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Abstract

Structure plays a important part in the design of large sys-
tems. Unstructured programs are difficult to design or test
and good structure has been recognized as essential to all but
the smallest programs. Similarly, concurrently executing com-
puters must co—operate in a structured way if an uncontrolled
growth in complexity is to be avoided. The thesis presented
here is that recursive structure can be used to organize and
simplify large programs and highly parallel computers.

In programming, naming concerns the way names are used to
identify objects. Various naming schemes are examined includ-
ing ‘block structured’ and ‘pathname’ naming. A new scheme is
presented as a synthesis of these two combining most of their
advantages. Recursively structured naming is shown to be an
advantage when programs are to be de-composed or combined to
an arbitrary degree. Also, a contribution to the UNIX
United/Newcastle Connection distributed operating system
design is described. This shows how recursive naming was used
in a practical system.

Computation concerns the progress of execution in a computer.
A distinction is made between control driven computation where
the programmer has explicit control over sequencing and data
driven or demand driven computation where sequencing is impli-
cit. It is shown that recursively structured computation has
attractive locality properties.

The definition of a recursive structure may itself be cyclic

(self-referencing). A new resource management (' garbage col-
lection’) algorithm is presented which can manage cyclic
structures without costs proportional to the system size. The
scheme is an extension of ‘reference counting’.

Finally the need for structure in program and computer design
and the advantages of recursive structure are discussed.
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Chapter 1

Introduction

Ambitiously and successfully, interweaving the making of a
film (of The French Lieutenants Woman) within the film,
« « » o« Meryl Streep takes the part of the title character
Sarah Woodruff, and the actress who plays her.

[Review of "The French Lieutenants Woman"]

A key problem in Computer Science is managing the complexity of computer
systems. Rapid advances in computer manufacturing techniques have
enabled a continuing rapid growth in the power of computers. Computers
are built containing more and more elements, operating at higher and
higher speeds. Not only is the power of the most expensive computer
increasing dramatically, but also the cost of the cheapest useful com-
puter is decreasing in a'similar way. Manufacturing ability is the
driving force of this monumental success. The scientific problem is to
organize ever-increasing resources so as to achieve useful work without

becoming ensnared in ever-increasing complexity.

The perplexing intricacy of large systems has been widely recog-
nized. H.A. Simon’s essay ‘The Architecture of Complexity’[Simon 1969]
examines the notion of system structure at a very general level and
draws examples from a wide range of physical, social and biological
fields.  Simon’s ideas are significant, because he recognizes that the
structure and the complexity of a system can be examined independently

of the nature of system components. In other words, any system or



organization can be viewed as a collection of abstract objects; the
study of complexity is then only concerned with grouping of objects and
how they interact with each other. Simon declines to define the ‘com-
plexity’ of a system formally, but his informal definition is simple and

worth quoting:

‘Roughly by a complex system I mean one made up of a large
number of parts that interact in a nonsimple way. In such a
system, the whole is more than the sum of the parts, not in an
ultimate, metaphysical sense, but in the important pragmatic
sense that, given the properties of the parts and their laws
of interaction, it 1is not a trivial matter to infer the pro-

perties of the whole.’ [Simon 1969,page 86]

The work in this thesis covers many aspects of computer system
design including programming languages, operating systems and computer
architecture. In each of these areas, complexity in the past has caused
problems in the construction and use of systems. Many systems take an
excessive time to build and then fail to fulfill their intended purpose.
As time goes by, these problems are made worse: ‘raw materials’ become
more and more abundant, tempting the construction of bigger and bigger

systems,

Programming languages and the associated production of large pro-
grams 1is one area where complexity has caused problems. Advances in
commumications technology have led to the concept of a ‘network operat-
ing system’[Bochmann 1983, Lampson et al. 1981] yet more complex than
the ordinary variety. Advances in processor, sforage and communication
technology have led to highly parallel (VLSI, Fifth Generation) computer
architectures which embody many individual computing elements[JIPDEC

1982].



Not until the late 1960s was it generally realised - after many
failures - how difficult it is to write computer programs. The intri-
cate patterns of control created using the goto statement had made it
difficult to understand a program except as a monolithic whole. A new
era of ‘structured programming’[Dahl et al. 1972] began once the conse-

quences of complexity in programs had been recognized. Commenting on an

influential conference[Buxton and Randell 1969] Gries writes:

‘The complexity and size of [software] projects increased
tremendously in the 1960s, without commensurate increases in
the tools and abilities of the programmers; the result was

missed deadlines, cost overruns and unreliable software . . .

e« « o For the first time, a consensus emerged that there
really was a software crisis, that programming was not very

well understood.’ [Gries 1981,page 296]

It is significant that Gries’ book, published more than ten years
after that conference, can only begin to solve the problems of program-
ming. The major change in the 1970s was not so much an improvement in
programming standards but a recognition that programming is not easy,

that better tools and concepts are needed.

An operating system is a large program in its own right and subject

to problems of (internal) complexity which are common in large programs:

‘All repairs tend to destroy the structure, to increase the
entropy and disorder of the system. Less and less effort is
spent on fixing original design flaws; more‘and more is spent
on fixing flaws introduced by earlier fixes. As time passes,
the system becomes less and less well ordered. Sooner or
later the fixing ceases to gain any ground. Each forward step

is matched by a backward one.’ [Brooks 1975,page 122]



A way of tackling this internal complexity is to introduce struc-
ture within the program by constructing it as a hierarchy of separate
‘layers’, as suggested by Dijkstra[Dijkstra 1968b]. By formalizing the
interface between layers, each can be designed and tested separately,

with a good chance of the final composite system working correctly. By

introducing structure the complexity of the system is reduced.

Another problem with operating systems is ‘external’ complexity.
Quite separate from the internal complexity of the operating system as a
program, there is the complexity of the facilities it provides - a tool
must be easy to use, no matter how well it is constructed. When viewed
as a whole, many operating systems provide a baroque, unstructured col-
lection of facilities. A common characteristic is that each new exter-
nal facility added to the system interferes with existing facilities,

increasing the external complexity.

In the domain of computer hardware, electronic circuits were, until
recently, designed by a skilled engineer who would organize the pattern
of elements to ensure correct operation, the best path for signals and
so on. With the continuing growth in the number of basic elements
(gates) per circuit the human effort needed in design becomes the dom-
inating cost in production. It becomes increasingly important to deal
with such complex systems by structuring their design, whether the

design process is manual or automatic:

‘The process of designing a large-scale integrated system is
sufficiently complex that only by adopting some type of regu-
lar, structured design methodology can one have hope that the
resulting system will function correctly and not require a
large number. of redesign iterations.’ [Mead and Conway

1980,page 60]



One way to write a thesis about structure and complexity would be
to devote chapters to various problem areas: operating system complex-
ity, programming complexity, VLSI complexity etc. Each subject has a
large body of literature and could be treated in depth. Operating sys-
tem complexity might be concerned with processes and file systems, pro-
gramming complexity with abstract data types and modules, VLSI complex-
ity with component layout and interconnection. In each chapter, impor-
tant issues in each subject could be discussed in depth. But to deal
with complexity in some other area such as data bases or communication
networks, a separate new chapter would be necessary, because all the
arguments about structure and complexity would have been restricted to

specific applications.

In this thesis an alternative approach is taken, concentrating on

issues rather than applications. Two issues, naming and computation,
are explored, with emphasis on the role they play in the structure of
computer systems. Naming is concerned with identifiers in programs and
how they are related to objects. Computation is concerned with the pat-

tern of execution in a computer.

A computer system will be viewed as a computer plus the program it

executes.

Program

Language

Computer

The interface between the two is a programming language. Historically
this interface has been the boundary between ‘hard’ and ‘soft’ parts of
the system, although this is no longer true: ‘multi-level’ systems are
built as a succeséion of layers, each acting as ‘computer’ for the omne

above.



A name is a token or identifier used in a program to stan9 for some
object. The name of an object can be chosen arbitrarily, independent of
the object’s form, what it does, where it is stored and how it is
accessed. Certainly, these attributes often constrain names 1in real
systems, but only by convention. The power of naming is that a name can

be chosen and used independently of the named object.

A contribution of this thesis in this area is a systematic syn-
thesis of ideas on naming, brought together under the general theme of
‘structured systems’. Some of these ideas are taken from the work on
names in programming languages[Barron 1977, Stoy 1977], adapted to the
wider frame whilst others are new. The aim is to work towards a uniform
theory of naming, independent of the kind of system in which names are

being used and to describe ‘recursive naming’.

A major contribution of this thesis is the ‘UNIX United’/‘Newcastle
Connection’ system[Brownbridge et al. 1982]. The system uses recursive
naming to provide a homogeneous environment over multiple connected UNIX
systems. In the description (Chapter 5) the emphasis is on naming and

structure, describing a personal contribution to a joint project.

When a computer executes a program, control passes from one part of
the program to the next according to a ‘computation rule’, 1In the
majority of computer systems, control threads a single instruction-at-
a-time path through the program and objects are held in a single store.
In parallel or distributed systems, there are many threads of control
forming an overall computation structure and many separate stores, with
sharing and replication. This thesis examines.the notion of computa-
tion, classifies computation mechanisms and describes ‘recursive compu-
tation’. This is a development of a contribution to a published survey

of novel computer architectures[Treleaven et al. 1982].



Recursive computer systems can embody both recursive gaming and
recursive computation. Recursive naming makes it possible to combine
programs to produce larger programs; recursive computation makes it pos-—
sible for computers to co—operate in executing programs. Such systems

are important if complexity is to be managed in the future.

Only a small number of published works have dealt explicitly with
the use of recursion in system design. The work of Simon[Simon 1969]
recognizing the hierarchical structure of many natural systems has
already been mentioned. That work, together with

C. Alexander’s[Alexander 1964] show an awareness of design and structure

as valid topics for scientific study. The arguments in favour of sys-
tematic design of buildings and towns[Alexander 1964] in the face of
architectural complexity are very similar to those in favour of sys-

tematic programming in the face of complex computer systems[Hoare 1980].

The overall aim of this thesis is to show how structure, in partic-
ular ‘recursive structure’, can be used to deal with complexity in com-
puter systems. Chapter 2 introduces the notions of modelling a system,
structure and recursion. In Chapter 3 an abstract model of computer
systems is introduced which show how naming and computation can be stu-
died separately and how systems can be built from multiple layers.
Chapter 4 discusses naming and recursive naming and Chapter 5 describes
the UNIX United/Newcastle Connection system which is based on recursive
naming. Chapter 6 examines'computation: control driven, data driven and
demand driven computation are described and then recursive computation
is considered. Chapter 7 discusses the implications of recursive struc-
ture in computer systems’ design, gives a brief survey of earlier work
on recursive systems and introduces a new way of managing (' garbage col-
lecting”’) structuréd objects. Finally, conclusions and directions for

further research are presented.



An appendix describes a way of using the new object management

algorithm in combinator graph reduction machines.



Chapter 2

Recursive Structure

To abstract is to separate the qualities common to all indivi-
duals of a group from the peculiarities of each.
[Jevons, Elementary Logic, 1870]

This chapter aims to explain what is meant by a recursively structured

system and to clarify concepts of system model, structure and recursion.
These are the foundation of the succeeding studies of recursive naming

and recursive computation.

Recursive structures are a general form of hierarchical structure.
They are a nesting of similar parts: any simple (atomic) element in a
recursive structure can ‘be replaced by a sub-structure. Combining
recursive structures produces another recursive structure of the same

kind.
2.1 Modelling: Form vs. Content

A model is an abstraction of a system. Using models it is possible to
concentrate on the structure (form) of systems independent of the

details of their content.

A model abstracts by hiding details and focusing on particular
aspect(s). There are many possible models for a given system,

corresponding to the many possible levels of detail and choice of
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aspect. Given a system, a model can be constructed which exposes the
structural relationship between the parts and hides the precise nature
of those parts. This is exactly the technique used in text-books which

treat data structures independently of the particular data being struc-

tured. In this chapter an attempt is made to examine pure structure as
an abstraction of ‘naming structure’ and ‘computation structure’ -

topics which are dealt with separately in Chapters 4 and 6 respectively.

The act of making a model is one of taking a system and producing a

related ‘model’ system. Two factors must be taken into account:
(1) The aspect(s) of interest (‘logical concerns’)
(2) The level of detail (‘atomicity’)

Together they determine the relationship between model and ‘original’
system e.g. ‘performance model of x’ or ‘structural model of x’. They

define what kind of abstraction is being made of the system.

The aspect of interest controls which parts of the system are given

prominence in the model: a repair engineer’s model of a computer is very
different from that of a programmer. One model is embodied in wiring
diagrams, the other in the machine language specification. The models
are consistent with each other, but reflect a different emphasis whilst
describing the same thing. Although a model can encompass many aspects
of a system at once, it is often useful to use separate models for each
aspect of interest. By concentrating on one issue at a time, although
aware ‘in the background’ of the others, the problem of designing or
understanding systems is greatly reduced. E.W. bijkstra has termed this

method ‘separation of concerns’[Dijkstra 1982].

The -level of detail in a model can be chosen independently of the

aspect of interest, whether one or many aspects of the system are incor-
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porated into the model. The level of detail defines just how accurately
the model reflects the chosen aspects of the original system. A finely
detailed model gives a complete description of the system; a less
detailed model may be more appropriate as it will be simpler. A level
of detail is defined by a set of atomic objects thch form its ‘base’.
Atoms are defined to be the most detailed objects in the model, they are
always seen as whole entities with no internal structure. The level of

detail will sometimes be referred to as the ‘level of atomicity’.

It is as well to be explicit about these two features, aspect and
detail, which characterize models, although it is by no means novel to
recognize their existence. Often the structured approach to system
design runs into problems when only a single structural model is used.
It must be emphasized that a system can concurrently have many models,
each with a particular aim and structure. In some cases the relation-
ship between models can be given formally; in particular it might be
shown formally that two models indeed correspond to a single given sys-

tem.
2.2 Structure and Hierarchy

Structure is concerned more with the arrangement of parts and their
inter-relationships than the actual nature of the parts themselves, A
major theme of this thesis is the importance of structure in computer
systems. In particular, when many systems are to be combined into a
distributed computer system, structure is as important as the design of

the component parts.

Given a system, or equivalently, a model of a system, what does it
mean to impose structure on it? First of all, there may already be
structure apparent in the system itself. For example the following

model of a computer system for many years corresponded to the physical
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reality of machine room layout:

| input/output |

processor | | store]|
| devices | | | | |

Sometimes, this ‘natural’ structure will be enough. However in general,
the problem of imposing structure on a complex system has to be faced.
There are two complementary ways of describing this process of ‘adding
structure’. On the one hand, it may involve grouping or aggregation,
combining many simple elements into a structural element. On the other
hand, it may take the form of decomposition or separation, dividing an

amorphous system into a structured arrangement of elements.

Whichever description is used, the process is basically the same: a
complex system is transformed into a simpler omne by imposing structure;
the only difference is the starting point. (No doubt there is some con-
nection here with the Philosophies of Holism and Reductionism, but this

will not be pursued here.)
Example
*Synthesised’ or ‘Bottom-Up’ Approach:

Solving a jig—-saw puzzle reveals a hidden picture - starting
from a complex arrangement of pieces, the structured whole is

gradually revealed.
‘Analytic’ or ‘Top-Down’ Approach:

An ant-hill is an ordered society to the insect-expert, but a
teeming chaos to the novice -~ starting from the complex mass,
the expert imposes a ‘social hierarchy’ to achieve understand-

ing.
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Structure may be imposed on a set of elements, either by arranging the

elements in a structure, for example soldiers in a hierarchy of rank:

General
Y A e
/ ! \
Colonel Colonel Colonel
/ \ / \ / \

or, by adding structure, inventing new elements, such as the organiza-

tional sections of an army:

Division

/ \
Company

\

Platoon

/ \
Soldijer ...

There is no hard distinction: for example both bottom-up and top-
down parsers add structure onto the original program text. Finally, all

these issues can be confused by representation, because

General

/1 0\
Colonel Colonel Colonel

can be re-drawn as:

/
/ | | \
General Colonel Colonel Colonel
with anonymous structure elements and the highest ‘rank’ to the 1left.
This representational difference is only important when it affects our
way of thinking about the system in question. For example, in LISP sys-

tems all structure is built from CONS cells, information resides at the
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‘leaves’; in data base systems structure is built from many different
kinds of ‘records’ which themselves contain information. In LISP one
has a strong separation of structural objects (CONS cells) from data
containing objects (ATOMS), whereas in databases structure and data are

intermingled.
Hierarchy

The most general structure, sometimes called a network, imposeg no con-
straints on the relationship between parts of a system. Because we are
interested in ways of simplifying systems, it is necessary to consider
less general structures where the relationship between parts is more
regimented. Hierarchical structure is of particular importance as it
models ‘encapsulation’ of lower-level objects by those above. In a
hierarchy there is a sense of ‘above’ and ‘below’; lower elements are

nested inside the element(s) above them.

The structure of a system can be modelled by an ordered pair (N,A).
Let N denote the set of objects (nodes) in the system and A denote the
structural relationship (arcs) between them; A is some subset of (N x N)
(the set of pairs (nl,n2), such that nl and n2 are members of N). For

example the system (P,Q) where

L)
1

= {x,y,2}

= {(x,y),(y,2)}

O
[

can be represented as:
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A network is a structure (N,A) with no restriction (on A) as to the
relationship between the objects in N. A network can model any form of
structural relationship. For example if a system allows new objects to
be created and arbitrary pointers between them to be made then there is
no way of restricting the structure to any hierarchical form. It is
even possible to create cyclic structures where sequences of pairs from

A form a loop:

< (a,b),(b,e),(c,d), «.. (v,2),(z,a) >

Such structures are regarded as paradoxical as system models: in the

AY ’

example object ‘a’ is an abstraction of itself!

A hierarchy is a st?ucture (N,A) where the relationship between
elements is restricted so that any one element can be regarded as an
‘abstraction of’ or ‘abbreviation for’ the elements below it. Parnas
~ defined hierarchical structure in terms of the levels of abstraction it
can give rise to[Parnas 1974]. Here it will be defined solely as a par-
tial ordering of elements. A system (N,A) will be said to be hierarchi-

cally structured if the relation A satisfies the following properties:
(1) No direct self-reference:

(x,x) is not in A (for all x in N).
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(2) No cycles:

If reachable(x,y) then NOT(reachable(y,x))

A} ’ \ 4

Where ‘reachable(a,z)’ is true if there is a path from ‘a’ to ‘z

consisting of elements of A; i.e. a sequence

< (a,b),(b,c),(c,d), eoe 5 (x,7),(y,2) >

A} 4

(By considering the empty sequence, ‘a’ is reachable from ‘a’)
(3) Encapsulation:

Given any two objects x and y in N, there exists some 2z which
encapsulates them both; that is for every x and y in N there is a z

such that:

reachable(z,x) and reachable(z,y)

2.3 Recursive Structure

A recursive structure is a hierarchy in which the elements are all simi-
lar. At every node in a recursive structure, the relationship to the
surrounding structure 1is the same. This is particularly useful for
modelling logical systems (e.g. programs) because recursive structures
can be nested to an arbitrary depth whereas in most hierarchies there is

a fixed ‘root’.

One property of recursive structures is that combining recursive

structures produces another recursive structure of the same type. This

is sometimes called ‘scale independence’([Scarrot 1982]. This property
is especially important in computer systems where it is essential to be
able to build new objects from old and then repeat the process to an

arbitrary degree[Barron 1968].
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Another feature of a recursive structure is the absence of a dis-

tinguished ‘root’ of the hierarchy. A root is a distinguished base ele-

ment containing all others. There is always a de facto root, which is
not nested in other items, but it is in no way distinguished from the
other items. As time passes the de facto root may move as a structure
becomes incorporated into others. Absence of a ‘root’ makes it easier
to combine systems without first altering them. Many non-recursive
hierarchic systems distinguish a special type of root element which may

never be nested.

For example, the programming language Pascal does not have recur-
sive structure: a program is the largest possible unit. Programs may
never appear nested in any other Pascal unit or be built by combining
other programs{Jensen and Wirth 1978]. 1In practice this is a signifi-
cant problem with Pascal: extra facilities must be added to enable pro-

grams to be combined.

To recap this chapter, a viewpoint and level of detail are embodied
in the model of a system.  They may be implicitly or explicitly chosen,
but always have a profound effect on the resulting model. A structured
view of the system is achieved by aggregating parts of the model, thus
reducing its complexity. In a hierarchic system, lower elements are
‘encapsulated’ by those abdve. Hierarchies of similar elements are
called ‘recursife structures’. At each point in a recursive structure
the environment is similar; a combination of recursive structures is

also a recursive structure.

As will be discussed in Chapter 4, recursive structure in naming
makes it easy to combine programs, no limit is imposed on the depth of

nesting (program within program) and identical naming mechanisms are
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used for intra-program and inter-program naming.

Similarly in Chapter 6 it is shown that recursive structure in com-
putation makes it straightforward for many computers to execute a pro-
gram concurrently yet still giving the illusion that a single computer
is in wuse; there is also no detectable difference between multi-

programming and multi-processing.



Chapter 3

Multi-Level Computer Systems

But programming, when stripped of all its circumstantial
irrelevancies, boils down to nothing more than very effective
thinking so as to avoid unmastered complexity, to a very

vigorous separation of your many different concerns.
[Dijkstra 1982,p163]

This chapter introduces a model of computer systems which will be used
to demonstrate the distinction between naming and computation. Within
the model, naming and computation are separate concerns. The structure
of naming and the structure of computation will then be examined

separately in the succeeding chapters.

In the model, a computer system comprises two parts: (i) a program

and (ii) a computer.

Computer
System -

Program

Computer

S

The program contains instructions and data items which can be inter-
preted by a computer to produce results. Programs will be viewed as
textual objects which are manipulated by the computer. The computer

will be viewed as a program interpreter which brings about changes to

the state of the system. The precise distinction between control and

data is discussed below.
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Throughout what follows, the words computer and interpreter (or

program interpreter) will be used as synonyms. They formally refer to

the same thing, but quirks such as ‘Fortran-computer’ and ‘IBM S/370
interpreter’ are avoided. Also, I specify language to have the techni-
cal sense of programming language, as introduced above (and refined
later), not the usual sense of ‘form of Speech used by a people’[OED
1941]. 1In particular, I do not restrict ‘language’ to mean ‘form of
communication between man and computer’ but include forms of communica-
tion between parts of a computer system; for example network protocols

or job control languages.
3.1 The Model

In the previous chapter, structure, hierarchy and recursion were
examined independently of any application they might have in computer
system design; in this chapter I examine the notion of a ‘computer sys-
tem’ as a set of layers, without considering how each layer is struc-
tured within itself. In particular it will be important to see how
separate components - each with internal design and structure - can be

combined to form a larger aggregate system.

The separation of computer systems into two parts is an essential
feature of the model, separating static and dynamic parts. Within this
philosophy one may talk of the computer causing changes to the state of
the program, but not of the program causing a given effect on the com-
puter. Only execution of programs by computers causes an effect. The
model of a static program plus dynamic interpreter is loosely based on
the work of Jones[Jones 1981]. It is also related to other work on
descriptions of system structure[Anderson and Lee 1981, LaPrie 1983,

Parnas 1974].

A program is a piece of text consisting of instructions and data, a
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sequence of symbols stored in the computer. The computer is a program-
interpreting mechanism. Naming is concerned with how resources of the
computer are used in programs (vid the programming language). Computa-

tion is concerned with how programs are executed: the sequencing of exe-—

cution and the range of effect of that execution.

The computer/program boundary may or may not correspond to the phy-
sical boundary of a machine. The boundary between ‘hard’ and ‘soft’
parts of the computer has become increasingly blurred by the widespread
use of microprogramming, virtual memory and virtual machine techniques.
In the latter case, a software program is implementing something which
is to be regarded as the ‘hard’ machine. Similarly, there is a matching
trend towards putting essential software into the hardware in the form

of Read Only Memory (ROM). Here what seems to be soft is in fact hard!

In the model, the notion of ‘program’ is very general, encompassing
any computable expression. A program is simply the description of any
computable expression given in a programming language. (Notions of com-
putability are defined in the literature e.g.[Brady 1977, Malitz 1979]
and will not be explored here.) A suitable computer (one that implements
the appropriate language), ‘can execute the program, giving rise to some

pattern of computation.

Similarly the notion of ‘computer’ in the model is very general, a
computer is any programmable mechanism: anything for which a programming
language can be defined. A computer is simply an interpreter (or execu-
tion mechanism) for some explicit or implicit programming language.
Although a computer is a ‘stored program’ device; it need not be res-
tricted to a single program. Execution of one program (e.g. a scheduler
or a compiler) may cause another program to be executed. The least that
is requiréd is that some initial ‘bootstrap’ program be present when the

machine is switched on.
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The fact that program and computer are kept independent has obvious
important implications. A program can be used on any computeg/which
provides the right language. A program is independent of how the com-
puter which executes it is constructed. A computer cah of course exe-

cute any program written in the language which it interprets, not just a

fixed program.

An example of separation is that in commercial computer hardware
there is often a ‘range’ of machines, each implementing the same machine
language. Machines in the range have very different constructions and
prices but all provide the same language. Here the separation is made
between language - the ‘machine architecture’ - and computer which is
the hardware implementation of that architecture. Another example of
separation of architecture from implementation is the concept of ‘data
independence’ in database systems, where the conceptual view of data is

independent of the storage method[Date 1975].

It is worth noting that nearly all the computer systems which
rigorously separate language from interpreter do so by hardware. Few
software systems are sufficiently disciplined or well designed to allow
or need no dependence on the underlying implementation. Often separa-
tion is sacrificed in the quest for efficient execution, invariably

tying programs to a particular implementation.

The model as outlined above bears a resemblance to ‘module’ con-
structs in languages such as Modula-2[Wirth 1983] and CLU[Liskov et al.
1970] (which are each ultimately based on the pioneering work in

Simula[Birtwhistle et al. 1973]).

In Modula-2 for example, a module consists of two separate parts,

an interface and an implementation. The interface describes the exter-

nal behaviour of the module (i.e. the language it provides); the imple-
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mentation describes how that behaviour is achieved using the constructs
of Modula-2 including, recursively, modules. Because inferfaée and
implementation are separable, the implementation can be changed (pro-
grammed anew), without affecting the interface. In particular, other

modules using a module are not affected if only the implementation and

not the interface is changed.

Modula-2 provides fairly simple facilities for assembling complete
systems from collections of modules: parts of an implementation cannot
be shared by two interfaces, nor is there a way of extending an inter—
face i.e. of providing extra facilities whilst leaving the original
parts of the interface unchanged. The latter issue is related to the
lack of module-combining operators to form aggregate interfaces. This

will be discussed further in ‘Multi-Level Systems’ (Section 3.3).

The language Mesa has an associated language, ‘C-Mesa’, for build-
ing systems from Mesa modules[Mitchell et al. 1978]. 1In a truly general
system, the higher level, system—forming language can be identical to
the original language. Indeed, languages which are themselves ‘higher
order’ need no separate language to combine systems. Higher order func~-
tions can take functions as arguments and produce functions as
results[Burge 1975]; similarly in a fully general ‘object oriented’
language, ‘objects’ can be sent in messages and returned in response to

messages.
3.2 The Language

A programming language is the abstraction common to computer and pro-—

gram. Only if the languages of the program and of the computer match,
will execution of the program by the computer be proper. Only computer
systems where program and computer are properly paired will be con-

sidered in what follows. When the match is incorrect, the result of
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execution is unspecified.

The language may be implicitly or explicitly defined. When a pub-
lished language specification differs from an implementation it is inev-
itable that the implemented version of the 1anguagg is the one used.
Examples abound of extra undocumented ‘invisible’ operations or side-
effects of operations, which subsequent implementations are forced to
reproduce, simply because programs have used the actual interface not
its specification. 1Indeed the idea that the actual interface is the
final arbiter has on occasion been used as an argument against any for-
mal specification of an interface. I would instead argue that the
correct method is to expend as much effort as is necessary to ensure
implementation and specification match exactly, with neither missing nor

extra features.

In most of the programming languages in use today, the execution of
a program must be specified with reference to some concepts not defined
within the language itself. For example the current value of a variable

may depend on the state of the run-time stack.

Backus has distinguished primary and secondary languages[Backus
1972]1. In primary languages state transitions (computation) can be
described as program transformations - each execution step transforms
(or ‘elaborates’) a valid program into another valid program. In secon-—
dary languages the initial program is translated into an abstract

machine state, and execution is successive changes of machine state.

Thus a execution of a primary language program can be explained
without reference to external state. A secondary language program must
become a process when it is executed. The process consists of the pro-
gram text- plus the current state. Processes are necessary not just for

multi-programming but -for execution of secondary language programs to
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take place at all. Thus when we talk of executing such a program, what

is often in fact being executed is a process consisting of the program

plus ‘run time system’.

Control and Data

In the present model, this distinction between control and data is only
important below the interface, in the computer, where it may be useful

to distinguish instructions from data, (even though a particular object

may take either role from time to time). Note that by ‘data’ I mean
values embedded in or calculated in a program, not values ‘read in’ as
the program is executed. In terms of the language ‘BASIC’ data is
*DATA’ not ‘INPUT’! The latter, ‘INPUT’, is the case of a program act-
ing as a (higher level) interpreter. Such multi-level systems will be

considered in Section 3.3.

No claim is made that the control/data distinction is fundamentally
wrong in programs, it is just much simpler to disregard it in most of

the present study - both commands and data are data to the interpreter.
Notation vs. Specification

In the design and study of programming languages one must be aware that

there are two aspects to their use:

* Notation - as an aid to thought, simply ‘getting it down on
paper’[Iverson 1980]. Majér concerns: ease of use by people, expres-

siveness, brevity[Whitehead 1911].

* Specification - as a means of discipline when parts of a system
interact, describing exactly what is to be computed. Major concerns:

completeness, consistency.

Throughout the study of programming languages these two aspects are in
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constant conflict. In particular the expressiveness of language 1is
often in conflict with its consistency. Here, we will only cd;sider
programming languages as specifications - they characterize the rela-
tionship between program and computer. Issues of notational convenience
and ease of use in programming as a human activity will not be con-
sidered. There are sufficient issues of completeness and generality to

consider in connection with system structure.

The wusual study of programming language design is biased rather
more towards issues of notational convenience and ease of
implementation[Barron 1977, Elson 1973, Ledgard and Marcotty 1981].

Here, completeness and consistency are the main concern.
Properties of Programming Languages as Specifications

* Soundness — there must be no way of using gratuitous implementation
features; the implementation must exactly match the language specifi-

cation.

* Consistency - a given object should have the same properties wherever

in the program it is used.
* Completeness — generality; power to express all useful programs.

* Minimality — No feature of the language to be a combination of oth-

ers.

Soundness 1is a very simple property: the computer must provide

exactly the language as specified.

A sound implementation of a language will correctly evaluate all
well-formed programs, but not any others. Soundness also implies a kind
of atomicity. In a sound language it should not be possible to explore

partial execution of basic (atomic) commands nor detect the internal
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structure of basic (atomic) data items. (A sound implementation of an

interpreter is analogous to the least fixed point of a recursion equa-

tion.)

Unfortunately many computer systems - especially_ those constructed
from software rather than hardware -~ are not sound. It even seems
unlikely that soundness was ever a major consideration whilst they were
being built! Soundness is compromised in both directions: extra facili-
ties, which are not part of the language, are provided, while some parts
of the language are not implemented. This is usually because this was
convenient to the implementor. In such a case the language is ‘weak’
because it does not enforce a total separation of language from the com-

puter implementing the language.

Consistency is a regularity property which can be paraphrased as
‘absence of special cases’. A consistent language is easier to use
because there is a harmony between the parts of it: the language itself
has a regular structure. Consistency of a language with itself is
related to ‘orthogonality’[Barron 1977] which is ‘non-interference of

concepts’.

Completeness is a second regularity property: ‘ability to program

arbitrary tasks’ and ‘ability to construct arbitrarily large programs’.

One aspect of completeness is that the language must provide a suf-
ficiently rich set of construéts to span the space of programs (akin to
being able to program all useful functions). The other aspect of com=-
pleteness is that the language should provide combining forms - struc-
turing operators — to combine groups of commands and/or data into com-
pound objects (possibly named), so that these can be nested to arbitrary
depths. The first aépect has been dealt with at great length elsewhere

in the 1literature of computability theory. Grouping to an arbitrary
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Minimality implies a sparseness of language features - no command

or data provided by the language can be programmed in the language.

From the point of view of notation minimality may be less desir-
able, but a language specification is best simplified by minimizing it.
The combination of minimality and completeness suggests languages should
consist of a small number of basic objects together with a general way

of combining them.

Each of the above properties — soundness, consistency, completeness
and minimality -~ has been defined informally and briefly but I believe
that together they form a good basis for language design and implementa-

tion from the point of view of specifying interpreters.
3.3 Multi-Level Systems

So far, a single level system has been considered, with one program, one
language and one computer. For design and for understanding, it is
essential to look at one level at a time, concentrating on the program,

language and computer forming the computer system at that level.

Viewed at Ll Viewed at L2
i- component Z —E— program
program -‘ L2 :.
: éomponent Y l
.: L1 :— interpreter
interpreter —i component X i

A system can have many levels - many linguistic interfaces - and still

be studied in this way.

The present section will examine the structure of multi-level
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systems in order to explain how systems can be combined to produce
another composite system. The aim is to understand what happen; when
systems are combined — not to describe the art of choosing the layering.
The main addition here is the notion of ‘recursive interpreter exten-
sion’: an extension to the system which is exactly cbmpatibie with the
original (Tanenbaum uses the term ‘self-virtualizing machine’[Tanenbaum
1984]). This is an abstraction of a design principle used in many sys-
tems: e.g. 'Virtual Memory’[Kilburn 1962] is a recursive extension of
the address space; ‘virtual machines’ (e.g. VM/370) are a recursive

extension of machine language making many separate ‘machines’ available

concurrently.

One way to understand multi-level systems is to recall the concept
of ‘separation of concerns’ (Chapter 2): let each level implement a par-
ticular concern. As each level is added to the system some new facility

is provided.

The idea of structuring a system using separate layers has been
used extensively in the literature, most notably by Dijkstra in the
T.H.E. operating system[Dijkstra 1968b]. In that system, the layering
was based on a separation of concerns. Unfortunately, it is by no means
clear that an. arbitrary given system can be divided into separate
layers, without considerable thought and effort on the part of the

designers.

Consider the structure of the T.H.E. operating system:
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L5
user programs

L4
input/output

L3
message interpreter

L2
segment controller
L1

processor allocation

L0

hardware
At each successive level, better abstractions are provided. At L1 pro-
cessor allocation is hidden and so on up the hierarchy, each level pro-
viding a better ‘virtual machine’. 1In other work, levels are seen as a
consequence of the relationship between components, structure is not

necessarily imposed explicitly by the designer([LaPrie 1983].

Three ways of building interpreters will be examined. The first is
simply combination, merging two interpreters (Cl,C2) to provide a single

joint interpreter (Cl4+C2) with corresponding language (L1+L2):

L1+L2

Cl | c2

The second is stacking one interpreter (P2) on top of the other

(Cl) giving system (P2/Cl):

L2
P2
L1
Cl
The third, interpreter extension, is more subtle - the second

interpreter (P2) extends or modifies interpreter (Cl) giving (P21Cl):
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L2{L1

L1

Cl

The vertical arrow denotes that parts of a program may be interpreted

directly by Cl.

The final variant is the recursive interpreter extension where the

same language is provided at the upper boundary but with some ‘value

added’ (e.g. robustness, security) by the extension:

Cl

Combining (C14C2)

N ’

Combining two interpreters produces a interpreter supporting the ‘sum
of the two component languages. The language of the combined computer
contains all the languages of its components. For two systems to be
combined they must be compatible: the resulting language (L1+L2) must be
well defined. This means that either L1, L2 are disjoint, or it does
not matter if some construct which is in both L1 and L2 {s evaluated by

either Cl, C2 or both of them.

For example, when C2 provides a very simple addition to L1, it is
straightforward to ensure that Ll1+L2 is well defined. When Cl is a min-
icomputer .and C2 is a ‘floating point unit’ the languages are L1 = stan-

dard instruction set, L2 = floating point instructions; then CI+C2 is
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well formed because Cl, C2 do not interfere by both trying to execute

the same instruction. -

The crux of a combined system is the interaction between the two
components; they must have been designed to prevent accidental interfer-

ence, e.g. by using a small shared data area for control information.

For example in the IBM S/370 there is a mode of multi-processing
where two identical computers cooperate to share storage using special

instructions.

L1+L2 -
¥ | semaphore

cl | c2

L1‘+L2’

This is essentially a very ‘thin’ interpreter extension which is kept
invisible. Languages L1’,L2° are both the normal S/370 instruction set
augmented by operations using the semaphore to avoid interference when

accessing shared resources.

Stacking (P2/Cl)

The idea is simple, but nevertheless worth describing explicitly for the
purposes of comparison. Take a interpreter C and a program P and com-
bine them to produce an aggregate interpreter. When P is itself an

interpreter for language L1, the computer system

Computer
System -

=

p—
|
1
1
|
|
1
|
i
|

(denoted P/C and pronounced ‘P over C’) can be viewed at a higher level

as a single interpreter implementing Ll:
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« = L]. ————————— ) <
l P

Interpreter —=| L2 ————————
| c

which can execute any program P2 in the language L2. Here the new

language L2 is defined as the combination of an interpreter and a pro-

gram:
L2 ::= P/C

Programs in L2 can be executed in the usual way:

N

| Program -{ P2
| o= L2 ——m—————e
Computer _| | P
System | Interpreter =| Ll =———————-
I | C
!

This common construct is a straightforward way of building systems
as a set of layers. In general, L1 is not the same as L2 because the
purpose of the extra layer (P) is to ‘add value’ to language L1 by

increasing the level of abstfaction.
Interpreter Extension (P21Cl)

Here, a program extends the language provided by an interpreter (AtB is

pronounced ‘A extending B’):

L21L1 -

L1
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Computer Cl implements language L1; P2 is an interpreter for
language L2 and is written in language Ll. At the upper interface both
Ll and L2 are available. The advantage of interpreter extension is that
it adds to a system by extending it, not by hiding (as is the case with
stacking). Both the added language and parts of the original language
are made available. Viewed at L1, P2 is a program to be interpreted
along with P. Viewed at L21Ll1, P2 is a part of the composite inter-
preter. During execution, Cl will sometimes be executing parts of P
directly and at others will be executing P by means of P2. Cl inter-
prets both P2 and the parts of P written in L1; P2 interprets the parts

of P written in L2.

An interpreter extension 1s asymmetric - one interpreter is a pro-
gram which extends the other. This resolves the problem of shared con-
trol and also of name clashes between L1, L2. Recall that in Cl4+C2 any-
thing common to L1 and L2 had to be interpreted by either Cl or C2 or by
both with well-defined results. With P2{Cl it seems profitable to
incorporate the following rule to avoid clashes when interpreting pro-

grams in the language implemented by P2{Cl.

*If something is in both Ll and L2 then the definition in L2

is used’.

It is reasonable for constructs to be interpreted in the ‘nearest’
sulitable interpreter in this way. This rule allows some part of Ll to
appear, enhanced, under the same name in L2; or for parts of Cl to be
deliberately hidden. An example may clarify such a situation: let P be
an ALGOL program, Cl be an ALGOL interpreter wl.'lich includes a tri-
gonometric function ‘tan’ which will fail with argumeht *90°, The ori-
ginal ‘tan’ function can be embedded in an extension that first checks

,

for argument ‘90’ and then calls the original ‘tan’:
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Program ' .
Algol’ —_—
¥ |  “tan’
Algol
Algol
Interpreter

The new function can be known by the same name by using simple renaming.

In effect the function is installed as an extension of standard ALGOL.

Recursive Interpreter Extensions

An interpreter extension P21Cl is recursive if the languages L2 and Ll
provided by P2 and Cl, are identical. (The term ‘self-virtualizing’ has
often been applied to systems of this form[Tanenbaum 1984]). At first
sight this might appear to be a nonsensical construct. In fact it has
great value because a recursive interpreter extension is a transparent
extension. Value is added to an interpreter without changing it: there
is no detectable difference between original and extended systems as far
as the programming is concerned. Intuitively the extension ‘P2’ takes
part or all of L1 and in some way makes it better, without changing its

appearance:

L1

Cl

A recursive extension might take L1 and improve it by abstracting
some of the unreliability of implementation Cl. The Newcastle Connec-

tion (Chapter 5) is a recursive extension of UNIX
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| | Newcastle
\ 4 | Connection

UNIX

where L is the set of UNIX ‘system calls’ [Kernighan and McIlroy 1978].
The Newcastle Connection adds the ability to name objects on more than

one UNIX system, increasing the name space without changing the set of

commands (or data types).

Consider ‘transparency’ defined as follows: an interpreter exten-
sion P21Cl is transparent (i.e. ‘P2 is a transparent extension of Cl")
if and only if any given program P which is executable by Cl is execut-
able by P2fCl with identical result. That is, as far as is detectable
from within a program P written in language L1, there is no difference
between the two interpreters Cl and P2fCl. Practical advantages of
recursion are obvious: given Cl and P, P2 can be added at a later date

without altering P.

All recursive interpreter extensions are transparent, but not all
transparent interpreter extensions are recursive. For an extension to
be transparent, language Ll must be provided at the upper (P2{Cl) inter-
face; for an extension to be recursive, only language L1 must be pro-

vided at (P21Cl).

Transparent non-recursive extensions are a kind of ‘natural exten-~
sion’ of Ll. That is, existing programs can be run unchanged and will
produce the same results, but also new programs can be written taking

advantage of the extended interpreter.
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To conclude, the theme of this chapter is the ability to deal with
multi-level systems by taking one level at a time. All ‘above’“the
level is program, all ‘below’ is interpreter. Execution of a program by
an interpreter causes changes in the system., Multi-level systems can be
built by combining programs and interpreters to build new interpreters.
A recursive interpreter extension is a special case where no linguistic
features are added but instead ‘value’ is added in the form of better

performance or access to a larger set of named objects.

Multi-level structure may play an important part in the design of
future systems, by enabling systems to be assembled from sets of ready-

made components and also to be transparently extended.

The next three chapters will examine issues in naming - identifica-
tion of objects in programs - and computation — the manipulation of pro-
grams, with specific reference to recursive structure. This separation
of naming from computation corresponds to the two parts of the model

introduced in this chapter.
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Chapter 4

Naming and Recursive Naming

In fact the name of a command is irrelevant, it’s what it does
that’s important. It’s a big mistake to confuse the name with
the properties of the thing it refers to; calling a cabbage a
turnip won’t alter the fact that it’s green, got leaves and
tastes awful;

[Banahan and Rutter 1982]

Naming - the use of names to stand for objects - is an important and
pervasive feature of computer systems. In particular, names define the
external view of a system, denoting the data that can be manipulated and
the commands that can be used to manipulate it. Program variables, file
names and virtual addresses are all examples of names at various levels.
Similar principles apply to naming at all levels in computer systems and
to the naming of many kinds of object. This leads to the belief that
there may one day be a uniform theory of naming, independent of the
application where naming is used. Needless to say, the present study is
only concerned with naming in -abstract systems, not with the naming of

concrete objects in everyday language.

Naming is a particularly important aspect of computer system design
as it allows powerful forms of abstraction. A name is an identifier (a
label or token) Whigh stands for the named thing. Something can be
~identified by name without the need to describe it any further. Names

allow sharing, the same object being denoted by each of the many
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occurrences of its name. The present chapter explores the structure of
naming in computer systems by examining how programs are built from “the
basic facilities (i.e. names) of the programming language provided by a

computer,

All but the most rudimentary programming languaées provide the
ability to name objects constructed within a program as well as objects
supported directly by the language. For example, subroutine names iden-
tify commands constructed within the program and similarly there may be
named data structures. The naming of objects constructed within the
program is the primary concern of this chapter, which examines the
structure of naming, in the same way that Chapter 6 will in turn examine

the structure of computation.

Some issues commonly associated with ‘naming’ are specifically
excluded from this study: the syntax of names and the choice of a suit-
able name for a particular object will not be discussed, although in
many situations the actual form of a name may indeed be important. For
example, in the design of ‘interactive’ programs it is important to use
mnemonic names. In other cases, it can be important to restrict the
size of names or to limit the.range of symbols to be used within names.
The design of most programming languages give little consideration to
these issues; in any case, syntactic issues are less important than the
structure (or ‘architecture’) of naming. This chapter concerns naming,

not the choice of name for an object.

Another issue not considered here is the choice of objects to be
named in a programming language. This is more than a language design

issue, it is a question of how systems are separated into layers.
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4.1 Abstraction: Naming, Addressing and Routing

e

Naming is an abstraction which can be used to conceal irrelevant proper-

ties of the named objects.

In practice, naming has been neglected as an explicit issue in sys-
tem design. The main studies of naming have been in the area of pro-
gramming languages[Barron 1977, Elson 1973, Ledgard and Marcotty 1981]
and in computer networks[Saltzer 1982, Pouzin 1976, Watson 1981]. In
programming language design, naming is well defined in terms of declara-
tions, scope rules, parameter passing etc. In marked contrast, in com-
puter networks ad hoc naming schemes are often used, although in the
established telephone network, naming (i.e. telephone numbering) 1is

carefully structured and controlled.

A name is simply a token which identifies the named object. There
is no need for the name to reflect the nature of the named object. For
example, the file *junk’ may indeed contain rubbish, but it may contain
precious items. Convention may dictate that ‘pl’ is the name of a cer-
tain mathematical ratio, but in general, ‘pi’ could in fact denote any
constant or varying quantity. There is no need for mnemonic names to
have their expected meaning,'neither is there a need for names to be
mnemonic. The property of separation, whereby a name can be chosen
independently of any property of the named object, is a form of

‘referential transparency’[Stoy 1977].

Naming is essential for the separation of programming language from
implementation. Because names provide an indirect model, they are

decoupled from any actual implementation. A design or interface can be

imposed (embodied in a programming language), separately from the struc-
ture of thevimplementétion. Such separation is a crucial part of system

design. In one direction the notion of separation allows the computer
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to be restructured without changing programs. In the other direction,

~

new programs can be written without redesigning the computer.

A simple rule-of-thumb introduced by Shoch[Shoch 1978] has gained
currency as a way of sorting out the mess of terminology. It is con-
venient when starting to think about naming but does not recognize the

possibility of naming at multiple levels in a system.

* The name of a resource indicates what we seek,

»

an address indicates where it is, and

* a route tells us how to get there.

A ‘name’ is concerned with use of an object, ‘address’ and ‘route’ are

concerned with locating and reaching the object.

A mistake which might be made is to assume there is exactly one
level of naming in a system - that the ‘naming layer’ has some absolute
position in the system hierarchy. 1In fact naming occurs at each level
in the system. For example in networks, one must beware of thinking
that, say, host-naming is conceptually different from node-naming: in
particular it is crucial to understand that the same naming techniques

are applicable at every level.

J.H, Saltzer has distinguished three levels of naming in computer

networks[Saltzer 1982]:
(1) name of resource
(2) name of a host computer

(3) name of network attachment point

In particular, he points out the need to separate these three levels:

identifying a computer with its network connection (as in the ‘Ethernet’
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[Metcalfe and Boggs 1976]) or identifying a resource with its host com-
puter, leads to confusion. Changes in any one level of the system will
affect other levels unless this separation is enforced; for example,
changing the network connection name in an ‘Ethernet’ also renames the
attached computer because the two names (host,connection point) are not

distinct.

The approach taken in this thesis is to treat naming as a system
structuring issue which is relevant at many levels. (The closest simi-

lar description is that of Su[Su 1983]).

Consider an example of multi~-level naming where the logical struc-—

ture may be very different from the underlying low-level structure:

root
user cmnd

dave sort

Names: The File System

cache of
disc blocks
in main store
/ | \
discl disc2 disc3

Implementation: Disc Hierarchy

At a lower level in the system, roles may be changed, what was previ-
ously regarded as the low-level implementation is nsw the naming struc-
ture, with its own lower—level implementation. The three virtual discs
can be implemented on a single large disc (this is common on small UNIX

systems) .
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cache : ”
/ | \
/ | \
discl disc2 disc3

Names: Disc System

cache

Disc

Implementation: One Disc

The important point is that one layer’s ‘address’ is another’s
‘name’ and so on down the system hierarchy. For a clear understanding
it is best to examine one interface at a time - names appearing above
the interface, addresses/routes below. Only then can naming be studied

as an abstraction, separately from how it is implemented.
4.2 Classification/Analysis: Bindings, Contexts, Resolving

Having insisted that names are mere tokens which tell nothing of the
named object, some way of linking names to objects must now be intro-

duced. An ordered pair
(name,object)

will be termed a binding. By creating such a binding, the given name is

associated with the object. For example, the binding
(pi,3.142)
associates the name “pi’ with the value 3.142, Similarly,

(today,'25th December’)
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associates the name ‘today’ with value ‘25th December’. Bindings are

the fundamental link between names and objects. -

A collection of bindings forms a context: an enviromment where
names can be used[Fraser 1971]. For example in a programming language,
the context is the set of variables currently in scope. A context makes

it possible to use names meaningfully.

In the context of a Physics textbook, one might read ‘e is an

A ’

important constant’ and correctly interpret e’ as the electronic
éharge; in the context of a Mathematics textbook, the phrase ‘e is an
important constant’ would be interpreted as a reference to ‘e’, the base
of natural logarithms. A context is used to define the meaning of

names.,
Resolving a Name in a Context
In a given context,

resolve(N)
is a function from names to objects, such that

resolve(N) = object

if and only if

.(N,object)
appears in the context.

Resolving the name ‘fred’ in a context consisting of four bindings

(*alf’,34), (*bill‘’,29), (‘fred’,34), (' jack’,53) results in the value
34,



45

| Name | Object |

|
alf | 34
‘fred’ | |
| bill | 29
| |
— >| fred | 34 ———> 34
|
jack | 53

Every program has an implicit (local) context. In simple systems,
where new names cannot be coined within a program, the implicit context
is just the set of names built into the programming language (e.g.
‘read’, ‘write’ etc.). In more sophisticated systems, the language

allows names to be introduced for objects built within the program.

It may not always be possible for a name to be resolved in a given
context: there may be no appropriate binding (N,object) in the context.
Names which can successfully be resolved (as in the example above) will
be termed bound names (they have a binding to some object); names which
cannot be resolved are termed free names (they are free of any interpre-
tation in the context). The bound/free distinction is also important to
descriptions of the lambda balculus[Burge 1975), which itself can be

seen as a model for naming[Fraser 1971].

Sometimes free names occur by mistake: e.g. undeclared variables,
sometimes the present context' is too ‘small’ and may subsequently be
enlarged to include a suitable binding (as when run-time libraries aug-

ment the declarations in a program).

In other cases, it may not be possible to resolve a name uniquely.
A name N is ambiguous if the resolver finds more than one binding for

it. That ié, the value of
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resolve(N) ’ ”

is ‘over-determined’ because more than one object is bound to N. In
this case ‘resolve’ is no longer a deterministic (many to one) function,
but is a (many to many) relation. Such names may be treated as an error
(as in the case of doubly declared variables); or alternatively a ‘non-
deterministic’ choice i1s made. The choice is called non-deterministic
because there is no way, at the level of abstraction where names are
being used, of telling which will be chosen. In fact, at some lower
level of abstraction the choice may be completely well determined. For
example in an operating system a file name may be bound concurrently to
several versions of a file. The ambiguity is resolved by selecting the
newest version; the other versions are kept hidden in case the latest

version becomes lost or corrupted.

Because naming is part of a logical view of a computer, some
objects may perhaps not have a name in that logical model. These are

called anonymous objects: objects which do not have a name, but are

none-the~less part of the computer. One use of anonymous objects is for
‘information hiding’[Parnas 1972] which forms an essential part of the
multi-level approach to system design (see Chapter 3). Anonymous
objects are securely hidden, in the sense that they cannot be accessed
without violating the rule which keeps a program and its interpreter
separate. Anonymous objects are used to hold part of the computer state
secret from any program. Contfolled access is provided vid routines
whose implementation (within the computer) uses the low-level name of
the object[Liskov et al. 1970, Wulf et al. 1976]; (A frequently given
example is that of a stack - the operations ‘push’ and ‘pop’ are made
available to programs by name, but the items stored on the stack are

hidden; these anonymous objects are manipulated indirectly.)
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To summarise the terminology:

”

Name - some symbol, identifier or token used to denote an
object.
Binding - an ordered pair (name,object), indicating that the

given name is associated with the given object.

Context - a set of bindings. Every program has an (implicit)

local context associated with it.

To Resolve ~ to take a name and find the corresponding
object; a resolver is a function from (name and context) to

(object).

In much of the literature ‘binding’ is used in a least three

senses, which are not always made explicit or kept distinct:
(1) Binding (noun): A name/object pair (as above)
(2) Binding (transitive verb): The act of creating a name-object pair.

(3) Binding (transitive verb): The act of resolving a name (as just

described).

In the present work, ‘binding’ and ‘context’ are used as nouns, ' bound’
as an adjective and ‘resolve’ as a (transitive) verb. No special term
is used for (2), the act of creating a binding. (These definitions are

similar to those used by Saltzer[Saltzer 1978].)
Multiple Contexts

So far a single context has been assumed when resolving a name. In gen-
eral, there may be several contexts. In all but the simplest systems,
names can be introduced for objects constructed within the program (sub-

routines, data structures, etc.). This introduces the possibility of
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different contexts for different programs (and parts of programs)
corresponding to the sets of names introduced there. The many available
contexts may be arranged as a structure, forming what can be termed a

single structured context.

The structured context may be anonymous, its components not expli-

citly nameable:

/\
/ A\
/ Vo .
/ \
/ \
/\ . .
/\ | Name | Object |
/ \ | l |
/ \ | abe | |
. . . -—. | b | |
| Name | Object | | Name | Object | | LMN | |
| | | |- |~ || | |
| a | | | a | | = ’
| b | | | xyz | |
| ¥ | | | ABC | |
R

In this case we assume some hidden naming mechanism for selecting parts
of the context structure, a mechanism which is only available within the

resolver.

Alternatively, contexts may be named, making it possible to choose

a particular context by giving its name:
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’

A third possibility is a ‘hybrid’ context structure where some con-—

texts are named and others are not.

—— —_———
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Finally, contexts may be shared:

/\
/\
/ \
/ L4 [ ]
/ | Name | Object |
/ | | |
/ | abe | .
/ | lmn | | \
/ | xyz | | . .
. . | | | | Name | Object |
| Name | Object | ‘—- ‘ | | — |
|- |-~ | | £ | |
I | | & | l
| & | > | |
| 1 | | | | |
! l \ ’

In extreme cases, the context structure may be a general graph, not a
hierarchy of any kind. This structure is sometimes called a ‘naming
network’[Saltzer 1978]. In such a network there may be cycles of con-
texts which name each other. This can cause problems with the termina-
tion of a name resolver and with the management of storage for contexts.

A solution to the latter problem is given below (in section 7.3).
Resolving Names in Structured Contexts

It is straightforward to resplve a name in a single context; where there
are several contexts forming a structure, as in the examples above, the
resolver can be more sophisticated. The simplest extension is to make
explicit the context currently being searched, which can be done by

adding a context parameter to the resolver.

The ‘local’ or (‘implicit’) context 1is always the one to be
searched first. 1In a simple system the implicit cuntext is the underly-
ing language: it contains the names of commands and data provided by the
underlying computer. In more general systems there will also be names
for objecfs constructed within the program. There are various conven-

tions for choosing the implicit context of a name; these will be
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discussed later (see ‘Static Resolving vs. Dynamic Resolving’ below).
For the present it is quite sufficient to disregard the actual choite of

implicit context. By convention we assume that if:
r(N,C)
denotes the result of resolving name N in context C then:
r(N)

will denote the result of resolving N in the implicit local context of
N. This has the advantage that the definitions of various resolvers can
be presented independently of the choice of the implied starting con-
text. Only within the definitions of the resolvers does the notion of

current context become explicit as the resolver traverses the structure.

In many practical naming systems, the first context to be searched
is completely implicit. Usually, an explicit choice of starting context
is only allowed in the lower levels of systems, usually in the form of

‘base registers’ from which names are resolved.

Corresponding to anonymous and named contexts, two possible naming
schemes are: ‘block structured’ naming and ‘pathname’ naming. Identif-
iers in an ALGOL program are used in the context of surrounding blocks
of program text. The collection of declarations from each block forms
a set of anonymous nested contexts. A name (ALGOL identifier) is
resolved by starting in the local context (enclosing block) and search-
ing outwards until a binding (declaration) is found. Here we have an

implicit search of anonymous nested contexts.

A pathname is a compound name formed from a sequence of names.
Pathnames are resolved by starting from the local context and resolving
the first element of the name; the resulting object is a context, used

to resolve the second element of the name and so on until the path is
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exhausted. This is an explicitly directed search of named contexts; if
at any stage no binding is found for the current pathname element, the

name cannot be resolved.

*Block Structured’ Naming

‘Block structured’ naming involves an implied search of anonymous con-
texts., Contexts are arranged in a tree structure. Only objects in the
current context and those contexts enclosing it in the structure may be
named. Objects in outer contexts are hidden if their names are bound in

the inner context.

In block structured naming, contexts are arranged in a tree struc-
ture. Examples of such nested contexts are the block structure of ALGOL
60 programs{ALGOL 60 1963], or ‘delimited strings’ used to represent

programs in some systems[McCarthy 1962, Wilner 1980].

The notion of ‘enclosing context’ is important in block structured
naming. The resolver checks first the local context, then the enclosing
contexts. The enclosing context is the one which contains the current

context. In particular
enc(C)

is defined to be the smallest context enclosing C; smallest in the sense
that enc(C) contains no context which itself encloses C. In a tree
structure, enc(C) is uniquely defined for all but the outermost context
(which is not enclosed in any other). Resolving a name proceeds as fol-

lows:

Definition

A name N is resolved in a context C by the block structured name

resolver Rblock as follows:
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Rblock(N,C) ::= r(N,C) if r(N,C) # ? 7
else Rblock(N,enc(C))

Where:
enc(C) 1is the smallest context enclosing C, as defined above.

r(N,C) denotes resolve(N) the single-context resolver used in

context C.

? denotes that r(N,C) is undefined (i.e. N is free in

C); or that enc(C) is undefined.
Exceptional case:

When N is free, eventually enc(C) is evaluated in the ‘outer-

most’ block where enc(C)=?

so let:

Rblock(N,?) ::= ?
End of Definition

In the degenerate structure with just a single context, block structured

naming behaves exactly as the simple naming scheme described above.

Notice that the result of resolving a name N is the ‘nearest’ bind-
ing of N, that is, the most local binding is always the one used. In
this way outer bindings to a name become ‘obscured’ by inner bindings to
the same name. There is no way to override this choice and explicitly

select an outer binding.
Note

When describing the lambda calculus, a rather different expla-
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nation of block-structured naming is given; it takes bindings
and searches for the names to which they correspond. The rea~
soning 1is turned around the other way. Instead of an ‘out-
wards’ approach, starting from a name and searching outwards
for a binding, an ‘inwards’ approach is used, starting from
the binding and looking inwards for occurrences of the bound

name in the enclosed contexts.

The outwards approach is easier to understand as it avoids
confusion when a name is bound at more than one point, by
always selecting the ‘closest’ binding. 1In the lambda cal-
culus, it is sometimes necessary to ‘systematically re-name’
(rule alpha) to ensure names are all distinct throughout[Brady

1977, Burge 1975].

End of Note

Pathname Naming

Pathname naming involves an explicitly directed search of named con-

texts. A pathname is a list of names of a succession of contexts. Con-—
texts may be arranged by naﬁe in a graph structure. Any object which
can be reached by following a chain of bindings from context to context
can be named. Conversely if an object is hidden it cannot be reached in

this way.
pathname ::= string string ...
In practice the syntax of pathnames requires (at least) two dis-

tinguished symbols which are not part of simple names; these are used to

delimit the pathname as a whole and to separate its component names.

For example in the UNIX file system, the character ‘/’ is separator
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and the NULL character is terminator. Any other characters may be used

4

to form (simple) names.

pathname ::= string [ /string ]* NULL
| NULL
where ‘string’ is any sequence of characters not containing ‘/’ or NULL.

(Naming in UNIX is discussed more fully in Chapter 5).

A pathname is resolved by resolving each of its elements in turn,
using the resultant context to resolve the next element. The key to
resolving a pathname is that each successive part of the pathname names
the context for the rest. Obviously for this to work properly, every
part but the last must be bound to a context, not to some other kind of

object.

Definition

A name N is resolved in a context C by the pathname resolver Rpath

as follows:

Rpath ((P1:P),C) ::= Rpath(P,r(P1,C))

Rpath (N,C) ::= r(N,C)

Where:

P1:P denotes a multiple element pathname whose first element
is Pl and rémaining elements P. For example in the

pathname ‘a/b/c/d’, Pl=a’ and P="b/c/d’.

’

N is a single element pathname e.g.- ‘a’.

r(N,C) denotes resolve(N) the single-context resolver used in

context C.
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? denotes that r(N,C) is undefined (i.e. N is free in C

o

or C is not a context).

Exceptional cases:

When Pl is free in C, r(P1,C)=?

so for any P let:

[}
-2

Rpath(,?)

Also when Pl is bound to a non-context ‘D’, and Rpath will be
called recursively with a non-context as its second argument;

so for any N and any non-context D let:

Rpath(N,D) ::= ?

End of Definition

In the degenerate structure with just a single context, pathname naming
behaves exactly as simple naming as described earlier. For a single

context a pathname has but one element so:

resolve(N) = Rpath(N)

The resolver may proceed right-to-left or left-to-right depending
on convention. For example pathnames in UNIX and structure selectors in
Ada, PL/1 and Euclid have the starting context at the left emphasising

~—

the path through the structure starting from the local context:

first/second/last

one.two.three

On the other hand, structures in ALGOL 68 and COBOL have the starting

context on the right emphasising the selected component:
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last of second of first

item in record in file

Alternative Naming Mechanisms

Other naming mechanisms exist, some using anonymous contexts, some named

contexts or a hybrid context structure.
(1) Bybrid Naming Schemes

It is possible for the two mechanisms described above to be combined in
various ways to form a hybrid naming mechanism. For instance, block-
structured naming may be used to resolve the first element of a pathname
and pathname naming can be used for the rest. Consider array element
naming in Pascal: a multi-dimensional array can be viewed as a set of

nested arrays
array [l1..5] of array [1..5] of array [1..5] of T
an element is named:

3[394,5]

or equivalently: a[3][4]1[5]

This name can be considered as a pathname of four elements ‘a’,*3’,‘4’

and ‘5‘, The first element ‘a’ is resolved using the block structured

resolver and provides a starting context for a search through the nested

arrays resolving the remaining ‘pathname’ [3][4](5].

Another possibility is to use block structured naming for single

element names and pathname naming for compound names.

reéolve(N) t:i= if rest(N)=NIL then Rblock(N) else Rpath(N)
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This is rather like the convention used for command names in the UNIX

shell (as will be described in Chapter 5). ' ”
(2) Other Mechanisms

As well as combining the above mechanisms, it is of course possible to

invent totally different ones.
(a) Combined (Pathname and Block Structured) Naming

Another possibility is to repeatedly use Rblock (the block structured
resolver) on each element of the pathname. This ‘Combined Naming’ R has

the advantages of both block-structured and pathname naming.
Definition

A name N is resolved in a context C by the ‘Combined’ resolver R as

follows:

R((P1:P),C) ::= R(P,Rblock(Pl,C))

P(N,C) ::= r(N,C)

End of Definition

’

Note that this is the same as Rpath except that a call of ‘r’ has been

replaced by a call of Rblock.
The resolver defined above has interesting properties:

if Rblock(N)=X then R(N)=X

if Rpath(P)=Y then R(P)=Y
Also, for all names which are bound in the local context:
R(N) = Rpath(N) = Rblock(N) = r(N)

For all the names which a block structured resolver or pathname resolver
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finds a binding, this scheme finds the same binding. In addition a new
class of names is now resolvable in which each element of a pathndme is

a block-structured name for the context of the rest of the path.

For example when two contexts ‘a’ and ‘b’ are at the same level of
P

nesting, objects bound to names in ‘b’ can be named from ‘a’:

begin
a: begin
integer 1i;
end
b: begin
print(a/i);
end
end

Here ‘a/i’ is resolved to the variable ‘i’ in context ‘a’. Another
example will be given below, when the implications of Combined Naming

are discussed.

(b) Path-List naming

A directed search can be made: a hidden list L of names is kept by the
resolver, naming a series of contexts; these are searched in turn until
a binding is found. Unlike block structured naming, the series of con-
texts is defined explicitly, independent of program structure. Altering
L alters the contexts to be searched. Unlike pathname naming, the
series of contexts searched ‘is not indicated in the name itself: the
successive elements of L can be unrelated and independent of the context

structure.

Definition

A name N is resolved by the path-list name resolver R as follows:
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R(N,(L1:L)) ::= r(N,L1) if r(N,L1) % ? “
else R(N,L)
R(N,C) ::= r(N,C)
Where
L1:L Is a list of context names whose first element is Ll
and remaining elements L.
C Is a single context name.

End of Definition

For example in the UNIX ‘shell’ (command interpreter) a variable ‘PATH’

is used to hold a colon-separated list of names. The default value is
PATH=:/bin:/usr/bin

That is, three contexts are named, the local context (named by the ini-
tial null name) and two standard directories ‘/bin’ and ‘/usr/bin’.
This system is inherited from MULTICS[Organick 1972] where subroutine

names are resolved this way.
(¢) Recursive Pathnames

Pathnames can be extended to have a more general structure where a path-
name is a sequence of pathnames instead a of a sequence of simple names.
This can be called ‘recursive’ pathname’ naming.
name ::= string
| name name
In practice additional symbols are needed to delimit the nested names.

For example UNIX pathnames could be extended by using ‘(’ and ‘)’ to

group sub-names:
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a/(b/c)/d “

The resolver for such names is derived from Rpath by replacing one

N ’

occurrence of ‘r’ by ‘Rpath’ in the main loop making it recursive.
Definition

A name N is resolved in a context C by the recursive resolver R as

follows:

R((P1:P),C) ::= R(P,R(P1,C))

R(N,C) ::= r(N,C)

End of Definition

As will be discussed below, the exact meaning of such recursive path-

names is by no means obvious.
Implications of the Naming Mechanisms

Block structured naming does not require contexts to be named. Provided
that the context containing the binding required is not deleted, other
contexts can be added or deieted freely. Alternatively, if a new bind-
ing of the name is introduced, it may over-ride the existing one because
the resolver finds the new one first. Consider an example of hiding in
Block-Structured Naming:
begin
Integer x;

begin
integer x;

A Y

comment outer ‘x’ inaccessible here;

. end
end
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Block structured naming only allows naming of (i.e. access to)
objects in the current and enclosing contexts, not contexts ‘withifi’ the
current context or which do not enclose the current context. This
enforces a certain modularity; changes in two contexts ‘are independent

unless one encloses the other.

Because the notion of an ‘enclosing context’ is fundamental to
block structured naming, it is usual for contexts to form a tree and not
be named. Block structured naming can be extended to encompass shared
contexts (i.e. contexts which have names bound to them in more than omne
other context), provided that enc(C) could be correspondingly extended.
As long as the resulting structure is still a hierarchy the enclosing
context of C can be defined as the context enclosing all contexts naming

C. For example:

/ A\

t S
/NN
\/
u
/\
with five contexts q,r,s,t,u arranged as shown, the enclosing context of

‘u’ is ‘r’.

It might be necessary to insist that the names bound in ‘t’ must be
distinct from those bound in ‘s’. This kind of situation where the
enclosing context is not unique has been called ‘multiple inheritance’
(by those working on the language Smalltalk) an& is an area of current

research.

Pathnames require contexts that are named. This brings a close

coupling between names and the context structure: pathnames must reflect
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the context structure, otherwise they cannot be successfully resolved.

For example consider the names of computers in a network. Let each
computer keep a context with names bound to the addresses of its neigh-
bours in the network. A ‘source route’[Sunshine 1982] is then a path-
name over this system which selects a path across thé network; the path
is defined by the initiator of a message before the message is sent.
Like the national and international telephone numbering system, the
structure of the ‘source route’ reflects the location of the site being
named, but it is still separate from the actual physical route used to

reach it.

Starting from Newcastle:

send(London :MIT:VAX137 , <message))

| I
|London + .
1 |
________ ’ |
v
| I
| |
|IMIT —————-,
N ——— ’ |
g mmEm——— . |
I <= ’
I I
| p T T s e i e .
| VAX137-———————— >|Destination]|

The sender must have information about the logical network structure, a
change in names at MIT requires a change in the ‘source route’ stored at
Newcastle (and in every other route to or through MIT). Changes in
telephone dialling codes require similar upheavali. At the time of writ-
ing, the local telephone network in the North East of England is being

changed from a two level system

<town> <number> e.g. 0632-329233
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into a three level system.

”

{region> <area)> <number> e.g. 091-287-9233

This is an operation which will have considerable impact on telephone

users over several years.

A pathname becomes invalid if any binding on its length is des-
troyed. On the other hand, pathnames can go ‘down’ into subparts of the
structure which are inaccessible using block structured names. In this
way, pathnames can be used in non-hierarchical systems where the con-
texts form a general naming network. This is a useful feature provided
it is not used to violate the modularity implied by the naming struc-

ture.

Combined or ‘hybrid’ naming mechanisms exist, as shown above, since

the simple mechanisms are sometimes found inadequate.
* Block structured names are short, but only access enclosing blocks

* Pathnames allow access to everything at the price of length and

structure dependence.

The example given above, array indices in a programming language, shows
where one mechanism is a base and the other is added to overcome its
deficiencies. Such hybrid schemes reflect a duality of purpose in

names. For example, in naming an element of a record in Pascal:
employee .birthdate.year

the first element is a wvariable, naming the record amongst all the

objects in the program. The subsequent elements are selectors picking

fields within the record.

In the alternative naming schemes, scheme (a) (Combined Naming) is
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an invention of my own which has the useful property that it is a combi-

-

nation of both block structured and pathname naming.

* Names need not always mirror the context structure - the enclosing
context is implicit, it need not have a name (e.g ‘generic’ names for
the enclosing context such as ‘..’ in UNIX and ‘super’ in Smalltalk-

80 become unnecessary).

* ‘All’ objects in the system can be named - objects in any named con-
text can be named; objects may also be deliberately hidden by placing

them in an anonymous context.

This provides a useful generalization which may have significant advan-
tages for naming in computer networks and for ‘attribute inheritance’ in
object oriented languages. (It is rather similar to the way in which

messages are routed in Smalltalk-80 but allows arbitrary length paths.)

Combined naming is in a sense less strict than attribute naming in,
say, SIMULA. A SIMULA class attribute is named by a pathname of the
form <class>.<attribute> where the specified attribute must be defined
in the named clasé. Using the Combined Naming it is not necessary to be
so exact. A SIMULA name ‘a.b’ is interpreted as ‘name b bound to an
object in class a‘; a Combined Naming name ‘a/b’ is interpreted as ‘name
b as resolved from class a’. With Combined Naming, class naming and

attribute naming are symmetric.

Consider an example showing use of this:
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begin
integer i;

a: begin
integer 1i;
1:=1;

end;

b: begin
i:=2;

end;

print(a/i);
print(b/1i);

end

The name ‘a/i’ names the ‘i’ in context ‘a’. The name ‘b/i’ is resolved
to the ‘i’ in the outer context in exactly the same way as is the ‘i’

used within context ‘b’.

Scheme (b) (path-list naming), is in practice the same as using an
array of contexts (see ‘Multiple Contexts’ above). The power and danger
of the scheme lies in the ease with which L can be arbitrarily defined.
For example one choice of L can be used to mimic block structured nam-

ing:

L=C, enc(C) , enc(enc(C)) , enc(enc(enc(C))) ...

Scheme (c) is essentially a general form of recursive naming where

pathnames are not restricted to being a list of simple elements. This

system will be discussed in section 4.3.

Static Resolving vs. Dynamic Resolving

Given the mechanisms for resolving names in contexts, how are these to
be put to use in the naming of objects? An important consideration for

the modularity of systems is the question of where a name is resolved.
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The system behaviour is very different depending on whether names are
resolved where they were created or in the context where they are” used.
Two of the many possible ways of using names will now be described, one

of which is especially suited to modular systems.

The naming systems described so far have relied'on the concept of
an implicit local context as a starting point for resolving a name. In
a simple system, no other context is recognized; in structured systems,
the local context was identified as the first to be searched for a suit-
able binding of a name. Now it is appropriate to explore the concept of
‘implicit’ or ‘local’ context further and see its connection with the

ideals of system structuring.

So far, a single local context has been assumed. In practice many
contexts may be available concurrently as the starting point for the
resolver. It is a matter of naming policy which local context is used.
Naming can be thought of as a combination of two parts: mechanisms, and
policies for wusing those mechanisms. Two policies of particular

interest are:

(1) Static Resolving - names are resolved in the context where the

program containing them was created - the defining context.

(2) Dynamic Resolving -~ names are resolved in the context where the

program containing them is being used (which may not be the defin-

ing context).

These two alternatives are widely known in the study of programming
languages, but are also valid policies in any naming system. For exam-—
ple, ALGOL 60 uses static resolving, as is demonstrated by the program

fragment:
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begin
integer 1i;
procedure addone; begin i:=i+l; end;
i:=1;
begin
integer i;
i:=1;
addone;
print(i);
end
print(i);
end

The output is ‘1’ followed by ‘27,

The example demonstrates that the choice of starting context (i.e.
static vs. dynamic resolving) is separate from the choice of resolver.
The ‘i’ inside ‘addone’ is resolved in the (static) context of the outer
block where ‘addone’ was défined, despite the redeclaration (re-binding)

of ‘i’ in the inner (dynamic) block where ‘addone’ is used.

If ALGOL 60 had dynamic resolving (as has LISP 1.5) then ‘i’ in
‘addone’ would be resolved in the inner (dynamic) block producing output

of 2’ followed by ‘1’.
Modularity vs. Textual Subsfitution

Naming allows objects to be shared; modularity is a discipline on shar-
ing. 1Indirection, an important feature of naming, separates definition
from use. Once a binding is set up, a single object can be used by name
in many places. Modularity implies encapsulation, so that it is imma-
terial whether an object is used directly or by name. The issue of
static vs. dynamic resolving 1is a question of.modularity: in naming
terms modularity means being able to use an object without knowing about
its internal names (which Saltzer calls ‘Modular Sharing’[Saltzer 1978,p

101]) and with the same behaviour at every use (the latter sometimes
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being called ‘Referential Transparency’[Henderson 1980]).

* Static resolving encourages modularity, dynamic resolving does not.
Naming within an object is independent of where and when the object

is used.

* Dynamic resolving is equivalent to textual substitution. Naming
within an object is completely dependent on where and when the object

is used by naming it.

Consider the internal names embodied in an object. With static
resolving, these internal names are resolved in the context where the
object containing them was created (defined). When the object is itself
named in other contexts, the internal names are still resolved in the
defining context. For example, consider this fragment of ALGOL 60:

begin
integer 1i;
procedure increment; begin i := i+delta; end;
i =13
begin
integer delta;
increment;
end
end
In the outer block ‘increment’ is bound to a procedure body containing
further names. The program is badly formed ALGOL 60; even though a name
‘delta’ is declared (bound) in the inner block (context), static resolv-
ing means that ‘delta’ must be resolved in the outer block and it is
free (i.e. undeclared) there. No bindings at the point of use of a
named object can change in any way how the names within the object are
resolved. This feature of static resolving reinforces modularity and
encourages abstraction. Internal names can only be re-bound by parame-
ter passing. The object is encapsulated at the point of definition, it

is not subsequently changed by features of the enviromment in which it

is used.
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When dynamic binding is used, internal names are resolved in the
contexts where the object is being used (i.e. where it is named): The
binding used for a name in an object will vary as the object is used in
different contexts. If ALGOL 60 were to use dynamic resolving, the
example above would have also been a valid program: both ‘i’ and ‘delta’
are bound at the point where ‘increment’ is used. Only bindings avail-
able at the point of use are utilized by the dynamic resolver. This
feature of dynamic resolving encourages naming to be viewed as ‘abbrevi-
ation’ or ‘shorthand’ for the named objects. Internal names of the
named object are exposed at the point of use and resolved there. In
this way their binding may change entirely between one use and the next.
The choice of names in the contexts of use are closely related to the

chaice of names in the named object itself.

Dynamic resolving is often used in macro-processors[Henderson and
Gimson 1981]; each occurrence of a macro name is literally replaced by

the corresponding object. Naming is simply a textual substitution.

With static resolving, all bindings to objects at the point of use
must be imported into an object through parameters. This is a rigorous
programming discipline which enforces modularity (as described above).
However, if some binding is the same at nearly every use, only changing
a small proportion of times, static resolving will nevertheless require
all uses to specify it as a parameter. There is an advantage here for
dynamic resolving: it allows ‘names to depend on context of use without
being imported as parameters. The fundamental disadvantage of dynamic
resolving remains, that is that the context of use can change the named

object.

To get around the problem of ‘nearly constant’ parameters, some
systems use the notion of ‘default’ parameter values. This idea could

be pursued further, eSpecially in relation to the Combined Resolver, but
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is beyond the scope of the present work.

In a system with dynamic resolving, static resolving can be
attempted by using unique names, that is, names that will be resolved to
the same object whether starting from the defining context or the con-
text of use. With pathnames, it is sufficient to use.a name long enough
to ‘span’ the two contexts. Alternatively some loop-hole may allow
direct access to objects, not vid a name: e.g. address calculation. An
address can be built into an object to bind it to another without using

naming at all (this subversion is not recommended).
4.3 Recursive Naming

Recursive naming is the combination of recursive contexts and a recur-
sive resolver. A more accurate description would be ‘recursively struc-
tured’ naming or ‘recursively defined’ naming. Recursive naming brings

the advantages of recursive structure (Chapter 2) to naming:

* Combination: RN + RN = RN - a combination of recursive naming sys-

tems is another of the same type.

* Location independence - every context has the same basic properties,
so can be used by the same resolver. Conversely a resolver can start

to resolve a name from anywhere in the context structure.

* Extension - the set of bound names can be extended by embedding one

context in another.

Recursive naming can be provided in a number of ways, many of which have
been mentioned already without actually pointing out that they were
recursive. The current section will describe recursive naming and iden-

tify those naming schemes which implement it.

Two ingredients



72

* Recursive context structure
~

% Recursive name-resolver

characterize recursive naming. Recursive contexts provide a recursively
extensible environmment and a recursive name resolver provides a com-
pletely general way of using that environment. It is not necessary for
names themselves to have a recursive structure (as in ‘a/(b/c)/d’) for
naming to be recursive. A recursively structured name ‘a/(b/e)/d’ is
not the same as the pathname a/b/c/d. A particular difficulty with such
recursive names 1is that precedence must be defined: when resolving the
name a/(b/c)/d the nested component (b/c) may be resolved to, say, ‘X’
by starting in the implicit local context, and to ‘Y’ in the context

a’. If ‘parentheses’ are evaluated before anything else, the name is

parsed as
a/X/d

but if names are evaluated left-to-right it is parsed as
a/Y/d

Recursive naming is concerned with the recursive definition and use of
naming. It is not necessary to provide ‘names-of-names’. Such bindings
of name to name are merely a notational convenience adding nothing to
the structure of naming (for example with statements in Pascal or

renames in COBOL[Ledgard and Marcotty 1981],
Recursive Contexts

Recursive contexts — contexts within contexts = are recursive structures
where each non-atom is a context and where contexts may be nested to any

depth. Such a recursive context might be defined as
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context ::= binding binding ...
binding ::= name object
object ::= context

| atom

In general, atoms will represent basic objects, such as storage loca-

tions, files, network stations, etc.

Some context structures are not recursive structures. Consider a
system where only two levels of nesting are allowed and there is a type

of context corresponding to each level.

network context ::= network binding network binding ...
network binding ::= name host_context
host_context ::= name host_binding

host binding ::= name file

Such a system does not implement recursive naming, as it does not pro-

vide recursive contexts. As a result

(i) there is no facility for combining networks because it is not pos-

sible to provide inter-network naming.

(ii) it is not possible to hide the distinction between host and file
because contexts in each level of the structure can only contain

bindings to fixed classes of objects.

The UNIX United/Newcastle Connection scheme, discussed later in Chapter
5, exploits recursive naming extensively and these limitations would be

disastrous to it.
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Recursive Resolvers

"

A recursive resolver is a flexible general purpose mechanism which:
* (Can be used in any context

* Works independently of the size and ‘shape’ of the context structure:
changes and additions to the structure do not require changes to the

resolver.

A recursive resolver is a general resolver which can be defined recur-
sively. Rpath and Rblock, described above, are recursive resolvers in
this sense. Some resolvers are not recursive resolvers. Consider the
context structure in the example above, which might be used with two

resolvers

Rnet : (name, network context) -> host context

Rhost : (name, host context) -> file

These are specific to each level of the system and cannot work on more
general context structures. On the other hand a more general resolver

(which might even be recursive)
Rgeneral : (name, context) => object

could be used in the above structure, but the resulting system would
still not have recursive naming because both recursive contexts and a

recursive resolver are required.
Some Examples of Recursive Naming
(1) Variable names in ALGOL 60

Recursive context: <blocks> are contexts and may be indefinitely

nested
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Recursive resolver: Rblock is used; it can be used from any block,

-~

in any structure of blocks.
(ii) File names in UNIX
Recursive context: directories may be nested to any depth

Recursive resolver: Rpath is used; it can start from any current

directory and can traverse the whole file system.

The advantages of recursive naming have been demonstrated in other
situations as diverse as menu-based searching[Apperley and Spence 1983]

and the naming of registers in a microprocessor[Woods and Wheen 1983].
Combining Contexts

Recursive naming is essential if contexts are to be freely combined. If
contexts can be nested then two may be combined by constructing a new

context with them both as sub-contexts.

Cl +C2 == / A\

The combination has the useful property that any name bound in the ori-

ginal contexts retains the same binding.

In non-recursive contexts where there is some distinguished top
level or restriction on depth of nesting. The worst case is in single
‘flat’ naming systems consisting of but a single context. The following
discussion of problems in ‘flat’ systems is equally applicable to the

top-most level of ‘shallow’ systems.
Combining ‘Flat’ Naming Systems

The difficulty with ‘flat’ naming systems is the lack of a mechanism for

combining separate systems into a whole; each flat system will recognize
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no other. If flat systems are combined, some change or extra mechanism

a

is inevitable. Examples of systems with flat naming include '
* Host names on some computer networks e.g. Cambridge ring, Ethernet

* Names in some programming languages e.g. variable names in BASIC,

function names in C

* Storage location names in some machine code programs e.g. the ‘abso-

lute’ code produced by some assemblers and loaders

In each case the flat naming structure is sufficient for a single sys-

tem. When there is more than one network, more than one sub-program or

more than one binary module, there are problems caused by flat naming.

Three methods of combining flat naming schemes will be explored
(two of these three are mentioned in[Sunshine 1982]). Each is applica-
ble also to ‘shallow’ naming (of the kind in the network context-
host_context example above) where only a limited depth of context nest-

ing is allowed, or a non-recursive resolver is used.

(1) Merging - the two systems are simply merged objects with non-

unique names being rebound.

(2) Extension - adding a new level to the context hierarchy to add
pathnames for inter-system naming. This requires changes to the

existing resolver for it to process the new pathnames.

(3) Mapping - names between systems. ‘Surrogate’ names are introduced
for inter-system naming. This requires only additional mechanism,

not changes to existing names or resolver.

Firstly consider how two separate naming systems can be merged together
and treated as the same for naming purposes. For example two BASIC pro-

grams might be copied into a file to produce a single combined program.
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No changes are needed to the name resolver but changes are needed to the
names. For example if ‘T’ has been used to represent ‘“time’ in one pro-
gram and to represent ‘temperature’ in the other then some compromise
must be made. Although in each constituent program ‘T’ is used for a
unique purpose, it is no longer unique in the combined program. This
kind of clash also occurs when two networks are joined together retain-
ing the original names. Here two communication rings with stations
named A,B,C and B,C,D and host computers 1,2,3 and 4,5,6, are combined.

The two systems:

2 3
| l
——=B——— ———B———
| I I l
1-A |+ C-4
| l I |
——C——— ——=D==
| I
6 5
become one larger system:
2 3
I |
SN, - UV - S,
l |
l |
1-A C-4
I I
I l
c D
| |
6 5

Names ‘B’ and ‘C’ are multiply-defined in the combined ring and must be
altered to avoid ambiguity. Every use of the original ‘B’ and ‘C’ must
be systematically changed, as well as changing the definitions in the

new combined context.
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Ve

2 3
I l
S O F——
I |
| l
1-A C-4
| I
I |
S - D=—-
| I
6 5

An alternative way to combine flat naming schemes is to augment the

naming to include system names:
systemname.original name
Provided that
original name
is interpreted as
local system.name

there is no need to change existing names. However the existing
resolver must be changed to deal with this new syntax. This may not be
a trivial change: in the Cambridge ring network, name resolvers are a
collection of chips in the ring station: so changes are impossible
without a complete re-design of the station hardware! Such changes to
embrace multiple networks musSt be implemented at a higher level. This
approach is used in the Ethernet PUP architecture which imposes a struc-
ture at the higher (protocol) level whilst relying on flat naming in the

physical links[Xerox 1981].

The third alternative is to introduce a mapping of names between
the previously-separate systems. Names are translated en route between

systems. The naming schemes are logically combined, requiring no
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changes to either system. Referring to the example above, logically

combining the networks corresponds to placing a gateway between tHem:

2 3
| |
L T p—— B=—=
| | | |
1-A l ====a=m== ' C_4
| | | |
—— (e e ——D=——
| |
6 5

The gateway will contain mapping tables which ensure that neither names

nor resolvers need be changed. The tables record the correspondence
(equivalence) between names of the two systems. Such a combination of

systems is represented by
Flat + Flat = R(Flat , Flat)

where R is a relation between the names in the two systems. In the
example, R might be

(BB-> B)

(D -» D)
where (a -> b) means that name ‘a’ in the first system corresponds to
name ‘b’ in the second system: if ‘b’ names object ‘0’ in the second
system, then ‘a’ names ‘0O’ from the first. In the example ‘BB’ is used
to name host 3 and ‘D’ to name host 4, The relation can describe map-
ping in both directions, for example when all hosts are .namable in both
systems:

(BB~> B)

(D ->» C)

(B é- E)
(C ¢~ F)

In one sense name mapping is just a dynamic version of the ambigu-

ous name re-binding scheme described above. Its advantage 1is as a
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natural extension, requiring no changes to existing names or resolvers;

in other words it is completely transparent. The only requirement is
that the added resolving mechanism can distinguish local from remote
names. Indeed this is precisely how UNIX process names and user names
are mapped between systems in UNIX United (see Chapter 5). A simple way
to do this is to try to resolve a name locally, if this fails, to con-

sult the mapping relation.

Name mapping can be set up to have various useful properties, it

can be:

Symmetric for all a,b:

if (a=->b) holds then (a€-b) also holds

Transitive for any three names a,b,c:

if (a=>b) and (b->c) hold then (a-dc) also holds

These or other properties can make the combined system easier to use,
but it is still not as general as a recursive naming system. In partic-
ular, by carefully controlling the mapping relations it is possible to
simulate most forms of non-flat naming. This simulation is more attrac-
tive than an undisciplined mapping between systems for which the above

properties may not hold.

The present chapter has attempted to show that naming is a per-
vasive issue in computer system design, that there is a useful model

which allows naming to be discussed explicitly and that recursive nam-

ing has particular advantages of locality and extensibility. The
research contribution here is not so much in novelty of material but as

a synthesis of existing ideas. It is a bringing out into the open of
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some design issues often (mistakenly) left implicit.

o

It is by no means universally recognized that naming is an issue at
many levels in a typical computer system; neither is it recognized that
every computer interface is a programming language. In emphasising
many-level naming I am simplifying system design by sﬁowing the similar-
ity and separability of naming at each level. At each level the same
design issues recur and the same problems have to be solved in the cir-

cumstances of that level.

The model of naming presented here draws from existing material,
organizing it and adding a discussion of structure and modularity. In
addition the ‘Combined’ name resolver is an original contribution, syn-
thesising block structured and pathname naming. I am not aware of any

language which has used such a scheme, despite its simplicity.

Recursive naming is an important concept to consider in the design
of computer systems. If naming is not recursive then there is a point
where it is no longer possible to combine (or sub-divide) systems
without affecting the ability to name things. Recursive naming is more
than just structured naming and is far removed from flat naming which
relies on unique names fof each object. Recursive naming provides an
all-important flexibility emnabling the arbitrary combination and subdi-

vision of systems.



Chapter 5

UNIX United and the Newcastle Connection

Recursion is not an elitist plaything
[Headline, "Computing' October 13th 1984]

This chapter demonstrates recursive naming in practical use and is suf-
ficiently large to be separated from the above general discussion of
naming. It describes a distributed computer system whose design (UNIX
United) and implementation (the Newcastle Connection), show the general-

ity that can be achieved using recursive naming.

‘UNIX United’ is a design for a distributed computer system based
on UNIX. The design simply makes the existing UNIX naming scheme apply
over multiple UNIX systemé. In UNIX United, both local and remote
objects are named with the same (UNIX) naming. Because file naming in
UNIX is recursive, it can be expanded in UNIX United to allow naming of
files in other systems without changing syntax or semantics. Unfor-
tunately process naming (and"user' naming) in UNIX is flat: generality
has to be compromised for the sake of compatibility; processes and users

can only be named in a limited way between systems in UNIX United.

The ‘Newcastle Connection’ is a software ‘layer’, added to standard
UNIX systems which enables UNIX United naming to be implemented. The
Newcastle Connection ‘layer’ is a recursive interpreter extension,

Operations on local objects are passed through to the local system.
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Operations on remote objects are diverted to the appropriate remote sys-
tem. The Newcastle Connection extends the UNIX low-level (Kernel)
interface by allowing existing, unchanged programs, to access and mani-

pulate remote objects in the same way as objects on the local system.

The UNIX United/Newcastle Connection work has ‘already been pub-
lished in a joint paper by its main designers: L.F. Marshall, B. Randell
and myself[Brownbridge et al. 1982]. The present chapter will concen-
trate on those areas of the design where my own influence was the
strongest: the naming architecture of UNIX Unitéd and the notion of the
Newcastle Connection as a transparent extension of the UNIX kernmel, (as
opposed to a modification of it). The ‘UNIX server’ and remote execu-
tion part of the design are due mainly to L.F. Marshall. The Remote
Procedure Call mechanism used for inter-UNIX communication is due to
F.E. Panzieri and S.K. Shrivastava[Shrivastava and Panzieri 1982].
(Other work, on highly reliable and highly secure distributed UNIX sys-
tems, has been pursued by others[Rushby and Randell 1983], using the

Newcastle Connection as a base.)

The first three sections of the chapter cover naming in UNIX (Sec-
tion 5.1); UNIX United, showing how standard UNIX naming can be extended
across multiple systems (Section 5.2) and the Newcastle Connection, a
recursive extension of the UNIX kernel.. Finally some other distributed

UNIX systems are reviewed.

Note that throughout this chapter, ‘UNIX’ refers to Bell Labora-
tories UNIX Version 7, unless otherwise stated; similarly, citations of
the form ‘name(N)’ refer to section ‘name’ in part ‘N’ of the UNIX Ver-
sion 7 Programmer’s Manual[Kernighan and McIlroy 1978]. ‘Version 7°
forms the basis of the more recent varieties of UNIX (System V, 4.2BSD,
8th Edition «+.) and was also the one on which our implementation work

was performed. The reader 1is referred to the original UNIX
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paper[Thompson and Ritchie 1978] for a summary of UNIX, to ‘UNIX: The
Book’ [Banahan and Rutter 1982] for a concise tutorial on UNIX and ‘The
UNIX Programming Enviromment’[Kernighan and Pike 1984] for an in-depth

treatment of UNIX programming.
5.1 Naming in UNIX
Naming in UNIX is provided by three components of the system:

shell (command interpreter)
utilities (standard commands)

kernel (resident supervisor)

These can be arranged as a hierarchy, each level modifying the naming

provided by the level below.

command interpreter

shell
standard commands
utilities
system calls
kernel

This structure will be used to describe naming in the UNIX system.

Two classes of UNIX system objects are provided: files and
processes. If an operating system is regarded as a (virtual) computer,
then files correspond to the store and processes to the processor. We
shall be interested here wiFh the naming for files and processes pro-
vided by the kernel, utilities and shell and not with the various other

objects in the programming languages available on UNIX systems.
Kernel Naming Facilities

The kernel is the base component of a UNIX system which provides files
as an abstraction of the store (including secondary store) and processes

as an abstraction of the (multi-programmed) processor. The kernel
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provides naming for files and processes and access to them through its
programming language interface: the ‘system calls’ (described in Section
2 of the ‘UNIX Programmer’s Manual’[Kernighan and McIlroy 1978]). Names

appearing as parameters to system calls are resolved by the kernel.

The UNIX kernel provides pathname naming for files. One type of
file, called a ‘directory’, is interpreted as a context. Directories
can contain bindings to any type of file, including ‘directory’. The
kernel checks the types of files named in system calls, preventing (most

forms of) untoward interference with the file system structure.

Files (of all types) are named by pathnames with the following syn-

tax:

pathname ::= path
| /path

path ::= name { /name }
| <null string>

name :: <{string of 1 to N charactersd>

(where ‘{ x }’ indicates ‘zero or more occurrences of x’ and N=l4 in
UNIX Version 7). These names are interpreted by a standard pathname

resolver (defined in Chapter 4).

‘The kernel maintains two special bindings to the ‘working’ and
‘root’ directories associated with each process. The working directory
is always bound to the null name; the root directory is always bound to

the name ‘/’.
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——— — o s s o Ve

| S/ - > unixl
| Y7 ———, / A\
| I\ / \
| | \ user bin
| \ /\ /\
e ‘ \ /N
Y—> dave brian
!/ \ /\
/ \
thesis bin
/ \ / \

In the example above, the names ‘/user/dave/thesis’ and ‘thesis’ refer

to exactly the same file.

When a process makes a system call, pathnames beginning with '/’
are resolved starting from the root directory and all other pathnames
are resolved from the working directory. (Note: '/’ is used both to
indicate ‘root’ at the start of a pathname and to separate the com-
ponents of-a pathname). A process may change root or working directory
by making a system call (chroot(2), chdir(2)); the directories are ini-

tially inherited from the ‘parent’ process (see below).

It may seem strange to have these two alternative starting con-
texts, but it will be seen later that they roughly correspond to the

notion of ‘current system’ and ‘current workspace’.

Process naming in UNIX is flat. There is a single context (the
system) and process names aré unique within it. The UNIX ‘process iden-
tifiers’ are names: they provide indirect means of manipulating
processes, independent of their size, priority, etc.; but on the other
hand they are all coined by the system and there‘is no way of forcing a

process to have a given name.

For each process, the kernel records the ‘parent’ process which

created it. ©Each process has an associated process name (called the
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PID) and name for its parent process (PPID). Although process naming is
flat, there is a tree structure overlaid on it by this parent~child
relation. The ‘parent’ creates a ‘child’ by making the system call

‘fork’ which. Before the ‘fork’:

B e

| PPID=

- —_——
+h
O o
a]
=
N ———— e

After execution of ‘fork’, process ‘37’ is created as a copy of process

24, with PPID=24:

| PID=37 | | PID=24 |
| PPID=24+ >| PPID=5 |
E— | R |
I | I I
I | | |
| fork | |  fork |
e .
SR o
*Child’ ‘Parent’

A final naming mechanism for processes, ‘process groups’, is a mar-
ginal feature of UNIX Version 7, although it has been developed in later
editions of UNIX[System V 1983]. A process group is a named sub-tree of
the parent-child process structure. It is significant in providing a

way of naming groups of processes as one.
Utility Level Naming

The utility programs are those UNIX programs (documented in Section 1 of
the UNIX manual[Kernighan and McIlroy 1978]) which reside in every UNIX

system file store. ﬁere, I am only concerned with the utilities that
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affect file naming and process naming (1n(l), mkdir(l), rmdir(l),
ps(1l)), etc.). Other naming issues, for example naming within tHe indi-
vidual languages provided as utilities, will not be considered (except

the special case of the ‘shell’ which is treated separately below).

As implemented by the kernel, the file system cén have an arbitrary
structure, possibly with some unconnected components. For various rea-
sons, the utilities restrict the file system to be a (single) tree-like
structure where only non-directory files may be shared (i.e. appear in
more than one binding). If only the utilities are used, it is not pos-

sible to build any other file system structure.

The directories do not strictly form a tree because of the ‘.’ and
e+’ bindings. When a directory is created (mkdir(l)), bindings to
itself (named ‘.’) and to its parent (named ‘..’) are always created in
it. However these are special cases and no other non-tree bindings can
be made. The ‘.’ and ‘..’ bindings provide an explicit name for the

local and the enclosing (‘parent’) directory.

In a file system built using the utilities, the following proper-
ties will hold, given that the relevant files are accessible (‘cd’

changes the current working directory):

file = ./file
a/./b = a/b
of e =4
file = (ed d; ../file)
file = (cd dl; ed d2; ../../file)

A utility (ps(l)) is provided to determine the names and attributes
of the processes‘which exist at any time. Curiously this facility is

not provided directly as a system call (by analogy with ‘stat(2)’ for
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files). It 4is implemented in an eccentric way by searching a file
‘/dev/mem’ (i.e. the main store), to find the appropriate tables within

the kernel.
Shell Level Naming

The naming provided by the kernel and utilities is extended and modified
by the shell to produce the view of UNIX typically seen when logged on.
File names are modified by the use of abbreviations, command names are
resolved using a path-list resolver (as described in Chapter 4) and the

notion of ‘executable file’ is extended to include shell programs.

The following abbreviations are recognized in arguments given to to

shell commands:
* Matches any string including the null string.
? Matches any single character.

[...] Matches any one of the characters enclosed. A pair of characters

separated by ‘-’ matches any character lexically between the pair.
These allow a file name to be partially specified

da* -> datafile

?akefile -> Makefile
Sets of names can similarly be abbreviated

file? -> filel file2
*.c => a.c b.c cc.c

ch{1-4] =» chl ch2 ch3 ché4
These abbreviations can be used in pathnames to provide searching:
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Note that names are only expanded if the corresponding files exist: oth-

”

erwlse they are left unaltered by the shell.

The shell provides a programming language with its own (‘built-in’)
commands and naming (the latter by the use of shell variables). 1In
addition to the built-in commands, any utility can be invoked as a shell

command :
command argumentl argument2 ...

Such command names are treated specially. They are resolved by a path-
list resolver, which uses a list of directories stored in shell variable
‘PATH’, Each directory in the list ‘PATH’ is searched in turn in an
attempt to find the named command. Most utilities reside in directories
‘/bin’ or ‘/usr/bin’ so these are in the default PATH. The search is
not applied to names containing the character ‘/‘ thus allowing explicit
naming to override the PATH search:
./localcmd
(names a file in the working directory)

/user/dave/cmd
(names a file relative to ‘/’)

Because ‘PATH’ is an ordinary shell variable it can be modified in the
usual way, so causing other directories to be searched instead of (or as

well as) the standard ones.
Once a command name is resolved one of two actions is taken:

(a) If the file appears to be an object program it is executed

as a sub-process.

(b) Otherwise, a sub-shell is generated to read and execute

the commands it contains.
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In this way, shell programs have the same status as compiled programs.
Because only programs with ‘execute permission’ are ever executed, it is

rare for a data file to be executed by mistake!

5.2 UNIX United

UNIX United extends the UNIX name space over multiple systems, without

change to any of the UNIX naming mechanisms described above.

The aim is to provide an otherwise unaltered UNIX which extends
across many actual systems., This is done by extending the file name
space so that existing commands can manipulate both remote and local
objects with equal ease. For processes, names are mapped (as described
in Section 4.3) between the flat name space of each system in a way

which conceals remote execution,

For files, which have recursive naming, the concept is simple, two

separate file systems:

user ... bin user ... bin

/N /\ / A\ /\

can be ‘united’ as sub-directories of a new directory:

unix
/ \
/ \
/ \
/ \
unixl unix?2
/ \ / \
/ \ / \
/ \ / \
user ... bin user ... bin

!\ /\ /\ /\

Any file in the new ‘united’ system can be named using existing file
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naming; no new commands or syntax are needed to deal with remote files.

File Naming in UNIX United

In the file naming tree, systems are incorporated into a global tree.

Each is a part of the whole, rather than each viewing (i.e. naming) all
others as subordinates. This generalized approach is only made possible
by recursive naming of files: systems can be arbitrarily combined to
produce a new larger system. In fact any directory in the UNIX United
naming tree can be the root of a UNIX system, with arbitrary nesting of

systems within systems.

Typical shell level usage of UNIX can be extended over multiple
UNIX United systems. Consider a shell process with root (‘/’) at
‘unixl’ and working directory at ‘/user/dave’ (‘cp’ is the command to
copy files, ‘1ls’ lists the names in a directory):
cp chl ../archive
(local copy)

1ls /user/dave/thesis
(local directory search)

cp chl /../unix2/user/dave/archive
(copy to remote system)

1s /../unix2/user/bin
(search remote directory)
All the shell level naming facilities can be used in this way (shell
variables are set by assigmment of the form ‘name=string’ and are named

by the construct ‘$name’):
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U2=/../unixl/user/dave
(set shell variable U2)

cd $U2
(change working directory
to /../unixl/user/dave)
ed text
(edit a file in that
remote directory)

cp text /../unixl/user/dave
(copy back to original system)

For instance, a new version of a utility program can be delivered to a
set of systems using the shell built-in command ‘for’ (e.g. ‘for x in

list do ¢ done’; the commands between ‘do’ and ‘done’ are executed with

A)

variable ‘x’ set to each element of ‘list’ in turn):

for SYS in unixl unix2 unix3
do

cp ed.new /../$5¥S/bin
done

(copy ed.new to /../unixl,
/«o/unix2, /../unix3)

Similarly output and input can be re-directed to and from remote systems

and ‘pipelines’ can be set up across systems:

sort <a >b
(input and output re-direction
using ‘<’ and *>‘:
sort takes input from ‘a’ and sends
output to ‘b’)

sort </../unixl/user/dave/f >ff
(sort remote file to local one)

sort a | 1p

(pipeline using ‘|’: output from ‘sort’
becomes input to ‘1lp’)

sort $U2/file | $U3/bin/pr | 1p
(sort a remote file,
format (pr) it remotely and
print (1p) it locally)
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When there are a number of small computers (‘work-stations’) and a

single large system ('main’), some services might be centfaliééd, for

example the receipt of ‘electronic mail’,

/ \
/A
main workstation
/N \
1 o N
/\ /\

The standard shell inspects the file named by variable *MAIL’ every time
a command is completed, printing ‘you have mail’ when appropriate. A

useful convention would be to receive all mail in a single ‘mailbox’ on

the main system:

MAIL=/../main/usr/spool/mail/dave
(set watch on mailbox on ‘main’)

you have mail
(message from shell)

mail
(run mail program to read mailbox on ‘main’)

(To be exact, the program.'mail’ is ignorant of the variable ‘MAIL’ so

it must be explicitly forced to read the non-standard mailbox by using

‘mail -f $MAIL’.)

The smaller systems might not be capable of executing some of the
larger utility programs. These large programs could be held in a direc-
tory on the main system, be accessed transparently by changing the shell

variable ‘PATH’ to cause a search of that directory:
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PATH=$PATH:/../main/bigbin
(append to current PATH value,
so that /../main/bigbin will be
searched after the local /bin
directory)

nroff file
(use ‘nroff’ on main machine
i.e /../main/bigbin/nroff)

The utility programs can manipulate local and remote objects. The
UNIX editor (ed(l)) makes a copy of the file being edited in a 1local
buffer; the ‘w’ command writes the buffer onto the original file. When
editing a remote file, the buffer and original file reside on different
systems, every ‘'w’ saves the file onto the remote system.

ed /../unix2/thesis/ché
(local edit of remote file)

(write out editor buffer to
remote file)

w ché
(make a local copy of file)
In practice ‘w’ is used frequently in a editing session to ‘checkpoint’
work done so far; in the above example there is the added advantage that
each ‘w’ protects against a crash of the local machine as well as

against the usual editing mishaps.
Process Naming in UNIX United

In UNIX United there is no change to the way processes are named: at the
shell level a process name (PID) is returned (as usual) when an asyn-

chronous process is started (by adding the suffix ‘&’ to a command):
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nroff file >file.lp&

234
(start a background process
sending output to ‘file.lp’)

The shell prints ‘234’ the PID of the process, and is then ready to con-
tinue. The same happens when the command is held on a remote system.

$U2/bin/nroff file >file.lp&
567

The PID ‘567’ can be used to name the process

kill 567
(send an interrupt to process 567)

The Newcastle Connection software delivers the interrupt transparently
to the remote system. Similarly, execution can be suspended until an

asynchronous process terminates (using the usual ‘wait’ command).

spell thesis > tmp &
890
(start process 890 and carry on
with independent work)
wait; ed tmp :
(wait for 890 to finish,
then edit its output)

UNIX United Sub-Systems

In UNIX United, a system can include sub-systems. A sub-system is a

system which appears within the file system of another.
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unixl

/\

/ \

/ \

user ... etc

/[ \ /\
\
micro
/\
/N

In the diagram, ‘/etc/micro’ might name a small UNIX system attached to
the main system. The files in the ‘/etc/micro’ directory (and its sub-

directories) are a UNIX sub-system.

There is no need for the naming structure to correspond to the phy-
sical connection topoloé&, although often physical locality will
correspond to locality in the naming tree. A typical University system
might be partitioned by department, with a main departmental system con-

taining local sub-systems.

Newcastle

/ \

/ \

/ \
Physics Computing
/N /A
[\ / \
/ \ / \

user ... etc user ... etc

/N /N /A /\
\
\
micro
/A
/A

To conclude the UNIX United section, it should be mentioned that
the UNIX United architecture and facilities described above have been
implemented and extensively tested. The initial UNIX United system con-
sisted of five UNIX systems contained in a single ‘master’ directory;

this system was implemented by L.F. Marshall and myself. The full gen-
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erality of UNIX United was achieved allowing commands like those in the
examples above (the only restriction being that a system could not act
as a ‘gateway’ to another system). Any network errors are translated
into the appropriate UNIX error message, hiding the existence of the

network completely.
5.3 The Newcastle Connection

The Newcastle Connection is an interpreter extension of the UNIX kernel.
It is a recursive extension, making the same set of system calls (and

error reporting) apply to both local and remote objects.

———————————— System Calls (Over all objects)

------------ System Calls (Over local objects)

Choice of Level

At what level should UNIX United be incorporated into UNIX naming?
Recall the three tiers of naming - kernel, utilities and shell - each
contributing to file and process naming in UNIX, There is a design
decision to be made as to which level of naming should incorporate
remote systems, which is partly independent of the level chosen to

implement the design.
* [UNIX United at the Shell Level

Shell level naming could be modified to include the extended UNIX United
naming scheme. Unfortunately, this is difficult; although command names
could be re-interpreted (to find references to remote commands), there
is no way of knowing which arguments to a command are file names or pro-
cess names. Given that ﬁNIX United calls for a recursive extension of

the file name space, it is neither acceptable nor transparent to add new
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syntactical constructs to shell level names.
% UNIX United at the Utility Level

This level has been chosen by some designers of distributed UNIX sys-
tems. The ‘uucp’ (UNIX to UNIX copy) system consists of an extra set of
utilities to perform inter-system accesses[Nowitz 1979]. Alternatively,
existing utilities can be extended to deal with remote objects as well

as local.

In the first (uucp) approach there are two or more versions of some
commands (mail, cp, ...) and the right one must be used, depending on
whether local or remote objects are being accessed. Also, other com-
mands are not available over remote systems (e.g. 1s(l)). It is also
quite likely that the syntax of the two versions of a command will be
radically different. The second approach requires modification to an

arbitrary amount of existing software.
* UNIX United at the Kernel Level

Because all access to system objects passes through the kernel, it is a
good level to introduce the UNIX United naming. If the kernel naming is
extended, then both layeré above will benefit. Unlike the shell com-
mands, arguments to the kernel commands (i.e. to system calls) are of

known type and can thus be processed correctly.
Implementing the Newcastle Connection

Operations on local objects are passed through to the local kernel;
operations on remote objects are passed to the Newcastle Connection on

the appropriate remote system
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”

system call

¥
| Newcastle | remote
| Connection| system
S call

|
\

local system
call
For each system call, the Connection has a ‘ghost’ version which per-
forms routing as shown above. Processes run as normal, their system

calls are diverted to the ‘ghost’ routine transparently.

At the heart of the Newcastle Connection is a set of routines for
checking names. These are used to decide whether a system call relates
to a local or remote object and, if remote, how to reach the remote sys-

tem.

Each test routine returns a token, which is null for local names
and non-null for non-local names. The token value is immaterial to the
Connection software, it is either ignored (if null) or passed to the
network software (if non-null)., In fact the value indicates a network
address (e.g. ring statioﬂ and port number), which is used to reach the

remote system.
File Names

The routine for checking file names interprets a pathname within the
local context to find whether it is local or remote. 1In the case of
remote files, the ‘tail’ of the pathname (a result parameter of ‘check’)
will be passed to the remote system. The ‘tail’ is that part of a path-
name which cannot be resolved locally because the relevant file or
directofy is not present. Instead, it is passed to the Newcastle Con-

nection on the appropriate remote system.
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When a system call refers to a remote object, the name-checking
routine will return a token to identify a remote system. This is pack-
aged along with the arguments to the system call and a number which
indicates the particular call being made, and passed to the remote pro-
cedure call (RPC) software. A typical ‘ghost’ system call routine looks
like this:

open(name ,mode) {
token t=check(name,tail);
if (token==NULL)
return(open(name ,mode));

else
return(rmt_open(t,tail,mode));

The RPC expects two parameters: the message (an unstructured string of
characters) and the destination. For example when a remote file is to
be opened the name of the file and the required ‘mode’ (read,write,
etc.) is passed to the routine ‘rmt open’ which packages them up and

makes the remote procedure call (routine RPC):

rmt_open(token,name,mode)
n,

{ string msg="";

OPEN */
OPEN mode */
OPEN mode name */

append(msg,OPEN); /* msg
append(msg,mode); /* msg
append(msg,name); /* msg

RPC(token,msg); /* send message */

Process Names

The routine for process names consults the mapping table and takes the
appropriate action: local access, or remote access to a mapped process

name.

Unfortunately, in UNIX, only files have recursive naming; process
naming is flat. There is no way of naming processes on another system

because such a syntax (e.g. process@system) is alien to UNIX. To get
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around this problem in the Newcastle Connection, process names are
mapped as they are passed from system to system, preserving‘theif local-
ity. In effect, on any given system there is the illusion that all
processes are local, because only one local set of process names is
used. Non-local processes are named by using a local name which is
transparently mapped into the appropriate remote name (see Chapter 4 for

a description of name mapping).

Mappings are set up when remote execution occurs. In UNIX United
it was decided that files should be executed by the system where they
reside. This is a reasonable default because executable files may not
be compatible between systems. When a remote file is named for execu-
tion a new entry is added to the mapping table, enabling the resulting

process to be named. In this UNIX United process hierarchy:

23

/\
/
37

/\

the files being executed appear to be

Process File Being Executed

23 /bin/sh

37 /usr/bin/make

78 /etc/bold

80 /../unix2/bin/nroff

when in fact the actual hierarchy (hidden by the Newcastle Connection)

is:

/\ /
/ 0\ /
78 80 --—--=> 134
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Process File Being Executed (on unixl)

23 /bin/sh
37 /usr/bin/make
78 /etc/bold

80 /bin/unix server (to intercept signals)
Process File Being Executed (on unix2)

134 /bin/nroff

where the ‘unix server’ is the local representative of the remote pro-

cess,
5.4 Some Other Distributed UNIX Systems

The general idea of building a distributed system by extending UNIX over
multiple computers is by no means unique to UNIX United. Other authors
have recognized the advantages of distributed UNIX but many of the pub-—
lished systems are rather ad hoc. The twin ideas emphasised in this
chapter, no change to the UNIX design plus no change to the UNIX imple-
mentation, are the hallmark of our system and are not matched in any

other.

Historically, the first well-known distributed UNIX system came
with UNIX Version 7 and involved the ‘UNIX to UNIX copy’ program
(uucp(l))[Nowitz 1979]. This enabled files on other systems (connected

by serial lines) to be named by using the syntax
systemname! pathname

in the arguments to ‘uucp(l)’ (for copying) and to ‘uux(1l)’ (for remote
execution). The ‘systemname’ is drawn from the set of systems known to
the local ‘uucp(l)’ (or ‘uux(l)’) command (a null systemname refers to
the local system). Using these commands a distributed set of UNIX sys-
tems can be accessed, although at the price of special commands using

special syntax. Despite being cumbersome, uucp has the advantage of
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being part of standard UNIX and thus widely available. The implementa-
tion of uucp is fairly restricted; for example remote execution is res-

tricted to one site at a time.

The next stage of development in distributed UNIX is to use the
existing naming without change. The Network UNIX System[Chesson 1975]
and the Purdue Engineering Computer Network[Hwang et al. 1981] provide
special commands for inter-machine access but they do use what appear to
be standard names for files. The main difference between them is that
the former system uses the ARPANET whilst the latter uses hard-wired
high-speed connections. (The Purdue system includes an element of load

balancing in selecting which processor should execute certain commands.)

Another system based on high speed local communication (using the
Datakit switch) divides computing resources into ‘processing workers’
(S-UNIX) and ‘file system workers’ (F-UNIX)[Luderer et al. 1981]. The
idea is that a user may use any S-UNIX by ‘attaching’ it to his files
stored in an F-UNIX system. This separates the notion of ‘current UNIX
system’ from that of ‘current computer’: no files are permanently stored
on S-UNIX systems. Each user sees a perfectly ordinary UNIX system
although its implementation is in fact shared between the two classes of
UNIX systems. Transparent file sharing and file replication is provided
by the F-UNIX systems; similarly any process can use any of the avail-

able S~UNIX workers.

The LOCUS system provides a symmetric linking of UNIX systems (in
contrast to the S-UNIX/F-UNIX dichotomy). LOCUS allows standard com-
mands to access remote files named by standard UNIX naming[Popek et al.
1981]. Network transparency is provided at the expense of a completely
re-written system. Not only are the necessary networking features added
but also file replication and version numbering; the latter two adding

complexity to UNIX. In many ways LOCUS is the same as the UNIX
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United/Newcastle Connection system; however being a complete system
LOCUS must be installed as a replacement, rather than a sugplemeﬁt to an

existing UNIX system.

Finally, the COCANET system[Rowe and Birman 1982] is also very
similar to our work. COCANET is implemented by exténding the UNIX ker-
nel to include networking. The main difference is that there is no uni-
form distributed file system; each COCANET system views the others as

entries in its '/’ directory. The convention is to use
/unix2
to name remote site ‘unix2’, rather than to use
/eo/unix2

as in UNIX United. This means that each system has a unique view of the
file system with itself as root,>rather than it being a component of a

larger system.

To conclude this brief survey it must be said that all these sys-
tems came to our notice after UNIX United was designed and running.
Looking back on the literature it can be seen that some systems (e.g.
COCANET, LOCUS) are fairly similar to our design, whilst others, perhaps
for pragmatic reasons, are less than transparent. The combination of
complete transparency plus no re-writing of UNIX is the unique feature

of the UNIX United plus Newcastle Connection system.
Review

Why UNIX? To a large extent the answer to this question should already
be apparent. UNIX has provided a suitable base for a distributed system
because .of its recursive naming of files and the ease of inserting the

Newcastle Connection as a new layer. In our original UNIX United
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paper[Brownbridge et al. 1982] six principle factors in favour of UNIX

were listed:

(1)

(2)

(3)

(4)

(5)

(6)

Recursive file (and device) naming.

Ability to change working and root directoriess«

Ability to initiate asynchronous processes; this is used within the
Newcastle Connection software and also enables real concurrency to

be set up when using the Newcastle Connection.

The kernel (system call) interface is fairly simple and strongly

isolates the kernel data structures.

UNIX is written in a high level language making it easy to incor-
porate the Connection into existing programs vii the standard sub-
routine library. (System calls have the same syntax as other func-

tion calls.)

Exception reporting for system calls is simple and can be used to
mask network errors by presenting them in terms of the ordinary

failure conditions.

The only post-script which I will add is that UNIX is also suitable for

a distributed system because of its wide availability, both in the large

number of UNIX systems in use and in the wide range of computers for

which UNIX is available.

Why Not UNIX?

There are some simple improvements to UNIX which may find their way into

some of he newer (post-Version 7) editions of UNIX.

* A fuller implementation of ‘links’ (i.e. bindings made to a file sub-

sequent to its creation). At present, links can only be made within
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one storage device.

~

* Better inter-process communication (e.g. named pipes).

* A re~think of the file protection system (e.g. to allow ‘effective

user-id‘’ to be set explicitly by a root-owned process.)

Later (in Chapter 7) I will examine more fundamental changes to UNIX,

pointing the way to new non-UNIX systems of the future.

UNIX United shows the advantages of recursive naming: systems can
be combined to form a coherent distributed system. File naming in UNIX
is sufficiently rich for no extra mechanism to be needed in UNIX United;

the same system calls are adequate for remote as well as local files.

Although the work on recursive naming (Chapter 4) grew out of the
UNIX United work, rather than the other way round, they are presented in
the opposite, more logical order in these two chapters. Recursive nam-
ing in UNIX ensures that the UNIX United architecture is very general

and allows system to be nested within system to any depth.

The Newcastle Connection implementation shows the advantage of a
recursive interpreter extension: it can be added to any system which
looks like UNIX regardless of the implementation. Neither are changes
needed to the UNIX programs using the Connection. No changes were made
to the underlying kernel implementation or to the system call interface.
As a recursive interpreter extension, the Newcastle Connection adds
value to UNIX without changing it by allowing UNIX United to extend over

many computers.

Many UNIX United systems have subsequently come into use based on

our original software. At Newcastle, further UNIX United work has
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included a version for the Three Rivers/ICL PERQ computer using Ethernet
and also the development of a Newcastle Connection-based terminal con-
centrator. Further research work by others has used the Newcastle Con-
nection as a basis for a distributed fault-tolerant system using
majority-voting and as a basis for a highly secure: UNIX system. Else-
where, the Newcastle Connection software has been used in a variety of
situations in both commercial use and as part of research into distri-

buted systems.

Finally, it should be obvious that the work in this chapter depends
crucially on the design of UNIX itself. UNIX United demonstrates that
we can go a long way toward a true distributed system within the origi-
nal UNIX design. This is a tribute to the generality of that original
design. Later (in Chapter 7) some suggestions are made on the design of

future distributed systems not closely based on UNIX.



Chapter 6

Computation and Recursive Computation

There are those who believe that God gave FORTRAN and our job
is simply to make it go faster
[Anon.]

Computation is the activity which takes place as a computer executes a
program. The present chapter will examine the structure of computation
- that is the patterns of activity which arise when various computation

rules are used.

Most computers use the sequential, instruction-at-a-time ‘Von Neu-
mann’ computation rule. Programs are a linear array of instructions and
data. Control traces a linear path interspersed with jumps and data may
be accessed randomly. Such computation can be characterized by two
structures, one representing the pattern of control and the other the
pattern of access to data. Although in principle random, the patterns
are dictated by the programmer and by using the techniques of ‘struc-
tured programming’ some locality is achieved (e.g. iteration over short

loops and use of local variables).

Other computation rules give rise to different structures, for
instance when there are many threads of control active at once. There
are computation rules giving rise to recursive structures, representing

a ‘divide-and-conquer’ approach to execution. It is naturally this
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latter possibility which is of particular interest here and will be

shown below to have advantages over non-recursive computation.

Computer structure has received considerable attention in the
literature[Bell and Newell 1971, Stone 1975, Tanenbaum 1984] but much
less has been writtem about the structure of coﬁputation. Computer
structure concerns the design of computers whereas computation structure

considers the structure of activity when computers execute programs.

The present chapter is based on work for an earlier paper which
separates computation structure from the structure of programs and of
computers giving a classification scheme for each[Treleaven et al.
1982]., The three sections of the chapter firstly characterize computa-
tion as a particular abstraction for the activity of computer systems
(Section 6.1), then examine some models of computation (Section 6.2) and
finally, explore the notion of recursively structured computation (Sec-

tion 6.3).
6.1 Abstraction: Computation, Architecture, Hardware

The study of computation examines how instructions are chosen for execu-
tion and the range of effect that execution can have. It can be dis-

tinguished from architecture (program organization) and hardware

(machine organization), which are separate aspects of computer design.
It will be shown that the choice of computation, program and machine
organizations can be made independently, even though some combinations
are more attractive than others. Many different machine organizations
may be used to implement the same architecture; many architectures can
use the same computation organization. This separation of levels was a

key idea in our paper[Treleaven et al. 1982].
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Computation Organization

o~

Computation is an abstraction of the activity within a computer when a
program is executed. Computation organization describes state changes

in programs (and their data). A computation rule guides the course of

computation in a given computer. We will be considering the class of
computation that arises in a given computer, not the particular computa-
tion Arising from any single program being executed. Two aspects,
sequencing and locality, are of particular interest when examining com-

putation organization.

Sequencing is the choice of next instruction(s) to execute. Compu-
tation organization is only concerned with the ‘external’ behaviour of
the computer so a computation rule specifies sequencing in terms of pro-

grams. Operations within the computer are of no concern.

Locality of computation is a-measure of the ‘distance’ between ele-
ments In the computation structure. That is, the distance between the
places in store in which successive elements are held. In Von Neumann
computation there are two forms of locality to be considered: locality
of control and locality of data reference. Locality of control measures
the distance in store betwéen successively-executed instructions; local-

ity of data reference measures the distance 1in store between

successively—-accessed data items.

Locality can also be measured by counting how many times each
instruction is executed (or how many times each data item is accessed).
If the program exhibits strong locality then, say, 10 percent of the
instructions in store might represent 90 percent of the instruction exe-
cutions. (Or similarly 90 percent of data accesses might be to 10 per-

cent of the data).

It may also be useful to consider whether the ‘preferred’ (most
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used) items are themselves situated close together. In many systems
this does not matter because the set of preferred items ié determined
dynamically (e.g the ‘working set’ in a paging system[Denning 1968]).
However if the preferred items can be found reliably before a program is
executed, they can be located in adjacent parts of the store avoiding

the dynamic overhead.

In practice, all but the simplest computers need strong locality of
computation to get sufficiently good performance. For instance, the
machine-level optimizations of paging pipelining and cacheing are use-

less unless computation is localized.

The programming language provided by a computer may support expli-
cit control of computation e.g. JUMP instructions. Here the pattern of
computation can be controlled directly by program. On the other hand,
where there are no control constructs, the pattern of computation is
entirely implicit. In data driven and demand driven computation (as
described below) there is no distinction between control structure and
data structure: computation can be modelled by a single structure. It

is then sufficient to examine this single form of locality.

later (in Section 6.2) control driven, data driven and demand

driven computation will be described in more detail.
Program Organization

Usually, program organization is referred to as ‘computer architecture’.
This is a term which unfortunately also includes machine organization,
with the two separate issues being confused under one heading. Program
organization is typically specified by a ‘Principles of Operation’
manual. For example the ‘IBM $/370 Principles of Operation’ specifies a
program organization (i.e. the interface) of huge number of computers

implemented by very many different machine organizations.
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In fact a noticeable commercial trend has been to build ‘ranges’
(or ‘series’) of computers, offering some compatibility of Mprogram
organization over a wide spectrum of machine organization. The differ-
ences between models in a series can be in more than just speed and
storage capacity - even the size of the hardware - registers and data

paths (the ALU width) can vary[Tanenbaum 1984]:

S/370 Model ALU Width (bits)

370/115 8
370/125 16
370/145 32
370/168 64

Similar differences occurred in the ICL 1900 series: in smaller models,
‘registers’ are in fact the first few words of the main store, whereas
larger models are graced with the more usual implementation of regis-

ters.
Machine Organization

Machine organization is the structure of the hardware (or sometimes the
software interpreter) which forms the computer., Details of machine

organization are hidden ‘below’ the programming language interface.

A machine organization may be a simple, direct implementation of
the machine-language or, as is more usual, the organization will be
designed to give good performance for a given class of programs. The
problem with general purpose computers, where the language but not the
program is known in advance, is to make an educated guess as to the most
likely class of programs. As mentioned above, modern Von Neumann com-
puters work fastest when there 1is strong 1locality of computation,
although this locality is by no means explicit in their model of compu-

tation. .
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6.2 Classification/Analysis: Computation Organization

Three computation organizations will now be examined in greater ;;tailz
* Control Driven (including Von Neumann)

* Data Driven

* Demand Driven

The terms ‘instruction’ and ‘operator’ will be used without distinction
to denote the functions available in a computer; similarly ‘arguments’

and ‘operands’ will be used interchangeably.

Control Driven Computation

Computation is said to be control driven if sequencing is controlled

explicitly by program. This implies that (at least some) instructions

can define the instruction(s) to be executed next.

The simplest form of control driven computation is the Von Neumann

model, which has as its main characteristics{Von Neumann 1946]:

(1) A single computing element [processor] with sequential control of

computation.
(2) Linearly addressed array of fixed-size storage cells.

(3) Low-level 1language performing simple operations on unstructured

data.

Von Neumann computation is control driven because programs have explicit
(sequential) control over the order of execution. This is by means of a
‘program counter’ register containing the address of the next instruc-
tion. This registér can be manipulated by programs, (e.g. JUMP, or sub-

routine CALL instructions), thus altering the flow of control. (A less
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common form is the four-address instruction, where each instruction con-

s

tains the address of its successor.)

Parallel control driven computation allows many ‘threads’ of con-
trol to be active at once. Communication between different threads of
control can be through the common store. New thréads of control are
generated explicitly (e.g. by a FORK instruction) and synchronization is

also explicit (e.g. by a WAIT instruction).

The essence of control driven computation - explicit choice of next
instruction(s) =~ does not enforce locality of computation: locality is
entirely at the programmer’s discretion. Neither does it enforce strong
locality on operands (data access); it is up to the programmer to ensure
that all operand values necessary for an instruction have been calcu-

lated before it is executed. For example:
a:=l; c:=at+b; b:=2

The above trivial sequential program serves to illustrate an object ‘b’
being used as an operand before its value ‘2’ is assigned. Once control
reaches an instruction, that instruction is executed regardless of the

state of 1its operands.. The problem is not Jjust initialization:

throughout the computation an object may have many different values
assigned to it. The programmer has to ensure that the current value is

as required, each time it 1s used.

The Von Neumann model has a single linear store, but there are
other sequential control driven systems which do not. For example
Iliffe’s Basic Machine[Iliffe 1972] and the FLEX architecture[Currie
et al. 198l1] are control driven, but have a (recursively) structured
store. Similarly some parallel control driven systems do not rely on a

single shared store.
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Data Driven Computation

Computation is said to be data driven if sequencing is controlled by the

availability of data; instructions are executed when their operand

(data) values have been calculated[Dennis 1979].

In data driven computation, sequencing depends on the state of
operands, since there is no explicit control. When an instruction is
executed it produces a value which may be an operand to other instruc-
tions. Any number of those instructions may become executable at that

point.

The structure of any data driven computation is a di-graph, ordered
by the data dependency relation between instructions. The nodes of the
graph are the instructions of a program; the arcs of a graph represent

the use of a value produced by one instruction in a another instruction.

Data dependency graph = (I,D)

Where I
D

{instructions}
{(i,3) such that: instruction j
uses a value produced by instruction i}

Locality 1is determined by the data dependency graph. The next
instruction(s) to be execﬁted are always those dependent on the current
instruction(s) for their data., It might be expected that this strong
locality would be exploited in program and machine organizations; how—
ever, it is not. (The exception is DDM/1[Davis 1978] which is described

below in Chapter 7.)

Data driven computation is innermost (parallel) first (in the sense
used by Manna[Manna 1974]). No instruction is executed until all its

operand values have been calculated. For example the calculation of ‘c

in:
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] :=1 | g
c:=a+b
b:=24+3

is governed solely by the data dependency graph:

First 243 must be calculated and then, 1+5 which yields 6. The phrase

‘innermost first’ signifies that the instructions most deeply nested in

the graph are first to be executed.

Demand Driven Computation

Computation is said to be demand driven if sequencing is controlled by

the need for values; instructions are executed when the value they cal-

culate is demanded by another instruction.

In demand driven computation, sequencing depends on the need for
results - there is no explicit control. When control passes to an
instruction, it may cause other (sub)instructions to be executed before
the instruction itself is executed. Demand driven computation allows
instructions to be non-strict. Non-strict instructions can return
values even when some of their operands are uﬁevaluated. One example is
the conditional operator ‘COND’, whose evaluation is defined by:

COND(TRUE, a,b)
COND(FALSE,a,b)
A "COND’ can be executed as soon as the first operand is a value; the
others Aeed not (yet) be values; they may be sub-programs delivering a

value. Demanding the result of a COND causes its first argument to be
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evaluated.

The structure of demand driven computation reflects the data depen-
dency between instructions in the same way as that of data driven compu-
tation. The difference is that demand driven computation is top-down
(i.e outermost first) and non-strict, whereas data ﬁriven is bottom—up
(i.e. innermost first) and strict. Because of the non-strictness of
demand-driven computation, not all parts of a program will be executed
before termination, some may be ‘thrown away’ by (for example) the COND

operator given above:

COND(2>1, 0, £(0)) where f(x)=f(£(x))
COND(TRUE, 0, £(0)) where f(x)=£f(£f(x))

0

In this example the non-terminating computation of ‘£(0)’ is discarded

and result ‘0’ delivered.
Comparison of Data Driven and Demand Driven Computation

Although the locality properties of data driven and demand driven compu-

tation are similar, demand driven has significant efficiency advantages.

Data driven computation, being strict, waits until all sub-

computations have been terminated. For example, if the function
f(x) = 3

which takes a single argument and returns a constant, is applied to a
non-terminating argument (e.g. the fuﬁction f(y) = £(£(y))), no value is
ever returned. D.A. Turner aptly christened such non-terminating argu-
ments ‘black holes’. Demand driven computation avoids black holes wher-
ever possible by dnly waiting for values that are actually needed. Data

driven computation is the converse: a black hole anywhere will envelop
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the whole program!

”

This discussion of efficiency properties has its parallels in the
theory of the Lambda Calculus[Burge 1975] and of Recursive

Functions[Manna 1974, Brady 1977].

Concept | Lambda Calculus | Recursive Function
| Equivalent | Equivalent
| |
l
Program Lambda-expression | Recursive Function
I l
|
Data Driven Applicative | Innermost [Parallell
Computation Order Evaluation | Substitution
|
I
Demand Driven | Normal Order | Outermost [Parallel]
Computation | Evaluation | Substitution
l
I
‘Efficiency’ Church-Rosser | ‘Safety’ of Outer-
| Theorem | most Substitution
|

The ‘efficiency’ property of demand driven computation can be para-

phrased as

‘Demand driven computation will always find the right answer

if one exists.’

The equivalent Church-Rosser theorem states a similar property for nor-
mal order evaluation. The equivalent property of recursive functions is
‘safety’, a property possessed by outermost parallel substitution.
Other substitution rules are also ‘safe’ and have corresponding models
of computation e.g. ‘eager evaluation’ and ‘lazy evaluation’[Henderson
and Morris 1976, Vuillemin 1974]; these can be regarded as straightfor-

ward extensions of the demand driven model.

This discussion would not be complete without mention of another

aspect of the Church-Rosser theorem which has been misleadingly quoted
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(sometimes by those who should know better!) as
‘*No matter the evaluation order, the result is the same.’

This is only half the story; termination must be considered. In fact
the theorem states that if two evaluators terminate they terminate with
the same result. Data and demand driven computation are equivalent in
this sense, but then so they are to a ‘black hole’ evaluator (e.g. func-
tion ‘g’ above), which swallows all programs, for them never to be seen

again!

The lesson to be drawn from these parallels is that parts of the
theory of computation can be used to provide a sound base for system

design.
6.3 Recursive Computation

Recursive computation is the result of combining recursive control with
a recursive program[Glushkov et al., 1974, Treleaven and Hopkins 1982,

Wilner 1980].

To be precise, recursively structured computation consists of a
recursively structured computation rule combined with a recursively
structured program. The advantages are those of recursive structure in
general: extensibility, location independence and ease of extension and

combination.
Recursive Program Structure

Recursive program structure is simply recursive naming of operators and

of operands in programs.
Recursive programs are characterized by the following property:

Wherever in the program a operator or operand can appear, a



121

sub-program (denoting a operator or operand) can also appear.

a

Hence recursive programs are recursive structures (as described in

Chapter 2), where each atom is a fundamental instruction or data item,
and each sub-structure is a sub-program. The S-expressions in LISP are
recursive programs[McCarthy 1962], as are blocks and expressions in

ALGOL 68 (but not statements: loops do not return a value).

Where there is no nesting or a limited depth of nesting, programs
are not recursively structured. For example, instructions may have the

non-recursive form:
instruction ::= atomic_operator atomic_operand ...

which characterizes ‘single-~address’ Von Neumann computers. In such
systems, a sub-program may appear as an argument (by reference) but de-
referencing only involves address calculation and fetching, not a sub-

computation.

These systems do not provide recursive computation because the pro-
gram structure is not recursive. Recursive computation can, however, be
simulated, by an interpreter extension which takes the appropriate
actions automatically. Tﬁis is what happens when recursively structured
LISP programs are executed on a conventional machine. Later (in Section

7.3) a new algorithm is given for managing structures in this situation.
Recursive Control

Recursive control means having a recursive computation rule.

A recursive computation rule can be used to execute any arbitrary
sub-program; it does not need a ‘whole’ program nor does it depend on
the program having a particular structure: it is sufficient for programs

to be recursively structured.
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Both data driven and demand driven computation have recursive con-
trol, Von Neumann computation does not. In data driven comﬁhtation,
evaluation is innermost (bottom—up); in demand driven computation it is
outermost (top-down), but the pattern traced is the same: both rules

follow the data dependency graph.

The differences in termination of data and demand driven computa-
tion are computationally important, but not structurally important. The
same (recursive) computation structure can be built by either top-down
or bottom-up construction. The remaining differences between the two

models are:

* Strictness: data driven execution depends on values being available,

demand driven does not.

* Demand propagation: demand driven execution first propagates demands,
then requested values return by availability; in data driven all

instructions are implicitly ‘demanded’.

Recursive control promotes locality of computation, whatever the exact

computation rule used.
Combining Programs

It is important to be able to combine and re-use existing programs.

Recursive computation is an important tool for doing this.
The advantages of recursive computation are as follows:

* Wherever a data value can appear, a program generating a value can
appear. Wherever an instruction can appear, a program implementing a

(new) imstruction can appear.

* There is no distinction between inter-program and intra-program con-

trol. The same model of computation applies to composite systems
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built from many parts and within a single program.

o

Recursive computation is useful when a multi-level system is built as a

series of interpreter extensions (see Chapter 3). It is much easier to

construct the extension ‘I’ because the underlying computer treats the

added instructions in the same way as its own instructions.

LA B

Computer

Then, at least syntactically, there is no difference between instruc-

tions from the original set and its extension.

Some Examples of Recursive Computation

(1)

Blocks and Expressions in ALGOL 68

These are recursive program structures - wherever a value can
appear in a block or expression, a block or expression delivering a
value may appear (I prefer the more usual terminology to the ALGOL

68 Report ‘paranotations’).

ALGOL 68 has a recursive computation rule which explores sub-
expressions and sub-blocks in a demand driven fashion (other parts
of ALGOL 68 are, however, control driven; also, loops do not return
any result). Consider an ALGOL 68 example showing an expression

containing a value, a sub—-expression and a sub-block:
x =1+ (2%3) + (int t:=y+z; t*t )

The expression is recursively evaluated to produce ‘6° and the

block recursively evaluated returning value ‘t*t’,
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(ii) LISP

ra

A LISP program is a recursive structure: an S-expression for exam-
ple:
(ADD (QUOTE 1)

(ADD (MUL (QUOTE 2) (QUOTE 3))
(LAMBDA t (MULTIPLY t t) (ADD y z))))

which represents the same calculation as the ALGOL 68 program above

Computation is recursively structured in a LISP evaluator (disre-
garding certain non-applicative features). LISP systems can have a
form of demand driven computation, typified by the evaluation rule
for COND (as shown above). The first argument of the conditional
operator is evaluated and its value used to choose which of the

other arguments is to be returned.

This chapter has characterized computation as an important issue in com-
puter system design and argued that recursive models of computation
offer viable and interesting alternatives to the so;called Von Neumann
model. Recursive computafion has particular advantages of locality and
extensibility making it particularly suitable for large highly-parallel
s&stems. In such systems it is vital to have locality of computation

and to be able to combine or extend systems without re-structuring them.

Programs should not be regarded as ‘black boxes’ which give rise to
random patterns of computation when executed. 'Instead their structure
and locality of computation should be taken into account when designing
models of computation. If a program is executed for long enough, it is
indeed likely that every instruction and every data item will be refer-

enced. On the other hand it 1is also likely that a small number of
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instructions will account for the majority of instruction executions and
similarly a small number of data items will account for most of the data

accesses.

The view of computation presented here concentrates on the differ-
ences between control driven computation on the one hand, and data or
demand driven computation on the other. The difference is important
because in distributed systems some particular features of control
driven computation (e.g. random access to shared objects and arbitrary
transfer of control) become acute problems of communication and syn-
chronization. Data or demand driven computation offers an alternative

in which many of these problems disappear.

The advantages of recursive computation are similar to those of
recursive naming. Recursive computation makes it easier for many pro-
cessors to cooperate in executing a single program. If computation is
not recursive there is a point where it is no longer possible to sub-
divide work amongst a homogeneous set of computers and a point where

sets of computers can no longer be combined into a co-operative system.

In Chapter 7 some suggestions are made as to how the ‘novel’ data
driven and demand driveﬂ forms of computation might fit into future
large~-scale distributed systems. At this level where inter-processor
communication is time consuming it is most important to have the kind of
locality inherent in recu;sive computation. Also in Chapter 7 are

descriptions of some computer systems which use recursive computation.



Chapter 7

Recursive Computer Systems

Were these things here that we do speak about
Or have we eaten the insane root
that takes reason prisoner?
{Macbeth I.ii]

The first section of this chapter will examine earlier work on recursive
systems. This survey briefly examines the small number of papers using
recursion as a theme for computer system design. The first[Glushkov
et al. 1974] sets out principles of recursive machines as an alternative
to more conventional designs. The second[Davis 1978] adds data driven
computation and is closely related to the work of Wilnmer described in
the succeeding section[Wiiner 1980] which aims to exploit VLSI technol-
ogy. Finally some of the work by others at Newcastle is presented to

complete the survey[Treleaven and Hopkins 1982].

The second section ‘concerns the implications of the UNIX
United/Newcastle Connection scheme for the design of future operating
systems. The exact nature of a ‘UNIX System’ is'discussed and some dif-
ficulties with UNIX terminology are explained. It is suggested that
processes and ‘users’ could benefit from recursive naming, that a new
hybrid plain—filerlus-directory object would aid modular programming;

Combined naming (introduced in Section 4.2) and also that data or demand
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driven execution could be a part of future systems.

Finally a method is suggested for dealing with cyclic (loop-
containing) structures which can arise in the implementation of recur-
sion. This is a reference count algorithm able to manage safely the
creation and deletion of some cyclic structures. It has an overhead
proportional to the number of elements in a cycle. This is an improve-
ment over the mark-scan technique which has an overhead proportional to
the total number of elements and the standard reference count method

which cannot deal with any cyclic structures.

7.1 Future Operating Systems

On the Concept of ‘A UNIX System’

It will be worthwhile to consider just what is a ‘UNIX System’. The
possibility of more than one UNIX system per computer makes this an
important question. I will attempt an answer based on the ideas used in

UNIX United.

A UNIX system can be defined in naming terms as consisting of three

elements:

* A set of files with a root directory, forming a tree-like name space
* A set of processes in a flat process name space

* A set of user-ids (and group-ids) in flat name spaces.

The file system forms the store of the UNIX virtgal machine and the set
of processes form its (multi) processor; user-ids are attributes of

files and of processes which are used for the purpose of protection.

A UNIX file system must have a ‘root directory’ which contains the

various standard system files defined in the UNIX documentation (e.g.
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the directories /bin, /dev and their contents). Note that this ‘root’
is defined in file system terms, independent of the processes. ﬁere one
starts to encounter problems with UNIX terminology. The ‘root’ associ-
ated with a process (i.e. the directory named by ‘/’) is not necessarily
the ‘root’ of the file system in the sense just described; neither is it
necessarily the ‘root’ in the graph-theoretic sense of ‘a directory un-
nested in others"(the ‘topmost’ or ‘base’ directory). However in the
vast majority of UNIX systems the file-system root is in&eed the topmost

directory and also every process has that directory as its '/’ root.

Only whilst UNIX United was being designed did the nature of these
roots become clear. In UNIX United the conventional usage of the roots
is altered: our use of /..’ implies that a root directory can be nested
within another and secondly, the (little-known) change root system call
(chroot(2)) allows the '/’ of a process to be moved at will. Hence the
three roots are no longer the same. In some systems this is used to
partition a single computer into two UNIX systems, for example on a VAX
computer where there can be separate PDP-11 compatible and full-blown
VAX sub-systems running on one machine. This allows separate develop-

ment of the two classes of program.

I would argue that for each process, ‘/’ corresponds to ‘current
system’ in the same way that the working directory corresponds to the
‘current workspace’. The standard files described in the UNIX documen-
tation are all named relative to ‘/’, including nearly all the utility

programs and their data files: ‘/bin/sh’, ‘/bin/mail’, etc.

The corollary is that ‘chroot’ is too general: it should only be
possible to move ‘/’ to directories which contain the requisite system
files (or at least, no others in their place). By no means the least
reason ié that system security could easily be compromised if ‘/’ can be

moved arbitrarily. For example an arbitrary file can be substituted for
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the password file (/etc/passwd) allowing log-on as any user. It is pos-
sible to preserve security, by ensuring that only certain diféctories
can be used as ‘/’. 1In this way the file names beginning with ‘/’ can-

not be used to compromise security, and the ‘change root’ command

becomes, effectively, a ‘change system’ command.

An alternative approach to the ‘chroot’ problem 1is wused in
System V. Naming is restricted so that no matter where ‘/’ is, the
directory ‘/..’ does not allow access to more files. That is, once ‘/’
is moved to a directory, only the sub-directories of that directory are
nameable (which at least locaiizes the effect of a security breach).
The name ‘/..’ is defined to be identical to the name ‘/’ for all
processes, no matter which directory they have bound to ‘/’. In other
words the UNIX United approach uses ‘/..’ to unite systems and provides
secure translation of names between them; whereas the System V approach

uses ‘/..’ to separate systems.

The UNIX United approach to ‘chroot’ exploits the complete indepen—
dence of '/’ from the working directory. For example '/’ can be moved
to another, possibly remote, system whilst the working directory remains
local. The UNIX United approach requires more sophisticated support
(for mapping), but provides secure co-operation between an arbitrarily
large set of UNIX systems. The System V approach is simple but pre-

cludes multiple co-operating systems.

Each UNIX object (file or process) has an assoclated ‘user’ and
*group’ identifier. These are used for protection and have a flat name
space. It seems reasonable to associate one such space with each UNIX
system giving its own set of users and groups. These identifiers can

then be mapped between systems, in the same way as process identifiers.

There are further extensive issues of user—-id and group-id mapping
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in UNIX United concerning nested sub-systems etc. Suffice it to say
that there are two contrasting philosophies: (1) each system allows
access to named users of other systems by special arrangement; (2) a
systematic mapping policy is initiated allowing the mapping to be tran-

sitive, symmetric etc.

Subsidiary meanings of ‘root’ in UNIX which are not considered here
include: (1) root - super—user - the user name corresponding to user-id
zero with special privileges; (2) root - ‘root device’ - the device onto

which all other file storage devices are mounted (mount(1l)).
Distributed Operating Systems: Future Work

Dennis Ritchie (one of the originators of UNIX) has said that UNIX may
well be the end of one thread of operating system development. Indeed
some newer systems (e.g. the Smalltalk environment[Goldberg and Robson
1983]) are very dissimilar to the current concept of an ‘operating sys-
tem’. The comments which follow take UNIX as a starting point for evo-
lutionary development towards what might be termed ‘new generation’ sys—
tems. The ideas are not intended to describe an ‘update path’ for UNIX

but rather to indicate scope for developing new systems.

(1) Recursive naming is the essential feature of UNIX which makes UNIX
United possible. It would be a great improvement if all objects in UNIX
were to have recursive naming, especially processes and ‘users’. For
processes this would add the ability to explicitly name remote processes
(e.g. a remote print server process) instead of relying on the implicit

Newcastle Connection mapping.

Recursive naming for users could perhaps use block structured nam-
ing, thereby imposing a discipline on user-id mapping between systems.
This mapping is done on an arbitrary ‘need to know’ basis at present.

The UNIX systems in a UNIX United naming tree can be viewed as sub-
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directories contained in the outer ‘network’ directory. User names for

purely local wusers are declared local to each system; user names

declared in the outer block name the users who have access to both sys-

tems.

Consider a UNIX United file system:

unix
/ \
/ \

unixl unix2
/ \ / \
/ \ \

where the scope of user names could be represented as:
unix :begin
user a,b;
unixl:begin
user c,d;
end;
unix2:begin

user c,d;

end
end
The scope of a user name can define the user’s ability to own files and
processes. This notion extends and regiments the ideas for name mapping
introduced in Section 4.3 and and used in Section 5.3. No change would
be needed to UNIX, this scheme is simply a discipline on the way user

mappings are set up between systems.

(2) All names in UNIX are dynamically resolved. In a single UNIX system
where all processes have '/’ bound to the same directory, this is not a
significant problem. Static resolving can be simulated (when necessary)

by using root-relative pathnames. An example of a program requiring
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static resolving is a print spooler which has the name of the actual
printer (a UNIX ‘file’) built into it; the spooler might be invéied from
anywhere in the file system but must still use the same printer. In
UNIX United (or any other UNIX system where ‘chrodt(Z)’ is used) a
root-relative pathname is not unique; it is then not possible to con-

struct the spooler as required. It would therefore be useful to add

static resolving to UNIX,

With static resolving, the names within a program refer to the same
object regardless of where and when the program is run. A preliminary
study indicates that there is no simple way of statically resolving
filenames. Many UNIX programs are written in ‘C’ or the ‘shell’
language. Both these languages are ‘weakly typed’ in the sense that any
dynamically created string of characters can be used to name a file.
The idea of adding a special filename type to ‘C’, the shell and every

other language on UNIX (and its run time system) is not appealing.

The solution I suggest is to introduce a new hybrid class of file

which is a single object consisting of two components:
(1) A program (an array of bytes)
(2) A set of bindings.

Compilers could then create this object in the sure knowledge that when-
ever the program is used, the bindings (to its static objects) will be
unaltered. Notice that the above object corresponds exactly to a ‘clo-
sure’ as used in many programming language implementations. Consider a

lineprinter spooler represented as a closure object:
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~

' /dev/1p >| lineprinter |
context: | lockfile =—==——- . * ’
. l
. Ve —_>
main() {

fd=open("/dev/1p",1); |
L] |

program: write(fd,text);

Given that this new class of objects could be added to UNIX, the
two main existing file types - plain file and directory - are just spe-
cial cases and need no longer be implemented separately. A plain file

is a closure with no bindings; a directory is a closure with no program.

This addition of a closure object now makes UNIX a suitable
enviromment for programming using ‘modular’ or ‘abstract data type’
techniques. A closure object can be used to represent a module or data
type with internal state held between uses e.g. a Simula class or a

Modula Module[Birtwhistle et al. 1973, Wirth 1983].

(3) Pathname naming for UNIX files could be replaced by Combined naming
(see Section 4.2). Recall that Combined naming is a synthesis of block
structured and pathname naming in which each element of a pathname is in
turn treated as a block structured name. The obvious advantage is that
pathnames need no longer be ‘exact’: they need not name every context
used in resolving them. Also it is simple to provide ‘attribute inheri-
tance’ as in Smalltalk-80: if some name cannot be resolved locally then

its definition is ‘inherited’ from an enclosing object.

(4) the final suggestion is to remove the distinction between processes
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and files. This involves replacing the fork-join style of execution by
either data driven or demand driven computation. At the shell level, a

pipeline

a|lb]| e

-

can already be viewed as being data driven: process ‘b’ is driven by the
arrival of data from process ‘a’ and ‘¢’ is driven by ‘b’ - or as demand
driven: process ‘¢’ demands data from ‘b’ which demands from ‘a’. This
represents a move towards novel forms of computation where the distinc-

tion between program and process is unimportant.
Note

A simple priority scheduling rule added to UNIX could imple-
ment something closely resembling data (or demand) driven com-—
putation by giving higher priority toward the left (or right)
hand end of the pipeline. Execution would be purely data (or

demand) driven unless any pipe in the line became full.

More importantly this suggests a useful method of resource
management for data driven or demand driven computers: by
inserting something iike a ‘pipe’ between each producer and
consumer and delaying the producer when the pipe becomes full,
over-production would no longer swamp the system. In other
words data or demand driven evaluation proceeds at full speed,
occasionally (automatically) checked by pipes becoming full.
Certainly this seems a preferable to adding resource manage-
ment annotations to high level language programs as some have

suggested[Burton 1984].

End of Nete
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7.2 Earlier Work on Recursive Systems

v

‘Recursive Machines and Computing Techmology’

The Russian work[Glushkov et al. 1974] presents ‘recursive computers’ as
an alternative to the so-called Von Neumann model. The Von Neumann
principles (see Section 6.2) are replaced by the following recursive

principles:

Pl Recursive machines contain limitless numbers of levels of machine

language.

P2 All program elements for which operands are available are to be
executed (although elements are only inspected for execution under

certain conditions).
P3 Memory structure is flexible.
P4  There is no limit to the number of machine elements.
P5 The machines have a flexible re-programmable structure.

The emphasis is on structured organization (in particular, recursively

structured organization) in order to combat complexity.

A basic language for recursive machines is proposed from which
higher level objects and languages can be built. The basic objects
include ‘lists’ which are a form of context; these can be formed into a
recursive structure thus making recursive naming possible., Similarly
recursive computation is embodied in the system, although it is not

clear whether it is data driven or demand driven.
DDM/1

The DDM/1 project[Davis 1978] grew out of work research at the Burroughs

Corporation laboratories and was later developed at the University of
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Utah. Interestingly, Burroughs is also the origin of the work by Wilner

described below (with perhaps R.S. Barton being a common influence on

the two projects).

The DDM/1l design adopts the recursive principles 1-5 (above) and

adds a sixth:

P6 Modules of recursively structured machines should function in a

fully distributed asynchronous manner.

Where ‘fully distributed systems’ are defined to have two characteris-

tics:

Cl At no time can a module of a fully distributed system determine the

total system state.

C2 A fully distributed system is incapable of enforcing simultaneity
in its distributed modules (modules function wholly on the basis of

their local time).

The aim of the additional principle (P6) is to clarify the control

mechanism in the recursive machine (essentially by clarifying principle

P2).

In DDM/1, machine language programs are Data Driven Nets (DDNs)
which have essentially the same structure as the ‘data dependency graph’
introduced earlier (in Section 6.2). No mention 1is made of naming
mechanisms, although DDNs are implemented as delimited strings and hence
some form of context relative naming by selectors seems likely. A sin-
gle DDM/1 element was constructed successfully although no performance

figures or operational experience are given.
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Wilner’s Recursive Machine

The work of Wilner on recursive machines is documented in a series of
reports (written at the Xerox Palo Alto Research Centre) available to
the research community but not formally published. The only accessible
description I can cite is the report of Wilner’s presentation at a VLSI

workshop in Newcastle[Wilner 1980].

An important feature of the work is how it demonstrates recursive
structure as a way of exploiting VLSI technology. The importance of
‘physical recursion’ for VLSI is emphasized in addition to recursive
program structure. Physical recursion’ simply means that any one chip
containing a single processing element may easily be replaced by another
containing many such elements cooperating as one. This form of scale
independence could be very important as the life-time of a design ié
long compared to the time between leaps in chip capacity. It also means
that any one single chip can be replaced by a set of similar chips act-
ing in concert to give better performance (although at greater hardware

cost).

Wilner’s design uses an object—oriented[Goldberg and Robson 1983]
computation model with message passing in contrast to the data driven
model of DDM/1. Messages are routed by structure selectors which are
essentially pathnames through the program structure. Parallelism is
available through the basic operators, for instance the APL-like
‘insert’. These make it possible for many parallel sub-computations to

be generated implicitly from a source program.
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Recursive Control Flow

The Recursive Control Flow (RCF) architecture can in some ways be seen
as a development of Wilner’s work. The basic idea is to combine control
flow computation with recursive program and maching organization. One
major aim is to provide a de-centralized model of computation suitable
for VLSI implementation using many similar chips rather than a set of

specialized chips.

RCF programs are represented as nested strings with pathname-like
selectors. In programs there is an implicit left to right flow of con-
trol between items at a given level of nesting. In addition explicit
control flow operators are provided including GOTO and FORK. An aim of
the design is to support as wide a range of programming styles as possi-

ble.

The primitive operators allow data driven and demand driven compu-
tation to be simulated. For example a special ‘unknown’ value can be
placed in an instruction causing it to be delayed until the value
becomes ‘known’. This can be used to mimic data driven computation.
There is a three—argument version of the multiply instruction which con-
tains a destination address for the result; in addition a two-argument
multiply is available which has wupdate-in-place behaviour (in the

absence of a result address).

The notion of recursive structure has been used in many systems, but
usually in only a partial or ad hoc fashion. The papers described above
are just those which make it an explicit issue. There are strong links
between the papers, starting from the explicit description of recursive

systems[Glushkov et al. 1974] which was then adapted for data
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driven[Davis 1978] object-oriented[Wilner 1980] computation and finally

extended to include to control driven computation by the Newcastle

group[Treleaven and Hopkins 1982].

The papers surveyed reinforce the advantages of recursive structure

as listed in Chapter 2:

(1) At every level the structure is the same: for example in Recursive
Computers[Glushkov et al. 1974] there are limitless levels of

machine language (principle Pl above).

(2) Combining recursive structures produces another recursive struc-
ture: this is the basis of ‘physical recursion’, where a combina-
tion of computing elements can be made to appear as a single sys-

tem.

(3) Absence of a distinguished ‘root’: this is the basis of the ‘fully

distributed system’ as defined by Davis[Davis 1978].
7.3 Object Management in Recursive Systems

One problem with recursive structure occurs when it has to be simulated
on top of a flat structure. For example a significant part of the over-
head in LISP interpreters is caused by providing recursively structured
objects on top of a conventional flat store. Various techniques are
available under the heading of ‘garbage collection’, to assist in such

cases[Cohen 1981, Knuth 1972].

Garbage collection is the process of reclaiming objects no longer
required. It is only appropriate to garbage collect re-useable objects,
e.g. disc storage space, and not resources that can only be used once.
Unless there is an unlimited supply of objects it is always necessary to

perform garbage collection.
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The main garbage collection schemes are (i) mark-scan and (i1)

reference counts. Each has its advantages although in practice the
great majority of garbage collectors use mark-scan. This is at least in

part because reference counting cannot deal with cyclic structures.

Cyclic structures are those which contain closed loops of pointers
from some object back to itself. For example the definition of recur-

sive structure:

structure ::= object
| (structure structure)

can itself be represented by a cyclic structure:
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Note that it is not essential to use a cyclic representation but it is

often the most convenient or efficient.

The aim here is to pfesent a new algorithm for garbage collection
in the presence of cycles. It arose from work on graph reduction
machine design but is also relevant to extensions the to UNIX described
above, or indeed any systems where garbage collection is needed. The
new algorithm uses reference counts and is an extension of the wusual

reference counting algorithm.
A Brief Survey of Object Management Techniques

Mark-scan garbage collection need only be invoked when there are no
objects free, otherwise it imposes no penalty. The first phase (mark)

causes every object actually in use to be ‘marked’ (usually by setting a
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bit), starting from the ‘root’ and recursively traversing pointers. The

‘scan’ phase examines the mark on every object, un-marked objects are

free and are collected together for re-use.

The advantages of mark-scan are that, given sufficient resources,
no garbage collection overhead is incurred and that the space overhead
is minimal: one bit per object. A disadvantage of mark-scan is that the
structure must not be changed during garbage collection, so normal work
must be suspended. A second disadvantage is that all objects must be
scanned (no matter how many are free), so the ‘cost’ of garbage collec-
tion is proportional to the total number of objects. In a distributed
system this can be serious because work on all processors must halt for
a global search to take place when any one processor runs out of
objects. There are versions of mark-scan which operate in parallel with
normal processing but the garbage collection is still global in the
sense that the entire system is always searched[Dijkstra et al. 1978,

Kung and Song 1977].

Reference counting consists of associating with each object a count
of the number of references (pointers) to it; when the count reaches
zero the object is free and can be re-used. The reference count has to
be updated each time the structure is changed (e.g. when adding or

deleting a pointer).

The advantage of reference counting is that the overhead is spread
between all structure manipulations: the work done is just a constant
factor of overhead. Also, reference counting is localized, only access-
ing structurally adjacent objects. The disadvantége of reference count-
ing is that it cannot guarantee to deal correctly with cyeclic (i.e.
self-referencing)  structures. The new algorithm presented below
attempts to solve this problem whilst retaining most of the advantages

of reference counting over mark-scan garbage collection.
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The System Model

For the purposes of exposition an abstract system model (a directed
graph) will be wused which hides certain implementation-dependent
details. The aim is to introduce the new algorithm and at the same time

demonstrate its correctness.

The notation used is simple but rather limited by the set of char-

acters available for printing:
A ::=B Axiomatic Definition: A is defined to be B
Ax B Cartesian Product of A and B
A++ B Union of set A and set B
A-B Set Difference (asymmetric)
a 6 A Set Membership: true when a is a member of set A
{s | P} Set Definition: the set of s such that P is true
|| S || Cardinality: the number of elements in set S

A& B Boolean: A and B

A A:B:C Predicate: for all A for which B holds, C holds

Let the system consist of a set of objects (Ob) and a set of

pointers (P) between them:

Ob ::= some finite non-empty set

P ::= some sub-set of (Ob x Ob)

When an ordered pair (r,s) is in P it is said that ‘r points to s’ (or
alternatively ‘s is pointed to by r’). For a given object the set of

objects which it points to are called its ‘sons’:
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sons(r) ::= {s | (r,s) € P}

In practice the system may be implemented by having each object contain

the addresses of its sons.

Those objects which can be reached by traversing a series of

pointers from a given object will be called the ‘reach’ of the object:
reach(r) ::= sons(r) ++ {reach(s) | s 6 sons(r)}

The reach of r is the union of the sons of r and the sets of objects in
the reach of each of the sons of r. When some object s is in reach(r)

it is said that ‘s is reachable from r’.

The purpose of object management is to keep track of the objects
which are in use and those which are free. One fixed object, the Root,
is selected as always being in use as the base of the system. Any other

objects reachable from Root are defined to also be in use:
Inuse ::= {Root} ++ reach(Root)
The remaining objects are free for re-use:

Free ::= Ob - Inuse

Reference Counting Object Management

Reference counting object management operates by associating a number
with each object to indicate the number of pointers (i.e. references) to

it. This number will be called the reference count:
refce(s) ::= || {(r,s) | r € Ob; (r,s) € P} ||

Note that the reference count of an object is defined by the above

axiom. In what follows it will be sufficient to describe the creation
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and deletion of pointers, without explicitly giving the corresponding
changes to reference counts.

In practice the reference count may be stored as a part of the

object.

Reference counts are correct if they can reliably be used to deter-
mine which objects are in use and which are free. For a given set S of

objects, correctness is expressed by the predicate Pl:
PI(S) ::=As : s 6 S : refc(s)=0 <=> s € Free

Thus the entire set of reference counts is correct when P1(0b) is true.

It is then guaranteed that objects with reference count zero are free.
The Standard Reference Count Algorithm

The standard reference count algorithm will now be described as it forms

a part of the new improved algorithm.

The aim is to allow pointers to be manipulated (created,copied or
destroyed) whilst maintaining the truth of P1(Ob). For the purposes of
exposition, three pointer-changing operations will be described although
other sets of operations c;n be supported. The three operations are to
create a new pointer (NEW), to copy an existing pointer (COPY) and to

destroy a pointer (DELETE).

NEW(r,s) ‘Create a new pointer from r (r 6 Inuse) to some free object,

thus bringing it into use’

NEW(r) ::=
search Ob for s such that refc(s)=0;
P :=P +H {(r,s)}

COPY(r,(s,t)) ‘Copy pointer (s,t) so that r points to t; (r,s,t €

Inuse)’
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COPY(r,(s,t))) ::=
P := P + {(r,t)}

DELETE(r,s) ‘Destroy pointer (r,s); (r,s € Inuse)’

DELETE(r,s) ::
P:=P - {(r,s)}
if refc(s)=0 & s$Root then
for t in sons(s) do DELETE(s,t) od
fi

The above algorithm is of course unsatisfactory as it does not
preserve P1(0Ob) when there are cycles in the graph. Consider a graph of
two objects and two pointers:

Root,a}
ROOtaa)’(a’a)}

)
~ —~—

P1(0b) holds, Inuse={Root,a}, Free={}.

Clearly there is a cycle because of the pointer (a,a). When the pointer
(Root,a) 1is deleted the state of the system is defined by ‘DELETE’

above:

rd
H e
i
~ -
)
[
N
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Hence Inuse={Root}, Free={a}. However P1(0Ob) is false because (a 6

Free) and (refc(a)=1).
Strong and Weak Pointers

Now the new algorithm can be described. It as based on the fact that
the standard reference count algorithm given above will work when there

are no cycles. (The proof is left as an exercise for the reader).

In the new algorithm, the pointers (P) are partitioned into two

distinct subsets which will be called Strong and Weak:
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Strong is a subset of P
Weak is a subset of P

Strong ++ Weak ::= P

Strong Intersect Weak ::= {}
The aim is that the strong pointers will be acyclic and span every
object in use; the weak pointers are the remaining, non-strong pointers.
Provided the strong pointers are acyclic, they can be managed correctly
by the standard algorithm. The strong and weak pointers are set up in a
way which allow easy detection of the situations where standard refer-

ence counting would fail.

The strong-sons and strong-reach of an object can be defined by
replacing P by Strong in the definitions of sons and reach above. The
strong-sons of an object are those pointed to by a strong pointer from
r. Similarly the strong-reach of an object r consists of those objects

which can be reached from r by traversing only strong pointers:

Ssons(r) ::= {s | (r,s) €6 Strong}

Sreach(r) ::= Ssons(r) ++ {Sreach(s) | s € Ssons(r)}

The strong pointers and weak pointers to an object (r) contribute
to the corresponding strong and weak reference counts (Srefe(r),

Wrefe(r)):

Srefc(s) ::= || {(x,s) | r € Ob; (r,s) 6 Strong} ||

Wrefe(s) ::= || {(r,s) | r € Ob; (r,s) € Weak} ||

In practice these reference counts may be stored as part of each object.
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As a consequence of the above definition it is always true that the

reference count of an object is the sum of its strong and weak reference

counts:

refe(r) ::= Srefc(r) + Wrefc(r)

The algorithm will rely on two properties of strong pointers:

(1) Strong pointers are acyclic, no object can be reached from itself
by traversing only strong pointers. For a given set S of objects:
strong_acyclic(S) ::=
As : s €8 : not(s 6 Sreach(s))

Use of strong pointers alone will never cause the standard algo-

rithm to fail.

(ii) Strong pointers span the objects in use, each object in use can be
reached from Root by traversing strong pointers only. For a given

set S of objects:

s : 8 €68
s 6 reach(Root)
<=> s 6 Sreach(Root)

strong_span(S) ::= A

All objects reachable from Root have some strong pointers to them.

This can be summarised by the predicate P2, (noting that for correctness

Pl must also hold). For a given set S of objects:

P2(S) ::= P1(8) & strong_acyclic(S) & strong_span(S)

The purpose of the new algorithm is to ensure
P2(0Ob)

holds after any pointer manipulation, given that it held before.
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The new implementation of the three operations NEW, COPY, DELETE can now

be described.
NEW(r) ‘Create a new pointer from r to some free object thus bringing it
into use; (r € Inuse)’
NEW(r) ::=

choose s from Ob such that refc(s)=0;

Strong := Strong ++ {(r,s)}
P2(0b) is preserved by NEW(r). Given P2(0b) holds before the new
pointer is created, s is initially free and points to no other objects,
so the new pointer (r,s) cannot create a cycle; because (r,s) is strong
and r is in wuse, s becomes a member of both reach(Root) and

Sreach(Root).

COPY(r,(s,t)) ‘Copy pointer (s,t) so that r points to t; (r,s,t €
Inuse)’
COPY(r,(s,t)) ::=
Weak := Weak ++ {(r,t)}

P2(0Ob) is also preserved by COPY. There is no change to Inuse and (r,t)

cannot create a strong cycle as it is weak.
DELETE(r,s) ‘Destroy pointer (r,s)’

When deleting a pointer there are four cases to be considered depending
whether the pointer (r,s) is strong or weak and what other pointers
there are (to s). The first three cases are straightforward and action
taken 1is exactly as 1in the standard algorithm. The fourth case
corresponds to situations where the standard algorithm will fail; in
these cases a local search is made of objects reachable from s to decide
whether s has become free and if appropriate, re-establish a correct
partitioning of pointers into strong and weak. If s has become free

then the pointers from it to other objects are deleted also.
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(i) DELETE(r,s) when (r,s) is weak

DELETE(r,s) ::=
Weak := Weak - {(r,s)}

No change to Inuse; all objects still have a strong pointer to them.
(ii) DELETE(r,s) when (r,s) 6 Strong and Srefc(s)>l

DELETE(r,s) ::=
Strong := Strong - {(r,s)}

No change to Inuse; all objects still have a strong pointer to them.
(iii) DELETE(r,s) when (r,s) 6 Strong & Srefc(s)=1 & Wrefc(s)=0

DELETE(r,s) ::=
Strong := Strong - {(r,s)}
if s$Root then

for t in sons(s) do DELETE(s,t) od
fi

If there are no pointers to a object it cannot be reachable from Root;
so if it is not Root, it must be free. To re—establish P2(0Ob), recur-
sively delete sons to ensure there are no pointers from free objects to

objects in use and that all free objects have a reference count of zero.
(iv) DELETE(r,s) when (r,s) 6 Strong & Srefc(s)=1 & Wrefc(s)>0

In this case it cannot be decided immediately whether s is free or not.
This is precisely the situation which standard reference counting will
fail. The new algorithm performs what is essentially a localized mark-

scan garbage collection rooted at s.
The following two axioms are the key to the algorithm:

(I) Deleting pointer (r,s) can affect the reference counts of at most s

and reach(s). Any object not reachable from s cannot be affected.
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(I1) The objects which become free when any pointer (r,s) is deleted are

those reachable from s but not in use:

Newfree ::= reach(s) - Inuse

::= reach(s) - ({Root} ++ reach(Root))

The method is first to mark the objects which might be affected by
the deletion (Axiom I) by colouring them black. (Remembering that
by Axiom II, Root should always remain white), then to scan the
black objects searching for one pointed at by a non-black object.
Such an object must be reachable from Root so it can be coloured
white, as can all objects reachable from it., Once this has been
done, all the original black objects which were reachable from Root
have become white. The remaining black objects are (by Axiom II)
exactly the members of Newfree, and can be freed in the usual way.

Black is a subset of P

White is a subset of P

Black ++ White ::= P

Black Intersect ite ::= {}
The aim is that whites are correct and blacks are those which need

to be considered.
Black := {s} ++ reach(s)
(assume all other objects are white)

Initially, P2(White) holds because whites are unaffected by the pointer
deletion; some weaker condition P3 holds for the black objects. The
objects coloured black are either newly freed or are reachable from a

white object. For a given set S of objects:

P3(S) ::= ( S = Newfree ++ reachW(S) )

Where reachW(S) ::= S Intersect {reach(w) | w € White}
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After pointer (r,s) is deleted the predicate Q will be true:
Q ::= P2(White) & P3(Black)

The truth of P3(Black) can be shown to be true by recognizing that the
Root is white so the objects reachable from white objects are exactly

the objects in use.

The set WB of black objects pointed to by a white object 1is
selected and strengths are adjusted so that at least one pointer from
black to white is strong. This can never create a cycle so it is now
safe to make these objects white and (P2(White) & P3(Black)) will still
hold. Now the objects reachable from WB are scanned changing them to
white and at the same time ensuring Q by sometimes altering the

‘strength’ of pointers as they are traversed.

Finally P2 is established over all the original blacks that were
reachable from whites and P3 still holds for the remaining blacks. As
reachW(Black) 1s now empty the remaining black objects are exactly the
members of Newfree, the set of objects which have become free. Each
pointer in a black object is now deleted leaving the black objects with
a reference count of zero.  Because they are free, and have zero refer-

ence counts then P2(Black) is now true. Given

(P2(White) & P2(Black))
and that

(Black+White::=0b)
it follows that P2(0Ob) is now true, as required.

All this can be achieved by the following program for case (iv) of

DELETE when (r,s) is strong, Srefc(s)=1 and Wrefc(s)>O0:
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DELETE(r,s) ::=

Strong := Strong - {(r,s)};

if s$Root then
colour(s):=Black;
for t in sons(s) do mark(s,t) od;
for t in sons(s) do scan(s,t) od
if colour(s)=black then

for t in sons(s) do kill(s,t) od

fi

fi

Where the procedures mark, scan and kill perform the main work of the

algorithm:

mark(r,s) ::=
if s#root then
if colour(s)=white then
colour(s):=black;
Brefc(s):=1;
for t in sons(s) do mark(s,t) od
else
Brefc(s):=Brefc(s)+l1
fi
fi

It is initially assumed that all objects are white (e.g. they are given
that colour by NEW). The purpose of Brefc(s) is to count the number of
pointers to s from black objects. When marking is complete, any objects

for which
refc(r) > Brefec(r)
must be pointed to by a white object.

scan(r,s) ::=
if colour(s)=black then
if Brefc(s)<refc(s) then
‘make sure there is at least one strong
: pointer from a white object to s’
colour(s):=white; ’
for t in sons(s) do partition(s,t) od
else
for t in sons(s) do scan(s,t) od
fi
fi

The black objects with pointers from white objects (reachW(Black)) are
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used as ‘sub-roots’ from which to establish more white objects, at the

"

same time ensuring P2(White):

partition(r,s) ::=
if colour(s)=white then
Weak:=Weak+{(r,s)}
else
colour(s):=white;
Strong:=Strong+{(r,s)};
for t in sons(s) do partition(s,t) od
fi
The partitioning procedure ensures that the pointers from white objects
have the correct strengths. The procedure can be derived directly from
the definition P2, Finally, any remaining black objects must be visited
to ensure their reference counts become zero as required:
kill(r,s) ::=
if colour(s)=black then
P:=P-{(r,s)};

for t in sons(s) do kill(s,t)
fi

It is guaranteed that the newly free objects are spanned by the object

on which deletions are performed.

Another version of the algofithm (without proof outline) is presented as
an appendix. That version is designed for use in combinator graph
reduction machines, or indeed any application where it is élways known
when cycles are being create@. Combinator machines have the property
that arbitrary pointer manipulations are not allowed; only certain ‘com-
binator’ instructions manipulate the structure with a consequent sim-
plification of the object management scheme. In particular it is known

that cycles are only created by the Y instruction.

The key advantége of the new reference counting algorithm is its

strong locality. Even in a very large structure, possibly spanning many
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computers, it is only necessary (at most) to examine the objects reach-
able from some object to determine whether it is free. Suéh 1déality
might also be especially useful in Virtual Memory systems, where alter-
native garbage collection methods require every page in the Virtual

Memory to be examined, no matter how few objects are actually freed.

The new algorithm can be compared to other algorithms by Bobrow and
by’Hughes[Bobrow 1980, Hughes 1983]. In the former scheme, objects are
divided into zones, with intra-zonal pointers being treated differently
from inter-zonal pointers. Intra-zonal pointers may form cycles and are
not reference counted; inter-zonal pointers may not form cycles and are
reference counted. Objects do not become free until the reference count
of their whole zone becomes zero. The user of the algorithm is relied
upon to create the zones and ensure that inter-zonal pointers are acy-
clic. When such pointers are manipulated, the user must be able to find

the correct per-zone reference count in order to update it.

Hughes’ scheme can be regarded as an automated version of the one
of Bobrow just outlined. Instead of making the user define the zones
they are dynamically computed; instead of making the user find the per-
zone reference count, each object contains a pointer to it. Zones are
defined by the maximal cycles in the structure and are being detected
using an algorithm due to Tarjan[Tarjan 1972]. As pointers are manipu-
lated it is occasionally necessary to re-compute the zones. Although an
improvement on the Bobrow algorithm, the use of Tarjan’s cycle detection
algorithm is a problem, it appears to require that every resource be

visited (or at least, every pointer traversed).

The new algorithm that I have introduced above can be viewed as a
further development of these two. Not only are cycles ‘recognized’
automatically, but also there is only a localized search to determine

whether an object is free.
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There are of course many other schemes for object management but
nearly all either rely on some form of global search (or globaf syn-

chronization), or are not sufficiently general.
An Essential Implementation Trick

In the above description the alert reader will have noticed the opera-
tion
‘make sure there is at least one strong
pointer from a white object to s’

The details of this operation will not be given. (There is a possible
need to count black strong pointers and white strong pointers
separately.) However a useful implementation trick will be described.
It enables the strength of pointers to an object to be changed without

knowing which objects contain those pointers, for example, the opera-

tion:
‘make all the weak pointers to s into strong pointers’

(which is used in the version of the algorithm in the Appendix). This

could have a naive implementation:

‘visit every object, if it points to S change strong pointers

to weak’

But the whole point of reference counting has been to avoid this kind of

global search.

Instead there is a implementation trick whiph exactly sults our
purpose. Each pointer and each object can have a bit associated with
it. When a pointer and a pointed-to object have the same bit-value the
pointer is. strong; when a pointer and a pointed~-to object have different

bit-values the pointer is weak.
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All operations utilizing the ‘strength’ of pointers can now be

defined in terms of single-bit changes:
‘make all the weak pointers to s into strong pointers’
is implemented as
s.bit := NOT(s.bit)
(where ‘s.bit’ is the strength bit associated with s) and
‘make pointer p into a weak pointer’
is similarly implemented as
p.bit := NOT(p.bit)
(with corresponding changes to the appropriate reference counts).

The net overhead in addition to the standard reference count algo-
rithm is one bit per pointer and one bit per object; in addition some
extra reference counts are needed for weak pointers when they occur. As
weak pointers only occur when cycles are present, this is in total a
very low space overhead. (There is also the cost of the temporary black

reference counts in the final case of DELETE.)

Note that the strength/weakness of a pointer can only be determined
by examining both the pointer and pointed-at object. As strength or
weakness need only be known by the garbage collector when it is travers-

ing the structure, no problems are introduced by the trick.
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Conclusion

This leads us to the question, which must have been rising
insistently in the reader’s mind: What is the use of all this
elaboration? At this point our friend the practical man, must
surely step in and insist in sweeping away all these silly
cobwebs of the brain. The answer is that what the mathemati-
cian is seeking is Generality.

[Whitehead 1911}

8.1 Summary

In this thesis I have attempted to show that recursive structure is a
design principle of general applicability in computer systems. In addi-
tion I have illustrated the principles of recursively structured naming
(and its use in UNIX United) and recursively structured computation.
Good structure is essential if computer systems are not to become com-

plex and unwieldy.

A model is an abstraction of a system. By using a model it is pos-
sible to concentrate on the structure (form) of a system independent of
the content of its parts. A model concentrates on some aspect(s) of
interest at some level of detail in the system. Hierarchical structures
are good for modelling systems because they simplify by encapsulation.
A recursive structure is a uniform hierarchy: anywhere an atomic element
can appear a complete sub-structure may also appear. Combining recur-

sive structures produces another recursive structure of the same type;
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recursive structures have no distinguished ‘root’ element and so may be

4

arbitrarily nested to any depth.

In order to separate the static and dynamic parts, a computer sys-
tem can be modelled as a program plus a computer which executes the pro-
gram. Multi-level systems can be built by combininé computers or by
stacking programs ‘on top’ of each other to form multi-level inter-
preters. A recursive interpreter extension is a form of multi-level
interpreter where the new level retains the appearance of the old whilst
‘adding value’ to the old interpreter. The added value may take the
form of the ability to access a wider range of objects (i.e a larger
name space) or it may be less tangible, in the form of increased relia-

bility or availability.

Naming is the use of names to stand for objects. Naming is a par-
ticularly important aspect of computer system design. The naming
mechanisms define the range of objects that can be manipulated. There
is some form of naming at each level in a multi-level system. Typically
a name at one level is an address (or route) at another (lower) level.
The important idea emphasized was that no matter which level is being
considered the basic naming issues are the same. The particular naming
mechanisms chosen at any level reflect the constraints of that level but
there is an overall ‘theory’ of naming which is applicable at every
level. Some common naming mechanisms were surveyed, each being summar-
ized by a simple rule for ‘resolving’ names. Recursive naming was shown
to have particular advantages for building systems because it allows
them to be combined (or decomposed) to arbitrary depths. In addition a
new naming scheme combining the advantages of two common naming methods

was given.

The UNIX United/Newcastle Connection scheme demonstrates the use of

recursive naming in the design of a distributed computer system based on
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the UNIX Operating System. File naming in UNIX is recursive, so the
UNIX United design simply extends this naming to encompass files stored
on many systems., This design was implemented (by the Newcastle Connec-
tion) and provided a useful distributed system which has been adopted
widely elsewhere. Unfortunately other UNIX system objects do not have
recursive naming so it is not easy to incorporate them into a distri-
buted system. Instead names for these objects are ‘mapped’ between sys—

tems to provide each system with the illusion of being the only one.

Recursive computation represents a divide—and-conquer approach to
program execution. The commonest model of computation used today is the
so-called Von Neumann model, a form of control driven computation. It
is characterized by a single thread of control, a linear array of
storage cells and a low-level machine language. In data driven computa-
tion instructions are executed when the data they require becomes avail-
able. In demand driven computation instructions are executed when the
data they produce is needed by another instruction. A survey of control
driven, data driven and demand driven computation was presented, demon-
strating the advantages of recursive computation in terms of locality of

reference and execution.

Future computer systems may be a development of the UNIX system.
Some suggestions were made as to beneficial changes which could be made
to UNIX. However it seems likely that the next widely successful class
of systems will be considerably different from the system of today. It
was suggested that some of the ideas for recursive naming might be
incorporated into such future systems and that they might also involve a
recursive model of computation. In conjunction with these suggestions,
some of the other work on recursive computer systems was briefly exam-

ined.

Finally a reference counting object management scheme was described
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which is able to deal correctly with cyclic structures without involving
global overhead. One development of the scheme provides an increméntal
object manager for a ‘graph reduction’ machine (which supports func-

tional programming) and this is described in an Appendix.
8.2 Future Research

The design of recursively structured systems offers considerable scope
for further investigation. Some particular areas of the thesis which

could benefit from further research will now be considered.

Developing the work described here, it should be possible to build
a UNIX-based recursively structured system. This could incorporate
recursive naming of ‘processes’ and ‘users’ perhaps also using ‘Combined
Naming’ to ease the inconvenience of pathnames. The resulting system
would be close to UNIX but a significant improvement. I feel that this
would be an interesting exercise but of little practical significance.
The advantages of the new system are unlikely to out-weigh the disadvan-

tage of moving away from a standard system.

A new system adopting some of the more radical changes suggested
above (e.g. closure objects, some element of data driven or demand
driven computation) would be more ambitious and interesting. It could
involve a synthesis of ideas from programming language and operating
system design. It should be clear that such a system should be designed
to be a component of a recursively structured system. If this is done
then there are fewer problems when systems are to be combined or parti-

tioned.

Formal models of computer system structure are an area suitable for
further research. The one aspect largely ignored in the treatment of
system structure above was the separation of structure into two hierar-

chies: the ‘details'b hierarchy which describes which parts are
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components of others and the ‘uses’ relation which describes which parts
are used by name in others. This could lead to a simplification” and

generalization of programming language ‘module’ constructs.

Naming was presented from an essentially operational point of view.
It would be an improvement to give a more mathematicalltreatment. Nam-~
ing could be viewed as the relation between names and objects. In a
relational model of naming, the definitions given above for name
resolvers could be used to define a relation over names and objects. A
context could be modelled as a binary relation (i.e. a subset of all the
pairs of names and objects); a context structure could then be some
higher order relation. Such a model would be a nice generalization and
might result in some simplification and the discovery of further naming

schemes.

Further development is being undertaken (by others) on the Newcas-
tle Connection software. The original experimental version is being
adapted for use over wide area networks and multiple networks. This
involves a substantial implementation effort but retains the UNIX United
system design. Another aspect being investigated is the design of a
standard network interface  for the Newcastle Connection to make it

easier to adapt the software to different networks.

It is worth noting that the Newcastle Connection cannot be fully
transparent. The reason is that, despite what was said above, the UNIX
kernel interface is not completely specified. For example, one of the
system calls (ioctl(2)) provides a device-dependent extension to the
kernel in order to use the built-in features of devices attached to a
system. Each kind of device can make different uses the parameters of
‘ioctl(2)’, to the extent that value parameters of one device’s inter-
face can bé result parameters when another device is accessed. In addi-

tion the set of devices available is system—dependent. In future
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systems it would be useful if some kind of standard device interface
were provided, rather in the way that a standard interface to terminals

is provided in the more recent versions of UNIX.

The area of the thesis with most immediate scope fo? further work
is the resource management algorithm described in Chapﬁer 7. The algo-
rithm given can be improved in cost, especially when more is known about
the way in which it will be used. This is demonstrated by the version
of it given in the Appendix which manages structures created using com-
binators. Further work is needed to show the correctness of this latter
algorithm. Also it would be useful for distributed systems to determine
the conditions for non-interference of concurrent invocations of the

algorithms.

To conclude, it has been shown that structure can play an important part
in the design of computer systems. Recursive structure has been defined
and shown to be a good way of arranging the structure of naming and of
computation. The UNIX United/Newcastle Connection system demonstrates
how recursive naming can simplify the design and construction of a
practical distributed system. A solution has been given to the problem
of managing resources in a structured system (‘garbage collection’);
this new reference counting algorithm has the same (constant) cost as
the standard algorithm unless there are cycles present when there is an

extra overhead related to the size of the cycle.

This work contributes to the overall aim of managing the complexity

of computer systems and towards the design of better systems in the

future, based on the principles of recursive structure.
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Object Management in Combinator Graph Reduction

Here, another version of the reference count algorithm is given. This
version is more efficient but can only be used when information is
available about the creation of cycles. That is, when a pointer is

copied, it must be specified whether it needs to be weak.

In this case the set of weak pointers can be made minimal by only
making pointers weak when absolutely necessary. The weak pointers are
minimal in the sense that making any one weak pointer strong would

create a cycle of strong pointers.

For example, in a combinator graph reduction machine[Clarke et al.
1978, Turner 1979] it is known that only one instruction, the Y combina-
tor, will create a cycle. Execution of Y can be implemented by creating
a weak pointer, all other pointers can be strong (except subsequent

copies of weak pointers).

The minimality of weak poiﬁters means that the mark and scan phases
of the algorithm can be combined into a single traverse, visiting each
object reachable from s at most once in determining whether s is free.
If s has not become free, the same traverse will have ensured the

correctness of pointers from s and reach(s).

The new ‘minimality-dependent’ algorithm is the same as before

except for two alterations:
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(1) COPY is given an extra, boolean, parameter to indicate whether to
create a weak or a strong pointer (the correctness of the parameter

value being assumed).

(2) The crucial case of DELETE, when the last strong pointer to an

objects s with (Wrefec(s)>0), is handled as follows:
DELETE(r,s) ‘where (r,s) 6 Strong, Srefc(s)=1, Wrefc(s)>0’

DELETE(r,s) ::=
Strong:=Strong-{(r,s)};
‘make all the pointers to s strong’;
for t in sons(s) do suicide(s,(s,t)) od;
if Srefc(s)=0 then
for t in sons(s) do kill(s,t) od
fi
where ‘make all pointers to s strong’ can be accomplished by altering a
bit at s as described earlier and ‘kill’ is the same as used in the pre-
vious version of DELETE. ‘suicide’ performs a recursive traversal of
objects reachable from s:
suicide(me,(r,s)) ::=
if (r,s) € Strong then
if (Srefc(s)>l) or (s=me) then
Weak :=Weak+{(r,s)}
else
for t in sons(s) do suicide(me,(s,t)) od

fi
fi

The operation ‘make all the pointers to s strong’, creates N cycles of
strong pointers where N=refc(s) (because at that point every pointer to
s 1s weak and weaks are minimal). The recursive traversal attempts to
‘weaken’ just sufficient strong pointers to ‘undo’ these incorrect
cycles without weakening the last strong pointer to-any object (except s
which 1is carried along as parameter ‘me’). On termination, if all

pointers to s have been weakened then s must be free; otherwise s is not

free and correctness (i.e. P2(0Ob)) has been restored.
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I have made use of the above algorithm successfully in an emulation

of Turner’s combinator graph reduction machine. ' “
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