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Abstract

This thesis demonstrates the adequacy of an object-oriented approach to the con-
struction of distributed metainformation systems: systems that facilitate infor-

mation use by maintaining some information about the information.

Computer systems are increasingly being used to store information objects
and make them accessible via network. This access, however, still relies on an
adequate metainformation system: there must be an effective means of specifying
relevant information objects. Moreover, distribution requires the metainformation

system to cope well with intermittent availability of network resources.

Typical metainformation systems developed to date permit information ob-
jects to be specified by expressing knowledge about their syntactic properties,
such as keywords. Within this approach, however, query results are potentially
too large to be transmitted, stored and treated, at reasonable cost and time.
Users are therefore finding it difficult to navigate their way through the masses of

information available.

In contrast, this thesis is based on the principle that a metainformation system
is more effective if it permits information objects to be specified according to
their semantic properties, and that this helps managing, filtering and navigating
information. Of particular interest is object orientation because it is the state-

of-the-art approach to both the representation of information semantics and the
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design of reliable systems.

The thesis presents the design and implementation of a programming toolkit
for the construction of metainformation systems, where information objects can
be any entity that contains information, the notion of views permits organising
the information space, transactional access is employed to obtain consistency, and

replication is employed to obtain high availability and scalability.

Keywords: metainformation, metadata, information discovery, information

retrieval, object query, object-oriented database.
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CHAPTER 1

Introduction

A meta-information system is a system that manages some information about an
information base and normally delivers very specific services. Typically, a meta-
information system is constructed to separate, in a single system, some data and
activity which may be common to a set of systems that manipulate an information
base; such systems are the clients of the meta-information system. Thus, meta-
information systems may vary in purpose and approach and, accordingly, can
be grouped in categories. For example, data dictionaries, frequently employed
in database management systems, office automation systems and CASE tools,
represent a category of meta-information systems for documenting information
structure. As another example, searching engines, widely employed in global
networks, represent a category of meta-information systems for resolving keyword-

based queries formulated by clients who aim at discovering network resources.

Our thesis proposes a novel category of meta-information systems and investi-
gates critical issues on constructing them. We introduce meta-information systems
whose purpose is to provide an object-oriented interface to information contained
in network resources in large-scale distributed environments. For simplicity, we

call these meta-information systems object engines, to connote the similarity be-
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tween them and searching engines; both object engines and searching engines map
information extracted from network resources to references to these resources in
order to resolve queries. More specifically, an object engine maintains informa-
tion objects extracted from network resources: objects are instances of classes
that model information contained in network resources. Thus, clients of an object
engine benefit from it for they can express semantic knowledge (structure and re-
lationships) about the target information, rather than simple syntactic knowledge
expressed through keyword-based queries. In addition, an object engine may pro-
vide for preview of network resources (by examining object attributes extracted
from network resources), navigation through objects (by traversing conceptual ob-
ject relationships rather than actual links between network resources) and request

of services pertaining to network resources (by calling object methods).

Constructing an object engine involves concepts and techniques usually found
in database systems, information retrieval systems, distributed systems and pro-
gramming languages. Basically, an object engine requires an object-oriented
modelling technique, an object store (provided with concurrency control, remote
access, replication and recovery), index management, class space management
(schemas), object space management (views), a query language and operations
for object manipulation (creation, modification, retrieval, navigation and dele-
tion). While some of these subjects are well understood, others still need further
development and, especially, the combination of all of them in a single system
may prove to be a complex and challenging task. Our thesis defines a simple yet
coherent and effective platform for constructing object engines, as a starting point

for future development.
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1.1 Motivation

Information systems are required to be more efficient, effective and reliable as
the information base stored by and accessible via computers expands in quantity,
diversity and distribution. The introduction of object engines within this context

is motivated basically by the observation of the following facts:

1. Searching engines may cause inefficiency in the cases where the target in-

formation has a structure.

A critical factor in determining the efficiency of an information system is
the average rate of relevant hits in query results; non-relevant hits represent
waste of bandwidth, processor, storage and time. For this reason, it is im-
portant to have information systems that permit users to formulate queries
where they express the maximum of their knowledge about the desired in-

formation, thereby contributing to increase the rate of relevant hits.

The searching engines typically available in global networks employ infor-
mation retrieval techniques which permit users to formulate queries where
they express knowledge about syntactic properties of information, basically
by making use of keywords. For example, Archie [21] indexes keywords ex-
tracted from resource names, WAIS [30] supports full-content indexing and
Harvest [7] supports summary-content indexing. Certainly, this approach
is appropriate for the cases where either the information presents no struc-
ture or has a structure that is unknown to users. However, a problem that
frequently arises in keyword-based information systems is the large size of

results containing non-relevant hits.
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A significant part of the network resources in the global information base
has well-defined structure and well-defined interrelationship paths which,
if properly exploited, would permit users to formulate queries where they
express semantic knowledge about the target information. For example,
every Standard General Mark-up Language (SGML) [60] document has an
associated Document Type Definition (DTD) that contains a set of grammar
rules specifying the document structure. In fact, it is reported in [15] that
DTD permits representation of SGML documents as instances of an O, [19]
database schema, thereby obtaining high-level query services. As another
example, structuring schemas' are used in [1] for specifying a map between

bibliographical references in BIBTEX [35] files to database elements.
2. Object-oriented modelling provides for effective information representation.

Object-oriented data modelling represents a current end-point in the evolu-
tion of data modelling and is advocated to be an effective approach for the
representation of real-world complex entities and their relationships. This
suggests that information contained in network resources, including the links
between these resources, would perfectly be modelled using object-oriented
concepts. Thus, a schema (a collection of classes organised in hierarchies),
devised to represent the structure and the relationships of information con-
tained in a collection of network resources, would allow users to formulate
queries in a highly-structured fashion. Moreover, users would be able to
navigate through information by navigating through objects, and perform

operations on network resources by calling object methods.

A structuring schema consists of a grammar with semantic actions.
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3. Object orientation is widely employed in reliable distributed computing.

Many distributed systems, including operating systems and platforms for
distributed programming, advocate the use of object orientation as an ad-
equate framework for their internal structuring and as a powerful abstrac-
tion at the user interface level. In particular, the object and action model
of computation [37] is a widely accepted approach to reliable distributed

computing. Examples of systems based on this model are Arjuna [62] and

Camelot [13].

1.2 Objective

Our objective is to contribute towards the efficiency, effectiveness and reliability
of information systems in large-scale distributed environments. We intend to ac-
complish this by introducing object engines, a novel category of meta-information
systems, as a means to provide an object-oriented interface to information con-
tained in network resources. Object engines are intended to be used in conjunction
with searching engines traditionally employed for information discovery in global
networks; whereas searching engines, which aim at ill-structured information, ob-
ject engines aim at well-structured information. Thus, information systems would
gain in efficiency through object engines because query results would present a
higher rate of relevant hits, when compared with searching engines. The gain in
effectiveness would come from the power of object-oriented data modelling; an
object-oriented view of information would provide a propitious abstraction for de-

veloping applications to manipulate information that has complex structure and
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relationships. Finally, the gain in reliability would be achieved due to the use of
object-oriented techniques which are well-established in modern distributed sys-
tems; transactional access would provide for consistency, while object replication

for high availability and scalability.?

1.3 Overview

Object engines present architectural and functional similarities with searching
engines, as illustrated by the scenario depicted in Figure 1.1. For simplicity, we use
the term broker to refer to both object engine and searching engine, to connote that
both types of engine are intermediate agents between network resources and client
programs. In general, client programs formulate queries which specify predicates
that may yield true propositions for some entities of the information base. For
this reason, the meta-information maintained by brokers to resolve queries should
consist of a relation between copies of portions of the network resources and
references to these resources; each copy should be mapped to a reference to the
corresponding resource. While a searching engine maps keywords extracted from
network resources to references to those resources, an object engine maintains
objects extracted from network resources; each object should have references to

the network resources from which it has been extracted. Thus, the modus operandi

2We say that an information system scales if the growth of the entire system does not cause
exponential growth of (1) the information maintained by the individual components of the
system, and (2) the performance of operations to enter, update, delete, navigate and search

information.
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of searching engines and object engines can be summarised as follows.

Searching engines:

1. Collector programs extract keywords from information resources and convey
such keywords to searching engines.
2. Searching engines maintain indices that map keywords to information re-

sources; they resolve keyword-based queries and return references to infor-

mation resources. Searching engines may co-operate with each other in order

to share index information.

3. Client programs formulate keyword-based queries and ask searching engines
to resolve them. The resulting references are used for retrieving information

resources.
Object engines:

1. Collector programs extract objects which are instances of classes (abstract
data types) from network resources and convey such objects to object en-
gines.

2. Object engines maintain objects and indices for object attributes and re-
lationships; they resolve object-oriented queries and return objects. Object

engines may co-operate with each other in order to resolve queries.
3. Client programs formulate object-oriented queries and ask object engines to

resolve them. The resulting objects are used for the following purposes:

(a) retrieve information resources: objects may contain references to infor-

mation resources
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(b) preview of information resources: objects may contain summaries of

information resources

(c) navigate to related objects: object engines resolve object references and

return the resulting objects

(d) perform operations on information: objects may provide methods which

can manipulate the corresponding summaries and information resources

(e) create and modify objects: in addition to objects extracted from in-
formation resources, object engines may maintain objects created by

clients, thereby behaving as information resources as well

Therefore, collector programs are specific to each type of information resource
and each type of broker; a collector program must understand the format or the
interface of a network resource and must understand the interface of a broker.
Also, client programs should understand the interface of a broker; depending on
the type of broker, a client program may have a different spectrum of services and,
by making use of these services, may perform specific tasks. On the other hand, a
general architecture can be devised for each type of broker, in especial for object
engines. For this reason, our thesis concentrates on the design and implementation
of object engines with the purpose of defining a platform for constructing them
and writing collector and client programs with simplicity, i.e., we make an effort
to obtain a simple interface for object engines. Nevertheless, we also develop a
specific collector program and a specific client program to demonstrate the validity

of the devised design and interface.
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1.4 Outline

Our thesis is structured as follows.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

describes related work that we have built upon, including informa-
tion discovery tools, object-oriented databases and object-based

distributed systems.

presents an architecture for object engines that unites concepts of
searching engines, object-oriented databases and distributed sys-

tems.

presents a simple object-oriented data modelling technique based

on the most salient features of many recently proposed models.

presents a model for organising the class space based on conceptual

hierarchies of schemas and formally defines databases.

presents a meta-schema, a collection of classes that model informa-

tion about classes and schemas, and show how this information is

mapped to meta-objects.

presents a model for indexing object attributes and relationships,

and presents views and contexts for organising the object space.

describes an implementation of the platform for constructing object
engines and illustrates its use through examples. The descripton
of the implementation concentrates mainly on the management of
object storage, including concurrency control, remote access (dis-

tribution), replication and recovery. The use of the system is dis-
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cussed together with the description of a query language for object

manipulation.

Chapter 9 provides conclusions and further research work.
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CHAPTER 2

Related Work

Object engines merge concepts usually found in several distinct areas related to
information processing. In this Chapter, we survey the most relevant works from
which we learned about concepts, approaches and experiences that had influence
in the architecture of object engines and in the implementation of the platform
for constructing object engines. We start the review with naming systems as they
are widely used for locating network resources, especially in distributed systems,
and discuss approaches that aim at providing high level queries. Then, we review
some file systems that also attempt to provide high level query interface to hierar-
chical naming structures. Also, we examine the main resource discovery systems
recently developed and deployed in global networks, especially the Internet, for lo-
cating network resources. Next, we describe the main features of some distributed
programming environments since object engines are distributed. Then, we review
the query language and processing aspects of object-oriented database systems
in order to illustrate the approach usually taken and that gave basis to the ap-
proach we took in designing object engines. Finally, we briefly discuss some other
approaches to information systems to illustrate the intensive research currently

being carried out on systems for structured information retrieval.
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2.1 Naming Systems

Much of the research on naming systems in the recent years has been devoted to
developing new models that avoid the restrictions imposed by the traditionally em-
ployed hierarchical organisation of name spaces. As discussed by D. B. Terry [65],
hierarchical naming lacks expressiveness to represent the complexity of real-world
entities, thereby preventing sophisticated queries. Universal naming systems, such
as the Domain Naming System (DNS) [42, 43] and Lampson’s Global Directory
[36], generally restrict the structure of the name space to a hierarchy and support
a simple search strategy in which a name denotes a path through the hierarchy.!
This approach forces users to know enough attributes to construct a path name
according to that partitioning; a naming tree cannot be searched with flat search
requests, but rather must be traversed. The alternative models normally proposed
are often called descriptive naming or attribute-based naming. A descriptive nam-
ing system accepts queries containing whatever information clients know about
an object (not just its name) and responds with whatever information it possesses
for each identified object (not just its address). Others argue that no single model
can adequately address all situations. For example, Sechrest and McClennen [59]
define a framework to blend the hierarchical and the attribute-based naming mod-
els. We review some naming systems by highlighting their aspects that influenced

our work.

! DNS basically maps host names into corresponding Internet addresses and vice versa.
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Profile Naming Service

Profile [52] is an attribute-based naming system that provides white-pages service
for large networks. The system takes as argument a set of attributes that describe
an entity (a user or a organisation) and returns names of resources pertaining to
that entity. Thus, Profile is a supplemental naming service; users consult Profile
to learn names of resources that can be solved by existing naming systems. An
attribute is a syntactic entity of the form tag=value that denotes a property or
characteristic of an entity, such as phone=3335890811. A name server has a set
of attribute tags defined for all entries. Such a set contains predefined tags and
also may contain additional tags. Although attributes are tagged, clients are
not required to include the tag when they query a name server. The reason is
that tags are strings concatenated to attributes simply to enforce that attributes
that denote different properties be syntactically unique; an attribute’s tag can be

determined from the syntax of its value.

Univers Attribute-based Name Server

Univers [9] is a generic attribute-based name server upon which naming services
can be implemented. Univers consists of a light-weight relational database for
storing information about resources, provided with a front-end interpreter and a
server framework to support remote access. Conceptually, Univers maintains a
database of objects, each of which corresponds to either some external resource
that exists outside the name server (network resources) or some abstraction inter-

nal to the name server, such as types. Such a database allows clients to identify
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objects with a set of attributes or properties that describe the object. Clients
query Univers by submitting a naming program containing functions applied to
sets of attributes. A naming program is constructed from a set of primitive oper-
ations that may be applied to the database, such as select, project, create_object,
and others; a LISP-like programming language is provided for this purpose. Nam-
ing programs can either be submitted to the interpreter or they can be stored in
the database as function objects. Univers imposes a type structure on the object
database, thereby permitting users to isolate interesting classes of objects upon
which they want to operate. The set of objects in the Univers database is par-
titioned in contexts, based on the authority that is responsible for administering
the objects. Univers employs check-pointing and transaction logging to ensure

database integrity and to facilitate failure recovery.

X.500 Directory Service

The X.500 Directory Service [68] has a semi-hierarchical naming scheme that
blends the hierarchical and the attribute-based naming models. In this scheme,
the attribute-based name space is restricted to a hierarchy: each level of the
naming hierarchy contains a set of attributes, thereby supporting a unique dis-
tinguished name for each object. A X.500 name is composed of a sequence of
comma-separated fields representing attribute-value assertions, where each asser-
tion selects one node at a different level of the hierarchy. For example, the name
(C =US, 0 = OSF,CN = Strauss) designates the object whose country is US, or-
ganisation is OSF and common name is Strauss. Users that have incomplete infor-

mation about an object must traverse the hierarchy one node at a time, browsing
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through attributes associated to objects, in order to learn the distinguished name
of an object. For example, a user can start by selecting a subtree corresponding
to a country, say US, then browse through all organisations within that country
until eventually selects one of them, say OSF, and finally issue a search request
having as an argument a string, say Strauss, which will be automatically associ-
ated with the corresponding tag in the current level of the hierarchy. The global
name space is distributed among its participanting sites. Administrative authority
over portions of the global name space is delegated to different autonomous or-
ganisations, which can transfer authority over portions of their assigned subtrees.
These portions are replicated on different servers. Each participating site main-
tains directory information about resources at that site, as well as administrative
information needed for traversing the tree and maintaining proper distribution

operation, including caching.

ANSAware Trading Service

The ANSA Naming Model [66] is a generic context-relative naming model that
aims at interconnecting heterogeneous naming systems. An implementation of
that model, the ANSAware Trading Service, basically consists of a two-level ar-
rangement of naming systems: an attributive naming system, which relates at-
tributive names to invocation names, and an invocation naming system, which
relates invocation names to services. An invocation name unambiguously iden-
tifies a particular service and is used to interact with that service; the naming
convention for invocation names is determined by the characteristics of the infras-

tructure (e.g., a socket name). An attributive name identifies a set of entities and
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is attributed to an service by another entity; the naming convention for attributive
names can exploit the semantics of the naming domain. The attributive naming
system is further subdivided in two naming systems: a type naming system and
a property naming system. The type naming system maintains a sub-typing di-
rected acyclic graph of type names and an is-an-instance-of relationship between
service instances and types. The property naming system, on the other hand, re-
lates property names to property values. To reflect the has-properties relationship
between service instances and a set of property name/value pairs, each property
value is bound to an invocation name for a service instance. However, there is no

association between types and properties.

2.2 File Systems

Similar to descriptive naming systems, some file systems provide an interface
where files can be retrieved according to attributes rather than specifying a name
structured according to a static naming tree. We review some of these file systems

below.

Prospero File System

The Prospero File System [44] permits the building of large systems within which
users construct their own virtual systems or views by selecting and organising
files that they have identified as being of interest. Prospero relies on existing file
systems for storage and supports multiple underlying access methods. Prospero

is implemented as a distributed directory service that names individual files, plus
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a file system interface that calls the appropriate access methods once a name
has been resolved. The Prospero name space forms a directed graph in which
intermediate nodes are directories, leaves are files, and edges are links which may
have an attached filter program. By associating filters with links users can build
customised views from existing ones, reorganising or extracting part of them.
Thus, users can build views according to file attributes which are meaningful to
them, independently of the physical organisation. Although Prospero permits files
to be reorganised (and then designated) according to their attributes, it does not

support attribute-based queries; users are forced to designate files according to

some naming hierarchy.

Semantic File Systems

Semantic File Systems [22] provide flexible associative access to directories, files
and portions of files into traditional tree-structured file systems by automatically
extracting attributes from files and providing a query interface. Programs called
transducers parse files according to the file types and generates file’s entities (e.g.,
a procedure in a source code file or a single message in a mail directory) and
their corresponding attributes. A query is a description of desired attributes
of entities. Query resolution is performed through the use of virtual directories
which are computed on demand, i.e., dynamically, to provide a user view of the
file system contents. Virtual directories interact with existing file system facilities,
and the syntax of a query is identical to file systems commands. For example, the
query Is -F /sfs/owner:/Smith will return all files in /sfs that are owned by Smith.

Thus, to have access to the contents of a file in that directory, the user should
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simply use a standard file system command, such as cat, although the directory

/sfs/owner:/Smith might not physically exist in the file system.

Nebula File System

The Nebula File System [8] merges the functionality of a traditional file system
with information management operations provided by database systems. Nebula
explicitly stores files as objects composed of a fixed set of attributes such as
owner, protection, project, file type, and a special attribute called text to represent
contents of files. The main purpose is to permit associative access to files using
a combination of file attributes, i.e., a descriptive name or a query. Nebula file
objects exist in a flat space of conterts and, within each context, users can organise
files using a set of views, rather than directories. A view is the set of objects that
are identified by a descriptive name, i.e., a view is dynamically created as the
result of a query. Recursively, the resolution of a query is scoped within a view;
the view obtained as the result of a query is an specialisation of the view against
which.the query was resolved. Since objects are registered with indices rather than
directories, a view defines the portion of an index which must be considered for the
resolution of a query. For example, the query (format = text & project = plan2)
creates a view containing all files whose format is text and that pertains to the
project plan2, within a given context. This view can then be used to scope the
resolution of the query (name = notes2.txt) which will create a view containing

the file object whose name is notes2.txt, within the scoping view.
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Synopsis File System

The Synopsis File System [54] provides a logical interface to files through typed
entities that summarise information corresponding to properties extracted from
files in the form of a set of attributes added with a set of operations for interacting
with the information content of a file. Accordingly, each such an entity is called
synopsis. The type system uses an inheritance-based hierarchy to define types;
a subtype inherits the attributes and the methods of its parent. A declarative
language is provided for type definition and a scripting language is provided for
specifying operations. A type repository provides persistent storage for type in-
formation. This allows types which were unknown at the time of compilation to
be integrated into a client program in order to dynamically invoke operations on
synopses. Although type information assists in extracting useful information from

files, there is no report on the support of query facilities that make use of that

information, such as attribute-based naming.

2.3 Resource Discovery Systems

Many tools for network resource discovery have appeared in the recent years with
the increased availability of global networks. The basic function of these tools is
to help users to locate information resources pertaining to a subject of interest.
Typically users specify such subject through keywords and obtain as a result of
the query references to network resources. Surveys on these and similar tools can

be found in [58] and [46]. We review some of these tools to illustrate the different

approaches typically taken.
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Archie

Archie [21] is an index service for ftp sites that permits users to find files basically
by specifying regular expressions (e.g., keywords) that match file names, thereby
avoiding the difficulties caused by the hierarchical nature of Internet host names.
Such index is solely built using file names which Archie obtains by regularly in-
teracting via anonymous ftp with a collection of manually registered remote sites.
Archie servers are replicated and the replicas maintained up-to-date through an
efficient flooding-based algorithm. Archie indexes are very space efficient, but
support limited queries; the success of Archie queries rely in file names reflecting
their contents. Moreover, global flat indices tend to match too much information

in query resolution as the information space grows.

WHOIS

WHOIS [27] is a centralised directory that collects distributed information about
users, network numbers and domains. Users typically retrieve information about
entities by specifying a keyword, such as the surname of a person. Each WHOIS
server operates independently from each other and they are not linked together
into a coherent directory system. Thus, a user may need to try different servers

to find information and coordinate possible inconsistencies between them.

WAIS

Wide Area Information Servers (WAIS) [30] is a full-text information retrieval

system consisting of a directory of services (a replicated global entity) and a col-
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lection of databases that maintain complete inverted indexes on stored document
contents. WAIS databases index documents in a wide variety of formats, and
can be used to provide access to spreadsheets, databases, pictures, movies and
sounds as well as text. Clients communicate with WAIS via an extension of the
Z39.50 protocol [40] and are provided with relevance feedback. The return of a
keyword-based query is a set of relevant descriptors that correspond to documents
containing the keywords. These descriptors are ranked according to the frequency
with which keywords are used, the proximity of keywords to each other, use of
the keywords in the document title versus text, etc. Thus, the user is able to
refine the query according to his interests. The interaction with WAIS is initiated

through the directory of services which lets the user to select a set of databases

to be queried.

Indie

Distributed Indexing or Indie [18] is a system for constructing cooperating bro-
kers to index bibliographic data extracted from primary data sources (basically
databases and other discovery tools) as well as from other brokers. Each broker
is a database containing object descriptors, and such a database is described by
a list of generator objects. An object descriptor is basically a record contain-
ing a number of attribute-value pairs corresponding to bibliographic data and
other management data. The bibliographic data includes fields such as author,
title and abstract, while the management data includes a field that identifies
the network resource from which the bibliographical data was extracted (e.g.,

host:caldera.usc.edu,port:32004) and other fields to control the replica consistency
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protocol used by Indie. Each generator object assigned to a broker contains a
Boolean expression, such as (keywords = network*), that defines some information
the broker should maintain. Such a Boolean expression is called generator rule to
connote that a broker’s database is generated and periodically updated by eval-
uating the rule over a number of other brokers. Thus, a broker must register its
object generators with other brokers that index the corresponding information. If
a broker A registers an object generator with a broker B, then B must periodi-
cally forward to A all object descriptors (creation and deletion) selected by the
rule specified by the object generator. The interface with primary data sources is
realised through specialised brokers called gateways. A gateway is supplied with
raw information either by cooperative non-Indie servers or by directly collecting
data from servers. The Indie architecture is completed by the directory of services,
a replicated global entity that registers all brokers. Thus, users submit queries to
the directory of services which returns a list of brokers whose object descriptors
pertains to the user query. Then, in the second step, the user must rank the list
of target brokers according to interest and submit the same query to them. As a
final result of the query, the user will obtain a list of appropriate object descriptors
which provides a basis for the user to retrieve the corresponding network resources

through other retrieval systems.

Harvest

The Harvest system [7] consists of a set of tools for constructing systems that
efficiently gather and index information extracted from network resources. In

Harvest terminology, a provider denotes a server running standard Internet in-
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formation services, such as FTP and HTTP. Thus, gatherers extract indexing
information from providers, while brokers use that information to provide a query
service. A server registry registers information about all gatherers and brokers, for
the purpose of systems administration and also for users to look for an appropriate

broker at search time.

Gatherers use the Essence system [25] to extract information from providers
and compose content summaries corresponding to the network resources main-
tained by the providers. A content summary is composed of a number of attribute-
value pairs, including a Uniform Resource Locator (URL) that globally identifies
the corresponding network resource. Essence extracts relevant attributes from a
network resource according to its format. For example, if the network resource is a
mail repository then certain message header fields are extracted, or if the network
resource contains bibliographic data then author names and titles are extracted.
Essence supports a collection of approximately 25 common formats used in the

Internet.

Brokers retrieve content summaries from gatherers and other brokers. (Con-
tent summaries are conveyed to brokers using an attribute-value stream protocol
called Summary Object Interchange Format.) Brokers store these content sum-
maries and generate corresponding index information. For that purpose, Harvest
provides two index/search subsystems: Glimpse, which supports space-efficient
full-text indexing, and Nebula, which supports attribute-based queries. Thus,
clients submit queries containing a Boolean combination of keywords to brokers,
obtaining as a result object descriptors constructed from the corresponding con-

tent summaries. Then, with the possession of these object descriptors, clients can
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retrieve network resources.

Harvest topic-based brokers aim at coping with information overload and di-
versity to provide for scalability. Basically, there are two possible configurations
for a gatherer to access a provider: either from across the network or running at
the provider’s site. The latter requires provider’s site to run the Harvest soft-
ware, but it is more efficient than the former because it causes less server load
and less network traffic. Harvest uses replication of servers to enhance user-base
scalability. For example, a server registry should be heavily replicated since it
acts as a point of first contact for searches and system extension. Harvest adopts
the data-conversion-and-migration approach rather than the query-translation-
and-decomposition approach based on gateways (or filters) between information
systems — a gateway may be a bottleneck and a source of communications delay,
thereby compromising scalability. Also, Harvest uses object caching to reduce

network load, server load, and response latency.

2.4 Distributed Systems

An object engine is an object-based distributed system. Thus, constructing an
object engine requires an adequate distributed programming environment. Rather
than providing an exhaustive review of the current environments, our intention
is to illustrate the main features of some them, in particular the Arjuna system
(described below) which we used as a basis for implementing the platform for
constructing object engines. The increasing acceptance of the C++ programming

language [64], especially in the area of system programming, has caused the emer-
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gence of several environments providing support for programming parallel and
distributed applications in that language. Following this trend, we give emphasis

to such environments and highlight those features that most influenced in the

architecture of object engines.

ANSA

The Advanced Networked Systems Architecture (ANSA) [4] describes the main
principles of an environment for distributed systems development and correspond-
ing run-time support with focus in distribution transparency but, at the same
time, efficient exploitation of distribution. The architecture is not restricted to
any particular programming language, operating system or network or hardware
platform. On the contrary, the main goals of the architecture is the provision of
interworking between autonomously managed networks and portability across a

wide range of operating systems and programming languages.

An instance of the architecture, the ANSAware Testbench software [5], per-
mits programmers to select the kinds of transparency required by applications.
Basically, the transparencies supported are: access transparency (identical invo-
cation semantics for both local and remote components), location transparency,
concurrency transparency, failure transparency, replication transparency and mi-
gration transparency. The ANSA computational model defines the programming
languages features that are necessary for this purpose, according to an object-
oriented approach. All data is stored in distributed objects and accessed indi-
rectly via interfaces; operations can only be invoked via their enclosing interface.

In addition, it is possible for different objects to respond to the same operation,
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possibly with different implementations. The ANSA computational model pro-

vides for both synchronous and asynchronous operations.

Distribution of client and server per distinct address spaces (process) demands
an intermediate service to solve the initial addressing, i.e., to find a service when
requested. In ANSA, this initial phase is called trading. A server invokes the reg-
ister operation of the trading service in order to publish (export) all the operations
(services) of one of its interfaces. Once exported, the services can be imported by
any other client. Thus, a client imports an interface reference and then the client
is able to invoke operations provided by the interface directly, without further

participation of the trading service.

Basically, using ANSAware, the user writes a file in IDL (Interface Definition
Language) with the definition of interface types and submit it to the stub compiler.
Then a file corresponding to the server and another corresponding to the client is
written in C with embedded DPL (Distributed Processing Language) commands
to the ANSAware services (Trader, Notification, etc). The client and the server
files are submitted to the C-preprocessor in order to convert the DPL commands
to C commands. Then the C source codes obtained from the stub compiler and
from the C-preprocessor are compiled and linked resulting in two executable codes:

a server and a client.

Arjuna

Arjuna [62, 51] is a distributed transaction facility; it consists of a set of tools that

supports the object and action model of computation, a widely accepted approach
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to reliable distributed computing. In this model, programs consist of interact-
ing objects which are instances of abstract data types, where every interaction
happens within an atomic action, a programming abstraction that ensures serial-

isability, failure atomicity and permanence of effect.

serialisability Execution of concurrent programs are free from interference, i.e.,

it is equivalent to some serial execution.

failure atomicity A computation either commits, producing all the intended
results, or aborts, producing no results. If any failure occurs, the appropriate

use of backward error recovery undoes the results hitherto produced.

permanence of effect Any state change produced is recorded on stable storage,

a type of storage that can survive system crashes with high change.

Coherence is accomplished by the enforcement of encapsulation; the state of
the system is maintained solely by objects, and the state of each object is ma-
nipulated only by associated access methods, which, by definition, are the units
of interaction. By ensuring that objects are recoverable and only manipulated
within an atomic action, it can be guaranteed that the integrity of objects — and
hence the integrity of the system — is maintained in the presence of failures such

as node crash and message loss.

The main system facilities include object store (transparent persistence man-
agement), nested atomic actions (transparent distributed transaction manage-
ment), remote object access (transparent remote method invocation using RPC),
concurrence control, crash recovery and object replication. The object store pro-
vides access service to the passive state of persistent objects. The stable repre-

sentation of an object (usually in disk) is machine independent in order to permit
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its transmission between stable storage and volatile storage, and its transmission

via RPC as well.

The model of concurrency control is shared variable (or object) with mutual
exclusion and condition synchronisation through locking (there is an one-to-one
correspondence between lock and object). The strict two-phase locking policy is
adopted to ensure serialisability. Locks on objects are acquired within atomic
actions (growing phase), and are released only when the outermost atomic action
ends or aborts (instantaneous shrinking phase) [61]. There is no automatic detec-
tion of deadlock; applications should handle the situations where a lock request
times out. Operations on objects are of type read or write, following the locking

rule that permits multiple reads, single write.

It is assumed that the hardware components of the system are workstations
(nodes), connected by a communications sub-system (for example, a local area
network). A node is assumed to work either as specified or simply to stop working
(crash). After a crash a node is repaired within a finite amount of time and made
active again. A node is assumed to have both stable and non-stable (volatile)
storage. All of the data stored on volatile storage is assumed to be lost when
a crash occurs, while any data stored on stable storage remains unaffected by
a crash. It is also assumed that faults in the communication sub-system are
responsible for failures such as lost, duplicated or corrupted messages. The RPC
system is assumed to be responsible for coping with such failures using well-known
network protocol level techniques; it returns a failure exception to the caller if it

suspects that the called server is not responding.
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The current version of Arjuna is implemented as a standard C++ class library.
Thus, it is tuned for the development of object-oriented applications. The Arjuna
facilities are basically implemented by the class hierarchy depicted in Figure 2.1.
Applications should define instances of the class AtomicAction and call its oper-
ations: begin, end and abort. The only objects controlled by atomic actions are
those objects that are either instances of Arjuna classes or user-defined classes de-
rived from the class LockManager — type inheritance is used to make user-defined

classes members of the hierarchy shown in Figure 2.1.

StateManager

Abstract

AtomicAction
ServerGroup Lock Recovery
Record Record Record

Figure 2.1 The Arjuna class hierarchy.

Record

A tool called Stub Generator [50] processes definitions of C++ classes whose
instances are persistent objects to be remotely accessed and, as a result, produces
the corresponding client and server stub code. Transparency of location and access
is obtained by making any invocation of an operation on the client stub object

to trigger the same operation on the corresponding (remote) server stub object,

using RPC.
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Amber

The Amber system [14] aims at providing support for distribution and concur-
rency for C++ programs in homogeneous network of computers where each node
is a shared-memory multiprocessor. Amber is based on a model of computation in
which a collection of mobile objects distributed among nodes in a network interact
through location-independent invocation (shared object abstraction). Thus, pro-
grams execute in a uniform network-wide object space, with memory coherence
maintained at the object level. Objects are passive entities consisting of some
data and a set of operations that can be invoked locally or remotely. The active
entities in the system are thread objects; a typical application contains threads
concurrently executing object operations on different processors. Programs are
written in an object-based subset of C++, supplemented with primitives (Start
and Join) for thread management and object mobility; threads invoking opera-
tions on an object move to the node where the object resides. The system is
composed of a preprocessor to C++ and a runtime kernel which is linked with
applications. Amber provides the programmer with a set of predefined object
classes for managing threads, synchronisation and distribution. However, there
is no support for persistent objects, primitives for reliable distributed computing
or communication and cooperation between unrelated programs; Amber aims at

concurrent programming on tightly-coupled machines.
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DC++

The DC++ [57] system is an object-oriented extension of the OSF Distributed
Computing Environment (DCE) [48] integrated with C++, without introducing
any language modifications. The major features of the system are location inde-
pendence and object mobility to circumvent certain deficiencies of the traditional
client/server model supported by DCE. In the system, C++ objects are the basic
units of distribution. All distributable objects are referenced using the DCE’s
universal unique identifiers (UUIDs), and the DCE Cell Directory Service (CDS)
is used for optional retrieval of objects by name. Objects communicate by method
invocations, independently of their location; remote invocations are mapped onto
DCE remote procedure calls. A remote reference is implemented by a prozy indi-
rection. A proxy contains a location hint for the referenced object and transpar-
ently forwards invocations based on DCE RPC; each node maintains a hash table
for mapping the global identifiers within incoming invocations onto actual storage
addresses of C++ objects. Mobility allows for modelling physical data transfer at
a very high level of abstraction and also provides ezplicit control of distribution,
such as when it is appropriate to co-locate communicating objects. Upon request
by applications, objects can dynamically move between nodes. DC++ provides

no support for object persistence or distributed transaction.

PANDA

The PANDA system [6] is a run-time package which supports distributed and

parallel applications written in C++. The main system features are object persis-
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tence, uniform global address space, user-level threads, object and thread mobility,
and garbage collection. Distribution in PANDA is provided through object and
thread mobility rather than using remote procedure calls (RPCs). According to
the designers of PANDA the RPC mechanism makes it difficult to provide perfect
distribution transparency in C++, such as handling pointers which may occur in
the parameter list of a method. Object mobility is realised through a distributed
shared memory (DSM) mechanism, assuming that the hardware platform consists
of a network of homogeneous processors. The programming environment pro-
vides a primitive DSM which can be specified for any object creation. The basic
mechanisms for thread management are provided by the system class UserThread.
Applications classes derive from that class and implement a especial inherited
method code which is automatically spawned when instances of the application
classes are created. In addition, the class UserThread provides a method migrate
that accepts as a parameter a destination node. The invocation of this method
causes the thread be interrupted, transferred to the specified remote node and then
resumed. For concurrency control, PANDA offers synchronisation objects such as
semaphores and signals, thereby permitting to turn a class into a monitor. Persis-
tence mechanisms are integrated into the run-time environment of the language
and distributed transaction for persistent objects is supported. Applications use
a primitive persistent for the classes whose instances should be persistent objects.
Although PANDA does not extent the programming language, it requires applica-
tions to be instrumented with the primitives mentioned above; thus, applications

need to be preprocessed.
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2.5 Database Systems

Object engines and object-oriented database management systems have some com-
mon purposes: store objects and permit them to be queried against schemas that
were previously devised for applications by applying a modelling technique (ac-
cording to a certain object data model). Moreover, object-oriented database man-
agement systems normally share many features with distributed object-oriented
systems since they both store objects. For example, as discussed in Section 2.4,
transaction management, which is originally a feature of database systems, is also
supported by some object-oriented distributed systems, such as the Arjuna sys-
tem. In fact, the interest in object orientation has been a point of convergence of
the work in several fields of research, and there seem to be a tendency to merging
distributed systems, database systems and persistent programming systems un-
der a single object-oriented framework. However, object engines are not intended
to be full-fledged object-oriented database management systems. Our approach
in providing a platform for constructing object engines is simply the extension
of an distributed object-oriented transaction facility, namely the Arjuna system,
with object query services. This approach is appropriate because, firstly, simi-
larly to what happened with object-oriented distributed systems, the increasing
acceptance of the C++ programming language has had strong influence on the
design of object-oriented database systems in the recent years, and secondly the
object data model of the Arjuna system is based on C++. For this reason, for
our purposes, it suffices to review object-oriented database management systems
solely with regard to query formulation and resolution, and in the context of C+4+.

Although there are several systems that provide persistence through extensions to
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C++, for conciseness, we will concentrate our review on just one of them, namely
the ObjectStore database system {34, 49]. Other representative systems are Ontos
[3] and ODE [2].

ObjectStore

ObjectStore [34, 49] is an object-oriented database system that supports per-
sistence orthogonal to type, transaction management and associative queries,
through an extended version of C++. The target applications are typically the
ones that perform complex manipulations on large databases of objects with in-
tricate structure, such as computer-aided software-engineering, computer-aided
design and manufacturing, and geographic information systems. Such an intri-
cate structure is normally realised by inter-object references, which must be tra-
versed by associative queries in order to locate objects. ObjectStore is based on a
client/server architecture: the client deals with objects while the server deals with
pages only. For performance reasons, ObjectStore deals with the task of solving
associative queries by moving database functionality into the client, rather than
doing application-specific tasks on the server. The programming environment
basically consists of a class library and a preprocessor. The library contains col-
lection classes including sets, bags and lists. For example, a transient set p of

instances of a class person can be created with the following C++ statement:

os_Set(personx) p;

Thus, class person may have data members name, age, boss (an object refer-
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ence) and children (a multi-valued attribute) declared as:

string name;
int age;
person* boss;

os_Set(person*) children;

And to make the set p persistent in a database db, the declaration would be:
persistent({db) os_Set(personx) p;
A query is a predicate surrounded by [: :] specified by a query operator,

typically over a single top-level collection. For example, the following query locates

persons named Amadeus over the set p, and stores the result in a transient set q.
os_Set(person*)& q = p [: name == “Amadeus” :]
The selection predicate may be any C++ expression. For example, using the

logical operator && (and), the following query returns all persons whose age is

between 10 and 20.
os_Set{person*)& q = p [: age >= 10 && age <= 20 ;]
Object references are traversed using nested queries or the operator —>, de-

pending on the context. For example, the following query returns all persons who

have a child whose name is Zweig.

os_Set(person*)& q = p [: children [: name == “Zweig" :] :]
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And the following query returns all persons who have a boss whose name is Verdi.

os_Set(personx)& q = p [: boss—> name == “Verdi" :] :]

There is no concept of class extent in ObjectStore. Thus, indices can be defined
for a collection (rather than for a class) in order to speed up query resolution. An
index is firstly created and then associated to a collection. In general, predicates
are over paths. Thus, for example, the following statements define indices for the

paths name and boss—> name of class person, and associates them to collection p.
os_index_path name_path =pathof(personx, name)
os_index_path boss_name_path =pathof(person*, boss—> name)

p.add_index(name_path);

p.add_index(boss_name_path);

The maintenance of these indices are automatically done every time a program
modifies the corresponding paths, such as every time that the data member name
of an object of class person is modified. A keyword indexable should be added
to the data member’s declaration for this purpose. Thus, for example, the data

member name should actually be declared as follows.

string name indexable;

ObjectStore provides a construct foreach to iterate over the members of a
collection. For example, the following statement calls the function print for all
persons in the set p who have children younger than 5.

foreach (person * x, p)

print(x—> children[: age < 5 :])
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Query resolution has four phases: analysis, code generation, strategy selection
and execution. The analysis phase creates a parse tree representing the query. The
code generation phase generates a set of functions to evaluate the query (when
the generated code executes, the tree does not actually exist). The strategy phase
notes (at run-time) the presence or absence of each index relevant to the query
and propagates this information over the tree, selecting the appropriate functions

to be executed. Finally, the execution phase executes the selected functions.

2.6 Other Approaches to Information Systems

Integration of Database and IR

Some systems integrate database technology with Information Retrieval (IR) tech-
niques. Saxton and Rahavan [56] argue that while databases do not fulfill the
requirements of today’s information systems, such as unstructured decision mak-
ing and weighted evaluations, IR systems cannot precisely select only and all
relevant information. For this reason, they developed a system that augments a
relational database management system with ranked queries, based on the Gener-
alised Vector Space Model. That system also augments the relational model with
the introduction of generalisation and aggregation for the designers found these
concepts very useful in properly identifying views to be used in queries and, more-
over, the representation of hierarchical structure of objects and relationships can
be used during search, taking advantage of the semantics available. In another
work, Harper and Walker [26] developed a system called ECLAIR that provides an

interface for IR-type queries (basically using best-match retrieval techniques) on
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top of the Ontos object-oriented database management system [3]. The database
system is used for storing and indexing objects that represent the contents of
network resources. However, ECLAIR does not integrate the query language pro-
vided by the database system with IR techniques. The main reason for using the
database is to obtain concurrent access to data and reliable processing of data in
the presence of system failures. On the other hand, Christophides et al. [15] uses
the O; object-oriented database management system [20] to represent SGML [60]
documents in order to benefit from recovery, concurrency control and high-level
query services provided by the database system. For that purpose, they had to
extend the O, query language in order to enable users to query data without exact

knowledge of its structure, and using approximate match.

Document Databases

Some systems exploit the implicit structure found in text files to provide high level
query and update facilities as exist in database systems. Examples of such files are
electronic documents, programs, literature citations and mail messages. Loeffen
[39] presents a survey containing a dozen of text models and systems. In general,
these models describe texts by their structure, operations on the texts and con-
straints on both structure and operations. Their basic motivation is that normally
retrieval systems deal only with two kinds of textual objects: the word and the
document containing it, leaving unrepresented any intermediate structure. Bruza
and van der Weide [10] define a stratified approach to hypertext systems. The
authors argue that, these days, objects need no longer be modelled as amorphous

things, especially, due to emerging standards such as the Standard General Mark-
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up Language (SGML) [60] and the Office Document Architecture (ODA) [47]. In
fact, Christophides et al. [15] map the type information present in the prologue
of each SGML document — the Document Type Information (DTD) - in an O,
schema. In another work, Consens and Milo [16] show how word indexing and
region indexing can be combined with extended database query optimisation to
provide efficient access to semi-structured textual information. Basically, they use
the PAT text indexing system and translate high-level database queries on files to
expressions in the PAT algebra. Jarvelin and Niemi [29] introduce a declarative
query language that allows data aggregation simultaneously with complex data
restructuring without the user having to describe, explicitly, how the result docu-
ments are constructed from the available ones. The motivation for this approach

is that there is no static hierarchical structure among subdocuments in which all

users would always want their result documents.

Metadata Systems

There has been an intensive research on metadata systems for different purposes.
Hsu et al. [28] describe a metadata system for general information resources
management in heterogeneous, distributed environments, in order to integrate
computerised enterprises. The system extends the traditional approach to meta-
data taken by data dictionaries with the inclusion of knowledge resources such
as business rules, control for sequential interactions and global decision processes
for parallel systems interactions. They employ a method called Two Stage Entity
Relationship which, in addition to structured data representation as relations,

permits the representation of semantics through a functional model in the form of
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production rules. Madsen et al. [41] developed a metadata system whose purpose
is to locate relevant information giving some information about it, the user and
the context of the query, also by incorporating semantics to resource metadata.
This is achieved through a model for locating data given the type of data required
and details of the context in which it is to be used. Grosky et al. [24] developed a
metada system called Content-Based Hypermedia for browsing structured media
objects, i.e., portions of images, videos and audios. The structure and relation-
ships of these objects are represented through an object-oriented schema. Thus,
users can browse through this meta-information space to discover properties and

relationships between media objects.

2.7 Conclusions

There is an intensive research in information systems to provide means for locating
relevant network resources, and many approaches exist to make use of informa-
tion semantics. However, to our knowledge, there is no proposal that exploits
object orientation at the user interface. Full-fledged object-oriented database sys-
tems, on the other hand, permit sophisticated queries but they are normally too
resource intensive to be deployed in global networks. Distributed systems, es-
pecially transaction-based systems, offer a sounding basis for developing robust
information retrieval systems in large-scale environments but they lack query facil-
ities. Therefore, object engines are proposed to consolidate appropriate features of
these proposals and systems, thereby providing an eflicient, effective and reliable

structured information retrieval service.
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CHAPTER 3

Object Engine Architecture

An architecture for object engines must integrate most of the fundamental features
of searching engines, object-oriented databases and distributed systems. In this
Chapter we describe such an architecture by outlining a set of components, their
interconnections and interaction with client programs; we give a more detajled
description of each component in subsequent Chapters. The architecture is built
upon the assumption that there exists a system that supports the object and

action model of computation for reliable distributed computing.

3.1 Object Engine Structure

The physical components of an object engine include objects, indices, meta-
objects, views and a context, as illustrated in Figure 3.1. Additionally, the
meta-objects encompasses other conceptual components, namely classes, schemas,
meta-classes and a meta-schema. All physical components of an object engine may
be replicated and distributed over any number of nodes of a distributed system.
These conceptual and physical components, including their interconnections (rep-

resented by arrows in the Figure), are explained as follows.
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Figure 3.1 Object engine structural architecture
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3.1.1 Basic Components

The primary function of an object engine is to maintain objects extracted from
network resources: objects must correspond to pieces of information contained
in network resources, and objects must be related to each other according to the
relationships between those pieces of information. Additionally, in conformance
with the object-oriented model, an object must provide a set of operations (i.e.,

methods) to encapsulate its state.

Typically, object-oriented systems define objects as instances of abstract data
types (i.e., classes), as this provides for both a strongly-typed system and a means
to formulate queries according to a conceptual schema. An object engine, in par-
ticular, benefits from those both features: strong typing permits the use of the
object and action model of computation in order to obtain a reliable distributed
system, while queries formulated according to schemas permit users to express
their knowledge about the target information in a highly-structured fashion, sim-
ilarly to object-oriented database systems. For this reason, information contained
in network resources must be modelled by schemas composed of classes that rep-
resent the structure of the information, and objects extracted from network re-

sources must be instances of such classes. In summary, an object engine has the

following basic components:

Class : an abstract data type that defines a set of attributes, a set of relationships

with other classes and a set of methods.

Object : an instance of a class. An object is atomic, and it is a unit of concur-

rency, replication and caching. We call the set of all objects maintained by
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an object engine object base.

Schema : a set of classes that model some information. Indirectly, a schema
designates a set of objects: the set of all instances of the classes that belong

to the schema.

3.1.2 Meta-data Components

Although classes and schemas could be simply regarded as conceptual compo-
nents,! an object engine must maintain a physical representation for them due to

the following reasons:

1. Documentation. Information about classes helps users to navigate through
information: users learn what categories of information exist, how infor-
mation is structured, and, consequently, how to formulate good queries.
Moreover, this information is useful for developing tools on top of an ob-
ject engine, similarly to the use of meta-data by third-party vendors for

developing tools on top of database systems [33].

2. Query Resolution. Information about classes permits a query interpreter to

analyse query expressions and resolve queries.

3. Software Management. Information about classes permits automatic gener-

ation of code.

4. Administration. Systems administrators need to record classes and schemas

definitions in order to update and re-use them.

1Objects are components which implicitly require a physical representation.
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We refer to the physical representation of information about classes and schemas
as meta-data to comply with the nomenclature normally used in database sys-
tems.? Thus, meta-data must be maintained by object engines and made acces-
sible to client programs, similarly to objects extracted from network resources.
Ideally, for the sake of homogeneity, all client programs should interact with ob-
ject engines through a single interface, independently of whether a client program
manipulates objects or meta-data. Hence, meta-data should be represented as or-
dinary objects. Moreover, a single approach to representing information extracted
from network resources and meta-data would permit all information maintained
by object engines to be manipulated in the same fashion by users and adminis-

trators, including that meta-data also would be distributed and highly available.

Therefore, we define a special schema to represent classes, attributes, relation-
ships, methods and schemas; the objects which are instances of the classes in this
schema comprise the meta-data maintained by an object engine. Accordingly, we

use the prefix “meta” to designate the meta-data components of an object engine,

as follows.

Meta-schema : a special schema that models meta-data.

Meta-class : a class that belongs to the meta-schema.

Meta-object : an object that is an instance of a meta-class. We call the set
of all meta-objects that represent all schemas defined for an object engine
meta-object base. Since a meta-object is an object, for a given object engine,

the object base is a superset of the meta-object base.

2 Another suitable name would be data dictionary.
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3.1.3 Index Components

Query resolution is presumed to be the most requested service of object engines.
For this reason, efficient algorithms and appropriate data structures for query
resolution are essential for obtaining high performance in object engines. We call
the components of object engines used for this purpose indices to comply with the

nomenclature used in database systems and searching engines.

Basically, an object query is a predicate expressed in terms of classes, attributes
and relationships represented in a certain schema. For example, a query may be
formulated to retrieve an object of class Writer that is related to an object of
class Story whose attribute title has value equal to The Picture of Dorian Gray.
Roughly, the resolution of this query needs firstly to map the attribute value The
Picture of Dorian Gray to an object of class Story, and secondly map that object to
an object of class Writer. Hence, an object engine should maintain the following

index components:

Attribute Index : a relation between attribute values and object references; an
attribute value is mapped to an object reference when the corresponding
object has an attribute with that value. An attribute index has references

to all objects which are instances of the class to which the attribute belongs.

Relationship Index : a relation between object references and object refer-
ences; an object reference is mapped to another object reference when both
corresponding objects are connected to each other. A relationship index has
references to all pairs of related objects which are instances of two particular

related classes.
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The association between an index and its corresponding attribute or relation-

ship is physically represented using meta-objects:

e An attribute index is referred by the meta-object that represents the corre-
sponding attribute.

e A relationship index is referred by the meta-object that represents the cor-

responding relationship between two classes.

Thus, a query can be resolved by navigating through meta-objects until the
necessary indices are identified. For example, to retrieve objects of class Person
whose attribute age has value greater than 18, firstly the meta-object that repre-
sents the class Person must be retrieved, and next the meta-object that represents

the attribute title must be retrieved, thereby obtaining a reference to the index

that contains references to the target objects.

3.1.4 Organisational Components

An object engine may contain a large number of schemas, which may designate a
large number of classes and a large number of objects. Furthermore, these schemas

may model information about a wide range of topics, and an object engine may
have a large number of users, distributed over a wide area network. Hence, an

object engine must organise its schemas in a fashion that permits the following

features:

1. Security: users may be allowed a restricted access to the object base.

2. Customisation: users may have interest only in part of the object base.
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3. Efficiency: users may wish to scope query resolution to a particular schema.

4. Scalability: type space administration must be decentralised in large-scale

distributed environments.

In general, an object engine must permit part of a schema to be designated as
another schema (i.e., a sub-schema), and it must permit schemas to be grouped to
form a larger schema (i.e., a super-schema). Thus, an object engine may contain a
number of conceptual hierarchies of schemas, possibly with intersections between
them. Moreover, a schema does not necessarily have to be available to users;
a schema may be created only for the purpose of deriving other schemas (sub-
schemas and super-schemas) from it. For this reason, we differentiate the schemas
which are available to users by calling them views, to connote that they define
how information maintained by object engines is actually observed by users and
administrators. In particular, administrators should be provided with a special
view that corresponds to the meta-schema. Accordingly, we call such a special

view meta-view.

Since schemas are represented by meta-objects, a view is simply defined by
selecting a certain set of meta-objects. Conceptually, a view corresponds to a
schema, a set of indices and a set of objects. Physically, a view should be either
a simple reference to a set of meta-objects or it should be a full representation of
that set of meta-objects. For practical reasons, we decided for the latter approach:
a compact representation of meta-objects permits faster query resolution, and it is
a suitable unit of concurrency, replication and caching. Also for practical reasons,
an object engine must maintain a directory of all views. We call such a directory

context, to connote that it defines an independent name space. Thus, a program
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initiates interaction with an object engine by retrieving the context that designates
the object engine and, next, the program asks the context to return specific views.

In summary, an object engine has the following organisational components:

View : an entity containing meta-data equivalent to a schema defined for the
object engine; a view is derived from the meta-objects that represent a

schema and, accordingly, contains references to the corresponding indices.

Context : a global entity containing references to all views defined for the object

engine; an object engine is designated by a context.

3.2 Object Engine Operation

An object engine must be set up by a bootstrap program to create a context, a
set of meta-objects to represent the meta-schema, all corresponding indices and
a meta-view. Thereafter, an administrator program, using the meta-view, can
create other meta-objects and corresponding indices to represent other schemas,
and then create other views. Thus, using these views, client programs can create,
update, delete, retrieve and traverse relationships between objects. Figure 3.2
shows a typical configuration of object engines and programs. The object engine
is distributed over the nodes of a single local area network (LAN). The programs
are classified according to their specific purpose and relative location (either in the

same LAN where the object engine is located or in a remote LAN) and described

as follows.
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3.2.1 Collector Program

A collector program periodically extracts information from network resources and
updates the object base maintained by an object engine. A collector program
must understand the structure or the interface of a network resource and, at the
same time, it must understand a schema that models the information contained in
the network resource. Thus, a collector program is able to translate information
from its “natural” representation to objects. Roughly, the normal operation of a

collector program should consist of the following steps:

1. Extract from network resources the pieces of information pertaining to ob-

ject attributes and relationships, according to a schema that models the

information contained in the resources.

2. Assemble pieces of information pertaining to object attributes in tuples that

conform to classes specified in the schema; each tuple should form a valid
object state.

3. Use object states for creating, modifying and removing objects from the
object base.

4. Use pieces of information pertaining to object relationships for connecting

and disconnecting objects that already exist in the object base.

Typically, a collector program should run in the same LAN where the object
engine is located, while the network resources manipulated by a collector program

may be located anywhere in the global network.
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3.2.2 LAN Direct Client

A LAN direct client is a program that is located in the same LAN where an object
engine is located, and that directly manipulates the object base maintained by

the object engine. A LAN direct client can be of one of the two following types:

1. Schema-specific application: the client can manipulate the part of the object

base designated by a specific schema.

2. General query interpreter: the client can manipulate the whole object base.

We discuss LAN Indirect Client in Section 3.2.4.

3.2.3 Object Engine Administrator

An object engine administrator is a program that manipulates information about
schemas, i.e., it manipulates the meta-object base. Since the meta-object base is a
subset of the object base, an object engine administrator can be simply regarded
as a particular case of LAN direct client: it is a client program that manipulates
the objects designated by the meta-schema. And another consequence is that a

general query interpreter also can be used as an object engine administrator.

3.2.4 Object Engine Server and Clients

An object engine server is a program that is located in the same LAN where an
object engine is located, and that provides a set of operations for manipulating

the object base maintained by the object engine; the server is an intermediate
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between a client program and the object engine. Actually, an object engine server
is identical to a LAN direct client, except that it accepts calls from other programs:
the main purpose of an object engine server is to permit a client program located
in a given LAN to have access to an object engine located in another LAN; in
this case the client program is called WAN client, to connote that it operates
over a wide area network. Naturally, a client program located in the same LAN
where an object engine is located also can have access to the object engine through

an object engine server; in this case the client program is called LAN indirect

client.

Similarly to a LAN direct client, an object engine server can be of one of the

following types:

1. Schema-specific server: the server manipulates the part of the object base
designated by a specific schema. In this case, the client is necessarily specific
to the schema, i.e., it is a schema-specific application that has access to an

object engine located in a distinct LAN.

2. General query server: the server can manipulate the whole object base. In
this case, the client can be either a schema-specific application or a general

query interpreter that has access to an object engine located in a distinct

LAN.

In both cases, an object engine server may completely conceal the object engine
from the client by providing an appropriate set of operations. Furthermore, a
server can provide an interface that is not even object oriented, thereby dispensing

with the need of the knowledge of schemas by clients. For example, a server could
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provide an interface for simple keyword-based search; in this case the client could

be an information browser traditionally used in global networks.

Finally, a client of an object engine server may be another object engine server,
thereby being possible to configure networks of object engines. This arrangement

would permit object engines to co-operate.

3.2.5 Summary

Let us summarise object engine operations with a simple example. Let us consider
that firstly an object engine is set up, secondly an object engine administrator
creates a schema named Eg, thirdly a collector program creates objects of classes in
the schema Eg and, finally, a LAN client program manipulates these objects. The
effects of this sequence of operations are illustrated in Figure 3.3 and explained

as follows.
1. Bootstrap. The set up of the object engine encompasses the following steps:

(a) create a context

(b) create meta-objects to represent the meta-schema

(c) create indices that correspond to the meta-schema

(d) index the meta-objects that represent the meta-schema

(e) create the meta-view
2. Administrator. The creation of the schema named Eg consists in:

(a) create meta-objects to represent the schema Eg
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(b) create indices that correspond to the schema Eg

(c) create a view for the schema Eg

We should note that the object engine administrator makes use of the meta-
view. Also, we should note that the meta-objects that represent the schema
Eg can be automatically indexed (by the indices for the meta-schema) when

they are created since, at that stage, no longer there are circular dependen-
cies.
3. Collector. The collector program makes use of the view Eg to create objects

of the classes designated by the schema Eg.

4. Client. The LAN direct client also makes use of the view Eg to manipulate

objects of the classes designated by the schema Eg.

3.3 Conclusions

The object engine architecture integrates features of searching engines, object-
oriented databases and distributed systems in a homogeneous fashion. Some of

the most salient features of the architecture are the following:

e All components of an object engine are objects with transactional access,

including concurrency control, and that can be replicated and distributed:

hence highly available.

e A uniform representation of objects extracted form network resources and

meta-data permits all programs to interact with object engines through a
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single interface, and makes it simple for users to learn about schemas and

formulate queries.

e The use of meta-objects and general indices to represent object attributes

and relationships provides an effective data structure for query resolution.

e A combination of schemas, views and contexts provides an effective means

of organising the information space in large-scale distributed environments.

The remaining Chapters of our thesis describes the components of the archi-
tecture in more detail and discusses implementation issues. Accounting, object

placement (i.e., clustering) and migration will not be discussed.
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CHAPTER 4

Object Model Concepts

Information objects are modelled by employing the notions of encapsulation,
identity, classification, inheritance (generalisation/ specialisation) and relationship
found in object-oriented programming and in database systems. The purpose of
modelling objects is to define a schema’, a collection of classes which describe the
properties of the objects and are arranged in a certain way to ensure that the ob-

jects which belong to these classes compose a consistent database and, therefore,

can be properly manipulated.

Although object-oriented modelling concepts have been employed in several
domains of applications since they were first introduced by the designers of Simula

[17] and currently represent an end-point in the evolution of data models, in this

Chapter we delineate such concepts for the following reasons:

1. There is not a single standard on these concepts. Thus, we present an in-
terpretation of object orientation that complies with a standard de facto
which has been established with, firstly, the widespread use of the program-

ming language C++ throughout considerably large part of academia and

! Also referred to as object data model in the literature.
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industry and, secondly, with the adoption of the OMG CORBA [45] by the

industry as an architecture for inter-platform cooperation.

2. Although most of the object models proposed in the literature and/or com-
mercially available support the notion of relationships between objects, they
normally treat such a relationship as a simple “pointer” from one object to
another, thereby not making a clear distinction between the possible dif-
ferent semantics of these pointers, namely associations and aggregations.
On the other hand, some object models, especially the ones developed as
a “natural” evolution of the relational model, make such a distinction. An
example is the Object Modeling Technique (OMT) [55] where associations
and aggregations are modelled differently. Another example is the ORION
database management system [32] which provides the notion of composite
objects to permit the modelling of “part-of” relationships between objects.
For this reason, we show the importance of modelling object relationships
with proper semantics through examples and go further by introducing a
new concept, namely loose aggregation, explained in Section 4.3, to distin-
guish the cases where objects are only conceptually from the case where they

are physically part of other objects.

3. We introduce a graphic notation together with the concepts which is used

throughout the rest of this thesis to represent schemas diagrammatically.

4. We present examples of application of the concepts to illustrate their ade-

quacy to our purposes.

While the concepts are here described informally as this suffices for the self-

containment of this thesis, a formal definition of the object model is presented
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in Appendix A, where the set and the graph theories are employed to prove the
correctness of the model. Also, we present many other examples of applications

to give support to our point of view about the adequacy of the model.

4.1 Object

An object is defined by an identity, a state and an interface, as illustrated in

Figure 4.1.

e The identity is a unique identification that permits the object to be referred

to unambiguously. It is represented by a unique name.

e The state is a structure containing properties of the object. It is represented
by attributes (values of primary types, such as string and integer) and

relationships (references to objects).

e The interface contains the operations which can be applied to the object.
Similarly to an extent of an abstract data type, the interface encapsulates
the state. It is represented by methods that have exclusive access to the

state.

Figure 4.2 illustrates a simple example of two related objects: the object named
X represents a client of a bank, and the object named Y represents the client’s
account. The client has an attribute name of string type, a relationship with the
account, and the methods update_name and check_balance which, respectively,
have parameters of string and integer types. The account has the attributes

number and balance of integer type, a relationship with the client, and the methods
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deposit, withdraw and check_balance, each of them with a parameter of integer

type. The dashed lines in the Figure illustrate the relationships between the

objects.

4.2 Class

A class is an abstract data type that defines an object state structure and the

corresponding interface. Basically, a class consists of:

1. a set of attribute specifications
2. a set of relationship specifications

3. a set of method specifications

An instance of a class is an object whose state consists of the set of attributes
and relationships specified by the class, and whose interface contains the set of
methods specified by the class. Thus, a class stands for a set of objects that have

some common structure and behaviour.

Attributes and methods are components of just one class, while a relationship is
generally between two classes. For this reason, we discuss relationships separately

in Section 4.3 and Section 4.4.

e An attribute is specified by a name, a primary type and a Boolean value
that indicates whether the attribute is key, i.e., whether the attribute can

be used in queries.




Chapter 4. Object Model Concepts

63

interface methods
attributes
relationships
(a) Concepts (b) Representation

Figure 4.1 General structure of an object

check_balance():Integer check_balance():Integer
update_name(String):String deposit(Integer):Integer
g withdraw(Integer):Integer

number: 4728
balance: 1240

name: ’Smith’

client: X =l==i=foc =f= =

account: Y ~ - -

Figure 4.2 Example of related objects
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e A method is specified by a signature, a function and a semantics. A signature
contains a method name, a sequence of argument (parameter) types and a
result type. A function maps a product of argument domains to a result

domain, according to the signature and the semantics.

Graphic Notation

Class elements, with the exception of method function and semantics, can be
represented by a diagram, as shown in Figure 4.3. A class diagram is composed
of up to three stacked rectangles: the top rectangle contains the class name, the
intermediary rectangle contains attribute specifications, and the bottom rectangle,
if present, contains method signatures. An attribute name is preceded by a star

symbol when the attribute is key.

class name

attribute-1
attribute-2

method-1
method-2

Figure 4.3 Class diagram notation

Figure 4.4 illustrates diagrams for the classes Client and Account, which are
classes for the objects named X and Y, respectively, shown in Figure 4.2. The
attribute name of class Client and the attribute number of class Account are key

attributes.
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Client Account

*name: String *number: Integer

balance: Integer

update_name(String):String
check_balance():Integer deposit(Integer):Integer
withdraw(Integer):Integer

check_balance():Integer

Figure 4.4 Example of class diagram

4.3 Object Relationship

For every reference to an object y that an object z contains, there is a comple-
mentary (inverse) reference to z in y. The term relationship between r and y refers
to a pair of complementary references, and the term relationships of x refers to all
relationships between z and any other object. Also, for simplicity, we say that a

relationship between two objects is bi-directional to denote that a relationship is

defined by a pair of complementary references.

Relationship Semantics

The semantics of a relationship between an object z and an object y can be one

of the following types:

1. Aggregation: z is part of® y

2. Association: ris not part of y

Furthermore, the semantics of an aggregation can be one of the following types:

2 Aggregations correspond to the so-called complex objects.
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1. Tight Aggregation: z is physically part of y

2. Loose Aggregation: z is conceptually part of y

In both types of aggregation, = is a component of y, and y is an aggregate

containing z.

Graphic Representation

A set of related objects can be represented as a graph where vertices correspond
to objects and edges correspond to relationships. In such a graph, two meanings

can be assigned to edges:

1. Navigational: An edge corresponds to an object reference and, conse-
quently, it is directed: an edge from object z to object y means that z

contains a reference to y.

2. Semantical: An edge corresponding to an aggregation is directed from the
aggregate to the component, while an edge corresponding to an association

is not directed.

We refer to a graph where the edges have a navigational meaning as a nav-
igational graph, and a graph where the edges have a semantical meaning as a
semantical graph. A navigational graph is useful to show paths that can be
traversed. A semantical graph, on the other hand, is useful to show relationship
semantics. However, since relationships are always bi-directional, a semantical
graph implicitly represents a navigational graph and, consequently, it is sufficient

for both purposes. Therefore, we preferentially use semantical graphs and we
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use navigational graphs only when relationship semantics is not relevant. Figure
4.5 shows the convention we will use henceforth for the graphic representation of

related objects.

(1) Navigational Meaning Q ------ .,O

(2) Semantical Meaning

(2.1) Association O—_O
(2.2) Tight Aggregation O—+—>O
(2.3) Loose Aggregation O——’O

Figure 4.5 Graphic notation for related objects

Associated Objects

An object can be associated to any number of objects. Consequently, the se-
mantical graph for a set of associated objects is a generic graph. An example of

association is the relationship between the objects client and account discussed in

Section 4.1. Figure 4.6 illustrates the corresponding semantical graph.

Figure 4.6 Example of associated objects
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Tightly Aggregated Objects

An object can be physically part of at most one object. Consequently, the se-
mantical graph for a set of tightly aggregated objects is a directed tree, i.e., a
single hierarchy where objects which are relatively higher in the hierarchy contain
objects which are relatively lower in the hierarchy. For example, the aggregation
hierarchy in Figure 4.7 represents a journal composed of five articles which are

composed of certain numbers of pages.

Loosely Aggregated Objects

An object can be conceptually part of any number of objects. Consequently,
the semantical graph for a set of loosely aggregated objects is a directed acyclic
graph, more specifically, a collection of intersecting hierarchies. For example, the
aggregation graph in Figure 4.8 represents a grouping of persons in sports clubs,

where a person can be member of more than one club.

Tightly and Loosely Aggregated Objects

An object that is physically part of another object also can be conceptually part
of other objects. For example, the articles contained in a number of journals can

be grouped in logical folders according to subject, as shown in Figure 4.9.
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Journals

Articles

s (VO-E @0 - @O0

Figure 4.7 Example of tightly aggregated objects

Sports Clubs

Figure 4.8 Example of loosely aggregated objects
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Journals

Articles

Folders

Figure 4.9 Example of tightly and loosely aggregated objects

4.4 Class Relationship

The permitted relationships between objects are specified through relationships
between classes. A relationship between a class X and a class Y defines how an
object z that is an instance of X can be related to an object y that is an instance

of Y, by specifying the following items:

1. Semantics: It defines whether the relationship between z and y is an as-
sociation, a tight aggregation or a loose aggregation. In both cases of ag-
gregation, either X is the aggregate class and Y is the component class or
vice-versa. Then, in the relationship between z and y, the instance of the
aggregate class is the aggregate object and the instance of the component

class is the component object.

2. Role: A label is assigned to X and another label is assigned to Y in order
to define the roles of z and y, respectively, in their relationship. If the role
of a class is not explicit then the class name is assumed as the class role.

Roles are useful as both documentation and a measure for unambiguous
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identification of relationships.

3. Multiplicity: A pair of integer values is assigned to X and another pair is
assigned to Y in order to define the minimum and the maximum number
of instances of X that can be related to a single instance of Y and vice-
versa. Because these values specify the lower bound and the upper bound
of a set of object references they are referred to as minimum cardinality
and maximum cardinality. In the case of tight aggregation semantics
in particular, the multiplicity of the aggregate class is constant: 0 as the

minimum cardinality and I as the maximum cardinality.

4. Key: A Boolean value is assigned to X and another Boolean value is assigned
to Y'to indicate whether the relationship is key with respect to each class, i.e.,
whether the relationship can be traversed in queries using path expressions.

If true is assigned to X, for example, then the relationship can be traversed

from Yto X.

Graphic Notation

A relationship between two classes is graphically represented by either a line or an
arrow between the corresponding class diagrams, and labelled with the role and

the multiplicity of each class, as illustrated by the examples in Figure 4.10.

e An association is represented by a dotted line, a loose aggregation is repre-
sented by a dotted arrow and a tight aggregation is represented by a dashed

arrow. In both cases of aggregation, the arrow is from the aggregate class

to the component class.
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Client Folder Journal
1,2 | Owner on' l
: o) !
; !
» 1
1
, , I
: H I
On: 0,n y Publication Lny
Account Article Article
(a) Association (b) Loose Aggregation (c) Tight Aggregation

Figure 4.10 Example of graphic notation for relationships

e A label and a pair of integer values on each end of the line or arrow, respec-
tively, denote the role and the multiplicity of the class represented by the
nearest attached diagram. The multiplicity of the aggregate class in a tight

aggregation is not shown since it is constant.

e The role of a class can be omitted when the class name is the role. The
roles shown in Figure 4.10 is Owner for class Client and Publication for class

Article when related with class Folder.

e A circle on the line that represents a relationship means that the nearest
class is not key in the relationship. For example, Folder is not key in the
relationship with Article. As a consequence, a path expression from Article

to Folder cannot be specified.
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4.5 Inheritance

A class Y can be derived from a class X in order to augment and/or modify the

set of specifications pertaining to X, according to the following rules:

1. Y can have additional attributes, relationships and methods.

2. Y can substitute (overload) method functions and semantics.

The set of specifications pertaining to Y is a superset of the set of specifications
pertaining to X; it contains the attributes, relationships and methods defined by
X and Y. Consequently, an instance of Y consists of the attributes, relationships

and methods defined by X and Y. For this reason, we say that X and Y have an

inheritance relation, more specifically, Y inherits from X.

Graphic Notation

The graphic notation to represent that a class named Y is derived from a class

named X is an arrow from the class diagram for X to the class diagram for Y, as

shown in Figure 4.11.

Class Hierarchy

A class hierarchy, also denominated inheritance hierarchy, is defined by a set of
classes and their inheritance relations. Any class hierarchy can be extended by
deriving new classes from its classes. As shown in Figure 4.12, for example, a class

named Z is derived from Y and a class named W is derived from X to extend the

class hierarchy defined by X and Y.
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Figure 4.12 Simple class hierarchy

Inheritance Invariants

To ensure the inheritance relation properties and for the sake of simplicity of

the object model, in a class hierarchy, the following invariants with respect to

inheritance must hold:

1. No class inherits from itself (neither directly nor indirectly).

2. Every class inherits directly from at most one class (single inheritance).
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According to these invariants, by representing classes and direct inheritance
relations as a graph where classes correspond to vertices and direct inheritance
relations correspond to arcs, we have that such a graph is a directed tree. For this

reason, a direct inheritance relation is referred to as an inheritance arc.

Inheritance Relation Properties

The inheritance relation is neither reflexive (a class cannot inherit from itself)
nor antisymmetric but it is transitive. For example, the fact that Z inherits
from Y and that Y inherits from X implies that Z inherits from X. Thus, we
differentiate between direct and indirect inheritance relations: X and Y have a

direct inheritance relation, while X and Z have an indirect inheritance relation.

Class Instance and Extent

We differentiate between direct and indirect instances. A direct instance of a
class a consists of the attributes, relationships and methods defined and inherited
by . An indirect instance of a, on the other hand, consists of the attributes,
relationships and methods defined and inherited by a class that (directly or indi-

rectly) inherits from o.

Moreover, the extent of o is the set of all direct instances of a. The deep
extent of a is the union of the extent of o and the extents of all classes that
inherit from a. For example, the deep extent of Y includes the extents of Y and
Z. As another example, the deep extent of X includes the extents of X, Y, Z and
W.
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Class Conformity and Instance Substitutability

Since classes are abstract data types, we say that a class a conforms to a class 8
if o contains at least the specifications pertaining to 3. The conformity relation
is useful to determine whether an object can be used in a certain context. If it
is specified that a direct instance of a class a is expected (in assignments and as
parameter in method invocations, for example) then a direct instance of any class
that conforms to « is acceptable. Thus, an instance of a class can be substituted

by instances of different classes, i.e., by objects of different forms ( polymorphism).

Obviously, a class a conforms to itself (reflexivity) and, from the definition of
inheritance, we have that if a class « inherits from a class 8 then o conforms to
B. Therefore, a direct instance of a class o can be substituted by a direct instance
of any class that inherits from a. In other words, any object in the deep extent

of a can be used where a direct instance of a class a is expected.

In the example, we can state the following class conformity relation: (1) X
conforms to X, (2) Y conforms to Y and X, (3) Z conforms to Z, Y and X, (4) W
conforms to W and X. Thus, a direct instance of X can be substituted by a direct
instance of Y, Z or W, while a direct instance of Y can be substituted by a direct

instance of Z.

Moreover, we have that the conformity relation is transitive but not necessarily
antisymmetric, i.e., given two classes a and 3, a conforms to @ and 3 conforms
to a does not imply a and 3 are the same class. For example, it is possible that

W conforms to Y and that Y conforms to W.




Chapter 4. Object Model Concepts 70

Is-a Relation

Given two classes o and 3, we say that a “is a” 3, and denote it as o <, 3, either
if & and /3 are the same class or if o inherits from 3. Thus, o <, B implies «
conforms to  and, therefore, a <, 3 implies a direct instance of o can be used
where a direct instance of 3 is expected. For example, Y <, X and, in fact, a

direct instance of Y can substitute a direct instance of X.

(a <, # = a conforms to ,8]

The is-a relation is reflexive and, since the inheritance relation is transitive,
the is-a relation is also transitive. For example, we can state that: (1) X <, X,
@Y <Y, B)Y < X (W) Z<Z,(5) Z<, Y, (6) Z<: X, (T) W <, W, (8) W

<: X.

In addition, because a class hierarchy is an acyclic graph (directed tree), the
is-a relation is antisymmetric. For example, if class o <, X and X <, « then
a is X. Therefore, we have that the is-a relation is reflexive, antisymmetric and

transitive, which means that a set of classes is partially ordered with respect to

the is-a relation.

Generalisation/Specialisation

Since a class « that inherits from a class 8 also conforms to § and possibly
adds some specifications, we say that « is a specialisation of 3 and, conversely,
B is a generalisation of a. Thus, the inheritance relation is also referred to as a

generalisation /specialisation relation, and a class hierarchy is also referred to as
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a generalisation/specialisation hierarchy.

Moreover, because classes are types, a is a subtype of 3. Therefore, we say
that « is a subclass of 3 and, conversely, 3 is a superclass of a. Accordingly, we dif-
ferentiate between direct and indirect subclasses and between direct and indirect
superclasses. For example, Y is direct subclass of X while Z is indirect subclass of
X and, conversely, X is direct superclass of Y while X is indirect superclass of Z.
Finally, for an object that is a direct instance of a class a, we say that « is the

most specific class of the object.

4.6 Summary

The schema for bibliographical references shown in Figure 4.13 illustrates the main

concepts of the object model.

Association

There is an association between Individual and Article, meaning:

e The role of Individual in the association is Author.

e The role of Article in the association is Article since there is no other speci-

fication.

e The multiplicity of Individual is [1,n]. So, an instance of Article is associ-
ated to one or many instances of Individual, i.e., an article has one or many

authors.
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Reference

title: String

Publication Library

year: Integer | On O,n | name: String

publisher: String address: String
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Figure 4.13 Simple schema for bibliographical references

e The multiplicity of Article is [0,n]. So, an instance of Individual is associated

to none or many instances of Article, i.e., an individual is author of any

v

number of articles.

Tight Aggregation

There is a tight aggregation between Journal and Article, meaning;:

e An instance of Article is physically part of an instance of Journal.

e An instance of Journal is an aggregate of any number of instances of Article.
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Loose Aggregation

There is a loose aggregation between Library and Publication, meaning:

e An object that is an instance of Publication is conceptually part of any

number of instances of Library.

e An instance of Library is an aggregate of any number of instances of Publi-

cation.

Class Hierarchy

There is a class hierarchy defined by the classes Reference, Publication, Article,

Journal and Book, meaning:

o Reference is superclass of Article and Publication. Reference defines the at-

tribute title which is common to Article and Publication.

o Article defines the attribute pages. So, an instance of Article has the attribute

title inherited from Reference and the attribute pages.

e Publication is superclass of Journal and Book. Publication defines the at-
tributes year and publisher which are common to Journal and Book. So, an
object that is a instance of Publication has the attribute title inherited from

Reference, and the attributes year and publisher.

e Journal defines the attribute month. So, an instance of Journal has the
attributes title, year and publisher inherited from Publication, and the specific

attribute month.
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e Book defines no attribute. So, a direct instance of Book has the same at-
tributes as direct instances of its direct superclass, i.e., the attributes title,

year and publisher inherited from Publication.

e Journal and Book inherit (from Publication) the loose aggregation with Li-
brary. So, instances of Journal and Book are conceptually part of instances

of Library.

e Article, Publication, Journal and Book are subclasses of Reference. So, a direct

instance of any of these classes can substitute a direct instance of Reference.

4.7 Conclusions

The technique for object modelling described in this Chapter makes use of a simple
set of concepts which are becoming common amongst object-oriented systems.
Despite its simplicity, the technique permits modelling of information objects with
considerably great expressiveness and re-use of definitions by applying inheritance,
as the examples have shown. An advantage of being simple is that a system that
supports the technique is perfectly feasible by employing standard programming
languages and operating systems, thereby making it possible to inter-operate with
other object-oriented systems. The same approach is taken by the OMG CORBA
[45], for example. Another clear advantage is that the technique can be easily

assimilated and applied.

The graphic notation defined permits a concise and unambiguous represen-
tation of object properties. The only aspect of object-oriented modelling which

cannot be represented through the graphic notation is method semantics, or the
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behaviour of the objects. We believe that a distinct form of notation should be
used for specifying method semantics as it is equivalent to specifying an algo-
rithm. For example, a notation for formal specification of software, such as the Z

Notation [53], could be employed as a complement to the graphic notation.

Finally, we have emphasised the importance of attributing semantics to point-
ers between objects and have introduced loose aggregation in addition to the set of
concepts normally found in object-oriented modelling techniques. This feature of
our technique, in particular, is going to reveal very important in Chapter 6 where
the technique is employed to represent its own elements (classes, attributes, meth-
ods and relationships) and a model to organise the class space which is devised in

Chapter 5 (schemas).
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CHAPTER 9

Class Space Organisation

In this Chapter we introduce a means of organising the class space by which classes
are grouped in schemas that can be composed of sub-schemas, recursively. Since a
class designates a set of objects (the deep extent of the class), a schema indirectly
permits the selection of a set of objects for manipulation, which we define in this
Chapter as databases. Moreover, classes define object properties which can be
inherited by subclasses, thereby permitting the re-use of type definitions. Thus,
schemas permit the organisation of the class space for both the organisation of
objects and the management of types. In general, the motivation for having

schemas as a means of organising classes include the following items:

1. Security: A schema can be used for defining the set of objects (at the class

granularity) that each user should be able to get access.

2. Customisation: A schema can be used for selecting only the classes which

are of interest to users.

3. Efficiency: A schema can be used for selecting a specific set of classes for
manipulation, thereby reducing the type information necessary to be loaded

by programs.




Chapter 5. Class Space Organisation 84

4. Administration: Schemas document which classes are defined thereby per-

mitting to manage their use and re-use.

5. Scalability: Proper class organisation is particularly important when the
number of classes, objects and users are considerably large, distributed and
require decentralised administration. Schemas permit the partition of the
class space in a hierarchical structure, which is the approach normally taken
in scalable systems [36]. In Chapter 7 we define views as a means of associ-
ating schema information and index information with corresponding objects

in order to organise the object space.

We informally introduce the notions of schema and database in our context
and then give formal definitions for them. The formal definitions are presented

for the following reasons:

1. The formal models for databases found in the literature define schemas as
global entities, i.e., the schema space is normally flat. Since we organise
schemas in hierarchies (for scalability purposes) we formalise this new con-
cept. Moreover, the formal definition of schema is necessary in Chapter 6

for defining the meta-schema.

2. The formal models for databases found in the literature define databases as
a “consistent” set of objects, i.e., a set of objects where all object references
are to objects that also belong to the set (referential integrity or no dangling
identifier assumption [31]). However, since they do not support the notion
of sub-schemas, they do not consider the case where a set of objects is “rela-
tively consistent”, i.e., the case where a set is consistent with respect to the

relationships included by a sub-schema, rather than “absolutely consistent”.
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We introduce a new concept, namely relative self-containment, to differen-
tiate between absolute and relative referential integrity and then formally
define database. The main advantage of having relative self-containment is
to permit a set of objects (a database) to be consistently manipulated even

if they have (unvisible) dangling references.

5.1 Overview

A schema is a collection of classes, including all corresponding inheritance arcs
and relationships. For example, the diagram in Figure 4.13 represents a simple
schema for bibliographical references. The only invariant that must hold in a
schema is that, recursively, the superclasses of every class in the schema must be

in the schema, too.

For this reason, we define root-subtree as a subtree of a class hierarchy such
that the root of the subtree is the root of the class hierarchy. In other words,
the root of a root-subtree has no superclass. For example, in the schema for
bibliographical references, a subtree that has either Reference, Library or Individual

as its root is a root-subtree, otherwise it is not.

Thus, obviously, the empty set defines a schema and, consequently, given a
set of class hierarchies, a schema can be any union of root-subtrees of the class
hierarchies. Furthermore, any union of schemas is a schema. For example, any

union of the following sets of classes defines a schema.
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so=10 sa = {Reference, Publication, Journal}
s1 = {Reference} s5 = {Reference, Publication, Book}
s; = {Reference, Article} ss = {Library}

s3 = {Reference, Publication} s7 = {Individual}

Schema Aggregation

Schemas can be recursively aggregated to form larger schemas. For this reason,
a schema is recurrently defined as an aggregation containing a root-subtree that
can be nil and a set of schemas. Thus, directly, a schema can contain at most
one root-subtree and, indirectly, it can contain any number of root-subtrees. The
schema for bibliographical references, for example, contains three class hierarchies
defined by the root classes Reference, Library and Individual and, consequently, the

schema is necessarily composed of smaller schemas.

A schema that contains only a root-subtree is referred to as a basic schema.
Moreover, aggregate and component schemas are, respectively, referred to as
super-schema and sub-schema. Thus, given a schema s, if its set of schemas is
empty then s is a basic schema, otherwise s is a super-schema and each schema in
the set of schemas of s is a sub-schema of s. Finally, two schemas are equivalent if
they contain the same set of classes, independently of their internal arrangement

of sub-schemas.

As an example, Table 5.1 shows some possible definitions of schemas and their

aggregations using the classes in the schema for bibliographical references, which is
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schema root-subtree (set of classes) sub-schemas
wy { Reference, Article, Publication, Journal, Book } 0
wy { Library } 0
w3 { Individual } 0
wy 0 {wr, wa, ws}
ws { Reference, Article, Publication, Journal, Book } {wa, w3}
We { Library } {wy, ws}
wr { Individual } {wn, wp}

Table 5.1 Example of schema aggregation

necessarily a super-schema. We can note that: (1) w;, w, and ws are basic schemas
since they do not contain sub-schemas, (2) wy is a super-schema containing three
sub-schemas, (3) ws, ws and wy are super-schemas containing a root-subtree and
two sub-schemas, (4) wy, ws, ws and wy are equivalent because they contain the

same set of classes.

Self-contained Schema

Schemas are useful for defining portions of a database for manipulation because
every schema has implicitly associated with it a set of objects: the union of the
deep extents of all the classes that belong to the schema. Although, in principle,
schemas can be freely defined and aggregated, certain constraints are necessary to

ensure that the set of objects associated with a certain schema is self-contained.

A schema does not necessarily ensure referential integrity. It is possible to

define a schema so that the associated set of objects contains objects with dangling
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references, i.e., references to objects which are not in the set. In other words, the
set of objects associated to a schema is not necessarily a database. For example,
the set of objects associated to the schema w, in Table 5.1, consisting only of
instances of the class Library, is not a database since an instance of Library can
contain references to instances of the class Publication, which do not belong to the

set of objects defined by w;.

Therefore, we define self-contained schema as a schema s such that for
every class a that belongs to s all superclasses and all classes related to a belong
to s, recursively. This constraint ensures that the set of objects associated to a
self-contained schema does not contain dangling references. Some examples of
self-contained schemas are the schemas wy, ws, we and wr in Table 5.1. Another

example is a super-schema containing the classes Library, Publication and Reference.

5.2 Schema Definition

Graph Representation

Classes and corresponding inheritance arcs can be represented by a directed graph;
every vertex of the graph represents a class and every arc (directed edge) of the
graph represents an inheritance arc. (In Appendix A we prove that such a graph
is a directed tree.) We define a notation for graphs which is summarised in Figure

5.1 through an example.

Notation 5.1 A directed graph G is denoted by a doublet (V,A), where V is the

set of vertices and A is the set of arcs of G. O
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Notation 5.2 Given a directed tree U, the notation Root(¥) denotes the verter in
V.V which is the root of W. a

\I'.Vz{vl,...,vg}
\P.A={a1,...,a7}

Root(¥) = v

Figure 5.1 Graph notation

Also, we define notation to denote all classes, all inheritance arcs and then the

graph that represents all classes and inheritance arcs.
Notation 5.3 The symbol C denotes the set of all classes. O

Notation 5.4 The symbol A denotes the set of all inheritance arcs between classes

inC. O
Notation 5.5 The symbol G denotes a directed graph such that G.V = C and
Gg.A=A. O

Self-contained Set of Classes

A schema corresponds to a subgraph of G that can be used independently. How-

ever, a subgraph of G corresponds to a set of classes, which is not necessarily
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independent of the remaining classes. A set of classes C is self-contained, hence
independent of the remaining classes in C, if all classes referred to by the classes
in C also belong to C. According to our definitions of class and relationship,! a

class ¢ contains a reference to a class y in one of the following situations:

1. z is direct subclass of y
In this case, z contains the name of y as the name of its superclass.
2. ¢ and y are related classes

In this case, z contains the name of y as the name of a related class.

Thus, more specifically, a set of classes C' is totally self-contained if, and only

if, the following conditions hold:

S1. The superclass of every class in C belongs to C.

S;. Every class related to every class in C belongs to C.

If 51 holds we say that C is self-contained with respect to hierarchy. If S; holds

we say that C is self-contained with respect to relationship.

Definition 5.1 (Class Hierarchy Self-containment) A set of classes C is self-contained
with respect to hierarchy iff Vo € C : if ¢ is derived from a class y then y € C.
O

Notation 5.6 Given a class z, the notation p(z) denotes the set of all classes related

tox.

! Definition A.23 (Class) and Definition A.8 (Relationship Specification) in Appendix A.
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Definition 5.2 (Class Relationship Self-containment) A set of classes C is self-con-

tained with respect to relationship iff Vz € C : p(z) C C. d

Definition 5.3 (Totally Self-contained Set of Classes) A set of classes C is totally

self-contained iff:

o C is self-contained with respect to hierarchy

o C is self-contained with respect to relationship O

Example 5.1 Let us consider the classes represented by the graph depicted in Fig-
ure 5.2, where class relationships are represented by dashed lines, and references
between classes are listed on the right-hand side of the graph: the first and the
second columns, respectively, contain the superclass and the set of related classes
for each class in the graph. Each row of Table 5.2 contains a subset of the classes

in the Figure and an indication (v ) whether the set is self-contained with respect

to hierarchy and relationship. O

superclass(c;) =nil  p(e)) =0
superclass(c;) = ¢ pleca

superclass(cs) = ¢ pes) = {cs}

superclass

T SR J superclass(c;) = nil  p

)

)

)
superclass(cs) = c3 plcs) = {ez, 7}
superclass(cs) = c3 p(cs)

( )
( )

(
) =nil  p(cs) = {es}
(

Figure 5.2 Example of references between classes
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set of classes self-containment
hierarchy | relationship
{a1} v v
{c1, €2, €3} v
{cs, e} v
{03, C4, 65}
{01 , €3, Co }
{c1,...,¢r}

Table 5.2 Example of self-contained set of classes

Root-subtree

Since the (connected) components of G are (tree-structured) class hierarchies, the
components of a subgraph of G are subtrees of class hierarchies. According to
condition S;, in a subgraph that designates a schema, the set of classes in such
a subtree must be self-contained with respect to hierarchy. For simplicity, we

designate such a subtree as self-contained.

Definition 5.4 (Self-contained Subtree) A subtree H of a class hierarchy ¥ in G is
self-contained iff the set of classes H.V is self-contained with respect to hierarchy.

a

We now define root-subtree as a subtree of a class hierarchy such that the root
of the subtree is the root of the class hierarchy (i.e., the class which is the root of a
root-subtree has no superclass). A root-subtree is self-contained and, conversely,

that a self-contained subtree is a root-subtree, as we state in Theorem 5.1 and
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prove in Appendix B.

Definition 5.5 (Root-subtree) A root-subtree H is a subtree of a class hierarchy ¥

in G such that Root(H) = Root(¥). 0O

Example 5.2 Let us consider the classes represented by the graph depicted in Fig-
ure 5.3. A root-subtree, such as H,, is denoted by the dotted-line rectangle and a
black point connected to the rectangle by another dotted line; the rectangle sur-
rounds the vertices and arcs of the root-subtree. Since a root-subtree is a graph,
the classes of a root-subtree is given by its set of vertices, such as Hy.V for the
root-subtree Hy. The list on the right-hand side of the graph shows the set of
classes of Hy and some other possible root-subtrees, namely H,, ..., Hs, which, for
simplicity, are not denoted in the graph. We should notice that any root-subtree

must contain the class ¢; since it is the only root class in the graph. O

€1 H,.V ={a,cs, ¢}
.......... o H, H,.V ={a, e, c3}
Cz/ 3 HS-V={CI’-"a05}
H4.V = {Cl}

C4 Cs HS- V= {Ch €3, 65}

Figure 5.3 Example of root-subtree

Theorem 5.1 (Root-subtree Self-containment) A subtree H of a class hierarchy U

in G is self-contained iff H is a root-subtree. |
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Schema

A schema is recurrently defined as an aggregation containing a root-subtree which
can be nil and a set of schemas; directly, a schema may contain at most one
root-subtree and, indirectly, it may contain any number of root-subtrees. Thus,
a schema corresponds to a set of classes that is self-contained with respect to
hierarchy but not necessarily self-contained with respect to relationship. Let us
assume the existence of a countably infinite set WN of schema names, then we

can define schema as follows.

Definition 5.6 (Schema) A schema is a triple (n, H,S), where:

e ne WN
e H :is either a root-subtree or nil

e S is a set of schemas
Terminology:

o Let w be a schema. If w.H # nil and w.S = then w is a basic schema.

o Let wy and wy, be schemas. If wy, € w.S then wy, is super-schema of we,

while wy is sub-schema of w,. O

Example 5.3 Let us consider the classes represented by the graph depicted in Fig-
ure 5.4. A schema, such as ws (bottom of Figure), is denoted by a full-line
rectangle and arrows connecting the rectangle to a root-subtree, such as Hs, and
other schemas, such as wy. Root-subtrees are surrounded by dotted-lines, and
class relationships are denoted by dashed lines. Let us suppose that s,,...,s¢ are

schema names, then we have the following elements in the graph:




Chapter 5. Class Space Organisation 95
e Class hierarchies W, ¥y, W3:
\DI.V:{CI,...,Cg} ROOt(‘I’l)Z C1
\I’z.V = {c9,...,cu} ROOt(\I’z) = Cg
\Ilg.V = {Clg,...,615} ROOt(\I’3) = C12
e Root-subtrees H,, ..., Hs:
Hl.V={Cl,...,Cs} H4V= {612, 614}
H2-V = {097"'5611} H5V: {61702,657 66}
H3. V = {612, ey 615}
e Basic schemas w, ..., w,;, and super-schemas ws, we:
w = (51, Hb@) Wy = (54» Hy, @)
wy = (s2, Ha, D) ws = (ss, Hs, {ws})
w3 = (53, H3, @) We — (567 ni17 {wlv Wa, w3})
O

Schema Name Distinction

The name of a schema must be distinct from the name of any other schema to
permit each one to be referred to unambiguously. We define a notation to denote

the set of all schemas and formally define that each schema has a distinct name.
Notation 5.7 The symbol W denotes the set of all schemas. O

Invariant 5.1 (Schema Name Distinction) Vz,y € W: ifsn=yn thenz =y. ¢
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Acyclic Arrangement of Schemas

According to Definition 5.6 (Schema), a schema may contain a number of schemas,
recursively, hence forming a hierarchy of aggregated schemas. Obviously, a schema
cannot contain itself (neither directly nor indirectly), otherwise the recursion is
infinite. In other words, there can be no cycle in a hierarchy of schemas. We define
a notation to denote all sub-schemas of a schema and formally define that a schema

cannot be sub-schema of itself, i.e., the arrangement of schemas is acyclic.

Notation 5.8 Given a schema w, the notation y(w) denotes the set of all sub-

schemas of w, recursively:

Pp(w)=w.SU |J ¥(z) O
z€EW.S
Invariant 5.2 (Acyclic Arrangement of Schemas) Yw € W : w ¢ (w). ¢

Self-contained Schema

The set of classes corresponding to a schema is self-contained with respect to
hierarchy since a schema is composed of root-subtrees. In addition, such a set
of classes may also be self-contained with respect to relationship, hence totally
self-contained. For simplicity, we say that a schema is self-contained if its corre-
sponding set of classes is totally self-contained, otherwise we say that the schema
is not self-contained. We define a notation to denote the set of classes that corre-

sponds to a schema and formalise self-contained schema.

Notation 5.9 Given a schema w, the notation ®(w) denotes the set of classes in
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w, recursively:

®(w) =wHVU (] &) 0

z€EwW.S
Definition 5.7 (Self-contained Schema) A schema w is self-contained iff the set of

classes given by ®(w) is totally self-contained. O

Example 5.4 Let us consider again the schemas depicted in Figure 5.4. The set of
classes corresponding to each schema and the sets of related classes which are not

empty are given as follows.

®(wy) = H,.V={a,...,cs}

O(wp) = H,.V = {cs, €10, €11}

®(w3) = H3.V = {c12,..., 15}

O(wy) = Hy. V = {12, 14}

O(ws) = Hs. V U ®(wy) = {1, €2, €5, C6, C12, C14}

O(we) = ®(wy) U P(w2) U ®(ws) = {ery..., 5}

p(cs) = {co} p(ce) = {cia}  plcro) = {3}

plen) ={as}l  plas) ={eu}  ple) = {cs}

Therefore, self-containment of the given schemas is given as follows.

c3 € ®(w1) A p(es) € ®(wr) = wy is not self-contained
cs € ®(w1) A p(es) € ®(w1) = wy is not self-contained
cio € D(wp) A p(c10) € ®(w2) = wy is not self-contained

c1n € ®(wp) A p(e11) € ®(we) = ws is not self-contained
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a3 € ®(ws) A p(er3) € ®(ws) = ws is not self-contained
c14 € ®(ws) A p(e1a) Q ®(ws) = ws is not self-contained
c1a € O(wy) A p(cra) € ®(ws) = wy is not self-contained
®(ws) is totally self-contained = ws is self-contained

®(we) is totally self-contained = we is self-contained

5.3 Database Definition

A schema designates a set of classes and each class designates a set of objects: the
deep extent of the class. Thus, a schema (indirectly) designates a set of objects:
the union of all deep extents of the classes designated by the schema. Firstly we
introduce a notation to designate the deep extent of a class and then we introduce

a notation to denote the set of objects designated by a set of classes.

Notation 5.10 Given a class c, the notation Ext*(c) denotes the deep extent of c.

a

Notation 5.11 Given a set of classes C, the notation (C) denotes the set of all
objects which are instances of classes in C':

QC) = | Ext*(c) O

ceC

A set of objects S where all objects referred to by objects in .S also belong to
S, i.e., there are no “dangling” references in S, can be manipulated independently

of the remaining objects. Accordingly, we define such a set of objects as absolutely
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self-contained. Firstly we define a notation to denote the set of all objects and

another notation to denote the set of objects related to a given object.
Notation 5.12 The symbol O denotes the set of all objects. O

Notation 5.13 (Set of Related Objects) Given an object o € O, the notation Ref(o)

denotes the set of all objects which are related to o. (]

Definition 5.8 (Absolute Self-containment) A set of objects S is absolutely self-contained

if Vo€ S: Ref(o) CS. O

However, a set of objects does not need to be absolutely self-contained to be
independent for manipulation purposes. For example, let us consider the classes
and respective instances depicted in Figure 5.5. For this discussion we labelled
the objects as 1, 2 and 3, and annotated their parts corresponding to each class.
Thus, the object 1 has a part C, the object 2 has parts A and B, and the object
3 has a part D. The object relationship r corresponds to the class relationship R,
while the object relationship s corresponds to the class relationship S. Since R is
between C and B, r is maintained by the parts C and B of the objects 1 and 2,
respectively. Similarly, since S is between A and D, s is maintained by the parts
A and D of the objects 2 and 3. Now, let us suppose that a self-contained schema
w is defined containing the classes A and D. The set of objects designated by w
includes the objects 2 and 3. Since w does not include class B, the part B of object
2 is not “covered” by w, i.e., if a user manipulates the object 2 through w then the
part B of object 2 is not “seen” by the user. Consequently, the object relationship
r is not relevant to the user. Thus, although the set of objects designated by w

is obviously not absolutely self-contained, this set contains no dangling references
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with respect to w. In other words, the set of objects designated by w is self-
contained relatively to the class relationships included by w. The set of objects
designated by a self-contained schema, in particular, is referred to as database.

Thus, a database is self-contained with respect to its designating schema.

Definition 5.9 (Database) Given a self-contained schema w, the database with re-
spect to w, denoted as DB(w), is the set of objects which are instances of the set

of classes in w:
DB(w) = Q(®(w)) O

Definition 5.10 (Relative Self-Containment) Given a self-contained schema w, a set

of objects S is self-contained with respect to w is S C DB(w). O
......................................................... w
A D :
........... S ]
[ B
R
________________ _1

Figure 5.5 Relative self-containment of schemas
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5.4 Conclusions

The recursive definition of schema and their consequent hierarchical arrangement
provide a powerful means of organising classes and objects: schemas can be freely
decomposed in sub-schemas and, conversely, they can be freely aggregated to
other schemas to form larger schemas. This approach permits flexible and scalable
organisation of class and object space, as we discuss in Chapter 7, in contrast with

the flat space normally offered by database systems.

In addition, with the new concept that we have introduced, relative self-
containment, a schema can designate a set of objects — a database — for manip-
ulation independently of the remaining objects even if an object in the database
contains a reference to an object which does not belong to the database. The
only requirement is that the references that correspond to the schema are self-
contained. This approach relaxes the traditional referential integrity required in

object-oriented database systems.




103

CHAPTER O

Meta-object Model

Schemas (including classes, attributes, methods and relationships) themselves con-
stitutes information which require proper management. In this Chapter, we show
that the object model is reflerive by defining a set of special (reserved) classes —
the meta-classes — which can represent schemas. Next we define a (self-contained)
schema — the meta-schema — that contains all meta-classes. Thus, the database
designated by the meta-schema — the meta-objects — represents all (meta) in-
formation about both the predefined and user-defined schemas. We demonstrate
the correctness of the meta-schema through a set of rules for mapping schema ele-
ments to meta-objects. Since meta-objects permit represention and manipulation
of schemas, we refer to the collection of definitions introduced in this Chapter as

meta-object model.

A database of meta-objects corresponds to the notion of data dictionary or
meta-data often employed in database and CASE systems; meta-objects provide
for system administration, documentation, and software management. Systems
administrators use meta-objects to manage schemas: creation, modification and
deletion of classes, and their organisation in schemas and sub-schemas. As a

source of documentation meta-objects permit users to learn what classes exist,
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thereby making it easier for them to formulate queries and discover information.
The information about types' maintained by meta-objects permits automatic gen-
eration of program code for several purposes. The code corresponding to classes,
which is necessary to manipulate objects from programs, can be generated and
then linked to specific applications, such as information browsers, query inter-
preters and report generators. Also, the type information in meta-objects can be
used to generate specific code for object state checkpointing? and transport within
network messages in distributed systems. We discuss the use of meta-objects for

code generation in Chapter 8 where an implementation of our model is described.

In addition, we make a non-conventional use of meta-objects: query resolu-
tion. The information about classes (basically class name, attributes, inheritance
and relationships) maintained by meta-objects naturally permits appropriate type
checking of query expressions (e.g. verify if an attribute which is specified in a
query expression as belonging to a certain class really belongs to it). Moreover, we
add to the normal information represented by meta-objects the information about
indices which is necessary for resolving queries. Thus, every object operation that
affects index information is followed by an operation that uses meta-objects to lo-
cate the indices that should be updated, and a query interpreter solves queries by
simply traversing meta-objects and obtaining information from the corresponding
indices. The use of meta-objects for query resolution purposes is explained in

Chapter 8.

'In our model a class is a type.

2Typically, transaction-based systems store object states in auxiliary storage for recovery

purposes.
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Meta-objets also have a fundametal role in the formal definition of our model:
schema space definition. Conceptually, schema elements exist only if the meta-
objects that map them exist. For example, every class has to be mapped to an
appropriate set of meta-objects in order to register it as a valid type, thereby
enabling the creation of instances of it. In this respect, our meta-object model
differs from “pure” object-oriented systems, such as Smalltalk][23] and its varia-
tions, where a class is an object. In our model a class is simply a type which
is represented by meta-objects as a means of implementing the type space. This
poses an interesting problem of solving the implicit recursion in the meta-model.
Because every class has to be mapped to meta-objects for it to exist, it requires
the existence of meta-classes in order to enable the creation of meta-objects. How-
ever, meta-classes are classes which also need to be mapped for them to exist. In
this Chapter, we simply postulate the existence of the meta-classes and, then, in

Chapter 8 we explain how this recursion problem is solved.

Notation

The meta-object model has its basis on the object model introduced in Chapter 4
and formally defined in Appendix A. Because that formal definition is consider-
ably detailed for the purpose of explaining the meta-model, here we repeat only
the essential notation introduced and simplify its format for readability reasons.
However, in Appendix D we demonstrate that the meta-object model complies
with the formalism defined for the object-model by giving a version that makes
use of the formal notation for each definition and example presented in this Chap-

ter.




Chapter 6. Meta-object Model 106

6.1

class(n) : the class whose name is n

className(c) : the name of the class ¢

0bjClassName(o) : the name of the most specific class of the object o
schemaName(w) : the name of the schema w

Att(c) : the set of all attributes of the class ¢

Rel(c) : the set of all relationships of the class ¢

Met(c) : the set of all methods of the class ¢

0 —-+ n : the value of the attribute n of the object o

Y
T2y the relationship between the objects z and y where the role of z is

X and the role of y is Y
€(n) : the deep extent of the class whose name is n

relType(r) : the type of the relationship r (“Loose Aggregation”, “Tight

Aggregation” or “Association”)

Meta-schema

The meta-schema is depicted in Figure 6.1. The basic principle is to represent

schemas (and their components) as inter-related instances of the meta-classes. For

example, if there is a user-defined class Person then there must be an instance,

say o1, of the meta-class Class whose attribute name has value Person.

className(o0,) = Class 01 —-+ name = Person
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If the class Person has an attribute age of type Integer then there must be an

instance, say o0, of the meta-class IntegerAttribute whose attribute name is age.

className(o,) = IntegerAttribute 02 --+ name = age

Moreover, o, must be related to o, in order to represent that the attribute o, is a

component of the class o;.

Attribute
0p = 09
Class

Self Representation

The basic principle of representing user-defined schemas as instances of meta-
classes can be applied to the meta-schema as well, i.e., we can have a database
of meta-objects that represents the meta-schema. For example, since there is a
class Class there must be an instance, say o3, of the class Class whose attribute
name has value Class. Also, since the class Class has an attribute name of type
String there must be an instance, say o4, of the meta-class StringAttribute whose

attribute name has value name. Moreover, attribute o4 must be related to class

03.
className(o03) = Class o3 —-+ name = Class
className(o04) = StringAttribute 04 -—» Name = name
Attribute
03 — 04
Class

As another example, there must be two instances, say os and og, of the meta-

class Class whose attributes name have values Attribute and StringAttribute, respec-
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> Method

*signature: String

SuperSchema.;'"'b. n Schema
. on
SubSchema . 0n/4 *name: String
RootSchema NonRootSchema
On: i0n
01 ion
RootClass& éNonRootClass
SuperClass, 1" Class
SubClass™.. 0.
*name: String
On
Attribute ittt IR S
*name: String LeftClas; lllightClass
key: Integer
StringAttribute IntegerAttribute
O.n On
LeftRelationship \'I V RightRelationship
Relationship
left_key: Integer
right_key: Integer
Aggregation
*aggregate_role: String
*componenet_role: String
component_min_card: Integer
component_max_card: Integer
LooseAggregation TightAggregation

aggregate_min_card: Integer
aggregate_max_card: Integer

Figure 6.1 The meta-schema

Association

*left_role: String
*right_role: String
left_min_card: Integer
right_min_card: Integer
left_max_card: Integer
right_max_card: Integer
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tively. Since the meta-class Attribute is superclass of the meta-class StringAttribute

then o5 must be related to og: the class o5 is superclass of the class og.

className(os) = Class 05 --+ name = Attribute
className(og) = Class 0s --+ name = StringAttribute
SubClass

5 =
SuperClass

Naming Assumptions

All class and schema names used in the meta-schema are considered as “reserved”,
1.e., user-defined schemas cannot contain those names. (In Chapter 7 we relax
this constraint by introducing contezts as a means of defining autonomous name
spaces.) Moreover, the only primary types used in the schema correspond to the

domains of integers and strings. Thus, let us assume the existence of the following

sets:

e a set Ry of reserved class names:

Rev =1
Class, Attribute, Method, Relationship, Schema,
IntegerAttribute, StringAttribute,

Aggregation, LooseAggregation, TightAggregation, Association
}

e a set Ry of reserved schema names:

Rwn = {Meta, Class, Attribute, Method, Relationship, Schema}
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e a set Rpy of reserved primary type names:

Rpn = {Integer, String}

Meta-classes

Now we formalise the definitions of meta-class and meta-object, and we postulate
the existence of the meta-classes. The meta-classes are the predefined classes of
the meta-schema. Thus, the name of a meta-class must be one of the reserved
class names. Since meta-classes are predefined they must exist in the set of all
classes. A meta-object is any instance of a meta-class, i.e., the most-specific class

of a meta-object is a meta-class.

Definition 6.1 (Meta-class) A class ¢ € C? is a meta-class iff className(c) € Ren-
a

Invariant 6.1 (Meta-classes Existence) Vn € Ren : 3 ¢ € C such that className(c) =

n. ¢

Definition 6.2 (Meta-object) An object o € O* is a meta-object iff 0bjClassName(o) €
Rewn. a

The meta-classes are formally defined in Appendix C according to the meta-
schema depicted in Figure 6.1. Examples of instances of the meta-classes, i.e.,
meta-objects, are given in Section 6.2, where rules for mapping classes, attributes,

methods, relationships, and schemas into meta-objects are given.

3The symbol C is defined by Notation 5.3 as the set of all classes.
4The symbol O is defined by Notation 5.12 as the set of all objects.
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Meta-schema

The meta-schema is the schema that designates all meta-classes. As the diagram-
matical representation of the meta-schema shows (Figure 6.1), the meta-schema
is a super-schema composed of five basic schemas since there are five root classes
(Class, Attribute, Method, Relationship, Schema). For simplicity, we name the
meta-schema as Meta and each sub-schema with the same name of its root class.
Moreover, the meta-schema is self-contained since the set of all meta-classes is
totally self-contained, i.e., all class relationships are “within” the meta-schema.

Hence, according to Definition 5.6, the meta-schema is formally defined as follows.
Definition 6.3 (Meta-schema) The meta-schema is a schema w € W° such that:

1. w.n = Meta
2. wHV=0 (wHA=0)

3. w.S = {si, 52, 83, 84, 55 }, where:

(a) s,.n = Class

(b) s1.H.V = {c €C | ¢ <, class(Class)}

(¢) s3.n = Attribute

(d) s2.H.V = {c € C | ¢ <; class(Attribute)}
(e) s3.n = Method

(f) s3.H.V ={c €C | ¢ <, class(Method)}

(g9) ss.n = Relationship

5The symbol W is defined by Notation 5.7 as the set of all schemas.
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(k) ss. H.V = {c € C | ¢ <; class(Relationship)}
(i) ss.n = Schema

(G) ss.H.V ={c €C | ¢ <, class(Schema)} O

Proposition 6.1 (Meta-schema Self Containment) The meta-schema is self-contained.

a

6.2 Meta-object Mapping

In this Section we show how classes, attributes, methods, relationships and schemas
are mapped to meta-objects. The meta-schema models a class as an aggregation of
attribute specifications, relationship specifications and methods. For this reason,
each class maps to an instance of the meta-class Class aggregated to instances of
the meta-classes Attribute, Relationship and Method. For simplicity of explanation,
we introduce the mapping for each type of class component (attribute, method
and relationship) separately and then explain how class hierarchies and schemas
are mapped. Figure 6.2 shows a simple schema which is used throughout this

Section to illustrate such a mapping.

Firstly, we recall that each class has a distinct name. Consequently, the in-
stances of the meta-class Class must have the attribute name with distinct values.

Such instances are simply referred to as class meta-objects since they map classes.

Invariant 6.2 (Class Instance Name Distinction) Y z,y € £(Class): if £ --+ name =

y --+ name then z = y. ¢
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Definition 6.4 (Class Meta-object) Given a class ¢ € C, the class meta-object with
respect to ¢, denoted as CMO(c), is B € &(Class) such that 3 --» name =

className(c). O

Example 6.1 Let c denote the class named Person. The notation CMO(c) denotes

the instance (3 of the meta-class Class such that 3 --+ name = Person. &
School Person
*name: String *surname: String
firstname: Strin
register_student | ... O Student &
. 03 on age: Integer
(Person,String):Integer 4 ’

University

acronym: String

Figure 6.2 Example schema for meta-object mapping

Attribute Mapping

An attribute a of a class ¢ is mapped to two meta-objects: an instance a of
the meta-class Attribute and an instance (3 of the meta-class Class. The meta-
object o must be a direct instance of a subclass of the meta-class Attribute (either
StringAttribute or IntegerAttribute) according to the primary type of a. The value
of the attribute name of a must be the name of a. The meta-object 3 must be the
class meta-object of the class ¢. The meta-objects @ and 3 must be related: 3 is

the (aggregate) class of «, while a is (component) attribute of 3. We introduce
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a notation to denote the meta-class corresponding to each primary type and then

formalise mapping of attributes to meta-objects.

Notation 6.1 Given a primary type name p € PN, the notation AttCN(p) denotes

a class name in Rey as follows.

o AttCN(Integer) = IntegerAttribute

o AttCN(String) = StringAttribute a

Definition 6.5 (Attribute Mapping) Given an altribute a of a class ¢ where n is
the name of a, p is the primary type name (Integer or String) of a, and k is
either 1 or 0 depending whether or not a is a key atiribute, the set of meta-objects

that maps a, denoted as Metay(a), is the set containing only the meta-objects

a € ¢(Attribute), 8 € £(Class) such that:

(i) className(a) = AttCN(p)
(i) & - name = n
(iii) a -+ key = k
(iv) B = CMO(c)
Class

VVa = p O

e
Attribute

Example 6.2 Let us consider the attribute surname of class Person. Let a denote

that attribute, then Metas(a) = {a, 8} such that:

className(a) = StringAttribute B = CMO(class(Person))
Class
« --+ name = surname a =
Attribute

a-—-+key=1
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Method Mapping

A method m of a class ¢ is mapped to two meta-objects: an instance u of the
meta-class Method and an instance B of the meta-class Class. The value of the
attribute signature of 4 must correspond to the signature of m. The meta-object
B must be the class meta-object of the class ¢. The meta-objects u and 3 must be
related: [ is the (aggregate) class of p, while u is (component) method of 3. For
practical reasons, the function and the semantics of a method are not mapped to
meta-objects. We introduce a notation to denote a string that corresponds to the

signature of a method and then formalise mapping of methods to meta-objects.

StrSi
Notation 6.2 Given a method p, the notation StrSig(p) denotes the string obtained

by concatenating the name of p, the argument type names of p and the result type

name of u in this order and separating them using commas. O

Definition 6.6 (Method Mapping) Given a method m of a class c, the set of meta-
objects that maps m, denoted as Metay(m), is the set containing only the meta-

objects p € £(Method), 8 € £(Class) such that:

(i) p --+ signature = StrSig(m)

(i) B = CMO(c)
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Example 6.3 Let us consider the method register_student of class School. Let m

denote that method, then Metapy(m) = {u,B} such that:

className(p) = Method
p --+ signature = “register_student, Person, String, Integer”

B = CMO(class(School))

Class
H Method

Relationship Mapping

A relationship r between classes ¢; and ¢; is mapped to three meta-objects: an
instance o of the meta-class Relationship and two instances 3, 32 (which can be
the same) of the meta-class Class. The meta-object o must be a direct instance of a
subclass of the meta-class Relationship (either TightAggregation, LooseAggregation
or Association) according to the relationship type. The meta-objects 3; and (3,

must correspond to the related classes ¢; and c;.

Since a relationship is between two classes, to avoid confusion, we must desig-
nate one class as the LeftClass and the other one as the RightClass in the relation-
ship. For simplicity of explanation, we establish a convention where by the class
c1 is the class designated as LeftClass, while the class ¢, is the class designated
as RightClass. Thus, #; and o must be related to each other having, respectively,
the roles LeftClass and LeftRelationship, while 3; and o must be related to each
other having, respectively, the roles RightClass and RightRelationship. Moreover,
we establish another convention to designate aggregated classes: if the relation-

ship is an aggregation then the aggregate class must be the LeftClass, while the
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component class must be the RightClass. If the relationship is an association then

it is unimportant how the classes are designated.

Definition 6.7 (Relationship Mapping) Given a relationship r between classes ¢; and

¢y where

o the role of ¢; is Ry

o the role of ¢y is Ry

o the minimum cardinality of ¢; is |

o the minimum cardinality of ¢z is b

o the marimum cardinality of ¢\ is u

o the maximum cardinality of ¢z is ug

o the flag key of ¢y is k

o the flag key of ¢z is ky

the set of meta-objects that maps r, denoted as Metag(r), is the set containing
only the meta-objects o € &(Relationship), 8 € {(Class), B; € £(Class), such that:

LeftRelationship

(i) B = g

Lef;:aass

. RightRelationship
(ii) B2 = o
RightClass

(iii) if relType(r) = “Loose Aggregation” then:
(a) className(o) = LooseAggregation
(b) o —-» left_key = k;

(c) o --+ right_key = k;
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(d) o —-+ aggregate_role = R,

(e) o -—+ component_role = R,

(f) o --+ component_min_card = /,
(9) o --+ component_max_card = u,
(h) o --+ aggregate_min_card = |

(i) o --+ aggregate_max_card = y,
(iv) if relType(r) = “Tight Aggregation” then:

(a) className(o) = TightAggregation
(b) o -+ left_key = k

(c) o ——> right_key = k,

(d) o --+ aggregate_role = R,

(e) o --+ component_role = R,

(f) o --+ component_min_card = k,

(g) o --+ component_max_card = u,
(v) if relType(r) = “Association” then:

(a) className(o) = Association

(b) o —» left_key = k

(¢) o --+ right_key = k;

(d) o —-+ left_role = R;

(e) o -+ right_role = R,
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(f) o -—+ right_min_card =

(9) o —-+ right_max_card = u,

(h) o --» left_min_card = [;

(i) o -+ left_max_card = u, a
Example 6.4 Let us consider the association between classes School and Person.

Let the class School be designated as the LeftClass while the class Person as the

RightClass in that association. Now let r denote that association, then Metag(r) =

{0’, ;817 /82} such that:

className(o) = Association

1 = CMO(class(School)) 2 = CMO(class(Person))
LeftRelationship RightRelationship
= o 2 =
LeftClass RightClass

o --+ left_key =0 o --+ right_key = 1

o --»+ left_role = School o —-» right_role = Student

o --» left_min_card = 0 o --+ right_min_card = 0

o —-+ left_max_card = 3 o --» right_max_card = n

Class Mapping

A class ¢ is mapped to a set of meta-objects: the union of the sets of meta-
objects that map all attributes, all relationships and all methods of 8. As a
consequence, such a set of meta-objects includes the class meta-object of ¢ and
the class meta-objects of all (direct and indirect) superclasses of ¢. These class

meta-objects, in addition, must be related in such way to represent the class
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path of ¢,% thereby permitting to navigate through meta-objects. Thus, for every
pair of classes which have a direct inheritance relation, the corresponding class

meta-objects are accordingly related as SuperClass and SubClass.

Met
E Definition 6.8 (Class Mapping) The set of meta-objects that maps a class ¢, denoted

as Metac(c), is the set given by:

Metao(c (U Metay(a ) ( U Metay(m ) (U Metag(r )

a€Att(c) meMet(c) r€Rel(c)
Proposition 6.2 (Class Path Mapping) ¥d € C:Vb € C: if d <, b then CMO(b) €
Metac(d). a

Invariant 6.3 (Inheritance Mapping) Y b,d € C: if b = superclass(d) then:

CMO(d) Ss”pg'a“ CMO(b)

Example 6.5 Let us consider the class University. Let ¢ denote that class, then:

Att(c) = {a1, a2} Met(c) = {m} Rel(c) = {r}
where:

® a; is the attribute whose name is name
® a; is the attribute whose name is acronym
e m is the method whose name is register_student

e 7 is the relationship between classes School and Person

6The class path of a class c is the sequence of classes including ¢ all its superclasses.
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Thus, from Definition 6.8 (Class Mapping), we have that:

Metag(c) = (MetaA(al) u MetaA(a2)> U (MetaM(m)) U (MetaR(r))

Now, let us show that Proposition 6.2 holds. Since class School is the only super-

class of ¢ (class University), we have the following is-a relations for c:

¢ <, class(School)

¢ <, class(University)

From Definition 6.5 (Attribute Mapping), Definition 6.6 (Method Mapping) and

Definition 6.7 (Relationship Mapping), we have that:

Metas(a) O {CMO(class(School))}
Metap(m) > {CMO(class(School))}

Metaa(az) O {CMO(class(University))}

Metag(r) D {CMO(class(School)), CMO(class(Person))}

Hence:
Metac(c) D {CMO(class(School)), CMO(class(University))}

which means that the Proposition holds.

Moreover, since class School is direct superclass of ¢ (superclass(c) = class(School)),
according to Invariant 6.3, we have that:

SuperClass

CMO(class(University)) =  CMO(class(School))

SubClass
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Schema Mapping

Now we show how a schema (including all classes that it designates) is mapped
to meta-objects. Firstly, for each schema there must be an instance of the meta-
class Schema. We recall that, according to Invariant 5.1, each schema has a
distinct name. Consequently, the instances of the meta-class Schema must have
the attribute name with distinct values. Such instances are simply referred to as

schema meta-objects since they map schemas.

Invariant 6.4 (Schema Instance Name Distinction) ¥V z,y € £(Schema): ifz --+ name =

y -—+ name then z = y. ¢

sMO Definition 6.9 (Schema Meta-object) Given a schema w € W, the schema meta-

object with respect to w, denoted as SMO(w), is s € {(Schema) such that s --»

name = schemaName(w). a

Example 6.6 Let us consider the schema depicted in Figure 6.2. For simplicity of
notation, let us denote the schema by ws, and let us suppose that its name is
Academia (schemaName(ws) = Academia). Thus, the notation SMO(ws) denotes

the instance s of the meta-class Schema such that s --» name = Academia. O

Secondly, a schema w is composed of a root-subtree and a set of sub-schemas.”

Hence, the set of meta-objects that maps w includes the schema meta-object of
w, all meta-objects that map the classes pertaining to the root-subtree of w and,

recursively, all meta-objects that map the sub-schemas of w.

“Formally, (Definition 5.6) a schema w consists of a root-subtree whose set of classes is

denoted w.H.V and a set of sub-schemas denote as w.S.
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Definition 6.10 (Schema Mapping) The set of meta-objects that maps a schema w,

denoted as Metaw(w), is the set given by:

U Metaw(a:))

r€w.S

Metaw(w) = {SMO(w)} U ( U Metac(,e)) U (

Bew . H.V

Therefore, given a schema meta-object s that is the schema meta-object of a
schema w, it should be possible to navigate through all meta-objects that map
the root-subtree of w. For this reason, the class meta-objects corresponding to
the classes pertaining to the root-subtree of w must be related to s in such way

to reflect whether the class is or is not the root of the root-subtree.

Invariant 6.5 (Root-subtree Mapping) ¥ w € W:

(i) Ve € w.H.V: if c = Root(w.H) then CMO(c) R:“%-E'l“’m" SMO(w)
(i) Ve € wH.V: if ¢ # Root(w.H) then CMO(c) " =™ SMO(w) &

NonRootClass

Example 6.7 Let us consider the schema depicted in Figure 6.2. Since there are
two root classes (School and Person) the schema is a super-schema composed of
two basic schemas. For simplicity of notation, let us denote the basic schema
rooted at class School by wy, and the basic schema rooted at class Person by ws.

Thus, we have that:

RootSchema

CMO(class(School)) = SMO(w,)

RootClass

RootSchema

CMO(class(Person)) = SMO(w,)

RootClass

. . NonRootSchema

CMO( class(University)) = SMO(w,)

NonRootClass

Also, it should be possible to navigate through all meta-objects that map the

sub-schemas of a schema. Thus, for every sub-schema s of a schema w there
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must be a relationship between the schema meta-object of w and the schema

meta-object of s to reflect the nesting of schemas.

Invariant 6.6 (Schema Nesting Mapping) ¥ w,s € W: if s € w.§S then:

SMO(s) P =™ SMO(w)

SubSchema

Example 6.8 Let us consider the super-schema depicted in Figure 6.2. Let us
denote the sub-schema rooted at class School by w;, the sub-schema rooted at

class Person by ws, and the super-schema by ws. Thus, we have that:

SuperSchema SuperSchema
SMO(w;) S:bs—?;em SMO(ws) SMO(ws) s:bsﬁ,ema SMO(ws)

6.3 Summary

We summarise the discussion on meta-object mapping by presenting, as an ex-
ample, the complete set of meta-objects that maps the schema depicted in Figure
6.2. Firstly we identify all elements in the schema. As shown in Figure 6.3, where
the nesting of schemas is made explicit, attributes are denoted by a,,... a5, the
only method is denoted by m,, the only relationship is denoted by r, classes
are denoted by ¢;, ¢z, c3, root-subtrees are denoted by H;, H,, and schemas are

denoted by wy, we, ws.

The set of meta-objects that map all schema elements is diagrammatically
represented in Figure 6.4. Each meta-object is represented by a rectangle with
rounded corners and has four parts: the two top parts contain the object class

name (c¢) and the object name (n), the intermediary part contains the object
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School Person
--=-1--> *name: String @ *surname: String < ~|

' Student firstname: String <-[ -~~~

| >reg|ster_student RPN S SIS Tt

. . age: Integer < .|
(Person,String):Integer 0.3 . : On & g

® R

Yy

University

= ==1--> acronym: String

" [».]

7
L]

Figure 6.3 Example schema with annotated elements

attributes, and the bottom part contains the object relationships. For simplicity,
objects are named 1,...,13, and each relationship is designated by the name of
the corresponding related role. Although object relationships are already shown
through object names in reference sets of relationship variables, a double-headed

arrow is present between two related objects to emphasise their relationship.

The mapping of all schema elements into meta-objects is formally given in
Appendix D. Figure 6.5 helps to visualise the sets of meta-objects that map

each schema element. Objects are simply represented by circles containing the
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RootClass = {1}

NonRootClass = {4}

NonRootClass = { }
SuperSchema = {}

SuperSchema = {13}
SubSchema = {}
\.

4 \ { N\
¢ = Method n=3 ¢ = StringAttribute | n=7
signature = “register_student, name = 'surname’

Person, String, Integer’ key =1
Class = {1} Class = {6}

\ J \ J

s a e “
¢ = StringAttribute [n=2 ¢ = StringAttribute |n=8
name = ‘name’ name = ’firstname’
key=1 key=0

{ )

&Class ={1} ) ¢ = Association |n=10 kClass = {6} y

left_key =0

- \ right_key = 1 p ~
¢ = Class n=1 left_role = 'School’ ¢ = Class n=6
name = ’School’ right_role = ’Student’ name = "Person’

Attribute = {2} left_min_card =0 Attribute = {7,8,9)
Method = {3} right_min_card =0 Method = {}

SuperClass = {} left_max_card =3 SuperClass = {}
SubClass = {4} right_max_card =n SubClass = {}
LeftRelationship = {10} LeftClass = {1} LeftRelationship = {}
RightRelationship = { } RightClass = {6} RightRelationship = {10}
RootSchema = {11} ~ ~ RootSchema = {12}

LNonRootSchema ={} &NonRootSchema ={}

4 N { N

p \ ¢ = StringAttribute |n=35 c = IntegerAttribute | n=9
¢ =Class n=4 name = "acronym’ name = 'age’
name = 'University’ key =0 key =0
Attribute = {5} ‘Class = {4} ) ‘Class = {6} )
Method = {}

SuperClass = {1}

SubClass = {}

LeftRelationship = { }

RightRelationship = { }

RootSchema = {}

LNonRootSchema = {11} )
s ™)

r \ ¢ = Schema n=13 , N
¢ = Schema |n =11 name = ’'Academia’ c = Schema n=12
name = ’School’ RootClass = {} name = "Person’

RootClass = {6}
NonRootClass = { }

SubSchema = {11,12}
\. S

SuperSchema = {13}

SubSchema = {}
\

Figure 6.4 Meta-objects for schema in Figure 6.3
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corresponding object name (1,...,13), and each set is surrounded by a polygon.
We use different line styles for the sake of clarity only; there is no specific meaning
for each line style. Also for simplicity, each set is named with the same name of

the schema element mapped by the set (a;, az, etc).

6.4 Conclusions

Although simple the meta-object model permits complete and unambiguous rep-
resentation of schemas. This enables the use of meta-objects for several purposes,
including schema management, system documentation, software management, im-
plementation of the type space and, as a novelty, a simple implementation of query

interpreters.

The uniform representation of information modelled by schemas (instances of
classes) and the information pertaining to schemas (class definitions) permits ma-
nipulation of information and meta-information to be done in a uniform and inte-
grated way, thereby greatly simplifying the system interface. For example, users
can navigate between information and meta-information using a single interface;
an information browser or query interpreter can operate on both information and

meta-information.

Finally, the ability of the meta-schema in representing itself makes the system

architecture very concise and independent of other information models.
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Figure 6.5 Sets of mapping meta-objects in Figure 6.4
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CHAPTER (

Object Space Organisation

In this Chapter we complete the description of object engine components by firstly
defining the index information that should be maintained about objects, secondly
defining views as a means of grouping corresponding meta-objects, objects and
indices, and thirdly defining contexts as repositories for views, i.e., repositories for
meta-objects, objects and indices. All the definitions presented in this Chapter

are also formally presented in Appendix E.

7.1 Indices

As discussed in Chapter 3, object engines maintain two types of indices: attribute
indices and relationship indices. Let us define indices using generic classes and
corresponding instances, as shown in Figure 7.1. Firstly, let us consider the class
with instances depicted in Figure 7.1(a) and define attribute index. A class C has
a key attribute a of a primary type p (e.g. integer or string), and k instances with
names ¢; having (not necessarily distinct) values v;, 1 < ¢ < k, for the attribute a.

Thus, the attribute index with respect to class C and attribute a is the relation
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given by the following set of ordered pairs:

{(v, 1), (v, €2), ..., (Ui, )}

Now, let us consider the classes with instances depicted in Figure 7.1(b) and
define relationship index. The classes A and B have a relationship r where the
role of A is RA, the role of B is RB, and the relationship is key with respect to
both classes. A collection of (not necessarily distinct) k instances of A and a
collection of (not necessarily distinct) k instances of B, respectively named a; and
bi, 1 < i <k, are related to each other with respect to the relationship r. Since
the relationship r is key with respect to class A, the relationship index with respect

to class B and role RA is the relation given by the following set of ordered pairs:

{(al’ b1)7 (az, b2), cevy (ak, bk)}

And, since the relationship r is key with respect to class B, the relationship index
with respect to class A and role RB is the relation given by the following set of

ordered pairs:

{(b1, @1), (b2, a2), ..., (bx, ax)}

For simplicity, we call the union of the set of all attribute indices with respect
to a class T and attributes of T with the set of all relationship indices with respect
to T and roles of classes related to T the set of indices of T. Also we introduce a

notation to denote the set of all indices of all classes designated by a schema.

Notation 7.1 Given a schema w, the notation Indezw(w), denotes the set of in-
dices with respect to w, i.e., the set of all indices of all classes designated by w.

a
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X .
a.p a=v,

A B
ess RA r RB ese
n=a) rn=b|
----------------- S| eee
n=a; n=b,
[ 4 ®
[ ] [ ]
[ [ ]
n=ay n=bk
....................................................... >

(b) Related classes with instances — relationship index definition

4 Key: A

n=x

u An object whose name is  x

Instance-of relationship

Class relationship

e 2> (Qbject relationship
\ J

Figure 7.1 Classes with instances for the definition of indices
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7.2 Views

We recall that, in Chapter 5, self-contained schema is defined as a collection
of classes that is self-contained with respect to hierachy and relationship, while
database is defined as the set of objects designated by a self-contained schema and,
therefore, can be manipulated independently. Also we recall that, in Chapter
6, we defined what a set of meta-objects that map a schema is, i.e., the set
of meta-objects that constitute the meta-data corresponding to the classes of
a schema. Néw, with the definition of indices, we are able to define views as
entities that designate portions of the information space maintained by an object
engine, including the corresponding meta-data and index information as well as
the information itself. The view with respect to a self-contained schema w has
(1) the same name as w and consists of (2) the database with respect to w, (3)
the set of meta-objects that maps w, and (4) the set of indices of w. Formally,

the definition of views is given as follows.

Definition 7.1 (View) Given a self-contained schema w € W, a view with respect

to w is a tuple (n,§,11,9), where:

e ne WN

é is a database

II is a set of meta-objects

¥ is a set of indices

such that:

(i) n=w.n
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(i1) 6 = DB(w)
(iti) IT = Metaw (w)

(iv) ¥4 = Indezw (w) O

7.3 Contexts

To reiterate the discussion in Chapter 3, the purpose of contexts is twofold:

1. A context designates an object engine, thereby serving as the starting point
for any interaction with client programs. For simplicity, contexts are named

globally, i.e., the space of contexts is flat.

2. A context defines an independent name space for primary types, classes
schemas and views, i.e., these entities are named within each context inde-

pendently of any other context.

Thus, the names of primary types, classes, schemas and views are context
relative, while the names of contexts themselves are global. A formal definition
of contexts is presented in Appendix E. In a simple way, a context is a (flat)
directory or a container of all views defined for a given object engine. We recall
that, as discussed in Chapter 3, the bootstrap of a context generates a special
set of meta-objects that represents the meta-data corresponding to the meta-
schema, in order to permit object engine administrators to create meta-objects
corresponding to user-defined schemas. Accordingly, we call this special set of

meta-objects meta-view and, for simplicity, name the view Meta.
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An example of context with views is illustrated in Figure 7.2. The name of the
context is Renoir. The context contains the predefined view Meta, and the user-
defined views Museum, Bank and Account. We can note that each view contains
three distinct sets: a set of meta-objects, a set of objects (a database) and a
set of indices. In particular, due to the reflexive architecture of object engines,
the set of meta-objects corresponding to the special view Meta is a subset of the
corresponding database. Also, we can note that the view Account designates a
portion of the information space that is a subset of the portion designated by the

view Bank.

7.4 Conclusions

Views and contexts provide a powerful yet simple framework for organising the
object space defined by an object engine. Moreover, since the set of objects
designated by views are databases, views can be used to scope the information
space manipulated by each client program interaction. As a consequence, views
provide an opportunity for efficient implementation of run-time type information
necessary by client programs to interact with object engines. Furthermore, the
definitions of attribute and relationship indices permit full representation of in-
formation necessary to resolve queries, as we will discuss in Chapter 8. Therefore,
all components of object engines are harmoniously arranged to deliver the target

services.
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Figure 7.2 Example of context with views
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CHAPTER &

Stabilis Toolkit

In this Chapter we describe the design and implementation of a toolkit for con-
structing object engines named Stabilis. Besides implementing all the definitions
we have developed so far, Stabilis provides an object query language and the nec-
essary support for distributed manipulation of objects by programs. Stabilis is

implemented as an extensible class library atop the Arjuna system (Section 2.4).

Before we describe Stabilis, let us clarify a point in our notation. Normally,
in homogeneous object-oriented systems, all components are implemented as ob-
jects. Moreover, all interactions of client programs are with (language) objects.
However, until now we have used the word object specifically to designate the
architectural components of object engines which are extracted from network re-
sources and, obviously, this can cause some confusion in our discussion. Since this
Chapter is concerned with systems implementation and the word object appears
very frequently with its general meaning, we refer to objects having the meaning
of architectural components of object engines as user objects when a distinction is
necessary. This notation also differentiates the components which are internal to

the implementation of object engines from the external ones, i.e., the user objects.
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8.1 Implementational Components

The implementational components of object engines provided by Stabilis are de-
picted in Figure 8.1. The black box represents a client program. The components
Context, View and Index correspond to the architectural components of object en-
gines named in the same way. The component User Object corresponds to object
engines’ objects (which can be meta-objects in the case where the client program
is an administrator). The remaining components are introduced to provide sup-
port for distribution, and they will be explained throughout this Section. An
arrow from a component A to a component B indicates that A has a reference to
B and, therefore, A can invoke operations or methods of B. If the arrow is shown
with solid line then the invocation must be local, else, if the arrow is shown with
dashed line then the invocation can be remote (RPC). For more clarity, a thick
line surrounding a set of components indicates that the components are co-located,
i.e., they are located in the same address space or node, and, consequently, only
local invocations can happen between the components. Accordingly, we refer to
the node where the client program (represented by the black box) resides as the
client node. We can observe that the client program, contexts, views and user
objects are conceptually co-located (in the client node), while indices are remotely
accessed by views. The actual physical distribution of these components as well

as the reasons for the different arrangements will be explained below.
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Overview

A client program initiates interaction with an object engine by first retrieving an
instance of context. Next the client program asks the context to retrieve a specific
instance of view and return a reference to it. (The context is specified through its
unique name, while the view is specified through its distinct name with respect
to the context.) Since a view contains meta-data that represents a self-contained
schema, and also references to the corresponding indices, the client program can
manipulate thé user objects (i.e., the database) designated by the obtained view.
Every user object manipulated by the client program receives, at the instantiation
time, the reference to the view. Thus, each user object interacts with the view
for the purposes of indexing information update and query resolution, as follows.
When the client program creates a new user object, the user object itself asks
the view to insert indexing information. When the client program modifies a user
object, the user object itself asks the view to update indexing information. When
the client program retrieves a user object through a query, the user object itself
asks the view to resolve the query (which makes use of indexing information).
When the client program deletes a user object, the user object itself asks the view
to remove indexing information. The structure of views and indices are described
detail in Section 8.1.2, and the operations on user objects are explained in Section

8.2.
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Mobile Objects x RPC

The components directly manipulated by a client program are contexts, views and
user objects. Althouth these components or objects are physically distributed, a
client program has the illusion of a single, global object space, i.e., all invocations
are local. This is accomplished by temporarily moving, on demand, the object
from the node where it normally resides, i.e., its home node, to the client node; the
object stays in the client node while the client program manipulates it and, after
that, the object returns to its home node. For this reason, we refer to these objects
as mobile objects. Thus, the methods of a mobile object can be invoked only while
the object is located at a client node; a mobile object is a passive entity while
located in its home node. Furthermore, mobile objects are persistent, operations
on mobile objects are of type read or write, and mobile objects can be concurrently
manipulated, according to the multiple reads, single write semantics. That means
a mobile object can be present in more than one client node simultaneously, when
all the client programs invoke only read operations of the mobile object. Contexts,
views and user objects are implemented as mobile objects, rather than as remote

objects accessed through an RPC mechanism, for the following reasons:

1. Contexts are relatively small objects, they suffer few modifications during
their lifetime, client programs manipulate few of them, and client programs
sporadically invokes read-only operations (client programs simply ask con-
texts to return views). Thus, contexts can be moved once to a client program
and then copied in cache for use by the client program until the end of its
execution. If a RPC mechanism is used instead, either a server process for

each context manipulated by a client program is active while the client pro-
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gram may want to retrieve views or a new server process is created every
time a client program really wants to retrieve a view. In both alternatives,

there is an overhead in process management.

2. Views are relatively small objects, they suffer few modifications during their
life time, client programs manipulate few views, and client programs invoke
only their read operations (index information update and query resolution)
but with great frequency. Thus, views can be moved once to a client program
and then copied in cache for use by the client program until the end of its
execution. If a RPC mechanism is used instead, all operations would be
remote, causing communications overhead and delay in the manipulation of

user objects.

3. User objects are expected to be relatively small, client programs are ex-
pected to manipulate user objects of many different classes, they typically
provide methods which are small and very often invoked by client programs
(attribute update and display, relationship creation, deletion and traver-
sal, user-defined method invocations), very often they are meant to be fully
displayed to users, and they are expected to be highly concurrently manipu-
lated. Thus, user objects can be moved to client programs every time there
is an atomic computation to be performed on them (which may encompass
several method invocations). If a RPC mechanism is used instead, firstly the
suite of different server processes necessary to accommodate the number of
different classes of user objects would be prohibitive in terms of administra-
tion, disk space and simultaneously active processes, and secondly the large
number of method invocations would cause high communications overhead.

Moreover, the whole object would have to be inevitably transported by the
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RPC for its full display to the user.

Indices, on the other hand, are better accommodated by a RPC mechanism,
rather than by object mobility. Indices are expected to be large and highly con-
currently manipulated objects, and client programs are expected to access many
different indices. Moreover, client programs access indices indirectly (client pro-
grams invoke operations of views, which then invoke operations of indices). Thus,
in terms of location transparency, client programs would not benefit from an

object-mobility-based implementation of indices.

Therefore, both object mobility and RPC mechanisms are important for object
engines. However, the Arjuna system does not provide object mobility directly.
As discussed in Chapter 2, the model of distribution in Arjuna is client-server
processes with communication through RPC. For this reason, we implemented an

object mobility mechanism atop the Arjuna system.

8.1.1 Object Mobility Mechanism

Each mobile object is implemented by two parts: a passive part at its home node
and an active part at the client node. The passive part corresponds to the object
state, while the active part corresponds to the object behaviour, i.e., the methods
that operate on the object state. Thus, when we say that an object moves between

its home node and a client node, what actually moves is an object state.

In Figure 8.1, the active parts of mobile objects correspond to the components
Context, View and User Object, while the passive parts correspond to the com-

ponent Plex (indicated by a circle). For each instance of context, view and user
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object there is an instance of plex. Although there is no such indication in the
Figure, the active part of a mobile object has, in fact, two subparts: a general
part and specific part. As the names suggest, the general part corresponds to
behaviour which is common to any mobile object, while the specific part corre-
sponds to behaviour which is application dependent. We refer to the general part
as Object Manager as its behaviour encompasses the management of the object
state at the client node and provides an interface to the specific part that exempts

programmers from any detail related to object mobility.

The transport of object states is realised by the component MultiPlex which
can handle all plexes that reside in a certain node. For each client program, there
must exist a multiplex for any node that hosts a plex in use by the client program.
The component Plex Manager handles all instances of multiplexes in use by a client
program and provides an interface that exempts object managers from having to
deal with distribution. Finally, the components NameServer and Directory provide
a simple naming service, basically to associate the identification of a plex with

the identification of its home node.

Plex

A plex maintains a flat representation of the state of a mobile object, i.e., a plex
encapsulates an object state. A plex is implemented as an Arjuna persistent object
and, because of it, plexes can be manipulated from any node in the distributed
system through RPC and with transactional access (concurrency and recovery
control). Also, they can be replicated as necessary to provide for availability and

scalability. A plex is simply created by providing an object state as a parameter.
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As a consequence, a unique identification (UID) is automatically assigned to it
by the Arjuna system; this UID is then used as the identification (global name)
of the corresponding mobile object. The interface of a plex contains only basic
operations for the manipulation of the object state, including: return the object
state and set a (read or write) lock on itself, update the object state to a new

value, set a (read or write) lock on itself, and (permanently) destroy itself.

MultiPlex

A multiplex handles the plexes that reside in a certain node and are in use by
the corresponding client program. The multiplex operations are remotely invoked
using Arjuna’s RPC mechanism. These operations include: create a plex giving
an object state as a parameter, return the object state maintained by a plex and
set a (read or write) lock on the plex, write the new object state of a plex, set a
(read or write) lock on the plex, destroy (permanently) a plex, and discard a plex

(from the control of the multiplex).

Plex Manager

The plex manager totally conceals multiplexes, i.e., the interface of the plex man-
ager provides operations simply for the manipulation of plexes. Basically, such
operations include: create a new plex given an object state, read the object state
of a plex and set a (read or write) lock on it, write the new object state of a plex,
set a (read or write) lock on a plex, destroy (permanently) a plex, and discard a

plex (from the control of the plex manager, when the mobile object is no longer




Chapter 8. Stabilis Toolkit 146

of interest for the client program). The plex manager is responsible for the place-
ment of objects, i.e., the plex manager decides on which node a plex should be
created. Also, the plex manager is responsible for keeping the name server up-
to-date, i.e., the plex manager registers every newly created plex with the name
server. Although Stabilis provides no mechanism for object migration, systems
administrators can use external tools to replace plexes. In this case, the name

server must be updated throught an appropriate tool provided by Stabilis.

Object Manager

The operations provided by a plex manager must be invoked at the right time
and in the right order, according to the semantics of the mobile objects. However,
this may be a complex task and error prone, specially when the number of mobile
objects is large and involving complex interactions and dependencies. This calls
for the provision of a mechanism to manage the invocations of operations of the
plex manager properly. Moreover, such a mechanism should provide a simple
and safe interface in order to make it easier to program the active part of mobile
objects. This is accomplished by the object manager, the general subpart of the

active part of each mobile object.

The object manager is implemented by a class named Object, and classes
whose instances are mobile objects (which includes contexts, views and user ob-
jects) must be subclasses of the class Object; the (super)class Object implements
the general behaviour, while the subclasses implement the specific behaviour of
mobile objects. For this discussion, we simply refer to any of these subclasses

(and, recursively, subclasses of these subclasses) as a managed class. Thus, a
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managed class inherits methods from the class Object which must be invoked in

the implementation of the managed class’ methods, as discussed below.

Our approach to the implementation of the object manager has its basis in
the underlying system. A factor that contributed to the success of the object
and action model of computation, in particular as implemented by the Arjuna
system, is the simplicity of the programming interface. To reiterate the description
presented in Chapter 2, basically, programs are structured as method invocations
controlled by nested atomic actions, while the implementation of each user-defined
class sets the necessary locks, according to the semantics of the methods. The user
classes obtain concurrency control, recovery and persistence mechanisms through
inheritance; a user-defined class must be subclass of a standard class LockManager
and its methods must invoke the inherited method setlock with parameter read or

write, in the current implementation of Arjuna.

Furthermore, the programming interface of the object manager harmoniously
integrates with the atomic action programming interface provided by Arjuna. As
a simple example, let us firstly consider the C++ code shown Figure 8.2 which
shows the typical structure of Arjuna user classes’ methods. In line 1, an atomic
action A is initiated. In line 2, the method tries to lock the object for write. If
the lock is not granted then the execution goes to line 7, where the atomic action
A is aborted. Otherwise, in line 4, the method modifies object attributes and
then, in line 5, ends the atomic action A. Now, let us consider the C++ code
shown in Figure 8.3 which is the equivalent typical structure of managed classes’
methods. The first observation is the introduction of a simple exception handling

mechanism. The use of this mechanism is achieved by creating an object of the
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class OpHistory (line 1), then using this object to store and merge the results of
method invocations (lines 3 and 7) and checking for exceptions when appropriate
(lines 4 and 8). Apart from this exception control, the only differences between
the code for managed classes and the code for Arjuna user classes are firstly the
substitution of the Arjuna’s setlock statement (line 2, Figure 8.2) by the object
manager call make_volatile (line 3, Figure 8.3), and secondly the addition of the

object manager call make_permanent (line 7, Figure 8.3).

The object manager call make_volatile basically fetches the object state (using
the plex manager) from the node where the corresponding plex resides, sets a lock
(write lock in the example) on the plex, and causes the object state to be locally
unpacked to enable its manipulation by the managed class’ method. The object
manager call make_permanent packs the object state and sends it (using the plex
manager) to the corresponding plex to write it as the current object state of the
mobile object. When the atomic action A is ended (line 8) or aborted (line 9) the
lock on the plex is released and all modifications (in the active and passive parts
of the mobile object) are committed or ignored, as appropriate. If the atomic
action A is aborted in line 9 then everything done by the statements between
lines 3 and 7 inclusive, is undone. That means the object state is restored to the
state it had previous to the object manager call make_volatile in line 3. (This
recovery mechanism is implemented by simply making the active part of a mobile
object an Arjuna recoverable object, i.e., the class Object is subclass of the class

LockManager.)

Obviously, this scenario considers only a trivial situation: the atomic action

A is the outermost one, i.e., A is not nested within any other atomic action,
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01 AtomicAction A; A.Begin();
02 if (setlock(new Lock(WRITE)) == GRANTED)
03 { // Modify object attributes
04
05 A.End();
06 }
o7 else A.Abort();
Figure 8.2 Typical structure of Arjuna user classes’ methods
01 OpHistory* oph = new OpHistory; // Ezception handling
02 AtomicAction A; A.Begin();
03 *oph += make_volatile(WRITE); // Object manager call
04 if (oph->normal())
05 { // Modify object attributes
06
o7 *oph += make_permanent(); // Object manager call
08 if (oph->normal()) A.End();
09 else A.Abort();
10 }
11 else A.Abort();

Figure 8.3 Typical structure of managed classes’ methods
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and also there is no nesting of object manager calls. If A was nested into an
atomic action B then the lock on the plex should be held until the end of B, and
the commit of A should not cause permanent effects until B has ended as well.
This control of nested atomic actions is realised by the Arjuna’s atomic action
mechanism, whereas the control of nested object manager calls is realised by the
object manager itself. For example, let us suppose that the method shown in
Figure 8.3 invokes, in line 6, another method of the same object and with the
same structure. In this case, firstly the object manager call make_volatile in the
inner invoked method cannot fetch the object state from the plex as the object
state in the active part is already under modification, and secondly the object
manager call make_permanent should not update the plex as the caller method

can still modify the object state.

In fact, the control of nested object manager calls can be very complex, de-
pending on the combination of situations, such as when the mobile object is being
created, when the mobile object is being retrieved, when a method writes on the
object state or simply reads it. All these situations are captured by the transition
diagram for object state in the active part of mobile objects shown in Figure 8.4.
The initial states CREATION and RETRIEVAL correspond to the situations when
the mobile object is being created or retrieved, respectively. The state MODIFIED
corresponds to the situation when the object state in the active part is “ahead”
of the object state in the passive part (the plex) of the mobile object. The state
NORMAL corresponds to the situation when the object state in the active part
is identical to the object state in the passive part of the mobile object, and this

must be the final state.
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Create
make_volatile(WRITE)
make_volatile(WRITE)
make_volan'le(READ) | make pen’nanent() make_volaﬁlc(READ)
make_permanent() - make_permanent()
MODIFIED > z
u make_volatile(WRITE) ]
make_volatile(WRITE) @ make_volatile(READ)
Retrieve

Figure 8.4 Transition diagram for object state

The transition diagram is relatively simple because of an auxiliary structure
that permits resolution of certain situations of ambiguity. For example, if the
method make_permanent is called when the state is MODIFIED what should be
the next state? Using only the information in the transition diagram it could
be either NORMAL or MODIFIED itself. The decision, in this case, depends on
the circumstances of the invocation of the corresponding make_volatile. If the
make_volatile was invoked when the state was already MODIFIED then there is
no change of state, otherwise the next state is NORMAL. Therefore, the object
manager decides state transitions with the help of a stack representing the history
of all object manager calls. If the managed class code has its all calls properly

balanced, then not only is the final state NORMAL but the stack is also empty.
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8.1.2 Views and Indices

As discussed in Chapter 7, object engines maintain two types of indices: relation-
ship indices and attribute indices. Accordingly, the implementation of relationship
indices is realised by a class named Relationshiplndex. In the case of attribute in-
dices, for practical reasons, a distinction is necessary according to the primary
type of the attribute. Currently, the types supported are string and integer, and
the corresponding classes StringAttributelndex and IntegerAttributelndex, respec-
tively. Views, on the other hand, are simply implemented by a class named View.
The structure of views and indices as well as their relations are illustrated using
generic examples in Figure 8.5, for attribute indices, and Figure 8.6, for relation-

ship indices.

In Figure 8.5, a class named C with attributes s and i of types string and
integer, respectively, has three instances named ¢;, ¢; and ¢3 (representing three
UIDs). Also, there are three meta-objects that map the class C, including its
attributes. The meta-objects that map the attributes contain references to the

respective indices.

In Figure 8.6, two classes named A and B are related to each other with roles
RA and RB, respectively. There are three instances of each class which are related
to each other as indicated by the double-headed arrows shown in dotted lines. The
relationship between A and B is mapped by three meta-objects. The meta-object
of class Relationship has references to relationship indices, one for each direction

of the relationship.
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Figure 8.5 Attribute indexing implementation — a sample
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Figure 8.6 Relationship indexing implementation — a sample
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In both figures, we can note the presence of a structure called Pips on the
right-hand side of tables contained in indices. This structure is a set of special
object references. Such a special reference, called pip, consists of the UID of the
object, the name of its most specific class and the name of its home node. This
information provided by a pip is sufficient to retrieve the object without the need
to interact with the name server. (The name server is only consulted when the
information contained in the pip is stale. In this case, the correct information
provided by the name server is used by the plex manager and the pip is updated.)
For simplicity, we do not use specific notation to indicate whether a UID, such as
c1, really denotes a UID or a pip, as the context in which they appear is sufficient

for the understanding.

View

An instance of View contains a list of classes. Each class has a name and contains
a list of attributes (only attributes designated as keys in the schema) and a list
of relationships (only relationships designated as keys in the schema). (The list
of attributes and the list of relationships of a view are shown separately in Figure
8.5 and Figure 8.6, respectively). Each attribute has a name and a reference to
the corresponding index. Each relationship has the name of the related class, the

name of the related role and a reference to the corresponding index.
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StringAttributeIndex

An instance of StringAttributelndex contains a table (instantiated from a C++
template with parameter String) of string values mapped to sets of pips; a value
is mapped to a pip if the object referenced by the pip has the corresponding
attribute with that value. For example, in Figure 8.5, the value X is mapped to

¢1 because the object named ¢; has the attribute s with value X.

IntegerAttributeIndex

An instance of IntegerAttributelndex is similar to an instance of StringAttributeln-

dex, except that its table maps integer values, rather than string values.

RelationshipIndex

An instance of Relationshiplndex has the names of the local class, the related class,
the related role and a table (instantiated from a C++ template with parameter
UID) that maps UIDs of instances of the related class to pips of instances of the
local class; the UID of an instance of a related class is mapped to the pip of
an instance of a local class if the instances are related with respect to the class
relationship. For example, the UID b; is mapped to the pips a; and ay as the

object named b, is related to the objects named ¢, and a,.
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8.2 User Object Manipulation

The manipulation of user objects by client programs requires mechanisms for
proper management of object state changes, such as updating indexing informa-
tion when there is assignment of new values to attributes which are indexed, and
also for the provision of an easy-to-use interface, for example creating object rela-
tionships according to the established bi-directional semantics and, more impor-
tantly, for querying objects. For these reasons, every user object has a built-in set
of methods which are made available to client programs through inheritance, i.e.,
the classes of user objects inherit these methods from a standard class and, there-
fore, client programs can invoke them. Since user objects are already subclasses
of the class Object (they are mobile objects), we simply provide the methods for

object manipulation by augmenting the object manager.

Let us introduce the methods for object manipulation through an example:
the schema for bibliographical references shown in Figure 4.13. For simplicity,
the C++ code presented in this Section is presented in a simplified form - ex-
ception handling is not included — for readability. Firstly, we recall that a client
program must initiate interaction with an object engine by retrieving a context
and then a view. Let us suppose that a client program wants to work in the
context named “ComputingDepartment” and then manipulate the view named
“BibliographicalReferences” which, obviously, corresponds to the schema for bib-
liographical references. The C++ code for this initialisation can be written as

follows.

Context context ("ComputingDepartment”, RETRIEVE);
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Viewx  view = context.get_view("BibliographicalReferences") ;

Henceforth, the variable view can be provided as a parameter when instatiating
objects, thereby permitting the object to interact with the view for the purposes

of indexing information management and query resolution.

Object Creation

The object manager provides a constructor that permits an object to be created
by specifying as a parameter an expression containing the name of the class fol-
lowed by a list of attribute-value pairs. Such an expression is called assignment
expression. The following C++ code creates an object of class Book having the
attribute title with value “Object-Oriented Software Construction”, attribute year

with value 1988 and the attribute publisher with value “Prentice Hall”.

Book b ("Book(title = *Object-Oriented Software Construction’ &%

year = 1987 && publisher = ’Prentice Hall’)", view, CREATE);

Henceforth, the variable b refers to the object of class Book and can be used
in the client program to manipulate the object. The corresponding indexing in-
formation is automatically inserted by invoking appropriate methods of the view
given as a parameter. This view is also “remembered” by the object manager for

possible future modifications.

Attribute Update

The object manager provides a method named put that accepts as a parameter

an assignment expression. The following C++ code updates the attribute year
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of the object of class Book created above to 1988. The corresponding indexing
information is automatically updated by invoking methods of the view provided

when the object was instantiated.

b.put("Book(year = 1988)");

Attribute Access

The object manager does not provide methods to get the value of object attributes.
This facility is provided by the code automatically generated (using meta-objects)
for classes. For each attribute of a class there is a corresponding method whose
name is formed by the prefix get_ and the name of the attribute. These methods
are usually called accessors. The following C++ code gets the values of the

attributes defined for the object of class Book above.

String title b.get_title();

int year b.get_year();

String publisher = b.get_publisher();

Relationship Creation

The object manager provides a method named relate to create a relationship
between two objects, with automatic update of the corresponding indexing infor-
mation. The method must be applied to one of the objects and the parameters
must include the other object and the role of the other object in the relationship.
Let us suppose that the client program has a variable i that refers to the object

of class Individual that corresponds to the author of the book represented by the
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object denoted by the variable b above. The following C++ code relates both

objects accordingly.

b.relate("Author", i);

An equivalent way of creating this relationship is given as follows.

i.relate("BookAsAuthor", b);

Relationship Deletion

The object manager provides a method named unrelate which has opposite effect
of the method named relate. The following C++ code deletes the relationship

between author and book created above.

b.unrelate("Author", i);

Relationship Traversal

The object manager provides a method named get_related_pips which takes as
parameters a related role and a class name, and returns a set of pips that refer to
related objects which are instances of the specified class. Then, the set of pips can
be used for retrieving the related objects using another constructor provided by
the object manager. The following C++ code gets a set of pips that refer to the
authors of the book denoted by b which are instances of the class Individual, and
assigns this set to the variable authors. Next, the first pip is extracted from the
set and used for retrieving the referred object, i.e., an instance of Individual that

is author of the book denoted by b. The client program can iterate over the set
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and retrieve all authors by making use of methods next and cardinality provided

by the class that implements sets.

Pips authors = b.get_related_pips("Author", "Individual")
Pip p = authors.first(); // extracts the first pip

Individual first_author(p, view);

Object Retrieval

The object manager provides a constructor that permits an object to be retrieved
by specifying as a parameter a query expressed in the language described in Section
8.3. The query is resolved as explained in Section 8.4 and one of the pips from
the resulting set is selected at random. Next the object state is fetched from the
corresponding plex and locally unpacked for manipulation by the client program.
The following C++ code retrieves an instance of Book whose title contains the

word “software” and invokes its method print.

Book book ("Book(title Y% ‘’software’)", view, RETRIEVE);

book.print();

If the client program wishes to manipulate all instances that satisfy a query
rather than just one instance as described above, then the class ObjectSet must be
used instead. The class ObjectSet accepts as a parameter a query expression and
then instantiates all objects that satisfy the query. Thereafter, the client program
can iterate over the set to manipulate the objects individually. The following C++
code retrieves all instances of class Book whose titles contain the word “software”
in a set assigned to a variable s. Next the set s is iterated to invoke the method

print for each object.
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ObjectSet s ("Book(title % ’software’)", view);
Book* b;
for (i = 0; i++; i < s.cardinality())

{

b = (Book*) s.next();

b->print();

8.3 Query Language

An object query, or simply query, is a declarative specification of objects according
to their properties with the purpose of facilitating object retrieval. Therefore,
queries are essential for object engines. We have defined a language to express
queries against schemas modelled according to the technique presented in Chapter
4 and formalised in Appendix A. A query is formulated as a Boolean combination
of predicates expressed in terms of classes, attributes and relationships. The result
of a query is a set of pips that refers to objects whose properties are in conformity
with the specified predicates. Conceptually, the result of a query is a set of objects.
A query is schema conservative: neither objects nor classes are created as a result
of a query. Thus, a set of objects obtained as a query result is composed of
objects which are existing instances of existing classes. We designed the query
language in a fashion that resembles the expressions of the C++ programming
language. Actually, all syntactic constructs of the query language are found in
C++. For example, the following query retrieves all objects which are instances

of class Individual and have attribute surname equal to “Meyer”.
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Individual(surname == "Meyer’)

As another example, the following query retrieves all objects which are instances

of the class Book and have the attribute year greater than 1980.
Book(year > 1980)

Below we illustrate the basic constructs of the query language with some queries
formulated against the schema for bibliographical references shown in Figure 4.13.
These basic constructs can be combined to formulate more complex queries, as

defined by the grammar presented in Appendix F.

Class Expressions

A class expression is the mandatory construct in any query. It consists of the name
of a class, the target class of the query, followed by a an expression surrounded

by parentheses containing predicates about the target class. For example, in the

query
Book(title % ’software’ && year > 1980)

the target class is Book and the expression title % ’software’ && year > 1980
contains predicates about the class Book, i.e., the query specifies the objects which
are instances of the class Book, have the word “software” as substring of its title

and have been published after the year 1980.
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Attribute Predicates

An attribute predicate is a triplet (attribute — name operator value), such as
year > 1980. The value must conform with the type of the attribute (defined in
the schema). An attribute can be either an integer or a string. The operators
for attributes are the standard relational operators ==,! =, <,>,<=,>=. In

additon, for string attributes the operator % which means substring is supported.

Boolean Combination of Predicates

The Boolean operators and (&&) and or (]|) can be used to combine predicates,
thereby forming larger predicates which can be, recursively, combined into new

predicates. For example, the following is a valid combination of predicates:

((title = *Through the Looking Glass’ && year > 1870) || (title % ’Alice’))

Superclass Access

The target class of a query can be a class that has subclasses. In this case,
the objects retrieved can have as their most specific class any of the subclasses
of the target class. For example, the following query retrieves all instances of
class Reference whose titles contain the substring “object”. Since the Reference
is superclass of the classes Book, Journal and Article then the result of the query

may contain objects of any of these classes.

Reference(title % ’object’)
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Attribute Cast

In the cases where the target class is a superclass it may be convenient to be
more specific about the attributes of the superclasses which are of interest. For
example, the following query retrieves all instances of the class Reference which
are either publications published in 1988 or articles whose page numbers are 16

to 33.

Reference( [Publication]year = 1988 || [Article]pages = ’16-33’)

Associative Access or Nested Query

Relationships are useful for specifying associative querties, i.e., objects can be
retrieved according to the relationships between classes. Basically, instances of
a class a are designated through attributes and relationships of instances of a
class § that is related to a, such that the instances of a and 3 are related. For
example, the following query retrieves all instances of class Book whose authors

have surname Meyer.
Book(Author(surname = "Meyer’))

This query can be seen as a composition of nested queries. The outermost query
has Book as the target class, while the innermost query has Individual as the target
class. Although this example has just one level of nesting, in general there is no
restriction to the level of nesting in queries. This permits the formulation of
queries with very complex paths through a class hierachy. We should note that
nested queries are more general than the traditional path expressions supported

by query languages in database systems. In fact, the query language also supports
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a syntax for associative queries that is similar to path expressions. The example

above could also be written as follows.
Book(Author::surname = "Meyer’)

However, the following nested query cannot be written using the path operator

“:” without defining several path expressions.

Book(title % ’software’ || Author(surname = 'Meyer’ && forenames = ’Bertrand’))

Role Cast

In associative queries it may be convenient to be more specific about the related
class, i.e., it may be interesting to navigate through a subclass of a related class.
For example, the following query retrieves instances of the class Library that con-
tain books whose titles contain the substring modeling. We should note that the
relationship in the schema is specified between the classes Library and Publication,

which is superclass of Book.

Library( [Book]Publication(title % ’modeling’))

Set Operations

A query can be formulated with more than one target class. In this case, all class
expressions specified must be combined with set operators union (|) and intersec-
tion (&). Similar to the combination of Boolean operators, the combination of
set operators can be used form larger queries. For example, the following query
retrieves all instances of Article whose titles contain the substring “spring” and all

instances of Book published later than 1970.
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Article(title % ’spring’) | Book(year > 1970)

Operator Associativity and Precedence

The associativity of all operators is left to right. The precedence of operators is

summarised in Table 8.3. (The path operator has the higher precedence.)

Function Operator

path operator

relational operators | ==,! =, <, >, <=,>=,%
logical AND &&

logical OR I

set intersection &

set union |

Table 8.1 Query language operators precedence

8.4 Query Resolution

A query is resolved by creating a corresponding tree representation and then
reducing the tree. Each reduced subtree is replaced by the corresponding resulting
set of pips until eventually the set of pips corresponding to the whole query is
obtained. All nodes of the tree, except the leaves, are instances of the classes

depicted in Figure 8.7. For example, let us consider the following query:
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Article(title % ’pollution’ && Author(surname == ’Green’))

This query is translated into the tree depicted in Figure 8.8. For this discussion,
we labelled the nodes as indicated. The node 1, an instance of the class ClassOp,
corresponds to the target class of the query, the class Article. The remaining
nodes are arranged according to the Boolean combination of predicates and the
precedence of operators. The leaves of the tree are arranged as attribute-value
pairs; each pair corresponds to the children of a relational operator. The leaves
4 and 5 form the attribute-value pair of the relational operator “%” on node 3,
while the leaves 8 and 9 form the attribute-value pair of the relational operator
“==" on node 7. The subtree rooted at the instance of the class RelationshipOp,
the node 6, corresponds to the nested query. Thus, the relational operator under
the node 6, i.e., the operator “==" on node 7, must be resolved with respect to
the innermost target class, i.e., the attribute surname must be interpreted as an
attribute of the class that is related to the class Article and has role Author, rather
than an attribute of the class Article. If we check the schema we will learn that
the target class of the innermost query is Individual. Although this information is

not explicitly represented in the tree, there is enough information for the view to

find this out, since the view has a representation of the target schema.

The query is resolved by in-order traversal of the tree and reduction of each
subtree. The resolution starts at the node 1 which simply passes the current target
class name (Article) to its child, the node 2, and awaits the result. The node 2 is an
and operation, so it has to make the intersection of the sets of pips corresponding
to each of its children, the nodes 3 and 6. Thus, the node 2 sequentially forwards

the current target class name (Article) to its children in order to obtain the two
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Figure 8.8 A tree representation of a query

sets. Firstly, the node 2 forwards the current target class to the child on its left
side, the node 3, and awaits the corresponding set of pips. The node 3 is the
relational operator “%” and, therefore, can be reduced. The node 3 takes the
attribute-value pair represented by its children (nodes 4 and 5) and the name of
its target class (Article) to form the predicate (Article, title, %, pollution) which
is then submitted to the view. The view takes the predicate and searches in its

internal structure (see Figure 8.5) for the attribute title of class Article. If the
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attribute is found, then the view submits a request to the corresponding attribute
index giving as parameter the operator “%” and the string “pollution”. The
index returns a set of pips which refer to all instances of Article whose attribute
title contains “pollution” as substring. This resulting set of pips is then returned
by the view to the node 3, completing its reduction, thereby providing the left
set of pips for the node 2. Then, the node 2 forwards the current target class
(Article) to the child on its right side, the node 6, and awaits the corresponding
set of pips. The node 6, which is the root of a nested query, takes the received
target class (Article) and the related role (Author) to ask the view for the new
current target class, obtaining as response the class name Individival. Thus, the
node 6 forwards this new current target class to its child, the node 7, and awaits
the corresponding set of pips. The node 7, which is a relational operator “==",
is reduced in a similar fashion as the node 3 was reduced. The result of it is the
set of pips that refer to instances of Individual whose attribute surname has value
equal to “Green”. Now the node 6 takes this set of pips that refers to instances of
Individual, the name of the related class (Article) and its local role (Author), and
finally asks the view to return the set of pips that refers to instances of Article
which are related to the instances of Individual referred by the obtained set of pips.
The view searches in its internal structure (see Figure 8.6) for the relationship of
the class Article that has Author as the related role. If the relationship is found
then the corresponding relationship index is used for obtaining the set of pips
that refer to instances of Article, as requested. This set is then returned to node
6, completing its reduction, thereby defining the right set of pips of node 2. Now,
the node 2 makes the intersection of both sets of pips, completing its reduction.

Finally, the node 1 takes this set of pips and the whole tree is reduced.
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8.5 Object Engine Set-up

In Chapter 6, we presented the implicit recursion of the meta-model as an inter-
esting bootstrap problem. To reiterate, because every class has to be mapped
to meta-objects for it to exist, the existence of meta-classes is required in order
to enable the creation of meta-objects. However, meta-classes are classes which
also need to be mapped for them to exist. This problem has been simply solved
at the conceptual level by postulating the existence of meta-classes. Accordingly,
Stabilis provides an implementation for the meta-classes, thereby permitting the
creation of the set of meta-objects that map the meta-schema at the first stage of
an object-engine set-up. At the programming interface, an object engine is simply
set-up by creating the corresponding context. For example, the following C++

code creates a context named “ComputingDepartment”.

Context ¢ ("ComputingDepartment", CREATE);

The constructor of the class Context creates a set of meta-objects that maps
the meta-schema, the corresponding indices and a meta-view (the view named
“Meta”). Actually, indices are automatically created during the creation of meta-
objects; instances of the classes Attribute and Relationship create the correspond-
ing index when they are created. We should note that, since meta-objects are
instances of meta-classes, meta-objects must be indexed by the indices that they
create. This circular dependency has been discussed in Chapter 3, and illustrated
in Figure 3.3. The solution to this problem is to postpone the indexing of the
meta-objects, i.e., the constructor of the class Context invokes appropriate meth-
ods of instances of Attribute and Relationship to fix the indices. Finally, we must

recall that contexts, views and meta-objects are mobile objects. For this reason,
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the creation of a context requires the appropriate infrastructure for object mobil-
ity, 1.e., there must exist a physical installation of plex manager, including a name

server.

8.6 Application Development

The development of an application encompasses the following steps:

1. devise a schema

2. create the meta-objects that map the schema (indices automatically created)

3. generate a view corresponding to the schema
4. generate code for classes of the schema (this can be done automatically)

5. if appropriate, generate interactive query interpreter (this can be done au-

tomatically)

6. create programs to manipulate the database designated by the schema (the

programs should use the code for classes)

We will explain each of these steps through an example application that we
developed as the demonstrator or proof of concept. The application domain that
we have chosen is bibliographical information based on the types of entries for
bibliography citation defined for BIBTEX [35]. An example of a BIBTEX file (
which is a network resource) is shown in Figure 8.9. The schema that we devised
to model bibliographical references is shown in Figure 8.10. The schema, named
Dbib, contains 24 classes, with class hierarchies of a depth up to 5, and several

associations and aggregations.
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@Book{ Meyer88,
title = "Object-Oriented Software Construction”,
author = "Bertrand Meyer”,
publisher = "Prentice-Hall", year = 1988}

@Book{ Rumbaugh91,
title = "Object-Oriented Modeling and Design",
author = "Rumbaugh, J. and Blaha, M. and Premerlani, W. and Eddy, F. and Lorensen, W.",
publisher = "Prentice-Hall", year = 1991}

@Article{ Meyer86,
title = "Genericity versus Inheritance",
author = "Meyer, Bertrand”,
journal = "ACM Sigplan Notices", year = 1986, month = October,
pages = "391--405"}

@Article{ Koenig90,
title = "Exception handling in C++",
author = "Andrew Koenig and Bjarne Stroustrup”,
journal = "Journal of Object-Oriented Programming”, year = 1990, month = July,
pages = "16--33"}

Figure 8.9 Example of a network resource: a BIBTEX file

The schema Dbib is mapped to 104 meta-objects, and it needs 13 indices.
The following C++ code illustrates how these meta-objects can be created by an
administrator program. (The corresponding indices are automatically created.)

The names chosen for the variables should make the code self-explanatory.

Context context("ComputingDepartment", RETRIEVE);
View* m = context.get_view("Meta");
Schema s_Dbib("Schema(name == ’Reference’)", m, CREATE);
Class c_Book("Class(name = ’Book’)", m, CREATE);
StringAttribute a_Book_publisher
("StringAttribute(name = ’publisher’ && key = 0)", m, CREATE);
a_Book.relate("Attribute", a_Book_publisher);

s_Reference.relate("NonRootClass", c_Book);
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Alternatively, these meta-objects can be created using the query interpreter for
the meta-view which is called parla. The use of parla is illustrated below. We can
observe that the commands to query interpreters are very similar to C++ state-

ments. Also we can observe that the view used for creating objects is implicitly

defined.

parla> Schema s_Dbib("Schema(name == ’Reference’)", CREATE)
parla> Class c_Book("Class(name = ’Book’)", CREATE)
parla> StringAttribute a_Book_publisher
("StringAttribute(name = ’publisher’ && key = 0)", CREATE)
parla> a_Book.relate("Attribute", a_Book_publisher)

parla> s_Reference.relate("NonRootClass", c_Book)

Once the meta-objects have been created, views can be generated for the
schema Dbib and any other self-contained schema defined by the meta-objects.
The following C++ code generates a view for the schema Dbib and registers it
with the appropriate context. The variable pip_view_Dbib is a reference to the view

obtained when the view is created and passed to the context for the registration.

Pip pip_view_Dbib;
View v_Dbib(s_Dbib, pip_view_Dbib, CREATE);

context.enter_view("Dbib", pip_view_Dbib);

The meta-objects also permit the generation of C++ code for the correspond-
ing classes. The code generated for a class includes the declaration part, the
implementation of constructors to interact with the object manager, the accessors

(methods for reading attribute values) and special methods for packing/unpacking
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the object state, as required by the Arjuna system. Code can be generated sep-
arately for each class or for all classes of a given schema, as appropriate. The
following C++ statement generates code for all classes of the schema Dbib. The
parameter specified in the method invocation defines the directory of the file sys-

tem where the code will be created.
s_Dbib.gen_code("/usr/home/n04ao");

The code generated for classes can be used for the construction of programs to
manipulate the database of bibliographical references. A program that can be au-
tomatically constructed is a query interpreter specific for each schema. This query
interpreter is constructed simply by linking the code for classes with a ”skeleton”
provided by Stabilis. (An example of this query interpreter, named parla, has been
shown above for manipulating meta-objects. A query interpreter for Dbib would
have the same functions of parla, except that the database manipulated would be
distinct.) Collector programs should also benefit from the generated code. For
example, we created a tool that generates programs to create/update objects cor-
responding to bibliographical information extracted from BIBTEX files. Also, we
created a graphical interface to a partial view of Dbib. The main "window” of the

graphical interface is illustrated in Figure 8.11.

8.7 Performance

Some performance figures of an object engine for bibliographical references con-
taining approximately 1,000 objects are shown in Table 8.2. The object en-

gine runs distributed over a set of workstations connected by an 10 megabits/s-
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Ethernet LAN. The query times include the following: parse the query, invoke
remote operations on indices, search the indices, send partial results back to client
node, and merge the partial results. The retrieve times are average times for mov-
ing objects from plexes in remote nodes to client programs. These retrieve times
vary according to object size (which depends on attributes and relationships) —

their average size is approximately 1 Kbyte.

Query expression Query time (ms) || Retrieve time (ms)
Article(title %' object’) : 216 67
Journal(title %’ comput’) 125 120
Journal(year > 1980) 107 120
Journal(title %' comput’ && year > 1980) 181 128
Book( Editor(surname %’e’)) 188 141

Table 8.2 Performance of the object engine for bibliographical references

8.8 Conclusions

Stabilis fully implements the architecture for object engines. The programming
interface is simple, integrated within a standard programming language (C++),
and provides good distribution transparency, thereby making it easy to write (col-
lector, administrator and client) programs. The query language is seemlessly in-
corporated into C++; there is no impedance mismatch between data manipulation

language and data computation language. Since, C++ is the only programming
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language used in the implementation and also is the language at the programming
interface, neither language extensions nor special compilers are necessary, thereby
contributing to systems portability. Meta-objects and associated tools for auto-
matic code generation permit fast program development. Stabilis has been used
to implement an object engine for bibliographical references in order to validate

the described architecture.
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CHAPTER 9

Conclusions

Our thesis has concentrated on the problem of manipulating structured informa-
tion contained in network resources which are located over large-scale distributed
environments. In this Chapter we summarise the research which has been done,
point out the main contributions of the research, give a brief account of the evo-
lution of our ideas and experiments, and finally we suggest directions for future

research and further development of the prototype system.

9.1 Thesis Summary

In Chapter 2 we discussed a number of different approaches to the manipulation of
information in distributed systems. In Chapter 3 we introduced a novel category of
meta-information systems called object engines in which structured information
contained in network resources can be manipulated through an object-oriented
interface, and with high availability and distribution transparency. In Chapter 4
we defined a simple set of concepts commonly accepted in object-oriented systems,
and introduced a corresponding graphic notation to represent schemas that model

information contained in network resources. In Chapter 5 we introduced a model
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for flexible organisation of the class space in schema hierarchies, providing the
basis for a formal definition of databases. In Chapter 6 we described a special
schema called meta-schema which models information about classes and schemas,
and whose instances, i.e., meta-objects, represent meta-data. In Chapter 7 we
defined indices, views and contexts, to complete the description of object engine
components. In Chapter 8 we described the implementation of a platform for
constructing object engines, including the definition and use of a query language
for object manipulation, the management of distribution, and a demonstration

application.

9.2 Thesis Contributions

1. Identification of critical issues in manipulating structured information.

Typically, each of the approaches to the manipulation of information in
distributed systems, discussed in Chapter 2, gives more emphasis to a par-
ticular issue, such as locating relevant network resources by making use of
information semantics, providing high availability of services and provid-
ing transparency to distribution. Our investigation of such approaches has
identified critical issues in constructing systems for manipulating structured
information in large-scale distributed systems, especially in constructing sys-

tems according to the object-oriented paradigm.
2. Consolidation of concepts found in several areas.

The architecture we have defined for object engines consolidates concepts

found in information discovery tools, distributed systems and object-oriented
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databases, in a homogeneous object-oriented framework, i.e., all object en-
gine components are described, implemented and manipulated as objects.
This approach greatly simplifies the implementation, administration and use
of object engines, for all components benefit from the high availability and
consistency provided by the underlying distributed transaction facility, and

all programs interact with object engines through a single interface.
3. Efficiency, effectiveness and reliability of information systems.

The use of object engines to locate structured information permits accurate
query formulation, which contributes to increase the rate of relevant hits
and to reduce the number of iteration steps to locate information, thereby
preventing the user from information overload as well as saving in processing
and communication costs. The homogeneous storage of information objects
and meta-data (due to the reflexive architecture of object engines) makes it
easy for users to navigate through meta-data to learn what information is
available and how to formulate good queries. The combination of schemas,
views and contexts for organising the information space provides a suit-
able framework for efficient and effective use of information in large-scale
distributed systems. Object engines increase reliability due to the use of

replication and transactional access to objects.
4. Implementation of a platform for constructing object engines.

The Stabilis toolkit described in Chapter 8 has been designed and imple-
mented not only as proof of concept but also as a platform for real use.
Our preliminary experiments with the toolkit indicate that Stabilis object

engines are an effective means of manipulating information objects, due
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both to the power of object-oriented modelling, and high availability and
consistency provided by the underlying distributed transaction facility. The
toolkit is highly portable and has an easy-to-learn interface since it has been
implemented using only standard programming languages and operating sys-
tems. The implementation of the toolkit enhances the Arjuna programming
system with an object query facility, an object mobility scheme integrated
with the transaction mechanism and provision for automatic generation of
code to pack/unpack object states. Furthermore, the toolkit demonstrates
the adequacy of the object and action model of computation as a framework

for writing fault-tolerant distributed applications.

9.3 Evolution of Ideas and Experiments

Basically, our research has been carried out in three well defined phases, each of
them composed of a period of study followed by a period of experimentation. In
the first phase we developed a simple version of Stabilis [12], as a programming
exercise using the Arjuna system. That version provided for the automatic gen-
eration of a “query interpreter” for a given schema. Such a query interpreter had
the form of a graphical interface with functions for the manipulation of instances
of the classes designated by the corresponding schema. Although those query
interpreters provided satisfactory facilities to create, modify and relate objects,
the search interface was limited to specifying a keyword that should be substring
of an attribute defined as the primary key of each class. Moreover, there was no

support for meta-data management, nor information space organisation.
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In the second phase, having learned from the initial experiment, we developed,
practically from scratch, a more sophisticated version of Stabilis that supported
queries expressed as a Boolean combination of predicates, incorporated the notion
of meta-objects, and had a more optimised caching scheme. The main purpose of
that version was its use by a rule-based system for the management of distributed
programs called Vigil [11]. However, the approach taken to index information
management and query resolution in that version led the system to have an unac-

ceptable performance. Also, organisation of information space was still restricted

to the notion of contexts.

In the third phase, we completely restructured the indexing scheme, extended
the query language and introduced the notion of views in the system. The index
information was moved from meta-objects to specialised structures. The effects
of this were a better system modularisation, permitting the use of appropriate
data structures to implement indices, thereby simplifying and dramatically im-
proving the performance of index information update and query resolution. The
extensions to the query language included nested query, casting and approximate
match, in order to better suit the kind of queries about information contained in
network resources. The purpose of introducing views were twofold: a means of
organising the information space and, for efficiency reasons, a simplification in the
representation of meta-data used during object manipulation. While the imple-
mentation realised in the first and second phases were a joint work with another
researcher, the implementation realised in the third phase was an individual work
by the author of this thesis. The current version of Stabilis has approximately

40,000 lines of source code.
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9.4 Future Work

The research and implementation that we have done open a spectrum of oppor-
tunities for further development, including improvements in the current imple-
mentation, advances in the current functionality, and new applications of object

engines.

9.4.1 Implementation Improvements

The following list enumerates some implementation issues that remain to be tack-

led in the Stabilis toolkit.

1. Implementation of indices using more sophisticated data structures, such as

B-trees, in order to properly support large object bases.

2. Implementation of index servers that can handle multiple indices, similarly

to the object state server (which can handle multiple object states), in order
to reduce the number of processes in the system and reduce the latency in

index operations, thereby improving the overall systems performance.

3. Use of nested top-level atomic actions! [38] to control access to global re-
sources, such as indices. This is important to avoid such resources remaining
locked (and thereby become unavailable to other users) in a long-running
transaction. The use of nested top-level atomic actions, however, may re-

quire “anti-actions” to compensate their effects. For example, let us suppose

1A nested top-level atomic action is an independent action started within another atomic

action.




Chapter 9. Conclusions 187

that an object is created within an atomic action A, and that the correspond-
ing index update is realised by a nested top-level atomic action B, that is,
B is started within A. If, for some reason, the atomic action A aborts (and
then the object was not actually created) then an anti-action must undo the

effects of the atomic action B, i.e., remove the index information which has

been inserted.

4. Decentralisation of indices. Currently, indices are single global entities. A
more general approach should permit a logically single global index to be

implemented as a collection of cooperating indices.

5. Implementation of object removal. Of course, object removal requires proper

algorithms to ensure referential integrity. This is particularly simple to im-
plement in Stabilis since all object relationships are bi-directional. How-

ever, the underlying transaction facility currently does not support object

removal.

6. Optimisation of query resolution. The current version does not make any
effort to save on index access, nor to solve parts of queries in parallel. The
provision of these features normally requires formal models for the object
data model and for the query model. Since we already have defined a formal

model for the object data model (Appendix A), an important step towards
query optimisation has already been done.

7. Automatic generation of graphical user interfaces. The availability of meta-
data already permits the automatic generation of command-line-based in-
teractive query interpreters. This same meta-data could perfectly be used

for the generation of more user-friendly interfaces.
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8. A straightforward extension to our work would be to make Stabilis object
engines accessible via the World Wide Web (WWW). The main task in the
provision of this service would be the development of appropriate servers to

interface between object engines and WWW aplications.

9.4.2 Functional Advances

Database Issues

The query language can be extended in many ways. Firstly, it can support a
larger collection of basic types for attributes (in addition to integer and string),
and also user-defined tuple types, such as a type to represent date. Secondly, it can
incorporate traditional information retrieval techniques, such as ranked queries
and sophisticated support for approximate match. Thirdly, it can be extended
to support method call: this would permit very complex queries, and the query
language would become extensible. Fourthly, a support for explicit range variables
in nested queries would give more expressive power to the language. Finally, the
query language could be extended to become SQL compatible, thereby permitting

to interact with the so-called “legacy systems”.

The result of a query, i.e., a set of objects, could be made persistent, thereby
permitting users to group objects according to their interests.? Then, these sets

could have associated indices to permit queries to be resolved against them, as

2This facility would correspond to the traditional notion of “views” found in object-oriented

database systems.
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provided by the ObjectStore system [34, 49] (Section 2.5). Moreover, other types

of collections could be supported (in addition to sets), including lists and bags.

Currently, views correspond to schemas containing entire classes. A more fine-
grained approach could be taken to permit the selection of parts of classes, i.e., a
class selected by a view could have only some of its attributes, relationships and

methods actually selected. This would give more flexibility to the system.

A critical issue in the design of database systems is the support for versioning
control and schema evolution. These features are essential in modern information
systems to cope with the fast evolution of real-life applications. Obviously, object

engines can have a broader range of application if they support these features.

Easy interface for defining schemas is an important feature of database sys-
tems. For this purpose, a graphical user interface could be developed to capture
schemas in a high-level fashion and then generate the corresponding meta-objects.

Surely, this would simplify the generation of object engines and would increase

productivity.

Distribution Support

Currently, contexts are global entities and isolated from each other. Contexts
could be linked to each other to form networks of cooperating contexts, thereby

providing for large-scale name space administration.

A very important issue in distributed systems that remain to be completely

tackled by our architecture for object engines is authorisation/security/protection.
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The introduction of views in the architecture aims at providing a starting point
in this direction. This approach needs further development and effective imple-

mentation.

9.4.3 Applications

The object engine for bibliographical information constructed as demonstration
application can be further developed: much more information can be maintained
by the object engine, and many useful methods can be added to the classes. Thus,
it can be a valuable tool for literature search, helping research activities in gen-
eral, including business-oriented research. Some other areas of application which
can be investigated include: travel agencies, management of computer resources,
office documents (especially SGML and ODA documents) and department stores.
Finally, because meta-data is part of the core of any CASE tool, we believe that

Stabilis can be used to support management and generation of program code.
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APPENDIX A

Object Model Definition

The object model concepts are formally defined according to the set and graph
theories. The purpose of the formal definition is to provide a basis for implement-
ing the object model concepts, as well as a basis for defining an object manipulation

language that is independent of such an implementation.

Moreover, the formal definition permits the representation of the object model
in terms of itself, i.e., the formal definition of the object model is reflezive. Thus,
the formal definition also provides a basis for defining a model which permits us
to represent information about schemas and objects. Such a model is referred
to as meta-object model and it provides the basis for implementing the core of

meta-information systems.

Tuple Notation

Given a tuple t = (#,...,%,) whose definition is a tuple (e,...,e,), let the
notation t.e; denote ¢;. For example, if a = (age, Integer,0, Person) is a tuple
whose definition is (n, p, k, ¢) — defined below as attribute specification -— then

o.n, a.p, o.k and a.c, respectively, denote age, Integer, 0 and Person.
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Naming Assumptions

Let us assume the existence of the following countably infinite sets of names:

e set PN of primary type names
o set AN of attribute names

e set MN of method names

e set RN of role names

e set CN of class names

e set ON of object names

such that PN N CN = {.

A.1 Values, Types and Domains

Every attribute of every object has a value for which there is a textual repre-
sentation, such as an integer or a string. For this reason, values have associated
semantics which are well defined by primary types; each primary type stands for
a set of values that have the same semantics. Such a set of values is the domain
defined by a certain primary type. The domain of an attribute of a certain pri-
mary type is the domain defined by the primary type, i.e., the value assigned to
an attribute of a certain primary type can vary only over the domain defined by

the primary type.

As an example, let us suppose that a type named Integer defines the semantics

for integer values, and a type named String defines the semantics for string values.
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Then the domain of an attribute of type Integer includes 0,1,2,3,..., and the
domain of an attribute of type String includes any delimited sequence of characters,
such as wet, wind, cool, freezing, etc. An attribute of type Integer can be assigned

the values 0,1,2,3,..., and an attribute of type String can be assigned the values

wet, wind, cool, freezing, etc.

Therefore, let us assume the existence of values and value semantics, and define

primary types and primary domains.
Notation A.1 The symbol V denotes the set of all values. a

Definition A.1 (Primary Type) A primary type is a doublet (n,s), where:

e n€ PN
e s denotes a value semantics O
Notation A.2 The symbol P denotes the set of all primary types. O

Example A.1 We can have a type t; such that t,.n = Integer and t,.s denotes a
semantics for integer values, and a type t; such that t,.n = String and t,.s denotes

a semantics for string values. O

Type Identification

Primary types must be unambiguously identifiable by names in order to enable
their use in textual notations, such as in specifications of attributes in class dia-
grams and in programs. Thus, a primary type name can be assigned to at most
one primary type to ensure that there is an one-to-one mapping between primary

type name and primary type.




Dom

Appendiz A. Object Model Definition 194

Invariant A.1 (Primary Type Name Distinction) Vz,y € P: if z.n = y.n then ¢ =
y- ¢

Since each primary type has a distinct name, we define a notation to refer to

primary types through their names.

Notation A.3 Given a primary type name 2 € PN and a primary type p € P such

that p.n = z, the notation 7, (type named z) denotes p. O

Example A.2 If we have a type t; such that t,.n = Integer then Tinteger denotes t,

and if we have a type t; such that t;.n = String then Tsying denotes t;. O

Primary Domain

The domain defined by a primary type is the set of values that have the semantics
defined by the type. We first define a notation to indicate that a value has the

semantics defined by a primary type and then define primary domain.

Notation A.4 Given a value v € V and a primary type t € P, the notation v ¢

(v is of type t) denotes that v has the semantics denoted by t.s. O

Example A.3 Let 5 be an integer value and let t; be a type such that t,.s denotes

the semantics for integer values, then 5 - ¢; (5 is of type t; ). &

Definition A.2 (Primary Domain) Given a primary type t € P, the primary domain

with respect to t, denoted as Dom(t), is the set of all values of type ¢:

Dom(t)={veV | vt}
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Example A.4 If we have a type t, and the values 1, 3 and 5 such that1 4 t,3 4 ¢
and 5 - ¢, then Dom(t) 2 {1,3,5}. &

Notation A.5 The symbol D denotes the set of all primary domains. O

Notation A.6 The symbol Z denotes the primary domain containing all integer

values. O

Typographic Convention

The context in which a value is inserted is normally sufficient to determine its
type. Thus, as a typographic convention, we invariably represent values using
Sans serif font and, conversely, everything represented in such font is a value. For
example, a value that is the string containing only the character “7” and a value
that is the integer number 7 are both represented as 7. In case of ambiguity, a

string value is enclosed by quotes.

Names and Reflexivity

Primary type names, as any other name, are values, more specifically string values,
as a requirement to ensure that the object model formal definition is reflexive!. For
example, the primary type names Integer and String are values and, accordingly,

they are represented using Sans serif font.

1The meta-object model assumes the existence of a primary type, named String, that defines

the domain containing all string values.

21
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A.2 Attribute

A.2.1 Attribute Specification

The specification of an attribute contains an attribute name, a primary type name,
a Boolean value that indicates whether the attribute is or not a key, and a class

name for the following reasons:

1. Each attribute of an object has a name which is distinct from the names
of the other attributes of the object in order to permit each attribute to be

referred to unambiguously with respect to the object.

2. Each attribute of an object has a value and a type specification for such value
in order to provide a basis for a type checking mechanism, i.e., a mechanism

that ensures that the value varies over only a certain primary domain.

3. Each attribute of an object is optionally defined as a key attribute, in which

case it has to be indexed for query resolution purposes.

4. Attributes are specified by classes, i.e., every attribute specification is part

of a class.

Definition A.3 (Attribute Specification) An attribute specification is a tuple (n, p, k, c),
where n € AN, p€ PN, k€ Z and ¢c € CN. a

The integer value k in Definition A.3 corresponds to the Boolean value that
indicates whether or not the attribute is key. For this reason, the value of k¥ must

be constrained to the values 0 and 1.
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Invariant A.2 (Attribute Key Range) Let s be an attribute specification, then 0 <

s.k <1. ¢

Example A.5 The following tuples are attribute specifications:

e (name, String, 1, Client)

The name of the attribute is name, its primary type is String, the attribute

is key and it is part of the class Client.
e (balance, Integer, 0, Account)

The name of the attribute is balance, its primary type is Integer, the attribute

is not key and it is part of the class Account. O

Set of Attribute Specifications

The attributes specified by a certain class must have distinct names in order to
permit their unambiguous identification with respect to the class. Thus, a set of

attribute specifications is consistent if all the attributes have distinct names.

Definition A.4 (Consistent Set of Attribute Specifications) A set of attribute specifi-

cations A is consistent iff Ve, y € A: ifz.n=y.n thenz = y. a

Example A.6 The following is a consistent set of attribute specifications for a class
named Account:
{ (number, Integer, 1, Account),
(balance, Integer, 0, Account),
(overdraft, Integer, 0, Account),

(interest, String, 0, Account) }
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Attribute Variable

Each instance of a class contains a set of attribute variables, such that there is an
one-to-one correspondence between the elements of such a set and the elements
of the set of attribute specifications of that class. That is, for each attribute
specification in the class there is an attribute variable in the instance. Such an
attribute variable consists of (1) a “copy” of the attribute specification and (2) a
value of the primary type in the attribute specification. As discussed in Chapter
8, the information provided by an attribute specification is used for type checking

and index update when objects are created, modified or deleted.

Definition A.5 (Attribute Variable) An attribute variable is a doublet (s,v), where
s is an attribute specification and v is a value of primary type such that v - =, ,.

O
Example A.7 The following tuples are attribute variables:
o ((name, String, 1, Client), “Gustav Klimt")

— An instance of the class named Client contains such attribute variable.
— (name, String, 1, Client) is an attribute specification.

— “Gustav Klimt” is a value of the type named String.
o ((balance, Integer, 0, Account), 8034)

— An instance of the class named Account contains such attribute vari-

able.

— (balance, Integer, 0, Account) is an attribute specification.
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— 8034 is a value of the type named Integer. O

Set of Attribute Variables

The attributes of a certain object must have distinct names in order to permit their
unambiguous identification with respect to the object. Thus, a set of attribute

variables is consistent if all the attributes have distinct names.

Definition A.6 (Consistent Set of Attribute Variables) A set of attribute variables A

is consistent iff Ve, y € A: if z.s.n = y.s.n then z = y. O

Example A.8 The following is a consistent set of attribute variables for an object

of class named Account:

{ ((number, Integer, 1, Account), 50298),
((balance, Integer, 0, Account), 3980),
((overdraft, Integer, 0, Account), 200),

((interest, String, 0, Account), B) }

Integer Values and Reflexivity

The representation of Boolean values using integer values, such as the case of k in
Definition A.3, aims at simplifying the reflexivity? of the formal definition of the

object model. This simplification is appropriate because (1) Boolean values can

2The meta-object model assumes the existence of a primary type, named Integer, that defines

the domain containing all integer values.
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be represented through integer values without loss of genericity and (2) integer

values are necessary to specify multiplicity in relationships.

A.3 Relationship Elements

Objects contain references to objects according to relationships specified by classes.
In this Section we define the basic elements necessary to specify relationships in
classes and to represent them in objects. Once classes and objects are formally

.deﬁned, in Section A.8 we complement the definitions introduced in this Section.

A.3.1 Class Relationship

The information about a relationship between two classes is represented by a
complementary pair of relationship specifications, one in each class. Thus, the set

of relationship specifications of a class defines all relationships of the class.

Relationship Semantics

Every relationship between two classes has a semantics which is one of the follow-
ing: association, loose aggregation or tight aggregation. An object, therefore, must
represent relationship semantics accordingly in order to enable proper interpreta-
tion of its references. This is realised by associating a type to each relationship
specification of a class. Such a type is then “copied” by every instance of the

class.
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In the case of an association, a relationship between two classes is symmetric,
whereas in both cases of aggregation the relationship is asymmetric because one
of the classes is the aggregate and the other class is the component. Thus, the set
of all types of relationship specifications contains: (1) a type for aggregate classes
in tight aggregations, (2) a type for component classes in tight aggregations, (3)
a type for aggregate classes in loose aggregations, (4) a type for component class

in loose aggregations and (5) a type for classes in associations.

Definition A.7 (Relationship Specification Type Set) The relationship specification
type set is the set of symbols ® = {PTAE,STAE, PLAE, SLAE,ASSE}. O

Relationship Specification

Each relationship specification must contain the necessary information to realise
operations (creation, deletion and navigation) on object relationships in a con-
sistent way. For this reason, a relationship specification contains: (1) the name
of the local class (the class to each the specification belongs), (2) the role of the
local class (local role), (3) the name of the related class, (4) the role of the related
class (related role), (5) the multiplicity of the related class (minimum and maxi-
mum cardinality), (6) the type of the relationship specification (which defines the
semantics of the relationship with respect to the local class), and (7) a Boolean

value that indicates whether or not the relationship is key and must be indexed

for query resolution purposes.

Definition A.8 (Relationship Specification) A relationship specification is a tuple

(Ie, Ir, re,rr, 1, u, e, k), where le,rc € CN, Ir,rr € RN, l,u € Z, ¢ € R and
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k € Z, such that 0 < < u.

Terminology: The pair (I, u) is a multiplicity, where | is the minimum cardi-

nality and u is the mazimum cardinality. O

Example A.9 Let us consider two related classes named Car and Wheel, as illus-
trated in Figure A.1. The classes have a tight aggregation relationship where Car
is the aggregate class and Wheel is the component class: (1) a single instance of
Wheel is part of at most one instance of Car, (2) a single instance of Car con-
tains a number of instances of Wheel varying from 0 to 4, (3) the role of Car in
the relationship is Vehicle, (4) the relationship is key from Wheel to Car, (5) the

relationship is not key from Car to Wheel.

Car Wheel

Figure A.1 Tight aggregation between classes Car and Wheel

Such relationship is represented by a pair of complementary relationship spec-
ifications such that one belongs to the class Car and the other one belongs to the

class Wheel, respectively, defined by the following tuples:

e (Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 0)

o (Wheel, Wheel, Car, Vehicle, 0, 1, STAE, 1) O

The integer value k in Definition A.8 corresponds to the Boolean value that
indicates whether or not the attribute is key. For this reason, the value of & must

be constrained to the values 0 and 1.
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Invariant A.3 (Relationship Key Range) Let s be a relationship specification, then

0<sk<1. ¢

Set of Relationship Specifications

Each element of the set of relationship specifications of a class needs to have
an identification which is distinct from the identification of the others to permit
each one to be referred to unambiguously with respect to the class. Although
a convention for relationship identification which makes use of all information
carried by relationship specifications can be elaborated, for simplicity, we will
establish that all roles of the classes related to each class must be distinct. Also,
this convention provides the basis for a simple notation in relationship operations,
as discussed in Chapter 8. Thus, a set of relationship specifications is consistent

if all its elements have distinct related roles.

Definition A.9 (Consistent Set of Relationship Specifications) A set of relationship

specifications R is consistent iff Ve,y € R: if z.rr = y.rr then ¢ = y. a

Example A.10 Let us consider two related classes named School and Person, as
illustrated in Figure A.2. Such classes have two associations: (1) an instance of
School and a instance of Person, respectively, can be associated having the roles
Employer and Employee, and (2) an instance of School and a instance of Person,

respectively, can be associated having the roles School and Student.
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School Person
Employer ... Employee
0,1 O,n
% ..................................... Student
On O.n

Figure A.2 Associations between classes School and Person
The class School has the following set of relationship specifications:
{ (School, Employer, Person, Employee, 0, n, ASSE, 1),

(School, School,  Person, Student, 0, n, ASSE, 1)}

Such set is consistent since all related roles Employee and Student are distinct.

The class Person has the following set of relationship specifications:

{ (Person, Employee, School, Employer, 0, 1, ASSE, 1),

(Person, Student, School, School, 0, n, ASSE, 1) }

Such set is consistent since all related roles Employer and School are distinct.

<

A.3.2 Object Relationship

The relationships of a class specify the permitted relationships of its instances.
(Figure A.3 illustrates the following discussion.) If a class X has a relationship R
with a class Y then an object z that is an instance of X can have a relationship

r corresponding to R with an object y that is an instance of Y.

A class relationship specifies a multiplicity for each class in the relationship.

Such a multiplicity can specify any number of instances. For this reason, an
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Figure A.3 Correspondence between related classes and related objects

instance of a class has a set of object references, or simply reference set, for every
relationship of the class. Thus, ¢ has a reference set zg corresponding to R, and

y has a reference set yg corresponding to R.

A relationship between two objects is represented by a reference to each other
in the corresponding reference sets. Thus, the relationship r between z and y is
represented by a pair of complementary object references: (1) z has a reference
to y in zg and (2) y has a reference to « in zg. For this reason, we say that a

relationship is bi-directional.

Reference Set

Object references are realised through object names, which are unique to permit
objects to be unambiguously referred to. Thus, reference sets are subsets of the

set containing all object names.

Definition A.10 (Reference Set) Every finite subset of ON is a reference set. [
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Relationship Variable

Each instance of a class contains a set of relationship variables, such that there is
an one-to-one correspondence between the elements of such a set and the elements
of the set of relationship specifications of the class. That is, for each relationship
specification in the class there is a relationship variable in the instance. Such a
relationship variable consists of (1) a “copy” of the relationship specification and
(2) a reference set. As discussed in Chapter 8, the information provided by a
relationship specification is used for type checking, index update, navigation and

automatic bi-directional relationship consistency.

Definition A.11 (Relationship Variable) A relationship variable is a doublet (s,v),

where s is a relationship specification and v is a reference set. O

Example A.11 Let us consider again the example of the classes named Car and
Wheel, which have a tight aggregation, as illustrated in Figure A.1. Now, let us
suppose that {ig,i1,12,...} are object names, and that an instance of the class
named Car, the object named ig, is aggregated with four instances of the class

named Wheel, the objects named iy,iy,i3 and i4, as illustrated in Figure A.4.

Figure A.4 Tight aggregation between instances of Car and Wheel
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That aggregation is represented by the following relationship variables:
o ( (Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 1), {i1,i2,i3,ia} )

~ The instance of the class Car contains such a relationship variable.

— (Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 1) is a relationship specifica-

tion.

— {iy, 2, 13,14} is a reference set.
o ( (Wheel, Wheel, Car, Vehicle, 0, 1, STAE, 0), {io} )

— FEach instance of the class Wheel contains such a relationship variable.

— (Wheel, Wheel, Car, Vehicle, 0, 1, STAE, 0) is a relationship specifica-

tion.

— {io} is a reference set. O

Relationship Variable Consistency

The multiplicity in the specification of a relationship variable defines the minimum

and the maximum cardinality of the reference set in the variable.

Invariant A.4 (Relationship Variable Consistency) Let o be a relationship variable

then a.s.l <| a.v |[< a.s.u. ¢

Example A.12 The reference set in a relationship variable specified as (Car, Vehicle,
Wheel, Wheel, 0, 4, PTAE, 1) can contain a minimum of 0 and a maximum of 4

object references. O




Appendiz A. Object Model Definition 208

Set of Relationship Variables

Each element of the set of relationship variables of a class needs to have an iden-
tification which is distinct from the identification of the others to permit each
one to be referred to unambiguously with respect to the object. Since there is an
one-to-one correspondence between the elements of a set of relationship variables
of an object and the elements of a set of relationship specifications of a class,
such a required distinction between relationship variables is simply obtained from
the distinction between the corresponding relationship specifications. Thus, a set
of relationship variables is consistent if all the relationships have distinct related

roles.

Moreover, the semantics of tight aggregation enforces that an object is physi-
cally part of at most one object. In other words, if an object is the component in
a certain tight aggregation then that object cannot be the component in another

tight aggregation.

Definition A.12 (Consistent Set of Relationship Variables) A set of relationship vari-

ables R is consistent iff:

(1) Ve,y € R: if z.s.rr = y.s.rr then z = y.

(i) If 3z,y € R such that x.s.e = STAE and z.v # 0 and y.s.e = STAE and
y.v#D then z = y. O

Example A.13 Let us consider the related classes named Door, Bolt and Window,
as illustrated in Figure A.5. The class Bolt is the component class in two tight
aggregations: (1) an instance of Bolt can be part of either an instance of Door or

an instance of Window, (2) an instance of Door can aggregate from 0 to 4 instances
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of Bolt and (3) and instance of Window can aggregate from 2 to 8 instances of

Bolt.

Door Bolt Window

Figure A.5 Tight aggregations between classes Door, Bolt and Window

An instance of Bolt which is part of an instance of Door whose object name is

iz has the following set of relationship variables:

{ ((Bolt, Bolt, Door, Door, 0, 1, STAE, 1), {iz}),

((Bolt, Bolt, Window, Window, 0, 1, STAE, 1), ) }

An instance of Bolt which is part of an instance of Window whose object name

is ig has the following set of relationship variables:

{ ((Bolt, Bolt, Door, Door, 0, 1, STAE, 1), 0),

((Bolt, Bolt, Window, Window, 0, 1, STAE, 1), {is})}

In both cases the set of relationship variables is consistent since the related
roles are distinct (Door and Window) and there is only one non-empty reference set
pertaining to a relationship variable whose specification contains the relationship

type STAE. Now, let us suppose that an instance of Bolt has the following set of

relationship variables:

{ ((Bolt, Bolt, Door, Door, 0, 1, STAE, 1), {i7}),
((Bolt, Bolt, Window, Window, 0, 1, STAE, 1), {is}) }
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Such a set of relationship variables is not consistent since there are two non-
empty reference sets pertaining to relationship variables whose specification con-
tains the relationship type STAE. This inconsistency can be interpreted as the
instance of Bolt being part of both an instance of Door and an instance of Window
simultaneously, which does not comply with the semantics of tight aggregation.

&

A.4 'Class Elements

The definitions pertaining to method and class, respectively, presented in Section
A.5 and Section A.6, depend on each other. Since such definitions come in that
order, in this Section we anticipate part of the definitions pertaining to class,

which do not depend on the definitions pertaining to method.

All definitions in this Section are illustrated using the class hierarchy with
extents depicted in Figure A.6. The extent of each class is represented by an oval
linked by a thick line to the corresponding class diagram. Each oval representing

an extent contains smaller ovals which represent the objects in the extent.

Class

Each class has a name which is distinct from the name of any other class to
permit each one to be referred to unambiguously. Moreover, every class can have
a superclass. Thus, the definition of a class includes the name of the class and the

name of its superclass, which can be a null name.
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Figure A.6 Class hierarchy with extents

Notation A.7 The symbol & denotes a null name. O

A class (Definition A.23) is a tuple, where two of the elements are:

e nc CN

e sc(CNU{g2})

Example A.14 Each row of Table A.1 contains the elements n and s for a class

shown in Figure A.6. &

We define a notation to denote the set of all classes in order to define formally

that each class has a distinct name.

Notation A.8 The symbol C denotes the set of all classes. 0

Invariant A.5 (Class Name Distinction) Vz,y € C : if x.n = y.n then z = y. ¢

Since each class has a distinct name, we define a notation to refer to classes

through their names.
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n s
Picture %)

Drawing Picture
Painting Picture

Watercolour | Painting

Oils Painting

Table A.1 Example of class name and superclass name elements in classes

Notation A.9 Given a class name ¢ and class ¢ such that c.n = z, the notation

K, denotes c. 0
Example A.15 Kpicwure denotes the class named Picture. &
Object

Every object has a class path (a sequence of classes ordered according to their
direct inheritance relation) and a most-specific class, which is the last element in
the class path. Thus, the definition of an object includes a sequence of class names
corresponding to the class path of the object and a class name corresponding to

the name of the most-specific class of the object.
An object (Definition A.25) is a tuple, where two of the elements are:

e cec CN

e p is a sequence of class names in CN

Notation A.10 The symbol O denotes the set of all objects. a
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Example A.16 Each row of Table A.2 contains the elements ¢ and p for an object

shown in Figure A.6. &
object | ¢ ©
01 | Picture (Picture)
03 Drawing (Picture, Drawing)
os | Painting (Picture, Painting)
os | Watercolour | (Picture, Painting, Watercolour)
o2 | Oils (Picture, Painting, Oils)

Table A.2 Example of class name and class path elements in objects

Class Extent and Direct Instance

The extent of a class « is the set of objects instantiated from «, that is, all objects

whose most-specific class is a.

Definition A.13 (Class Extent) Given a class ¢ € C, the extent of ¢, denoted as

Ezxt(c), is the set of objects given by:

Ext(c)={0€ O | e.n=o0.c}

An object that belongs to the extent of a class « is a direct instance of a.

Definition A.14 (Direct Instance) Given an object o and a class ¢, o is a direct

instance of c if o € Ext(c). O
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Class Deep Extent and Indirect Instance

The deep extent of a class « is the union of the extent of a and the extents of all
subclasses of a. Therefore, the class path of any object in the deep extent of «

contains a.

Definition A.15 (Class Deep Extent) Given a class ¢ € C, the deep extent, denoted

as Ext*(c), of ¢ is the set of objects given by:

Erxt*(c)={o€ O | c.n € 0.p}

An object that belongs to the extent of a subclass of a class « is an indirect
instance of a. Thus, an indirect instance of a class a is any object in the deep

extent of o that is not in the extent of a.

Definition A.16 (Indirect Instance) Given an object o and a class ¢, o is an instance

of ¢ if o € (Ext*(c) \ Ext(c)). O

Example A.17 Each row of Table A.3 contains the extent and the deep extent for

a class shown in Figure A.6. O

Types and Domains

Since classes are abstract data types, we have that a type is either a primary type
or a class. Moreover, the deep extent of a class a correspond to the domain of a.
For the sake of simplicity, we define a notation to denote all types, and also we
define a notation to refer to the domain of a type which applies to both primary

types and classes.
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class name | extent deep extent
Picture {01, 02} {o1,..., 014}
Drawing {03, 04, 05} {03, 04, 05}
Painting {06, 07} {o6, ..., 014}

Watercolour {08, Og, 010, 011} {08, Og, 010, 011}

Oils {012, 013, 014} {012, 013, 014}

Table A.3 Example of class extent and deep extent

Definition A.17 (Type) A type is either a primary type or a class. O

Notation A.11 The symbol TN denotes the set of all type names:
TN = PNUCN

Definition A.18 (Type Domain) Given a type name x € TN, the domain with re-

spect to the type t such that t.n = z, denoted as (), is given by:

(2) Dom(w,) if z is a primary type name,
r) =

Ext*(k;) if z is a class name.

Example A.18 Let us suppose that there is a primary type named Integer. Using
the notation € to denote the domain of such primary type and the domain of

the class named Watercolour in Figure A.6, respectively, we have the following

equalities:

o {(Integer) = Dom(Tinteger)

o {(Watercolour) = Ext*(Kwatercolour) o
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A.5 Method

The state of an object is encapsulated by an interface composed of methods or
operations which can be applied to the object. Such methods are specified and

applied according to the following rules:

1. A method is specified in a class, i.e., a method is part of a class.

2. A method specified in a class a can be applied to any instance of c.
3. A method is part of one and only one class.

4. A method of a class a can be applied only to instances of a.

5. Every class specifies a set of methods.

6. Only methods of a class a can manipulate the state of an instance of a.

A method accepts a sequence of values and/or objects as arguments and re-
turns another value or object as a result. The acceptable sequence of arguments
is specified by a sequence of types, and the result is specified by another type.

That is, each argument or result must belong to the domain of the corresponding

type.

Moreover, there must be a means of identifying the methods of a certain class
such that each method can be referred to unambiguously with respect to the
class. For this purpose, we can simply establish a convention where by methods
have names such that the name of each method of a class is distinct from the
names of the other methods of the class. However, such a convention precludes
that the methods of a class which have the same semantics and differ only with

respect to their types of arguments and/or result have the same name. Therefore,
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we establish a convention where by methods of a class can have the same name
as long as their sequences of argument types and result type are different. Thus,
every method is identified by a triple composed of a name, a sequence of argument

types and a result type. Such a triple is referred to as the method signature.
Definition A.19 (Signature) A signature is a triple s = (n, A, r), where:

e ne MN

o A is a finite sequence of the form (ai,...,a,), where Vi | 1<i<n:aq; €

TN

e rc TN O

A method is implemented by a function that maps a product of source do-
mains to a target domain, according to a semantics specified for the method: the
first source domain is the extent of the class to which the method belongs, the

remaining source domains are the argument domains, and the target domain is

the result domain.
Definition A.20 (Method) A method is a tuple m = (c,s,f : § — T,b), where:

e ceCN
® 5 is a signalure

o f:S — T is a function mapping a product of source domains to a target

domain, of the form:

f: Ext(k:) x &(s.a1) X -+ x &(s.a,) —> £(s.7)

o b denotes the semantics (behaviour) of function f a
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Example A.19 Let us suppose that there are primary types named Integer and
String, and that there are classes named Person and School. The following tuple

is a method:
( School, (register_student, ( Person, String ), Integer), fi: S — T, b; )

e School is the class to which the method belongs.

o (register_student, ( Person, String ), Integer) is the method signature.

— register _student is the method name.
~ ( Person, String ) is the sequence of argument types.

— Integer is the result type.

o fi : S — T is a function that implements the method, and it has the

following form:

fi ¢ Ext(Kschool) X E(Person) x £(String) — £(Integer)

e b; denotes the semantics of fi: For the instance of School to which the
method is applied, register the instance of Person given as first argument as
a student of the course whose name is given as second argument (String),

and returns the registration number of the student as a result (Integer). <

Set of Methods

Each element of the set of methods of a class needs to have an identification which
is distinct from the identification of the others to permit each one to be referred
to unambiguously with respect to the class. As previously discussed, such distinct

identification is obtained through method signatures.
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Definition A.21 (Consistent Set of Methods) A set of methods M is consistent iff

Ve,ye M : if v.s = y.s then z = y. O

Example A.20 The following is a consistent set of methods for a class named

School:

{ (School, (register_student, (Person, String), Integer), f; : S — T, b;),
(School, (register_student, (Person), Integer), f2: S — T, by),

(School, (issue_certificate, (Person), Integer), f3: S — T, b3) }

Method Transformation and Inheritance Semantics

A class « defines a set of methods which can be applied to instances of a, and
additionally o may inherit methods from a class 3, the superclass of a. However,

the methods of 3 are only applicable to instances of 3, i.e., they cannot be applied

to instances of . For this reason, we define an operator to “transform” inherited

methods such that they are applicable to instances of a subclass.

Moreover, an inherited method may either preserve the original method seman-
tics or define a new one. If the method semantics is preserved then the semantics

of the inheritance is incorporation, otherwise it is substitution.

Definition A.22 (Method Transformation) Given a method m = (c,s,f,b) and a

class name z, such that k,.s = ¢, the transformation of m with respect to the

class named z, denoted as T',(m), is a tuple (z,s,f',b'), where:
o f' is a function of the form:

f': Ext(k,) x €(s.a1) X - -+ X E(s.an) — &(s.7)
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e b is the semantics of f', such that:

1. If ¥’ = b then I';(m) is an incorporation of m by &,
2. Ifb' # b then I';(m) is a substitution of m by k, O
Example A.21 Let us consider a class named University which inherits a method

named register_student from a class named School, as illustrated in Figure A.7,

where attributes and other methods are not shown.

School

register_student(Person, String):Integer

Figure A.7 Example of method inheritance

For simplicity of notation, let a and (3, respectively, denote the classes named
University and School, i.e., & = Kpniversity and B = Kschoot- Also, let p denote the

method named register_student. The specification of u can be given by:
g = (School, (register_student, ( Person, String ), Integer), fi: S — T, b)

In such a specification of method p, function f; : S — T has the following
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form:

fi : Ext(B) x {(Person) x £(String) — £(Integer)

The transformation of method pu with respect to a, I'ypiversity(12), can be given

by one of the following equalities:

1. Tuniversity (1) = (University, (register_student, ( Person, String ), Integer), , : S — T,

b1)

« incorporates u: the original semantics of p, i.e., by, is preserved.

2. Tuniversity () = (University, (register_student, { Person, String ), Integer), f, : S — T,

b2)
« substitutes u: the original semantics of y is substituted by the semantics

bs.

In both cases, function fi : § — T specified for method u is replaced by

function f, : S — T, which has the following form:

f2 : Ext(a) x &(Person) x £(String) — £(Integer)

Such function replacement enables method I'yniversity(1¢) be applied to instances

of a, as the first source domain has changed from Ext(3) to Ext(a). &

We extend the use of the operator I' for method transformation to sets of

methods, i.e., if such operator is applied to a set of methods then all methods are

transformed.
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Notation A.12 Given a consistent set of methods M = {my,...,m,} and a class
name z, the notation I';(M) denotes the transformation of M into M' = {m,,...,m.},
where Vi | 1 < i< n:m!=T;(m). a

A.6 Class

In this Section we complement the definitions pertaining to class presented in
Section A.4, by making use of the definitions pertaining to method presented in

Section A.5.

The complete definition of a class « consists of the following items:

1. The name of a.
2. The name of the superclass of a or @ if @ has no superclass.

3. A sequence of class names representing the class path of a. The sequence
is ordered according to the inheritance relation between classes: the last
element is the name of a and the first element is the name of the superclass
of a that has no superclass. If a has a superclass, the sequence is obtained
by adding the class name of a to the end of the sequence pertaining to the
superclass, otherwise the sequence contains only the name of a. If a inherits
from a class (3, the name of a cannot belong to the sequence pertaining to
B, otherwise there would be a “cycle” in the inheritance, i.e., a indirectly

inherits from itself, which is not permitted.
4. A consistent set of attributes locally defined by a.

5. A consistent set of relationships locally defined by a.
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6. A consistent set of methods locally defined by a.

7. A set containing the attributes locally defined by a and the attributes in-

herited by a, if any. Such a set must be consistent, i.e., all attributes in the

set must have distinct names.

8. A set containing the relationships locally defined by a and the relationships
inherited by «, if any. Such a set must be consistent, i.e., all relationships

in the set must have distinct related role names.

9. A set containing the methods locally defined by o and the methods inherited

by a, if any. Such a set must be consistent, i.e., all the methods in the set

must have distinct signatures.
Definition A.23 (Class) A class is a tuple ¢ = (n, s, p, PA, PR, PM, A, R, M), where:

e nc CN

s € (CNU{@})

e p is a sequence of class names in CN
o PA is a set of attribute specifications

PR is a set of relationship specifications

PM is a set of methods

o A is a set of attribute specifications
e R is a set of relationship specifications

M is a set of methods

such that:
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(i) Vae€e PA:a.c=n
(iil) Vre PR:r.dc=n
(iii) Vm € PM :m.c=n
(iv) PA is consistent
(v) PR is consistent
(vi) PM is consistent

(vii) If s = @ then:

(¢) p={n}
(b) A= PA
(c) R=PR
(d) M = PM

(viii) If s # @ then:

(a) p = Ks.0pU {n}

(b)) A=PAUEK,.A

(¢) R=PRUk,.R

(d) M = PMUT,(x,.M)

(¢) n¢ Ky

(f) Ve € PA:Vy €k, A:z.n# y.n
(9) Yz € PR:Vy €k, R:z.rr # y.rr

(h) Ve € PM:Ny€er, M:z.5#y.s
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Terminology:

o PA is the partial set of attributes of ¢

e PR is the partial set of relationships of ¢

PM is the partial set of methods of ¢

A is the total set of attributes of c

R is the total set of relationships of ¢

M is the total set of methods of c 0

The constraints on attribute names, relationship related roles and method
signatures imposed in Definition A.23 naturally ensure the consistency of the

total set of attributes, the total set of relationships and the total set of methods

of a class.
Proposition A.1 (Class Consistency) V¢ € C:

(i) c.A is consistent
(ii) c.R is consistent

(iii) ¢.M is consistent O

Example A.22 Let us consider the class hierarchy depicted in Figure A.8. For
simplicity of notation, classes are named A, B, C, D, X and Y, attributes are
denoted as ay,. .., as, methods are denoted as my,..., ms, and relationships are

denoted as r; and ry. If these labels are expanded then we can have, for example,

that a, represents the attribute salary: Integer.
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Each column of Table A.4 contains the specification for a class shown in Figure
A.8. Also for simplicity of notation, the specifications of attributes, methods
and relationships are denoted in the Table using their labels in the Figure. For

example, if ay represents salary: Integer in the Figure then a, represents (salary,

Integer, 0, A) in the Table. o

A.7 Object

An object o that is an instance of a class a consists of:

1. A set of attribute variables corresponding to the total set of attribute spec-

ifications of a.

2. A set of relationship variables corresponding to the total set of relationship

specifications of a.

3. A set of methods corresponding to the total set of methods of a.

Every attribute/relationship of o is specified by an attribute/relationship of a,
while the methods of o are “copies” of the methods of a. For this reason, we say
that a models o, 1.e., a class is a model of its instances. More specifically, every at-
tribute specification of a models an attribute variable of o, and every relationship
specification of a models a relationship variable of 0. For methods, however, we
simply say that every method of o is equal to a method of a. Therefore, we define
an operator to represent the correspondence between an attribute/relationship

specification with an attribute/relationship variable.
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A e X
a,
m,
/ \ r,
B C .............. Y
a, a; a,
m, m, m,
D
as
ms

Figure A.8 Class hierarchy with labelled members

n A B C D

s @ A A C

e | (A (A, B) (A, C) (A, C, D)

PA || {ai} {a2} {@3, a4} {as}

PR || {n} ] {r:} @
PM || {m} {mg, m3} {ma} {ms}

A | {a} {ay, a2} {ay, a3, a4} {a1, a3, a4, as}

R || {n} {r} {r, r2} {r1, ra2}

M || {m} | {Ts(m1), mz, ms} | {Tc(m), ma} | {To(Fc(m)), [o(ma), ms}

Table A.4 Example of class specification
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Definition A.24 (Specification-Variable Correspondence) Given an attribute (a rela-

tionship) specification A and an attribute (a relationship) variable z, A models z,

denoted as X =z, iff z.s = A. O

Example A.23 Let us consider the attribute specification A, and the attribute vari-

able z; given by:

A, = (name, String, 1, Client)

z; = ((name, String, 1, Client), “Gustav Klimt")

We have that A\, = 2, since z;.s = A,.

Similarly, let us consider the relationship specification A, and the relationship
variable z, given by:
A, = (Car, Vehicle, Wheel, Wheel, 0, 4, PTAE, 1)

z; = ((Car, Vehicle, Wheel, Wheel, 0,4, PTAE, 1), {i1, i2, 3,4 })

We have that ), |= 1, since z3.5 = A,. O

In addition to attribute variables, relationship variables and methods, an ob-

ject o that is an instance of a class a also contains:

1. A unique name to permit o to be unambiguously referred to.
2. The name of a to permit type checking.

3. The set of class names that represents the class path of a to permit type

checking.




Appendiz A. Object Model Definition 229

Definition A.25 (Object) Given a classt € C, an object is a tuple (n, ¢, p, A, R, M),
where:

e n€ ON

e cc CN

® p is a sequence of class names in CN

o A is a set of attribute variables

R is a set of relationship variables

°
o M is a set of methods
such that:
(i) c=t.n
(i) p=t.p
(iii) | A |=| t.A |

(iv) Vi|1<i<|A|,si€t.A,v,€A:si v
(v) [R|=|t.R|
(Vi) Vi | ISiSlRI,S;Et.R,U;GR:S,":U,'
(vii) M =t.M a
Example A.24 Let us consider the classes with corresponding instances depicted
in Figure A.9. An object is represented by a rectangle with rounded corners and
is connected to the respective class by a thick line. For simplicity, object names
are denoted by integers. Also, the object diagrams do not show all details of

attributes, relationships and methods. For example, the complete composition of

an instance of the class named Person is illustrated in Table A.5. O
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n = 4027
¢ = Person

#={ Person )

surname = 'Twist’
firstname = "Oliver

»

School = {4834}
Faculty = {}

enter_school
(School):Integer

n= 8721
¢ = Person

#={ Person )

surname = ’Einstein
firsthame = 'Albert’

School = {2086}
Faculty = {8310}

enter_school

(School):Integer

School

*name: String
address: String

register_student

(Person,String):Integer

Nursery

minimum_age: Integer
maximum_age: Integer

n=4834
¢ = Nursery
§={ School, Nursery )

name = 'Thunderbird’
address = '4 Summer Rd’
minimum_age = 2
maximum_age =6

Student = {4027, ...}

register_student
(Person,String):Integer

Student

University

[ n=2086
¢ = University

#={ School, University )

name = 'St Benoit’
address = '9 Wisdom Av’

Student = {8721, ...}
Faculty = {8310, ...}

register_student

(Person,String):Integer

Person

*surname: String

firsthame: String

enter_school

(School):Integer

O.n | Student

O.n

Faculty

*name: String

register_student
(Person,String):Integer

n=_8310
¢ = Faculty

&#={ Faculty )

name = 'Science’

Student = {8721, ...}
University = {2086, ...}

register_student

(Person,String):Integer

Figure A.9 Correspondence between class and instance elements
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n 8721
¢ Person
) ( Person )

{ ((surname, String, 1, Person), Einstein) ,
((firstname, String, 0, Person), Albert) }

R || { ((Person, Student, School, School, 0, n, ASSE, 1), { 2086 }),

((Person, Student, Faculty, Faculty, 0, n, ASSE, 1), { 8310 }) }

M || { (Person, (enter_school, ( School ), Integer), f : S — T, b) }

Table A.5 Example of object elements

Object Invariants and Notation

The set of all objects is equal to the union of the extents of all classes since every

object is an instance of a class.

Proposition A.2 (Instantiation) O = |J ¢. Ext(c) O

The name of each object 0 must be unique to permit o to be unambiguously

referred to.

Invariant A.6 (Object Name Uniqueness) Vz,y € O : ifen=ynthenc=y. ¢

We define a notation to refer to objects through their names since each object

has a unique name.

Notation A.13 Given an object name i, the notation ©; denotes the object o such

that o.n = 1. O
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Example A.25 Ogzyy denotes the object shown in Table A.5. O

Also, we define a notation to denote the value of an attribute variable of an

object through the name of the variable.

Notation A.14 Given an object o and an attribute variable o € 0.A, the notation

0 -——+ a.s.n denotes a.v. a

Example A.26 Let us suppose that o denotes the object shown in Table A.5. Then,

o --+ surname denotes Einstein, and o --+ firstname denotes Albert. O

Object State and Interface

The state of an object o is composed by the attributes and the relationships of o,

while the interface of o is defined by the methods of o.

Definition A.26 (Object State) Given an object o, the state of o is the doublet
(0.A,0.R). O

Definition A.27 (Object Interface) Given an object o, the interface of 0 is o.M. O

The consistency of the sets of attributes, relationships and methods of an

object is naturally ensured since classes model objects.

Proposition A.3 (Instance Consistency) ¥ o € O:

(i) 0.A is consistent
(ii) o.R is consistent

(iii) 0.M is consistent O
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A.8 Relationship

In this Section we complement the definitions pertaining to relationships presented
in Section A.3, by making use of the definitions pertaining to classes and objects,

presented in Section A.6 and Section A.7, respectively.

Related Classes

A class relationship always involves a pair of classes. Consequently, if a class
o contains a relationship specification o then there must exist a class 8 that
contains a relationship specification A which is complementary to . We must
note, however, that there is no constraint to force o and 3 to be distinct, i.e.,

and 3 can be the same class. Moreover, the types of 0 and A must reflect the

relationship semantics.

Invariant A.7 (Related Class) Vo € C:Vo € a.PR: 33 € C such that:

(i) o.re=B.n

(ii) I\ € B.PR such that:

(a) A.rc=a.n
(b) olr =X.rr
(¢c) Air=o.rr

(d) If o.e = PTAE then A.e = STAE
(e) If o.e = PLAE then X.e = SLAE

(f) If o.e = ASSE then X.e = ASSE
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Terminology:

o the pair (o,)) defines a class relationship between a and
e o and ) are complementary relationship specifications

e ifo.e = PTAE or o.e = PLAE then:

— « 1is the left class in the relationship

— B is the right class in the relationship

— the class relationship is an aggregation

— a is the aggregate class

~ [ is the component class

— o.lr is the aggregate role

— A.lr is the component role

— 0.l is the component minimum cardinality
— o.u is the component mazimum cardinality
— M.l is the aggregate minimum cardinality

— A.u is the aggregate mazimum cardinality

e if o.e = PTAE then:

the class relationship is a tight aggregation
— « is the parent tight aggregation class

— o 1is the parent tight aggregation specification

B is the sibling tight aggregation class
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— A is the sibling tight aggregation specification
o if 0.e = PLAE then:

— the class relationship is a loose aggregation
— « is the parent loose aggregation class
— o is the parent loose aggregation specification

B is the sibling loose aggregation class

— )\ is the sibling loose aggregation specification

o if 0.e = ASSE then:

— the class relationship is an association
— «a and B are associated classes
— o and )\ are association entries

if o is the left class in the relationship then:

* (3 is the right class in the relationship
* o.lr is the left role

A.lr is the right role

*

* 0.l is the right minimum cardinality
*x o.u is the right mazimum cardinality
* Al is the left minimum cardinality

X .u is the left mazimum cardinality ¢

*
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Example A.27 Let us consider a simple hypertext model where links between nodes
have semantics to permit their organisation as documents, according to the fol-

lowing rules:

L,. A document is a set of linked nodes.

L,. A node may be part of several documents concurrently.

L;. A document has one node designated as the root node.

Lys. A node may be root of at most one document.

Ls. Nodes may be arranged as a hierarchical structure.

Les. Node hierarchies may interleave with each other.

L7. A node may contain a reference to any other node, including itself.

Ls. A node may be a note about other node.

Such hypertext model is implemented by the classes depicted in Figure A.10,

where relationships are labelled ry,...,rs, and have the following semantics:

e 1, permits to define the set of nodes of a document (L, ) and permits to define

a node as part of several documents (L) since it is a loose aggregation.

e r, permits to define the root node of a document (L3) and ensures that
a node may be the root of at most one document (L,) since it is a tight

aggregation.

e 13 permits to represent hierarchical arrangement of nodes (Ls), possibly with

interleaving between hierarchies (Lg) since it is a loose aggregation.

e 14 permits to represent references between nodes (L7).
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e 15 permits to define a node as a note about other node (Lg).

The pairs of complementary relationship specifications corresponding tory, ..., rs
are shown in Table A.6, where each pair is denoted by o and \. For simplicity of

notation, the class named Document is denoted by «, and the class named Node

is denoted by (. &

Related Objects

Object relationships are always bi-directional. (Figure A.11 illustrates the fol-
lowing discussion.) Consequently, if an object z contains a name i in the set of
references of a relationship variable o then there must exist an object y whose
name is i and that contains the name of z (say j) in the set of references of a
relationship variable A whose specification is complementary to the specification

of o; we say that o and A are complementary relationship variables.

Invariant A.8 (Related Objects) Vz € O : Vo € z.R: Vi € o.v: Jy € O such

that:

1. y=0;

2. 3X € y.R such that:

(a) X.s is complementary to o.s

(b) z.n € A

Terminology:

e the pair (o,)) defines an object relationship between z and y
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Document Node
r Source
LOR e L On | ST
| On |
r iTy
................... ?--------_-__1;, On
RootDocument RootNodéd
ess estination
Parent| |
O,n ILn .
r3 : f r5
0,n4 On
Child Note

Figure A.10 Relationships between classes for a simple hypertext model

label || class relationship specification
n a o = (Document, Document, Node, Node, 0, n, PLAE, 1)
B A = (Node, Node, Document, Document, 0, n, SLAE, 1)
T2 a | o = (Document, RootDocument, Node, RootNode, 1,1, PTAE, 1)
B | A = (Node, RootNode, Document, RootDocument, 0,1, STAE, 1)
3 8 o = (Node, Parent, Node, Child, 0, n, PLAE, 1)
B8 A = (Node, Child, Node, Parent,0,n, SLAE, 1)
T B8 o = (Node, Source, Node, Destination, 0, n, ASSE, 1)
8 A = (Node, Destination, Node, Source, 0, n, ASSE, 1)
s B8 o = (Node, Node, Node, Note, 0, n, ASSE, 1)
B A = (Node, Note, Node, Node, 1, n, ASSE, 1)

Table A.8 Example of complementary relationship specifications
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Figure A.11 Complementary relationship variables in related objects

e o and )\ are complementary relationship variables
o = and y are related with respect to the class relationship (o.s, )\ .s)
e 0.5.lr is the role of x in the relationship

e )\.s.lr is the role of y in the relationship

if o.e = PTAE then the object relationship is a tight aggregation

if . = PLAE then the object relationship is a loose aggregation

if 0.s.e = PTAE or o.s.e = PLAE then:

— z and y are aggregated to each other
— z 1is the aggregate object

— y 1s the component object

o if o.e = ASSE then:

— the object relationship is an association

— z and y are associated objects ¢

We define a notation to denote object relationship.
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Notation A.15 Given two objects ¢ and y, and two role names A and B, the nota-
B
tion z =Y denotes a relationship between z and y, where A is the role of ¢ and

B is the role of y. O

Example A.28 Let us consider an object ¢ and an object y which are instances of
the class named Node shown in Figure A.11, such that = is a parent node of y,

that is, z and y are related with respect to the class relationship rs.

For simplicity of notation, let j denote the name of ¢ (z.n = j) and i denote
the name of y (y.n =i). Thus, the set of relationship variables of z contains an

element o and the set of relationship variables of y contains an element A given

by:

o = ((Node, Parent, Node, Child, 0, n, PLAE, 1), {i,... })

A = ((Node, Child, Node, Parent,0,n,SLAE, 1), {j,...})

The role of z is Parent while the role of y is Child. Thus, using the notation

for related objects, we have that:

Child
r &=
Parent

Aggregate and Component Objects Distinction

The semantics of aggregation establishes that a component object is part of an

aggregate object. Therefore, both objects are necessarily distinct.

Invariant A.9 (Aggregate and Component Objects Distinction) Yz,y € O: if z and

y are aggregated to each other then z # y. ¢
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Relationship Variable Identification

We introduce a theorem which to justify aspects of the object manipulation lan-
guage and algorithms, used in Chapter 8, pertaining to operations for creation

and removal of object relationships .

Both relationship creation and removal operations are applied to an object z

with only two parameters:

Py: An object y.

P,: The role of y in the relationship.

Such an operation affects a pair of complementary relationship variables: a
variable o in the corresponding set of z and a variable A.in the corresponding
set of y. We must recall that the set of relationship variables of an object is
consistent, i.e., all related roles are distinct from each other to permit variables
to be identified (Definition A.9). Thus, the variable o is directly identified by P,.
The variable )\, however, is indirectly identified by information provided by o: the
remote role in A is equal to the local role in o. If the classes of  and y are related
then X exists. However, it must be shown that a relationship variable of y whose

related role is equal to the local role of ¢ is necessarily A, i.e., the complementary

relationship variable of o.

Example A.29 Let us consider an object ¢ and an object y which are instances of
the class named Node shown in Figure A.11. If an operation is applied to z to
create a relationship with y (P;), such that the role of y is Child (P;), then the

identification of the affected complementary relationship variables is proceeded

according to the following steps:
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1. A relationship variable o is identified in the corresponding set of ¢ by the

related role Child. Such variable is given by:

o = ((Node, Parent, Node, Child, 0, n, PLAE,1),{... })

2. From o, we have that the local role of = is Parent. Thus, a relationship
variable X\ is identified in the corresponding set of y by the related role

Parent. One such variable is given by:

A = ((Node, Child, Node, Parent, 0, n, SLAE,1),{... })

Obviously, if all the elements of o and A are compared, we deduce that they
are complementary. However, we want to prove that such a comparison is not
necessary, i.e., only the fact that the remote role of A (Parent) is equal to the local

role of o is sufficient. O

Since complementary relationship variables have complementary relationship
specifications and the set of relationship variables of an object o is modelled by
the set of relationship specifications of the class of o, we have that ¢ and A are
complementary if their corresponding relationship specifications in the classes of

z and y are complementary.

Theorem A.1 (Complementary Relationship Specifications) Given the relationship spec-
ifications o and A, and the classes o, 3 € C, such that 0 € a.PR and A € 3.PR,

o and X are complementary if:

(i) o.re=B.n

(ii) odr = A.rr [
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Proof: Let o and X be relationship specifications, and a,8 € C be classes such
that:
o € a.PR
A€ B.PR
o.rc = fB.n
oldr=X.rr

From A.1 and Invariant A.7 (Related Classes) we have that 3( € B.PR such

that:
(.rc=a.n
Clr =o.rr
(.rr=o0.lr
From A.1 and A.1 we have that:
C.rr=A.rr

From Proposition A.1 (Class Consistency) we have that 8.PR is consistent. Thus,
from Definition A.9 (Consistent Set of Relationship Specifications), we have that:

Ve, y€B.PR:z.rr=yrr=>zc=y
Since ( € B.PR, from A.1, A.1 and A.1 we have that:
(=2A
From A.1, A.1 and A.1 we have that:

A.rc=oa.n

Ar=o.rr
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Therefore, from A.1, A.1, A.1, A.1, A.1, A.1 and Invariant A.7 (Related Classes),

we have that o and A are complementary. X

A.9 Single Inheritance

According to Definition A.23 (Class), a class may have a superclass; if a class d
is derived from a base class b then d.s = b.n. Such a relation between b and d

implies inheritance of attributes, methods and relationships of & by d.

Definition A.28 (Inheritance Arc) Given a pair of classes b,d € CN, there ezists

an inheritance arc from b to d, denoted as Y, iff d.s = b.n. O
d

Example A.30 Figure A.12 illustrates an inheritance arc from a class b, named

Picture, to a class d, named Drawing. &
Picture
b
¥
Drawing
d

Figure A.12 Example of inheritance arc

We define a symbol to denote the set of all inheritance arcs.
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Notation A.16 The symbol A denotes the set of all inheritance arcs between classes

nC:

A={T4 | b,deC)

Since Definition A.23 establishes that a class has at most one superclass, only

single inheritance is permitted.

Proposition A.4 (Single Inheritance) Let z,y,d be classes in C. If 3 15, T) € A
then T4 =T} and z = y. O

Tree-based Arrangement of Classes

Classes and corresponding inheritance arcs can be represented by a directed graph;
every vertex of the graph represents a class and every arc (directed edge) of the
graph represents an inheritance arc. We will prove that such a graph is a directed

tree.® Firstly, we define a notation for graphs which is summarised in Figure A.13

through examples.

Notation A.17 A directed graph G is denoted by a doublet (V, A), where V and

A, respectively, denote the set of vertices and the set of arcs of G. O

Notation A.18 Given a directed graph G and a vertex v € G.V, the notation

Indegree(v) denotes the number of arcs in G.A which have v as their final vertex.

a

Notation A.19 Given a directed tree U, the notation Root(V¥) denotes the vertex

3 A directed tree is also called an arborescence in the literature.

Indegree
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in W.V which is the root of V. O

9.V ={uv,...,vr}
19.A={a1,...,a7}

Indegree(n

(v)
Indegree(v,)
Indegree(vs)
Indegree(vr)

Il

0
1
2
3

(a) A directed graph 9

V.V ={v,...,u}
lIJ.A={(11,...,(I,7}

Indegree(vy) =0
Vi | i#1: Indegree(v;) =1

Root(¥) = vy

(b) A directed tree ¥

Figure A.13 Example of graph notation

Also, we define a notation to denote the graph that represents all classes and

inheritance arcs and, finally, prove that such classes are arranged as directed trees.

Notation A.20 The symbol G denotes a directed graph such that G.V = C and
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GA=A g

Theorem A.2 (Tree-based Arrangement of Classes) Every connected subgraph of G

15 a directed tree. a

Proof: From Definition A.23 we have that a class has at most one superclass,

thereby:

VeceG.V:Indegree(c) <1

Let ¥ be a connected subgraph of G, and let v and o, respectively, be the
number of vertices and the number of arcs in V. Since ¥ is connected we have
that a > v — 1 (Theorem 5C in [67]). Let us assume that a = v — 1, which then
implies ¥ is a tree (Theorem 9A in [67]). Let r = Root(¥), then:

VeeW.V | ¢#r: Indegree(c) =1
Also, from Definition A.23 we have that:
VeeU.Virne€cp

Now, let us suppose that z,y € V.V and that an arc T; should be added to V.A.

We have two cases to consider:

1. If then, from Definition A.23, we have that the addition of T3 to
U.A is only possible if r.n ¢ z.p, which contradicts A.1.

2. If then, from A.1, we have that the addition of T; to W.A implies

Indegree(y) = 2, which contradicts A.1.

Therefore, the arc T; cannot be added to V.A, which implies U is a directed
X

tree.
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A.10 Class Hierarchy

According to Theorem A.2, G is a directed acyclic graph (DAG). However, graph
G is not necessarily connected. More specifically, every (connected) component of

G is a distinct directed tree, which we call class hierarchy.

Definition A.29 (Class Hierarchy) A class hierarchy is a directed tree of classes that

is @ maximum subgraph of G with respect to the connectedness property. O

Since C and A are finite sets, from A.2 we have that the number of class

hierarchies in G is finite.

Corollary A.1 (Arrangement of Classes in Hierarchies) Graph G is a finite set of class

hierarchies. O

Example A.31 The graph G depicted in Figure A.14 is composed of class hierarchies

Uy,...,¥s. Vertices are labelled as c¢; to denote classes and, for simplicity, arcs
are not labelled. O
¥ 51 ¥ Co Vs C14
(o]
C2 C3 €10 €11
¥s €12 Us ¢ys
o 66 I A
C7 Cs €13 Cie C17 C8

Figure A.14 Example of graph G
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Class Path

Since a class hierarchy is a directed tree, there is a unique elementary path* from
the root to every vertex of a class hierarchy. The sequence of classes (vertices) in

such a path is called class path.

Definition A.30 (Class Path) Given a class hierarchy ¥ in G and a class ¢ € U.V,
the class path with respect to ¢, denoted as Path(c), is the sequence of classes in

the elementary path from Root(¥) to ¢, inclusive. O

Example A.32 Let us consider the class hierarchy ¥, depicted in Figure A.14.

Some of the class paths in ¥, is given by:

Path(c1) = (a1)
Path(a;) = (cl, C2, 64)

Path(07) = (ch €2, Cs, C7>

The class path with respect to a class ¢ is represented by the sequence of class
names given by c.p. Let us consider the classes ¢, ¢cy,..., ¢ such that c;yy is

direct subclass of ¢; Vi,0 < i < k — 1, which is represented as follows.

5
)
&
Yy

Then, Vj,0 < j <k, we have that:

4A elementary path is a sequence of arcs where the final vertex of one is the initial vertex of

the next one such that the same vertex is not used more than once in the path.
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1. Path(c;) = (coy...,¢j)

2. ¢.p=(co.n,...,cj.n)

A.11 Class Conformity

According to Definition A.23 (Class), a class d that is derived from a base class b
(i.e., d.s = b.n) contains all specifications (total sets of attributes, relationships
and methods) of b and, possibly, adds new specifications. For this reason, we say

that “d conforms to b”.

Intuitively, the specifications of a class z are contained in all direct and indirect
subclasses of . Consequently, any direct or indirect subclass of z conforms to z.
In general, given a class ¢ and a class y, if either y = = or y is subclass of z then
y conforms to z. In both cases, for simplicity, we say that “y is a ”. This is-a
relation between = and y can be expressed in terms of the class path: y is a z if

z is in the class path with respect to y.

Definition A.31 (Is-a Relation) Given the classes z,y € C, y is a z, denoted as

y<,z, iff z.n € y.p. O

Example A.33 Let us consider the classes School, Nursery and University in Figure
A.9. The class Nursery contains the attributes name and address, the relationship
with class Person having related role Student and the method register_student,
which are specified by class School. For this reason, class Nursery conforms to

class School. Similarly, class University conforms to class School. For simplicity
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of notation, let z, y and z, respectively, denote the classes School, Nursery and

University. Thus, we have that:

1. (z.n = School) A (z.p =(School)) = z.n€z.p = <,
2. (z.n = School) A (y.p = (School,Nursery)) = z.neyp = y<,=z

3. (z.n = School) A (z.pp = (School, University)) = z.n€z2.p = 2<, 2 O

Deep Extent Reduction

Given a class z and a class y such that y is subclass of z, while the specification
of y includes the specification of z, the deep extent of y is included in the deep

extent of z. In other words, a subclass enlarges the specification and reduces the

deep extent of its superclass.

Proposition A.5 (Deep Extent Reduction) Given a class ¢ and a class y, y <, z iff

Ezxt*(y) C Ezt*(z). g

Let us consider the classes ¢, ¢1, ..., ¢ such that Path(ci) = (co, €1y- .., Ck)-
Figure A.15 illustrates how class specification is enlarged and class deep extent is

reduced from ¢y to cx. We have that:

1. ¢ ST Ck—1 ST"‘STCO

2. Ext*(cx) C Ext*(ck—1) € -+ C Ext*(co)
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7 °
> C1

Figure A.15 Specification enlargement and deep extent reduction in class path

A.12 Partial Ordering of Classes

The is-a relation defines a partial order in C, that is, C is a poset (partially ordered

set) with respect to the is-a relation.

Theorem A.3 (Partial Order Relation between Classes) The is-a relation has the fol-
lowing properties:

(i) Reflezive property: Va€C:a <; a

(ii) Antisymmetric property: Va,b €C:ifa <, b and b <, a thena =%

(ili) Transitive property: Va,b,c €C:ifa <. b and b <, ¢ thena <; ¢ [ |

Proof: Let a, b and ¢ be classes in C.

(i) Reflexive property:
From Definition A.23 (Class) we have that a.n € a.p.

From Definition A.31 (Is-a Relation) we have that a.n € a.p = a <, a.
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(ii) Antisymmetric property:
Let us suppose that a <, b and b <, a. From Definition A.31 and Definition

A.28 we have that:

either a =1b (14)
a<;,b = bn€cap =
or b is superclass of a (1B)

either a =b (24)
b<,a = an€bp =
or a is superclass of b (2B)

Thus, one combination in the product {1A, 1B} x {24, 2B} holds. If the
combination (1A, 2A) holds then a = b. According to Theorem A.2 (Tree-

based Arrangement of Classes) any other combination is absurd. Therefore:

a<;bANb<L,a = a=b

(iii) Transitive property:
Let us suppose that a <, b and b <; ¢. According to Definition A.31 and

Theorem A.2 we have that:

a<;b = bn€ap = bp<xap

b<,¢c = ecn€dbp = cpxbp
From A.1 and A.1 we have that:
c.p =X a.p

From Definition A.23 we have that:

c.necp
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From A.1, A.1 and Definition A.31we have that:
cn€ap = a<l;c
Therefore:

a<,bANb<;c = a<;c

Corollary A.2 (Partial Ordering of Classes) The set of classes C is partially ordered

with respect to the is-a relation. O




255

APPENDIX B

Theorem Proof

In this Appendix we prove the Theorem 5.1 (Root Subtree Self-containment),

which is stated in Chapter 5.

Theorem: A subtree H of a class hierarchy ¥ in G is self-contained iff H is
[ ]

a rool-subtree.

Firstly, we recall that if a class z is (directly or indirectly) subclass of a class
y then z <, y and, conversely, if ¢ <; y then z is (directly or indirectly) subclass
of y. For this reason, we can also define class hierarchy self-containment using
the is-a relation: for every class z in a set of classes C that is self-contained with

respect to hierarchy we have that if there is class y such that ¢ <, y then y

belongs to C, and vice-versa.

Proposition B.1 (Partial Order and Hierarchy Self-Containment) A set of classes C

is self-contained with respect to hierarchy iff Ve € C :Vy € C: if x <; y then

ye C. a

Proof:

(i) H is self-contained = H is a root-subtree




Appendiz B. Theorem Proof 256

Since H is self-contained we have that:
Vye HV : Ve eC:y<,z = z€ H.V
Since U.V C C, from B.1 we have that:
Vye HV :VzeW.V:y<,z = z€ HV

Since U is a class hierarchy we have that:

Vye V.V :y <, Root(¥)
Since H is subtree of ¥, from B.1 we have that:

Vye H.V : y <; Root(V¥)
From B.1 and B.1 we have that:

Root(¥)e H.V
Therefore:
Root(H) = Root(¥)

(ii) H is a root-subtree = H is self-contained

Since H is a root-subtree we have that:
Root(H) = Root (V)
Let y € H.V and z € C be classes such that:

y<r=z
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From B.1 we have that:
TP Y
Since y € H.V we have that:
Root(H) € y.p
From B.1 and B.1 we have that:
Root(¥) € y.p
From B.1 and B.1 we have that:
Root(¥) € z.p
From B.1 we have that:
eV V
From B.1 and B.1 we have that:

r€HV

Therefore:

Vye HV :VzeC:y<,z = z€ HV
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AppeEnDIx C

Meta-classes Definition

In this Appendix we give a formal definition for all meta-classes.

Naming Assumptions

All class and schema names used in the meta-schema are considered as “reserved”,
i.e., user-defined schemas cannot contain such names. Moreover, the only primary
types used in the schema correspond to the domains integer and strings. Thus,

let us assume the existence of the following sets:

e a set Rpy of reserved primary type names

a set Rpr of reserved primary types

a set Rpp of reserved primary domains

e a set R,y of attribute names
e a set Ry of reserved class names

e a set Rwy of reserved schema names

such that:
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(i) PN 2 Rpn

(ii)) P 2 Rer

(iii) D 2 Rpp

(iv) AN 2 Ran

(v) CN 2 Rewn

(vi) WN 2 Rwy
(vii) Rpn = {Integer, String}
(viti) Rpr = {TMintegers Tstring }

(iz) Rpp = {Dom(Tinteger), DOM(Tstring) }

(T) Minteger-$ is @ semantics for integer values

(zi) Tswing.s is a semantics for string values
(zii) Dom(Tinteger) is the set of integer values
(ziii) Dom(Tsying) is the set of string values

(ziv) Ran = {
name, key, signature,
aggregate_role, aggregate_min_card, aggregate_max_card,
component_role, component_min_card, component_max_card,
left_role, left_min_card, left_max_card,

right_role, right_min_card, right_max_card

}

(zv) Ren = {

Class, Attribute, Method, Relationship, Schema,
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IntegerAttribute, StringAttribute,

Aggregation, LooseAggregation, TightAggregation, Association

}

(zvi) Rwnx = {Meta, Class, Attribute, Method, Relationship, Schema}

Meta-classes

According to the meta-schema depicted in Figure 6.1, the meta-classes are formally

defined as follows.

Invariant C.1 (Meta-class Class) Let ¢ € C be a meta-class such that c.n = Class,

then:

(1) e.s =0
(2) c.PA = {(name, String, 1, Class)}
(3) ¢.PR={
(Class, Class, Attribute, Attribute, 0, n, PTAE, 1),
(Class, Class, Method, Method, 0, n, PTAE, 1),
Class, LeftClass, Relationship, LeftRelationship, 0, n, PLAE, 1),
Class, RightClass, Relationship, RightRelationship, 0, n, PLAE, 1),

(

(

(Class, SuperClass, Class, SubClass, 0, n, ASSE, 1),
(Class, SubClass, Class, SuperClass, 0,1, ASSE, 1),
(Class, RootClass, Schema, RootSchema, 0, n, SLAE, 1),

(Class, NonRootClass, Schema, NonRootSchema, 0, n, SLAE, 1)
} ¢
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Invariant C.2 (Meta-class Attribute) Let ¢ € C be a meta-class such that c.n =

Attnbute, then:

(1) e.s=0

(2) e.PA={
(name, String, 1, Attribute),

(key, Integer, 0, Attribute)

}
(3) c.PR = {(Attribute, Attribute, Class, Class, 0,1,STAE, 1)} ¢

Invariant C.3 (Meta-class StringAttribute) Let ¢ € C be a meta-class such that c.n =
StringAttribute, then:

(1) c.s = Attribute

(2) c.PA=10

(3) ¢.PR=10 ¢
Invariant C.4 (Meta-class IntegerAttribute) Let ¢ € C be a meta-class such that
c.n = IntegerAttribute, then:

(1) ¢.s = Attribute

(2) ¢.PA=10

(3) c.PR=10 ¢

Invariant C.5 (Meta-class Method) Let ¢ € C be a meta-class such that c.n =

Method, then:

(1) ccs =2
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(2) c.PA = {(signature, String, 1, Method)}

(3) ¢.PR = {(Method, Method, Class, Class, 0,1, STAE, 1)} ¢

Invariant C.6 (Meta-class Relationship) Let ¢ € C be a meta-class such that c.n =

Relationship, then:

(1) ccs =0

(2) e.PA={
(left_key, Integer, 0, Relationship),
(right_key, Integer, 0, Relationship)

}

(3) ¢.PR={
(Relationship, LeftRelationship, Class, LeftClass, 1,1, SLAE, 1),
(Relationship, RightRelationship, Class, RightClass, 1,1, SLAE, 1)

} ¢
Invariant C.7 (Meta-class Aggregation) Let ¢ € C be a meta-class such that c.n =

Aggregation, then:

(1) c.s = Relationship

(2) ¢.PA={
(aggregate_role, String, 1, Aggregation),
(component_role, String, 1, Aggregation),
(component_min_card, Integer, 0, Aggregation),

(component_max_card, Integer, 0, Aggregation)

}
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(3) ¢.PR=1 ¢

Invariant C.8 (Meta-class LooseAggregation) Let ¢ € C be a meta-class such that

c.n = LooseAggregation, then:

(1) c.s = Aggregation

(2) c.PA={
(aggregate_min_card, Integer, 0, Aggregation),

(aggregate_max_card, Integer, 0, Aggregation)

}
(3) c.PR=10 ¢

Invariant C.9 (Meta-class TightAggregation) Let ¢ € C be a meta-class such that

c.n = TightAggregation, then:

(1) c.s = Aggregation
(2) c.PA=10

(3) c.PR=10 ¢

Invariant C.10 (Meta-class Association) Let ¢ € C be a meta-class such that c.n =

Association, then:

(1) c.s = Relationship

(2) ¢.PA={
(left_role, String, 1, Association),
(right_role, String, 1, Association),

(left_min_card, Integer, 0, Association),
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right_min_card, Integer, 0, Association),
left_max_card, Integer, 0, Association),

(
(
(right_max_card, Integer, 0, Association),
}

(3) ¢.PR=10 ¢

Invariant C.11 (Meta-class Schema) Let ¢ € C be a meta-class such that c.n =

Schema, then:

(1) c.s =0
(2) c.PA = {(name, String, 1, Schema)}

(3) c.PR={
(Schema, RootSchema, Class, RootClass, 0,1, PLAE, 1),
(Schema, NonRootSchema, Class, NonRootClass, 0, n, PLAE, 1),
(Schema, SuperSchema, Schema, SubSchema, 0, n, PLAE, 1),

(Schema, SubSchema, Schema, SuperSchema, 0, n, SLAE, 1)
} ¢
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APPENDIX D

Meta-object Mapping

In this Appendix we show how classes, attributes, methods, relationships and
schemas are mapped to meta-objects by using the formalisation presented in Ap-
pendix A and Chapter 5. All definitions and examples presented in this Appendix
are equivalent to the definitions and examples presented in Chapter 6. Thus, they

are illustrated using the schema shown in Figure 6.2.

Definition D.1 (Class Meta-object) Given a class name n € CN such that 3, € C,

the class meta-object with respect to k,, denoted as p(n), is m € £(Class) such

a

that m --+» name = n.

Example D.1 Let us consider the class named Person. The notation ¢(Person)

denotes the instance y of the meta-class Class such that y --+ name = Person. &

Attribute Mapping

Notation D.1 Given a primary type name p € PN, the notation AttCN(p) denotes AuCN

a class name in Ron as follows.

o AttCN(Integer) = IntegerAttribute
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e AttCN(String) = StringAttribute O

Meta
Definition D.2 (Attribute Mapping) The set of meta-objects that maps an attribute

specification a = (n, p, k, ¢), denoted as Metas(a), is the set containing only the

meta-objects = € E(Attribute), y € {(Class) such that:

(i) z.c = AttCN(a.p)
(ii) z --» name = a.n
(iii) o —-» key = a.k
(iv) y = p(a.c)

Class

vz = y O

Attribute

Example D.2 Let us consider the attribute surname of class Person. A specification

a for such attribute is given by:
a = (surname, String, 1, Person)

Thus, Metas(a) = {z,y} such that:

z.c = StringAttribute y = ¢(Person)
Class
£ --+ name = surname r =
Attribute
z -+ key=1

Method Mapping

StrSi
Notation D.2 Given a method pu, the notation StrSig(u) denotes the string ob-
tained by concatenating the strings p.s.n,p.s.ay, ..., [t .S.an, (b .8.7 in that order

and separating them using commas. O
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Definition D.3 (Method Mapping) The set of meta-objects that maps a method p,
denoted as Metapy(u), is the set containing only the meta-objects = € £(Method),

y € &(Class) such that:

(i) = --+ signature = StrSig(u)

(ii) y = ¢(p.c)

Class
(iii) z wireg ¥ O

Example D.3 Let us consider the method register_student of class School. A spec-

ification p for such method is given by:

p = (School, (register_student, (Person, String), Integer), f : § — T, b)

Thus, Metay(p) = {z,y} such that:

z.c = Method

z --+ signature = “register_student, Person, String, Integer”

y = ¢(School)

Class

zr =
Method

Relationship Mapping

» ) . . . Met
Definition D.4 (Relationship Mapping) The set of meta-objects that maps a rela-
tionship spectfication o = (lc,lr,re,rr,l, u, e, k), denoted as Metag(o), is the set
containing only the meta-objects r € {(Relationship), z € {(Class), y € {(Class),

such that:

(i) if o.e € {PTAE,STAE} then r.c = TightAggregation
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(ii) if o.e € {PLAE,SLAE} then r.c = LooseAggregation

(iii) if o.e = ASSE then r.c = Association

LeftRelationship

(iv =
LeftClass
RightRelationship
(v) v =

Rigl:zlass
(vi) either ((z = ¢(0.lc)) and (y = ¢(o.rc)))

or ((y = p(o.lc)) and (z = p(a.rc)))

(vii) if o.e € {PTAE,PLAE} then:
(a) £ = ¢(0.lc)
(b) r —-+ left_key = 0.k
(¢) r --+ aggregate_role = o.lr
(d) r --+» component_min_card = o./

(e) r --+ component_max_card = o.u
(viil) if o.e € {STAE,SLAE} then:
(a) y = p(o.lc)
(b) r --+ right_key = 0.k
(c) r --+ component_role = o.Ir
(ix) if o.e = SLAE then:
(a) r --+ aggregate_min_card = o./

(b) r --+ aggregate_max_card = o.u

(x) if o.e = ASSE and z = p(o.lc) then:
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(a) r ——» left_key = 0.k
(b) r -+ left_role = o.Ir
(c) r --+ right_min_card = o.]

(d) r --+ right_max_card = o.u
(xi) if o.e = ASSE and y = p(o.lc) then:
(a) r —-» right_key = 0.k
(b) r --+ right_role = o.lr
(c) r --+ left_min_card = 0./
(d) r --+ left_max_card = o.u O

Proposition D.1 (Complementary Relationship Specifications Mapping) Given two re-

lationship specifications o and A, if o and A are complementary then Metag(o) =

Metap()). O

Example D.4 Let us consider the association between classes School and Person.

A pair of complementary relationship specifications o and XA for that association

is given by:

o = (School, School, Person, Student, 0, n, ASSE, 0)

A = (Person, Student, School, School, 0, 3, ASSE, 1)




Metac
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Let us designate the class School as the LeftClass and the class Person as the

RightClass in the association. Thus, Metar(c) = Metar(\) = {r,z,y} such that:

r.c = Association

¢ = p(o.lc) = p(School) y = (A .lc) = ¢(Person)

LeftRelationship RightRelationship
= r = T

LeftClass RightClass

r --+ left_key = 0.k =0 r --+ right_key = A .k =1
r --+ left_role = o.Ir = School r --+ right_role = X .lr = Student
r --+ left_min_card = A.[ =0 r —-+ right_min_card = 0.l =0
r ——+ left_max_card = A .u = 3 r —-» right_max_card = o.u = n

Class Mapping

Definition D.5 (Class Mapping) The set of meta-objects that maps a class (3, de-

noted as Metac((3), is the set given by:

Metac(8) = (QEJM MetaA(a)) U (ugM MetaM(,u)) U (gR MetaR(a))

Proposition D.2 (Class Path Mapping) Given a class 3 € C, VA € C: if B <, A
then o(A.n) € Metac(B). O

Invariant D.1 (Inheritance Mapping) Vb,d € C: if d.s = b.n then

SuperClass

p(d.n) = —¢(b.n)

Su!;aass

Example D.5 Let (3 denote the class University (3 = Kuniversity ), then:

B.A={a, a2} BM = {u} B.R={o}
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where:

o = (name, String, 1, School)
oz = (acronym, String, 0, University)
p = (School, (register_student, (Person, String), Integer), f : S — T, b)

o = (School, School, Person, Student, 0, n, ASSE, 0)
Thus, from Definition D.5 (Class Mapping), we have that:

Metac(B) = (MetaA(al) U MetaA(ag)) U (MetaM(y)) U (Metaﬁ(a)>

Now, let us verify that Proposition D.2 holds. Since class School is the only
superclass of 3 we have that all is-a relations of 3 are given by:

KUniversity <+ KSchool

KUniversity <s KUniversity

From Definition D.2 (Attribute Mapping), Definition D.3 (Method Mapping) and

Definition D.4 (Relationship Mapping), we have that:

Metas(ar) D {¢(School)} Metap(p) O {p(School)}
Metay(az) D {¢(University)} Metag(o) D {p(School), p(Person)}
Hence:

Metac(B) D {p(School), p(University)}

Moreover, since class School is direct superclass of 8 (3.s = School), according to

Invariant D.1, we have that:

SuperClass

iversi = h
¢(University) o (School)
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Schema Mapping

Invariant D.2 (Schema Instance Name Distinction) Vz,y € £(Schema): if z —-»

name = y --» name then z = y. ¢

Definition D.6 (Schema Meta-object) Given a schema w € W, the schema meta-
object with respect to w, denoted as vy(w), is m € £(Schema) such that m --»

name = w.n. d

Example D.6 Let us consider the schema depicted in Figure 6.2. For simplicity
of notation, let us denote the schema by ws, and let us suppose that its name is
Academia (ws.n = Academia). Thus, the notation y(ws) denotes the instance m

of the meta-class Schema such that m --+ name = Academia. O

Definition D.7 (Schema Mapping) The set of meta-objects that maps a schema w,
denoted as Metaw (w), is the set given by:
Metaw (w) = {y(w)} U ( U Metac(ﬂ)) U ( U Metaw(a:))
- \Bew.H.V TEW.S

Invariant D.3 (Root-subtree Mapping) ¥ w € W:

(i) Ve € w.H.V: if c = Root(w.H) then p(c.n) Rootzghems ¥(w)

RootClass

NonRootSchema

(ii) Ve € w.H.V: if ¢ # Root(w.H) then ¢(c.n) v(w) ¢

NonR‘;tCIass

Example D.7 Let us consider the schema depicted in Figure 6.2. Since there are
two root classes (School and Person) the schema is a super-schema composed two
basic schemas. For simplicity of notation, let us denote the basic schema rooted

at class School by w; and the basic schema rooted at class Person by w,. Thus,
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we have that:

RootSchema RootSchema )

School) ' = P s
SO( ¢ 00) RootClass 7(wl) SO( erson) RootClass 7(w2
7(wr)

NonRootSchema

¢(University)

NonR‘o:tCIass

Invariant D.4 (Schema Nesting Mapping) ¥V w,s € W: if s € w.S then:

SuperSchema

() = y(w)

SubS‘Zl—nema

Example D.8 Let us consider the super-schema depicted in Figure 6.2. Let us
denote the sub-schema rooted at class School by w,, the sub-schema rooted at

class Person by w,, and the super-schema by ws. Thus, we have that:

SuperSchema SuperSchema
7(w1) Subéglema 7(w3) 7(W2) Subgglema 7(w3)

Summary

We summarise the discussion on meta-object mapping by presenting, as an ex-

ample, the complete set of meta-objects that maps the schema depicted in Figure

6.2. Formally, the schema elements are given as follows.
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a; = (name, String, 1, School)

az = (acronym, String, 0, University)

az = (surname, String, 1, Person)

a4 = (firstname, String, 0, Person)

as = (age, Integer, 0, Person)
my = (School, (register_student, (Person, String), Integer),f : § — T, b)
r1 = (School, School, Person, Student, 0, n, ASSE, 0)

r, = (Person, Student, School, School, 0, 3, ASSE, 1)

c1 = (School, @, (School), {a1}, {1}, {m1},{ar}, {n}, {m1})

c; = (University, School, (School, University), {a,}, 0,0, {a1, a2}, {r1}, {Tuniversity (1) })
cs = (Person, &, (Person), {as, a4, a5}, {r2},0, { as, a4, as}, {2}, 0)

w, = (School, Hy,0), H,.V = {c1, 2}

wy = (Person, H,,0), H,.V = {c3}

ws = (Academia, nil, {w;, wy})

The set of meta-objects that map all schema elements is diagrammatically
represented in Figure 6.4. Formally, the mapping of all schema elements are given
as follows. We recall that the notation ©; denotes the object o whose name is ¢

(o.n =1i).
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School Person
~=-=1--> *name: String @ @ *surname; String <~ T

4 Student firstname: String =<-[~---

register_student S OO )T
> 0.3 : © on age: Integer  ~=.)

(Person,String):Integer

@ ........................ — e

Y
University
“‘J - = acronym: String
........................ @
Hl H2
Y1 w2

L™

Figure D.1 Example schema with annotated formal elements
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Class Meta-objects

¢(School) = ©,
¢ (University) = Q4

¢(Person) = B¢

Attribute Mapping

Class
Meta,;(al) = {@2,(")1}, @2 ==

=
Attribute

Class
—_—

5 -
Attribute

Class

—_—

7 -
Attribute

MetaA(a4) = {68,@6}, @3 iy

MetaA(az) = {@5,@4}, @

Metay(a3) = {07,06}, ©

"

NS
Attribute

Class

MetaA(as) = {@9, @6}7 (‘)9

T
Attribute

Schema Meta-objects

Relationship Mapping

LeftRelationship

—_—

MetaR(rl) = {@10,@1,@6}, @1 —
LeftClass
RightRelationship

—_—

Rigf:t_CIass

Metag(r2) = {©10,0,,06}, O

10

10

v(w1) = Ony
7(“’2) = 0Oy
Y(ws) = O13

Inheritance Mapping

SuperClass
—

0,4

Sul‘;aass

Method Mapping

Metay(my) = {©3,01}, Os Mc'é“ 0,

ethod

Class Mapping

Metac(c1) = Metas(ay) U Metap(my) U Metar(r) = {04,02,03,0,0.0}

Metac(c2) = Metas(a,) U Metas(az) U Metap(my) U Metar(r) = {Oy,..., 06,010}

Metac(cs) = Metas(as) U Metas(as) U Metas(as) U Metar(ry) = {04, 0, ...,010}
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Schema Mapping

Metaw(wl) = {7(w1)} U Metac(cl) U Metac(62) = {@1, ey @6, @10, @11}
Metaw (wp) = {7(wz)} U Metac(cs) = {61,0s,...,010,012}

Metaw (ws) = {y(ws)} U Metaw (w;) U Metaw (wz) = {O1,...,013}

Root-subtree Mapping

Root5=chema o Schema Nesting Mapping
RootClass
NonRootSchema SuperSchema
= 11 11 =
NonRootClass SubSchema
RootSchema SuperSchema
= 12 12 =
RootClass SubSchema
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ArPENDIX

Components Definition

In this Appendix we formally define the index and organisational components

of object engines, informally introduced in Chapter 3 and described in more detail

in Chapter 7.

E.1 Indices

Attribute Indices

) Index
Definition E.1 (Object Attribute Index) Given an object z € O and an attribute
variable o € z.A such that a.s.k = 1, the object attribute index with respect to a,

denoted as Indexos(z, ), is a tuple (¢, a,p,v,n), where:

e cc CN
e a € AN
e pc PN
evcEY

e n € ON
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such that:

(i) ¢ = a.s.c
(ii) ¢ = a.s.n
(iii) p = a.s.p
(iv) v = auv

(v) n=1z.n O

o4l Notation E.1 The symbol OAI denotes the set of all object attribute indices. O

Invariant E.1 (Object Attribute Index Existence) Vz € O :Va € 2. A | a.sk =1
d. € OAI | « = Indezpa(z, ). ¢

Relationship Indices

Index
Definition E.2 (Object Relationship Index) Given two objects z,y € O and two com-

plementary relationship variables o € z.R and A € y.R such that o.s.k = 1, the
object relationship index with respect to o, denoted as Indexor(z,0), is a tuple

(leyre,rryi,j), where:

le e CN

rc € CN

e rr € RN

e i€ ON

Jj € ON

such that:
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(i) le = 0.5.lc
(ii) re = o.s.1¢C
(iii) rr = o.s.rr
(iv) i=z.n
(v) =y
(vi) ierw
(vii) j € o O
Notation E.2 The symbol ORI denotes the set of all object relationship indices. O

Invariant E.2 (Object Relationship Index Existence) Vz € O : Vo € z.R | 0.5.k =

1:3¢.€ ORI | « = Indexop(z,0). ¢

Class Indices

Indexcy

Definition E.3 (Class Attribute Index) Given a class x € C and an attribute speci-

fication s € z.PA such that s.k = 1, the class attribute index with respect to s,
denoted Indexcy(z,s), is the set of object attribute indices given by:
Indexca(z,5) = {t € OAI | t.c =2 A t.a = s.n}
_— . . Index
Definition E.4 (Class Attribute Indices) Given a class = € C, the attribute indices

with respect to x, denoted Indexy(z), is the set of object attribute indices given by:

Indezs(z) = U Indezca(z, s)
s€xr.PA




Indexcr
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Definition E.5 (Class Relationship Index) Given a class ¢ € C and a relationship
specification s € z.PR such that s.k =1, the class relationship index with respect

to s, denoted Indexcgr(z,s), is the set of object relationship indices given by:
Indezcr(z,s) = {¢ € ORI | vlc = s.dc A v.rr = s.rr}

Definition E.6 (Class Relationship Indices) Given a class ¢ € C, the relationship
indices with respect to x, denoted Indezg(z), is the set of object relationship indices

given by:

Indezg(z) = U Indezcr(z, s)
s€z.PR

Definition E.7 (Class Indices) Given a class ¢ € C, the indices with respect to z,

denoted Indezc(x), is the set of object attribute and relationship indices given by:

Indezc(z) = Indexy(z) U Indezp(z)

Schema Indices

Definition E.8 (Schema Indices) Given a schema w € W, the indices with respect

to w, denoted as Indexw (w), is the set of indices given by:

Indezw (w) = U Indezc(z)}

z€®(w)

E.2 Views

Definition E.9 (View) Given a self-contained schema w € W, a view with respect

to w is a tuple (n,d,11,9), where:
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e ncRwn
® § is a database
o Il is a set of meta-objects

o U is a set of indices

such that:

(i) n=w.n
(ii) 6 = DB(w)
(iii) II = Metaw (w)

(iv) 9 = Indezw (w) O
Notation E.3 The symbol X denotes the set of all views.

Invariant E.3 (View Name Uniqueness) Yz,y € X: if z.n = y.n then z = y. ¢

. : . , . Vi
Notation E.4 Given a schema w, the notation View(w) denotes the view v such

that v.n = w.n. 0

E.3 Contexts

Definition E.10 (Meta-view) Given a view v € X, if v.n = Meta then v is the

meta-view in X. O

Proposition E.1 (Meta-view and Meta-schema Correspondence) Given a view v € X

and a schema w € W, if v is the meta-view and w is the meta-schema then

v = View(w). O
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Let us assume the existence of a countably infinite set ZN of context names.

Definition E.11 (Context) Given a set of object names ON, a context is a tuple
(n,PN,AN,MN,RN,CN, WN,D,P,C,O0,I,W,X), where:

e ne /N

PN is a set of primary type names

AN is a set of attribute names

e MN is a set of method names

RN is a set of role names

CN is a set of class names

WN is a set of schema names

D is a set of primary domains

P is a set of primary types

C is a set of classes

O is a set of objects

T is a set of indices

W is a set of schemas

X is a set of views

such that:
(1) Yd € D:3t € P such that d = Dom(t)
(2) D2 Rpp

(3) P2 Rer
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(4) PN 2 Rpn
(5) AN D Ran
(6) CN 2 Rew
(7) WN 2 Rwwn

(8) VeeC:

(a) c.n € CN
(b) c.s € (CN U{@})
(¢c) Va€c.PA:
i. a.s.n € AN
ii. a.s.p € PN
(d) Vr € c.PR:

t. r.s.rc € CN
2. r.sdr € RN

ii. r.s.rr € RN
(e) Let TN = PNUCN, thenVm € ¢.PM :
i. m.s.n € MN
it. Vaeems.A:a€ TN
wi. m.s.r € TN

(9) VweW:

(¢) w.n € WN

(b) ®(w) CC
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(10) O = U, Eat(c)

(11) Vo€ O:0.n € ON

(12) I = U, ¢ Indezc(z)

(13) Yw e W: d(w) CC

(14) Vv € X : 3w € W such that View(w) = v

(15) v € X such that v.n = Meta a

Invariant E.4 (Context Name Uniqueness) Let Z be the set of all contexts, then

Vz,y€ Z : ife.n=y.n thenz = y. ¢
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APPENDIX I

Query Language Syntax

The syntax for the query language is defined by the context-free grammar
below. The grammar is specified by listing their productions. Each production
defines a non-terminal symbol, called the left side of the production, through
an Extended Backus-Naur Form (EBNF) expression, called the right side of the
production. The start symbol of the syntax is the non-terminal defined by the

first production, that is, the symbol query. The notation used is shown in the

following Table:

Notation Meaning

— Separation between left and right side

] Termination of a production

| Separation of alternative righ sides for the same left side
{x} A sequence of zero or more instances of x
Not(x)  Set complement in relation to x in a regular expression
7] Regular expression denoting the empty string
xyz’ The terminal symbol xyz

Xyz The non-terminal symbol xyz
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query — @ | expression =

expression — class_expression | intersection_expression

union_expression | '(’ expression ’)’ m
class_expression — class_identifier where_clause m

intersection_expression — expression ’

&’ expression m
union_expression — expression '}’ expression m
where_clause — ’(’ where_expression ’)’ m

where_expression — & | attribute_expression m

attribute_expression — term | and_expression |

or_expression | ’(’ attribute_expression ’)’ m
term — attribute_term | role_term m
and_expression — attribute_expression ’&&’ attribute_expression m
or_expression — attribute_expression ’| |’ attribute_expression m
~ attribute_term — cast attribute_identifier relational_operator value m
role_term — cast role_identifier role_clause m
cast — @ | ’[’ class_identifier ']’ m
role_clause — where_clause | ’::’ term m

relational_operator — ’=" | 1= | >’ | < | >=" | <=" | ' m
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class_identifier — identifier m
attribute_identifier — identifier m
role_identifier — identifier m

identifier — letter { letter | digit |’ } m
letter — ’A’ | B’ | ... |’Z’ |’ || ... |’2'm
digit = 0’ |’1’| ... |9’ m

value — string | integer m

string — ’*’ { string_element } **’ m
string_element — Not(’’’) | '\’ ">’ m

integer — unsigned_integer | sign unsigned_integer m
unsigned _integer — digit { digit } m

sign =+’ |-’ =
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