The'approach we ',followis
comparable to that in Shaw (1967).

We will assume that:the·theoretical solution y(x)which
we again approximate by·the numerical solution, is to be
represented by the interpolant Y( x}' in the range [xn t xn+k1.
The following equations must then'be satisfied

t = O.l •••••k

fn+t = rh Y(x)l _l' J X-Xn+t
t·O.l •••••k'

where k' = k - 1 for explicit methods while k' • k for
implicit methods. If we set

(7.26 )

(7.27)
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N

Q; = Y i - lm=l
and

, N A.Q. = f. - I b A. e mXi
1 1 m=l m m

then equations (7.28) and (7.29).can be combined with (7.27)
to give

t=O.l ••••• k

and
t=O.l •••• .k '

We will choose L = k ' - 2N + 1 so that since L > O.
k' > 2N-l while if L is zero the right hand side of (7.31)
is identically zero.

Introducing the real numbers at' t I: O.l ••••• k and
St' t = O.l ••••• k' where

(7.28)

(7.29)

(7.30)

(7.31 )

ak = 1 } (7.32)k
ak-l = r at-l

implies t=O
kr a I: 0 (7.33)

t=O t
Multiplying Qn+t in (7.30) by at,t I: O.l ••••• k.Q·n+t
in (7.31) by -hSt' t = O.l ••••• k·and adding gives
k k ' L k . k'. ,r atQn+t-h 2 StQ1n+t = .2 a.I2 atX~+t-ih 2 atxri~t]

t=O t=O 1=1 1 t=O taO

where (7.33) has been used to eliminate ao in (7.34) while
if L is zero the right hand side of (7034) is zero.
Equating the coefficients ai.i = 1,'0" L to zero yields
a system of kl-2N+l equations in the k'+l variables
So, ••• ,6k which can be solved in terms of the parameters
at' t I: O,1 •••• ,k-2. Since xn may be taken as zero
without any loss of generality we obtain the following

(7.34)
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equations for the Bt, t = O,', •••,kl

i = 1, •.• ,k'-2N+l

In solving (7.35) any 2N of the Bt,t=O,l, •••,k' may be chosen
arbitrarily and we will choose Bo,B" ••• ,S2N-l' Equation
(7.35) is then solved for Bt,t = 2N •••••kG in terms of
the parameters ao.al ••••,ak'Bo, •••,B2N-l. Finally
Bo, •••,82N-, are chosen to be the solution of the 2N
equations obtained by setting i = k' - 2N+2 •••••kl+l in
(7.35). Hence (7.34) becomes

(7.36) is thus a multistep method whose associated
operator is

k k'
L[Q(X)ih] = I atQ(x+th)-h l BtQ' (x+th)t=O t=O
where the at are the stability parameters and the at
are obtained from

k I , k
L ti-1B = r L tiatt=O t t=o

Since (7.38) implies that the order is k'+l then the local

; .. 1••••• k·+l

error of (7.37) is given by

where
k k'r. ' (~ . r ~ .r-1 ). = rT.l J aj:l rJ Bj

t J=O J=O

Substituting in (7.36) from (7.28) and (7.29) we obtain

r=k'+s+l

k k' N k k'Ia.v = h I B f + l b { l a eAmXn+t_h L B A eAmXn+t}t=O~n+t t=O t n+t m=l m t=O t t.O t m

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

(7.40)

(7.41)
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If we now introduce the forward difference operator ~ where
~zr = zr+l - zr and use the fact that ~LZr = 0 if Z is a

polynomial of degree less than or equal to L - 1 then we
can return to (7031) to obtain

t = 0.1.2 to ••• 2N-l

This gives us a set of 2N equations from which we can

(7029) we have

L L L N~ Q: = ~ f. - ~ l b A eAmXi
1 1 m=l m m

Hence (7.42) implies

t c: O. 1 ••••• 2N-l

It is straightforward to show that

Combining (7.43) and (7.44) together gives

(7.42)

(7.43)

(7.44)

tcO.l •••••2N-l (7.45)

Writing these equations out fully we have
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(7.46.1)

(7.46.2)

(7.46.N+1)

(7046.N+2)

L
6 fn+2N-1

eANh _ gleA(N-1)h _ g2eA(N-2)h···-gNaO

then multiplying (7.46.1) by -gN' (7.46.2) by -gN-l.·.·.
(7.46.N) by -gl and adding the resultant equations to
(7.46.N+1) gives

L L L L-gN6 fn - gN-16 fn+l-···-g16 fn+N_1+A fn+N

From (7.47) the value of the bracket on the right hand
side is zero. Hence rearranging we have

L L L LgN6 fn + gN-16 fn+l+ •••+g16 fn+N_l a 6 fn+N
If we now multiply (7.46.2) by -gN' (7.46.3) by -9N-l.·· ••
(7.46.N+l) by -g1' add the resultant equations to (7.46.N+2)
and simplify using (7.47) we obtain

L L L L9N6 fn+l + 9N_16 fn+2 + ••• + g16 fn+N·a fn+N+l

(7.46)

(7.47)

(7.48)

(7.49)

(7.50)
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Starting one equation further down the set (7.46) each time
and repeating the same technique gives us the following set
of equations written in matrix form as

~Lf L
n+1 ------- ~ fn+N-1 gN

~Lf L
n+2 ------- ~ fn+N gN-1

L= ~ fn+N
L~ fn+N+l
I
I (7.51)
I

I
I

LI
~ fn+2N-l

We note that this set of N simultaneous linear equations
for the gm' m=1.2 ••.•N, is symmetric about the leading diagonal.
Hence once (7.51) has been solved for the 9m.m=l,2, •.•N we can
find the roots of (7.47) which is an N-th degree polynomial in
eAh and hence determine the value of each Am. The values of
the bm' m=l,2, •••N can then be obtained either from the last
N equations in (7.46) which are linear simultaneous equations
for the b's or alternatively by using a least squares technique
on all the 2N equations.

The formula (7.41) can thus be used as modified multistep
method with a local error of ordar k for an exp licit method and
order "+1 fer an in,plicit nie;';!,·Jd.

7.4 Numerical Testing of Exponentially Adaptive One-St~j) f·1ethods
and Multistep Methods
As a test of the methods derived in this chapter we will

attempt to find numerical solutions for each of the following
three problems.
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Problem A
yU :: x- y + 2 range [o.i]

with
y (0) = 2

This problem has the theoretical solution
y = 1 + x + e-x

Problem B
yH = ylogy

x range [1,2]

wi th

y(l) = e3

This problem has the theoretical solution
y = e3x

Problem C
range [3,5]

with
y (3) = e" + e 3 + 2

This problem has the theoretical solution
y = eX + e3x + 2

Thus problem A is a linear differential
equation with a decreasing exponential in the solution
while problem B is a non-linear equation w·ith an increasing
exponential in the solution. The third.problem is a Hnear
equation with two increasing exponentials in the solution.

Both the one-step and mul'tistepmethods we have
outlined require us to find at each step, the solution of
two sets of N simultaneous linear equations (one for the
gm' and one for the bm) and the roots. of an N-th degree
polynomial. If, in addition, our method is implicit we
must repeat all this work on each iteration. We therefore
only consider explicit methods and keep the value of N as
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small as possible by setting it equal to onev

Solutions for the three problems A. Band C have been
obtained by each of the following methods:

the Taylor series fourth-order method.
y =s +hf 2f(1)~f(2)£.f(3)n+1 n n z : n j: n q. ; n
the multistep ada~tive metnod,
yn+4=yn+3~[55fn+3-59fn+2+37fn+1-9fn]

+b[eAXn+4_eAXn+3

+k(55eAXn+3-5geAXn+2+37eAxn+ l_geAxn)]

and the Adams fourth-order method

Yn+4 =J n+3-:~4 (;J:j-{ n+3 -:J;ttn+2+37f n+1·9fn)

The calculations were carried out in double precision
on the IBM 360/67 at Newcastle University and the
extra starting values necessary for the multistep
methods (7.54) and (7.55) were taken from the
theoretical solution.

For each problem we quote in Table 7.1 the relative
error at the end of the range in the numerical solution
obtained by the methods (7.52). (7.53). (7.54) and
(7.55) and the corresponding value of the theoretical
solution.

(7.52)

(7.54)

(7.55)
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Tab 1e 7,1

Method
Problem (7.52) (7.53 ) (7.54) (7.55) Theor. Soln.

A .469 10-10 •141 10-0- .469 10-16 .444 10-5 0.23679 101

B .141 10-14 0211 10-3 .705 10-15 .451 10-2 0.40343 103

C .503 10-8 .117 10-2 .179 10-6 .258 10-1 0.32692 107

From these results we can see that in problems A and 6.

where we can exactly represent the theoretical solution by an
interpolant of the form (7.1) then the errors are negligible.
In problem C however where we only include one exponential in
our interpolant we observe that the numerical solution.
obtained by either the one-step method (7.52) or the multistep
method (7.54) is clearly more accurate than the solution
obtained with either the Taylor Series fourth-order method
or the Adams fourth-order method (7.56).

With such limited results it is impossible to draw any
definite conclusions. The results however do indicate that
this technique of adaptive exponential fitting may be
beneficial if the theoretical solution is exponential in
nature and we recommend that further investigations should
be made on this particular topic.
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Chat...::.:oyEight
Conclusions and Possible Future Extensions

8.1 Second-Derivative Stiff~.~'-St.~~l.c;_!lultistepMethods
In chapter four we have shown that particular choices for the

third characteristic polynomial of second-derivative stiffly-stable
multistep methods can result in a significant increase in the size
of the stability region. Larger increases can be obtained by the
use of optimization techniques where usually the size of the
stability region increases with the number of coefficients we allow
in the optimization process.

Subsequent work on this aspect might include alternative
choices for both the third characteristic polynomial and the
coefficients employed in the optimization. There is however no
need to restrict this to the third characteristic polynomial and
we could instead vary the first characteristic polynomial' subject
always to the constraints imposed by zero-stability. In addition
we should like to test numerically many of the methods we have
obtained with larger stability regions. The optimization technique
could also be employed to maximize stability r.egions for first
derivative methods and in particular Gear's method.

The method of order k + 3 which we have developed would appear,
from the numerical results obtained, to have no real advantage over
the method of order k + 2 proposed by Enright and indeed with very
stiff problems it may be worse since the star~ing formula is not
stable at infinity. This can restrict us to a very small starting
stepsize. It may however be possible to combine both the order
(k+2) and order (k+3) method to overcome this difficulty and take
advantage of the smaller error constants of the' higher order method.

8.2 Second~Derivative y-Implicit Runge-Kutta Methods
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In Chapter five we have proposed L-stable second-derivative
\Runge-Kutta methods of orders three and four which are implicit

with respect to y. This means that at each step of the calculation
we need only solve a set of m simultaneous non-linear equations in
contrast to the conventional k-;mplicit methods where we have to
solve a set of mR simultaneous non-linear equations. The m non-
linear equations for In+l are then solved by an iteration process
based on the Newton-Raphson method.

Our fourth-order method is compared numerically with a fourth-
order method of Butcher and we have shown that on the linear
problems tested the new method performs considerably better than
Butcher's method. We are currently engaged in further numerical
testing of this new method in order to see how it compares on non-
linear problems and we see this topic as a suitable area for
further research.

803 Recurrence Relations for Non~Polynomially Based Operators.
In Chapter six we have developed a complete set of recurrence

relations for explicit and implicit operators associated with those
linear multistep methods which are based on a representation
involving a polynomial part and any number of arbitrary functions.
Estimates of the work incurred in deriving' these operators are
formed in terms of the number of arithmetic operations involved.
and the amount of storage required. These estimates were compared
with the corresponding quantities for obtaining the operator
directly by the solution of a set of linear simultaneous equations
and we showed that the conclusions are the same whether we consider
arithmetic operations or storage. Tables are given to enable us to
decide which method of derivation should be employed.

Although the work in the chapter is almost complete possible
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extensions might include examining whether the structure of the
recurrence formulae can be simplified in those cases when the
non-polynomial part is comprised of a set of similar functions
such as exponentials,

8.4 Exponentially Adaptive One Step Methods and Multistep Methods
In chapter seven we have derived, using Pronyijs method. one-

step methods and multistep methods which are exponentially
adaptive. We note that the amount of work involved at each step
if we are using N exponentials is large since it includes the
solution of two sets of N linear simultan~ous equations and the
determination of the roots of an N-th degree polynomial. It is
therefore recommended that N be kept as small as possible and
prefer&Jly set equal to one.

The numerical results we have taken appear to indicate that
this type of method may be useful for problems which are
exponential in nature. Any further work on this topic should
initially consist of taking additional numerical results in order
to properly evaluate the worth of this type of method.
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Table Al.4

Summary of the Largest Stability Regions obtained for
Second-Derivative Multistep Methods when the Third
Characteristic Polynomial is given by

w(~) k-r (r; - c)r= ~

k r c 0 Cp+l
3 1 .5 .075 .018

2 • 1 .088 .020
3 ·1 .089 .019

4 1 .9 .32 .010
2 .3 .39 .011
3 •1 .41 .013
4 • 1 .40 .012

5 1 .9 .66 .008
2 .3 .80 .008
3 •1 .99 .009
4 •1 .92 .009
5 • 1 .88 .008

6 1 .9 1.18 .006
2 .3 1.44 .006
3 .3 1.29 .005
4 •1 1.73 .007
5 •1 1.56 .006
6 •1 1.45 .006

7 1 .9 1.99 .005
2 .5 1.67 .004
3 .3 1.79 .004
4 •1 3.03 .005
5 ·1 2.67 .005
6 •1 2.36 .005
7 •1 2.13 .005
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Table A1.5

Summary of the Largest Stability Regions obtained for Second-
Derivative Multistep Methods when the Third Characteristic
Polynomial ;s given by

w(~} = ~k-r (~r _ cr)
k r c 0 Cp+1
3 .5 .075 .018

2 -.3 .097 .025
3 -.3 .071 .026

4 1 .9 .32 .010
2 -.1 .53 .015
3 -.7 .40 .022
4 -.7 .18 .043

5 1 .9 .66 .008
2 -. 1 1.34 .010
3 •1 1.33 .010
4 -.7 0.87 .014
5 -.7 .46 .028

6 1 .9 1.18 .006
2 - .1 2.73 .007
3 .3 2.68 .007
4 -.7 2.59 .008
5 -.7 1.79 .010
6 -.7 0.86 .008

7 1 .9 1.99 .005
2 -.1 5.15 .006
3 .7 4.49 .005
4 -.1 5.10 .006
5 -.7 4.95 .006
6 -.7 3.77 .007
7 -.7 1.36 .013
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Table Al,6

Summary of the Largest Stability Regions obtained for Second-
Derivative Multistep Methods when the Third Characteristic
Polynomial is given by

1)J(~) ;:~k-r ~ r-i ci~i=0
k r c 0 Cp+1
3 1 .5 .075 .018

2 -. 1 .095 .021
3 -.1 .097 .021

4 1 .9 .32 .010
2 -.3 .43 .012
3 -.1 .4B .014
4 -.1 .48 .014

5 1 .9 .66 .OOB
2 -.5 .94 .008
3 -.3 1.02 .009
4 -.3 1.05 .009
5 .7 .71 .026

6 1 .9 LlB .006
2 -.5 1.52 .006
3 -.5 1.75 .006
4 -.3 1.88 .007
5 -.3 1.90 .007
6 -.3 1.92 .007

7 1 .9 1.99 .005
2 -.5 2.45 .005
3 -.5 2.48 .005
4 -.5 2.62 .005
5 -.5 2.75 .005
6 -.5 2.85 .004
7 .7 2.29 .013
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Table Alv7

Optimized Stability Regions for Second-Derivative Multistep
I~ethods0
We will use i to denote the number of coefficients in ~(~)
that were used in the optimization process and ~(O)(~) to
denote the starting value of ~(~)c

Table AL7,l
k=3i=1

w Y2 0 Cp+l Y{U)(~)

LO -.61 ,074 .017 ~3

.9 -.61 .074 .017 ~3

,8 -.61 .074 .017 ~3

.7 -.61 .074 .017 ~3

.6 -.597 .074 ,017 ~3

.5 -.497 ,075 .018 F;3

.4 -.397 0077 .019 F;3

.3 -.297 .081 .020 ~3

.2 -0197 .086 .021 F;3

.1 -.097 .094 .021 F;3

Tdb 1e A1.7 • 2

k = 3 i ..2

w Y2 Y1 0 Cp+1 ~(U)(F;)

1.0 -.743 -.257 00376 .022 F;(t-O•15)2
.9 -.655 -.220 .0423 .022 F;{t-0.15)2
.8 -.523 -.222 .0482 .023 F;3
.7 -.489 -.148 .0539 .022 t{t-O.15)2
.6 -.397 -.122 .0605 .022 ~3
.5 -.343 -.078 .0676 .021 t(t-0•15)2
.4 -.272 -.051 .0745 .021 F;3
.3 -.298 -.000 .0806 .020 t{t-0•15)2
.2 -.312 -.U22 .0853 .019 t(t-0.15)2
•1 -.099 -.000 .0941 .021 t3
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k = 3 i = 3

.
1jJ(0)(~)w Y2 Y1 Yu 0 Cp+1

LO -.696 o 122 0172 00089 ,035 ~3

.9 -.696 ,122 ,172 .0089 ,035 F;3

.8 -0696 ,122 .172 .0089 ,035 ~3

07 -0696 ,122 0172 00089 0035 ~3
.6 -.677 .0894 .102 .013 ,027 (E;-0.15)3
.5 -.559 - 0 163 .105 0018 ,035 ~3-.343E;2_78,
.4 -0464 -.0641 .047 .030 ,026 (E;-Oo15)3
.3 -.358 -.046 ,021 0049 .023 ~3-o337~2+o01l~
.2 -.325 ->016 .0025 .079 0019 (~-Ov15)3
o 1 - 0 130 -.004 ,0007 .094 .021 ~3

Table A1.7.4
k=4i=1

w Y3 D Cp+1 ljI(O){~)

LO -.859 .316 .010 E;3
.9 -.859 .316 .010 ~3

.8 -.797 .320 .010 ~3

.7 -0697 .328 .011 E;3
06 -.597 .341 .012 E;3
.5 -.497 .358 .012 E;3
.4 -.397 .381 .013 ~3
.3 -.297 0407 .013 E;3
.2 -0197 0438 .014 E;3
•1 -.097 .478 .014 ~3



- 191 -
T I' A1 .7.5rao re

k _. 4 i = 2
r: u Cp'] ----.;TO) (cl 1IW Y3 Y2!
h- 0 -.845 -. 155 .265 .012 ~4,Ii.

09 -.765 -.121 .283 .012 t;';

.8 -0678 -.098 .302 .012 ~4

.7 -.658 -.029 .322 .012 (+

.6 -.!:l86 -.0085 .339 .012 [,4
r

.5 -.516 .0080 .356 .012 r2(. r r,;.:,L(. E,- .. (•. J/

A -.525 .050 .371 .012 t;4

.3 -.506 .062 .379 .012 ~2(f,-0.25)2

.2 -.388 .038 .391 .012 ~4..
· 1 -. 176 .0076 .446 .014 f,lt

Tab 1e A1.7.6
k :: 4 i :: 3

w Y3 Y2 )'1 U Cp+1
1jJ-( 0) ( E; )

~. 0 -.542 .138 .309 .174 .017 t;(E,;-0.15)3
.9 -.042 .138 .309 .174 .017 ~(t;-0.15)3
.8 -.542 .138 .309 .174 .017 t;(t;-0.15)3
.7 -.786 .067 .154 .182 .013 t;(t;-0.15)3
.6 -.860 -.045 .122 .18b .013 F.(~-0.15)3

• !::i -"b3b '-.110 .090 .244 .014 3s(t;-0.15)
.4 -.040 -.007 .035 .307 .013 3t_;(r, .. 0.15)
.3 -.S·19 .042 .OU7 .3S8 .012 t;(~-0.15)3
.2 -.395 .038 .0002 .389 .012 Elt

>

• 1 -.176 .0076 .000 .446 .014 t;4
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Tab 1e Al. 7 "7--..--..-~-
k - 4 i ::= 4

r-~---'"(3 Y2 . Y1 y- D Cp+1 ~(O)(~)
! 0
.--~--"----. (~_0.1)41,0 -~429 .094 -.165 -.157 .081 ,.027
,9 -.429 .094 -.165 -.157 .081 .027 (~-O. 1)4
.8 -.439 .116 -.121 - ,.147 .081 .026 (~-O. 1)4
."7 -.483 .157 .205 -.105 .098 .028 (;_0.1)4
.6 -.742 .061 .116 -.061 .092 .020 (;_0.1)4
.5 -.771 ,053 .128 -.043 .103 .018 (~-0.1)4
.4 -.492 -.037 -.079 -.020 .208 .016 (~-0.1)4
.3 -,493 -,014 .320 -.107 .273 .014 (~_0.1)4
.2 -.443 .057 -.0007 -.0002 -387 .012 (~-0.1)4
• 1 -.176 .0076 .000 .000 .446 .012 ~4

Table Al.7.8
k -:: 5 ;= 1

'-'

w Y4 D Cp+1 ~(O) (F,;)

LO -.997 ,634 .0073 ~5

.9 -.897 .664 .0077 ~5

.8 -.797 .701 .0079 ;5

.7 -.697 .741 .0082 ~5

.6 -,597 .793 .0084 ~5

.5 -.497 .853 .0087 ~5

.4 -.397 .921 .0090 t;S

.3 -.297 1.00 .0093 t;5

.2 -.197 1.09 .0095 sS

• 1 -.097 1.20 .0098 sS
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Table A1.7.9
k-=5 ;=2

w Y4 Y3 D Cp+1 1jJ(O)U~)
--
1.0 -.974 -.026 .631 .0075 ~5

.9 -.893 -.0059 .663 .0077 1;5

.8 -.842 .034 .692 .0076 1;5

.7 -.783 .058 .722 .0077 ~5

.6 -.779 .1Ob .747 .0075 1;5

.5 -.739 .120 .766 .0076 ;3(c.;10.3)2

.4 -.747 .139 .778 .0075 ~5

.3 -.480 .054 .861 .0086 1;5

.2 -.313 .040 .981 .0091 ~5
• 1 -.318 .0099 1.15 .0097 ~5

Table Al.7.10
k ': 5 i = 3

w Y4 Y3 Y2 D Cp+1 1jJ(0)(~)

1.0 -.909 -.062 ·136 .556 .0087 ~2(~...0.1)3
.9 -.909 -.062 .136 .556 .0087 ~2(~_0.1)3
.8 -.909 -.062 ·136 .556 .0087 ~2(~_0.1)3
.7 -.835 .030 ·173 .560 .0087 ~2(~_0.1)3
.6 -.864 -.040 .120 .581 .0086 ~5

.5 -.639 -.065 .082 .719 .0091 ~2('_0.1)3

.4 -.693 .074 .017 .741 .0080 ~2(~...0.1)3

.3 -.539 .054 .0054 .822 .0084 ~2(~-0.1)3

.2 -.409 .047 -.0007 .909 .0088 ~2(~_0.1)3

.1 -.158 .006 .0002 1.13 .0096 ~5
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Tab 1e Al. 7. 11
k= 5 i = 4

w y Y3 Y2 Y, 0 Cp+1 tjJ(O)(F;)4
La -.595 .099 .212 -,143 .481 .012 S:(S:-0.1}4
.9 -.595 .099 .212 -.143 .481 .012 f;(S:-0.1)4
.B -.595 .099 .212 -. 143 .481 ,012 t,;(t,;-0.1)4
.7 -.595 .099 ..212 -.143 .481 .012 t;(F;-0.1)4
.6 -.435 ,107 .044 -.101 .614 .010 t,;s

.5 -.629 .044 . 126 -.058 .576 .0099 t;(S:-0.1)4

.4 -.686 .061 .076 -.022 .632 .0088 t;(~-0 ..1 )4

.3 -.520 0069 .018 - .006 .805 .0086 t;(F;-0.1)4

.2 -.445 .060 -.003 .000 .886 .0086 ~(F;-0.1)4

. 1 -.158 .006 .0002 .000 1.13 .0096 E;5

Table A1.7.12
k = 6 i = 1

w 'YS D C_p_+1 ljItlJ) U:)

1.0 -.997 1.103 .0057 ;6
.9 -.897 1.183 .0058 ~6
.8 -.797 1.274 .0060 F;6
.7 -.697 1.376 .0062 ~6
.6 -.597 1.490 .0064 ~6

.5 -.497 1.621 .0065 s6

.4 -.397 1.772 .0067 s6

.3 -.297 1.947 .0069 ;6

.2 -.197 2.151 .0071 1;6

.1 -.097 2.404 .0072 ~6



- 195 -

Table Al.7.13
k-=6 i=2

w Y5 Y4 0 Cp+ 1 1jJ(O)(~)

1.0 -1. 076 .093 1.048 .0054 ~6

.9 -1. 056 .141 1.071 ·0053 £6.

.8 -1 .018 .175 1.102 ·0053 ~!-t(~_0.3)2

.7 -0.990 .204 1.131 .0053 ~6

.6 -0.920 c 192 ,,165 ,0054 ~4(F.-0.3)2

.5 -0.946 .224 1. '64 .0053 ~4(~_0.3)2

.4 -0.786 .155 1.256 .0058 ~4(~_0.3)2

.3 -0.330 .090 1.813 ·0067 ~6

.2 -0.313 .040 1.882 .0068 ~6

.1 -0.138 .010 2.277 .0072 ~6

Tab 1e A1.7. 14
k = 6 ; = 3

w Ys Y4 Y3 0 Cp+1 1jI(0)(F,;)

1.0 -1.076 .093 .000 1.048 .0054 e;6

.9 -0.979 .126 .064 1.057 .0056 F,;6

.8 -0.979 .126 .064 1.057 .0056 ~6

.7 -0.979 .126 .064 1.057 .0056 ~6

.6 -0.979 .126 .071 1.061 .0057 F,;6

.5 -0.921 .239 .003 1.181 .0054 t;3(e;-0.3)3

.4 -0.916 .254 -.019 1.237 .0053 t;3(e;-0.3)3

.3 -0.764 .204 -.018 1.299 .0057 e;6

.2 -0.348 .030 .001 1.830 .0068 F;6

.1 -0.171 .009 .000 2.199 .0071 t;;6
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Tab 1e A1.7 • 15

k = 6 i ~4

w Y5 14 Y Y2 0 Cp+1 IjJlU) (~)
3"-

1.0 -1.076 ,093 .000 .000 1.048 .0054 t;;6

.9 -0.979 .126 .064 .000 1.057 .0056 ~6
·8 -0.979 ,126 ,064 .000 1.057 .0056 t,:6

.7 -0.979 ,126 .064 .000 1.057 .0056 ~6

.6 -0.970 .126 .071 .000 1.061 00057 £;6

,5 -0.806 .178 .075 -.042 1.110 .0060 F,2(~-0.1}4
,4 -0.916 .254 -.019 .000 1.237 .0053 .;3(.;-0.3)3
.3 -0.764 .204 -.018 .000 1.299 .0057 .;6
.2 -0.494 .072 .0001 -.0005 1.582 .0064 ~2(~-0.1 )4
. 1 -0.171 .009 .000 ..000 2.199 .0071 £;6

Table A1.7.16
k=7 ;=1

w Y6 I) C_Q+l IjJ(O)(E;)
1.0 -.997 1.843 .0045 F,7

.9 -.897 1.999 .0045 F,7

.8 -.797 2.175 .0047 E;7

.7 -.697 2.375 .0049 C;7

.6 -.597 2.604 .0050 e.7

.5 -.497 2.868 .0051 C;7

.4 -.397 3.176 .0052 e.7

.3 -.297 3.539 .0053 E;7

.2 -. 197 3.971 .0054 ~7
• 1 -.097 4.492 .0056 ~7
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Table Al.7.17
k ::: 7 i::: 2

w y y U Cpt 1 t/J(O} (E:)C; s
1.0 -1.098 .160 1,602 .0042 [.7

.9 -1.090 ,172 1.605 .0042 ;;7..,

.8 -1. 058 .215 1.621 .0042 E;.7

.7 -1.003 .263 1.660 .0042 ~5(E.,-0.5}2

.6 -1. 003 .263 1.660 .0042 ~5(E.,-0.5)2

.5 -0.997 .248 1.675 .0042 E.,7

.4 -0,745 .159 2.003 .0046 ~7

.3 -0.330 .090 3.190 .0052 £,7

.2 -0.313 .040 3.371 .0053 ~7

.1 -0.138 .010 4.228 .0055 ~7

Table Al.7.1B
k = 7 ; = 3

w Y6 Y5 Y4 0 Cp+l t/JlU)(~}

1.0 -1.098 .160 .000 1.602 .0042 f.7

.9 -1.090 .172 .000 1.605 .0042 e/

.8 -1. 056 .245 -.028 1.618 .0041 7,

.7 -1. 034 .249 -.010 1.635 .0042 ,7

.6 -1.025 .222 .021 1.649 .0043 E;,4 (E;.-0.3)3
·5 -0.997 .263 -.003 1.667 .0042 £,7

.4 -0.939 .282 -.025 1.734 .0042 E;,4(t;.-0.3)3

.3 -0.407 •126 -.003 2.857 .0050 £.7

.2 -0.313 .040 .000 3.371 .0053 £.7

.1 -0.234 .018 -.0005 3.743 .0054 (,7
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TalileA1.7.19_
k:71:=4

w Y6 Y5 'Y4 Y3 D Cp+1

1.0 -1. 100 .215 -.033 .001 1.585 .0041
.9 -10100 .215 -.033 .001 1.585 ~0041
.8 -1. 056 .245 ....028 .000 . 1.618 .0041
.7 -1.034 .249 ....010 .000 1.635 .0042
.6 -1.025 .222 .021 .000 1.649 .0043
.5 -0.997 .263 -.003 .000 1.667 .0042
.4 -0.939 .282 -.025 .000 1.734 .0042
.3 -0.407 .126 -.003 .000 2.857 .0050
.2 -0.313 .040 .000 .000 3.371 .0053
.1 -0.252 .021 .000 .000 3.660 .0054
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Table Al.8
A Search for Order'k+3' St.Iffly-Stab.l e seccnd-oertvat tve
Multistep Methods.
Once anything t s found wh+ch would precl ude use of the meth.od
the remaining information is omttted. We use A.P to denote
the additional parameter used in-fitting the increased
order while N.S.S. denotes not sttffly·stable.

k A.P. maxl~ljl maxl~ I D bs3j
1 YO 1.0 1.0 A-stable
2 aO 1.0 0.0 .51 2.01

YO 1.0 0.55 .27 2.02
Yl 1.0 1.75

3 aD 1.0 0.0 1.21 1.87
a1 1.0 0.0 1.80 2.08
YO 1.0 0.56 0.89 1.83
Yl 1.0 0.93 9.67 1.95
Y2 1.0 2.43

4 aO 1.0 0.0 2.12 1.89
a1 1.6
a2 1.0 0.0 3.60 2.25
YO 1.0 0.59 1.87 1.86
Yl 1.0 0.88 6.25 1.92
Y2 1.0 1.29
Y3 1.0 3.07

5 aO 1.0 0.0 4.05 1-95
al 1.0 0.0 4.78 2.07
a2 5.4
a3 1.0 0.0 N.S.S.
YO 1.0 0.62 3.,45 1.96
Yl 1.0 0.88 8.03 1..97
Y2 1.0 1.18
Y3 1.0 1.64
Y4 1.0 3.67
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Table Al.8 (Cant Id. )

k A.P. maX\F;ljl max It;3jI D bs

b aD 1.0 0.0 6,66 1.93
a1 1.0
a2 1.0 0.0 N.S.S.
0.3 14.7
a4 1.1
YO 1.0 0.0 6.16 1.94
Yl 1.0 0.b9 10.64 1.92
Y2 1.0 1.15
Y3 1.0 1.48
Y4 1.0 1.98
Yb 1.0 4.26
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Appendix 2

Additional Recurrence Relations for Non-Polynomial Based Operators
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A2.1 Recurrence Relation for the N-Zero-Stable Explicit OperatJr

-("'+1)Consider the (N+l)-zero-stable implicit operator 13Kt
where the coefficients 6(N+l) 1 < s < 1, 0 < j < k-l areSj - - --
determined as functions of the stability parameters bOj by
maki ng

(A2.1)

and
-(104 ....)

13k! [iT~(x)] : 0 (A2.2)

If we set

(A2.3)

- ("+1) iO(N+I)r.·1and substitute for b$j in .oK ... l2CX) we obtain
-(N+\) -(N)
13 [Z(1)1=B ['Z(x)1+~ [z(x);C,tJ
kL Kt 1<-'1' ...
-(H)

Since Jl(t[~"]:O for r = 1••••• R-N-l (A2.1) is equivalent to

(A2.4)

R,,"\JJ~1";C$j]: 0
Substituting for b~~+l) in (A2.2) from (A2.3) and simplifying

J
shows that (A2.2) is equivalent to the conditions

'T = \ R-N- \)_ ..-- (A2.S)

(A2.6)

(A2.7)

Defining

1.: S~ C\ c~\ ,li_\ e .0- ... J. I .. ~ I ,,,,••

(A2.8)
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means that (A2.5) implies

while (A2.6) implies

Since do,k-l= -1 from (A2.8) while (A2.9) with z(x)=l implies
k-2

do k-l~ l-.I do' then from (A2.9) and (A2.10) we have
, J=O J .

- (N)

RIC-I, I.[zCx.); Cij] ". - (I,k~h§\I<-"t_.[-Z'(X)j&:1] , (A2.11 )

Hence we can write

• (A2.12)

The condition (A2.7) will then be satisfied if we choose
-(N)

- 'BielEn-Nt' (x)]
t.,K.':=' hA(N) rlr~+I (x.)]

IC-\It-r

(A2.13)

assuming the denominator is non-zero.
Thus finally we arrive at the general recurrence

formula for the N-zero-stable explicit non-polynomial
operators.

(A2 .14)

assuming again the denominator is non-zero.
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A202 Recurrence Relatip'n for the N-Optimum Explicit Operator
=(.....,)

Consider the (N+l)-optimum explicit operator 1B~L
where the coefficients 6~~+1) 0 ~ s ~ ~, 0 ~ j ~ k-l are

determined by llaking

(A2, 15 )

and
= (N·H)13 [l1",,(~)1::01(2. (A2. 16)

If we set

b:(N·')= b:(~+:: .
S~ $~ C6~

-(N+1) = (N.')and substitute for 6s' in ~~. we obtain
J ~J

(A2.17)

(A2.18)

Defini ng (A2.19)

(A.29) becomes
= {N+'}. . :t.N) =.n [ ,
~Kt. tz('x.)]: ~Kt["Z('X.)]-to,K_' "K_l,l~(X.); cl$jJ •

=(H)
Since ~Kt[i'}.Ofor T = 0 •••• ,S-N-2 using (A2.15) and
(A2.20) impues

(A2.20)

1\ [-xT; d)J:O TSO, -.S-N-l
K-I,Jl. •
= (t.I)while S".t_[""j.(;);.)] = 0 fori .. 1 ••••• N together with

(A2.16) and (A2.20) implies

(A2.2l)

(A2.22)

Conditions (A2.2l) and (A2.22) together with aok= -1 from
=\1-1)

(A2.20) are precisely the definition of the operator A L'.',
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Hence (A2.20) becomes
= (Nt') = lit) _ =- (N)
B [z(x)l ~1l l'1(X.U - (0 K-l-At<-t J7.{X)] •
Kt 11 k1. I I

We can satisfy (A2.16) by taking

(A2.24)

assuming the denominator ;s non zero.
Thus we have the general recurrence formula for

the N-optim~m explicit non-polynomial operator

again assuming the denominator is non-zero
=(aI,

2.3 Recurrence Relation for the N-Optimum Implicit Operator ~o,
Consider the (N+1)-optimum implicit non-polynomial operator

A(N~')1> 1 which is determined by
OJ. -x+·)[x"'] = () T = 0 •. C Of.l -N-2

01
(A2,26)

i = 1, 0 0 • ,N+1 (A2.27)
We will assume that this operator has been normalized so that

ci(~~l) = &.(~ (A2,28)
and set

=(N+1) _ =(N) =caso - 050 + eso (A2029)
where

Cia = 0 (A2n30)
:1(.,,,,)

.. f =(N+1) .1l [10..\'$Ubstltutlng or QSO in "'OL ,-%"",,1 we obtain



Defining
(A2.32)

(A2.3l) becomes
2 (Wt\) ·ua) 1 _ :
n r'1(~)1~f\ [z{x.)J-co A (z.(~);clsal (A2.33)
Rot. 1.: 01 0 0,"-\

0(11)
Since Aot~'X."Y1-:0 for T = 0, •• ., l-N-l using (A2026)
and (A2.33) implies

Ao....l-x:"', cl"lC)1-:. 0 r = 0, .• j l-N-2 (A2.34)
while A."~llt'"W't,t'X.)l:'O for i = 1,...N together with (A2027)
and (A2.33) implies

i = l,o .. N (A2.35)
Conditions (A2.34) and (A2.35) are precisely the

~tJ)
definition of the operator J\:OJ .... Hence (A2.33) Leccnes

': (Itt') = (M) _ =-(M)
~ ot [z('X.)l ~ .§\ Ol [~('X.)1-Coo ~a,l-,('Z(~)1

We can then satisfy (A2.27) by taking

~~~ (1T..~,l~)l
Coo: • (II) 14

"O.t.-,(""N.H l-x.)l
•assuming the denominator is non-zero.

The recurrence formula for the optimum implicit non-
polynomial operator is thus

1 : Of) (,II)

.~:'~(1)]:.A:[~(1t)1-~:r~...{~)1~o,,,,~(~ll (A2.38)
~ot_,(11'..·,l~)l lla kt.'

(A2.36)

(A2.37)

again assuming the denominator is non-zero.


