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ABSTRACT 

This thesis is mainly concerned with indirect numerical solution 

methods for linear two point boundary value problems. We 

concentrate particularly on problems with separated boundary 

conditions which have a 'dichotomy' property. We investigate 

the inter-relationship of various methods including some which 

have first appeared since the work for this thesis began. We 

examine the stability of these methods and in particular we 

consider circumstances in which the methods discussed give rise 

to well conditioned decoupling transformations. Empirical 

comparisons of some of the methods are described using a set 

of test problems including a number of 

ill conditioned problams. 

'stiff' and marginally 

In the past the main method of error estimation has been to 

repaat the whole calculation. Here an alternative error 

estimation technique is proposed and a related iterative 

improvement method is considered. Although results for this are 

not completely conclusive we think they justify the need for 

further research on the method as it shows promise of being a 

novel and reliable practical method of solving both well 

conditioned and ill conditioned problems. 
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INTRODUCTION 

Numerical methods for the solution of boundary value 

problems (BVPs) for ordinary differential equations (ODEs) can 

be broadly classified as either direct or indirect. The former 

are methods based on finite differen~es, finite elements or 

collocation, in all of which the solution of the BVP is obtained 

discretely by solving linear (global) algebraic systems. Indirect 

methods are so called because they are based on finding the 

numerical solution of auxiliary initial value problems (IVPs). 

Variants of these methods such as multiple (parallal) shooting 

are really hybrid methods but we classify them here as indirect. 

An important and commonly occurring type of BVP is one who •• 

differential systam possesses an exponential dichotomy. This 

thesis is mainly concerned with indirect solution methods for 

linear two point boundary value problems (LBVPs) which are 

dichotomic. We concentrate particularly on LBVPs with separated 

boundary conditions (BC.) for which the concept of dichotomy is 

very closaly related to that of conditioning. We investigate the 

inter-relationships of the methods and examine their stability. 

We show that all of the methods considered can be collectively 

regarded as well conditioned (explicit or implicit) decoupling 

transformations which ensure the stability of the auxiliary 

IVPs. 

Chapter 0 contains a very brief review of direct method. which 

w. include for the .ake of completeness. 



In Chapter 1 we discuss the stability of IVPs, the conditioning 

of LBVPs and the concept of dichotomy.We examine the reliability 

of eiganvalues as indicators of IVP stability and dichotomic 

structure and in this connection kinematic similarity transform­

ations are introduced. The close relationship between well 

conditioning of a LBVP and dichotomy 'is illustrated for the case 

of separated BCs. Finally we explain what is meant by stable 

decoupling transformations and introduce two important examples 

of these viz. the Riccati and the continuous orthonormal. 

Chapter 2 is devoted to 'shooting' methods: single shooting, 

multiple (parallel) shooting and stabilised marching. We justify 

the stability of Conte's re-orthonormalisation method by showing 

how it can be regarded as a well conditioned discrete decoupling 

transformation. 

Chapter 3 deals with two of the main variants of continuous 

orthonormalisation (the invariant imbedding method of Van Loon 

and the double sweep method of Davey and Meyer) and examines the 

relationship between them. The simple superposition method 

suffers from the well known disadvantage that the homogeneous 

solutions of the given differential system may lose their 

independence. The methods of this Chapter seek to overcome this 

drawback by finding an orthonormal set of solutions of 

another differential system which span the same sub.pace a. that 

spanned by the solutions of tha original system. 

In Chapter 4 we look in detail at the Riccati method (including 

both the 'double sweep' method and the invariant imbadding 



technique> and we show how the disadvantage of possible 

singulariti •• in the Riccati solution may be overcome by a 

reimbedding restart strategy. Also included is a description 

of another method which is related to the Riccati method known 

as the Compound Matrix method in which these singularities are 

actually removed. 

In Chapter 5 we lock again at the Riccati and continuous ortho­

normalisation methods but this time from the slightly different 

viewpoint of Babuska and Majer viz. the factorisation method in 

which a set of conditions equivalent to the initial (final) BC 

of the given LBVP is propagated forwards (backwards> across the 

problem interval. Here the forward and backward sweeps are 

independent in that each employs a different form of the same 

decoupling transformation of which only part is used. The chief 

advantage of this approach is that the computed errors in the 

solved IVPs can (for a well conditioned LBVP) provide a meaning­

ful bound for the computed error in the LBVP solution. 

Chapter 6 contains a description of a proposed error estimation 

and iterative improvement method based upon multiple shooting. 

We think that this method warrant. further inve.ti;ation and 

ra •• arch as it shows promise of being a novel and reliable 

practical method of solving (ill conditioned) LBVPs. 

Finally Appendic •• I, 11 and III and a reference list are 

included at the end. 



No attempt has been made in the text to distinguish typographic­

ally between matrices and vectors and scalars, but whenever a 

matrix or vector is introduced its dimensions are given : 

(m,n) denotes a matrix with m rows and n columns. Also 

references such as [6] refer to the reference list at the end, 

ones like [3-2] refer to the relevant section in Appendix I 

whilst (5.3) denotes equation number 3 of Chapter 5. 

All of the numerical results given in Chapter 6 and in 

Appendices 11 and III were obtained in double precision 

from programs especially written in Pascal using a Prospero 

compiler (Pro Pascal iid 3.143) and run on a stand alone 

RM Nimbus PC1 microcomputer. 



CHAPTER 0 

DIRECT METHODS 

As stated in the introduction, numerical methods for the 

solution of two point BVPs with ODEs can be broadly 

classified as either direct or indirect. In Chapters 1 to 5 

we deal in detail with indirect methods for linear BVP. with 

.eparated BC. as this is really the focus of this thesis. 

However, for the sake of completene.s, we include here a brief 

review of same of the main direct met~ods which are applicable 

also to non-linear BVPs with general non-linear BC •• 

Any n dimensional two point BVP defined on the interval 

a <- t <- b can be written as a system of n ODEs of the 

form: • x(t) :::I g(t, x(t) ) (O.la) 

together with n BCs: r( x(a), x(b» = 0 (O.lb) 

where the solution xCt) (n,l) is assumed to be unique and 

where g Cn,1) and r (n,l) may be non-linear functions. 

Direct methods can be subdivided into : 

A) segmentation methods 

B) seri.s truncation methods 

C) function space methods 

with further sudivisions of each of these as outlined below. 

A) Segmentation methods I In all of th ••• the whole problem 

interval I· [a,bl is subdivided into N .aoments I 

I I - [t • ,t. l (1 < - j <. N) wh ar a 
J J-' J 

0-1 



= b. At nodes t . 
..J 

(0 (= j (= N) 

approximations a.e . 
J 

to the exact solution vectors x . 
J 

of 

the BVP are obtained as relations of the form • • 

~. ( ot. , o(.j-t,) ... 0 
J J 

(0.2a) 

(0 <= j <= N - 1>. Together with the BCs I 

r ( oi 
ca ' 

0( .... ) • 0 (0.2b) 

these provide a Bys~em of (N + 1) equations for the 

calculation of the (N + 1) unknown vectors o{. (0 (:Ill i (- N). 
I 

This system may be written: ~o<.. = 0 (0.3) 

where e(. ':11 
"T 

[~ , ••••••• , -< J and 
o ... ~ is, in general, a 

non-linear operator. Now system (0.3) will be stable if, for 
, 

any two val ues 0( and o('L of 0<. ,corresponding to 

other different segmentations we have = 

n 0(' -.l'" \\ < Si It ~ 0(1 - ~ -," }) where s is 

a constant independent of the segmentation. The success of all 

of these methods depends on choosing operators in 

equation (0.2a) such that the ODEs (O.la) are approximated 

sufficiently wall that system (0.3) is stable. 

We can subdivide segmentation methods into I 

(i) IVP methods (multiple and parallel shooting). These are 

dealt with as indirect method. in Chapter 2. 

(ii) Piecewis. polynomial function (or collocation) methods. 

Hare a.ch major subinterval I • -= [t. t . ] (1 <- j <- N) 
J J-I 

, 
J • 

i. it.elf segmented by the insertion of M nod •• t
J 
• 1 

(1 <- i <- M) so •• to produce in total a grid of N(M + 1) 

O-:L 



segments of [a,bl. Now on each major segment I . we define 
J 

an Mth order polynomial vJ (t) (n, 1) by I 

i. 
. 
J I< 

v. (t) = ct( (t tj_, ) (0.4) 
J keo 

for t • I· ( 1 <= j <- N), where J (0 <= k <- M) c are 
J K 

constant (n,1) vectors to be determined. The piecewise functions 

v·(t) defined by (0.4) are required ~o satisfy the ODEs (O.la) 
j • 

at all of the sub-grid points t~ i.e. 
I 

for 1 <-
• v. (t) = 

J 

functions 

j 

• 
.J , v.(t. » 

.. I 

<= N and 1 <= 

~ 
. 

k c..J (t 
1<.0 ac 

o 

i <= M, 

t . 
",-1 

must be continuous at the 

where 
tC.- I 
) -. In addition, the 

(0.5) 

v· 
J 

end of each major segment 

i. e. v. (t . v· (t • ) = 0 
J-' J-' 

(0.6) 
J J-' 

for 2 <= j <= N, and also v. (a) and v (b) must satisfy 
N 

the given BC (O.lb) i. e. r('v (t ), v (t ..... » 
,0 N ... 

= 0 
(0.7) 

Thus equations (0.5), (0.6) and (0.7) together provide N(M + 1) 

vector equations from which the unknowns .J 
C can be obtained, 

whar. 

. 
.J 

c 
o 

= v. (t· ) 
J J-I 

tC 

are the required approximations to the 

LBVP solution M(t) at the major nodes t. (1 <- j <- N). 
J- , 

(iii) Finite diffarence methods: Hare aach subintarval I· == 
J 

[t· ,t·] == At· J-' J J 
is taken sufficiently small .s to b. 

accaptabla a. the .teplangth of an implicit one-stap integration 

mathod such •• tha trapezoid.l rule or the mid-point rule [ •• a 

Lambart I 22]. 

~. - 0( • 
..Jot' J 

0-3 



written in form (O.2a) as : 

0<. 
J - g ( _t_j __ : __ tJ_' +_1 

) 

(0 <- j <m N - 1). Togethar with the BC: 

this give. us (N + 1) equations from which 

can be computed. 

o 

(0.8) 

r( eI ,0{ ) =- 0 
o N 

0( 
T 

-[O(, •••• ,-<J 
o N 

B) Series truncation methods: In these methods the solution 

x(t) of BVP (0.1) is expressed in the form of an infinite 

.eria. of term. of which a finite number is used in the 

computation. The most common application employs (orthogonal) 

Cheby.hev polynomials. In this case, the problem interval 

a <= t <= b must first be transformed to -1 <- s <= 1 by 

making the substitution t = 0.5{(b - a)s + b +a} in equations 

(O.la & b). The kth Chaby.hev polynomial is defined as 

-. = cos(k cos s) (0.9) 

which satisfies the recursion 

T (s) = 2. TIC (s) T (5) 
k+1 1<-, (0.10) 

and hence also 

• • • T (s) -2(5 Tt«s) + TI(s)} T.e_.(s) 
K+I 

(0.11> 

• 
where T - dT . 

ds" 

By using recursions (0.10) and (0.11) we can thus express 

any product of Chabyshev polynomials (or any derivative of a 

Cheby.hav polynomial) as a linear combination of Chaby.hav 

polynomials. 

Ta apply tha method wa assume an approximate solution 0(. (s) 

0-



of BVP (0.1) of the form I 

01. Cs) = ~ 151< T \«s) 
Kco 

(0.12) 

where (3 (0 <= k <- N) 
I( 

are constant (n,l) vectors to be 

determined. ~(s) is now substituted into ODE (O.la) and 

each side is obtained as a linear combination of Chebyshev 

polynomials up to order N. By equati'ng coefficients of T~(s) 

(1 <= k <= N) we can obtain N equations for (3-
T 

[~o' /3. , ..... , ~Hl. Evaluating (0.12) at s = +1 and 

substituting into BC (O.lb) provides another equation for ~. 

Hence we have (N + 1) equations from which can be 

computed. The required approximate solution -<'Cs) to BVP 

(0.1> is then given by (0.12) for all .. E [-1,ll. 

Alternatively, in an analagous fashion to the above, we can 

use trigonometric polynomials instead of Chebyshev polynomials 

by writing equation (0.12) in the form 

'" :E.. {A k sin (ks) 1<., .. + + BI( cos(ks)} (0.13) 

where now the problem interval [a,bl has be.n transformed to 

[0, 21t' l. 

C) Function space methods I In thes., wa obtain an approximation 

o{(t) to the solution 

the form : ~(t) .. 
x(t) of the BVP 

H .z.. ~k w~Ct) 
kco 

-<. (t) is of 

(0.14) 

where w (t) (0 <- k <- N) are a .et of independent basis 
K 

function •• Since the Chebyshev polynomials are orthogonal over 

[-l,ll with respect to weight function (S (t) .. 

0-5 

1 

Wo' t 



(eo { 
-I 

T ,«t). T.t (t) 

,.j 1 - t" 

dt = o if 

the basis 

functi ons Wl( (t) are often taken to be T (t) 
I<. 

(assuming that 

the problem interval has been transformed to [-l,lJ). The (n,1) 

constant vectors ~K (0 <= k <= N) are then determined so that 

~(t) minimises some measure of er,ror. For example, in 

• coll ocati on methods" the error e (t) = a( (t) get, -<et) ) 

in satisfying the given ODE (O.la) is made zero at N distinct 

points t . (1 <- j <- N) in [-l,lJ 
J • 

g(tj ~ -<-(to ) , ~ (t· = 0 
J J 

i. e. 

(0.16) 

for 1 <= j <- N, wher. .!<. (t) = 
~ . <. ~'<. T K,(t) and 

• -. T (t) = k . sin(k.cos t) 
t( 

1<=0 

Jl t 1 
~ (t) is also required 

to satisfy the BC (0.1b) i. e. r( ~ (-1) , .«1) ) - 0 
(0.17). 

This provide. us with a total of (N + 1) .quations for the 

determination of 
T [Po , ..... , (3 .... ] ,from which the 

solution -<et) to the BVP is obtained at any value of 

t E [-l,lJ by using (0.14). 

In the !east squares method we proceed similarly to that 

described abov. but in (0.16) we take H > N points t· 
J 

so 

as to obtain an overdatarmined system (i.e. more than N + 1 

equations) from which we compute the least squares solution. 

In the aalarkin method, instead of condition (0.16) the error 

e(t) is required to be orthogonal to each of th. first N 

b •• i. functions over [-l,ll i ••• 

o-~ 



I f. cs (t) 11 e(t) 1\. T kIt) dt = 0 (0.18) 

for 0 (a k (= N 1, and in addition (0.17) must be satisfied. 

Also we may note the Ritz (finite element) method in which the 

given BVP is replaced by an equivalent variational problem of 

minimising a certain functional related to the problem. However, 

the application of this method is limited to a certain class of 

BVPs which can be variationally formulated. 

(A detailed discussion of all of the foregoing methods in 

sections A, Band C can be found in [12l). 

All of the above direct methods have the disadvantage 

of requiring the solution of a large system of aquations. With 

the po •• ible eKception of multiple shooting, this is avoided 

in indirect methods by obtaining the BVP solution via forward 

and backward integrations of IVPs over the whole problem 

interval [a,bl. However, as we shall see in the following 

Chapters, this requires these methods to be theoretically 

more convoluted. 

0-7 



CHAPTER 1 

STABLE DECOUPLING TRANSFORMATIONS ([1], [7], [13] ) 

Introduction 

Any LBVP can be written in the form = 

<1.1a) 

<1.1b) 

• for a <= t (= b, where x(t) = d xet), t is the real variable 
dt 

of inteQration, A is of dimension (n,n), x and fare (n,l), Bo 

and B. are constant (n,n) matrices and c is constant (n,l). 

In [1-1] we show that any single nth order linear differential 

equation can be wri tten in form <1. la). For. such a LBVP as 

(1.1), depending on the choice of BCs, there may b. a unique 

solution or no solution or an infinity of solutions as the 

following (2,2) example shows 

Take A =( 0 11 
-1 OJ 

, f==O, B -= • [
1 0] , B = ro 01 ' c .. r 0 \, o 0 ILl 0 l c~J 

a-O. The general solution which satisfies the initial 

BC [1 O].x(O) == 0 is xet) - k 
[

sin tl , where k 
cos tJ 

is an arbi trary constant. Thus if b" 1t' then the LBVP 

has no solution if c~~o but an infinity of solutions 

if c .. o. 
1. 

If, in (l.lb), B.- 0 and B, is non.ingular (or vic.ver.a) then 

the LBVP reduce. to an IVP a. now all the BC. are given at one 

point. If X(t) .. [X (t>lX (tH •••••• IX" (t)] 
I I. is • non.ingular 

• 
variable (n,n) matrix for which X. (t) • A(t)X. (t) for , , 

, - , 



• 
1 <= i <= n (i.e. for which X(t) = A(t)XCt) ) then we say that 

XCt) is a fundamental solution of the system x(t) - A(t)x(t). 

Now if X(t) is any such fundamental solution then LBVP (1.1) 

ha. a unique solution iff matrix 

Q = BoX(a) + B,XCb) <1.2) • 

In this cas. (which is assumed for all LBVPs throughout this 

thesis) the unique solution of (1.1) 
~ 

x(t) - ~(t)c + fBCt,S)fCS) ds 

is given by [1-2J I 

<1.3a) 
4 ., 

whare ~(t) - XCt)Q and BCt,s) is the Cn,n) Br •• n's function 

matri)C defined by : 

iCt)B. tCa) 
., 

BCt,.) a ~ Cs) for • <- t 

-tCt)B, ~ Cb) 
-, 
~ Cs) for s > t Cl. 3b) • 

CThis result is really only of theoretical importance due to 

tha considarable cost of obtaining Set,s) in practice.) 

stability of IVPs 

w. turn now to the consideration of stability of IVPs because 

the stability of the solution algorithms for LBVPs that wa are 

to examine will be measured by the stability of the associated 

auxiliary IVPs. Consider the linear IVP I 

• x(t) - ACt»CCt) (1. 4a) 

xCa) - c <1.4b) 

for a <- t <- b. If x(t) • X(t). where e -
-I 

X Ca)c then 

• • 
xCt) - X(t)e - ACt)XCt)e - ACt»Cct) and )CCa) - XCa)e - c. Thus 

the exact solution of Cl.4) can be written x(t) • X(t)e where 

I - ~ 



X(t) is any fundamental solution of (1.4a). Now we say that 

IVP (1.4) i. stable (wall conditioned) iff any small 

perturbation in the data (i.a. in c or A(t» doe. not produce a 

correspondinQly larQe perturbation in the value of x(t) for any 

t € [a,bl. Mora preci.ely, we say that a solution x(t) of 

<1.4) i. (uniformly) stable over [a,bl iff, given any ~ > 0 

and any point d >= a, there exists a l > 0 such that any 

other solution ~ct) of (1.4a) which satisfies 

\\ x (d) - 'K Cd) n <- i also satisfia. 11 x (t) - ~ ct)" <= E. 

for all d < t <= b. (Here and alsewhere, unle •• otherwise 

statad, 11 • U danote. " • 11..0 ). 
Note that it is sufficient to consider a 

homoganeous differential system such as C1.4a) since if 

~(t) - ACt)xCt) + fCt) then z(t) = x(t) - t(t) satisfies 

the homogeneous system • z(t) = A(t)z(t). 

We can quantify the degree of stability of IVP (1.4) by 

defining a stability constant k where 

k - sup If X (t ) X· ' ( a ) It (1. 3) 
a<-t<=b 

-, 
Than x(t) - X(t)X (a)c ---> 11 x (t) 1\ <-

(1.6) 

for all t, [a,b]. Thi. provida. u. wi th a bound en the 

solution in that if k is .mall the IVP (1.4) will be wall 

conditioned over [a,bl. 

Wa nON axamina tha raliability of the aiQanvalua. of tha 

systam matrix A(t) a. indicators of tha stability of IVP (1.4). 

\ - :3 



* 

~' 

First consider the case where A is constant with n distinct 

aiganvalua •• If >., and !Jj(n,U are a corr.sponding eigen-

value and aigenvactor pair of A then A9;- >., '3; . Now if 

• ~,t 
uCt) 11: 

>Ott" 
• 3; 

than u(t) .. e )I~i .. ~,t A 
• ~i - Au(t). Thus 

X(t) -= ,D(t) , where e; Cl: [9, 19& I •• • ••• 19" 1 (n ,n) and 

)o,t " .. ~ ).~ 
a fundamental D(t) -diag { e , e , ...... , • f\. ) ) is 

• solution of x(t) .·A(t)KCt). Hence tha eKact solution of 

IVP (1.4) can ba written x(t) .. ~D(t).['D(a)l c or 
-, 

xCt) - ~(t).l where 1 11: [~(a)] c. In expanded form this 

become. I 

K(t) 11: 

,. 
where I .. [1 •••••••••• 1 l. 

I f\ 

CL 7) 

We say that the IVP (1.4) is 

forward stable over an arbitrary interval iff it is stable 

for any choice of initial value c (i.a. for any 1). From (1.7) 

this will be so iff all the eigenvalu.s of A are such that 

Re (~.) < 0 
I 

• 
(1 <= i <- n) as in this cas. any forward -

solution of x(t) - A x(t) must be a decay vector for 

increa.ing t. However,if som. of the eigenvalu •• are such that 

Re (~.) > 0 then forward solutions of (1.4) corresponding to 
I 

choice. of 1 (i.e. of c) which exclude all the terms contain-

ing the.e positive eKponentials will be forward decay vectors 

whil.t thos. corresponding to any other choice of c will ba 

forward growth vectors. In this casa, the solution space of the 

• system M(t) - A x(t) i. split into a sub.pace of forward decay 

<;\,)~~ ~ o~; +i c,.. h'o",- ot t~ t-o 110 ~~'J " s r~J ",,' r~ ~ + u ,. 

b- "t C""J~ v"-tr.e It , S- CO"",[~,, "t ~,,-t- ~ O'(J 
'" 0 t- k. .. V-f 0-

~ '" 11 .J.~.J .. ·f '\. L'"..t.r.~ ( "J.-t. r ~ ""J ~ '" t- --t..j ~ '" Vi C ro r../ . 

1- 't 



solutions and a subspace of forward growth solutions and the IVP 

(1.4) is unstable for any choice of c. Thus for 

the constant coefficient ca.e the eiganvalues of A do provide 

an accurata guide to the stability of the system x(t) - Ax(t) 

over [a,bJ. However, for the case where Act) is variable we 

.hall •• e that this i. not always so. Before dealing with the 

variable coefficient case though we digress to define what 

we mean by a kinematic similarity transformation of a 

differential syatem. 

Kinematic similarity transformations and kinematic aiganvalu •• 

Suppose that T(t) (n,n) is a nonsingular differentiable 

transformation. Then the substitution : 

x(t) - T(t)y(t) in • x(t) - A(t)x(t) gives . ,. 
T(t)y(t) + T(t)y(t) - A(t)T(t)y(t) =a_> 
• -I -, • 
yet) :0:: (T (t)A(t)T(t) - T (t)T(t)}y(t) • or yet) - V(t)y(t) 

-I • 
where Vet) - T (t)(A(t)T(t) - T(t». Now from (1.6) we have 

" x (t)1I <- k U cn __ a) 11 )( (t) 11 < - kilT ( a) Il.l/ y (a) " (as x (a) - c) 
__ a) \I T -, (t ) \1. 1\ T (a) \\ , \1 y (a) \\ 

__ a) 

"T-'(t)If,lIx(t)II <- k 

\\ yet)\\ <- k \l yea)" where k ·nT-'(t)I!." T(a)lI. k. 

Thus if T(t) i. well conditioned i.e. if cond T(t,S) ~ 

i. not large for all t)s • [a,bJ then the 

-condition constants k and k will be of the same order of 

mavnitude and W8 .ay that the systems • yet) - V(t)y(t) and 

• x(t) - A(t)x(t) are kinematically similar. 

1- S 



(non-unique) orthogonal transformation T(t) for which Vet) 

will ba triangular. In this case, the diagonal alements (i.8. 

the eigenvalue.) of Vet) are callad the kinamatic eigenvalue. 

of A(t) corresponding to T(t) I sea [1-3]. 

Now it i. shown in [12] that fo~ a variable coefficient 

• x(t) - A(t)x(t) 

analagou. to the eigenvalue. for the ca.e af a con.tant .y.tem 

i.a. for a variable system it is the kinematic aigenvalue. that 

provide a true indication of the stability properties of IVP 

<1.4) • 
In fact, IVP (1.4) 

will b •• table over any interval [a,bl far forward 

integration from any initial value ,x(a) iff the kinematic 

eigenvalues {cJ.<t), ••••••• , 0'" (t)} of A(t) .re such that V "S/3€~/~ 

Re ~ ~; C t ) dt < 0 for 1 < = i < = n. 
0( 

any particular solution of systam 

In this case, we say that 

~(t) - A(t)x(t) is a forward 

decay vector or a backward growth vector over [a,bl. Also 

analagaus to the constant coefficient ca.e if .ome of the 

R.l~; (t) kinematic eigenvalu •• are such that dt > 0 then 

• 0(. 

the solution space of x (t) = ACt)), (t) i. split into a subspace 

of forward decay vectors and one of forward growth vectors and 

the IVP (1.4) is unstable for any value of c. 

This l •• ds u. to the concept of exponential dichotomy but before 

we introduce this we give an example which illustrates that we 

cannot rely on the aiQenvalues of a variable system matrix A(t) 

I - (., 



IVP I [12] : 

Ex 2 I Consider the IVP I 

• xCt) - ACt)xCt) 

for a <= t <- b where 

A(t) -

[ 

(-O.2~ + 0.75* co.(2t» 

(-1 - 0~75* sinC2t» 

(1 - 0.75* .in(2t» 1 
(-0.25 - 0.75* COS(2t»J 

for any given value of c. 

A(t) has eigenvalue. 0.25*(-1 + i 17) i.e. 

expect that the IVP would be stable for any c. However, 

transformation x(t)· T(t)y(t) where T(t):- [coact) 
-sin(t) 

tha 

Sin(t)] 
co.(t) 

• puts the system M(t) • - A(t)M(t) into the form yet) - V(t)y(t) 

Nhara V(t) = [°05 
• Thus the kinematic eigenvalu.s of 

Act) corresponding to Tct) are 0.5 and -1, showing in fact 

that the IVP is unstable for arbitrary c • 

• The eigenvalue. of a variable system x(t) - A(t)xCt) will be 

a geod guide to .tability properties only when ACt) varies 

.ufficiently slowly over [a,b] to ensure that the eigenvalue. 

of A(t) remain sufficiently close te the kinematic eigenvalues 

fer all t. [a,b]. Therefore, when considering the stability 

of a given IVP it is advi.able to di.regard eigenvalue. and 

instead to ba.e the analy.is on .tability constant. a. in (1.5) 

and (1.6) or on kinematic eigenvalu ••• The disadvantage of the 

latter is that although they are theoretically important they 
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are of limited practical value due to the considerable cost of 

explicitly determining them by an orthogonal transformation 

Exponential dichotomies 

We now introduce the (theoretically) important concept of 

exponential dichotomy which underlie. the whole subject of 

stability of decoupling algorithms for the solution of LBVPs • 

We say that the differential system • x(t) • A(t)x(t) has an 

exponential dichotomy over [a,bJ with forward growth space of 

dimension p and forward decay spaca of dimension q (- n-p) if the 

.pectrum (~I(t), •••••••• , cr~(t)} of kinematic eigenvalues of 

A(t) corresponding to some orthogooal transformation T(t) is 

split such that I \if Ol)p:, ~ [0. ~J 
J3 

I 

Re r a;.(t) dt > 0 for 1 <= i <= P and 
0(. 

< 0 for (p+l) <= i <- n • 

The solution space of system • x(t) - A(t)x(t) is split into 

two subspaces I a forward growth subspace 

p and a forward decay sub.pace Cl (t) of dimension q where 
t 

p + q - n. In general any solution ~(t) of x(t) - A(t)x(t) 

will be • combination of solutions belonging to both ~ (t) 
t 

and ~ (t). Corresponding to any fundamental solution X(t) of 
'L 

system x(t) • A(t)x(t) there will exist a constant (n,n) 

non-s1nQular matrix C such that 

X(t)C - ~ (t) ~(t) = [ , (t) , ~,,(t) J <1.7a) 
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is a dichotomic fundamental solution. Such a fundamental 

solution arises naturally in the constant coefficient case. 

Suppose that A is constant with p positive eigenvalues and 

q negative eigenvalues then the dimensions of the forward 

growth and decay subspaces will be p and q respectively 

i. e. )\. > 0 
I 

for 1 <= i <= p and 

< 0 for (p+1) <= i <= n. 

Now if s. (n,l) is the value of the initial vector x(a) 
I 

corresponding to the choice of vector 1 in which all 

components are zero except for 1 . , tben, from (1.7), we have 

).,t 
X· (t) - 1. e .9.' where X· et) is the particular solution 

I •• • 

vector corresponding to x(a) = Si. Thus Xi (t) will be growth 

vectors for 1 <- i <= P and deca~ vectors for (p+l) <- i <- n 

(for increasing t) and 

~l'l = [!(~. !(l-)l = [x(" ••••• x (lo\ I x (to, ••••••• x h\] 
I a. • , r+1 n 

will be a 

dichotomic fundamental .olution. 

~'t"e.. .... I\Q.blf~ , we can dafine a growth or decay vector for 

increa.ing t over [a,b] by means of norm ratios as follows 

(1) 9'><t) i. a growth vector if . . 
1I«s(~)1I >- 1 

~("t: - S) 
e 

11 ~ ( .) If 
~I 

<1.8) 

for all s,\. • [a,b] for which "'C > .... , where " and 'I, are 

are constant. such that lS'. >- 1 and ~ > 0 and where it is 

•• sumed t.hat. ~ is not small and ~ is not. lar;e. 
I 
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IVPs defined over infinite intervals. Over a finite problem 

interval [a,b] definitions (1.8),(1.9),(1.10a) and (1.10b) 

are imprecise because it is possible to find values of the 

constants to satisfy these conditions for any given differential 

system. 

As stated earlier, when the system matrix A of the given ODE 

is constant then the split of the spactrum of eigenvalue. 

betw •• n those with positive and those with negative real parts 

accurately reflects the structure of the dichotomy i.a. the 

dimensions of tha growth and decay subspaces respectively. But 

(analagous to the situation with IVP stability) if A(t) is 

variable then its eigenvalu •• may not be a good guide to 

dichotomy .tructure. For this we need the kinematic eiganvalua. 

as the following example illustrates :[12]: 

Consider the (2,2) system • x(t) - A(t)x(t) where Ex 3 : 

A(t) =-
[ 

( ~ cos (2wt) ) (- "S i n (2wt ) - w) 
(- ~ sin (2wt) + w) ] 
(- ~cos(2wt» 

for a <- t <- b where ~ and w ara positive parametars. 

J~ 
, 

The eigenvalue. of A(t) are + w'a. . Now 

let )C(t) .. T(t)y(t) where T(t) = ( cDsI"t.1 sin ".t.U -sin(wt) cos(wt) 

• 
The transformed system is y .. Vy (a <- t <= b) where 

v - [~ and so the kinematic eigenvalue. correspond-

in; to T(t) are +~, which .how that the dimensions of the -
growth and decay .ub.p.ces are p - q - 1. The dichotomy do •• not 

ch.nge with w but we ••• th.t a. w incr ••••• the .ig.nv.lu •• 
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of A(t) drift further away from the kinematic eigenvalues i ••• 

only when A(t) is slowly varying do the eigenvalue. provide a 

good guide to the dichotomy. In fact, when w > ~ the 8igen-

values become imaginary and give no information about the 
dichotomy structure. (Note that although the eigenvalues of a 

differential system matrix A(t) may ,vary under a kinematic 

similarity transformation T(t), the structure of the dichotomy 
as shown by the kinematic eigenvalues is invariant). 

Not all differential systems passes. a dichotomy in the .en.e 
described above but we restrict mast of our consideration in 

this the.is to those that do because, as we shall see later, far 

LBVPs with BCs of separated form there is a clo.e relationship 
between the existence of a dichotomy and the well conditioning 

of the LBVP. But bafore we can deal with that, we must discuss 
conditioning of LBVPs. 

Conditioning of LBVPs 

LBVP (1.1) is said to be well conditioned if any small perturb-

ation in A,f,B.,B, or c produces only a small corresponding 

perturbation in the value of the exact solution x(t) of the 

LBVP at any value of t ~ [a,bl. As with IVPs, to quantify the 

notion of wall conditioning we define stability (conditioning) 

constants k, and k'l. by I 

k. - max 1\ X (t) Q -. 11 (l.lla) 
a <- t <- b 

k - (b a) max \l B(t,.)" (i.l1b) 
l. a <- t,. <- b 

where XCt) is any fundamental solution of • xCt) - ACt)x(t) and 

Q and B(t,s) are a. given in (1.2) and (1.3b) re.pectively. 
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Note that if X(t) and vet) are any two fundamantal solutions 

then X(t) .. V(t).C whare C (n,n) i. constant. Hence 
-I -I 

xct).Q - X(t)[B XC.) + B XCb)] 
-I 

= V(t).C.[B Y(a)C + B VCb)C] 
o I o , 

-I _, 
i.e. XCt).Q = Y(t).Q, where Q

1 
= BoY(a) + B,Y(b). This 

shows that in (l.lla) constant k, is independent of the choica 

of fundamental solution X(t). 

From (1.3a) we can bbtain the following bound on the solution of 

LBVP (1.1) I 

11 ~ k, U c 11 + k~ If UI 

(See [12]). 

Now consider the perturbed LBVP I 

wet) = A(t)w(t) + f(t) + ~f(t) 

B w(a) + B web) o , 

<1.12) 

where 

= c + 6c 

and 6c are perturbations in f (t) and 

c~ The difference between the solutions to the perturbed and 

unperturbed problems at any value of t ~ [a,b] is given by 

aCt) .. wet) - xCt) where act) is the solution of the LBVP : 

sct) = ACt)e(t) + t f (t) 

B a Ca) + B .Cb) = l'c. • I 

Thus (1.12) implies that . . 

" e " 
~ k \\~ c U +kalf)f 

I lJ <1.13) • 

This show. that k = max { k ,k ) provida. a bound on the 
I 2. 

effect of perturbation. in c and fCt) on the solution x(t), 

and so k may be taken to be the condition constant of LBVP 

(1.1) i.e. if k is reasonably small than (1.1) will be w.ll 

conditionad. In [12] it i. show" that the above argument is 
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still valid when perturbations also occur in A B and , 0 B • It 
I 

is also shown that in fact constant k. is redundant i.e. that 

k~ small -===> k, small, so that in effect we can take k~ 

to be the condition constant of LBVP (1.1). 

Note that the condition of a LBVP is not significantly altered 

by a well conditioned kinematic similarity transformation, as 

we now show • 

If • x(t) - A(t)x(t) + f(t) then putting x(t) a T(t)y(t) givas 

-I • • yet) - V(t)y(t) + get) where vet) = T (t)<A(t)T(t) - T(t)} and 

get) - T-'(t)f(t). Thus from <1.12) wII..get : 

11 x 11 <- k. " c \I + ka "T g It 
<= k \\ c \\ + kJ.. \\T lI.n g' U. Hence 

l 

\\T-'(t)\\. \\x \\ <- k lIT-'(t)\l.\lcll 
I 

+ k1. HT-'(t)\I.UT 
·11 . " 9 

-===> \\y(t)\\ <= ~ U cll + ~\lg. \l where ~ and e are 

the condition constants of the transformed LBVP and 

and !I.ThUS if 

max { k ,k } is large then so will be max { E , e }. On the 
I 2-

other hand, this do •• also mean that the well conditioning of a 

LBVP is preserved under a well conditioned kinematic similarity 

transformation and we utili.e this property later to justify 

the stability of transformation dacoupling algorithms. 

The condition of a LBVP is important because if the problem i. 

not well conditioned (i.8. if k i. unrea.onably large) then 

even if a stable algorithm is used to solva it WR must still 

11 

expect large errors in the computed solution x(t). Fortunately, 

most LBVP. which de.cribe physically reali.tic situations are 
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well conditioned. (For those that are not~ in Chapter 6~ we put 

forward an arror estimation technique based on tha multiple 

shooting method (sea Chapter 2». Note that, in 

practice, the condition constants k , and k 
& 

are of limited 

value because for their determination wa require a fundamental 

• solution X(t) of system )«t) =- A(t,»«t) for t 50 ta,bl I 

if A(t) is 'stiff' (sae Chapter 2) then it may not be 

possible to find X(t) with sufficient accuracy. 

Well conditioned LBVPs with .aparated_BCs 

We saw earlier that for any dichotomic differential system 

x(t) - A(t»(Ct) + fCt) it is the kinematic eigenvalues that 

determine both the stability (condition) of an as.ociated IVP 

and also the structure of the dichotomy. This suggests that for 

a LBVP there may b. a connection between its condition and its 

dichotomy. For the case where the LBVP has .eparated BC. this is 

indeed true. We say that the BC (l.lb) are .aparated if Bo and 

B, have the form: 

- and - <1.14) 

where B, is (m,n) and Bb (n - m, n). This may se.m to be 

unduly restrictive but in fact, as shown below, any LBVP can be 

re-written in separated form (though at the cost of doubling the 

size of the prablem).Therefare, any theoretical results obtained 

for LBVP. with •• parated BC. are applicable also in the case of 

general BCs. This i. the justification for our concentration an 
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the ca •• of separated BC. throughout much of the remainder of 

this thesis. 

To convert the general LBVP (1.1) into separated form we define 

T 
an additional ODE ~(t) = 0 (n,l) and let u(t) = [x(t),z(t)] 

(2n,1) • The combined ODE can now ba written • . 

~: 't'l .: l A~tl ~1 ~ x Itlj + t f ~t'l 
z(t) o . z(t) (1. 14a) 

• t1<t)u(t) + het) lA~tl ~1 i. a. u(t) =- where H(t) :a 

and 

het) - • p~t~ • Now z(t) = 0 =-==>- z ct) is constant for 

all t '" [a,bl, i. It. zCa) = zCb). The combined BCs can thus 

be written: 

[:. o J r' 1·~1 + [:' I~] [x 'b~l - (:] - I", . z Ca) '0 . z(b) 

Thus the separated form of LBVP <1. 1) is . . 
• u(t) = H(t)u(t) + het) 

-Bo u Ca) + B uCb) - c <1. 14b) 
I 

for a <= t <- b, where B (t1' B, ~~~ - l ~J = =- c = 
0 

, 

- -and Bel a [ B , -I" 1 and Bb ... [ B, I" ]. Not. that 
0 

LBVP (1.14b) is now size (2n,2n). 

We can show, a. follows, that the condition of the LBVP will 

not be significantly altered by this conversion. Suppose the 

condition constants of the original LBVP (1.1) are k, and k~ 

then from (1.12) ; 

\l ~ k "ell I 
+ k 11 f 

l u 
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• ••• > \\ )( \\ ~ k \\ C \\ + k~ \1 h \\ <1. 14c) , 
Now \\u \\ == max ( U x \\ , \\ z \\ ) where 

" z 
1\ = l\ Box (a) H because z (a) .. Box <a) • 

If max { \1 X \\ , \\ z \I ) .. \\x It then from <1. 14c) : 

nu \l ~ k }\ -c; l\ + k\.l\ h U and so LBVP (1.14b) also ha. 
I 

condition constants k. and k • 
~ 

If max (\\ x \" ' hz' \l ) = "z " 
then from <1. 14c) I 

" x (a)1\ (= 

" x 
n ~ k, lie" + kl It h 11 

--_ ... > n B. 11.11 x <a) " 
, 

k. 11 B.II.lle)) + ka. II BoII.Hh 11 
____ > \lz \\ ~ k, UB.U.lIeU + k~ 1I8011.lIh l( 
====> lIu U ~ k ne\! + kJ.l\ h I1 where k ... k, "Boll , I 

and k" k UB.U are the condition constants of LBVP (1.14b). 
1. 2. 

Assume now that our original LBVP (1.1) has been written 

in separated BC form i.e • 

• x(t) ... A(t)x(t) + f(t) <1. 15a) 

(1. 15b) 

for a (= t (= b, where the size of the problem is (n,n) with 

B a 
o 

and B .. , 

It is shown in [12] that in order for LBVP (1.15) to be well 

conditioned it is necessary that the ODE <1.15a) is dichotomic. 

Moreover, if it i. given that the LBVP is well conditioned then 

the row dimensions of B~ and Bb must respectively match the 

dimensions of the decay and growth subspace. i.a. m'" q and 

n - m - p, whara q is tha dimension of the decay sub.pace and 

p that of the growth subspace,so that the exponent1ally forward 
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hand side (t = a) and the growing components at the right hand 

side (t = b). This means that the well conditioning of the LBVP 

(1.15) imposes natural constraints on the BCs as follows. If 

u(t) is a solution of the homogeneous system M(t) = A(t)x(t) 

for which Bc.. u(a) .. 0 then this implies that u(t) ~ span 

~ (t) (where cJ",,·(t) is as defined in (1.7&» i.e. u(t) 
1 

must be either a significantly or moderately forward growing 

solution. Similarly, if B u(b) .. 0 then u(t) 
b 

must be a 

significantly or moderately forward decaying solution. We 

utilise this result later to justify the stability of the 

auxiliary IVPs obtained from a well conditioned decoupling 

transformation. We may also note in this connection that if 

LBVP (1.15) is well conditioned then the fundamental solution 

• vet) of x(t) = A(t)x(t) which satisfies: 

will be dichotomic as in (1.7a) i.e. 

if vet) - [ V (t) , V (t) l then span V (t) ,'I. I and span V (t) 
'L. 

will be growth and decay sub.pac •• respectively. This is so 

because • Bo yea) + B V(b) = I" -=--> . , [:J [V, (all 
V ~ (a) l 

+ l:~J [V (b) I Va, (b) ] .. I 
____ > 

• " 

(B~ V, (bl B" V&. (b1l 
.. [:p :J B_ V. (a) BA VI. (a) _a __ > 

Bb Vz.(b) - 0 and B V (a) - o. Cl. , 

W •• aid earlier that if k, and k'L are tha conditioning 

constants of LBVP (l.lS) (where k and k are as defined 
I 2. 
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in (l.lla,b» then the LBVP is well conditioned iff k is 
2-

small. However, if wa are given that the ODE (1.15a) is 

dichotomic and also that k is small then this implies that k , ~ 

is small [12J i.e. that LBVP (1.15) is well conditioned.In 

other wards, far a LBVP with a dichotomic differential system 

we can take k .a the conditioning constant. Not. that a , 
forward IVP is a special case of a separated LBVP (1.15) far 

which all n conditions are given at t = a i.e. m" n. This 

ra-affirms what we said earlier viz. that a wall conditioned 

dichotomic IVP will have a decay subspace of dimension n i.e. 

all of it. kinematic aiganvalu •• wi 11 be such that I \if CI(. .... (3 E: [a. ... b) 
p 

Re r a. (t) dt < 0 for 1 < = i <.. n. 
Jo( • 

Stable decoupling transformations 

We turn now to an explanation of what we m.an by a stable 

decoupling transformation of a LBVP and we introduce two 

important exampl.s of this. Assume that LBVP (1.15) is well 

conditioned (i.e. that m" q) and partition I 

,. 4l. 
ACt) .. [All It) A,. (t)]' • c =- [cJ. K(t) - [K' (t)]' A (t) A2.1.(t) ,. 

CL " xa(t) " 2.. 

and let B - [ L. , L. l~ and B .. .. [ La. ' L1 J, whara Cl 
f ,. p ~ 

Land L are assumed to ba non-singular. Now make the 
• 2-

kinamatic similarity transformation M(t) .. T(t)y(t) to obtain 

• the transformed system: yet) .. V(t)y(t) + get) whara 
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-I • -. vet) • T (t){ A(t)T(t) - T(t)} and Q(t) - T (t)f(t). Suppose 

th.t T(t) = [ T, (t) , T~(t) ] can be chosen so as to make Vet) 

block upper trianoular i.e. so that V%I (t) = 0 for all t. 

(We oive examples later of two such transformations). LBVP 

(1.15) has thus been transformed into the LBVP I 

• yet) = V(t)y(t) + ott) (1.16a) 

<1. 16b) 

for a <- t <- b. 

Since (as shown earlier) a well conditioned kinematic 

similarity transformation preserves the condition of a LBVP, 

the assumption that LBVP (1.15) is well conditioned will ensure 

that (1.16) is also. 

The initial BC of LBVP (1.16) is B. T(a)y(a) = c~ 

____ > [B" T, (a) B. To. I.a) l ~~: :::) - cl.. 

Thus if (1.17) T. (a) is chosen to satisfy : B~ T. (a) - 0 

'" y (a) - [B T. (a)Jc (1.18). 
_I 

then we get or z. ~... ~ 

This choice of T (a) to satisfy (1.17) is in fact the only , 
possible practical choice that will decoupla the initial BC 

of (1.16b) and so provide us with initial conditions (1.18) 

for the inteoration of the forward sweep auxiliary IVP. 

Fortunately, (1.17) also serves (in the case of a well 

conditioned LBVP) to ensure that the auxiliary IVPs will both 

be stable in their r.spective dir.ctions, as we now show. 

From (1.16a), the ODE of the transformed LBVP are 

L13VP 
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~ ;, (t'l = ~v~ (t) v,~ (tJ ~ Y, (t~l + r g, (tl J 
• et) vet) y (t) 9 (t) yz. u. 2 a 

• i. e. y (t) .. V (t)y (t) + V (t)y (t) + 9 ct) <1.19) , I J , '1. 2 I 

Y ct) a V Ct)y Ct) + 9 Ct) <1.20) 
2- 'I.'&. '&. 1. 

where IVP <1.20) is to be integrated forwards from initial 

value (1.18) and then IVP (1.19) backwards from a value ~ Cb) 

yet to be determined. The fact that LBVP C1.16) is well 

conditioned implies that if yCt) i •• solution of 

yct) - VCt)y(t) for which [B T(a)]y(a) a 0 Ci ••• for which , 
[0 , B T Ca)] yCa) - 0 ) then yet) must be a forward growth 

Cl to 

vector. This means that any vector of the form 
T 

C Y (t) , 0 ) 

• 
must be a forward growth vector, for any initial value y Ca). 

I 

• Now yCt) - vct)yCt) -=-=> 

Y Ct) = z. 
V Ct)y (t) 
l~ 'I. 

(1.21b) • 

From Cl.21b), if y Ca) - 0 then y (t) - 0 for all t and so 
~ ~ 

• <1.21.) becomas y, Ct) -= V .. (t)y.Ct) 

Thus if (y (t) , 0 )'1 is a solution of 
• 

(1. 22) • 

• yCt) == VCt)y(t) 

than y, Ct) will ba a solution of (1.22) and sa if we intagrata 

this equation forwards from any initial value y. Ca) the 

solution y (t) , will be a forward growth vector of Cl.22) i ••. 

if we integrate (1.22) backwards starting from any initial value 

y, Cb) then the solution y. Ct) will be a d.cay vector in this 

direction. Now the backward IVP C1.19) can b. written I 

• 
y (t) • Y (t)y et) + pet) 
, 'H' , where pet) - v Ct)y (t) + Q (t) 

• ,'" 'L , 

and ao wa ••• that this IVP will be stable in the backward 
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y (b) • 

• 
Later we justify the stability of the forward IVP (1.20) by 

actually relating t.he condit.ion const.ant. eX of this IVP to 

the condition constants of the given LBVP (1.15). 

Thus we see that a well conditioned transformation 

T(t.) for which V (t) = 0 
2.\ 

for all ' t and for which 

will split t.he spect.rum of kinemat.ic 

eigenvalu.. of A(t) so that the p kinematic eigenvalua. 

of V" (t.) (p,p) wi 11 be such that: V 0<.) ~ E: 

Re 

13 f fS'. (t) dt > 
cX.' 

o ( 1 <= i <- p ) 

and t.he q kinematic eigenvalues of V (t) 
tea. 

(q,q) 

such that I 

p 
Re f 0". (t) dt < 0 

(1(.' 
( p + 1 <= i <= n ) 

will be 

, thereby 

ensuring the stability of the forward and backward sweep IVPs 

(1.20) and (1.19) respect.ively. 

We now introduce two important practical examples of continuous 

(well conditioned) decoupling t.ransformat.ions viz. the Riccat.i 

and the continuous orthonormal. 

The Riccati transformat.ion 

This i. defined by I ret)-

<1.23) 

where R(t) (q,p) is the Riccati function matrix. Note that 

1-2.'2.. 



-, 

[ -:~tI :J. We no .. find th. conditions impo .... d 

on R(t) in order that T(t) will transform the given ODE 

T et) -

(1.15a) into ODE (1.16a) with Vet) upper block triangular and 

how, in this case, V (t), V (t) and V (t) will each depend 
la 1'2. 2.2.. 

on R (t). -. . 
From Vet) = T (t){ A(t)T(t) - T(t) } we obtain the Lyapunov 

• 
equation for T(t) viz. T(t) = A(t)T(t) - T(t)V(t) 

___ a> 

==_ .. > 0 = 

[

AU(t) 

Az.,(t) 

A" (t) 

o - A.~(t) 
• 

+ 

R(t) - Al.l (t) 

o = Aa.&.(t) 

Thus: V" (t) = A" (t) 

Vn.(t) .. A,~(t) 

::~:J r::t) 
A,2. (t)R(t) 

V ''a, (t) 

+ A (t)R(t) 
2.~ 

°lrvll(t) 
I~ lo 

VII (t) 

R(t)V" (t) 

V t,,,(t) 

+ A'-a.(t)R(t) 

and V1.a..(t) -= Aa.",,(t) 

• 

VI" (t J 
V (t) 

la. 

w. a150 ••• that R(t) must satisfy the Riccati equation : 

• R(t) III A (t) 
1, 

+ R(t)A (t) 

" 
R(t)A (t)R(t) 

'l. <1.24a) 

the initial conditions for which are obtained from (1.17) viz. 

B T (a) =- 0 
~ I 

.. _=-> [ L 
o o 

-, 
RCa) - -L L , D (1. 24b). 

- T(t)yCt) we get: 

)(. C t ) - Y I (t) (1 • 25a) 

)( Ct) • R(t)y (t) + Yl.(t) 
t I <1.25b) 

I - 2. 3 



where (1.25b) is the Riccati transformation equation. Equation 

(1.18) becomes = y (a) -
1. [[ L. I Lt 1 (~~)l-~L 

i . e. -, 
y (a) = L 

2. I 
(1.26) 

_I 
and get) = T (t)f(t) ===> <1.27a) 

-R ( t ) f ( t ) + f ( t ) 
I ~ <1. 27b) • 

At t = b, the final BC of (1. 16b) is B T(b)y(b) = c. =-_ ... > 
b 

[ L I LJ 1 [Ip ~J 
y(b) ., c, 

____ > 
~ 

R(b) 

[ L + L R(b) I Ll 1 r Y, (b'] - C
l

_ 
2 J 

Y (b) --=-) a. -. Ll y~ (b) Y, (b) ... [ L + L.,R(b)] [c, - ] <1.28) • a. 

The forward ODe <1.20) now is I 

• (t) .. ( A (t) R(t)A (t) } Y (t) (t) + ( f R(t)f, (t) ) 
I. yl. 1.1. 11. I. 

(1. 29) 

and the backward ODe (1.19) is 

• y (t) ... { A" (t) + AI2. (t)R(t) } Y I (t) 
I 

+ A (t)y (t) 
la. 2. 

+ f, (t) 

(1. 30) 

The basic outline of the solution algorithm is therefore: 

(i) integrate simultaneously forwards (from t ... a to t ... b) 

ODes (1.24.) and (1.29) using the initial conditions (1.24b) 

and (1.26) respectively 

(ii) integrate backwards (from t = b to t ... a) ODe (1.30) 

using initial condition (1.28). 

(iii) obtain the solution x(t) of LBVP (1.15) from (1.2~a,b). 

The above de.cribe. the double sweep Riccati method one 

di.advantage of which is that considerable storage capacity i. 

1-2.'f 



required in the forward sweep. In practice, this is usually 

avoided by using the invariant imbedding technique whereby all 

the integrations are performed in one direction. However,this 

doe. not overcome the main drawback of the Riccati method which 

is that the solution R(t) of equation (1.24a,b) may become 

unbounded at some val ue of t ~ [a, b], b e.. c. Q.. \A.S"2.. R..l 'c) 

h.o..S Cl;.. Fo\-e o..r SOrA.~ P°l.r'\.t- L,."'- Ca. ~ ~. 
This is tantamount to saying that we 

must keep transformation T(t) (as defined in (1.23» well 

conditioned. 

In Chapter 4 we look again at the Riccati transformation 

method in more detail and explain the operation of invariant 

imbedding and how we can keep the Riccati transformation well 

condi ti oned by the strategy of re-i'mbeddi ng whenever necessary 

to avoid IIR(t) 11 becoming too large. In thls connection, we 

also describe another method (the Compound Matrix method [8]) 

which is related to the Riccati method and in which the 

singularitie. of R(t) are removed. 

We now demonstrate the stability of the Riccati tranBform-

ation by relating the condition number Cx of the forward 

auxiliary equation (1.29,26) to the condition constants 

of the given LBVP (1.15). Consider the ca.e of inhomogeneous 

BC (1.15b) and a •• ume that ca. + 0 (this may require the 

reversal of the direction of the problem). From (1.12) we have 

u where k and k are the 
I 1 

condition con.tant. of LBVP (1.15). 

J - l.. S 



Tha Riccati t~an.form.tion i. T(t) • 

To show the impo~tanc. of k.eping 

consider the case where R(t) is exponentially growing for 

t > a or has a pole in ta,bl. 
-, 

\\y(td\ \\ T-' \\. \\x 1\ Now yet) == T (t)x(t) -===-=> <= 

-===> l\y(t>\\ <c. <\\R(b)\\ + 1 }. \\ x II (1.30a) 

whera R(b) is the value of R(t) at the final point t - b 

unl... R(t) ha. a pole in ta,bl in which ca.. R(b) i& the 

valua of R(t) at the time of ra-imbadding (saa Chapter 4). 

From (1. 24b) and 
-, 

R(a) - -L L , 0 

Thu. L R(a) Cl 

I 

_::=-> \\ Lo \l 
J/L,1I 

(1.26) respectively we have 
-, 

and y (a) "'"' L 
1 , c to • 

-L o 
___ a> 11 LO \I <= 11 L I \I ~'R(a) \\ 

<= 11 R (a) 11. 

Now suppose that the rate of growth of R(t) is such that 

11 R (b) 11 + 1 <- ~ r \l Lo \( + 1 l. \\ c~ 1\ 

l \\ L. \l j 
where ~ is a scalar > 1 

\\ R (b) \\ + 1 (= ~ ~\ Rlalll + 

From (1.26) I L y (a) 
, 1. 

----> \\ c~ \\ (-

\I L,lI 
From (1.30b) : \\ R(b) \\ 

- c __ a> 
1 

\\ y\. (a) \\ 

+ 1 

1 - 2 ~ 

<1.30b) 

i. e. 

1 1. \\ c~ \\ 
11 L, II <1 • 30c ) 

\\ c ~" < = \l L I \\. \\ y ~ (.) II 

+ 



====) l\RCb)ft + 1 <= (3 [11 Loll + 1]. 11 y~ (adl 
\\YI.Ct)\\ <- l\y(t)\l we have I Now from C1.30a), since 

\\ Yl. (t)l\ <= ~< n Loll + 1}.l\Y1 Ca) It .<k. \\ cn + kl. \\ f U} 
i.e. \\Ya,ct)1\ <= Cl "Y'1. (a) \1 where the condition 

constant C:t of the forward IVP is given by : 

- II f " } 
Cx - f!>< " Loll 

+ 1 } < k n c 11 +' k2, . 
I 

Thus if k and k are small (i. e. the LBVP is well 
I " conditioned) and (3 is small (i. e. the Riccati solution 

remains small) then C will be small (i.e. the forward 
'I 

auxiliary IVP will be well conditioned). Also the condition 

number of transformation matrix T(b) is given by 

cond TCb) = "TCb)II.IIT- '(b)1I = < 1 + 11 R(b)1I }~ 

Thus if 11 RCb)1I becomes large then so will both cond T(b) 

and C
t 

. This shows the importance of keeping transformation 

TCt) well conditioned. 

The Continuous Orthonormal method 

Here wa obtain a transformation 

where T (t) 
I 

is (n,p) and T (t) 
~ 

,. 
T(t) = [ T (t) , 

(n,q), which i. orthonormal 

for all t and for which the transformed system matrix vct) 

of C1.16.) will ba block uppar triangular. It can ba shown that 

in order for this to ba so T (t) , and T~(t) must satisfy ODEs 

of the following form < ••• appendix [1-4]) I 

• 
T, (t) • A(t)T, (t) T (t)C, (t) , , and 

i (t) - -A~(t)T (t) 
& '2. 

,. 
+ T (t)C (t) 

'1. 11. 

\ - 27 



where C" (t) (p,p) and C (t) 
2~ 

(q, q) must be suc:h that 

C .. (t) + C:. (t) = T:(t) ( A(t) + A'T (t) } T. (t) 
" , , , , 

for 1 (= i (= 2. Then V •• (t) =- c .. (t) ( 1 (= i <= 2 
" " 

V (t) = TT (t) ( A(t) + AT(t) } T1.(t). There are various 
12. , 

possibilities for C .. (t) of which the obvious one is 

" .,. 
C •• (t) = T (t)A(t)T. (t). With this c:h,oic:e we get: 

" i , 

: 

) and 

i (t) ... ( I T (t)T"'1(t) } ACt)T. (t) <1.31 ) 
, "I, , 

f~ Ct) - ( -I~ + T~(t)T:(t) } A~t)T~Ct) <1.32) • 

The initial c:onditions for equation (1.31) are obtained from 

<1.17) viz. B~ T, (a) = 0 i.e. T (a) 
1 

is chosen to be a unit 

orthogonal column set such that [L , L ] T, Ca) = O. Then the 
• I 

initial condition far Cl.32) is obtained by choosing T~(a) to ,. 
be any unit orthogonal column set such that T (a)T (a) = 0 

~ , 
i. e. such that T(a.) Cn,n) is a unit orthogonal matrix. 

get) = T-'(t)f Ct) = TT (t)f (t) = r T7Ct')] f Ct) 

l T;Ct) 

Also 

i. e. ,. 
Q (t) = T (t)f ct). 

1. 3-
g Ct) = T"TCt)fCt) 

I , 
and 

At t -= b the final BC of (1.16b) is Ba, TCb)yCb) - c, 

====> [:~ ::: J ~ 
.---> - (1. 33) 

The forward IVP (1.20) thus becomes I 

y~ ct) - ( T;(t)Act)T
1

(t) } Y2.Ct) + ., 
Y1. (a) - [B .. T~ Ca) ] cY. <1.34b) 

and the backward IVP Cl.I,' is : 



• T ,. 
Y (t) , = {T~ (t)A(t)T (t)}y (t) 

I I, 
+ T (t)<A(t) + A (t)}T (t)y (t) 

I a. 2-

+ T"(t)f(t) 
I 

with Y (b) as given in (1.33). , 
(1.35) 

Thus the double sweep orthonormalisation algorithm would be I 

(i) integrate simultaneously forwards (from t = a to t - b) 

the ODE. (1.31), (1.32) and (1.34) frbm their respective initial 

values 

(ii) integrate backwards (from t = b to t - a) IVP (1.35) 

(iii) obtain the solution x(t) of LBVP (1.15) from the trans-

formation equation x(t) = T(t)y(t). 

However, as with the Riccati method, the above algorithm would 

entail considerable storage of T(t) values in the forward 

sweep for use in the backward sweep, and so in practice we u •• 

invariant imbedding to enable us to integrate all of the ODEs 

in one direction. Also, in theory, matrix T(t), as obtained 

from the solution of ODEs (1.31) and (1.32), should remain 

unit orthogonal for all t. However, in practice, it has 

b •• n found that this may not always be so and that T(t) may 

become ill conditioned before t = b is reached, particularly 

if the integrations are being performed by a fixed-step Rung. 

Kutta int.grator. To overcome this difficulty an adaptation 

of aquation. (1.31) and (1.32), involving the ·g.nerali.ed 

inv.r ••• • of T, (t) and T (t), ha. b •• n sugg •• ted [~J. In 
~ 

Chapter 3 w. look in detail at the operation of invariant 

imbadding orthonormalisation methods employing ·generali.ad 

inverse.' • 



We saw earlier that the choice of T (a) to satisfy the , 
condition B~ T, (a) - 0 (1.17) enables us to obtain the 

initial value of y (a) for the forward sweep and is also 
2. 

essential to ensure the stability of the auxiliary IVPs of 

the method (whether Riccati or continuous orthonormalisation). 

Note also that this condition implies (for a well conditioned 

LBVP) that the columns of ~ (a) must be forward growth 

• vectors of the system x(t) = A(t)x(t) at t = a. We can 

show further [1-5J that this means that span T, (t) will form 

a basis for a forward growth subspace-of ~(t) = A(t)xCt) for 

all t >= a. This is a characteristic property of a stable 

decoupling transformation. 

N.B. In Appendix I : 

[1-1] : Expression of single nth. order ODE as a system of 

simultaneous first order equations. 

[1-2J : Derivation of theoretical solution of LBVP in terms of 

Green's function matrices. 

[1-3] : Deflation method for calculation of kinematic eig&n-

values of a system matrix. 

[1-4] : Derivation of ODEs for T (t) and 
I 

orthonormalisation method. 

T (t) in the 
Z. 

[1-5] I Characteristic property of stable decDupling 

transformations. 
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CHAPTER 2 

MULTIPLE SHOOTING METHODS 

Consider the well conditioned (n,n) LBVP 

• x(t) = A(t)x(t) + f(t) 

+ = 

for t ~ [a,bl, where 

and BQ. is 

Single shooting 

c 

<p,n),c (p,U,p+q=n. , 

(2.1a) 

(2.1b) 

c = 

The most straightforward method of attempting to solve this 

LBVP is by reduced superposition (complementary function method) 

whereby the solution x(t) is represented as a linear combin-

ation of solutions of associated IVPs as follows. Let: , 
x (t) = X (t) • .( + Vo (t) 

where Xl (t) (n,p) is a part fundamental solution of 

~ (t) = A (t ) x (t) (i. e • X I (t) = A ( t) X I (t» f or wh i ch: 

I 
B. X (a) = 0 

• 

(2.2) 

(2.3) 

v (t) 
o 

(n,1) is a particular solution of x(t) = A(t)x(t) + f(t) 

• 
( i. e. v 0 (t) = A (t ) v 0 (t ) + f (t» for wh i ch: 

Bo. vocal = 

and ~ is a constant (p,1) vector to be determined. 

Then from (2.2): ~(t) = i'(t) . .( + ';o(t) 

= A(t)X' (t).~ + A(t)vo(t) + f(t) 

2,.-1 

(2.4) 



, 
:Ill A(t) { X (t).< + Vo (t)} + f (t) 

= A(t)x(t) + f(t), and so x(t) 

satisfies ODE (2.1a). Also: 

I "T' 
= B X (a)-<' o . + = [ 0, c:~ ] from (2.3,4) 

and so x(t) also satisfies the initial BC of (2.1b). If x(t) 

is to be the solution of LBVP (2.1) then it must also satisfy 

the final BC i.e. Bb x(b) = C:I ====) 

+ = Cl ====> 
I 

{ Bb X (b) }.(. ===) = d (2.5) 

-
where M (p,p) and d (p, 1) = 

Therefore, since X'(t) and vo(t) can be computed by forward 

integration from t = a to t = b of the homogeneous and 

inhomogeneous system from initial conditions satisfying (2.3) 

and (2.4) respectively, in ·theory, vec:tor ~ c:an be found by 

solving the linear system (2.5) and hence the solution x(t) 

of the LBVP obtained for" all t e [a,b] from equation (2.2). 

In practice, however, if system (2.1a) is 'stiff' (Le. if 

the kinematic: eigenvalues of A(t) are widely separated in 

real part) then as these forward integrations proceed the 

• columns of X (t) may gradually lose their independence and 

also vec:tor vo(t) may bec:ome dependent on span 
I 

X (t). This 

would cause linear system (2.5) to be ill c:onditioned with 

consequent loss in ac:c:urac:y of the calculated value of e( 

Moreover, further errors in the c:omputed value of solution x(t) 

may be c:aused by c:ancellation errors arising when x(t) is 

2.-, 



obtained from equation (2.2) due to large mod values in the 

• calculated components of X (t) and vo(t). 

Note that these difficulties stem not from the condition of the 

given LBVP (2.1) but from the fact that the dichotomy of A(t) 

• is such that system x(t) = A(t)x(t) possesses rapidly 

(forward) growing and decaying solutions which cause the IVPs 

of the method to b~ ill conditioned. (If we reverse the 

statement of the problem i.e. solve from t = b to t = a 

we will encounter the same difficulties due to the forward 

decay vectors which will grow rapidly-for decreasing values 

of t). It was the need to overcome these basic difficulties 

of the single shooting method that led to the development of 

multiple (parallel) shooting and stabilised marching techniques 

such as Conte's reorthonormalisation method (which we discuss in 

this Chapter) and also to the Riccati transformation and 

continuous reorthonormalisation methods (which we deal with in 

later Chapters). As we shall see, the success of all of these 

methods depends on their ability to produce well conditioned 

IVPs (or their equivalent). 

Note that the single shooting method described above employs 

reduced superposition requiring only (p + 1) forward 

integrations. Alternatively, we could use full superposition 

(variation of parameters method) in which we express the 

solution vector x(t) in the form: 

x (t) = X (t).< + vo(t) (2.6) 

where now X(t) (n ,n) and v 0 (t) (n,1) are any fundamental 

:t-3 



solution and any particular solution respectively of systems 

• • x(t) = A(t)x(t) and x(t) = A(t)x(t) + f(t) and is 

now a constant (n,1) vector to be determined. In this case, 

from BC (2.1b) we get 

====> Qo( 

where Q (n,n) = 

¥ (n, 1> = c 

Bo X (a) + 

B v (b) 
I 0 

(2.7) 

and 

Q and ~ are obtained by solving (n + 1) IVPs and hence 

can (in theory) be found from (2.7) and then x(t) from (2.6). 

Obviously, the same drawbacks apply here as in the reduced 

superposition method and (n - p) more IVPs must be solved. Full 

superposition is necessary however when the BCs (2.1b) are not 

separated. 

Although any independent initial conditions can be used for the 

• • 
X(t) = A(t)X(t) and v (t) =A(t)v (t) +f(t) 

o 0 
IVPs 

usual to employ the standard conditions: X(a) = I 
t\ 

v (a) = 0 in which case Q and ~ o simplify to : 

it is 

and 

't = c B v (b) and 
I 0 

0£. = x (a) • 

Multiple (parallel) shooting 

We now turn to multiple shooting in which the range [a,b] of 

the LBVP is divided into subintervals according to some 

criterion (see later) and then in each subinterval separately 

we use single shooting to find the general solution which 



• satisfies the ODE x(t) = A(t)x(t) + f(t) for all t in that 

subinterval. These subinterval solutions are then 

'matched up' at each of the internal nodes and also with the 

given initial and terminal values prescribed by the BC. Thus 

we obtain the overall solution vector xCt) of the LBVP which 

is continuous over Ca,bJ and which 'satisfies both the given 

• ODE xct) = Act)x(t) + fct) , for all t € [a,bJ, and the BC. 

More precisely, the interval [a,bJ is subdivided into N 

subintervals by the insertion of (N - 1) internal nodes thus : 

a = t < t I < t < .......... < t < -t ... . o 2. ..,-, ... = b. Then in the 

standard multiple shooting variant we compute for each 

subinterval [t· t . ] (0 <= i <= N -1) the fundamental 
t ' ,+ I 

solution X • (t) for which X • (t • ) = I" and the particular 
• • I 

solution v. (t) for which v. (t. ) = O. Using full super-
I 

, • 
position the corresponding subinterval general solution vectors 

x' (t ) ar e : x· (t ) 
I , 

= X. (t)~. + v. (t) 
I I • (2.8) 

for t, [ t i ' t i +, ] where .I.. 
• 

(n, 1 ) (0 <= i <= N - 1) 

constant (n,l) vectors to be determined. 

For continuity at the internal nodes t. 
I 

<1 <= i <= N - 1) 

we must have 

x. (t· ) 
I , + I = xi +1 (t; +, ) for 0 <= i (= N - 2 

-== > x. (t. ) ~. + v. (t • + ) = 
• .+1 I 1 X. (t. )~. + v.,., (t'.--L,) .+, '+1 .... , ..... 

are 

====> x. ct.+,)o(.. 
" I 

= 0( i + I (2.9). 

Also to satisfy the given BC (2.1b) we must have 

+ B x et) 
1 "-I N 

= c: ====) 

B, { X W-I et",,) 0( ""_I + v et)} 
M-I N = c + 
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==--) + 8,0<: .... = c (2.10) 

X (t) -< + 
M-I H N-\ 

where = 
Equations (2.9) and (2.10) together can be written in the form: 

Z~ = d (2.1 U 

where 

d 

z = 

.,. 
= [-t 0(. •••••••• ~~ J, 

o , , ' N 
( {N + l}n, U 

~ 

= [c, v (t ), ••••• v (t
N

)] •. N-' {N + l}n, 1) 

-x (t ) o , I 

" 
-x (t ) 

, &. 

{N + l}n, (N .+l}n ). 

I 
'" 

-x (t) ..... , .... 

B , 

I 

'" 
The above set of linear multiple shooting equations can now 

be solved by Gaussian elimination to obtain vector -' • Hence 

the solution x(t) of the LBVP is computed piecewise from 

equation (2.8). 

The success of the method can depend very much 

on the number and positions of the internal nodes (particularly 

if a fixed step Runge Kutta integrator is used to solve the IVPs 

for the subinterval fundamental and particular solutions).If 

the nodes are chosen such that \ \ x, (t ~ +1 ) \\ <= k 

(0 <= i <= N -1 ) then it can be shown [6] that 



\t z \\ " z _I It - N

a0 cond Z ... <= { k + 1 }( + ka, . I 

b -

where k and k are the condition constants of the given , ~ 

LBVP. Thus for a well conditioned problem the multiple shooting 

matrix Z will also be well conditioned provided that the nodes 

t. (1 <= i <= N -1) are inserted frequently enough to limit , 
sufficiently the growth of the fundamental solutions x. (t) , 
(0 (= i (= N -1). Unfortunately, for a LBVP for which the 

system matrix A(t) of the ODE is 'stiff' this could mean 

that a large number of subintervals may be required resulting 

in a very large linear system (2.11) to be solved, particularly 

if the problem size n is large also. It was this weakness of 

the multiple shooting method with regard to 'stiff' problems 

that motivated interest in the development of the Riccati 

and continuous orthonormalisation methods (to be discussed in 

later Chapters). An advantage of multiple shooting over the 

latter methods, however, is that it is also directly 

applicable in the case where the BC are not separated • 

We said earlier in Chapter 1 that the success of any method 

in solving a LBVP with a dichotomic ODE depended on the 

ability of the method to produce well conditioned IVPs (or 

their equivalent) by correctly decoupling the (forward) growth 

components in the fundamental solutions from the decay 

components. In the case of the multiple shooting method it is 

not immediately obvious as to how this is achieved, because the 

decoupling of the differential system occurs implicitly as the 

2. -, 



multiple shooting equations Z -<. = d (2.11) are solved by 

the Gaussian elimination process. As evidence of this it is 
)j( 

shown in [6] that for the case where no row interchanges are 

allowed in the Gauss process the latter is equivalent to the 

Riccati (single imbedding) transformation method in that as the 

Gausssian elimination process reduces matrix Z to upper 

triangular form this automatically generates the Riccati 

solution R(t) down the leading diagonal and so the process is 

equivalent to the forward integration of this IVP. This might 

perhaps lead us to expect that (by analogy) the operation of the 

Gaussian elimination process, where full row interchanges are 

allowed so as to employ the max modulus element in each column 

as pivot, would be equivalent to the Riccati method where a re-

imbedding (see Chapter 4) occurs at each of the multiple 

shooting nodes t • 
I 

( 1 <= i <= N - 1 ). However, how the Gauss 

process achieves this in this case (if indeed it does) has not 

yet been clearly established. 

Stabilised marching 

Multiple shooting methods can be split into two types: those 

which employ 'parallel' shooting and those which are examples 

of stabilised marching. The standard multiple shooting method 

that we described in the previous section is an example of 

'parallel' shooting because for 1 <= i <= n the fundamental 

solution values X. (t· 
, 1 

and X. (t . 
, -I , 

are independent as 

'(I. R<-f~<s 0",) to ·H .. u..s .. 61- kf,,, .. t-<J ~c w ,·h t-~, 

N\4\l:-;rl~ ~~Qoh") tv\.~tr,)<.. I~ rtlJh~':J Ji+f~~el'\t ~~r~ 

t-r~ thAk o~ f~~ <.- ~. 
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also are the particular solution values v· (t· ) 
I I 

and 

v. (t· >. In f ac t, X· (t. ) = I 
,,- I I "r\ 

and v. (t. 
a , = 0 for 

1 (= i (= N - 1 and so the integrations for all N sub-

intervals could be performed simultaneously (i.e. in 

'parallel') if a pre-selected number of equal subintervals was 

used. By contrast, in all of the sta~ilised marching methods the 

i ni ti al val ues of X· (t. 
, I 

and (in some cases) of v· (t· , 
at the beginning of each subinterval are derived from the 

corresponding values x . (t· , -, , and v. et. >, respectively, , -, , 
as we now explain. 

The following is a description of a stabilised marching method 

known as discrete re-orthonormalisation (using full super-

position). We first describe the algorithm and then we show how 

it can be regarded as an example of a stable decoupling trans-

formation. As with parallel shooting we subdivide the problem 

range (a,bJ into N subintervals where the nodes are inserted 

according to some criterion (see later). For each subinterval 

[to t· 
' 1+' 

] (0 (= i (= N - 1) we obtain the fundamental solution 
I 

• X • (t) of system 

t 

x(t) = A(t)x(t) where the initial value of 
I .. 

X • (t. ) = 
I I 

[X. (t. 
a , 

) I X. (t. )] is an orthonormal matrix 
, I 

obtained by a QU decomposition using the Gram Schmidt process 

viz. X. (t . ) = X • (t . ) r where r is an upper ,- , I I I , , 
triangular (n,n) matrix ( 1 (= i (= N - 1>. At t = t = a 

0 , 
initial value Xo (t ) is obtained by choosing X (t ) 

0 • 0 , 
be a unit orthogonal column set such that B X (t ) = o . 

• 0 0 

<..- i 

the 

to 



Then 
~ 

[X 
o 

is any unit orthogonal column set satisfying 

is an 

orthonormal matrix. Also for each subinterval [tj ,t; .... ,] 

system we obtain the particular solution v. (t) 
I 

of 

• x (t) = A ( t ) x (t) + f (t) for wh i ch v. (t· ) = 0 f or 
I I 

o <= i <= N - 1. 
The node t· is inserted such that 

• +. -k where k is sufficiently small to ensure 

that the columns of X. (t. ) are still linearly independent. 
, 1+' 

This could be done by checking on the value of cond X· (t) = 
- I 

at each step. Alternatively, Mattheij and 

staarink advocate using the growth of the particular solution 
(, -1 

v . (t) as a guide to the growth of the fundamental solution: 
I 

when using a variable step Runge Kutta integrator (such as 

RKF 45) a node is inserted every pth step of the integration of 

v· (t), where p is a pre-selected small number. These nodes are , 
then also used as the restart pOints of the integration of 

X • (t) • , 
By (full) superposition the solution x(t) of the LBVP on sub-

interval [t. , t . ] can be written 
• • +, 

x . (t) = X • (t) ~. + v. (t) , where 0(. is a constant (n, 1) , , • • • , 
vector (0 (= i (= N - 1). Continuity of x (t) at node t. 

, + • 
demands that . x . (t . ) = x . (t. ) ====) . , ' .... , 1+' ' ... , 
X . (t. ) 0(,. X • (t· ) ~ . = -v. (t . ) (2.12) , ,+ • • • +, a'-I 1+1 • , ..... 
for 0 (= i (= N - 2. The BC are : B x (to ) + B x (t ... ) = 

0 0 I till-I 

====) B X (t 
I N-, N 

.{ = 
N-I 

(2.13) 

2.. - 10 
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where = c - B v (t ). Equations (2.12,13) can be 
J 1'1&-\ N 

combined into a .at of Nn linear equations. Ms = w 

where 

M = 

X (t ) 
o , 

B X (t ) 
o 0 • 

-x (t ) , , 
X (t ) 

, I. 

... = [0( ,0( 0(. J T and ,... 0.'·······, N-I 

_I 

l.st. by -[X. (t . ) J , I 

-x (t ) 
~ '1 

this converts M int.o M where 

r In , 

r 
&. I" 

-r , -M la 

X (t ) ... _~ "'-1 

(2.14) 

-x.... (t.
N 

) 
~-l -I 

B X (t) 
, N-l N 

I" 

B X (t .... ) 
1 "'-I ... 

and w into 1i = [g ,g " ]'T wh.r. , . · · .. · · · · ,g '0 , ~ .,. "'-1 
Q •• 

I 
[X· (t. ) J • v • ( t. 

" '-1 1 
). Thus the new linear system 

corre&pondin; to (2.14) is M. - w 

2. - " 

(2.15). 



[~..l' 
I ':L. 

Now B X (t ) = [X o (to ) , X (to) ] 
0 • 0 0 

= [: :,X~ (to,] bec:ause 
I 

Bo. X (t 0 ) = 0 by thm initial c:hoic:e of X 0 (to ) . 
0 

Also B X (t",,) = [:~l X ~-, (t N ' 
= 

~~ :1 I N-I 

whmre 

L is (p,p) and H (p,q).Thus from the last (i. e. Nth) row bloc:k 

of (2.15) wa get : Bo X 0 (to )0( + B. X (t )-< = .,. 
0 ....... ....' ... -. N 

[L I H ] [ ~:-, 1 -, (p,1) ====> = w 
N 

.( .... - I 
and 

XJ.. ,] (:; 1 - .. -
l~~ 1 [0 IBQ (to = w <q,1) wharm w. '"" 0 .. I 

(I E !r N) -, 
====> .{~ = [BQ x~ (to ) ] - L (2. 16a) 

0 0 
. w .... 

-,I = L-' ['W' H <"" ] (2.16b). 
""-I .. .... -, 

Now the first (N - 1) row bloc:ks of (2.15) can be written 

rec:ursively as I 

r. 0(. + 0( 

-+1 ' '+1 
-

= w ---> , +, 

o <- i <- N - 2, where ~ 

l 0(1'1- [E' 1+. I 
~ 0 00(.,+. 

____ > , 
~, -1+1 

:'.][:'; r + 

, 
E. 0(.. 

1 , 
+ 

~ 
F. 01. • , , 

~~ - B. ol~ 
1+1 ' i 

It.ration (2.17b) is now solved from 

2- - '2... 

+ 

+ 

i - 0 

- . w· • +, 
-a. w. 

, +1 

to 

+ w i + 1 
for 

Henc:e I 

(2.17a) 

(2.17b). 



starting from initial condition <2.16a) and the values of 

(0 (la i (= N - I ) are .tored. Using the value of ~~ 
N-l 

(2. 16b) enables us to find ~' N-, .Equation (2.17a) is 

in 

re-written aSI 0<.' 
i 

-I I a.. 
- [E.]. [0<. - F.O<. - w. ] (2.18) 

I • +. • I • +. 
which can be solved backwards from i = N - 2 to i" 0 to 

obtain the valu •• 
I 

01... , • Thus we have computed the vectors -i . • 
(0 <= i <= N - 1) from which Wa can gat the solution x(t) of 

the LBVP in each subinterval [to ,t. ] by using 
1 • -to I 

x·(t) = X·(t)o(. + v. et). I ,I, 
To demonstrate the stability of the recursions (2.17a ~ b) in 

their respective directions we define the unit orthogonal 

transformation Tet· ) - X. (t. ) of the LBVP (2.1) at aach node 
I I I 

i. e. x· (t· ) .. T (t· ). y. et· ) 
• I I' I 

where y. et· ) is the 
• I 

solution vector of the transformad'LBVP. In this case, 

-' -r 
y. (t . ) = T (t . ) • x . et . .. [X (t . ) ] . x . (t . ) 

I • • I • , • , 
-t' .. [X(t. ) ] . [X . (t . ) 0( • + v· (t. ) ] , • • , • , 

-=--> y. (t . ) .. oc:. • since v. (t . ) -0 (0 <-
• I I • I 

Now I 

i <- N). 

(i) the original LBVP (2.1) is assumed to be well conditioned 

(ii) the transformation X. (t·) is well conditioned for all , , 
t . because we make X. (t·) un! t orthogonal 

• • I 
I 

( i i i) at t - t 0 the condition Bet. Xo (t. ) - 0 ensur.s that 

the first p columns of Xo (t. ) will form a b •• is for a 

(foward) growth spac. of the dichotomy of A(t) and hence this 
, 

will b. true for X 0 (t) for all t" [to ,t, J 

l.. - IJ 



Uv) at aach noda t. (1 <- i <- N - 1) wa parform a ClU 
I 

decomposition of the fundamental solution viz. 

r. -I er. 
., 

X . (t· ) ::11 X . (t . ) < ) where ) i. upper triang-, • I-I I • • 
ular. This maans that each of tha first p columns of X. (t· ) 

, I 

is a line.r combination of the first p columns of X • (t·) . -. . 
I I 

(forward) growth and so span X . (t . ) -span X. (t . ) i. e. tha 
I • 1-, I 

spaca basis of X· (t . ) is pre.erved for all t . · • I • 
(1 <- i <- N 1) and hence far all t • [a,b]. 

Fact. (i) to (iv) above imply that the transformed LBVP must 

also be well conditioned. Now since "i' (t. ) - et· 
., I 

this maans 

that the recursions (2.17a & b) must be stable in their 

re.pectiva directions becau •• thay are the backward and forward 

.weeps of the decoupled system of the transformed LBVP (compare 

equations (1.19 & 20 ) of C~apter 1). 

Conte's Re-orthonormalisation method [19] I 

This is a more economical version of tha algorithm described 

in tha previous saction which employs reduced superposition and 

thareby eliminata. the forward iteration (2.17b). Let the 

fundamental solution X(t) • 1. 
(n,n) be partionad [X (t) I X (t)] 

of which wa con.idar hera only Xl (t). Tha part fundamantal 

solution 
I 

X 0 (t) 

, 
for which Bel X 0 (t 0 ) • 0 hI"hare 

I 
X 0 (t 0 ) 

i. a unit orthoQonal column sat) is obtained by forward intaQ-

• ration of the hemoQeneous system x(t) • A(t)xCt).Simultaneously 

we obtain a particular selution Vo (t) corre.pondin; to 
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• 
BQ. v 0 (to) = c~ by forward integration of system x(t) = 

A(t)x(t) + f(t). As in the previous section, a node t, is 

I 
Xo (t) lose their independence inserted before the columns of 

• and at t = t, we re-orthonormalise Xo (t. ) by means of a QU 
I • 

decomposition viz. Xo (t. ) .. X. (t. ) .D o where Do (p,p) 

is the upper trianQular orthonormali.ation matrix and where 

• X (t ) now ha. unit orthogonal column •• Also at t .. t we 
I • I 

obtain the ortho;onal complement. v (t I , ) of '10 (t I ) from I 

I I 

v (t ) .. v (t ) - X (t ).tx (t 
T 

) ] . '10 (t, ) so that 
I I 0 , • 1 , • 

v (t ) is now orthogonal to every c:olumn of X I (t ) . We , 
• • I 

continue thus inserting nodes t. (1 <= i <= N - 1) until 
I 

tN = b is reached where a final re-orthonormalisation occurs 
, 

to convert X (t ... ) 
N-I ., 

, 
into X (t ) and v (t N ) ........ N-. into 

v (t ). At each node t. (1 <= i <= N) the orthonormalis-N N , 

ation matrices Di (p,p) are defined by : 
I , 

X (t. ) - X. (t. ).0. 
1+' 1+1 1+' , 

(0 (= i <= N - 1) whare X (t. ) ,+, ,+, 
are the re-orthonormalised part fundamental solutions. 

Now, by reduced superposition, in subintarval [t. ,t. ] the , 
solution vector Xo (t) III Xo (t).~o 

is constant (p,l» satisfies the ODE (2.1a) of the given LBVP 

and .lso the i ni ti al BC I BQ. x 0 (a) = c:to. Thus the sol uti on 

vector x(t) will be piecewi •• continuous of the form I , 
x; (t) = X, (t). ri + v. (t) 

I 
(0 <- i <- N - 1) (2.18) 

wh.r. x. (t) is the 
I 

solution in tiubinterval [t; ,t: + I]' 

if the continuity conditions I x • , (t, ) .. x. (t'-LI) +1 '+1 , .... 
.re 

.ati.fied at the nod.. t. (1 <- i <= N 
1 

1). Th. latter 



implies (see [2-1]) that: 

which can 

f.>i = 

Now from 
, 

D. 4. . , ... , + 

be written 

-, ~ 
Dj. i., 

the final 

, 'T 
[x. (t. )]. v. (t. ) '., ,+, "+1 

I 

-, , 'T 

D. , [X. (t. )]. v. (t. ) ,+, , ... , " .. , 
BC of (2.1b) we have Bb x(b) 

(2.19) • 

= c ====> • 
Bb XN (t"", ) ~N = c 

\ 
,from which the value 

of can b. obtained. Hence iteration (2.19) can be solved 

backwards for ~, (0 <= i <= N 1) starting from this value 

of ~N' The subinterval solution vectors x. (t), which • -
constitute the solution x(t) of the given LBVP, are now 

obtained from (2.18). The backward iteration (2.19) corraspond. 

to (2.17a) of the previous section and so its stability is 

ensured by the same argument as put forward there. 

In Appendi)( I : 

[2-1] : Backward iteration of Conte's method. 
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CHAPTER 3 

CONTINUOUS ORTHONORMALISATION METHODS 

As we have seen in Chapter 2, if the dichotomy of system 

x(t) = A(t)x(t) is such that A(t) has kinematic eigenvalues 

(correspondi ng to some orthogonal tra'nsformati on T (t) ) whi ch 

are large in modulus value, then all of the multiple shooting 

and stabilised marching methods suffer from the drawback that 

frequent restarts may be necessary to avoid loss of independence 

of the columns of fundamental solutions. On the other hand, as 

we shall see in Chapter 4, if A(t) is rapidly varying, causing 

rotational activity of the columns of the fundamental solutions, 

then the Riccati method may require frequent re-imbeddings to 

prevent the Riccati solution from becoming unbounded in [a,bl. 

To overcome both of these drawbacks was the main motivation for 

the development of the continuous orthonormalisation methods. 

There are two principal variants of this method: one due largely 

to the work of Davey [3J, Meyer [4J, Bakhvalov [24J and Drury 

[25], and the other to Van Loon [17] and Mattheij [10l. The 

latter variation is obviously a decoupling transformation 

method which employs invariant imbedding whilst the Davey/Meyer 

method is a double sweep method. We describe the Van Loon method 

and then, by establishing relationships between this method and 

that of Davey/Meyer, we show how the latter method also fits 

into the framework of a well conditioned decoupling transform­

ation method. 
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Method of Van Loon et al. [17,10J: 

The given LBVP is (1.15) which is assumed to be well conditioned 

i.e. with m = q (the dimension of the decay subspace of the 

dichotomy of system ~Ct) = ACt)xCt) for increasing t). As 

outlined in Chapter 1, a continuous orthonormal transformation 

TCt) = [T (t) 1 T (t)J is sought which puts the system (1.15a) . ~. 

into upper block triangular form. This will be so if 

and T2, (t) satisfy the ODEs (see [1-4J) . . 
• 

T (t) 
I 

T (t) = [1 T (t)TT (t)J.A(t)T (t) (3.1) , f\ , 
I , -

• T 2.. (t)T: (t)J.A'T T2, (t) = [-I" + (t)T "l. (t) 

= -T (t)T'" (t)A'" (t)T 
,I ~ 

(t) (3.2). 

The transformed system matrix of (1.15a) is then: 

vet) = 

[

T""T (t)A(t)T (t) 
I , 

o 

T ,~ (t) [A ( t ) + A T (t) J. T 2. ( t )1 
T: (t)A(t)T 'L (t) J 

In Chapter 1 we described the double sweep orthonormalisation 

method which we showed to be stable but very costly as regards 

storage. Here we show how to use invariant imbedding to enable 

us to integrate all the ODEs in one direction, which avoids 

having to store values of TCt) in the forward sweep for 

subsequent use in the backward sweep. By superposition, the 

• general solution of yet) = V(t)y(t) + get) (1.16a) can 

be written: yet) = y(t)y(a) + hCt) (3.3) 

where Yet) is the fundamental solution of • yet) = V(t)y(t) 

for which yea) = I 
1'\ 

and het) is the particular solution 

of • yet) = V(t)yCt) + g(t~ for which hCa) = O. Since 

J - 2., 



• 
V~,(t) = 0 for all t and Vet) = V(t)V(t) we have 

• 
Y2.1 (t) = V (t)y (t) 

'2." &1 
where y ~ I (a) = o. Hen c: e Y &. 1 (t) = 0 

for all t, and so, from (3.3) we have: 

y (t) = Y (t)y (a) + V (t)y (a) + h (t) 
I "I '~a. • 

(3.4a) 

y (t) = Y (t)y (a) + h (t) 
So z~ z. ~ 

(3.4b). 

• Also from vet) = V(t)y(t) we get th~ IVPs 

• 
y'l (t) = V., (t)V" (t), V" (a) = Ir (3.5) 

• y (t) = V (t) Y (t) + V (t) Y (t) ., Y (a) = 0 
'2. " 1"1. '''L z." ' .... 

(3.6) 

• 
I~ Yz,,(t) = V (t)y (t), Y (a) = 

23. 2~ ~z. 
(3.7) 

• and from het) = V(t)h(t) + get) we get: 

• h (t) = V" (t)h (t) + V (t)h (t) + g (t) (3.8a) , • '2." I 
• h (t) = V (t)h (t) + g (t) (3.8b). 
~ 1.-.... 'L 

However, of the above IVPs, (3.5), (3.6) and (3.8a) would all 

be unstabl e for forward i nt,egrat i on because all of the 

kinematic eigenvalues of V" (t) (p,p) are such that 
~ 

Re I ~i (t) dt > 0 (1 <= i <= p). To obtain only stable IVPs, 

• Van Loon [17] therefore defines 
-, 

by : R (t) = Y (t), R (t) = 
" I' '1. 

R" (t) (p.,p) and R,1. (t) (p,q) 

-y-' (t)y (t) and also I. (t) 
U 1'1.. -, 

(p.,l> by 1 (t) = , -y (t)h (t), where the non-singularity of 
" I 

Y (t) is ensured by (3.5). Using these, (3.4a) becomes: 
1 , 

y (a) = R (t)y (t) + R (t)y (a) + I (t) (3.9) 
I It I '~z. , 

which is known as the recovery transformation equation. We can 

now also obtain [3-1] the following IVPs for R .. (t), R,'1.. (t) 

and 1, (t) : 

• 
R Il (t) = -R 11 ( t ) V " (t) 

• R ( t ) = -R ( t ) V ( t ) Y ( t ) 
12., "''1.. la.. 

3-3 

RII (a) = I, 

R (a) = 0 
I~ 

(3.10) 

(3.11> 



• 
1 ( t ) = -R (t) [V ( t ) h ( t ) + g ( t) ] , 1 (a) = 0 

I 
(3. 12) . 

I ",.,. ~ I 

Note that IVPs (3.11) and (3.12) are simply quadratures and so 

will be stable. For the case where V" is constant the 

forward stability of IVP (3.10) is obvious since all the eigen-

val ues of V" would be positive and these are a true guide to 

stability. But when V" (t) is variable, which would generally 

be the case, the forward stability of equation (3.10) requires 

justification [3-2]. 

Evaluation of equations (3.4b) and (3.9) at t = b together 

with the transformed BC (1.16b) produces the following (well 

conditioned) system of (2n,2n) linear equations: 

0 -y~t. (b) 0 It. y, (a) h1.(b) 

I, -R (b) -R (b) 0 y1, (~) I, (b) 
I~ 11 -0 0 E E' y, (b) -

&. 3 c, 

0 E 0 0 y .... (b) c .... (3.13) 
I 

where E = BQ T I. (a) , E = Bb TI (b) and El = B T (b) . 
I ~ b ~ 

The values of Y (b), R (b), R (b) , I, (b) and h (b) are 
l.~ '1.- " 2.. 

obtained by integrating forwards simultaneously the (well 

conditioned) IVPs (3.7),(3.11),(3.10),(3.12) and (3.8b) together 

with (3.1) and (3.2). System (3.13) is then solved for yea) 

and y(b) from which the solutions x(a) and x(b) to LBVP 

(1.15) can be obtained from the transformation equation 

x(t) = T(t)y(t). By subdividing the problem range [a,b] the 

above algorithm can be adapted to find the solution x(t) 

at these internal nodes also but this will require the solution 

3 - 'f 



of a much larger multiple shooting type system of linear 

equations instead of (3.13). 

We now describe two alternative versions of the above ortho-

normalisation algorithm which are more economical in that the 

ODEs involved are of smaller dimensions. Recall the double sweep 

method outlined in Chapter 1. We integrate forwards the IVP : 

• _I 
y (t) = V (t)y (t) + g (t), 

t 2.2,. 2. 2. 

together with IVPs (3.1) and (3.2) so as to obtain 

(see (1.33) of Chapter 1) we find from : 
-I 

Y (b) = (E ). Cc. E Y (b)] , a. l a. 

(3.14) 

y (b). Then 
Z. 

(3. 15) • 

To obtain y (t) we now integrate backwards the IVP : 
I 

• Y (t) , = Vu (t)Y
1 
(t) + V.~ (t)Y1 (t) + gl (t) (3.16) 

from t = b to t = a, but this requires storage of the values 

of T (t), T (t) and y (t) during the forward integrations of 
12.1 . . 

(3.1), (3.2) and (3.14) respectively. To avoid this we can 

instead, as explained below, integrate forwards a general 

sol uti on for y, (t) • 

• From ( 3. 16) : y ( t ) = V ( t ) Y ( t ) + P ( t ) 
, 11. 1 

(3.17) 

where p (t) = VI (t)y (t) + g (t). From (3.4a) the general 
1 a. ~ I 

solution of (3.17) can be written: 

(3.18) 

where z (t) = V (t)y (a) + h ct) is a particular solution of 
, I~ 2. I 

(3.17). Now let I R, (t)z (t) = w ct) size (p,l) ====> 
11' 

• w, (t) = R'
I 
(t). [V" (t)z, (t) + PI (t) J R" (t)V .. (t)z. (t) 

• ( from ( 3. 10» ==== > w, (t) = R 11 (t) P I (t), w, (a) = 0 ( 3. 19) 

since z Ca) = O. Also from (3.18) : , 
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-I -l 
y. (t) -R (t)y (a) + R (t)W,(t) 

" 1 ., (3.20) 

====> YI 
(b) = -I R (b).[y.(a) + w,(b)] 

" ====> y, (a) = R .. (b) Y (b) w (b) 
1 1 

(3.21> • 

Thus an alternative algorithm is to integrate simultaneously 

forwards (from t = a to t = b) the IVPs (3.1) ,(3.2),(3.14), 

(3. 10) and ( 3. 19) for T , (t), T ~ (t), Ya. (t), R" ( t ) and W (t) , 
respectively. Then obtain Y (b) , from (3.15) and use (3.21) to 

get Y (a). Finally, obtain the solutions x(a) and x(b) to 
I 

the LBVP (1.15) by using the transformation x(t) = T(t)y(t). 

This version of the algorithm has the-advantage that fewer 

variables of integration are required. Both versions have the 

(3.1>, T (t) 
2. 

(3.2) and R (t) 
11 

(3.10) IVPs in common. 

But this version has y (t) 
~ 

(q,1) instead of Y2.~ (t) (q, q) • 

(p, 1) instead of (p,q) and the I (t) , and 

h (t) ODEs have been dispensed with. Also in the previous 
1 

version we had to solve a linear system (3.13) of size (2n,2n) 

whereas here equation (3.15) for Y (b) 
1 

is only (p,p). These 

could be significant savings if n were large. Note that 

having found yea) and y(b) we could then attempt to find 

yet) at interior points of [a,b] by re-integrating forwards 

the above equations for T (t), T (t), y (t), R (t) and w (t) 
I a. 2. 11 • 

and then using equation (3.20) to obtain y (t). However, since 
I .. , 

(3.20) involves R (t) this may not be successful because, 
11 

although the R I1 (t) equation (3.10) should be stable for 

forward integration, the RII (t) solution so obtained is still 
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liable to be ill conditioned and therefore unsuitable for 

inversion. Note also that equation (3.21) is identical to the 

second equation of (3.13). Although this equation involves 

RI. (t) the possibility of the latter being ill conditioned does 

not now matter as this term appears on the right hand side of 

the equation. 

We can economise still further in the above algorithm by 

eliminating the T (t) 
Z. 

equation, as follows. Let 

T (t)y (t) where u(t) is (n,1), then: 
2. Z. 

• • • u(t) = T1.(t)Y1.(t) + T&(t)Y1.(t) = 

u(t) = 

T1 (t) [T: (t)A(t)TI. (t)y~ (t) + T:(t)f (t)] - T,(t)T7(t)A'T (t)Tz. (t)y1. (t) 

= [T. (t)TT(t)A(t) - T(t)T,~(t)AT(t)]U(t) + T (t)TT(t)f(t) = .1' 1. a 
.,. T T 'T 

[(1 - T(t)T (t) )A(t) - T(t)T (t)A (t) Ju(t) + [1 - T(t)T (t)]f (t) 
" ,. ", 1'\ I , . ~ 

i • e. u (t) = A (t ) u (t) + T (t·) a (t ) + [I - T (t ) T (t)] f (t) (3.22) 
I " , I 

where a(t) = -T7(t) [A(t) + A"T (t) ]u(t) (3.23). 

The initial conditions for IVP (3.22) are uta) = T~ (a)yl. (a) 

-. = Ta. (a) [B" T 2. (a) ]. c 2. • A I so from (3. 19) : 

• w. (t) = R" (t) PI (t) = R 11 (t) [V ,1 (t) Y1. (t) + g. (t) ] 

= R" (t)V,~ (t)y1.. (t) + R" (t)g, (t) 

= Rn (t)T~(t)[A(t) + AT (t)JT1.(t)Y2,(t) + R" (t)g, (t) 

= -R It (t) a ( t ) + R" ( t ) g I (t) . ~ 
w, (t) = R" (t) [T. (t)f (t) - a (t)] i. e. (3.24) 

where w, (a) = o. 

Thus the revised algorithm is to integrate simultaneously 

forwards the equations (3.24),(3.22),(3.10) and (3.1) for 

w (t), u(t), R (t), , " and T, (t) respectively. Now 
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x(t) = T(t)y(t) ====> 

====> x (t) = T (t)y (t) , , 

x(t) = [T (t) , 

+ u(t) 

Hence from the final BC of LBVP (1.15b) we have: 

Bb x (b) = c I === > Bb [ T, (b) Y I (b) + u (b) ] = c 
J 

====> 
-I 

YI (b) = [BI» TI (b)] • rc, Bb u(b) J 

(3.25) 

(3.26) 

from which we can obtain y, (b). Then we use (3.21> to find 

y (a). Finally we obtain the LBVP solutions x(a) and x(b) , 
from (3.25). 

Method of Davey, Meyer et al. [3, 4, 24, 25] : 

Unlike Van Loon's method this method does not employ 

invariant imbedding i.e. it is a,double sweep method which 

therefore has the disadvantage of requiring storage of values 

during the forward sweep for subsequent use in the backward 

sweep. At first sight it is not easy to relate the Davey/Meyer 

method (as described in [3] and [4]) to the orthogonal decoupl-

ing transformation method of the previous section. However, as 

we shall see, the Davey/Meyer method is simply the basic double 

sweep orthonormalisation method (as outlined in Chapter 1) but 

with the elimination of the T (t) 
~ 

IVP (1.32) by the 

introduction of the new variable u(t) = T (t)y (t) , as in 
~ ~ 

the third version of Van Loon's method described earlier. 

The backward sweep IVP for Y (t) 
I 

3-8 
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• 
y (t) -, 

i . e. 

where 

G(t) = 

{T"1(t)A(t)T (t)}y (t) 
, I I 

T'TCt)f Ct) , 
V I Ct)y (t) - G(t) + , , T" (t)f (t) 

I 

u(t) = T~ (t)yz. et), v" (t) 

-TT(t){A(t) + A~(t)}u(t) , 
= T;(t}A(t}T, (t) and 

as in (3.23). Note that 

(3.27) 

equation (3.27) corresponds to Meyer ,[4: 2.17] and to Davey 

[3: 24]. Now equati on (3.1) for T, (t) can be wri tten : 

• 
T,(t)V,,(t) C3.28) 

and the equation for u(t) is as in (3.22) viz. . ~ 
uCt) = Act)u(t) + T, ct)GCt) + (I" - TrCt)T. Ct)}fCt) C3.29). 

Equations (3.28) and (3.29) correspond to those of Davey 

[3: 2 ~ 18 respectively]. 

The algorithm is to integrate simultaneously forwards (from 

t = a to t = b) IVPs C3.28) and t3.29) for ~ (t) and uCt) 

respectively from their initial values given by B~ T, (a) = 0 
-I 

and uta) = T~Ca)[BQ T~(a)]. c~ (as in Van Loon's method). 

During these integrations the values of T, (t) and uCt) must 

be stored at the end of each step (if a fixed step integrator is 

used) or at arbitrary nodes a = t < t < ••••••• < t = b 
o I ... 

in the 

case of a variable step integrator. The initial condition for 

the backward integration of y, (t) is now obtained from Cl.33): 
-I 

y, Cb) = CB
b 

T, (b)]. CC
I 

- B& u(b)] (as in Davey [3: 23]) from 

which value ODE (3.27) is now integrated from t = b to t = a 

using the stored values of T Ct) 
I 

and u(t) at the nodes and 

interpolations between the nodes if necessary. Finally the 
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solution x(t) of the LBVP (1.15) can be obtained at any out-

put point t Co [a,bJ from (3.25): x (t) = T, (t)y, (t) + u(t). 

Thus the Davey/Meyer method is in effect a straightforward 

application of the double sweep orthonormalisation transform-

ation method except that instead of integrating forwards the 

IVP for y~ (t) (as in (1. 34) of Chapter 1> we integrate forwards 

IVP (3.29) for u(t) = Ta (t)y~ (t), thereby eliminating the need 

for the T2,. (t) IVP (1.32), as in the last variation of Van 

Loon's method described earlier. Note that the stability of the 

u(t) IVP (3.29) is 

"T 
because u (t)u(t) 

ensured by that of the 
,. .,. 

= Y (t)T (t)T (t)y (t) 
~ 1 ~ ~ 

y (t) 
2. 

IVP (1.34) 

= y" (t)y (t), 
a.. ~ 

since T~(t) is a unit orthogonal column set. 

As mentioned earlier, the main reason for interest in developing 

continuous orthonormalisation methods was an attempt to overcome 

the practical difficulties associated with superposition methods 

viz. loss of independence of the columns of the fundamental 

solutions. To recapitulate, if we are trying to solve LBVP 

(1.1~) by single shooting reduced superposition then we express 

the solution x(t) of the LBVP in the form: 

x (t) = X, (t)d + p(t), where X, (t) (n,p) is a part fundamental 

• solution of x(t) = A(t)x(t) for which BQ. XI (a) = 0 and pet) 

is a particular solution of • x(t) = A(t)x(t) + f(t) for which 

B pea) = c and d 
Q. Z. is constant (p,l). Troubles may arise 

(particularly in the case where system • x(t) = A(t)x(t) is 

'stiff' i.a. one for which the kinematic eiganvalues are 

widely sapArated in real part) due to loss of independence of 
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the columns of X (t) 

• 
as t increases and also to increasing 

dependence of pet) on span X (t). All of the variants of , 
continuous orthonormalisation overcome both these difficulties 

(at least in theory :see later) by finding an orthonormal basis 

for span X (t), at each value of , t, as we now explain. 

• 
(Spanning Theorem) X I (t) satisfies the ODE X (t) = A(t)X (t)' 

I • 

Let T, (t) (n,p) be defined by T, (t) = X, (t)W(t) where Wet) 

• 
(p,p) satisfies Wet) = -W(t)V" (t), Weal = Ir ,where V" (t) 

is (p,p). Thus Wet) will be nonsingular for all t and 

T (a) = X (a) • Now T (t) = X (t)W(t) ====) , I , , 
• • • 
T (t) = X (t)W(t) + X (t)W(t) = -X (t)W(t)V (t) + A(t)X. (t)W(t) 

I , • I 11 
• 

i • e. T (t) = A(t)T (t) - T , (t)V" (t), which is precisely , I 
• equation (3.28). Thus if X (t) = A(t)X (t) 

I • 
and 

• 
T (t) = A(t)T (t) - T (t)V," (t) where T (a) = X (a) then , .,. " 
T (t) = X (t)W(t), where Wet) is nonsingular for all t, which 

, I 

means that span T (t) = span X (t) for all t. Hence, in the 
I I 

continuous orthonormalisation methods, instead of integrating 

• 
forwards the system X (t) = A(t)X (t) , . from B X (a) = 0 

Q I 

and then obtaining the solution from the resolution equation 

x(t) = X (t)d + pet), we integrate forwards the system 
I 

• 
T (t) = A(t)T (t) - T (t)V (t) 

, I I" 
( 3. 28) from B Q T I (a) = 0 

(1.17) and use the resolution equation x (t) = T (t)y (t) + u(t) 
• I 

(3.25). In effect, we have -replaced" the part fundamental 

solution X (t) , by where span TI et) = span XI (t) for 

all t, and where now the columns of T, (t) should remain unit 

orthogonal for all t. Note also that since u(t) = T (t)y (t) 
I. '1. 
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T 'T 
then uT (t) T (t) 

I 
= Y (t)T (t)T (t) = 0 so that u(t) should 

l l , 

be orthogonal to span T (t) for all t. 
I 

As described in Chapter 2, in Conte's re- orthonormalisation 

method the part fundamental solution X (t) is re-orthogonalised , 
whenever necessary at discrete points in 

[a,b] by means of a QU decomposition ~sing the Gram-Schmidt 

process. In the continuous orthonormalisation methods of this 

Chapter this re-orthogonalisation takes place at every value of 

t automatically. 

We turn now to a practical difficulty-which may be encountered 

when using any of the continuous orthonormalisation methods. 

Although T, (t) and T~(t), as computed from IVPs (3.1) and 

(3.2), should in theory produce a unit orthogonal matrix 

T(t) = [~ (t) I T~(t)] for all t,in practice this may not be 

so. Before t = b is reached the orthogonality of T(t) may 

be lost and T(t) may even become (seriously) ill conditioned 

with a consequent effect upon the accuracy of the computed 

solution x(t) of the LBVP. This may happen because, as 

described by D&vey [3], Meyer [4] and Van Loon [17], the IVPs 

(3. 1) and (3. 2) for T I (t) and T (t) 
2. 

may be mathematically 

unstable in that not every orthonormal solution of these IVPs ., 
is asymptotically stable. In theory, the value of T (t)T (t) , , 
should remain constant for all t 

T • Now T (t)T (t) + , , 
T • 

at its initial value of 

TT(t)T (t) and so if 
I I 

...,. 
T (t)T (t) = 0 for all , t t this would ensure that T (t)T (t) 

, I 
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remained constant. The ODE for T, (t) is 

• T <t) = A ( t ) T, (t) - T (t) c (~) ( 3 . 29) 
I , 'I 

====) 

T"T(t)T (t) = T"T(t)A(t)T (t) {TT(t)T, (t)}c (t) 
" , , • 11 

which means that if we choose c(\') = T"T(t)A(t)T, (t) .. , 
(3.30) 

(as we 

T • ~ stated earlier) then T (t)T (t) = 0 only if T (t)T (t) = , , , , 
which in practice may not be so. In 6rder to numerically 

stabilise this equation Davey and Meyer therefore suggest that 
~ -,,. 

instead we take c(t) = {T (t)T (t)). {T (t)A(t)T (t)} so that 
'I I I , 1 

(3.30) becomes: TT(t)T (t) = , , 
T TT-I "T 

{T (t)A(t)T (t)} - {T (t)T (t)}'{T (t),"T (t))' {T
1 

(t)A(t)T, (t))' 
, I " " 

~ . ~ 
In this case, TI (t)T

1 
(t) = 0 even if T, (t)T. (t) + Ir exactly 

i • e. thi s choice of c C~ has the effect of stabilising the .. 
value of T~(t)T (t) in the event that it starts to move away , , 
from its theoretical value of If . A similar argument applies 

to the T1(t) IVP (3.2). 

"T 
The effect of replacing c(~= T (t)A(t)T (t) by c(~= 

11. , .. 
~ -I T 

{T, (t)T, (t)}. {T. (t)A(t)T. (t)} in (3.29) is equivalent to 

T + T -I T 
replacing T (t) by T (t) = {T (t)T (t)}. T (t) in the 

, I " , 

original version, where T+(t) is called the 'generalised 
1 

inverse' of T (t). The generalised inverse , + 
T 1 (t) of T ~ (t) 

is similarly defined. Thus the 'generalised inverse' versions 

of the ODEs for T, (t) and T"L (t) become 
• 

(t)T+(t)A(t)T (t) T (t) = A(t)T, (t) T (3.31a) , I 1 , 

• _AT (t) T T (t)T+(t)AT(t)T (t) T (t) = (t) + (3.31b). 
2. ~ 1 l. Z. 
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In Chapter 5 we describe the factorisation method of 

Babuska and Majer [16J, one version of which utilises the 

orthogonal transformations of this Chapter. 

In Appendix I : 

[3-1]: Derivation of ODEs for R (t), R (t) and 1 (t) 
11 1'1. I 

of Van Loon's method. 

[3-2]: Stability of R (t) 

" 
IVP. 

3-'~ 



CHAPTER 4 

THE RICCATI TRANSFORMATION METHOD 

Application of invariant imbedding 

In Chapter 1 we outlined the basic double sweep Riccati trans-

formation method which, though stable, has the disadvantage of 

requiring considerable storage during the forward sweep. As with 

the continuous orthonormal transformation (Chapter 3) this can 

be avoided by employing invariant imbedding whereby all of the 

integrations are performed in one direction. The operation of 

this technique with the Riccati transformation is virtually 

identical to that described in Chapter 3 for the orthonormal 

invariant imbedding (see equations (3.1) to (3.22». But now 

in this case the decoupling transformation matrix T(t) is 

rI, 
l R(t) • Corresponding to this 

triangular transform.d system matrix is 

the upper block 

vet) = rV,,(t) 

where I Vu (t) = All (t) 

V \& (t) = A '2.. (t) 

VZ2. (t) = A l.1.Ct) 

+ 

Lo 
A 1'1.(t)RCt) 

and where R(t) is the solution of the Riccati equation: 

• RCt) .. 

RCa) -= 

Aa"Ct) + A't.Ct)RCt) - RCt)A" (t) - R(t)A'2.Ct )RCt) 
-I 

-L, L. 

v (t)] 
la. 

V (t) 
la.. 

(4.14) 

C4.1b). 

As described in Chapter 3, we obtain the simultaneous solution 

~ -, 



of the IVPs: 
• 
R" 

(t) = -R ,\ (t) V" (t) , R" 
(a) = I f 

• 
R,& (t) = -R ( t ) V ( t ) Y" ( t) , R (a) = 0 

" ,"&. 2- ,~ 

• 
I, (t) = -R" (t) {V 11. .. (t)h

4
(t) 

• ha.(t) = V22. (t)h
l 

(t) + g" (t), 

together with (4.1). 

+ g (t)}, I (a) = , , 
Y2&. (a) = I,. 
h (a) = 0 

2. 

0 

(Note that R 11 (t) and R 'z. (t) are not reI ated to the Ri ccati 

solution R(t). The notation used follows that of Van Loon [17]). 

Hence, as before, we obtain yea) and y(b) by solving the 

(well conditioned) system of (2n,2n) linear equations as given 

in (3.13) viz. 

0 -y 
2.~ 

(b) 0 It y, (a) h2.., (b) 

I -R (b) -R" (b) 0 y~ (a) I, (b) 
12. --

0 0 El. E, y, (b) c, 

0 E, 0 0 y~ (b) c"J,. (4.2) 

but where now E
I
= L, (see (1.26) of Chapter 1), E = L + L R(b) 

l. 2. 3 

and E3 = L
J 

(see (1.28». Finally, the solutions x (a) and 

x(b) to LBVP (1.15) are obtained from the transformation 

equation x(t) = T(t)y(t). As with the orthogonal transformation 

the solution x(t) at interior points of [a,b] could be found 

by subdividing [a,bJ leading to the solution of a much larger 

system of linear equations than (4.2). The more economical 

algorithm described in Chapter 3, equations (3.14) to (3.21), is 

also applicable to the Riccati transformation, but the version in 

4--, 

'~ 

.~ 
~ 
1 

i 
~ 

'J: 

'i '::1 

: ~ 
i 

-i 

;1 
~ 



equations (3.22) to (3.26)~ involving the substitution u(t) = 

T ( t ) Y (t), i 5 not. 
~ 1.. 

Re-imbedding 

However, all of the foregoing pre-suppose5 that the solution of 

the Riccati equation (4.1) remains bounded for all t I [a,bl. 

This may not be 50, particularly if the system matrix A(t) of 

the given ODE is rapidly varying so causing rotational activity 

of the columns of the fundamental solutions. This is clearly 

illustrated by the following example: 

Ex 1: Consider a LBVP over [0,1] whose ODE is • x(t) = A(t)x(t) 

where A(t) = r cos(2wt) 

l- w - si n (2wt) 

w - sin (2wt)1 

cos(2wt) J 
so that the parameter w determines the rate of rotation. In 

this case, a fundamental solution is given by . . 
X(t) = [co,,(wtl .. in (wtJ [:k :-tJ - sin(wt) cos(wt) and the 

solution of the Riccati equation (4.1a) corresponding to initial 

conditions R(O) = 0 is R(t) = -tan(wt) which has a pole at 

t = "1t/2w • Thus if w > 7f/2 then R(t) will 'blow up' before 

t = 1 is reached. 

As described in Chapter 1 (equations (1.24) to (1.30», suppose 

we transform the ODE • x(t) = A(t)x(t) + f(t) (4.3.) 

of the given LBVP into system • yet) = V(t)y(t) + get) (4.3b) 

by means of the transformation x(t) = T(t)y(t) where 



TCt) = 

[

If Corresponding fundamental solutions 

RCt) xct) and YCt) of C4.3a) and 

(4.3b) respectively are connected by xct) = TCt) YCt). Now 

suppose that X(t) is the fundamental solution of C4.3a) where 

X(a) = T(a) = 

• yea) = I .Now Yet) = V(t)Y(t) 

" 
• 

Hence Y (t) = V .. (t)Y (t) 
2.1 6~ 2.1 

so that 

where vet) = L~(t) 

where V (a) = O. Thus 
~, 

V1.1 (t) = 0 

rx" (t) 

for all 

x,~ (t), 
xu.(t)J 

t. From X(t) = T(t)V(t) we therefore get 

YI~ (t)] 
V (t) 

It., 

= 
Lx ~I (t) 
==== > X I1 C t ) = VII C t ) and X 2., (t) = R ( t ) V " (t) 

_I 
==== > X (t) • X ( t ) = R ( t ) .. 2.' 11 
Therefore the solution of the Riccati equation (4.1a) is given -, 
for all t by RCt) = X Ct)X (t) from which we see that 

2. It 

R (t) wi 11 have a pol e whenever X" (t) becomes si ngul ar. Now 

in theory the p columns of the part fundamental solution 

X' (t) e [:~, :::J 
are independent for all t and so column rank 

= row rank = p i.e. for any value of t there exists p 
I 

linearly independent rows of X (t). This provides us with the 

strategy for preventing the Riccati solution R(t) from 

becoming unbounded in [a,bJ. 

In practice, at any value of t there will exist p ~most 

linearly ind.p.ndent~ rows of 
I 

X (t). Ideally, we would like to 



have these p rows in X" (t) for all t because this would 

ensure that R(t) always remained finite. However, this would 

be very costly to achieve and so we settle for the following 

compromise. Consider first the forward sweep. As the forward 

integration of the Riccati IVP (4.1) proceeds from t = a 

(simultaneously with the y~(t) IVP (1.29) of Chapter 1) we 

check at each step on the value of 

\ 1) . As soon as a 

value • t = t is reached where 

1 
> 

(4.4) 

(where is a pre-selected small positive constant) we 

perform a re-imbedding (i.e. a rearrangement of the solution 

components of the problem) as follows. 

Let the given LBVP be : 
• x(t) = A(t)x(t) + f(t) (4.5a) 

(4.5b) 

for a (= t (= b where x(t) denotes the solution of the LBVP 

in the given imbedding. If we use perm matrix 1t" (n,n) 

(chosen as explained later) to change the imbedding then (4.5) 

becomes 

• "It x(t) = 
T 

'ffA(t)(lI' 1(' )x(t) + If f (t) 

T 
Bo (1t 1\ )x(a) + 

i. e. d (1l x(t)} 

Tt 
T 

~ 

B (11" l' )x(b) = 
I 

'1 = (1t' A (t) 1r } { n 
c, 

x (t)} 

since Ti" 1t 11: 

+ 7r f(t) 

(Bo T ) {"IT x (a) } + 
'T 

(B T ) ( 1\ x (b) 1 = c 
• 
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,-J ,.; - ,.., 
or . d x (t) = A(t)x(t) + f(t) . 

O£ 
,J -' 

,.., -Bo x (a) + B. x(b) = c 

ttl 
,.., 

1t' x(t) for <= t <= b, where x(t) = 
is the re-arranged solution in the new imbedding and 

,.., 
A(t) = 

T _ 

1\ A(t)1f ,f(t) = -1t' f(t), Bo 
T -' 

=B1t' ,B o , 

(4.6) 

(4.7) 

T 
= B Tl • 

are the corresponding re-imbedded values of A(t), f(t), Bo 

and B , respectively for all • t )= t • Also, in the new , 
imbedding, 

, ~ 

the part fundamental solution X (t) becomes 

" X = Xl 

• = [SI (tll 
X1.. (t) for t )= t, i.e. the re-imbedded 

,..., 
Riccati solution R (t) - - --' is given by R(t) = X (t).X (t) 

1., 11 ,..., 
where now X (t) will be non-singular until the next pole 

" is reached in this imbedding. 

Thus at a restart point t = t~ the re-imbedded Riccati 

equation viz. 

,., ,.., - - -- - - -d R(t) = A (t) + A (t)R(t) - R(t)A (t) 
at' 2.1 11.. " 

R(t)A (t)R(t) 
'1. (4.8) 

and the re-imbedded forward sweep IVP viz. 
,J ,..., -,..., - ,.., - -d y (t) 

-at z. 
= {A (t) - R(t)A (t)}y (t) + {f (t) 

!-1. u. 2. '1 
R(t)f. (t)} 

(4.9) 

(compare with (1.29) of Chapter 1) are integrated forwards 

from their respective initial values 

which we show in appendix [4-1] are . . 
R(t* ) = [PI., + P 

2.~ 
R(t" )].[P" + PI"&. R(t" -(t" - R(tllr (t-and v .. ) == [P )P Jy ) 

11.. .~ a. 

and 

) ] 
-, 

'; (t~ ) 
a. 

(4.8a) 

(4.9.) 



wher. = 
PI 1 P:~ . Suppose we are able to remain 

in this imbedding (using criterion (4.4» until t = b is 

' 2. 3 
reached. Now if B = [L L J 

o 0 let B = B 1\ .... (4.10) , , 

• = [~~ ~] 
. - (t) then the backward integration of the YI 

equation viz. - ,..,,.., - ,.., -:w ,.., 
Y

I 
(t) = {AI' (t) + AI (t)R(t)}y (t) + A (t)y (t) + f (t) 

-a. I ''I. 1. , 

(compare (1.30) of Chapter 1) is started from: - - - - -, - ,.., Y (b) = [L + L R(b)J. [c L y (b)] (compare (1.28». 
, 2. 3 'J ~ 

This proceeds from t m b to t = t- where we switch back to 

the original imbedding for which the ODE is : 

• Y (t) = {A (t) + A (t)R(t)}y (t) + A (t)y (t) + f (t), 
, " 11. • I L . 1. I 

where the restart value is shown in [4-2] to be : 
If -I _ .. .. 

= [P + P R (t)] • [y (t ) - P y (t 
11 11. I I~ ~ 

Y (t* ) 
I 

)J. 

For the original imbedding, from t = a to 
Y( 

t = t , the 

solution x(t) of the LBVP (4.5) is obtained directly from 

the transformation equation <1.25) of Chapter 1 viz. 

x (t) = Y (t), x (t) = R(t)y (t) + y (t) • Similarly, for the , , a , 1. 

new imbedding from t = t- to t = b we have . • ,.., ,.., - ,., - -)(, (t) = y (t), )( (t) 1:1 R(t)y (t) + Y1.(t) , from which we can 
• 1 I 

er 
recover solution )( (t) from )( (t) = 1f X'(t) (4. 11> 

by using (4.7). 

In practice (depending on the nature of solution R(t) and the 

4--1 



choice of constant i in criterion (4.4» several 

re-imbeddings may be required between t a a and t = b, in 

which case at each restart point we must store the perm matrix 

used to change the imbedding as well as the composite perm 

matrix 1fc which relates the current imbedding to the original 

imbedding of the problem. Note that in the above description -rr 
is the perm matrix which changes the imbedding at any restart 

• point t = t • If several re-imbeddings were performed then , 

in equations (4.10) and (4.11), we would require the composite 

permutation matrix 1l"C. 

We turn now to a procedure [5J for choosing the perm matrix 

to change the imbedding at any restart point t = t A 
so as to 

keep the Riccati transformation T(t) well conditioned 

throughout [a,bl 

Alternate row interchanges and column operations are performed 

on the matrix 

, these being of the form : 

•••••• p 
a. •••• G , ... ,] = 

wh er e '""" is the composite perm [P, Pe •••• P ] 
I .1 I 

and G is 

the composite (column) Baussian elimination matrix where the 

sequence of operations on 

where these are performed alternately on left and right side. 

P. is the perm matrix (n,n) which takes the max mod element 
I 

-& 



in the ith column (1 (= i (c p) to the ith row and G.(p,p) , 
is the matrix which performs (column) Gaussian elimination with 

(i,i)th element as pivot. Suppose that the final transformed 

value of is 

(where E is lower triangular) then, in appendix [4-3], we 

show that the Riccati restart value R(t~), as given in (4.8a), ., 
is equal to FE • Most important, however, is the fact that 

this procedure ensures that all the elements of 
,.., . 
R(t ) will 

now be in mod value less than or equa~ to unity (see [161). 

Also if the new imbedding chosen by perm matrix 7r is an 

unstable one in that the Riccati solution 
,..., 
R(t) is exponentially 

increasing with t or has a singular point in (a,b1, then 

criterion (4.4) will ensure, that the length of the subinterval 

in this imbedding will be short. (In Chapter 5, we will see that 

Babuska and Majer's bounded factorisation Riccati method (16], 

employs a restart re-imbedding strategy analagous to that just 

described) • 

Inverse Riccati equation 

We may note a 

special case which occurs when (for a well conditioned LBVP) the 

dimensions p and q of the growth and decay subspaces are 

equal i.e. when the associated Riccati solution matrix R(t) is 

square (p,p) and so possesses an inverse 
-, 

Set) = R (t) for 

~-9 



any value of t for which R(t) is nonsingular. If7 in this 

case, we change the imbedding by means of the perm matrix 

J = 

then the re-imbedded LBVP solution is 

and the re-imbedded part 

J (X le (t)l .. (x ~ 1 (t)] 
Xz,,(t) X,,(t). 

fundamental solution is Xl (t) • J.x l (t) IS 

Hence the corresponding re-imbedded Riccati solution matrix is 
,.., -, -, -I 
R(t) = X ,(t).X (t) = 

I 21 
R (t), sinc~ R(t) = X (t).X (t). 

~, It 

Also the corresponding re-imbedded ODE system matrix will be 

[A'l~ (t) 
A,~ (t) 

= Aa,l (t)l 
A" (t) for whi ch the 

A"(t) = J.A(t) .J'T 

inverse Riccati equation is : 

• s (t) = A,~ (t) + A It (t) S (t) - S (t) A z a.. (t.) - S (t.) A (t. ) S (t) , 
2, (4. "Q.) 

inst.ead of (4.IG1. Equation (4.\\~ can be verified by replacing 

•• R by S in (4.\Q.). This 'square' Riccati case is in fact. 

not as special as it. may seem because as explained in Chapter 1 

any given (n,n) LBVP can be re-written in separat.ed BC form 

for which the Riccati solution mat.rix R(t.) will be (n,n). 

Compound mat.rix met.hod ([8J,[9J,[15J): 

The difficulties caused by the singularities of the 

Riccati solution, necessitating the cost of switching from one 

imbedding to another in order to avoid them, prompts us to ask 

-10 



whether instead we could remove these singularities altogether. 

Such a method does exist and is known as the Compound Matrix 

method, the key point about which is that we calculate the 

normal to the subspace of all solutions which satisfy the known 

initial conditions. 

To' simplify the notation 

and explanation we describe the application of this method to 

the solution of a LBVP with a 4th order differential system 

which has a dichotomy with forward growth subspace of dimension 

p = 2 viz. 
,>I ". 11 I cp a. q:, a <:p - a l </) - a .. ~ = as' (4.12) 

a. 

where ~ and a • 
• 

( 1 <= i <= S) are all functions of t. 

This equation can be re-written (see [l-lJ) in the form . . 
• x(t) = A(t)x(t) + f(t) where 

cp' (t) , 
11 III T 

x(t) = [ tP (t) , cp (t) , f/l (t)] 

f(t) = [0, 0, 0, as(t)J 
T 

and 

° 1 ° ° 
A(t) = ° ° 1 ° 

° 0 0 1 

a ... (t) a,(t) a ~ (t) a, (t) 

Thus the given (n,n) LBVP is : 

• x(t) = A(t)x(t) + f(t) (4.13a) 

Bo x (a) + B, x (b) = c (4.13b) 

for a <= t <= b where e ~ [0 y , B = [ :~J~ 0 I 

B. t 

-11 



and n = 4, P = q = 2. Without 1055 of generality 

(see [4l) we further assume that B~ has the f or m [: ° I I!.]. 

Now by superposition, any solution of system (4.13a) 

which satisfies the initial BC of (4.13b) can be written 

x(t) =xo(t) + and 

are constants, x I (t) (n, 1) 

f!J Xz. (t), where 

and x (t) (n,U 
~ 

are two linearly 

• independent solutions of the homogeneous system x(t) = A(t)x(t) 

satisfying B x. (a) == ° 
~ , (1 <= i <= 2) and x (t) (n,U is a 

o 

• particular solution of system x(t) =-A(t)x(t) + f(t) satisfy-

ing B~ xo(a) = c~ • To solve LBVP (4.13) by the standard 

complementary function method (see Chapter 2) we would 

separately compute xo(t) and x. (t) , (1 <= i <== 2) by forward 

integration of the inhomogeneous and homogeneous system respect-

ively from t = a to t = b starting from the initial 
, ~ T 

conditions x (a) = [0, 0, c , c: ] , x (a) = [: 1 , 0, 0, 
0 & t. , 

T , ... ]'T x~ (a) = [0, 1 , 0, 0] , where c = Cc ca ~ a-
, 

This would give the solution x(t) in the form : 

x (t) = xo(t) + .(. x (t) + • 

T 
Ol and 

(4.14). 

(4.15) 

for all t E: Ca,bJ and hence the value of x (b). If x (t) is 

to be the solution of LBVP (4.13) then x(b) must satisfy the 

final BC of (4.13b) i. e. Bb x (b) == c, ====> 

B~ Xo (b) + .(. B~ x , (b) + P Bb x~ (b) :10 c I ====> 
M l~1 = s (4.16) 

where matrix M - [Bb x 
I 

(b) I Bb Xa,(b)] (2,2) and 

-It.. 



s = c - B x (b) (2,1). Hence vector can be obtained 
, ~ 0 

by solving (4.16) and then used to find the solution x(t) from 

(4.15). However, as mentioned in Chapter 2, if system ~(t) = 

A(t)x (t) is 'stiff' (i .e. having kinematic eigenvalues which 

are widely separated in real part) then the linear system (4.1~ 

is liable to be ill conditioned. We now explain how the compound 

matrix method attempts to overcome this difficulty and later we 

show the relationship between this method and the singularities 

of the corresponding Riccati equation. 

First we define the part fundamental solution matrix L(t) of 

dimension (n,p) i.e. (4,2) by L(t) = [x (t) I x (t)] 
I 2 

(4.17) 

and also the solution matrix J(t) of dimension (n, p + 1) i.e. 

(4,3) by J(t) = [xo(t) I x, (t) , xl(t)] (4. 18) 

[ ~.(t), 
, II u, 

where x. (t) = ~.(t) , qS.(t) , c;6.( t) ] , 0 <= i <= 2. , • • • , 
From L(t) we now obtain the six (i. e. Cl' = ",Cl. ) (2,2) 

" 
minors y. (t) , 1 <= i <= 6, viz • • 
y. (t) = ~ (t) • ~~(t) ~&(t) ct>'(t) 

I I 

Y1(t) = c:6 (t) ., (t) cl> (t) . czS"Ct) 
I • ~~ I- , 

y, (t) = c;6 (t) • ~:'(t ) t:J;. (t) ~'''(t ) 
I & . , 

yy.ct) = ~I (t) . ~'(t) f$'(t) us"ct) , 2 a , 
yS (t) .:: ~' (t). ~"'Ct ) cb' (t) r,;b'''Ct) • ~ • , 
Ye-et) la .'( t) c;6'''( t ) ~" Ct) rp'" C t) <Z • , t a I (4.19) 

Y . . . . . . ye. are in fact the Plucker coordinates of the line , , 
" IU • It .. , 

joining the two points ( flS , ~,~ , c:I ) and ( ~. ~ ,- , ca ) 
I • , , l & & .. 

in S3 (three dimensional projective space). 

4- - 13 



It can be verified that the above y. (t) satisfy the Mange , 
identity . y (t)y (t) Y (t)y (t) + Y (t)y (t) = 0 . , c. ~ 5 J '#- (4.20) 

We also obtain the four (i. e. "C f + , = ",C 3 
) (3,3) minors of 

J(t) viz. z.(t), 1 <= i <= 4 : , ., , 
\!So (t) z, (t) = y, (t) ~o (t) Y1. (t) ~ (t) + y.,.(t) 

0 

"I ~. (t) za. (t) = y, (t) ~o (t) Yl (t) + yS- (t) ~ (t) 
0 0 

z, (t) = Y1(t). ~"'(t ) Y (t) net) + Yc.(t) oSo (t) 
0 ) ~o 

z.,.(t) == y.,. (t) . ~ "'(t) Ys (t) <JS II (t ) + y, (t) QS' (t) 
0 0 0 (4.21) 

We now define the pth (i. e. 2nd) compound vec:tor of L(t) 

T 
as y (t) = [y I (t) , • • •••• y c. (t) ] and the (p + l)th (i. e. 3rd) 

compound vec:tor of J(t) as 
T 

Z (t) = [ z (t), ••••• z ( t) ] f or all 
I ". 

t € [a,b]. By differentiating equations (4.19) and using (4.12) 

we can show that yet) satisfies t.he compound differential 

• system yet) = B(t)y(t) where B(t) (6,6) is given by . . 
0 1 0 0 0 0 

0 0 1 1 0 0 

B(t) = a Aa. , a, 0 1 0 

0 0 0 0 1 0 

-a 0 0 a a , 1 ... ~ 

0 -a 0 -a 0 a , 'fo 1 

Corresponding to the initial values for x.(a) ( 1 <= i <= 2) 
I 

given in (4.14) we get yea) = [ 1 , 0, 
.,. 

Similarly 0, 0, 0, 0, ] . 
we can show that z(t) satisfies the system: 

• z(t) = E(t)z(t) + get), where E(t) (4,4) is given by 

4- - I Lf 



0 1 0 o 

E (t) = a a 1 

"" 
, ° 

-a 
3 ° a. 1 

a.,. ° 0 a I -
and get) = [0, YI as ,Y~ as ,y~ as ]T and for which the initial 

condition corresponding to Xo (a) in (4.14) is 

, 'L 
z(a) = [c ,c ,0, 0] from (4.21). a. l. 

Now instead of computing x. (t) , (0 <= i <= 2) directly as in 

the complementary function method we obtain yet) and z(t) by 

forward integration of the IVPs : 

• yet) = B(t)y(t), 
T 

yea) = [1, 0, 0, 0, 0, ° ] (4.22) 

• z(t) = E(t)z(t) + get), '.. ]~ z(a) = [c ,c ,0, ° (4.23) 
a. .. 

The solution x(t) of the LBVP satisfies: 

x(t) - x (t) = 0(. x.(t) + " x (t) (4.24) 
0 &. 

which is four linear equations for .( and (3 . If we 

_let), " .. , .., 
denote x (t ) by [ 9 (t) , 9 (t), ~ (t) ] then by 

el i mi nati ng -<. and (3 from (4.24) in four different ways 

and then using equations (4.21) we find that the latter are 

satisfied with function <6o(t) replaced by 9 (t) i • e. 
11 , 

Y
I 

(t) . -a (t) y1(t). 9 (t) + Y ... (t) Q (t) = Z I (t) (U 
u, , 

Y (t). 9 (t) y,(t) 9 (t) + Y
s 

(t) e (t) = z (t) (i i) 
I 1 

'" " Y",(t). ~ (t) Y, (t) 'Cl (t) + Yc. (t) 9 (t) = Z (t) <iii) 
l 

ut It , 
y", (t) . ~ (t) Ys(t) • ~ (t) + y~(t) ~ (t) = z (t) (i v) 

'+ (4.25) 

for all t 4 [a,bJ. Equations (4.25) can be evaluated at t = b 

and written in the form of the linear system: N(b)x(b) = z(b) 
(4.26) 

- , 



where : 

y~ -y 
~ YI 0 

N(t) = y~ -y 0 Y, 3 

Vc. 0 -y 
) YL 

0 Yc. -y 
$ Y.,. 

From the set of equations (4.26) we can in fact obtain only 
11 .. , 

two independent equations for -a-(b) , 
I 9 (b), '9 (b) , 1:) (b) • 

Fer example, assuming that Y ... (b) +0, by applying row 

operations to (4.26) and using identity (4.20) we can reduce 

this set of linear equations to the fgrm : 

Y ... (b) 

o 

o 

o 

where h , 

-y2.,(b) 

y,,(b) 

o 

o o 

and h are functions of 
1. 

o 

y".(b) 

o 

o 

z. (b) , 

I ce (b) OS h~ 

• 
.. 

" (b) 0 

", 
~ (b) o 

(1 <= i <= 4). 

The final BC of (4.13b) provide two more independent linear 

equations and so we get the linear system 

Y If' (b) 

o 

where c , = [ c 

° 
y..,(b) 

, 
, which can be written 

• 

~ (b) 

9'(b) = 
11 

9 (b) 

... 
9 (b) 

hi 

ha. 
, 

c , 
c~ 
• 

D.x(b) = w (4.27). 

The fact that the given LBVP is assumed to have a unique 

solution ensures that matrix D (n,n) will (theoretically) be 

non-singular so that x(b) can be computed. 



Anyone of equations (4.25) can now be used to obtain some of 

the components of solution x(t) by backward integration from 

t = b. The remaining components can then be directly obtained 

from equations (4.25) since z(t) is known for all t ~ [a,b]. 

For example, the differential equation (4.25 i) viz. 

" I 

Y (t) e (t) , . Y2. (t) . 9 (t) + y (t) act) = z (t) 
~. . can 

be written as the differential system 

• u(t) = F(t)u(t) + 1 (t) (2,2) (4.28) 

where , F(t) = [:Y~ Iy, :~ IY] 
• -r 

u(t) = [ ~(t), ~ (t)] 

~ 

and let) = [ 0, z, Iy, ]. Now since u(b) is known from x(b), 

assuming that y. (t) -+ ° for all t (. [a,b], system (4.28) can 

be integrated backwards from t = b to t = a to obtain u(t) 

for all t. The remaining components 
.. 
~ (t) and 

III 
~ (t) can 

now be found by simultaneous solution of (4.25) (i) and (ii). 

Hence we have obtained solution x(t) of the LBVP for all 

t " [a,bl. 

Davey [8] shows that the method will be stable for the case 

where the system matrix A of the given ODE (4.13a) is constant 

wi th ei genval ues of the form "t ~. ' -: ~ 1. or where A(t) is 

variable but with eigenvalues which are relatively unchanging 

over the interval [a,bl. The method could be extended to the 

solution of higher order problems but for n > 4 the dimensions 

of the forward IVPs (4.22) and (4.23) rapidly increase. For 

example, for a problem of size n = 6, with P = 3, yet) would 

be (20,1). A disadvantage of the method though is that it is 



only applicable to a LBVP whose ODE is a single nth order 

equation, as in (4.12). 

Relationship of compound matrix method to Riccati method 

The main interest of the compound matrix method lies in its 

relationship to the Riccati transformation and this we now show 

for the case n = 2. Let : 

X(t) = 

[

X, (t) 

X 2,,', (t) 

4, P = q = 

X (t)] 
1'2. 

X~1.(t) be the fundamental solution of 

system x(t) = A(t)x(t) corresponding to the initial condition 

X(a) = I~ , then the solution 

equation : 

R(t) (2,2) of the Riccati 

• 
R ( t ) = A a., (t) + A ~ 1.. (t) R (t ) - R ( t ) A I1 ( t ) - R ( t ) A,~ (t) R (t), for 

-I which R(a) = ° is given by R(t) = X (t).X (t), as shown in 
) I., 11 

the previous section. Now the part fundamental solution L(t) 

(4,2) is L(t) = [x (t) 
I 

x ~ (t) ] where x I (a) 
T 

= [1, 0, 0, O]T 

and 

Thus 

x (a) = [0, 1, 0, 0], from (4.14), so that 
~ 

L(a) = 

f X,, (t)l = 

l )(~. (to) J 
L(t) = r::: ::: ::~::: , a 

l
'-~;~~~----------~~~~ 

-., ." szS (t) ~ (t> 
I S 

and therefore if we denote R(t) 
by rrl (t) r'2. (t >J 

r (t) r (t) 
J If. 

Lf. - I 8 



T' (:: ::] (0," "1 [~ c;Z>:L 
we get : = 

~:" . 95,: III 9$&' 
<;IS, 

( <6" .. ) l~' ---J ' = ~L & 

<6: (9, 95~ - lIS. tr>,') ~III ~ I" . _ as ' 
I a. • 

====> r = -y , r = Ya. r = -y , r = y, , If- ~ 3 S .... 
y, y, y, y, (4.29) 

where y, (a) = 1. Thus we see that whenever y, (t) bec:omes 

zero in the solution yet) • of the IVP yet) = B(t)y(t), ,. 
yea) = [1, 0, 0, 0, 0, 0] then the Ric:c:ati solution R(t) will 

have a pole at that value of t. Alternatively, if we define 

r. (t) (1 < = i <= 4) by (4.29) and then differentiate these 
I 

• 
equations to obtain r. (t) and substitute from the c:ompound , 
differential system yet) = B(t)y(t) we c:an show that these 

~ (t) are indeed the elements of the Riccati solution matrix , 
• 

R(t). For example, from (4.29) : r 
I 

• • and from y = By we have y, = y1. 

• r = -y YS + y", Y1. = Ys , I 

--------y~-------
y, 

I 

• i • e. r = r
l 

r r Now the 
I , ~ 

• 
R = A + A R R A" R A 

2.1 1.1. 11. 

=====> 

• • 
= -YI y ... + y ... y, 

-------yi.------
I 

• y.,. = Ys. Thus 

+ Y .. y~ 

Ric:c:ati equation 

R (4.30) 

• ====) r 
• 

= r 
) 

r r 
• 1 

Similarly we can verify the 

~ - , ; 



elements r~ ~ rJ 
the compound system 

and r~. Thus the 

• y(t) = B(t)y(t) 

of four non-linear Riccati equations. 

six linear equations of 

can be reduced to a system 

Finally we may note that the Riccati transformation can also 

be used in the factorisation method of Babuska and Majer [16J] 

and this is the subject of the next Chapter. 

In Appendix I . . 
[4-1] : Restart values for R(t" and ,., (t" 

ya. ) . 
[4-2] · Restart value for y, as ) . · 

R(t¥ ) -I 
[4-3] · = FE . • 

t{.-LO 



CHAPTER 5 

FACTORISATION METHODS 

Partitioning 

Up to now, in all of the previous Chapters, we have partitioned 

the system matrix A(t) of the given (well conditioned) LBVP 

<1. 15) as 

A(t) = 
r 

f [A (t) It 

t. A (t) 
I., 

1.-
A u. (t)l 
A (t) J 
~~ 

and the solution 

[

XI (tJT 
X (t) 1r 

z. 
to correspond with the partitioning of 

., 1,..-

transformation matrix T (t) = [T (t) T (t») where 
, 1. 

x(t) as 

the 

p and 

q were the dimensions of the (forward) growth and decay sub-

spaces respectively. This follows the notation used by Van Loon 

[10, 17], Mattheij [1] and Russell [12]. 

In this Chapter, however, to facilitate understanding of the 

bounded factorisation methods, as put forward by Babuska and 

Majer in [16], we partition the problem as shown below where n. 

is the dimension of the (forward) decay subspace and n~ that of 

the (forward) growth subspace. We therefore restate the given 

(well conditioned) (n,n) LBVP as I 

• x(t) = B(t)x(t.) f(t) (5.1a) 

D x(a) + D x(b) - c 
, 1. (5.1b) 

S - I 



t'\. 

for a <= t <= b where B(t) = [B <t) 
" 

B (t) u 

x(t) = c = [:J , D == , 

D = 
1. 

, f(t) = 

[ ~, ~~ ] (n, ft. 1 
U = t\ K , 

K, , U = Kl, , K" t\L 
J • 0 2. 

are assumed to be non-singular and where n, 

I"'\.~ 

B <tJ I &. I 

BzJ. (t) I\~ , 

r ~I J 
and 

where K and K
J 0 

and n 
"-

are the 

dimensions of the (forward) decay and growth subspaces respect-

ively. This follows the notation used by Babuska in [16]. 

Propagation of BC 

The notion which underlies the factorisation methods is that we 

propagate forwards (backwards) a set of conditions equivalent to 

the initial (final) boundary conditions of LBVP (5.1) so as to 

obtain a complete set of n independent conditions at any point 
.. 

t = t in [a,bl at which the solution x(t) of (5.1) is 

required. Factorisation is a double sweep method which can be 

applied to either the continuous orthonormal or to the Riccati 

transformation or aven to single shooting superposition. However 

unlike the double sweep methods that we have looked at in 

previous Chapters, here the forward and backward sweeps are 

independent in that each sweep employs a different form of the 

same transformation <either continuous orthonormal or Riccati) 

s.- 2.. 

1 
iJ 
"1 
~~ 

1 
~ 
~ 
~ 
~ 

, 



of which only one part is used. Let us call the forward and 

backward sweep transformation matrices T(t) and L(t) 

respectively where these are partitioned 

likewise for L(t). For the forward sweep 
-I [~I (tJA' T (t) == set) == 

* ,,~ , where * 

'" [T (t) , 
let . . 

"a-
T (t)] and 

a. 

denotes a (n , n) 
l. 

matrix with which we will not be concerned here. Then 

x(t) == T(t)y(t) ====> 

-I 

(~I :tl yet) = T (t)x(t) ====> r y (t)] == . x (t) 

.. y~ (t) = 
=====> ~ (t).x(t) = Y (t) or ~ (t).x(t) = ~ (t) , , , 

I 
(5.2) 

putting sD, (t) = y, (t) 

where i>,(t) (n , n ) . and ,s, (t) (n , 1) are the , , 
forward transition matrix and vector respectively. 

Likewise for the backward sweep let [~~ (J:~ 
-I 

L (t) = J (t) = 

where now, of course, for backward integration from t = b to 

t == a, n, is the dimension of the growth subspace. Then 

x(t) = L(t)r(t) ===-> -, 
r(t) == L (t)x(t), where r (t) is the 

solution of the transformed system, ====> 

or 

where 

[ 
* 1 .x (t) 

~ (t,j 
a. 

~ (t) x (t) = ~'a..(t) 
1. 

~ (t ) (n ,n ) and 
"%.1. l 

S-3 

====> ~1(t) x(t) -rl(t) 

(5.3) 

~a.(t) (n~, 1) are the 



backward transition matrix and vector respectively. Equations 

(5.2) and (5.3) are the forward and backward transition 

equations and if we combine them at any value of t* 4! [a,bJ 

we get the combined transition equation: 

• x(t ) = 

(5.4) 

from which the solution x(t-) of the LBVP (5.1) is obtained. 

It is shown in [16J that if LBVP (5.1) has a unique solution 

then so will linear system (5.4). Also, provided the IVPs for 

<i.(t) and , ~i (t) (1 <= i <= 2) are well conditioned 

then so will be system (5.4). In later sections we derive 

these IVPs (known as the factorisation transition equations). 

The distinguisbing feature of the factoris-

ation methods is the way iri which the given initial (final) BC 

is propagated forwards (backwards) across the problem interval 

[a,bJ. For the forward sweep, the given initial BC of LBVP (5.1) 

is U I X (a) = C 
I 

or [K I K J x(a) = c .., , • As explained 

later, this BC is transformed into an equivalent set of 

conditions !(")J«a) = d. 
I 

, where ~ (a) 
I 

must be of the same 

-, 
T (a) = 

_I 
rows of transformation T (a) i . e. 

• Thus for the Riccati application 

must have the form 

R(t) 1 
I" L 

[I 'R (a) ] because here 
"I 

, whilst for the orthonormal 



application ~ (a) must be a row set of orthonormal vector. -, 
because in this case T-' (t) = T"T (t) = CT (t) 

I 

= 

T~ (t)]-r 

[T~(t)l T: (t) where T(t) is an orthonormal matrix for all t. 

In the Riccati case this transformation could simply be achieved 

by pre-multiplication by 
-t 

K 
o 

i. e. [K I K ] x(a) = c, ====> 

[I" 
I 

-, 
I K 

o d I 

-, 

0 , 
But this might result in 

some of the elements of R(a) = K K being large in modulus. 
0 , 

To avoid this we adopt a preliminary procedure of alternate 

column interchanges and row operations described later so as 

to finish up with R(a) having all its elements in modulus less 

than or equal to one. (This will most likely cause a re-arrange-

ment of the components of the LBVP solution x(t) thereby 

necessitating a re-imbedding of the ODE). 

Now for either the Riccati or the orthonormal application 

at any value of t ~ [a,bJ we have x(t) = T(t)y(t) 

[

y, (t)] 
Y (t) 

J. 

= 

%.(t)'c (t) = y (t) = 
"'r, I 

• x (t) 

0, (t ) ====) 

====) 

Cl (a)x (a) = , 

====> 

~ (a). , 
If we compare the latter with the equivalent set of initial 

conditions ~ (a) x (a) = d 
I I 

that we have obtained we see 

that forward 

(viz. (5.6) 

integration of the ODEs for 
balo&o) 

~ (t) 
I 

and (5.5),( from i ni ti al condi ti ons of 

and QS (t) , 
q (a) 

I 
and <IS (a) la d 

, I will produce a set of conditions equivalent 

to the initial BC of LBVP (5.1) for all t. [a,bl. 

Likewise, in the backward sweep the final given BC is propagated 



from t = b to t = a in a similar fashion. 

Forward Sweep 

Consider the forward sweep. First the given LBVP (5.1) must be 

recast so that the initial BC matrix U, is in the correct form 

(see later) for the particular transformation to be used 

(either continuous orthonormal or Riccati). In the case of the 

Riccati transformation this will probably require a re-imbedding 

of the LBVP. We give details later of precisely how this is done 

when we examine each transformation individually. For now we 

will assume that this preliminary transformation has been done 

so that matrix U in 
I 

(5.1) is already in the correct form. 

Recall from Chapter 1 that if in general we apply the 

transformation x(t) = N(t)v(t) -, 
or yet) ~ N (t)x(t) = 

• M(t)x(t) to the ODE x(t) = B(t)x(t) f(t) of LBVP (5.1) 

we get the transformed system : • yet) = W(t)v(t) -f (t) 

where wet) and M(t) are connected by the Lyapunoy equation 

• ,.., 
M(t) = W(t)M(t) M(t)B(t) and f(t) - M(t)f(t). 

For the forward sweep we use the transformation 

x(t) = T(t)y(t) or yet) = S(t)x(t) • on x(t) = B(t)x(t) f (t) 

to obtain the transformed system . -yet) = Bet)yet) - get) whare 
,.., 

T(t) is chosen such that Bet) is block lower triangular. Then 

. -we have I Set) - B(t)S(t) - S(t)B(t) and get) = S(t)f(t) 

where Set) = 

• Thus 
. ,., 
yet) = B(t)y(t) - get) 

___ a> 



\ :. Ct'l == fe" Ct, °1 f y Ct,] Ba.~(t) y: (t) ~a., (t) y (t) 
l-

• - Ci(t)f(t) i • e. y. (t) = BlI (t)y (t) or 
I I 

~, (t) = ~ (t)f (t) + Z (t). •• (t) 
-I I 

(5.5) 

putting y = <P, (n • 1) and Z ='8 where Z (t) 
I I I , " I 

(n • n is the conditioning matrix of this IVP. 
• I 

• -Also : Set) = B(t)S(t) S(t)B(t) s===) 

\ ~.Ct'] ~ r~" Ct, suc:J [~~t'l- \ ~.:t'J B(t) 

B" (t) 
• 
~ (t) 

,.... 
~ I (t) ~ (t)B(t) i • e. = 8 .. (t) 

• • -I 

~ (t) = ~ (t)B(t) + Z (t) ~ (t) , , I , 
To obtain the initial conditions for the •• IVPs (5.5) 

note that from equation (5.2) we get: ~ (a)x (a) -= 
I 

whilst from the initial BC of LBVP (5.1) we have: 

or 

(5.6) • 

and (~.b) 

~ (a) 

• 

U )( (a) = c , . , • Thus we take ~ (a) 
I 

... U and 
I 

~ (a) .. c 
I I 

Now the transformed initial BC is U, T(a)y(o) .. c , 

cs ... ..:) [ U. T (a) U 
I 

, 

.... _=) U T (a) <IS (a) 
I , . , 

Hence the transformation 

U T (a) =- I" I I , 
U, Tz. (a) ... 0 

T 

+ 

(a) J [Y I ca,] .. 
Cl ~ 

U 
• 

T(a) 

y (a) 
J. 

T L (a) y '&.. (a) .. c, si nce y, .. .szS1 

must be such that 

(5.7a) 

(5.7b) 

where T(t) may be either continuous orthonormal or Riccati. 

Not. that condition (5.7b) corresponds to (1.17) of Chapter 1. 

~ -7 



Backward Sweep 

Now we consider the backward sweep, for which a 

similar argument applies. First the LBVP (5.1) must be recast 

to obtain the final BC matrix Uz. in the correct form for 

either the Riccati or the continuous orthonormal transformation. 

Again, for now we will assume that this has already been done in 
) 

(5.1). For the backward sweep we use the transformation 

• x(t) = L(t)r(t) or r(t) = J(t)x(t) on x(t) = B(t)x(t) - f(t) 

to obtain the transformed system r(t) = C(t)r(t) - het) where 

L(t) is chosen so that C(t) is block upper triangular. Thus 

• 
we have J(t) = C(t)J(t) - J(t)B(t) and het) = J(t)f(t) where 

• 
J (t) = [* ]", 

Ci& (t) "'l and so : r(t) = C(t)r(t) - het) -=--> 

[
r, (t)1 = rc It (t) 

;.~ (t) l 0 

Clt-(t>] 

C (t) 
.12, 

[

r, (t)] 
r& (t) 

i • e. ;. (t) 
~ 

• 9S2,(t) = 

putting 

• 

= C (t)r .. (t) 
12.. .. 

~ 2,( t ) f (t) + 

c;6a. (t) (n2,. , 1) 

~~t)f (t) 

Z.1 (t) ~1.. (t) 

and 

Also I J(t) = C(t)J(t) J(t)B(t) _=_a:> 

C''a. (t)] 
C (t) 
t" 

r * ].f(t) 

~ (t) 
to 

or 

(5.8) 

-
[

* 1.B(t) 

~ (t)] 
I. 

=-=-> 
• 

- C2.1.(t) 

c!(t)B(t) + 
a 

<fa (t) 
~ 

Cf1.(t) B (t) or 

= ~ (t) 
a. 

From (5.3) w. have I 

Z.(t) • ci (t) 
6 -1 

(5.~). 

~ (b))c (b) • 

" 
~(b) and from the final 

2.. 

BC of (5.1) I U~ x(b) = c~ • Hence we hav. initial conditions 



for IVPs (5.8) and (5.9) of c;6a(b) = c and <} (b) DU. 
1 ~ 

'L 

Also : U x(b) = c'2,. ====> Uz. L(b)r(b) = c~ =====> 
2. 

U L (b)r (b) + U L (b). cb (b) = cl. (since r = ~) z.., I ~ ~ ~ ~ a. 

and so the transformation L(t) must b. such that I 

Uz L (b) = 0 and U L (b) = I,,~ J z. ~ 

Note that if we define ~ (t) (n, n), cp (t) 

(n, 1) and Z(t) (n"n) by . . 
~ (t) = , 56 (t) = [~' (tJ' 

~it) "a, 

[~' (tl' 
ct>a. (t) "', and 

"Z.(t) = 0 \ z ~ (t) J' Z (t) "'~ then we can combine 
a 

the forward and backward transition matrix equations (5.6) and 
• 

(5.9) into ~ (t) = Cl (t)BCt) + Z(t). ~(t) and 

the corresponding transition vector equations (5.5) and (5.8) 

into 
• 
~ (t) = <i (t)f (t) + Z(t). ~(t) • 

Application to Riccati transformation 

We look now in more detail at how the factorisation 

method can be applied to the Riccati transformation. For the 

forward sweep we must first re-cast the given LBVP (5.1) so as 

to put the initial BC matrix U, into the required form as 

follows. The given initial BC of (5.1) is I 

[Ko I K I l • x (a) - C I 

Alternate column interchanges and row operations are now 

performed on matrix [K 
o K J of the form I 

I 

(5.10) • 



B •••••••• 6 
". - I 

•••••••• P n where 
I 

p. 
• 

(n ,n) 

is the perm matrix which takes the max mod element of the ith 

row (1 (= i (= n ) 
I 

to the ith column and B. 
I 

(n 
I 

, n I 

is the matrix which performs row Baussian elimination using 

the (ith, ith) element as pivot. The sequence of operations 

is thus: P 8 p. G .......... p ... 
" I J • - .', 

e.g. after the first 

cycle of operations- we have from (5.10) : 

"T 
P pT la I ) BI [Ko 1 K ] P P x(a) - B

t 
c (since 

I I , I , I " - ] x (a) )( Ca) -r 
or CK I K = c, where e PI xCa). 

0 I 

Therefore if we denote the composite perm P P ••••••• P t\ 
I ~ , 

by P we finish with a set of conditions equivalent to (5.10) 

of the form . CE , F ] p'T X (a) = d which can be . , 
-I -written . [I I E F ] x Ca) = u or . ", , 

[11\ R(a) ] ~ Ca) = u, (5. 11> , -, -I - pT where R(a) = E F, u = E d and x (a) = x (a) • 
I I 

It is shown in [16] that the above procedure will ensure that 

all the components of R(a) will now be in modulus less than 

or equal to one. However, it has caused a re-arrangement of the 

components of solution x(t) defined by ~Ct) - pT xCt) and 

so we must re-imbed the ODE of LBVP (5.1) to take account of 

this. In the original glven imbedding the ODE (5.1a) was 

• x(t) = B(t)x(t) - f(t) 
____ > 

T • 'T" 
P x(t) = P f(t) 

___ a> 

- -d x(t) • A(t)x(t) - let) 
-at" (5.12) 

where A(t) = pT B(t)P and 
T 

let) - p f(t). Thus after 

! - 10 



re-casting the given initial BC (5.10) into the Riccati form 

(5.11), the corresponding re-imbedded ODE is now (5.12). 

For the forward sweep we now define the Riccati transformation 

by T(t) = [> (5.13) 

where R(t) (n, ' n~ ) is the Riccati matrix, so that 
-, 

Set) = T (t) = 

,.., 

R(t)l 
I" 

~ 

• In order that the 

transformation x(t) I: T(t)z(t) will put ODE (5.12) into the . ~ ~ 
form z(t) = A(t)z(t) - het) where A~t) is block lower 

triangular we show in [5-1] that R(t) must satisfy the Riccati 

equation : 

• R(t) = A (t)R(t) + R(t)A (t)R(t) " ~, 

and that 
,..; 
A(t) = 

~ 

A(t) is then given by 

(t) + R(t)A
21 

(t) 

A~,(t) 

-, 

f> Also, since Set) -T (t) ... 

transition matrix cP (t) - [ I f\ 
I,..., , 

condition matrix Z 
I 
(t) I: A" (t) - A 

(5.14) 

Rct) 1 
I" , the forward 

~ 

, R(t)l (n, , n) and the 

(t) + R(t)A (t) • From ., ~, 

(5.11), the initial condition for the forward intevration of the 
• 
~ (t) IVP , 

IVP WI! have 

[1 ,R(a)l. 
". 

~ (a) - [1 ,R(a)] and for the 
I " • 

is • c;ZS (t) , 
IS (a) - u •• Not. that [I ,R (0.) l.T (a) 

r:~~ ~, I 

-
l J - I~I and that [I"" R(a)].Tl.(a) -

~-" 



= 0, as required in (5.7a ~ b). 

In practice, we do not need to integrate ~ (t) forwards 
I 

because ~ (t) = [In ,R(t)] for all t. Instead we , , 
integrate forwards the Riccati equation (5.14) from its initial 

-I 
value of R(a) = E F (which gives us 

with the viz. 

~ (t» simultaneously 
I 

• J25 (t) = 
I 

,6. (t) IVP (5.5) 

~(t)f(t) + Z (t) J.. (t) , 
I .~, ~I (a) = 

for all t ~ [a,bl 

u I • 
I 

Hence we obtain <i (t) and , ~I (t) 

(assuming that R(t) remains bounded ~ we return to discussion 

of this point later). 

For the backward sweep, the given LBVP (5.1) must 

first be re-cast so as to put the final BC matrix U& into the 

required form as follows. The final BC of (5.1) is : 

[K ,K l.x(b) 
z. l = (5. 16) 

Alternate column interchanges and row operations (similar to 

those described earlier for the forward sweep) are now 

performed on matrix [Kt' K
J 

J except that in this case .ach 

perm matrix Q. , (n,n) take. the max mod element in the ith 

row (1 <= i <= n ) 
Z. 

to the (n - i + 1) th column and the 

(i, n - i + l)th element is then usecl as the pivot for the row 

Gaussian elimination. W. thus obtain a set of conditions 

equivalent to (5.16) of the form : (E, I F, 
T 

1.Q x (b) - 8
1 

where is the composite perm matrix 

can now be written I (P(b) 

-I 
where P(b) = FE, v -

• , I 

, I f\ 
a. 

-I 
F e 

, I 

t - '2.. 

,." 
l.x(b) 

and 

Q I Q I ••••••• Q 1\ '- • Th i • 

-
- v -x(b) 

I 
(5.17) 

Q -r x (b) • 



As in the forward sweep, this process ensures that all of the 

components of P(b) will be in modulus less than or equal to 

one. It also necessitates a re-imbedding of the given ODE (5.1) 
,.., -r 

defined by x(t) = Q x(t). Let us suppose that the re-imbedded 

• version of ODE x(t) = B(t)x(t) - f(t) is 
,.., ,J ,., 

= B(t)x(t) f (t) d X' (t) 
dt (5.18) 

where and 
,., 
f(t) 

corresponding final BC is (5.17). 

,. 
= Q f(t), for which the 

For the backward sweep we define the Riccati transformation by 

L(t) = tI~ 
-P:t) :~J where pet) is the Riccati solution 

matrix (n n ) and for which L'" (t) 
a- I 

= J(t) = rI~ Lp(:) 
o 

,.., 
The transformation x(t) =L(t)r(t) will put ODE (5.18) into the 

• form r(t) = C(t)r(t) - het), where C(t) is block upper 

triangular, provided pet) satisfies the Riccati equation 
• ,-J ,.., ,.,-' 

pet) = P(t)B (t)P(t) + B •• (t)P(t) - P(t)B" (t) - B (t) 
1'&... a.' (5.19) 

and in this case : 

C(t) = 

Also since 

~ (t) = 
z 

-' 
(t) B,,& (t)P(t) 

o 

-, 
J (t) = L (t) = 

~
I 
"'-

pet) w. have 

[pet) I I~ ] (n~ ,n) and the condition matriM , ,.., ,.." 

Z (t) 
1. 

= C Z1(t) = B&~(t) + P(t)B_~(t). Thus we integrate 

S - 13 



simultaneously backwards (from t = b to t = a) the Riccati 

equation (5.19) from its initial condition P(b) 

together with the IVP (5.8) viz. 

• ~(t)f(t) tSJ. (t) , 9Sa. (t) = + Z (t). 
a. a 

Hence we obtain ~ (t) and ~2.<t) for all 
a 

provided pet) remains bounded. 

Restart re-imbedding procedure 

-I 
= F. 

<Pz (b) 

t C 

E , 

= v 
I 

[a,bJ, 

As described in Chapter 4, the chief drawback of 

the Riccati method is that the Riccati solution <either R(t) 

forwards or pet) backwards) may have a pole at some value of 

t in [a,bl. We avoid this by keeping the transition IVPs 

~. (t) and , <j:>.(t) , (1 <= i <= 2) well conditioned by 

adopting the following restart re-imbedding procedure. For the 

forward sweep the integration of the Riccati equation and 

~.(t) equation are continued from t = a until a value of 

t is reached at which I 

> (5.21) 

where is a pre-selected small positive constant. If this 

happens at t = t.< b then we restart. Suppose the ODE 

for the first subinterval [a,t. J i. I 

o 0 
f (t), where superscript denotes 

values in the imbedding for this sub1nterval. At t .. t , the 

propagated initial BC <equivalent to the initial BC at t - a 

of the given LBVP) are 
• 0 
~ (t »)( (t) -
,I I 

or 

S-I 



o 0 
(11\ ,R (t, )] x (t,) , = 

o 
q$ (t ) 

1 I 
(5.22). 

In order to make all of the components of the restart Riccati 

solution matrix, at t = t ,in mod value less than or equal to 
I 

one, we perform the previously described row and column 
o 

operations on [I I R (t
l
)] ". causing a change of imbedding. 

This produces a set of conditions equivalent to (5.22) of the , 
9!>,(t,) where superscript 

denotes values in the new imbedding for t >= t . The ODEs , 
imbedding ~. (t) 

, , 
(t) fl (t) and the this new are = B (t)x , , 

transition matrix and vector are now - ~ (t) and c;zS (t) 
• 

, 
respectively. The Riccati equation corresponding to this 

imbedding viz • 
•• 'I I I I I • I 
R (t) = B (t)R (t) + R (t)B (t)R (t) - B (t) - R (t)B (t) 

11 .lU 11. a .. 
I. 

is now restarted from the value R (t I ) and the tr.ansition . , 
- !' (t) f ' (t) 

, I 
vector equation 9 (t) = + Z • (t) . ~I (t) 

I I , 
BI RI (t)S' (where Z I (t) = (t) + (t) ) is restarted from 

11 &t , 
~ (t ). Note that the Riccati transformation matrix 

• I 

corresponding to this ne ... imbedding is [> - :' (t)] 

for all t >= t , 
"a. 

The integrations are now continued until a value of t is 

reached where n ~'(t) 11 > 
I 

r·\\ ~'(t ) l\ 
I I 

• If this 

occurs at some value of t ... < b then the above rastart 

in 

procedure must be repeated at t - t~ , and so on until t - b 

is reached. After each restart at t - t. the restart Riccati . , , 
solution matrix R (t.) will have all of it. components in , 

~ - 15 



mod value le •• than or equal to one, which helps to reduce the 

number of restarts likely to be needed. Also if, after a 

restart, the new imbedding is an unstable one in that the 

corresponding Riccati solution is e~ponentially increasing or 

has a singular point at some value of , then the . 
criterion 11 ~'(t) \1 

I 
> will 

ensure that the length of the subinterval in this imbedding 

will be short. Similar remarks to those above apply also to 

the backward integration of the Riccati pet) equation 

(5.19). 

Note that whenever a re-imbedding occurs (in either sweep) the 

composite perm matri~ which produces this re-arrangement must 

be stored. Suppose that re-imbeddings occur at the nodes 

a = to < t < • • • • • < t < t = b during the forward sweep , M-I ... 
and at a = s < s < • • • • • • • < s < s < s = b in the 

1"11\ tII\ - I ~ I 0 

backward sweep. For the forward sweep, in subinterval 

[t. , t . ] (0 <= i <= N - 1) denote the re-imbedded solution 
• • + I . 

vector by ~' (t) and the transition matri~ and vector by . , 
<i'(t) and _ (t) respectively. 

I 
Also let the composite , 

perm matri~ which changes the imbedding at t = t. , be 
.,. 

p. 
• 

Then if ~(t) denotes the original imbedding of the solution 

(as in the given LBVP) we have . . 
• .,. 

"f ~ I 
)C (t) =: p. P ....•... Po ~(t) = P ~ (t) , say. 

I r .. I 

• 

Similarly, for the backward sw •• p, in subinterval c.. ).. ] 
J-tr, J 

(0 <- j <= M -1) denote the LBVP solution, transition matrix 
• • • 

~.) (t) and ,sJ(t) respectively. 
& ~ 

,J 
and vector by )C (t), 



Let the composite perm matrix which changes the imbedding at 
-r 

t = s. 
• .J 

x,) (t) = 

be Q •• Then we have 
J .... ~ 

Q ••••••••• Q x(t) = Q x(t), say. 
J 0 

Now suppose that we require the solution to the given LBVP at 

• -­t = t where t £ [t. , t. I] , .+ in the forward sweep and 

... 
t E [s. ,s. 1 in the backward sweep, for some val u •• of 

J+\' J 

i and j. Then at tIt the forward transition equation is 
• • 

~' (t· ) 
, 

(t" ) x 
• • 

• , 
= ~ (t" ) ====> I 

• 
t'(t- ) P x(t- ) = ~'(t'" ) , and the backward equation 

I • . 
(t" ~ (t J/t ) x.J ) 

.& 

I 

I: ~j(t- ) ==:==> .. . 
¥.(t- ) Q x(t" ) = ~J(t· ) . Then the combined transition 

a. 
equation at t = t~ r <il(t." ) :1 

l ~:t.. ) w 

is 

)«t- ) 

z 

t · J , 
<IS (tit ) 

. ,s~(t." ) 
-

solution x(t-) can be obtained. 

Application to continuous orthonormalisation 

from which 

We now consider the application of the factorisation 

method to continuous orthonormalisation. For the forward sweep 

we must first re-write the initial BC of the given LBVP in an 

equivalent suitable form, as follows. By using the Bram Schmidt 

process we find matrix P (n , ,n ) , 
= V is a raw set of unit orthogonal 

J 

The given initial BC of (5.1) is : 

[K K ] )( (a) ID c • , I 

~ - , 

such that P[K 0 , K I 1 

vectors i. e. V V
T 

- I • 
" "', 

(5.23) 



====) P [K I K ] x(a) = P c 
0 , I 

====> V x (a) = d, (5.24) 
I 

where d = P c, . (5.24) is now a set of initial conditions , 
equivalent to (5.23). For the forward sweep we use the trans-

formation x(t) = T(t)y(t) or yet) = S(t)x(t) on ODE 

• = B(t)x(t) - f(t) to obtain the- transformed system x(t) 

• - ,.J 
ft, t\~ 

yet) = B(t)y(t) - f(t) where T(t) = [T (t) I T (t) ] must , ~ -be orthonormal for all t and such that B(t) is block lower 

triangular. In [5-2] we show that this will be so if T, (t) 

• 
BT (t)Tr-(t) + T ( t ) T T (t) BT (t) T • satisfies the ODE • T (t) = (t) · , I I 

TT (t) 
.,. .,. 

(t)}T"T(t) or = - T (t)B(t) + {T (t)B(t)T 
• • , I , 

(5.25) • 

(Note that since only one part of the transformation is to b. 

used in the forward sweep we need not concern ourselves with -the ODE for T (t) 
l. 

) . In this case, B(t) 
,w 

[TT(tlB(tlT (t) B(t) = I , 

T~(t){B(t) + BT(t)}T (t) 
a. I 

Now since T(t) is orthonormal . . 
-t "T 

set) = T (t) = T (t) = CT (t) 
• 

Therefore the forward transition matriM 
,..., 

and the condition matriM Z (t) - 8. (t) , , 

is given by ; 

T: (t)B(:lT .. (t,] 

[ :;::: 1 
T 

~ (t) - T (t) 
'"::t' , I 

= T~(t)B(t)TI (t). 

Note that if we substitut. th.se eMpre.sions into (5.25) it 
• 

becomes . cP (t) = - ~ (t)8(t) + Z (t) ~ I (t) , • 
I 

. , I 

forward transition matriM ODE. Th. 

~ (t) and 

• 
9S (t) ODE. are 

t 

~ - fi 

initial conditions for 

~ (a) - V 
J ' 

and 

th. 

the 



'T 
~.(a) = d, from (5.24). Note also that 

= V V~ = I ,as required in (5.7a). 

V T (a) = V ~ (a) 
I , \ I 

., f\ I 

For the backward sweep, we first obtain a set of 

conditions equivalent to the final BC of LBVP (5.1) viz. 

= c 
Z. 

(5.26). 

We use the Gram Schmidt process to find matrix Q (n z ' n~ ) 

such that Q [K~ , K
J 

] = V~ is a row set of unit orthogonal 

vectors. Then from (5.26) we get 

V x(b) = d2, (5.27) 
~ 

where dl, = Qc . We now use the transformation x (t) = L(t)r(t) 
~ 

• or r(t) = J(t)x(t) on ODE x (t) = B(t)x(t) - f(t) to obtain 

• the transformed system r(t) = C(t)r(t) - h(t) where L(t) = 
[L (t) , L (t)] is orthonormal for all t and such that C(t) 

I lL 

is block upper triangular for all 't. For this to be so (see 

[5-3] ) Lz.(t) must satisfy the ODE : 

_BT (t)L. (t) + L (t)L"f (t)B" (t)L (t) • z... a. ====> 
• 
L,,(t) = 

-L'" (t) B ( t ) + {L 'T (t) B ( t ) L ( t) } L'T (t) 
1 Z. ~ l 

.,. 
La. (t) = (5.28). 

(We will not require the ODE for L (t) 
I 

for this sweep). 

In this case, C(t) is given by : 

C(t) = [L: (t):(t)L, (t) 
Now since L(t) is orthonormal : -, ,. 
J(t) = L (t) = L (t) = [L (t) 

I 

and so = L" (t) 
~ 

and 

T 
, L (t)] -

~ 

Substitution of these expressions into (~.28) gives us the ODE 

t{ -- " 



• 
for ~ (t) viz. ~ (t) = - c} (t)B(t) + Z (t) . q (t). 

1 a " ~ ~ 

The initial conditions for the ~ (t) and 9S (t) IVPs 
z. 2-

are ~ (b) = V ~ (b) = d from (5.27). Note that 
-2, 2- ~ 2.-

:T 
V VT V L (b) = V C$ (b) = = I 

~ ~ ~ 2 '- " -a, '-

Use of 'generalised inverses' 

A practical difficulty associated with continuous ortho-

normalisation methods has already been discussed in Chapter 3 

viz. although the solutions T (t) , and L (t) 
'L 

of ODEs (5.25) 

-
and (5.28) respectively should each in theory be A unit orthog-

onal column set for all t, in practice this may not always be 

so. Therefore, to reduce the risk of loss of orthogonality it 

is suggested in [lb] that the following alternative forms of 

the conditioning matrices Z.(t) (1 <= .( <= 2) should be used 

instead of Z.«t) = ~-. (t)B(t). Cf: (t) (5.29) 

in ODEs (5.25) and (5.28) . . 
T 

,-(et) . 
,. -, 

z.(,(t) = { cI.c. (t) B (t) . to( (t) } { ~o( (t)} (5.30) 

Z.l.(t) = ( Cii t ) B ( t ). et: ( t ) + Q«(t) }{ ~ ~T_I .c (t ) • ,,( t ) } (5.31> 

where Q~<t) = S'" {'-'-to U: - ~«t). c1:<t)}, S, > 0 and 

Sa< O. Version (5.30) corresponds to the 'generalised 

inverse' method of Chapter 3 (see 3.31a ~ b) whilst version 

(5.31) is usually referred to .s continuous stabilised ortho­
T 

normal i sat ion. Note that if we assume that <i 0( (t) • cl (t) ... 
t( 

I 
~.( 

for all t than (5.30) and (5.31) both reduce to the 

basic orthogcnal version (5.29). 



Error control by factorisation methods 

The main advantage claimed for the approach of Babuska's 

factorisation method over the Riccati and orthonormalisation 

methods described in previous Chapters, is that it provides us 

with a means of error control i.e. in the case of a well 

conditioned LBVP the errors in the computed values of the 

transition vectors c;6.( (t) (1 <= -I. <= 2) as obtai ned from 

ODEs (5.5) and (5.8) should provide a meaningful bound for the 

error vector e(t) in the computed solution x(t) of the 

LBVP, so long as the transition matrices 

(1 <= .(.<= 2) remain sufficiently small over [a,bl. 

To understand this we must regard the computed solution of a 

given IVP (LBVP) as the exact solution of a corresponding 

perturbed IVP (LBVP). Thus the computed splutions of the 

transition vector equations (5.5) and (5.8) can be regarded as 

the exact solutions of the perturbed IVPs I 

• ~.( (t)f (t) ~.«t) l.c,.(t) ~.(t) = + Z.c,(t) . + 

16-<. (t.( ) 11: C.( + v.( where t. = a, t .. .. b, and , 
). (t) and ve< are the perturbations in the right hand 

.( 

sides. Likewise, the computed solution of the LBVP (5.1) can 

be regarded as the exact solution of the perturbed LBVP : 

• x(t) lI: B(t)x(t) f(t) + r(t) 

U.( x (t-<. ) 11: C.c, + ,where r(t) and are the 

perturbations in the right hand side •• Now suppose that for 

all t« [a,b] the transition matrices 

5 - " 

~ (t) satisfy the 
-<. 



following boundedness c:onditions : 

\\ ~ -' (t) \1 <= M~ and \\ [ ~-,(t). <= 

(1 <= et( <= 2), where Me<, and 

moderate size and M~ 

mo(. 

= 0(1) • 

are constants of 

Then it is shown in [16) 

that at any value of t £ [a,b) : 

11 r (t,jl <= 0( : .. ~ ,2 t ~ .\1 }.( (t) 11 ] 

1 

and \\ w~ \l <= " v-<.l1 i. e. the perturbations in 

the LBVP are bounded above by the corresponding perturbation. 

in the transition vector IVPs (5.5) and (5.8). Therefore, if 

these IVPs are solved using a variable step Runge Kutta 

integrator with a small error tolerance this will ensure that 

11 ~.( (t) II and lIv.lll will both be small and hence that 

1\ r (t) H and I\w-tH will be small also. Further, if 

the given LBVP (5.1) is assumed to be well conditioned this 

means (see 1.13 of Chapter 1) that the error \J e(t)1I in 

the computed solution x(t) of the LBVP should also be small. 

Thus Babuska's bounded factorisation methods provide us 

with a means of controlling the size of 11 .(t) I1 .In Chapter 

6, we describe a proposed error estimation method 

(based upon multiple shooting) from which wa can actually 

obtain an estimate for the error vector e(t), and this is 

applicable even when the given LBVP is not well conditioned. 

We also extend this method into an iterative correction 

algorithm which can be used to solve the LBVP. 



In Appendix III we give the results of some of our 

numerical experience with the factorisation methods in the 

solution of both well and ill conditioned LBVPs. 

In Appendix I : 

[5-1]: Derivation of Riccati equation • 

• 
[5-2]: Derivation of T. (t) equation for forward sweep of 

orthonormal method • 

• [5-3]: Derivation of L~(t) equation for backward sweep of 

orthonormal method. 



CHAPTER 6 

ERROR ESTIMATION AND ITERATIVE IMPROVEMENT METHODS 

Introduction 

In this Chapter we describe an error estimation 

method based upon multiple (parallel) shooting which we extend 

into an iterative correction algorithm to converge to an 

improved solution of the given LBVP i.e. to produce successive 

improvements on the first calculated solution. R.sults of 

som. of our numerical experience .re included to show the 

success that we achieved with the method. However, the 

situation is complex and the r.sults .re not completely 

conclusive so that further investig.tion and r •••• rch is 

needed. 

As explained in Chapter 5, B.busk.'. bounded factoris-

ation methods enable us to control the size of the computed 

error in the solution x(t) to. well conditioned LBVP. But in 

practice the condition of • given LBVP will most likely be 

unknown and the calcul.tion of the conditioning const.nt. k 
I 

and k& (see 1.11) is costly. Even if the.e .re found we can 

.till only obtain a bound on the .1z8 of the computed error 

(see 1.13) and this bound could ba vary pa •• imi.tic. Therefora, 

below we propose • mathod Df •• timation of tha computad arrar 

which ia obtained a. the LBVP is .alved rather than an •• timat. 

for tha arror bound. Moreover (a. our re.ult •• how) the method 

'-I 



can be successfully applied to LBVPs which are quite stiff and 

ill conditioned. 

Suppose the given (n,n) LBVP is I 

• x(t) = A(t)x(t) + f(t) 

+ B x(b) = c , (6.1) 

for which the exact solution is x(t) for all t ~ Ca,bl. 

The method 

may be summarised as fellews. Fir.t w. find an approximate 

solution of LBVP (6.1) and then we use an interpolant of this 

calculated solution u(t) to obtain a re.idual function r(t) 

at any required value of t E Ca,bl. This enable. UB to re-

solva LBVP (6.1) with the forcing functien f(t) now replaced 

by r(t) and with c = O. The exact solution of this LBVP 

will be the actual errer act) in u(t). Our calculated 

selution though will be subject to the combined affects of 

interpolation and integration error but we hope that this 

approximate solution will provide a good e.timat. for the actual 

error. 

More precisely, we proceed as follows. First we .olv. LBVP 

(6.1) by the .tandard parallel .hooting method (a. d •• crib.d in 

Chapter 2). In doing so WE us. either a pra-.elected number 

ef equally spaced node. or node pOSitions determin.d by a pr.-

selected maximum value (cmax) of the condition number of the 

fundamental solution X,(t) in each subinterval I the value 

of cond Xi (t) == "x i (t) 11.11 x;' (t)" i. checked at the end of 



each integration step and a node t. is inserted as soon as , .... 
cond X.(t) )- cmax. The calculated solution vectors u,lt;) , 
obtained at these node. a = t < t < ••••• < t - b, are stored. 0' III 

These u (t,) , . vectors can now be substituted in the 

given ODE of LBVP (6.1) to obtain derivative value. : 

• 
u (t.) • • = A(t. )u (t. ) + f (t. ) and hence also 

I , • , 
•• • • • .. A (t. ) u (t. ) + A(t.)u (t. ) + f(t.) and , , I , , I 
u (t.) 

t • 
•• •• • • •• 

A (t. ) u (t· ) + A (t. ) u (t.) + 2 A(t.)u (t. ) + f(t.) • • • , , , • I • , ·~·'(:i) .. . 
(If the expressions for the derivative. of A are not readily 

obtained then it may be necessary to make use of computer 

algebra software written for this purpo.e). 

Thus we have valu.s for u (t.) and its derivatives at each node 
I • 

t. and so we can use Hermite (cubic, quintic or •• pt.nary) 
• 

interpolation between each pair of nodes [t" t. ] 
I ...... 

(0 <= i <- N - 1) to obtain an interpolated approximate 

solution u (t) for all t« Ca,bl. Now t.his solut.ion , 
can be regarded as the exact solut.ion of a perturbed LBVP I 

• A(t)u u (t) ,. (t) + f (t) + r (t.) 
t I I 

BD u. (a) + B u (b) .. c 
t , (6.2) 

for some residual function r (t) (n,1) Qiven by I 
I 

• r (t) -u (t) - A(t)u (t) - f(t.) , , , (6.3) 

for all t €Ca,bl. Not. that r (t.) - 0 at each node t •• a • , 
Now the error RI (t) in this solution u,(t) at any value 

t ~ Ca,bl is given by ., (t) - u (t.) 
• 

M(t). From LBVP • 

(6.1) and (6.2) we .e. that e et) is the .olution of the LBVP I 

• 



• 
e (t) = A(t)e (t) 

I , 

+ B e (b) , , 
+ r, (t) 

= 0 (6.4). 

LBVP (6.4) is now solved by the same multiple shooting algorithm 

used previously to solve LBVP (6.1) i.e. the subinterval 

fundamental solutions X.(t) , (0 <= i <= N - 1) will be the same 

as before but the particular solutions v. (t) must be re­, 
calculated because the forcing function is now r, (t) instead of 

f(t). The value of ~ (t) is obtained from (6.3) at any required 

1L 
value of t = t in Bubintarval [t., t· 1 by using 

Hermite interpolation between 

... 
find values for u (t ) and 

I 

I '+-I 
the node. t· and t. 

, 1.1 

• • u (t ). The solution , 
to 

e (t·) is saved at each node t. and provid •• u. with an , , . 
estimate of the error in the calculat.d .olution u (t·) 

I , 
of 

the given LBVP (6.1). The error in • (t·) , . i. a combination 

of interpolation error and integration error, whar. the •• two 

are interdependent. This compleMity make. analysis difficult. 

The .rror .stimation method described above can be further 

eMtended into an iterative correction algorithm as follows. 

If the error estimate e. (ti) is sufficiently goad then 

a better approMimation 

should now be given by : 

u (t·) to the solution of LBVP (6.1) 
~ . 
u (t·) - u (t.) - e (t·) 
l' I' ,I at each 

node t. , (0 <- i <- N). We can now repeat the above error 

estimation procedure this time using the u (t.) values to 
~ , 

obtain an interpolated solution u (t) 
~ 

far any t .. [a,bl and 

hence a residual function r (t) from which an error estimate 
l.. 



e (t.) in 
1. , 

u (t.) can be obtained. We hope that the 
2. , 

iter at i on: u _ ( t·) .. u' (t . ) e. (t .) 
J , 

(j )= 1> 
... +" J' 

will produce successive solution vectors u' (t·) which are 
J I 

improvements on the first calculated solution u. (t~ of LBVP 

(b.l) at each node t .• 
I 

In practice, as we shall see, 

we found that the success of this proposed iterative residual 

correction method depended very much on the choice of type of 

integrator used to solve the IVPs necessary for the .olution 

of the original LBVP (6.1) and the re.idual as.oci.ted LBVPs 

(6.4). Equ.lly important was the over.ll accur.cy of the 

interpolant used. 

In obtaining the numerical results given in this section all 

calculations were performed in double precision and the multiple 

shooting node positions were determined by pre-selecting a value 

(cmaM) for the maMimum allowable size of the condition number of 

the fundamental solutions as explain.d e.rlier. Note that the 

number (ns) of subintervals i. reduc.d a. cmax i. incr •••• d. 

For the iterative correction method, in .ach c.se the maximum 

number of iterations allowed was six and the accur.cy of the 

final calculated iterative solution u(t) to the LBVP was 

mea.ured by the maximum actual absolute error incurr.d in the 

T 
components of [u(.t >, u<P)] where [.l, P] is the problem 

interval. 

The te.t problems were 

chosen to illustrate the behaviour of the iterative correction 

~ - S 



algorithm in solving LBVPs differing widely in 'stiffness' and 

in condition. Each of the problems giv~n below is in effect 

a family of LBVPs with a common known exact solution from which 

the actual errors in the calculated iterative solutions were 

obtained. 

Error estimation method 

At the outset it w •• our intention only to uee one iter.tion 

(i.e. one solution of the reeidual LBVP (6.4» to obt.in .n 

estimate of the error in the first c.lculated solution. How.ver, 

we found the agreement between actu.l and e.tim.ted .rror. to 

be often much better than we had expected. Some of our 

numerical results for the single iter.tion estimation method 

are given in Appendix 11, where the integrator u.ed w ••• 

variable step Runge Kutta (RKF 45). The r •• ult. for t •• t 

problem 11 (detailed later) were p.rticularly .ccur.te •• c.n 

be .een from tables A2.2.1 to A2.2.5 in App.ndix 11 I n.arly 

all of the estimated and .ctu.l error. agre. to at l.a.t two 

significant figure. here. The result. obt.ined for the other 

two test problems were not quite •• goad •• this - though for 

the well conditioned BC c •••• of problem 111 the .rror. 

obt.ined agreed in mo.t c •••• to the .am. order of magnitude 

< ••• tabl •• A2.3.1 to A2.3.3). A. might be expected aQre.m.nt 

between .ctual .nd corre.ponding •• timated error. deteriorat •• 

• s the given LBVP becom •• v.ry .tiff ( ••• t.bl •• A2.2.b to 



A2.2.8) or very ill conditioned (see tables A2.1.11 and A2.1.12 

and A2.3.4 to A2.3.6). 

The success that we had with this error estimation method on 

moderately difficult problems motivAted us to investigate the 

use of further iterations to improve on the first calculated 

solution (as explained earlier) : 

Iterative improvement method 

Initially we tested this method using_the variable step Runge 

Kutta integrator (RKF 45) to solve all the auxiliary IVPs of 

LBVPs (6.1) and (6.4) and Hermite cubic interpolation was 

used between the nOde., but the result. obtained were not 

encouraging. In some cases success(ve iterative calculated 

solutions were improvements but we found that this 

was not generally so. Replacing the cubic Hermite interpol.tion 

by a quintic or sapt.nary produced simil.r unreli.ble re.ult •• 

We found that the cause of this wa. the Runge error •• timation 

criterion used to vary the steplength I in m.ny c •••• it wa. 

occasionally allowing through vary l.rg •• tapl.ngths .nd this 

we attributed to the f.ct that, in general, the norm of the 

solutions to the re.idual IVP. in (6.4) wa. much le •• than 

the norm of the fir.t solution (6.1). In other ward., the 

reason for failure of the method w •• th.t we wer. using the 

the same Runge Kutta tolerance ta integrate forward. bath 

the origin.l IVP of (6.1) .nd al.o the re.idual IVP. of (6.4). 



We Qive below .ome of 

our results obtained using integrator RKF45 with the third, 

fifth and seventh degree Hermit. interpolation (programs 

ITVAR.3, ITVAR.5 and ITVAR.7 respectively). These show 

that the success of the method depends on the degree of 

Hermite interpolation used, the initial steplangth of 

integration and Runge Kutta tolerance and also on the 

problem itself. W. found that the large number of variable 

factors involved (each contributing to the final error) made 

analysiS difficult. It did seem clear-though that, for the 

residual integrations, ths Rungs Kutta step adjustment criterion 

should in soma way be related to the size of tha solution. 

We therefore decided to inv •• tigate the affect 

of using a different Runge .Kutta integration toleranca (~) 

for the residual IVPs in (0.4) from that us.d for the first 

solution (6.1). Denoting the lattar by ~ wa found that in 

general improvement was obtained but only for sufficiently 

small value of the ratio ~/~ , this being dependent on both 

~ and on the problem. This wa. true whethar w. usad the 

cubic, quintic or s.ptenary interpolation. 

We replaced the RKF 45 integrator by 

another variable .tep adjusting Runge Kutta system but with the 

same result. We therefore concluded that our iterative residual 

correction method wa. not reliable in practice if used with a 

variable step integrator as there was no obvious way of 

determining how small the ratio 



convergence in any particular case. Further research in this 

area is needed to find a step adjustment criterion which will 

automatically take account of this. 

We now modified our RKF 4S variable step integrator to convert 

it into a fixed step integrator. This we did by retaining the 

Runge Kutta system equations but eliminating the error estimate 

criterion by which the step length was either halved or 

doubled. We also now included the option of being able to 

choose a different fixed step length (h
1

) for the residual 

integrations in (6.4) from the step l.ngth (h ) used to obtain 
I 

the first solution in (6.1). As the result. given below .how 

our iterative correction algorithm was now found to ba much mora 

reliable - but still not completely so. Improvement on tha first 

solution was obtained in nearly every ca.e, the amount of 

improvement being generally (but not always) increas.d a. the 

degree of the Hermite interpolation wa. increas.d from thr •• 

to five to seven. However, we did find cas •• where (particularly 

with ITER.3 with large steplengths) the iterative solutions 

computed did not show improvement. In fact the difficulty lay 

in knowing in any given ca.e for which Hermite (cubic, quintic 

or septanary) the norm of the re.idual would be lea.t overall a. 

this would be most likely to provide the clos.st approximation 

to the exact 50lution. 

(In the results below ITER.3 refers to the fix.d st.p program 

employing the Hermite cubic interpolation while ITER.5 and 



ITER.7 used the quintic and septenary respectively). 

In an attempt to find an algorithm which we could 

propose as practically reliable we therefore combined our 

fixed step programs ITER.3, ITER.S and ITER.7 so that 

whenever the value of a residual r. (t) is required at a time , 
" t = t this value is separately calculated from (6.3) using 

respectively the Hermite cubic, quintic and •• ptenary.From th ••• 

three residual vectors we th.n choo.e the one having the least 

norm and this r , (t) is then used to integrate forward the IVP 

in (6.4). In other wordB the interpolation u.ed is now 

analytically discontinuous but provide. at each evaluation the 

closeBt approximation to the exact solution. This program w. 

called ITMIN.3S7. (The residual norm used to obtain the results 

given below was the 1& norm. We did compare results for som. 

cases with those obtained using the 1 norm instead but w. 
to 

found no significant differences. However, it is possible that 

the choice of norm could, for some problems, have a measurable 

affect on the rate of improvement of the iterates). 

As can b. seen from the result. below ITMIN.357 was succ.ssful 

in all the test cases in producing iterates which improved on 

the first solution to the LBVP though the rate of improvement 

was slow for large .taplengths such as h. 0.1. 

(See tables 1.1, 1.2, 1.4, 1.5, 1.6, 1.7, 1.B, 2.1, 2.2, 2.3, 

2.4, 2.5, 3.2, 3.3, 3.4, 3.5, 3.6). 

Also it can be 

" - '0 



seen that in many cases more rapid improvement can be obtained 

by using ITER.7 or ITER.5 instead of ITMIN.357 but as 

stated earlier the former cannot always be relied upon to 

produce improvement. (ITMIN.357 was also tested on several 

other LBVPs not detailed below and we found it to be success-

ful in every case using fixed steplengths ranging from h - 0.1 

to h = 0.005 ). Program running times are obviously longer 

for ITMIN.357 than for ITER.3 or ITER.5 or ITER.7 but 

we found that when using ITMIN.357 running time can be much 

reduced by using a much larger steplength (h& ) for the 

residual integrations of (6.4) than the steplangth used for 

the first solution (6.1) a.g. h - 0.01 and h - 0.05. As , ~ 

the results show , in many cases. this does not reduce the 

rate of improvement - inde.d, in some cases, the solution 

improves more rapidly than when h is taken to be smaller 
~ 

(with the same hi ). 

We may also note (surprisingly) that in the problems tested 

the effectiveness of ITMIN.357 s.ems to be little affected 

by the poor condition of the given LBVP but only by the 

stiffness of its ODE. Also although runninQ time may be long 

with ITMIN.357 it is quite economical as regards storaQe 

because the value of the residual r. (t) is calculated as and 
l 

when required for the forward integration of the particular 

solution of system • e.(t) • A(t)e. (t) 
I I 

Bubinterval. 

f, - " 

+ r.(t) 
• 

in each 



Perhaps the main drawback of ITMIN.3S7 is that common to all 

multiple shooting methods viz. the large number of subintervals 

likely to be required for the solution of a stiff LBVP which in 

turn necessitates the solution of a very large system of linear 

equations. Developments in the application of 'block diagonal' 

methods of solving linear systems could be used to overcome 

this difficulty. Alternatively, large linear systems can be 

avoided by instead using only a few multiple shooting sub-

intervals and allowing more iterations for improvement - but 

at the expense of increased program running time. 

Another disadvantage 

of ITMIN.357 is that it must be supplied with not only the 

system matrix A(t) and vector f(t) of the given LBVP but 

also their first and second derivatives. However, computer 

algebra software now available could be used to facilitate 

this. 

Test problems and results for iterative residual correction 

method : 

In the following 

h = fixed integration steplength us.d if this is the same for 

the first solution and for iterative solutions - if not then 

h K steplength for the first solution and h - steplength for 
I ~ 

iterative solutions 

errl = maximum modulus actual error in first solution 



errf = maximum modulus actual error in final iterative solution 

after a maximum of six iterations 

(err1 and errf are both taken over the components of 
.,. 

[u (0( ), u( ~ )] where [./., (3] is the problem interval and 

u(t) is the calculated solution) 

cmax = maximum allowed value of fundamental solution norm. 

(This determines the node positions and the number of multiple 

shooting subintervals (ns) ). 

All numerical results have been given to an accuracy of two 

significant figures as this is sufficient to show whether 

improvement has been obtained and the order of the size of the 

actual error in the calculated solution. 

Test problem (I) . . 
This is a (3,3) LBVP for which 

0 1 0 

A == 0 0 1 

'&k -J j" k 

f(t) [0, 0, (1 + lk 
.~ k)e~ ]T = - J 

G 
0 ~J B 0 ~] B = 1 B - 0 0 0 I 0 

(1.1) 

where the problem interval is [0,1] and j and k ar. 

constant parameters. In fact, the aigan-values of system matriM 

so that for large (positive) value. of j and 

k the problem become. very stiff and also (with BC (1.1) 



ill conditioned e.g. for the ca.e j - 20, k - 30 the LBVP ha. 

a condition number (see (l.lla) of Chapter 1) of approximately 

X ( t) -_ [e t. ,e~ ,e l: ] T lel0. The exact solution of the LBVP is 

for all values of parameters j and k, So s,eel +-.) ':""'5 c.. 

For comparison we also give results below for the same ODE 

but with the following BC with which the LBVP is well 

conditioned : 

Results: 

o 
o 
o • 

o 
1 
o 

(1.2) 

(In this problem I section a reference such as table 3 is to 

table 1.3 ). 

Tables 1 to 8 contain results obtained using fixed step 

integrations (programs ITER.3, ITER.5, ITER.7 and ITMIN.357). 

Tables 9 and 10 show soma of our results obtained using a 

variable step integrator (RKF 45). 

In tables 1 to 5 the BC were ill conditioned (1.1) 

and parameters j and k were as given I 

Tabla 1.1 I j - 2, k - 3, cmax - 10, ns - 5 = 

h errl .rrf : ITMIN.3~7 

0.1 2.4e-6 1.9.-7 

0.05 2.1.-7 2.1.-7 

0.02 6.311-9 6.3.-9 

0.01 4.2&-10 4.2.-10 



Table 1.2 . j = 5, k = 10, cmax = 100, ns = 10 . . . 
h errl errf . ITMIN.357 . 

0.1 5.7e-4 2.5e-8 

0.05 7.6e-6 7.7e-8 

0.02 7.0e-7 2.6e-7 

0.0125 1.4e-7 1.4e-7 

0.01 6.5e-8 6.5e-8 

We see from tables 1 and 2 that for these easier problems 

for which the first solution is already very accurate there 

is no improvement in most cases. 

Table 1.3 : j = 20, k = 30, cmax - le7, ns = 10 I 

h errl errf 

ITER.3 ITER.5 ITER.7 

0.1 3.8e4 2.gel 4.4e-l 2.2.0 

0.05 4.8e3 1.0eO 1.4e-3 6.5e-6 

0.02 2.6e1 3.0e-3 2.7e-6 5.0.-8 

0.0125 5.2eO 1.1e-3 5.8e-7 3.4.-8 

0.01 3.6eO 6.1.-4 3.1.-7 7.4.-8 

0.005 4.4e-l 5.0e-5 7.0.-8 8.2.-8 

We see that here improvement occurred in all c •••• • nd this 

was most rapid with ITER.7 except for h - 0.1. 



Table 1.4 I j - 20, k - 30, cmax - la7, n. - 10 I 

h errl arrf • ITMIN.357 . 
0.1 3.8e4 2.1e2 

0.05 4.8e3 7.6e-1 

0.02 2.6el 4.0e-3 

0.0125 5.2eO 2.6e-2 

0.01 3~6eO 1. ge-3 

0.005 4.4e-l 1.5e-5 

We see from table 4 that for this difficult problem program 

ITMIN.357 produces an improved solution in all cases though 

the amount of improvement is not as much as that obtained by 

using ITER.5 or ITER.7 (saa tabla 3). But as wa said earlier 

the latter may not always ba reliable (see test problam Ill: 

table 3.1 for an example of where ITER.3 fails). 

Table 1.5 I j = 15, K = 20, cmax = le5, ns = 10 I 

h errl errf . ITMIN.357 . 
0.1 1.3e2 1.6eO 

0.05 7.5eO 1.5e-5 

0.02 3.2e-2 6.6e-5 

0.0125 1.ge-2 1.5a-8 

0.01 1.0.-2 6.0.-9 

Again we BaR that ITMIN.357 produce. improvement for all value. 

of h and that errf ia acceptably small axcept for h B 0.1 

and aven in this ca •• we obtained an accurate final solution 

by allowing more iterations (a.g. errf - 1.3e-3 aftar ten 



i terati ons) • 

For comparison, tables 6 and 7 give results obtained u5ing 

BC (1.2) for which the LBVP is well conditioned: 

Table 1. 6 

h 

0.1 

0.05 

0.02 

0.0125 

0.01 

j = 15, k = 20, cmax = le5, ns - 10 : 

errl 

.3.5e-3 

1.8e-5 

8.8e-6 

1.8e-6 

8.2e-7 

errf : ITMIN.357 

5.0e-6 

1.2e-8 

7.4e-8 

1.6e-7 

7.7e-8 

Table 1.7 : j = 20, k - 30, cmax = le7, ns = 10 : 

h errl errf :ITMIN.357 

0.1 1.5e-2 1.0e-4 

0.05 5.ge-4 1.1e-7 

0.02 2.1e-5 1. ge-7 

0.0125 5.6e-6 5.3e-7 

0.01 2.7e-6 2.6.-7 

Comparison of tables 6 and 7 with corr •• ponding tabl •• 5 and 4 

respectively shows that although the condition of the given 

LBVP has a marked effect on the accuracy of the first solution 

(as expected) it surprisingly has no significant effect on the 

rate of improvement with ITMIN.357 I the errf valu.s ara 

very similar in tabl •• 5 and 6 though in tabl. 4 a few more 

iterations were required to obtain errf value. comparable to 

~ - " 



those in table 7 e.g. with h = 0.05 in table 4 

errf = 1.6e-4 after twelve iterations reducing to 3.5e-7 

after sixteen. 

Table 8 shows results obtained with ITMIN.357 using a larger 

steplength h1 = 0.05 for the residual integrations of (6.4) 

than that (h, = 0.01) for the first solution (6.1). 

Table 1.8 : III conditioned BC (1.1) : 

errl errf :ITMIN.357 

j = 20, k = 30 : 3.6eO 1.le-4 

j = 15, k = 20 : 1.0e-2 6.oe-8 

Note that for the case j = 20, k - 30 the value of errf 

obtained here is actually smaller than that obtained with 

h = h = 0.01 ( 1.ge-3 from table 4) and running time was 
I 2-

considerably reduced. 

Table 9 shows results obtained using variable step integrator 

RKF 45 : programs ITVAR.3, ITVAR.5 and ITVAR.7 employing 

the Hermite cubic, quintic and septenary interpolation 

respectively. RK and ho denote the Runge Kutta tolerance 

and initial steplength used respectively I 

~ - /1 



Table 1.9 : j = 20, k = 30, cmax = 1e7, ns = 10, BC (1.1) : 

RK 

1e-1 

1e-1 

1e-1 

1e-2 

1e-2 

1e-2 

18-3 

1e-3 

1e-3 

1e-4 

1e-4 

1e-4 

le-5 

18-5 

le-5 

le-1 

1e-2 

le-3 

le-l 

le-2 

le-3 

1e-l 

le-2 

le-3 

le-1 

1e-2 

le-3 

le-1 

1e-2 

1e-3 

err1 

9.3e-l 

4.8e-1 

1.8e-l 

8.3e-2 

3.7e-2 

1.4e-2 

6.1e-3 

2.5e-3 

1.2e-2 

4.1e-4 

1.3e-3 

1.0e-3 

2.4.-5 

1.4e-4 

7.ge-5 

ITVAR.3 

2.gel 

3.7e-1 

2.7e-l 

3.0e1 

3.7.-1 

2.7e-1 

3.0.1 

3.7e-l 

2.4e-l 

1.0eO 

3.7e-1 

1.5e-l 

2.5e-2 

5.78-4 

1. 5.-1 

errf 

ITVAR.5 

2.1e-2 

6.1e-5 

2.3e-5 

2.1e-2 

6.1.-5 

2.3e-5 

2.1.-2 

6.1.-5 

1.511-5 

2.1.-2 

6.1.-5 

1.511-5 

2.1.-2 

6.1.-5 

1.3.-5 

ITVAR.7 

3.3.-4 

6.7e-8 

6.3.-8 

2.7e-5 

5.9.-8 

3.5e-8 

4.4e-7 

9.1.-8 

1.011-7 

1.2e-6 

9.1.-8 

1.5.-7 

1.6.-6 

5.7a-8 

9.4.-8 

We see that for this problem the affectivene •• of the method 

improved with the degree of Hermite interpolation u.ed I 

with ITVAR.7 there was improvement of the solution in 

every case, with ITVAR.5 there w •• improvement in mo.t c •••• 

(but not all) but with ITVAR.3 improvement occurred only for 

(, - " 



the case RK = le-l, ho = le-2. 

Table 10 shows results obtained using a modification of ITVAR.3 

in which the Runge Kutta tolerance <r) used for the residual 

integrations is in every case £/le7, where ~ is the 

tolerance used in the integration of the first solution. 

The initial steplength ho is 0.1 in each case, and the 

LBVP solved is the same as that in table 9 - but with very 

different results : 

Table 1.10 : j = 20, k = 30, cmax ~ le7, ns = 10, ho = 0.1 I 

RK'C £. err1 errf 

le-l 9.3e-l 1.3.-4 

1e-2 8.3e-2 1.6e-5 

le-3 6.1e-3 6.5e-7 

1e-4 4.1e-4 6.ge-8 

1e-5 2.4e-5 1.7e-8 

We see that for sufficiently small value of ~ (the residual 

integrations tolerance> improvement is obtained in every case 

and the final solutions are all acceptably accurate. For the 

corresponding cases in table 9 (where the same toleranca was 

used for the residual integrations as for the first) the method 

failed in every case. However, without a criterion for 

determining how small the ratio ~/e must be to ensure 

improvement in any given case this is of littla practical us •• 

Further investigation and ra •• arch to provide. b.tt.r 

theoretical understanding of the method might wall sugge.t a 

~ - 2..0 



reliable criterion. 

Test problem (11) : 

The following (4,4) LBVP is taken from Conte's paper [19] : 

0 

A = 0 

0 

-k~ 

f(t) = [0, 0, 0, 

a 
3 

Bo =- -2 
6 
0 

1 

0 

0 

0 

1. ~ 
k t -2 

17 
1 

-8 
0 

T 
- 1] 

-2

J -4 
-1 

0 

o 0 

1 ° 
o 1 

L 
k + 1 0 

o 
o 
o 
6 

o 
o 
o 
4 ~] 

The problem interval is [0,1] and the exact solution is 

~ T 
xCt) = [1 + t + sh(t), t + ch(t), 1 + .hCt), ch(t) ] for all -2. 

values of the constant parameter k. System matrix A ha. 

eigenvalues + 1, + k - - so that as k increa.e. the problem 

becomes more stiff and mora ill conditionad (with the above BC). 

Results: 

(In this problem 11 section a reference such as table 3 i. to 

table 2.3 ). 

, - 2..1 



All of the following r •• ult. wera obtained using program 

ITMIN.357 with the k parameter values given . . 

Table 2.1 . k = 3, c:max = 100, ns = 3 . . . 
h errl errf 

0.1 1. ge-5 7.5e-8 

0.05 1.5e-6 7.6e-8 

0.02 4.3e-8 4.3e-8 

0.0125 6.7e-9 6.7&-9 

0.01 2.8e-9 2.8e-9 

Table 2.2 . k = 10, c:max = le3, ns = 5 I . 
h errl errf 

0.1 1.8e-4 8.3e-8 

0.05 2.8e.-2 3.1e-7 

0.02 1.4e-3 5.6e-7 

0.0125 2.4e-4 6.0e-8 

0.01 1.011-4 5.0.-7 

Table 2.3 . k = 15, . c:max = le5, ns = 5 . • • 

h errl errf 

0.1 1.2e2 9.1.-2 

0.05 6.2.0 7.3.-4 

0.02 5.7e-l 5.0.-6 

0.0125 1.1.-1 9.1.-8 

0.01 4.6e-2 1.4.-8 

~ - 22.. 



Table 2.4 . . k = 20., cmax = le6., ns = 5 : 

h errl errf 

0.1 5.ge4 4.6e2 

w-
0.05 8.6e-5 3.4e-6 

0.02 1.6e2 1.2e-1 

0.0125 3.4e1 8.6&-3 

0.01 1.5el 4.3e-4 

0.005 1.leO 8.3e-7 

We see from the above that ITMIN.357 produced significant 

improvement on the first solution in all cases for values 

of k <= 15. For k = 20 the LBVP is very stiff and~although 

improvement is still obtained for all h., in some ca ••• more 

iterations are required to produce an acceptably accurate 

solution e.g. for h = 0.1 errf = 3.8e-4 after twenty 

iterations. \ 
~ '''''is "'~"~f«'c.te.c\ ,.<S~\~ ""'~ o..~~r; ~"'~. 1:-... r. c ,", \;0,..'') 04 i-~ rrob 1c'",oJ 

The following results were obtained with ITMIN.357 using 

steplengths of h, = 0.01 (for the first solution) and 

h = 0.05 (for the residual solutions) I 
2. 

Table 2.5 I 

errl .rrf 

k = 15, cmax = 1.5 I 4.6.-2 1.1e-8 

k = 20, cmax = le6 I 1.5el 1.6.-3 

Note that for the k • 15 ca.. the value of errf is virtually 

the same as that obtained using h - h - 0.01 <a. in table 3). 
I 3. 



T •• t problem (Ill) I 

The following (3,3) variable coefficient LBVP is a 

generalisation of one discussed in Mattheij's paper [1] : 

1 k d 0 1 + k s 

A(t) = 0 k 0 

1 + k s 0 1 + k d 

(d 
.,. 

and f(t) = exp(t) * (-1 + k - s), -(k - 1>, -1 - k cd + s) ) 

where d = cos(2t) and s = si n (2t) • 

(Mattheij considers the case for which k Ill: 19) • 

We give results below for two sets of BC : 

0 0 1 1 0 0 

Bo = 0 1 0 B -= 0 1 0 , 
1 0 0 0 0 0 

(111.1> 

and 

0 0 1 0 0 1 

Bo = 0 1 0 B - 0 1 0 
I 

1 0 0 0 0 0 
(111.2) 

Mattheij states that with BC (111.2) the LBVP is well 

conditioned but with BC (111.1) it is very ill conditioned 

having a condition number of about 1.ge27. 

For any value of parameter k the exact solution of the 

LBVP is 

is 

T . x(t) - exp(t)* (1, 1, 1) and the problem Interval 
) 

c.. 



R.sults I 

(In this problem III section a reference such as table 4 is to 

table 3.4 ). 

Table 3.1 : k = 19, cmax = 5e4, ns = 11, BC (111.1) : 

h errl errf 
ITER.3 ITER.7 

0.1 3.5eO 6.1eO 2.0eO 

0.05 6.ge-l 1.8e-2 3.7e-2 

0.02 3.1e-2 3~2e-5 7.ge-8 

0.0125 4.1e-3 6.8e-6 1.4.-8 

0.01 1.7e-3 1.7.-6 2.1e-6 

0.005 9.3e-5 9.2e-8 2.ge-7 

In nearly all cases above we see that ITER.3 and ITER.7 

produce improvement on the first solution this being most 

rapid generally (but not always) with ITER.7. But the 

case of h = 0.1 for ITER.3 shows that we must not place 

too much reliance on results obtained with the.e algorithms 

particularly when using large step-lengths. 

Now compare the above results with those given in the table 

below for the same LBVP solved by ITMIN.357: 



Tabla 3.2 I k - 19, cmaK - 5.4, n. - 11, BC (111.1) I 

h errl errf . ITMIN.357 . 
0.1 3.5eO 2.0eO 

0.05 6.ge-l 3.7e-2 

0.02 3.1e-2 5.38-7 

0.0125 4.18-3 1.08-6 

0.01 1.7e-3 3.88-9 

0.005 9.3e-5 4.3e-7 

ITMIN.357 produces improvement on the first solution in all 

-
cases including h = 0.1 for which ITER.3 failed. 

The following results were also obtained with ITMIN.357 

for the values of parameter k given and with the ill 

conditioned BC each time : 

Table 3.3 : k = 6, cmaK - 5e3, ns = 5, BC (111.1) : 

h err1 errf 

0.1 4.1e-2 6.3e-8 

0.05 2.4e-3 1.7.-8 

0.02 5.ge-5 1.6.-9 

0.0125 8.5e-6 2.9.-11 

0.01 3.5e-6 4.4.-12 

Table 3.4 : k = 12, cmaK - 15.3, ns = 8, BC (111.1) I 

h errl arrf 

0.1 1.3eO 2.1.-2 

0.05 1.1.-1 3.7.-7 

0.02 2.78-3 



0.0123 3.6.-4 

0.01 1.5e-4 2.1e-8 

Again we see that ITMIN.357 is successful in all cases in 

producing significant improvement on the first solution. 

For comparison we include the results below which were obtained 

with ITMIN.357 using the well conditioned BC (111.2) : 

Table 3.5 : k = 19, cmax = 50e3, ns = 12 : 

h err1 errf 

0.1 2.4e-3 4.7e-7 

0.05 1.1e-4 1.7.-7 

0.02 2.4e-6 3.0.-7 

0.0125 2.9.-7 2.9&-7 

0.01 1.2e-7 1.2.-7 

We see that here the amount of improvement decreases with the 

size of the integration steplength (h) used. 

Finally the following result was obtained with ITMIN.357 

using the ill conditioned BC and steplengths of 

and h = 0.05 : 
~ 

Table 3.6 : k = 19, cmax = 50e3, ns - 12 : 

errl .. 1.7e-3 arrf == 2.7e-7. 

h -= 0.01 , 

We see that the value obtained for errf here is almost as 

small as that obtained when using h - h - 0.01 viz. , a. 
3.8e-9 (see table 2 ). 

We uttempted to solve the above LBVP using our variable step 

integrator RKF 45 and the Hermit. cubic interpolation (program 



ITVAR.3) but with little success as the results below show: 

(RK = Runge Kutta integration tolerance used for both the 

first solution and also for the residual solutions) 

Table 3.7 . k = 19, cmax = 50e3, BC (111.1> , ns = 12 • 

RK ho err1 errf 

1e-1 1e-1 6.6e-2 5.2eO 

1e-1 1e-2 1.4e-2 5.ge1 

1e-1 1e-3 5.0.-3 2.1.0 

1e-2 1e-l 3.0e-3- 1.0eO 

1e-2 1e-2 1.4&-3 2.7.0 

le-2 1e-3 6.3e-4 2.0&-1 

1e-3 1e-l 4.1.-4 7.3.-3 

1e-3 1e-2 1.2.-4 1.1e-1 

1e-3 1e-3 5.2e-5 2.0&-1 

1e-4 1e-1 3.0.-5 1.6.-2 

1e-4 1e-2 3.1e-5 4.0e-3 

le-4 le-3 3.8e-5 1.6e-3 

In each case above the method fails I errf > err1. However 

as we said earlier we can obtain improvement with ITVAR.3 

by sufficiently reducing the size of the integration tolerance 

used in the solution of the residual IVPs. The results below 

were obtained by taking this tolerance to be f., le7 where 

~ is the tolerance used to integrate the first solution. 



The initial steplength ho was 0.1 in all cases. 

Table 3.8 : k = 19, cmax = 50e3, BC (111.1), ns = 12 : 

RK= E. err1 errf 

1e-1 6.6e-2 4.2e-6 

le-2 3.0e-3 1.1e-7 

1e-3 4.1e-4 2.4e-7 

1e-4 . 3.0e-5 2.6e-9 

We now obtain improvement in every case and the values of 

errf are acceptably small. Running times are of course much 

longer than for the corresponding cases in table 7. However, 

these results were only obtained by trying successively smaller 

and smaller values for the residual integration tolerance until 

eventually we were successful with, the value E:/1e7. 

Variable step adjustment criteria: 

We recall that the IVPs necessary to solve the given 

LBVP (6.1) and the residual LBVP (6.4) are the same except 

for the particular solutions. Also the first and residual 

particular solutions differ only in their respective forcing 

functions. These IVPs are, in each multiple shooting interval 

[to ,t· J (0 <=i <- N - 1> • • , ,+, 
• )( (t) I: A(thc(t) + f (t) x (t . ) .. 0 and , , 
• = A(t)e(t) r(t) e(t) + • (t • ) -0 respectively. , 
We give below details and test result. of two criteria for 



automatically adjustinQ the steplenQth of our variable step 

integrator RKF.4S. These criteria both relate the integration 

tolerance to the size of the calculated particular solution. As 

the results below show, they proved successful in obtaining 

improvement on the first solution for each of the test LBVPs 

detailed earlier in this Chapter. 

We denote the tolerances used in the integration of the first 

solution and the residual solutions by 

ively. 

Criterion A: 

~ and ~,.. respect­
I 

Initially ~f is set equal to e,. At the end of each step of 

• the residual integrations (i.e. at time t = t ) we check that I 

< "r (t, 6 r ) " E: 
IIf (t- ) \\ • '. If not 'then we set ~ '= 

f • 
0.1 * Et' 

and repeat the residual integrations from the beginning of the 

multiple shooting interval in which t- lies. (We found that 

it is not sufficient simply to repeat the last step because the 

calculated value of 
.. 

r(t ) depends on the value of ~ being 

used) • 

er iter ion B: 

We proceed as in A but instead we use the condition : 

< " p~ (t1l
, ~f') n Eo -------_. , 

l\ P, (tit, Q, ) n where 
1& 

P,.(t ) is the calculated 

value of the residual particular solution and is dependent on 

the value of 
, 

being used. p (t ) is the value of the first , 

'- - 30 



.. 
particular solution at t = t • This is obtained by saving the 

final values of P (t) at the end of each multiple shooting 
I 

interval in the first integration and then using Hermite (cubic) 
1ft _ 

interpolation over the interval containing t to find p (t ). 
I 

As the results below show, we found no significant 

difference between the effectiveness of these two criteria on 

our test problems. Both however suffer from the disadvantage of 

long program running times due to the very small values of ~r 

employed (as small as 1e-12) and the need to re.tart from the 

beginning of the multiple shooting interval whenever er is 

reduced (though most restarts did occur in the first step of 

the interval). By comparison, we obtained equally accurate 

solutions to these problems using fixed step integrations with 

algorithm ITMIN.357 in much less running time. 

Results for Criteria A and B: 

In each case h (the initial steplength) and o ~, were le-l, 

and Hermite cubic interpolation was used to find both the 

residual and first particular solution values: 

Problem I ; j = 20, k = 30, cmax - 1e7, ns = 10, ill 

conditioned BC (1.1) : 

errl = 9.3e-1 errf = 1.4e-7 (A) 

errf a 3.0.-8 (8) 

, - 3' 



Problem 11: k = 20, cmax = le6, ns = 5, BC as given : 

errl = 2.8e2 errf = 4.8e-7 (A) 

errf = 8.1e-7 (B) 

Problem Ill: k = 19, cmax = 50e3, ns = 12, ill conditioned 

BC (I I I. 1) : 

errl = 6.6e-2 errf = 2.3e-6 (A) 

errf = 2.4e-6 (8). 

With a view to putting a lower limit on the size of the 

resi dual i ntegrati on tal erance E(' we al so tested the fall owi ng 

criterion which is a variation of Criterion A I 

Criterion C 

With e set equal to 
f 

e- w.e perform the first resi dual 
I 

integration, calculating as we do so the norm of this residual 

at the middle and the end of each integration step. The.e values 

are used to obtain an estimate of the maximum norm of the first 

resi dual over the probl em range [e(., fJ] whi ch we wi 11 denote 

by rm1. The first residual integration i. now repeated starting 

with ~r equal to ~, , but this time at the end of each 

integration step (i.e. at time t - t- ) wa apply the following 

adjustment criterion : 

if Et" )= rm1 

then we reduce £r by a factor 

of ten and repeat the residual integration from the beginning of 



.. 
the multiple shooting interval in which t lies. 

Results for Criterion C . . 
Problem I : j = 20, k = 30, 

E:, errl 

le-l 9.3e-1 

le-2 8.3e-2 

1e-3 2.5e-3 

Problem I • j = 5, k =- 10, . 
E:, err1 

le-1 6.8e-6 

le-2 1.5e-6 

le-3 1. 4e-7 

Problem 11 . k = 20, c:max = . 
6, errl 

le-l 2.8e2 

le-2 3.1el 

le-3 2.5eO 

Problem 11 • k = 10, cmax -= . 
E:, errl 

1.-1 2.8.-2 

1.-2 3.0e-3 

1.-3 2.7.-3 

cmax = le7, ns = 10, 

errf 

1.0eO 

1.le-3 

6.8.-6 

cmax = 5e3, ns - 6, 

errf 

5.4e-9 

1. ge-9 

1.3e-7 

le6, ns = 5, BC itS 

errf 

4.3e-4 

2.4e-5 

1.0e-6 

183, n. -5, BC •• 
.rrf 

9.7.-9 

3.4.-10 

3.3.-7 

BC (I. 1) • . 
final ~r 

1e-4 

1e-6 

1e-9 

BC (I. 1) I 

final f:,. 

1.-7 

1.-8 

1.-9 

given . . 
final "'r 

1.-1 

le-3 

1e-5 

given I 

final Er 

1.-6 

1.-8 

1.-9 



Problem III . . k = 19, cmax = 50e3, ns = 12, BC <111.1> : 

~, err1 errf fin.l ~,. 

1e-1 6.6e-2 2.1e-5 1.-6 

1e-2 3.0e-3 2.4.-5 1.-7 

le-3 1.2e-4 1.8.-6 1e-8 

Problem III . k = 6, cmax = 5e3, ns = 5, BC (111.1> : . 
G err1 errf fin.l E,. 

I 

le-l 3.ge-2 1.5.-4 1.-5 

le-2 1.1e-3 8.6e-7 1.-6 

1&-3 1.8e-4 7.1&-8 1.-7 

We see from the above results th.t Criterion C 

produced improvement on the fir.t .olution in all c •••• axcept 

one and the smallest value of ~r employed wa. 1e-9. In aome 

cases however the amount of improvement was small and this 

criterion has the disadvantage of having to repeat the whole of 

the first residual integration. 

(Note that when using either Criterion A or C it will ba 

necessary to account for the possibility of the forcing function 

f(t) of the given LBVP becoming zero in the problem interval. 

This can be done by making an initial transformation of the LBVP 

by putting x(t) = y(t) + k, where k i. an arbitrary non-zero 

constant (n,l) vector, 50 that tha forcinQ function f(t) 

becomes f(t) + A(t).k ). 



Conclusions : 

The behaviour of the iterative residual correction method 

is complex when used with a variable step integrator because 

the final error in the calculated solution is a combination of 

integration error (dependent on the Runge Kutta tolerance and 

initial steplength used) and interpolation error (dependent on 

the degree of Hermite interpolant used). This complexity makes 

analysis difficult and our results obtained with the variable 

step integrator are inconclusive. 

However, our fixed step integrator results <programs ITER.3, 

ITER.5, ITER.7 and especially ITMIN.3S7) .how how succe •• ful 

the method can be in solving even quite ill conditioned LBVPs. 

We think that this justifies the need for further re •• arch in 

this area with a view to formulating a theoretical foundation 

for the method which will show the inter-relationship between 

integration error and interpolation error and their combined 

effect on the estimated error obtained. Hopefully, this will 

then suggest an efficient step adjustment criterion for the 

variable step integrator which will make the iterative 

residual correction method a reliable and u •• ful practical 

solver of LBVPs. 

For comparison we attempted to solve some of the ill 

conditioned LBVPs detailed in this Chapter by using the 

factorisation methods of Babuska and Majar [16] a. 
described in Chapter 5. The •• results ar. given in App.ndi~ 



Ill. They .how that the factori.ation m.thod. fail to produc. 

accurate solutions to these difficult problems. This was only 

to be expected since the success of these 'double sweep' 

methods depends very much on the stability of the auxiliary 

IVPs in their respective directions [16] and the good condition 

of the problem is necessary to ensure this. By contrast, our 

fixed step iterative method (ITMIN.357) produced acceptably 

accurate solutions to all of these ill conditioned problems. 

This underlines the justification for further investigation 

of this iterative method. 



APPENDIX I 

Cl-1] : Consider the nth order diff.rential aquation 

1\ 
)( 

(x , 

= 
• x, 

FCt, )(, 

..... , 
'" -, 

• •• ",-I 
x, )(, •••••• , X ) where 

ft-' ) . Let x x == )(, )( D , t 
• • • •• 

F is lin.ar in 

• •• 
)( , )C == >C, ••••••• 

3 
• 

x" == x . Then x, == x -x2- J x :I 

2. 
X == )(3 J ••••••• • )(~_,- M" 

and • 
xl\ Hence the given nth ord.r differential 

equation can ba written in the form I 

• 
x, 0 1 x, 0 

• 0 0 1 0 xa Xl 

• 0 0 0 1 0 x, - x, - '. I 

+ 
.. . , 

• .. 
x 1\., 0 0 0 0 -_. -- -.. - _ .... • -l 1 )( ft·, 0 

• k, k k) k.,. •••••••••••••• k get) x", 2- n x" 
-. 

where k. , ( 1 <- i <= n) are functions of t or constants i • e. 

it can be written in the form H(t) - A(t)x(t) + f(t). 

, 
co~bf'\""'O "'-S 

[1-2] ~ First note that for anyAfunction u I 

d J u(s) .ds - u(t), where a is a constant and sand t 
-at 0 

are r.al variabl.s. Now consider x(t) - X(t)-< + pet) (1) 

where X(t) ia any fundam.ntal solution of system ~Ct) • 

A(t)x(t), pet) is a particular solution of -x(t) - A(t»(t) + 

f(t) and -l is constant (n,l). From (1) I 

A' - I 



• x(t) 
• • = X(t)o{ + p(t) = A(t)X(t)e( + A(t)p(t) + f(t) 

... A(t) ( X(t)e(.. + p(t)} + f(t) 

= A(t)x(t) + f(t). 

Thus any function of form (1) satisfies the ODE 

• x(t) = A(t)x(t) + f(t). Now take: 
b 

BI X(b) f u(s) .ds ) = 
-, 

Q {c (2) 
. Q. 

where Q = B X(a) + B X(b), and take 
o I 

to 

P (t ) ,.,. X (t) J u ( s) • d. 
o (3) 

.. I 

where u(.) = X (s)f(s) 

Note that from (3) we get I 
to 

pet) = X(t) ~ J u(.).d. + 
dt 0 

to 

X(t) f u(s).d. 
o 

= X(t)X"'(t)f(t) + A(t)X(t) ft'U(.).d. 
o 

• i.e. pet) = A(t)p(t) + f(t), as required. 
-, 

From (1) , (2) and (3) I X (a) = X(a)Q ( c 8 X(b)J 
b I 

J = J U (s) • ds , since p (a) = O. 
0 -I 

(4) • 

) where 

Also x(b) .. X(b)Q { c B X(b)J } + X(b)J. Hence 
I 

.. I 

B x (a) + B x(b) = (8. X (a) + B. X (b) }Q (c - B, X (b) J) + 8 X(b)J 
0 I I 

= C - 8.X(b)J + 8 X(b)J :so c 
• 

i. e. B x(a) + B x(b) ,.,. c. 
0 , 

Hence the exact solution of the given LBVP I 

• + f(t) x (t) = A(t)x(t) 

8 x (a) 
0 

+ B, x (b) - c 

can be written x(t) .. X (t)e(, + pet) whare e( and pet) 

a. defined in (2) and (3) • 

A\ - ':t.. 



-, -, 
Now X(t),o<. = X(t)Q c X(t)Q B, X(b)J 

~ 
fb , 

= (t)c:: ~(t)B,X(b) X-(s)f(s).ds 
Cl. 

<where X(t) = ~ (t) .Q) 
b -, 

= ~(t)c - ~(t)B, q>(b)Q S Q-' ~ (s)f(s).ds 
-b c.. 

~(t)c + J - ~ (t) B, <i2 (b) 
-I 

= ~ (s)f(s).ds 
&4 

Also 

p(t) 

~ ~ 

= X (t) J X_I (s) f (s) • d s = ~ (t) Q 1 Q - I ~_I( s) f (s) • d s 
c.. t" 0-

pet) = r Cti (t) ~-'<s)f (s) .ds and so i . e. 
~ 

x (t) = X (t ) ,0(,. + P (t) 
b r 

= ~(t)c:: + J - <}<t)B, ~ (b) ~_I(S)f (s) .ds + r ~ (t). ~-I(S)f (s)ds 

= ~(t)c + jr<l>(t) {I" - B, ~ (b)). ~\(S)f(S).:S 
0-

f
b -::t. .1 + - '.±!(t)B, ~ (b) ~ (s)f (s) .ds 

t: e .1 

= <l(t)c + J~(t)B()~(a).~(S)f(s).dS 
b ~ 

+ f - ~(t)B, ~ (b). ~-I(S)f (5) .ds 
~ 

because Bo X (a) + B. X (b) = Q ===) Bo et (a) + B, cl (b) "" I", 

[1-3] : Recall that the sUbstitution x(t) - T(t)y(t) transform. 

• • the system x(t) = A(t)x(t) (n,n) into yet) - V(t)y(t) where 

-, -, • 
vet) ~ T (t)A(t)T(t) - T (t)T(t). Thus if T(t) ha. the block le: "'" 
diagonal form :J fII\ 0 and A(t) ha. block upper tri-

angular form II :) "'" 0 than Vet) will al.o ba block 

J. ~ 

A' - 3 



1 -. 
upper triangular i.e. vet) -

[: 
CD 1.l 

WJ ..... where 
-I -I • 

W = D BD - D D. Therefore we first find an orthonormal trans-

formation To (n,n) which puts A (n,n) into the form I 

I ft-I 

A .. , r: cl 
B n-I. (See Chapter 1, (1.31) and (1.32). For 

initial conditions for these equations we can hare take To(a) 

to be any orthonormal matrix e.g. To(a) - In ). 

We then obtain orthonormal transformation 

D. (n -1, n-1) such that 

triangular of the form W 

W 

I 

.. 
I 

= 

-I -I • 
D BD D D. I • 

is block upper 

TF 
ft-2 0

1 Col 
B, and let 

I ft-a. 
, 1\- I 

T , -T 
"-I 0

1 :.1 • Similarly, we obtain orthonormal transform-

ation DJ. (n - 2, n - 2) such that 

block upper triangular of the form 

and we let 

obtain T 
J 

2-

T .. ~(I~ ~ 

f\-2 0 

•••••••• T 
1'\-2. 

f\.~ 

:J 
where 

W 
2. 

w 
a 

-I 

- D B D & I 1. 

= 

Then the required transformation which will put 
• 1\ T· . , triangular form A " . , is 

, .. ft-a. 
values of A are now the diagonal element. of 

A 

A 1\-, · 
(This deflation method shows the exi.tence of kin.matic ei;en-

pea-If. 



values but in practice would be very costly). 

, 

[1-4] I In the following we abbr.viate orthonormill tran.form-

ation T(t) 11: [T (t) , to T - [~ I T~ J, transform.d 

system matri>< Vet) to V and functions c (t) , c (t) to 

" 1&. 
• 

CII , C • Now from the Lyapunov equation TV - AT - T wa gat 
2.1-

T-r (AT 
• f :::]- [AT, 

• • 
V = - T). Thus V == T AT TL ] 

I a 

T • TT • -_._> V = T (AT
I 

T ) ; V - (AT Ta. 
" 

, I I~ , L 

TT • TT • 
V = (AT, T ) ; V = (AT~ T ) . 

«'1 2. , a~ ... a. 

Now for V to be block upp.r triangulilr V I., - 0 

__ a> 

TT • T 
TT (AT - T ) = o. But T T. .. 0 

__ a> 
(T c ) - 0 wh.r. 

2- , , 1. ~ , 11 

c is any (p,p) miltri)( i • e. T, is • b •• is for the spac. , I 

othogonal to T and so any matri>< orthogonal to T can b. 
2. 'L 

written in the form T, c" far same c .. . Hence 
e 

AT T = T c
lI 

far same c • , , 
" • ====> T, = AT , T, c 11 (1) 

T TT • eT 
Now T T, = I" ====> T, + T T, -0 (2) • , I , 

or • TT TT T -r AT From (1): T, T -= AT T, clI - c" I I , , , I 
T TT • ====> cl' = T AT T .. V •• I I , , 

eT TT T eT 
-====> .. A T

J T, T. 11 J 

-=-=> C + c T == T7 (A + AT ) T. (from (2) ) . 
" " 

T~ 
T • eT 

Also T2, == 0 ----> T T + T T~ - 0 
____ > , a , 

T • T 
T T + (AT T, clI ) T2- - 0 (from (1) ) •••• > , 1- • 
TT T T AT TT • A"T + T T2- .. 0 •••• > (T 1- + T2- ) • o. , 1- J , 

AI - 5 



'T eT 0 eT (q, q) ----> But T (T ) - whare i. , l. 1.~ 11. 

• A"f' T "'T eT T + = TI. Ca."&. for some ==--> 
'I. 2- 11 

• "f' T eT TT • T A~ e'T T = -A T2- + ====> Ta. '""' -T TI. + 
a. I. 2." a. I. ~~ 

T 'T AT T • 
===-=> e = T T~ + T2., Ta. ===--> 

1.& 
,. 

TT AT 
. .,. eT T + AT e = + T1 Tz. and e + - T-a, (A )Tz. 

11- :a. 1.. a.1 aa. 
T TT • TT • 

Also s e = Ta. AT1- T3- = (AT2. T ) = VI. 1.. 
21 I. I. 2.. 

TT AT T-r • 
and V = Ta. ''2. I 1- I 

T'" AT TT (_A'T' T1 
T 

) = + T1 eta. I a. I 

= T'T' AT 
, 'Z. + T"f' AT 

I T1-

- TT (A + AT )T'1. 
I 

N. B. Since T (n,n) is orthonormal wa have 
"'T 

TT .. I 
'" 

----> 

[T, T~ 1 r :;) = I"" 
"'T T 

===-> T T + T2. Ta. .. I"" I I 

Thus equation (1.32) of Chapter 1 viz. 

• ,. 
lA'T 

T1 = [-1 + T.I T I. T2., can also be writtan 
" • T TT AT T in (3.2) T1- = as of Chaptar 3. 
I , 2. 

, 
[1-5l: Any pair of corre.ponding fundamantal solutions of tha 

• systems x(t) = A(t)x(t) 
• 

and yet) .. V(t)y(t) ar. r.lat.d by 

X(t) = T(t)V(t) for all t. Thus if wa choosa X(a) - T(a) 

• 
then VCa) ,... I • Now vet) 

1"'\ 
satisfi.. vet) - V(t)V(t) whara 

• 
V.&I (t) .. 0 and so VI.I (t) .. V (t)V (t) 

2.1. a.1 whar. Va , (a) - o. 
• 

Hence V~I (t) ,... 0 for all t, and so V (t) 
u 

.. V 

" 
(t)V" (t) 

where V Ca) • If' 
._._) 

V" (t) is non-sinQular for all t. 
" 

A I-/. 



Now: X(t) = T(t)y(t) ====> 

YI2. (t)] 

Yz,2.(t) 

==== > X, (t) = T 1 (t) Y I, ( t ) sm=: > T I (t) = X, (t). Y I~' (t) • 

Therefore span T, (t) - span X.(t), since each column of T,(t) 

is a linear combination of the columns of X,(t). Now X.(a)­

T, (a) where span T, (a) farms a basis for a Qrowth sub.pace of 

system • x(t) = A(t)x(t). Thus span X (t) , and hence span T (t) 
I 

must form a basis for a growth subspace far all t. 

[2-1] I (0 <- i <- N - 2) 
____ > 

x • (t. ) 
'+1 • + I . , 

X (t· )A + v.(t. ) -x (t. )A. + 
i ,+1 '''i ' .... 1 '+1 ,+1 '''',+1 

v. (t. ) 
,+1 • + I 

(by 2.18) 
, 

====> X (t. )D.A 
i+1 .+1 • I""i 

+ • • X (t. ) A. + v (t. ) 
, +1 • + I I ~ • +1 .., ... I 

X' (t. ){X' (t. »T v. (t. ) 
i+1 '+J i+, '.' \ '., 

====> D. A.. + 
• , ... I 

I T 
{X (t.)} V. 

.+1 Ii" • 
(t. ) 

,+ I -
(multiplying by (x: (t. »~ ) 

• +1 1 + 1 

T 
(!. + {Xl (t. » v. (t. ) 

1+1 ;+1 ,+1 "+1 

(X: (t. »'T v. (t. ) 
1+1 1.1 • 1 ... 1 

, 

---=> + (X.' (t. ) ~ v. (t. ). ..... I., . . .. , 

[3-1] I In the following R .' , Y.' 
IJ IJ 

are all functions of t . 
• • 

R" Vu = If 
__ aD> R y + R Y 

" " " " • • • 
R" VII - R VII _.=-> R • I, 11 

• --_:> R" 
:11 Rn V" • 

• 
Also Y R U . - V,~ 

___ a> 
V R 

11 It 12-
• • • 

Vu R - V R YI~ 
- __ a> 

I~ 11 '''1. 

, V •• 
'J 

- 0 

• 
R VII 11 

... V 

,1' , 

-, 
V 

11 

• 
R 

, h. , 

___ a> 

Nher. 

-11 It. 

and Q. 
I 

• 
V" • V 

la 

• 
Via 

._.> 

Vu 



• • • 
R,2. = - R V R Rn VI~ 

" " l~ - - R V V" Rl'l. Ru {V" V,~ + v," V,,~ } 

" " 
= Rn V .. VII R,~ + R" V" Vu R ,,. R" V I'" V 'I. ~ 

= - R" V I~ V "'1.. 
• • • 

Also 1 = - R h , ====> I. = - R hi R h, 
I " .. " • ====> 1 = - R {Vu h, + V''L h1. + 9. } + R V hi , 

" 11 " 

= R {V'2 h1. + g, } 

" , 
-[3-2] : In the following X, A, V, V, V, T, R , x, w ar. 

II 

all functions of t. 

Not.e first. t.hat. if X (n,n) ia any fundamental solution of 

- -, 
system x .... Ax then XX :. I ----> 

" • -I -I 
X X + X d (X ) :11: 0 -I • -I 

dt :11:===> 'X d (X ) - - X X 
at" 

-, -, • -, 
c===> d (X ) - X X X 

-at 
-I -, -I -, 

==-=> d (X ) .... - X A X X - X A 
crt -, T -'T 

====> d (X ) = A X 
-at 

We now show that if~t.ransfDrm.tion T (non-singular) exist. 

such that I 

x - Tw • 
x == Ax ---------------------------> 

(1a) 

_"T 
then transformation Twill b. such that I 

-T 
)( - T w 

-------------------------> • T 
x-'-A )( 

(2.) 

• 
w - Vw 

Ub) 

. -
w • Vw 

(2b) 



- T - v . where V = 
• -T 

If X is any fundamental solution of M - AM then X is a 

• fundamental solution of the adjoint system M = 
-T 'T-T 

d (X ) = - A X 
dt , as shown above. Now suppose that X and V 

are corresponding fundamental solutions of systems (la) and (lb) 
-"T' --r.-r 

above respectively i.e. X = TV and hence X = T V (3) • 
_T 

Then X is a fundamental solution of (la) ____ > X is • 
_"T' 

fundamental solution of (2a) ___ a> V is a fundamental 

solution of (2b), (from (3». But V is. fundamental solution 

-T 
of (lb) ====> V is a fundamental solution of the adjoint 

• .,. 
to (lb) i. a. of w - V w. Hence V --

Thus if V is upper triangular with all of it. diaQonal 

-elements positive than V will be. lower triangular with all of 

its diagonal elements negative i.e. if all of the kinematic 

eigenvalues of (la) are positive then all of the kinematic 

eigenvalues of the adjoint system (2a) will be neQative at the 

same value of 

can be written 

t. Now . .,. 
R 

" 
= 

equation 
... T 

- V R 
" n 

(3.10) viz. 
• 
R =­

It 

where all of the kinematic 
b 

ei genval ues of VII are such that Re f 0; (t) • dt > O. 
et 

This shows that IVP (3.10) will be (forward) stable even when 

V is variable. 
11 

[4-1] : In the following ,.., - - ,.., X, R, R, X, M, y, M, Y are all 

functions of t, but P and ar. constants. 

A 1- 't 



,..., 
1T x, 

====) \ !~.J P,~ l _( x" 1 x = = f:" , 
PZ.1 X z., 

___ a> 
2., 

,.., - P x" P X 
___ a> 

x" - P x + P X and X - + 

" 11 I~ a.1 ~I ~l 2'1. al 

,- --I = (P XII + P2.'I. X
2 

). (P X" + PI~ X2t 
)- , 

X X 
21 .. It 1 11 

-\ 
= (Pz.. + P'J.2. R) X" • ( (PU 

+ p,. R) X .. } 

R) XII 
-I 

(PI' P R)·I ... c_> =- (P + Pa.a. X + 
:I.' " '1. ,.., 

(P2, 1 PR). (P + P R>': ' R = + 
'1..3. \I 1'1. 

Now 

~:J 
= 

-rr \::1 ,.., 
===-> x. 11: P X , + P x" " ''I. 

From the 

,.J -)("2,. = R 

Hence : 

===) P 
2.1 

====) 

-===) 

[4-2] . • 

_=a=) 

)( .. , 
y. :11 

[4-3] I 

P, I, G 

-x 2., -= 

Riccati transformation equation - -x + Y~ and x = R x 
I 'J. 

(P x. + P x2, ) = ~ (~I )(. 
2.1 2.~ 

,.- , 

x + P (R x + 'Yl. ) = R P )( , 'l.l 1 It I -= (R(P 

" ... (P + ,., 
,.., ,.., 

P 
21 x, + p~u. x~ 

I 

1 
+ Y'J., 

,.-
+ P x). + Y2, 

I~ -+ R P (R x + Y ) 
1'1 I 'I. 

,.., -+ p. R)}x + R P Y + Y'L 
2. , It.?. 

p. Rhc 
.. 2. , 

,.-
+ R P Y '2. 1.. 

-+ Y :a. 

P:a,,, Ya, = R P Y~ + Y2. '" ....., -Y.,. - (P R P ) Y1.. 'J..'J., t'J.. 

, 
,.J 

P )( = Pit x + X 11: P X + P (R x + Y'L ) , • 1'1. :a. " 1 11, , 
,.., 

P (Pit P R) x Y'I. .. + )(. 
____ > 

I 1'2. 1'1. -, ,.., 
(P" + P R) . he ~~ Y'I. ) or 

11. 1 -, -(P + P R) • (y ~1. Y2- ) . 
It 1'- • 

, , 
In the following, all value. are functions of t exc.pt 

and IT which are cDnstants. 

Al -10 



Suppose that and • 

-I 
Then 0 C 

Let P [:1 - f ~ l z. (1) 

and P (:1 B. ~ [: J z. (2) 

-=~=> ~ r :rl -[~l -. 
( :) New (1) A -

-I -, 
T N =- M L 

----) 

-I -, -, F E ... T N - M L 

-. -. i. e. F E - M L 

-I -, 
than M L = F E 

and ~ P, f :rJ a. a~ -[: ] 
Hence, in general, if 

li l :r} B - r:J ,wh.r. 

are parfermed alternately, and if 

n r:rJ - l~l 
-I -, 

p. , B. , , 

than F E - M L • Now 1T =- [PlO P,~ J 
P'l.1 P '&. ~ 

L - (P + P R) and M - (P + P R)' 1\ I~ 2.1 1.1. 

and sa 

AI - I1 



[~-1] I 

From the 

~ 
-_ ... > 

Thus 

i. e. 

,.J 

R - (P~, + P~t. R) • (P" + 
-, -1 = M L = FE. 

,-

P R) 
I~ 

-, 
( ••• (4. ea» 

In the follo~ing T, A, A, R are all functions 

• ,.., 
Lyapunov .quation IT • AT - TA .... Qet 

:] [> :Ad 
-= [All A,~~ft, -RJ All 

A
lIo

, Aa 0 I" 
t"!!>' 

A2" 
" 

A 
~ 

R A2 , 0 .. - A" + 
'I • --R = - A R + A + R A 

" 
1'1- "'''i. 

0 .. 
A2.' -A '2. I -0 = - A .. , R + Aa2. A"" - -All = All + R A2" ; A~I .. A a. 

1\2 .. A '2.'" A.11 R and 

• -R = A" R AI~ - R A~~ 

= An R A - R(A Aa,R) I~ 11" 
• 
R = A R + R A R A R A 

" Z, u. 2.~ 

of t. 

0 

""K~ ... 

[5-2]: The proof is similar to that given in [1-4] except that 

no~ V (t) <instead of 
'2. 

V2,1 (t) ) 

[5-3] I The ODE for L (t) 
a.. 

derived in [1-4], but ... ith 

A.'- 1<.,.. 

.. o. Also c,,(t) .. 

equation 



APPENDIX 11: 

RESULTS FOR ERROR ESTIMATION METHOD 

In obtaining all of the results in this appendix the variable 

step integrator RKF 45 was used to solve the Auxiliary IVPs. 

The tables below give, for each test problem, comparative 

values of estimated and actual absolute errors in the 

components of the first calculated LBVP solution vector at 

each end of the problem range. 

estO = estimated error at initial point of problem range 

actO = actual error At initial point of problem range 

est1 = estimated error at final point of problem range 

act1 = actual error at final point of problem range 

All results are given correct to two significant figures. 

The details of the test problems are a. given in Chapter 6 • 

TEST PROBLEM I : 

(In this section a reference such as table 3 i. to table 

A2.1.3 ). 

Here we used a Runge Kutta tolerance of 1.-4 and an initial 

steplangth of 0.01 for all integrations I 

Table A2.1.1 : j - 2, k - 3, cmax - 10, BC (1.1), na - 7 I 

estO 

o 

6.9.-9 

6.9.-8 

actO 

o 

1.5.-9 

6.9.-8 

est1 

3.2.-9 

o 

o 

act1 

4.6.-9 

o 
o 



Tabl e A2. 1. 2 • j . = 5, k = 10, cmax = le4, BC <1.1>, ns so 5 : 

estO actO estl actl 

0 0 9.5e-9 5.0e-ll 

3.1e-9 1.4e-9 0 0 

1.0e-7 1.4e-8 0 0 

Table A2.1.3 : j = 10, k = 15, cmax = le5, BC <I. 1> , ns -7 I 

estO actO estl act1 

1.5e-25 0 2.4.-9 9.9.-12 

5.6e-9 5.7e-11 0 0 

7.8.-8 1.1e-9 0 0 

Table A2.1.4 . j = 15, k = 20, cmax -la6, BC (1.1>, ns - 9 I . 
e!itO actO est1 act 1 

4.3e-26 o 1.0e-9 

2.6e-9 4.0e-l1 o o 

6.08-8 6.3e-10 o o 

Table A2.1.5 . j = 20, k - 25, cmax -1e7, BC (1.1), ns - 10 I . 
a.tO actO est1 act1 

0 0 1.4e-9 3.4.-13 

5.7e-9 2.4.-11 0 0 

9.18-8 :5.0a-l0 0 0 



Tabla A2.1.6 I j • 2~, k - 30, cmaM • 1.8, BC (1.1), ns • 9 I 

estO actO est1 actl 

o 0 6.3e-10 1.4.-13 

1.0e-8 3.4e-12 0 0 

1.2.-7 9.6e-ll 0 0 

As tha well conditioned BC were used in the above wa •• a, •• 

expected, that the size of the actual errors decrease ••• 

parameters j and k increase i.e. as the problem beeom •• 

stiffer. However, estimated errors are greater than the 

corresponding actual errors in nearly all ea.es. 

In tables 7 to 12 below the ill conditioned BC were used I 

Table A2.1.7 : j = 2, k = 3, cmax - 10, BC (1.2), ns - 7 I 

estO actO est1 act1 

1.1e-23 

1.6e-24 

7.1e-8 

2.2e-16 

o 

7.08-8 

1.2e-8 

1.1.-8 

o 

6.5.-9 

2.5.-9 

o 

Table A2.1.8 : j = 5, k = 10, cmax - 184, BC (1.2), ns - 5 I 

estO 

8.4e-25 

5.4e-24 

1.0e-7 

actO 

o 

o 

1.4e-8 

est1 

4.4.-8 

1.1.-7 

o 

actl 

1.6a-8 

5.3.-8 

o 



Table A2.1.9 . j = 10, k = 15, cmax = le5, BC (1.2) , ns = 7 . . . 
estO actO estl actl 

0 0 3.5e-b 3.5e-8 

1.3e-24 0 2.1e-5 2.1e-7 

7.8e-8 1.le-9 0 0 

Table A2. 1. 10 : j = 15, k ... 20, cmax ... leb, BC (1.2) , n. 11:1 9 I 

estO actO estl actl 

4.3e-26 0 1.2e-4 1.9.-6 

0 0 1.1e-3 1. b.-5 

6.0e-8 6.4e-l0 0 0 

Table A2.1. 11 : j == 20, k = 25, cmax = 1&7, BC (1.2) , n. -10 I 

.stO actO estl actl 

1.2e-25 0 2.5e-2 1.le-4 

8.3e-25 2.2e-lb 2.8e-l 1.2.-3 

9.1&-8 5.0e-l0 0 0 

Table A2.1. 12 • j = 25, k ::a 30, cmaM • le8, BC ( 1. 2) , n. - 9 I • 

.stO actO est 1 .ct.1 

2.6.-24 0 4.6.0 1.~.-3 

1.6e-24 0 6.2el 2.1e-2 

1.2.-7 9.6.-11 0 0 

As expected with the ill conditioned BC t.he act.ual error. 

incra •• e in size as t.he problem becom •• stiffer and mare ill 

condit.ioned as parameters j and k incr ••••• For v.lu •• of 



these up to j = 15 , k = 20 estimated errors are a reasonable 

guide to actual errors but as the problem becomes more ill 

conditioned than this the estimated errors at the right hand 

side become very inaccurate (tables 11 and 12). 

Test Problem 11 : 

(In this section a reference such as table 3 i. to table 

A2.2.3 ). 

Here again we used a Runge Kutta tolerance of 1.-4 and an 

initial steplength of 0.01. 

Table A2.2.1 : k = 5, cmax = 100, ns = 7 : 

estO actO estl act1 

8.3e-8 8.3e-8 2.1e-7 2.1.-7 

8.3.-8 8.3e-8 1.7.-7 1. 7.-7 

8.3e-8 8.3e-8 6.2e-8 6.1.-8 

8.3&-8 8.3&-8 1.2e-6 1.2.-6 

Table A2.2.2 . . k = 10, cmax = 1&3, ns = 9 I 

estO actO •• tl act1 

5.2e-6 5.2e-6 1.4.-5 1.4.-5 

5.2.-6 5.2.-6 1.3.-5 1.3.-5 

5.2e-6 5.2.-6 2.7.-6 2.7.-6 

5.2e-6 5.2.-6 1.0.-4 1.0.-4 



Table A2.2.3 . k = 15, cmax = leS, ns = 6 . 
estO actO estl actl 

1.5e-4 1. Se-4 4.2e-4 4.2e-4 

1.5e-4 1.5e-4 4.011-4 4.0e-4 

1.5e-4 1.5e-4 1.8e-4 1.8.-4 

1.5e-4 1.5e-4 3.2e-3 3.2.-3 

Table A2.2.4 . k == 20, cmax == le6, ns == 7 : . 
estO actO .stl actl 

3.2e-2 3.2e-2 8.7e-2 8.88-2 

3.2e-2 3.2.-2 8.58-2 8.6.-2 

3.2e-2 3.2e-2 4.8.-2 4.8.-2 

3.2e-2 3.2e-2 7.08-1 7.0.-1 

Table A2.2.S . k = 25, cmax == le6, ns .. 8 • . • 

estO actO estl Actl 

9.0e-l 9.1e-l 2.5eO 2.5.0 

9.0e-l 9.1e-1 2.4.0 2.4.0 

9.0e-l 9.1e-1 1.5eO 1.6.0 

9.0e-l 9.1e-l 2.0.1 2.0.1 

Table A2.2.6 :: k == 30, cmax == 1e7, n. .. 8 I 

e.tO actO est1 Actl 

1.782 1.8e2 4.7.2 4.9.2 

1.7.2 1.8e2 4.7.2 4.9.2 

1.782 1.8e2 3.2.2 3.4.2 

1.7.2 1.8.2 3.9.3 4.1.3 



Table A2.2.7 . k = 35, cmax = leS, ns = S • . , 

estO actO est1 act1 

1.7e3 2.ge3 4.6e3 7.9.3 

1.7e3 2.ge3 4.6.3 7.S.3 

1.7e3 2.ge3 3.483 5.S.3 

1.7e3 2.ge3 3.ge4 6.7.4 

Table A2.2.S . k = 40, cmax == 189, ns := S I . 
8StO .ctO •• t1 act1 

1.le2 3.ge3 3.182 1.1.4 

1.1e2 3.9.3 3.0.2 1.0.4 

1.182 3.983 2.3e2 8.0.3 

1.1e2 3.983 2.6e3 8.9.4 

This problem becomes stiffer .s parameter k is incr •••• d and 

this is reflected in the size of the actual error. which ar. 

small for k <= 15 but increase rapidly for larg.r k. But v.ry 

good agreement is obtained between actual and •• timat.d .rror. 

for k (= 25 even though for k:= 25 the .rror. ar. not .mall. 

For k = 30 and k = 35 the actual and •• timat.d .rror. agr •• in 

order of magnitude but for k = 40 the •• timated .rror. ar. 

very inaccurate and too small. 



TEST PROBLEM III : 

(In this section a reference such a. table 4 is to table 

A2.3.4 ). 

Here we used an initial steplength of 0.01 each time with 

a Runge Kutta tolerance (RK) as given. The problem paramet.r 

k = 19 for all cases. In tables 1 to 3 the well conditioned 

BC (111.1) were used. 

Table A2.3.1 : RK - 1e-4, cmax .. 50e3, ns - 12 I 

a.tO actO estl 

5.7e-24 1.3e-15 2.7e-7 

8.4e-l0 1.2e-9 8.4e-10 

3.0.-9 1.5e-9 3.0e-9 

Table A2.3.2 RK = 1e-3, cmax .. 5683, n. • 12 I 

estO acto est1 

3.8e-24 1. le-15 1.7e-5 

1.0e-9 3.1e-9 1.0e-9 

6.7e-l0 3.ge-9 6.7.-10 

Table A2.3.3 : RK = le-2, cmax - 50e3, n. - 12 I 

e.tO 

1.2e-22 

2.5.-8 

2.7e-8 

actO 

2.4e-15 

2.8e-8 

3.4e-8 

•• t1 

2.1.-:5 

2.:5.-8 

2.7.-8 

Act1 

8.6.-10 

1.2.-9 

1.:5e-9 

actl 

:5.0.-9 

3.1.-9 

3.9.-9 

act1 

7.3.-8 

2.8.-8 

3.4.-8 



ill conditioned BC (111.1): 

Table A2.3.4 I RK - le-4, cmax = SO.3, ns - 12 I 

estO 

S.7e-24 

8.4e-l0 

3.0e-9 

actO 

1.3e-1S 

1.2e-9 

1.5e-9 

est 1 

3.08-9 

8.4e-l0 

3.08-3 

Table A2.3.S : RK a le-3, cmax ~ SO.3, ns m 12 I 

•• to 

3.8e-24 

1.0e-9 

6.7.-10 

Table A2.3.6 

est.O 

1.2.-22 

2.Se-8 

2.7.-8 

I RK 

actO 

1.1e-1S 

3.1e-9 

3.9.-9 

== 1.-2, 

actO 

cmax 

2.4e-1S· 

2.8.-8 

3.4e-8 

:.: 

estl 

6.7.-10 

1.0.-9 

2.2e-l 

50.3, ns -12 

est. 1 

2.7.-.8 

2.5.-8 

2.6.-1 

I 

actl 

1.5.-9 

1.2.-9 

3.1.-3 

act. 1 

3.9.-9 

3.1.-9 

1.2.-4 

actl 

3.4.-8 

2.8.-8 

1.4.-3 

The agreement between actual and estimated .rrors is not so Qood 

for t.his problem as for problem 11 particularly for the 

ill conditioned BC cases. This is probably part.ly due t.o t.h. 

the fact that for t.his problem (unlik. probl.m 11) t.h. 

differential system matrix A is variable so t.hat. tt.s 

derivative. will be involved in the calculations and th ••• 

derivat.ive. have some quit.e large components which ar. liable 

to magnify any errors incurred. 



APPENDIX III I RESULTS FOR FACTORISATION METHODS 

Here we give some of our numerical results obtained u.ing 

Babuska's factorisation methods described in Chapter 5. In 

the following, program RIC used the Riccati transformation 

and programs ORTl and ORTO the orthonormal transformation 

integrations were performed with the variable step Runge Kutta 

RKF45 , using an initial step-length of 0.01 in all case. and 

with a tolerance per unit step (RK) as stated. All results are 

given to an accuracy of two significant figures. 

* indicates that the method failed because the integration 

step-length became too small ( < 1e-9 ) in the backward swe.p 

* * indicates failure due to ove~flow in the calculation of 

function values during integration. 

Problems I and 11 below are the test problems detailed in 

Chapter b. We can thus compare the results of the factorisation 

methods given here with those obtained using our propos.d 

iterative residual correction method in Chapt.r b. 

The results given are (as in Chapter b) the maximum absolute .,. 
error in the components of tu ( o(), u (~ ) 1 wh.r. u (t) i. 

the calculated LBVP solution and [.(, P 1 is the probl.m 

interval. 

A~ - I 



Results: 

Problem I : 

(In this section a reference such aa table 4 is to table 

A3.1.4 ). 

The results in tables 1 to 4 were all obtained using the wall 

conditioned BC (1.2). 

Table A3.1. 1 j = 2, k = 3, BC (1. 2) . . 
RK RIC ORTl ORTO 

le-2 2.7e-4 6.ge-4 8.6e-4 

le-3 5.4e-5 9.5.-5 

le-4 1.4e-5 2.5e-5 

Table A3. 1. 2 . j = 5, k = 10, BC ( 1.2) . 
RK RIC ORTl ORTO 

le-2 2.4e-4 2.6e-4 2.6.-4 

1.-3 2.6e-4 2.4e-4 2.5.-4 

le-4 1.2e-5 1.2.-5 1.2a-~ 

Table A3.1.3 : j = 15, k -20, BC (1.2) I 

RK RIC ORTl ORTO 

le-2 6.7e-4 6.7.-4 * * 
1.-3 7.7.-5 7.7a-5 * * 
1&-4 2.4e-6 2.4.-6 * * 

1\3-2.. 



Table A3.1. 4 : j = 20, k = 30, BC <I.2) . . 
RK RIC ORTl ORTO 

le-2 1.8e-3 9.4.-5 * * 
le-3 1.5e-4 1.5e-4 * * 
1e-4 6.0e-6 5.9.-6 * * 
We see that for these well conditioned LBVPs the results for 

the Riccati method and the orthonormal method with Q.n.ralis.d 

inverse are very similar and, for RK - 1e-4, are acceptably 

accurate in all cases. Notice that because the probl.m is w.ll 

conditioned there is no loss of accuracy as param.ters j and k 

increase i.e. as the problem becomes .tiffer. This is b.caus. 

the Qood condition of the LBVP with separated BCs .nsur.s the 

stability of the auxiliary IVPs in their respective dir.ctions. 

The orthonormal method without the Qeneralised inverse, however, 

Qives results comparable to those obtained with RIC and with 

ORT1 for small values of parameters j and k but fails to 

produce a solution for j > 5, k > 10 confirminQ the n •• d for 

the generalised inverse as found by Oavey [3] and M.y.r [4]. 

We also tested the factorisation methods on LBVPs that ar. not 

well conditioned. The result. in tables 5 to B b.low w.r. 

obtained using the ill conditioned BC (1.1) I 

A3 - 3 



Table A3. 1. 5 . j = 2, k = 3, BC (1.1> . . . 
RK RIC ORTl ORTO 

le-2 3.ge-4 4.5e-4 5.7.-4 

le-3 2.8e-5 4.0e-5 4.6e-5 

le-4 4.8e-6 9.7e-6 1.0.-5 

Table A3. 1. 6 : j = 5, k = 10, BC (1. 1> 

RK RIC ORTl ORTO 

le-2 4.ge-3 4.ge-3 1.0.-2 

1e-3 4.2e-4 4.1e-4 4.1.-4 

le-4 7.5e-5 7.4e-5 7.4.-S 

Table A3.1.7 . j = 15, k = 20, BC <1.1> I: . 
RK RIC ORT! ORTO 

1e-2 2.geO '2.geO * 
1e-3 8.5e-1 8.58-1 * 
le-4 1. Oe-l 1.08-1 * 

Table A3. 1. 8 . j = 20, k = 30, BC (I. 1) I . 
RK RIC ORTl ORTO 

1e-2 3.ge2 3.ge2 * 
1.-3 2.0e2 2.0.2 * 
18-4 3.281 3.2.1 * 
1.-5 3.1.0 3.1.0 * 
1.-6 2.4e-1 2.4e-l * 

A. with the well conditioned BC we .e. that there i. good 

agreement between the results of program. RIC and ORTl but 



now the accuracy of the calculated solution deteriorates 

rapidly as the condition of the LBVP worsens I for the cas. 

j = 20, k = 30 even with a RK tolerance of le-6 the .rror 

incurred is unacceptably large. As might be e~pected program 

OR TO produces similar results to the other two methods for 

small values of parameters j and k for which the LBVP i. not 

too badly conditioned but it fails completely for larger valu ••• 

Th ••• inaccurat. re.ult. w.re expected b.cau •• , a. with all of 

the 'double sweep' methods, correct decoupling of the 

differential system is essential to ensure the .tability of 

both of the auxiliary IVPs in their respective direction. and 

the good condition of the problem is necessary to en.ure thi •• 

Problem 11: 

(In this section a reference such as table 4 is to table 

A3.2.4 ). 

The results in tables 1 to 4 were obtained u.ing the BC a. 

given for problem 11 in Chapter 0 far which the probl.m i. ill 

conditioned : 

Table A3.2.1 : k = 5 : 

RK RIC ORTl 

le-2 2.7e-3 2.2e-3 

le-3 5.5e-4 7.~.-4 

le-4 1.4e-4 1.4.-4 

1e-5 l.oe-5 1.6.-~ 

A~ - S 



Table A3.2.2 . k = 10 . . . 
RK RIC ORT1 

1e-2 8.2e-1 1.8eO 

1e-3 1.8eO 1.7eO 

1e-4 4.5e-2 4.ge-2 

1e-5 2.2e-3 2.0e-3 

Table A3.2.3 . k = 15 . . . 
RK RIC ORT1 

1e-2 3.0e3 7.6.2 

1e-3 3.ge1 3.1e1 

1e-4 1.3eO 1.1eO 

1&-5 6.4e-2 1.5eO 

Table A3.2.4 : k = 20 . . 
RK RIC ORT1 

1e-2 2.2e4 2.ge4 

1e-3 1.ge4 3.1e4 

le-4 4.3e2 5.5e2 

1&-5 2.2e1 2.581 

This problem becomes stiffer and more ill conditioned a. the 

parameter k is increased. As for the ill conditioned ca •• of 

problem I above, there is generally good agreement between the 

results of the Riccati and the generalised inverse orthonormal 

method. But for k > 10 the calculated LBVP solutions are 

vary inaccurate even for small RK tolerance. becau •• , a. 



stated above, as k increases the auxiliary IVPs become more 

unstable. 

w. also tasted the factorisation methods on problam 11 a. 

above but now with the following well conditioned BC. in.t.ad I 

[~ 
0 0 n [i 0 0 

n B .. 1 1 B - 0 0 
0 0 0 I 0 1 

0 0 0 0 

Table A3.2.S . k - 5 I . 
RK RIC ORT1 

1.-2 1.ge-3 2.1a-3 

1e-3 5.0e-5 

la-4 2.2.-6 2.1a-6 

Table A3.2.6 . k = 10 . . . 
RK RIC ORTl 

1.-2 9.0e-4 1.1.-3 

1e-3 3.3e-5 3.3e-5 

le-4 2.7e-5 9.3e-6 

Table A3.2.7 • k = 15 I • 

RK RIC ORT1 

la-2 9.5.-4 5.9a-4 

le-3 7.2a-5 1.5a-4 

1.-4 3.4e-6 4.9a-6 



Table A3.2.8 . k = 20 . . . 
RK RIC ORT1 

1e-2 3.0e-4 4.4.-4 

1e-3 1.6e-4 1.8e-4 

1e-4 1.1e-5 1.2e-5 

As e~pected the errors incurred by both methods are now 

acceptably small and there is no significant loss in accuracy 

as parameter k increases. 

The results given in this appendi~ confirm that the factor-

isation methods of Babuska and Majar [16] are efficient 

solvers of well conditioned LBVPs but they also indicat. 

that these methods cannot be relied upon to produce accurate 

solutions to LBVPs which are at all ill conditioned. This 

emphasises the advantage of our propos.d iterative r •• idual 

correction method (as described in Chapter 6) in this respect. 

We gave there results for the ill conditioned case. of t.st 

problems 1 and 11 obtained with this correction m.thod. The •• 

results show that accurate solutions can b. comput.d for th ••• 

difficult problems by our proposed iterative correctiDn method. 

A3-8 
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