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ABSTRACT

This thesis is mainly concerned with indirect numerical solution
methods for linear two point boundary value problems. We
concentrate particularly on problems with separated boundary
conditions which have a ‘dichotomy’ property. We investigate
the inter—relationship of various methods including some which
have first appeared since the work for this thesis began. We
examine the stability of these methods and in particular we
consider circumstances in which the methods discussed give rise
to well conditioned decoupling transformations. Empirical
comparisons of some of the methods are described using a set

of test problems including a number of ‘stiff° and marginally
ill conditioned problems.

In the past the main method of error estimation has been to
repeat the whole calculation. Here an alternative error
estimation technique is proposed and a related iterative
improvement method is considered. Although results for this are
not completely conclusive we think they justify the need for
further research on the method as it shows promise of being a
novel and reliable practical method of solving both well

conditioned and ill conditioned problems.
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INTRODUCTION

Numerical methods for the solution of boundary value
problems (BVPs) for ordinary differential equations (ODEs) can
be broadly classified as either direct or indirect. The former
are methods based on finite differences, finite elements or
collocation, in alllof which the solution of the BVP is obtained
discretely by solving linear (global) algebraic systems.Indirect
methods are so called because they are based on finding the
numerical solution of auxiliary initial value problems (IVPs).
Variants of these methods such as multiple (parallel) shooting
are really hybrid methods but we classify them here as indirect.

. An important and commonly occurring type of BVP is one whose
differential system possesses an exponential dichotomy. This
thesis is mainly concerned.with indirect solution methods for
linear two point boundary value problems (LBVPs) which are
dichotomic. We concentrate particularly on LBVPs with separated
boundary conditions (BCs) for which the concept of dichotomy is
very closely related to that of conditioning. We investigate the
inter-relationships of the methods and examine their stability.
We show that all of the methods considered can be collectively
regarded as well conditioned (explicit or implicit) decoupling

transformations which ensure the stability of the auxiliary

IVPs.

Chapter O contains a very brief review of direct methods which

we include for the sake of completeness.




In Chapter 1| we discuss the stability of IVPs, the conditioning
of LBVPs and the concept of dichotomy.We examine the reliability
of eigenvalues as indicators of IVP stahility and dichotomic
structure and in this connection kinematic similarity transform-
ations are introduced. The close relationship between well
conditioning of a LBVP and dichotomy is illustrated for the case
of separated BCs. Finally we explain what is meant by stable
decoupling transformations and introduce two important examples
of these viz. the Riccati and the continuous orthonormal.
Chapter 2 is devoted to ’‘shooting’ methods: single shooting,
multiple (parallel) shooting and stabilised marching. We justify
the stability of Conte’s re—orthonormalisat;on method by showing
how it can be regarded as a well conditioned discrete decoupling
transformation.

Chapter 3 deals with two of the main varianfs of continuous
orthonormalisation (the invariant imbedding method of Van Loon
and the double sweep method of Davey and Meyer) and examines the
relationship between them. The simple superposition method
suffers from the well known disadvantage that the homogeneous
solutions of the given differential system may lose their
independence. The methods of this Chapter seek to overcome this
drawback by finding an orthonormal set of solutions of

another differential system which span the same subspace as that

spanned by the solutions of the original system.
In Chapter 4 we look in detail at the Riccati method (including

both the ‘double sweep’ method and the invariant imbedding



technique) and we show how the disadvantage of possible
singularities in the Riccati solution may be overcome by a
reimbedding restart strategy. Also included is a description

of another method which is related to the Riccati method known
as the Compound Matrix method in which these singularities are
actually removed.

In Chapter 5 we look again at the Riccati and continuous ortho-
normalisation methods but this time from the slightly different
viewpoint of Babuska and Majer viz. the factorisation method in
which a set of conditions equivalent to the initial (final) BC
of the given LBVP is propagated forwards (backwards) across the
problem interval. Here the forward and backward sweeps are
independent in that each employs a different form of the same
decoupling transformation of which only part is used. The chief
advantage of this approach is that the computed errors in the
solved IVPs can (for a well conditioned LBVP) provide a meaning-
ful bound for the computed error in the LBVP solution.

Chapter &6 contains a description of a proposed error estimation
and iterative improvement method based upon multiple shooting.
We think that this method warrants further investigation and
research as it shows promise of being a novel and reliable
practical method of solving (ill conditioned) LBVPs.

Finally Appendices I, II and III and a reference list are

included at the end.




No attempt has been made in the text to distinguish typographic-—
ally between matrices and vectors and scalars, but whenever a
matrix or vector is introduced its dimensions are given :
(m,n) denotes a matrix with m rows and n columns. Also
references such as [6] refer to the reference list at the end,
ones like [(3-2] refer to the relevant section in Appendix I
whilst (5.3) denotes equation number 3 of Chapter 5.

All of the numerical results given in Chapter 6 and in
Appendices II and I1I were obtained in double precision
from programs especially written in Pascal using a Prospero
compiler (Pro Pascal iid 3.143) and run on a stand alone

RM Nimbus PC1 microcomputer.




CHAPTER O

DIRECT METHODS

As stated in the introduction, numerical methods for the
solution of two point BVPs with ODEs can be broadly
classified as either direct or indirect. In Chapters I to S
we deal in detail with indirect methods for linear BVPs with
separated BCs as this is really the focus of this thesis.
However, for the sake of completeness, we include here a brief
review of some of the main direct methods which are applicable
also to non-linear BVPs with general non-linear BCs.

Any n dimensional two point BVP definedvon the interval

a <= t <= b can be written as a system of n ODEs of the

form : x(t) = g(t, x(t) ) ' (0.1a)
together with n BCs : r( xta), x(bh) ) = 0 (0.1b)
where the solution x(t) (n,1) is assumed to be unique and

where g (n,1) and r (n,1) may be non-linear functions.

Direct methods can be subdivided into :

A) segmentation methods
B) series truncation methods

C) function space methods

with further sudivisions of each of these as outlined below.

A) Segmentation methods : In all of these the whole problem
interval I = [a,bl] is subdivided into N segments :

I¢ = [t ts 1 (1 <= j <= N) wher
J J-1' ) - ? *



a=t°<t €t Cesesnnat t = b. At nodes t. (0O <= j <= N)
\ 2 J

N

approximations °{j to the exact solution vectors xj of
the BVF are obtained as relations of the form :

\Vj( iy Styu) = O (0.2a)
(0 <= j <= N - 1). Together with the BCs :
r o s <. ) = O ‘ (0.2b)
these provide a system of (N + 1) equations for the
calculation of the (N + 1) unknown vectors oli (0 <= i <= N).
This system may be written : @0(. = 0 (0.3)
where o = [o<°,.......,-<N]T and _ § is, in general, a
non—-linear operator. Now system (0.3) will be stable if, for
any two values o' and <" of o¢ , corresponding to
other different segmentations we have :
“ < - ‘(1“ < s "éot'—- @‘-‘Ct" where s is
a constant independent of fhe segmentation. The success of all
of these methods depends on choosing operators \Q<j in
equation (0.2a) such that the ODEs (0.1a) are approximated
sufficiently well that system (0.3) is stable.
We can subdivide segmentation methods into :
(i) IVP methods (multiple and parallel shooting). These are

dealt with as indirect methods in Chapter 2.

(ii) Piecewise polynomial function (or collocation) methods.

Here each major subinterval Ij = Etj ’ tJ'J (1 <= j <= N)
-] .
is itself segmented by the insertion of M nodes tJ

]
(1 <= i <= M) s0 as to produce in total a grid of N(M + 1)



segments of [a,bl. Now on each major segment {J we define
an Mth order polynomial Yj(t) (ny1) by :

<
v.(t) = = 2 @ - t. (0. 4)
J Kgo K =1

for ¢ eI, (1<=j <= N), where d: (0 <= k <= M) are
constant (n,1) vectors to be determined. The piecewise functions

Yj(t) defined by (0.4) are required to satisfy the ODEs (O.1a)

J
at all of the sub—grid points ti i.e.

v.(t? ) - g , v.t2 )y = o (0.5)
Jd { i 4 ]
for 1 <= j <= N and 1 <= 1i <= M, where
M ) =)

volt) = % kc ¢ - t- ).. In addition, the v
J K.o K J—‘ J
functions must be continuous at the end of each major segment
i.e. wv.(t: ) - wv- (t: ) = 0 x (0.6)

J J-! SR A
for 2 <= j <= N, and also v.(a) and vN(b) must satisfy
the given BC (0.1b) i.e. r( v‘(t° ), %qttN )) = (g -y

Thus equations (0.3), (0.6) and (0.7) together provide N(M + 1)

vector equations from which the unknowns E; can be obtained,

J
where €, = vj(tJ ') are the required approximations to the
LBVP solution x(t) at the major nodes t. (1 <= j <= N).
J=1

(iii) Finite difference methods : Here each subinterval Ij =

[tJ. o tJ- 1] = AtJ is taken sufficiently small as to be

acceptable as the steplength of an implicit one-step integration
method such as the trapezoidal rule or the mid-point rule [(see
Lambert: 22]. For sxample, using the latter rule we get :

o = . = (bDt,).g FJ + t: o + ol

NEY J J J+) J J+
2 ) 2




which can be written in form (0.2a) as :

. ol - . . o<, ol -
J+1 °<J 9 ot thq J T+

Atj 2 ’ 2 (0.8)

= 0

(0 <= j <= N = 1). Together with the BC : r( o , o) =0
this gives us (N + 1) equations from which o = [ & guuauy O(NJT
-]

can be computed.

B) Series truncatioﬁ methods : In these methods the solution
x(t) of BVP (0.1) is expressed in the form of an infinite
series of terms of which a finite number is used in the
computation. The most common applicat;on employs (orthogonal)
Chebyshev polynomials. In this case, the preoblem interval
a<=t <=b must first be transformed to -1 <= g <=1 by
making the substitution t = 0.5((9 — a)s + b +a)Y in equations
(0.1a & b). The kth Chebyshev polynomial is defined as

TK(s) = cos(k coéﬂ s) (0.9)

which satisfies the recursion

T (8) =26 T (g8) - T (s) (0.10)
X+1 K K=)
and hence also
® [ J [ ]
+ -

Tk+fs) = 2(s TK(s) TK(s)} Tx—f" (0.11)
where T = ﬂ .

ds

By using recursions (0.10) and (0.11) we can thus express
any product of Chebyshev polynomials (or any derivative of a
Chebyshev polynomial) as a linear combination of Chebyshev

polynomials.

To apply the method we assume an approximate solution ol (w)



of BVP (0.1) of the form 1
N
od(s) = é Y (0.12)

Ke
where (SK (0 <= k°<= N) are constant (n,1) vectors to be
determined. ol (s) is now substituted into ODE (0.1a) and
each side is obtained as a linear combination of Chebyshev
polynomials up to order N. By equating coefficients of T“(s)
(1 <= k <= N) we can obtain N equations for ﬂ -
C (}o, ﬁ‘ gasssey pN]T Evaluating (0.12) at s = +1 and
substituting into BC <(0.1b) provides another equation for {3,
Hence we have (N + 1) equations from which ‘3 can be
computed. The required approximate solution ol(s) to BVP
(0.1) is then given by (0.12) for all s e‘ r-1,11.
Alternatively, in an analagous fashion to the above, we can
use trigonometric polynomials instéad of Chebyshev polynomials
by writing equation (0.12) in the form :

o

oL (8) = B, + Z{Aksin(ks) + By costks)}  (0.13)
Kmy

where now the problem interval [a,b]l has been transformed to

to, 27 3.

C) Function space methods : In these, we obtain an approximation

ol (t) to the solution x(t) of the BVP where o (t) is of
N

the form @ ol (t) = = w_(t) (0.14)
Kso0 kK

where uK(t) (0O <= k <= N) are a set of independent basis

functions. 8ince the Chebyshev polynomials are orthogonal over

[-1,1]) with respect to weight function Tty = 1

1 - t*



T\ (B, tht) gt = 0 if kgl

.

the basis
funct1nns wktt) are often taken to be TK(t) (assuming that
the problem interval has been transformed to (-1,13). The (n,l)
constant vectors ﬁK (O <= k <= N) are then determined so that

o£(t) minimises some measure of error. For example, in

e
collpocation methods, the error e(t) = o (£t) - g(t, e (t) )

in satisfying the given ODE (0.1a) is made zero at N distinct

points t (1 <= § <= N) in [-1,11 i.e.

o
ol (t: ) - t. ol (t ; 9 = 0 (0.16)
J g(J 9 J - N .
for 1 <= j <= N, where o< (b)) = 2 B T, (t) and
o -l
T (8 = K . sin(k.cos t) K=o
1 - ¢t . ol (t) i=ms also required

to satisfy the BC (0.1b) i.e. r{ «(-1), (1)) = ©
- , (0.17).

This provides us with a total of (N + 1) @squations for the

. . T .
determination of ﬂ = (30 gecaeny (SN] , from which the
solution o (t) to the BVP is obtained at any value of
t € [-1,1]1 by using (0.14).,

In the least squares method we proceed similarly to that

described above but in (0.16) we take M > N points ¢t. S0
as to obtain an overdetermined system (i.e. more than N + 1
equations) from which we compute the least squares solution.

In the Galerkin method, instead of condition (0.14) the error

e(t) is required to be orthogonal to wach of the first N

basis functions over (-1,1] i.e.



)
gd(t) " e(t)“. T (B gt = o0 (0.18)
-1
for O <=k <= N-1, and in addition (0.17) must be satisfied,

Also we may note the Ritz (finite element) method in which the

given BVP is replaced by an equivalent variational problem of
minimising a certain functional related to the problem. However,
the application of this method is limited to a certain class of
BVPs which can be variationally formulated.

(A detailed discussion of all of the foregoing methods in

sections A, B and C can be found in ([121).

All of the above direct methods have the disadvantage
of requiring the solution of a large systemzof equations. With
the possible exception of multiple shooting, this is avoided
in indirect methods by obtaining the BVP solution via forward
and backward integrations of IVPs aver the whole problem
interval [a,bl. However, as we shall see in the following

Chapters, this requires these methods to be theoretically

more convoluted.



CHAPTER 1

STABLE DECOUPLING TRANSFORMATIONS ( rC11, [73, [131)
Introduction
Any LBVP can be written in the form :
X(t) = A(EIx(E) + F(b) (1.1a)

Box(a) + B.x(b) = C ' (1.1b)

for a <= t <{(= b, where x (t) =d x(t), t is the real variable
dt

of integration, A is of dimension (n,n), x and f are (n,1), B,

and B. are constant (n,n) matrices and c is constant (n,1).

In [1-1]1 we show that any single nth order linear differential

equation can be written in form (1.1a). For such a LBVP as

(1.1), depending on the choice of BCs, there may be a unique
solution or no solution or an infinity of solutions as the

following (2,2) example shows :

Ex. 1: Take A = 01'],f=o,B.= 10},B8=(oo0]l,c=1o},
-1 0 00 1 0 <,

a=0. The general solution which satisfies the initial

BC [1 OJ].x(0) = 0 is x(t) = k |sin t} , where k
cos t

is an arbitrary constant. Thus if b =7 then the LBVP

has no solution if c #0 but an infinity of solutions

if cL = 0,

If, in (1.1b), Q,- O and B| is nonsingular (or viceversa) then
the LBVP reduces to an IVP as now all the BCs are given at one

point. If X(t) = [x'(t)lxt(t)l...... |xn (t)l] is a nonsingular

®
variable (n,n) matrix for which X, (t) = A(t)X. (t) for
' )




1 <=1i <<=n (i.e. for which i(t) = A(t)X(t) ) then we say that
X(t) is a fundamental solution of the system x(t) = A(t)x(t).
Now if X(t) is any such fundamental solution then LBVP (1.1)

has a unique solution iff matrix @ (n,n) is nonsingular where

Q= BOX(a) + B, X(b) (1.2).
In this case (which is assumed for ail LBVPs throughout this
thesis) the uniquugﬁnlution of (1.1) is given by [1-2] :

x(t) = Petre + LG(t,s)f(s) dw (1.3a)

-l
where $(t) = X(t)@ and B(t,s) is the (n,n) Green’s function

matrix defined by :
-l
B(t,s) = $t)B, Pa) F (=) for s <= t

-l
-®)B P (b) P (=) for & > t (1.3b).
(This result is really only of theoretical importance due to

the considerable cost of obtaining G(t,s) in practice.)

S8tability of IVPs

We turn now to the consideration of stability of IVPs because
the stability of the solution algorithms for LBVPs that we are
to examine will be measured by the stability of the associated
auxiliary IVPs. Consider the linear IVP i

% (t) = AEIx(L) (1.4a)
x(a) = c (1.4b)

for a <=t <=b. If x(t) = X(t)@ where & = X (a)c then

;(t) - i(t)- = A(t)X(t)e = A(t)Ix(t) and x(a) = X(a)e = c. Thus

the exact solution of (1.4) can be written x(t) = X(t)e where




X(t) is any fundamental solution of (1.4a). Now we say that

IVP (1.4) is stable (well conditioned) iff any small
perturbation in the data (i.e. in c or A(t)) does not produce a
correspondingly large perturbation in the value of x(t) for any
t € La,bl. More precisely, we say that a solution x(t) of
(1.4) iws (uniformly) stable over [a,bj iff, given any € > O
and any point d >= a, there exists a 5 > 0 such that any

other solution %(t) of (1.4a) which satisfies

W x ca —-&(d)“ <= 3 also satisfies " x () - Q(t),l <= e
for all d < t <= b. (Here and elsewhere, unless otherwise

stated, || - U denotes " .l' ).

-
Note that it is sufficient to consider a

homogeneous differential system such as (1.4a) since if

X = AGIX () + £(E) then z(t) = x(t) - §(t) satisfies

the homogeneous system E(t) = A(t)z (t).

We can quantify the degree of stability of IVP (1.4) by

defining a stability constant k where

k = sup " X(t)x-ka))l (1.5)
a{=t<{=b

Than x(t) = X(E)X (a)c mmm> l|x(t)|\ <= \\x(t)x°ua>","c|(

— T A (1.8)
for all t¢fa,bl. This provides us with a bound on the
solution in that if k is small the IVP (1.4) will be well
conditioned over fa,bl.

We now examine the reliability of the eigenvalues of the

system matrix A(t) as indicators of the stability of IVP (1.4).




First consider the case where A is constant with n distinct
eigenvalues. If )\; and 3,(n,1) are a corressponding eigen-
]
value and eigenvector pair of A then A9,= )‘3; « Now if
!

Ak At
i u?‘t

utt) = e’ g. then ult) = @ ‘>:3; - Ag. = Ault). Thus

X(t) = qD(t), where G = [3' Is‘ l......lsn ] (n,n) and
At NE \d .
D(t) = diag (e ' , e ' ,......, e ™ }) is a fundamental

solution of itt) = - A(t)x(t). Hence the exact solution of

-l
IVP (1.4) can be written x(t) = QD(t).EQD(a)J c or

-t

x(t) = QD(t).1 where 1 = [QD(a)] c. In expanded form this

becomes : -

&
x(t) = 1 g" 9. - (1.7)
. i '

121
o
where 1 = (1 ...ccaeeesl 1.
] "

We say that the IVP (1.4) is
forward stable over an arbitrary interval iff it is stable
for any choice of initial value ¢ (i.e. for any 1). From (1.7)
this will be so iff all the eigenvalues of A are such that

Re ()w) €0 (1 <=1i {(=m n) as in this case any forward

solution of x(t) = A x(t) must be a decay vector for
increasing t. However,if some of the eigenvalues are such that
Re ();) > 0 then forward solutions of (1.4) corresponding to
choices of 1 (i.e. of c) which exclude all the terms contain-
ing these positive exponentials will be forward decay vectors
whilst those corresponding to any other choice of c© will be
forward growth vectors. In this case, the solution space of the

asystem Xx(t) = A x(t) is split into a subspace of forward decay

x S\\]k{’ W\od;,ﬁ.‘c,&k.“cy\ o/‘ ‘(’LA ‘f‘c“ow{-\j v S r-ez\«\‘r-(ﬁ{ (ur
kL\Q Cufe \ul\ere A s Conf“qr\t Lox dees mobt lave a

ﬁul( Se b uﬁ " Lf«{aﬂ) (\A{rane\k' 4{)<mv2ckbuﬁ

|-




solutions and a subspace of forward growth solutions and the IVP
(1.4) is unstable for any choice of c. Thus for

the constant coefficient case the emigenvalues of A do provide

an accurate guide to the stability of the system x(t) = Ax(t)
over [a,bl. However, for the case where A(t) is variable we
shall see that this is not always s0. Before dealing with the
variable coefficient case though we digress to define what

we mean by a kinematic similarity transformation of a

differential system.

Kinematic similarity transformations and kinematic eigenvalues

Suppose that T(t) (n,n) is a nonsingular differentiable

transformation. Then the substitution :
x(£) = T(E)y(t) in X(t) = A(t)x(t) gives

TIVIE) + T y(t) = A T(E)y(t)  ===>

Yy = AT HOAMITE) -~ TUITH)IIy) or y(E) = Vit y(t)
where V(t) = T (£)CA(EIT(E) - T(E)). Now from (1.4) we have
Nacorll <= kel ===y I xcorll <= k el [lyca)]| cas xca) = e
a=> || Tl ko]l <=k ol | rall |y )

a==> lywll <= Tyl where % = ' cooll Il 7cadl] .

Thus if T(t) is well conditioned i.e. if cond T(t s) =

" f;t)"."T(S)" is not large for all ts €Ca,b] then the
condition constants k and k will be of the same order of
and

magnitude and we say that the systems y(t) = V(t)y(t)

[ ]
x(t) = A(t)x(t) are kinematically similar.




Morsover it can be shown that there exists a
(non—unique) orthogonal transformation T(t) for which V(t)
will be triangular. In this case, the diagonal elements (i.e.
the eigenvalues) of V(t) are called the kinematic eigenvalues

of A{(t) corresponding to T(t) : see [1-3].

Now it is shown in {12] that for a variable coefficient

syatem x(t) = A(t)x(t) the kinematic sigenvalues are
analagous to the eigenvalues for the case of a constant system
i.e. for a variable system it is the kinematic eigenvalues that

provide a true indication of the stability properties of IVP

(1.4).
. In fact, IVP (1.4)

will be stable over any interval (a,bl for forward
integration from any initial value x(a) iff the kinematic
eigonvalues {G(t),......., C.(t)} of Att) are such that V"C)pe‘[g,ta

REIS'O'(t) dt < O for 1 <=1i <= n. In this case, we say that

any particular solution of system x(t) = A(t)x(t) is a forward
decay vector or a backward growth vector over [a,bl. Also
analagous to the constant coefficient case if some of the
kinematic eigenvalues are such that Re J\G (t) dt > O then

the solution space of x(t) = At x (L) is split into a subspace
of forward decay vectors and one of forward growth vectors and
the IVP (1.4) is unstable for any value of c.

This leads us to the concept of exponential dichotomy but before
we introduce this we give an example which illustrates that we

cannot rely on the eigenvalues of a variable system matrix A(t)



to correctly indicate stability properties of an associated

IVP 1 (121

Ex 2 : Consider the IVP :

x(t) = A(tIn(t)

xia) = ¢ for a <=t <= b where
A(t) = (-0.25 + 0.75% cos(2t)) . (1 - 0.75% sin(2t))
(-1 - 0.75% sin(2t)) (—0.25 —~ 0.75% ros(2t))

for any given value of c.
A(t) has eigenvalues O0.25%(-1 + i I?) i.e.
both sigenvalues have negative real parts leading us perhaps to
expect that the IVP would be stable for any c. However, the

transformation x(t) = T(t)y(t) where T(t)=; cos(t) sin(t)
-sin(t) cos(t)

puts the system x(t) = A(t)x(t) into the form ;(t) = V(t)y(t)

whare V(t) = 0.5 0 o
0 - . Thus the kinematic eigenvalues of

A(t) corresponding to T(t) are 0.5 and -1, showing in fact
that the IVP is unstable for arbitrary c.

The sigenvalues of a variable system x(t) = A(EIx(t) will be
a good guide to stability properties only when A(t) varies
sufficiently slowly over [a,bl] to ensure that the eigenvalues
of A(t) remain sufficiently close to the kinematic eigenvalues
for all te Ca,bl). Therefore, when considering the stability

of a given IVP it is advisable to disregard eigenvalues and
instead to base the analysis on stability constants as in (1.3)
and (1.6) or on kinematic eigenvalues. The disadvantage of the

latter is that although they are theoretically important they




are of limited practical value due to the considerable cost of

explicitly determining them by an orthogonal transformation

deflation method (see [1-31).

Exponential dichotomies

We now introduce the (theoretically) important concept of
exponantial dichotomy which underlies the whole subject of
stability of decoupling algorithms for the solution of LBVPs.

We say that the differential system x(t) = A(t)x(t) has an

exponential dichotomy over [a,b]l with forward growth space of
dimension p and forward decay space of dimension q (= n—p) if the
spectrum (G"(t),........, G, (t)} of kinematic eigenvalues of

A(t) corresponding to some orthogonal transformation T(t) is

split such that : V &, p € [a/ 5]

RESC'..(t) dt > 0 for 1 <=1i <=p and

= <0 for (p+1) <= i <= n,
The solution space of system x(t) = A(tIx(L) is split into
two subspaces : a forward growth subspace §'(t) of dimension
p and a forward decay subspace Q (t) of dimension q where
p + q=n. In general any solution & (t) of x(t) = A(tIx(t)
will be a combination of solutions belonging to both §.(t)
and §1.(t)' Corresponding to any fundamental solution X(t) of

system X(t) = A(t)x(t) there will exist a constant (nyn)

non-singular matrix C such that

xttrc = Pty where Pt = td w1 Joa a.za



is a dichotomic fundamental solution. Such a fundamental
solution arises naturally in the constant coefficient case.
Suppose that A is constant with p positive eigenvalues and
g negative eigenvalues then the dimensions of the forward
growth and decay subspaces will be p and q respectively
i.e. >~‘- > 0 for 1 <=i <=p and

<0 for (p+1) <= 1i <= n.
Now if Si (n,1) is the value of the initial vector x(a)
corresponding to the choice of vector 1 in which all

components are zero except for li then, from (1.7), we have

».t

x: (t) = 1;9‘ g, » where x;(t) is the particular solution

vector corresponding to x(a) = s, - Thus x‘(t) will be growth
vectors for 1 <= i <= p and decay vectors for (p+1) <= i <=n

(for increasing t) and

o = t{f\bliim = [x.(‘).....xr(ﬂlxr(}_"\ ceeeeaox (8] will be a

dichotomic fundamental solution.

P\\te,rnql:'w_-zb)we can define a growth or decay vector for
increasing t over fa,bl] by means of norm ratios as follows
(i) gﬁ(t) is a growth vector if :

T-8s
s ceHll = e)( )
XL ¥ (1.8)
8!
for all s, € Ca,b) for which T >= s, where )\ and b’, are
are constants such that xl > 1 and XA > O and where it is

assumed that ). is not small and xl is not large.




IVPs defined over infinite intervals. Over a finite problem
interval [a,bl] definitions (1.8),(1.9),(1.10a) and (1.10b)
are imprecise because it is possible to find values of the
constants to satisfy these conditions for any given differential
system.

As stated earlier, when the system matrix A of the given ODE
is constant then the split of the spectrum of eigenvalues
between those with positive and those with negative real parts
accurately reflects the structure of the dichotomy i.e. the
dimensions of the growth and decay subspaces respectively. But
(analagous to the situation with IVP stability) if A(t) is
variable then its eigenvalues may not be a éood guide to
dichotomy structure. For this we need the kinematic eigenvalues
as the following example illustrates :[12]:

Ex 3 : Consider the (2,2) system x(t) = A(t)x(t) where

A(t) = () cos(2wt)) (- rs8in(2wt) + w) ]
(—)sin(2wt) - W) (-}cos(Zwt))

for a <=t <=b where ) and w are positive parameters.

The eigenvalues of A(t) are + N - w™ . Now
let x(t) = T(t)y(t) where T(t) = cos (wt) s2in(wt)
-sin(wt) cos(wt) .

The transformed system is ; = Vy (a <=t <= b) where

V = )\ 0O
o - and so the kinematic eigenvalues correspond-

ing to T(t) are :)s , which show that the dimensions of the

growth and decay subspaces are p = q = 1, The dichotomy does not

change with w but we see that as w increases the eigenvalues



of A(t) drift further away from the kinematic eigenvalues i.e.
only when A(t) is slowly varying do the eigenvalues provide a
good guide to the dichotomy. In fact, when w > ). the eigen-—

values become imaginary and give no information about the
dichotomy structure. (Note that although the eigenvalues of a

differential system matrix A(t) may vary under a kinematic

similarity transformation T(t), the structure of the dichotomy
as shown by the kinematic eigenvalues is invariant).

Not all differential systems possess a dichotomy in the sense
described above but we restrict most of our consideration in

this thesis to those that do because, as we shall see later, for

LBVPs with BCs of separated form there is a close relationship
between the existence of a dichotomy and the well conditioning

of the LBVP. But before we can deal with that, we must discuss
conditioning of LBWPs.

Conditioning of LBVPs

LBVF (1.1) is said to be well conditioned if any small perturb-
ation in A,f,B.,B. or c produces only a small corresponding

perturbation in the value of the exact solution x(t) of the

LBVP at any value of t ¢ [a,bl. As with IVPs, to quantify the

notion of well conditioning we define stability (conditioning)

constants k. and kz. by 13

k, = max I\ x e ™' |l (1.11a)
a<=t<=b
kz = (b - a) max ‘l B(t,s)\' (1.11b)

a<=t,s <= Db
whaere X{(t) is any fundamental solution of x(t) = Al(t)x(t) and

Q@ and B(t,s) are as given in (1.2) and (1.3b) respectively.

b= 12



Note that if X(t) and VY(t) are any two fundamental solutions
then X(t) = Y(t).C where C (n,n) is constant. Hence

X(t).Gr‘s X(t)[B X(a) + B.X(b);. = Y(t).C.[BoY(a)C + B‘Y(b)l'.:ll_.l
i.e. X(t).t:!"| = Y(t).Q:‘ where Q‘ = ByY(a) + B‘Y(b). This

shows that in (l1.11a) constant k‘ is independent of the choice

of fundamental solution X(t).

From (1.3a) we can bbtain the following bound on the sclution of

LBVP (1.1) 1

Hx g el +x le “‘ (1.12)
(See [121). -

Now consider the perturbed LBVP :

Wit) = A(EIwW(E) + £(t) + TF ()

B_w(a) + B w(b) = c + dc

where Yf(t) and Tc . are pérturbations in f(t) and

C. The difference between the solutions to the perturbed and

unperturbed problems at any value of t ¢ [a,bl is given by

e(t) = w(t) — x(t) where e(t) is the solution of the LBVP :
2(t) = Att)e(t) + TF(t)

B,e(a) + B e(b) = Yc.
Thus (1.12) implies that :

""' “ $ Kk, ‘BC“ + ko ”Sf U (1.13).

This shows that k = max { k',k } provides a bound on the

2
effect of perturbations in c© and f(t) on the solution x(t),

and so k may be taken to be the condition constant of LBVP
(1.1) i.e. if k is reasonably small then (1.1) will be well

conditioned. In [12] it is shown that the above argument is

[- 13



still valid whan perturbations also occur in A,B° and B'. It
is also shown that in fact constant kl is redundant i.e. that

kz small ====) kl small, so that in effect we can take kz
to be the condition constant of LBVP (1.1).
Note that the condition of a LBVP is not significantly altered
by a well conditioned kinematic similarity transformation, as
we now show.
If X%(t) = A(t)x(t) + F(£) then putting x(t) = T(t)y(t) gives
yt) = V(t)y(t) + g(t) where V(t) = T A T() - T and
g(t) = T (t)f(t). Thus from (1.12) we get :
||x “ {= k.||c“ + kz “T g "

<=k, flcll + kz\\T .ha . Hence
el Hx N <= k, Nl Nell « «, W'l e Do lle )
====> [ly)ll <= elell + ®lla- | where € ana © are
the condition constants of the transformed LéVP and

€ =k |+ ana © k, He'ces || |)r ||. hus 1+

max € ku'k; } is large then so will be max { ¢ , © . On the

other hand, this does also mean that the well conditioning of a
LBVP is preserved under a well conditioned kinematic similarity
transformation and we utilise this property later to justify
the stability of transformation decoupling algorithms.

The condition of a LBVP is important because if the problem is
not well conditioned (i.e. if k is unreasonably large) then
even if a stable algorithm is used to solve it we must still
expect large errors in the computed solution x(t). Fortunately,

most LBVPs which describe physically realistic situations are
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well conditioned. (For those that are not, in Chapter &6, we put
faorward an error estimation technique based on the multiple
shooting method (see Chapter 2)). Note that, in

practice, the condition constants k‘ and kz are of limited
value because for their determination we require a fundamental
solution X(t) of system X(t) = AtEIx(t) for t e La,bl :

if A) is ‘stiff’ (see Chapter 2) then it may not be

possible to find X(t) with sufficient accuracy.

Well conditioned LBVPs with separated_BCs

We saw earlier that for any dichotomic differential system

X(t) = AtIx(t) + F(t) it is the kinematic eigenvalues that
determine both the stability (condition) of an associated IVP
and also the structure of the dichotomy. This suggests that for
& LBVP there may be a connection between its condition and its
dichotomy. For the case where the LBVP has separated BCs this is

indeed true. We say that the BC (1.1b) are separated if B and

B. have the form :

- A-m - -
B° g and B' By n-m
Q ™ 0 ~ (1.14)

where B“' is (m,n) and Bb (n -~ m, n). This may seem to be

unduly restrictive but in fact, as shown below, any LBVP can be
re-written in separated form (though at the cost of doubling the
size of the problem).Therefore, any theoretical results obtained
for LBVPs with separated BCs are applicable also in the case of

general BCs. This is the justification for our concentration on
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the case of separated BCs throughout much of the remainder of
this thesis.

To convert the general LBVP (1.1) into separated form we define
an additional ODE z(t) = O (hy1) and let u(t) = IIx(t),z('t:)]“r

{2n,1). The combined ODE can now be written :

x () = At) o x(t)y| . + £(t)
2 (t) o o] .| zty 0 (1.14a)
i.e. uwu(t) = M(Blult) + h(t) where M(t) = lAat) o
0 0 and

hit) = |f() .
0 =« Now 2z(t) = 0 ====>_z(t) is constant for

all t € [a,bl, i.e. z(a)

z(b). The combined BCs can thus

be written:

(6] 0 x (a) + B' I“ »x(b) = c

B, -1z | o) "0 J.]lz) o

Thus the separated form of LBVP (1.1) is :

ult) = M(Bdult) + hit)

B, uta) + 'E. uth) = ¢ (1.14b)

_ RO

and B, = {B_|-I,1 and By = B | I 1. Note that

for a <=t <= b, where Eo = [

wio

LBVP (1.14b) is now size (2n,2n).

We can show, as follows, that the condition of the LBVP will
not be significantly altered by this conversion. Suppose the
condition constants of the original LBVP (1.1) are k and k

) 3
then from (1.12)

W I cx Well «n lle



T | PR | k WEl) + ' CI (1.14c)
Now flu f| =max cllx W, Wz | 3 where

Nz N = |gxta]| because zt¢ar =B x¢a.

fmax ¢ Jx W,.Wz W 2= 1x I then ¢rom (1.14c) :

Nu W ¢k Nell + . lln N and so LBVP (1.14b) also has

condition constants k. and k;'

tfmax ¢x Jl. Bz B3= Nz |l then from c1.140 s
R T T P EL A T

c===> | lllxcall ¢k 1B |LURH + w Uellin I

===> iz 0« MBlEN + e lmllin

====> Jlu || ¢ NE| +% |In ] where & =k {F-J81
and T<‘= k. [|B.l| are the condition constants of LBVP (1.14b).

Assume now that our original LBVP (1.1) has been written

in separated BC form i.e.
x(t) = AEIx (L) + f(t) (1.15a)

Box(a) + B‘x(b) = c (1.15b)

for a <=t <= b, where the size of the problem is (n,n) with

B = (o] nN-m and B = B Nnem
° \ -]
Ba ™ 0 M-
It is shown in [12] that in order for LBVP (1.15) to be well

conditioned it is necessary that the ODE (1.15a) is dichotomic.

Moreover, if it is given that the LBVP is well conditionad then

the row dimensions of B, and B, must respectively match the

dimensions of the decay and growth subspaces i.e. m = qQ and
n—-m=p, where q is the dimension of the decay subspace and

p that of the growth subspace,so that the exponentially forward
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decaying components in the solution are determined at the left
hand side (t = a) and the growing components at the right hand
side (t = b). This means that the well conditioning of the LBVP
(1.15) imposes natural constraints on the BCs as follows. If
u(t) is a solution of the homogeneous system x(t) = A(t)x(t)
for which B_ u(a) = O then this implies that u(t) ¢ span
§z(t) (where §t'(t) is as defined in (1.7a)) i.e. u(t)
must be either a significantly or moderately forward growing
solution. Similarly, if Bb u(b) = 0 then u(t) must be a
significantly or moderately forward decaying solution. We
utilise this result later to justify the stability of the
auxiliary IVPs obtained from a well conditioned decoupling
transformation. We may also note in this connection that if
LBVP (1.15) is well conditioned then the fundamental solution
Y(t) of x(t) = A(E)x(t) which satisfies :
B, Y(a) + B| Y(b) = I, will be dichotomic as in (1.7a) i.e.
if Y(@H) = ¢( Y‘(t) | Y‘(t) J then span Y.(t) and span Yu(t)
will be growth and decay subspaces respectively. This is so

because : B, Y(a) ~+ B‘ Y(b) = I, ====>

0 [Y.(l)l Yz(a)] + Bb [Yl(b)l Y;(b)] = I“ mmmx >

By 0
By Y, (b) By ¥, (b) = 1, 0
By Y, (a) B, Y, (a) 0 I =mmm)

2
Bb Yz(b) = 0 and B“ Y.(a) = 0.

We said marlier that if k. and kz. are the conditioning

constants of LBVP (1.15) (where k' and k are as defined
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in (1.11a,b)) then the LBVP is well conditioned if#f kL is
small. However, if we are given that the ODE (1.15a) is
dichotomic and also that k‘ is small then this implies that k;
is small [(12] i.e. that LBVP (1.15) is well conditioned.In

other words, for a LBVP with a dichotomic differential system

we can take k| as the conditioning constant. Note that a
forward IVP is a special case of a separated LBVP (1.15) for
which all n conditions are given at t = a i.e. m = n. This
re-affirms what we said earlier viz. that a well conditioned

dichotomic IVP will have a decay subspace of dimension n i.e.

all of its kinematic eigenvalues will be such that : \f o (3 € Ea)b}

Re g (t) dt < O for 1 <= 1i <= n.
'’

Stable decoupling transformations

We turn now to an explanation of what we mean by a stable
decoupling transformation of a LBVP and we introduce two
important examples of this. Assume that LBVP (1.15) is well

conditioned (i.e. that m = q) and partition :

r 1
A(t) = A, (£) A, (t)]’ sc= e, [P, x(t) = x,(t)]r
A, (1) A,, (D) g c, | x, (t)]e
and let BQ = C L° i Ll ¢ and Bb = £ La | L3 1?9 where
? 9 P %

L. and Lz are assumed to be non-singular. Now make the
kinematic similarity transformation x(t) = T(t)y(t) to aobtain

the transformed system : ;(t) = V(t)y(t) + g(t) where

l =19



V(t) = Tr%t){ A(L)T(t) - ;(t) } and g(t) = fd(t)f(t). Suppose
that T(t) = T|(t) | Tz(t) 1 can be chosen so as to make V(t)
block upper triangular i.e. so that Vz|(t) =0 for all ¢t.

(We give examples later of two such transformations). LBVP
(1.15) has thus been transformed into the LBVP :

y(t) = V(t)y(t) + g(t) : (1.16a)

By T(aly(a) + B'T(b)y(b) = c (1.16b)
for a <=t <= b.

Since (as shown earlier) a well conditioned kinematic
similarity transformation preserves the condition of a LBVP,

the assumption that LBVP (1.15) is well conditioned will ensure

that (1.16) is also.

The initial BC of LBVP (1.164) is By T(a)yta) = c

mm==d> [ ac T, (a | By Tz(g) ] y, a)| = €, -
yz(a)

z

Thus if T|(a) is chosen to satisfy : BQ,T|(‘) = 0 (1.17)
then we get B, T (a)y (a) =c  or y (a) = [B, tha)itt (1.19?%
This choice of T‘(a) to satisfy (1.17) is in fact the only
possible practical choice that will decouple the initial BC

of (1.16b) and so provide us with initial conditions (1.18)

for the integration of the forward sweep auxiliary IVP.
Fortunately, (1.17) also serves (in the case of a well
conditioned LBVP) to ensure that the auxiliary IVPs will both

be stable in their respective directions, as we now show.

From (1.16a), the ODE of the transformed LBVP are

MW TKQ v\or\-gi.\j;\qnl(‘\j o«}' k\cJ'rix ’Bq‘!‘z(q\ S 2nfured
\3) “\4 aj,\‘uw\t?"io»\ i 4 LBVP \Wes « uv\.'}\«f
go,u}'(‘ov\
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®
v, (t) v,, (t) V,q (B y, (0| + g, (&)

yz(t) ) sz(t) yz(t) g;(t)

i.e. ;‘(t) =V, By () +V (By () + g (t)  (1.19)
91(t) = Vo By )+ g (8) (1.20)

where IVP (1.20) is to be integrated forwards from initial

value (1.18) and then IVP (1.19) backwards from a value y.(b)

yet to be determined. The fact that LBVP (1.16) is well

conditioned implies that if y(t) is a solution of

y(t) = V(t)y(t) for which [B, T(a)lyta) = O (i.e. for which

Lo i Bth(‘)] y(a) = 0 ) then y(t) must be a forward growth

vector. This means that any vector of the form ( y|(t) s O )T

must be a forward growth vector, for any initial value y‘(a).

Now y(t) = V(t)y(t) ====>

§|(t) =V, By () + v‘txt)yt(ti N (1.21a)

Ql(t) = Vo (B Y, (B) (1.21b).

From (1.21b), if yl(a) = 0 then yL(t) = 0 for all t and so

(1.21a) becomes §‘(t) =V, By () (1.22).

Thus if y.(t) sy O ;' is a solution of ;(t) = V(t)y(t)

then y'(t) will be a solution of (1.22) and so if we integrate

this equation forwards from any initial value y'(a) the

solution y'(t) will be a forward growth vector of (1.22) i.e.

if we integrate (1.22) backwards starting from any initial value

y‘(b) then the solution yl(t) will be a decay vector in this

direction. Now the backward IVP (1.19) can be written :

;‘(t) - y“(t)y‘(t) + p‘(t) where p‘(t) = V‘t(t)yL(t) + q.(t)

and 50 we see that this IVP will be stable in the backward
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direction for any given initial value y.(b).
Later we justify the stability of the forward IVP (1.20) by
actually relating the condition constant C of this IVP to
the condition constants of the given LBVP (1.15).

Thus we see that a well conditioned transformation
T(t) for which Vz‘(t) = 0 for all 't and for which
Bq.T|(a) = 0 will split the spectrum of kinematic
eigenvalues of A(t) =0 that the p kinematic eigenvalues

of V () (p,p) will be such that : W < [ € [a}bj

8 -
Refc’.(t)dt)vo ({1 <=1 <=p)
AL
and the q kinematic eigenvalues of sz(t) {qQq,q) will be
such that :
Re S;c';u) dt < ©  (p+1<=i<=n) , thereby

ensuring the stability of the forward and backward sweep IVPs
(1.20) and (1.19) respectively.
We now introduce two important practical examples of continuous

(well conditioned) decoupling transformations viz. the Riccati

and the continuous orthonormal.

The Riccati transformation

This is defined by 1 T(t) = I’ 0

\Y
R(t) -
Iq' (1.23)
where R(t) (q,p) is the Riccati function matrix. Note that
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-1 '
T () = I

? o

-R(t) IZ . We now find the conditions imposed
on R(t) in order that T(t) will transform the given ODE
(1.15a) into ODE (i.16a) with V(t) upper block triangular and
how, in this case, V..(t), V'z(t) and Vzl(t) will each depend
on R(t).

-} o
From V() =T (t)(.A(t)T(t) = T<t) ¥} we obtain the Lyapunov

equation for T(t) wviz. T(t) = ALIT(t) - T(LIV((D) mE== )

0 o) = A"(t) A'ét) IP of- I' 0 V,, (&) Vi (8
R(t) o© Al‘(t) Azz(t) R(t) 1 R(t) I,’ o) Vu.(t)
====) 0 = A“(t) + A'z(t)R(t) - V"(t)

o= A.t(t) - V‘z(t)

a(t) = Az'(t) + A21(t)R(t) - RV, (t)

0= Atz(t) - R(t)V.L(t) - Vtt(t) .

Thus : V" (t) A"(t) + A‘t(t)R(t)

v‘l(t) =AM and sz(t) = Azz(t) - R(t)A.l(t).
We also see that R(t) must satisfy the Riccati equation :
R(t) = Az (t) + A _(BDIR(t) =~ R((t)A () - RA (t)R(t)
) 22 "
(1.24a)

the initial conditions for which are obtained from (1.17) viz.

BQ T' (a) = 0 ====) [ L° { L‘ ] [ I')] = 0 =mm=m )

R(a
-l
L, + LR(a) = 0 =s=e> R(a)= -~ L (1.24b).
! (] (-

From the transformation equation x(t) = T(t)y(t) we get :
x (O = I, o y|(t) ===> x (t) =y () (1.25a)
x‘u) R(t) It A O xl(t) = R(t)y' (t) + yg (t)
(1.25b)
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where (1.25b) is the Riccati transformation equation. Equation

-
(1.18) becomes : yz(a) = [:t L, § L.l b| (o\] €, _
I i.e,
. | t
(a) L c
y, (@) = . Sz (1.26)
-l
and g(t) = T(BXf(t) ===> g (t) = f (t) (1.27a)

9,8 = R (£) + £ (b)
‘ (1.27b) ,

At t = b, the final BC of (1.16b) is B T(bly(b) = c  ====>
tL L oalz 0 ytb) = ¢, ==mm)

2 3 P
R(b) I

A
LL, + LR 1L 3 [y, @)= c
yz(b) matemaz >

-l .
y.(b) = [ Lz + LbR(b’] L c - Ljyx(b) b | (1.28).

]
The forward ODE (1.20) now is :

v - YA (t) ¢ -
yl(t) = { Alz(t> R(t 2t > vty + fz(t) R(t)f%:téqg

and the backward ODE (1.19) is :

% + (t
v e = A ) AR 3y () + A by (1) + ({.é;;

The basic outline of the solution algorithm is therefore :
(i) integrate simultaneously forwards (from t = a to t = p)
ODEs (1.24a) and (1.29) using the initial conditions (1.24b)
and (1.26) respectively
(ii) integrate backwards (from t = b to t = a) ODE (1.30)
using initial condition (1.28).

(iii) obtain the solution x(t) of LBVP (1.15) from (1.25a,b).
The above describes the double sweap Riccati method one

disadvantage of which is that considerable storage capacity is
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required in the forward sweep. In practice, this is usually
avoided by using the invariant imbedding technique whereby all
the integrations are performed in one direction. However,this
does not overcome the main drawback of the Riccati method which
is that the solution R(t) of equation (i.24a,b) may become
unbounded at some value of t € [a,bl becauwse R,L’C>
Nas « Fo\e ot some Fo(.r\L’ en Ca,\é:l,

This is tantamount to saying that we

must keep transformation T(t) (as defined in (1.23)) well

conditioned.

In Chapter 4 we look again at the Riccati transformation
method in more detail and explain the operation of invariant
imbedding and how we can keep the Riccati transformation well
conditioned by the strategy of re-imbedding whenever necessary
to avoid ,'R(t)'l becoming fno large. In this connection, we
also describe another method (the Compound Matrix method [81])
which is related to the Riccati method and in which the
singularities of R(t) are removed.

We now demonstrate the stability of the Riccati transform-
ation by relating the condition number C_ of the forward
auxiliary equation (1.29,26) to the condition constants
of the given LBVP (1.15). Consider the case of inhomogensous
BC (1.15b) and assume that c, % 0 (this may require the
reversal of the direction of the problem). From (1.12) we have

\‘x “ $ k'llc" + kzllf " where kl and kz are the

condition constants of LBVP (1.15).
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The Riccati transformation is T(t) = IP o] _l
R(t) I
1

To show the importance of keeping T(t) well conditioned we
consider the case where R(t) is exponentially growing for

t >a or has a pole in [a,b].

Now y(t) = T (£)x(t) ====> Nyl <= I+ ““x I\
N ny(t)” <= ¢llrn]l o+ 13 |Ix (1.30a)
where R(b) is the value of R(t) at the final point t = b
unless R(t) has a pole in ([a,bl in which case R(b) is the
value of R(t) at the time of re-imbedding (see Chapter 4).
From (1.24b) and (1.26) respectively we have :

-y -\

R(a) = -L‘ L° and y (a) = L S,

Thus L Rea) = L, ====> |[L_ u <= “L | )|rearl|

S TP (R Py

el

Now suppose that the rate of growth of R{(t) is such that

| reo>l] + 1 <= B(“ Ll o+ 1], .|l
TN (1.30b)

where is a scalar > 1 i.e.

(
“R(b)“ +1 <= B@\R(l)\\ + ___1___} We |
“L|” (1.30c)

From (1.26) 1 Ly (a) = c, ===> “ cz“ <= “ L.“'“yz(a)”

==a) H <= || Y, (@) \l
o )
From (1.300) 3 |Rol| +1 <= (3(" L)l o+ 1} . n c,_“

el
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—— Hrol +1 <= 6[\|L°\l + 1]_ Iy, \
Now from (1.30a), since \\yz(t)\‘ {= l\y(t)" we have i

H Y, (t)“ <= gl L+ 1}.“yz (a)",{k. el +x_ Wle W>

i.e. \\y‘(t)n {= CI “ yz(a)“ where the condition
constant (3,I of the forward IVP is given by :
= Bl +13 ck el + K, e i3 .

Thus if kl and k& are small (i.e. the LBVP is well
conditioned) and ;é is small (i.e. the Riccati solution
remains small) then CI' will be small (i.e. the forward
auxiliary IVP will be well conditioned). Also the condition
number of transformation matrix T(b) is given by
cond Ty = ||t vl = 1 “.R(b)" >
Thus if || R(b)|| becomes large then so will both cond T(b)
and CI . This shows the importancé of keeping transformation

T(t) well conditioned.

The Continuous Orthonormal method

Ly 1
Here we obtain a transformation Tt =L Tl(t) { Tz(t) 1,

where Tl(t) is (n,p) and Tz(t) (n,qQ), which is orthonormal
for all t and for which the transformed system matrix V(t)
of (1.16a) will be block upper triangular. It can be shown that
in order for this to be so T‘(t) and IL(t) must satisfy ODEs
of the following form (see appendix [(1-4]) :

%l(t) = A(t)T‘(t) - T‘(t)C“(t) and

.  ;
T () = AV (T (&) + T (£)C. (&)
2 2 2 22
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where C_(t) (p,p) and Cz (t) (q,q) must be such that :
2

"
C..(t) + CT.
0 L XY

(t) = TT(t) { A(t) + AT(t) b Ti(t)
i

for 1 <=1i <= 2. Then V;i(t) = Cii(t) (1 <=14i <=2 ) and

vV (t)

. fT(t) { A(t) + AT(t) } Tt(t)' There are various
)

possibilities for Cii(t) of which the obvious one is

1
Cii(t) = T‘(t)A(t)T;(t). With this choice we get :

f‘(t) = { I“ - T|(t)TT(t) 3 A(t)T.(t) (1.31)
L4 T T
Tx(t) = { -I“ + I;(t)T;(t) } AT, (D) (1.32),

The initial conditions for equation (1.31) are obtained from
(1.17) viz. Bq'T|(a) =0 i.e. T'(al is chosen to be a unit
orthogonal column set such that [L‘l LlJ T|(a) = 0. Then the
initial condition for (1.32) is obtained by choosing Tz(a) to
be any unit orthogonal column set such that T:(a)T‘(a) =0
i.e. such that T{a) (n,n) is a unit orthogonal matrix.
Also gi(t) = T-ut)f(t) = f*(t)f(t) = T:(t)'  F )
T, (t) i.e.

T d
g‘(t) = T'(t)f(t) and gt(t) = Tz(t)f(t).
At t = b the final BC of (1.164b) is Bb T(b)y(b) = cl

=== C Bb T‘(b) | Bb Tz(b) ] y‘(b) = c‘

' yt(b)
==m==) y‘(b) = Bb T'(b) l ¢ c, - Bh'Tt(b)yz(b)J (1.33),
The forward IVP (1.20) thus becomes :
» T T
yttt) = { Tz(t)A(t)Tt(t) ) yz(t) + Tz(t)f(t) (1.34a)

-t

Yz“) = [ B‘ T‘(a) b Ce (1.34b)
and the backward IVP (1.019) is :
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. ad A\l T
y (£) = LT (OAMT (B)3y (1) + T (£)CAM) + A (03T (B)y, (B)
'

+ TR (1.35)
with y‘(b) as given in (1.33).
Thus the double sweep orthonormalisation algorithm would be :
(i) integrate simultaneously forwards (from t = a to t = b)

the ODEs (1.31), (1.32) and (1.34) from their respective initial

values

(ii) integrate backwards (from t = b to t = a) IVP (1.35)
(iii) obtain the solution x(t) of LBVP (1.13) from the trans-
formation equation x(t) = T{(t)y(t). -

However, as with the Riccati method, the above algorithm would
entail considerable storage of T(t) value; in the forward
sweep for use in the backward sweep, and so in practice we use
invariant imbedding to enable us to integrate all of the ODEs
in one direction. Also, in theory, matrix f(t), as obtained
from the solution of ODEs (1.31) and (1.32), should remain
unit orthogonal for all t. However, in practice, it has
been found that this may not always be so and that T(t) may
become ill conditioned before t = b is reached, particularly
if the integrations are being performed by a fixed-step Runge
Kutta integrator. To overcome this difficulty an adaptation
of equations (1.31) and (1.32), involving the ‘generalised
inverses’ of T‘ (t) and Tz(t)’ has been suggested [31. In
Chapter 3 we look in detail at the operation of invariant

imbedding orthonormalisation methods employing ‘generalised

inverses'.



We saw earlier that the choice of T'(a) to satisfy the
condition Bq'T|(a) =0 (1.17) enables us to obtain the
initial value of yz(a) for the forward sweep and is also
essential to ensure the stability of the auxiliary IVPs of
the method (whether Riccati or continuous orthonormalisation).
Note also that this condition implies (for a well conditioned
LBVP) that the columns of R (a) must be forward growth
vectors of the system x(t) = A(t)x(t) at t = a. We can
show further [1-5] that this means that span T'(t) will form
a basis for a forward growth subspace of X(t) = A(t)x(t) for

all t >= a. This is a characteristic property of a stable

decoupling transformation.

N.B. In Appendix I :

[1-1] : Expression of single nth. order ODE as a system of

simultaneous first order equations.

C1—-2] : Derivation of theoretical solution of LBVP in terms of

Green’'s function matrices.

£1-3] : Deflation method for calculation of kinematic eigen-
values of a system matrix.

£1-4] : Derivation of ODEs for T'(t) and Tz(t) in the
orthonormalisation method.

[1-5] : Characteristic property of stable decoupling

transformations.



CHAPTER 2

MULTIPLE GSHOOTING METHODS

Consider the well conditioned (n,n) LBVF :

;(t) = AltIx(t) + +£(t) {(2.1a)

Bg x(a) + B x() = c ‘ (2.1b)

for t e [a,bl, where B° = 0 P, B' = Bb Py c= c, |P
Ba % o % c, 9

and Bq is (q.n), Bh (p,n), c| (p,1), p + q = n.

Single shooting

The most straightforward method of attempting to solve this
LBVF is by reduced superposition (complementary function method)

whereby the solution x(t) is represented as a linear combin-

ation of solutions of associated IVPs as follows. Let :

'
x(t) = X (t) o + vo(t) (2.2)
'
where X (t) (hyp) is a part fundamental solution of
L]
x(t) = AB)x(t) (i.e. X'(t) = aw)x' () ) for which :
]
By X ta) = 0 (2.3)

vo(t) (n,1) is a particular solution of x(t) = AEIx(t) + F()
( i.e. Gott) = Alt)v (t) + (&) )  for which
B, V(& = ¢, (2.4)

and & 1is a constant (p,1) vector to be determined.

Then from (2.2): x(t) = X'(t). ¢ + v (t)

|
= A(B)IX (t) o« AV (b)) + ()



\
= A(t) { X (t).od + Vo (1) 3+ f(t)

= AttYx(t) + Ff(t), and so x(t)

satisfies ODE (2.1a). Also :
' T
Bo x(a) = Bo X (a)el + By, vot@ad = [ O, Ca 1 from (2.3,4)

and so x(t) also satisfies the initial BC of (2.1b). If x(t)

is to be the solution of LBVP (2.1) fhen it must also satisfy

the final BC i.e. 'Bb xtb) = ¢ = ====>
B, x' (b).el + B, vgib) = ¢  ====>
¢ By x' () 3 = €, - B, vg(b) ===> Me = d (2.5)
where M (p,p) =B x' by and d (p,1) = €, ~ By vg(b).

Therefore, since x'(t) and Vo (t) can be computed by forward
integration from t = a to t =b of the homogeneous and
inhomogeneous system from initial conditions satisfying (2.3)
and (2.4) respectively, in theory, vector « can be found by
solving the linear system (2.5) and hence the solution x(t)
of the (BVP obtained for all t ¢ [a,b]l from equation (2.2).
In practice, however, if system (2.1a) is ‘stiff’ (i.e. if
the kinematic eigenvalues of A(t) are widely separated in
real part) then as these forward integrations proceed the
columns of X.(t) may gradually lose their independence and
also vector vo(t) may become dependent on span X'(t). This
would cause linear system (2.5) to be ill conditioned with
consequent loss in accuracy of the calculated value of o .

Moreover, further errors in the computed value of solution x(t)

may be caused by cancellation errors arising when x(t) is



obtained from equation (2.2) due to large mod values in the
calculated components of X'(t) and vo(t)'

Note that these difficulties stem not from the condition of the
given LBVP (2.1) but from the fact that the dichotomy of A(t)
is such that system x(t) = A(t)x(t) possesses rapidly
(forward) growing and decaying solutions which cause the IVPs
of the method to be ill conditioned. (If we reverse the
statement of the problem i.e. solve from t = b to t = a

we will encounter the same difficulties due to the forward
decay vectors which will grow rapidly for decreasing values

of t). It was the need to overcome these basic difficulties

of the single shooting method that led to the development of
multiple (parallel) shooting and stabilised marching techniques
such as Conte’s reorthonormalisation method (which we discuss in
this Chapter) and also to the Riccati transformation and
continuous reorthonormalisation methods (which we deal with in
later Chapters). As we shall see, the success of all of these

methods depends on their ability to produce well conditioned

IVPs (or their equivalent).

Note that the single shooting method described above employs

reduced superposition requiring only (p + 1) forward

integrations. Alternatively, we could use full superposition
(variation of parameters method) in which we express the

solution vector x(t) in the form :

x(t) = X(t), o + vc(t) (2.86)

where now X(t) (n,n) and Vo(t’ (n,1) are any fundamental



solution and any particular solution respectively of systems
%x(t) = A(t)x(t) and ;(t) = Alt)x(t) + f(t) and oL is
now a constant (n,1) vector to be determined. In this case,

from BC (2.1b) we get :

B {X(a)kX + v _(a) 3} + B { X(Mb)e« + v (b)) > = ¢
o . o L] (]
====) Q ol = x . (2.7)
where & (n,n) = B, X(a) + B‘ X (b) and
¥in,1) = ¢ - B, vg(B) -~ B, v, (a) .

@ and ¥ are obtained by solving (n + 1) IVPs and hence <<
can (in theory) be found from (2.7) and then x(t) from (2.6).
Obviously, the same drawbacks apply here as in the reduced
superposition method and (n - p) more IVPs hust be solved. Full
superposition is necessary however when the BCs (2.1b) are not
separated.

Although any independent initial conditioné can be used for the

] .
X(t) = A)IX(t) and vo(t) = A(t)va(t) + £(t) IVPs

it is
usual to employ the standard conditions : X(a) = Iﬂ and
Vo (@) = 0 in which case @ and ¥ simplify to :
@=B, + B Xtb), ¥ =c - B v (b) and ol = x(a).

Multiple (parallel) shooting

We now turn to multiple shooting in which the range [a,bl] of
the LBVP is divided into subintervals according to some
criterion (see later) and then in each subinterval separately

we use single shooting to find the general solution which



®
satistfies the ODE w(t) = A(bIx(t) + £F(t) Ffor all t in that

subinterval. These subinterval solutions are then
‘matched up’ at each of the internal nodes and also with the
given initial and terminal values prescribed by the BC. Thus
we obtain the overall solution vector x(t) of the LBVP which
is continuous over C([a,bl and which satisfies both the given
ODE x(t) = A(t)x(t) + f(t) , for all t € [a,bl, and the BC.
More precisely, the interval [a,bl] is subdivided into N
subintervals by the insertion of (N - 1) internal nodes thus :
a=¢t < t < tz € taensnsassX t“_' <~tN = b. Then in the

° !
standard multiple shooting variant we compute for each

subinterval [t; ’tiqq b | (0 <=1i <= N —-1) the fundamental
solution X; (t) for which X; (ti ) = I'\ and the particular
solution v. (t) for which v, (t., ) = 0. Using full super-

position the corresponding subinterval general solution vectors

X« () are : x; (t)y = Xi (t) o + v, (£) (2.8)
for t e [t; ,t;+‘ ] where .‘i (n,1) (0 <=1i <= N - 1) are

constant (n,1) vectors to be determined.

For continuity at the internal nodes ti (1 <= i <= N - 1)

we must have :

) = M. (t. ) for 0 <=1 <= N -2

X. ( ) T4

A
=== . ) + [ [] ) = x- t' [ . .
> X. (tn-&l).‘i v.(t"” l+|( I-H).‘o-o-l + Vl+l (t|+l)

=== Xi (t:+|)“.. + V‘ (ti+| ) = ““*l (2.9).
Also to satisfy the given BC (Z2.1b) we must have :

B° X° (t° ) + B. X N-i (t~ ) = c ===

+ =
Bgoc, + B, (X  (t,) o v (t ) > = ¢




=z=m=: > BOO(,° + B\“N = ¢ (2.10)

= + ).
where e(N XN_‘ ('cN )-(N_‘ VN-t (tN

Equations (2.9) and (2.10) together can be written in the form :

Z oL = d (2.11)
ol T ¥ 1)
where ol = [.C°’o(..--.--.., N]., ( (N + 13n,
‘ -
d = [, v, (t'),.....vN_‘(tN)] ( {IN + 13n, 1) _
B, B'
-X (t|) Ih
zZ = =X (t ) I
] E [

- I
L Xu-p(tN) "

( N + 13n, <N +13n ). | -

The above set of linear multiple shooting equations can now
be solved by BGaussian elimination to obtain vector & . Hence

the solution x(t) of the LBVP is computed piecewise from

equation (2.8).
The success of the method can depend very much

on the number and positions of the internal nodes (particularly

if a fixed step Runge Kutta integrator is used to solve the IVPs

for the subinterwval fundamental and particular solutions).If

the nodes are chosen such that \\ X; (t - )\\ = I

14 -
(0 <= i <= N -1 ) then it can be shown [4] that :




cond 2 = || z\\u z"u <= (k+13 Kk + k, N

. ) 2

—

b - a
where k' and k1 are the condition constants of the given

LBVP. Thus for a well conditioned problem the multiple shooting
matrix 7 will also be well conditioned provided that the nodes
t; (1 <= i <= N —-1) are inserted frequently enough to limit
sufficiently the growth of the fundamental solutions Xi (t)

{0 <=1 <= N ~1). Unfortunately, for a LBVP for which the
system matrix A(t) of the ODE is ‘stiff’ this could mean

that a large number of subintervals may be required resulting

in a very large linear system (2.11) to be ;olved, particularly
if the problem size n is large also. It was this weakness of
the multiple shooting method with regard to ‘stiff’ problems
that motivated interest in the devélopment pf the Riccati

and continuous orthonormalisation methods (to be discussed in
later Chapters). An advantage of multiple shooting over the
latter methods, however, is that it is also directly
applicable in the case where the BC are not separated .
We said earlier in Chapter 1 that the success of any method

in solving a LBVP with a dichotomic ODE depended on the
ability of the method to produce well conditioned IVPs (or
their equivalent) by correctly decoupling the (forward) growth
components in the fundamental solutions from the decay
components. In the case of the multiple shooting method it is

not immediately obvious as to how this is achieved, because the

decoupling of the differential system occurs implicitly as the

2 -7




multiple shooting equations Z e = d (2.11) are solved by

the Gaussian elimination process. As evidence of this it is
%*®

shown in [46] that for the case where no row interchanges are

allowed in the Gauss process the latter is equivalent to the

Riccati (single imbedding) transformation method in that as the
Bausssian elimination process reduces matrix 2Z +to upper
triangular form this automatically generates the Riccati
solution R(t) down the leading diagonal and so the process is
equivalent to the forward integration of this IVP. This might
perhaps lead us to expect that (by analogy) the operation of the
Baussian elimination process, where full row interchanges are
allowed so as to employ the max modulus elehent in each column
as pivot, would be equivalent to the Riccati method where a re—
imbedding (see Chapter 4) occurs at each of the multiple

shooting nodes t; (1 <=1 <= N -1 ). However, how the Gauss

process achieves this in this case (if indeed it does) has not

vyet been clearly established.

Stabilised marching

Multiple shooting methods can be split into two types : those

which employ ‘parallel’ shooting and those which are examples
of stabilised marching. The standard multiple shooting method
that we described in the previous section is an example of

‘parallel’ shooting because for 1 <= i <= n the fundamental

solution values X. '(t; ) and X. (t.)
[ 1 |}

- are independent as

% Rt£er5 0'\“) éo PLQ Cafe °'P Lo c\rae{ol RC wv('L é"'\e

N\M\EJTLQ S’Kuo&'i,\j make x i rlfjktlj cli'{'f'&renk ﬁom\
Feny thak on ’F“J—? 2-06.
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also are the particular solution values v; (t. ) and

v,

(4
Rl

(t *). In fact, X- (. ) =1 and v. (t. ) =0 for
' ' \ n

1 <=1 <=N~-1 and so the integrations for all N sub-

intervals could be performed simultaneously ( i.e. 1in ;
‘parallel ') if a pre-selected number of equal subintervals was ?
used. By contrast, in all of the stabilised marching methods the
initial values of X; (t; ) and (in some cases) of v, (t; )

at the beginning of each subinterval are derived from the
corresponding values X; |(t; ) and v, (t; )y respectively,

as we now explain.

The following is a description of a stabilised marching method
known as discrete re—-orthonormalisation (using full super-
position). We first describe the algorithm and then we show how
it can be regarded as an example of a stable decoupling trans-
formation. As with parallei shooting we subdivide the problem
range [(a,bl] into N subintervals where the nodes are inserted

according to some criterion (see later). For each subinterval

[t; ,t;*ﬂ] (0 <=1 <= N - 1) we obtain the fundamental solution

X; (t) of system % (t) = Alt)x(t) where the initial value of
} Y
x‘ (t. ) = [X: (t; Y1 X, (t} Y] is an orthonormal matrix
\

obtained by a QU decomposition using the Gram Schmidt process

viz. X: |(t; ) = X; (t; Y . where rt1 is an upper
- 3 ]

triangular (n,n) matrix (1 <=1i <= N - 1). At t = t = a the
©

]
initial value X° (t° ) is obtained by choosing X (t° ) to
°
'
be a unit orthogonal column set such that B X (t ) = O.
a



Then X° (t ) 1is any unit orthogonal column set satisfying

°
L B \ . .
[X° (t° ¥l . [X° (t° Yl = 0 i.e. such that X° (t° ) is an
orthonormal matrix. Alsp for each subinterval [t; ,t;*‘]
we obtain the particular solution vi (t) of system

;(t) = A(t)x(t) + f(t) Ffor which v‘ (t; Yy = 0 for

0<=1i1 <= N - 1.
The'node t;+' is inserted such that

“ X. (t.+|)\\ < k where Kk is sufficiently small to ensure
\ '

that the columns of X; (t;+') are still linearly independent.

This could be done by checking on the value of cond X; (t) =

-’
|‘X; (t)”'"Xi (t)” at each step. Alternatively, Mattheij and

Staariqﬁ'fdvocate using the growth of the particular solution
1R}

vi (t) as a guide to the growth of the fundamental solution

when using a variable step Runge Kutta integrator (such as
RKF 45) a node is inserted every pth step of the integration of

v; (t), where p is a pre—-selected small number. These nodes are

then also used as the restart points of the integration of

X.(t),
[}

By (full) superposition the spolution x(t) of the LBVP on sub-
interval [t, ,t. 1 can be written
) T d)

(t)..¢; + v; (t), where of{. is a constant (n,1)
\

vector (0 <= i <= N - 1). Continuity of x(t) at node t.

x, (t) = X.
' '

' 4)
demands that : x (ti+|) = x;+‘(t;*‘) ====3
X, (t‘-+‘)o(‘. - xi+.(ti+|)°(-'+| = v, e ) (2.12)
for O <=1i <= N - 2, TheBCare:Boxo(t°)+B|x_(tN)=
====> B X, (kg0 e+ B X (t ) <. ¥ (2.13)



where X =c - B' v (t ). Equations (2.12,13) can be

N-y N
combined into a set of Nn linear equations: Ms = w (2.148)
where __
X (t ) ~X () ]
o (I
X () -X_(t)
Vo2 2 2
M=
xu.étu-? —XN-JtN_Q
B.xo(t.) B'XN }tN)
8 <
ot o T
s = [ °,°ﬂ,.......‘ Nop 1 and -

T
w = t—va(t'),"V'(t‘-),......-..-,—VN-:tN-z, Y ]-

I1f, in (2.14), we now pre-multiply each row:block except the
-l -
last by —[X; (t; )1 = -[X; (ti )| (1 <= i <= N - 1)

this converts M into .ﬁ where

= | ]
-r I |
1] n
T,
) "
M=
-l o
L~B°X°(t,) B'XN_stN)
. — T -
and w into w = Eg‘ ,gzh,.........,gN", ¥ 1 where

T
g: = [X; (t‘ ¥l . vi (t: ). Thus the new linear system

corresponding to (2.14) is Me=Tw (2.19).



Now B X t )
(-] [ -] (-

]
—
w o
b

r~

b4

o-

-
(]

i
o
o

l
B‘ X° (t° } = 0 by the initial choice

Also B X, (£ ) = [ B X )

0

X  (t )1
because
of Xo(to).
= L H
0 0] where

L is (p,p) and H (p,q).Thus from the last (i.e. Nth) row block

of (2.15) we get : B, X (t )o(o +

1]
=== L I H ] °<N-l = W~ _
a
N=)
' -
€o |Bq X (to )1 o(. = w~
3
t > -l s
s===) -(° —IZB«X° (t° )].w~
<' ='W - H «*
N=} N Ne)

Now the first (N - 1) row blocks of

recursively as :

B X (trw)'.<N = w

] Ne) -] N

(p,1)
and

(q,1) where ';.. = ’;o';

. -?

(|< 1N Wi

(2. 16a)
] (2.16b).

(2.15) can be written

- “' + °( = W mERED °< = R ‘(' v
r:-u ! i+ e > i+ r:-u ! ToYie for
0 <=1i <=2 N - 2, where r? is upper triangular. Hence 1
FY)
] ) -
el ™ 1B FH=<:| * Wi
0 G.|le® w? here
< 1 At i J "
{“ = |[E- F.
' '
14 o] 6.
\ , !
=y o= B, o+ FLet + W (2.17a)
' ' ' ) ' (K
LT = B, ol™ + W (2.17b).
Y ' i V)
Iteration (2.17b) is now solved from i =0 to i = N - 2
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2
starting from initial condition (2.16a) and the values of OC‘

k3

(0 <K= i <= N—=|}) are stored. Using the value of °(N_‘ in
'
(2.16b) enables us to find ©¢_, = .Equation (2.17a) is
! - '
re-written as: ¢, = [E, 1. [, - F o - w, 1 (2.18)
[} K 1 ' ’ )

which can be solved backwards from i = N-2 to i =20 to
]
obtain the values °4i . Thus we have computed the vectors .

[}
(0 <= i (= N - 1) from which we can get the solution x(t) of

the LBVP in each subinterval [t; ,t;_+'] by using

x;(t) = Xi(t)eti + v;(t).

To demonstrate the stability of the recursions (2.17a & b) in

their respective directions we define the unit orthogonal

transformation T(t; ) = X; (ti ) of the LBVP (2.1) at each node
i.e. x; (t; ) = T(t; ).y: (t; ) where Y; (t; ) is the
solution vector of the transformed LBVP. In this case,

T .
y: (€. ) =T (- )ox: (t.) = [X¢(t, 2] . x+« (. )
' ' ' t ' \ 3 '

T
= [X(t., )] . X (. )ot. + wv. (t.)]
‘ ' ' ' ' i

=== y; (t; ) = OC; since v; (t; ) =0 (0 (=i <= N).

Now 1

(i) the original LBVP (2.1) is assumed to be well conditioned
(ii) the transformation X; (t; ) is well conditioned for all
t; because we make X; (t; ) wunit orthogonal

(iii) at t =t the condition BQ}XL (ty ) = 0 ensures that
the first p columns of X° (ty ) will form a basis for a

(foward) growth space of the dichotomy of A(t) and hence this

'
will be true for X° (t) for all t ¢ [t ,t‘ ]

2 -13



(iv) at each node t: (1 <= i <=« N -1) we parform a QU

decomposition of the fundamental solution viz.

X. (k- ) =X. .00 7 h AW tri

. . = X. . is upper triang-
N . . i ‘ where : PP 9
ular. This means that each of the first p columns of X; (t, )

is a linear combination of the first p columns of X, .(t; )

i ! .
and so span X‘ (t - ) = apan Xi .(t- ) i.e. the (forward) growth

space basis of X

(t; ) is preserved for all t;
{1 <= i <= N - 1) and hence for all t € (a,bl.

Facts (i) to (iv) above imply that the transformed LBVP must

also be well conditioned. Now since vy. (t‘ ) = -L; this means
'

that the recursions (2.17a & b) must be stable in their

respective directions because they are the backward and forward

sweeps of the decoupled system of the transformed LBVP (compare

equations (1.19 & 20 ) of Chapter 1).

Conte’s Re-orthonormalisation method [19] :

This is a more economical version of the algorithm described
in the previous section which employs reduced superposition and
thereby eliminates the forward iteration (2.17b). Let the

fundamental solution X(t) (n,n) be partioned [X' ()1 X (1)1

)
of which we consider here only X (t). The part fundamental

] ] ]
solution X, (t) for which B‘ )(o (tyg ) = 0 (where x° (to)
is a unit orthogonal column set) is obtained by forward integ-
ration of the homogeneous system ;(t) = A{t)x(t).Simultanecusly

we obtain a particular solution Vo (t) corresponding to

2 - 1y




By Vo (t, ) = €, by forward integration of system x(t) =

A(t)x(t) + f(t). As in the previous section, a node t| is

\ . .
inserted before the columns of X° (t) lose their independence

'
and at t = t' we re—orthonormalise x° (t

'
decomposition viz. X° (t' ) = X. (t. ).D° where D_ (p,p)

) by means of a QU

is the upper triangular orthonormalisation matrix and where

Xl (tl ) now has unit orthogonal columns. Also at t = tl we

obtain the orthogonal complamant v, (t. ) of Vo (tl ) from 1

] ]
v (B ) mov_(E ) =X (£t D.[X (£ 3. v (t ) so that
) ) °© ! \ 1 ) 1 © 1
Vi (t' ) is now orthogonal to every column of X: (t. ). We

continue thus inserting nodes t; (1 <=3 <= N - 1) until

tN = b is reached where a final re-orthonormalisation occurs
' '
to convert X (t ) into XN (tN ) and Vv (t )

into
N} ~N N={ N

v (t ). At each node ti (1 <= i <= N)

the orthonormalis-—
N N _
ation matrices Di (pyp) are defined by :
' '
X (¢, )Yy=X_ (¢, )).D. (0 <=i <= N - {) where X, 6 (¢, )
: el Tl G4l '

are the re-orthonormalised part fundamental solutions.

Now, by reduced superposition, in subinterval [t. ,t' 1 the

]
solution vector Xg (B) = X° (t),{!o + v (t) (where (3,

is constant (p,1)) satisfies the ODE (2.1a) of the given LBVP

and also the initial BC : Bc %X

° (a) = c_ . Thus the solution
2

vector x(t) will be piecewise continuous of the form :

]
x, () = X, (t),f3. + v. (t) (0O <= i <= N - 1) (2.18)
' ' ' '

where x, (t) is the solution in subinterval (t. ,t 2+.]'
[} [}

if the continuity conditions : * (t‘+|) - xi+4(ti+

satisfied at the nodes t; (1 <= i <= N - 1). The latter

l) are
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implies (see [2-11) that :
! -

RBivv= DB3; + DX, SR D01 v
which can be written :
-1 -1 ' v
B, = 07.fB, - D, DX, Eiy 03 - vy gD (2.19).
Now from the final BC of (2.1b) we have Bb x(b) = c’ ====)
B, X,k IBy = €, - B, v, (t, )  ,from which the value

of (3N can be obtained. Hence iteration (2.19) can be solved
backwards for pi (0O <= i <= N - 1) starting from this value
of {3N . The subinterval solution vectors X, {t), which
constitute the solution x(t) of the-given LBVP, are now
obtained from (2.18). The backward iteration (2.19) corresponds

to (2.17a) of the previous section and so its stability is

ensured by the same argument as put forward there.

In Appendix I :

[2-1] : Backward iteration of Conte’s method.
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CHAPTER 3
CONTINUOUS ORTHONORMALISATION METHODS

As we have seen in Chapter 2, if the dichotomy of system
x{t) = A(t)x(t) 1is such that A(t) has kinematic eigenvalues
(corresponding to some orthogonal transformation T(t) ) which
are large in modulus value, then all of the multiple shooting
and stabilised marching methods suffer from the drawback that
frequent restarts may be necessary to avoid loss of independence
of the columns of fundamental solutions. On the other hand, as
we shall see in Chapter 4, if A(t) 1is rapidly varying, causing
rotational activity of the columns of the fﬁndamental solutions,
then the Riccati method may require frequent re-imbeddings to
prevent the Riccati solution from Secoming unbounded in C[a,bl.
To overcome both of these drawbacks was the‘main motivation for
the development of the continuous orthonormalisation methods.
There are two principal variants of this method: one due largely
to the work of Davey (31, Meyer (4], Bakhvalov [24] and Drury
£251, and the other to Van Loon [17] and Mattheij [101. The
latter variation is obviously a decoupling transformation
method which employs invariant imbedding whilst the Davey/Meyer
method is a double sweep method. We describe the Van Loon method
and then, by establishing relationships between this method and
that of Davey/Meyer, we show how the latter method also fits

into the framework of a well conditioned decoupling transform-—

ation method.
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Method of Van Loon et al. [17,10] :

The given LBVP is (1.15) which is assumed to be well conditioned
i.e. with m = q (the dimension of the decay subspace of the
dichotomy of system x(t) = A(tIx(t) for increasing t). As
outlined in Chapter 1, a continuous orthonormal transformation
T(t) = [T.(t)l Tz (t)] is sought which puts the system (1.15a)
into upper block triangular form. This will be so i1if Tl(t)

and th(t) satisfy the ODEs (see ([1-4]) :

- T
T () = [ - TUBTT (O IAMT () (3.1)
] -
T (&) = [-I. + T_. ()T wr1.a¥
L (B = C-Ig y . 1.AT (0T (b))
= T ()T T (YA (B)T_ (&) : (3.2).
[ ] [} k B
The transformed system matrix of (1.15a) is then :
- v T
Vit) = T, (DAT (8 T At ¢ AT (1T, (D)
‘ T,
0 T, (AT, ()

In Chapter 1 we described the double sweep orthonormalisation
method which we showed to be stable but very costly as regards
storage. Here we show how to use invariant imbedding to enable
us to integrate all the ODEs in one direction, which avoids

having to store values of T(t) in the forward sweep for

subsequent use in the backward sweep. By superposition, the
general solution of ;(t) = Vt)y(t) + g(t) (1l.1é6a) can

be written : y(t) = Y(t)y(a) + h(t) (3.3)

where Y(t) is the fundamental solution of Q(t) = V(t)y(t)

for which Y(a) = I“ and h(t) 1is the particular solution

of y(t) = Vit)y(t) + g(t® for which h(a) = 0. Since



[
VZ\ (t) = 0 for all t and VY((t) = VH)IY(t) we have

Yz‘(t) = sz(t)Yz'(t) where Yz|(a) = 0. Hence Y;.(t) = Q

for all t, and so, from (3.3) we have :

+ + (3.4a)
y, (8) =Y By (&) + Y (ty (a) + h (B a

-4b).
yz(t) Yzz(t)yz(a) + h‘(t) (3.4b

Also from VY(t) = V(E)Y(t) we get the IVPs :

<o

||(t) = V|'(t)Y‘.(t), Y“ (a) = Ir, (3.5
? (t) =V (B)Y (t) +V_ ()Y, (b)), Y (a) =0 (3.6)
12 " k% 12 22 1
Yzz(t) = sz(t)ya;(t)’ Yaz(a) = Ii— (3.7)
L
and from h{(t) = V(B)Xh(t) + g(t) we get :
[ ]
h‘(t) = V.‘(t)hi(t) + V'z(t)h‘(t) + gl(t) n (3.8a)
hz(t) = Vz;(t)hz(t) + gtft) (3.8b).

However, of the above IVPs, (3.5), (3.6) and (3.8a) would all
be unstable for forward integration because all of the

kinematic eigenvalues of V“ (t) (p,yp) are such that

Re S O}(t) dt > 0 (1 <=1 <= p). To obtain only stable IVPs,
o

Van Loon [17] therefore defines R
-}
by s R, (£) =Y (), R_(t) = -y~ (t)y _«(t) and also 1 (t)
" 1} I ] [k B ]

(p,1) by ll(t) =

“(t) {(p,p) and R.z(t) (p,q)

-\
-Y“ (t)h.(t), where the non—-singularity of

Y" (t) is ensured by (3.5). Using these, (3.4a) becomes :

(a) = R (t) (t) + R (t) + .9
y' a " y' ' yz(a) 1.(t) (3.9)
which is known as the recovery transformation equation. We can

now also obtain [3-1] the following IVPs for R"(t), R (t)

and 1.(t) :

R"(t) = -R" (t)V“(t) R|‘(a) = ] (3.10)

P

]
R (t) = -R (t)V (t)Y_ (v) R (a) =0 (3.11)
;R " . 22 12

) i




1 (&) = -R__(BYIV (t)h () + g ()1, 1 (a) =0 (3.12).
1 " 12 2z [ [

Note that IVPs (3.11) and (3.12) are simply quadratures and so
will be stable. For the case where V“ is constant the
forward stability of IVP (3.10) is obvious since all the eigen-
values of V|‘ would be positive and these are a true guide to
stability. But when V" (t) is variable, which would generally

be the case, the forward stability of equation (3.10) requires
justification [3-2].

Evaluation of equations (3.4b) and (3.9) at t = b together
with the transformed BC (1.16b) produges the following (well

conditioned) system of (2n,2n) linear equations :

0 -v,, (b o 1;] ry' (a) h, (b))

I, R, (b R, (®) 0O v, (a) 1, (b)

0 0 E, Ey | |y, = c,

o) E, 0 o Ly‘_(b)‘ | co ] (3.13)
where E =B, T,(a), E, =B, T (b) and E, =B T, (b).

The values of Yzz(b)' R\z(b)’ R“ (b), 1|(b) and hz(b) are
obtained by integrating forwards simultaneously the (well
conditioned) IVPs (32.7),(3.11),(3.10),(3.12) and (3.8b) together
with (3.1) and (3.2). System (3.13) is then solved for y(a)

and y(b) from which the solutions x(a) and x(b) to LBVP
(1.15) can be obtained from the transformation equation

%(t) = T(t)y(t). By subdividing the problem range [a,b] the

above algorithm can be adapted to find the solution x(t)

at these internal nodes also but this will require the solution

PP
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of a much larger multiple shooting type system of linear

equations instead of (3.13).

We now describe two alternative versions of the above ortho-
normalisation algorithm which are more economical in that the
ODEs involved are of smaller dimensions. Recall the double sweep

method outlined in Chapter 1. We integrate forwards the IVP :
L} -

= t) ) + (t) = (3.14)
yz(t) sz( yz( gz ’ yt(a) E| cl

together with IVPs (3.1) and (3.2) so as to obtain yz(b). Then

(see (1.33) of Chapter 1) we find y|(b) from :

= ). [ - E (b - . .
y‘(b) (E‘ c' 3 yz )1 (3.15)
To obtain y.(t) we now integrate backwards the IVP :
®

= +
y‘(t) v" (t)y'(t) V|;(t)y1(t) + g'(t) (3.16)
from t =b to t = a, but this requires storage of the values

of T'(t), Tz(t) and yz(t) during the forward integrations of
(3.1), (3.2) and (3.14) respectively. To avoid this we can
instead, as explained below, integrate forwards a general

solution for y‘(t).

From (3.16) @ 9‘(t> =V, By )+ p, (t) (3.17)

where p|(t) \“z(t)yi(t) + gl(t). From (3.4a) the general

solution of (3.17) can be written :

y'(t) = Y” (t)y.(a) + z'(t)

where z (t) =Y ((t)y (a) + h (t)
' (Y 2 I

(3.18)

is a particular solution of

(3.17). Now let : R"(t)z'(t) = w'(t) size (p,1) ====>

e
(t) = (). + -
w, R'l ) [V" (t)z'(t) p‘(t)] R“(t)V“ (t)z'(t)

(from (3.10) ) ====> &|(t) =R, (P (1), w (a) =0 (3.19)

since z‘(a) = 0. Also from (3.18) :



-) -)
y (t) = R (t)y (a) + R (t)w _(t) (3.20)
) " ) " \

====> y (& = R:" (b).Ly, (a) + w, (b)]
====3} y‘(a) = Rl'(b)y|(b) - w|(b) (3.21).
Thus an alternative algorithm is to integrate simultanecusly
forwards (from t = a to t = b) the IVPs (3.1),(3.2),(3.14),
(3.10) and (3.19) for T (t), Tz(t),' y, (€24 R, (t) and w (t)
respectively. Then obtain y'(b) from (3.15) and use (3.21) to
get % {a). Finally, obtain the solutions x(a) and x(b) to
the LBVP (1.15) by using the transformation x(t) = T(t)y(t).
This version of the algorithm has the advantage that fewer

variables of integration are required. Both versions have the

T‘(t) (3.1), Tz(t) (3.2) and R||(t) (3.10) IVPs in common.

But this version has yz(t) (q,1) instead of Yz‘(t) (q.q) .

w|(t) (p,1) instead of Rli(t) (p,q) and the 1'(t) and

hz(t) ODEs have been dispensed with. Also in the previous
version we had to solve a linear system (3.13) of size (2n,2n)

whereas here equation (3.15) for y‘(b) is only (p,p). These

could be significant savings if n were large. Note that
having found vy(a) and vy(b) we could then attempt to find
y(t) at interior points of fa,b]l by re-integrating forwards
the above equations for T.(t), Tz(t)’ yz(t), R.'(t) and w'(t)

and then using equation (3.20) to obtain y'(t). However, since

-)
{(3.20) involves R'.(t) this may not be successful because,

although the R.'(t) equation (3.10) should be stable for

forward integration, the R"(t) solution so obtained is still

T i T,




liable to be ill conditioned and therefore unsuitable for
inversion. Note also that equation (3.21) is identical to the
second equation of (3.13). Although this equation involves
Rll(t) the possibility of the latter being ill conditioned does
not now matter as this term appears on the right hand side of
the equation.
We can economise still further in the above algorithm by
eliminating the Tz(t) equation, as follows. Let u(t) =
Tz(t)yz(t) where u(t) is (n,1), then :
[ * hd _
ut) = Tl(t)yz(t) + Tz(t)yz(t) =
T (t)[TT(t)A(t)T (t)y, () + TT(t)f(t)] - T(t){%t)éf(t)T (tyy_ (B)
2 Y t L 8 a V- (] 3 E
= CTz(t)TI(t)A(t) - n(t)TT(t)AT(t)]u(t) + Tz(t)T:ft)f(t) =

< al na v
LI - R(t)T.(t))A(t) - Tﬁt)n (YA () Juct) + [In— n(t)T|(t)]f(t)
i.e. u(t) = At ult) + T“t)G(t) + [I“— Tét)TTkt)]f(t) (3.22)

T

where G(t) = —TT(t)[A(t) + A (B) Jult) (3.23),

The initial conditions for IVP (3.22) are uf(a) = Tt(a)yt(a)

-1
Tz(a)[Bq Tz(a)J. c, - Also from (3.19) :

é'u—.) = R, ()p, (£) = R, (£)LV, (t)y, (£) + g (£)]

= R, (B)V,, (B)y, ¢6) + R, (t)g, (&)

= R, (t)T:‘(t)tA(t) + A-r(t)]Tz(t)yz(t) + R, (t)g, (t)

= R, (B + R, (tig (1)
ice. W0 =R, (t)[T:r(t)f(t) -6 (t)1 (3.24)
where w‘(a) = 0.

Thus the revised algorithm is to integrate simultaneously
forwards the equations (3.24),(3.22),(3.10) and (3.1) for

w'(t), ut), R.'(t), and T‘(t) respectively. Now
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ui(t) = T{t)y(t) ====3> x(t) = [T‘(t) | Tz(t)] y‘(t)
(t)
Y2
====> x(t) = T‘(t)y|(t) + uft) (3.25)
Hence from the final BC of LBVP (1.15b) we have :
= === B, LT (b) (b) + = ====
Bb x {(b) <, > b | y‘ u(b)l c‘ >

-
y'(b) = [Bb T'(b)] - [c' - Bb u(b)l (3.26)
from which we can obtain y'(b). Then we use (3.21) to find

y|(a). Finally we obtain the LBVP solutions x(a) and x(b)

from (3.29).

Method of Davey, Meyer et al. [3, 4, 24, 25] :

Unlike Van Loon’'s method this method does not employ
invariant imbedding i.e. it is a double sweep method which
therefore has the disadvantage of requiring storage of values
during the forward sweep for subseguent use in the backward
sweep. At first sight it is not easy to relate the Davey/Meyer
method (as described in [3] and [4]) to the orthogonal decoupl-
ing transformation method of the previous section. However, as
we shall see, the Davey/Meyer method is simply the basic double
sweep orthonormalisation method (as outlined in Chapter 1) but
with the elimination of the Tz(t) IVP (1.32) by the
introduction of the new variable u(t) = T;(t)yt(t) y a5 in
the third version of Van Loon’'s method described earlier.

The backward sweep IVP for y'(t) is (see (1.335) of Chapter 1)



. i T
y (t) = {fr(t)ﬁ(t)T'(t)}y'(t) + Tl(t){A(t) + A (t)}Tz(t)yz(t) +
)

T:r(t)f(t)
i.e. ;‘(t) = V"(t)y'(t) - G((t) + f:(t)f(t) (3.27)
where u(t) = T (t)y (t), V (t) = TT) AT, (£)  and
G(t) = —TT(t){A(t) + A (£)Jult) as in (3.23). Note that
equation (3.27) corresponds to Meyer [4: 2.17]1 and to Davey
£3: 24]1. Now equation (3.1) for T'(t) can be written :
T (t) = A(t)T‘(t) - Tl(t)V"(t) (3.28)
and the equation for u(t) is as in (3.22) viz.

1
att) = Al utt) + T|(t)G(t) + {Iﬁ - Tr(t)T|(t)}f(t) (3.29).

Equations (3.28) and (3.29) correspond to those of Davey

[3: 2 & 18 respectivelyl.

The algorithm is to integrate simultaneously forwards (from

t =a to t =0b) IVPs (3.28) and (3.29) for T‘(t) and u(t)

respectively from their initial values giveh by BQ T‘(a) = 0
-1

and u(a) = Tz(a)[Bq Tz(a)]. C, (as in Van Loon’'s method).

During these integrations the values of T'(t) and u(t) must

be stored at the end of each step (if a fixed step integrator is

used) or at arbitrary nodes a = t°< t'<.......< tN = b in the
case of a variable step integrator. The initial condition for

the backward integration of y.(t) is now obtained from (1.33):
-l
y'(b) = [Bb T.(b)]. [c' - Bz u(b)l (as in Davey [3: 231) from

which value ODE (3.27) is now integrated from t =b to t = a

using the stored values of T'(t) and u(t) at the nodes and

interpolations between the nodes if necessary. Finally the




solution x(t) of the LBVP (1.15) can be obtained at any out-
put point t € [a,bl from (3.29) : x(t) = T‘(t)y‘(t) + u(t).
Thus the Davey/Meyer method is in effect a straightforward
application of the double sweep orthonormalisation transform-
ation method except that instead of integrating forwards the
IVP for y, (t) (as in (1.34) of Chapter1) we integrate forwards
IVP (3.29) for u(t) = T, By, (t), thereby eliminating the need
for the Tz(t) IVP (1.32), as in the last variation of Van
Loon ‘s method described earlier. Note that the stability of the
u(t) IVP (3.29) is ensured by that of the yl(t) IVP (1.34)
because u' (Blu(t) = y (£)T, ()T, (B)y_(t) = y¥ (t)y. (b)),

t 3 a 2 3 a T
since Tz(t) is a unit orthogonal column set.
As mentioned earlier, the main reason for interest in developing
continuous orthonormalisation methods was an attempt to overcome
the practical difficulties associated with superposition methods
viz. loss of independence of the columns of the fundamental
solutions. To recapitulate, if we are trying to solve LBVP
(1.15) by single shooting reduced superposition then we express

the solution x(t) of the LBVP in the form :

x(t) = X‘(t)d + p(t), where X'(t) {(n,p) is a part fundamental
solution of ;(t) = A{t)x(t) for which Bq.xl(a) = 0 and p(t)

is a particular solution of i(t) = A(t)x(t) + f(t) for which

Ba pta) = cz and d is constant (p,1). Troubles may arise

(particularly in the case where system x(t) = A(Ix(t) is

‘stiff’ i.e. one for which the kinematic eigenvalues are

widely separated in real part) due to loss of independence of
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the columns of X‘(t) as t increases and also to increasing
dependence of p(t) on span X‘(t). All of the variants of
continuous orthonormalisation overcome both these difficulties
(at least in theory :see later) by finding an orthonormal basis
for span X‘(t), at each value of t, as we now explain.
(Spanning Theorem) Xl(t) satisfieslthe ODE i'(t) = A(t)Xl(t).
et T‘(t) (n,p) be defined by Tl(t) = X'(t)W(t) where W(t)
(p,p) satisfies &(t) = —w(t)v\‘(t), W(a) = I_ ,where V _(t)

g "
is (pyp). Thus W(t) will be nonsingular for all t and

T (a)
\

Tl(t)

X, (a). Now T (t) = X‘(t)W(t)_ ===

L4 .
X‘(t)W(t) + X'(t)N(t) = —Xl(t)W(t)V” (t) + A(t)Xl(t)W(t)
i.e. T‘(t) = A(t)T'(t) - T'(t)V“(t), which is precisely

equation (3.28). Thus if R'(t) = A(t)X|(t) and

T‘(t) A(t)T’(t) - T‘(t)V"(t) where T'(a) = X‘(a) then

T‘(t) X|(t)W(t), where W(t) is nonsingular for all t, which

means that span T|(t) = span Xl(t) for all t. Hence, in the

continuous orthonormalisation methods, instead of integrating

forwards the system X.(t) = A(t)x.(t) from Bq X.(a) =0
and then obtaining the solution from the resolution equation
x(t) = Xl(t)d + p(t), we integrate forwards the system

;'(t) = A(t)T'(t) - Tl(t)V"(t) (3.28) from B° T‘(a) =0

(1.17) and use the resolution equation x(t) = T‘(t)yi(t) + u(t)

(3.25). In effect, we have “replaced” the part fundamental

solution X‘(t) by T.(t) where span T‘(t) = span X'(t) for

all t, and where now the columns of Tl(t) should remain unit

orthogonal for all +t. Note also that since u(t) = T, (Bly, (B
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T r 7
then u (DT (£) = y ()T, (£)T () = 0 so that u(t) should

be orthogonal to span T'(t) for all t.

As described in Chapter 2, in Conte’'s re— orthonormalisation
method the part fundamental solution X‘(t) is re—-orthogonalised

whenever necessary at discrete points t'< tz<......< tN" in

fa,bl by means of a QU decomposition using the Gram-Schmidt
process. In the continuous orthonormalisation methods of this

Chapter this re-orthogonalisation takes place at every value of

t automatically.

We turn now to a practical difficulty-which may be encountered
when using any of the continuous orthonormalisation methods.
Al though T‘(t) and Tz(t)’ as computed from IVPs (3.1) and

(3.2), should in theory produce a unit orthogonal matrix

T(E) = [T (£ T (021 for all t,in practice this may not be

s0o. Before t = b 1is reached the orthogonality of T(t) may

be lost and T(t) may even become (seriously) ill conditioned

with a consequent effect upon the accuracy of the computed

solution x(t) of the LBVP. This may happen because, as

described by Davey (31, Meyer (4] and Van Loon (171, the IVPs

(3.1) and (3.2) for T'(t) and Tz(t) may be mathematically

unstable in that not every orthonormal solution of these IVPs

. T
is asymptotically stable. In theory, the value of T'(t)Tl(t)

should remain constant for all ¢t at its initial value of I _.

r

T T L ] ..‘.
)T = i
Now _g_{{T' (t ,(t)} T‘ (t)T‘ (t) + T‘ (t)T' (t) and so if

T e -
T‘(t)T'(t) =0 for all t this would ensure that T (t)Tl(t)
)



remained constant. The ODE for T‘(t) is

[ ]

T' (t) = A(t)T‘ (t) - T' (t)t:"(lr) (3.29) ====>

Tipy T T T

T‘(t)T‘(t) = T.(t)A(t)T‘(t) - {T.(t)T'(t)}c"(ﬂ (3.30)
which means that i1f we choose cﬁﬂ = TT(t)A(t)T‘(t) (as we

T -
stated earlier) then T‘(t)T'(t) = 0 only if ﬂT(t)T;(t) = If

which in practice may not be so. In order to numerically

stabilise this equation Davey and Meyer therefore suggest that
T - v
instead we take :éﬂ = {T'(t)T'(t)}. {T‘(t)A(t)T'(t)} s0 that

»
(3.30) becomes : Tr(t)T‘(t) =

T T T -t T
{T'(t)A(t)T'(t)} - {T.(t)Tl(t)}.{T‘(tTn (£). {T'(t)A(t)T.(t)}.

. v L -
In this case, T' (‘t‘.)TI (t) = 0 even if T (t)T‘ (t) +I exactly

' F

i.e. this choice of CJG) has the effect of stabilising the

7
value of T‘(t)T‘(t) in the event that it starts to move away

from its theoretical value of IP . A similar argument applies

to the Tz(t) IVP (3.2).

T
The effect of replacing c&h= T‘(t)A(t)T‘(t) by c§6=
]

T -} T
{Tl(t)T‘(t)}. (T WAMT (1) in (3.29) is equivalent to

_ T + T -t
replacing T‘(t) by T'(t) = {T'(t)T'(t)}. T‘(t) in the

original version, where T.(t) is called the ‘generalised

inverse’ of T|(t). The generalised inverse Ti(t) of Ti(t)

is similarly defined. Thus the ‘generalised inverse’ versions

of the ODEs for T‘(t) and Tz(t) become :

T‘(t) = A(t)T.(t) - T'(t)T.(t)A(t)T‘(t) (3.31a)
, \ + T

t) = -
Tt( A (t)Tl(t) + Tz(t)Tg(t)A (t)Tz(t) (3.31b) .
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In Chapter 5 we describe the factorisation method of

Babuska and Majer [16], one version of which utilises the

orthogonal transformations of this Chapter.

In Appendix I :

£3-1]1: Derivation of UDEs for R |(t), R (¢£) and ll(t)

of Van Loon‘s method.

[3-2]: Stability of R.'(t) IVP.

3oy



CHAPTER 4

THE RICCATI TRANSFORMATION METHOD

Application of invariant imbedding

In Chapter I we outlined the basic double sweep Riccati trans-—
formation method which, though stable; has the disadvantage of
requiring cunsiderable storage during the forward sweep. As with
the continuous orthonormal transformation (Chapter 3) this can
be avoided by employing invariant imbedding whereby all of the
integrations are performed in one dir;ction. The operation of
this technique with the Riccati transformation is virtually
identical to that described in Chapter 3 for the orthonormal
invariant imbedding (see equationsl(3.1) to (3.22)). But now

in this case the decoupling transformation matrix T(t)

is
1 0
1 4
R(t) 11 . Corresponding to this the upper block
triangular transformed system matrix is V(t) = V“(t) '%zft)
o) V_(t)
2
where 1@ V"(t) = A"(t) + A‘z(t)R(t)
V. (t) = A _(t)
‘2 la
V21(t) = Alift) - R(t)V'l(t)

and where R(t) is the solution of the Riccati equation:

[

R(t) = Az‘(t) + Azz(t)R(t) - R(t)A“(t) - R(t)A'z(t)R(t) (4.1a)
-1

R(a) = —L‘ Lo (4.1b).

As described in Chapter 3, we obtain the simultaneous solution



of the IVPs:

l;cn (£) = -R, (£IV, (t), R, (@) =1,
l;tu(t) = SR, (BIV ()Y, (6, R,p(a) =0
i‘(t) = -R, (B)EV (Bh () + g ()3, 1 (@) =0
w?u(t) =V (DY, ), Vau (@) = Ig
hy (£) = Vap (EYN, (6 + g (1), h,(a) = 0

together with (4.1).

(Note that R‘.(t) and R\z(t) are not related to the Riccati

solution R(t). The notation used follows that of Van Loon [171).

Hence, as before, we obtain y(a) and y(b) by solving the
(well conditioned) system of (2n,2n) linear equations as given
in (3.13) viz. _ _
’b -Y_ _(b) 0 I“1 ( ;1 1 h (b]
22 gl (W '@ 2
I _Rlz(b) —R“(b) Q y&(a) . l.(b)
omesm

o 0 El Es y‘(b) c,

0 E 0 0 (b) (4.2)
5 ) J Y27 (S _

but where now E'= L' (see (1.26) of Chapter 1), E2.= Lz+ LJR(b)

= L
and E& 3

to LBVP (1.15) are obtained from the transformation

(see (1.28)). Finally, the solutions

x (a) and

x (b)

equation x(t) = T(t)y(t).

As with the orthogonal transformation

x(t) could be found

the solution at interior points of [a,bl

by subdividing [a,bl 1leading to the solution of a much larger

system of linear equations than (4.2). The more economical
algorithm described in Chapter 3, equations (3.14) to (3.21), is

also applicable to the Riccati transformation, but the version in




equations (3.22) to (3.26), involving the substitution u(t) =

Tz(t)yz(t), is not.

Re—imbedding

However, all of the foregoing pre-supposes that the solution of

the Riccati equation (4.1) remains bounded for all t e [a,bl.
This may not be so, particularly if the system matrix A(t) of

the given ODE is rapidly varying so causing rotational activity

of the columns of the fundamental solutions. This is clearly

illustrated by the following example :

Ex 1: Consider a LBVP over [0,1] whose ODE is X(t) = A(LIx (L)

where A(t) = cos (2wt) w — sin(2wt)
- W - sin(2wt) _ - cos(2wt)

so that the parameter w determines the rate of rotation. In

this case, a fundamental solution is given by :

X(t) = cos (wt) sin(wt) ek 0

-~ sin(wt) cos(wt) 0} e't and the

solution of the Riccati equation (4.1a) corresponding to initial

conditions R(0) = 0 is R({#) = —tan(wt) which has a pole at

t = -“/2w. Thus if w > ﬂ)Z then R(t) will ‘blow up’ before

t =1 is reached.

As described in Chapter 1 (equations (1.24) to (1.30)), suppose

we transform the ODE ;(t) = A(t)x(t) + £(t) (4. 3a)

of the given LBVP into system §(t) = V(t)y(t) + g(t) (4.3b)

by means of the transformation x(t) = T(t)y(t) where



T(t) = I o)
P

R(t) 11 . X(t) and Y(t) of (4.3a) and

Corresponding fundamental solutions

(4.3b) respectively are connected by X(t) = T(t) Y(t). Now

suppose that X(t) 1is the fundamental solution of (4.3a) where

X(a) = T(a) = IP 0
R(a) 1 s0 that
‘ )
Y(a) = In Now Y((t) = V(t)Y(t) where V(t) = V"(t) ant)

0 Vz{t) .
Hence Yz‘(t) = Vlz(t)Yz‘(t) where Yz‘(a) = 0. Thus

Y, () =0 for all t. From X(t) = T(t)Y(t) we therefore get

{3"(t) X, (0| = I 0 Y, (0 Y, (1)

X, (t) X 34 (1) R(t) 1, 0 Yo, V)

===3 X (t) =Y (t) and X (t) = R(t)Y (t)
] 24 - "

-.
====> X (t).X (t) R(t).
21 1

Therefore the solution of the Riccati equation (4.1a)

-1
for all t by R(t) = Xz'(t)X‘.(t)

is given
from which we see that

R(t) will have a pole whenever X“(t) becomes singular. Now

in theory the p columns of the part fundamental solution

]
X (t) = X.’(t)

le(t) are independent for all t and so column rank
= row rank = p i.e. for any value of t there exists p
linearly independent rows of X'(t). This provides us with the
strategy for preventing the Riccati solution R(t) ¢rom

becoming unbounded in [a,bl.

In practice, at any value of t there will exist p “most

linearly independent” rows of x'(t). Ideally, we would like to
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have these p rows in X“(t) for all t because this would
ensure that R(t) always remained finite. However, this would
be very costly to achieve and so we settle for the following

compromise. Consider first the forward sweep. As the forward

integration of the Riccati IVP (4.1) proceeds from t

a
(simul taneously with the yz(t) IVP (1.29) of Chapter 1) we

check at each step on the value of 1

P

R{(t) . As soon as a

Ie \ > P\ 1
R(EY) R(a) (4.8)

(where (9 is a pre-selected small positive constant) we

®
value t = t 1is reached where

perform a re—imbedding (i.e. a rearrangement of the solution

components of the problem) as follows.
Let the given LBVP be :

[ 4
x(t) = At)Ix(t) + £ (t) (4.5a)

B° ¥ (a) + B' x(b) = c (4.3b)

for a <=t {=b where x(t) denotes the solution of the LBVP
in the given imbedding. If we use perm matrix ™ (n,n)

(chosen as explained later) to change the imbedding then (4.5)

becomes :
. T
Txw) = Maw)y (T Toxwry + T £

h g - T
Bg (T Mxta) + B (T Tixt) = ¢, since TN =1

T
i.e. d {Mxt)r = (M AT ICT xt)r + T £

dt

T n
(Bg T 2CT xta)ry + (B"l\' T xm) = ¢

O SXF T o




~ -~ ~ ~
or : d x(t) Alt)x (t) + £(t)

gt
o~
BO

~
*ta) + B, %) = ¢ (4.6)

for t’ <= t <= b, where *(t)

T x(t) (4.7)
is the re-arranged solution in the new imbedding and

~ Lt ~ —~ T s T
Aty = Taw)T™ , f¢t) = Mfr, B, =BT ,B =BT

-3 1
are the corresponding re—-imbedded values of A(t), f(t), B

4

©

and B‘ respectively for all t >= t . Also, in the new

]
imbedding, the part fundamental solution X (t) becomes

' - ~
T x =x=1]%,
~ »
Xqoy (V) for t >=t, i.e. the re-imbedded
o~ r~ ~ et
Riccati solution R (t) 1is given by R(t) = Xz‘(t).x (t)

o~
where now x" (t) will be non-singular until the next pole

is reached in this imbedding.

. A -
Thus at a restart point t =t the re-imbedded Riccati

equation viz.

~ o~ o~ o~ o~ o~ ~ L o~
d R(t) = A_(t) + A__ (LIRE) - R(BYA (t) — R(t)A (HIR(L)
gt 2! 2 " (4.8)

and the re~-imbedded forward sweep IVP viz.

-’ ~ ~ ~ o~ o~/ ~ ~
d Y. (t) = €A () - RIEIA _ (£)2y () + Cf (£) - R(EIF ()3
=g * 22 ‘2 1 2 (4.9)

(compare with (1.29) of Chapter 1) are integrated forwards

from their respective initial wvalues ‘E(t‘ ) and ;;(t” )

which we show in appendix {(4-1] are :

Rt ) =P +P RW I[P +p LR
) a P, L Ret® )3 (4.8a)

and ¥ t® ) =P -R* P 1y t*) (4.9a)
'Y 22 (} S .



where T\ = Py Pia
Fi‘ Pzz . Suppose we are able to remain

in this imbedding (using criterion (4.4)) until ¢t =b is

reached. Now if B = L L
) 2 3
0 o let B =B T (4.10)
—~ — ‘ \ \
= La L3 .
0] o) then the backward integration of the ';](t)

equation viz.

® o~

v Y A (ORI 'Y v )
Y, (E) = A (8 + AL )3y, (6) A ()Y )+t

(compare (1.30) of Chapter 1) is started from :

o~ Ld ~ ~ e
y (b)) = [IL_ + L R()I. e - L_vy_ (b)] (compare (1.28)).
] 2 3 ‘ 3 2 :

This proceeds from t =b to t = t® where we switch back to

the original imbedding for which the ODE is @
. .
= + (t)
y‘(t) {A"(t) Alz t R(t)}y.(t) + A't(t)yt(t) + f.(t),

where the restart value is shown in [4-2] to be :

]
For the original imbedding, from t = a to t = t‘

y (£% ) = P, + PuR("c')J". Ly, &% ) - Py y,(t" )3,

s the
solution x(t) of the LBVP (4.5) is obtained directly from
the transformation equation (1.25) of Chapter 1 viz.

x‘(t) = y'(t), xl(t)

R(t)y.(t) + yt(t). Similarly, for the

new imbedding from ¢t = t* to t=0b

we have :

o~ o~ ~ ~ o~ ~
x'(t) = y.(t), xz(t) = R(t)y.(t) + yl(t), from which we can

?
recover solution x(t) from x(t) = T0 X(t) (4.11)

by using (4.7).

In practice (depending on the nature of solution R(t) and the



choice of constant ” in criterion (4.4)) several

re—-imbeddings may be required between t = a and t = b, in
which case at each restart point we must store the perm matrix

used to change the imbedding as well as the composite perm

matrix 1fc which relates the current imbedding to the original

imbedding of the problem. Note that in the above description I{

is the perm matrix which changes the imbedding at any restart

»
point t =t . If several re-imbeddings were performed then ,

in equations (4.10) and (4.11), we would require the composite

permutation matrix 1TC . -

We turn now to a procedure (S]] for choosing the perm matrix

to change the imbedding at any restart point ¢t = t‘ so as to

keep the Riccati transformation T(t) well conditioned

throughout Ca,bl :

Alternate row interchanges and column operations are performed

on the matrix If
R(t® ) , these being of the form :
EP' PP_' I-.'..Pl P' ] I' [B'Gz ....G?'.] = w Ir G
R(tY) R(t” )

where T\ is the composite perm [Py F%' ....P'] and G is

the composite (column) Gaussian elimination matrix where the

sequence of operations on

o

. .
R(t™ ) is ﬁ ’ G', Pi,
where these are performed alternately on left and right side.

Pl
'

Bz I..II.I’ P?

is the perm matrix (n,n) which takes the max mod element



in the ith column (1 <= i <= p) to the ith row and B;(p,p)

is the matrix which performs (column) Gaussian elimination with

(i,idth element as pivot. Suppose that the final transformed

value of IP is E

R(t* ) F
(where E is lower triangular) then, in appendix [4-3]1, we

show that the Riccati restart value E%t* ), as given in (4.8a),
-l
is equal to FE . Most important, however, is the fact that

~ %X
this procedure ensures that all the elements of R(t ) will
now be in mod value less than or equal to unity (see [16]).

Also if the new imbedding chosen by perm matrix TV is an

~
unstable one in that the Riccati solution R(t) is exponentially

increasing with t or has a singular point in ({a,bl, then

criterion (4.4) will ensure that the length of the subinterval

in this imbedding will be short. (In Chapter S5, we will see that

Babuska and Majer ‘s bounded factorisation Riccati method [16],

employs a restart re-imbedding strategy analagous to that just

described).

Inverse Riccati equation

We may note a

special case which occurs when (for a well conditioned LBVP) the

dimensions p and q of the growth and decay subspaces are

equal i.e. when the associated Riccati solution matrix R(t) is

-t
square (p,p) and so possesses an inverse S(t) = R (t) for

k-9



any value of t for which R(t) is nonsingular. If, in this

case, we change the imbedding by means of the perm matrix

J = 0 I?
I' O then the re-imbedded LBVP solution is
Rt = Juxtt) = 3| x ) = [ x (&)
xz(t) x‘(t) and the re-imbedded part
fundamental solution is X'(t) = J.x'(t) = 3 [x, (&) =[x, &)
Xz.(t) X, () q.
Hence the corresponding re-imbedded Riccati solution matrix is
"~ -l - -1
R(t) = X (t).X () = R (t), since R(t) = X_ (t).X (t).
" 2 ) n
Also the corresponding re—-imbedded ODE system matrix will be
) = 3.Aam.3 = (A AL ()
2 2
A.a(t) A, ) for which the

inverse Riccati equation is :

(4.11a)

instead of (4.la). Equation (4.\\@ tan be verified by replacing

S(t) = A_(t) + A, (1)B(E) - S(BYA_ (1) — S(EIA_ (£)S(t)
2 n 22 2

-

R by 8 in (4.la). This ‘square’ Riccati case is in fact
not as special as it may seem because as explained in Chapter 1
any given (n,n) LBVP can be re-written in separated BC form

for which the Riccati solution matrix R(t) will be (n,n).

Compound matrix method ([81,(91,[15]):

The difficulties caused by the singularities of the
Riccati solution, necessitating the cost of switching from one

imbedding to another in order to avoid them, prompts us to ask

g - o



whether instead we could remove these singularities altogether.

Such

a method does exist and is known as the Compound Matrix

method, the key point about which is that we calculate the

normal to the subspace of all solutions which satisfy the known

initial conditions.

To simplify the notation

and explanation we describe the application of this method to

the solution of a LBVP with a 4th order differential system

which has a dichotomy with forward growth subspace of dimension

P =
W

&

where

This
[ ]

x(t)
¥ ({t)

f(t)

Alt)

Thus

*
x (L)

for

viz. B
(11 " '
—a|¢ ~a & -a,® —a“¢ = ag (4.12)
gﬁ and a. (1 <= 1i <= 5) are all functions of t.

equation can be re-written (see [1-11) in the form :

= A(t)x(t) + f(t) where

! 1]
[¢(t), @ (), @Pt), ¢(t)JT

= [0, 0, O, a_(t)1' and

s
’b 1 0 0o —1
= o o 1 o
¢ 0 0 1
La¢(t) a’(t) a,ty a,(t) | .
the given (n,n) LBVP is :
= A(t)Ix(t) + £(t) (4.13a)
By xta) + B‘x(b) = c (4.13b)
a<<=t <=b where B° =10 |P » B, = | B, P
BQ % 0 1

L -1y



C, and n = 4, p = q 2. Without loss of generality

(see [4]) we further assume that B‘ has the form [O | I2 ].

Now by superposition, any solution of system (4.13a)

which satisfies the initial BC of (4.13b) can be written :

x(£) = xott) + o x () + B x (t), where « and f3

are two linearly

are constants, x'(t) {(n,1) and xt(t) (n,1)

independent solutions of the homogeneous system % (t) = A(tIx (1)
satisfying Bq x;(a) =0 (1 <=1 <= 2) and xg(t) (n,1) is a

particular solution of system Q(t) ="A(t)x(t) + f(t) satisfy-

ing Bq xO(a) =Cc, - To solve LBVP (4.13) by the standard
complementary function method (see Chapter 2) we would

separately compute xo(t) and x;(t) (1 <= i <= 2) by forward

integration of the inhomogeneous and homogeneous system respect-

ively from t = a to t =b starting from the initial
Cas \ a T T
conditions xo(a) = o, 0, c_ , Ca ], x|(a) =1, 0, O, 0 and
- \ - ' - -
xt(a) = [0, 1, O, O , where €, = [c‘ v €4 ] (4.14),

This would give the solution x(t) in the form :

x(t) = x_(t) + o x (£) + (! ® (4.15)

for all t ¢ fa,bl] and hence the value of xtb). If x(t) is

to be the solution of LBVP (4.13) then x(b) must satisfy the

final BC of (4.13b) i.e.'eb x(b) = c ===

By xg (b) + .(Bb X (b) + (.‘Bb x;(b) = ¢

'3 (4.16)

where matrix ™M = (B x'(b) { Bb xz(b)l (2,2)

'Y and

U - )2




s = Cc - Bb xoﬂﬂ (2,1). Hence vector {°‘] can be obtained
! "

by solving (4.16) and then used to find the solution x(t) from
(4.15). However, as mentioned in Chapter 2, if system x(t) =
A(t)x(t) 1is ‘stiff’ (i.e. having kinematic eigenvalues which
are widely separated in real part) then the linear system (4.16}
is liable to be ill conditioned. We now explain how the compound
matrix method attempts to overcome this difficulty and later we
show the relationship between this method and the singularities
of the corresponding Riccati equation.

First we define the part fundamental solution matrix L(t) of

dimension (n,p) i.e. (4,2) by L(t) = [x.(t) ! xz(t)] (4.17)
and also the solution matrix J(t) of dimension (n, p + 1) i.e.
(4,3) by J(t) = [x (t) { x‘(t) | x‘(t)] (4.18)

’ t ")
where x.(t) = [ (), @ (b)), ¢"(t), BAt)1, 0 <= i <= 2.
[}

From L(t) we now obtain the six (i.e. C = C, ) (2,2)
nTP 4 2
minors y;(t), 1 <=1 <= 6, viz.
y,(8) = ), @le) - Bit) . @' (t)
" n
( = (t) (ty -
Ya t) ¢' . ¢3. ¢;(t) . ¢‘ (t)
= L] - "t
y3 (t) ¢‘(t) . ¢1 (t) ¢1(t) . ¢‘ (t)
) H (] "
= (t). ¢ -
y’(t) qa q% t) q&(t) . qs(t)
= (] [[[] - [ "
Yg (t) ¢ (t). ¢ (t) ¢‘(t) . CD ()
y (&) = (t) ¢ vy - @'ty ¢"'(t)
2 '

(4.19)
y. csecas yb are in fact the Plucker coordinates of the line
M "m "y

joining the two points ¢ ¢ d m G) and (¢ tJ ¢ ' @)

in S3 (three dimensional projective space).

G- 13



It can be verified that the above y:(t) satisfy the Monge

identity : y (f)y (£) - y (bHry () + y (t)y (¢) = 0O -
' L : 'S 3 4 (4.20)
We also obtain the four (i.e. "C:f*' = '+C3 ) (3,3) minors of

J(t) wviz. z;(t), 1 <=1i <=4 :

z, (£) =y, (1), ¢:(t) -y, Bo(t) + oy () | B(t)
2, (0) =y, (£) ¢£\t) - vy, qﬁ(i) Foyg ) L B ()
z () =y, (t), ¢:'(£) -y, qs;‘(t) oy ) L gt
2, (6) =y, (). BoEE) =y () L gl 4y ) gl

(4.21)

We now define the pth (i.e. 2nd) compound vector of L(t)
as vy(t) = [y'(t),......yb(t)lT and the (p + 1)th (i.e. 3rd)
compound vector of J(t) as z(t) = [z‘(t);.....z“.(t)]T for all
t € La,bl. By differentiating equations (4.19) and using (4.12)
we can show that y(t) satisfies the compound differential

system : y(t) = B(t)y(t) where B(t) (6,6) is given by :

H
gons.

0 1 0 0 o o]
0] 6] 1 i 0 0
B(t) = a3 al a, 0 1 0
0 0 6] 4] 1 0
ey ) 0] al a, 1
0 -a 0 -
L " a3 o) a\ .

Corresponding to the initial values for x.(a) (1 <= i <= 2)
'

. . T
given in (4.14) we get vy(a) = [1, 0, O, O, O, O,1 . Similarly

we can show that z(t) satisfies the system :

z(t) = E(t)z(t) + g(t), where E(t) (4,4) is given by

b -1y

:
;
.
i
A



rb 1 0 0--1

E(t) = a a 1 0
2 1
—a3 0 a, 1

Lfa* ] ¢] a,
and g(t) = [0, y' as_ ,y‘as ,y“_ ac 17 and for which the initial
condition corresponding te X o (a) in (4.14) is

2

z(a) = [c;. €2 4 04, 01 from (4.21). |
Now instead of computing x;(t) (0 <= i <= 2) directly as in f
the complementary function method we obtain y(t) and =z(t) by

forward integration of the IVPs : -

.
y(t) = B(t)y(t), y(a) = (1, O, O, O, O, O 13 (4.22)
] 1} Y -

Z(£) = E(t)z(t) + g(t), z(a) = [c, ,c, , O, O 1 (4.23) .

The solution x(t) of the LBVP satisfies :

X () = x (t) = o x (£) + B x (0 (4.24)

which is four linear equations for < and B - If we

(1}
denote x(t) by [ ®(t), ® (t), © (), B (£) 1 then by
eliminating « and rs from (4.24) in four different ways

and then using equations (4.21) we find that the latter are

satisfied with function ¢°(t) replaced by ® (t) i.e.

y, (t). 9"(t) -y, (b, ® () + Yty Bty = z () (i)
y, (t). 9."(t) -yt ®(t) + vg (£) . B¢) = z t) (ii)
Y, (B). 9“'(t) -y, (), 9“(t) A 78 T D)y = z,(t) (iii)
YA o (t) - v (1) ,%"(t) + oy ), D) = z () (4.(;;;

for all t ¢ [a,bl. Equations (4.25) can be evaluated at t = b

and written in the form of the linear system : N(b)x(b) = z(b)
(4.26)

It - ]<



where

r‘y»_ Yy o 7
N(t) = Ye Y, Y,
Yo 0 "V, Yo
LO Yo ~Yg Y| _

From the set of equations (4.26) we can in fact obtain only

' "
two independent equations for ®© (@), © ), © ),

® ).

For example, assuming that Y, () ¥ 0, by applying row

operations to (4.26) and using identity (4.20) we can reduce

this set of linear equations to the form

g

- o]
Y, () —y, (b) y, (b) 0 T (b)) h,
: ]
0 ALY Vg (b) y. (b) )| =| h,
0 0 0 . |9 0
"y
0 0 0 Q b) o)
L ' S - L L
where h‘ and hz. are functions of 2z, (b) (1 <= 1 <= 4§).

The final BC of

equations and so we get the linear system

(4.13b)

provide two more independent linear

(b) R r ] ™
Y (b) -y, (b y, (b) o O (b) , h,
U
0 Y, () Yg (b) ALY ®w)| = | h,
. "
B ® b) C:
(11
_ b LO (b) Lc:_‘-
\ S -
where c’ L C., c: f: which can be written :
D.x (b) w (4.27).

The fact that the given LBVP is assumed to have a unique

solution ensures that matrix D (n,n) will (theoretically) be

non—singular so that x(b) can be computed.

Y - Ik



Any one of equations (4.25) can now be used to obtain some of
the components of solution x(t) by backward integration from
t = b. The remaining components can then be directly obtained

from equations (4.25) since z(t) 1is known for all +t € [a,bl.

For example, the differential equation (4.25 i) viz.
y, (t), E“(t) -y, (), 8ty + y*(t‘) By = z (£) can
be written as the differential system :
alt) = F(blu(t) + 1) (2,2) (4.28)
where u(t) = ®(), 9'(t>ff . F(t) = o) 1

. B “Yy 7Y, Y 7Y,
and 1(t) =10 0, z, /y‘ l. Now since u(b) is known from x(b),

assuming that y'(t) *:0 for all t ¢ [a,bl, system (4.28) can

be integrated backwards from t = b to t = a to obtain u(t)

: U] "
for all t. The remaining components ® (t) and ® (t) can
now be found by simultaneous solution of (4.25)(i) and (ii).

Hence we have obtained solution x(t) of the LBVP for all

t ¢ fa,bl.

Davey [8] shows that the method will be stable for the case

where the system matrix A of the given ODE (4.13a) is constant

with eigenvalues of the form + )’ . t‘)‘ or where A{(t) is

variable but with eigenvalues which are relatively unchanging

over the interval (fa,bl. The method could be extended to the

solution of higher order problems but for n > 4 the dimensions

of the forward IVPs (4.22) and (4.23) rapidly increase. For
example, for a problem of size n = &, with p = 3, y(t) would

be (20,1). A disadvantage of the method though is that it is

417



only applicable to a LBVP whose ODE is a single nth order

equation, as in (4.12).

Relationship of compound matrix method to Riccati method

The main interest of the compound matrix method lies in its

relationship to the Riccati transformation and this we now show

for the case n = 4, p = q = 2. Let

X(t) = X . (t) X (&)
L] 2
Xz\(t) xlt(t) be the fundamental solution of
system x(t) = AtIx (L) corresponding to the initial condition

X(a) = 14 s then the solution R(t) (2,2) of the Riccati
equation :

R(t) = Az'(t) + sz(t)R(t) - R(t)A"(t) - R(t)A‘z(t)R(t), for
which R(a) = 0 is given by R(t) = xz‘(t)\x::(t>, as shown in

the previous section. Now the part fundamental solution L (t)

(4,2) is L(t) = [x (£) | x (£)1 where x (a) = [1, 0, 0, 01"

and xz(a) = {0, 1, O, Oit from (4.14), so that L(a) = I;
0
Thus X, 0| = Ly = r@%(t) ¢S‘(t)-W
X, (® @ &t
s T air
&"t) @, (t)
and therefore if we denote R(t) h';:y n (t) r 1t)
r.o(t) r (t)

L - )8



-\
\ "
we get : r r ¢l % é' Pa

) 1 ' 2 \ '
" "
r3 r"’ ¢q ¢I» ’ ¢' ¢;
= ¢.“ ¢a.“ [¢ ' = ¢;] )
W . ' ) ] [}
¢f“ ¢i .'¢| Q& (¢ﬂ¢x"¢&¢ﬂ)
=== r‘ = —-y'+ v r'; = ya ’ r3 = —-y’ ’ r'* = \/3
Ty Ty Ty Ty (4.29)
Y, Y‘ Y‘ ﬁ
where y‘(a) = 1. Thus we see that whenever y|(t) becomes

zero in the solution y(t) of the IVP y(t) = B(t)y(t),

y(a) = 1, 0, 0, 0, 0O, OiT then the Riccati solution R(t) will
have a pole at that value of t. Alternatively, if we define
r:(t) (1 < =1 <= 4) by (4.29) and then differentiate these
equations to obtain a (t) and substitute from the compound
differential system §(t) = B(t)y(t) we can show that these
r, (t) are indeed the elements of fhe Riccati solution matrix

R(t). For example, from (4.29) : r =

) \ ™ &
g
yl
* L J L]
d f = B : = = .
an rom vy y we have y' yt v Yy Yf Thus
n = ~Y, Ys + YQ Ya = ~ Ye Y Yy ¢ Ya
e Tt e _ _——
Y' yl Y‘ yl
®
i.e, r = = r r . Now the Riccati equation
' 3 1
= + A R - -
R Azc 2z R A” R A'LR (4.30)
mm=E=)
® [ ] _ 0
AL O1*+{° 1{{n i1 nllo 1} - nonile ol R
5 e a, 9, a, alis " " 0 O % 1 0 s Ty
®
====) n = rs - r’ ri . Similarly we can verify the
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elements 2 * r3 and r* . Thus the six linear eqguations of

the compound system ;(t) = B(t)y(t) can be reduced to a system
of four non-—linear Riccati equations.

Finally we may note that the Riccati transformation can also

be used in the factorisation method of Babuska and Majer [1611

and this is the subject of the next Chapter.

In Appendix I :

[4~11 : Restart values for .E(t‘ ) and 7 (t* ).
a

£4-2]1 : Restart value for y.(t* ).

~ > Py |
[4-31 : R(t" ) = FE .
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CHAPTER S

FACTORISATION METHODS

Partitioning

Up to now, in all of the previous Chapters, we have partitioned

the system matrix A(t) of the given (well conditioned) LBVP

(1.15) as
14 1
Aty = Pl A () A _(t)
] 2
21 A (b) A__(t) and the solution x(t) as
L 1] 2
x (e |
xz(t) % to correspond with the partitioning of the

?

transformation matrix T(t) = ET'(t) | Tz(t)] where p and

q were the dimensions of the (forward) growth and decay sub-

spaces respectively. This follows the notation used by Van Loon

(10, 171, Mattheij £1] and Russell [12].

In this Chapter, however, to facilitate understanding of the

bounded factorisation methods, as put forward by Babuska and

Majer in [16], we partition the problem as shown below where n,

is the dimension of the (forward) decay subspace and n, that of

the (forward) growth subspace. We therefore restate the given

(well conditioned) (n,n) LBVP as :

X(t) = B(tIx(t) - f(t) (S.1a)

D'x(a) + Dz x(b) = ¢ (5.1b)



for a <=t <=b where B(t) = B“ (t) B't(t) n,
Bza(t) le(t) n, 1
x(t) = x, (D)™, € = €, , D = u,
\
x (t)|™M . o)
D = ‘i 0 , ft = [+
2
Uz . fz(t) and
A‘ ﬂ‘. “l ﬂ‘
U' = '\(Ko !l<'] ’ Ul = [Kz \ KslnL where K° and KJ
are assumed to be non-singular and where n' and n, are the

dimensions of the (forward) decay and growth subspaces respect-

ively. This follows the notation used by Babuska in [161].

Propagation of BC

The notion which underlies the factorisation methods is that we
propagate forwards (backwards) a set of conditions equivalent to
the initial (final) boundary conditions of LBVP (5.1) so as to
obtain a complete set of n independent conditions at any point
t = 't,.l in fa,bl at which the solution x(t) of (5.1) is
required. Factorisation is a double sweep method which can be
applied to either the continuous orthonormal or to the Riccati
transformation or even to single shooting superposition. Howeven
unlike the double sweep methods that we have looked at in
previous Chapters, here the forward and backward sweeps are
independent in that each sweep employs a different form of the

same transformation (either continuous orthonormal or Riccati)




of which only one part is used. Let us call the forward and
backward sweep transformation matrices T(t) and L({t)

ny Ny
respectively where these are partitioned [T‘(t) i Tz(t)] and
likewise for L(t). For the forward sweep let :

-}
T (t) = S(t) = §. ey |n

* Ra y Wwhere =* denotes a (nl, n)

matrix with which we will not be concerned here. Then

x{t) = T(t)y(t) ==y
() = T (£Ix(t) > (t) § t) (t)
Y = ® ==== V4 = L X
Ly, () = *
—— @ (B).x(t) = y (&) or P r.xcty = & (t)
\ ' ) (
(5.2)
putting B () =y (t)
where (t) (n, 4, n) and ¢ (t) (n. , 1) are the
) | ] !
forward transition matrix and vector respectively.
Likewise for the backward sweep let ﬁﬂ (t) = J(t) = * n

@z(t) n,

where now, of course, for backward integration from t =b to
t = a, n, is the dimension of the growth subspace. Then

-l
x(t) = L(t)r(t) ====> r(t) =L (t)x(t), where r(t) is the

solution of the transformed system, ====>

r.(t) = * %X (t)

ro(t) (t) — ¢ -

. ét => B () = r ()
or étm x(t) = @ (t) (5.3)
where §;t) tn, , ) and B.(t) (n, , 1) are the



backward transition matrix and vector respectively. Equations
(5.2) and (5.3) are the forward and backward transition
equations and if we combine them at any value of t’ € [a,bl

we get the combined transition equation :

L4
P t* ], xt » = &, (t* )
) ‘
» ]
Q:t ) | @ (t" ) (5.4)
from which the solution x (£* ) of the LBVP (5.1) is obtained.
it is shown in [16] that if LBVP (5.1) has a unique solution

then so will linear system (5.4). Also, provided the IVPs for

®.(t) and $;(t) (1 <= i <= 2) are well conditioned
]

then so will be system (5.4). In later sections we derive

these IVPs (known as the factorisation transition equations).
The distinguishing feature of the factoris-—

ation methods is the way in which the given initial (final) BC

is propagated forwards (backwards) across the problem interval

Ca,bl. For the forward sweep, the given initial BC of LBVP (5.1)

is U, x(a) = c, or [K° | K‘ l1 x(a) = c . As explained

later, this BC is transformed into an equivalent set of

conditions §(s)_)((a) = d' s Where é (a) must be of the same
' '

-
form as the first n' rows of transformation T (a)
7' (a) = D (a)]a,

=)

-« [}

i.e.

L . Thus for the Riccati application

§ (a) must have the form (I, | R(a)l because here
[] [}

T='(t) = I R(t)

“O

0 I

“e sy Whilst for the orthonormal



application Qé'(a) must be a row set of orthonormal vectors
because in this case T-‘(t) = T1.(t) = [T'(t) | Tt(t)]T
N BAGY

T:(t) where T(t) is an orthonormal matrix for all t.

In the Riccati case this transformation could simply be achieved

by pre-multiplication by K; i.e. [K 1 K 1x(a) =c  ====>
-l -l
£I l K K 1x(a) =K € = d, . But this might result in
"\' ° ' -] ' '
-t
some of the elements of R(a) = K° K' being large in modulus.

To avoid this we adopt a preliminary procedure of alternate
column interchanges and row operations described later so as

to finish up with R(a) having all its elements in modulus less
than or equal to one. (This will most likely cause a re-arrange-
ment of the components of the LBVP solution x(t) thereby

necessitating a re-imbedding of the ODE).

Now for either the Riccati or the orthonormal application

at any value of t € {fa,bl we have x(t) = T(t)y(t) ===
y, (0] = d )| . x)
)
* =
yz(t)
Ptix(t) = y, (&) = B (t) ====> D (arxca) = B, (a).
'

I1f we compare the latter with the equivalent set of initial

conditions 5'(a)x(a) = d' that we have obtained we see
that forward integration of the ODEs for § (t) and &, (t)
'

below
(viz. (5.6) and (5.5)p from initial conditions of § (a)
)

and d'(a) = d  will produce a set of conditions equivalent

to the initial BC of LBVP (5.1) for all t ¢ [a,bl.

Likewise, in the backward sweep the final given BC is propagated



from t =b to t = a in a similar fashion.

Forward Sweep

Consider the forward sweep. First the given LBVP (5.1) must be

recast so that the initial BC matrix U is in the correct form

(see later) for the'particular transformation to be used

(either continuous orthonormal or Riccati). In the case of the

Riccati transformation this will probably require a re-imbedding

of the LBVUP. We give details later of precisely how this is done

when we examine each transformation individually. For now we

will assume that this preliminary transformation has been done

so that matrix U. in (5.1) is already in the correct form.

Recall from Chapter 1 that if in general we apply the

transformation x(t) = N({(t)v(t) or vit) = N-'(t)x(t) =
M{(t)x(t) to the ODE x(t) = B(t)x(t) - £(t) of LBVP (5.1)
we get the transformed system : vity = Wt)vit) - ?Qt)

where W(t) and M(t) are connected by the Lyapunov equation

a(t) = WERIMG) - M)B(E) and ?Qt) = M(t)f(t).

For the forward sweep we use the transformation
x(t) = T(B)y(t) or y(t) = S(t)x(t) on x(t) = B(t)x(t) — §(t)

. . ~
to obtain the transformed system y(t) = B(t)y(t) - g(t) where

o~
T(t) is chosen such that B(t) is block lower triangular. Then
cumeenSae

we have 1 S(t) = B(£)S(t) - S(t)B(t) and g(t) = S(t)f(t)

where 8(t) = $, v

~
* . Thus y(t) = B(t)y(t) — g(t) mmmm)

§-6



y (t) ‘B, () 0 (t) D . £
= —
y‘( " y| \ *
* 4 o~
y, () B,, () B t)]y, ) *
i y (t) =B, (try (&) () £ (1)
i.e. vy, = B, Y, §. or
$ ) = - §‘(t)f(t) + 1), @b () (5.5)

it

. ~
putting Y, ¢%(n' s, 1) and 7 = B' where Z'(t)

(h n' ) 1is the conditioning matrix of this IVP.
'

Also : S(t) = B(t)S(t) - S()IB(t) ====>
wr] = | B o) 0 (t) (t) B(t)
@ " §> :
B ) B () *
* . B,, (t “
~
i.e. (t) = (t) ~ (L)B(t) or
. % e - 3
(ty = - (IB(t) + Z (t) (t) (5.6) .
ibu €§v ' * Ei\

To obtain the initial conditions for these IVPs (5.35) and (35.6)
note that from equation (5.2) we get : é (a)x (a) = ¢'(a)

whilst from the initial BC_of LBVP (5.1) we have :

U .xta) =c . Thus we take é'(a) = U, and ¢'(a) =c,
Now the transformed initial BC is u, T(a)y(qo = C

'
====) C U' T'(a) | U. Tt (a) 1 y|(a) =

yz(a)
=mmm=) T (a) (a) + = i -
U. ,fa), 6' a U. T'_ (.)YL(a) €, since y p.

Hence the transformation T(a) must be such that

[ (3.7a)

U T (a) = 1
\ ' )

U‘ Tz (a) = O (5.7b)
where T(t) may be either continuous orthonormal or Riccati.

Note that condition (5.7b) corresponds to (1.17) of Chapter 1.



Backward Sweep

Now we consider the backward sweep, for which a
similar argument applies. First the LBVP (5.1) must be recast

to obtain the final BC matrix Uz. in the correct form for

either the Riccati or the continuous orthonormal transformation.
Again, for now we will assume that this has already been done in
(5.1). For the backﬁard sweep we use the transformation

x(t) = L(E)r(t) or rdt) = JIx(t) on x(t) = B(t)x(t) — f(t)
to obtain the transformed system F(t) = C(t)r(t) - h(t) where

L(t) is chosen so that C(t)

we have J(t) = C(£)J(t) - J)IB(t) and h(t) = J()$(t) where

is bloék upper triangular. Thus

Jt) = * N,

@, () ]n, and s0 : F(t) = CUIr(E) - h(t) ====>

ro) = [c, €, () rote ] — * RALY
F (1) ) €,, () r, (£ §t(t)
i.e. F'z(t) = C,,(tir, (t) -~ §1(t)f(t) or
@ty = - P )+ 7 ) Bt (5.8)
putting r, () = @, (t) (n, , 1) and C, (t) = Z () (n  ,n, ).
Also 1 J(t) = C(EYJ(E) - J(L)B(t) ==mx)
* = €, () C,, (t) * - | _B(t)
§ v . ) € (V) $ @ @Jt)
=-==: ?‘ét(t) = C,, (%), §L<t) - §t<t)a(t> or
éz(t) = - éz(t)a(t) oz, §1(t) (5.9).

From (5.3) we have @ ét(b)x(b) = ¢t(b) and from the final

BC of (5.1) 3 Uz.x(b) = :z « Hence we have initial conditions



for IVPs (5.8) and (5.9) of @ (b) = c, and P w
*

Also : Uz % (b) Cz ====) Ul L{b)r(b) = c, ====)

U:, L‘ (b)r‘l (b) + Uz Lz(b) . ¢‘.(b) = €

1 =
L (since rL

and so the transformation L(t) must be such that

®,

Uz L'(b) = 0 and Uz Lz(b) = I“;‘
Note that if we define ‘éé (t) (ny N, % (t)
(n,1) and Z(t) (n,n) by :
P = P |~ , & () = @, (t) |n,
Qt(t) ne B, (8 | " and
Ztt)y = Z‘(t) 0 AT
o] Zz(t) Ny then we can combine

the forward and backward transition matrix equations (5.6) and

®
(5.9) into @(t) = - §(t>a(t> + ey, P w

and

the corresponding transition vector equations (5.5) and (5.8)

into Bty = - P rect) + ), Bt

Application to Riccati transformation

We look now in more detail at how the factorisation

method can be applied to the Riccati transformation.
forward sweep we must first re-cast the given LBVP
to put the initial BC matrix U
follows. The given initial BC of (5.1) is :

(Ko | K' ] .x(a) = ¢

Alternate column interchanges and row operations are now

performed on matrix (K | K' J of the form

For the
(S.1) s0 as

| into the required form as

' (35.10).



eeesssss [K t K 1P ...... ..P where P, (n,n)
"'-l [} -] ' ' ] [}

is the perm matrix which takes the max mod element of the ith

row (1 <=1 <= n‘ ) to the ith column and G, (n n. )

IR |
is the matrix which performs row Gaussian elimination using

the (ith, ith) element as pivot. The sequence of operations

is thus : ﬁ 'B',P‘.G; """"Pn. ‘@e.qQ. after the first

cycle of operations we have from (5.10) :

T . T
Bl [K° ] Kl ] ﬁ P' x (a) B. <, (since P. ﬁ )
or IZ-K.° IT<-' 1%ta) = E‘ where %t(a) = P:' x(a).
Therefore if we denote the composite perm ﬁ Ii ceeensaP,

L]
by P we finish with a set of conditions equivalent to (5.10)

of the form: [E I F 1P x(a) = d, which can be
written : €I, | E” F1%@ = u, or

[Iﬁ' | Rta) 1% = u, ' (S5.11)
where R(a) = E  F, u, = £ d, and %(a) = P x(a).

It is shown in (161 that the above procedure will ensure that

all the components of R(a) will now be in modulus less than

or equal to one. However, it has caused a re-arrangement of the

components of solution x(t) defined by Xt = ﬁT x(t) and

so we must re—-imbed the ODE of LBVP (S5.1) to take account of

this. In the original given imbedding the ODE (5.1a) was

%(t) = B(EIx(t) — §(t) mmmm)
T T T
P ;((t) = P BM@R{PP Ix(t) - P.r £(t) =mmz >
d () = AR - 1(t)
at (5.12)
J T
where A(t) =P B(t)P and 1(t) = P §(t). Thus after
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re—casting the given initial BC (5.10) into the Riccati form

(S.11), the corresponding re—-imbedded ODE is now (5.12).

For the forward sweep we now define the Riccati transformation

by T) = I, ~R(t)
)

0 I (5.13)
Na

where R(t) (n' y N, ) is the Riccati matrix, so that

: \
S(t) = T () = 1 R(t)

™

0 Ia . In order that the
E S

transformation ‘;(t) = T(t)z(t) will put ODE (5.12) into the

* ~ o
form z(t) = A(t)z(t) — h(t) where A{t) is block lower

triangular we show in [5-1]1 that R(t) must satisfy the Riccati

equation :

h(t) = A (EIR(t) + R(t)A (H)R(t) - A (&) - R(t)YA_ (t)
]} 20 2 L%

(5.14)
~ _
and that A(t) is then given by :
a = A () + R(DIA
Alt) = " ZI(t) 0]
A_ (L) Aty - A (vH)r(B)J -
2
: e 2 (5.15)
-l
Also, since S(t) =T (t) = In R(t)
[}
o] I y the forward
N
transition matrix §§ (t) = CI" y R(B)] (n‘ y N) and the
Vo~ J

condition matrix Z|(t) = A"(t) = A“(t) + R(t)A1 (t). From
|

(5.11), the initial condition for the forward integration of the

L
. [ 4
§‘(t> IV is §'(a) = LI, , Rta)l and for the B, (t)
)

IVP we have ﬂa(a) =u, . Note that S Y ,F%Qa)J.Tl(a) -

t1, o R {1,

0 = In and that {1 s R(a)l.T_ (a) -
n' t &

S -



{1 , R(a)l. | - Rta)
f\‘

I“ = 0, as required in (5.7a & b).
a
In practice, we do not need to integrate § (t) <forwards
l
because P ) =11, , R(II for all t. Instead we
\

'
integrate forwards the Riccati equation (5.14) from its initial

-l
value of R(a) = E F (which gives us § (t)) simultaneously
]
with the ¢, () IVP (5.5) viz.
e
@) = - Dwrf) + 7 (), @B, @B, ) = u .
Hence we obtain é‘(t) and ¢'(t) for all t ¢ [a,b]

(assuming that R(t) remains bounded : we return to discussion

of this point later).

For the backward sweep, the given LBVP (5.1) must

first be re—cast so as to put the final BC matrix Uz into the

required form as follows. The final BC of (5.1) is :

LK, o K3 1.x(b) . ' (5.16)

Alternate column interchanges and row operations (similar to

those described earlier for the forward sweep) are now

performed on matrix [Kz ’ K3 ] except that in this case each

perm matrix Q; (nyn) takes the max mod element in the ith

row (1 <=1 <=n_) to the (nh - i + 1)th

2 column and the

(i, n =i + 1)th element is then used as the pivot for the row
Gaussian elimination. We thus obtain a set of conditions

T
equivalent to (5.16) of the form : [E' i F. 1. x(b) = e,

where @ is the composite perm matrix Q' Qz """'Qn . This

k8
can now be written 1 (P(b) | I 1Xm) = ¥ (5.17)
|
- -'

)
-)
where P(b) =F E v, = F e and %) = @' x(b).
[ ]

S-12



As in the forward sweep, this process ensures that all of the

components of FP(b) will be in modulus less than or equal to

one. It also necessitates a re—~imbedding of the given GODE (5.1)

T

o~
defined by x(t) = @ x(t). Let us suppose that the re-imbedded

version of 0ODE x(t) = B(ix(t) — $(t) is

-~ ~ ~ ~
d %(t) = Btix(t) -— $(t)
dt (5.18)

~ T ' ~ T
where B(t) = @ B(t)Q and f(t) = Q@ f(t), for which the

corresponding final BC is (5.17).

For the backward sweep we define the Riccati transformation by

Ly = (1, 0
-P(t) I,\t where P(t) is the Riccati solution
matrix (n_, n ) and for which U (&) = 3w = (1, 0
|}
P(t) .,

The transformation 1Y) = L(t)r(t) will put ODE (5.18) into the

form ;(t) = C(t)rt) - h(t), where C(t) is block upper

triangular, provided P(t) satisfies the Riccati equation :

~ ~ ~ ~
P(t) = P(t)B.z(t)P(t) + Bzz(t)P(t) - P(t)B“(t) - B ()

B (5,19
and in this case :
o~ P4 o~
C(t) = B"(t) - B't(t)P(t) Bll(t)
0 T,, (1) + P()B,, ()
22 &
(35.20).
-y
Also since J(t) =L (t) = In 0
| ]
P(t) I we have
Na
gﬁztt) = [P(t) ] I" ] (nl s N) and the condition matrix

~ ~
sz(t) = Bz‘(t) + P(t)B.t(t). Thus we integrate
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simultaneously backwards (from t = b to t = a) the Riccati
-l

equation (5.19) from its initial condition P(b) = ﬁ E

together with the ¢z(t) IVP (5.8) wviz.

B (t) = - D )£ty 7, B, b, =V .

Hence we obtain §’ft) and ¢a.(t) for all t € fa,bl,

provided P(t) remains bounded.

Restart re-imbedding procedure

As described in Chapter 4, the chief drawback of
the Riccati method is that the Riccati solution (either R(t)
forwards or P(t) backwards) may have a pole at some value of
t in [a,bl. We avoid this by keeping the transition IVPs
§;(t) and ¢‘.(t) (1 <= i <= 2) well conditioned by
adopting the following restart re—-imbedding procedure. For the
forward sweep the integration of the Riccati equation and

¢.(t) equation are continued from t = a until a value of

t is reached at which :

“ é.“’ “ > 6 “ é,‘a’ “ (5.21)

where (? is a pre-selected small positive constant. If this
happens at t = t < b then we restart. Suppose the ODE

for the first subinterval [a,tl J is 3

%0 (t) = B® (£)5° (t) £2(t), where superscript ° denotes

values in the imbedding for this subinterval. At t = t. the

propagated initial BC (equivalent to the initial BC at t = a
L J o °

f the given LBVP) are -

o g §|(t.)x k) B, (¢, ) or

§ -1y



° ° cﬁo )
cxn‘ R (£ )1 x () = L e (5.22).

In order to make all of the components of the restart Riccati
solution matrix, at t = t. s in mod value less than or equal to
one, we perform the previously described row and column

-
operations on [I\ i R (t.)] causing a change of imbedding.
)

This produces a set of conditions equivalent to (5.22) of the

' 1 ' ]
form [I, I R (tl)].x (t.) L 95|(t') where superscript
L]

denotes values in the new imbedding for t >=t . The ODEs in

[}
this new imbedding are x'(t) = B' (t)x' (t) - €' (t) and the
[} [ ]
transition matrix and vector are now - § (t) and ¢' (t)
]

respectively. The Riccati equation corresponding to this

imbedding viz.
o ] ] ] ' ] ] ] ]
R (t) = B (t)R () + R (t)B (t)R (t) -~ B (t) — R (£)B (t)
(1] a0 [ N as
'
is now restarted from the vglue R (t') and the transition

) e |} ]
vector equation ¢'(t) = - § £ty + Z: (t) , @, (t)
!

\
(where Z (t) = B, (£) + R ()B! (t) )

" is restarted from

\
d. (t'). Note that the Riccati transformation matrix

corresponding to this new imbedding is In - R'(t)
]
o I
Na
for all t >= t' .
The integrations are now continued until a value of t is

reached where “ i&:(t)l‘ > (’-“ %g:(t‘ )l\ . If this

occurs at some value of ¢t = tz < b then the above restart

procedure must be repeated at ¢t = tz , and €0 on until t = b

is reached. After each restart at ¢t = ti the restart Riccati

solution matrix R (t: ) will have all of its components in
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mod value less than or equal to one, which helps to reduce the
number of restarts likely to be needed. Also if, after a
restart, the new imbedding is an unstable one in that the
corresponding Riccati solution is exponentially increasing or

has a singular point at some value of t > t: , then the

' b

criterion “ $ “ > . “ P . >“ will
' \

ensure that the length of the subinterval in this imbedding

will be short. Similar remarks to those above apply also to

the backward integration of the Riccati P(t) equation

(5.19).

Note that whenever a re—-imbedding occurs (in either sweep) the
composite perm matrix which produces this re-arrangement must

be stored. Suppose that re-imbeddings occur at the nodes

ar=s t° < t‘ € aennsl tN_'<jtN =b during the forward sweep

and at a=5 < 8 € eeeeseal 8 < 8 < g = b in the
™M M-y 2 ' °

backward sweep. For the forward sweep, in subinterval

[t; ’ t;+'] (0O <=1i <= N - 1) denote the re-imbedded solution
vector by x' (t) and the transition matrix and vector by

' \
& &) and $, (t) respectively. Also let the composite
[ )

perm matrix which changes the imbedding at ¢t = t. be P?-
]

Then if x(t) denotes the original imbedding of the solution

(as in the given LBVP) we have :
' T <« n
x (t) =P., P‘-' ........ch(t) = P x(t), say.

Similarly, for the backward sweep, in subinterval

C85a®]
(0 <= j <= M -1) denote th? LBVP solution, transition matrix
J J J
and vector by x (t), § (t) and b (t) respectively.
2 b 3
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Let the composite perm matrix which changes the imbedding at

-
t = 55 be Qj . Then we have :

- -
¥ (t) = B ceeenenn@ X(8) = @ x(), say.

Now suppose that we require the solution to the given LBVP at

« X
t=t where t € [t: ’ t;+'l in the forward sweep and

~€ € [5j+\)5j l] in the backward sweep, for some values of

4
i and Jj. Then at t the forward transition equation is

Q"(t" Y x' * ) = Bt ) m===>
é"(t' )y P x(t® ) = ¢‘:(t" ), and the backward equation
é‘(t*) xd (¥ ) = csf(t" )  ====)
§-‘;(t" ) @ x(t* ) = ¢i(t‘ ). Then the combined transition
equatien at t = f‘ is ,
§:(t"' y P L. o xtt*) = d:(t* )
?z(t" ) @ | '¢i‘(t’ ) from which

»

solution x(t~ ) can be obtained.

Application to continuous orthonormalisation

We now consider the application of the factorisation

method to continuous orthonormalisation. For the forward sweep

we must first re-write the initial BC of the given LBVP in an

equivalent suitable form, as follows. By using the Gram Schmidt

process we find matrix P (n , n ) such that PIK_| K, ]

= V’ is a row set of unit orthogonal vectors i.e. V Vr. =TI
'

n
)
The given initial BC of (5.1) is :

(K_ 1 K 1x(a) = ¢ (5.23)
° ' !

5-—:7



=== PIK | K 1xta) = Pc
o |

====> % xta) = d‘ (5.24)

where d| =P c, . (5.24) is now a set of initial conditions

\
equivalent to (5.23). For the forward sweep we use the trans-

formation x(t) = T(b)y(t) or vy(t) = S(t)x(t) on ODE

X(t) = B(t)x(t) - f(t) to obtain the transformed system

~, [,

~ o~ :
B(t)y(t) f£(t) where T(t) = [T‘(t) i T;(t)] must

V)

be orthonormal for all ¢t and such that ‘g(t) is block lower

triangular. In [5-2] we show that this will be so if n (t)

T
satisfies the ODE : T|(t) = -~ B (t)Tv(t) + T.(t)TT(t)ér(t)n (t)

oT T - -
or T‘(t) = - T'(t)B(t) + {T‘(t)B(t)T'(t)}T (t)

(5.25) .,

(Note that since only one part of the transformation is to be

used in the forward sweep we need not concern ourselves with
o~

the ODE for Tz(t) o In this case, B(t) is given by :

~ T
B(t) = T.(t)B(t)T‘(t)

T
T:(t){B(t) + B (t)}Tl(t)

o

T

Tz(t)B(t)Tt(t) .
Now since T(t) is orthonormal :
S(t) =T () = fT(t) = [T‘(t) | Tz(t)J = T
T (t) .

Therefore the forward transition matrix (¢t) = TT(t)
[

)
P
and the condition matrix Z.(t) = B"(t) = T?(t)B(t)T'(t).

Note that if we substitute these expressions into (5.2%) it

]
becomes : P () = = D (IBL) + z 0, § ), the
' ) '

The initial conditions for the

§ (t) and & (t) ODEs are § (a) =V and
) ' ) '

forward transition matrix ODE.
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T
¢' ta) = d' from (5.24). Note also that V' T‘ (a) = V‘ § {a)
'

=V V = I ,a88 required in (5,7a).

For the backward sweep, we first obtain a set of
conditions equivalent to the final BC of LBVP (5.1) viz.

[Kz i K3 ] x(b) = C, (9.26).

We use the Gram Schmidt process to find matrix @ (n: ' Ny )

such that @ [Kz § K3 1= Vz is a row set of unit orthogonal

vectors. Then from (5.26) we get

d, (5.27)

Vv x(b)
2

where dz = Qc, . We now use the transformation x(t) = L(t)r(t)

or r(t) = J(t)x(t) on ODE x(t) = B(t)x(t) — f(t)

to obtain

the transformed system rt)

C(tir(t) - hi(t) where Li(t) =

[Ll(t) | L1(t)3 is orthonormal for all t and such that C(t)

is block upper triangular for all t. For this to be so (see

{5-31) Lz(t) must satisfy the ODE

. T SO, ¢
- +
Lt B (t)L, (&) Ly (B)L (0IB (E)L, (b)

=== >

° ~
LT (1) S (B + LT (HBMOL () LT () (5.28).
b R a b % : P ]

(We will not require the ODE for L‘(t) for this sweep).

In this case, C(t) is given by :

i T -
c) = L, ()B(EIL, (&) L, (£){B(t) + B (£)IL (t)

0 LT (1)B(RIL_ (t)
t 3 L 8
Now since L (t) is orthonormal :
-} - T -
Jit) =L () =L (t) = tL'(t) | Lz(t)] = L (&)
[}
LY (t)
$ -0 ‘
(t) L (t) Al
and so 2 = 2 and Z‘(t) = Cztft) = Ll(t)B(t)szt).

Substitution of these expressions into (5.28) gives us the ODE



for § (t) viz. § (t) = o= é (t)B(t) + Z (¢), i(t).
2 2 ; 3 2 %

The initial conditions for the § (t) and s _(t) 1VPs
2 E 3
are 5 (b)y =V . Ab) =d from (S5.27). Note that
-2 ¥ X 2 *
T
VL () =V P = vv'l = 1 |
: r I, 22 e

Use of ‘generalised inverses’

A practical‘diffi:ulty associated with continuous ortho-
normalisation methods has already been discussed in Chapter 3
viz. although the solutions T‘(t) and L (t) of ODEs (5.25)

L S

and (5.28) respectively should each in theory be a unit orthog-

onal column set for all t, in practice this may not always be

so. Therefore, to reduce the risk of loss of orthogonality it
is suggested in [16] that the following alternative forms of

the conditioning matrices Z‘(t) (1 <= «£ <= 2) should be used

T
instead of Z_(t) = §‘(t)8(t). §.‘(t) (5.29)
in ODEs (5.23) and (5.28) :
v v -l
z,(t) = ¢ $_(t)B(L), ()¢ B ). F_ ) (5.30)
= T v -l
2,00 = CPUOIBM), P _(6) + Q1) 20 J (b)), g0 (5.3D)
T T
where Q) = § WYy, - é‘(t), $ ¥, §>0 and

Sz< 0. Version (5.30) corresponds to the ‘generalised

inverse’ method of Chapter 3 (see 3.31a & b) whilst version
(5.31) is usually referred to as continuous stabilised ortho-

- . T
normalisation. Note that if we assume that §‘(t) . é (t) =
<

I“ for all t then (5.30) and (5.31) both reduce to the
o<

basic orthogonal version (5.29).



Error control by factorisation methods

The main advantage claimed for the approach of Babuska’'s
factorisation method over the Riccati and orthonormalisation

methods described in previous Chapters, is that it provides us

with a means of error control i.e. in the case of a well

conditioned LBVP the errors in the computed values of the

transition vectors gi‘(t) (1 <= « <= 2) as obtained from

ODEs (5.5) and (5.8) should provide a meaningful bound for the

error vector e(t) in the computed solution x(t) of the

BVP, so long as the transition matrices éé.ét)
(1 <=«<K= 2) remain sufficiently small over [a,bl.

To understand this we must regard the computed solution of a

given IVP (LBVP) as the exact solution of a corresponding

perturbed IVP (LBVP). Thus the computed splutions of the

transition vector equations (5.5) and (5.8) can be regarded as

the exact solutions of the perturbed IVPs :

Bty = — P OFM) + I ) . Bty + J ()
Bolte) = Ce * Ve y Where t,=a, t, =0b, and

wiét) and Ve are the perturbations in the right hand

sides. Likewise, the computed solution of the LBVP (5.1) can

be regarded as the exact solution of the perturbed LBVP :

.
x(t) = B(ti)x(t) - £(&) + r(t)

u‘x(t_() = Gt oW s+ Where r(t) and w o are the

perturbations in the right hand sides. Now suppose that for

all t € [a,bl the transition matrices gé (t) satisfy the
<



following boundedness conditions :

“é‘(t) “ <= M_ and ‘c $ . §:(t)3|“ = 1

me
(1 <= &« <= 2), where N.( and m, are constants of
moderate size and M, = 0(1).
m Then it is shown in [16]
that at any value of t € fa,bl :
" rt) " <= max Mo | ” }_((t) ”
o= 1,2 M
and “ W, “ <= H v.‘u i.e. the perturbations in

the LBVP are bounded above by the corresponding perturbations

in the transition vector IVPs (5.3) and (5.8). Therefore, if

these IVPs are solved using a variable step Runge Kutta
integrator with a small error tolerance this will ensure that

” Ek(t)‘l and " vd‘l will both be small and hence that
lec || ane  Jlw || will be small also. Further, if

the given LBVP (5.1) is assumed to be well conditioned this

means (see 1.13 of Chapter 1) that the error \' e(t)l' in
the computed solution x(t) of the LBVP should also be small.

Thus Babuska’'s bounded factorisation methods provide us
with a means of controlling the size of l‘ e(t)ll .In Chapter
6, we describe a proposed error estimation method

(based upon multiple shooting) from which we can actually

obtain an estimate for the error vector e(t), and this is
applicable even when the given LBVP is not well conditioned.
We also extend this method into an iterative correction

algorithm which can be used to solve the LBVP.
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In Appendix I1I we give the results of some of our
numerical experience with the factorisation methods in the

solution of both well and ill conditioned LBVPs.

In Appendix I :

{S-1]1: Derivation of Riccati equation.

[(S-23: Derivation of T|(t) equation for forward sweep of

orthonormal method.

*®
{S5-31: Derivation of Ll(t) equation for backward sweep of

orthonormal method.
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CHAPTER &

ERROR ESTIMATION AND ITERATIVE IMPROVEMENT METHODS

Introduction

In this Chapter we describe an error estimation
method based upon multiple (parallel) shooting which we extend
into an iterative correction algorithm to converge to an

improved solution of the given LBVP i.e. to produce successive

improvements on the first calculated solution. Results of
some of our numerical experience are included to show the
success that we achieved with the method. However, the
situation is complex and the results are not completely

conclusive so that further investigation and research is

needed.

As explained in Chapter S5, Babuska‘'s bounded factoris-
ation methods enable us to control the size of the computed

error in the solution x(t) to a well conditioned LBVP. But in

practice the condition of a given LBVP will most likely be

unknown and the calculation of the conditioning constants k

and kz (see 1.11) is costly. Even if these are found we can

still only obtain a bound on the size of the computed error
(see 1.13) and this bound could be very pessimistic. Therefore,
below we propose a method of estimation of the computed error

which is obtained as the LBVP is solved rather than an estimate

for the error bound. Moreover (as our results show) the method

¢-



can be successfully applied to LBVPs which are quite stiff and

ill conditioned.

Suppose the given (n,n) LBVP is 3
% () = ACtIx (L) + §(t)

Box(a) + B‘x(b) = C (6.1)

for which the exact solution is x(t) for all ¢t ¢ ([a,bl.

The method

may be summarised as follows. First we find an approximate

solution of LBVP (6.1) and then we use an interpolant of this

calculated solution u(t) to obtain a residual function r(t)

at any required value of ¢t € [a,bl. This enables us to re-

solve LBVP (6.1) with the forcing function f(t) now replaced

by r(t) and with c = O. The exact solution of this LBVP

will be the actual error e(t) in u(t). Our calculated

solution though will be subject to the combined effects of
interpolation and integration error but we hope that this

approximate solution will provide a good estimate for the actual

error.

More precisely, we proceed as follows. First we solve LBVP

(6.1) by the standard parallel shooting method (as described in

Chapter 2). In doing so we use either a pre-selected number

of equally spaced nodes or node positions determined by a pre-

selected maximum value (cmax) of the condition number of the

fundamental solution Xft) in wach subinterval : the value

of cond X.(t) = ,’x‘(t)”_“ xf'tt)', is checked at the end of
]



each integration step and a node t, is inserted as soon as
e

cond X,(t) >= cmax. The calculated solution vectors u.(t;)
[]

obtained at these nodes a = t°< t|<.....< t = b, are stored.

These u.(t:) vectors can now be substituted in the

given ODE of LBVP (6.1) to obtain derivative values :

&.(t:) = AU () + FLE) and hence also
ae [ L .
u (t,) = ACt.)u (t.) + At d)u (t.) + £<(t.) and
] [] (] 1 (] [] [ ] [] t
LY ae L 1 L4 . o0
u(t.) = Adt.du (t:) + A(t.du (t.) + 2 A(tsdu (te) + £(t.) .
[\ '] ' ] U [} [} ? ] [} U ]

(If the expressions for the derivatives of A are not readily

obtained then it may be necessary to make use of computer
algebra software written for this purpose).

Thus we have values for u.(t;) and its derivatives at each node

t, and so0 we can use Hermite (cubic, quintic or septenary)
(]

interpolation between each pair of nodes [t,, t.+q]
[ (]

(0 <= i <= N - 1) to obtain an interpolated approximate

solution u'(t) for all t e¢Ca,bl. Now this solution

can be regarded as the exact solution of a perturbed LBVP :

bo(E) = AMBu (B + e+ r, ()

B°u'(a) + B'u'(b) = (&b, 2)

for some residual function s (t) (n,1) given by 1

rott) = G‘(t) = Atk (£) — £(t) (6.3)

for all t e€fa,bl. Note that ﬁ (t.) = 0 at each node t,.
‘ ]

Now the error e.(t) in this solution u.(t) at any value

t ¢ Ca,bl is given by .'(t) = u'(t) - x(t). From LBVPs

(6.1) and (6.2) we see that e'(t) is the solution of the LBVP 1




;i(t) = A(t)e|(t) + n (t)

Be ta) + Be (b)) = 0 (6.4).
o ! [

LBVP (&6.4) is now solved by the same multiple shooting algorithm

used previously to solve LBVP (46.1) i.e. the subinterval

fundamental solutions X;(t) (O <= 4 <= N - 1) will be the same

as before but the particular solutions v, (t) must be re-
[ )

calculated because the forcing function is now rl(t) instead of

f(t). The value of q (t) is obtained from (4.3) at any required

’ t;+3 by using

Hermite interpolation between the nodes t; and t;+‘ to

value of t = t= in subinterval e,

* .
find values for u.(t ) and u‘(t' ). The solution

e‘(t;) is saved at each node t; and provides us with an

estimate of the error in the calculated solution u.(t;) of

the given LBUP (6.1). The error in = (t:) is a combination

of interpolation error and integration error, where these two
are interdependent. This complexity makes analysis difficult.
The error estimation method described above can be further

extended into an iterative correction algorithm as follows.

If the error estimate ..(t;) is sufficiently good then

a better approximation ul(t;) to the solution of LBVP (&6.1)

should now be given by : ut(t;) = u.(t;) - .‘(t;) at each

node t; (O <= i <= N). We can now repeat the above error

estimation procedure this time using the u (t.) values to
: )

obtain an interpolated solution ut(t) for any te¢ Ca,bl and

hence a residual function Q_(t) from which an error estimate



el(t‘) in uz(t‘) can be obtained. We hope that the

iteration ¢ ues (t-) = u'(t) - e, (t.) (i >= 1)

J¥y J J |

will produce successive solution vectors u-(t;) which are
improvements on the first calculated solution \J'(b;) of LBVP

(6.1) at each node ti'

In practice, as we shall see,
we found that the success of this proposed iterative residual
correction method depended very much on the choice of type of
integrator used to solve the IVPs necessary for the solution
of the original LBVP (6.1) and the residual associated LBVPs
(6.4). Equally important was the overall accuracy of the
interpolant used.
In obtaining the numerical results given in this section all
calculations were performed in double precision and the multiple
shooting node positions were determined by pre-selecting a value
(cmax) for the maximum allowable size of the condition number of

the fundamental solutions as explained earlier. Note that the

number (ns) of subintervals is reduced as cmax is increased.

For the iterative correction method, in sach case the maximum
number of iterations allowed was six and the accuracy of the
final calculated iterative solution u(t) to the LBVP

measured by the maximum actual absolute error incurred in the

T
components of [u(« ),na(P)J where [« ,Pil is the problem

interval.

The test problems were

chosen to illustrate the behaviour of the iterative correction
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algorithm in solving LBVPs differing widely in ‘stiffness’ and
in condition. Each of the problems given below is in effect
a family of LBVPs with a common known exact solution from which

the actual errors in the calculated iterative solutions were

obtained.

Error estimation method

At the outset it was our intention only to use one iteration
(i.e. one solution of the residual LBVP (6.4) ) to obtain an
estimate of the error in the first calculated solution. However,

we found the agreement between actual and estimated errors to

be often much better than we had expected. Some of our

numerical results for the single iteration estimation method

are given in Appendix II, where the integrator used was a

variable step Runge Kutta (RKF 45). The results for test

problem II (detailed later) were particularly accurate as can
be seen from tables A2.2.1 to A2.2.5 in Appendix Il : nearly

all of the estimated and actual errors agree to at least two

significant figures here. The results obtained for the other

two test problems were not quite as good as this - though for

the well conditioned BC cases of problem III the errors

obtained agreed in most cases to the same order of magnitude
(see tables A2.3.1 to A2.3.3). As might be expected agresment
between actual and corresponding estimated errors deteriorates

as the given LBVP becomes very stiff (see tables A2.2.6 to



A2.2.8) or very ill conditioned (see tables A2.1.11 and A2.1.12
and A2.3.4 to A2.3.6).

The success that we had with this error estimation method on
moderately difficult problems motivated us to investigate the

use of further iterations to improve on the first calculated

solution (as explained earlier) :

Iterative improvement method

Initially we tested this method using .the variable step Runge
Kutta integrator (RKF 45) to solve all the auxiliary IVPs of

LBVPs (6.1) and (6.4) and Hermite cubic interpolation was

used between the nodes, but the results obtained were not

encouraging. In some cases successive iterative calculated
solutions were improvements but we found that this

was not generally so. Replacing the cubic Hermite interpolation

by a quintic or septenary produced similar unreliable results.
We found that the cause of this was the Runge error estimation

criterion used to vary the steplength : in many cases it was

occasionally allowing through very large steplengths and this
we attributed to the fact that, in general, the norm of the

solutions to the residual IVPs in (4.4) was much less than

the norm of the first solution (6.1). In other words, the

reason for failure of the method was that we were using the
the same Runge Kutta tolerance to integrate forwards both

the original IVP of (46.1) and also the residual IVPs of (6.4).
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We give below some of

our results obtained using integrator RKF4S with the third,
fifth and seventh degree Hermite interpolation (programs
ITVAR.3, ITVAR.S and ITVAR.7 respectively). These show
that the success of the method depends on the degree of
Hermite interpolation used, the initial steplength of
integration and Runge Kutta tolerance and also on the
problem itself. We found that the large number of variable
factors involved (each contributing to the final error) made
analysis difficult. It did seem clear -though that, for the
residual integrations, the Runge Kutta step adjustment criterion
should in some way be related to the size of the solution.
We therefore decided to investigate the effect
of using a different Runge Kutta iﬁtegration tolerance (/*)

for the residual IVPs in (46.4) from that used for the first

solution (6.1). Denoting the latter by e we found that in

general improvement was obtained but only for sufficiently

small value of the ratio ’ﬂ/e sy this being dependent on both

€& and on the problem. This was true whether we used the

cubic, quintic or septenary interpolation.

We replaced the RKF 45 integrator by
another variable step adjusting Runge Kutta system but with the
same result. We therefore concluded that our iterative residual
correction method was not reliable in practice if used with a

variable step integrator as there was no obvious way of

determining how small the ratio /‘/G must be to ensure



convergence in any particular case. Further research in this

area is needed to find a step adjustment criterion which will

automatically take account of this.

We now modified our RKF 45 variable step integrator to convert
it into a fixed step integrator. This we did by retaining the
Runge Kutta system equations but eliminating the error estimate
criterion by which the step length was either halved or

doubled. We also now included the option of being able to

choose a different fixed step length (hz) for the residual

integrations in (6.4) from the step length (h.) used to obtain

the first solution in (6.1). As the results given below show

our iterative correction algorithm was now found to be much more

reliable - but still not completely so. Improvement on the first

solution was obtained in nearly every case, the amount of

improvement being generally (but not always) increased as the

degree of the Hermite interpolation was increased from three

to five to seven. However, we did find cases where (particularly

with ITER.3 with large steplengths) the iterative solutions

computed did not show improvement. In fact the difficulty lay

in knowing in any given case for which Hermite (cubic, quintic
or septenary) the norm of the residual would be least overall as
this would be most likely to provide the closest approximation

to the exact solution.

(In the results below ITER.3 refers to the fixed step program

employing the Hermite cubic interpolation while ITER.S and
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ITER.7 used the quintic and septenary respectively).

In an attempt to find an algorithm which we could
propose as practically reliable we therefore combined our
fixed step programs ITER.3, ITER.S and ITER.7 so that

whenever the value of a residual ri(t) is required at a time

t = t‘ this value is separately calculated from (46.3) using

respectively the Hermite cubic, quintic and septenary.From these
three residual vectors we then choose the one having the least

norm and this r‘(t) is then used to integrate forward the IVP
in (6.4). In other words the interpolation used is now

analytically discontinuous but provides at each evaluation the
closest approximation to the exact solution. This program we
called ITMIN.357. (The residual norm used to obtain the results

given below was the 2‘ norm. We did compare results for some

cases with those obtained using the &n norm instead but we

found no significant differences. However, it is possible that

the choice of norm could, for some problems, have a measurable

effect on the rate of improvement of the iterates).

As can be seen from the results below ITMIN.357 was successful

in all the test cases in producing iterates which improved on
the first solution to the LBVP though the rate of improvement
was slow for large steplengths such as h = 0.1.

(See tables 1.1, 1.2, 1.4, 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3,
2.4, 2.5, 3.2, 3.3, 3.4, 3.5, 3.46).

Also it can be
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seen that in many cases more rapid improvement can be obtained
by using ITER.7 or ITER.S instead of ITMIN.357 but as
stated earlier the former cannot always be relied upon to
produce improvement. (ITMIN.357 was also tested on several
other LBVPs not detailed below and we found it to be success-—
ful in every case using fixed steplengths ranging from h = O.1
to h = 0.005 ). Program running times are obviously longer

for ITMIN.357 than for ITER.3 or ITER.S or ITER.7 but

we found that when using ITMIN.357 running time can be much

reduced by using a much larger steplength (hz ) for the

residual integrations of (6.4) than the steplength used for

the first solution (6.1) e.q. h. = 0.01 and hz = 0.05. As

the results show , in many cases, this does not reduce the

rate of improvement — indeed, in some cases, the solution
improves more rapidly than when h_ is taken to be smaller

(with the same h' ).

We may also note (surprisingly) that in the problems tested

the effectiveness of ITMIN.357 seems to be little affected

by the poor condition of the given LBVP but only by the

stiffness of its ODE. Also although running time may be long

with ITMIN.357 it is quite economical as regards storage

because the value of the residual r, (t) is calculated as and

when required for the forward integration of the particular

solution of system ;{t) = Alt)e, (t) + r(t) in wach
[ ]

subinterval.
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Perhaps the main drawback of ITMIN.357 is that common to all
multiple shooting methods viz. the large number of subintervals
likely to be required for the solution of a stiff LBVP which in
turn necessitates the solution of a very large system of linear
equations. Developments in the application of ‘block diagonal’
methods of solving linear systems could be used to overcome
this difficulty. Alfernatively, large linear systems can be
avoided by instead using only a few multiple shooting sub-
intervals and allowing more iterations for improvement — but

at the expense of increased program rﬁnning time.

Another disadvantage

of ITMIN.357 is that it must be supplied with not only the

system matrix A(t) and vector f(t) of the given LBVP but

also their first and second derivatives. However, computer

algebra software now available could be used to facilitate

this.

Teat problems and results for iterative residual correction

method :

In the following

h = fixed integration steplength used if this is the same for

the first solution and for iterative solutions - if not then
h. = steplength for the first solution and h = steplength for
b A

iterative solutions

errl = maximum modulus actual error in first solution
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errf = maximum modulus actual error in final iterative solution

after a maximum of six iterations
(erri and errf are both taken over the components of

T
fu(e), u(p )1 where C-(,p] is the problem interval and

u(t) is the calculated solution)

cmax = maximum allowed value of fundamental solution norm.
(This determines the node positions and the number of multiple
shooting subintervals (ns) ).

All numerical results have been given to an accuracy of two
significant figures as this is sufficient to show whether

improvement has been obtained and the order of the size of the

actual error in the calculated solution.

Test problem (I) :

This is a (3,3) LBVP for which :

-
0 1 0

A= | o 0 1
-i*k it k|

£¢t) = [0, 0, (1 + 57k - i* - et T

1 o )

O o0 ©
B° = 0 1 0o B - 0 o) 0]
O 0 © ' o o0 1

(I.1)

where the prablem interval is [0,1] and j and k are

constant parameters. In fact, the eigen-values of system matrix
A are k, +j s0 that for large (positive) values of j and

k the problem becomes very stiff and also (with BC (I.1) )

b -13



ill conditioned e.g. for the case j = 20, k = 30 the LBVP has
a condition number (see (1.11a) of Chapter 1) of approximately

1e10. The exact solution of the LBVP is x(t) = [eb ,et ,ee ]T,
for all values of parameters j and k, So S?eci{j;“B C .

For comparison we also give results below for the same ODE

but with the following BC with which the LBVP is well

conditioned :

1 0 o O O ©
B = 0 o} 0] B = 0 1 (0]
° O 0 O ' o o0 1

(1.2)

Results

(In this problem I section a reference such as table 3 is to

table 1.3 ).
Tables 1 to B contain results obtained using fixed step

integrations (programs ITER.3, ITER.S, ITER.7 and ITMIN.357),

Tables 9 and 10 show some of our results obtained using a

variable step integrator (RKF 45).

In tables 1 to S the BC were ill conditioned (I.1)

and parameters Jj and k were as given i

Table 1.1 2 j = 2, k = 3, cmax = 10, ns = 5§ ;

h erri errf : ITMIN.357
0.1 2.8e-6 1.%e-7
0.05 2.1e-7 2.1@-7
0.02 6.3e-9 6.30-9
0.01 4,.2e-10 4. 2e-10
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Table 1.2 = j = 95, k = 10, cmax = 100, ns = 10 :

h erri errf 3 ITMIN. 357
0.1 S5.7e-4 2.5e-8
0.05 7. be-6 7.7e-8
0.02 7.0e-7 2. 6e-7
0.0125 1.4e-7 1.4e-7
0.01 6.5e-8 6.5e-8

We see from tables 1 and 2 that for these easier problems

for which the first solution is already very accurate there

is no improvement in most cases.

Table 1.3 ¢ j = 20, k = 30, cmax = {e7, ns = 10 3

h errl errf

ITER.3 ITER.S ITER. 7
0.1 3.8e4 2.9el 4.4e~-1 2.2e0
0.05 4.8e3 1.0e0 1.4e-3 6.5e-6
0.02 2.6el 3.0e-3 2.7e-6 S.0e-8
0.0125 5.2e0 1.1e-3 5.8e-7 3.4e-8
0.01 3.6e0 6.1e-4 3.1e-7 7.4e-8
0.005 4.4e-1 S5.0e-5 7.0e-8 B8.2e-8

We see that here improvement occurred in all cases and this

was most rapid with ITER.7 except for h = 0.1.
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Table 1.4 1 j = 20, k = 30, cmax = le7, ns = 10 3

h erri errf : ITMIN.357
0.1 3.8e4 2.1e2
0.05 4.8e3 7.6e~-1
0.02 2.4e1 4,0e-3
0.0125 S5.2e0 2. 6e-2
0.01 3. 620 1.9e-3
0.005 4.4e-1 1.5e-5

We see from table 4 that for this difficult problem program
ITMIN.357 produces an improved solution in all cases though

the amount of improvement is not as much as that obtained by

using ITER.S or ITER.7 (see table 3). But as we said earlier

the latter may not always be reliable (see test problem III:

table 3.1 for an example of where ITER.3 fails).

Table 1.5 : ) = 15, K= 20, cmax = ie5, ns = 10 i

h errl errf : ITMIN.357
0.1 1.3e2 1.6e0
0.05 7.5e0 1.5e-3
0.02 3.2e~2 6. 6e-5
0.0125 1.9e2-2 1.5e-8
0.01 1.0e-2 4. 0w-9

Again we see that ITMIN.357 produces improvement for all values
of h and that errf is acceptably small except for h = 0.1

and even in this case we obtained an accurate final solution

by allowing more iterations (e.g. errf = 1.3e-3 after ten
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iterations).

For comparison, tables & and 7 give results obtained using

BC (1.2) for which the LBVP is well conditioned :

Table 1.6 : j = 15, k = 20, cmax = 1e5, ns = 10 :

h errl errf : ITMIN.357
0.1 - 3.59e-3 5.0e-6
0.05 1.8e~-5 1.2e-8
0.02 8.8e-6 7.4e-8
0.0125 1.8e-6 - 1.6e-7
0.01 8.2e-7 7.7e-8

Table 1.7 ¢ j = 20, k = 30, cmax = 1e7, ns = 10 :

h errl . errf :ITMIN.357
0.1 1.5e-2 1.0e-4

0.05 5.%e-4 l.1e-7

0.02 2.1e-3 1.9e-7
0.0125 5. be-6 5.3e~7

0.01 2.7e-6 2. 6e-7

Comparison of tables & and 7 with corresponding tables 5 and 4
respectively shows that although the condition of the given
LBVP has a marked effect on the accuracy of the first solution
(as expected) it surprisingly has no significant effect on the
rate of improvement with ITMIN.357 : the errf values are

very similar in tables 5 and 6 though in table 4 a few more

iterations were required to obtain errf values comparable to
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those in table 7 e.g. with h = 0.05 1in table 4

errf = 1.6e—4 after twelve iterations reducing to 3.5e-7
after sixteen.

Table 8 shows results obtained with ITMIN.357 using a larger
steplength h, = 0.05 for the residual integrations of (6.4)

than that (h‘ = 0.01) for the first solution (4.1).

Table 1.8 : I11 conditioned BC (I.1)

erri errf :ITMIN.337
j = 20, k = 30 : 3.600 - 1.1e-4
j =15, k = 20 1.0e-2 6. 6e-8

Note that for the case j = 20, k = 30 the value of errf

obtained here is actually smaller than that obtained with

hl = hz = 0.01 ( 1.9e-3 from table 4) and running time was

considerably reduced.

Table 9 shows results obtained using variable step integrator

RKF 45 : programs ITVAR.3, ITVAR.S and ITVAR.7 employing

the Hermite cubic, qQuintic and septenary interpolation

respectively. RK and h° denote the Runge Kutta tolerance

and initial steplength used respectively :
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Table 1.9 :

RK

le—-1

ie-1

le—-1

le-2

1e-2

le-2

1e-3

ie-3

te-3

le—-4

ie—-4

le—-4

1e-5

le-5

ie-5

le—-1
1le-2

1e-3

ie—1
le-2

1e-3

le—-1
le-2

le-3

le-1
le-2

ie-3

le-1
ie-2

le~3

20, k = 30, cmax

erri

?.3e-1
4.8e-1

1.8e-1

8.3e-2
I.7e-2

i.4e-2

6. 12"'3
2.95e-3

1 - 2&—2

4.1e-4
1.3e-3

1 - OE"3

2.4e-5
1.4e-4

7.%e-5

= 1e7, ns = 10, BC (I.1)

ITVAR.3
2.9el
3. 7e-1

2.7e-1

3.0el
I.7e-1

2.7e—-1

3.0el
3.7e—-1

2.4e-1

1.0e0
I.7e-1

1.5&—1

2.5e-2
5- 79'—4

1.5e-1

err+t
ITVAR.S
2.1e-2
6.1e-5

2.3e-5

2.1e-2
6- 1&"5

2.3e-3

2.1e-2
b.1e-5

1.5e-5

2- 1"‘2
6. 1@-5

1.5e-5

2.1e-2
6.1e-5

1.3e-5

I1TVAR.7
I.3e-4
6.7e-8

6.3e-8

2 - 72_5
S5.%e-8

3.5e-8

4 - 40—7
9.1e-8

1.0e-7

1.2e-6
9.1e-8

1 - 5.—7

1 . 6!_6
5.7e-8

9.4e-8

We see that for this problem the effectiveness of the method

improved with the degree of Hermite interpolation used :

with

every case,

(but not all) but with

ITVAR.7 there was improvement of the solution in

ITVAR.S there was improvement in most cases
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the case RK = le-—1, h° = {le-2.

Table 10 shows results obtained using a modification of ITVAR.3
in which the Runge Kutta tolerance gft) used for the residual

integrations is in every case €/1e7, where & is the

tolerance used in the integration of the first solution.

The initial steplength h° is 0.1 in each case, and the

LBVP solved is the same as that in table 9 - but with very

different results :

Table 1.10 : j = 20, k = 30, cmax = 1e7, ns = 10, h, = 0.1 13

RK= € erri ~ errf
le—1 7.3e~-1 1.3e-4
le-2 8.3e-2 1.6e-5
le-3 6.1e-3 &.5e-7
le-4 4.1e-4 6.9e-8
1e-5 2.4e-5 1.7e-8

We see that for sufficiently small value of /* (the residual

integrations tolerance) improvement is obtained in every case

and the final solutions are all acceptably accurate. For the

corresponding cases in table 9 (where the same tolerance was

used for the residual integrations as for the first) the method

failed in every case. However, without a criterion for

determining how small the ratio /ﬂ/e must be to ensure

improvement in any given case this is of little practical use.

Further investigation and research to provide a better

theoretical understanding of the method might well suggest a



reliable criterion.

Test problem (II) :

The following (4,4) LBVP is taken from Conte’'s paper [19]

o 1 0 0
A= 0 0 1 - O
0 o ) 1
L-k" 0 Ko+ 1 0
72 2
£¢t) = €0, 0, 0, kK t - 11
>
1 3 17 =21 O o o0 ©
B, = |5 -2 1 -4 B, = O 0 o0 O
I &6 -8 -1 O 0 o o
0O O 0 0 8 & 4 2 '

The problem interval is [0,1] and the exact solution is

T
x(t) = [1 + t + sh(t), t + ch(t), 1 + sh(t), ch(t) ir for all
2

values of the constant parameter k. System matrix A has

eigenvalues + 1, * k so that as k increases the problem

becomes more stiff and more ill conditioned (with the above BC).

Results ¢

(In this problem II section a reference such as table I is to

table 2.3 ).



All of the following results were obtained using program

ITMIN.337 with the k parameter values given :

Table 2.1 2 k = 3, cmax = 100, ns = 3 :

h erri errf
0.1 1.%e-5 7.5e-8
0.05 ~ 1.5e-6 7.6e-8
0.02 4.3e-8 4.3e-8
0.0123 b.7e-9 &b.7e-9
0.01 2.8e-9 ) 2.8e~-9

Table 2.2 : k = 10, cmax = 1a3, ns = 5 1

h erri errf
0.1 1.8e-4 8. 3e-8
0.05 2.8e-2 3.1e-7
0.02 1.4e-3 S.be-7
0.0125 2.4e-4 6.0e-8
0.01 1.0e-4 5.0e-7

Table 2.3 : k = 15, cmax = 1eS, ns = 5 :

h erril err
0.1 1.2e2 9.1e-2
0.05 6.2e0 7.3e-4
0.02 S.7e-1 5.0e~6
0.0125 l.le—1 9.1e-8
0.01 4., 46e-2 1.4e-8
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Table 2.4 = kK = 20, cmax = leb, ns = 5 :

h errl errf
0.1 5.%e4 4.,.6e2
»w
0.05 8. 6e-3 3.4e-4
0.02 1.6e2 1.2e—-1
0.0125 3.4e1 8.6e-3
0.01 . 1.5e1l 4,.3e—-4
0.0035 1.1e0 8.3e-7

We see from the above that ITMIN.357 produced significant

improvement on the first solution in all cases for values

of k <= 13. For k = 20 the LBVP is very stiff anq)although

improvement is still obtained for all h, in some cases more

iterations are required to produce an acceptably accurate

solution e.g. for h = O.1 errf = 3.8e-4 after twenty

iterations.
é( This w\l.v.?cctc.a result wWe abEribube bte o rccu\iar.'b of €l ’Prol»‘cm)
The following results were obtained with ITMIN.357 using

steplengths of h = 0.01 (for the first solution) and

hz = 0.05 (for the residual solutions) :

Table 2.5 1@

errl

errf
k = 15, cmax = 1e5 3 4.6e-2 1.1e-8
k = 20, cmax = lebé : 1.5el 1.6e-3

Note that for the k = 15 case the value of errf is virtually

the same as that obtained using h' = h = 0,01 (as in table 3J).
t
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Test problem (III) :

The following (3,3) variable coefficient LBVP 1is a

generalisation of one discussed in Mattheij’'s paper (11 :

1t - kd 0 1 + ks
AtL) = 0 Kk 0
1 + ks 0 1 + k d
: ul
and £(t) = exp(t) % (-1 + k (d - 8), ~(k = 1), -1 - k (d + &) )
where d = cos(2t) and s = sin(2t).
(Mattheij considers the case for which k = 19).
We give results below for two sets of BC :
o o 1 1 0 o
B = lo 1 o B = 0 1 o
0 \
1 0 0 ' o 0 0
(IT11.1)
and
0 o 1 o 0 1
B, = 0 1 0 B, = 0 1 0
1 0 0 0 0 o
(111.2)

Mattheij states that with BC (111.2) the LBVP is well

conditioned but with BC (III.1) it is very ill conditionmd

having a condition number of about 1.9e27.

For any value of parameter k the exact solution of the

LBVP is x(t) = exp(t)® (1, 1, 1)7) and the problem interval
is [0, T 1, So sreC(fjiﬁj c.
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Results @

(In this problem IIl section a reference such as table 4 is to

table 3.4 ).

Table 3.1 : k = 19, cmax = Sed4, ns = 11, BC (III.1) :

h erri errf

ITER.3 ITER.7
0.1 3.5e0 6.1e0 2.0e0
0.05 6.%e~-1 1.8e-2 3.7e-2
0.02 3.1e-2 3.2e-5 7.9e~-8
0.0125 4.1e-3 6.8e-6 1.4e-8
0.01 1.7e-3 1.7e-6 2.1e-46
0.005 9.3e-5 9.2e-8 2.9e-7

In nearly all cases above we see that ITER.3 and ITER.7
produce improvement on the'first solution this being most
rapid generally (but not always) with ITER.7. But the
case of h = 0.1 for ITER.3 shows that we must not place
too much reliance on results obtained with these algorithms

particularly when using large step-lengths.

Now compare the above results with those given in the table

below for the same LBVP solved by ITMIN.357



Table 3.2 t k = 19, cmax = Se4, ns = 11, BC (III.1) 3

h errl errf : ITMIN. 357
0.1 3.5e0 2.0e0
0.05 6. 9e—1 3.7e-2
0.02 3. 1e-2 5. 3e-7
0.0125 4.1e-3 . 1.0e-6
0.01 1.7e-3 3.8e-9
0.005 9.3e-5 4.3e-7

ITMIN.357 produces improvement on the first solution in all
cases including h = 0.1 for which fTER.3 failed.
The following results were also obtained with ITMIN.357

for the values of parameter k given and with the ill

conditioned BC each time :

Table 3.3 : k = &6, cmax = 53, ns = S5, BC (IIl.1) :

b erri errf
0.1 4.1e-2 6.3e-8
0.05 2.4e-3 1.7e-8
0.02 S.%e-5 1.6e-9
0.0125 8.5Se-6 2.9%e-11
0.01 3.5e-6 4.4e-12

Table 3.4 : k = 12, cmax = 15e3, ns = 8, BC (I1I.1) :

h erri err¢
0.1 1.3e0 2.1e-2
0.05 1.1e~-1 3. 7e-7
0.02 2.7e-3 7.1e-9



0.0125 3. be-4 1.1e-7

0.01 1.5e-4 2.1e-8
Again we see that ITMIN.357 is successful in all cases in
producing significant improvement on the first solution.
For comparison we include the results below which were obtained
with ITMIN.357 using the well conditioned BC (I111.2) :

Table 3.5 : k = 19, cmax = 50e3, ns = 12 :

h errl errf
0.1 2.4e-3 4.7e-7
0.05 l.1e-4 ) 1.7e-7
0.02 2.4e-6 3.0e-7
0.0125 2.%e-7 2.9e-7
0.01 1.2e-7 1.2e-7

We see that here the amount of imp?ovement decreases with the
size of the integration steplength (h) used.

Finally the following result was obtained with ITMIN.357
using the ill conditioned BC and steplengths of h' = 0.01
and hz = 0.05 :

Table 3.6 : k = 19, cmax = S50e3, ns = 12 ;

erri = 1.7e-3 errf = 2.7e-7.

We see that the value obtained for errf here is almost as
small as that obtained when using h‘ - hz = 0,01 wviz.

3.80-9 (see table 2 ).

We attempted to solve the above LBVP using our variable step

integrator RKF 45 and the Hermite cubic interpolation (program
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ITVAR.3) but with little success as the results below show

(RK = Runge Kutta integration tolerance used for both the

first solution and also for the residual solutions)

Table 3.7 ¢ k = 19, cmax = S50e3, BC (I1II.1), ns = 12 :

RK h

° errl errf
ie—-1 ie-1 6. 6e-2 S.2e0
le-1 le-2 1.4e-2 S5.%e1
ie-1 le-3 S5.0e-3 2.1e0
le-2 le-2 1.4e-3 2.720
le-2 ie-3 6.3e-4 2.0e-1
le-3 le—-1 4.1e-4 7.3e-3
1e-3 1e-2 ' 1.2e-4 1.1e-1
ie-3 le—3 S5.2e-5 2.0e-1
ie—-4 le-2 J.1e-5 4.0m-3
ie-4 ie-3 3.8e-3 1.60~-3

In each case aboave the method fails : errf > erri. However

as we said earlier we can obtain improvement with ITVAR.3

by sufficiently reducing the size of the integration tolerance

used in the solution of the residual IVPs. The results below

were obtained by taking this tolerance to be €/ 1e7 where

€ is the tolerance used to integrate the first solution.



The initial steplength h° was 0.1 in all cases.

Table 3.8 : k = 19, cmax = S0e3, BC (III.1), ns = 12 :

RK= € errl errf

le-1 6. 6e-2 4.2e-6
le-2 3.0e~-3 i.1e-7
1ie-3 4.1e-4 2.4e-7
ie—-4 - 3.0e-5 2. be-9

We now obtain improvement in every case and the values of

errf are acceptably small. Running times are of course much

longer than for the corresponding cases in table 7. However,
these results were only obtained by trying successively smaller

and smaller values for the residual integration tolerance until

eventually we were successful with the value €/1e7.

Variable step adjustment criteria:

We recall that the IVPs necessary to solve the given

LBVP (&4.1) and the residual LBVP (4.4) are the same except

for the particular solutions. Also the first and residual

particular solutions differ only in their respective forcing

functions. These IVPs are, in each multiple shooting interval

[t; ot;,0 (0 <=i <=N-=-1):

X(£) = A(EIx(t) + £(t) x(t: ) =0, and

e(t) = A(tla(t) + r(t) e(t:) =0 respectively.

We give below details and test results of two criteria for



automatically adjusting the steplength of our variable step

integrator RKF.45. These criteria both relate the integration

tolerance to the size of the calculated particular solution. As

the results below show, they proved successful in obtaining

improvement on the first solution for each of the test LBVPs

detailed earlier in this Chapter.

We denote the tolerances used in the integration of the first
solution and the residual solutions by €& and €, respect—

ively.

Criterion A :

Initially e} is set equal to € . At the end of each step of

-
the residual integrations (i.e. at time ¢t = t ) we check that 1

e < Wrt, 0f>|l.e

WFCE> N ' . If not then we set e = 0.1 » €,

and repeat the residual integrations from the beginning of the

multiple shooting interval in which t' lies. (We found that

it is not sufficient simply to repeat the last step because the

v
calculated value of r(t ) depends on the value of ﬂ,being

used).

Criterion B :

We proceed as in A but instead we use the condition :

e, < | e, e, el

el

“ P, (* . € )“ where p((t‘) is the calcul ated

value of the residual particular solution and is dependent on

: .
the value of € being used. P‘(t ) is the value of the first
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w»
particular solution at t =t . This is obtained by saving the

final values of p'(t> at the end of each multiple shooting
interval in the first integration and then using Hermite (cubic)
interpolation over the interval containing t’ to find pl(éi).
As the results below show, we found no significant
difference between the effectiveness of these two criteria on
our test problems. Both however suffer from the disadvantage of
long program running times due to the very small values of €
employed (as small as le-12) and the need to restart from the
beginning of the multiple shooting interval whenever e is
reduced (though most restarts did occur in the first step of
the interval). By comparison, we obtained equally accurate
solutions to these problems using fixed step integrations with

algorithm ITMIN.3537 in much less running time.

Results for Criteria A and B :

In each case h° (the initial steplength) and e‘ were le-1,
and Hermite cubic interpolation was used to find both the
residual and first particular solution values :

Problem I : j = 20, k = 30, cmax = le7, ns = 10, ill

conditioned BC (I.1) :
erri = 9.3e-1 errf = 1.4e-7 (A)

errf = 3.0e-8 (B)
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Problem II : k = 20, cmax = ieb, ns = 5, BC as given :

errl = 2.8e2 errf = 4.8e-7 (A)

errf 8.1e-7 (B)

Problem III : k = 19, cmax = S50e3, ns = 12, ill conditioned

BC (IIX.1) =
errl = b.be-2 errtf = 2.3e-6 (A)

errf = 2.4e-4 (B).

With a view to putting a lower limit on the size of the

residual integration tolerance G( we also tested the following

criterion which is a variation of Criterion A :

Criterion C :

With er set equal to e. we perform the first residual

integration, calculating as we do so the norm of this residual

at the middle and the end of each integration step. These values

are used to obtain an estimate of the maximum norm of the first

residual over the problem range ([« ,P ] which we will denote

by rmi. The first residual integration is now repeated starting

with G' equal to &' + but this time at the end of each

integration step (i.e. at time t = t' ) we apply the following

adjustment criterion @
if ér = rmi

. €
sl

then we reduce 6( by a factor

of ten and repeat the residual integration from the beginning of
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the multiple shooting interval in which t

Results for

Problem I :
6'
le-1
le-2

ie-3

Problem I
el
le—1
le—-2

le-3

Problem II :
e\
ie—1
le~2

le-3

Problem II :

el
le—-1
le-2

1e-3

j = 20, k = 30, cmax = 1e7, ns = 10, BC (I.1) :

k = 20, cmax = 1leéb,

k = 10, cmax = 1e3, ns = 5,

v
lies.

Criterion C :

errl errf final €&,
9.3e-1 1.0e0 le-4
8.3e-2 1.1e-3 le-6
2.5e-3 6&.8e-6 le-9

S5, k = 10, cmax = Se3, ns = 6, BC (I.1) :

erri errf final &,
6.8e-6 5.4e-9 le~7
1.5e-6 1.9e-9 le-6
1.4e-7 1.3e-7 le-9

ns = 5, BC as given :

errl

errf final G}
2.8e2 4.3e-4 le—-1
J.1el 2.4e-5 le=3
2.5e0 1.0e-6 le-35

BC as given 3

errl

errf final Gf
2.8e-2 9.7e-9 le-6
3.0e-3 3. 4e-10 le-8
2.7e-3 3.3e-7 le-9
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Problem

III : k =

19, cmax = S50e3, ns = 12, BC (III.1) =
€, erri errf final €&,
ie-1 6. be~2 2.1e-5 le-6
le-2 3.0e-3 2.4e-5 le-7
1e-3 1.2e-4 1.8e-6 ie-8
Problem III : k = &, cmax = Se3, ns = 5, BC (III.1) :

6' .errl errf final €.
le-1 3.9e-2 1.5e-4 le-5
le-2 i.1e-3 8. 6e-7 le-6
1e-3 1.8e—4 -7.19—8 le-7

We see from the above results that Criterion C

produced improvement on the first solution in all cases except

one and the smallest value of Gr émployed was le-9. In some

cases however the amount of improvement was small and this

criterion has the disadvantage of having to repeat the whole of

the first residual integration.

(Note that when using either

Criterion A or C it will be

necessary to account for the possibility of the forcing function

f(t) of the given

LBVP becoming zero in the problem interval.

This can be done by making an initial transformation of the LBVP

by putting x(t) = y(t) + k, where k is an arbitrary non-zero

constant (n,1) vector, so that the forcing function §£(t)

becomes f(t) + A(t).k ).



Conclusions :

The behaviour of the iterative residual correction method
is complex when used with a variable step integrator because
the final error in the calculated solution is a combination of
integration error (dependent on the Runge Kutta tolerance and
initial steplength used) and interpolation error (dependent on
the degree of Hermite interpolant used). This complexity makes

analysis difficult and our results obtained with the variable

step integrator are inconclusive.

However, our fixed step integrator results (programs ITER.3,

ITER.S, ITER.7 and especially ITMIN.357) show how successful

the method can be in solving even quite ill conditioned L BVPs.
We think that this justifies the need for further research in
this area with a view to formulatiﬁg a theoretical foundation
for the method which will show the inter-relationship between
integration error and interpolation error and their combined
effect on the estimated error obtained. Hopefully, this will
then suggest an efficient step adjustment criterion for the
variable step integrator which will make the iterative
residual correction method a reliable and useful practical
solver of LBVPs.

For comparison we attempted to solve some of the ill
conditioned LBVPs detailed in this Chapter by using the

factorisation methods of Babuska and Majer [16] as

described in Chapter 5. These results are given in Appendix



111. They show that the factorisation methods fail to produce
accurate solutions to these difficult problems. This was only
to be expected since the success of these ‘double sweep’
methods depends very much on the stability of the auxiliary
IVPs in their respective directions [16] and the good condition
of the praoblem is necessary to ensure this. By contrast, our
fixed step iterative method (ITMIN.357) produced acceptably
accurate solutions to all of these ill conditioned problems.
This underlines the justification for further investigation

of this iterative method.
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(1]
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R
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Let

nth

' 2
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equation can be written in the form 1

o

o

“=') where F

[ ]
X = x 3 X, = X

= x"'= x" = F. Hence the given

order differential equation

is linear in

x =X,..-.---

nth order differential

X, -1 o 1 -1 X, o -.'

Xy o 0 1 - X 0

[ ]

Xy |= 6 0 0 1 *3 ?

i . | !

] ' .

' : ; '

. "3 ' :

Xy 0 0 0 O c-cce e = o3 X aer 0o
Lxﬂ- -k. kz k’ k“ -...-......--.kn Lx“ Lg(t)—
where k; (1 <= i <= n) are functions of t or constants i.e.
it can be written in the form Xx(t) = A)Ix(t) + $(t).

(oneﬁ\uoms
£1-21 L First note that for anyAfunction u 1
d Jp u({s).ds = u(t), where a is a constant and s and t
at
a

are real variables. Now consider x(t) = X(t)e + p(t) (1)
where X(t) is any fundamental solution of system x(t) =
Al{t)x(t), p(t) is a particular solution of %(t) = AlEIx(t) +
f(t) and o 1is constant (n,1). From (1) :
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x(t) = X(t)ol + P(t) = AIX(B)ed + A(EIp(L) + f(b)
= A(t) { X(t)eC + p(t) > + £(b)
= A(tI)x(t) + f(t).

Thus any function of form (1) satisfies the ODE

S(E) = A(EIx(t) + F(t). Now take :

b
-1
o = @ {c - B X(b) f ui(s).ds 2 (2)
it o t
where G = BBX(a) + BlX(b), and take p(t) = X(t)-f u(s) .ds
(3)
o

where u(s) = X (s)f(s) (4)

Note that from (3) we get : -

t L4

° ®

p(t) = X(t) d }'u(s).dl +  X(t) f.u(s).dl
dt

= x)x )+ Awx) [ ucer.ds
[-3
i.e. pl) = A(DP(t) + f(t), as required.

. -l
From (1), (2) and (3) :x(a) = X(a)@ { c¢ - B.X(b)J } where

b
J = j'u(s).ds sy Since p(a) = 0.
(-3 -t

Alsn x(b) = Xb)A { ¢ - B|X(b)J Y} + X(b)J. Hence

-1
ch(a) + le(b) (B X(a) + B.X(b)}Q {c - B'X(b)J) + B|X(b)J

=g - B'X(b)J + B'X(b)J = c
i.e. B;x(a) + B'x(b) = C.
Hence the exact solution of the given LBVP 3
x(t) = AEIn(t) + £(t)
B‘x(a) + B.x(b) = C
can be written x(t) = X(£)l <+ p(t)

where « and p(t) are

as defined in (2) and (3).
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-\ -t

Now X(bye = XY ¢ — X))@ B, X(b)J

.
$ (tre - é(t)B‘X(b)S X"'(s)f(s).ds
a
(where X(t) = & (). @
b \ —
Btre - @(t)B @(bmf 8 & (s)f(s).ds
G

Prec + J B, & w) &' (s)f(s).ds

t
p(t) = x(t)f X (s)f(s).ds = aé(t)ms Q Q(s)ﬂs).ds

i.e. p(t) = f@(t) 3 Ns)f(s).ds and so

x(t) = X(t)=< + Pt .
= Ptic +_( $¢r)B, & 3 (s)f(s).ds + (@(t).@..(s)f(s)ds
Stre + f@(t){l - B, $ § w1 £ (8) . ds
+ f 3B, F) P (s)f(s).ds
& trc +bf¢(t)e P a. @(s)f(a) ds

+ fb - 3B,  (b). F ()£ (s).ds

because B°X(a) + B.X(b) = Q@ ===> Bo?“‘) + B. q (b) = 1(\

kg d

[1-31 : Recall that the substitution x(t) = T(t)y(t) transforms

the system x(t) = AMIx(E) (n,n) into y(t) = V(t)y(t) where

-l -l °
VIE) = T (B)AEIT(E) = T (£)T(). Thus if T(t) has the block

- ~
diagonal form % II 0—1
m|O D_ and A(t) has block upper tri-
angular form L (F 0-1
mLO B‘_ then V(t) will also be block
p & ~
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upper triangular i.e. V(t) = F cp |4
0 Wi~ where
W=0DBD - D D. Therefore we first find an orthonormal trans-

formation T4 (n,n) which puts A (n,n) into the form :

1 nel
A = F cil®

0 Bln-1 . (See Chapter 1, (1.31) and (1.32). For
initial conditions for these equations we can here take T_(a)

to be any orthonormal matrix e.g. T (a) = I ).

We then obtain orthonormal transformation

-l -‘ [ ]
Dl (tn -1, n—1) such that w' = D. BD - D' D is block upper
triangular of the form u' = | F. c,
n=-2] O B and let
' A=t . '\'-2.
T = I 0
1 ]
an=1] O D' . Similarly, we obtain orthonormal transform-
-t -1 .
ation Dz (n — 2, N — 2) auch that w = D B D - Dt D is
block upper triangular of the form W = c
B
n-2
and we let T = 211 0 ne-3
€ F X
n-2| 0 D, « This process is repeated to
LR 8 =
Dbtain T3 easecassa T“-:’ Wh.r. T"-‘ = n=-2 I A-2 o
; 0 D'\—t .
Then the required transformation which will put A into upper
triangular form A is .-TV Te . The kinematic eigen-
S g A=Q
values of A are now the diagonal elements of A .

A=
(This deflation method shows the existence of kinematic eigen-
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values but in practice would be very costly).

£1-4]) : In the following we abbreviate orthonormal transform-
ation T(t) = [T'(t) | Tz(t)J to T = [n | Tz }, transformed

system matrix V(t) to V and functions c.|(t), cztﬁt) to

€, v %, " Now from the Lyapunov equation TV = AT - T we get
T [ ] ) T - [ ]
V=TT AT - T). Thus V = T. . [AT. T‘I AT3 T; ]
T
TI.
T' (AT - T) v M :
= = — - -
a==x) V" . ' . ] i T. (ATL T1 )
- T - L J = T _ -
v;' Tz (AT. T|) H v;t T‘ (AT; Tl ).
Now for V to be block upper triangular Vu = Q =m=m)
° hs
TTGT -T ) =0.But T T =0 mwa=> TT (Tc ) =0 whare
2 ‘ I T LS U T

c” is any (p,p) matrix i.e. T' is a basis for the space

othogonal to Tz and so any matrix orthogonal to T

can be
written in the form n € for some Chh * Hence
AT‘ - T. = K Cu for some cn
=z===) TI = AT. - T. c " (1)
T b —=mamma= T r 3 T
Now T‘ T‘ IP > n T, o+ T. T‘ = 0 (2).
T . T T T
— = T AT - T'T = v
== c" ' ' ' i 1
====) c" T' A n Tl n
T
====> €+ c: = T, (A +aAT )T, (from (2) ).
TVT. = 0 ==sa T T T
Also . 2 ' a + T. T'. - 0 mmmn )
T * T
T‘ T1 + (AT. - K < ) Tz = 0 (from (1) ) mEm= )
. T o T °
Tf T, * T, ATT, = 0 =m=m> TR (T + AT T, ) = o
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T
But T (T :T ) = O where cY
[ ] a2

22a is (qu) mmms )
> T = - T mm=mam
Tz + A Tz Ticzz for some C.a >
T \} T ===z T 37 = - T \ -
T1 = -A T1 + T;:a: ====) T, Ta T‘ A Tz + czt
T — -r T 7 I -+ 3 -
=== cza = T1 A T?. + T’. TI. = >
- - oy h 1 - Bl h g
€aa T; AT& + T, Tz and Ca2 + C.a T1 (A + A )Tz .
-r T [ ] T [J
Also 1 ¢, = T, AT, - T, T, = T; (AT, - T, = Vaa
T ‘ T 2
and V.z = T. ATz T. TI
a1 - T -
= T‘ AT, Tl (-A" T, + th:,.1 )
T T AT
= T ATz + T| A Tz
T v B
= n (A + A ’Tz .
T
N.B. Since T (n,n) is orthonormal we have TT = I mm
T
CT‘ ! T'l. ] Tl = I'\
T.' === T T-r v
X ‘ T + T‘ Tz = In -
Thus equation (1.32) of Chapter 1 viz.
[ < -+
Tz = [-In + T’Tz 1A T:. can also be written
fo= -7 T;T ar T, as in (3.2) of Chapter 3.

»-—

[1-5) : Any pair of corresponding fundamental solutions of the

systems x(t) = A(t)x(t) and yi{t) = V(t)y(t) are related by

X(t) = T(t)Y(t) for all ¢t. Thus if we choose X(a) = T(a)

[
then VY(a) = In . Now Y(t) satisfies VY(t) = VY(t)Y(t)

= Y -
Vzl(t’ 0 and so z.(t) = Vz‘(t)Yz'(t) where VY_ (a) 0.

where

[ ]
Hence Yz'(t) = 0 for all ¢, and so Yi‘(t) = V“ (t)Y“(t)

where Y“ (a) = IP asem) Y“ (t) is non-singular for all t.
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Now 2 X(t) = T(t)Y(t) ====>
[X|(t) | Xz(t)] = [T| (t) & Tz(t)J Y“ (t) Yu (t)
0 th(t)
====> X (£) = T (£)Y, (t) ====> T (£) =X (). Y '(t).
) ' " ' ) n
Therefore span T'(t) = span Xl(t), since each column of T'(t)
ig a linear combination of the columns of X‘(t). Now xl(a) -
T'(a) where span T|(a) forms a basis for a growth subspace of

syatem x(t) = A(t)x(t). Thus span X (t) and hence span T, (t)

must form a basis for a growth subspace for all ¢t.

v

[2-11 x;(t ) = x- (t, ) (O <= i (= N - 2) mmm-)

|°+l (A} 1+
] )
L] + . . . .
X (k. 0B Vitt ) B XL DR Vet L) (by 2.18)

i i+ e
|} ]
====> x;*ft;+|’0i@; Vi) m X D+ v )
T
- X'k, X (kD) v (ke
. T Ty V4 RN - \ ‘e
== D.B. + X (t. )Y v.(t., ) = X ' .t
==> '(sl E IRE 4 vl vl ﬂhl-l* (X;'“(t._“)) vt(tu-l)
S R P M
\ 1 ) ' 4=
(multiplying by <{X. (t. )"
X IR 4
T
. = D.R. + X' «(t. (k. ).
axm==) B'“ ; (3' o m)) vt )

P

j 2

(3-11 : In the following R-:- , Y . 4 V.. , 1
IJ ‘J .J [}

are all functions of ¢t.

. .

R"Y“ = IP 'T==> R"Y" + R“Y“ = O mmmn ) i

éu i =. "Ry Y T Ry - Ry Qu v;‘ where Y, =V VY,
====> R, = =-R VY, .

Also Y R = - Y. .----> 9" R, *+ v, h't - - Q.z —m—>

Ya Rz ™ TR T Vi T

X



] . 5
Riu = "R YnfRia 7 Rplie
= TRV Yu R T Ryt Yy, Via Yaa 2
= "Ry Rt Ry Yu R RiuViaYaa
= - R, Yy Yoz -
Also 1 = - R h, ====> i' = - R, r'\‘ - r’a" h,
mm==) i‘ = =R, &, h + Y h 9, > *+ R YV, h
= - R"' W,hy + 9, 3.

(3-21 : In the following X, A, Y, V, .\7, T, R“ y X9 W are

all functions of t. -

Note first that if X (n,n) is any fundamental solution of

-l
system :( = Ax then XX = If\ mmme )
[ 4 -l - |
XX + Xd (X ) = 0 N .y
dt ====) X d (X ) = - XX
dat
-l - 'Y _‘
m=== d (X ) = - X X X
gt
-l -l - ) -
==m=> d (X ) = - X AXX = - X A
at
-7 T -7
====) d(X ) = -A X
~dt

We now show that if "transformation T (non-singular) exists

such that

¥ = AN e e e e e ——— > ; = Yw
(1a) (1ib)
‘T
then transformation T will be such that
-1
. - X =T w - -
Xx == A X e ———— > w = Yw
(2a) (2b)

A\ -3



where V = —VT

[ ]
I X is any fundamental solution of x = Ax then X

is a
fundamental solution of the adjoint system ; = - AF X, because
-T T -7
d (X )=-A X
dt

s as shown above. Now suppose that X and Y

are corresponding fundamental solutions of systems (1a) and (1b)

-rT =T .~
above respectively i.e. X =TY and hence X =T Y (3) .

-7
Then X is a fundamental solution of (la) =ma=) X is a

fundamental solution of (2a) ====> Y is a fundamental

solution of (2b), (from (3)). But Y is a fundamental solution

of (ib) ====> Y is a fundamental solution of the adjoint

. . - - T
to (1b) i.e. of W = ~-V w. Hence V = -V

Thus if V is upper triangular with all of its diagonal

elements positive then V will be. lower triangular with all of

its diagonal elements negative i.e. if all of the kinematic

eigenvalues of (la) are positive then all of the kinematic

eigenvalues of the adjoint system (2a) will be negative at the

same value of t. Now equation (3.10) viz. R|‘ = - R“ V“
. T T
can be written R-r = - V" R“ where all of the kinematic

b
eigenvalues of V" are such that Re f-Cﬁ(t).dt > O.
a

This shows that IVP (3.10) will be (forward) stable even when

Vv is variable.
n

oo N

. ~ ~ ~
t4-11 : In the following X, R, R, Xy, %, y, X, ¥ are all

functions of t, but P and T are constants.

Al-9



o~ o~
x‘ = 'ITXl ====>| X = Py ‘a__] {x“

~

X.“ Pz" Pzz X 21 mm=n)
" P + P and X + P X ->

= o= =

xn nwoon 12~ al 21 arn 22 2y
% XV = (P + P X ).(P X+ P x. !
a N £ }) 22 2} ) "W 12 2}

= (P, * P R X X[ (P o+ Py Ry ====)
® = (P, + P R+ B R
Lo -
Now :, T x, _
X2 Xa ====> %, = Ry x * Ra¥*a
72 = Pan * ¢ Pn. Ko
From the Riccati transformation equation 3
‘;"z = AFZ ;" + 77_ and x‘ = R x + Ya .
Hence 1 (B x, + P x, ) = R %, + B x, ) + 7y,
===> P x + P _(Rx +y) =R x +RP (Rx +y) +7y
21 22 ' 2 " 2 | x
= ('E(P“ + B, RIx, +RP vy +7,
=, + P Rx <+RP_y +'"y'z
=m==) sz Y, = T'\' Pn. Y. * 71
mm==D T':. = (FR. -~ ﬁpn) Ya
(4-21 : X, = Pux * Fu%, = RLx ¢ Pn. (R LI y‘_)
amm=) '?Z' - Py, -‘== P, + PR x mmma)
x| = (p‘ + PuR) . (x - uy.‘_) or
y = ®, o+ P RV . (7 - P ¥y 0-
y— 3

t4-31 3 In the following, all values are functions of t except

P, 1,6 and TV which are constants.

Al — 10



Suppose that ﬁ 1 = A and A G -

-1
Then D C = BA = 8g.

Let P A = L
2
B M
and P Cl. 6 = E
2 2 ‘
D F
N (1) > P {1 -!
S M T
-} -l -
TN = ML .
(2) ====> P [1 ltc.B6. 1 = [E
P 2
=] F mexm )
Pl1l= [eEN.uv = [E.u)
2 P
S F FIU -
L L J
Therefore EU = NY|  ====> F E = TN =
LF u TJ i.e. F E-. =
if PP I =
Thus if = 2 R P L and ﬁ’ﬁ Ir G
R M R
-l -}
then ML = F E .
Hence, in general, if TY Ir . 6 = E
R F Where

are performed alternately, and if 1‘ IP - {‘L_W

R M
- -1
then FE = ML . Now T‘ = P P, ")
*
Pll P;;J
L = (P + P R) =
n Y and M Py * PR

Al — 1|

(1)

(2)

where

P a.
i

and so



-t -\
- + (see (4.8a))
Therafore R = (Pz\ + PztR) (P“ Plz,R)

-1 -1
= ML = FE .

{(5-1] ¢ In the following T, A, 7;, R are all functions of ¢t.

From the Lyapunov squation 1 T = AT - T'A we get
. ~
0 - R = A, A - R A., 0
[
0 Y All : AI Il\t A2.| ’K‘&‘L
=ms=) 0O = A - A + R’S’
" 1]
-R = -A R + A + R™
n 12 22
P—
0 = A, - Ay -
- P
o = Az.\R * Azz - Az: *
A A+ R -y
Thus @ A, = " Az| 3 Ay, = Azn 3
N 3 -
Azz = Az‘_ Azu R and
° -~
R = A.'R - AIL,- R Az;
= A“ R - Au-— R(AIL - Az.R)
[ J
= + - -
i.e. R A“ R R Az'R A\:. R Azz .
[5-21:

The proof is similar to that given in (1-4] except that

now Vlz(t) ({instead of V_ (t) ) = 0. Also

2l I':|(t) =

T
T‘ (t)B(t)T' (t).

{(5-31 : The ODE for L!.(t) corresponds to the T_(t) equation

T
derived in [1-4]1, but with c () = T_(BYB(E)T (t).
2% 2 2




APPENDIX II =

RESULTS FOR ERROR ESTIMATION METHOD

In obtaining all of the results in this appendix the variable
step integrator RKF 45 was used to solve the auxiliary IVPs.
The tables below givé, for each test problem, comparative
values of estimated and actual absplute errors in the

components of the first calculated LBVP solution vector at

each end of the problem range.

estO

estimated error at initial point of problem range

act0 = actual error at initial point of problem range

estl

estimated error at final point of problem range

actl = actual error at final point of problem range
All results are given correct to two significant figures.

The details of the test problems are as givén in Chapter 6 .

TEST PROBLEM I :

(In this section a reference such as table I3 is to table

A2.1.3 ).

Here we used a Runge Kutta tolerance of 1e-4 and an initial

steplength of 0.01 for all integrations :

Table A2.1.1 : j = 2, k = 3, cmax = 10, BC (1.1), ns = 7 3

estO acto esti actl
0 o) 3. 209 4. 6m-9
b.9e-9 1.5e-9 o 0
b.7e-8 6.9e-8 0 0
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Table A2.1.2 : j = 5, k = 10, cmax = 1e4, BC (I.1), ns = 5 :

estO actoO estl actl

0 o 9.5e-9 S5.0e-11
3.1e-9 1.4e-9 0 o
1.0e-7 1.4e-8 0 o

Table A2.1.3 zj = 10, k = 15, cmax = 1e5, BC (I.1), ns = 7 1

estO actoO estl acti
1.5e-25 8] 2.4e-9 9.9e@-12
5.6e-9 5.7e-11 "o )
7 .8e-8 1.1e-9 o) 0

Table A2.1.4 : j = 15, k = 20, cmax = 1le4, BC (I.1), ns = 9 ;

estO acto | ‘ est] acti
4.3e-26 o 1.0e-9 1.5e-12
2.6e-9 4.0e-11 o] o
6.0e-8 6.3e-10 0 o

Table A2.1.5 : j = 20, k = 25, cmax = le7, BC (I.1), ns = 10 3

estO actO estl

actl
0 0 1.4e-9 3. 4e~-13
S.7e-9 2.4e-11 (o) 0
9.1e-8 5.0e-10 0 0
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Table A2.1.6 ¢ J = 25, k = 30, cmax = ie8, BC (I.1), ns = 9 3

estO acto esti actl
0 0 6.3e-10 1.4e-13
1.0e-8 3.4e-12 0 (o}
1.2e-7 ?.6e-11 o 0

As the well conditioned BC were used in the above we see, as
expected, that the size of the actual errors decreases as
parameters J and k increase i.e. as the problem becomes
stiffer. However, estimated errors are greater than the
corresponding actual errors in nearly all cases.

In tables 7 to 12 below the ill conditioned BC were used :

Table A2.1.7 = j = 2, k = 3, cmax = 10, BC (I.2), ns = 7

estO actoO estl acti
1.1e-23 2.2e-16 | 1.2e-8 b.5e~9
1.b6e-24 o 1.1e-8 2.5e-9
7.1e-8 7.0e-8 o} 0

Table A2.1.8 : j = 5, k = 10, cmax = 1e4, BC (1.2), ns = 5 ;

estO actoO esatl

actl
8. 4e-25 ) 4.4e-8 1.4e-8
5.4e~-24 0 1.1e-7 5.3e-8
1.0e-7 1.4e-8 o) o
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Table A2.1.9 = j = 10, k = 15, cmax = 1e5, BC (1.2), ns = 7 :

estO actO estl actl
0 4] 3.59e-6 3. 5e-8
1.3e-24 o 2.1e-S 2.1e-7
7.8e-8 1.1e-9 o 0

Table A2.1.10 ¢ j = 15, k = 20, cmax = leb, BC (I.2), ns = 9 3

esto ach estl actl
4,3e-26 &) 1.2e-4 1.9e-6
0 &) 1.1e-3 1.6e-5
6.0e-8 6.4e-10 0~ 0

Table A2.1.11 : j = 20, k = 25, cmax = 1e7, BC (I.2), ns = 10 13

estO acto estl actl
1.2e-25 o ' 2.5e-2 l.1e-4
8.3e-25 2.2e-16 2.8e-1 1.2e-3
9.1e-8 5.0e-10 0 0

Table A2.1.12 : j = 25, k = 30, cmax = le8, BC (1.2), ns = 9 3

estO actoO estl acti
2.6e-24 0o 4.6e0 1.5e-3
1.6e-24 0o 6.2e1 2.1e-2
1.2e-7 9.6e—11 0 0

As expected with the ill conditioned BC the actual errors

increase in size as the problem becomes stiffer and more ill

conditioned as parameters j and k increase. For values of
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these up to j = 15 , k = 20 estimated errors are a reasonable

guide to actual errors but as the problem becomes more ill
conditioned than this the estimated errors at the right hand

side become very inaccurate (tables 11 and 12).

Test Problem II :

(In this section a reference such az table 3 is to table

A2.2.3 ).

Here again we used a Runge Kutta tolerance of 1e—-4 and an

initial steplength of 0.01.

Table A2.2.1 : k = 5, cmax = 100, ns = 7 3

estO acto estl actl
8.3e-8 8.3e-8 2.1e-7 2.1e-7
8.3e-8 8.3e-8 | 1.7e-7 1.7e=7
8.3e-8 8.3e-8 6.2e-8 6.1e-8
8.3e-8 8.3e-8 1.2e-6 1.2e-6
Table A2.2.2 : k = 10, cmax = 1e3, ns = 9 :

estO acto esttl acti
S5.2e—6 5.2e-6 1.4e-5 1.4e-5
S.2e-6 5.2e-6 1.3e-5 .35
S.2e-6 3.2e-6 2.7e-6 2. 7e-6
5.2e-6 S.2e-6 1.0e-4 1.0e-4
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Table A2.2.3 = k = 15, cmax = 1le5, ns = & :

estO actoO estl

1.5e-4 1.5e-4 4, 2e-4
1.5e-4 1.5e-4 4, 0=—4
1.5e—4 1.5e-4 1.Be—-4
1.5e-4 1.5e-4 3.2e-3

Table A2.2.4 : k = 20, cmax = 1eb, ns = 7 :

estO actoO eatl

3.2e-2 3.2e-2 8.7e-2
3.2e-2 3.2e-2 8.5e-2
3.2e-2 3.2e-2 4.8e-2
3.2e-2 3. 2e-2 7.0e-1

Table A2.2.5 : k = 25, cmax = leb, ns = 8 1

estO acto estl

9.0e-1 9.1e—1 2.5e0
9.0e-1 9.1e-1 2.48@0
9.0e-1 9.1e~-1 1.5«0
9.0e-1 9.1e-1 2.0e1

Table A2.2.6 ¢ k = 30, cmax = le7, ns = 8 :

estO actoO estl

1.7e2 1.8e2 4,72
1.7e2 1.8e2 4.7e2
1.7e2 1.8e2 3.2e2
1.7@2 1.8e2 X.9e3

A2L-P

actl

4. 2e-4
4.0e-4
1.8e-4

3 . 2.—3

actl

B.8e-2
8. 482
4.Be-2

7.0m-1

actl

2.5e0
2.4e0
1.6e0

2.0e1

actl

4.9%9e2
4,92
3. 42

4.1e3



Table A2.2.7 & k = 35, cmax = le8, ns = 8 3

estO acto estl

actl

1.7e3 2.9e3 4. 63 7.9e3
1.7e3 2.9e3 4.bel3 7 .8e3
1.7e3 2.9e3 3.4e3 5.8e3
1.7e3 2.9e3 3.9e4 b&.7e4
Table A2.2.8 : k = 40, cmax = 1le?, ns = 8 1

est0 actoO estl acti
1.1e2 3.9e3 "3.1e2 1.1e4
1.1e2 3.9e3 J.0e2 1.0m4
1.1e2 3.9e3 2,32 8.0e3
1.1e2 3.7e3 . 2.6e3 8.%4

This problem becomes stiffer as parameter k is increased and

this is reflected in the size of the actual errors which are

emall for k <= 15 but increase rapidly for larger k. But very

good agreement is obtained between actual and estimated errors

for k <= 25 even though for k = 25 the errors are not small.

For k = 30 and k = 30 the actual and estimated errors agree in
order of magnitude but for k = 40 the sstimated errors are

very inaccurate and too small.
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TEST PROBLEM III :

(In this section a reference such as table 4 is to table
A2.3.4 ).

Here we used an initial steplength of 0.01 each time with
a Runge Kutta tolerance (RK) as given. The problem parameter

k = 19 for all cases. In tables 1| to 3 the well conditioned

BC (I1I.1) were used.

Table A2.3.1 : RK = le~4, cmax = 50e3, ns = 12 3

estO actoO estl actl
5.7e-24 1.3e—-15 2.7;—7 8. 6e-10
8.4e-10 1.2e-9 8.4e-10 1.2e-9
3. 0a-9 1.Se—-9 3.0e—-9 1.5e-9

Table A2.3.2 : RK = 1e-3, cmax = S50e3, ns = 12 1

estO actoO est1 actl
3.8e~-24 1.1e-15 1.7e-5 S5.0e-9
1.0e-9 3.1e-9 1.0e-9 3.1e-9
6.7e—-10 3.9e-9 b&.7e-10 3.9e-9
Table A2.3.3 : RK = le-2, cmax = S0e3, ns = 12 3

estO acto estl actl
1.2e~-22 2.4e-15 2.1e-5 7.3=-8
2.5e~-8 2.8e-8 2.5e«-8 2.8e-8
2.7e-8 3.4e-8 2.7e-8 3.4a-8

The results in tables 4 to 6 below were obtained using the
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ill conditioned BC (III.1) :

Table AZ.3.4 t RK = le-4, cmax = 50e3, ns = 12 :

esto actoO estl actl
5.7e-24 1.3e-15 3.0e-9 1.5e-9
8.4e-10 1.2e-9 8. 4e-10 1.2e-9
3.0e-9 1.5e-9 3.6e-3 J.1e-5
Table A2.3.5 : RK =v1e—3, cmax = S50e3, ns = 12 1

esto acto estl actl
3.8e-24 1i.1e-15 6.7e-10 3.9e-9
1.0e-9 3.1e-9 " 1.0e-9 3. 1e-9
6.7e-10 3.%e-9 2.2e-1 1.2e-4
Table A2.3.6 3 RK = le-2, cmax = 50e3, ns = 12 3

estoO acto ‘ estl actl
1.2e-22 2.4e-15 2.7e-8 I.4e-8
2.5e-8 2.8e-8 2.5e-8 2.8e-8
2.7e-8 3.4e-8 2,401 1.4e@-3

The agreement between actual and estimated errors is not so good
for this problem as for problem II - particularly for the

i1l conditioned BC cases. This is probably partly due to the

the fact that for this problem (unlike problem II) the
differential system matrix A is variable so that its
derivatives will be involved in the calculations and these

derivatives have some quite large components which are liable

to magnify any errors incurred.
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APPENDIX III : RESULTS FOR FACTORISATION METHODS

Here we give some of our numerical results obtained using
Babuska's factorisation methods described in Chapter 5. In

the following, program RIC used the Riccati transformation

and programs ORT1 and ORTO the orthonormal transformation

with and without the generalised inverse respectively. All
integrations were performed with the variable step Runge Kutta
RKF4S, using an initial step-length of 0.01 in all cases and

with a tolerance per unit step (RK) as stated. All results are

given to an accuracy of two significant figures.

# indicates that the method failed because the integration

step—length became too small ( < 1le-9 ) in the backward sweep

* * indicates failure due to overflow in the calculation of
function values during integration.

Problems I and II below are the test problems detailed in
Chapter &6. We can thus compare the results of the factorisation
methods given here with those obtained using our proposed

iterative residual correction method in Chapter 6.

The results given are (as in Chapter 6) the maximum absolute

T
error in the components of L[u(el), u(P )1l where u(t) is

the calculated LBVP solution and ([, {5] is the problem

interval.
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Results :

Problem I :

(In this section a reference such as table 4 is to table

A3.1.4 ).

The results in tables 1 to 4 were all obtained using the well

conditioned BC (I1.2).

Table A3.1.1 :
RK

le-2

le-3

le-4

Table A3.1.2 3
RK

le-2

le-3

ie-4

Table A3.1.3 :
RK

le-2

le-3

1e—4

i=2, k=3, BC (I.2) :

RIC

2.7e-4
S.4e-5
1.4e-5
j =9, k =10,
RIC

2.4e-4
2.6e-4

1.2e-5

j = 15, k = 20,
RIC
6.7e-4
7.7e-5

2 - 4!"6

A3 -2

ORT1
6.9e—4_
?.5e-5
2.5e-5
BC (I.2) :
ORT1
2.6e-4
2.4e-4

1.2e-5

BC (1.2) 3
ORT1
b.7e-4
7.7e-5

2.48e~-46

ORTO
8. 4e-4
2 . 9.-5

2.%e-3

ORTO
2.4e-4
2 - 5.—4

1 . 2.—5



Table A3.1.4 = 3 = 20, k = 30, BC (I.2) :

RK RIC ORT1 ORTO
le-2 1.8e-3 9.4e-5 * ®
1e-3 1.5e-4 1.5e-4 * »
le-4 6.0e-b S5.%e-6 * »

We see that for these well conditioned LBVPs the results for

the Riccati method and the orthonormal method with generalised

inverse are very similar and, for RK = ie-4, are acceptably

accurate in all cases. Notice that because the problem is well

conditioned there is no loss of accuricy as parameters j and k

increase i.e. as the problem becomes stiffer. This is because

the good condition of the LBVP with separated BCs ensures the
stability of the auxiliary IVPs in their respective directions.
The orthonormal method without the generalised inverse, however,

gives results comparable to those obtained with RIC and with

ORT1 for small values of parameters j and k but fails to

produce a solution for j > 5, k > 10 confirming the need for

the generalised inverse as found by Davey (3] and Meyer (4).

We also tested the factorisation methods on LBVPs that are not

well conditioned. The results in tables S to 8 below were

obtained using the ill conditioned BC (I.1) :
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Table A3.1.5 ¢ j = 2, k = 3, BC (1.1) =

RK RIC ORT1 ORTO

le-2 3.%e-4 4.5e-4 5.7e-4
1e-3 2.8e-5 4.0e-5 4, 6e-5
le-4 4.8e-6 9.7e-6 1.0e-5

Table A3.1.6 * j = S5, k = 10, BC (I.1) :

RK RIC ORT1 ORTO
le-2 4.9e-3 4,9e-3 1.0e-2
le-3 4,2e-4 4.1e-4 4.1e—4
le—4 7.5e-5 7.4e-5 7.4e-5
Table A3.1.7 = 3 = 15, k = 20, BC (I.1) =

RK RIC ORT1 ORTO
le—2 2.9e0 '2.9e0 »
1e-3 8. 5e-1 | 8.5e-1 »
1e—4 1.0e~-1 1.0e~-1 »
Table A3.1.8 : j = 20, k = 30, BC (I.1) 3

RK RIC ORT1 ORTO
le-2 3.9e2 J.9e2 »
1e-3 2.0e2 2.0e2 *
le-4 3.2e1 3.2e1 »
1e~5 3.1e0 3.1e0 *
le—b6 2.4e-1 2.4e-1 »

As with the well conditioned BC we see that there is good

agreement between the results of programs RIC and ORT1 but
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now the accuracy of the calculated solution deteriorates

rapidly as the condition of the LBVP worsens : for the case

j =20, k =30 even with a RK tolerance of le-6 the error

incurred is unacceptably large. As might be expected program

ORTO produces similar results to the other two methods for

small values of parameters j and k for which the LBVP is not

too badly conditioned but it fails completely for larger values.
These inaccurate results were expected because, as with all of
the ‘double sweep’ methods, correct decoupling of the
differential system is essential to epsure the stability of

both of the auxiliary IVPs in their respective directions and

the good condition of the problem is necessary to ensure this

Problem 1I :

(In this section a reference such as table 4 is to table

A3.2.4 ).

The results in tables 1 to 4 were obtained using the BC as

given for problem II in Chapter & for which the problem is ill

conditioned :

Table A3.2.1 ¢+ k = 8

RK RIC Q§T1

le-2 2.7e-3 2.2e-3
ie-3 5.5e-4 7.%e-4
le-4 1.4e-4 1.4e~-4
1e-5 1.6e~5 1.60-5%
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Table A3.2.2 @ k =
RK

le-2

le-3

le-4

1e-5

Table A3.2.3 : k =
RK

le-2

le-3

le-4

1e-5

Table A3.2.4 : k =
RK

le-2

1e-3

ie—-4

1e-5

10 =

RIC

Bl 2E—1

1.8e0

4, Se-2

2.2e—3

15

RIC

3. 03

3.%el

1.3e0

b6.4e~2

20 :

RIC

2.2e4

1.9e4

4, 32

2.2el

ORT1
1.8e0
1.7e0
4.%e-2

2.0e-3

ORT1

7.6e2
3.1el
1.1e0

1.5e0

ORT1

2.9e4
3.1e4
9.5e2

2.5etl

This problem becomes stiffer and more ill conditioned as the

parameter k 1is increased. As for the ill conditioned case of

problem I above, there is generally good agreement between the

results of the Riccati and the generalised inverse orthonormal

method. But for k > 10 the calculated LBVP

solutions are

very inaccurate even for small RK tolerances because, as
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stated above, as k increases the auxiliary IVPs become more

unstable.

We also tested the factorisation methods on problem 11 as

above but now with the following well conditioned BCs instead 1

1 0 O 1 o 0 0 O
B = o 1 1 O 0O 0 0 O©
© 0O 0 0 O 0O 0 1 o©
o 0 0O o o 0 o 1
Table A3.2.5 : k = 5 3
RK RIC ORT1
le-2 1.9e-3 2.1@-3
le-3 S.0e-5 8.5e-5
le-4 2.2e-6 2.1e-6
Table A3.2.6 : k 10 :
RK RIC ORT1
1@-2 9.0e-4 1.1e-3
1e-3 3.3e-5 3.3e-5
le-4 2.7e-5 ?.3e-6
Table A3.2.7 3 k = 15 :
RK RIC ORT1
le-2 9.5e-4 = Se-4
le-3 7.2e-3 1.5e-4
le-4 3.4e~-6 4.9a-6
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Table A3.2.8 = k = 20 :

RK RIC ORT1

le-2 3.0e-4 4.4e-4
te-3 1.6e-4 1.8e-4
te—-4 1.1e-S 1.2e-5

As expected the errors incurred by both methods are now
acceptably small and there is no significant loss in accuracy
as parameter k increases.

The results given in this appendix confirm that the factor-
isation methods of Babuska and Majer [14) are efficient
solvers of well conditioned LBVPs but they also indicate

that these methods cannot be relied upon to produce accurate
solutions to LBVPs which are at all ill conditioned. This
emphasises the advantage of our proposed iterative residual
correction method (as described in Chapter 6) in this respect.
We gave there results for the ill conditioned cases of test
problems I and II obtained with this correction method. These
results show that accurate solutions can be computed for these

difficult problems by our proposed iterative correction method.
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