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Abstract

This thesis demonstrates the adequacy of an object-oriented approach to the con-

struction of distributed metainformation systems: systems that facilitate infor-

mation use by maintaining some information about the information.

Computer systems are increasingly being used to store information objects

and make them accessible via network. This access, however, still relies on an

adequate metainformation system: there must be an effective means of specifying

relevant information objects. Moreover, distribution requires the metainformation

system to cope well with intermittent availability of network resources.

Typical metainformation systems developed to date permit information ob-

jects to be specified by expressing knowledge about their syntactic properties,

such as keywords. Within this approach, however, query results are potentially

too large to be transmitted, stored and treated, at reasonable cost and time.

Users are therefore finding it difficult to navigate their way through the masses of

information available.

In contrast, this thesis is based on the principle that a metainformation system

IS more effective if it permits information objects to be specified according to

their semantic properties, and that this helps managing, filtering and navigating

information. Of particular interest is object orientation because it is the state-

of-the-art approach to both the representation of information semantics and the



Abstract 11

design of reliable systems.

The thesis presents the design and implementation of a programming toolkit

for the construction of metainformation systems, where information objects can

be any entity that contains information, the notion of views permits organising

the information space, transactional access is employed to obtain consistency, and

replication is employed to obtain high availability and scalability.

Keywords: metainformation, metadata, information discovery, information

retrieval, object query, object-oriented database.
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CHAPTER 1

Introd uction

A meta-information system is a system that manages some information about an

information base and normally delivers very specific services. Typically, a meta-

information system is constructed to separate, in a single system, some data and

activity which may be common to a set of systems that manipulate an information

base; such systems are the clients of the meta-information system. Thus, meta-

information systems may vary in purpose and approach and, accordingly, can

be grouped in categories. For example, data dictionaries, frequently employed

in database management systems, office automation systems and CASE tools,

represent a category of meta-information systems for documenting information

structure. As another example, searching engines, widely employed in global

networks, represent a category of meta-information systems for resolving keyword-

based queries formulated by clients who aim at discovering network resources.

Our thesis proposes a novel category of meta-information systems and investi-

gates critical issues on constructing them. We introduce meta-information systems

whose purpose is to provide an object-oriented interface to information contained

in network resources in large-scale distributed environments. For simplicity, we

call these meta-information systems object engines, to connote the similarity be-



Chapter 1. Introduction 2

tween them and searching engines; both object engines and searching engines map

information extracted from network resources to references to these resources in

order to resolve queries. More specifically, an object engine maintains informa-

tion objects extracted from network resources: objects are instances of classes

that model information contained in network resources. Thus, clients of an object

engine benefit from it for they can express semantic knowledge (structure and re-

lationships) about the target information, rather than simple syntactic knowledge

expressed through keyword-based queries. In addition, an object engine may pro-

vide for preview of network resources (by examining object attributes extracted

from network resources), navigation through objects (by traversing conceptual ob-

ject relationships rather than actual links between network resources) and request

of services pertaining to network resources (by calling object methods).

Constructing an object engine involves concepts and techniques usually found

in database systems, information retrieval systems, distributed systems and pro-

gramming languages. Basically, an object engine requires an object-oriented

modelling technique, an object store (provided with concurrency control, remote

access, replication and recovery), index management, class space management

(schemas), object space management (views), a query language and operations

for object manipulation (creation, modification, retrieval, navigation and dele-

tion). While some of these subjects are well understood, others still need further

development and, especially, the combination of all of them in a single system

may prove to be a complex and challenging task. Our thesis defines a simple yet

coherent and effective platform for constructing object engines, as a starting point

for future development.
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1.1 Motivation

Information systems are required to be more efficient, effective and reliable as

the information base stored by and accessible via computers expands in quantity,

diversity and distribution. The introduction of object engines within this context

is motivated basically by the observation of the following facts:

1. Searching engines may cause inefficiency in the cases where the target in-

formation has a structure.

A critical factor in determining the efficiency of an information system is

the average rate of relevant hits in query results; non-relevant hits represent

waste of bandwidth, processor, storage and time. For this reason, it is im-

portant to have information systems that permit users to formulate queries

where they express the maximum of their knowledge about the desired in-

formation, thereby contributing to increase the rate of relevant hits.

The searching engines typically available in global networks employ infor-

mation retrieval techniques which permit users to formulate queries where

they express knowledge about syntactic properties of information, basically

by making use of keywords. For example, Archie [21] indexes keywords ex-

tracted from resource names, WAIS [30] supports full-content indexing and

Harvest [7] supports summary-content indexing. Certainly, this approach

is appropriate for the cases where either the information presents no struc-

ture or has a structure that is unknown to users. However, a problem that

frequently arises in keyword-based information systems is the large size of

results containing non-relevant hits.
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A significant part of the network resources in the global information base

has well-defined structure and well-defined interrelationship paths which,

if properly exploited, would permit users to formulate queries where they

express semantic knowledge about the target information. For example,

every Standard General Mark-up Language (SGML) [60] document has an

associated Document Type Definition (DTD) that contains a set of grammar

rules specifying the document structure. In fact, it is reported in [15] that

DTD permits representation of SGML documents as instances of an O2 [19]

database schema, thereby obtaining high-level query services. As another

example, structuring schemas' are used in [1] for specifying a map between

bibliographical references in BIB'fEX [35] files to database elements.

2. Object-oriented modelling provides for effective information representation.

Object-oriented data modelling represents a current end-point in the evolu-

tion of data modelling and is advocated to be an effective approach for the

representation of real-world complex entities and their relationships. This

suggests that information contained in network resources, including the links

between these resources, would perfectly be modelled using object-oriented

concepts. Thus, a schema (a collection of classes organised in hierarchies),

devised to represent the structure and the relationships of information con-

tained in a collection of network resources, would allow users to formulate

queries in a highly-structured fashion. Moreover, users would be able to

navigate through information by navigating through objects, and perform

operations on network resources by calling object methods.

1A structuring schema consists of a grammar with semantic actions.
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3. Object orientation is widely employed in reliable distributed computing.

Many distributed systems, including operating systems and platforms for

distributed programming, advocate the use of object orientation as an ad-

equate framework for their internal structuring and as a powerful abstrac-

tion at the user interface level. In particular, the object and action model

of computation [37] is a widely accepted approach to reliable distributed

computing. Examples of systems based on this model are Arjuna [62] and

Camelot [13].

1.2 Objective

Our objective is to contribute towards the efficiency, effectiveness and reliability

of information systems in large-scale distributed environments. We intend to ac-

complish this by introducing object engines, a novel category of meta-information

systems, as a means to provide an object-oriented interface to information con-

tained in network resources. Object engines are intended to be used in conjunction

with searching engines traditionally employed for information discovery in global

networks; whereas searching engines, which aim at ill-structured information, ob-

ject engines aim at well-structured information. Thus, information systems would

gain in efficiency through object engines because query results would present a

higher rate of relevant hits, when compared with searching engines. The gain in

effectiveness would come from the power of object-oriented data modelling; an

object-oriented view of information would provide a propitious abstraction for de-

veloping applications to manipulate information that has complex structure and
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relationships. Finally, the gain in reliability would be achieved due to the use of

object-oriented techniques which are well-established in modern distributed sys-

tems; transactional access would provide for consistency, while object replication

for high availability and scalability.f

1.3 Overview

Object engines present architectural and functional similarities with searching

engines, as illustrated by the scenario depicted in Figure 1.1. For simplicity, we use

the term broker io refer to both object engine and searching engine, to connote that

both types of engine are intermediate agents between network resources and client

programs. In general, client programs formulate queries which specify predicates

that may yield true propositions for some entities of the information base. For

this reason, the meta-information maintained by brokers to resolve queries should

consist of a relation between copies of portions of the network resources and

references to these resources; each copy should be mapped to a reference to the

corresponding resource. While a searching engine maps keywords extracted from

network resources to references to those resources, an object engine maintains

objects extracted from network resources; each object should have references to

the network resources from which it has been extracted. Thus, the modus operandi

2We say that an information system scales if the growth of the entire system does not cause

exponential growth of (1) the information maintained by the individual components of the

system, and (2) the performance of operations to enter, update, delete, navigate and search

information.
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of searching engines and object engines can be summarised as follows.

Searching engines:

1. Collector programs extract keywords from information resources and convey

such keywords to searching engines.

2. Searching engines maintain indices that map keywords to information re-

sources; they resolve keyword-based queries and return references to infor-

mation resources. Searching engines may co-operate with each other in order

to share index information.

3. Client programs formulate keyword-based queries and ask searching engines

to resolve them. The resulting references are used for retrieving information

resources.

Object engines:

1. Collector programs extract objects which are instances of classes (abstract

data types) from network resources and convey such objects to object en-

gines.

2. Object engines maintain objects and indices for object attributes and re-

lationships; they resolve object-oriented queries and return objects. Object

engines may co-operate with each other in order to resolve queries.

3. Client programs formulate object-oriented queries and ask object engines to

resolve them. The resulting objects are used for the following purposes:

(a) retrieve information resources: objects may contain references to infor-

mation resources
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(b) preview of information resources: objects may contain summaries of

information resources

(c) navigate to related objects: object engines resolve object references and

return the resulting objects

(d) perform operations on information: objects may provide methods which

can manipulate the corresponding summaries and information resources

(e) create and modify objects: in addition to objects extracted from in-

formation resources, object engines may maintain objects created by

clients, thereby behaving as information resources as well

Therefore, collector programs are specific to each type of information resource

and each type of broker; a collector program must understand the format or the

interface of a network resource and must understand the interface of a broker.

Also, client programs should understand the interface of a broker; depending on

the type of broker, a client program may have a different spectrum of services and,

by making use of these services, may perform specific tasks. On the other hand, a

general architecture can be devised for each type of broker, in especial for object

engines. For this reason, our thesis concentrates on the design and implementation

of object engines with the purpose of defining a platform for constructing them

and writing collector and client programs with simplicity, i.e., we make an effort

to obtain a simple interface for object engines. Nevertheless, we also develop a

specific collector program and a specific client program to demonstrate the validity

of the devised design and interface.
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1.4 Outline

Our thesis is structured as follows.

Chapter 2 describes related work that we have built upon, including informa-

tion discovery tools, object-oriented databases and object-based

distributed systems.

Chapter 3 presents an architecture for object engines that unites concepts of

searching engines, object-oriented databases and distributed sys-

tems.

Chapter 4 presents a simple object-oriented data modelling technique based

on the most salient features of many recently proposed models.

Chapter 5 presents a model for organising the class space based on conceptual

hierarchies of schemas and formally defines databases.

Chapter 6 presents a meta-schema, a collection of classes that model informa-

tion about classes and schemas, and show how this information is

mapped to meta-objects.

Chapter 7 presents a model for indexing object attributes and relationships,

and presents views and contexts for organising the object space.

Chapter 8 describes an implementation of the platform for constructing object

engines and illustrates its use through examples. The descripton

of the implementation concentrates mainly on the management of

object storage, including concurrency control, remote access (dis-

tribution), replication and recovery. The use of the system is dis-
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cussed together with the description of a query language for object

manipulation.

Chapter 9 provides conclusions and further research work.
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CHAPTER 2

Related Work

Object engines merge concepts usually found in several distinct areas related to

information processing. In this Chapter, we survey the most relevant works from

which we learned about concepts, approaches and experiences that had influence

in the architecture of object engines and in the implementation of the platform

for constructing object engines. We start the review with naming systems as they

are widely used for locating network resources, especially in distributed systems,

and discuss approaches that aim at providing high level queries. Then, we review

some file systems that also attempt to provide high level query interface to hierar-

chical naming structures. Also, we examine the main resource discovery systems

recently developed and deployed in global networks, especially the Internet, for lo-

cating network resources. Next, we describe the main features of some distributed

programming environments since object engines are distributed. Then, we review

the query language and processing aspects of object-oriented database systems

in order to illustrate the approach usually taken and that gave basis to the ap-

proach we took in designing object engines. Finally, we briefly discuss some other

approaches to information systems to illustrate the intensive research currently

being carried out on systems for structured information retrieval.
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2.1 Naming Systems

Much of the research on naming systems in the recent years has been devoted to

developing new models that avoid the restrictions imposed by the traditionally em-

ployed hierarchical organisation of name spaces. As discussed by D. B. Terry [65],

hierarchical naming lacks expressiveness to represent the complexity of real-world

entities, thereby preventing sophisticated queries. Universal naming systems, such

as the Domain Naming System (DNS) [42, 43] and Lampson's Global Directory

[36], generally restrict the structure of the name space to a hierarchy and support

a simple search strategy in which a name denotes a path through the hierarchy.'

This approach forces users to know enough attributes to construct a path name

according to that partitioning; a naming tree cannot be searched with flat search

requests, but rather must be traversed. The alternative models normally proposed

are often called descriptive naming or attribute-based naming. A descriptive nam-

ing system accepts queries containing whatever information clients know about

an object (not just its name) and responds with whatever information it possesses

for each identified object (not just its address). Others argue that no single model

can adequately address all situations. For example, Sechrest and McClennen [59]

define a framework to blend the hierarchical and the attribute-based naming mod-

els. We review some naming systems by highlighting their aspects that influenced

our work.

1DNS basically maps host names into corresponding Internet addresses and vice versa.
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Profile Naming Service

Profile [52] is an attribute-based naming system that provides white-pages service

for large networks. The system takes as argument a set of attributes that describe

an entity (a user or a organisation) and returns names of resources pertaining to

that entity. Thus, Profile is a supplemental naming service; users consult Profile

to learn names of resources that can be solved by existing naming systems. An

attribute is a syntactic entity of the form tag=value that denotes a property or

characteristic of an entity, such as phone=3335890811. A name server has a set

of attribute tags defined for all entries. Such a set contains predefined tags and

also may contain additional tags. Although attributes are tagged, clients are

not required to include the tag when they query a name server. The reason is

that tags are strings concatenated to attributes simply to enforce that attributes

that denote different properties be syntactically unique; an attribute's tag can be

determined from the syntax of its value.

Univers Attribute-based Name Server

Univers [9] is a generic attribute-based name server upon which naming services

can be implemented. Univers consists of a light-weight relational database for

storing information about resources, provided with a front-end interpreter and a

server framework to support remote access. Conceptually, Univers maintains a

database of objects, each of which corresponds to either some external resource

that exists outside the name server (network resources) or some abstraction inter-

nal to the name server, such as types. Such a database allows clients to identify
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objects with a set of attributes or properties that describe the object. Clients

query Univers by submitting a naming program containing functions applied to

sets of attributes. A naming program is constructed from a set of primitive oper-

ations that may be applied to the database, such as select, project, create.iobject,

and others; a LISP-like programming language is provided for this purpose. Nam-

ing programs can either be submitted to the interpreter or they can be stored in

the database as function objects. Univers imposes a type structure on the object

database, thereby permitting users to isolate interesting classes of objects upon

which they want to operate. The set of objects in the Univers database is par-

titioned in contexts, based on the authority that is responsible for administering

the objects. Univers employs check-pointing and transaction logging to ensure

database integrity and to facilitate failure recovery.

X.500 Directory Service

The X.500 Directory Service [68] has a semi-hierarchical naming scheme that

blends the hierarchical and the attribute-based naming models. In this scheme,

the attribute-based name space is restricted to a hierarchy: each level of the

naming hierarchy contains a set of attributes, thereby supporting a unique dis-

tinguished name for each object. A X.500 name is composed of a sequence of

comma-separated fields representing attribute-value assertions, where each asser-

tion selects one node at a different level of the hierarchy. For example, the name

(C = US,O = OSF, CN = Strauss) designates the object whose country is US, or-

ganisation is OSF and common name is Strauss. Users that have incomplete infor-

mation about an object must traverse the hierarchy one node at a time, browsing
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through attributes associated to objects, in order to learn the distinguished name

of an object. For example, a user can start by selecting a subtree corresponding

to a country, say US, then browse through all organisations within that country

until eventually selects one of them, say OSF, and finally issue a search request

having as an argument a string, say Strauss, which will be automatically associ-

ated with the corresponding tag in the current level of the hierarchy. The global

name space is distributed among its participanting sites. Administrative authority

over portions of the global name space is delegated to different autonomous or-

ganisations, which can transfer authority over portions of their assigned subtrees.

These portions are replicated on different servers. Each participating site main-

tains directory information about resources at that site, as well as administrative

information needed for traversing the tree and maintaining proper distribution

operation, including caching.

ANSA ware Trading Service

The ANSA Naming Model [66] is a generic context-relative naming model that

aims at interconnecting heterogeneous naming systems. An implementation of

that model, the ANSAware Trading Service, basically consists of a two-level ar-

rangement of naming systems: an attributive naming system, which relates at-

tributive names to invocation names, and an invocation naming system, which

relates invocation names to services. An invocation name unambiguously iden-

tifies a particular service and is used to interact with that service; the naming

convention for invocation names is determined by the characteristics of the infras-

tructure (e.g., a socket name). An attributive name identifies a set of entities and
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is attributed to an service by another entity; the naming convention for attributive

names can exploit the semantics of the naming domain. The attributive naming

system is further subdivided in two naming systems: a type naming system and

a property naming system. The type naming system maintains a sub-typing di-

rected acyclic graph of type names and an is-an-instance-of relationship between

service instances and types. The property naming system, on the other hand, re-

lates property names to property values. To reflect the has-properties relationship

between service instances and a set of property name/value pairs, each property

value is bound to an invocation name for a service instance. However, there is no

association between types and properties.

2.2 File Systems

Similar to descriptive naming systems, some file systems provide an interface

where files can be retrieved according to attributes rather than specifying a name

structured according to a static naming tree. We review some of these file systems

below.

Prospero File System

The Prospero File System [44]permits the building of large systems within which

users construct their own virtual systems or views by selecting and organising

files that they have identified as being of interest. Prospero relies on existing file

systems for storage and supports multiple underlying access methods. Prospero

is implemented as a distributed directory service that names individual files, plus
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a file system interface that calls the appropriate access methods once a name

has been resolved. The Prospero name space forms a directed graph in which

intermediate nodes are directories, leaves are files, and edges are links which may

have an attached filter program. By associating filters with links users can build

customised views from existing ones, reorganising or extracting part of them.

Thus, users can build views according to file attributes which are meaningful to

them, independently of the physical organisation. Although Prospero permits files

to be reorganised (and then designated) according to their attributes, it does not

support attribute-based queries; users are forced to designate files according to

some naming hierarchy.

Semantic File Systems

Semantic File Systems [22] provide flexible associative access to directories, files

and portions of files into traditional tree-structured file systems by automatically

extracting attributes from files and providing a query interface. Programs called

transducers parse files according to the file types and generates file's entities (e.g.,

a procedure in a source code file or a single message in a mail directory) and

their corresponding attributes. A query is a description of desired attributes

of entities. Query resolution is performed through the use of virtual directories

which are computed on demand, i.e., dynamically, to provide a user view of the

file system contents. Virtual directories interact with existing file system facilities,

and the syntax of a query is identical to file systems commands. For example, the

query Is -F /sfs/owner:/Smith will return all files in /sfs that are owned by Smith.

Thus, to have access to the contents of a file in that directory, the user should
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simply use a standard file system command, such as cat, although the directory

jsfsjowner:jSmith might not physically exist in the file system.

Nebula File System

The Nebula File System [8] merges the functionality of a traditional file system

with information management operations provided by database systems. Nebula

explicitly stores files as objects composed of a fixed set of attributes such as

owner, protection, project, file type, and a special attribute called text to represent

contents of files. The main purpose is to permit associative access to files using

a combination of file attributes, i.e., a descriptive name or a query. Nebula file

objects exist in a flat space of contexts and, within each context, users can organise

files using a set of views, rather than directories. A view is the set of objects that

are identified by a descriptive name, i.e., a view is dynamically created as the

result of a query. Recursively, the resolution of a query is scoped within a view;

the view obtained as the result of a query is an specialisation of the view against

which the query was resolved. Since objects are registered with indices rather than

directories, a view defines the portion of an index which must be considered for the

resolution of a query. For example, the query (format = text & project = plan2)

creates a view containing all files whose format is text and that pertains to the

project plan2, within a given context. This view can then be used to scope the

resolution of the query (name = notes2.txt) which will create a view containing

the file object whose name is notes2.txt, within the scoping view.
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Synopsis File System

The Synopsis File System [54] provides a logical interface to files through typed

entities that summarise information corresponding to properties extracted from

files in the form of a set of attributes added with a set of operations for interacting

with the information content of a file. Accordingly, each such an entity is called

synopsis. The type system uses an inheritance-based hierarchy to define types;

a subtype inherits the attributes and the methods of its parent. A declarative

language is provided for type definition and a scripting language is provided for

specifying operations. A type repository provides persistent storage for type in-

formation. This allows types which were unknown at the time of compilation to

be integrated into a client program in order to dynamically invoke operations on

synopses. Although type information assists in extracting useful information from

files, there is no report on the support of query facilities that make use of that

information, such as attribute-based naming.

2.3 Resource Discovery Systems

Many tools for network resource discovery have appeared in the recent years with

the increased availability of global networks. The basic function of these tools is

to help users to locate information resources pertaining to a subject of interest.

Typically users specify such subject through keywords and obtain as a result of

the query references to network resources. Surveys on these and similar tools can

be found in [58] and [46]. We review some of these tools to illustrate the different

approaches typically taken.
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Archie

Archie [21] is an index service for ftp sites that permits users to find files basically

by specifying regular expressions (e.g., keywords) that match file names, thereby

avoiding the difficulties caused by the hierarchical nature of Internet host names.

Such index is solely built using file names which Archie obtains by regularly in-

teracting via anonymous ftp with a collection of manually registered remote sites.

Archie servers are replicated and the replicas maintained up-to-date through an

efficient flooding-based algorithm. Archie indexes are very space efficient, but

support limited queries; the success of Archie queries rely in file names reflecting

their contents. Moreover, global flat indices tend to match too much information

in query resolution as the information space grows.

WHOIS

WHOIS [27] is a centralised directory that collects distributed information about

users, network numbers and domains. Users typically retrieve information about

entities by specifying a keyword, such as the surname of a person. Each WHOIS

server operates independently from each other and they are not linked together

into a coherent directory system. Thus, a user may need to try different servers

to find information and coordinate possible inconsistencies between them.

WAIS

Wide Area Information Servers (WAIS) [30] is a full-text information retrieval

system consisting of a directory of services (a replicated global entity) and a col-
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lection of databases that maintain complete inverted indexes on stored document

contents. WAIS databases index documents in a wide variety of formats, and

can be used to provide access to spreadsheets, databases, pictures, movies and

sounds as well as text. Clients communicate with WAIS via an extension of the

Z39.50 protocol [40] and are provided with relevance feedback. The return of a

keyword-based query is a set of relevant descriptors that correspond to documents

containing the keywords. These descriptors are ranked according to the frequency

with which keywords are used, the proximity of keywords to each other, use of

the keywords in the document title versus text, etc. Thus, the user is able to

refine the query according to his interests. The interaction with WAIS is initiated

through the directory of services which lets the user to select a set of databases

to be queried.

Indie

Distributed Indexing or Indie [18] is a system for constructing cooperating bro-

kers to index bibliographic data extracted from primary data sources (basically

databases and other discovery tools) as well as from other brokers. Each broker

is a database containing object descriptors, and such a database is described by

a list of generator objects. An object descriptor is basically a record contain-

ing a number of attribute-value pairs corresponding to bibliographic data and

other management data. The bibliographic data includes fields such as author,

title and abstract, while the management data includes a field that identifies

the network resource from which the bibliographical data was extracted (e.g.,

host:caldera.usc.edu,port:32004) and other fields to control the replica consistency
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protocol used by Indie. Each generator object assigned to a broker contains a

Boolean expression, such as (keywords = network*), that defines some information

the broker should maintain. Such a Boolean expression is called generator rule to

connote that a broker's database is generated and periodically updated by eval-

uating the rule over a number of other brokers. Thus, a broker must register its

object generators with other brokers that index the corresponding information. If

a broker A registers an object generator with a broker B, then B must periodi-

cally forward to A all object descriptors (creation and deletion) selected by the

rule specified by the object generator. The interface with primary data sources is

realised through specialised brokers called gateways. A gateway is supplied with

raw information either by cooperative non-Indie servers or by directly collecting

data from servers. The Indie architecture is completed by the directory of services,

a replicated global entity that registers all brokers. Thus, users submit queries to

the directory of services which returns a list of brokers whose object descriptors

pertains to the user query. Then, in the second step, the user must rank the list

of target brokers according to interest and submit the same query to them. As a

final result of the query, the user will obtain a list of appropriate object descriptors

which provides a basis for the user to retrieve the corresponding network resources

through other retrieval systems.

Harvest

The Harvest system [7] consists of a set of tools for constructing systems that

efficiently gather and index information extracted from network resources. In

Harvest terminology, a provider denotes a server running standard Internet in-
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formation services, such as FTP and HTTP. Thus, gatherers extract indexing

information from providers, while brokers use that information to provide a query

service. A server registry registers information about all gatherers and brokers, for

the purpose of systems administration and also for users to look for an appropriate

broker at search time.

Gatherers use the Essence system [25] to extract information from providers

and compose content summaries corresponding to the network resources main-

tained by the providers. A content summary is composed of a number of attribute-

value pairs, including a Uniform Resource Locator (URL) that globally identifies

the corresponding network resource. Essence extracts relevant attributes from a

network resource according to its format. For example, if the network resource is a

mail repository then certain message header fields are extracted, or if the network

resource contains bibliographic data then author names and titles are extracted.

Essence supports a collection of approximately 25 common formats used in the

Internet.

Brokers retrieve content summaries from gatherers and other brokers. (Con-

tent summaries are conveyed to brokers using an attribute-value stream protocol

called Summary Object Interchange Format.) Brokers store these content sum-

maries and generate corresponding index information. For that purpose, Harvest

provides two index/search subsystems: Glimpse, which supports space-efficient

full-text indexing, and Nebula, which supports attribute-based queries. Thus,

clients submit queries containing a Boolean combination of keywords to brokers,

obtaining as a result object descriptors constructed from the corresponding con-

tent summaries. Then, with the possession of these object descriptors, clients can
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retrieve network resources.

Harvest topic-based brokers aim at coping with information overload and di-

versity to provide for scalability. Basically, there are two possible configurations

for a gatherer to access a provider: either from across the network or running at

the provider's site. The latter requires provider's site to run the Harvest soft-

ware, but it is more efficient than the former because it causes less server load

and less network traffic. Harvest uses replication of servers to enhance user-base

scalability. For example, a server registry should be heavily replicated since it

acts as a point of first contact for searches and system extension. Harvest adopts

the data-conversion-and-migration approach rather than the query-translation-

and-decomposition approach based on gateways (or filters) between information

systems - a gateway may be a bottleneck and a source of communications delay,

thereby compromising scalability. Also, Harvest uses object caching to reduce

network load, server load, and response latency.

2.4 Distributed Systems

An object engine is an object-based distributed system. Thus, constructing an

object engine requires an adequate distributed programming environment. Rather

than providing an exhaustive review of the current environments, our intention

is to illustrate the main features of some them, in particular the Arjuna system

(described below) which we used as a basis for implementing the platform for

constructing object engines. The increasing acceptance of the C++ programming

language [64],especially in the area of system programming, has caused the emer-
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gence of several environments providing support for programming parallel and

distributed applications in that language. Following this trend, we give emphasis

to such environments and highlight those features that most influenced in the

architecture of object engines.

ANSA

The Advanced Networked Systems Architecture (ANSA) [4] describes the main

principles of an environment for distributed systems development and correspond-

ing run-time support with focus in distribution transparency but, at the same

time, efficient exploitation of distribution. The architecture is not restricted to

any particular programming language, operating system or network or hardware

platform. On the contrary, the main goals of the architecture is the provision of

interworking between autonomously managed networks and portability across a

wide range of operating systems and programming languages.

An instance of the architecture, the ANSAware Testbench software [5], per-

mits programmers to select the kinds of transparency required by applications.

Basically, the transparencies supported are: access transparency (identical invo-

cation semantics for both local and remote components), location transparency,

concurrency transparency, failure transparency, replication transparency and mi-

gration transparency. The ANSA computational model defines the programming

languages features that are necessary for this purpose, according to an object-

oriented approach. All data is stored in distributed objects and accessed indi-

rectly via interfaces; operations can only be invoked via their enclosing interface.

In addition, it is possible for different objects to respond to the same operation,
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possibly with different implementations. The ANSA computational model pro-

vides for both synchronous and asynchronous operations.

Distribution of client and server per distinct address spaces (process) demands

an intermediate service to solve the initial addressing, i.e., to find a service when

requested. In ANSA, this initial phase is called trading. A server invokes the reg-

ister operation of the trading service in order to publish (export) all the operations

(services) of one of its interfaces. Once exported, the services can be imported by

any other client. Thus, a client imports an interface reference and then the client

is able to invoke operations provided by the interface directly, without further

participation of the trading service.

Basically, using ANSAware, the user writes a file in IDL (Interface Definition

Language) with the definition of interface types and submit it to the stub compiler.

Then a file corresponding to the server and another corresponding to the client is

written in C with embedded DPL (Distributed Processing Language) commands

to the ANSAware services (Trader, Notification, etc). The client and the server

files are submitted to the C-preprocessor in order to convert the DPL commands

to C commands. Then the C source codes obtained from the stub compiler and

from the C-preprocessor are compiled and linked resulting in two executable codes:

a server and a client.

Arjuna

Arjuna [62, 51] is a distributed transaction facility; it consists of a set of tools that

supports the object and action model of computation, a widely accepted approach
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to reliable distributed computing. In this model, programs consist of interact-

ing objects which are instances of abstract data types, where every interaction

happens within an atomic action, a programming abstraction that ensures serial-

isability, failure atomicity and permanence of effect.

serialisability Execution of concurrent programs are free from interference, i.e.,

it is equivalent to some serial execution.

failure atomicity A computation either commits, producing all the intended

results, or aborts, producing no results. If any failure occurs, the appropriate

use of backward error recovery undoes the results hitherto produced.

permanence of effect Any state change produced is recorded on stable storage,

a type of storage that can survive system crashes with high change.

Coherence is accomplished by the enforcement of encapsulation; the state of

the system is maintained solely by objects, and the state of each object is ma-

nipulated only by associated access methods, which, by definition, are the units

of interaction. By ensuring that objects are recoverable and only manipulated

within an atomic action, it can be guaranteed that the integrity of objects - and

hence the integrity of the system - is maintained in the presence of failures such

as node crash and message loss.

The main system facilities include object store (transparent persistence man-

agement), nested atomic actions (transparent distributed transaction manage-

ment), remote object access (transparent remote method invocation using RPC),

concurrence control, crash recovery and object replication. The object store pro-

vides access service to the passive state of persistent objects. The stable repre-

sentation of an object (usually in disk) is machine independent in order to permit
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its transmission between stable storage and volatile storage, and its transmission

via RPC as well.

The model of concurrency control is shared variable (or object) with mutual

exclusion and condition synchronisation through locking (there is an one-to-one

correspondence between lock and object). The strict two-phase locking policy is

adopted to ensure serialisability. Locks on objects are acquired within atomic

actions (growing phase), and are released only when the outermost atomic action

ends or aborts (instantaneous shrinking phase) [61]. There is no automatic detec-

tion of deadlock; applications should handle the situations where a lock request

times out. Operations on objects are of type read or write, following the locking

rule that permits multiple reads, single write.

It is assumed that the hardware components of the system are workstations

(nodes), connected by a communications sub-system (for example, a local area

network). A node is assumed to work either as specified or simply to stop working

(crash). After a crash a node is repaired within a finite amount of time and made

active again. A node is assumed to have both stable and non-stable (volatile)

storage. All of the data stored on volatile storage is assumed to be lost when

a crash occurs, while any data stored on stable storage remains unaffected by

a crash. It is also assumed that faults in the communication sub-system are

responsible for failures such as lost, duplicated or corrupted messages. The RPC

system is assumed to be responsible for coping with such failures using well-known

network protocol level techniques; it returns a failure exception to the caller if it

suspects that the called server is not responding.
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The current version of Arjuna is implemented as a standard C++ class library.

Thus, it is tuned for the development of object-oriented applications. The Arjuna

facilities are basically implemented by the class hierarchy depicted in Figure 2.1.

Applications should define instances of the class AtomicAction and call its oper-

ations: begin, end and abort. The only objects controlled by atomic actions are

those objects that are either instances of Arjuna classes or user-defined classes de-

rived from the class LockManager - type inheritance is used to make user-defined

classes members of the hierarchy shown in Figure 2.1.

Figure 2.1 The Arjuna class hierarchy.

A tool called Stub Generator [50] processes definitions of C++ classes whose

instances are persistent objects to be remotely accessed and, as a result, produces

the corresponding client and server stub code. Transparency of location and access

is obtained by making any invocation of an operation on the client stub object

to trigger the same operation on the corresponding (remote) server stub object,

using RPC.
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Amber

The Amber system [14] aims at providing support for distribution and concur-

rency for C++ programs in homogeneous network of computers where each node

is a shared-memory multiprocessor. Amber is based on a model of computation in

which a collection of mobile objects distributed among nodes in a network interact

through location-independent invocation (shared object abstraction). Thus, pro-

grams execute in a uniform network-wide object space, with memory coherence

maintained at the object level. Objects are passive entities consisting of some

data and a set of operations that can be invoked locally or remotely. The active

entities in the system are thread objects; a typical application contains threads

concurrently executing object operations on different processors. Programs are

written in an object-based subset of C++, supplemented with primitives (Start

and Join) for thread management and object mobility; threads invoking opera-

tions on an object move to the node where the object resides. The system is

composed of a preprocessor to C++ and a runtime kernel which is linked with

applications. Amber provides the programmer with a set of predefined object

classes for managing threads, synchronisation and distribution. However, there

is no support for persistent objects, primitives for reliable distributed computing

or communication and cooperation between unrelated programs; Amber aims at

concurrent programming on tightly-coupled machines.
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DC++

The DC++ [57] system is an object-oriented extension of the OSF Distributed

Computing Environment (DCE) [48] integrated with C++, without introducing

any language modifications. The major features of the system are location inde-

pendence and object mobility to circumvent certain deficiencies of the traditional

client/server model supported by DCE. In the system, C++ objects are the basic

units of distribution. All distributable objects are referenced using the DCE's

universal unique identifiers (UUIDs), and the DCE Cell Directory Service (CDS)

is used for optional retrieval of objects by name. Objects communicate by method

invocations, independently of their location; remote invocations are mapped onto

DCE remote procedure calls. A remote reference is implemented by a proxy indi-

rection. A proxy contains a location hint for the referenced object and transpar-

ently forwards invocations based on DCE RPC; each node maintains a hash table

for mapping the global identifiers within incoming invocations onto actual storage

addresses of C++ objects. Mobility allows for modelling physical data transfer at

a very high level of abstraction and also provides explicit control of distribution,

such as when it is appropriate to co-locate communicating objects. Upon request

by applications, objects can dynamically move between nodes. DC++ provides

no support for object persistence or distributed transaction.

PANDA

The PANDA system [6] is a run-time package which supports distributed and

parallel applications written in C++. The main system features are object persis-
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tence, uniform global address space, user-level threads, object and thread mobility,

and garbage collection. Distribution in PANDA is provided through object and

thread mobility rather than using remote procedure calls (RPCs). According to

the designers of PANDA the RPC mechanism makes it difficult to provide perfect

distribution transparency in C++, such as handling pointers which may occur in

the parameter list of a method. Object mobility is realised through a distributed

shared memory (DSM) mechanism, assuming that the hardware platform consists

of a network of homogeneous processors. The programming environment pro-

vides a primitive DSM which can be specified for any object creation. The basic

mechanisms for thread management are provided by the system class UserThread.

Applications classes derive from that class and implement a especial inherited

method code which is automatically spawned when instances of the application

classes are created. In addition, the class UserThread provides a method migrate

that accepts as a parameter a destination node. The invocation of this method

causes the thread be interrupted, transferred to the specified remote node and then

resumed. For concurrency control, PANDA offers synchronisation objects such as

semaphores and signals, thereby permitting to turn a class into a monitor. Persis-

tence mechanisms are integrated into the run-time environment of the language

and distributed transaction for persistent objects is supported. Applications use

a primitive persistent for the classes whose instances should be persistent objects.

Although PANDA does not extent the programming language, it requires applica-

tions to be instrumented with the primitives mentioned above; thus, applications

need to be preprocessed.
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2.5 Database Systems

Object engines and object-oriented database management systems have some com-

mon purposes: store objects and permit them to be queried against schemas that

were previously devised for applications by applying a modelling technique (ac-

cording to a certain object data model). Moreover, object-oriented database man-

agement systems normally share many features with distributed object-oriented

systems since they both store objects. For example, as discussed in Section 2.4,

transaction management, which is originally a feature of database systems, is also

supported by some object-oriented distributed systems, such as the Arjuna sys-

tem. In fact, the interest in object orientation has been a point of convergence of

the work in several fields of research, and there seem to be a tendency to merging

distributed systems, database systems and persistent programming systems un-

der a single object-oriented framework. However, object engines are not intended

to be full-fledged object-oriented database management systems. Our approach

in providing a platform for constructing object engines is simply the extension

of an distributed object-oriented transaction facility, namely the Arjuna system,

with object query services. This approach is appropriate because, firstly, simi-

larly to what happened with object-oriented distributed systems, the increasing

acceptance of the C++ programming language has had strong influence on the

design of object-oriented database systems in the recent years, and secondly the

object data model of the Arjuna system is based on C++. For this reason, for

our purposes, it suffices to review object-oriented database management systems

solely with regard to query formulation and resolution, and in the context of C++.

Although there are several systems that provide persistence through extensions to
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C++, for conciseness, we will concentrate our review on just one of them, namely

the ObjectStore database system [34, 49]. Other representative systems are Ontos

[3] and ODE [2].

ObjectStore

ObjectStore [34, 49] is an object-oriented database system that supports per-

sistence orthogonal to type, transaction management and associative queries,

through an extended version of C++. The target applications are typically the

ones that perform complex manipulations on large databases of objects with in-

tricate structure, such as computer-aided software-engineering, computer-aided

design and manufacturing, and geographic information systems. Such an intri-

cate structure is normally realised by inter-object references, which must be tra-

versed by associative queries in order to locate objects. ObjectStore is based on a

client/server architecture: the client deals with objects while the server deals with

pages only. For performance reasons, ObjectStore deals with the task of solving

associative queries by moving database functionality into the client, rather than

doing application-specific tasks on the server. The programming environment

basically consists of a class library and a preprocessor. The library contains col-

lection classes including sets, bags and lists. For example, a transient set p of

instances of a class person can be created with the following C++ statement:

os.Setrperscn») p;

Thus, class person may have data members name, age, boss (an object refer-
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ence) and children (a multi-valued attribute) declared as:

string name;

int age;

person» boss;

oa.Set/person») children;

And to make the set p persistent in a database db, the declaration would be:

persistent(db) os_Set(person*) p;

A query is a predicate surrounded by [: :] specified by a query operator,

typically over a single top-level collection. For example, the following query locates

persons named Amadeus over the set p, and stores the result in a transient set q.

os_Set(person*)& q = p [: name == "Amadeus" :]

The selection predicate may be any C++ expression. For example, using the

logical operator && (and), the following query returns all persons whose age is

between 10 and 20.

os_Set(person*)& q = p [: age >= 10 && age <= 20 :]

Object references are traversed using nested queries or the operator ->, de-

pending on the context. For example, the following query returns all persons who

have a child whose name is Zweig.

os_Set(person*)& q = p [: children [: name == "Zweig":] :]
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And the following query returns all persons who have a boss whose name is Verdi.

os_Set(person*)& q = p [: boss-> name == "Verdi":] :]

There is no concept of class extent in ObjectStore. Thus, indices can be defined

for a collection (rather than for a class) in order to speed up query resolution. An

index is firstly created and then associated to a collection. In general, predicates

are over paths. Thus, for example, the following statements define indices for the

paths name and boss-> name of class person, and associates them to collection p.

os.Jndex.path name.path =pathof(person*, name)

os.Index.path bosa.name..path =pathof(person*, boss-> name)

p.add.Jndex] name..path);

p.add.Jndexfbosscname.ipath );

The maintenance of these indices are automatically done every time a program

modifies the corresponding paths, such as every time that the data member name

of an object of class person is modified. A keyword indexable should be added

to the data member's declaration for this purpose. Thus, for example, the data

member name should actually be declared as follows.

string name indexable;

ObjectStore provides a construct foreach to iterate over the members of a

collection. For example, the following statement calls the function print for all

persons in the set p who have children younger than 5.

foreach (person * x, p)

print(x-> children[: age < 5 :])
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Query resolution has four phases: analysis, code generation, strategy selection

and execution. The analysis phase creates a parse tree representing the query. The

code generation phase generates a set of functions to evaluate the query (when

the generated code executes, the tree does not actually exist). The strategy phase

notes (at run-time) the presence or absence of each index relevant to the query

and propagates this information over the tree, selecting the appropriate functions

to be executed. Finally, the execution phase executes the selected functions.

2.6 Other Approaches to Information Systems

Integration of Database and IR

Some systems integrate database technology with Information Retrieval (IR) tech-

niques. Saxton and Rahavan [56] argue that while databases do not fulfill the

requirements of today's information systems, such as unstructured decision mak-

ing and weighted evaluations, IR systems cannot precisely select only and all

relevant information. For this reason, they developed a system that augments a

relational database management system with ranked queries, based on the Gener-

alised Vector Space Model. That system also augments the relational model with

the introduction of generalisation and aggregation for the designers found these

concepts very useful in properly identifying views to be used in queries and, more-

over, the representation of hierarchical structure of objects and relationships can

be used during search, taking advantage of the semantics available. In another

work, Harper and Walker [26]developed a system called ECLAIR that provides an

interface for IR-type queries (basically using best-match retrieval techniques) on
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top of the Ontos object-oriented database management system [3]. The database

system is used for storing and indexing objects that represent the contents of

network resources. However, ECLAIR does not integrate the query language pro-

vided by the database system with IR techniques. The main reason for using the

database is to obtain concurrent access to data and reliable processing of data in

the presence of system failures. On the other hand, Christophides et al. [15] uses

the O2 object-oriented database management system [20] to represent SGML [60]

documents in order to benefit from recovery, concurrency control and high-level

query services provided by the database system. For that purpose, they had to

extend the O2 query language in order to enable users to query data without exact

knowledge of its structure, and using approximate match.

Document Databases

Some systems exploit the implicit structure found in text files to provide high level

query and update facilities as exist in database systems. Examples of such files are

electronic documents, programs, literature citations and mail messages. Loeffen

[39] presents a survey containing a dozen of text models and systems. In general,

these models describe texts by their structure, operations on the texts and con-

straints on both structure and operations. Their basic motivation is that normally

retrieval systems deal only with two kinds of textual objects: the word and the

document containing it, leaving unrepresented any intermediate structure. Bruza

and van der Weide [10] define a stratified approach to hypertext systems. The

authors argue that, these days, objects need no longer be modelled as amorphous

things, especially, due to emerging standards such as the Standard General Mark-
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up Language (SGML) [60] and the Office Document Architecture (ODA) [47]. In

fact, Christophides et al. [15] map the type information present in the prologue

of each SGML document - the Document Type Information (DTD) - in an O2

schema. In another work, Consens and Milo [16] show how word indexing and

region indexing can be combined with extended database query optimisation to

provide efficient access to semi-structured textual information. Basically, they use

the PAT text indexing system and translate high-level database queries on files to

expressions in the PAT algebra. Jarvelin and Niemi [29] introduce a declarative

query language that allows data aggregation simultaneously with complex data

restructuring without the user having to describe, explicitly, how the result docu-

ments are constructed from the available ones. The motivation for this approach

is that there is no static hierarchical structure among subdocuments in which all

users would always want their result documents.

Metadata Systems

There has been an intensive research on metadata systems for different purposes.

Hsu et al. [28] describe a metadata system for general information resources

management in heterogeneous, distributed environments, in order to integrate

computerised enterprises. The system extends the traditional approach to meta-

data taken by data dictionaries with the inclusion of knowledge resources such

as business rules, control for sequential interactions and global decision processes

for parallel systems interactions. They employ a method called Two Stage Entity

Relationship which, in addition to structured data representation as relations,

permits the representation of semantics through a functional model in the form of
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production rules. Madsen et al. [41]developed a metadata system whose purpose

is to locate relevant information giving some information about it, the user and

the context of the query, also by incorporating semantics to resource metadata.

This is achieved through a model for locating data given the type of data required

and details of the context in which it is to be used. Grosky et al. [24]developed a

met ada system called Content-Based Hypermedia for browsing structured media

objects, i.e., portions of images, videos and audios. The structure and relation-

ships of these objects are represented through an object-oriented schema. Thus,

users can browse through this meta-information space to discover properties and

relationships between media objects.

2.7 Conelus ions

There is an intensive research in information systems to provide means for locating

relevant network resources, and many approaches exist to make use of informa-

tion semantics. However, to our knowledge, there is no proposal that exploits

object orientation at the user interface. Full-fledged object-oriented database sys-

tems, on the other hand, permit sophisticated queries but they are normally too

resource intensive to be deployed in global networks. Distributed systems, es-

pecially transaction-based systems, offer a sounding basis for developing robust

information retrieval systems in large-scale environments but they lack query facil-

ities. Therefore, object engines are proposed to consolidate appropriate features of

these proposals and systems, thereby providing an efficient, effective and reliable

structured information retrieval service.
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CHAPTER 3

Object Engine Architecture

An architecture for object engines must integrate most of the fundamental features

of searching engines, object-oriented databases and distributed systems. In this

Chapter we describe such an architecture by outlining a set of components, their

interconnections and interaction with client programs; we give a more detailed

description of each component in subsequent Chapters. The architecture is built

upon the assumption that there exists a system that supports the object and

action model of computation for reliable distributed computing.

3.1 Object Engine Structure

The physical components of an object engine include objects, indices, meta-

objects, views and a context, as illustrated in Figure 3.1. Additionally, the

meta-objects encompasses other conceptual components, namely classes, schemas,

meta-classes and a meta-schema. All physical components of an object engine may

be replicated and distributed over any number of nodes of a distributed system.

These conceptual and physical components, including their interconnections (rep-

resented by arrows in the Figure), are explained as follows.
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Figure 3.1 Object engine structural architecture
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3.1.1 Basic Components

The primary function of an object engine is to maintain objects extracted from

network resources: objects must correspond to pieces of information contained

in network resources, and objects must be related to each other according to the

relationships between those pieces of information. Additionally, in conformance

with the object-oriented model, an object must provide a set of operations (i.e.,

methods) to encapsulate its state.

Typically, object-oriented systems define objects as instances of abstract data

types (i .e., classes), as this provides for both a strongly-typed system and a means

to formulate queries according to a conceptual schema. An object engine, in par-

ticular, benefits from those both features: strong typing permits the use of the

object and action model of computation in order to obtain a reliable distributed

system, while queries formulated according to schemas permit users to express

their knowledge about the target information in a highly-structured fashion, sim-

ilarly to object-oriented database systems. For this reason, information contained

in network resources must be modelled by schemas composed of classes that rep-

resent the structure of the information, and objects extracted from network re-

sources must be instances of such classes. In summary, an object engine has the

following basic components:

Class : an abstract data type that defines a set of attributes, a set of relationships

with other classes and a set of methods.

Object : an instance of a class. An object is atomic, and it is a unit of concur-

rency, replication and caching. We call the set of all objects maintained by
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an object engine object base.

Schema : a set of classes that model some information. Indirectly, a schema

designates a set of objects: the set of all instances of the classes that belong

to the schema.

3.1.2 Meta-data Components

Although classes and schemas could be simply regarded as conceptual compo-

nents/ an object engine must maintain a physical representation for them due to

the following reasons:

1. Documentation. Information about classes helps users to navigate through

information: users learn what categories of information exist, how infor-

mation is structured, and, consequently, how to formulate good queries.

Moreover, this information is useful for developing tools on top of an ob-

ject engine, similarly to the use of meta-data by third-party vendors for

developing tools on top of database systems [33].

2. Query Resolution. Information about classes permits a query interpreter to

analyse query expressions and resolve queries.

3. Software Management. Information about classes permits automatic gener-

ation of code.

4. Administration. Systems administrators need to record classes and schemas

definitions in order to update and re-use them.

lObjects are components which implicitly require a physical representation.
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We refer to the physical representation of information about classes and schemas

as meta-data to comply with the nomenclature normally used in database sys-

tems.! Thus, meta-data must be maintained by object engines and made acces-

sible to client programs, similarly to objects extracted from network resources.

Ideally, for the sake of homogeneity, all client programs should interact with ob-

ject engines through a single interface, independently of whether a client program

manipulates objects or meta-data. Hence, meta-data should be represented as or-

dinaryobjects. Moreover, a single approach to representing information extracted

from network resources and meta-data would permit all information maintained

by object engines to be manipulated in the same fashion by users and adminis-

trators, including that meta-data also would be distributed and highly available.

Therefore, we define a special schema to represent classes, attributes, relation-

ships, methods and schemas; the objects which are instances of the classes in this

schema comprise the meta-data maintained by an object engine. Accordingly, we

use the prefix "meta" to designate the meta-data components of an object engine,

as follows.

Meta-schema : a special schema that models meta-data.

Meta-class : a class that belongs to the meta-schema.

Meta-object : an object that is an instance of a meta-class. We call the set

of all meta-objects that represent all schemas defined for an object engine

meta-object base. Since a meta-object is an object, for a given object engine,

the object base is a superset of the meta-object base.

2Another suitable name would be data dictionary.
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3.1.3 Index Components

Query resolution is presumed to be the most requested service of object engines.

For this reason, efficient algorithms and appropriate data structures for query

resolution are essential for obtaining high performance in object engines. We call

the components of object engines used for this purpose indices to comply with the

nomenclature used in database systems and searching engines.

Basically, an object query is a predicate expressed in terms of classes, attributes

and relationships represented in a certain schema. For example, a query may be

formulated to retrieve an object of class Writer that is related to an object of

class Story whose attribute title has value equal to The Picture of Dorian Gray.

Roughly, the resolution of this query needs firstly to map the attribute value The

Picture of Dorian Gray to an object of class Story, and secondly map that object to

an object of class Writer. Hence, an object engine should maintain the following

index components:

Attribute Index : a relation between attribute values and object references; an

attribute value is mapped to an object reference when the corresponding

object has an attribute with that value. An attribute index has references

to all objects which are instances of the class to which the attribute belongs.

Relationship Index: a relation between object references and object refer-

ences; an object reference is mapped to another object reference when both

corresponding objects are connected to each other. A relationship index has

references to all pairs of related objects which are instances of two particular

related classes.
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The association between an index and its corresponding attribute or relation-

ship is physically represented using meta-objects:

• An attribute index is referred by the meta-object that represents the corre-

sponding attribute .

• A relationship index is referred by the meta-object that represents the cor-

responding relationship between two classes.

Thus, a query can be resolved by navigating through meta-objects until the

necessary indices are identified. For example, to retrieve objects of class Person

whose attribute age has value greater than 18, firstly the meta-object that repre-

sents the class Person must be retrieved, and next the meta-object that represents

the attribute title must be retrieved, thereby obtaining a reference to the index

that contains references to the target objects.

3.1.4 Organisational Components

An object engine may contain a large number of schemas, which may designate a

large number of classes and a large number of objects. Furthermore, these schemas

may model information about a wide range of topics, and an object engine may

have a large number of users, distributed over a wide area network. Hence, an

object engine must organise its schemas in a fashion that permits the following

features:

1. Security: users may be allowed a restricted access to the object base.

2. Customisation: users may have interest only in part of the object base.
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3. Efficiency: users may wish to scope query resolution to a particular schema.

4. Scalability: type space administration must be decentralised in large-scale

distributed environments.

In general, an object engine must permit part of a schema to be designated as

another schema (i.e., a sub-schema), and it must permit schemas to be grouped to

form a larger schema (i.e., a super-schema). Thus, an object engine may contain a

number of conceptual hierarchies of schemas, possibly with intersections between

them. Moreover, a schema does not necessarily have to be available to users;

a schema may be created only for the purpose of deriving other schemas (sub-

schemas and super-schemas) from it. For this reason, we differentiate the schemas

which are available to users by calling them views, to connote that they define

how information maintained by object engines is actually observed by users and

administrators. In particular, administrators should be provided with a special

view that corresponds to the meta-schema. Accordingly, we call such a special

view meta-view.

Since schemas are represented by meta-objects, a view is simply defined by

selecting a certain set of meta-objects. Conceptually, a view corresponds to a

schema, a set of indices and a set of objects. Physically, a view should be either

a simple reference to a set of meta-objects or it should be a full representation of

that set of meta-objects. For practical reasons, we decided for the latter approach:

a compact representation of meta-objects permits faster query resolution, and it is

a suitable unit of concurrency, replication and caching. Also for practical reasons,

an object engine must maintain a directory of all views. We call such a directory

context, to connote that it defines an independent name space. Thus, a program



Chapter 3. Object Engine Architecture 51

initiates interaction with an object engine by retrieving the context that designates

the object engine and, next, the program asks the context to return specific views.

In summary, an object engine has the following organisational components:

View : an entity containing meta-data equivalent to a schema defined for the

object engine; a view is derived from the meta-objects that represent a

schema and, accordingly, contains references to the corresponding indices.

Context : a global entity containing references to all views defined for the object

engine; an object engine is designated by a context.

3.2 Object Engine Operation

An object engine must be set up by a bootstrap program to create a context, a

set of meta-objects to represent the meta-schema, all corresponding indices and

a meta-view. Thereafter, an administrator program, using the meta-view, can

create other meta-objects and corresponding indices to represent other schemas,

and then create other views. Thus, using these views, client programs can create,

update, delete, retrieve and traverse relationships between objects. Figure 3.2

shows a typical configuration of object engines and programs. The object engine

is distributed over the nodes of a single local area network (LAN). The programs

are classified according to their specific purpose and relative location (either in the

same LAN where the object engine is located or in a remote LAN) and described

as follows.
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3.2.1 Collector Program

A collector program periodically extracts information from network resources and

updates the object base maintained by an object engine. A collector program

must understand the structure or the interface of a network resource and, at the

same time, it must understand a schema that models the information contained in

the network resource. Thus, a collector program is able to translate information

from its "natural" representation to objects. Roughly, the normal operation of a

collector program should consist of the following steps:

1. Extract from network resources the pieces of information pertaining to ob-

ject attributes and relationships, according to a schema that models the

information contained in the resources.

2. Assemble pieces of information pertaining to object attributes in tuples that

conform to classes specified in the schema; each tuple should form a valid

object state.

3. Use object states for creating, modifying and removing objects from the

object base.

4. Use pieces of information pertaining to object relationships for connecting

and disconnecting objects that already exist in the object base.

Typically, a collector program should run in the same LAN where the object

engine is located, while the network resources manipulated by a collector program

may be located anywhere in the global network.
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3.2.2 LAN Direct Client

A LAN direct client is a program that is located in the same LAN where an object

engine is located, and that directly manipulates the object base maintained by

the object engine. A LAN direct client can be of one of the two following types:

1. Schema-specific application: the client can manipulate the part of the object

base designated by a specific schema.

2. General query interpreter: the client can manipulate the whole object base.

We discuss LAN Indirect Client in Section 3.2.4.

3.2.3 Object Engine Administrator

An object engine administrator is a program that manipulates information about

schemas, i.e., it manipulates the meta-object base. Since the meta-object base is a

subset of the object base, an object engine administrator can be simply regarded

as a particular case of LAN direct client: it is a client program that manipulates

the objects designated by the meta-schema. And another consequence is that a

general query interpreter also can be used as an object engine administrator.

3.2.4 Object Engine Server and Clients

An object engine server is a program that is located in the same LAN where an

object engine is located, and that provides a set of operations for manipulating

the object base maintained by the object engine; the server is an intermediate
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between a client program and the object engine. Actually, an object engine server

is identical to a LAN direct client, except that it accepts calls from other programs:

the main purpose of an object engine server is to permit a client program located

in a given LAN to have access to an object engine located in another LAN; in

this case the client program is called WAN client, to connote that it operates

over a wide area network. Naturally, a client program located in the same LAN

where an object engine is located also can have access to the object engine through

an object engine server; in this case the client program is called LAN indirect

client.

Similarly to a LAN direct client, an object engine server can be of one of the

following types:

1. Schema-specific server: the server manipulates the part of the object base

designated by a specific schema. In this case, the client is necessarily specific

to the schema, i.e., it is a schema-specific application that has access to an

object engine located in a distinct LAN.

2. General query server: the server can manipulate the whole object base. In

this case, the client can be either a schema-specific application or a general

query interpreter that has access to an object engine located in a distinct

LAN.

In both cases, an object engine server may completely conceal the object engine

from the client by providing an appropriate set of operations. Furthermore, a

server can provide an interface that is not even object oriented, thereby dispensing

with the need of the knowledge of schemas by clients. For example, a server could
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provide an interface for simple keyword-based search; in this case the client could

be an information browser traditionally used in global networks.

Finally, a client of an object engine server may be another object engine server,

thereby being possible to configure networks of object engines. This arrangement

would permit object engines to co-operate.

3.2.5 Summary

Let us summarise object engine operations with a simple example. Let us consider

that firstly an object engine is set up, secondly an object engine administrator

creates a schema named Eg, thirdly a collector program creates objects of classes in

the schema Eg and, finally, a LAN client program manipulates these objects. The

effects of this sequence of operations are illustrated in Figure 3.3 and explained

as follows.

1. Bootstrap. The set up of the object engine encompasses the following steps:

(a) create a context

(b) create meta-objects to represent the meta-schema

(c) create indices that correspond to the meta-schema

(d) index the meta-objects that represent the meta-schema

(e) create the meta-view

2. Administrator. The creation of the schema named Eg consists in:

(a) create meta-objects to represent the schema Eg
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(b) create indices that correspond to the schema Eg

(c) create a view for the schema Eg

We should note that the object engine administrator makes use of the meta-

view. Also, we should note that the meta-objects that represent the schema

Eg can be automatically indexed (by the indices for the meta-schema) when

they are created since, at that stage, no longer there are circular dependen-

cres.

3. Collector. The collector program makes use of the view Eg to create objects

of the classes designated by the schema Eg.

4. Client. The LAN direct client also makes use of the view Eg to manipulate

objects of the classes designated by the schema Eg.

3.3 Conclusions

The object engine architecture integrates features of searching engines, object-

oriented databases and distributed systems in a homogeneous fashion. Some of

the most salient features of the architecture are the following:

• All components of an object engine are objects with transactional access,

including concurrency control, and that can be replicated and distributed:

hence highly available .

• A uniform representation of objects extracted form network resources and

meta-data permits all programs to interact with object engines through a
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Figure 3.3 Effects of a sequence of object engine operations

single interface, and makes it simple for users to learn about schemas and

formulate queries .

• The use of meta-objects and general indices to represent object attributes

and relationships provides an effective data structure for query resolution .

• A combination of schemas, views and contexts provides an effective means

of organising the information space in large-scale distributed environments.

The remaining Chapters of our thesis describes the components of the archi-

tecture in more detail and discusses implementation issues. Accounting, object

placement (i.e., clustering) and migration will not be discussed.
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CHAPTER 4

Object Model Concepts

Information objects are modelled by employing the notions of encapsulation,

identity, classification, inheritance (generalisation/specialisation) and relationship

found in object-oriented programming and in database systems. The purpose of

modelling objects is to define a schemol , a collection of classes which describe the

properties of the objects and are arranged in a certain way to ensure that the ob-

jects which belong to these classes compose a consistent database and, therefore,

can be properly manipulated.

Although object-oriented modelling concepts have been employed in several

domains of applications since they were first introduced by the designers of Simula

[17] and currently represent an end-point in the evolution of data models, in this

Chapter we delineate such concepts for the following reasons:

1. There is not a single standard on these concepts. Thus, we present an in-

terpretation of object orientation that complies with a standard de facto

which has been established with, firstly, the widespread use of the program-

ming language C++ throughout considerably large part of academia and

1Also referred to as object data model in the literature.
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industry and, secondly, with the adoption of the OMG CORBA [45] by the

industry as an architecture for inter-platform cooperation.

2. Although most of the object models proposed in the literature and/or com-

mercially available support the notion of relationships between objects, they

normally treat such a relationship as a simple "pointer" from one object to

another, thereby not making a clear distinction between the possible dif-

ferent semantics of these pointers, namely associations and aggregations.

On the other hand, some object models, especially the ones developed as

a "natural" evolution of the relational model, make such a distinction. An

example is the Object Modeling Technique (OMT) [55] where associations

and aggregations are modelled differently. Another example is the ORION

database management system [32] which provides the notion of composite

objects to permit the modelling of "part-of" relationships between objects.

For this reason, we show the importance of modelling object relationships

with proper semantics through examples and go further by introducing a

new concept, namely loose aggregation, explained in Section 4.3, to distin-

guish the cases where objects are only conceptually from the case where they

are physically part of other objects.

3. We introduce a graphic notation together with the concepts which is used

throughout the rest of this thesis to represent schemas diagrammatically.

4. We present examples of application of the concepts to illustrate their ade-

quacy to our purposes.

While the concepts are here described informally as this suffices for the self-

containment of this thesis, a formal definition of the object model is presented
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in Appendix A, where the set and the graph theories are employed to prove the

correctness of the model. Also, we present many other examples of applications

to give support to our point of view about the adequacy of the model.

4.1 Object

An object is defined by an identity, a state and an interface, as illustrated in

Figure 4.1.

• The identity is a unique identification that permits the object to be referred

to unambiguously. It is represented by a unique name.

• The state is a structure containing properties of the object. It is represented

by attributes (values of primary types, such as string and integer) and

relationships (references to objects).

• The interface contains the operations which can be applied to the object.

Similarly to an extent of an abstract data type, the interface encapsulates

the state. It is represented by methods that have exclusive access to the

state.

Figure 4.2 illustrates a simple example of two related objects: the object named

X represents a client of a bank, and the object named Y represents the client's

account. The client has an attribute name of string type, a relationship with the

account, and the methods update .name and check.balance which, respectively,

have parameters of string and integer types. The account has the attributes

number and balance of integer type, a relationship with the client, and the methods
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deposit, withdraw and check.balance, each of them with a parameter of integer

type. The dashed lines in the Figure illustrate the relationships between the

objects.

4.2 Class

A class is an abstract data type that defines an object state structure and the

corresponding interface. Basically, a class consists of:

1. a set of attribute specifications

2. a set of relationship specifications

3. a set of method specifications

An instance of a class is an object whose state consists of the set of attributes

and relationships specified by the class, and whose interface contains the set of

methods specified by the class. Thus, a class stands for a set of objects that have

some common structure and behaviour.

Attributes and methods are components of just one class, while a relationship is

generally between two classes. For this reason, we discuss relationships separately

in Section 4.3 and Section 4.4.

• An attribute is specified by a name, a primary type and a Boolean value

that indicates whether the attribute is key, i.e., whether the attribute can

be used in queries.
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(a) Concepts (b) Representation

Figure 4.1 General structure of an object

checkbalancetj.Integer check_balanceO:lnteger

'. : .: withdraw(Integer):Integer

update_name(String):String deposit(Integer):Integer

Il _

Figure 4.2 Example of related objects



Chapter 4. Object Model Concepts 64

• A method is specified by a signature, a function and a semantics. A signature

contains a method name, a sequence of argument (parameter) types and a

result type. A function maps a product of argument domains to a result

domain, according to the signature and the semantics.

Graphic Notation

Class elements, with the exception of method function and semantics, can be

represented by a diagram, as shown in Figure 4.3. A class diagram is composed

of up to three stacked rectangles: the top rectangle contains the class name, the

intermediary rectangle contains attribute specifications, and the bottom rectangle,

if present, contains method signatures. An attribute name is preceded by a star

symbol when the attribute is key.

class name

attribute- I
attribute·2...
method-I
method-z...

Figure 4.3 Class diagram notation

Figure 4.4 illustrates diagrams for the classes Client and Account, which are

classes for the objects named X and Y, respectively, shown in Figure 4.2. The

attribute name of class Client and the attribute number of class Account are key

attributes.
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Client Account

*number: Integer

balance: Integer

deposit(Integer):Integer

withdraw(Integer):Integer

checkbalancer): Integer

*name: String

update_name(String):String

check_balanceO:Integer

Figure 4.4 Example of class diagram

4.3 Object Relationship

For every reference to an object y that an object x contains, there is a comple-

mentary (inverse) reference to x in y. The term relationship between x and y refers

to a pair of complementary references, and the term relationships of x refers to all

relationships between x and any other object. Also, for simplicity, we say that a

relationship between two objects is bi-directional to denote that a relationship is

defined by a pair of complementary references.

Relationship Semantics

The semantics of a relationship between an object x and an object y can be one

of the following types:

1. Aggregation: x is part or y

2. Association: x is not part of y

Furthermore, the semantics of an aggregation can be one of the following types:

2Aggregations correspond to the so-called complex objects.
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1. Tight Aggregation: x is physically part of y

2. Loose Aggregation: x is conceptually part of y

In both types of aggregation, x is a component of y, and y is an aggregate

containing x.

Graphic Representation

A set of related objects can be represented as a graph where vertices correspond

to objects and edges correspond to relationships. In such a graph, two meanings

can be assigned to edges:

1. Navigational: An edge corresponds to an object reference and, conse-

quently, it is directed: an edge from object x to object y means that x

contains a reference to y.

2. Semantical: An edge corresponding to an aggregation is directed from the

aggregate to the component, while an edge corresponding to an association

is not directed.

We refer to a graph where the edges have a navigational meaning as a nav-

igational graph, and a graph where the edges have a semantical meaning as a

semantical graph. A navigational graph is useful to show paths that can he

traversed. A semantical graph, on the other hand, is useful to show relationship

semantics. However, since relationships are always hi-directional, a semantical

graph implicitly represents a navigational graph and, consequently, it is sufficient

for hoth purposes. Therefore, we preferentially use semantical graphs and we
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use navigational graphs only when relationship semantics is not relevant. Figure

4.5 shows the convention we will use henceforth for the graphic representation of

related objects.

(1) Navigational Meaning o------{)
(2) Semantical Meaning

(2.1) Association 0-0
(}--O
0-0

(2.2) Tight Aggregation

(2.3) Loose Aggregation

Figure 4.5 Graphic notation for related objects

Associated Objects

An object can be associated to any number of objects. Consequently, the se-

mantical graph for a set of associated objects is a generic graph. An example of

association is the relationship between the objects client and account discussed in

Section 4.1. Figure 4.6 illustrates the corresponding semantical graph.

Figure 4.6 Example of associated objects
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Tightly Aggregated Objects

An object can be physically part of at most one object. Consequently, the se-

mantical graph for a set of tightly aggregated objects is a directed tree, i.e., a

single hierarchy where objects which are relatively higher in the hierarchy contain

objects which are relatively lower in the hierarchy. For example, the aggregation

hierarchy in Figure 4.7 represents a journal composed of five articles which are

composed of certain numbers of pages.

Loosely Aggregated Objects

An object can be conceptually part of any number of objects. Consequently,

the semantical graph for a set of loosely aggregated objects is a directed acyclic

graph, more specifically, a collection of intersecting hierarchies. For example, the

aggregation graph in Figure 4.8 represents a grouping of persons in sports clubs,

where a person can be member of more than one club.

Tightly and Loosely Aggregated Objects

An object that is physically part of another object also can be conceptually part

of other objects. For example, the articles contained in a number of journals can

be grouped in logical folders according to subject, as shown in Figure 4.9.
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Articles

Journals

Pages

Figure 4.7 Example of tightly aggregated objects

Sports Clubs

Persons

Figure 4.8 Example of loosely aggregated objects
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Folders

Journals

Articles

Figure 4.9 Example of tightly and loosely aggregated objects

4.4 Class Relationship

The permitted relationships between objects are specified through relationships

between classes. A relationship between a class X and a class Y defines how an

object x that is an instance of X can be related to an object y that is an instance

of Y, by specifying the following items:

1. Semantics: It defines whether the relationship between x and y is an as-

sociation, a tight aggregation or a loose aggregation. In both cases of ag-

gregation, either X is the aggregate class and Y is the component class or

vice-versa. Then, in the relationship between x and y, the instance of the

aggregate class is the aggregate object and the instance of the component

class is the component object.

2. Role: A label is assigned to X and another label is assigned to Y in order

to define the roles of x and y, respectively, in their relationship. If the role

of a class is not explicit then the class name is assumed as the class role.

Roles are useful as both documentation and a measure for unambiguous
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identification of relationships.

3. Multiplicity: A pair of integer values is assigned to X and another pair is

assigned to Y in order to define the minimum and the maximum number

of instances of X that can be related to a single instance of Y and vice-

versa. Because these values specify the lower bound and the upper bound

of a set of object references they are referred to as minimum cardinality

and maximum cardinality. In the case of tight aggregation semantics

in particular, the multiplicity of the aggregate class is constant: 0 as the

minimum cardinality and 1 as the maximum cardinality.

4. Key: A Boolean value is assigned to X and another Boolean value is assigned

to Y to indicate whether the relationship is key with respect to each class, i.e.,

whether the relationship can be traversed in queries using path expressions.

If true is assigned to X, for example, then the relationship can be traversed

from Yto X.

Graphic Notation

A relationship between two classes is graphically represented by either a line or an

arrow between the corresponding class diagrams, and labelled with the role and

the multiplicity of each class, as illustrated by the examples in Figure 4.10.

• An association is represented by a dotted line, a loose aggregation is repre-

sented by a dotted arrow and a tight aggregation is represented by a dashed

arrow. In both cases of aggregation, the arrow is from the aggregate class

to the component class.
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Client Folder Journal

1.2 Owner O.n!
Q

I

O.nj_Publication
I

O.n 1.nV

Account Article Article

(a) Association (b) Loose Aggregation (c) Tight Aggregation

Figure 4.10 Example of graphic notation for relationships

• A label and a pair of integer values on each end of the line or arrow, respec-

tively, denote the role and the multiplicity of the class represented by the

nearest attached diagram. The multiplicity of the aggregate class in a tight

aggregation is not shown since it is constant.

• The role of a class can be omitted when the class name is the role. The

roles shown in Figure 4.10 is Owner for class Client and Publication for class

Article when related with class Folder.

• A circle on the line that represents a relationship means that the nearest

class is not key in the relationship. For example, Folder is not key in the

relationship with Article. As a consequence, a path expression from Article

to Folder cannot be specified.
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4.5 Inheritance

A class Y can be derived from a class X in order to augment and/or modify the

set of specifications pertaining to X, according to the following rules:

1. Y can have additional attributes, relationships and methods.

2. Y can substitute (overload) method functions and semantics.

The set of specifications pertaining to Y is a superset of the set of specifications

pertaining to X; it contains the attributes, relationships and methods defined by

X and Y. Consequently, an instance of Y consists of the attributes, relationships

and methods defined by X and Y. For this reason, we say that X and Y have an

inheritance relation, more specifically, Y inherits from X.

Graphic Notation

The graphic notation to represent that a class named Y is derived from a class

named X is an arrow from the class diagram for X to the class diagram for Y, as

shown in Figure 4.11.

Class Hierarchy

A class hierarchy, also denominated inheritance hierarchy, is defined by a set of

classes and their inheritance relations. Any class hierarchy can be extended by

deriving new classes from its classes. As shown in Figure 4.12, for example, a class

named Z is derived from Y and a class named W is derived from X to extend the

class hierarchy defined by X and Y.
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x

...

y

...

Figure 4.11 Graphic notation for class derivation

x

...

/ -.
y w

... ...

z

...

Figure 4.12 Simple class hierarchy

Inheritance Invariants

To ensure the inheritance relation properties and for the sake of simplicity of

the object model, in a class hierarchy, the following invariants with respect to

inheritance must hold:

1. No class inherits from itself (neither directly nor indirectly).

2. Every class inherits directly from at most one class (single inheritance).
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According to these invariants, by representing classes and direct inheritance

relations as a graph where classes correspond to vertices and direct inheritance

relations correspond to arcs, we have that such a graph is a directed tree. For this

reason, a direct inheritance relation is referred to as an inheritance arc.

Inheritance Relation Properties

The inheritance relation is neither reflexive (a class cannot inherit from itself)

nor antisymmetric but it is transitive. For example, the fact that Z inherits

from Y and that Y inherits from X implies that Z inherits from X. Thus, we

differentiate between direct and indirect inheritance relations: X and Y have a

direct inheritance relation, while X and Z have an indirect inheritance relation.

Class Instance and Extent

We differentiate between direct and indirect instances. A direct instance of a

class Q consists of the attributes, relationships and methods defined and inherited

by Q. An indirect instance of Q, on the other hand, consists of the attributes,

relationships and methods defined and inherited by a class that (directly or indi-

rectly) inherits from Q.

Moreover, the extent of Q is the set of all direct instances of Q. The deep

extent of Q is the union of the extent of Q and the extents of all classes that

inherit from Q. For example, the deep extent of Y includes the extents of Y and

Z. As another example, the deep extent of X includes the extents of X, Y, Z and

W.
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Class Conformity and Instance Substitutability

Since classes are abstract data types, we say that a class 0 conforms to a class (3

if 0 contains at least the specifications pertaining to (3. The conformity relation

is useful to determine whether an object can be used in a certain context. If it

is specified that a direct instance of a class 0 is expected (in assignments and as

parameter in method invocations, for example) then a direct instance of any class

that conforms to 0 is acceptable. Thus, an instance of a class can be substituted

by instances of different classes, i.e., by objects of different forms (polymorphism).

Obviously, a class 0 conforms to itself (reflexivity) and, from the definition of

inheritance, we have that if a class 0 inherits from a class (3 then 0 conforms to

(3. Therefore, a direct instance of a class 0 can be substituted by a direct instance

of any class that inherits from o. In other words, any object in the deep extent

of 0 can be used where a direct instance of a class 0 is expected.

In the example, we can state the following class conformity relation: (1) X

conforms to X, (2) Y conforms to Y and X, (3) Z conforms to Z, Y and X, (4) W

conforms to Wand X. Thus, a direct instance of X can be substituted by a direct

instance of Y, Z or W, while a direct instance of Y can be substituted by a direct

instance of Z.

Moreover, we have that the conformity relation is transitive but not necessarily

antisymmetric, i.e., given two classes 0 and (3, 0 conforms to (3 and (3 conforms

to 0 does not imply 0 and (3 are the same class. For example, it is possible that

W conforms to Y and that Y conforms to W.
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Is-a Relation

Given two classes 0: and (3, we say that 0: "is a" (3, and denote it as 0: :;,,- (3, either 1:;,,- I
if 0: and (3 are the same class or if 0: inherits from (3. Thus, 0: :;,,- (3 implies 0:

conforms to (3 and, therefore, 0: :;,,- (3 implies a direct instance of 0: can be used

where a direct instance of (3 is expected. For example, Y :;,,- X and, in fact, a

direct instance of Y can substitute a direct instance of X.

( 0: :;,,- (3 ~ 0: conforms to (3J

The is-a relation is reflexive and, since the inheritance relation is transitive,

the is-a relation is also transitive. For example, we can state that: (1) X :;,,-X,

(2) Y <. Y, (3) Y :;,,- X, (4) Z s. Z, (5) Z <. Y, (6) Z s. X, (7) W <. W, (8) W

s. X.

In addition, because a class hierarchy is an acyclic graph (directed tree), the

is-a relation is anti symmetric. For example, if class 0: :;,,- X and X :;,,- 0: then

0: is X. Therefore, we have that the is-a relation is reflexive, anti symmetric and

transitive, which means that a set of classes is partially ordered with respect to

the is-a relation.

Generalisation/Specialisation

Since a class 0: that inherits from a class (3 also conforms to (3 and possibly

adds some specifications, we say that 0: is a specialisation of (3 and, conversely,

(3 is a generalisation of 0:. Thus, the inheritance relation is also referred to as a

generalisation/ specialisation relation, and a class hierarchy is also referred to as
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a generalisation/specialisation hierarchy.

Moreover, because classes are types, Q is a subtype of j3. Therefore, we say

that Q is a subclass of j3 and, conversely, j3 is a superclass of Q. Accordingly, we dif-

ferentiate between direct and indirect subclasses and between direct and indirect

superclasses. For example, Y is direct subclass of X while Z is indirect subclass of

X and, conversely, X is direct superclass of Y while X is indirect superclass of Z.

Finally, for an object that is a direct instance of a class Q, we say that Q is the

most specific class of the object.

4.6 Summary

The schema for bibliographical references shown in Figure 4.13 illustrates the main

concepts of the object model.

Association

There is an association between Individual and Article, meaning:

• The role of Individual in the association is Author.

• The role of Article in the association is Article since there is no other speci-

fication.

• The multiplicity of Individual is [J,n]. So, an instance of Article is associ-

ated to one or many instances of Individual, i.e., an article has one or many

authors.



Chapter 4. Object M ode! Concepts 79

Reference

title: String

Library

................. q~'!. name: String
address: String

Article Journal Book
1-----IO,n
pages: String

i O,n

month: String

O,n BookAsEditor i
O,ni

i BookAsAuthor
iO,n

Editor l.n

Author
surname: String

forenames: String
tn ~n

EditorIndividual

Author

1-------IO,n

Figure 4.13 Simple schema for bibliographical references

• The multiplicity of Article is [0, n]. So, an instance of Individual is associated

to none or many instances of Article, i.e., an individual is author of any

number of articles.

Tight Aggregation

There is a tight aggregation between Journal and Article, meaning:

• An instance of Article is physically part of an instance of Journal.

• An instance of Journal is an aggregate of any number of instances of Article.
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Loose Aggregation

There is a loose aggregation between Library and Publication, meaning:

• An object that is an instance of Publication is conceptually part of any

number of instances of Library.

• An instance of Library is an aggregate of any number of instances of Publi-

cation.

Class Hierarchy

There is a class hierarchy defined by the classes Reference, Publication, Article,

Journal and Book, meaning:

• Reference is superclass of Article and Publication. Reference defines the at-

tribute title which is common to Article and Publication.

• Article defines the attribute pages. So, an instance of Article has the attribute

title inherited from Reference and the attribute pages.

• Publication is superclass of Journal and Book. Publication defines the at-

tributes year and publisher which are common to Journal and Book. So, an

object that is a instance of Publication has the attribute title inherited from

Reference, and the attributes year and publisher.

• Journal defines the attribute month. So, an instance of Journal has the

attributes title, year and publisher inherited from Publication, and the specific

attribute month.
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• Book defines no attribute. So, a direct instance of Book has the same at-

tributes as direct instances of its direct superclass, i.e., the attributes title,

year and publisher inherited from Publication.

• Jou rnal and Book inherit (from Publication) the loose aggregation with Li-

brary. So, instances of Journal and Book are conceptually part of instances

of Library.

• Article, Publication, Journal and Book are subclasses of Reference. So, a direct

instance of any of these classes can substitute a direct instance of Reference.

4.7 Conclusions

The technique for object modelling described in this Chapter makes use of a simple

set of concepts which are becoming common amongst object-oriented systems.

Despite its simplicity, the technique permits modelling of information objects with

considerably great expressiveness and re-use of definitions by applying inheritance,

as the examples have shown. An advantage of being simple is that a system that

supports the technique is perfectly feasible by employing standard programming

languages and operating systems, thereby making it possible to inter-operate with

other object-oriented systems. The same approach is taken by the OMG CORBA

[45], for example. Another clear advantage is that the technique can be easily

assimilated and applied.

The graphic notation defined permits a concise and unambiguous represen-

tation of object properties. The only aspect of object-oriented modelling which

cannot be represented through the graphic notation is method semantics, or the
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behaviour of the objects. We believe that a distinct form of notation should be

used for specifying method semantics as it is equivalent to specifying an algo-

rithm. For example, a notation for formal specification of software, such as the Z

Notation [53], could be employed as a complement to the graphic notation.

Finally, we have emphasised the importance of attributing semantics to point-

ers between objects and have introduced loose aggregation in addition to the set of

concepts normally found in object-oriented modelling techniques. This feature of

our technique, in particular, is going to reveal very important in Chapter 6 where

the technique is employed to represent its own elements (classes, attributes, meth-

ods and relationships) and a model to organise the class space which is devised in

Chapter 5 (schemas).
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CHAPTER 5

Class Space Organisation

In this Chapter we introduce a means of organising the class space by which classes

are grouped in schemas that can be composed of sub-schemas, recursively. Since a

class designates a set of objects (the deep extent of the class), a schema indirectly

permits the selection of a set of objects for manipulation, which we define in this

Chapter as databases. Moreover, classes define object properties which can be

inherited by subclasses, thereby permitting the re-use of type definitions. Thus,

schemas permit the organisation of the class space for both the organisation of

objects and the management of types. In general, the motivation for having

schemas as a means of organising classes include the following items:

1. Security: A schema can be used for defining the set of objects (at the class

granularity) that each user should be able to get access.

2. Customisation: A schema can be used for selecting only the classes which

are of interest to users.

3. Efficiency: A schema can be used for selecting a specific set of classes for

manipulation, thereby reducing the type information necessary to be loaded

by programs.
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4. Administration: Schemas document which classes are defined thereby per-

mitting to manage their use and re-use.

5. Scalability: Proper class organisation is particularly important when the

number of classes, objects and users are considerably large, distributed and

require decentralised administration. Schemas permit the partition of the

class space in a hierarchical structure, which is the approach normally taken

in scalable systems [36]. In Chapter 7 we define views as a means of associ-

ating schema information and index information with corresponding objects

in order to organise the object space.

We informally introduce the notions of schema and database in our context

and then give formal definitions for them. The formal definitions are presented

for the following reasons:

1. The formal models for databases found in the literature define schemas as

global entities, i.e., the schema space is normally flat. Since we organise

schemas in hierarchies (for scalability purposes) we formalise this new con-

cept. Moreover, the formal definition of schema is necessary in Chapter 6

for defining the meta-schema.

2. The formal models for databases found in the literature define databases as

a "consistent" set of objects, i.e., a set of objects where all object references

are to objects that also belong to the set (referential integrity or no dangling

identifier assumption [31]). However, since they do not support the notion

of sub-schemas, they do not consider the case where a set of objects is "rela-

tively consistent" , i.e., the case where a set is consistent with respect to the

relationships included by a sub-schema, rather than "absolutely consistent" .
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We introduce a new concept, namely relative self-containment, to differen-

tiate between absolute and relative referential integrity and then formally

define database. The main advantage of having relative self-containment is

to permit a set of objects (a database) to be consistently manipulated even

if they have (unvisible) dangling references.

5.1 Overview

A schema is a collection of classes, including all corresponding inheritance arcs

and relationships. For example, the diagram in Figure 4.13 represents a simple

schema for bibliographical references. The only invariant that must hold in a

schema is that, recursively, the superclasses of every class in the schema must be

in the schema, too.

For this reason, we define root-subtree as a subtree of a class hierarchy such

that the root of the subtree is the root of the class hierarchy. In other words,

the root of a root-subtree has no superclass. For example, in the schema for

bibliographical references, a subtree that has either Reference, Library or Individual

as its root is a root-subtree, otherwise it is not.

Thus, obviously, the empty set defines a schema and, consequently, given a

set of class hierarchies, a schema can be any union of root-subtrees of the class

hierarchies. Furthermore, any union of schemas is a schema. For example, any

union of the following sets of classes defines a schema.
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So = 0 S4 = {Reference, Publication, Journal}

Si = {Reference} S5 = {Reference, Publication, Book}

S2 = {Reference, Article} S6 = {Library}

S3 = {Reference, Publication} S7 = {Individual}

Schema Aggregation

Schemas can be recursively aggregated to form larger schemas. For this reason,

a schema is recurrently defined as an aggregation containing a root-subtree that

can be nil and a set of schemas. Thus, directly, a schema can contain at most

one root-subtree and, indirectly, it can contain any number of root-subtrees. The

schema for bibliographical references, for example, contains three class hierarchies

defined by the root classes Reference, Library and Individual and, consequently, the

schema is necessarily composed of smaller schemas.

A schema that contains only a root-subtree is referred to as a basic schema.

Moreover, aggregate and component schemas are, respectively, referred to as

super-schema and sub-schema. Thus, given a schema s, if its set of schemas is

empty then s is a basic schema, otherwise s is a super-schema and each schema in

the set of schemas of s is a sub-schema of s. Finally, two schemas are equivalent if

they contain the same set of classes, independently of their internal arrangement

of sub-schemas.

As an example, Table 5.1 shows some possible definitions of schemas and their

aggregations using the classes in the schema for bibliographical references, which is
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schema root-su btree (set of classes) sub-schemas

WI { Reference, Article, Publication, Journal, Book} 0

W2 { Library} 0

W3 { Individual} 0

W4 0 {WI, W2, W3}

W5 { Reference, Article, Publication, Journal, Book} {W2' W3}

W6 { Library} {Wll W3}

Wr { Individual} {wt, ~}

Table 5.1 Example of schema aggregation

necessarily a super-schema. We can note that: (1) Wt, W2 and W3 are basic schemas

since they do not contain sub-schemas, (2) W4 is a super-schema containing three

sub-schemas, (3) W5, W6 and Wr are super-schemas containing a root-subtree and

two sub-schemas, (4) W4, W5, W6 and W7 are equivalent because they contain the

same set of classes.

Self-contained Schema

Schemas are useful for defining portions of a database for manipulation because

every schema has implicitly associated with it a set of objects: the union of the

deep extents of all the classes that belong to the schema. Although, in principle,

schemas can be freely defined and aggregated, certain constraints are necessary to

ensure that the set of objects associated with a certain schema is self-contained.

A schema does not necessarily ensure referential integrity. It is possible to

define a schema so that the associated set of objects contains objects with dangling
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references, i.e., references to objects which are not in the set. In other words, the

set of objects associated to a schema is not necessarily a database. For example,

the set of objects associated to the schema W2 in Table 5.1, consisting only of

instances of the class Library, is not a database since an instance of Library can

contain references to instances of the class Publication, which do not belong to the

set of objects defined by W2.

Therefore, we define self-contained schema as a schema s such that for

every class a that belongs to s all superclasses and all classes related to a belong

to s, recursively. This constraint ensures that the set of objects associated to a

self-contained schema does not contain dangling references. Some examples of

self-contained schemas are the schemas W4, W5, W6 and W7 in Table 5.1. Another

example is a super-schema containing the classes Library, Publication and Reference.

5.2 Schema Definition

Graph Representation

Classes and corresponding inheritance arcs can be represented by a directed graph;

every vertex of the graph represents a class and every arc (directed edge) of the

graph represents an inheritance arc. (In Appendix A we prove that such a graph

is a directed tree.) We define a notation for graphs which is summarised in Figure

5.1 through an example.

Notation 5.1 A directed graph G is denoted by a doublet (V, A), where V is the

set of vertices and A is the set of arcs of G. 0
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Notation 5.2 Given a directed tree'll! the notation Root(W) denotes the vertex in IRoot I
W. V which is the root of'll. 0

W.V={VI, ,VS}
w.A = {ab , a7}

Root(w) = VI

Vs

Figure 5.1 Graph notation

Also, we define notation to denote all classes, all inheritance arcs and then the

graph that represents all classes and inheritance arcs.

Notation 5.3 The symbol C denotes the set of all classes. 0 ~

Notation 5.4 The symbol A denotes the set of all inheritance arcs between classes [i!I
in C. 0

Notation 5.5 The symbol 9 denotes a directed graph such that g. V = C and [[I
g.A=A. 0

Self-contained Set of Classes

A schema corresponds to a subgraph of 9 that can be used independently. How-

ever, a subgraph of 9 corresponds to a set of classes, which is not necessarily
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independent of the remaining classes. A set of classes C is self-contained, hence

independent of the remaining classes in C, if all classes referred to by the classes

in C also belong to C. According to our definitions of class and relationship, I a

class x contains a reference to a class y in one of the following situations:

1. x is direct subclass of y

In this case, x contains the name of y as the name of its superclass.

2. x and yare related classes

In this case, x contains the name of y as the name of a related class.

Thus, more specifically, a set of classes C is totally self-contained if, and only

if, the following conditions hold:

SI. The superclass of every class in C belongs to C.

S2. Every class related to every class in C belongs to C.

If SI holds we say that C is self-contained with respect to hierarchy. If S2 holds

we say that C is self-contained with respect to relationship.

Definition 5.1 (Class Hierarchy Self-containment) A set of classes C is self-contained

with respect to hierarchy iff V x E C : if x is derived from a class y then y E C.

o

Notation 5.6 Given a class x, the notation p( x) denotes the set of all classes related

to x.

1Definition A.23 (Class) and Definition A.8 (Relationship Specification) in Appendix A.



Chapter 5. Class Space Organisation 91

tained with respect to relationship iff V x E C : p( x) ~ C.

Definition 5.2 (Class Relationship Self-containment) A set of classes C is self-con-

D

Definition 5.3 (Totally Self-contained Set of Classes) A set of classes C is totally

self-contained iff:

• C is self-contained with respect to hierarchy

• C is self-contained with respect to relationship D

Example 5.1 Let us consider the classes represented by the graph depicted in Fig-

ure 5.2, where class relationships are represented by dashed lines, and references

between classes are listed on the right-hand side of the graph: the first and the

second columns, respectively, contain the superclass and the set of related classes

for each class in the graph. Each row of Table 5.2 contains a subset of the classes

in the Figure and an indication (./) whether the set is self-contained with respect

to hierarchy and relationship.

superclass( Cl) = nil p( Cl) = 0
superclass( C2) = Cl p( C2) = {C4' C7}
superclass( C3) = Cl p( C3) = {C6}

1\
1 \

\
superclass( C4) = C3

superclass( C5) = C3

superclass( C6) = nil

P(C4) = {C2' C7}
p( C5) = {C7}

p( C6) = {C3}
1 1 1
L_--O- _J

C7

Figure 5.2 Example of references between classes

<>
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set of classes self-containment

hierarchy relationship

{cd .( .(

{Cl, C2, C3} .(

{C3, C6} .(

{C3' C4, C5}

{Cl, C3, C6} .( .(

{C1, ... , cd .( .(

Table 5.2 Example of self-contained set of classes

Root-subtree

Since the (connected) components of g are (tree-structured) class hierarchies, the

components of a subgraph of g are subtrees of class hierarchies. According to

condition SI, in a subgraph that designates a schema, the set of classes in such

a subtree must be self-contained with respect to hierarchy. For simplicity, we

designate such a subtree as self-contained.

Definition 5.4 (Self-contained Subtree) A subtree H of a class hierarchy \II in g is

self-contained iff the set of classes H. V is self-contained with respect to hierarchy.

o

We now define root-subtree as a subtree of a class hierarchy such that the root

of the subtree is the root of the class hierarchy (i.e., the class which is the root of a

root-subtree has no superclass). A root-subtree is self-contained and, conversely,

that a self-contained subtree is a root-subtree, as we state in Theorem 5.1 and
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prove in Appendix B.

Definition 5.5 (Root-subtree) A root-subtree H is a subtree of a class hierarchy W

in 9 such that Root(H) = Root(W). o

Example 5.2 Let us consider the classes represented by the graph depicted in Fig-

ure 5.3. A root-subtree, such as Ht, is denoted by the dotted-line rectangle and a

black point connected to the rectangle by another dotted line; the rectangle sur-

rounds the vertices and arcs of the root-subtree. Since a root-subtree is a graph,

the classes of a root-subtree is given by its set of vertices, such as HI. V for the

root-subtree HI. The list on the right-hand side of the graph shows the set of

classes of HI and some other possible root-subtrees, namely H2, ••• , H5, which, for

must contain the class Cl since it is the only root class in the graph.

simplicity, are not denoted in the graph. We should notice that any root-subtree

Cl HI. V = {Cb C3, C4}

H2• V = {Cb C2, C3}

H3• V = {Cb ... , C5}

H4• V = {cd

H5. V = {Cb C3, C5}

+ ..........• HI
C3 :

Figure 5.3 Example of root-subtree

o

Theorem 5.1 (Root-subtree Self-containment) A subtree H of a class hierarchy W

in 9 is self-contained iff H is a root-subtree. •
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Schema

A schema is recurrently defined as an aggregation containing a root-subtree which

can be nil and a set of schemas; directly, a schema may contain at most one

root-subtree and, indirectly, it may contain any number of root-subtrees. Thus,

a schema corresponds to a set of classes that is self-contained with respect to

hierarchy but not necessarily self-contained with respect to relationship. Let us

assume the existence of a count ably infinite set WN of schema names, then we

can define schema as follows.

Definition 5.6 (Schema) A schema is a triple (n, H, S), where:

• nE WN

• H is either a root-subtree or nil

• S is a set of schemas

Terminology:

• Let w be a schema. If w.H #- nil and w.S = 0 then w is a basic schema.

• Let Wi and 1V2 be schemas. If 1V2 E Wi.S then Wi is super-schema of 1V2,

while 1V2 is sub-schema of Wi. o

Example 5.3 Let us consider the classes represented by the graph depicted in Fig-

ure 5.4. A schema, such as W5 (bottom of Figure), is denoted by a full-line

rectangle and arrows connecting the rectangle to a root-subtree, such as H5, and

other sch emas, such as W4. Root-subtrees are surrounded by dotted-lines, and

class relationships are denoted by dashed lines. Let us suppose that 51, ... ,56 are

schema names, then we have the following elements in the graph:
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\II1. V = {Ct, ••• , Cs}

\II2. V = {Cg, .•• , CH}

\113. V = {CI2, .•• , CIS}

Root(\IIt) = Cl

Root(\II2) = Cg

Root(\II3) = CI2

• Root-subtrees HI, ... ,Hs:

HI. V = {Ct, •.. , CS}

H2• V = {Cg, , CH}

H3• V = {CI2, , CIS}

H4• V = {CI2' CI4}

Hs. V = {Ct, C2, CS,CB}

• Basic schemas Wt, ... , W4, and super-schemas Ws, W6:

WI = (st, HI, 0)

W2 = (52, H2, 0)

W3 = (53, H3, 0)

W4 = (54, H4, 0)

Ws = (55, Hs, {W4})

'W6 = (56, nil, {wt, ~, W:3})

o

Schema Name Distinction

The name of a schema must be distinct from the name of any other schema to

permit each one to be referred to unambiguously. We define a notation to denote

the set of all schemas and formally define that each schema has a distinct name.

Notation 5.7 The symbol W denotes the set oj all schemas.

Invariant 5.1 (Schema Name Distinction) V x, yEW: iJ x.n = y.n then x = y. •
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f····················... ····················1
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Figure 5.4 Example of schema aggregation
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Acyclic Arrangement of Schemas

According to Definition 5.6 (Schema), a schema may contain a number of schemas,

recursively, hence forming a hierarchy of aggregated schemas. Obviously, a schema

cannot contain itself (neither directly nor indirectly), otherwise the recursion is

infinite. In other words, there can be no cycle in a hierarchy of schemas. We define

a notation to denote all sub-schemas of a schema and formally define that a schema

cannot be sub-schema of itself, i.e., the arrangement of schemas is acyclic.

Notation 5.8 Given a schema w, the notation 1jJ(w) denotes the set of all sub-

schemas of w, recursively:

1jJ(w)=w.SU U 1jJ(x)
:cEw.S

o

Invariant 5.2 (Acyclic Arrangement of Schemas) V w E W: w rt. 1jJ(w). •
Self-contained Schema

The set of classes corresponding to a schema is self-contained with respect to

hierarchy since a schema is composed of root-subtrees. In addition, such a set

of classes may also be self-contained with respect to relationship, hence totally

self-contained. For simplicity, we say that a schema is self-contained if its corre-

sponding set of classes is totally self-contained, otherwise we say that the schema

is not self-contained. We define a notation to denote the set of classes that corre-

sponds to a schema and formalise self-contained schema.

Notation 5.9 Given a schema w, the notation CP(w) denotes the set of classes in [!I
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w, recursively:

<1>(W) = w.H. Vu U <1>(x)
xEw.S

o

Definition 5.7 (Self-contained Schema) A schema w is self-contained iff the set of

classes given by <1>( w) is totally self-contained. o

Example 5.4 Let us consider again the schemas depicted in Figure 5.4. The set of

classes corresponding to each schema and the sets of related classes which are not

empty are given as follows.

p( C3) = {ClO}

p( Cll) = {Ci3}

p( ClO) = {C3}

p( Ci4) = {Cs}

Therefore, self-containment of the given schemas is given as follows.

C3 E <1>( wd 1\ p( C3) % <1>( wt} ::} Wi is not self-contained

Cs E <1>( wd 1\ p( cs) % <1>( wt} ::} Wi is not self-contained

CiO E <1>( lV2) 1\ p( ClO) % <1>( W2) ::} W2 is not self-contained

Cll E <1>( lV2) 1\ p( Cll) % <1>( lV2) ::} W2 is not self-contained



Chapter S. Class Space Organisation 99

C13 E CI>( W:3) !\ p( C13) <t CI>( W:3) => W3 is not self-contained

C14 E CI>( W:3) !\ p( C14) <t CI>( W:3) => W:3 is not self-contained

CI>( W5) is totally self-contained => W5 is self-contained

CI>( W()) is totally self-contained => W6 is self-contained

5.3 Database Definition

A schema designates a set of classes and each class designates a set of objects: the

deep extent of the class. Thus, a schema (indirectly) designates a set of objects:

the union of all deep extents of the classes designated by the schema. Firstly we

introduce a notation to designate the deep extent of a class and then we introduce

a notation to denote the set of objects designated by a set of classes.

Notation 5.10 Given a class c, the notation Ext*(c) denotes the deep extent ofc. IExt*1

o

Notation 5.11 Given a set of classes C, the notation f2(C) denotes the set of all [llJ
objects which are instances of classes in C:

f2(C) = U Ext*(c)
cEO

o

A set of objects S where all objects referred to by objects in S also belong to

S, i.e., there are no "dangling" references in S, can be manipulated independently

of the remaining objects. Accordingly, we define such a set of objects as absolutely
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self-contained. Firstly we define a notation to denote the set of all objects and

another notation to denote the set of objects related to a given object.

Notation 5.12 The symbol 0 denotes the set of all objects. o

Notation 5.13 (Set of Related Objects) Given an object 0 E 0, the notation Ref( 0)

denotes the set of all objects which are related to o. 0

Definition 5.B (Absolute Self-containment) A set of objects S is absolutely self-contained

iffVo E S: Ref(o) ~ S. 0

However, a set of objects does not need to be absolutely self-contained to be

independent for manipulation purposes. For example, let us consider the classes

and respective instances depicted in Figure 5.5. For this discussion we labelled

the objects as 1, 2 and 3, and annotated their parts corresponding to each class.

Thus, the object 1 has a part C, the object 2 has parts A and B, and the object

3 has a part D. The object relationship r corresponds to the class relationship R,

while the object relationship s corresponds to the class relationship S. Since R is

between C and B, r is maintained by the parts C and B of the objects 1 and 2,

respectively. Similarly, since S is between A and D, s is maintained by the parts

A and D of the objects 2 and 3. Now, let us suppose that a self-contained schema

w is defined containing the classes A and D. The set of objects designated by w

includes the objects 2 and 3. Since w does not include class B, the part B of object

2 is not "covered" by w, i.e., if a user manipulates the object 2 through w then the

part B of object 2 is not "seen" by the user. Consequently, the object relationship

r is not relevant to the user. Thus, although the set of objects designated by w

is obviously not absolutely self-contained, this set contains no dangling references
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with respect to w. In other words, the set of objects designated by w is self-

contained relatively to the class relationships included by w. The set of objects

designated by a self-contained schema, in particular, is referred to as database.

Thus, a database is self-contained with respect to its designating schema.

Definition 5.9 (Database) Given a self-contained schema w, the database with re- IDB I
spect to w, denoted as DB( w), is the set of objects which are instances of the set

of classes in w:

DB(w) = n(~(w)) o

Definition 5.10 (Relative Self-Containment) Given a self-contained schema w, a set

of objects S is self-contained with respect to w is S ~ DB( w). o

...........~ ~

Classes

Objects

~-----~-----~
G-----~-----EJ a

1 2

Figure 5.5 Relative self-containment of schemas
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5.4 Conclusions

The recursive definition of schema and their consequent hierarchical arrangement

provide a powerful means of organising classes and objects: schemas can be freely

decomposed in sub-schemas and, conversely, they can be freely aggregated to

other schemas to form larger schemas. This approach permits flexible and scalable

organisation of class and object space, as we discuss in Chapter 7, in contrast with

the flat space normally offered by database systems.

In addition, with the new concept that we have introduced, relative self-

containment, a schema can designate a set of objects - a database - for manip-

ulation independently of the remaining objects even if an object in the database

contains a reference to an object which does not belong to the database. The

only requirement is that the references that correspond to the schema are self-

contained. This approach relaxes the traditional referential integrity required in

object-oriented database systems.
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CHAPTER 6

Meta-object Model

Schemas (including classes, attributes, methods and relationships) themselves con-

stitutes information which require proper management. In this Chapter, we show

that the object model is reflexive by defining a set of special (reserved) classes -

the meta-classes - which can represent schemas. Next we define a (self-contained)

schema - the meta-schema - that contains all meta-classes. Thus, the database

designated by the meta-schema - the meta-objects - represents all (meta) in-

formation about both the predefined and user-defined schemas. We demonstrate

the correctness of the meta-schema through a set of rules for mapping schema ele-

ments to meta-objects. Since meta-objects permit represent ion and manipulation

of schemas, we refer to the collection of definitions introduced in this Chapter as

meta-object model.

A database of meta-objects corresponds to the notion of data dictionary or

meta-data often employed in database and CASE systems; meta-objects provide

for system administration, documentation, and software management. Systems

administrators use meta-objects to manage schemas: creation, modification and

deletion of classes, and their organisation in schemas and sub-schemas. As a

source of documentation meta-objects permit users to learn what classes exist,
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thereby making it easier for them to formulate queries and discover information.

The information about types! maintained by meta-objects permits automatic gen-

eration of program code for several purposes. The code corresponding to classes,

which is necessary to manipulate objects from programs, can be generated and

then linked to specific applications, such as information browsers, query inter-

preters and report generators. Also, the type information in meta-objects can be

used to generate specific code for object state checkpointing'' and transport within

network messages in distributed systems. We discuss the use of meta-objects for

code generation in Chapter 8 where an implementation of our model is described.

In addition, we make a non-conventional use of meta-objects: query resolu-

tion. The information about classes (basically class name, attributes, inheritance

and relationships) maintained by meta-objects naturally permits appropriate type

checking of query expressions (e.g. verify if an attribute which is specified in a

query expression as belonging to a certain class really belongs to it). Moreover, we

add to the normal information represented by meta-objects the information about

indices which is necessary for resolving queries. Thus, every object operation that

affects index information is followed by an operation that uses meta-objects to lo-

cate the indices that should be updated, and a query interpreter solves queries by

simply traversing meta-objects and obtaining information from the corresponding

indices. The use of meta-objects for query resolution purposes is explained in

Chapter 8.

1In our model a class is a type.

2Typically, transaction-based systems store object states in auxiliary storage for recovery

purposes.
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Meta-objets also have a fundametal role in the formal definition of our model:

schema space definition. Conceptually, schema elements exist only if the meta-

objects that map them exist. For example, every class has to be mapped to an

appropriate set of meta-objects in order to register it as a valid type, thereby

enabling the creation of instances of it. In this respect, our meta-object model

differs from "pure" object-oriented systems, such as Smalltalk[23] and its varia-

tions, where a class is an object. In our model a class is simply a type which

is represented by meta-objects as a means of implementing the type space. This

poses an interesting problem of solving the implicit recursion in the meta-model.

Because every class has to be mapped to meta-objects for it to exist, it requires

the existence of meta-classes in order to enable the creation of meta-objects. How-

ever, meta-classes are classes which also need to be mapped for them to exist. In

this Chapter, we simply postulate the existence of the meta-classes and, then, in

Chapter 8 we explain how this recursion problem is solved.

Notation

The meta-object model has its basis on the object model introduced in Chapter 4

and formally defined in Appendix A. Because that formal definition is consider-

ably detailed for the purpose of explaining the meta-model, her~we repeat only

the essential notation introduced and simplify its format for readability reasons.

However, in Appendix D we demonstrate that the meta-object model complies

with the formalism defined for the object-model by giving a version that makes

use of the formal notation for each definition and example presented in this Chap-

ter.
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• class( n) : the class whose name is n

• className( c) : the name of the class c

• objClassName( 0) : the name of the most specific class of the object 0

• schemaN ame (w) : the name of the schema w

• Att( c) : the set of all attributes of the class c

• Rel( c) : the set of all relationships of the class c

• Met (c) : the set of all methods of the class c

• 0 --+ n : the value of the attribute n of the object 0

y
• x ~ y : the relationship between the objects x and y where the role of x is

x
X and the role of y is Y

• e(n) : the deep extent of the class whose name is n

• relType (r) : the type of the relationship r ("Loose Aggregation", "Tight

Aggregation" or "Association")

6.1 Meta-schema

The meta-schema is depicted in Figure 6.1. The basic principle is to represent

schemas (and their components) as inter-related instances of the meta-classes. For

example, if there is a user-defined class Person then there must be an instance,

say 01, of the meta-class Class whose attribute name has value Person.

className( od = Class 01 --+ name = Person
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If the class Person has an attribute age of type Integer then there must be an

instance, say 02, of the meta-class IntegerAttribute whose attribute name is age.

className( 02) = IntegerAttribute 02 --+ name = age

Moreover, 02 must be related to 01 in order to represent that the attribute 02 is a

component of the class 01.

Attribute
02

Class

Self Representation

The basic principle of representing user-defined schemas as instances of meta-

classes can be applied to the meta-schema as well, i.e., we can have a database

of meta-objects that represents the meta-schema. For example, since there is a

class Class there must be an instance, say 03, of the class Class whose attribute

name has value Class. Also, since the class Class has an attribute name of type

String there must be an instance, say 04, of the meta-class StringAttribute whose

attribute name has value name. Moreover, attribute 04 must be related to class

className( 03) = Class 03 --+ name = Class

className( 04) = StringAttribute 04 --+ name = name

Attribute
03 ;::::: 04

Class

As another example, there must be two instances, say 05 and 06, of the meta-

class Class whose attributes name have values Attribute and StringAttribute, respec-
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SchemasuperSChema(···o.~·, ~--------------~
SubSchema ..... , .~:,!I *name: String

RootSchema
O,n

NonRootSchema
O,n

0,1 O,n
RootClass ~ ~ NonRootClass

SuperClasS(···o.l" Class

SubClass .......~:'!..

O,n
Attribute !c::----------

*name: String

r- key: Integer r--

StringAttribute IntegerAttribute

O,n--------.
*name: String

LeftClass
1

:
RightClass
1

O,n O,n
LeftRelationship '" '" RightRelationship

Relationship

left_key: Integer

right_key: Integer

Aggregation

*aggregate_role: String

*componenet_role: String

component_min_card: Integer

- component_max_card: Integer r-

TightAggregationLooseAggregation

aggregate_min_card: Integer

aggregate_max_card: Integer

Figure 6.1 The meta-schema

Method

*signature: String

Association

*Ieft_role: String

*right_role: String

left_min_card: Integer

right_min_card: Integer

left_max_card: Integer

right_max_card: Integer
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tively. Since the meta-class Attribute is superclass of the meta-class StringAttribute

then 05 must be related to 06: the class 05 is superclass of the class 06.

className( 05) = Class 05 --+ name = Attribute

className( 06) = Class 06 --+ name = StringAttribute

SubClass
05 ~ 06

SuperClass

Naming Assumptions

All class and schema names used in the meta-schema are considered as "reserved",

i.e., user-defined schemas cannot contain those names. (In Chapter 7 we relax

this constraint by introducing contexts as a means of defining autonomous name

spaces.) Moreover, the only primary types used in the schema correspond to the

domains of integers and strings. Thus, let us assume the existence of the following

sets:

• a set RCN of reserved class names:

RCN = {

Class, Attribute, Method, Relationship, Schema,

IntegerAttribute, StringAttribute,

Aggregation, LooseAggregation, TightAggregation, Association

}

• a set RWN of reserved schema names:

RWN = {Meta, Class, Attribute, Method, Relationship, Schema}
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• a set RpN of reserved primary type names:

RpN = {Integer, String}

Meta-classes

Now we formalise the definitions of meta-class and meta-object, and we postulate

the existence of the meta-classes. The meta-classes are the predefined classes of

the meta-schema. Thus, the name of a meta-class must be one of the reserved

class names. Since meta-classes are predefined they must exist in the set of all

classes. A meta-object is any instance of a meta-class, i.e., the most-specific class

of a meta-object is a meta-class.

Definition 6.1 (Meta-class) A class c E C3 is a meta-class iffclassName(c) E RCN.

o

Invariant 6.1 (Meta-classes Existence) \In E RCN::J c E C such that className(c) =

n. •
Definition 6.2 (Meta-object) An object 0 E 04 is a meta-object iff objClassName( 0) E

o

The meta-classes are formally defined in Appendix C according to the meta-

schema depicted in Figure 6.1. Examples of instances of the meta-classes, i.e.,

meta-objects, are given in Section 6.2, where rules for mapping classes, attributes,

methods, relationships, and schemas into meta-objects are given.

3The symbol C is defined by Notation 5.3 as the set of all classes.
4The symbol 0 is defined by Notation 5.12 as the set of all objects.
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Meta-schema

The meta-schema is the schema that designates all meta-classes. As the diagram-

matical representation of the meta-schema shows (Figure 6.1), the meta-schema

is a super-schema composed of five basic schemas since there are five root classes

(Class, Attribute, Method, Relationship, Schema). For simplicity, we name the

meta-schema as Meta and each sub-schema with the same name of its root class.

Moreover, the meta-schema is self-contained since the set of all meta-classes is

totally self-contained, i.e., all class relationships are "within" the meta-schema.

Hence, according to Definition 5.6, the meta-schema is formally defined as follows.

Definition 6.3 (Meta-schema) The meta-schema is a schema w E W5 such that:

1. w.n = Meta

2. w.H. V = 0 (::} w.H.A = 0)

(a) sl.n = Class

(b) «.tt .V = {c Eel c::;r class(Class)}

(c) S2.n = Attribute

(d) s2.H. V = {c Eel c::;r class(Attribute)}

(e) S3.n = Method

(f) S3.H. V = {c Eel c::;r class(Method)}

(g) S4.n = Relationship

5The symbol W is defined by Notation 5.7 as the set of all schemas.



Chapter 6. Meta-object Model 112

(h) s4.H. V = {c Eel c:S;'T class(Relationship)}

(i) S5.n = Schema

(j) s5.H. V = {c Eel c:S;'T class(Schema)} D

Proposition 6.1 (Meta-schema Self Containment) The meta-schema is self-contained.

D

6.2 Meta-object Mapping

In this Section we show how classes, attributes, methods, relationships and schemas

are mapped to meta-objects. The meta-schema models a class as an aggregation of

attribute specifications, relationship specifications and methods. For this reason,

each class maps to an instance of the meta-class Class aggregated to instances of

the meta-classes Attribute, Relationship and Method. For simplicity of explanation,

we introduce the mapping for each type of class component (attribute, method

and relationship) separately and then explain how class hierarchies and schemas

are mapped. Figure 6.2 shows a simple schema which is used throughout this

Section to illustrate such a mapping.

Firstly, we recall that each class has a distinct name. Consequently, the in-

stances of the meta-class Class must have the attribute name with distinct values.

Such instances are simply referred to as class meta-objects since they map classes.

Invariant 6.2 (Class Instance Name Distinction) Vx, y E e(Class): if x --+ name =
Y --+ name then x = y. •
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Definition 6.4 (Class Meta-object) Given a class c E C, the class meta-object with I CMO I
respect to c, denoted as CMO(c), is f3 E ~(Class) such that f3 --+ name

className(c). o

Example 6.1 Let c denote the class named Person. The notation CMO( c) denotes

the instance f3 of the meta-class Class such that f3 --+ name = Person. <>

School

*name: String

register_student

(Person,String):lnteger

University

acronym: String

Person

*surname: String

Student firstname: String
···························0············· age: Integer
0,3 O,n '-- --'

Figure 6.2 Example schema for meta-object mapping

Attribute Mapping

An attribute a of a class c is mapped to two meta-objects: an instance Q of

the meta-class Attribute and an instance f3 of the meta-class Class. The meta-

object Q must be a direct instance of a subclass of the meta-class Attribute (either

StringAttribute or IntegerAttribute) according to the primary type of a. The value

of the attribute name of Q must be the name of a. The meta-object f3 must be the

class meta-object of the class c. The meta-objects Q and f3 must be related: f3 is

the (aggregate) class of Q, while Q is (component) attribute of f3. We introduce
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a notation to denote the meta-class corresponding to each primary type and then

formalise mapping of attributes to meta-objects.

Notation 6.1 Given a primary type name pE PN, the notation AttCN(p) denotes

a class name in nCN as follows .

• AttCN(lnteger) = IntegerAttribute

• AttCN(String) = StringAttribute o

Definition 6.5 (Attribute Mapping) Given an attribute a of a class c where n is

the name of a, p is the primary type name ~nteger or String) of a, and k is

either 1 or 0 depending whether or not a is a key attribute, the set of meta-objects

that maps a, denoted as M etaA (a), is the set containing only the meta-objects

a E e(Attribute), f3 E e(Class) such that:

(i) className(a) = AttCN(p)

(ii) a --+ name = n

(iii) a --+ key = k

(iv) f3 = CMO(c)

(v) a c~s f3
Attribute

o

Example 6.2 Let us consider the attribute surname of class Person. Let a denote

that attribute, then MetaA (a) = {a, f3} such that:

className( a) = StringAttribute f3 = CMO( class(Person))

a --+ name = surname Class f3a ~
Attribute

a --+ key = 1
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Method Mapping

A method m of a class c is mapped to two meta-objects: an instance p of the

meta-class Method and an instance f3 of the meta-class Class. The value of the

attribute signature of p must correspond to the signature of m. The meta-object

f3 must be the class meta-object of the class c. The meta-objects p and f3 must be

related: f3 is the (aggregate) class of p, while p is (component) method of f3. For

practical reasons, the function and the semantics of a method are not mapped to

meta-objects. We introduce a notation to denote a string that corresponds to the

signature of a method and then formalise mapping of methods to meta-objects.

Notation 6.2 Given a method p, the notation StrSig(p) denotes the string obtained IStrSig I
by concatenating the name of u, the argument type names of p and the result type

name of p in this order and separating them using commas. o

Definition 6.6 (Method Mapping) Given a method m of a class c, the set of meta- IMetaM I
objects that maps m, denoted as MetaM(m), is the set containing only the meta-

objects p E e(Method), f3 E e(Class) such that:

(i) P --+ signature = StrSig( m)

(ii) f3= CMO(c)

(
••. ) Classlllp~f3

Method
o
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Example 6.3 Let us consider the method register _student of class School. Let m

denote that method, then MetaM( m) = {J.l,.8} such that:

className(J.l) = Method

J.l --+ signature = "register _student, Person, String, Integer"

.8 = CMO(class(School))
Class 4

J.l ;::: fJ
Method

Relationship Mapping

A relationship r between classes Cl and C2 is mapped to three meta-objects: an

instance (J" of the meta-class Relationship and two instances .81, .82 (which can be

the same) of the meta-class Class. The meta-object (J" must be a direct instance of a

subclass of the meta-class Relationship (either TightAggregation, LooseAggregation

or Association) according to the relationship type. The meta-objects .81 and .82
must correspond to the related classes Cl and C2.

Since a relationship is between two classes, to avoid confusion, we must desig-

nate one class as the LeftCiass and the other one as the RightClass in the relation-

ship. For simplicity of explanation, we establish a convention where by the class

Cl is the class designated as l.eftClass, while the class C2 is the class designated

as RightCiass. Thus, .81 and (J" must be related to each other having, respectively,

the roles LeftCiass and LeftRelationship, while .82 and (J" must be related to each

other having, respectively, the roles RightClass and RightRelationship. Moreover,

we establish another convention to designate aggregated classes: if the relation-

ship is an aggregation then the aggregate class must be the LefrClass, while the
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component class must be the Right Class. If the relationship is an association then

it is unimportant how the classes are designated.

Definition 6.7 (Relationship Mapping) Given a relationship r between classes Cl and IMetaR I
C2 where

• the role of Cl is R1

• the role of C2 is R2

• the minimum cardinality of Cl is It

• the minimum cardinality of C2 is 12

• the maximum cardinality of Cl ZS U1

• the maximum cardinality of C2 ZS U2

• the flag key of Cl is k1

• the flag key of C2 is k2

the set of meta-objects that maps r, denoted as MetaR(r), is the set containing

only the meta-objects (7 E e(Relationship), (31 E e(Class), (32 E e(Class), such that:

LeftRelationship
(i) (31 ~ (7

LeftClass

RightRelationship
(ii) (32 ~ (7

RightClass

(iii) if reiType (r) = "Loose Aggregation" then:

(a) className((7) = LooseAggregation

(b) (7 --+ left-key = kl

(c) (7 --+ right-key = k2
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(d) 0" --+ aggregate..role = RI

(e) 0" --+ componenLrole = R2

(f) 0" --+ component.irnin.xard = 12

(g) 0" --+ component.irnax.card = U2

(h) 0" ---+ aggregate..min.ccard = II

(i) 0" --+ aggregatecrnax..card = Ul

(iv) if relType( r) = "Tight Aggregation" then:

(a) className( 0") = TightAggregation

(b) 0" --+ lefLkey = kl

(c) 0" --+ righLkey = k2

(d) 0" --+ aggregate..role = RI

(e) 0" --+ componenLrole = R2

(f) 0" --+ component.min.card = 12

(g) 0" --+ componenLmax_card = U2

(v) if relType( r) = "Association" then:

(a) className(O") = Association

(b) 0" -- + lefLkey = kl

(c) 0" --+ righLkey = k2

(d) 0" --+ lefLrole = RI

(e) 0" --+ righLrole = R2
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(I) 0' --+ right.rmin.xard = 12

(g) 0' --+ right..max.card = U2

(h) 0' --+ left.rnin.card = II

(i) 0' --+ left..max.card = U1 o

Example 6.4 Let us consider the association between classes School and Person.

Let the class School be designated as the LefrClass while the class Person as the

RightCiass in that association. Now let r denote that association, then MetaR( r) =
{O',,81,,82} such that:

className(O') = Association

,81= CMO(class(School)) ,82= CMO(class(Person))
LeftRelationship

,81 ~ 0'
LeftClass

RightRelationship
,82 ~ 0'

RightClass

0' --+ left-key = 0 0' --+ right-key = 1

0' --+ left-role = School 0' --+ right-role = Student

0' --+ left.imin.xard = 0 0' --+ right..min.xard = 0

0' --+ left.imax.card = 3 0' --+ right.imax.card = n

Class Mapping

A class c is mapped to a set of meta-objects: the union of the sets of meta-

objects that map all attributes, all relationships and all methods of,8. As a

consequence, such a set of meta-objects includes the class meta-object of c and

the class meta-objects of all (direct and indirect) superclasses of c. These class

meta-objects, in addition, must be related in such way to represent the class
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path of C,6 thereby permitting to navigate through meta-objects. Thus, for every

pair of classes which have a direct inheritance relation, the corresponding class

meta-objects are accordingly related as SuperCiass and SubClass.

Metac I Definition 6.8 (Class Mapping) The set oj meta-objects that maps a class c, denoted

as Metac(c), is the set given by:

Metac(c) = ( U MetaA(a)) U ( U MetaM(m)) U ( U MetaR(r))
aEAtt(c) mEMet(c) rERel(c)

Proposition 6.2 (Class Path Mapping) Vd E C : Vb E C: iJ d ~T b then CMO(b) E

Metac( d). o

Invariant 6.3 (Inheritance Mapping) Vb, dEC: iJ b = superclass( d) then:

SuperClass
CMO( d) ~ CMO( b)

SubClass

Example 6.5 Let us consider the class University. Let c denote that class, then:

Met(c) = {m} Rel( c) = {r}

where:

• at is the attribute whose name is name

• a2 is the attribute whose name is acronym

• m is the method whose name is register _student

• r is the relationship between classes School and Person

6The class path of a class c is the sequence of classes including c all its superclasses.
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Thus, from Definition 6.8 (Class Mapping), we have that:

Now, let us show that Proposition 6.2 holds. Since class School is the only super-

class of c (class University), we have the following is-a relations for c:

C ~'T class (School )

C ~'T class( University)

From Definition 6.5 (Attribute Mapping), Definition 6.6 (Method Mapping) and

Definition 6.7 (Relationship Mapping), we have that:

MetaA( ad :> {CMO( class(School))}

MetaM( m) :> {CMO( class(School))}

MetaA(a2) :> {CMO(class(University))}

MetaR( r) :> {CMO( class(School)), CMO( class(Person))}

Hence:

Metac( c) :> {CMO( class(School)), CMO( class(University))}

which means that the Proposition holds.

Moreover, since class School is direct superclass of c (superclass( c) = class(School)),

according to Invariant 6.3, we have that:

SuperClass
CMO( class(University)) ~ CMO( class(School))

SubClass
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Schema Mapping

Now we show how a schema (including all classes that it designates) is mapped

to meta-objects. Firstly, for each schema there must be an instance of the meta-

class Schema. We recall that, according to Invariant 5.1, each schema has a

distinct name. Consequently, the instances of the meta-class Schema must have

the attribute name with distinct values. Such instances are simply referred to as

schema meta-objects since they map schemas.

Invariant 6.4 (Schema Instance Name Distinction) Vx, y E ~(Schema): if x --+ name =
y --+ name then x = y. •
Definition 6.9 (Schema Meta-object) Given a schema w E W, the schema meta-

object with respect to w, denoted as SMO( w), is s E ~(Schema) such that s --+

name = schemaName(w). 0

Example 6.6 Let us consider the schema depicted in Figure 6.2. For simplicity of

notation, let us denote the schema by W3, and let us suppose that its name is

Academia (schemaName( 'W3) = Academia). Thus, the notation SMO( W3) denotes

the instance s of the meta-class Schema such that s --+ name = Academia. <>

Secondly, a schema w is composed of a root-subtree and a set of sub-schemas."

Hence, the set of meta-objects that maps w includes the schema meta-object of

w, all meta-objects that map the classes pertaining to the root-subtree of wand,

recursively, all meta-objects that map the sub-schemas of w.

7Formally, (Definition 5.6) a schema w consists of a root-subtree whose set of classes is

denoted w.H. V and a set of sub-schemas denote as w.S.
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Definition 6.10 (Schema Mapping) The set of meta-objects that maps a schema w, IMetaw I
denoted as Metaw( w), is the set given by:

Metaw(w) = {SMO(w)} U ( U MetaCUn) U ( U Metaw(x))
{JEw.H. V xEw.S

Therefore, given a schema meta-object s that is the schema meta-object of a

schema w, it should be possible to navigate through all meta-objects that map

the root-subtree of w. For this reason, the class meta-objects corresponding to

the classes pertaining to the root-subtree of w must be related to s in such way

to reflect whether the class is or is not the root of the root-subtree.

Invariant 6.5 (Root-subtree Mapping) V w E W:

RootSchema
(i) Vc E w.H. V: if c = Root( w.H) then CMO( c) ~ SMO( w)

RootClass
NonRootSchema

(ii) Vc E w.H. V: if c =1= Root( w.H) then CMO( c) ~ SMO( w) •
NonRootClass

Example 6.7 Let us consider the schema depicted in Figure 6.2. Since there are

two root classes (School and Person) the schema is a super-schema composed of

two basic schemas. For simplicity of notation, let us denote the basic schema

rooted at class School by WI and the basic schema rooted at class Person by W2.

Thus, we have that:

RootSchema
CMO( class(School)) ~ SMO( WI)

RootClass

RootSchema
CMO(class(Person)) ~ SMO(W2)

RootClass

. NonRootSchema
CMO( class( University)) ~ SMO( WI)

NonRootClass

Also, it should be possible to navigate through all meta-objects that map the

sub-schemas of a schema. Thus, for every sub-schema s of a schema w there
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must be a relationship between the schema meta-object of wand the schema

meta-object of s to reflect the nesting of schemas.

Invariant 6.6 (Schema Nesting Mapping) Vw, sEW: if s E w.S then:

SuperSchema
SMO(s) .= SMO(w)

SubSchema

Example 6.8 Let us consider the super-schema depicted in Figure 6.2. Let us

denote the sub-schema rooted at class School by Wl, the sub-schema rooted at

class Person by ~, and the super-schema by W3. Thus, we have that:

SuperSchema
SMO( Wl) .= SMO( W3)

SubSchema

SuperSchema
SMO( W2) .= SMO( W:3)

SubSchema

6.3 Summary

We summarise the discussion on meta-object mapping by presenting, as an ex-

ample, the complete set of meta-objects that maps the schema depicted in Figure

6.2. Firstly we identify all elements in the schema. As shown in Figure 6.3, where

the nesting of schemas is made explicit, attributes are denoted by at, ... a5, the

only method is denoted by mll the only relationship is denoted by rll classes

are denoted by Cll C2, C3, root-subtrees are denoted by Hll H2, and schemas are

denoted by Wl, ~, W:3.

The set of meta-objects that map all schema elements is diagrammatically

represented in Figure 6.4. Each meta-object is represented by a rectangle with

rounded corners and has four parts: the two top parts contain the object class

name (c) and the object name (n), the intermediary part contains the object
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............................... __ . _ .. .

@---

6)----

w
School

- -> *name: String

>register_student
(Person,String):Integer

C5J
w

University

- -> acronym: String

_--6)c:) *sumame: String .6<-

: :: Student firstname: String oC- - - --@
-----------,-----y------:---O-------------
O 3 0 age: Integer ~ -, .n - fn"::\'-----------' - - -o(y

Person

, __ . - _. - - - _ eo .. _ - - _ - _ _'

6)----

,_ _ - _.. - e-·· _.. - _.. - - .. - - _. -.'

Figure 6.3 Example schema with annotated elements

attributes, and the bottom part contains the object relationships. For simplicity,

objects are named 1, ... ,13, and each relationship is designated by the name of

the corresponding related role. Although object relationships are already shown

through object names in reference sets of relationship variables, a double-headed

arrow is present between two related objects to emphasise their relationship.

The mapping of all schema elements into meta-objects is formally given in

Appendix D. Figure 6.5 helps to visualise the sets of meta-objects that map

each schema element. Objects are simply represented by circles containing the
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c = Method I n=3 c = StringAttribute 1n = 7

signature = 'register_student, name = 'surname'
Person, String, Integer' key= I

Class={I} Class= {6}

c = StringAttribute I n = 2 c = StringAttribute I n = 8

name = 'name' name = 'firstname'

key= I key e O
,--.. Class= {I} c = Association In = 10 Class= {6} I--

left_key = 0

right_key = I

c = Class In = I left_role = 'School' c = Class J n=6

name = 'School' right_role = 'Student' name = 'Person'

~ Attribute = {2} left_min_card = 0 Attribute = {7,8,9} -r---
Method = {3} right_min_card = 0 Method = {}

SuperClass = {} left_max_card = 3 SuperClass = {}
,--.. SubClass={4} right_max_card = n SubClass = {}

LeftRelationship = {IO} LeftClass = {I } LeftRelationship = {}

RightRelationship = {} RightClass = {6} RightRelationship = { to}

RootSchema = {II} RootSchema = {12}

NonRootSchema = {} NonRootSchema = {}

c = StringAttribute I n = 5 c = IntegerAttribute J n = 9

I n=4c = Class name = 'acronym' name = 'age'

name = 'University' key =0 key e O

Attribute = {5} f---- Class={4} Class = {6} I--
Method= {}

~ SuperClass = {I}

SubClass = {}

LeftRelationship = {}

RightRelationship = {}

RootSchema = {}- NonRootSchema = {II }

c = Schema _In=13

In =11 1n= 12c = Schema name =' Academia' c= Schema

name = 'School' RootClass = {} name = 'Person'

RootClass = {I } NonRootClass = {} RootClass = {6}
~ NonRootClass = {4} SuperSchema = {} NonRootClass = {}

SuperSchema = {13 } SubSchema = {II,12} SuperSchema = {13 }

SubSchema = {} SubSchema = {}

Figure 6.4 Meta-objects for schema in Figure 6.3
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corresponding object name (1, ... ,13), and each set is surrounded by a polygon.

We use different line styles for the sake of clarity only; there is no specific meaning

for each line style. Also for simplicity, each set is named with the same name of

the schema element mapped by the set (at, a2, etc).

6.4 Conclusions

Although simple the meta-object model permits complete and unambiguous rep-

resentation of schemas. This enables the use of meta-objects for several purposes,

including schema management, system documentation, software management, im-

plementation of the type space and, as a novelty, a simple implementation of query

interpreters.

The uniform representation of information modelled by schemas (instances of

classes) and the information pertaining to schemas (class definitions) permits ma-

nipulation of information and meta-information to be done in a uniform and inte-

grated way, thereby greatly simplifying the system interface. For example, users

can navigate between information and meta-information using a single interface;

an information browser or query interpreter can operate on both information and

meta-information.

Finally, the ability of the meta-schema in representing itself makes the system

architecture very concise and independent of other information models.
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Figure 6.5 Sets of mapping meta-objects in Figure 6.4
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CHAPTER 7

Object Space Organisation

In this Chapter we complete the description of object engine components by firstly

defining the index information that should be maintained about objects, secondly

defining views as a means of grouping corresponding meta-objects, objects and

indices, and thirdly defining contexts as repositories for views, i.e., repositories for

meta-objects, objects and indices. All the definitions presented in this Chapter

are also formally presented in Appendix E.

7.1 Indices

As discussed in Chapter 3, object engines maintain two types of indices: attribute

indices and relationship indices. Let us define indices using generic classes and

corresponding instances, as shown in Figure 7.1. Firstly, let us consider the class

with instances depicted in Figure 7.1(a) and define attribute index. A class C has

a key attribute a of a primary type p (e.g. integer or string), and k instances with

names Ci having (not necessarily distinct) values Vi, 1 :::;i :::;k, for the attribute a.

Thus, the attribute index with respect to class C and attribute a is the relation
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given by the following set of ordered pairs:

{( VI, cd, (V2, C2), .•. , ( Vk, Ck)}

Now, let us consider the classes with instances depicted in Figure 7.1(b) and

define relationship index. The classes A and B have a relationship r where the

role of A is RA, the role of B is RB, and the relationship is key with respect to

both classes. A collection of (not necessarily distinct) k instances of A and a

collection of (not necessarily distinct) k instances of B, respectively named aj and

b., 1 ~ i ~k, are related to each other with respect to the relationship r. Since

the relationship r is key with respect to class A, the relationship index with respect

to class B and role RA is the relation given by the following set of ordered pairs:

And, since the relationship r is key with respect to class B, the relationship index

with respect to class A and role RB is the relation given by the following set of

ordered pairs:

For simplicity, we call the union of the set of all attribute indices with respect

to a class T and attributes of T with the set of all relationship indices with respect

to T and roles of classes related to T the set of indices of T. Also we introduce a

notation to denote the set of all indices of all classes designated by a schema.

Indexw'
Notation 7.1 Given a schema w, the notation ltulezw (w), denotes the set of in-

dices with respect to w, s.e., the set of all indices of all classes designated by w.

o
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(n -Cl 1
l a=vl J-

c
n =c21

*a: p l a = V2 J

•••
(n=Ck 1

La = VkJ

(a) Class with instances - attribute index definition

A

r......................... _ .
RA RB

B

• •
• •• •

(b) Related classes with instances - relationship index definition

Instance-of relationship

Key:

An object whose name is x.

Class relationship

<£ :;> Object relationship

Figure 7.1 Classes with instances for the definition of indices
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7.2 Views

We recall that, in Chapter 5, self-contained schema is defined as a collection

of classes that is self-contained with respect to hierachy and relationship, while

database is defined as the set of objects designated by a self-contained schema and,

therefore, can be manipulated independently. Also we recall that, in Chapter

6, we defined what a set of meta-objects that map a schema is, i.e., the set

of meta-objects that constitute the meta-data corresponding to the classes of

a schema. Now, with the definition of indices, we are able to define views as

entities that designate portions of the information space maintained by an object

engine, including the corresponding meta-data and index information as well as

the information itself. The view with respect to a self-contained schema w has

(1) the same name as wand consists of (2) the database with respect to w, (3)

the set of meta-objects that maps w, and (4) the set of indices of w. Formally,

the definition of views is given as follows.

Definition 7.1 (View) Given a self-contained schema w E W, a view with respect

to w is a tuple (n,O',IT,19), where:

• nE WN

• 0' is a database

• IT is a set of meta-objects

• 19 is a set of indices

such that:

(i) n = w.n
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(ii) t5 = DB( w)

(iii) II = Metaw( w)

(iv) {}=Indexw(w) D

7.3 Contexts

To reiterate the discussion in Chapter 3, the purpose of contexts is twofold:

1. A context designates an object engine, thereby serving as the starting point

for any interaction with client programs. For simplicity, contexts are named

globally, i.e., the space of contexts is flat.

2. A context defines an independent name space for primary types, classes

schemas and views, i.e., these entities are named within each context inde-

pendently of any other context.

Thus, the names of primary types, classes, schemas and VIews are context

relative, while the names of contexts themselves are global. A formal definition

of contexts is presented in Appendix E. In a simple way, a context is a (flat)

directory or a container of all views defined for a given object engine. We recall

that, as discussed in Chapter 3, the bootstrap of a context generates a special

set of meta-objects that represents the meta-data corresponding to the meta-

schema, in order to permit object engine administrators to create meta-objects

corresponding to user-defined schemas. Accordingly, we call this special set of

meta-objects meta-view and, for simplicity, name the view Meta.
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An example of context with views is illustrated in Figure 7.2. The name of the

context is Renoir. The context contains the predefined view Meta, and the user-

defined views Museum, Bank and Account. We can note that each view contains

three distinct sets: a set of meta-objects, a set of objects (a database) and a

set of indices. In particular, due to the reflexive architecture of object engines,

the set of meta-objects corresponding to the special view Meta is a subset of the

corresponding database. Also, we can note that the view Account designates a

portion of the information space that is a subset of the portion designated by the

view Bank.

7.4 Conclusions

Views and contexts provide a powerful yet simple framework for organising the

object space defined by an object engine. Moreover, since the set of objects

designated by views are databases, views can be used to scope the information

space manipulated by each client program interaction. As a consequence, views

provide an opportunity for efficient implementation of run-time type information

necessary by client programs to interact with object engines. Furthermore, the

definitions of attribute and relationship indices permit full representation of in-

formation necessary to resolve queries, as we will discuss in Chapter 8. Therefore,

all components of object engines are harmoniously arranged to deliver the target

services.
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Context Renoir

----------------------------------------

Meta-objects for
Schema Meta

Database Meta

View Museum
Meta-objects for
Schema Bank

View Bank

Account:Meta-objects for
Schema Account

..........................................
View;
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Schema Museum

Index
Account

View Meta

~

~

Index
Bank

Figure 1.2 Example of context with views
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CHAPTER 8

Stabilis Toolkit

In this Chapter we describe the design and implementation of a toolkit for con-

structing object engines named Stabilis. Besides implementing all the definitions

we have developed so far, Stabilis provides an object query language and the nec-

essary support for distributed manipulation of objects by programs. Stabilis is

implemented as an extensible class library atop the Arjuna system (Section 2.4).

Before we describe Stabilis, let us clarify a point in our notation. Normally,

in homogeneous object-oriented systems, all components are implemented as ob-

jects. Moreover, all interactions of client programs are with (language) objects.

However, until now we have used the word object specifically to designate the

architectural components of object engines which are extracted from network re-

sources and, obviously, this can cause some confusion in our discussion. Since this

Chapter is concerned with systems implementation and the word object appears

very frequently with its general meaning, we refer to objects having the meaning

of architectural components of object engines as user objects when a distinction is

necessary. This notation also differentiates the components which are internal to

the implementation of object engines from the external ones, i.e., the user objects.
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8.1 Implementational Components

The implementational components of object engines provided by Stabilis are de-

picted in Figure 8.1. The black box represents a client program. The components

Context, View and Index correspond to the architectural components of object en-

gines named in the same way. The component User Object corresponds to object

engines' objects (which can be meta-objects in the case where the client program

is an administrator). The remaining components are introduced to provide sup-

port for distribution, and they will be explained throughout this Section. An

arrow from a component A to a component B indicates that A has a reference to

B and, therefore, A can invoke operations or methods of B. If the arrow is shown

with solid line then the invocation must be local, else, if the arrow is shown with

dashed line then the invocation can be remote (RPC). For more clarity, a thick

line surrounding a set of components indicates that the components are co-located,

i.e., they are located in the same address space or node, and, consequently, only

local invocations can happen between the components. Accordingly, we refer to

the node where the client program (represented by the black box) resides as the

client node. We can observe that the client program, contexts, views and user

objects are conceptually co-located (in the client node), while indices are remotely

accessed by views. The actual physical distribution of these components as well

as the reasons for the different arrangements will be explained below.
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Figure 8.1 Implementational components of object engines
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Overview

A client program initiates interaction with an object engine by first retrieving an

instance of context. Next the client program asks the context to retrieve a specific

instance of view and return a reference to it. (The context is specified through its

unique name, while the view is specified through its distinct name with respect

to the context.) Since a view contains meta-data that represents a self-contained

schema, and also references to the corresponding indices, the client program can

manipulate the user objects (i.e., the database) designated by the obtained view.

Every user object manipulated by the client program receives, at the instantiation

time, the reference to the view. Thus, each user object interacts with the view

for the purposes of indexing information update and query resolution, as follows.

When the client program creates a new user object, the user object itself asks

the view to insert indexing information. When the client program modifies a user

object, the user object itself asks the view to update indexing information. When

the client program retrieves a user object through a query, the user object itself

asks the view to resolve the query (which makes use of indexing information).

When the client program deletes a user object, the user object itself asks the view

to remove indexing information. The structure of views and indices are described

detail in Section 8.1.2, and the operations on user objects are explained in Section

8.2.
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Mobile Objects x RPC

The components directly manipulated by a client program are contexts, views and

user objects. Althouth these components or objects are physically distributed, a

client program has the illusion of a single, global object space, i.e., all invocations

are local. This is accomplished by temporarily moving, on demand, the object

from the node where it normally resides, i.e., its home node, to the client node; the

object stays in the client node while the client program manipulates it and, after

that, the object returns to its home node. For this reason, we refer to these objects

as mobile objects. Thus, the methods of a mobile object can be invoked only while

the object is located at a client node; a mobile object is a passive entity while

located in its home node. Furthermore, mobile objects are persistent, operations

on mobile objects are of type read or write, and mobile objects can be concurrently

manipulated, according to the multiple reads, single write semantics. That means

a mobile object can be present in more than one client node simultaneously, when

all the client programs invoke only read operations of the mobile object. Contexts,

views and user objects are implemented as mobile objects, rather than as remote

objects accessed through an RPC mechanism, for the following reasons:

1. Contexts are relatively small objects, they suffer few modifications during

their lifetime, client programs manipulate few of them, and client programs

sporadically invokes read-only operations (client programs simply ask con-

texts to return views). Thus, contexts can be moved once to a client program

and then copied in cache for use by the client program until the end of its

execution. If a RPC mechanism is used instead, either a server process for

each context manipulated by a client program is active while the client pro-
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gram may want to retrieve views or a new server process is created every

time a client program really wants to retrieve a view. In both alternatives,

there is an overhead in process management.

2. Views are relatively small objects, they suffer few modifications during their

life time, client programs manipulate few views, and client programs invoke

only their read operations (index information update and query resolution)

but with great frequency. Thus, views can be moved once to a client program

and then copied in cache for use by the client program until the end of its

execution. If a RPC mechanism is used instead, all operations would be

remote, causing communications overhead and delay in the manipulation of

user objects.

3. User objects are expected to be relatively small, client programs are ex-

pected to manipulate user objects of many different classes, they typically

provide methods which are small and very often invoked by client programs

(attribute update and display, relationship creation, deletion and traver-

sal, user-defined method invocations), very often they are meant to be fully

displayed to users, and they are expected to be highly concurrently manipu-

lated. Thus, user objects can be moved to client programs every time there

is an atomic computation to be performed on them (which may encompass

several method invocations). If a RPC mechanism is used instead, firstly the

suite of different server processes necessary to accommodate the number of

different classes of user objects would be prohibitive in terms of administra-

tion, disk space and simultaneously active processes, and secondly the large

number of method invocations would cause high communications overhead.

Moreover, the whole object would have to be inevitably transported by the
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RPC for its full display to the user.

Indices, on the other hand, are better accommodated by a RPC mechanism,

rather than by object mobility. Indices are expected to be large and highly con-

currently manipulated objects, and client programs are expected to access many

different indices. Moreover, client programs access indices indirectly (client pro-

grams invoke operations of views, which then invoke operations of indices). Thus,

in terms of location transparency, client programs would not benefit from an

object-mobility-based implementation of indices.

Therefore, both object mobility and RPC mechanisms are important for object

engines. However, the Arjuna system does not provide object mobility directly.

As discussed in Chapter 2, the model of distribution in Arjuna is client-server

processes with communication through RPC. For this reason, we implemented an

object mobility mechanism atop the Arjuna system.

8.1.1 Object Mobility Mechanism

Each mobile object is implemented by two parts: a passive part at its home node

and an active part at the client node. The passive part corresponds to the object

state, while the active part corresponds to the object behaviour, i.e., the methods

that operate on the object state. Thus, when we say that an object moves between

its home node and a client node, what actually moves is an object state.

In Figure 8.1, the active parts of mobile objects correspond to the components

Context, View and User Object, while the passive parts correspond to the com-

ponent Plex (indicated by a circle). For each instance of context, view and user
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object there is an instance of plex. Although there is no such indication in the

Figure, the active part of a mobile object has, in fact, two subparts: a general

part and specific part. As the names suggest, the general part corresponds to

behaviour which is common to any mobile object, while the specific part corre-

sponds to behaviour which is application dependent. We refer to the general part

as Object Manager as its behaviour encompasses the management of the object

state at the client node and provides an interface to the specific part that exempts

programmers from any detail related to object mobility.

The transport of object states is realised by the component MultiPlex which

can handle all plexes that reside in a certain node. For each client program, there

must exist a multiplex for any node that hosts a plex in use by the client program.

The component Plex Manager handles all instances of multiplexes in use by a client

program and provides an interface that exempts object managers from having to

deal with distribution. Finally, the components NameServer and Directory provide

a simple naming service, basically to associate the identification of a plex with

the identification of its home node.

Plex

A plex maintains a flat representation of the state of a mobile object, i.e., a plex

encapsulates an object state. A plex is implemented as an Arjuna persistent object

and, because of it, plexes can be manipulated from any node in the distributed

system through RPC and with transactional access (concurrency and recovery

control). Also, they can be replicated as necessary to provide for availability and

scalability. A plex is simply created by providing an object state as a parameter.
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As a consequence, a unique identification (UID) is automatically assigned to it

by the Arjuna system; this UID is then used as the identification (global name)

of the corresponding mobile object. The interface of a plex contains only basic

operations for the manipulation of the object state, including: return the object

state and set a (read or write) lock on itself, update the object state to a new

value, set a (read or write) lock on itself, and (permanently) destroy itself.

MultiPlex

A multiplex handles the plexes that reside in a certain node and are in use by

the corresponding client program. The multiplex operations are remotely invoked

using Arjuna's RPe mechanism. These operations include: create a plex giving

an object state as a parameter, return the object state maintained by a plex and

set a (read or write) lock on the plex, write the new object state of a plex, set a

(read or write) lock on the plex, destroy (permanently) a plex, and discard a plex

(from the control of the multiplex).

Plex Manager

The plex manager totally conceals multiplexes, i.e., the interface of the plex man-

ager provides operations simply for the manipulation of plexes. Basically, such

operations include: create a new plex given an object state, read the object state

of a plex and set a (read or write) lock on it, write the new object state of a plex,

set a (read or write) lock on a plex, destroy (permanently) a plex, and discard a

plex (from the control of the plex manager, when the mobile object is no longer
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of interest for the client program). The plex manager is responsible for the place-

ment of objects, i.e., the plex manager decides on which node a plex should be

created. Also, the plex manager is responsible for keeping the name server up-

to-date, i.e., the plex manager registers every newly created plex with the name

server. Although Stabilis provides no mechanism for object migration, systems

administrators can use external tools to replace plexes. In this case, the name

server must be updated throught an appropriate tool provided by Stabilis.

Object Manager

The operations provided by a plex manager must be invoked at the right time

and in the right order, according to the semantics of the mobile objects. However,

this may be a complex task and error prone, specially when the number of mobile

objects is large and involving complex interactions and dependencies. This calls

for the provision of a mechanism to manage the invocations of operations of the

plex manager properly. Moreover, such a mechanism should provide a simple

and safe interface in order to make it easier to program the active part of mobile

objects. This is accomplished by the object manager, the general subpart of the

active part of each mobile object.

The object manager is implemented by a class named Object, and classes

whose instances are mobile objects (which includes contexts, views and user ob-

jects) must be subclasses of the class Object; the (super)class Object implements

the general behaviour, while the subclasses implement the specific behaviour of

mobile objects. For this discussion, we simply refer to any of these subclasses

(and, recursively, subclasses of these subclasses) as a managed class. Thus, a
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managed class inherits methods from the class Object which must be invoked in

the implementation of the managed class' methods, as discussed below.

Our approach to the implementation of the object manager has its basis in

the underlying system. A factor that contributed to the success of the object

and action model of computation, in particular as implemented by the Arjuna

system, is the simplicity of the programming interface. To reiterate the description

presented in Chapter 2, basically, programs are structured as method invocations

controlled by nested atomic actions, while the implementation of each user-defined

class sets the necessary locks, according to the semantics of the methods. The user

classes obtain concurrency control, recovery and persistence mechanisms through

inheritance; a user-defined class must be subclass of a standard class LockManager

and its methods must invoke the inherited method setlock with parameter read or

write, in the current implementation of Arjuna.

Furthermore, the programming interface of the object manager harmoniously

integrates with the atomic action programming interface provided by Arjuna. As

a simple example, let us firstly consider the C++ code shown Figure 8.2 which

shows the typical structure of Arjuna user classes' methods. In line 1, an atomic

action A is initiated. In line 2, the method tries to lock the object for write. If

the lock is not granted then the execution goes to line 7, where the atomic action

A is aborted. Otherwise, in line 4, the method modifies object attributes and

then, in line 5, ends the atomic action A. Now, let us consider the C++ code

shown in Figure 8.3 which is the equivalent typical structure of managed classes'

methods. The first observation is the introduction of a simple exception handling

mechanism. The use of this mechanism is achieved by creating an object of the
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class OpHistory (line 1), then using this object to store and merge the results of

method invocations (lines 3 and 7) and checking for exceptions when appropriate

(lines 4 and 8). Apart from this exception control, the only differences between

the code for managed classes and the code for Arjuna user classes are firstly the

substitution of the Arjuna's setlock statement (line 2, Figure 8.2) by the object

manager call make_volatile (line 3, Figure 8.3), and secondly the addition of the

object manager call make-permanent (line 7, Figure 8.3).

The object manager call make_volatile basically fetches the object state (using

the plex manager) from the node where the corresponding plex resides, sets a lock

(write lock in the example) on the plex, and causes the object state to be locally

unpacked to enable its manipulation by the managed class' method. The object

manager call make-permanent packs the object state and sends it (using the plex

manager) to the corresponding plex to write it as the current object state of the

mobile object. When the atomic action A is ended (line 8) or aborted (line 9) the

lock on the plex is released and all modifications (in the active and passive parts

of the mobile object) are committed or ignored, as appropriate. If the atomic

action A is aborted in line 9 then everything done by the statements between

lines 3 and 7 inclusive, is undone. That means the object state is restored to the

state it had previous to the object manager call make.volatile in line 3. (This

recovery mechanism is implemented by simply making the active part of a mobile

object an Arjuna recoverable object, i.e., the class Object is subclass of the class

LockManager. )

Obviously, this scenario considers only a trivial situation: the atomic action

A is the outermost one, i.e., A is not nested within any other atomic action,
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01 AtomicAction A; A.BeginO;

02 if (setlock(new Lock(WRITE)) == GRANTED)

03 { II Modify object attributes

04

05 A.EndO;

06 }

07 else A.AbortO;

Figure 8.2 Typical structure of Arjuna user classes' methods

01 OpHistory* oph = new OpHistory; II E~ception handling

02 AtomicAction A; A.BeginO;

03 *oph += make_volatile(WRITE); II Object manager can

04 if (oph->normal())
05 { II Modify object attributes

06

07 *oph += make_permanent(); I I Object manager can

08 if (oph->normal0) A.EndO;

09 else A.AbortO;

10 }
11 else A.AbortO;

Figure 8.3 Typical structure of managed classes' methods
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and also there is no nesting of object manager calls. If A was nested into an

atomic action B then the lock on the plex should be held until the end of B, and

the commit of A should not cause permanent effects until B has ended as well.

This control of nested atomic actions is realised by the Arjuna's atomic action

mechanism, whereas the control of nested object manager calls is realised by the

object manager itself. For example, let us suppose that the method shown in

Figure S.3 invokes, in line 6, another method of the same object and with the

same structure. In this case, firstly the object manager call make.volatile in the

inner invoked method cannot fetch the object state from the plex as the object

state in the active part is already under modification, and secondly the object

manager call make.ipermanent should not update the plex as the caller method

can still modify the object state.

In fact, the control of nested object manager calls can be very complex, de-

pending on the combination of situations, such as when the mobile object is being

created, when the mobile object is being retrieved, when a method writes on the

object state or simply reads it. All these situations are captured by the transition

diagram for object state in the active part of mobile objects shown in Figure S.4.

The initial states CREATION and RETRIEVAL correspond to the situations when

the mobile object is being created or retrieved, respectively. The state MODIFIED

corresponds to the situation when the object state in the active part is "ahead"

of the object state in the passive part (the plex) of the mobile object. The state

NORMAL corresponds to the situation when the object state in the active part

is identical to the object state in the passive part of the mobile object, and this

must be the final state.
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make_ volatile(WRITE)

make_pennanentO

make_ volatile(WRITE)

make_ volatile(READ) make_ volatile(READ)
make_pennanentO

make_ volatile(WRITE)

make_ volatile(READ)make_ volatile(WRITE)

Figure 8.4 Transition diagram for object state

The transition diagram is relatively simple because of an auxiliary structure

that permits resolution of certain situations of ambiguity. For example, if the

method make-permanent is called when the state is MODIFIED what should be

the next state? Using only the information in the transition diagram it could

be either NORMAL or MODIFIED itself. The decision, in this case, depends on

the circumstances of the invocation of the corresponding meke.s/oleiile. If the

make_volatile was invoked when the state was already MODIFIED then there is

no change of state, otherwise the next state is NORMAL. Therefore, the object

manager decides state transitions with the help of a stack representing the history

of all object manager calls. If the managed class code has its all calls properly

balanced, then not only is the final state NORMAL but the stack is also empty.
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8.1.2 Views and Indices

As discussed in Chapter 7, object engines maintain two types of indices: relation-

ship indices and attribute indices. Accordingly, the implementation of relationship

indices is realised by a class named Relationshiplndex. In the case of attribute in-

dices, for practical reasons, a distinction is necessary according to the primary

type of the attribute. Currently, the types supported are string and integer, and

the corresponding classes StringAttributelndex and IntegerAttributelndex, respec-

tively. Views, on the other hand, are simply implemented by a class named View.

The structure of views and indices as well as their relations are illustrated using

generic examples in Figure 8.5, for attribute indices, and Figure 8.6, for relation-

ship indices.

In Figure 8.5, a class named C with attributes sand i of types string and

integer, respectively, has three instances named Ct, C2 and C3 (representing three

UIDs). Also, there are three meta-objects that map the class C, including its

attributes. The meta-objects that map the attributes contain references to the

respective indices.

In Figure 8.6, two classes named A and B are related to each other with roles

RA and RB, respectively. There are three instances of each class which are related

to each other as indicated by the double-headed arrows shown in dotted lines. The

relationship between A and B is mapped by three meta-objects. The meta-object

of class Relationship has references to relationship indices, one for each direction

of the relationship.
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Figure 8.5 Attribute indexing implementation - a sample
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In both figures, we can note the presence of a structure called Pips on the

right-hand side of tables contained in indices. This structure is a set of special

object references. Such a special reference, called pip, consists of the UID of the

object, the name of its most specific class and the name of its home node. This

information provided by a pip is sufficient to retrieve the object without the need

to interact with the name server. (The name server is only consulted when the

information contained in the pip is stale. In this case, the correct information

provided by the name server is used by the plex manager and the pip is updated.)

For simplicity, we do not use specific notation to indicate whether a UID, such as

Cl, really denotes a UID or a pip, as the context in which they appear is sufficient

for the understanding.

View

An instance of View contains a list of classes. Each class has a name and contains

a list of attributes (only attributes designated as keys in the schema) and a list

of relationships (only relationships designated as keys in the schema). (The list

of attributes and the list of relationships of a view are shown separately in Figure

8.5 and Figure 8.6, respectively). Each attribute has a name and a reference to

the corresponding index. Each relationship has the name of the related class, the

name of the related role and a reference to the corresponding index.
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StringAttri buteIndex

An instance of StringAttributelndex contains a table (instantiated from a C++

template with parameter String) of string values mapped to sets of pips; a value

is mapped to a pip if the object referenced by the pip has the corresponding

attribute with that value. For example, in Figure 8.5, the value X is mapped to

Cl because the object named Cl has the attribute 5 with value X.

IntegerAttributeIndex

An instance of IntegerAttributelndex is similar to an instance of StringAttributeln-

dex, except that its table maps integer values, rather than string values.

Relationshi pIndex

An instance of Relationshiplndex has the names of the local class, the related class,

the related role and a table (instantiated from a C++ template with parameter

UID) that maps UIDs of instances of the related class to pips of instances of the

local class; the UID of an instance of a related class is mapped to the pip of

an instance of a local class if the instances are related with respect to the class

relationship. For example, the UID bl is mapped to the pips al and a2 as the

object named bl is related to the objects named al and a2.
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8.2 User Object Manipulation

The manipulation of user objects by client programs requires mechanisms for

proper management of object state changes, such as updating indexing informa-

tion when there is assignment of new values to attributes which are indexed, and

also for the provision of an easy-to-use interface, for example creating object rela-

tionships according to the established bi-directional semantics and, more impor-

tantly, for querying objects. For these reasons, every user object has a built-in set

of methods which are made available to client programs through inheritance, i.e.,

the classes of user objects inherit these methods from a standard class and, there-

fore, client programs can invoke them. Since user objects are already subclasses

of the class Object (they are mobile objects), we simply provide the methods for

object manipulation by augmenting the object manager.

Let us introduce the methods for object manipulation through an example:

the schema for bibliographical references shown in Figure 4.13. For simplicity,

the C++ code presented in this Section is presented in a simplified form - ex-

ception handling is not included - for readability. Firstly, we recall that a client

program must initiate interaction with an object engine by retrieving a context

and then a view. Let us suppose that a client program wants to work in the

context named "ComputingDepartment" and then manipulate the view named

"BibliographicalReferences" which, obviously, corresponds to the schema for bib-

liographical references. The C++ code for this initialisation can be written as

follows.

Context context (IComputingDepartment". RETRIEVE);



Chapter 8. Stabilis Toolkit 158

View* view = context .get_view(IBibliographicaIReferences");

Henceforth, the variable viewcan be provided as a parameter when instatiating

objects, thereby permitting the object to interact with the view for the purposes

of indexing information management and query resolution.

Object Creation

The object manager provides a constructor that permits an object to be created

by specifying as a parameter an expression containing the name of the class fol-

lowed by a list of attribute-value pairs. Such an expression is called assignment

expression. The following C++ code creates an object of class Book having the

attribute title with value "Object-Oriented Software Construction", attribute year

with value 1988 and the attribute publisher with value "Prentice Hall" .

Book b ("Book(title = 'Object-Oriented Software Construction' &&

year = 1987 && publisher = ,Prentice Hall') ". view. CREATE);

Henceforth, the variable b refers to the object of class Book and can be used

in the client program to manipulate the object. The corresponding indexing in-

formation is automatically inserted by invoking appropriate methods of the view

given as a parameter. This view is also "remembered" by the object manager for

possible future modifications.

Attribute Update

The object manager provides a method named put that accepts as a parameter

an assignment expression. The following C++ code updates the attribute year
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of the object of class Book created above to 1988. The corresponding indexing

information is automatically updated by invoking methods of the view provided

when the object was instantiated.

b.put("Book(year = 1988)11);

Attribute Access

The object manager does not provide methods to get the value of object attributes.

This facility is provided by the code automatically generated (using meta-objects)

for classes. For each attribute of a class there is a corresponding method whose

name is formed by the prefix get., and the name of the attribute. These methods

are usually called accessors. The following C++ code gets the values of the

attributes defined for the object of class Book above.

String title = b .get_titleO;
int year = b.get_year();
String publisher = b.get_publisher();

Relationship Creation

The object manager provides a method named relate to create a relationship

between two objects, with automatic update of the corresponding indexing infor-

mation. The method must be applied to one of the objects and the parameters

must include the other object and the role of the other object in the relationship.

Let us suppose that the client program has a variable i that refers to the object

of class Individual that corresponds to the author of the book represented by the
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object denoted by the variable b above. The following C++ code relates both

objects accordingly.

b.relate(IAuthor", i);

An equivalent way of creating this relationship is given as follows.

Lrelate(IBookAsAuthor", b);

Relationship Deletion

The object manager provides a method named unrelate which has opposite effect

of the method named relate. The following C++ code deletes the relationship

between author and book created above.

b.unrelate(IAuthor", i);

Relationship Traversal

The object manager provides a method named get.irelatedcpips which takes as

parameters a related role and a class name, and returns a set of pips that refer to

related objects which are instances of the specified class. Then, the set of pips can

be used for retrieving the related objects using another constructor provided by

the object manager. The following C++ code gets a set of pips that refer to the

authors of the book denoted by b which are instances of the class Individual, and

assigns this set to the variable authors. Next, the first pip is extracted from the

set and used for retrieving the referred object, i.e., an instance of Individual that

is author of the book denoted by b. The client program can iterate over the set
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and retrieve all authors by making use of methods next and cardinality provided

by the class that implements sets.

Pips authors = b.get_related_pips("Author", "IndividuaP)
Pip p = authors.first(); II e~tracts the first pip

Individual first_author(p, view);

Object Retrieval

The object manager provides a constructor that permits an object to be retrieved

by specifying as a parameter a query expressed in the language described in Section

8.3. The query is resolved as explained in Section 8.4 and one of the pips from

the resulting set is selected at random. Next the object state is fetched from the

corresponding plex and locally unpacked for manipulation by the client program.

The following C++ code retrieves an instance of Book whose title contains the

word "software" and invokes its method print.

Book book ("Book(title 1. 'software')", view, RETRIEVE);
book.print();

If the client program wishes to manipulate all instances that satisfy a query

rather than just one instance as described above, then the class ObjectSet must be

used instead. The class ObjectSet accepts as a parameter a query expression and

then instantiates all objects that satisfy the query. Thereafter, the client program

can iterate over the set to manipulate the objects individually. The following C++

code retrieves all instances of class Book whose titles contain the word "software"

in a set assigned to a variable s. Next the set 5 is iterated to invoke the method

print for each object.
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ObjectSet s ("Book(title 1. 'software') ", view);
Book* b;
for (i = 0; i++; i < s.cardinality())
{

b = (Book*) s.next();
b->printO;

}

8.3 Query Language

An object query, or simply query, is a declarative specification of objects according

to their properties with the purpose of facilitating object retrieval. Therefore,

queries are essential for object engines. We have defined a language to express

queries against schemas modelled according to the technique presented in Chapter

4 and formalised in Appendix A. A query is formulated as a Boolean combination

of predicates expressed in terms of classes, attributes and relationships. The result

of a query is a set of pips that refers to objects whose properties are in conformity

with the specified predicates. Conceptually, the result of a query is a set of objects.

A query is schema conservative: neither objects nor classes are created as a result

of a query. Thus, a set of objects obtained as a query result is composed of

objects which are existing instances of existing classes. We designed the query

language in a fashion that resembles the expressions of the C++ programming

language. Actually, all syntactic constructs of the query language are found in

C++. For example, the following query retrieves all objects which are instances

of class Individual and have attribute surname equal to "Meyer".
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Individual(surname == 'Meyer')

As another example, the following query retrieves all objects which are instances

of the class Book and have the attribute year greater than 1980.

Book(year > 1980)

Below we illustrate the basic constructs of the query language with some queries

formulated against the schema for bibliographical references shown in Figure 4.13.

These basic constructs can be combined to formulate more complex queries, as

defined by the grammar presented in Appendix F.

Class Expressions

A class expression is the mandatory construct in any query. It consists of the name

of a class, the target class of the query, followed by a an expression surrounded

by parentheses containing predicates about the target class. For example, in the

query

Book(title % 'software' && year> 1980)

the target class is Book and the expression title % 'software' && year> 1980

contains predicates about the class Book, i.e., the query specifies the objects which

are instances of the class Book, have the word "software" as substring of its title

and have been published after the year 1980.
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Attribute Predicates

An attribute predicate is a triplet (attribute - name operator value), such as

year> 1980. The value must conform with the type of the attribute (defined in

the schema). An attribute can be either an integer or a string. The operators

for attributes are the standard relational operators ==,! =, <, >, <=, >=. In

additon, for string attributes the operator % which means substring is supported.

Boolean Combination of Predicates

The Boolean operators and (&&) and or (II) can be used to combine predicates,

thereby forming larger predicates which can be, recursively, combined into new

predicates. For example, the following is a valid combination of predicates:

((title = 'Through the Looking Glass' && year> 1870) II (title % 'Alice'))

Superclass Access

The target class of a query can be a class that has subclasses. In this case,

the objects retrieved can have as their most specific class any of the subclasses

of the target class. For example, the following query retrieves all instances of

class Reference whose titles contain the substring "object". Since the Reference

is superclass of the classes Book, Journal and Article then the result of the query

may contain objects of any of these classes.

Reference(title % 'object')
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Attribute Cast

In the cases where the target class is a superclass it may be convenient to be

more specific about the attributes of the superclasses which are of interest. For

example, the following query retrieves all instances of the class Reference which

are either publications published in 1988 or articles whose page numbers are 16

to 33.

Reference( [Publication]year = 1988 II [Article]pages= '16-33')

Associative Access or Nested Query

Relationships are useful for specifying associative queries, i.e., objects can be

retrieved according to the relationships between classes. Basically, instances of

a class °! are designated through attributes and relationships of instances of a

class f3 that is related to O!, such that the instances of °! and f3 are related. For

example, the following query retrieves all instances of class Book whose authors

have surname Meyer.

Book(Author(surname = 'Meyer'))

This query can be seen as a composition of nested queries. The outermost query

has Book as the target class, while the innermost query has Individual as the target

class. Although this example has just one level of nesting, in general there is no

restriction to the level of nesting in queries. This permits the formulation of

queries with very complex paths through a class hierachy. We should note that

nested queries are more general than the traditional path expressions supported

by query languages in database systems. In fact, the query language also supports
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a syntax for associative queries that is similar to path expressions. The example

above could also be written as follows.

Book(Author::surname = 'Meyer')

However, the following nested query cannot be written using the path operator

"::" without defining several path expressions.

Book(title % 'software' II Author(surname = 'Meyer' && forenames = 'Bertrand'))

Role Cast

In associative queries it may be convenient to be more specific about the related

class, i.e., it may be interesting to navigate through a subclass of a related class.

For example, the following query retrieves instances of the class Library that con-

tain books whose titles contain the substring modeling. We should note that the

relationship in the schema is specified between the classes Library and Publication,

which is superclass of Book.

Library( [Book]Publication(title % 'modeling'))

Set Operations

A query can be formulated with more than one target class. In this case, all class

expressions specified must be combined with set operators union (I) and intersec-

tion (&). Similar to the combination of Boolean operators, the combination of

set operators can be used form larger queries. For example, the following query

retrieves all instances of Article whose titles contain the substring "spring" and all

instances of Book published later than 1970.
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Article(title % 'spring') I Book(year > 1970)

Operator Associativity and Precedence

The associativity of all operators is left to right. The precedence of operators is

summarised in Table 8.3. (The path operator has the higher precedence.)

I Function Operator

path operator ....

relational operators ==,! =, <, >, <=, >=, %

logical AND &&
logical OR

"set intersection &
set union I

Table 8.1 Query language operators precedence

8.4 Query Resolution

A query is resolved by creating a corresponding tree representation and then

reducing the tree. Each reduced subtree is replaced by the corresponding resulting

set of pips until eventually the set of pips corresponding to the whole query is

obtained. All nodes of the tree, except the leaves, are instances of the classes

depicted in Figure 8.7. For example, let us consider the following query:
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Article(title % 'pollution' && Author(surname == 'Green'))

This query is translated into the tree depicted in Figure 8.8. For this discussion,

we labelled the nodes as indicated. The node 1, an instance of the class ClassOp,

corresponds to the target class of the query, the class Article. The remaining

nodes are arranged according to the Boolean combination of predicates and the

precedence of operators. The leaves of the tree are arranged as attribute-value

pairs; each pair corresponds to the children of a relational operator. The leaves

4 and 5 form the attribute-value pair of the relational operator "%" on node 3,

while the leaves 8 and 9 form the attribute-value pair of the relational operator

"==" on node 7. The subtree rooted at the instance of the class RelationshipOp,

the node 6, corresponds to the nested query. Thus, the relational operator under

the node 6, i.e., the operator "==" on node 7, must be resolved with respect to

the innermost target class, i.e., the attribute surname must be interpreted as an

attribute of the class that is related to the class Article and has role Author, rather

than an attribute of the class Article. If we check the schema we will learn that

the target class of the innermost query is Individual. Although this information is

not explicitly represented in the tree, there is enough information for the view to

find this out, since the view has a representation of the target schema.

The query is resolved by in-order traversal of the tree and reduction of each

subtree. The resolution starts at the node 1 which simply passes the current target

class name (Article) to its child, the node 2, and awaits the result. The node 2 is an

and operation, so it has to make the intersection of the sets of pips corresponding

to each of its children, the nodes 3 and 6. Thus, the node 2 sequentially forwards

the current target class name (Article) to its children in order to obtain the two
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Figure 8.8 A tree representation of a query

sets. Firstly, the node 2 forwards the current target class to the child on its left

side, the node 3, and awaits the corresponding set of pips. The node 3 is the

relational operator "%" and, therefore, can be reduced. The node 3 takes the

attribute-value pair represented by its children (nodes 4 and 5) and the name of

its target class (Article) to form the predicate (Article, title, %, pollution) which

is then submitted to the view. The view takes the predicate and searches in its

internal structure (see Figure 8.5) for the attribute title of class Article. If the
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attribute is found, then the view submits a request to the corresponding attribute

index giving as parameter the operator "%" and the string "pollution". The

index returns a set of pips which refer to all instances of Article whose attribute

title contains "pollution" as substring. This resulting set of pips is then returned

by the view to the node 3, completing its reduction, thereby providing the left

set of pips for the node 2. Then, the node 2 forwards the current target class

(Article) to the child on its right side, the node 6, and awaits the corresponding

set of pips. The node 6, which is the root of a nested query, takes the received

target class (Article) and the related role (Author) to ask the view for the new

current target class, obtaining as response the class name Individiual. Thus, the

node 6 forwards this new current target class to its child, the node 7, and awaits

the corresponding set of pips. The node 7, which is a relational operator "==",

is reduced in a similar fashion as the node 3 was reduced. The result of it is the

set of pips that refer to instances of Individual whose attribute surname has value

equal to "Green". Now the node 6 takes this set of pips that refers to instances of

Individual, the name of the related class (Article) and its local role (Author), and

finally asks the view to return the set of pips that refers to instances of Article

which are related to the instances of Individual referred by the obtained set of pips.

The view searches in its internal structure (see Figure 8.6) for the relationship of

the class Article that has Author as the related role. If the relationship is found

then the corresponding relationship index is used for obtaining the set of pips

that refer to instances of Article, as requested. This set is then returned to node

6, completing its reduction, thereby defining the right set of pips of node 2. Now,

the node 2 makes the intersection of both sets of pips, completing its reduction.

Finally, the node 1 takes this set of pips and the whole tree is reduced.
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8.5 Object Engine Set-up

In Chapter 6, we presented the implicit recursion of the meta-model as an inter-

esting bootstrap problem. To reiterate, because every class has to be mapped

to meta-objects for it to exist, the existence of meta-classes is required in order

to enable the creation of meta-objects. However, meta-classes are classes which

also need to be mapped for them to exist. This problem has been simply solved

at the conceptual level by postulating the existence of meta-classes. Accordingly,

Stabilis provides an implementation for the meta-classes, thereby permitting the

creation of the set of meta-objects that map the meta-schema at the first stage of

an object-engine set-up. At the programming interface, an object engine is simply

set-up by creating the corresponding context. For example, the following C++

code creates a context named "ComputingDepartment".

Context c (IIComputingDepartmentll, CREATE);

The constructor of the class Context creates a set of meta-objects that maps

the meta-schema, the corresponding indices and a meta-view (the view named

"Meta"). Actually, indices are automatically created during the creation of meta-

objects; instances of the classes Attribute and Relationship create the correspond-

ing index when they are created. We should note that, since meta-objects are

instances of meta-classes, meta-objects must be indexed by the indices that they

create. This circular dependency has been discussed in Chapter 3, and illustrated

in Figure 3.3. The solution to this problem is to postpone the indexing of the

meta-objects, i.e., the constructor of the class Context invokes appropriate meth-

ods of instances of Attribute and Relationship to fix the indices. Finally, we must

recall that contexts, views and meta-objects are mobile objects. For this reason,
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the creation of a context requires the appropriate infrastructure for object mobil-

ity, i.e., there must exist a physical installation of plex manager, including a name

server.

8.6 Application Development

The development of an application encompasses the following steps:

1. devise a schema

2. create the meta-objects that map the schema (indices automatically created)

3. generate a view corresponding to the schema

4. generate code for classes of the schema (this can be done automatically)

5. if appropriate, generate interactive query interpreter (this can be done au-

tomatically)

6. create programs to manipulate the database designated by the schema (the

programs should use the code for classes)

We will explain each of these steps through an example application that we

developed as the demonstrator or proof of concept. The application domain that

we have chosen is bibliographical information based on the types of entries for

bibliography citation defined for BIB1£X [35]. An example of a BIB1£X file (

which is a network resource) is shown in Figure 8.9. The schema that we devised

to model bibliographical references is shown in Figure 8.10. The schema, named

Dbib, contains 24 classes, with class hierarchies of a depth up to 5, and several

associations and aggregations.
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@Book{ Meyer88,

title = "Object-Oriented Software Construction",

author = "Bertrand Meyer",

publisher = "Prentice-Hall", year = 1988}

@Book{ Rumbaugh91,

title = "Object-Oriented Modeling and Design",

author = "Rumbaugh, 1. and Blaha, M. and Premerlani, W. and Eddy, F. and Lorensen, W.",

publisher= "Prentice-Hall", year= 1991}

@Article{ Meyer86,

title = "Genericity versus Inheritance",

author = "Meyer, Bertrand",

journal = "ACM Sigplan Notices", year = 1986, month = October,

pages = "391--405"}

@Article{ Koenig90,

title = "Exception handling in C++",

author = "Andrew Koenig and Bjame Stroustrup",

journal = "Journal of Object-Oriented Programming", year = 1990, month = July,

pages = "16--33"}

Figure 8.9 Example of a network resource:a BIB'fEX file

The schema Dbib is mapped to 104 meta-objects, and it needs 13 indices.

The following C++ code illustrates how these meta-objects can be created by an

administrator program. (The corresponding indices are automatically created.)

The names chosen for the variables should make the code self-explanatory.

Context context (IIComputingDepartment ". RETRIEVE);
View* m = context .get_view(IMeta");
Schema s_l)bib("Schema(name == 'Reference')". m. CREATE);
Class c_Book("Class(name = 'Book')". m. CREATE);
StringAttribute a_Book_publisher

("StringAttribute(name = 'publisher' && key = 0)11. m. CREATE);
a_Book.relate(IAttribute". a_Book_publisher);
s_Reference.relate(INonRootClass". c_Book);
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Figure 8.10 Schema for bibliographical references
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Alternatively, these meta-objects can be created using the query interpreter for

the meta-view which is called parla. The use of parla is illustrated below. We can

observe that the commands to query interpreters are very similar to C++ state-

ments. Also we can observe that the view used for creating objects is implicitly

defined.

parla> Schema s .Dbfb ("Schema(name == ,Reference') ", CREATE)

parla> Class c_Book("Class(name = 'Book')", CREATE)

parla> StringAttribute a.Bookcpub.l Lsher

("StringAttribute(name = 'publisher' && key = 0)11, CREATE)

parla> a_Book.relate(IAttribute", a_Book_publisher)

parla> s_Reference.relate(INonRootClass", c.Book)

Once the meta-objects have been created, VIews can be generated for the

schema Dbib and any other self-contained schema defined by the meta-objects.

The following C++ code generates a view for the schema Dbib and registers it

with the appropriate context. The variable pip.iview.Dbib is a reference to the view

obtained when the view is created and passed to the context for the registration.

Pip pip_view_j)bib;

View v_j)bib(s_j)bib, pip_view_j)bib, CREATE);

context. enter_view ("Dbib" , pip_view_j)bib);

The meta-objects also permit the generation of C++ code for the correspond-

ing classes. The code generated for a class includes the declaration part, the

implementation of constructors to interact with the object manager, the accessors

(methods for reading attribute values) and special methods for packing/unpacking
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the object state, as required by the Arjuna system. Code can be generated sep-

arately for each class or for all classes of a given schema, as appropriate. The

following C++ statement generates code for all classes of the schema Dbib. The

parameter specified in the method invocation defines the directory of the file sys-

tem where the code will be created.

s_Dbib.gen_code(lI/usr/home/n04aoll);

The code generated for classes can be used for the construction of programs to

manipulate the database of bibliographical references. A program that can be au-

tomatically constructed is a query interpreter specific for each schema. This query

interpreter is constructed simply by linking the code for classes with a "skeleton"

provided by Stabilis. (An example of this query interpreter, named parla, has been

shown above for manipulating meta-objects. A query interpreter for Dbib would

have the same functions of parla, except that the database manipulated would be

distinct.) Collector programs should also benefit from the generated code. For

example, we created a tool that generates programs to create/update objects cor-

responding to bibliographical information extracted from BIB'fEX files. Also, we

created a graphical interface to a partial view of Dbib. The main "window" of the

graphical interface is illustrated in Figure 8.11.

8.7 Performance

Some performance figures of an object engine for bibliographical references con-

taining approximately 1,000 objects are shown in Table 8.2. The object en-

gine runs distributed over a set of workstations connected by an 10 megabits/s-
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Ethernet LAN. The query times include the following: parse the query, invoke

remote operations on indices, search the indices, send partial results back to client

node, and merge the partial results. The retrieve times are average times for mov-

ing objects from plexes in remote nodes to client programs. These retrieve times

vary according to object size (which depends on attributes and relationships) -

their average size is approximately 1 Kbyte.

Query expression Query time (ms) Retrieve time (ms)

Articlei title %' object') 216 67
Journoli title %' comput') 125 120
Journal(year > 1980) 107 120
Journal( title %' comput' && year> 1980) 181 128
Book( Editor( surname % ' e')) 188 141

Table 8.2 Performance of the object engine for bibliographical references

8.8 Conclusions

Stabilis fully implements the architecture for object engines. The programming

interface is simple, integrated within a standard programming language (C++),

and provides good distribution transparency, thereby making it easy to write (col-

lector, administrator and client) programs. The query language is seemlessly in-

corporated into C++; there is no impedance mismatch between data manipulation

language and data computation language. Since, C++ is the only programming
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language used in the implementation and also is the language at the programming

interface, neither language extensions nor special compilers are necessary, thereby

contributing to systems portability. Meta-objects and associated tools for auto-

matic code generation permit fast program development. Stabilis has been used

to implement an object engine for bibliographical references in order to validate

the described architecture.
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Figure 8.11 Graphical interface for bibliographical references
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CHAPTER 9

Conclusions

Our thesis has concentrated on the problem of manipulating structured informa-

tion contained in network resources which are located over large-scale distributed

environments. In this Chapter we summarise the research which has been done,

point out the main contributions of the research, give a brief account of the evo-

lution of our ideas and experiments, and finally we suggest directions for future

research and further development of the prototype system.

9.1 Thesis Summary

In Chapter 2 we discussed a number of different approaches to the manipulation of

information in distributed systems. In Chapter 3 we introduced a novel category of

meta-information systems called object engines in which structured information

contained in network resources can be manipulated through an object-oriented

interface, and with high availability and distribution transparency. In Chapter 4

we defined a simple set of concepts commonly accepted in object-oriented systems,

and introduced a corresponding graphic notation to represent schemas that model

information contained in network resources. In Chapter 5 we introduced a model
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for flexible organisation of the class space in schema hierarchies, providing the

basis for a formal definition of databases. In Chapter 6 we described a special

schema called meta-schema which models information about classes and schemas,

and whose instances, i.e., meta-objects, represent meta-data. In Chapter 7 we

defined indices, views and contexts, to complete the description of object engine

components. In Chapter 8 we described the implementation of a platform for

constructing object engines, including the definition and use of a query language

for object manipulation, the management of distribution, and a demonstration

application.

9.2 Thesis Contributions

1. Identification of critical issues in manipulating structured information.

Typically, each of the approaches to the manipulation of information in

distributed systems, discussed in Chapter 2, gives more emphasis to a par-

ticular issue, such as locating relevant network resources by making use of

information semantics, providing high availability of services and provid-

ing transparency to distribution. Our investigation of such approaches has

identified critical issues in constructing systems for manipulating structured

information in large-scale distributed systems, especially in constructing sys-

tems according to the object-oriented paradigm.

2. Consolidation of concepts found in several areas.

The architecture we have defined for object engines consolidates concepts

found in information discovery tools, distributed systems and object-oriented
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databases, in a homogeneous object-oriented framework, i.e., all object en-

gine components are described, implemented and manipulated as objects.

This approach greatly simplifies the implementation, administration and use

of object engines, for all components benefit from the high availability and

consistency provided by the underlying distributed transaction facility, and

all programs interact with object engines through a single interface.

3. Efficiency, effectiveness and reliability of information systems.

The use of object engines to locate structured information permits accurate

query formulation, which contributes to increase the rate of relevant hits

and to reduce the number of iteration steps to locate information, thereby

preventing the user from information overload as well as saving in processing

and communication costs. The homogeneous storage of information objects

and meta-data (due to the reflexive architecture of object engines) makes it

easy for users to navigate through meta-data to learn what information is

available and how to formulate good queries. The combination of schemas,

views and contexts for organising the information space provides a suit-

able framework for efficient and effective use of information in large-scale

distributed systems. Object engines increase reliability due to the use of

replication and transactional access to objects.

4. Implementation of a platform for constructing object engines.

The Stabilis toolkit described in Chapter 8 has been designed and imple-

mented not only as proof of concept but also as a platform for real use.

Our preliminary experiments with the toolkit indicate that Stabilis object

engines are an effective means of manipulating information objects, due
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both to the power of object-oriented modelling, and high availability and

consistency provided by the underlying distributed transaction facility. The

toolkit is highly portable and has an easy-to-learn interface since it has been

implemented using only standard programming languages and operating sys-

tems. The implementation of the toolkit enhances the Arjuna programming

system with an object query facility, an object mobility scheme integrated

with the transaction mechanism and provision for automatic generation of

code to pack/unpack object states. Furthermore, the toolkit demonstrates

the adequacy of the object and action model of computation as a framework

for writing fault-tolerant distributed applications.

9.3 Evolution of Ideas and Experiments

Basically, our research has been carried out in three well defined phases, each of

them composed of a period of study followed by a period of experimentation. In

the first phase we developed a simple version of Stabilis [12], as a programming

exercise using the Arjuna system. That version provided for the automatic gen-

eration of a "query interpreter" for a given schema. Such a query interpreter had

the form of a graphical interface with functions for the manipulation of instances

of the classes designated by the corresponding schema. Although those query

interpreters provided satisfactory facilities to create, modify and relate objects,

the search interface was limited to specifying a keyword that should be substring

of an attribute defined as the primary key of each class. Moreover, there was no

support for meta-data management, nor information space organisation.
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In the second phase, having learned from the initial experiment, we developed,

practically from scratch, a more sophisticated version of Stabilis that supported

queries expressed as a Boolean combination of predicates, incorporated the notion

of meta-objects, and had a more optimised caching scheme. The main purpose of

that version was its use by a rule-based system for the management of distributed

programs called Vigil [11]. However, the approach taken to index information

management and query resolution in that version led the system to have an unac-

ceptable performance. Also, organisation of information space was still restricted

to the notion of contexts.

In the third phase, we completely restructured the indexing scheme, extended

the query language and introduced the notion of views in the system. The index

information was moved from meta-objects to specialised structures. The effects

of this were a better system modularisation, permitting the use of appropriate

data structures to implement indices, thereby simplifying and dramatically im-

proving the performance of index information update and query resolution. The

extensions to the query language included nested query, casting and approximate

match, in order to better suit the kind of queries about information contained in

network resources. The purpose of introducing views were twofold: a means of

organising the information space and, for efficiency reasons, a simplification in the

representation of meta-data used during object manipulation. While the imple-

mentation realised in the first and second phases were a joint work with another

researcher, the implementation realised in the third phase was an individual work

by the author of this thesis. The current version of Stabilis has approximately

40,000 lines of source code.
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9.4 Future Work

The research and implementation that we have done open a spectrum of oppor-

tunities for further development, including improvements in the current imple-

mentation, advances in the current functionality, and new applications of object

engines.

9.4.1 Implementation Improvements

The following list enumerates some implementation issues that remain to be tack-

led in the Stabilis toolkit.

1. Implementation of indices using more sophisticated data structures, such as

B-trees, in order to properly support large object bases.

2. Implementation of index servers that can handle multiple indices, similarly

to the object state server (which can handle multiple object states), in order

to reduce the number of processes in the system and reduce the latency in

index operations, thereby improving the overall systems performance.

3. Use of nested top-level atomic actions! [38] to control access to global re-

sources, such as indices. This is important to avoid such resources remaining

locked (and thereby become unavailable to other users) in a long-running

transaction. The use of nested top-level atomic actions, however, may re-

quire "anti-actions" to compensate their effects. For example, let us suppose

1A nested top-level atomic action is an independent action started within another atomic

action.
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that an object is created within an atomic action A, and that the correspond-

ing index update is realised by a nested top-level atomic action B, that is,

B is started within A. If, for some reason, the atomic action A aborts (and

then the object was not actually created) then an anti-action must undo the

effects of the atomic action B, i.e., remove the index information which has

been inserted.

4. Decentralisation of indices. Currently, indices are single global entities. A

more general approach should permit a logically single global index to be

implemented as a collection of cooperating indices.

5. Implementation of object removal. Of course, object removal requires proper

algorithms to ensure referential integrity. This is particularly simple to im-

plement in Stabilis since all object relationships are bi-directional. How-

ever, the underlying transaction facility currently does not support object

removal.

6. Optimisation of query resolution. The current version does not make any

effort to save on index access, nor to solve parts of queries in parallel. The

provision of these features normally requires formal models for the object

data model and for the query model. Since we already have defined a formal

model for the object data model (Appendix A), an important step towards

query optimisation has already been done.

7. Automatic generation of graphical user interfaces. The availability of meta-

data already permits the automatic generation of command-line-based in-

teractive query interpreters. This same meta-data could perfectly be used

for the generation of more user-friendly interfaces.
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8. A straightforward extension to our work would be to make Stabilis object

engines accessible via the World Wide Web (WWW). The main task in the

provision of this service would be the development of appropriate servers to

interface between object engines and WWW aplications.

9.4.2 Functional Advances

Database Issues

The query language can be extended in many ways. Firstly, it can support a

larger collection of basic types for attributes (in addition to integer and string),

and also user-defined tuple types, such as a type to represent date. Secondly, it can

incorporate traditional information retrieval techniques, such as ranked queries

and sophisticated support for approximate match. Thirdly, it can be extended

to support method call: this would permit very complex queries, and the query

language would become extensible. Fourthly, a support for explicit range variables

in nested queries would give more expressive power to the language. Finally, the

query language could be extended to become SQL compatible, thereby permitting

to interact with the so-called "legacy systems" .

The result of a query, i.e., a set of objects, could be made persistent, thereby

permitting users to group objects according to their interests.f Then, these sets

could have associated indices to permit queries to be resolved against them, as

2This facility would correspond to the traditional notion of "views" found in object-oriented

database systems.
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provided by the ObjectStore system [34, 49] (Section 2.5). Moreover, other types

of collections could be supported (in addition to sets), including lists and bags.

Currently, views correspond to schemas containing entire classes. A more fine-

grained approach could be taken to permit the selection of parts of classes, i.e., a

class selected by a view could have only some of its attributes, relationships and

methods actually selected. This would give more flexibility to the system.

A critical issue in the design of database systems is the support for versioning

control and schema evolution. These features are essential in modern information

systems to cope with the fast evolution of real-life applications. Obviously, object

engines can have a broader range of application if they support these features.

Easy interface for defining schemas is an important feature of database sys-

tems. For this purpose, a graphical user interface could be developed to capture

schemas in a high-level fashion and then generate the corresponding meta-objects.

Surely, this would simplify the generation of object engines and would increase

prod ucti vity.

Distribution Support

Currently, contexts are global entities and isolated from each other. Contexts

could be linked to each other to form networks of cooperating contexts, thereby

providing for large-scale name space administration.

A very important issue in distributed systems that remain to be completely

tackled by our architecture for object engines is authorisation/security/protection.
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The introduction of views in the architecture aims at providing a starting point

in this direction. This approach needs further development and effective imple-

mentation.

9.4.3 Applications

The object engine for bibliographical information constructed as demonstration

application can be further developed: much more information can be maintained

by the object engine, and many useful methods can be added to the classes. Thus,

it can be a valuable tool for literature search, helping research activities in gen-

eral, including business-oriented research. Some other areas of application which

can be investigated include: travel agencies, management of computer resources,

office documents (especially SGML and ODA documents) and department stores.

Finally, because meta-data is part of the core of any CASE tool, we believe that

Stabilis can be used to support management and generation of program code.
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ApPENDIX A

Object Model Definition

The object model concepts are formally defined according to the set and graph

theories. The purpose of the formal definition is to provide a basis for implement-

ing the object model concepts, as well as a basis for defining an object manipulation

language that is independent of such an implementation.

Moreover, the formal definition permits the representation of the object model

in terms of itself, i.e., the formal definition of the object model is reflexive. Thus,

the formal definition also provides a basis for defining a model which permits us

to represent information about schemas and objects. Such a model is referred

to as meta-object model and it provides the basis for implementing the core of

meta-information systems.

Tuple Notation

Given a tuple t = (tt, ... , tn) whose definition is a tuple (el, ... , en), let the

notation t. e; denote t.. For example, if a = (age, Integer, 0, Person) is a tuple

whose definition is (n, p, k, c) - defined below as attribute specification -- then

a.n, a.p ; a.k and o'.c, respectively, denote age, Integer, 0 and Person.
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Naming Assumptions

Let us assume the existence of the following countably infinite sets of names:

• set PN of primary type names

• set AN of attribute names

• set MN of method names

• set RN of role names

• set CN of class names

• set ON of object names

such that PN n CN = 0.

A.I Values, Types and Domains

Every attribute of every object has a value for which there is a textual repre-

sentation, such as an integer or a string. For this reason, values have associated

semantics which are well defined by primary types; each primary type stands for

a set of values that have the same semantics. Such a set of values is the domain

defined by a certain primary type. The domain of an attribute of a certain pri-

mary type is the domain defined by the primary type, i.e., the value assigned to

an attribute of a certain primary type can vary only over the domain defined by

the primary type.

As an example, let us suppose that a type named Integer defines the semantics

for integer values, and a type named String defines the semantics for string values.
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Then the domain of an attribute of type Integer includes 0,1,2,3, ... , and the

domain of an attribute of type String includes any delimited sequence of characters,

such as wet, wind, cool, freezing, etc. An attribute of type Integer can be assigned

the values 0,1,2,3, ... , and an attribute of type String can be assigned the values

wet, wind, cool, freezing, etc.

Therefore, let us assume the existence of values and value semantics, and define

primary types and primary domains.

Notation Ai The symbol V denotes the set of all values.

Definition Ai (Primary Type) A primary type is a doublet (n, s), where:

• nE PN

• s denotes a value semantics o

O[!JNotation A2 The symbol P denotes the set of all primary types.

Example Ai We can have a type tl such that tI.n = Integer and tI.s denotes a

semantics for integer values, and a type t2 such that t2.n = String and t2.s denotes

a semantics for string values. o

Type Identification

Primary types must be unambiguously identifiable by names in order to enable

their use in textual notations, such as in specifications of attributes in class dia-

grams and in programs. Thus, a primary type name can be assigned to at most

one primary type to ensure that there is an one-to-one mapping between primary

type name and primary type.
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Invariant Ai (Primary Type Name Distinction) Vx, yEP: if x.n = y.n then x =
y. •

Since each primary type has a distinct name, we define a notation to refer to

primary types through their names.

Notation A3 Given a primary type name x E PN and a primary type pEP such

that p. n = x, the notation 'Trx (type named x) denotes p. o

Example A2 If we have a type tl such that tl. n = Integer then 'Trlnteger denotes tl,

and if we have a type t2 such that t2.n = String then 'TrString denotes t2. 0

Primary Domain

The domain defined by a primary type is the set of values that have the semantics

defined by the type. We first define a notation to indicate that a value has the

semantics defined by a primary type and then define primary domain.

Notation AA Given a value v E V and a primary type t E P, the notation v -i t

(v is of type t) denotes that v has the semantics denoted by t.s. 0

Example A3 Let 5 be an integer value and let tl be a type such that tl.s denotes

the semantics for integer values, then 5 -i tl (5 is of type tl)' o

Definition A2 (Primary Domain) Given a primary type t E P, the primary domain

with respect to t, denoted as Dom( t), is the set of all values of type t:

Dom (t) = {v E V I v -i t}
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Example A.4 If we have a type t1 and the values 1, 3 and 5 such that 1 -j tl, 3 -j t1

and 5 -j tl, then Dom(t) 2 {1,3,5}. <>

Notation A.5 The symbol 'D denotes the set of all primary domains. 0 ~

Notation A.6 The symbol Z denotes the primary domain containing all integer [!I
values. o

Typographic Convention

The context in which a value is inserted is normally sufficient to determine its

type. Thus, as a typographic convention, we invariably represent values using

Sans serif font and, conversely, everything represented in such font is a value. For

example, a value that is the string containing only the character "7" and a value

that is the integer number 7 are both represented as 7. In case of ambiguity, a

string value is enclosed by quotes.

Names and Reflexivity

Primary type names, as any other name, are values, more specifically string values,

as a requirement to ensure that the object model formal definition is reflexive", For

example, the primary type names Integer and String are values and, accordingly,

they are represented using Sans serif font.

IThe meta-object model assumes the existence of a primary type, named String, that defines

the domain containing all string values.
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A.2 Attribute

A.2.1 Attribute Specification

The specification of an attribute contains an attribute name, a primary type name,

a Boolean value that indicates whether the attribute is or not a key, and a class

name for the following reasons:

1. Each attribute of an object has a name which is distinct from the names

of the other attributes of the object in order to permit each attribute to be

referred to unambiguously with respect to the object.

2. Each attribute of an object has a value and a type specification for such value

in order to provide a basis for a type checking mechanism, i.e., a mechanism

that ensures that the value varies over only a certain primary domain.

3. Each attribute of an object is optionally defined as a key attribute, in which

case it has to be indexed for query resolution purposes.

4. Attributes are specified by classes, i.e., every attribute specification is part

of a class.

Definition A.3 (Attribute Specification) An attribute specification is a tuple (n, p, k, c),

where nE AN, pE PN, k E Z and c E cs . 0

The integer value k in Definition A.3 corresponds to the Boolean value that

indicates whether or not the attribute is key. For this reason, the value of k must

be constrained to the values 0 and 1.
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Invariant A.2 (Attribute Key Range) Let s be an attribute specification, then 0 <

s.k ~ 1. •

Example A.5 The following tuples are attribute specifications:

• (name, String, 1, Client)

The name of the attribute is name, its primary type is String, the attribute

is key and it is part of the class Client .

• (balance, Integer, 0, Account)

The name of the attribute is balance, its primary type is Integer, the attribute

is not key and it is part of the class Account. <>

Set of Attribute Specifications

The attributes specified by a certain class must have distinct names in order to

permit their unambiguous identification with respect to the class. Thus, a set of

attribute specifications is consistent if all the attributes have distinct names.

Definition A.4 (Consistent Set of Attribute Specifications) A set of attribute specifi-

cations A is consistent iff V x, yEA: if x.n = y.n then x = y. 0

Example A.6 The following is a consistent set of attribute specifications for a class

named Account:

{(number, Integer, 1, Account),

(balance, Integer, 0, Account),

(overdraft, Integer, 0, Account),

(interest, String, 0, Account) }
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Attribute Variable

Each instance of a class contains a set of attribute variables, such that there is an

one-to-one correspondence between the elements of such a set and the elements

of the set of attribute specifications of that class. That is, for each attribute

specification in the class there is an attribute variable in the instance. Such an

attribute variable consists of (1) a "copy" of the attribute specification and (2) a

value of the primary type in the attribute specification. As discussed in Chapter

8, the information provided by an attribute specification is used for type checking

and index update when objects are created, modified or deleted.

Definition A.5 (Attribute Variable) An attribute variable is a doublet (s, v), where

s is an attribute specification and v is a value of primary type such that v -1 7r s.p'

o

Example A. 7 The following tuples are attribute variables:

• ((name, String, 1, Client), "Gustav Klimt")

- An instance of the class named Client contains such attribute variable.

- (name, String, 1, Client) is an attribute specification.

- "Gustav Klimt" is a value of the type named String .

• ((balance, Integer, 0, Account), 8034)

- An instance of the class named Account contains such attribute vari-

able.

- (balance, Integer, 0, Account) is an attribute specification.
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- 8034 is a value of the type named Integer. <>

Set of Attribute Variables

The attributes of a certain object must have distinct names in order to permit their

unambiguous identification with respect to the object. Thus, a set of attribute

variables is consistent if all the attributes have distinct names.

Definition A.6 (Consistent Set of Attribute Variables) A set oj attribute variables A

is consistent iff\! x, yEA: iJ x.s.n = y.s.n then x = y. 0

Example A.B The following is a consistent set of attribute variables for an object

of class named Account:

{((number, Integer, 1, Account), 50298),

((balance, Integer, 0, Account), 3980),

((overdraft, Integer, 0, Account), 200),

((interest, String, 0, Account), 8) }

Integer Values and Reflexivity

The representation of Boolean values using integer values, such as the case of k in

Definition A.3, aims at simplifying the refiexivity/ of the formal definition of the

object model. This simplification is appropriate because (1) Boolean values can

2The meta-object model assumes the existence of a primary type, named Integer, that defines

the domain containing all integer values.
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be represented through integer values without loss of genericity and (2) integer

values are necessary to specify multiplicity in relationships.

A.3 Relationship Elements

Objects contain references to objects according to relationships specified by classes.

In this Section we define the basic elements necessary to specify relationships in

classes and to represent them in objects. Once classes and objects are formally

defined, in Section A.8 we complement the definitions introduced in this Section.

A.3.1 Class Relationship

The information about a relationship between two classes is represented by a

complementary pair of relationship specifications, one in each class. Thus, the set

of relationship specifications of a class defines all relationships of the class.

Relationship Semantics

Every relationship between two classes has a semantics which is one of the follow-

ing: association, loose aggregation or tight aggregation. An object, therefore, must

represent relationship semantics accordingly in order to enable proper interpreta-

tion of its references. This is realised by associating a type to each relationship

specification of a class. Such a type is then "copied" by every instance of the

class.
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In the case of an association, a relationship between two classes is symmetric,

whereas in both cases of aggregation the relationship is asymmetric because one

of the classes is the aggregate and the other class is the component. Thus, the set

of all types of relationship specifications contains: (1) a type for aggregate classes

in tight aggregations, (2) a type for component classes in tight aggregations, (3)

a type for aggregate classes in loose aggregations, (4) a type for component class

in loose aggregations and (5) a type for classes in associations.

Definition A. 7 (Relationship Specification Type Set) The relationship specification [!J
type set is the set of symbols R = {PTAE, STAE, PLAE, SLAE,ASSE}. 0

Relationship Specification

Each relationship specification must contain the necessary information to realise

operations (creation, deletion and navigation) on object relationships in a con-

sistent way. For this reason, a relationship specification contains: (1) the name

of the local class (the class to each the specification belongs), (2) the role of the

local class (local role), (3) the name of the related class, (4) the role of the related

class (related role), (5) the multiplicity of the related class (minimum and maxi-

mum cardinality), (6) the type of the relationship specification (which defines the

semantics of the relationship with respect to the local class), and (7) a Boolean

value that indicates whether or not the relationship is key and must be indexed

for query resolution purposes.

Definition A.S (Relationship Specification) A relationship specification is a tuple

(lc, lr, rc, rr, I, u, e, k), where lc, re E eN, lr, rr E RN, I, u E Z, e E Rand
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k E Z, such that 0 ::; I ::; u.

Terminology: The pair (I, u) is a multiplicity, where I is the minimum cardi-

nality and u is the maximum cardinality. o

Example A.9 Let us consider two related classes named Car and Wheel, as illus-

trated in Figure A.i. The classes have a tight aggregation relationship where Car

is the aggregate class and Wheel is the component class: (1) a single instance of

Wheel is part of at most one instance of Car, (2) a single instance of Car con-

tains a number of instances of Wheel varying from 0 to 4, (3) the role of Car in

the relationship is Vehicle, (4) the relationship is key from Wheel to Car, (5) the

relationship is not key from Car to Wheel.

GJ -----------<7!l~t. ~
~vehicle i-.

Figure A.I Tight aggregation between classesCar and Wheel

Such relationship is represented by a pair of complementary relationship spec-

ifications such that one belongs to the class Car and the other one belongs to the

class Wheel, respectively, defined by the following tuples:

• (Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 0)

• (Wheel, Wheel, Car, Vehicle, 0, 1, STAE, 1) <>

The integer value k in Definition A.8 corresponds to the Boolean value that

indicates whether or not the attribute is key. For this reason, the value of k must

be constrained to the values 0 and 1.
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Invariant A3 (Relationship Key Range) Let s be a relationship specification, then

o :::;s.k :::;1. •

Set of Relationship Specifications

Each element of the set of relationship specifications of a class needs to have

an identification which is distinct from the identification of the others to permit

each one to be referred to unambiguously with respect to the class. Although

a convention for relationship identification which makes use of all information

carried by relationship specifications can be elaborated, for simplicity, we will

establish that all roles of the classes related to each class must be distinct. Also,

this convention provides the basis for a simple notation in relationship operations,

as discussed in Chapter 8. Thus, a set of relationship specifications is consistent

if all its elements have distinct related roles.

Definition A9 (Consistent Set of Relationship Specifications) A set oj relationship

specifications R is consistent iff Vx, Y ER: iJ x. 1'1' = y. 1'1' then x = y. 0

Example A10 Let us consider two related classes named School and Person, as

illustrated in Figure A.2. Such classes have two associations: (1) an instance of

School and a instance of Person, respectively, can be associated having the roles

Employer and Employee, and (2) an instance of School and a instance of Person,

respectively, can be associated having the roles School and Student.
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Figure A.2 Associations between classes School and Person

The class School has the following set of relationship specifications:

{ (School, Employer, Person, Employee, 0, n, ASSE, 1),

(School, School, Person, Student, 0, n, ASSE, I)}

Such set is consistent since all related roles Employee and Student are distinct.

The class Person has the following set of relationship specifications:

{ (Person, Employee, School, Employer, 0, 1, ASSE, 1),

(Person, Student, School, School, 0, n, ASSE, I)}

Such set is consistent since all related roles Employer and School are distinct.

c

A.3.2 Object Relationship

The relationships of a class specify the permitted relationships of its instances.

(Figure A.3 illustrates the following discussion.) If a class X has a relationship R

with a class Y then an object x that is an instance of X can have a relationship

r corresponding to R with an object y that is an instance of Y.

A class relationship specifies a multiplicity for each class in the relationship.

Such a multiplicity can specify any number of instances. For this reason, an
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Figure A.3 Correspondence between related classes and related objects

instance of a class has a set of object references, or simply reference set, for every

relationship of the class. Thus, x has a reference set XR corresponding to R, and

y has a reference set YR corresponding to R.

A relationship between two objects is represented by a reference to each other

in the corresponding reference sets. Thus, the relationship r between x and y is

represented by a pair of complementary object references: (1) z has a reference

to y in XR and (2) y has a reference to x in XR. For this reason, we say that a

relationship is bi-directional.

Reference Set

Object references are realised through object names, which are unique to permit

objects to be unambiguously referred to. Thus, reference sets are subsets of the

set containing all object names.

Definition A.1D (Reference Set) Every finite subset of ON is a reference set. 0
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Relationship Variable

Each instance of a class contains a set of relationship variables, such that there is

an one-to-one correspondence between the elements of such a set and the elements

of the set of relationship specifications of the class. That is, for each relationship

specification in the class there is a relationship variable in the instance. Such a

relationship variable consists of (1) a "copy" of the relationship specification and

(2) a reference set. As discussed in Chapter 8, the information provided by a

relationship specification is used for type checking, index update, navigation and

automatic bi-directional relationship consistency.

Definition A.ll (Relationship Variable) A relationship variable is a doublet (s, v),

where s is a relationship specification and v is a reference set. 0

Example A.ll Let us consider again the example of the classes named Car and

Wheel, which have a tight aggregation, as illustrated in Figure A.l. Now, let us

suppose that {io, iI, i2, ... } are object names, and that an instance of the class

named Car, the object named io, is aggregated with four instances of the class

named Wheel, the objects named iI, i2, i3 and i4, as illustrated in Figure A.4.

Car

Wheel

Figure A.4 Tight aggregation between instances of Car and Wheel
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That aggregation is represented by the following relationship variables:

• ( (Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 1), {it, i2) i3) i4} )

- The instance of the class Car contains such a relationship variable.

- (Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 1) is a relationship specifica-

tion .

• ( (Wheel, Wheel, Car, Vehicle, 0, 1, STAE, 0), {io} )

- Each instance of the class Wheel contains such a relationship variable.

- (Wheel, Wheel, Car, Vehicle, 0, 1, STAE, 0) is a relationship specifica-

tion.

{io} is a reference set. o

Relationship Variable Consistency

The multiplicity in the specification of a relationship variable defines the minimum

and the maximum cardinality of the reference set in the variable.

Invariant A.4 (Relationship Variable Consistency) Let a be a relationship variable

then a.s.l :::;1 a.v I:::; a.s.u . •

Example A.12 The reference set in a relationship variable specified as (Car, Vehicle,

Wheel, Wheel, 0, 4, PTAE, 1) can contain a minimum of 0 and a maximum of 4

object references. 0
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Set of Relationship Variables

Each element of the set of relationship variables of a class needs to have an iden-

tification which is distinct from the identification of the others to permit each

one to be referred to unambiguously with respect to the object. Since there is an

one-to-one correspondence between the elements of a set of relationship variables

of an object and the elements of a set of relationship specifications of a class,

such a required distinction between relationship variables is simply obtained from

the distinction between the corresponding relationship specifications. Thus, a set

of relationship variables is consistent if all the relationships have distinct related

roles.

Moreover, the semantics of tight aggregation enforces that an object is physi-

cally part of at most one object. In other words, if an object is the component in

a certain tight aggregation then that object cannot be the component in another

tight aggregation.

Definition A.12 (Consistent Set of Relationship Variables) A set of relationship vari-

ables R is consistent iff:

(i) V x, yE R: if x.s.rr = y.s.rr then x = y.

(ii) If 3 x, y E R such that x.s.e = STAE and x.v =1= 0 and y.s.e = STAE and

y. v =1= 0 then x = y. 0

Example A.13 Let us consider the related classes named Door, Bolt and Window,

as illustrated in Figure A.5. The class Bolt is the component class in two tight

aggregations: (1) an instance of Bolt can be part of either an instance of Door or

an instance of Window, (2) an instance of Door can aggregate from 0 to 4 instances
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of Bolt and (3) and instance of Window can aggregate from 2 to 8 instances of

Bolt.

EJ Bolt GJindOW
~4 ~8

------ ------... ...

Figure A.S Tight aggregations between classes Door, Bolt and Window

An instance of Bolt which is part of an instance of Door whose object name is

i7 has the following set of relationship variables:

{ ((Bolt, Bolt, Door, Door, 0, 1, STAE, 1), {i7}),

((Bolt, Bolt, Window, Window, 0, 1, STAE, 1), 0) }

An instance of Bolt which is part of an instance of Window whose object name

is is has the following set of relationship variables:

{ ((Bolt, Bolt, Door, Door, 0, 1, STAE, 1), 0),

((Bolt, Bolt, Window, Window, 0, 1, STAE, 1), {is})}

In both cases the set of relationship variables is consistent since the related

roles are distinct (Door and Window) and there is only one non-empty reference set

pertaining to a relationship variable whose specification contains the relationship

type STAE. Now, let us suppose that an instance of Bolt has the following set of

relationship variables:

{ ((Bolt, Bolt, Door, Door, 0, 1, STAE, 1), {i7}),

((Bolt, Bolt, Window, Window, 0, 1, STAE, 1), {is})}
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Such a set of relationship variables is not consistent since there are two non-

empty reference sets pertaining to relationship variables whose specification con-

tains the relationship type STAE. This inconsistency can be interpreted as the

instance of Bolt being part of both an instance of Door and an instance of Window

simultaneously, which does not comply with the semantics of tight aggregation.

o

A.4 Class Elements

The definitions pertaining to method and class, respectively, presented in Section

A.5 and Section A.6, depend on each other. Since such definitions come in that

order, in this Section we anticipate part of the definitions pertaining to class,

which do not depend on the definitions pertaining to method.

All definitions in this Section are illustrated using the class hierarchy with

extents depicted in Figure A.6. The extent of each class is represented by an oval

linked by a thick line to the corresponding class diagram. Each oval representing

an extent contains smaller ovals which represent the objects in the extent.

Class

Each class has a name which is distinct from the name of any other class to

permit each one to be referred to unambiguously. Moreover, every class can have

a superclass. Thus, the definition of a class includes the name of the class and the

name of its superclass, which can be a null name.
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Drawing

Figure A.6 Class hierarchy with extents

Notation A 7 The symbol 0 denotes a null name.

A class (Definition A.23) is a tuple, where two of the elements are:

• nE CN

• s E (CN U{0})

Example A14 Each row of Table A.l contains the elements nand s for a class

shown in Figure A.6. <>

We define a notation to denote the set of all classes in order to define formally

that each class has a distinct name.

Notation AB The symbol C denotes the set oj all classes. o~

•Invariant A5 (Class Name Distinction) V x, y E C : iJ x.n = y.n then x = y.

Since each class has a distinct name, we define a notation to refer to classes

through their names.
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Picture 0

Drawing Picture

Painting Picture

Watercolour Painting

Oils Painting

Table A.1 Example of class name and superclass name elements in classes

Notation A9 Given a class name x and class c such that c.n = x, the notation

Kx denotes c.

Example A15 KPicture denotes the class named Picture.

o

o

Object

Every object has a class path (a sequence of classes ordered according to their

direct inheritance relation) and a most-specific class, which is the last element in

the class path. Thus, the definition of an object includes a sequence of class names

corresponding to the class path of the object and a class name corresponding to

the name of the most-specific class of the object.

An object (Definition A.25) is a tuple, where two of the elements are:

• c E CN

• p is a sequence of class names in CN

Notation AID The symbol 0 denotes the set of all objects. o
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Example A.16 Each row of Table A.2 contains the elements c and p for an object

shown in Figure A.6. o

I object I c
01 Picture (Picture)

03 Drawing (Picture, Drawing)

06 Painting (Picture, Painting)

08 Watercolour (Picture, Painting, Watercolour)

012 Oils (Picture, Painting, Oils)

Table A.2 Example of class name and class path elements in objects

Class Extent and Direct Instance

The extent of a class a is the set of objects instantiated from a, that is, all objects

whose most-specific class is a.

C IExt,Definition A.13 (Class Extent) Given a class c E I the extent of c, denoted as

Ext( c) I is the set of objects given by:

Ext(c) = {o E 0 I c.n = o.c}

An object that belongs to the extent of a class a is a direct instance of a.

Definition A.14 (Direct Instance) Given an object 0 and a class c, 0 is a direct

instance of c if 0 E Ext( c). o
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Class Deep Extent and Indirect Instance

The deep extent of a class 0 is the union of the extent of 0 and the extents of all

subclasses of o. Therefore, the class path of any object in the deep extent of 0

contains o.

Definition A15 (Class Deep Extent) Given a class c E C, the deep extent, denoted

as Ext*( c), of c is the set of objects given by:

Ext * ( c) = {o E 0 I c.n Eo. p}

An object that belongs to the extent of a subclass of a class 0 is an indirect

instance of o. Thus, an indirect instance of a class 0 is any object in the deep

extent of 0 that is not in the extent of o.

Definition A16 (Indirect Instance) Given an object 0 and a class c, 0 is an instance

of c if 0 E (Ext * ( c) \ Ext (c) ) . o

Example A17 Each row of Table A.3 contains the extent and the deep extent for

a class shown in Figure A.6. <>

Types and Domains

Since classes are abstract data types, we have that a type is either a primary type

or a class. Moreover, the deep extent of a class 0 correspond to the domain of o.

For the sake of simplicity, we define a notation to denote all types, and also we

define a notation to refer to the domain of a type which applies to both primary

types and classes.
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I class name I extent I deep extent

Picture {O1, 02} {O1, ... , 014}

Drawing {03, 04, 05} {03, 04, 05}

Painting {06' 07} {06, ... , 014}

Watercolou r {os, 09, 010, ou} {os, 09, 010, ou}

Oils {012' 013, 014} {012' 013, 014}

Table A.3 Example of class extent and deep extent

Definition A17 (Type) A type is either a primary type or a class. o

Notation All The symbol TN denotes the set oj all type names:

TN= PNu en

Definition AlB (Type Domain) Given a type name x E TN, the domain with re-

spect to the type t such that t. n = z , denoted as e(x), is given by:

{

Dom(7rx) iJ x is a primary type name,
e(x) =

Ext*(",x) iJ x is a class name.

Example AlB Let us suppose that there is a primary type named Integer. Using

the notation e to denote the domain of such primary type and the domain of

the class named Watercolour in Figure A.6, respectively, we have the following

equalities:

• e(lnteger) = DOm(7rlnteger)

• e (Watercolou r) = Ext* ("'Watercolour) <>
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A.5 Method

The state of an object is encapsulated by an interface composed of methods or

operations which can be applied to the object. Such methods are specified and

applied according to the following rules:

1. A method is specified in a class, i.e., a method is part of a class.

2. A method specified in a class 0 can be applied to any instance of o.

3. A method is part of one and only one class.

4. A method of a class 0 can be applied only to instances of o.

5. Every class specifies a set of methods.

6. Only methods of a class 0 can manipulate the state of an instance of o.

A method accepts a sequence of values and/or objects as arguments and re-

turns another value or object as a result. The acceptable sequence of arguments

is specified by a sequence of types, and the result is specified by another type.

That is, each argument or result must belong to the domain of the corresponding

type.

Moreover, there must be a means of identifying the methods of a certain class

such that each method can be referred to unambiguously with respect to the

class. For this purpose, we can simply establish a convention where by methods

have names such that the name of each method of a class is distinct from the

names of the other methods of the class. However, such a convention precludes

that the methods of a class which have the same semantics and differ only with

respect to their types of arguments and/or result have the same name. Therefore,
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we establish a convention where by methods of a class can have the same name

as long as their sequences of argument types and result type are different. Thus,

every method is identified by a triple composed of a name, a sequence of argument

types and a result type. Such a triple is referred to as the method signature.

Definition A.19 (Signature) A signature is a triple s = (n, A, r), where:

• nE MN

• A is a finite sequence of the form (ab ... , an), where V ill ~i ~n : a; E

TN

• rE TN o

A method is implemented by a function that maps a product of source do-

mains to a target domain, according to a semantics specified for the method: the

first source domain is the extent of the class to which the method belongs, the

remaining source domains are the argument domains, and the target domain is

the result domain.

Definition A.20 (Method) A method is a tuple m = (c,s,J: S -+ T,b), where:

• c E eN

• s is a signature

• f : S -+ T is a function mapping a product of source domains to a target

domain, of the form:

• b denotes the semantics (behaviour) of function f o
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Example A.19 Let us suppose that there are primary types named Integer and

String, and that there are classes named Person and School. The following tuple

is a method:

( School. (register.....student, ( Person, String ), Integer), /1 : S --+ T, b1 )

• School is the class to which the method belongs.

• (register .....student, ( Person, String ), Integer) is the method signature.

register .....studentis the method name.

( Person, String) is the sequence of argument types.

Integer is the result type.

• /1 : S --+ T is a function that implements the method, and it has the

following form:

/1 : Ext(KSchool) x ~(Person) x ~(String) ~ ~(Integer)

• b1 denotes the semantics of /1: For the instance of School to which the

method is applied, register the instance of Person given as first argument as

a student of the course whose name is given as second argument (String),

and returns the registration number of the student as a result (Integer). 0

Set of Methods

Each element of the set of methods of a class needs to have an identification which

is distinct from the identification of the others to permit each one to be referred

to unambiguously with respect to the class. As previously discussed, such distinct

identification is obtained through method signatures.
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Definition A.21 (Consistent Set of Methods) A set of methods M is consistent iff

v x, Y EM: if x.s = y.s then x = y. o

Example A.20 The following is a consistent set of methods for a class named

School:

{(School, (register_student,(Person,String), Integer), f1: S --+ T, bj ),

(School, (register _student, (Person), Integer), f2 : S --+ T, b2),

(School, (issue.xertificate, (Person), Integer), f3 : S --+ T, b3) }

Method Transformation and Inheritance Semantics

A class Q defines a set of methods which can be applied to instances of Q, and

additionally Q may inherit methods from a class (3, the superclass of Q. However,

the methods of (3 are only applicable to instances of (3, i.e., they cannot be applied

to instances of Q. For this reason, we define an operator to "transform" inherited

methods such that they are applicable to instances of a subclass.

Moreover, an inherited method may either preserve the original method seman-

tics or define a new one. If the method semantics is preserved then the semantics

of the inheritance is incorporation, otherwise it is substitution.

Definition A.22 (Method Transformation) Given a method m = (c, s,j, b) and a ID
class name x, such that "'x.S = c, the transformation of m with respect to the

class named z , denoted as fx(m), is a tuple (x,s,j',b'), where:

• f' is a function of the form:
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• b' is the semantics of f', such that:

1. If b' = b then rx (m) is an incorporation of m by "'x

2. If b' "# b then rx (m) is a substitution of m by "'x o

Example A.21 Let us consider a class named University which inherits a method

named register _student from a class named School, as illustrated in Figure A.7,

where attributes and other methods are not shown.

School

...
register_student(Person, Sbing):Integer

University

...

...
Figure A.7 Example of method inheritance

For simplicity of notation, let a and /3, respectively, denote the classes named

University and School, i.e., a = "'University and /3 = "'School. Also, let Il denote the

method named register _student. The specification of Il can be given by:

Il = (School, (register _student, ( Person, String ), Integer), fl : S -t T, bI)

In such a specification of method u; function fl : S -t T has the following
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form:

II :Ext(f3) x ~(Person) x ~(String) -t ~(Integer)

The transformation of method f.L with respect to a, I'University (f.L ), can be gi ven

by one of the following equalities:

1. fUniversity(f.L) = (University, (register....student, (Person, String), Integer),/2 : S ~ T,

bt}

a incorporates f.L: the original semantics of f.L, i.e., b1, is preserved.

2. fUniversity(f.L) = (University, (register....student, ( Person, String), Integer),f2 : S ~ T,

b2)

a substitutes u: the original semantics of f.L is substituted by the semantics

b2•

In both cases, function 11 : S ~ T specified for method f.L is replaced by

function 12 : S ~ T, which has the following form:

/2 : Ext(a) x ~(Person) x ~(String) -t ~(Integer)

Such function replacement enables method fUniversity (f.L) be applied to instances

of a, as the first source domain has changed from Ext(f3) to Ext(a). 0

We extend the use of the operator I' for method transformation to sets of

methods, i.e., if such operator is applied to a set of methods then all methods are

transformed.
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Notation A.12 Given a consistent set of methods M = {mt, ... ,mn} and a class

name x, the notation rx(M) denotes the transformation of M into M' = {m~, ... , m~} ,

where 'if ill :::;i :::;n : m: = rx(mj). 0

A.6 Class

In this Section we complement the definitions pertaining to class presented in

Section A.4, by making use of the definitions pertaining to method presented in

Section A.5.

The complete definition of a class a consists of the following items:

1. The name of a.

2. The name of the superclass of a or 0 if a has no superclass.

3. A sequence of class names representing the class path of a. The sequence

is ordered according to the inheritance relation between classes: the last

element is the name of a and the first element is the name of the superclass

of a that has no superclass. If a has a superclass, the sequence is obtained

by adding the class name of a to the end of the sequence pertaining to the

superclass, otherwise the sequence contains only the name of a. If a inherits

from a class {3, the name of a cannot belong to the sequence pertaining to

{3, otherwise there would be a "cycle" in the inheritance, i.e., a indirectly

inherits from itself, which is not permitted.

4. A consistent set of attributes locally defined by a.

5. A consistent set of relationships locally defined by a.
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6. A consistent set of methods locally defined by CY.

7. A set containing the attributes locally defined by CY and the attributes in-

herited by CY, if any. Such a set must be consistent, i.e., all attributes in the

set must have distinct names.

8. A set containing the relationships locally defined by CY and the relationships

inherited by CY, if any. Such a set must be consistent, i.e., all relationships

in the set must have distinct related role names.

9. A set containing the methods locally defined by CY and the methods inherited

by CY, if any. Such a set must be consistent, i.e., all the methods in the set

must have distinct signatures.

Definition A.23 (C/ass) A class is a tuple c = (n, s, p, PA, PR, PM, A, R, M), where:

• nE eN

• s E (eN U{0})

• P is a sequence of class names in eN

• PA is a set of attribute specifications

• PR is a set of relationship specifications

• PM is a set of methods

• A is a set of attribute specifications

• R is a set of relationship specifications

• M is a set of methods

such that:
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(i) \I a E PA : a.c = n

(ii) \I r E PR: r.lc = n

(iii) \I m E PM : m.c = n

(iv) PA is consistent

(v ) PR is consistent

(vi) PM is consistent

(vii) If s = 0 then:

(a)p={n}

(b) A = PA

(c) R = PR

(d) M = PM

(viii) If s =f. 0 then:

(a) p = Ks.pU in}

(b) A = PA U Ks.A

(c) R = PR U Ks.R

(d) M = PM U rn(Ks.M)

(e) n rJ. Ks.p

(f) \Ix E PA: \ly E Ks.A: x.n =f. y.n

(g) \Ix E PR: \ly E Ks.R: x.rr =f. y.rr

(h) \Ix E PM: \ly E Ks.M: x.s =f. y.s
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Terminology:

• PA is the partial set of attributes of c

• PR is the partial set of relationships of c

• PM is the partial set of methods of c

• A is the total set of attributes of c

• R is the total set of relationships of c

• M is the total set of methods of c o

The constraints on attribute names, relationship related roles and method

signatures imposed in Definition A.23 naturally ensure the consistency of the

total set of attributes, the total set of relationships and the total set of methods

of a class.

Proposition A.i (Class Consistency) Vc E C:

(i) c.A is consistent

(ii) c.R is consistent

(iii) c.M is consistent o

Example A.22 Let us consider the class hierarchy depicted in Figure A.B. For

simplicity of notation, classes are named A, B, C, D, X and Y, attributes are

denoted as aI, ... , a5, methods are denoted as mI, ... , m5, and relationships are

denoted as rt and r2. If these labels are expanded then we can have, for example,

that at represents the attribute salary: Integer.
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Each column of Table A.4 contains the specification for a class shown in Figure

A.8. Also for simplicity of notation, the specifications of attributes, methods

and relationships are denoted in the Table using their labels in the Figure. For

example, if al represents salary: Integer in the Figure then al represents (salary,

Integer, 0, A) in the Table. 0

A.7 Object

An object 0 that is an instance of a class a consists of:

1. A set of attribute variables corresponding to the total set of attribute spec-

ifications of a.

2. A set of relationship variables corresponding to the total set of relationship

specifications of a.

3. A set of methods corresponding to the total set of methods of a.

Every attribute/relationship of 0 is specified by an attribute/relationship of a,

while the methods of 0 are "copies" of the methods of a. For this reason, we say

that a models 0, i.e., a class is a model of its instances. More specifically, every at-

tribute specification of a models an attribute variable of 0, and every relationship

specification of a models a relationship variable of o. For methods, however, we

simply say that every method of 0 is equal to a method of a. Therefore, we define

an operator to represent the correspondence between an attribute/relationship

specification with an attribute/relationship variable.
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rJ
A

__________._.0··.

aJ

mJ-: -.
B C

a2 aJ a4

m2 mJ
m4

1
D

aj

mj

..............P.=1
~.....~~E§

...

...

Figure A.S Class hierarchy with labelled members

n A B C D

s 0 A A C

p (A) (A, B) (A, C) (A, C, D)

PA {ad {a2} {a3, a4} {as}

PR {ri} 0 {r2} 0

PM {mIl {m2' m3} {m4} {ms}

A {ad {a}, a2} {ab a3, a4} {aI, a3, a4, as}

R {rd {rd {rI, r2} {r}, r2}

M {md {fB(mJ), m2, m3} {fc(mJ), m4} {fo(fc(mJ)), fo(m4), ms}

Table A.4 Example of class specification
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Definition A.24 (Specification- Variable Correspondence) Given an attribute (a rela-

tionship) specification A and an attribute (a relationship) variable x, A models x,

denoted as A F x, iff x.s = A. 0

Example A.23 Let us consider the attribute specification Al and the attribute vari-

able Xl given by:

Al = (name, String, 1, Client)

Xl = ((name, String, 1, Client), "Gustav Klimt")

We have that Al F Xl since XI·S = AI.

Similarly, let us consider the relationship specification A2 and the relationship

variable X2 given by:

A2 = (Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 1)

X2 = ((Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 1), {iI, i2, i3, i4})

o

In addition to attribute variables, relationship variables and methods, an ob-

ject 0 that is an instance of a class a also contains:

1. A unique name to permit 0 to be unambiguously referred to.

2. The name of a to permit type checking.

3. The set of class names that represents the class path of a to permit type

checking.
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Definition A.25 (Object) Given a class t E C, an object is a tuple (n, c, p, A, R, M),

where:

• nEON

• c E CN

• P is a sequence of class names in CN

• A is a set of attribute variables

• R is a set of relationship variables

• M is a set of methods

such that:

(i) c = t.n

(ii) p = t.p

(iii) 1 A 1=1 t.A 1

(iv) ViiI:::; i :::;1 A I, Si E t.A, Vi EA: Si 1= Vi

(V) 1 R 1=1 t.R 1

(vi) ViiI:::; i :::;1 R I, Si E t.R, Vi ER: Si 1= Vi

(vii) M = t.M o

Example A.24 Let us consider the classes with corresponding instances depicted

in Figure A.9. An object is represented by a rectangle with rounded corners and

is connected to the respective class by a thick line. For simplicity, object names

are denoted by integers. Also, the object diagrams do not show all details of

attributes, relationships and methods. For example, the complete composition of

an instance of the class named Person is illustrated in Table A.5. o
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n =4027 n = 8721

c = Person c = Person

~=( Person ~=( Person)

surname = 'Twist' surname = 'Einstein'

firstname = 'Oliver' firstname = 'Albert'

School = {4834} School = {2086}

Faculty = {} Faculty= {8310}

enter_school enter_school

(School):lnteger (School):Integer

School ............. _ ......... _-
O,n

*name: String

address: String

register_student

(Person,String):lnteger

/ -.
Nursery University

minimum_age: Integer

maximum_age: Integer

n=4834 n= 2086

c = Nursery c = University

~=( School, Nursery ) ~= ( School, University)

name = 'Thunderbird' name = 'St Benoit'

address = '4 Summer Rd' address = '9 Wisdom Av'

minimum_age = 2

maximum_age = 6 Student = {8721, ... }

Student = {4027, ... } Faculty = {831O, ... }

register_student register_student

(Person,String):lnteger (Person,String):lnteger

Student r-e-_ ___JI...,__JL-- ---,

Person
O,n I----------l

*surname: String

firstname: String

enter_school

(School):Integer

O,n Student

On

O,n

,.. Faculty

*name: String

register_student

(Person,String): Integer

n = 8310

c = Faculty

~= ( Faculty )

name = 'Science'

Student= {8721, ... }

University = {2086, ... }

register_student
(Person,String):Integer

Figure A.9 Correspondence between class and instance elements
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n 8721

c Person

p ( Person)

A { «surname, String, 1, Person), Einstein) ,

«firstname, String, 0, Person), Albert) }

R { «Person, Student, School, School, 0, n, ASSE, 1), { 2086 }),

«Person, Student, Faculty, Faculty, 0, n, ASSE, 1), { 8310 }) }

M { (Person, [enter.ischool, ( School ), Integer), f : S ~ T, b) }

Table A.5 Example of object elements

Object Invariants and Notation

The set of all objects is equal to the union of the extents of all classes since every

object is an instance of a class.

Proposition A2 (Instantiation) 0 = UCEC Ext(c) o

The name of each object 0 must be unique to permit 0 to be unambiguously

referred to.

Invariant A6 (Object Name Uniqueness) Vx, yEO: if x.n = y.n then x = y. •

We define a notation to refer to objects through their names since each object

has a unique name.

Notation Al3 Given an object name i, the notation E>i denotes the object 0 such

that o.n = i. o
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Example A.25 88721 denotes the object shown in Table A.5.

Also, we define a notation to denote the value of an attribute variable of an

object through the name of the variable.

Notation A.14 Given an object 0 and an attribute variable a E o.A, the notation

o --+ a.s.n denotes a.v. o

Example A.26 Let us suppose that 0 denotes the object shown in Table A.5. Then,

o --+ surname denotes Einstein, and 0 --+ firstname denotes Albert. <>

Object State and Interface

The state of an object 0 is composed by the attributes and the relationships of 0,

while the interface of 0 is defined by the methods of o.

Definition A.26 (Object State) Given an object 0, the state of 0 is the doublet

(o.A,o.R). 0

Definition A.27 (Object Interface) Given an object 0, the interface of 0 is o.M. 0

The consistency of the sets of attributes, relationships and methods of an

object is naturally ensured since classes model objects.

Proposition A.3 (Instance Consistency) V 0 E O:

(i) o.A is consistent

(ii) o.R is consistent

(iii) o.M is consistent o
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A.8 Relationship

In this Section we complement the definitions pertaining to relationships presented

in Section A.3, by making use of the definitions pertaining to classes and objects,

presented in Section A.6 and Section A. 7, respectively.

Related Classes

A class relationship always involves a pair of classes. Consequently, if a class

a contains a relationship specification a then there must exist a class j3 that

contains a relationship specification A which is complementary to a, We must

note, however, that there is no constraint to force a and j3 to be distinct, i.e., a

and j3 can be the same class. Moreover, the types of a and A must reflect the

relationship semantics.

Invariant A. 7 (Related Class) Va E C : V a E a.PR : 3 j3 E C such that:

(i) a.re = j3.n

(ii) 3 A E j3.PR such that:

(a) A .rc = a.n

(b) a.lr = A .rr

(c) A .lr = a.rr

(d) If a.e = PTAE then A.e = STAE

(e) If a.e = PLAE then A.e = SLAE

(f) If a.e = ASSE then A.e = ASSE
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Terminology:

• the pair (a, >.) defines a class relationship between a and {3

• a and >. are complementary relationship specifications

• if a.e = PTAE or a,e = PLAE then:

- a is the left class in the relationship

- {3 is the right class in the relationship

- the class relationship is an aggregation

- a is the aggregate class

- {3 is the component class

- a.lr is the aggregate role

- >. .lr is the component role

- a.l is the component minimum cardinality

- a.u is the component maximum cardinality

- >'.1 is the aggregate minimum cardinality

- >.. u is the aggregate maximum cardinality

• if a.e = PTAE then:

- the class relationship is a tight aggregation

- a is the parent tight aggregation class

- a is the parent tight aggregation specification

- {3 is the sibling tight aggregation class
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- A is the sibling tight aggregation specification

• if a.e = PLAE then:

- the class relationship is a loose aggregation

- a is the parent loose aggregation class

- a is the parent loose aggregation specification

- j3 is the sibling loose aggregation class

- A is the sibling loose aggregation specification

• if a.e = ASSE then:

- the class relationship is an association

- a and j3 are associated classes

- a and A are association entries

if a is the left class in the relationship then:

* j3 is the right class in the relationship

* a.lr is the left role

* A .lr is the right role

* a.l is the right minimum cardinality

* a.u is the right maximum cardinality

* A.I is the left minimum cardinality

* A. u is the left maximum cardinality •
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Example A.27 Let us consider a simple hypertext model where links between nodes

have semantics to permit their organisation as documents, according to the fol-

lowing rules:

L1• A document is a set of linked nodes.

L2• A node may be part of several documents concurrently.

L3• A document has one node designated as the root node.

L4• A node may be root of at most one document.

L5• Nodes may be arranged as a hierarchical structure.

L6• Node hierarchies may interleave with each other.

L7• A node may contain a reference to any other node, including itself.

L8• A node may be a note about other node.

Such hypertext model is implemented by the classes depicted in Figure A.l0,

where relationships are labelled r1, ... , r5, and have the following semantics:

• r1 permits to define the set of nodes of a document (L1) and permits to define

a node as part of several documents (L2) since it is a loose aggregation.

• r2 permits to define the root node of a document (L3) and ensures that

a node may be the root of at most one document (L4) since it is a tight

aggregation.

• r3 permits to represent hierarchical arrangement of nodes (L5), possibly with

interleaving between hierarchies (L6) since it is a loose aggregation.

• r4 permits to represent references between nodes (L7).
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• r5 permits to define a node as a note about other node (L8).

The pairs of complementary relationship specifications corresponding to rI, ... , r5

are shown in Table A.6, where each pair is denoted by a and A. For simplicity of

notation, the class named Document is denoted by a, and the class named Node

is denoted by f3. <>

Related Objects

Object relationships are always bi-directional. (Figure A.ll illustrates the fol-

lowing discussion.) Consequently, if an object x contains a name i in the set of

references of a relationship variable a then there must exist an object y whose

name is i and that contains the name of x (say j) in the set of references of a

relationship variable A whose specification is complementary to the specification

of u; we say that a and A are complementary relationship variables.

Invariant A.8 (Related Objects) "Ix EO: Vu E x.R: Vi E u.v: '3y E 0 such

that:

1. y = 0i

2. '3 A E y.R such that:

(a) A.S is complementary to a.s

(b) x.n E A.V

Terminology:

• the pair (u, A) defines an object relationship between x and y
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Document

.'

Parent

O,n

Noder f-------i Source
~~'! ! ~~'b

r 2 J-------------------------------~
'-- __ ----l RootDocument RootNodc

,O,n

Destination

...
l.n

) r5
.... ~'.~1 .~,.n
Child '-------' Note

O,n

Figure A.tO Relationships between classes for a simple hypertext model

label class relationship specification

rl a: a = (Document, Document, Node, Node, 0, n, PLAE, 1)

{3 A = (Node, Node, Document, Document, 0, n, SLAE, 1)

r2 a: a = (Document, RootDocument, Node, RootNode, 1, 1, PTAE, 1)

{3 A = (Node, RootNode, Document, RootDocument, 0,1, STAE, 1)

r3 {3 a = (Node, Parent, Node, Child, 0, n, PLAE, 1)

{3 A = (Node, Child, Node, Parent, 0, n, SLAE, 1)

r4 {3 a = (Node, Source, Node, Destination, 0, n, ASSE, 1)

{3 A = (Node, Destination, Node, Source, 0, n, ASSE, 1)

r5 {3 a = (Node, Node, Node, Note, 0, n, ASSE, 1)

{3 A = (Node, Note, Node, Node, 1, n,ASSE, 1)

Table A.6 Example of complementary relationship specifications
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Figure A.ll Complementary relationship variables in related objects

• a and A are complementary relationship variables

• x and yare related with respect to the class relationship ((j.s, A .s)

• a.s.lr is the role of x in the relationship

• A .s.lr is the role of y in the relationship

• if a.e = PTAE then the object relationship is a tight aggregation

• if a.e = PLAE then the object relationship is a loose aggregation

• if a,s,e = PTAE or a,s.e = PLAE then:

- x and yare aggregated to each other

- x is the aggregate object

- y is the component object

• if a.e = ASSE then:

- the object relationship is an association

- x and yare associated objects •
We define a notation to denote object relationship.
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I ~ , Notation A.15 Given two objects x and y, and two role names A and B, the nota-
B

tion x ~ y denotes a relationship between x and y, where A is the role of x and
A

B is the role of y. 0

Example A.28 Let us consider an object x and an object y which are instances of

the class named Node shown in Figure A.ll, such that x is a parent node of y,

that is, x and yare related with respect to the class relationship r3.

For simplicity of notation, let j denote the name of x (x. n = j) and i denote

the name of y (y.n = i). Thus, the set of relationship variables of x contains an

element a and the set of relationship variables of y contains an element A given

by:

a = ((Node, Parent, Node, Child, 0, n, PLAE, 1), {i, ... })

A = ((Node, Child, Node, Parent, 0, n, SLAE, 1), {j, ... })

The role of x is Parent while the role of y is Child. Thus, using the notation

for related objects, we have that:

Child
X ~ Y

Parent

Aggregate and Component Objects Distinction

The semantics of aggregation establishes that a component object is part of an

aggregate object. Therefore, both objects are necessarily distinct.

InvariantA.9 (Aggregate and Component Objects Distinction) V x, yEO: if x and

yare aggregated to each other then x =I y. •
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Relationship Variable Identification

We introduce a theorem which to justify aspects of the object manipulation lan-

guage and algorithms, used in Chapter 8, pertaining to operations for creation

and removal of object relationships.

Both relationship creation and removal operations are applied to an object x

with only two parameters:

PI: An object y.

P2: The role of y in the relationship.

Such an operation affects a pair of complementary relationship variables: a

variable (7 in the corresponding set of x and a variable ,x .in the corresponding

set of y. We must recall that the set of relationship variables of an object is

consistent, i.e., all related roles are distinct from each other to permit variables

to be identified (Definition A.9). Thus, the variable (7 is directly identified by P2•

The variable ,x, however, is indirectly identified by information provided by (7: the

remote role in ,x is equal to the local role in (7. If the classes of x and yare related

then ,x exists. However, it must be shown that a relationship variable of y whose

related role is equal to the local role of (7 is necessarily ,x, i.e., the complementary

relationship variable of (7.

Example A.29 Let us consider an object x and an object y which are instances of

the class named Node shown in Figure A.ll. If an operation is applied to x to

create a relationship with y (PI)' such that the role of y is Child (P2), then the

identification of the affected complementary relationship variables is proceeded

according to the following steps:
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1. A relationship variable a is identified in the corresponding set of x by the

related role Child. Such variable is given by:

a = ((Node, Parent, Node, Child, 0, n, PLAE, 1), {... })

2. From a , we have that the local role of x is Parent. Thus, a relationship

variable ~ is identified in the corresponding set of y by the related role

Parent. One such variable is given by:

~= ((Node, Child, Node, Parent, 0, n, SLAE, 1), { ... })

Obviously, if all the elements of a and ~ are compared, we deduce that they

are complementary. However, we want to prove that such a comparison is not

necessary, i.e., only the fact that the remote role of ~ (Parent) is equal to the local

role of a is sufficient. o

Since complementary relationship variables have complementary relationship

specifications and the set of relationship variables of an object 0 is modelled by

the set of relationship specifications of the class of 0, we have that a and ~ are

complementary if their corresponding relationship specifications in the classes of

x and yare complementary.

Theorem A.l (Complementary Relationship Specifications) Given the relationship spec-

ifications a and ~, and the classes a,/3 E C, such that a E a.PR and ~ E /3.PR,

a and ~ are complementary if:

(i) a.re = /3.n

(ii) a.lr = ~.rr •
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Proof: Let a and A be relationship specifications, and a, j3 E C be classes such

that:

a E a.PR

A E j3.PR

a.re = j3.n

a.lr = A .rr

From A.1 and Invariant A.7 (Related Classes) we have that :3 ( E j3.PR such

that:

(.rc = a.n

(.lr = a.rr

(.rr = a.lr

From A.1 and A.1 we have that:

(.rr = A .rr

From Proposition A.1 (Class Consistency) we have that j3.PR is consistent. Thus,

from Definition A.9 (Consistent Set of Relationship Specifications), we have that:

V x, yE j3.PR : x.rr = y.rr :::}x = Y

Since ( E j3.PR, from A.1, A.1 and A.1 we have that:

From A.1, A.1 and A.1 we have that:

A .rc = a.n

A.lr = a.rr
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Therefore, from A.1, A.1, A.1, A.1, A.1, A.1 and Invariant A. 7 (Related Classes),

we have that (J" and A are complementary.

A.9 Single Inheritance

According to Definition A.23 (Class), a class may have a superclass; if a class d

is derived from a base class b then d.s = b.n. Such a relation between band d

implies inheritance of attributes, methods and relationships of b by d.

Definition A.28 (Inheritance Arc) Given a pair of classes b, d E CN, there exists

an inheritance arc from b to d, denoted as T~, iff d.s = b.n. o

Example A.30 Figure A.12 illustrates an inheritance arc from a class b, named

Picture, to a class d, named Drawing. <>

Picture

...

Tb
d

Drawing

...

b

d

Figure A.12 Example of inheritance arc

We define a symbol to denote the set of all inheritance arcs.
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Notation A.16 The symbol A denotes the set of all inheritance arcs between classes ~

in C:

A = {T~ I b, dEC}

Since Definition A.23 establishes that a class has at most one superclass, only

single inheritance is permitted.

Proposition A.4 (Single Inheritance) Let z ; y, d be classes in C. If:1 Td, T~ E A

then Td = T~ and x = y. o

Tree-based Arrangement of Classes

Classes and corresponding inheritance arcs can be represented by a directed graph;

every vertex of the graph represents a class and every arc (directed edge) of the

graph represents an inheritance arc. We will prove that such a graph is a directed

tree.3 Firstly, we define a notation for graphs which is summarised in Figure A.13

through examples.

Notation A.17 A directed graph G is denoted by a doublet (V, A), where V and

A, respectively, denote the set of vertices and the set of arcs of G. o

Notation A.IB Given a directed graph G and a vertex vEG. V, the notation IIndegree I
Indegree( v) denotes the number of arcs in G.A which have v as their final vertex.

o

Notation A.19 Given a directed tree \lI, the notation Root(\lI) denotes the vertex IRoot,

3A directed tree is also called an arborescence in the literature.
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in \II. V which is the root of \II. D

VI (). V = {Vb""V7}

(}.A = {aI, ... ,a7}
V2 V:3

Indegree( vd = 0

V4 V6
Indegree( V2) = 1

Indegree( V5) = 2

Indegree( V7) = 3
V7

(a) A directed graph iJ

\II.V = {Vb' .• , Vs}
\II.A = {ab' .. , a7}

Indegree( vd = 0

Vi I i =/:-1: Indegree(vi) = 1

Root(\II) = VI

(b) A directed tree 'II

Figure A.13 Example of graph notation

Also, we define a notation to denote the graph that represents all classes and

inheritance arcs and, finally, prove that such classes are arranged as directed trees.

Notation A.20 The symbol 9 denotes a directed graph such that g. V = C and
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Q.A=A. o

Theorem A.2 (Tree-based Arrangement of Classes) Every connected subgraph of Q

is a directed tree. •
Proof: From Definition A.23 we have that a class has at most one superclass,

thereby:

Vc E Q. V: Indegree(c) ~ 1

Let W be a connected subgraph of Q, and let t/ and Q, respectively, be the

number of vertices and the number of arcs in w. Since W is connected we have

that Q ~ l/ - 1 (Theorem 5C in [67]). Let us assume that Q = l/ - 1, which then

implies W is a tree (Theorem 9A in [67]). Let r = Root(w), then:

Vc E W. V I c =I- r : Indegree( c) = 1

Also, from Definition A.23 we have that:

Vc E W. V : r.n E c.p

Now, let us suppose that x, yEW. V and that an arc T~ should be added to w.A.

We have two cases to consider:

i. If I y = r I then, from Definition A .23, we have that the addition of T~ to

w.A is only possible if r.n ~ x.p, which contradicts A.i.

2. Ifl y =I- r I then, from A.i, we have that the addition of T~ to w.A implies

Indegree(y) = 2, which contradicts A.i.

Therefore, the arc T; cannot be added to w.A, which implies W is a directed

tree.
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A.10 Class Hierarchy

According to Theorem A.2, 9 is a directed acyclic graph (DAG). However, graph

9 is not necessarily connected. More specifically, every (connected) component of

9 is a distinct directed tree, which we call class hierarchy.

Definition A29 (Class Hierarchy) A class hierarchy is a directed tree of classes that

is a maximum subgraph of 9 with respect to the connectedness property. 0

Since C and A are finite sets, from A.2 we have that the number of class

hierarchies in 9 is finite.

Corollary A1 (Arrangement of Classes in Hierarchies) Graph 9 is a finite set of class

hierarchies. o

Example A31 The graph 9 depicted in Figure A.14 is composed of class hierarchies

Wt, ••. , W5. Vertices are labelled as c; to denote classes and, for simplicity, arcs

are not labelled. o

WI Cl W2 Cl} W
4 C14

~O/\CI1 0

C3

W
W5 C153 C12

C4 I .t.
C7 Cs C13 C16 C17 CIS

Figure A.14 Example of graph g
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Class Path

Since a class hierarchy is a directed tree, there is a unique elementary path4 from

the root to every vertex of a class hierarchy. The sequence of classes (vertices) in

such a path is called class path.

Definition A.30 (Class Path) Given a class hierarchy 'l1 in g and a class c E 'l1.V, IPath I
the class path with respect to c, denoted as Path(c), is the sequence of classes in

the elementary path from Root('l1) to c, inclusive. o

Example A.32 Let us consider the class hierarchy 'l11 depicted in Figure A.14.

Some of the class paths in 'l11is given by:

The class path with respect to a class c is represented by the sequence of class

names given by c.p. Let us consider the classes Co, Cb' .. ,Ck such that Ci+1 IS

direct subclass of c; Vi, 0 ~ i ~ k - 1, which is represented as follows.

Co Cl Ck
o--.o}----•... --0

Then, Vi.0 ~ j ~ k, we have that:

4A elementary path is a sequence of arcs where the final vertex of one is the initial vertex of

the next one such that the same vertex is not used more than once in the path.
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1. Path(cj) = (eo, , Cj)

2. Cj.~ = (eo.n, , cj.n)

A.11 Class Conformity

According to Definition A.23 (Class), a class d that is derived from a base class b

(i.e., d.s = b. n) contains all specifications (total sets of attributes, relationships

and methods) of b and, possibly, adds new specifications. For this reason, we say

that "d conforms to b".

Intuitively, the specifications of a class x are contained in all direct and indirect

subclasses of x. Consequently, any direct or indirect subclass of x conforms to x.

In general, given a class x and a class y, if either y = x or y is subclass of x then

y conforms to x. In both cases, for simplicity, we say that "y is a x". This is-a

relation between x and y can be expressed in terms of the class path: y is a x if

x is in the class path with respect to y.

Definition A.31 (Is-a Relation) Given the classes x, y E C, Y zs a x, denoted as

Y ~T z , iff x.n E y.~. o

Example A.33 Let us consider the classes School, Nursery and University in Figure

A.9. The class Nursery contains the attributes name and address, the relationship

with class Person having related role Student and the method register .student,

which are specified by class School. For this reason, class Nursery conforms to

class School. Similarly, class University conforms to class School. For simplicity
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of notation, let x, y and z, respectively, denote the classes School, Nursery and

University. Thus, we have that:

1. (x.n = School) /I. (x.p = (School)) ~ x.n E x.p ~ X ~1" X

2. (x.n = School) /I. (y.p = (School, Nursery)) ~ x.n E y.p ~ Y ~1" X

3. (x.n = School) /I. (z.p = (School, University)) ~ x.n E z.p ~ Z ~1" X <>

Deep Extent Reduction

Given a class x and a class y such that y is subclass of x, while the specification

of y includes the specification of x, the deep extent of y is included in the deep

extent of x. In other words, a subclass enlarges the specification and reduces the

deep extent of its superclass.

Proposition A.5 (Deep Extent Reduction) Given a class x and a class y, y :::;1" x iff

Ext*(y) ~ Ext*(x). 0

Let us consider the classes Co,Ct, .•• ,Ck such that Path(ck) = (eo,Cl"",Ck)'

Figure A.15 illustrates how class specification is enlarged and class deep extent is

reduced from eo to Ck. We have that:

2. Ext*( Ck) ~ Ext*( Ck-t) ~ ... ~ Ext*( eo)
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L.

Co Ext* (Co)

Figure A.IS Specification enlargement and deep extent reduction in class path

A.12 Partial Ordering of Classes

The is-a relation defines a partial order in C, that is, C is a poset (partially ordered

set) with respect to the is-a relation.

Theorem A.3 (Partial Order Relation between Classes) The is-a relation has the fol-

lowing properties:

(i) Reflexive property: Va E C : a ::;7 a

(ii) Antisymmetric property: Va, b E C : ifa ::;7 band b ::;7 a then a = b

(iii) Transitive property: Va, b, c E C : ifa ::;7 band b ::;7 c then a ::;7 c •

Proof: Let a, band c be classes in C.

(i) Reflexive property:

From Definition A.23 (Class) we have that a.n E a.p.

From Definition A.31 (ls-a Relation) we have that a.n E a.p =* a::;7 a.
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(ii) Antisymmetric property:

Let us suppose that a ~T band b ~T a. From Definition A.31 and Definition

A .23 we have that:

{ either a=b (lA)
a ~T b ::} b.n E a.p ::}

or b is superclass of a (lB)

{ either a = b (2A)
b ~T a ::} a.n E b.p ::}

or a is superclass of b (2B)

Thus) one combination in the product {lA, lB} x {2A, 2B} holds. If the

combination (lA, 2A) holds then a = b. According to Theorem A.2 (free-

based Arrangement of Classes) any other combination is absurd. Therefore:

a ~T b /\ b ~T a ::} a = b

(iii) Transitioe property:

Let us suppose that a ~T band b ~T c. According to Definition A.31 and

Theorem A.2 we have that:

a ~T b ::} b.n E a.p ::} b.p ~ a.p

b ~T C ::} c.n E b.p ::} c.p ~ b.p

From A.1 and A.1 we have that:

c.p ~ a.p

From Definition A.23 we have that:

c.n E c.p
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From A.l, A.l and Definition A.31we have that:

c.n E a.p => a ~T c

Therefore:

a ~T b 1\ b:::;T c => a ~T c

Corollary A.2 (Partial Ordering of Classes) The set of classes C is partially ordered

with respect to the is-a relation. D
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ApPENDIX B

Theorem Proof

In this Appendix we prove the Theorem 5.1 (Root Subtree Self-containment),

which is stated in Chapter 5.

Theorem: A subtree H of a class hierarchy \II in 9 is self-contained iff H is

a root-subtree. •
Firstly, we recall that if a class x is (directly or indirectly) subclass of a class

y then x ~T y and, conversely, if x ~T y then x is (directly or indirectly) subclass

of y. For this reason, we can also define class hierarchy self-containment using

the is-a relation: for every class x in a set of classes C that is self-contained with

respect to hierarchy we have that if there is class y such that x ~T y then y

belongs to C, and vice-versa.

Proposition B.1 (Partial Order and Hierarchy Self-Containment) A set of classes C

is self-contained with respect to hierarchy iff V x E C : V y E C : if x ~T y then

yE C. 0

Proof:

(i) H is self-contained * H is a root-subtree
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Since H is self-contained we have that:

Vy E H. V : V x E C : y ::;,.x => x E H. V

Since \II. V ~ C, from B.l we have that:

Vy E H. V :V x E \II. V : y ::;,.x => x E H. V

Since \II is a class hierarchy we have that:

V Y E \II. V : y ::;,.Root(\II)

Since H is subtree of \II, from B.l we have that:

Vy E H. V : y ::;,.Root(\II)

From B.l and B.l we have that:

Root(\II) E H. V

Therefore:

Root(H) = Root(\II)

(ii) H is a root-subtree => H is self-contained

Since H is a root-subtree we have that:

Root( H) = Root(\II)

Let y EH. V and x E C be classes such that:

y ::;,. x
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From B.l we have that:

x.p ~ y.p

Since y EH. V we have that:

Root(H) E y.p

From B.l and B.l we have that:

Root(\I!) E y.p

From B.l and B.l we have that:

Root(\I!) E x.p

From B.l we have that:

xE\I!.V

From B.l and B.l we have that:

x E H.V

Therefore:

\f yE H. V: \f x E C : Y ~T X => x E H. V
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ApPENDIX C

Meta-classes Definition

In this Appendix we give a formal definition for all meta-classes.

Naming Assumptions

All class and schema names used in the meta-schema are considered as "reserved",

i.e., user-defined schemas cannot contain such names. Moreover, the only primary

types used in the schema correspond to the domains integer and strings. Thus,

let us assume the existence of the following sets:

• a set RpN of reserved primary type names

• a set npT of reserved primary types

• a set npD of reserved primary domains

• a set nAN of attribute names

• a set nCN of reserved class names

• a set R: WN of reserved schema names

such that:
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(i) PN 2 RpN

(ii) P 2 RpT

(iii) V ;2 RpD

(iv) AN;2 RAN

(v) CN 2 RCN

(vi) WN;2 RWN

(vii) RpN = {Integer, String}

(viii) RpT = {7rlnteger, 7rString}

(ix) RpD = {Dom(7rlnteger), Dom(7rString)}

(x) 7rlnteger.s is a semantics for integer values

(xi) 7rString.S is a semantics for string values

(xii) Dom(7rlnteger) is the set of integer values

(xiii) Dom(7rString) is the set of string values

(xiv) RAN = {

name, key, signature,

aggregate..role, aggregata.min.xard, aggregata.max.card,

componenLrole, component.imin.xard, component.rnax.card,

lefLrole, left.imin.xard, left..max.card,

righLrole, right..min.xard, right.rnax.card

}

(xv) RCN = {

Class, Attribute, Method, Relationship, Schema,
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Integer Attribute, StringAttribute,

Aggregation, LooseAggregation, TightAggregation, Association

}

(xvi) RWN = {Meta, Class, Attribute, Method, Relationship, Schema}

Meta-classes

According to the meta-schema depicted in Figure 6.1, the meta-classes are formally

defined as follows.

Invariant C.1 (Meta-class Class) Let c E C be a meta-class such that c.n = Class,

then:

(1) c.s = 0

(2) c.PA = {(name, String, 1, Class)}

(3) c.PR = {

(Class, Class, Attribute, Attribute, 0, n, PTAE, 1),

(Class, Class, Method, Method, 0, n, PTAE, 1),

(Class, l.eft'Class, Relationship, LeftRelationship, 0, n, PLAE, 1),

(Class, RightClass, Relationship, RightRelationship, 0, n, PLAE, 1),

(Class, SuperCiass, Class, SubClass, 0, n, ASSE, 1),

(Class, SubClass, Class, SuperCiass, 0,1, ASSE, 1),

(Class, RootClass, Schema, RootSchema, 0, n, SLAE, 1),

(Class, NonRootClass, Schema, NonRootSchema, 0, n, SLAE, 1)

} •
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Invariant C2 (Meta-class Attribute) Let c E C be a meta-class such that c.n

Attribute, then:

(1) c.s = 0

(2) c.PA = {

(name, String, 1, Attribute),

(key, Integer, 0, Attribute)

}

(3) c.PR = {(Attribute, Attribute, Class, Class, 0,1, STAE, 1)} •
Invariant C3 (Meta-class StringAttribute) Let c E C be a meta-class such that c.n =

StringAttribute, then:

(1) c.s = Attribute

(2) c.PA = 0

(3) c.PR = 0 •
Invariant CA (Meta-class IntegerAttribute) Let c E C be a meta-class such that

c.n = IntegerAttribute, then:

(1) c.s = Attribute

(2) c.PA = 0

(3) c.PR = 0 •
Invariant C5 (Meta-class Method) Let c E C be a meta-class such that c.n

Method, then:

(1) c.s = 0
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(2) c.PA = {(signature, String, 1, Method)}

(3) c.PR = {(Method, Method, Class, Class, 0,1, STAE, 1)} •
Invariant C.6 (Meta-class Relationship) Let c E C be a meta-class such that c.n =

Relationship, then:

(1) c.s = 0

(2) c.PA = {

(left-key, Integer, 0, Relationship),

(right-key, Integer, 0, Relationship)

}

(3) c.PR = {
(Relationship, LeftRelationship, Class, LeftCiass, 1, 1, SLAE, 1),

(Relationship, RightRelationship, Class, RightClass, 1, 1, SLAE, 1)

} •
Invariant C.7 (Meta-class Aggregation) Let c E C be a meta-class such that c.n =

Aggregation, then:

(1) c.s = Relationship

(2) c.PA = {

[aggregate.irole, String, 1, Aggregation),

(component-role, String, 1, Aggregation),

(component-min_card, Integer, 0, Aggregation),

(component-max._card, Integer, 0, Aggregation)

}
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(3) c.PR = 0 •
Invariant ca (Meta-class LooseAggregation) Let c E C be a meta-class such that

c.n = LooseAggregation, then:

(1) c. s = Aggregation

(2) c.PA = {

(aggregate.rnin.card, Integer, 0, Aggregation),

(aggregate..max.card, Integer, 0, Aggregation)

}

(3) c.PR = 0 •
Invariant C9 (Meta-class TightAggregation) Let c E C be a meta-class such that

c.n = TightAggregation, then:

(1) c.s = Aggregation

(2) c.PA = 0

(3) c.PR = 0 •
Invariant C10 (Meta-class Association) Let c E C be a meta-class such that c.n =

Association, then:

(1) c.s = Relationship

(2) c.PA = {

(left-role, String, 1, Association),

(right-role, String, 1, Association),

[left.imin.xard, Integer, 0, Association),
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(right.min.cerd, Integer, 0, Association),

(left.max.card, Integer, 0, Association),

(rightcrnax.card, Integer, 0, Association),

}

(3) c.PR = 0 •
Invariant C11 (Meta-class Schema) Let c E C be a meta-class such that c.n

Schema, then:

(1) c.s=0

(2) c.PA = {(name, String, 1, Schema)}

(3) c.PR = {

(Schema, RootSchema, Class, RootCiass, 0,1, PLAE, 1),

(Schema, NonRootSchema, Class, NonRootClass, 0, n, PLAE, 1),

(Schema, SuperSchema, Schema, SubSchema, 0, n, PLAE, 1),

(Schema, SubSchema, Schema, SuperSchema, 0, n, SLAE, 1)

} •
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ApPENDIX D

Meta-object Mapping

In this Appendix we show how classes, attributes, methods, relationships and

schemas are mapped to meta-objects by using the formalisation presented in Ap-

pendix A and Chapter 5. All definitions and examples presented in this Appendix

are equivalent to the definitions and examples presented in Chapter 6. Thus, they

are illustrated using the schema shown in Figure 6.2.

Definition 0.1 (Class Meta-object) Given a class name n E CN such that:3 "'n E C, [:J
the class meta-object with respect to "'n, denoted as 'P( n), is m E e(Class) such

that m --+ name = n. o

Example 0.1 Let us consider the class named Person. The notation 'P(Person)

denotes the instance y of the meta-class Class such that y --+ name = Person. 0

Attribute Mapping

Notation 0.1 Given a primary type name p E PN, the notation AttCN(p) denotes IAttCN I
a class name in nCN as follows .

• AttCN(lnteger) = IntegerAttribute



IMetaA I

IStrSig I
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• AttCN(String) = StringAttribute D

Definition 0.2 (Attribute Mapping) The set of meta-objects that maps an attribute

specification a = (n, p, k, c), denoted as MetaA(a), is the set containing only the

meta-objects x E ~(Attribute), y E ~(Class) such that:

(i) x.c = AttCN(a.p)

(ii) X --+ name = a.n

(iii) x --+key = a.k

(iv) y = c.p(a.c)

()
Class

V X ~ Y
Attribute

D

Example 0.2 Let us consider the attribute surname of class Person. A specification

a for such attribute is given by:

a = (surname, String, 1, Person)

Thus, MetaA(a) = {x, y} such that:

x. c = StringAttribute y = c.p(Person)

X --+ name = surname
Class

X ~ Y
Attribute

X --+ key = 1

Method Mapping

Notation 0.2 Given a method u, the notation StrSig(J-l) denotes the string ob-

tained by concatenating the strings J-l.s.n,J-l.s.aI, ... ,J-l.s.an,J-l.s.r in that order

and separating them using commas. D
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Definition D.3 (Method Mapping) The set oj meta-objects that maps a method u, IMetaM I
denoted as MetaM(Jl), is the set containing only the meta-objects z E e(Method),

y E e(Class) such that:

(i) x --+ signature = StrSig(Jl)

(ii) y = 'P(Jl.c)

Class
(iii) x ~ y

Method
o

Example D.3 Let us consider the method register _.student of class School. A spec-

ification Jl for such method is given by:

Jl = (School, (register.student, (Person, String), Integer),J : S ~ T, b)

Thus, MetaM(Jl) = {x, y} such that:

x.c = Method

X --+ signature = "register_.student, Person, String, Integer"

y = 'P(School)
Class

X ~ Y
Method

Relationship Mapping

IMetaR IDefinition D.4 (Relationship Mapping) The set oj meta-objects that maps a rela-

tionship specification a = (lc, 11',re, 1'1',I, u, e, k), denoted as MetaR(u), is the set

containing only the meta-objects r E e( Relationship), x E e( Class), y E e( Class),

such that:

(i) iJ a.e E {PTAE,STAE} then r.c = TightAggregation
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(ii) if a.e E {PLAE,SLAE} then r.c = LooseAggregation

(iii) if a,e = ASSE then r.c = Association

LeftRelationship
(iv) x ~ r

LeftClass

RightRelationship
(v) y ~ r

RightClass

(vi) either ((x = <.p(a.lc)) and (y = <.p(a.rc)))

or ((y = <.p(a.lc)) and (x = <.p(a.rc)))

(vii) if a.eE {PTAE, PLAE} then:

(a) x = <.p(a.lc)

(b) r --+ lefLkey = a.k

(c) r --+ aggregate.irole = a.lr

(d) r --+ component.imin.xard = a.l

(e) r --+ component.rnax.card = a.u

(viii) if a,e E {STAE,SLAE} then:

(a) y = <.p(a.lc)

(b) r --+ righLkey = a.k

(c) r --+ componenLrole = a.lr

(ix) if a,e = SLAE then:

(a) r --+ aggregatecrnin.xard = a.l

(b) r --+ aggregata.max.card = a. u

(x) if a,e = ASSE and x = <.p(a.lc) then:
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(a) r --+ left-key = a.k

(b) r --+ left-role = a.lr

(c) r --+ right.imin.xard = a.l

(d) r --+ right.max.card = a.u

(xi) if a.e = ASSE and y = r.p(a.lc) then:

(a) r --+ right-key = a.k

(b) r --+ right-role = a.lr

(c) r --+ left-min_card = a.l

(d) r --+ left.max.card = a.u o

Proposition D.1 (Complementary Relationship Specifications Mapping) Given two re-

lationship specifications a and A, if a and A are complementary then MetaR(a) =

MetaR(A). 0

Example D.4 Let us consider the association between classes School and Person.

A pair of complementary relationship specifications a and A for that association

is given by:

a = (School, School, Person, Student, 0, n, ASSE, 0)

A = (Person, Student, School, School, 0, 3, ASSE, 1)
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Let us designate the class School as the LeftCiass and the class Person as the

RightClass in the association. Thus, MetaR(a) = MetaR()..) = {r,x,y} such that:

r, c = Association

x = r.p(a.lc) = r.p(School) y = r.p()...lc) = r.p(Person)
LeftRelationship

X ~ r
LeftClass

RightRelationship
y ~ r

RightClass

r --+ left-key = a.k = 0 r --+ right-key = )...k = 1

r --+ left-role = a.lr = School r --+ right-role = )...lr = Student

r --+ left.min.xard = )".1 = 0 r --+ right.min.card = a.l = 0

r --+ left.imax.card = )...u = 3 r --+ right.imax.card = a. u = n

Class Mapping

IMetac. Definition D.5 (Class Mapping) The set oj meta-objects that maps a class (3, de-

noted as Metac({3), is the set given by:

Proposition D.2 (Class Path Mapping) Given a class (3 E C, V)" E C: iJ (3 ::;T x
then r.p()...n) E Metac({3). o

Invariant D.l (Inheritance Mapping) Vb, dEC: iJ d.s = b.n then

SuperClass
r.p(d.n) ~ r.p(b.n)

SubClass

Example D.5 Let {3 denote the class University ({3 = KUniversity), then:

{3.M = {p} {3.R={a}
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where:

al = (name, String, 1, School)

a2 = (acronym, String, 0, University)

J.l= (School, (register.student, (Person,String),lnteger),j : S --+ T,b)

0' = (School, School, Person, Student, 0, n, ASSE, 0)

Thus, from Definition D.5 (Class Mapping), we have that:

Now, let us verify that Proposition D.2 holds. Since class School is the only

superclass of f3 we have that all is-a relations of f3 are given by:

KUniversity ~'T KSchool

KUniversity ~'T KUniversity

From Definition D.2 (Attribute Mapping), Definition D.3 (Method Mapping) and

Definition D.4 (Relationship Mapping), we have that:

MetaA(at} :::> {cp(School)}

MetaA(a2) :::> {cp(University)}

MetaM(J.l) :::> {cp(School)}

MetaR( 0') :::> {cp(School), cp(Person)}

Hence:

Metac(f3) :::> {cp(School), cp(University)}

Moreover, since class School is direct superclass of f3 (f3.s = School), according to

Invariant D.l, we have that:

SuperClass
cp(University) ~ cp(School)

SubClass
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Schema Mapping

Invariant 0.2 (Schema Instance Name Distinction) V x, y E ~(Schema): if x --+

name = y --+ name then x = y. •

Definition 0.6 (Schema Meta-object) Given a schema w E W, the schema meta-

object with respect to w, denoted as f( w), is m E ~(Schema) such that m --+

name = w.n. D

Example 0.6 Let us consider the schema depicted in Figure 6.2. For simplicity

of notation, let us denote the schema by 'I.V3, and let us suppose that its name is

Academia ('I.V3.n= Academia). Thus, the notation f( 'I.V3) denotes the instance m

of the meta-class Schema such that m --+ name = Academia. <>

IMetaw,
Definition 0.7 (Schema Mapping) The set of meta-objects that maps a schema w,

denoted as Metaw(w), is the set given by:

Metaw(w) = {,ew)} U ( u Metac({3)) U ( U Metaw(X))
{3Ew.H. v xEw.S

Invariant 0.3 (Root-subtree Mapping) Vw E W:

RootSchema
(i) Vc E w.H. V: if c = Root(w.H) then r.p(c.n) ~ f(W)

RootClass

NonRootSchema
(ii) Vc E w.H. V: if c # Root(w.H) then r.p(c.n) ~ f(W)

NonRootClass •
Example 0.7 Let us consider the schema depicted in Figure 6.2. Since there are

two root classes (School and Person) the schema is a super-schema composed two

basic schemas. For simplicity of notation, let us denote the basic schema rooted

at class School by Wi and the basic schema rooted at class Person by '11-'2. Thus,
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we have that:

(S h I) RootSchema ( )
cp c 00 .= ,WI

RootClass

RootSchema
cp(Person) .= ,( 1V2)

RootClass

( U. ity) NonRootSchema ( )cp nrversrty .= , WI
NonRootClass

Invariant 0.4 (Schema Nesting Mapping) V w, sEW: if s E w.S then:

SuperSchema
,( s) SUb~ema ,( w)

Example 0.8 Let us consider the super-schema depicted in Figure 6.2. Let us

denote the sub-schema rooted at class School by WI, the sub-schema rooted at

class Person by 1V2, and the super-schema by W:3. Thus, we have that:

SuperSchema
,( wd 5 bS'=h ,( W:3)u c ema

(
SuperSchema

, 1V2) 5 bS'=h ,( W:3)u c ema

Summary

We summarise the discussion on meta-object mapping by presenting, as an ex-

ample, the complete set of meta-objects that maps the schema depicted in Figure

6.2. Formally, the schema elements are given as follows.
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al = (name, String, 1, School)

a2 = (acronym, String, 0, University)

a3 = (surname, String, 1, Person)

a4 = (firstname, String, 0, Person)

a5 = (age, Integer, 0, Person)

ml = (School, (register....student, (Person,String),lnteger),/ : S -t T,b)

rl = (School, School, Person, Student, 0, n, ASSE, 0)

r2 = (Person, Student, School, School, 0, 3, ASSE, 1)

Cl = (School, 0, (School), {ad, {n}, {md, {al}, {rd, {md)

C2 = (University, School, (School, University), {a2}, 0, 0, {ab a2}, {rt}, {rUniversity( rt}})

C3 = (Person, 0, (Person), {a3' a4, a5}, {r2}, 0, {a3' a4, a5}, {r2}, 0)

WI = (School, Hi, 0), HI. V = {Cl, C2}

W2 = (Person, H2, 0), H2• V = {C3}

111:3 = (Academia, nil, {Wb ~})

The set of meta-objects that map all schema elements is diagrammatically

represented in Figure 6.4. Formally, the mapping of all schema elements are given

as follows. We recall that the notation Si denotes the object 0 whose name is i

(o.n = i).
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: - . - . - - - " : .. --_ _- .

@---
6}----

'II

School

- -> *name: String

register_student
>-

(Person,String):Integer

0J
of

University

- -> acronym: String

0J 6)
, . . ~

~·········i············:···O···~!?·~~·~~·age: Integer ~_
D,3 D,nL- .-J - - fn).--~

*sumame: String

firstname: String ... - ----@

f-__ ....:P:..;e=rs.::o=D:"_ __ -l •>:" 0)

' ........................•......................... '

@----

._ - -' - - - _. - _ e·· - - - - - _. _.

Figure D.l Example schema with annotated formal elements
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Class Meta-objects

cp(School) = e1

cp(University) = e4

cp(Person) = e6

Attribute Mapping

Schema Meta-objects Relationship Mapping

,(wd = ell MetaR( rt) = {81O' et, 86},
LeftRelationship

e1 ~ ew
LeftClass

,( W2) = 812 MetaR( r2) = {81O' 81, 86},
RightRelationship

e6 ~ 810
RightClass

,( 10:3) = e13

Inheritance Mapping

SuperClasse4 ~ e1
SubClass

Method Mapping

Class Mapping

Metac(c2) = MetaA(at} U MetaA(a2) U MetaM(mt) U MetaR(rt) = {et, ... ,e6,e1O}

MetaC(c3) = MetaA(a3) U MetaA(a4) U MetaA(a5) U MetaR(r2) = {8t,e6, ••. ,e1O}
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Schema Mapping

Metaw( wd = {,( wd} U Metac( cd UMetac( C2)= {el, ••• , 86, elO, en}

Metaw(w2) = {,(w2)}UMetac(c3) = {eI,e6, ••• ,81O,e12}

Root-subtree Mapping

RootSchema 8 Schema Nesting Mapping81 ~ -11
RootClass

NonRootSchema e SuperSchema
84 ~ -11 811 ~ 813

NonRootClass SubSchema

RootSchema e SuperSchema
e6 ~ -12 812 ~ 813

RootClass SubSchema



Appendix D. Meta-object Mapping 280



281

ApPENDIX E

Components Definition

In this Appendix we formally define the index and organisational components

of object engines, informally introduced in Chapter 3 and described in more detail

in Chapter 7.

E.1 Indices

Attribute Indices

IIndexoA I
Definition £.1 (Object Attribute Index) Given an object x E 0 and an attribute _

variable a E x.A such that a.s.k = 1, the object attribute index with respect to a,

denoted as IndexoA(x,a), is a tuple (c,a,p,v,n), where:

• c E eN

• a E AN

• pE PN

• v E V

• nEON



Appendix E. Components Definition 282

such that:

(i) c = a.s.c

(ii) a = a.s.n

(iii) p = a.s.p

(iv) v = a.v

(v) n = x.n o

Notation £.1 The symbol OAI denotes the set of all object attribute indices. 0

Invariant £.1 (Object Attribute Index Existence) V x EO: Va E x.A a.s.k = 1 :

3LE OAI I L=lndexoA(x,a). •

Relationship Indices

I IndexoR' Definition £.2 (Object Relationship Index) Given two objects x, yEO and two com-

plementary relationship variables a E x.R and A E y.R such that a.s.k = 1, the

object relationship index with respect to a , denoted as IndexoR(x, u), is a tuple

(lc, re, rr, i,j), where:

• le E CN

• re E CN

• rr ERN

• i EON

• j EON

such that:
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(i) lc = a.s.lc

(ii) re = a.s.rc

(iii) rr = a.s.rr

(iv) z = x.n

(v) j = y.n

(vi) i E .x. v

(vii) j E a.o o

Notation E.2 The symbol ORI denotes the set of all object relationship indices. 0 IORI I
Invariant £.2 (Object Relationship Index Existence) V x EO: Va E x.R a.s.k =
1 : :3 c E ORI I c = IndexoR(x, a). •

Class Indices

IIndexcA IDefinition £.3 (Class Attribute Index) Given a class x E C and an attribute speci- _

fication s E x.PA such that s.k = 1, the class attribute index with respect to s,

denoted IndexcA (x, s), is the set of object attribute indices given by:

IndexcA(x,s) = {t, E OAI I LC = x 1\ t,a = s.n}

IlndexA IDefinition £.4 (Class Attribute Indices) Given a class x E C, the attribute indices _

with respect to z , denoted IndexA (x), is the set of object attribute indices given by:

IndexA(x) = U IndexcA(x,s)
sEx.PA
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I IndexcR • Definition £.5 (Class Relationship Index) Given a class x E C and a relationship

specification sEx .PR such that s.k = 1, the class relationship index with respect

to s, denoted IndexcR (x, s), is the set of object relationship indices given by:

IndexCR(x,S) = {t E ORI I c.lc = s.lc /\ t..rr = s.rr}

I IndexR I Definition £.6 (Class Relationship Indices) Given a class x E C, the relationship

indices with respect to z , denoted Indexn (x), is the set of object relationship indices

given by:

IndeXR(X) = U IndexcR(x, s)
sEx.PR

I Indexc I Definition £.7 (Class Indices) Given a class x E C, the indices with respect to x,

denoted Indexc (x), is the set of object attribute and relationship indices given by:

Indexc(x) = IndexA(x) U IndexR(x)

Schema Indices

I Indexw I Definition £.8 (Schema Indices) Given a schema w E W, the indices with respect

to w, denoted as Indexw (w), is the set of indices given by:

Indexw(w) = U Indexc(x)}
xEcI>(w)

E.2 Views

Definition £.9 (View) Given a self-contained schema w E W, a view with respect

to w is a tuple (n,o,II,t9), where:
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• nE RWN

• 8 is a database

• II is a set of meta-objects

• rJ is a set oj indices

such that:

(i) n = w.n

(ii) 8 = DB(w)

(iii) II= Metaw( w)

(iv) rJ = Indexw( w) o

Notation £.3 The symbol X denotes the set oj all views.

Invariant £.3 (View Name Uniqueness) \;fx,y E X: iJx.n = y.n then x = y. •
N t ti E 4 G· h th t ti TJ:· ( ) denotes the oieu: v such I View Io a Ion. wen a se ema w, e no a wn v zew w •

that v.n = w.n. o

E.3 Contexts

Definition £.10 (Meta-view) Given a vzew v E X, iJ v.n Meta then v is the

meta-view in X. o

Proposition £.1 (Meta-view and Meta-schema Correspondence) Given a view v E X

and a schema w E W, iJ v is the meta-view and w is the meta-schema then

v = View( w). o
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Let us assume the existence of a count ably infinite set ZN of context names.

Definition E.11 (Context) Given a set of object names ON, a context is a tuple

(n,PN,AN,MN,RN,CN, WN,V,P,C,O,I,W,X), where:

• nE ZN

• PN is a set of primary type names

• AN is a set of attribute names

• MN is a set of method names

• RN is a set of role names

• CN is a set of class names

• WN is a set of schema names

• V is a set of primary domains

• P is a set of primary types

• C is a set of classes

• O is a set of objects

• I is a set of indices

• W is a set of schemas

• X is a set of views

such that:

(1) Vd E V: 3t E P such that d = Dom(t)

(2) V 2 RpD

(3) P 2 RpT
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(4) PN 2. RpN

(5) AN 2. RAN

(6) CN 2. RCN

(7) WN 2. RWN

(8) Vc E C :

(a) c.n E CN

(b) c.SE(CNU{0})

(c) Va E c.PA :

i. a.s.n E AN

ii. a.s.p E PN

(d) Vr E c.PR:

i. r.s.rc E CN

ii. r.s.lr E RN

iii. r.s.rr E RN

(e) Let TN = PN U CN, then V m E c.PM :

i. m.s.n E MN

ii. Va E m.s.A : a E TN

iii. m.s.r E TN

(9) Vw E W:

(a) w.n E WN

(b) <1>( w) ~ C
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(10) 0 = UCEC Ext(c)

(11) \:I0 EO: o.n E ON

(12) I = UXEC Indexc(x)

(13) \:Iw E W: <I>(w)~ C

(14) \:Iv EX: 3w EW such that View(w) = v

(15) 3 v E X such that v.n = Meta o

Invariant E.4 (Context Name Uniqueness) Let Z be the set oj all contexts, then

\:Ix, y E Z : iJ x.n = y.n then z = y. •
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ApPENDIX F

Query Language Syntax

The syntax for the query language is defined by the context-free grammar

below. The grammar is specified by listing their productions. Each production

defines a non-terminal symbol, called the left side of the production, through

an Extended Backus-Naur Form (EBNF) expression, called the right side of the

production. The start symbol of the syntax is the non-terminal defined by the

first production, that is, the symbol query. The notation used is shown in the

following Table:

Notation Meaning

-+ Separation between left and right side

• Termination of a prod uction

Separation of alternative righ sides for the same left side

{ x } A sequence of zero or more instances of x

Not(x) Set complement in relation to x in a regular expression

o Regular expression denoting the empty string

'xyz' The terminal symbol xyz

xyz The non-terminal symbol xyz
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query -+ 0 I expression -

expression -+ class.iexpression I intersectiom.expression I
union.iexpression I 'C' expression ')'-

classc.expression -+ class .Jdentifier where.iclause _

intersection.iexpression -+ expression 'et' expression _

unioru.expression -+ expression 'I' expression _

where.iclause -+ 'C' where.iexpression ')' _

where.iexpression -+ 0 I attribute.iexpression _

attribute.iexpreseion -+ term I and.sexpression I
or.iexpreseion I 'C' attribute.iexpression ')'-

term -+ attribute.iterm I role..term -

and.iexpression -+ attribute.iexpression 'etet' attribute.iexpresslon _

of-expression -+ attributecexpression 'II' attribute.iexpression _

attribute.iterm -+ cast attribute.Jdentifier relationaLoperator value _

role.rterrn -+ cast role _identifier role..clause _

cast -+ 0 I '[' class .Jdentifier 'J' -

role.iclause -+ where.iclause I ': :' term -

relational.ioperator -+ '=' I '!=' I '>' I '<' I '>=' I '<=' I '1.'-
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class.Jdentifier ~ identifier _

attribute.Jdentifier ~ identifier _

role.Jdentifier ~ identifier _

identifier ~ letter { letter I digit I '-' } -

letter ~ 'A' I 'B' I ... I 'z' I 'a' I 'b' I ... I 'z'_

digit ~ '0' I '1' I ... I '9' -

value ~ string I integer -

string ~ ", { string.element } ", _

stringcelement ~ NotC ") I '\' ", -

integer ~ unsigned.dnteger I sign unsigned.Jnteger -

unsigned.dnteger ~ digit { digit} _

sign ~ '+' I '-'-
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