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Abstract

This thesis addresses the problem of managing the runtime behaviour of dis-
tributed programs. The thesis of this work is that management is fundamentally
an information processing activity and that the object model, as applied to action-
based distributed systems and database systems, is an appropriate representation
of the management information. In this approach, the basic concepts of classes,
objects, relationships, and atomic transition systems are used to form object
models of distributed programs. Distributed programs are collections of objects
whose methods are structured using atomic actions, i.e., atomic transactions.
Object models are formed of two submodels, each representing a fundamental
aspect of a distributed program. The structural submodel represents a static
perspective of the distributed program, and the control submodel represents a
dynamic perspective of it. Structural models represent the program's objects,
classes and their relationships. Control models represent the program's object
states, events, guards and actions-a transition system. Resolution of queries on
the distributed program's object model enable the management system to control
certain activities of distributed programs.

At a different level of abstraction, the distributed program can be seen as a
reactive system where two subprograms interact: an application program and a
management program; they interact only through sensors and actuators. Sen-
sors are methods used to probe an object's state and actuators are methods used
to change an object's state. The management program is capable to prod the
application program into action by activating sensors and actuators available at
the interface of the application program. Actions are determined by management
policies that are encoded in the management program. This way of structuring
the management system encourages a clear modularization of application and
management distributed programs, allowing better separation of concerns. Man-
agemental concerns can be dealt with by the management program, functional
concerns can be assigned to the application program.

The object-oriented action-based computational model adopted by the man-
agement system provides a natural framework for the implementation of fault-
tolerant distributed programs. Object orientation provides modularity and exten-
sibility through object encapsulation. Atomic actions guarantee the consistency of
the objects of the distributed program despite concurrency and failures. Replica-
tion of the distributed program provides increased fault-tolerance by guaranteeing
the consistent progress of the computation, even though some of the replicated
objects can fail.

A prototype management system based on the management theory proposed
above has been implemented atop Arjuna; an object-oriented programming sys-
tem which provides a set of tools for constructing fault-tolerant distributed pro-

xiii



grams. The management system is composed of two subsystems: Stabilis, a
management system for structural information, and Vigil, a management system
for control information. Example applications have been implemented to illus-
trate the use of the management system and gather experimental evidence to give
support to the thesis.

.
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Introd uction

Motivation
Our society is increasingly and irreversibly dependent upon computing systems,
and consequently, on their reliability. Computing systems are being used in all
types of applications, ranging from mass-produced televisions to products that
are produced in small numbers such as nuclear power stations.

Reliability of computing systems is a very important requirement to all these
products. For mass-produced products, and service products like banking and
telephony, reliability is a monetary issue. If mass-produced products prove to be
unreliable, then their producers are liable to suffer monetary losses. Similarly, if
a bank has its services disrupted because of unreliable computing systems, then
monetary losses are usually inevitable. For systems like nuclear power stations,
railway control systems, and airspace control systems, unreliability of computing
systems can cause serious human and/or monetary losses. Therefore, reliability
is a key issue in the development of computing systems, in particular, distributed
systems.

Distributed systems became possible due to coevolution of computing and
communication systems. Co-operation between components of a distributed sys-
tem to execute a task and maintain some distributed shared data readily available
to its users is the major benefit obtained from distributed computing. However,
reliable and useful operation does not come without costs. Because distributed
systems are composed of many components that can fail independently, the task
of writing distributed programs that behave dependably in the presence of par-
tial failures is very difficult. Programmers of distributed systems have to stay in
control of not only the standard system activities when all components are well,
but also of the complex situations that can occur when some components fail.
With the ever increasing dependence of our society upon computing services, the
demand for reliable distributed systems is likely to increase. Consequently, the
size and complexity of distributed applications is bound to increase and make
the programming of distributed systems even more difficult. In such scenario, it
is crucial, for reliability purposes, to have a programming environment able to

..
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XVlll Introduction

provide simple and well-integrated programming tools for implementation and
management of distributed systems.

Objective
The aim of this thesis is the implementation of a novel environment for man-
agement of object-oriented action-based! distributed programs. Object-oriented
action-based distributed programs are composed of interacting objects that are
instances of classes whose methods have been structured using atomic actions.
Management involves the processing of dynamic information concerning a dis-
tributed program, as the program executes, and the enforcement of changes upon
it to make it conform to a desired management policy.

The thesis of this work is that management is fundamentally an information
processing activity and that the object-oriented model, as applied to action-based
programming systems and database systems, is an appropriate representation of
the management information. In this approach, the basic concepts of object,
classes, relationships, states and atomic transitions are used to form an object
model of distributed programs. The resolution of queries on object models enable
the management system to control certain activities of distributed programs.

The management thesis proposed above entails the separation of information
about the distributed program being managed, i.e., metainformation, from infor-
mation concerning the distributed program's intrinsic function. There are two
categories of metainformation: structural metainformation and control metain-
formation. An object model is composed of two submodels, each representing one
of these two categories of metainformation. Classes and their relationships form
the structural submodel; this submodel represents a static perspective of the dis-
tributed program. A control submodel is a representation of a transition system;
in the control submodel the distributed program's object states and transitions
between states are represented. States in the control submodel represent states of
objects of a distributed program. In the control submodel edges between states
represent transitions from an object state to other object state. These transitions
are atomic and can only be traversed when their corresponding guards are sat-
isfied. Transitions in the control submodel are implemented as guarded actions.
The control submodel represents a dynamic view of a distributed program. The
metainformation represented by the object model is dynamic, it reflects changes
in the relationships between the objects of a distributed program. It is the pro-
cessing of such metadata that makes possible the management of distributed
programs.

1In this context, action is a synonym with transaction or atomic action.
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Distributed Program

actuators

Management Program

Application Program

Figure 1.1: Distributed program seen as a reactive system.

At a different level of abstraction, the distributed program can be seen as a
reactive system where two subprograms interact: an application program and
a management program; they interact only through sensors and actuators (Fig-
ure 1.1). Sensors are methods used to probe an object's state and actuators are
methods used to change an object's state. The management program is capable
to prod the application program into action by activating sensors and actuators
available at the interface of the application program. Actions are determined by
management policies that are encoded in the management program. This way
of structuring the management system encourages a clear modularization of ap-
plication and management distributed programs, allowing better separation of
concerns. Management concerns can be dealt with by the management program,
functional concerns can be assigned to the application program.

A prototype management system has been built to gather experimental evi-
dence to give support to the thesis. The prototype is composed of two subsys-
tems: Stabilis and Vigil. Each subsystem manages information related to one
of the two submodels identified above. Stabilis is the subsystem responsible for
the management of structural information. The name of the subsystem reflects
its role, Stabilis is a Latin word synonymous with stable, firm. Vigil is the sub-
system responsible for the management of control information. Vigil is a Latin
word synonymous with guard, sentinel. Sentinels are constantly aware of the
changes in the surrounding environment with the sole objective of timely react-
ing to relevant events. Both subsystems have been implemented atop of Arjuna;
an object-oriented programming system which provides a set of tools for con-
structing fault-tolerant distributed programs. A layered view of the systems is
shown in Figure 1.2; the programming interface allows access to any of the tools
provided not only by the management system but also by Arjuna. Atomic actions
and replication are two of the tools provided by Arjuna that are important to the
implementation of Stabilis and Vigil. Fault-tolerant management is only possi-
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Programming Interface

Arjuna I Stabilis I Vigil

(Atomic Actions, Replication, Persistence, Distribution)

Operating System

Figure 1.2: Layered diagram of the management system.

ble because Stabilis and Vigil can rely on atomic actions and replication. The
programming language adopted by the three systems is C++; it has not been
adapted or extended.

The first step a programmer has to follow to be able to use the management
system is the creation of an object model of a distributed program. Next, the
object model is captured and represented as a database schema. The information
stored in the database schema is used to generate part of the C++ code of
both application and management programs. Subsequently, both programs are
compiled and their object code is linked with code in the libraries of Arjuna,
Stabilis, and Vigil (Figure 1.3). During the execution of the distributed program,
the objects of the application program are constantly monitored by the objects of
the management program. Changes in the state of the objects of the application
program generate stimuli that trigger the execution of guarded actions, that is,
reactions, in the management program. Reactions cause further state changes in
the application program. Stimulus-reaction cycles are intrinsic to management
systems.

The work described in this thesis is synthetic in nature, bringing together
techniques and insights from several branches of computing science. Throughout
the work, object orientation is presented as a unifying paradigm that can be used
to integrate ideas coming from distributed operating systems, database systems,
and distributed programming systems. Management systems can benefit from
this relative unification.



Introduction XXI

Distributed Program

capture Object Model
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Schema
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------'"

Control
Schema

code generation (partial)

Classes
Implementation
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Implementation

Application
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I
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Object Model
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Executable
Program

(database objects)

Figure 1.3: Steps followed to implement distributed programs.



XXll Introduction

Thesis Organization
Chapter 1 introduces fundamental concepts about distributed systems, compu-
tational models and management of distributed programs. The main reasons for
the inclusion of a Chapter on fundamentals of distributed computing at this point
are to make the thesis self-contained and more readable. Chapter 2 presents a
review of research work that have had influence in the way Stabilis and Vigil have
been designed and implemented. Chapter 3 presents the design and implementa-
tion of Stabilis, the prototype system for management of structural information.
Chapter 4 presents the design and implementation of Vigil, a prototype system
for management of control information. Chapter 5 demonstrates the use of the
management system through examples. Finally, in the Conclusions we ponder on
the results obtained so far, suggesting corrections and pointing out directions for
future research.
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1

2 Distributed Systems

For our purposes, a system [8, pages 6-13] is a set of components which in-
teract to deliver a service. The components of a system are themselves systems.
The interaction among the various components of a system is controlled by an
algorithm. An atomic system is a system whose internal structure can be ignored.

A system interacts with its environment, responding to stimuli at an interface
between the system and the environment. An interface is simply a place of
interaction between two systems. Consequently, the environment must be another
system. The external behaviour of a system can be described in terms of a finite
set of external states, together with a function defining transitions between states.
The environment provides stimuli to its system and perceives it only through
discrete transitions from one external state to another.

The external behaviour of a system is the manifestation of activity within the
system, and for a non-atomic system this activity can be observed. The internal
state of the system is defined to be a tuple composed of the external states of the
components of the system. A function maps internal states to external states. The
pattern of internal state transitions is specified and controlled by the algorithm
of the system. The reliability of a system is defined as its ability to deliver its
services, as dictated by its algorithm.

The definitions above have been made general enough that they can serve
two purposes. First, they are applicable to distributed systems and management
systems. Second, they can be applied at many different levels in such systems.

1.1 A Definition
An interesting definition of a distributed system is due to Leslie Lamport:

"You know you have one [distributed system} when the crash of a com-
puter you have never heard of stops you from getting any work done."

Lamport's definition implies the existence of some machines, other than the
ones he knows about, whose crash have prevented him from doing the job he
had been doing in his own machine. From this scenario one may infer that a
distributed system is composed of at least two interconnected computers. The
actual architecture of the system is immaterial to this stage of discussion. What
is important is that Lamport's job depended on the co-operation of these com-
puters to deliver services that were critical to the accomplishment of his work.
Furthermore, these computers had to be interconnected to each other. Other-
wise, the crash of one computer would not have interfered with the functioning
of another. From this, one can infer that a distributed system has at least three
attributes:
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• Multiple Computers: A distributed system contains more than one physi-
cal computer each consisting of CPUs, local memory, possibly some stable
storage and I/O paths to connect it with the other computers of the system.

• Interconnections: Some of the I/O paths will interconnect the autonomous
computers. The interconnections can vary in their specification from twisted
pairs of wire to coaxial cables, or bus-like I/O paths. Different communica-
tion protocols may be used to transfer information among machines.

• Shared State: The computers of a distributed system co-operate to maintain
some shared state available to their users, usually through the execution of
distributed co-operative programs.

The motivations for building distributed systems are various and one of the
most important is independence of failure. Because there are multiple computers
in a distributed system, when one breaks down others may still be operational.
Ideally, users of a distributed system should expect to continue working even
when some computers are not working. Increased availability and reliability,
achieved through replication of components, are very important benefits offered
by distributed systems. Such benefits can be easily nullified if measures are not
taken during the design and implementation of the system to minimize unwanted
dependencies. Again, Lamport's definition might set us thinking about indepen-
dence of failure and the disastrous consequences its absence can cause to the
operation of a distributed system.

Distributed systems are built by interconnecting computers through commu-
nication links. On the one hand, that means that distributed systems, unlike
centralized ones, can grow incrementally and can, potentially, deliver increased
computing power at lower costs. On the other hand, communication links may
not work correctly all the time. Links may be unavailable, messages may be lost
or corrupted. In short, one computer cannot rely on being able to communicate
with another, even if both are operational. Maybe Lamport's distributed system
stopped working because a lightning struck a public telephone line which was part
of a communication link used by the distributed system he was using. Unreliable
communication is a source of complexity when programming distributed systems.

Communication among subsystems of a distributed system can occur at very
different speeds. Differences in communication speeds complicate the design and
implementation of distributed programs. For example, interconnections among
computers usually provide lower bandwidth, higher latency, and higher commu-
nication cost than that available between independent processes within a single
machine.

An important benefit of distributed systems is analogous to that offered by a
public telephone network but in an amplified way-information sharing. Like a
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public telephone network, a distributed system allows physically distant users to
share information, only in a more integrated and faster way. Telecommunication
and computer industries all over the world have recognized this analogy. They
are investing large sums of money in creating distributed computing systems
which will gradually substitute the public telephone network. In order to be
shared, computing resources have to be found, and to be found they have to be
identified, named. So, the assignment to and processing of names of resources in
distributed systems is important.

Distributed systems act as a double-edged sword when security is consid-
ered. Recent advances in cryptography have lent distributed systems an apparent
greater advantage over centralized systems because, unlike centralized systems,
breaking into one computer does not compromise the entire system. The down
side of security in distributed systems is that the potential number of points
vulnerable to attack is enormous.

Finally, distributed system management can be considered as the adjustment
of system state by a manager, be it a management program or a human manager.
There are certain aspects of a system that cannot be defined only in terms of the
function of the system itself because they require the observation of the environ-
ment where the system is embedded. For example, whether a replicated object
will help improve the performance of the distributed system as a whole depends
on its internal construction, its function, and where it is placed in the distributed
system, its management. If the function of the component system, as seen at its
interface, is appropriate to its environment, or vice versa, then the system will
serve its intended purpose. Thus, if an object is close to its clients, then it might
help improve the performance of the system as a whole. Otherwise, if it is not
close, the management program may have to act by moving it closer to where it
is needed. This division between functional and non-functional, or managemental
aspects of systems is very important to the implementation of distributed system
managers. When the design and implementation of a component fails to recog-
nize this natural division of concerns then functional and managemental aspects
become entangled and the distributed system as a whole becomes very difficult
to be managed. Reconfigurations become very costly. Thus, distributed systems
should provide programming tools which help in the design and implementation
of components where functional and managemental concerns are carried out at
the right level. Management of distributed systems is an important property that
software engineers know least well how to achieve [100].

This discussion about the advantages and disadvantages of distributed systems
can set us pondering how the designers of distributed systems choose computa-
tion models and mechanisms adequate to the requirements of the distributed
systems they are building. Transparency is an important requirement design-
ers of distributed systems have to consider. Independence of failure and fault
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tolerance are also very important. The next Section lists various transparency
requirements for distributed systems, setting the foundation for our revision of
distributed systems carried out in the next Chapter.

1.2 Transparency
The Oxford Advanced Learner's Dictionary [72] defines transparency as "being
the state of transparent" and transparent as "allowing light to pass through so
that objects behind can be seen clearly." The word transparency has a semantic
element of no interference. It is this aspect of the definition of the word trans-
parency that we have to explore to understand it as an attribute of distributed
systems.

Let us recall that before distributed systems existed programmers were used
to writing programs for single-processor computing systems. For instance, when
writing a program for a single-processor computer we usually do not have to be
concerned about sending messages across a communication channel to execute
a procedure. In single-processor machines, procedures are located in the same
address space and the compiler can take care of generating the right code needed
to execute them. But, if we are coding the same program for a distributed sys-
tem, then the procedures can be located in different machines and programmers
may have to be aware of sending and receiving messages across machines to get
procedures executed. Thus, from the point of view of a programmer used to
writing programs for a single-processor system, the communication mechanism is
not transparent. It is not "allowing light to pass through", making blurred the
once "clearly seen" procedure call abstraction. In yet other words, the commu-
nication abstraction is interfering with the procedure call abstraction. What the
programmer wants is transparent access to procedures regardless of where they
are located. In the context of distributed systems transparency means being able
to provide mechanisms to the programmer in a form that minimizes the differ-
ences between programming centralized and distributed systems. We would like a
distributed system to be capable of deceiving its users into thinking that the col-
lection of machines is a centralized system. Transparency is probably the single
most important issue to be considered when designing distributed systems. Be-
sides access transparency there are several other mechanisms whose transparency
has to be considered [138, pages 385-387]:

• Naming transparency mechanisms conceal from the user the location of hard-
ware and software resources such as CPU s, printers, files, and data bases.
Users should be able to identify resources by location-independent names.

• Concurrency transparency mechanisms ensure that concurrent accesses to
resources do not interfere with each other.
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• Replication transparency mechanisms conceal from the user the number and
placement of copies of resources or services. Users of a replicated service
should normally not be aware that multiple copies of a service exist, to them
the replicated services can be identified individually when they request op-
erations to be carried out. Although requests for operations may be carried
out concurrently by all copies of the replicated service, replication trans-
parency guarantees that the users of the service only receive back one set of
results.

• Failure transparency mechanisms take advantage of the replication of re-
sources, i.e., redundancy, to try to mask failures and trigger recovery actions
wherever possible.

• Security transparency mechanisms conceal from the user the details of how
resources are protected.

The list of transparency mechanisms can probably be extended indefinitely
because for each new feature added to a distributed system there will most cer-
tainly be a correspondent transparency mechanism trying to conceal from the
user how the feature is implemented. For example, the advent of portable com-
puters has created the possibility for mobile computing. Disconnected operation
has become reality. How can we make the reunion of disconnected systems simple
to programmers? A possible answer is to make the reunion process transparent
to programmers and users of the computing system. This answer shows how
transparency requirement lists may have to grow to accommodate new system
features.

1.3 Fault Tolerance

In day-to-day conversation there is a tendency to treat words like "error" and
"failure" and "fault" almost as synonyms, with their actual meaning being in-
ferred from the context where they are being used. Unfortunately, this can be
a cause of confusion when these words are used to characterize the operation of
systems. Thus, a more precise meaning has to be assigned to each of these and
other words when they are used in technical discussions. The definitions found
next follow the terminology introduced by Anderson and Lee [8, pages 6-13],
Melliar-Smith and Randell [105, pages 143-153].

A fault is a cause of an error. Various kinds of imperfections in the hard-
ware (e.g., electric, electronic or mechanic) or software (e.g., algorithmic) of a
computing system are faults. Also, imperfections in the environment where the
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computing system is placed (e.g., human errors'] are faults. An error is a part
of the state of a system which is "incorrect" or erroneous. An erroneous state
is an internal state of a system such that further normal processing may lead to
a failure. A failure is an event that happens when a system does not perform
according to its algorithm or specification.

There are two distinct approaches to the provision of reliable systems:

• Fault prevention tries to ensure that the system does not or will not contain
any faults. Fault avoidance techniques are used to avoid introducing faults
into the system, e.g., through the use of improved methods of design and
proof. Fault removal techniques, e.g., testing and validation, are used to
improve the overall reliability of the system by removing faults present in the
system. Unfortunately, it is difficult (and for complex systems, practically
impossible) to remove all faults, so fault tolerance techniques are called upon
to deal with any residual faults .

• Fault tolerance techniques try to prevent faults from causing failures. When
faults manifest themselves then erroneous states appear in the system so
the first step towards fault tolerance is error detection. The second step
is to try to evaluate the extent of the damage to the state of the system.
The complexity of the damage assessment is function of design decisions
made regarding the containment of damage. The two last steps in the fault
tolerance process are error recovery and fault treatment. Error recovery
techniques are concerned with promoting the system to a error-free state
from which normal operation can be resumed. Fault treatment techniques
aim at making sure that the manifested fault does not recur immediately.
Locating the fault and repairing it is the best solution. However, when this
is not possible then steps are taken to reconfigure the system to avoid the
fault.

1.4 Object Orientation
The concept of object was introduced by the designers of Simula [45] in the late
sixties. Today, almost twenty five years after its introduction, object orientation
has become an important computing paradigm. Despite its relevance and wide
application, object orientation is still settling down and, thus, invites a discre-
tionary approach in its application. Different areas of computing science can
interpret differently an object-oriented concept. Thus, this Section delineates
object orientation in the context of this work.

1Error really means fault in this case.
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An object is an entity that encapsulates a data structure and has a behaviour
which is determined by its operations. At a higher level of abstraction, objects
are grouped into classes. If objects exhibit common behaviour, then they are
grouped into the same class. Thus, each class definition specifies the attributes
and operations, i.e., the programming interface, that all objects belonging to that
class will display. Each instance of a class-an object-has some variables, its
instance variables, which are determined by the specification of its class. The
operations of an object have access to these instance variables and can thus
modify the internal state of the object.

Among the attributes of a class there are attributes that express relationships.
An important type of relationship between classes is the generalization/specializ-
ation relationship2. Using the generalization/specialization relationship designers
can create hierarchies of classes. Classes higher in the hierarchy specify opera-
tions that are inherited by all classes below and are thus common to all subclasses
of the referent class. The inheritance mechanism is fundamental for the creation
of class hierarchies; several object-oriented programming languages implement
it. In order to create superclasses the designer finds classes that have common
operations and tries to see if such common operations can be effectively grouped
in a superclass. For example, it is possible to define a class, say plant, that
represents a higher-level abstraction of a number of subclasses such as epiphyte3

or aquatic-plant. Each of these two classes can be specialized further into sub-
classes such as lichen and orchid or seawater-plant and riverwater-plant. A detailed
study of other important object-oriented concepts is made in Chapter 3 and 4
where object orientation is viewed in the context of Stabilis and Vigil. The gen-
eralization/specialization relationship allows Arjuna, Stabilis and Vigil a certain
flexibility to programmers which can augment and specialize interfaces of these
systems according to their needs. In Arjuna, persistent objects can be created. In
Stabilis, new database classes can be created and, in Vigil, sensors and actuators
can be refined.

1.5 Computational Reflection
Reflection involves the capacity to process information about a certain domain of
events. A simple example is given by tools for performance tuning found in many
operating systems. An operating system is a program whose problem domain is
the direct management of computational resources. A performance tuning tool
is a program whose problem domain is the management of the operating system.
These tuning tools keep and process statistical information about the operating

2The generalization/specialization relationship is also called the "is-a" relationship.
3Epiphyte is a plant that lives on another plant but is not a parasite.
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system to allow system managers to reflect upon the operating system's behaviour
and react aiming the optimization of its behaviour. The whole performance tuning
process involves three agents: an operating system, a tuning tool, and a system
manager. The system manager follows policies which are enforced through the
mechanisms of the tuning tool. Suppose for a while that the tuning tool and
system manager have been merged into one atomic system. The resulting system
has a two layer architecture where the tuning system plays a reflective role in
relation to the operating system. The behaviour of the operating system is con-
stantly observed, traced through, and changes in its behaviour trigger reactions
by the tuning system. A circle of causality has been established: changes in the
behaviour of the tuning system imply changes in the behaviour of the operating
system, and vice-versa. Let us now look at the resulting system, tuning system
plus operating system, as an atomic system; what we have is a system that has
the attribute of reflection. The tuning system monitors the operation of the op-
erating system using sensors and acts upon this operation using actuators. Thus,
reflective computation does not directly contribute to solving problems in the ex-
ternal domain of the system. Instead, it contributes to the internal organization
of the system or to its interface to the external world. Its purpose is to guarantee
the effective and smooth functioning of the system it is reflecting upon.

We can now define computational reflection as the behaviour exhibited by a
reflective system, where a reflective system is a computational system which has
information about itself in a causally connected way [97].

A reflective system is a system which incorporates structures representing (as-
pects of) itself. We call the sum of these structures the self-representation of
the system. This self-representation makes it possible for the system to answer
questions, that is, resolve queries, about itself and support actions on itself. Be-
cause the self-representation is casually connected to the aspects of the system it
represents, we can say that:

• The system always has an accurate representation of itself .

• The status and computation of the system are always in compliance with
this representation. This means that a reflective system can actually bring
modification to itself by virtue of its own computation.

An example of reflective computation comes from configurable distributed sys-
tems. Configuration managers compute which configuration to pursue next by
reflecting upon the current state of the system.
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1.5.1 What is a reflective architecture?

Capacity of information gathering and interpretation are basic requirements for
reflective systems. Thus, we can view a reflective system as an interpreter with
the following characteristics:

• The interpreter has to give access to data representing aspects of the pro-
gram itself to any program running under the control of the interpreter.
Programs implemented in the environment provided by the interpreter then
have the possibility to perform reflective computation by including code that
prescribes how these data may be managed.

• The interpreter also has to guarantee that the casual connection between
these data and aspects of the program they represent is fulfilled. Conse-
quently, the modifications these programs make to their self-representation
are reflected in their own status and computation.

It is reasonable, in principle, to design a reflective system as a two-layered
architecture because there are two main components in the system: an interpreter
and an interpreted program. The interpreter is assigned to the reflective layer
and the interpreted program to the application layer. The task of the interpreted
program is to solve problems about an external domain, while the task of the
interpreter is to solve problems and queries about the program's computation.

Maes [97]has explained how reflective facilities can be incorporated into object-
oriented languages. Alternatively, the Apertos [146, 144] reflective operating sys-
tem proposed the use of a multi-layered architecture containing meta-objects for
the implementation of an operating system well-adapted to an open and adaptive
computing environment. Choices [96] adopted reflective concepts to simplify and
enhance the implementation of many of the operating system functions. This
work uses reflective principles in a selective manner, specifically to simplify the
architecture and implementation of Stabilis and Vigil.

1.6 Engineering a Reliable Distributed System

The engineering of reliable distributed systems is subject to many requirements
and there are many alternative options a software engineer can follow to possibly
fullfil these requirements. This Section reviews some of the basic mechanisms and
tools software engineers have at their disposal during the design and implemen-
tation of distributed systems.
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1.6.1 Communication

In distributed systems the absence of shared memory means that most of the
communication between objects is carried out using messages sent across a net-
work.

Client-Server Model

In the client-server communication model the distributed system is organized as
a group of co-operating objects. Some of the objects play the role of service
providers, or servers, while others have the role of customers, or clients. The
communication pattern is very simple, a client sends a message to a server ask-
ing for a service to be done, the server executes the service and sends the results
back. The advantage of this model is that it allows an overall simplification of the
underlying communication protocols. An important issue is whether the commu-
nication primitives used to implement the client-server model, e.g., send.message
and receive.message are synchronous or asynchronous.

The client-server model simplifies communication protocols between objects
but it is not good as a programming abstraction. Programmers usually work with
programming languages were the main abstraction for communication between
objects is the procedure call. The problem designers are faced with is how to
combine these two abstractions in order to get the best out of both.

Remote Procedure Call

An interesting and simple solution to this problem was proposed by Birrel and
Nelson in 1984 [27], the mechanism proposed is called remote procedure call
(RPC). The idea behind the mechanism is simple: use the procedure call mech-
anism regardless of whether the procedure called is local or remote in relation to
the caller. When an object on node A calls a procedure on node B, the calling
process is suspended, and the execution of the called procedure takes place on
node B. Information is transported from the caller to the callee as procedure pa-
rameters, and can come back as a procedure result. In this scheme, no message
passing is visible to the programmer.

In programming environments for distributed computing, remote procedure
calls usually are automatically generated by a stub generator. A stub generator
translates definitions of client-server interfaces into the appropriate code needed
for the activation of procedures using remote procedure calls. An interface con-
tains a list of method signatures, that is, their names and the types of their
parameters.
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1.6.2 Threads
Recently, we have seen the development of the concept of lightweight processes
or threads [138, pages 507-519]. Threads are processes within processes, they
are the result of recursively applying the concept of process to the process itself.
Because of that threads share many of the characteristics of a traditional process.
Threads have their own program counter and stack, run strictly sequentially,
can spawn child threads, and share processor cycles exactly as processes do.
Thus, the analogy, thread is to process as process is to machine, holds in many
ways [138, page 508]. The critical difference is that threads cost little to create
and destroy, can communicate efficiently (shared memory) and can be used to
explore concurrency within a process, all because they run in the same address
space as the process that starts them. The importance of threads to distributed
system designers is that they can use the same process abstraction to structure
different levels of the system. Finally, threads and RPCs are being combined
to create faster and cheaper software components to implement servers. Object-
oriented systems can benefit from threads by mapping objects onto these software
components.

1.6.3 Atomic Actions
The notion of atomic action, transaction, originated in the database systems
community and was first formalized by Eswaran [58], Gray [62], and Lomet [94].
Atomic actions have three important properties that help reduce the complexity
of programming concurrent systems:

• Serializability: This property ensures that concurrent execution of programs
that access some common data is free from interference, i.e., a concurrent
execution can be shown to be equivalent to some serial order of execution.

• Failure Atomicity: the second property ensures that a computation can ei-
ther be terminated normally (committed), producing the intended results or
it can be aborted producing no results. This abortion property may be ob-
tained by the appropriate use of backward error recovery, which is invoked
whenever a failure that cannot be masked occurs.

• Permanence of Effect: the third property ensures that any state changes
produced, i.e., data modification produced during the action, are recorded
on stable storage, a type of storage that can survive system crashes with high
chance.

An atomic action, once started, either commits and produces the desired effect
or aborts, having no effect at all. All data touched by an aborted transaction is
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guaranteed to be in the state it was exactly before the beginning of the transac-
tion; regardless of concurrency.

The transaction model presented above is suitable for conventional database
applications but does not provide much flexibility for structuring complex pro-
grams. Extensions to the standard transaction model have been proposed to
overcome the limitations of the fiat transaction model.

Nested Action

Nested actions were introduced by Moss [111] to increase flexibility in the struc-
turing of distributed applications. Transactions start subtransactions which are
themselves implemented by transactional operations. The transaction nesting
structure forms a forest, that is, a graph with a number of nodes (representing
the top-level transactions) as roots, each with several children (representing sub-
transactions) and with the subtransactions themselves having children [95, p. 15].
At the leaf level of the tree are the transactions that actually affect change to the
objects of the application.

Nested transactions are useful mainly for two reasons:

• They allow controlled concurrency within a transaction: one transaction
can run many subtransactions in parallel, with the guarantee that they will
appear to run sequentially, and each will appear to happen either completely
or not at all .

• They provide means for more flexible protection against failures, by permit-
ting nested recovery within a transaction. When a subtransaction aborts, its
parents can still continue and may be able to complete its task by initiating
an alternative subtransaction.

Nested action is only one of many generalizations of the original transaction
model. All generalizations aim at the relaxation of one or more of the properties
of the original transaction model.

The transaction model became so widely accepted that distributed system
designers decided to make it an explicit tool which programmers could use to
structure distributed programs. Atomic actions are a basic element of this thesis.
Atomicity is explored by Stabilis to organize its object management functions and
indexing. Vigil relies on atomic actions to guarantee the consistency of transitions
between external states of a system.

1.6.4 Replication
Replication is used mainly to increase availability and fault-tolerance in dis-
tributed systems. If many copies of a computing resource, sayan object, are
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available, then it is possible for different programs to change them in parallel,
causing inconsistencies. Replica consistency protocols are therefore necessary to
ensure that copies remain in a mutually consistent state.

There are two ways to replicate computing resources, using passive or active
replication. In the passive, or primary-backup, approach to replication, update re-
quests are gradually propagated between replicas. In the active approach, update
requests are sent to all replicas in the same order using broadcast communication.

In the passive replication scheme a replica group of server objects is created.
One server object is designated as the primary and the others as the backup
servers. No more than one server can act as primary at any time. Each client
knows one server and requests services from it by sending messages to it. If a
client request arrives at a server that is not the current primary, then that request
is ignored by the server. During normal operation the primary processes service
requests and ensures that all replicas are mutually consistent by sending snapshots
of its state to the backup servers. If the primary fails, then the backups elect a
new primary, make it known to the clients and resume processing. Timeouts on
the duration of the service requests are used by clients to discover that a primary
has failed. Probably the earliest protocol for passive replication to appear in the
literature is due to Alsberg and Day [7].

In active replication the behaviour of the members of the replica group changes.
Now, all members of the group are active processing requests sent by clients.
When one member receives a request it is broadcasted to all the other members
of the group for processing. Provided all members of the replica group receive
and process all requests in the same relative order as they have been made then
mutual consistency is guaranteed [121].

1.6.5 Persistence

A typical computer system can have four or five types of storage components rang-
ing from fast volatile caches to slower, persistent disks. This lack of uniformity
is visible in programming languages, the language constructs for manipulating
volatile data stored in main memory are different from the facilities used for
manipulating data stored in persistent storage. The use of special input/output
constructs is necessary if the transient data manipulated by a program is to sur-
vive the program's activation. The need to map transient data, which could be
quite complex data structures, into persistent data (databases or files) increases
the complexity of programming. Therefore, the elimination of this dichotomy
between volatile and persistent modes of data has long been of concern to pro-
gramming language implementors.

Atkinson [9, 11] defines persistence as "the period of time for which the data
exists and is usable." Research into persistent programming languages such as



1.6 Engineering a Reliable Distributed System 15

PS-Algol [10] and Napier [110] has extended traditional programming languages
to present persistence as orthogonal to the programming language constructs
that determine the way data is maintained. Orthogonality of persistence to data
types and input/output allows programmers to use complex data structures with-
out having to be concerned with mapping their in-memory representation into a
database representation explicitly, and vice-versa.

More recently, object-oriented persistent programming languages have been
designed and implemented, as exemplified by languages like Galileo [5], Trel-
lis/Owl [113] and E [117, 118]. Some systems such as Arjuna [52, 53] and NIH [61]
favor the adoption of already existent object-oriented languages and the use of
class libraries to add support for persistence.

Object Stores

Research on persistence has provided us with results that strongly encourage a
uniform treatment of transient and persistent objects. Some modern distributed
systems combine the concepts of persistence and object to create a new abstrac-
tion for information storage: object stores. Object stores are useful for the de-
ployment of persistence transparency because their operations can be seemingly
integrated into other components of the distributed system such as the object
manager and transaction manager. Object stores also playa key role in the
unification of distributed databases and distributed programming environments.
Later, in the next Chapter, we review examples of systems where the concept
of object store is used extensively. These systems include distributed operating
systems, database systems and distributed programming systems.

1.6.6 Programming Interface
Research in programming languages for distributed systems has already witnessed
the development of more then one hundred different programming languages [13].
Despite all their differences, all these languages have basically to deal with three
important issues:

• The use of multiple processors to allow concurrent execution of objects;

• The communication and synchronization among multiple objects;

• The potential for failure.

These three issues sum up most of the issues addressed in this Chapter. Thus,
a good programming interface should provide flexible, extensible and selective
use of transparency mechanisms for concealing from the programmer the details
of how the underlying distributed system solves the problems related to these
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three major issues. From now on we concentrate on object-oriented languages for
distributed programming not because languages based on the other paradigms
are less suited but because object orientation is one of the primary concerns of
this work.

Object-oriented languages have a great potential as programming languages
for distributed systems. Classes and inheritance mechanisms can be used to
develop a very flexible and extensible interface.

Object-oriented programming languages are been designed and implemented
to reflect the different views of the object-oriented paradigm, e.g., Simula [45],
Smalltalk [60], Guide [78], Eiffel [106, 107], Arche [20], and C++ [137]. These
languages implement different interpretations of concepts such as encapsulation,
inheritance delegation, object activation, and others. Arche, for example, sup-
ports a type hierarchy and a class hierarchy, reflecting the designer's view that
types are not equivalent to classes. In Arche there are two hierarchies: a type
hierarchy and a class hierarchy; C++ assumes that types and classes are equiv-
alent.

Once again, the difficulty in the design of a good object-oriented language lies
in the careful selection of a subset of object-oriented concepts which are finally
incorporated in the language. In the end, the distributed programming environ-
ment as perceived by application programmers is the result of a combination of
features of the programming language, of the underlying operating system, and
the hardware used.

1.6.7 Management

Support for configuration management varies considerably in distributed operat-
ing systems, from systems with little support, such as Amoeba [112], to systems
designed to facilitate the implementation of management mechanisms, such as
Apertos [144].

Management involves the extraction of dynamic information concerning a com-
putational process and the enforcement of changes upon it to make it conform
to a desired, pre-determined control policy. A computational process is simply
anything that can be said to compute. In the context of this work, a compu-
tational process is the activity resulting from the execution of object-oriented
action-based distributed applications. Control policies specify how the objects
that take part in the computational process change their relative configuration
over time. Below, we discuss a criterion that is used as a guideline for the design
of management systems.
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Organization and Control

Management has two complementary aspects: organization and control. Orga-
nization refers to the relative arrangement, or structure, of the various objects
that compose distributed applications. For a given application this information
is static, it does not change after the application has been developed. In the
proposed management system, Stabilis is the subsystem responsible for the im-
plementation of the static aspects of a distributed application.

The control aspect raises the problem of processing dynamic information; in-
formation that changes in time. Monitoring changes in the application's state
and timely reacting requires the provision of control mechanisms, such as sensors
and actuators, to instrument the application and allow the management system
access to the dynamic information. Vigil is the subsystem of the management
system associated to the dynamic aspects of distributed applications.

Usually, to represent management information, management systems make
use of configuration and control languages. The configuration language is used to
represent the structural aspects of a distributed program. The control language
is used to represent the dynamic, managemental, aspects of the distributed pro-
gram. A good benchmark for management systems is the relative complexity
of their configuration and control languages. In this work, the confluence of
object-oriented action-based programming systems and object-oriented database
systems is explored to design and implement a management system with simple
configuration and control languages.

1.7 Conelusions

This Chapter has surveyed some of the problems, models and techniques normally
employed by software engineers in the construction of distributed systems, with
the intent of setting up the framework of concepts within which this work has
been developed.

We have used Lamport's definition of a distributed system because program-
ming large distributed systems and distributed applications is still very hard and
prone to errors, despite all the advances made in in this field. We are still striving
to find designs that combine most of the concepts put forward in this Chapter
into a dependable, friendly and easily maintainable distributed system.

We have seen that the notions of transparency and fault tolerance are critical
to the development of reliable distributed systems. These notions have to be at
the top of the list of any project in distributed programming and have to be dealt
with from the very beginning of the design.
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We have introduced fundamental concepts on object orientation, such as, class,
object and relationships. These concepts play an important role in the design and
implementation of the management system we have developed.

A reflective system is a system that incorporates structures that represent
aspects of itself. This concept has played an important role in the design and
implementation of Stabilis and Vigil. Both systems maintain information about
themselves and about the distributed programs they manage.

Finally, the Section entitled "Engineering a Reliable Distributed System" has
explored issues related to the client-server model, atomic actions, replication,
persistence, management, and programming interfaces, from a software engineer-
ing point of view. We have also seen that management of distributed programs
deals with to complementary aspects: organization and control. We are going
to see that these two notions have played an important role in the design and
implementation of Stabilis and Vigil.
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Chapter 1 introduced principles used in the design of distributed systems such
as: transparency, object orientation, communication paradigms, atomic actions,
persistence and replication. This Chapter reviews work which has influenced di-
rectly or indirectly the design and implementation of Stabilis and Vigil. It looks
at particular features of distributed operating systems, database systems and
programming systems in order to make our design considerations more concrete
and point out how they have influenced the design of the management system
proposed here. Our review of distributed operating systems aims at evaluating
how they have approached the problem of management and what of their built-
in characteristics can be used to the advantage of management systems. In the
second part of the Chapter, we see that research in database management sys-
tems and operating systems have increased their areas of intersection due to the
adoption of object-oriented technologies. Finally, we evaluate some distributed
programming systems and management systems to see how they have used object-
oriented techniques. During our "visit" to each of these systems our concern is
always with the factorization of techniques that can be used in the design and
implementation of an object-oriented management system.

2.1 Distributed Operating Systems

2.1.1 Eden and Emerald
Eden [6, 30, 85] is a distributed object-oriented operating system developed at
University of Washington, USA from 1980 to 1986. Eden was one of the first
systems to consider tight integration of operating system and programming lan-
guage important to simplify the implementation of distributed applications. The
Eden Programming Language (EPL) was designed to provide access to facili-
ties of the Eden system in an integrated and easy-to-use fashion. Programming
experience with the Eden system gave positive feedback towards the implementa-
tion of object-oriented operating systems and action-based programming environ-
ments based on synchronous communication primitives, that is, remote procedure
calls [29].

The project introduced the concept of a concrete Edentype. A concrete Eden-
type is a description of the state machine that defines the behaviour of an object,
i.e., those patterns of invocation that it accepts and the effect of each invoca-
tion upon the object. In practical terms, a concrete Edentype is data about a
user defined type, metadata, which is managed by the runtime system of EPL.
This metadata is used to synchronize concurrent operations of user-defined types
during runtime. EPL is syntactically similar to Pascal, with extensions for con-
current programming. EPL supports both synchronous, remote procedure call,
and asynchronous communication primitives.
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Objects in Eden are active and mobile; they can atomically checkpoint their
state to stable storage; Eden implements a simple object store called a Eden
Permanent Object Database. Objects in Eden are named using unique object
identifiers and made secure through the use of capabilities. Capabilities are visible
at user programming level. Eden has no support for construction of reliable
applications.

Emerald [28, 74, 116] is an object-based programming language and system
for programming distributed applications. Emerald can be seen as evolving and
complementing concepts first introduced in Eden/EPL. Similar to EPL, Emer-
ald offers a programming interface with support for active objects, with focus
on object mobility. Objects can move freely within the Emerald system to take
advantage of distribution and dynamically changing environments. Emerald uses
monitors for concurrency control, does not support inheritance, and does not ad-
dress fault transparency. Emerald provides some mechanisms for management of
distributed programs. For example, the mechanisms for object migration can be
used to implement basic reconfiguration services; objects can be moved following
a failure or a recovery or prior to scheduled downtime [74].

2.1.2 Amoeba

Amoeba [112] is a distributed operating system developed at the Vrije Univer-
sity, Amsterdam; the project started in 1984. In terms of software architecture,
Amoeba is based on the client-server model, with objects communicating via
remote procedure calls or broadcast-based asynchronous protocols [75].

Amoeba is implemented using microkernels, meaning that most of the system
resources are managed by programs run as user-level programs. Objects have
ports whose identifiers are globally known. To execute an operation on a server
object the client object first finds a server using the server's port identification
and then sends a service request to it. Global port and object identifiers are
managed transparently, including location, access and migration transparency.
Capabilities are used to name objects and control access to their ports. At ap-
plication level, Amoeba does not provide any direct support for reliability and
availability. Although Amoeba support objects, it does not use object-oriented
concepts either in its implementation or in its programming interface. Further,
Amoeba does not provide any direct support for management or reeonfiguration
of applications at its programming interface.

Amoeba's programming interface resembles that of a Unix system. Usually
applications are programmed in C with support of stub generators. The project
has also developed an object-based language for parallel programming called
Orca [14]. Orca uses shared data-objects for communication and synchroniza-
tion between objects. In the runtime system created for Orca, several parallel
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programs share objects and can perform the same set of operations on them, as
defined by the object's type. Changes to the object made by one program are
visible to other programs, so a shared object acts as a communication channel
between programs. In Orca, each operation is applied indivisibly to each shared
object. Operations are indivisible, but not atomic because Orca's protocols for
operation invocation do not provide recover ability. Indivisibility guarantees ob-
ject consistency in the presence of concurrent accesses, but only if failures do not
occur. In Orca [12], the primitives for synchronization between objects are inte-
grated with methods and allow them to block. Blocking is achieved using guarded
commands. Each method of an object has a list of guarded commands associated
to it. When a method is invoked it initially blocks and waits until at least one of
the guards becomes true. Next, one true guard is selected nondeterministically,
and its sequence of statements is executed. Vigil uses guarded atomic commands
to guarantee that management actions are executed only when the application
being managed is at the state specified by the management program.

Let us compare the computation model used by Orca to that of persistent
objects structured using atomic actions. Objects in Orca can be directly mapped
into instances of classes. Indivisible operations can be mapped to atomic actions.
We can say that the models are similar in their fundamental aspects, but when
we compare them in greater detail we verify that there is a difference regarding
persistence of objects. The abstraction of shared objects provided by Orca [14]
differs from the abstraction used by Arjuna, Stabilis and Vigil: object sharing
in Orca is limited to volatile objects that are related to each other only during
runtime. Such restriction does not arise in Arjuna as a result of persistence.

2.1.3 Chorus/COOL
Chorus [119] is a distributed operating system based on the concepts of actors,
messages, and ports. The Chorus project run from 1979 to 1986 as a research
project on distributed systems at the Institut National the Recherche en Infor-
matique et Automatique (INRIA), France. From 1986, a company called Chorus
Systernes became responsible for the system.

Chorus has an architecture similar to Amoeba's architecture, based on micro-
kernels and message passing. It aims at supporting emulation of Unix, something
Amoeba does not do, so Amoeba does not provide binary compatibility with
Unix. In Chorus the equivalent of an Amoeba object (process) is an actor; actors
are multi-threaded processes. Resources are identified by ports and port rights,
the equivalent of capabilities in Amoeba. Port identifiers and capabilities can
be constructed and managed at user-level. The similarity is first broken when
actor and object management is considered. Actors can be dynamically loaded
into the kernel address but Amoeba's objects cannot; all Amoeba's objects are
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user-level processes. A Chorus resource can be migrated dynamically from one
server to another using port migration primitives, but resource migration is not
transparent.

COOL (Chorus Object-Oriented Layer) [65, 86] is a software layer designed
to provide a set of generic services to reduce the gap between operating system
level abstractions and programming language abstractions. COOL provides the
following abstractions to programming languages: object, virtual object memory,
and clusters of objects. The virtual object memory supports creation, dynamic
link/load, transparent object invocation, including location on persistent storage
and mapping into clusters. Classes are structured in modules that are application-
defined clusters of associated objects. When an instance of a class is created in a
cluster, the class descriptor is saved in the cluster. This class descriptor is used to
retrieve the appropriate module and therefore the appropriate class when a cluster
of objects is remapped in another address space. Language specific constructions
are mapped into the COOL layer using preprocessors. For example, COOL++ is
a preprocessor that supports a extended version of C++ adapted to run upon the
COOL layer. COOL does not provide any facility for management of distributed
programs, but it has features that could be used to implement an object-oriented
management system.

Chorus/COOL is a good example of a hybrid architecture. The operating
system kernel is based on the message-process computation model and the oper-
ating system interface, provided by COOL, is object-oriented in the sense that it
supports classes and objects.

2.1.4 SOS

SOS (SOMIW Operating System) [122] is a project of INRIA's Distributed Object-
Oriented Systems research group. Secure Open Multimedia Integrated Worksta-
tion (SOMIW) is an Esprit umbrella project under which SOS has been devel-
oped. SOS is a distributed object-oriented operating system supporting distri-
bution transparency including location, access and migration transparency. SOS
does not provide transactions but has an object store which provides persistence.
The main goal of SOS is to build an object management support layer common
to all applications and languages. SOS is programmed in C++ and has been
prototyped upon Unix.

SOS is based on the following concepts: elementary objects, fragmented ob-
jects and services. An elementary object is a state and a set of methods, a frag-
mented object is a group of elementary objects which can be located in several
address spaces (contexts), on different sites. A fragmented object is an aggregate
whose component objects can be distributed. Component objects of a fragmented
object can break encapsulation and access each other states directly using basic
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communication protocols. Elementary objects can be of three kinds: servers,
proxies and providers. Services are implemented using these three types of ele-
mentary objects. A server is an object which is able to serve service requests.
A proxy is an elementary object located at the same address space as the client
which represents the service. Each client which wants to access a service must
have a proxy of this service in its context. A provider is in charge of creating
proxies on client request. For clients, proxies are the only interface to the service.
A proxy can process requests locally, or forward them to a remote server. Clients
have a reference to a reference, the proxy. Thus proxies are the equivalent of an
extra level of indirection in dynamic data structures, a well-known programming
principle has been reused to add extra flexibility to the traditional client-server
model of computation. Management systems can profit from the migration flex-
ibility offered by the use of proxy mechanisms. Stabilis uses mechanism similar
to the proxy mechanism to organize its object manager and indexing structures.
Key attributes, attributes that can be used to search a database, point to proxy
objects instead of pointing to the objects themselves.

In summary, the implementation of SOS is based on four subsystems:

• communication: where remote procedure calls and multicast communication
protocols are implemented.

• storage: the system's object store provides services for manipulating per-
sistent objects. The representation of fragmented objects is handled by the
storage manager;

• naming and binding: the subsystem responsible for name resolution and
binding. References to proxies are managed by this subsystem.

• acquaintance: this is the distributed object manager of SOS. It deals with
localization, migration of objects, in cooperation with the other three sub-
systems.

These four pre-defined services are very similar to those found in some object-
oriented distributed database systems. For example, O2 [49J also has an object
manager, a communication subsystem based on remote procedure call, and an
object store. This convergence in architecture and functionality is partially due
to the use of object-oriented technologies.

2.1.5 Clouds/Aeolus
The goal of the Clouds [46, 87J project from the Georgia Institute of Technology,
USA, is the implementation of a fault-tolerant distributed operating system based
on the notions of objects and actions. Clouds started in 1985. The programming
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interface is represented by Aeolus, a programming language that provides access
to the synchronization and recovery mechanisms of Clouds. Aeolus and Clouds
are object-based, that is, the concept of object as a unit of encapsulation and
recovery is explored but the concept of class hierarchy is not. In Clouds objects
are passive entities, in contrast with Eden/Emerald where objects are active.
Clouds differs from Amoeba and Chorus in its adoption of an object-oriented
activation style and in its use of threads. Clouds is the first operating system
in this review that conceives objects as persistent and passive. The concept of
threads is transparent, they are simply the activity responsible for the execution
of methods. Clouds takes an architectural approach that is symmetric to that
taken by Amoeba and Chorus-persistent objects and atomic actions are the
main programming abstractions instead of active objects (processes), messages
and persistence through state checkpointing.

While checkpointing, as implemented in Eden and Amoeba can be used to
construct processes or objects with an acceptable degree of fault tolerance, it has
an essential weakness in that it is oriented toward dealing with a single object
or a single process at a time. Maintaining data integrity in the presence of
interactions between objects is an essential problem programmers of distributed
applications face. If checkpointing techniques are used, then programmers have to
be aware of the detailed patterns of object interactions. Conversely, distributed
transactions make the checkpointing of object states transparent to programmers.
Therefore, projects such as Argus, Camelot, Arjuna, and Clouds have proposed
that reliability in a distributed system be based on atomic actions, an extension
of the transaction concept used in distributed database systems.

In terms of programming interface, it is interesting to note the evolutionary
path followed by Clouds. In 1985, the project used Aeolus as the main pro-
gramming language [87]. The emphasis then was on the development of a new
programming language for distributed programming. Later, in 1991, the project
had attracted new members, namely from Arizona State University and Siemens-
Nixdorf and the approach shifted to the use of already existent programming lan-
guages [46]. Consequently, Clouds developed three programming environments
based on extensions of C++, Eiffel, and Clide; the extensions are called DC++,
Distributed Eiffel, and CLiDE respectively.

2.1.6 Guide
Guide [15, 78] is an object-oriented distributed operating system based on the
concepts of jobs, persistent objects and nested transactions. Guide was started
in 1986 as a joint research project of Bull Research Centre and Laboratorie de
Genie Informatique (IMAG), University of Grenoble, France.
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In Guide, a job is an execution unit, it provides an object space with multiple
concurrent activities. Object invocation and communication is achieved via a sys-
tem primitive called ObjectCall. This primitive is similar to a remote procedure
call but in ObjectCalls dynamic binding and callbacks are possible.

The Guide language [78]has support for classes, single inheritance, and excep-
tion handling. Guide is strongly typed and distinguishes class hierarchies from
type hierarchies. There is no support for selective persistence; all objects are per-
sistent by construction. One of Guide's objectives is the provision of aggregate
objects, called composite objects in Guide. The concept of composite objects
used by Guide is related to the concept of aggregate objects used by database
systems. Guide has support for flat transactions on persistent objects.

Guide has a management service [54] designed using the same management
principles introduced by Conic [100]. These principles include the principle of
clear separation between management, dynamic reconfiguration, and application
programming through the adoption configuration and control languages. The
implementation of the management service is facilitated because Guide has built-
in mechanisms, such as composite objects and location transparent object stores,
both facilitate object migration. Additionally, Guide has a set of system calls that
allow easy creation and deletion of objects, and suspension of activity. Guide's
transaction system is used in the implementation of the management mechanisms.
Guide's management service is object-based, that is, the only object-oriented
concept used is the concept of object. In contrast, Stabilis and Vigil make use of
a richer group of object-oriented concepts

2.1.7 Choices
Choices [37, 38] is an object-oriented system written in C++; it is being devel-
oped at the University of Illinois, Urbana-Champaign, USA. The project started
in 1987. It supports an object-oriented application interface based on objects,
inheritance, and polymorphism. Objects in Choices can be made persistent [39].
Choices and Arjuna (Section 2.3.4) share some design principles such as the adop-
tion of a general-purpose object-oriented language for their implementation and
use of object-oriented mechanisms to provide system interfaces that can be aug-
mented and specialized according to the needs of the application programmer.
Properties of the system can be selectively inherited by classes programmed by
users. Unlike Clouds and Guide, Choices does not provide mechanisms for reliable
software construction.

Choices main influence on Stabilis and Vigil is its uniform application of object-
oriented concepts. Objects are used to model both the hardware interface, the
application interface, and all operating system concepts, including system re-
sources, mechanisms, and policies. The team responsible for Choices has devel-
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oped a methodology for the design and implementation of object-oriented operat-
ing systems that has many aspects in common with the methodology adopted in
in the development of Arjuna, Stabilis and Vigil. Choices bases the design of its
components on the concepts of entity-relationship diagrams and class hierarchies,
i.e., a structural model, and control flow diagrams, a form of control model [37].

2.1.8 Apertos

The Apertos [144] object-oriented operating system is being developed at Sony
Computer Science Laboratory, Japan. This project was initiated at Sony in 1988
with a different name: Muse [146, 145]. Apertos is being developed to meet the
characteristics required of a distributed operating system that has to offer services
for a open and mobile computing environment.

The framework used to structure the operating system is based on reflection; an
architecture based on objects/metaobjects and object migration is defined. The
metaobject layer defines the semantics of certain methods of the objects. The as-
sociation between objects and metaobjects change over time, these changes define
how objects behave and certain object properties. Migration is the mechanism
used to change the group of metaobjects an object is associated with. In the
Apertos terminology, an object metaspace is a group of metaobjects that define
a set of protocols of the operating system. Objects migrate from metaspace to
metaspace. For example, for an object to acquire persistence, it migrates to a
metaspace that supports persistence. The metaobject layer is viewed as a virtual
machine that can be adapted to the needs of the group of objects it is manag-
ing. Further, each metaspace implements part of the functionality required of the
operating system. There are intersections among metaspaces.

Apertos uses sensors and actuators in the same sense as Vigil does, that is,
to inspect/change the state of objects. In Apertos, it is possible to change a
policy of object management such as, what to do when an object is in a host
that is overloaded. If the object wants to change the load management policies
used, then association, migration, to a metaspace that implements the desired
load balancing policy is possible. In summary, what Apertos call object migra-
tion is, in more general terms, object management implemented through dynamic
association of objects to metaobjects, using a reflective architecture. Tasks like
memory management, scheduling, communication, etc, are implemented by dis-
tinct metaspaces; metaspaces are specialized managers that trap, interpret and
react to information generated by objects and by themselves. In such a reflec-
tive architecture management becomes a primary concept and, as a consequence,
we have a system that is highly reconfigurable. The system is programmed in
MC++, an extension of C++ that takes into account the existence of metaspaces.
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2.1.9 Discussion

In this Chapter, we communicate a lesson we have learnt during the realization of
this survey. This lesson is that a degree of convergence has been achieved by sys-
tems that have adopted object-oriented techniques in their design and construc-
tion. As we continue our survey more evidences are found of this convergence;
management systems can certainly benefit from this unification.

In operating systems like Amoeba and Chorus, objects are secondary entities
which are accessed by an active entity, a process. Chorus can be seen as a hybrid
design due to the use of different abstractions to implement the kernel and the
Chorus object-oriented layer (COOL). But, as we have seen, operating systems
are evolving towards object-oriented implementations where objects are seen as
the primary entities, as is the case with Eden, Guide, SOS, Choices, and Apertos.
Among these systems there are systems adopting the abstraction of distributed
object stores upon which language runtime systems are implemented. Further-
more, we have seen the introduction of atomic actions, originally developed for
relational database systems, as an effective way of deploying mechanisms for fault-
tolerant programming. Atomic actions evolved from being hidden from the user
and automatically controlled by monolithic database kernels to mechanisms whose
interface is visible and controllable by application programmers. Distributed sys-
tems started to provide transactions as standard built-in services, Guide is an
example of such evolution of transaction systems. Apertos and Choices con-
sider object orientation and reflection as key concepts that should be used to
obtain systems that are scalable and flexible. Apertos takes object-orientation
and reflection a step further by creating an architecture where mechanisms for re-
configuration management are embedded in the operating system. We have seen
that object-oriented techniques are being adopted because they encourage mod-
ularization, increase reusability and maintainability, and give application/system
programmers a single unified perspective of a system. Table 2.1 summarizes the
main characteristics of the systems reviewed so far.

Our discussion has shown that Apertos [144] and Guide [15] have considered
management of runtime behaviour of distributed programs an important require-
ment. Consequently, these two systems have object stores and communication
mechanisms that offer better support to implementors of object-oriented program-
ming environments and management systems. In contrast, the other distributed
systems reviewed have a smaller set of mechanisms available for runtime man-
agement of distributed programs. For example, few of them have features that
allow distributed programs to select and reconfigure dynamically the mechanisms
provided by the distributed system such as:

• the naming conventions adopted by these systems do not allow the specifica-
tion of names based of attributes of objects. Attributive names are important
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object-oriented interface v' v' v' v' v' v' v'
object-oriented design v' v'
reliability support v' v' v'

persistence transparency v' v' v' v'
distribution transparency v' v' v' v' v' v' v' v'

open architecture v' v'
reflective architecture v' v'

selective property support v' v'
management service v' v'

Table 2.1: Distributed Systems: Summary Table.

to build objects that can be used in different contexts. For example, the use
of attributive names allows objects to be used in different systems whitout
requiring recompilation .

• little or no runtime interface checking is supported to ensure compatibility
of interconnected objects.

We proceed with our review and show that that the use of object-oriented
technologies can bring database management systems closer to operating systems
and programming environments.

2.2 Database Management Systems

In this Section, we provide a survey of operational object-oriented database man-
agement systems that have had some influence on the design of Stabilis and
Vigil. At this time we estimate that more than thirty object-oriented database
systems are under development in commercial vendors, industrial research lab-
oratories, and universities. Sufficient details about these systems is available in
public domain only for a relatively small number of these systems. Therefore,
we do not attempt an exhaustive survey but concentrate on those systems that
have gained more visibility and, consequently, have had greater impact on the
way next-generation database systems are developed.
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Shortly after its appearance in 1970, Codd's relational model [44] became,
and still is, the dominant model for the design and implementation of database
systems. The relational model is centred upon the concept of data structured
as sets over which relations are defined. A relation on n sets of a database, say
SI, S2,"" Sn (not necessarily distinct), is a set of n-tuples each of which has its
first element from SI, its second element from S2, and so on. These concepts
of set and relations over sets form a relational algebra which provide integral
data management capabilities for most applications. Unfortunately, they are not
adequate for applications such as computer-aided software engineering, scientific
and medical applications, graphics representation, office automation, etc. This
class of applications demand procedural data, encapsulation, a more complete
type system and other extra capabilities. Once again object orientation seems to
be a reasonable option and, in fact, several object-oriented database management
systems have already been developed to attend the demands posed by these new
classes of database applications. Additionally, there are other models being ex-
plored by the database community such as the extended relational and functional
models [31, pages 166-173].

2.2.1 Object-Oriented Database Systems
Object-oriented database systems lie at the convergence of research in database
management systems, operating systems, and programming languages [51, pages
1-10][147, pages 1-32]. There are two approaches to developing object-oriented
database systems that are being actively pursued by the research community.
The two approaches differ in their starting points: one approach seeks to extend
existing database management system concepts with data and procedural ab-
stractions; the other approach embellishes existing programming languages with
persistence and sharing. The approach taken in the design of Stabilis and Vigil
benefit mainly from ideas generated in the latter approach.

The features of object-oriented database management systems might be con-
sidered as combining the best features of traditional database systems and object-
oriented programming languages. The systems described in the next sections can
be grouped into two broad categories, depending on whether they evolved from
programming-language or database-system architectures:

• evolving from database programming languages: O2 from O2 Technology [49],
ObjectStore from Object Design [83], GemStone from Servio-Logic [35],
ODE from Bell Labs [3], and ORION from MCC/CDC Systems [77, pages
259-282].
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• evolving from extended relational database management systems: Postgres
from University of California at Berkeley [136], and Starburst from IBM
Almaden Research Centre [93].

There are trade-offs between database architectures in terms of compatibility
with relational systems, convenience of access from host programming languages,
and design of the query languages. Concerning query languages, Starburst is
based on extensions to SQL. Postgres is based on extensions to INGRES QUEL.
Both of these systems produce relations designed to represent logical objects
that are represented internally as tuples. The query languages of ObjectStore
and GemStone bear some resemblance to the programming languages on which
they were originally designed-C++ and Small talk, respectively. Both query lan-
guages are designed to select objects from collections of objects. The extended
relational query languages in Postgres and Starburst are more powerful, support-
ing complex joins and views. An O2 query can result in objects, tuples, lists,
sets, or any type of data value. Thus, when considering query languages, we can
coarsely divide object-oriented database management systems into those that pro-
vide support for SQL-like queries and those that do not. Table 2.2 summarizes
the historical language influences these database systems have had.

Database Database Query Language Original Programming
Category System Syntax Basis Language Basis

ORION Lisp-like Common Lisp
Database ObjectStore C++-like C++

Programming ODE C++-like C++
Languages GemStone Smalltalk-like Smalltalk

O2 Hybrid Algebra 02C
Extended Database Postgres Quel extensions -none-

Systems Starburst SQL extensions -none-

Table 2.2: Database systems and programming languages.

Designers of relational database management systems usually claim that the
separation between host programming languages and query languages bring ad-
vantages to the programmer. For example, the capacity to debug database queries
separately from application programs, and the possibility of having only one query
language which can be interfaced to many programming languages, e.g., Cobol,
Fortran, APL, C, etc. Designers of programming languages and persistent pro-
gramming systems argue that usually the distinctions between the languages used
in these two modes of programming place an unnecessary learning and memory
burden on those users who have to work in both modes. Thus, in database man-
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agement systems that have originated from programming languages, there are
good reasons to try to integrate as much as possible the query language into
the host programming language. Ideally, only one programming language should
suffice all needs of the application programmer, allowing him to query databases
and program complex algorithms in a uniform programming environment. Sta-
bilis follows the latter approach.

O2

O2 [49, 88] was initially designed and developed within the Altair research con-
sortium, France, funded by INRIA, Siemens-Nixdorf, Bull, the CNRS and the
University of Paris XI. Altair was a five year project which began in September
1986. Its goal was to design and implement a next-generation database system.
A throw-away prototype was ready in December 1987. From 1988 to 1990 the
Altair consortium produced and tested a final version of the database system. At
the end of 1990, a commercial company, O2 Technology, was created. Commercial
shipment of O2 began in June 1991.

The kernel of the O2 database management system, called 02Engine, is capa-
ble of storing structured and multimedia objects. It handles disk management,
distribution, transaction management, concurrency, recovery, security, and data
administration.

02Engine can support two types of interfaces: programming language inter-
faces, C and C++, and the O2 environment. Language interfaces allow a C
or C++ program to benefit from the services of 02Engine by declaring O2 schemas
and populating O2 databases. Alternatively, the user can benefit from the com-
plete O2 environment. This environment includes: a query language, 02QuerYj a
user interface generator, 02Lookj an object-oriented fourth generation language,
02Cj a graphic programming environment with a schema and database browser.

O2 objects are identified by unique object identifiers. Persistence is achieved
by associating an object type definition to a persistent "root" type. A persistent
"root" type is a type in the schema that has a name associated with it. When an
object is created, the programmer is not forced to decide if it will be persistent
from the beginning. Objects may be made persistent after they are instantiated
by associating them with an instance of a persistent "root". The data model
supports multiple inheritance. Class definitions can be shared among schemas.

02Query is an SQL-like query language extended to deal with objects. It is
a subset of 02C, but may be used independently as an ad hoc interactive query
language or as a function accessible from C or C++.

This brief review of O2 is sufficient to highlight the similarities and differ-
ences with object-oriented operating systems and distributed programming en-
vironments. There is an functional overlap between the various systems which
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make O2 and the systems developed for object-oriented operating systems and
distributed programming systems. For example, all these systems rely on the
abstraction of an object store.

ObjectStore

ObjectStore [83] is an object-oriented database management system that provides
a tightly integrated language interface to database management system features of
persistent storage, transaction management, distribution, and associative queries.

The programming interface of ObjectStore is an extended version of C++.
Objects of any C++ data type can be allocated transiently or persistently. Persis-
tence is not an inherited attribute. Instances of the same class may be persistent
or transient within the same program.

The motivations the ObjectStore team puts forward for making ObjectStore
closely integrated with the programming language are:

• Ease of learning. ObjectStore is designed so that a C++ programmer would
have to learn a little more in order to use ObjectStore's facilities. In par-
ticular, there is no need to learn a new type system or a new way to define
objects.

• Persistence Orthogonality. Persistence is orthogonal to the representation of
objects. The designers of ObjectStore wanted to save the programmer from
having to write code that translates between the disk-resident representa-
tion of date, and the memory-resident representation. The way ObjectStore
handles persistence is very similar to that of PS-Algol [10].

• Conversion. Easy conversion of pure C++ programs to ObjectStore applica-
tions is achieved by guaranteeing that the syntax and semantics of C++were
not changed. In particular, variables should not have their type declaration
changed when persistent objects were used.

• Designed for CPU-bound applications. ObjectStore's focused on making
the access time to objects very low by integrating the management of the
persistent object store with the virtual memory management system of the
machine.

• Transactions. As in Camelot and Arjuna, transactions are visible to the
database programmer.

The data model of ObjectStore supports only the association relationship.
There is support for sets and lists of objects. There are two possible ways of
expressing queries in ObjectStore. For example, suppose that alLemployees is a
set of employee objects: os_Set<employee*> alLemployees;
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The following statement uses a query against alLemployeesto find employees
earning over $100,000, and assign the result to overpaid.employees:

os_Set<employee*>l overpaid_employees =
all_employees[: salary >= 100,000 :];

Expressions enclosed by [: :] are queries. Stabilis takes a similar approach to
introduce queries in C++ but does not extend the language to achieve that goal.
Consequently, a new C++ front-end did not need to be implemented.

ObjectStore has support for a simple form of version control. Users are allowed
to create versions of objects but there is not any consistency protocol to guarantee
that the copies remain consistent. The implementation of consistency protocols
is left to the implementor of the database application that uses versions.

The object manager of ObjectStore relies on the virtual memory management
system of the machine to fetch/write objects from/to the object store.

GemStone

GemStone [35][76,pages 200-202], a commercially available object-oriented database
management system developed by Servio Corporation. GemStone supports a
client-server architecture in which a number of clients may connect with Gem-
Stone engines running on a central server. Thus, GemStone cannot be considered
fully distributed. GemStone provides a programming interfaces to three program-
ming languages: C, C++, and Smalltalk. The basic programming interface of
GemStone is called OPAL; it extends Smalltalk with schema definition and data
manipulation capabilities.

GemStone's object model is an extension of the object model defined by
Smalltalk. It supports only single inheritance and attributes whose values can be
sets of heterogeneous objects.

Persistence is implemented as an association to a persistent 'root' object, in
an approach consistent with that of Smalltalk. The user cannot explicitly delete
any object, as long as the object is referenced by any other object; a persistent
object is automatically deleted only if it is no longer reachable from the 'root'
object.

GemStone supports concurrency control, crash recovery, dynamic schema mod-
ification, transaction management, and queries. The GemStone approaches to
queries and indexing, and concurrency control are unique among database sys-
tems.

The basic components of the GemStone architecture are the Gem server and
the Stone monitor [35]. The Gem server is where object behaviour specified in
GemStone's data manipulation language is executed. Query evaluation occurs
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within the Gem server. The Stone monitor allocates object identifiers and coor-
dinates transaction commit activities.

Concurrency control is optimistic and implemented via shadowing. With op-
timistic concurrency control, objects need not be locked. At commit, read/write
conflict detection with other Gems that have committed since the last commit by
the Gem server is performed. If no conflict is detected, the the updates performed
by the Gem are committed to the database. Otherwise, the commit fails and the
Gem has the option of aborting and beginning a new transaction. Later, in Gem-
Stone version 2.0, object locking was introduced [73]. Version 2.5 of GemStone
introduced version control of objects.

The GemStone C++ interface is implemented with the use of a stub generator.
In addition, a class library is provided, giving the programmer a standard set
of definitions for sets, arrays, etc, as well as functions for managing GemStone
objects. C++ classes are captured as GemStone classes by submitting them to a
class registration utility that stores the classes definitions as part of a GemStone
schema.

GemStone's data definition language/data manipulation language is a variant
of Small talk that is interpreted by Gem servers. GemStone has modified the
Smalltalk environment substantially: classes that implement transaction control,
authorization, replication and index control have been added. The class hierarchy
is extensible.

The tools provided by GemStone include a visual schema designer that allows
the user to capture data models. The relationships provided are: generaliza-
tion/specialization, aggregation, and association.

ORION

ORION [77, pages 259-282] is an object-oriented database management system
developed at MCC, USA. ORION's features include: persistence, atomic actions,
versions, aggregate objects, dynamic schema evolution, queries, and multimedia
data management. ORION is implemented in Common Lisp [133] and is not
distributed.

The object manager of ORION provides high-level functions, such as schema
evolution, version control, query optimization, and multimedia information man-
agement.

The object store subsystem provides access to objects on disk. It manages the
allocation and deallocation of segments of pages on disk, finds and places objects
onto pages, and moves pages to and from the disk. It also manages indexes on
attributes of a class to speed up the evaluation of associative queries.

The transaction subsystem provides a concurrency control and recovery mech-
anism to protect database integrity while allowing the interleaved execution of
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multiple concurrent transactions. Concurrency control uses a locking protocol,
and a logging mechanism is used for recovery from system crashes and user-
initiated aborts.

ODE

ODE (Object Database and Environment) [3] is being developed at AT&T Bell
Laboratories, USA, since 1987. ODE's approach to the development of object-
oriented database management systems is the closest we have in this revision to
the approach adopted by Stabilis and Vigil. ODE offers an integrated data model
for both database and general purpose manipulation. Databases are defined,
queried and manipulated in the database programming language 0++ which
is based on C++. 0++ [4] borrows and extends the class object definition
facility of C++. ODEjO++ provides facilities for creating persistent objects with
version, defining sets, and iterating over sets and clusters of persistent objects.
ODE also provides facilities to associate constraints and triggers with objects as
in active databases [59]. ODE also has a simple graphical interface [2].

Some distributed programming systems have atomic actions available at the
programming interface just as ODE. Arjuna [126] and Camelot [56] are exam-
ples of systems where atomic actions are available explicitly at the programming
interface.

Starburst

Starburst [93] was initiated in 1985 at IBM Almaden Research Centre, USA.
Starburst is written in C. Starburst is based on the relational model and on ex-
tensions of a "standard" database manipulation language (SQL) that allow users
to exploit relational database management system technology, with provision of
facilitates to port existing applications to Starburst.

A basic principle of the Starburst extensible database management system is
that the conflicting goals of application-specific facilities and information inte-
gration can best be satisfied by database management systems that support the
addition of domain-specific extensions in the context of a common data model.
This hypothesis distinguishes Starburst from other work in extensible database
management system Both the Genesis and the EXODUS projects have built auto-
mated database management system toolkits or generators for building a database
management system with a customized data model, storage system, query pro-
cessing algorithms, etc, that best suit a particular application domain. However,
this approach may make it difficult to share and integrate data from several di-
verse applications.
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Postgres

Postgres [136, 135] has been under construction since 1986, it is a sequel to Ingres.
Postgres is implemented in C. Postgres is oriented toward access from a query lan-
guage, POSTQUEL. Independently, Postgres has a navigational query interface.
Postgres takes a multilingual approach to its programming interface. The team
believes that tightly coupling a programming language to the database system
restricts the freedom programmers have in choosing alternative programming in-
terfaces. So, they consider that when desired, it is easier to create preprocessors
to integrate languages such as C, C++, and Lisp to Postgres. The disadvantage
of this approach is that it inevitably produces several extended languages whose
runtime system must be well adapted to Postgres's object management layer,
otherwise performance suffers.

Postgres recognizes the importance of rules to simplify the programming of
non-traditional database applications. In Postgres rules are used to specify
integrity constraints and to derive results that are not directly stored in the
database.

Commercial relational database management systems are oriented toward ef-
ficient support for data processing applications where large numbers of instances
of fixed format records must be stored and accessed. The traditional query facil-
ities for this application area are called data management by Postgres's team.
The team defines two other management dimensions that have to be supported:
object management and knowledge management. Object management en-
tails efficiently storing and manipulating complex data types such as bitmaps,
icons, etc. Knowledge management entails the ability to store and enforce a col-
lection of rules that are part of the semantics of an application. The Postgres's
team believes that most applications being developed now are three dimensional,
requiring data, object and knowledge management services.

2.2.2 Active Databases

The research community in database systems has long recognized the need for
integrating rules and facts in a database management system context. It has
been argued that the lack of a rule facility can place a significant burden on the
database management system application programmer. For example, in order to
support general integrity constraints in the absence of such a facility, every trans-
action that updates the database for a given application has to be augmented
with code to check the constraints and to take an appropriate action if a con-
straint is violated. Thus, the condition checking activity and the action become
integral parts of users' transactions. In recent years various approaches have been
suggested for adding active capabilities to database systems in order to integrate
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rules and facts and thus simplify the application programming task. Next, a brief
revision of the major approaches to creating active databases is made.

The addition of active capabilities to database systems was first considered
in order to support specific database management system functions such as view
maintenance and integrity constraint enforcement. It was proposed in [57] and
[58] that "triggers" be added to System R in order to enforce integrity constraints
or "assertions". Triggering mechanisms of different types have also been sug-
gested to support the maintenance of materialized views, snapshots, and derived
attribute values [3, 32, 34, 66, 89, 109]. More recently, it has been proposed that
generalized active data management capabilities be added to database systems in
order to provide a unified mechanism to support a variety of applications, such
as those requiring rule-based inference.

The Postgres project [134] proposes a general mechanism to support alerters,
triggers, and rules in the context of an extended relational data model.

Research in active databases [48]has contributed ideas on how to solve control
problems by developing object models and query languages that are capable of
expressing configuration and control.

2.2.3 Database System Generators

Database generators or extensible database management systems are database
management systems designed as set of modules which can be expanded, adjusted
and integrated in various ways which allow the creation of database management
systems customized to particular applications. Rapid prototyping, flexibility and
extensibility are the main concerns of these systems. We analyze two extensible
database management systems. Genesis [19] is an extensible database system
developed at University of Texas at Austin, and Exodus [40] is an extensible
database system developed at University of Wisconsin.

Genesis

The basic argument the implementors of Genesis put forward to justify their sys-
tem is that traditional database management systems can be customized in one of
two ways: systems are developed from scratch, or existing systems are enhanced.
Batory [19] argues that both approaches are costly and not always successful.
Consequently, there is a definite need for tools that simplify and aid the develop-
ment of database applications. The team proposes a theory for the factorization
and modularization of the various functions of database management systems so
that their most basic components are revealed. These basic components are: sim-
ple files and file structures; link-sets (structures used to assemble links petween
database records), and elementary transformations, mappings, from conceptual
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models to internal database representations. The thesis defended by them is that
the storage and retrieval architectures of any commercial database management
system can be explained in terms of compositions of these basic building blocks.
Thus, their theory says that any database application can be built by combining
a number of basic extensible modules. Genesis is a prototype system built upon
this theory. Genesis can be reconfigured into a database management system that
stores and retrieves data according to a specified storage architecture. Extension
and customization to new database applications is accomplished by synthesizing
the target database management system from a library of software modules that
correspond to the basic components of the theory. The library of modules is
extensible, so new modules can be added as needed.

Exodus

The goals of Exodus are very alike the goals of Genesis. Exodus [41,40] aims at fa-
cilitating the fast development of high-performance, application-specific database
systems. Exodus provides certain kernel facilities, including a flexible store man-
ager. It also provides an architectural framework for building application-specific
database systems; tools to help automate the generation of such systems are
provided, including a rule-based query optimizer generator and a persistent pro-
gramming language; and libraries of generic software components (e.g., access
methods) that are likely to be useful for many application domains.

2.2.4 Discussion
This analysis of object-oriented database management systems reveal several in-
teresting facts regarding the convergence of object-oriented systems. An im-
portant fact is that the core object-oriented concepts are shared by almost all
systems; that is, the data models supported include notions of object identity,
instances, classes, class hierarchies and inheritance, and message passing. All
systems support persistence of objects, although a few different notions of per-
sistence have been adopted with respect to explicit deletion of persistent objects.
The concept of object store is prevalent, and most of the systems support a
client/server architecture, although some are not truly distributed, e.g., O2•

Many of the systems have attempted a seamless integration of a programming
language and a database system by extending an object-oriented programming
language with database commands. The integration of database management
system and programming system usually has involved the development of an
object manager to perform memory management and to negotiate the consistency
of memory-resident objects and disk-resident persistent objects.

To Stabilis and Vigil, the relevance of the research on extensible databases is
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distribution y' y'
object manager y' y' y' y' y' y' y' y' y'

Table 2.3: Database Systems: Summary Table.

the concept of customization and extensibility. In Stabilis, a programmer can
add new types to the system and in Vigil the interpretation of guarded actions
can be customized. Extensible databases have tools for automatic generation of
code, similarly, Stabilis and Vigil have been designed to be able to generate parts
of a distributed program from the application's object model.

Further, most systems support concurrency control, recovery, and transac-
tion management; some do so through the traditional mechanisms of relational
database systems, while others provide these mechanisms explicitly, as primitives
that are visible at the programming interface. Table 2.3 summarizes characteris-
tics of the database systems reviewed.
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2.3 Distributed Programming Systems

2.3.1 ISIS

ISIS [22, 23, 24, 25, 26] is a toolkit for distributed programming based on group
communication (process groups) and group communication tools. Fault-tolerance
is based on a tool for creating checkpoints and on a a set of multicast protocols
that ensure conservation of causality and atomicity in the delivery of messages
exchanged among process groups. The computation model underlying all the
structure of the system is the virtual synchrony model [25]. Virtual synchrony
is good for applications were forward recovery is essential, for example, process
control applications. As the focus of this thesis is on action-based systems, it
is worth to say that action-based systems centre their concerns in the isolation
of concurrent transactions, persistent data and rollback mechanisms. ISIS is
mainly concerned with direct co-operation between members of process groups,
as such, it does not provide atomic transactions. Persistence of data is important
in database systems, but much less so in ISIS. For example, the commit problem
is a form of reliable multicast, but a commit implies serializability and perma-
nence of effect of the transaction being committed, while delivery of a multicast
in ISIS provides much weaker guarantees [24]. Despite the differences between
non-transaction based and transaction-based systems, there is ongoing research
trying to implement atomic actions using families of protocols similar to those im-
plemented by ISIS. The Raid [21] project is an example of a distributed database
system where atomic actions rely on multicast protocols and virtual synchrony
for their implementation.

Meta [143] is a system for building fault-tolerant reactive control applications.
It consists of a layer for instrumenting a distributed application with sensors and
actuators. Meta defines a number of built-in sensors, e.g., to return the load or
the set of users of a machine. User-defined sensors and actuators extend this
initial set.

The "raw" sensors and actuators of the lowest layer are mapped to abstract
sensors by an intermediate layer, which also supports a simple database-style
interface and a triggering facility. This layer supports an entity-relation data
model and conceals many of the details of the physical sensors, such as polling
frequency and fault tolerance. Sensors can be aggregated, for example by taking
the average load on the servers that manage a replicated database. The interface
supports a simple trigger language, that will initiate a pre-specified action when
a specified condition is detected.

Running over Meta is a distributed language for specifying control actions in
high-level terms, called Lomita. Lomita code is embedded into the Unix csh
command interpreter. At run time, Lomita control statements are expanded into
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distributed finite state machines triggered by events that can be sensed local to
a sensor or system component; a process group is used to implement aggregates,
perform these state transitions, and to notify applications when a monitored
condition arises.

2.3.2 Darwin/Regis (Conic)
Conic [79, 100] was probably the first project in the area of management of
distributed systems to address dynamic configuration, it was started in the early
eighties at Imperial College of Science, Technology and Medicine, England. The
Conic system has four subsystems: (i) a configuration language (Darwin), (ii)
a programming language (an extension of Pascal), (iii) a distributed operating
system, and (iv) a configuration manager.

Conic has been designed upon the assumption that a distributed system should
be programmed using two a two-level abstraction. For this purpose, two program-
ming languages are used: one for programming the several modules of the appli-
cation and other for specifying the configuration of the modules which constitute
a logical computing unity (node) of the distributed system. The language for
programming the modules is Pascal, extended with message passing and module
primitives. Conic does not have any built-in support for persistence and atomic
actions. The configuration language has primitives for describing a distributed
application in terms of the relationships among their basic modules. The REX
(Reconfigurable and EXtensible parallel and distributed systems) project [82, 101]
is the sequel to Conic; it was started in 1989. The main changes in relation to
Conic are that now the individual modules of an application can be programmed
in any imperative programming language (C, Pascal, Fortran, etc) and subse-
quently interfaced to each other using a common Interface Specification Language
(ISL). The configuration language, Darwin [98], is an evolution of Conic's original
configuration language. Darwin has a rich set of constructs for the specification of
binding and message passing modes among modules. Finally, there is a graphical
tool, ConicDraw, to help with the specification of reconfigurable applications [81].

Regis [99] is the result of the coevolution of Conic, REX and their respective
configuration languages. Regis is a programming environment aimed at support-
ing the development and execution of parallel and distributed programs. Dar-
win/Regis represent an extension of Conic/REX in two major areas: (i) separa-
tion of communication from computation, and (ii) support for dynamic program
structures.
It is interesting to observe that all systems mentioned above base their de-

sign and implementation on the same principle: "a separate, explicit structural
(configuration) description of distributed programs is essential for all phases of
the software development process, from system specification as a configuration of
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component specifications to implementation as a set of interacting computational
components. [99]"

The Conic system was restricted to a single programming language, Pascal,
extended with a fixed set of communication primitives for defining computational
components. REX permitted the use of varied programming languages (C, Pas-
cal, and Modula-2) for programming computational components, however, only a
fixed set of communication primitives was available. Regis allows users to specify
their own communication primitives. Thus, Regis separates configuration, com-
putation, and communication while its predecessors considered computation and
communication as integral [99].

Dynamic system configuration is the ability to modify and extend a system
while it is running. Incremental changes are introduced to the system as they
are needed. Kramer and Magee [79] show that dynamic configuration of systems
should occur at the programming-in-the-large scale of software where atomic sys-
tems are treated as autonomous components which can be reconfigured as the
circumstances demand. In their approach a configuration specification is written
in a configuration language that describes both the behaviour and the structure
of a system composed of a set of atomic subsystems.

Let us review the original requirements a management system should meet
according to Conic [79].

Programming Language

• Modularity-The language must provide software modules which can be
written and compiled independently from the configuration in which they
will run, i.e., context independence. In object-oriented systems, classes ag-
gregates are the equivalent of modules.

• Interconnection-The direct naming of other modules or communication en-
tities restricts the logical configuration flexibility since change would involve
modifying these names in the program text and thus require recompilation.
Interconnection independence is the key property in separating module pro-
gramming from configuration. This requirement is met by having attributive
names, that is, the names used to find objects are specified in terms of prop-
erties and not in terms of fixed identifications.

• Interfacing-All the information passing into and out of a module must be an
interface which specifies both the type of the information and the mechanism
by which it is to be transferred. This requirement is met by encapsulation
in object-oriented systems.
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• Distribution-Distribution transparency ensures that intermodule commu-
nication is perceived always in an uniform way independently of the fact
that modules are located in the same or in different address spaces .

• Resource requirements-It is desirable to know the maximum physical re-
source requirements of a module. This allows the configuration manager to
check that a station can provide these requirements and that the module will
not fail once it has started because, for example, it cannot acquire enough
store. In an object-oriented system, objects can have this information repre-
sented as an attribute of them. Thus, when needed the management program
can determine what is needed in terms of system resources.

Software systems can be conveniently described, constructed and managed in
terms of their configuration, where configuration is the system structure defined
as the set of constituent software components together with their interconnec-
tions [81, 82]. In the management system created in this thesis, Stabilis manages
structural metainformation and Vigil manages control metainformation.

Configuration Language The configuration language is used to specify two
aspects of a system: its structure and changes it can go through (control).

• Context definition-The configuration language must specify the set of mod-
ule types from which the system is constructed. In an object-oriented ap-
proach, this is equivalent to classes specified in the structural model.

• Instantiation-It must also specify the instances of module types which are
to be created in the system. In object-oriented systems, the instantiation
relationship in the structural model guarantees the consistency of the types
of the modules (objects) instantiated.

• Interconnection-The configuration language must describe the way module
instances are interconnected. In our approach, structural models are used
to specify configuration of instances of classes, that is, objects.

• Declarative configuration language-It is desirable that the configuration
specification be descriptive (declarative). The structural and control models
adopted in this work are used to build declarative specifications of distributed
programs.

Operating System The distributed operating system is responsible for modi-
fying the running system in response to commands from the configuration man-
ager.
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• Module management-The operating system must provide the ability to
load/delete the code for module types into station(s). Additionally, it must
allow the configuration manager to control the execution of modules and to
query the state of the system.

• Connection management-The operating system must provide facilities to
establish and delete connections between modules.

• Communication support-The system must support intermodule communi-
cation.

• Real-time modification-The time taken by management operations should
be such that they can be used for on-line real-time reconfiguration.

• Logical interconnection-Logical interconnection between components of the
system simplify the specification task.

• Flexible operating system configuration-The operating system should itself
be capable of flexible configuration to enable it to be used in different systems
and to allow it to be changed in the same way as the application system it
supports.

The major constraint on the operating system is that the facilities it pro-
vides must be integrated with the programming language and configuration
language for an efficient and safe system.

The Validation Process

• Interconnection-Ensure type compatibility between communicating mod-
ules. Stabilis and Vigil do not violate any of the type checking features
of C++, consequently, type compatibility in the management system is as
good as can be guaranteed by C++.

• Specification/system consistency-It is essential to ensure that the configu-
ration of the actual system is given by and satisfies the current specification.
The fact that metaobjects are related to objects guarantees this form of
consistency.

• Allocation-The logical-to-physical mapping should be checked to ensure
that the resources required by modules can be provided by the underlying
system. The use of metainformation on the system can help the maintenance
of such mappings.

• Behaviour-It should be possible to perform some semantic checks on the
behaviour of the configuration based on information provided on the be-
haviour of each module. Once again, the management of metainformation
on a program provides the necessary infra-structure for semantic checks.



46 Related Work

II Darwin/Regis Stabilis/Vigil II
module (process) class (object) (Stabilis)
port defintion class interface definition (Stabilis)
provide/require relationships (Stabilis)

bind query resolution and relate/unrelate (Stabilis)
forall ObjectSet and for (Stabilis)

when do guarded action (Vigil)
loop select guarded action scheduler (Vigil)

Table 2.4: Darwin/Regis compared to Stabilis/Vigil.

Stabilis and Vigil meet the requirements above but are not as flexible and com-
plete as Darwin/Regis; specially because Darwin/Regis allow its user to specify
varied communication protocols while our current implementation of the man-
agement system provides only remote procedure calls; the implementation of
reconfigurable communication protocols is planned [114]. Table 2.4 shows a one-
to-one mapping between each main feature of Conic/REX/Regis/Darwin and
Stabilie/Vigil'. Table 2.5 brings a summary of the characteristics of the manage-
ment systems reviewed so far. Darwin/Regis allow the specification of relation-
ships between objects at the level of methods (provide/require), Stabilis/Vigil
allow such specification at the level of class using relationships.

2.3.3 Argus
Argus [92, 90, 91] is an early distributed object-oriented language which was
developed at MIT during the mid 1970s. Argus is based on CLU and was de-
signed specifically for supporting fault tolerance. The main features of Argus are
guardians and actions. Guardians are Argus modules which contain data objects
and methods for manipulating those objects. Guardians are active entities and
they control the synchronization and recovery properties of objects. Guardians
encapsulate and control access to a collection of data objects to which access is
possible only by invoking operations exported by the guardian.

Communication in Argus is through remote procedure calls. Parallelism is
supported by allowing guardians to execute in parallel and by allowing processes
to execute in parallel within guardians. Instances of guardians are created by
sending messages to creator objects.

1We were not able to find published information that would have allowed us to make a better
comparison between StabilisjVigil and Meta.
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II Characteristic Vigil Darwin/Regis Meta II
computational object message message

model and action and process and process
object-oriented yes object-based no
persistence yes no no

communication RPC async. msgs ordered
(fixed) and RPC (configurable) broadcast

programming C++ Pascal, Modula-2 C
language C,C++

instrumentation programmed programmed programmed
control language state machines Regis Lomita
configuration object model Darwin Lomita
language (database schema)

composite objects yes yes no
pre-defined yes yes yes

sensors / act uators
inherited yes composition no

sensors / actuators

Table 2.5: Vigil, Regis and Meta: a synopsis.

Argus distinguishes the problem of providing atomicity for a computation from
that of supporting resilience. Actions are units of atomic activity. However the
atomicity properties are provided only by atomic objects and atomicity is guar-
anteed only when all the objects shared by actions are atomic. Argus supports
nested actions [111] as well as nested top-level actions. There are a number of
built in atomic types as well as facilities to allow users to define new atomic
types [142]. To achieve persistence, a guardian definition may specify a number
of stable variables. Atomic objects reachable from a stable variable are stable ob-
jects, that is, a persistent object. Only the stable state of a guardian is recovered
after a failure. Finally, Argus is a single language system with a tight coupling
between system and language.

2.3.4 Arjuna

Arjuna is an object-oriented programming system which provides a set of tools
for constructing fault-tolerant distributed applications [126]. Arjuna supports
nested atomic actions for structuring applications. Objects in Arjuna can be made
either atomic objects or persistent atomic objects; they are the main repositories
for holding system state. Operations upon them are invoked under the control
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of atomic actions. In Arjuna, operations on objects are of type read or write,
following the locking rule that permits multiple reads, single writes. The well-
known strict two-phase locking policy is adopted to ensure serializability. Locks
on objects are acquired inside an atomic action, and are released only when the
outermost atomic action ends (or aborts) [124]. By ensuring that objects are
persistent and only manipulated within an atomic action, it can be guaranteed
that the integrity of objects-and hence the integrity of the system-is maintained
in the presence of failures such as node crashes and the loss of network messages.
This is the object and action model of computation-atomic actions controlling
operations upon persistent objects.

Architecture

The main modules of the Arjuna system are shown in Figure 2.1. The RPC module
is used to invoke operations on persistent objects. The Name Server module keeps
identification and location information about persistent objects. The Object Store
module encapsulates the stable representation of persistent objects. The Atomic
Action module is the application-level interface. These modules are described
further in the subsequent sections.

Name Server

Figure 2.1: The architecture of Arjuna.

RPC Module

Arjuna adopts the client-server model for accessing persistent objects. A server
manages an object state; it defines and executes operations that are exported to
clients. Clients invoke these operations to manipulate the object state guarded



2.3 Distributed Programming Systems 49

by the server. Invocations of operations on persistent objects are implemented as
remote procedure calls (RPC), which are supported by the RPC module.

The Arjuna programming environment provides a tool called Stub Genera-
tor [115] that processes definitions of C++ classes whose instances are persistent
objects to be remotely accessed and, as a result, produces the corresponding
client and server stub code. Transparency of location and access is obtained by
making any invocation of an operation on the client stub object to trigger the
same operation on the corresponding (remote) server stub object, using RPC.

Name Server Module

Names are used for several purposes III computer systems; one of the uses is
to refer to objects. To name and find objects in a distributed system, naming
and binding functions are usually provided through a name server. The naming
function maps a user-supplied object name to a unique object identifier already
assigned to the object. And, the binding function maps the unique identifier of
an object to its location.

Object Store Module

The Object Store provides an access service to the passive state of persistent
objects. The stable representation of the passive state of a persistent object,
usually stored in disk, has to be machine independent to permit its transmission
between stable storage and volatile storage, and also its transmission as a message.
The class ObjectState implements such a representation, providing operations
for packing and unpacking the state of a persistent object into/from an instance
of ObjectState. The function of the Object Store is to manage instances of the
class Obj ectState.

The set of operations provided by the Object Store include: read.state, which
returns an instance of the Obj ectState designated by a unique identifier, and
write.state, which stores an instance of Obj ectState identified by a given
unique identifier. Figure 2.2 shows the lifetime and state transitions of a persis-
tent object along with the operations that produce the transitions. The Atomic
Action module activates a persistent object by first calling read.st.ate and then
restore...state, which unpacks the object state. The reverse operation comprises
the execution of save.atate, which packs the object state, and the invocation of
write...state.
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Figure 2.2: Object state transitions.

Atomic Action Module

The Atomic Action module provides the programming interface of Arjuna. The
mechanisms necessary for concurrency control, persistence, recovery, and atomic
action control are implemented by the classes of the class hierarchy depicted in
Figure 2.3. These classes represent the internal structure of the Atomic Action
module. To write an application that conforms to the object and action model of
computation, a programmer declares instances of the class AtomicAction in his
program; the operations provided by this class (begin, end and abort) can then
be used to organize atomic actions. The only objects controlled by the resulting
atomic actions are those objects that are either instances of Arjuna classes or user-
defined classes derived from the class LockManager-type inheritance is used to
make user-defined classes members of the hierarchy shown in Figure 2.3.

All Arjuna classes are derived from the base class StateManager, which pro-
vides the basic facilities needed for constructing persistent objects and atomic
actions. The class LockManager uses the operations of the class StateManager
to provide concurrency control. The other classes shown in Figure 2.3 implement
most of the support operations of the Atomic Action module; further details about
the class hierarchy of Arjuna can be found in [126].



2.3 Distributed Programming Systems 51

Figure 2.3: The Arjuna class hierarchy in the Atomic Action module.

Replication

Arjuna supports passive replication. Replication transparency mechanisms con-
ceal from the user the number and placement of copies of resources or services.
Users of a replicated service should normally not be aware that multiple copies
of a service exist, to them the replicated services can be identified individually
when they request operations to be carried out. Although requests for operations
may be carried out concurrently by all copies of the replicated service, replication
transparency guarantees that the users of the service only receive back one set of
results. At the programming interface of replica services each replicated resource
is represented by a replica group.

In Arjuna, groups are managed through the name server and with the help
of a specialized database called the Group View Database. Both name server
and Group View database maintain information pertaining replicated objects. To
replicate an object a programmer has to create a replica group by entering the
information concerning the replicas into both subsystems.

Failure Assumptions

Arjuna assumes that the hardware components of the system are workstations
(nodes), connected by a communication sub-system (for example, a local area
network). A node is assumed to work either as specified or simply to stop working
(crash). After a crash a node is repaired within a finite amount of time and made
active again. A node is assumed to have both stable and non-stable (volatile)
storage. All of the data stored on volatile storage is assumed to be lost when
a crash occurs; any data stored on stable storage, as stated earlier, remains
unaffected by a crash. It is also assumed that faults in the communication sub-
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system are responsible for failures such as lost, duplicated or corrupted messages.
The RPC system is assumed to be responsible for coping with such failures using
well-known network protocol level techniques; it returns a failure exception to
the caller if it suspects that the called server is not responding.

2.3.5 Camelot and Encina
Camelot [56, 130] is a distributed transaction facility build atop of the Mach [1]
distributed operating system and its programming tools; it is the successor of
TABS [129]. Camelot was developed at Carnegie-Mellon University, USA. It
implements the recovery, synchronization and communication mechanisms needed
to support distributed transactions and objects.

In Camelot, object managers, called data servers, encapsulate code and data
implementing different abstract data types (classes). Applications act as clients
which can begin and end transactions and use remote procedure calls to request
data servers to carry out methods on the data which they maintain. Data servers
can be remote from an application. Accessing such a server results in a distributed
transaction. A server may also act as a client and call another server. The
transaction model allows nesting and parallelism inside a transaction, based on
concurrent subtransactions. To the programmer of an application or data server,
the Camelot services are available as libraries.

To reduce the effort required to construct reliable distributed applications a
new programming language, called Avalon [71], has been created. Avalon encom-
passes compatible extensions to C++ and its compiler automatically generates
code for calling Camelot and Mach facilities. Full linguistic support for atomic
objects and transaction management is provided by Avalon.

Encina [139] is a commercial system being developed by Transarc, a company
founded by some of the main designers of Camelot. Encina aims at supporting
commercial distributed transaction processing programs in an open distributed
computing environment. It is being developed to run on top of Open Software
Foundation's Distributed Computing Environment (DCE). The Encina architec-
ture conforms to the X/Open distributed transaction model. Encina provides a
transaction monitor as well as a few specialized transactional resource managers
(including record-oriented transactional file server, a specialized object store, and
a transactional queueing system). Integration to relational database management
systems is supported by use of the X/Open interface [141]. Interoperability with
mainframe systems is provided by incorporating a multi platform protocol inter-
face.
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At a lower level Encina offers services such as strict two-phase read/write
locking, logging and two-phase commit, which can be used in building new trans-
actional resource managers. The Encina transaction model supports nested trans-
actions and parallelism within transactions.

To the programmer the Encina services are available as augmented C/C++
constructs mapped to library calls by a stub generator. The stub generator takes
care of distribution transparency [140].

2.4 Monitoring Systems
Monitoring has provided insights into the problem of instrumentation. For in-
stance, TQuel [127, 128] has played an important role in defining the use of
sensors and data collecting mechanisms. TQuel uses the entity-relation model to
structure the system being monitored. TQuel provides a way to monitor the state
of a single component. The system provides a methodology for instrumentation,
with facilities to enable and disable the collection of data. The collected data is
viewed by the user as residing in a historical relational database, a database in
which each tuple is tagged with the time in which the tuple was valid. A query
language provides a way of analyzing the system state. TQuel is centralized and,
being a monitoring system, lacks support for reaction to events.

2.5 Debugging Systems
A debugger provides a programmer with the means for stopping an application
during its execution at specified points, called breakpoints, and examining the
state of the stopped process. Breakpoints are typically written as some pred-
icate on the state of the process; as soon as the state of the process satisfies
the specified condition, the process is stopped. A distributed debugger allows
the application to consist of separate, communicating processes. Handling break-
points for a distributed application is much more complicated, since they are now
predicates over a distributed state [64]. Ideally, the system should be halted as
soon as the predicate is satisfied, with each application component being in the
state it was at the moment the predicate was satisfied. Works on debugging sys-
tems [16, 17, 18, 103] have contributed with ideas on consistent detection of global
states and consistent reaction. The work of [108] extends the Chandy-Lamport
algorithm [43] to cause the system to stop when a specified condition is satisfied.

The work of Spezialetti [131, 132] defines three classes of predicates: a mono-
tonic predicate: once true, forever true. A dependent monotonic predicate is
one that under certain conditions behave as if it were monotonic. For exam-
ple, the predicate "the disk is full" is dependent monotonic in the presence of a
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disk space manager; the predicate remains true as long as the condition "corre-
sponding corrective action taken" does not hold. The last type of predicate is
the non-monotonic predicate; the fact that such a predicate held in some past
state does not mean it will hold in any subsequent state. Dependent monotonic
predicates-predicates that remain true until some corrective action is executed-
are of particular interest to a management system, since for such predicates the
manager is guaranteed that the predicate will still hold when the reaction takes
place.

2.6 Conclusions
In this Chapter, we have described the changes that are gradually being intro-
duced to the engineering of operating systems, database systems, and program-
ming systems due to object orientation. In some systems, object orientation is
applied only at application level, in other cases the object-oriented paradigm is
adopted in the design and implementation at all levels of the system. Among
operating systems, Chorus/COOL is an example of the former approach and
Choices is an example of the latter. Postgres and Starburst are examples of
database systems with hybrid architectures; GemStone and ORION are exam-
ples of homogeneous architectures.

Relational databases do not use unique identifiers to identify their entities
(tuples), they use the concept of primary keys to identify them. In contrast,
distributed systems use a combination of node addresses and processes identifiers
to identify processes uniquely. This difference in identification kept distributed
databases and distributed systems apart for a long time. The introduction of
object-oriented technologies has almost removed this "identification gap" that
once separated database systems from operating systems.

Storage systems are another interesting example that some degree of unifica-
tion has been achieved through the adoption of object orientation by software
engineers. As we have seen in this Chapter, the uniform use of object-oriented
concepts in the implementation of the systems reviewed has evolved the abstrac-
tion of file systems and introduced the abstraction of object stores and object
managers. Research in object-oriented persistent programming languages and
environments has done much to reduce the differences in the treatment of volatile
and persistent objects.

The use of inheritance has made systems much more easier to adapt and refine.
Arjuna, Choices and Apertos are examples of systems that explore inheritance to
create a flexible system where user-defined classes can selectively inherit proper-
ties from system-defined classes.
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Originally atomic actions were used almost exclusively in database systems.
Then, implementors of operating systems and programming systems realized that
the transaction concept could evolve by becoming visible to application program-
mers. Atomic action modules were built on top of operating systems and in-
tegrated with programming languages, resulting in an environment where all
applications could benefit from the properties of atomic actions. Within this
framework, it became possible for programming environments to provide per-
sistent objects and allow programmers to structure their distributed programs
as collections of transactions acting upon these persistent objects. Argus, Ar-
juna, Camelot, and Guide are examples of systems that adopt this programming
paradigm. Later, object-oriented database management systems adopted a sim-
ilar approach. ObjectStore and ODE are examples of such systems. Object
orientation and explicit transactions has made these systems much more alike.

Reflection allows the implementation of a system to be exposed in a controlled
way, at the right level of abstraction, to a programmer. Reflective techniques
allow the interception of a message before it is executed, making possible the re-
definition of its behaviour and, consequently, the behaviour of the environment.
When programmers have access to this interception facility, through reflection,
they can adapt the behaviour of the environment without having to learn about
implementation details on which they are not interested. Apertos has used these
concepts to create an object-oriented system where the gathering and interpre-
tation of information about an active program is used to adapt the system to
the needs of the program. Consequently, it is easier to implement management
systems in a system like Apertos, than it is in a more conventional system.
It is within this framework of gradual convergence among software systems

that Stabilis and Vigil have been designed. We have studied operating systems,
database systems and programming systems and have tried to filter concepts
that seemed effective to the implementation of a management system for object-
oriented action-based distributed programs. During our survey, we have found
that most of the systems used for programming distributed programs lack sup-
port for runtime reconfiguration of distributed programs, including some object-
oriented action-based systems
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This Chapter focuses on the architecture and functionality of Stabilis. The ap-
plication of object-oriented and reflective techniques resulted in the simplification
of the architecture of Stabilis. Object-oriented techniques allow the management
system to be incrementally extended. Reflective techniques make the behaviour
of the system adaptable.

Unlike most database management systems, Stabilis is not intended to be
a complete database management system with, for example, provision of query
operators comparable to those found in relational database management systems.
Rather, it is intended to be a tool that can be easily adapted to satisfy the needs
of different areas of application.

3.1 The Architecture of Stabilis
We are going to present the architecture of Stabilis in stages. In the first stage, we
define the structural model 1 supported by Stabilis, using the structural model
defined by C++ as our referential. The second stage shows how layers of the
architecture are created through a simple example involving the instantiation of a
structural model. The last stage presents the complete architecture of Stabilis and
discuss some of the problems encountered during its design and implementation.

3.1.1 Structural Model
A structural model describes a static perspective of a system, the referent system.
In our case the referent system is the distributed program the user is implement-
ing. Structural models capture the static structure of a distributed program by
representing its classes, attributes, and relationships. Structural models are in-
trinsically metadata, since they describe the system being modeled (rather than
being the system); models of metadata are metamodels.

A structural model is represented as a directed acyclic graph where the nodes
are classes, and the edges are relationships between them. A structure diagram
is a graphic notation for the directed acyclic graph.

Classes

C++ and Stabilis are in accordance with respect to the concept of class, both
define class as a user defined type, an abstract data type [137, page 134]. A class
diagram is a notation for the nodes, classes, of the directed acyclic graph. A class
diagram is represented by a rectangle subdivided into three smaller rectangles.
The top rectangle brings the name of the class. The other two rectangles contain

1Also called a database schema, or object model in the literature.



3.1 The Architecture of Stabilis 59

Plant
genus: string

blossomO

Figure 3.1: Class diagram.

lists of attributes and methods of the class respectively; they are optional. Fig-
ure 3.1 shows an example of a class diagram for a class called Plant with attribute
genus of type string and method blcssomf ).

Relationships

In C++ relationships are represented as pointers between objects, with their
meaning being determined by the programmer. Stabilis redefines the meanings
of the references used to carry out relationships between database objects and
shifts the responsibility for their management from program level to management
level. In the structural model of Stabilis relationships between classes can be any
of the following [120, pages 21-84]:

• Generalization/Specialization.
A class, the subclass, inherits attributes and behaviour of another class, its
superclass. A class with no superclass is called a root class. A class with no
subclass is called a leaf class. Multiple inheritance exists when a class has
more then one superclass. The notation for generalization/specialization is
an arrow that starts at the superclass and ends at the subclass. Figure 3.2
shows an example of generalization/specialization relationship. In the ex-
ample, the class Plant represents a higher-level abstraction of a number of
subclasses such as Epiphyte or AquaticPlant. Each of these two classes can be
specialized further into subclasses such as Lichen and Orchid or SeawaterPlant
and RiverwaterPlant.

Usually, the generalization/specialization relationship is interpreted in two
different ways by designers of object-oriented systems:

1. it is used as a means of inheriting or "borrowing" implementation parts
from an existing class. In this case, inheritance is used mainly to increase
code reuse.

2. it is used as a means of inheriting specification, a subclass is designed
by including the specification of its parent class as a subset of itself.
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Figure 3.2: Generalization/Specialization.

In this work we adopt the latter way of using the generalization/specialization
relationship with the consequence that each subclass contains the public in-
terface of its parents as a subset of its public interface. Additionally, when
using the generalization/specialization relationship the designer of the class
hierarchy must guarantee that the specification of methods remains con-
sistent. We can express this consistency requirement in terms of method
invariants (631for each method that is inherited by a subclass:

- The preconditions on a method in the subclass may only be weakened
relative to the pre-conditions on the same method in the base class. The
postcondition on a method in the subclass may only be strengthened
relative to the post-conditions on the same method in the base class.

We can now state the requirement a designer must attend to when creating
class hierarchies, it is called the class invariant requirement:

- The specification of a class must include, as a subset the specification of
each of its base classes. Additionally, the method invariant must hold
for every inherited method in the subclass.

These two requirements produce a class hierarchy in which the subclasses
are subtype compatible with their parents and polymorphic substitution of
subclasses for superclasses is possible. We call this use of the generaliza-
tion/specialization relationship strict inheritance.
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t--O+--------'l-+-tl Ecological Niche
'-- --' plant niche '- ___'Plant

Figure 3.3: Association.

'-- __ p_l_an_t__ --'~..~i~~""""" 'l~~~~~,- __ Le_av_e_s_ ___,

Figure 3.4: Loose Aggregation .

• Association. An association is a description of a conceptual connection be-
tween two classes. Figure 3.3 shows an example of association between the
classes Plant and EcologicalNiche; it models a real-world relationship between
plants and ecological niches. The notation for the association relationship is
a line connecting two classes.

The purpose of a class in an association specifies its role in the association.
In the example, the class EcologicalNiche plays the role of being a niche for
plants. The default name of a role is the name of its corresponding class;
the annotation of default roles is optional. Roles are indicated in a object
diagram by writing their names next the ends of the association line.
The multiplicity of a class in an association specifies how many instances of
this class may relate to an instance of the associated class. Multiplicity is
symbolized in a class diagram as a non-negative integer or an interval su-
perscripted next to the end of the association line. Examples of multiplicity
marks are: "1+" (one or more), "3 - 5" (three to five, inclusive). An asso-
ciation line without multiplicity symbols indicates a one-to-one association.
In Figure 3.3, the multiplicity "0+" means "an ecological niche has zero or
more plants in it," and "1+" means "a plant must appear in at least one
niche."

• Aggregation. An aggregation is an association where one class is in a "part-
whole" or "a-part-of" relationship with the other class. The classes in the
role "a-part-of" are denominated component classes and the class in the role
of "whole" is denominated an aggregate class. Instances of a component class
are component objects, and instances of an aggregate class are aggregate ob-
jects. The existence of a component object may depend on the existence
of the aggregate object of which it is part; in this case the aggregation is
termed a tight aggregation. When components and aggregate have inde-
pendent existence, then the aggregation is termed a loose aggregation. The
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(..____p_lant __ }-- - --- - --- - -- ~

Figure 3.5: Instantiation.

notation for tight aggregation is a dashed arrow, and the notation for loose
aggregation is a dotted arrow. The head of the aggregation arrow is at the
component class and its butt is at the aggregate class. The multiplicity of
aggregations is indicated in the same way as the multiplicity of associations.
Figure 3.4 shows an example of aggregation where a plant is specified as a
loose aggregation of leaves .

• Instantiation. The instantiation relationship relates a class to its instances.
Explicitly showing the instantiation relationship is useful when both classes
and instances have to be manipulated as objects. The notation for the
instantiation relationship is a bidirected dashed arrow linking the class dia-
gram to the instance diagram. The notation for an instance of a metaclass, a
metaobjeci, is similar to the notation used for classes, except for the rounded
corners. Terminal instances, instances that are not classes, are represented
by an ellipsis with the name of the generator class and, optionally, the state
of the object inscribed. Figure 3.5 shows a metaobject, instance of the meta-
class Plant, linked to a terminal instance of the class Plant.

The analysis of the structural model defined by C++ carried out so far shows
that C++ is capable of providing the functionality required of Stabilis except for:

RI The need to manage structural data about distributed programs in order
to resolve queries. The structural model of C++ does not allow the man-
agement of information related to applications. For example, there is not
any built-in mechanism for obtaining the class of an object during runtime;
during compilation such information is available in the compiler's data struc-
tures, but it is not transferred to the executable code. The data maintained
by Stabilis about the distributed program is the program's structural model
and related indexing information.

R2 The need for redefining the meaning of C++ references for database objects
to allow the implementation of pre-defined reference semantics.

The requirements above induce the definition of an extended structural model,
the structural model of Stabilis. In the following list, principles SI to S4 and S6
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define the structural model of C++. Principle Ss has been added in response to
requirements RI and R2•

SI A class describes a group of objects with similar properties (attributes), com-
mon behaviour (methods), common relationships, and common semantics.

S2 Activation of objects is carried out only by message passing: a message
specifies which method to execute and its actual parameters.

S3 An object is an instance of a class. The current values of the attributes of
an object define its state. The state of an object comprises the state of its
instance variables, including relationships.

S4 Every object belongs to a class that specifies its attributes and behaviour.
Objects are dynamically generated from this model, they are denominated
instances of a class.

Ss A class is also an object, instantiated by another class, its meiaclass. From
(S4) we have the association of each class of a structural model to a metaclass.
Metaclasses specify the attributes and behaviour of a class as an object. In
Stabilis, the original metaclass is the class Class.

S6 A class can be defined as a subclass of one (or many) other class(es); sub-
classes are defined through the inheritance mechanism. In Stabilis, the class
Object represents the most common behaviour shared by all objects; it is the
original root class, that is, all classes in a structural model are, directly or
indirectly, subclasses of the class Object.

3.1.2 An Example Program

In the second stage of the description of the architecture of Stabilis we rely on
a simple example program to show how the structural model of Stabilis moulds
the architecture of the management system.

Although understanding the architecture of Stabilis and its overall implemen-
tation is important, it is crucial to separate what belongs to the internals of
Stabilis from what is perceived by its users. A useful metaphor for making this
separation comes from the workings of an orchestra. We can think of the program-
ming environment as being a concert. Users, who we think of as the audience,
only get to see and hear what is played on-stage. We can think of the program-
ming interface as being on-stage. The implementation of the concert, that is,
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Figure 3.6: Niche structural model.

orchestration of the music, tuning of the instruments, and rehearsals are back-
stage: they support what happens on-stage, but the audience does not get to see
them. Finally, implementors are the maestro and musicians: they get to see what
happens both on-stage and backstage, and they are responsible for the concert.
During the remaining of this work we are going to make reference to the orchestra
metaphor as a navigational aid which helps the reader distinguish between what
belongs to the internals of Stabilis from what is seen at its programming interface.

A simple Stabilis program consists of two autonomous sub-programs:

1. The schema program has a definitional role, when executed it generates ob-
jects that define a structural model: the classes, attributes, methods, and
relationships of the structural model. Backstage, the generation of these ob-
jects creates an internal representation of the structural model. The internals
of Stabilis use information stored in these objects, in fact metaobjects, to
create terminal instances and to access their state and methods. In general,
the schema program is run only once to define the structural model which is
going to be used as a basis for the execution of several application programs.

2. The application program has a querying role. When executed it generates
and/or retrieves database objects which are instances of the classes defined
by the metaobjects created by the schema program. The objects created by
the application program belong on-stage, they are the objects of the user's
distributed program.

To make things concrete, we analyze the execution of a Stabilis program
(schema and application sub-programs) for the structural model shown Figure 3.6;
let us call it the Niche structural model. The structure of the schema program
(Program 3.1) mirrors the Niche model directly. Lines 1 and 2 of the schema
program (Program 3.1) have the function of creating instances of the class Class
for the classes EcologicalNiche and Plant of the Niche model. Recalling the con-
cert metaphor, the instances created by lines 1 and 2 are part of backstage, they
are metaobjects. The creation of the metaobjects like the ones created by lines 1
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and 2 is determined by principles S3 and S4: without metaobjects (classes) it is
impossible to create objects (instances of a class). The existence of the metaclass
Class, determined by principle Ss, allows the creation of classes.

We still have to create the metaobjects that define the attributes of the classes
Ecological Niche and Plant, lines 3 and 4 of the schema program (Program 3.1) do
exactly this for the class Ecological Niche. Line 4 is responsible for creating the
relationship between the metaobject that defines the class EcologicalNiche and
the metaobject that defines its attribute name. In a similar way, lines 5 and 6
create metaobjects that define the attribute genus of the class Plant. Finally,
line 7 carries out the creation of the metaobject that defines the association
between the two classes of the Niche model. Note that the variables representing
the classes of the Niche model are passed as parameters to the constructor of
the class Association which guarantees the creation of the necessary relationships
between the metaobjects involved.

Program 3.1 Schema for Niche structural model.

main() {
(1) Class» enclass = new Class("Class (name = 'EcologicalNiche')", ... )j
(2) Class» pclass = new Class("Class(name = 'Plant')", ... );
(3) StringAttribute»
enname = new StringAttribute("StringAttribute(name = 'name' ,tI;

key = 1)", ... )j
(4) enclass-e-relatef'' Attribute", enname);
(5) StringAttribute»
pgenus = new StringAttribute("StringAttribute(name = 'genus' tt
key = 1)", ... )j
(6) pclass-+relateC'Attribute", pgenus];
(7) Association»
en.p = new Association("Association(left...role = 'plant' tt
left..min_card = 0 tt left..max_card = -1 tt right...role = 'niche'
tt right..min_card = 1 tt right..max_card = -1 tt key == 1)",
enclass, pclass, ... )j
}

We can now concentrate on the execution of the application program (Class 3.1
and Program 3.2). The header file (Class 3.1) has been automatically generated
by Stabilis using Niche's database schema. Note the inheritance from the class
Object, determined by principle S6' Also, in the code fragment we can see that
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the constructor of class EcologicalNiche takes a query expression as its first formal
parameter. Every class definition fit to execute under the control of Stabilis
has in its definition a family of constructors that accept query expressions as
their parameters. Later, we are going to see how these query expressions are
interpreted. Principle S4 is materialized as the data structures and algorithms
which allow query resolution. There is a similar class definition for the class Plant.
Lines 1 and 2 of the application program (Program 3.2) show how the kernel of
Stabilis is activated, the name of the user-defined structural model is passed as
a parameter to Stabilis. Finally, the program creates an instance of each of the
classes EcologicalNiche and Plant, relates them and terminates (Program 3.2, lines
3, 4, and 5).

Class 3.1 Class EcologicalNiche.

/ * A utomatically generated code */
class EcologicalNiche: public Object {
public:
EcologicalNiche(String query .expression, ... );
I'V EcologicalNiche();

protected:
String name;

};

Program 3.2 Application for Niche structural model.

maint )
{
(1) String name(IEcologicalNicheStabilis");
(2) Stabilise stabilis = new Stabilis(REINCARNATION, ... , name);
(3) Ecologicalbliche»
niche = new EcologicaINiche("EcologicalNiche( 'name = "tundra'!") ", ... );
(4) Plant» plant = new Plant("Plant('genus = IIRiviea'lJ", ... );
(5) plant-+relate("niche", niche);
}
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Figure 3.7: A first hint of the architecture.

The execution of both programs caused several new objects to be created
and connected as shown in Figure 3.7. They can be divided in two groups:
metaobjects (classes) and objects (terminal instances). In the former group, are
the objects that form part of the indexing structures of Stabilis. Objects at this
level of the architecture compose a bidirectional graph upon which the algorithms
for query resolution operate. These backstage objects represent a Stabilis user
program rather than the domain of it. In fact, everything that happens inside
the implementation of Stabilis is considered to be at "meta" level with respect to
the user program; i.e., about the user program itself, rather than about whatever
the user program happens to be about. As we have seen, principles 53 to 5s
were used in the instantiation of this layer of Stabilis' architecture. If we were
not looking into the inside of an implementation we might not even have noticed
that there were such metaobjects; being part of backstage they are normally
hidden from the programmer. In the latter group, the two objects (which are
part of on-stage) are terminal instances and the connections they have to their
respective metaobjects (classes), principle 54, is what makes them subject to the
management algorithms implemented by Stabilis.

Given this overall picture, the remaining of this Chapter will detail further the
architecture and operation of Stabilis.
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3.2 Implementation

The previous example has shown how a schema program determines the creation
of part of the backstage machinery used by Stabilis to manage structural infor-
mation related to user programs. It has also shown that terminal instances are
managed by algorithms resident inside their corresponding classes (metaob jects).
The architecture of Stabilis, as it stands, is formed by two layers: an object layer
and a metaobject layer. Is this two-layered architecture sufficient to the operation
of the system? The answer to this question is based on a uniform application
of principle S5 which states that classes are objects instantiated by other classes,
their meta classes. If we have classes (metaob jects) in the system, then we must
have metaclasses. Consequently, the answer to the question is no. This negative
answer takes us into the subject of this Section: the formation of the third layer
of the architecture of Stabilis.

Stabilis' third layer implements the basic algorithms for management of struc-
tural information, this layer is the kernel of Stabilis. In the example program the
metaob ject layer was created by the execution of a schema program. Similarly,
the kernel of Stabilis, the meta-rnetaobject layer of the system, is created by
the execution of a special schema program which encodes the structural model
of Stabilis itself. A detailed discussion of the special schema program is beyond
the scope of this work. Instead, we resort to the structural model of Stabilis,
as shown in the object diagram of Figure 3.8, to explain the creation of the
meta-metaobject layer.

At first sight, the object diagram (Figure 3.8) looks complex because of the
number of classes, attributes, and relationships represented. In fact, this appar-
ent complexity disappears when the graph is seen as a design of the structural
model defined in 3.1.1 (page 58). Every class, attribute, and relationship rep-
resented in Figure 3.8 is an interpretation of a concept laid down during the
definition of principles SI to S6. For example, the subtree whose root is the class
Relationship has been designed as so because of the definitions of Section 3.1.1.
There we say that a relationship can be specialized into subclasses: Generaliza-
tion/Specialization, Aggregation, Association, and so forth. The representation of
the class Class as a tight aggregation of objects reflects principles SI to S4. The
other classes and relationships of the object diagram have been designed in a
similar way. The interpretation of the object diagram can be eased further by
dividing it into two intersecting subdiagrams:
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Figure 3.8: The structural model of Stabilis.

1. one is formed by the classes Class, Attribute, Method, Object, Constant and
those of the class hierarchy whose root class is Relationship. The instantiation
of the classes represented in this diagram in terms of themselves form the
kernel of Stabilis.

2. the other is formed by the classes Model and Class. This diagram show how
structural models are represented in Stabilis. A structural model has always
an instance of the class Model associated to its root class. Instances of the
class Model are the entry points to navigate database schemas.

We are going to study each of the subdiagrams in turn and show how their
instantiation determines the architecture and functionality of Stabilis.
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3.2.1 Representing Classes

On-stage, the Stabilis programmer begins the design of his distributed program
with the creation of a structural model where the definition of classes playa
central role. It is natural, therefore, to begin our study of the kernel of Stabilis
by examining how classes and metaclasses are represented internally.

The first metaclass to be represented is the metaclass Class. It is created
through the instantiation of a special constructor of the class Class. This meta-
metaobject is the root of the instantiation graph formed by objects, metaobjects,
and meta-metaobjects. Its existence guarantees that any other class or metaclass
of the model can be created; the metaclass Class is the only class in the system
that can instantiate itself.

The representation of the metaclass Class is not complete with the creation of
an instance of the class Class for itself. Next, we must represent the attributes of
the metaclass Class. For example, the representation of the attribute name of the
metaclass Class requires the creation of a metaclass Attribute and its initialization
with the name of the attribute of the metaclass Class. In the structural model
of Stabilis (Figure 3.8) we can see that the class Attribute is modeled as a tight
aggregation of classes Constant". Therefore, the representation of the metaclass
Attribute implies the creation of the metaclass Constant. The representation of the
kernel of Stabilis is not complete until we have instantiated the whole structural
model of Stabilis using metaclasses. The booting up of Stabilis is carried out
by a special schema program whose purpose is the creation of these metaclasses.
Figure 3.9shows the three layers of the architecture. In the meta-metaobjects
layer of the figure we can see, at the top right, the instances of the metaclasses
Class, StringAttribute, and three instances of the metaclass StringConstant. To-
gether, they represent a snapshot of part of the kernel, that is, the meta-index,
of Stabilis. These meta-metaobjects index the metaobjects, metaobjects layer,
that in their turn index the database objects, objects layer.

2The name of the class Constant is unfortunate, since instances of Constant are not constants
at all; they are values of attributes. The name Constant has been retained for practical reasons.
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Figure 3.9: A hint of the three layers.

The metaclass Class indexes all metaclasses of the structural model of Stabilis.
For example, we can traverse the index formed by metaclasses Class, Relationship,
and Association (Figure 3.8) and reach the classes (metaobjects) which represent
associations between any two classes of any stored structural model.

3.2.2 Representing Models

Understanding the representation of models is simpler once we have seen how to
represent the metaclasses of the kernel of Stabilis. In the kernel of Stabilis, classes
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are represented as a graph: objects are nodes and relationships are edges. Mod-
els are represented as a graph superimposed on the kernel graph. The structural
model of Stabilis (Figure 3.8) shows us how the superimposition is achieved. In
the structural model, the class Model has three relationships, two with the class
Class and one with itself. The two relationships with the class Class indicate the
intersection of the representations. They are loose aggregations, meaning that
structural models are formed of aggregations of classes that can be changed. In a
loose aggregation the components are autonomous objects in relation to the ag-
gregate object; components usually outlive the aggregate. The loose aggregation
relationship between Model and itself (Figure 3.8) allows for the representation
of hierarchical models.

An instance of metaclass Model is created by the special schema program
which indexes all structural models represented in Stabilis. Structural models
are represented as graphs whose internal nodes are classes Model and whose leaf
nodes are classes Class. Models are to Stabilis what database schemas are to
traditional database management systems.

3.2.3 On Circularity

Principle S5 (see page 63) of the structural model states that classes are objects,
instantiated by another class, denominated metaclass, represented by a metaob-
ject. In practice, the circularity expressed by this principle implies a recursive
process of instantiation. The general step of recursion is provided by the instanti-
ation of the structural model supported by Stabilis (Figure 3.8) for a given target
structural model. The architecture of Stabilis is thus determined by successive
applications of this step. Let us fix the metaobject layer of the architecture as
our referential. Reasoning forwards takes us to the layer of meta-metaobjects,
this level results from the the application of principle S5 to the structural model
of Stabilis itself. In theory, one could carryon with the regression infinitely3; in
practice, the depth of the instantiation tree is kept at three. Reasoning backwards
and using the foregoing layers as support, takes us to the base of the recursion,
to the layer where terminal instances are found.

As already written, heuristic considerations determine the recursive instanti-
ation of structural models to be stopped at meta-metaobject level. The ending
of the recursion poses a chicken-and-egg problem: an object cannot be created
until its class exists, but this class metaobject needs to be an instance of itself.
In Stabilis, the most important chicken-and-egg problem occurs in the creation of
an instance of the class Class to represent itself, a meta-metaobject. The removal

3A metaclass is a class which instantiates a class, a meta-metaclass is a class which instan-
tiates a metaclass, a meta-metametaclass is ...
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Figure 3.10: Circularity in relationship representation.

of the class Class circularity involved the programming of special code used only
during the initialization of Stabilis:

• the class Class has a autonomous primary constructor,

• creation of a volatile-only version of the kernel code of Stabilis which uses the
special constructors of class Class and of others classes of the structural model
of Stabilis. This volatile-only version of Stabilis' kernel has its generation
controlled by compilation flags, meaning that two variations of Stabilis exist:
a variation that is used only to boot the kernel and a variation that is used
during Stabilis' normal regime of operation.

Relationships

There is another circularity in the kernel of Stabilis (Figure 3.8). How do we
represent (implement) the relationships between the classes of this model? Let
us take as an example the tight aggregation relationship existent between the
class Class and the class Attribute (Figure 3.10a). It is possible to implement
this relationship through the creation of an instance of the class TightAggregation
(Figure 3.10b). Now, the representation of the kernel is composed of instances
of metaclasses Attribute, TightAggregation, and Class. The link between these
metaclasses associations. Again, it is possible to implement these associations
using metaclasses Association (Figure 3.10c), and then implement the associations
between these Association metaclasses using metaclasses Association, and so on.
We stop the recursion at the level shown in Figure 3.10b by not implementing
the associations in terms of Association metaclasses. Instead, we use instances of
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Figure 3.12: Part of the structural model of Stabilis.

the class hierarchy whose base class is the class Relatioship Table. The links shown
in Figure 3.10b are implemented by instances of Relationship'Iable: the resulting
configuration of objects is shown in Figure 3.11. Every database object has a
relationship table as its attribute.

The class Relationship Table has as its attribute a list of relationship table en-
tries. Relationship table entries are implemented as classes and there is a one-to-
one mapping between the class hierarchy of relationships and the class hierarchy
of relationship entries. For example, we have a class Association to represent the
association relationship and we have a class AssociationEntry to represent links of
type association between objects.

3.3 Classes Interfaces

Our analysis of the protocols implemented by the kernel of Stabilis starts with a
brief description of the interfaces of some of the classes involved in the implemen-
tation of the protocols. The classes chosen are represented in Figure 3.12. They
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II Class Narne I Class Definition lines II
Class 3.2 1

Attribute 3.3 1
Constant 3.4 1,2
Object 3.5 15,16

Table 3.1: Family of primitive constructors.

II Class Narne I Class Definition I lines II
Class 3.2 2,3,4

Attribute 3.3 2,3,4
Constant 3.4 3,4,5,6
Object 3.5 17,18,19

Table 3.2: Family of query constructors.

have been selected because they represent a significant cross-section of the meth-
ods used in the implementation of the protocols of Stabilis' kernel, especially the
protocols related to query resolution. We hope that the grouping of methods into
families provides a less fragmented view of the classes interfaces. Later, during
the discussion of queries, we detail further how some of these methods are used.

3.3.1 Constructors
The constructors of classes of the kernel can be divided into two families. The
first family comprises the constructors that are used only during the booting
process (Table 3.1). These constructors are primitive in the sense that they do
not depend on the previous existence of metaclasses for their instantiation.

The second family of constructors (Table 3.2) is used during the normal op-
eration of the system. Once the metalevels of the architecture have been created
then objects can be manipulates using query expressions. Three parameters are
of interest: query expression, mode of instantiation, and operation history. A
query expression is an expression involving classes and their key attributes.

The parameter mode of instantiation can be one of:

• Birth: meaning that the creation of a database object is mandatory. For
example, if a program contains a statement like "Plant * plant = new Plant("
Plant('genus = "Riviea" ')", ... , Birth, ... )", then Stabilis creates an instance
of Plant and initializes its attributes with the values supplied in the query
expression. In this simple example, attribute genus is set to "Riviea".
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• Reincarnation: If a database object which satisfies the query expression is
found then it is returned, that is, restored from the object store into the
object manager and made available for processing .

• Provide: If a database object which satisfies the query expression is found,
then return it, otherwise, create it.

Class 3.2 Class Class.

class Class: public Object {
public:
(1) Class( Context», Birth, Oplllstory«); / * Class for Class */
(2) Class(String sexpr, Context», Birth, Oplfistory«);
(3) Class(String sexpr, Context», Reincarnation, OpHistorye ):
(4) Class(String sexpr, Context», Provide, Opliistory«);
(5) ",ClassO;
(6) String get.namef );
(7) Op'History= Indext);
(8) Opffistory» traverset Attr Expr« attr.expr, String attribute.name};
(9) OpHistory« traverset Class-zz meta, String& meta.name, String role);
(10) OpHistory» insert(String class.name, Classe );
(11) Opflistory« locate( String class.name, Class*&);
(12) Opllistory« insert(String attribute.name, Attribute«]:
(13) Op'History» locate(String& attribute.name, Attrlbute-jz};
(14) Opfllstory= update(String& attribute.name, Constant», Object«);
(15) Op'History= adjust(String& attribute.name, Object«):
(16) Opfllstory» gcn.codeifitring path, unsigned version, StringList& classes);
(17) virtual ostream& print( ostream&);

private:
(18) CheckPointingList<MetaEntry> metas;
(19) CheckPointingList<AttributeEntry> related.attributes;
(20) Constant» first-constant;
(21) Attribute= search....attribute;
};

The third parameter is an operation history, class OpHistory. It is used to
store lists of messages, warnings, and error codes. At any moment a programmer
can poll operation histories to determine the result of an operation executed
by Stabilis. All systems implemented in Stabilis adopt the same mechanism to
communicate results of operations. The use of an operation history has made the
system much more easy to program and debug.
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Class 3.3 Class Attribute.

class Attribute: public Object {
public:
(1) Attribute(String a.name, KeyFlag a.key.flag, Context» context,

Class» meta, Birth, Opffistory«};
(2) Attribute(String sexpr, Context», Birth, Op'Historye );
(3) Attribute(String sexpr, Context», Reincarnation, Opfiistory«);
(4) Attribute(String sexpr, Context», Provide, Opllistory«):
(5) Attributet Pip«, Context», Reincarnation, Opflistory»):
(6) Oplfistory« index(ParentTightAggregationEntry* objects...entry);
(7) Op History» update(Constanh new.constant, Object s );
(8) OpHistorye adjustt Object»):
(9) OpHistory» relate(Constanh, ParentTightAggregationConstantEntry*);
(10) OpHistorye unrelate(Constanh, Parent Tight Aggregation Constant Entry» );
(11) Op History« 1irst(Constanh&)j
(12) OpHistory» nextf Constantezz};
(13) String get.namet):
(14) Boolean is.keyt ):
(15) unsigned operator==(Attribute&);
(16) virtual ostream& print(ostream&);
(17) virt ual Op'History« gen.code.headert ofstream& );
(18) virtual Op'History» gen.code.cctofstreamsz , String class.name):

protected:
(19) String name;
(20) KeyFlag key.flag;

};
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Class 3.4 Class Constant.

class Constant: public Object {
public:
(1) Constant(Birth, Opllistory»);
(2) Constant(Uid&, Reincarnation, Opfllstorye};
(3) Constant(String sexpr, Context», Birth, Opllistory»);
(4) Constant(String sexpr, Context», Reincarnation, OpHistory«};
(5) Constant(String sexpr, Context», Provide, Opllistory»);
(6) ConstantfPlp», Context», Reincarnation, Oplfistory«);
(7) Oplfistory« relate(Objech);
(8) OpHistory» unrelate(Objech);

(9) virtual Boolean operator== (Constanh) = 0;
(10) virtual Boolean operator-s (Constant») = 0;
(11) virt ual Boolean operator-c (Cons tanh) = 0;
(12) virt ual Boolean operator> (Cons tanh) = 0;
(13) virtual Boolean operatorx (Constant«) = 0;
(14) virtual Boolean operator g (Constant«) = 0;

};

II Class Narne I Class Definition I lines II
Class 3.2 7-15

Attribute 3.3 6-15
Constant 3.4 7-14

Table 3.3: Family of indexing methods.

3.3.2 Indices

Indices are search structures used by database systems to resolve queries. The
family of methods related to indices and query resolution is listed in Table 3.3.
Next, we give a brief description of each of these methods .

• index: These methods are responsible for the construction of the initial
indices of Stabilis (Classes 3.2 line 7 and 3.3 line 6), that is, they are re-
sponsible for building the graphs that implement indices. They are executed
only during the start-up of the system. First metaclasses are created and
related to each other then, close to the end of the start-up process, each
metaclass receives a indexO message and that causes the initialization of
all the indices of metaobjects and meta-rnetaobjects.
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Class 3.5 Class Object.

enum ObjStatus { UNDEFINED_STATUS, NORMAL, MODIFIED,
TO_BE-MADE-PERMANENT, FAILED_TO_MAKE-PERMANENT,
TO_BE-MADE_VOLATILE, FAILED_TO-MAKE_VOLATILE, POSSIBLY_STALE };

class Object: public LockManager {
public:
(1) String get.class.namef]: Boolean is.af String class.name):
(2) OpHistorye put(String sexpr);
(3) Oplfistory« relate(String related.object.role, Object. related.object};
(4) Opllistory« cross.relaterString related.object.role, Object» related.object );
(5) Oplfistory« unrelate(String related.object .role, Object» related.object):
(6) OpHistory« cross.unrelatet String related.object .role, Ob ject« related.object):
(7) virtual <-Objectf};

private:
(8) Boolean clustered; ObjStatus activation..status;
(9) String object-name; Uid cache.uid:
(10) Class» meta; Expression» assign.expression;

protected:
(11) ObjStatus object.status: String host.name;
(12) Uld- object.uid: Object State» object...state;
(13) ClassPath class.path;
(14) RelationshipTable relationships; AttributeTable attributes;
(15) Object(Birth, Opfllstory«]:
(16) Object(Uid&, Reincarnation, Opflistory«);
(17) Object(String sexpr, Context», Birth, Oplllstory- ):
(18) Object(String sexpr, Context», Reincarnation, OpHistoryv):
(19) Object(String sexpr, Context», Provide, Oplfistory»};
(20) Op'History« activatef):
(21) OpHlstory» make.permanentf ):
(22) OpHistory« make.volatilef l.ocklvlode mode = READ);
(23) virtual void make.abortf );
};
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• traverse and locate: Once the initial graph has been constructed it is pos-
sible to traverse it using these methods. For example, during the resolution
of a query subexpression it may be necessary to go from metaclass Class
to metaclass Attribute, through a certain Relationship, in order to locate a
database object. The graph traversal algorithms, that is, query algorithms,
used by the indices are implemented by methods traverse, locate, and their
auxiliaries. For example, method traverse (Class 3.2 line 9) is used to tra-
verse from one metaclass, the origin, to another, the target, given the name
of the role the target metaclass plays in relation to the origin .

• insert, adjust, and update: These methods are used to traverse and up-
date indices. For example, method update (Class 3.2, line 14) is used during
the update of an attribute value, given the name of the attribute and the
object from which such value is obtained.

Indices and Relationship Tables

The relationship between Constant and Object is very important to the resolution
of queries. Ultimately, it is through this relationship that database objects can
be found. Let us take as an example the C++ statement "Plant* plant = new

( I (' "R" "')" R . ti )" Th'Plant" P ant genus = IVIea , ... , emcarna IOn,.... ISstatement tells
Stabilis to find an instance of class Plant whose genus is "Riviea". Using the
traversal methods Stabilis first locates the metaclass Plant. Next, it traverses
from metaclass Plant to the metaclass Attribute responsible for indexing attribute
genus. The metaclass Attribute for genus indexes all instances of Plant whose
attribute is genus. The query resolution algorithm reaches metaclass Constant
and selects those constants with value "Riviea". Finally, these constants point
to the objects we are looking for; the last arc to be traversed is the arc between
Constant and Object.

During the traversal of this index path we have had to go from one node to
another, that is, from one metaobject to another. If the indices and objects were
in the same address space then traversing the graph could simply be reduced to
traversing an ordinary pointer. Inevitably, our indices are distributed, meaning
that such traditional implementation of an index is impossible.

Before proceeding any further, let us recall that in our architecture relationship
tables are responsible for implementing pointers between objects (Section 3.2.3).
Thus, in Stabilis, the implementation of pointers to distributed objects is carried
out by relationship tables and their auxiliary classes.
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Relationship tables are implemented as dynamic lists of relationship table
entries (Class 3.6) and the entries (Class 3.7), in their turn, are implemented
as dynamic lists of pointers to database objects. Fundamentally, what these
classes implement is a graph, using adjacency lists. There is one relationship
table entry for each relationship held by an object. Finally, pointers to objects
are implemented as instances of the class Pip4 (Class 3.8).

The class RelationshipTable (Class 3.6) exports methods that allow an object
to find which of its table entries indexes a given relationship, that is, an arc of
the index graph. There are two useful ways of specifying arcs in this graph. In
one way, we specify the name of the role played by the destination class, that is,
destination node. In the other way, we specify the name of the role played by
the origin class and the name of the related class. These two modes of specifying
arcs of the graph are reflected in signatures of methods find (Class 3.6 lines
2,3). The methods add ipips (lines 4,5) are used to add a set of pips to a given
relationship table entry. There is a method that allows an object to request the
set of pips held by its relationship table (line 6). The method of line 7 allow
a new relationship table entry to be added to the relationship table. Lines 8
and 9 bring the signatures of the relate and unrelate methods that allow the
creation of a link between two objects. Finally, there are two methods that allow
an object to test if its relationship table is contains a link to a given object or
pip (lines 10 and 11). Essentially, these methods allow an object to ask whether
or not it is related to another object. Finally, the method shown in line 12 allows
an object to update its relationship tables with information extracted from the
object passed as parameter.

4pips and seeds encode information that allows them to grow into the structures that produce
fruits of their kind, in short, pips are pointers to fruits. Thus, the analogy between pips and
persistent pointers.
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Class 3.6 Class RelationshipTable.

class Relationship'Table :
public CheckPointingList<RelationshipTableEntry> {

public:
(1) Relationship Table();
(2) Relationship'Iableflntry= find(String related.object .role);
(3) Relatlonship'I'ablefmtrye find(String local.role, String related.object.class]:
(4) void add.pipsl String related.object .role, Pips«):
(5) void add.pipsl String local.role, String related.object.class, Pips«];
(6) Opllistory» get.related.pipsl Setx Pipo e, String locaLrole,

String related.object.class);
(7) OpHistory» enterflielationship'Iablelsntry«);

(8) OpHistorye relate(String related.object .role, Object» related.object, String&
locaLrole) ;
(9) Opllistory» unrelate(String related.object .role, Object» related.object, String&

local.role );
(10) Boolean contain(String related.object .role, Object»);
(11) Boolean contain(String related.object .role, Pip«);
(12) Boolean adjustf Object=);
};

The class Relationship TableEntry and its derived classes hold information used
to determine if an arc can be traversed or not. They hold the name of the
role played by the object, the names of the classes of the objects involved in
the relationship, the cardinality of the relationships, and whether or not such
relationship can be traversed. If a relationship is a key attribute, that is, it
can be traversed during query resolution, then key .flag takes the value key,
otherwise, it takes the value nonkey.

The interface of the class Relationship TableEntry and its derived classes has
methods similar to those found in Relationship Table.

The class Pip holds information concerning the location of an object in the
distributed system. It holds the class of the object, its unique identifier (DID),
the host where it resides, a flag saying if the object is clustered inside a container
object, and a C++ pointer to the object. This pointer can be used only when
the object is made active in the same address space where the pip is.

A query is resolved to a set of pips. Stabilis then can then obtain a handle to
the objects of the set of pips by asking the pips to activate themselves (Class 3.8
lines 12 and 13).

Pips have a very flexible set of constructors that allow them to be built using
the minimum information available at the time of creation (Class 3.8 lines 6 to
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Class 3.7 Class Relationship TableEntry.

class RelationshipTableEntry {
protected:
(1) String locaLrole;
(2) String related.object.class;
(3) String related.object.role;
(4) int local.min.card:
(5) int local.max.card;
(6) KeyFlag key.flag;
(7) Pips pips; /* set of pips */

public:
(8) RelationshipTableEntryO;
(9) virtual I'VRelationshipTableEntryO;
(10) RelationshipTableEntry(String& a.related.object.role):
(11) RelationshipTableEntry(String& locaLrole, String& related.object.class,

String& related.object.role, int local.min.card,
int local.max.card, KeyFlag key.fiag):

(12) OpHistory» relate(Objech related.object, String& local.role):
(13) OpHistory» unrelate(Objech related.object, String& local.role):
(14) Boolean contalnfObject«):
(15) Boolean containj Pipe ):
(16) Boolean adjustf Object« object);
(17) virtual Relationshlp'Iablelsntry» copyf);
(18) unsigned is.keyt ):
(19) void add.pipsf Set-cPlpo e]:
(20) unsigned emptyf );
(21) Pip* flrstf );
(22) Pip« nextf):
(23) void merge(RelationshipTableEntry*);
(24) String get.Iocal.rolef );
(25) String get.related.object.rolei ):
(26) String get.related.object.classf ):
};
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10). There is also a family of access methods (lines 14 to 18). The method of
line 19 is used by relationship table entries to verify the equality between pips
during the traversal of the adjacency lists. Two pips are considered to be equal
in contents when every attribute of both has equal values.

Class 3.8 Class Pip.

class Pip {
private:
(1) String object.class:
(2) Uid object.uid;
(3) String host-name;
(4) Boolean clustered;
(5) Object* object;

public:
(6) PipO;
(7) Pip(Uid uid);
(8) Pip(String a.object.class, Uid, String a.host.name, Object«);
(9) Pip(String a.object.xlass, Uid, String a.host.name, Boolean a.clustered ,

Object«);
(10) Pip.rPipl Pip« p);
(11) ",PipO;
(12) Object» grow();
(13) Oplllstory- grow(Contexh, Objech&);
(14) String get.object.classf );
(15) Uid get.object.uidf );
(16) String get.host.namef );
(17) void set.host.namef Strlngez a.host.name);
(18) void adjustl Pip»};
(19) unsigned operator==(Pip& key);
};

Now that we have had an overview of the classes interfaces that implement
Stabilis we can concentrate on the workings of the object manager. The descrip-
tion of the object manager sets in place the last piece of information we need to
understand in detail how queries are resolved, i.e., how Stabilis operates when
considered from the point of view of an application programmer.
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Figure 3.13: Architecture of the Object Manager.

3.4 Object Manager
The object manager provides an abstraction of database objects that exempts
the use of the stub generator while giving the possibility of caching objects to
improve the efficiency of a database application.

Several factors have been considered during the design of the object man-
ager: the size of the objects; the frequency of accesses made to the objects; the
computational cost of the operations and the number of classes managed by the
application. The current implementation of the object manager is very suited to
control persistent objects that have a small size, are frequently accessed, have no
CPU-bound operations and are generated from large structural models.

3.4.1 Architecture
Figures 3.13a and 3.13b will be used to explain how the object manager is orga-
nized. Figure 3.13a shows how database (persistent) objects are remotely accessed
in Arjuna: a client invokes operations on a remote server that uses the object store
manager to access the object. The dotted line shows the activation/deactivation
of the persistent object, and the dashed line represents the communication be-
tween client and server. Figure 3.13b shows the configuration obtained when the
object manager module is used. An extra client-server pair, the object manager
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and the object server, is interleaved between the server and the object store man-
ager. In this case, the server does not affect the persistent object directly because
it is (potentially) remote: it works on a local cache object, a volatile copy of the
persistent object.

3.4.2 Consistency Issues

The consistency of the persistent object and cache object is guaranteed by the
computational model of object and actions. When a database object is instan-
tiated, the cache object is initiated with the state of the passive object. Subse-
quently, the server modifies the cache object and then its state is immediately
copied to the passive object, i.e., the cache data is made permanent. If the update
of the passive object fails then the state of the cache object has to be recovered.
This implies that every server operation that modifies the cache object has to be
atomic; its result (commit or abort) has to be the same of the update operation
on the passive object. Depending on the type of lock (read/write) a client ac-
quires on a database object, the cache object behaves as a hint or as a proper
cache. When locked for read, this read lock is released as soon as the object state
has been read, guaranteeing that the passive database object can be accessed by
another client and, consequently, the cache object might become stale. On the
other hand, a write lock guarantees that the cache object will be always up to
date in relation to the passive database object.

3.4.3 Implementation

The classes that implement the two components of the object manager, namely
the object manager and object server (Figure 3.13), are respectively the classes
PlexManager, MultiPlex and Plex. Each object manager, an instance of PlexMan-
ager, can control the activities of several object servers which are instances of
the class MultiPlex (Class 3.9, line 1). For a given structural model (distributed
database), the attribute multiplexors lists all hosts where database objects can
be maintained. The attribute active .rnultiplexors (Class 3.9, line 2) holds only
the subset of multiplexors that are active. Object managers have references to
Arjuna's name server (Figure 3.9, line 3). The connection between an object
manager and a name server is established during the construction of the object
manager, that is, during the instantiation of a PlexManager. Finally, an object
server is capable of interacting with an object store server to activate/deactivate
database objects. Database objects are encapsulated by instances of the class
Plex. Plex is derived from the class LockManager of Arjuna. Instances of Plex
hold states of database objects.
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Class 3.9 Class PlexManager.

class PlexManager {
private:
(1) MultiPlexes multiplexers;
(2) ActivePlexes active.multiplexers:
(3) Nameberver« name.server;

(4) OpHistory« provideJIlultiplex(MultiPlexEntry*&, String host.name):
(5) Multif'lex« active.multiplexl Uidjz]:
(6) Multif'lex» active..multiplex(Uid&, ActivePlex*&)j
(7) Opflistory- packlnto.envelopef Object.Statesz os, ClassPath& cp,

ObjectState& envelope};
(8) OpHistory» unpackFrom_envelope(ObjectState& envelope,ObjectState& os,

ClassPath& cp):

public:
(9) Plexlvlanagerf Oplfietory«):
(10) ""PlexManagerOj
(11) Opflistory« create(Uid& signature, ObjectState& os, Uid& plex.uid ,

ClassPath& class.path,
String host..name, String object.name);

(12) Opllistory- read(Uid& signature, ObjectState& os, LockMode mode,
const String& class.name, const String& object.name,
ClassPath& guard.class.path, Uid& plex.uid,
String& host.name);

(13) Op'History» write(Uid& signature, ObjectState& os, Uid& plex.uid ):
(14) Oplfistory- setlock(Uid& signature, Uid& plex.uid, LockMode mode);
(15) Opllistory« destroy(Uid& signature, Uid& plex.uld):
(16) Opllistory« discard(Uid& signature, Uid& plex.uid):
}j

Methods provide.rnulriplex and act.ive.rnult iplex (Class 3.9, lines 4-6) are
used to activate multiplexes on demand. Methods packfnto.envelope and un-
packfirorn.envelope (Class 3.9, lines 7,8) are responsible for packing/unpacking
database object states into a buffer whose representation is suitable for transfer
through a network.

The public interface of PlexManager, that is, the interface of the object man-
ager, has the following atomic methods (Class 3.9, lines 9-16):

• create: Creates a database object with name object-name and state os at
the object store specified by host-name. The plex.uid returned by cre-
ate is the unique object identifier assigned to the database object during its
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creation. It is used to register the object created with the name server. The
parameter class.path is used by the object manager to guarantee that the
object created has an state consistent with the state specified in the struc-
tural model. A class.path is a flattened representation of the structural
submodel used in the creation of the database object.

• read: Retrieves in os the state of a database object from the distributed
database. Parameters class.name and object-name are used to locate the
object store where the database object is stored, using the name server. The
object retrieved has a lock set on it, as specified by parameter mode. The
values returned in parameters signature, guard.class.path, plex.uid,
and hosLname are used to check the correction of the object state re-
trieved.

• write: Writes the state of a database object into the object store from which
it was last recovered.

• setlock: The method setlock is used to change the type of lock set on a
database object.

• destroy: The method destroy removes a database object from an object
store. The total removal of a database object is only possible when it is
no longer referenced by other database objects. In the current version of
Stabilis a reference count is maintained to guarantee the correction of the
destroy operation.

• discard: If the database object specified by plex.uid is the last object
managed by this active multiplex then the multiplex is deactivated after the
removal of the database object.

The interface of class MultiPlex is similar to the interface of class PlexManager.

The interface of class Plex exports the basic atomic operations needed to ma-
nipulate a persistent database object. The class Plex acts as a capsule to Arjuna's
object states (Class 3.10, line 1).
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Class 3.10 Class Plex.

class Plex : public LockManager {
private:
(1) ObjectState plex;

public:
(2) Plex(ObjectState& os, Uid&, Birth, Op'Hiatory« oph);
(3) Plex(ObjectState& os, Uid&, Reincarnation, Opliistory» oph);
(4) ",PlexC);
(5) Opflistory« read(ObjectState& os, LockMode mode = READ);
(6) OpHistory» write(ObjectState& os);
(7) Op'History« eraseC);
(8) OpHistory» lockl l.ock.Mode mode);
(9) Boolean save...state(ObjectState& os, ObjectType t);
(10) Boolean restore...state(ObjectState& os, Object Type t);
(11) const TypeName typeO const;
};

• Constructors: As with all constructors of classes of Stabilis, Plex uses
parameters Birth to indicate that a new instance of Plex is to be created
and Reincarnation to indicate that a already existent instance of Plex is
to be fetched (Class 3.10, lines 2,3).

• read: Reads the state of the database object plex into os. Use mode to
determine the type of lock to set on the database object. The default action
is to set a read lock on it.

• write: Writes an object state os into the database object plex.

• erase: Erases the contents of the database object plex.

• lock: Changes the type of lock set on plex.

• Arjuna: The methods shown in lines 9 to 11 (Class 3.10) are virtual methods
defined by the interface of the class StateManager of Arjuna and implemented
by Plex. These methods are used by Arjuna to manipulate persistent objects.

3.5 Queries
In Stabilis queries are used for two purposes: creation and retrieval of objects
of classes belonging to the structural model of a distributed program. Stabilis
allows the use of multiple classes and their key attributes in query expressions.
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Class attributes, including relationships, are flagged as key attributes during the
creation of the structural model. At this point, we must recall that queries always
return sets of pips as their result.

3.5.1 Query Language
Query expressions are C++-compliant expressions passed as a parameter to con-
structors of classes, or to constructors of sets of objects. Identifiers and constants ,
terminal symbols in this grammar, follow the rules of formation dictated by C++.
Backus-Naur Form (BNF) notation is used to specify the query language accepted
by Stabilis. All nonterminal symbols are enclosed between "(" and ")", and all
terminal symbols are in smallcap type. A syntactic unit enclosed between "{"
and "}" may be instantiated zero or more times. During the instantiation of a
syntactic production composed of several syntactic constructions separated by
"I" only one of the productions listed is chosen and instantiated. An "e" matches
an empty syntactic production.

Query Constructors and Set Specification

(class .name) (variable.name) ((query .expression), ... , (mode), ... );

ObjectSet (variable.name) ((query .expression}, ... , Reincarnation, ... );

(mode) -+ { Birth I Reincarnation I Provide}
The first production of the query language specifies the general syntax for

using query expressions that retrieve/create one database object. The second
production rule shows the syntax used to retrieve sets of objects.

The subset of C++ accepted as a query expression is defined by the following
grammar:

(query .expression) -+ (class .name) ( (attribute.clause) ) I
(query.expression) (set-operator) (query .expression] I
( (query .expression) ) I e

The class name determines the generalization/specialization subgraph of the
metalevel of Stabilis that is visited during the resolution of the associated at-
tribute clause. Each node of this subgraph, a metaclass, indexes key attributes
and relationships for its class.

(set-operator)
(intersection....operator)
(union.operator)

-+ (intersection....operator) I (union.operator}
-+ &&
-+11
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(class.name)
(variable.name)

-+ IDENTIFIER
-+ IDENTIFIER

(attribute.clause) -+ (term) 1

(attribute.clause) (logicaLoperator) (attribute.clause) 1

( (attribute.clause) )

(logical.operator)
(and.operator)
(or.operator)

-+ (and.operator} 1(of-operator)
-+&

-+1

(term) -+ [(relationship_path)] (attribute.name) (relationaLoperator)
{ (value) 1 (attribute.name) }

(relationhip.path) -+ (role.name) (path.operator)
(relarionship.path) (role.name) (path.operator)

(path.operator) -+

(role.name) -+ IDENTIFIER

(relationaLoperator) -+ (equaLoperator)
(great .operator)
(less.operator)

(different-operator)
(greater .equal.operator)
(less.equal.operator)

(equal.operator) -+ { == I = }
(different-operator) -+ !=
(great-operator) -+ >
(less.operator) -+ <
(greater.equal.operator) -+ >=
(less.equal.operator} -+ <=

The associativity and precedence of operators is summarized in Table 3.4
presents the full set of query language operators in order of precedence. 5L reads
as "precedence level 5, left to right associativity." The higher the precedence
level, the greater the precedence of the operator.
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II Level I Operator Function II
6L .. relationship path operator..
5L 1- relational operators--,.-
5L >,>=,<=,<
5L - assignment operator
4L && logical AND
3L II logical OR
2L & set intersection (pips)
lL I set union (pips)

Table 3.4: Operator precedence and associativity.

In its simplest form an attribute clause is an expression involving a key at-
tribute and a value (constant). Examples of simple attribute clauses are "year>
1984", "title == 'Flowering Plants"', and "genus == 'Riviea"'. Simple attribute
clauses can be combined using any of the logical operators. In the next Section a
series of examples the use of the query language and shows some of the querying
capabilities of Stabilis.

3.5.2 Examples of Queries
We use the structural model developed for DBib [36], a distributed bibliography
database, to discuss the querying capabilities of Stabilis. DBib's structural model
(Figure 3.14) is based on the bibliographic entries defined in [84]. This model
has 23 classes, 18 are leaf classes. Leaf classes can be instantiated as database
objects.

Retrieving objects: a simple query

Suppose that we want to retrieve from the bibliography database a technical
report whose number is TR400. The C++ statement that specifies such query is:

TechReport tr = new TechReport("TechReport(number == 'TR400')",
REINCARNATION, ... );

We use this simple example to discuss partially the query processing algorithm
implemented by Stabilis.

1. Construction of an object and parsing of query expression: C++
constructs objects starting from the base class downwards. In this partic-
ular case, the order of instantiation is Object, Reference, Unit, Exclude, and
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Figure 3.14: Structural model of DBib.
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TechReport (Figure 3.14). During the construction process the text of the
query expression is passed over to Object where it is parsed into a expression
tree (Figure 3.15). Initially, a "hollow" object is built, that is, an object
whose latest state has still to be retrieved from the database. If the query
is successful, then the object's state is initialized with the state retrieved
from the database. Otherwise, the variable tr is made nil and an operation
history indicating the failure of the operation is returned.

Figure 3.15: Parsed query expression (query tree).

2. Resolution of class operator: Object locates the metaclass contained in
the class operator node of the query tree, in this case Article. The starting
point for this search is the meta-metaclass Class. Next, Stabilis determines
the initial graph that has to be visited during query resolution, that is, the
initial set of metaclasses that have to be visited. It does that by mark-
ing superclasses and subclasses of the class kept in the class operator. In
our example the graph marked contain nodes Reference, Unit, Exclude, and
TechReport. Multiple inheritance is taken into account during the marking.

3. Resolution of the attribute clause: In this example the attribute clause
is very simple; it contains only a single term formed by a relational operator,
an equal operator and its two operands, a key attribute, number, and a
string constant, "TR400".

The resolution of this term involves visiting metaclasses, that is, indices, of
all nodes of the graph determined in the previous step of the query algorithm.
Each metaclass in the graph indexes their own key attributes. If the query
specifies attribute clauses which contain terms where relationship paths and
key attributes of related classes, then the graph to be visited is expanded
accordingly during the resolution of the query.
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4. Activation of retrieved object: Suppose that this query has returned a
non-empty set of pips (objects). In this case, Stabilis randomly chooses one
of the pips of the set and sends a message growO to it. Execution of method
growO triggers execution of the method read(] of the object manager. The
object manager uses Arjuna's name server to locate the object. Finally, the
state of the object is retrieved, that is, the object is activated and its handle
is assigned to tr. If we had constructed an ObjectSet tr instead of only
one object, then all objects returned would have been activated and made
available to the programmer of the distributed program.

Creating and relating objects

In this example we create a book and its author, an instance of class Individual,and
relate according to what is specified in the structural model of DBib (Figure 3.14).
The execution of method relate involves the creation of a nested atomic action.
The first subaction takes care of the update of the relationship tables of the
objects, the second subaction carries out the update of the indices of metaclasses
Unit and Individual. The indices for the relationship between a book and its
author, an individual, are not implemented by metaclass Book but by class Unit
(Figure 3.14).

(1) Book tex("Article(tag = 'Knuth84' & title = 'The TeXbook'
& year = 1984)", ... , BIRTH, ... );

(2) Individual knuth("Individual(firstname = 'Donald'
& surname = 'Knuth')", ... , BIRTH, ... );

(3) knuth.relate("Author", tex);
(4) tex.put("Book(note = 'ISBN 0-201-13448-9' & tag = 'DKnuth84')");

In line 1 an instance of Book is created. Note that all operators used are
assignments instead of relational operators. During the parsing of the query
text this expression is flagged as an assignment expression. If the query mode
is "Birth" and the query expression has operators other then the assignment
operator then the expression is rejected. The code of line 2 creates an instance
of class Individual. In line 3 we relate them, note the use of the role "Author"
(Figure 3.14) to specify the relationship. In the model of DBib (Figure 3.14)
we can see that the relationship between Individualand Book has been inherited
by Book from the class Unit. Queries can specify any attribute of any related
superclass and attributes of the classes related to the related superc1asses, and so
forth. This type of query is called a navigational query because the programmer
can specify paths of the structural model in his queries. Finally, in line 4 we can
see the programmer calling method put of its object to update/initialize some of
the attributes of object tex. The method put is defined in class Object and is,
consequently, inherited by all classes defined in database models.
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A simple navigational query

The query below is an example of a simple navigational query where the query
key attributes belong to a class that is related to the class of the object being
retrieved. All objects of DBib model can be sent a message that tells them
to write their state in a pre-determined format into a file. In the code below ,
statement of line 2 makes object tex write its contents in Bib1EXformat [84].

Book tex("Book(Author::surname == 'Knuth')", ... , REINCARNATION, ... )j
tex. bibtex( "tex.bib");

Another navigational query

Suppose we want to retrieve all books whose author is the editor of a journal
with title "Algorithms" and that have been published after 1992 exclusive. To
solve this query Stabilis has to visit metaclasses Book, Exclude, Unit, Individual,
and Group (Figure 3.14).

ObjectSet books("Book(Author::Editor::title == 'Algorithms'
& year> 1992)", ... , REINCARNATION, ... );

int cardinality = books.cardinalityl );
books.reset();
for (int i = 0; i < cardinality; i++)

{
Book= book = books.nextf );
book. bibtex( "alg. bib");
}

Retrieving objects of different classes

We can specify a query that retrieves a set of objects belonging to different classes
of a class hierarchy.

Object Set e("Exclude(Author: : surname == 'Servantes') ", ... ,
REINCARNATION, ... )j
int card = e.cardinalityl ];
Thesis= t = OJ
for (int i = OJ i < card; i++)

{
Object» 0 = e.nextf ):
if (o-tis_a(IThesis"))

t = new Thesisfo-s-get.pipf ), ... , REINCARNATION, ... );
t.bibtex{"thesis. bab");
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delete t; t = 0;
}

The query above retrieves objects of all six subclasses of Exclude (Figure 3.14).
The program excerpt that follows the query iterates through the set of objects,
selects those that are instances of Thesis, instantiates them and writes them into
file thesis. bib in Bib'fEXformat.

Impedance mismatch

Since all objects retrieved by a query are C++ objects there is no impedance
mismatch between the type systems of the query language and C++. Queryex-
pressions are specified using a subset of C++ expressions, they do not change any
of the semantics of C++ and, therefore, do not cause any impedance mismatch
between Stabilis and C++.

3.6 Programming Interface
We have discussed most of Stabilis' backstage workings, now it is time to discuss
what the audience sees. Additionally, we discuss the role played by the maestro
in helping the audience to enjoy the concert.

When the management environment is complete, then the audience will be
able to specify structural models using a graphical tool. While that does not
happen we need a database administrator, a maestro, to translate a structural
model into a schema program. Once that has been done, then all the audience
has to do is to query the database and find the structural model of his program.
For example, the audience that is implementing DBib, a distributed bibliography
database, has to do the following:

• Retrieve DBib's structural model: "Model dbib = Model("Model(name ==
'Distributed Database')", ... , REINCARNATION, ... );"

• The statement "dbib.gen.codej};" triggers the generation of header and code
files for each class of DBib's structural model. For each class of the structural
model four files are generated: two class definition file, with extension .h
and .X.h, and two code files, with extensions .cc and .X.cc. The files
with extensions .h and .cc contain all source code automatically generated
by Stabilis. These two files are not supposed to be changed by users of
Stabilis. The other two files generated are the files where extra definitions
and the implementation of user-defined methods is kept.

• For each structural model, Stabilis also generates a simple interactive query
interpreter. During tests this simple interactive query interpreter can be
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used to validate a structural model. The user can submit queries that test
the various relationships present in the model to make sure that the repre-
sentation of the model, database schema, is correct.

Using Stabilis is relatively simple. First, the audience designs the structural
model of the distributed program it wants to implement. Next, members of the
audience write a schema program to represent this model as a database schema.
Having represented the model as a schema the audience is ready to run Stabilis
and make it generate the header and code files for all classes of the program's
model. Finally, the audience writes its distributed program. The distributed
program can create, delete, and update objects belonging to any structural model
managed by Stabilis.

3.7 Adapting Stabilis
At the very beginning of this Chapter we affirmed that the use of reflection and
object orientation made Stabilis adaptable and extensible. In this Section we
present a brief overview of the processes that have to be followed to adapt and
extend Stabilis.

A maestro is a person who has knowledge of both backstage and on-stage. We
are going to see how maestros can add new types to Stabilis and adapt the query
interpreter in order to attend requirements of different areas of computing.

3.7.1 Extending Stabilis with new Types

Suppose we want to add a type Complex number to Stabilis. The steps listed
below tell what a maestro should do to carry out this task.

• Define class Complex as a subclass of Attribute.

• Implement in Complex all methods of the public interface of Attribute. This
task entails implementation of the constructors that accept query expres-
sions, implementation of the methods used by the object manager and Ar-
juna to manipulate object states, a print method, and the methods used by
the protocols of Model to generate C++ code automatically.

• Derive a class ComplexConstant from Constant and implement the public
functions of the base class. The task is very similar to the one carried out in
the previous step, except that now the maestro has to write the code of all
relational operators used in the query language of Stabilis. For example, he
has to implement a method to test if two complex numbers are equal values.
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• In the last step, the maestro of Stabilis has to change the query interpreter
to make possible the parsing and interpretation of complex values. He has
to extend Stabilis' yacc and lex parsers to include the treatment of values of
type Complex.

• All this new code is then compiled and the previous version of Stabilis is
replaced by this new one. These operations do not involve any disruption to
the Stabilis applications that are executing. They are only going to use the
new code in their next execution.

• Now, we have to create the metaclasses for Complex and ComplexConstant.
An incremental schema program is created and executed to initialize all
indexing structures.

As Arjuna, Stabilis explores inheritance to allow programmers, i.e., maestros,
to adapt it to the needs of new application areas.

3.7.2 Adapting the Query Interpreter
The query interpreter of Stabilis is composed of three main modules: a lexical
analyzer, implemented using GNU's flex, a parser, implemented using GNU's
bison, and a C++ class hierarchy that defines all operators used in the query
language.

Suppose that a team of electronic engineers has added new types to Stabilis.
For example, they can create types that represent the components used in the
routing of printed-circuit boards. What the team of engineers want now is to
change the semantics of certain of the query operators of Stabilis' query language
to facilitate the writing of their programs. For example, they want the class
operator :: to perform extra checks during the traversing of metac1asses of certain
electronic components. In the current implementation of the query resolution
algorithms the set intersection and union operators use only the UIDs of objects
in the creation of intersections and unions. The team of electronic engineers
might want to change the semantics of the set intersection and union operators
to take into account the value of some attribute of objects.

In summary, it is possible to alter the implementation of operators of the query
language using inheritance and operator polymorphism. Using these techniques
a maestro can implement versions of query interpreters that behave differently in
function of the types of application objects they are retrieving from the database.
During query resolution the operator is trapped, the types of operands are checked
and a certain operator behaviour is selected in function of the operand's types.
Thus, Stabilis can be characterized as having a reflective architecture with limited
reflective capabilities [97].
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3.8 Conelusions
This Chapter has described the design and implementation of Stabilis, an object-
oriented database programming tool programmed on top of Arjuna.

Our discussion of the architecture of Stabilis was carried out in three stages. In
the first, we have defined the structural model supported by Stabilis. A compari-
son of the object-oriented models defined by C++ and Stabilis led us to conclude
that we had to extend the model supported by C++ if we wanted to represent
information about distributed programs in our system. The structural model sup-
ported by Stabilis can represent the concepts of classes and relationships (gener-
alization/specialization, association, aggregation). The structural model is used
in our management system to explicitly represent the structure of a distributed
program. The architecture of Stabilis was defined using the structural model of
Stabilis; as a consequence, a recursive architecture is created. The architecture
of the system has three levels of information representation that are recursively
generated: objects, metaobjects and meta-metaobjects.

In the second stage, we have shown how the layers of the architecture are
created through an example where we instantiated a structural model. This
example gave us a clear view of how the structural model of Stabilis moulds
the architecture of the management system. At this point we introduced the
orchestra metaphor and used it to convey an integrated perspective of the various
architectural layers of the management system.

The subject of the third stage of the description of the architecture of Stabilis
addresses the implementation of the indexing structures of the system. We have
explored every detail of the process for instantiation of the metamodel of Stabilis
and shown how the various problems of circularity have been solved. At the
end of this stage, we have acquired the knowledge necessary to understand how
queries are resolved.

Before discussing query resolution, we described the functionality of the object
manager. This model implements the interface between Stabilis and Arjuna; it is
responsible for the manipulation of objects, including caching and multiplexing.

Queries in Stabilis are used for two purposes: creation and retrieval of objects
belonging to an object model. Stabilis allows the use of multiple classes and
their attributes in query expressions. We have described the query language
supported by Stabilis and have shown how the algorithms for query resolution
operate through various query examples.

In this Chapter, we have discussed the programming interface of the manage-
ment system, showing that it has not introduced any change to the programming
language adopted (C++). Finally, we have shown how a programmer can add
new types to Stabilis and how he can adapt Stabilis' query interpreter to his own
needs.
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We have argued that there are two basic modes of perceiving a distributed
program: a static, or structural mode, and a dynamic, or control mode. In
the previous Chapter we have concentrated on the issues related to management
of structural information. In this Chapter we address management of control,
or dynamic, information. We discuss the design and implementation of Vigil,
a tool that processes dynamic information concerning an application program
and allows the enforcement of changes upon it. Thus, the use of Vigil allows a
distributed program to adapt to changes occurring in the environment where it
is being executed.

Implementors of adaptable distributed programs are concerned with represent-
ing structural and control aspects of programs explicitly in order to simplify the
management task. Stabilis and Vigil were designed to help implementors cope
with the management of these explicit representations. Further simplification of
the management task can be achieved by keeping the implementation of man-
agement policies apart from the implementation of the functional aspects of the
distributed program. Viewing distributed programs as reactive systems can help
implementors to achieve such separation of implementation.

4.1 Reactive Systems

A transformational program is the more conventional type of program, whose
role is to produce a final result at the end of a terminating computation. A
transformational program can be considered as a function from an initial state
to a final state or a final result. A reactive program is a program whose role is
to maintain an ongoing interaction with its environment rather than to compute
some final value on termination. The family of reactive programs includes most
classes of programs whose correct and reliable construction is considered to be
difficult, including process control programs, operating systems, and management
programs [67]. Management programs! are a good example of programs required
to maintain a continuous interaction with the application programs they control.

The notions of concurrency and reactivity are closely related. In any program
containing concurrent objects it is possible to study and analyze each object as a
reactive program. This is because, from the point of view of each object, the rest
of the distributed program can be viewed as an environment that continuously
interacts with the object. Thus, we may have a program that in its entirety
has a transformational role, i.e., it is expected to terminate with a final result.
Nevertheless, because it is constructed from concurrent objects, it should be
analyzed as a reactive program. This is exactly what occurs with programs that

1From now on the terms management program and control program are used as synonyms.
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are designed to be reconfigurable. The application program may be a program
that terminates and produces a result. Yet, because it is executed concurrently
with the management program both have to be analyzed as reactive programs. To
the management program the application program represents the environment,
and vice versa. The same reasoning is recursively applicable to the objects that
compose the programs and to the system were the program is executing.

4.1.1 Distributed Programs seen as Reactive Programs
From the point of view of the management system, a distributed program is seen
as the superposition of two reactive programs: an application program and a
management program.

In object-oriented systems, the designer of a distributed program usually con-
ceives a structural model and a control model of the program before he implements
the program. Usually, these models are directly translated into programs using
ad-hoc implementation strategies, but in Stabilis and Vigil these models become
instead database schemas. Later, these database schemas are used to generate
part of the application and management programs. They are also used during
the management of the program. A control program is a state machine that is
executed by Vigil. At runtime, the objects of a control program constantly mon-
itor the objects of an application program and allow them to adapt to changes
occurring in their environment according to management policies encoded in the
control program. Next, we see how an application program and a control pro-
gram interact when viewed as reactive programs, such view is based on locality
of control, that is, we want each application object of a distributed program to
have all its control mechanisms encapsulated by its corresponding control object.

Application Program

An application program has the following form:

where AI, ... ,An' n ~ 1, are application objects and A is the program obtained
from their interactions, as dictated by the algorithm that governs the application
program. The symbol "::" means "composed of", and the symbol It' means
"concurrent execution"; square brackets are used to delimit groups of objects.
The application program has a set of external states EA = (ea!, ••• , ea,), I ~ 1
which are maintained by the application objects and are made available to the
management program for reference and modification only through the interface
of the program. Each object of the application program is structured using the
object-oriented action-based programming paradigm provided by Arjuna.
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Distributed Program (DP)

actuators

Control Program (C)

Application Program (A)

Figure 4.1: Distributed program viewed as a reactive system.

Control Program

The control program has the following form:

where Cb" ., C«, n ~ 1, are control objects and C is the control program ob-
tained from their interaction as dictated by the algorithm that governs the control
program, which is implemented as a finite state machine. In the management sys-
tem a finite state machine is implemented as a list of guarded commands; each
guarded command has two parts-a condition and an action. The action part of a
guarded command is executed whenever the condition part is satisfied. Guarded
commands have access to the set of external states E mentioned above through
sensors and actuators. Sensors and actuators are methods implemented at the
interface of the application program A. Sensors are used to implement the con-
dition part of a guarded command, actuators are used to implement its action
part. Each object of the control program is also implemented in compliance with
the object-oriented action-based programming paradigm, that is, sensors and ac-
tuators are atomic methods.

Distributed Program

A distributed program DP is a superposition of A and C, where A is the under-
lying program and C is the superposed program. It has the form:

DP :: [DPl~' .. ~DPn]

where each D Pi E {D Pt, ... ,D Pn}, n ~ 1 is formed by the superposition of Ai
and C, (Figure 4.1).
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The composition of the environment determines its communication pattern.
Let C; denote the ith control object; let Ai denote the corresponding application
object. Each application object Ai is permitted to execute methods of any other
application object but not of any control object. Each control object C, is allowed
to execute methods of any application object Ai but not of control objects Gj, i ::f
i.1 ~ j ~n. Communication among control objects is indirect and accomplished
via shared application objects. From the specification of programs G and A, we
have that all methods of the distributed program DP are atomic. Additionally,
each application object must have been superposed by a management object in
order for the application object to be managed.

Objects of the distributed reactive program DP belong either to the applica-
tion program A or to the control program G. Programmers are encouraged to
implement algorithms dealing with functional aspects of DP in A and algorithms
dealing with management aspects of DP in G. The structural and control mod-
els make visible, or explicit, the structure of the distributed program DP. Once
the structure of the program is visible then it is possible to reason about the
management of its parts, including its dynamic reconfiguration.

During the execution of DP, the application program A passes through a
sequence of states. In response to a state transition the management program G
may act upon A, which in turn may trigger another state transition. The concept
of controlled state transitions leads to the definition of an abstract model for
reactive programs called transition system, or finite state machine.

We have chosen a extension of state machines based on Statecharts [67] to
model the control aspects of distributed programs because:

• Most of the object-oriented modelling literature [33, pages 167-174][55, pages
60-97][120, pages 84-115][123, 33-65] seems to agree that state machines are
adequate to the description of control aspects of object-oriented programs.

• Extended state machines, unlike traditional state machines, avoid an expo-
nential explosion of states and transitions through structure. Traditional
state machines are "flat"; in contrast, extended state machines allow a hier-
archical, modular and well-structured description of systems [47,67,68].

• Programs are implemented using data structures and methods. It has usually
been easier to modify data structures of an existing program than to modify
the structure of methods that implement the program. Modification of the
structure of such a program involves modification of one or more methods, a
task not easily accomplished. In contrast, when the algorithm of a program
is represented as a finite state machine then its implementation consists
simply of a set of guarded commands where each guarded command operate
in complete independence of each other. Therefore, implementations of finite
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state machines can be modified very easily by deleting productions or by
inserting new ones. Thus, extended finite state machines are employed in
the implementation of control programs.

In Vigil, control models are mainly used to capture and represent concerns
related to the management of distributed programs. With this perspective of
distributed programs in sight, we define the architecture of Vigil.

4.2 The Architecture of Vigil
We present the architecture of Vigil in steps, adopting a structure of dissertation
very similar to that used to describe the architecture of Stabilis. In the first
step we define the control model supported by Vigil, using concepts adopted by
Harel [68, 70] and Rumbaugh [120]to define transition systems; we emphasize the
use of transition systems for management purposes. The second step describes
the implementation of Vigil using an example. Vigil's implementation is based on
the representation of states, guarded actions, and transition systems as database
objects. Consequently, the description of Vigil's architecture can be simplified
because we have already seen how to represent structural models using Stabilis.
Backstage, at meta-level, the active component of Vigil is a scheduler of guarded
commands, i.e., a state machine engine. Vigil's scheduler is similar to a rule
processing module of an active database management system. The last step
discusses the use of Stabilis and Vigil; we briefly discuss the steps followed by
implementors of distributed programs that use the management system.

4.2.1 Control Model
One of the difficulties with the design of distributed programs comes from the
treatment of temporal relationships among objects. To avoid such difficulties-
at least temporarily-we tend to abstract away temporal relationships by first
examining the static structure of the objects that form the application. Once we
are familiar with the structural model of the distributed program we can return
and examine changes to the objects and their relationships over time.

Although the concept of transition system is well-known we have decided to
include a definition of transition system at this stage mainly to make clear where
these concepts stand in relation to the object-oriented concepts we have intro-
duced so far.

States

The values of the attributes, including relationships, held by an object are called
its internal state, denoted by a tuple I = (ib ... ,in) where each i, is the current
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value of one attribute of the object and n is the number of attributes of the
object. The internal state space of an attribute is the set of values it can assume;
the internal state space of an object is the Cartesian product of the internal state
spaces of its attributes. For example, if an object has attributes A and B, where
A has internal state space {T,F} and B internal state space {-1,0,1}, then the
internal state space of this object is {(T, -1), (T, 0), (T, 1), (F, -1), (F, 0), (F, 1)}.

During program execution, objects stimulate each other, resulting in a series
of changes to their internal states. The response to an stimulus depends on the
state of the object receiving it, and can include a change of state and/or the
sending of another stimulus to the original object or to a third object. In this
scenario, internal states are not of much use from a modelling perspective since
any change in the value of an attribute results in a "different" state and this
leads potentially to a infinite set of internal states. Therefore, we introduce the
concept of external state. The external behaviour of an object can be described
in terms of a finite set of external states. To our purposes, an external state
is a set of values obtained through the application of an abstraction function
that maps internal states into the values of an external state. For example,
an object has an integer attribute, say x, whose state space is defined by the
integer interval [-100, 100]. An external state for x might be defined as the set
of values {NEGATIVE, ZERO, POSITIVE}. An external state space is a tuple of
external states such that any two members of the tuple are disjoint. Objects of
a distributed program perceive each other only through discrete transitions from
one external state to another. From now on the word state stands for external
state and the term state space stands for external state space, unless specified
otherwise.

In summary, a state is an abstraction of the attribute values of an object. Sets
of values of attributes are grouped together into a state according to properties
that affect the gross behaviour of the object. In defining states, we ignore those
attributes that do not affect the external behaviour of the object, and we lump
into a single state all combinations of attribute values that have the same response
to stimuli. A programmer defines stimuli and states depending on the level of
abstraction he is using to model his distributed program. States are used by the
implementor of a management program to guarantee that changes only take place
when the objects involved in the change are in a consistent state. What is impor-
tant is that the relevant abstraction of the dynamic behaviour of a distributed
program is captured and made explicit by representing it as a control model.

Events

An stimulus from one object to another is an event. An event is something that
happens at a point in time, such as user depresses left button of mouse. An event
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has no duration. Naturally, nothing is really instantaneous; an event is simply
an occurrence that is fast compared to the granularity of the time scale of a
given abstraction. In the object and action model of computation an event is an
execution of an object's atomic method. The data values conveyed by an event
are its attributes, like the data values held by an object. As we have discussed
in the Section on reactive programs (Section 4.1.1), these atomic methods are
logically grouped into two families: sensors and actuators. Sensors are used to
probe the application's state and actuators are used to make objects compute
new values that may in turn change the state of the application.

Guards

A condition is a Boolean predicate on states. Conditions can be used as guards
on transitions. A guarded transition is traversed when its event occurs, but only
if the guard condition is true. For example, "when a radio is turned on (event), if
the volume is too high (condition), then turn the volume down (action)." In the
object-oriented paradigm only the execution of methods can change a condition.
We call the condition existing prior to the execution of a method a precondition,
and the condition that exists after the execution of a method a postcondition. In
our notation, a guarded condition on a transition is shown as a Boolean expression
in square brackets following the event signature. In Vigil, sensors are used in the
specification of conditions.

Actions

An action is an instantaneous operation. An action is associated with an event.
For example, disconnect phone line might be an action in response to an on-hook
event for a phone line. A real-world operation is not really instantaneous, but
modelling it as an action indicates that we do not care about its internal structure
for control, or management, purposes. If we do care, then an operation should be
modelled as a series of actions, with a starting event, ending event, and possibly
some intermediate events. Actuators are used to implement actions in Vigil.

State Diagrams

A state diagram relates events and states. When an event is received, the next
state depends on the current state as well as on the event. A state diagram is a
directed graph whose nodes are states and whose directed edges are transitions
labelled by event names. A state is drawn as a rounded box containing an optional
name. A transition is drawn as an arrow from the receiving state to the target
state; the label on the arrow has the name of the event causing the transition.
All the transitions leaving a state must correspond to different events. Figure 4.2
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Figure 4.2: Simple state diagram.

Statel event (attribs) [condition]/{ action} State2

... . ..

Figure 4.3: Flat state diagrams: summary of notation.

shows a simple state diagram containing three states A, B, and C and events a,
b, c, and d. In Figure 4.2 event d occurring in state A transfers the system to
state C, but only if condition P holds at the instant of the occurrence.

The state diagram specifies the state sequence caused by an event sequence.
If an object is in a state and an event labelling one of its transitions occurs, the
object enters the state on the target end of the transition. The transition is said
to fire. If more than one transition leaves a state, then the first event to occur
causes the corresponding transition to fire. If an event occurs that has no tran-
sition leaving the current state, then the event is ignored. A sequence of events
corresponds to a path through the graph. A control model, or transition system,
is a collection of state diagrams that interact with each other via shared events.
Figure 4.3 summarizes the notation introduced until now for state diagrams.

Nested State Diagrams

State diagrams can be structured to permit concise descriptions of complex sys-
tems. The ways of structuring state machines are similar to the ways of struc-
turing classes. In the structural model, the generalization/specialization rela-
tionship is used to model classes and subclasses, in the control model, gener-
alization/specialization allows states and events to be arranged into hierarchies
with inheritance of common structure and behaviour, similar to inheritance of
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(a)

Figure 4.4: State generalization.

Dr:

(b) (c)

Figure 4.5: State generalization/specialization.

attributes in classes. Aggregation allows a state to be broken into independent
components, with limited interaction among them, similar to the aggregation re-
lationship in the structural model. Aggregation is used to describe state machines
that are executed concurrently.

Generalization/Specialization Let us observe Figure 4.2 again. Since event
b takes the system from either A or C to B we can cluster A and C into a new
superstate D and replace two b edges by one, as in Figure 4.4. The semantics of
D is then the exclusive-or of A and C; i.e., to be in state D one must be either
in A or in C, and not in both. Thus, D is really an abstraction of A and C; a
generalization. Figure 4.4 might also be approached from a different angle: first
we might have decided upon the situation of Figure 4.5a, and then state D could
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Figure 4.6: Default states.
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Figure 4.7: Exiting states.

have been refined, that is, specialized, to consist of A and C, yielding Figure 4.5b.
Having made this refinement, however, the incoming a and c edges become un-
derspecified, as they do not say which of A or C is to be entered. Extending them
to point directly to A and C, respectively, solves the underspecification problem,
and if the d transition within D is added, we obtain Figure 4.4.

Depending on the level of abstraction we are working at we can consider states
as being atomic or not. For example, if we do not consider D atomic then we
look "inside" it and perceive what is represented in Figure 4.5c. If we consider
D atomic then the substates are abstracted away and we reason using only the
state diagram of Figure 4.5a.

Suppose now that as far as the "outside" world is concerned A is the default
state among A, B, and C, in the sense that if asked to enter the A, B, C group
of states the system is to enter A unless otherwise specified. There are different
ways to denote default states. For a state diagram as the one shown in Figure 4.2,
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D

Figure 4.8: State aggregation.

a small arrow can indicate it directly (Figure 4.6a). For Figure 4.4 it is possible
to use the direct notation of Figure 4.6b, or alternatively, the two-step notation
of Figure 4.6c, which says that D is default between D and B, and A is the default
between A and C. Default arrows are analogous to the start states of finite-state
automata.

Figure 4.7a shows a non-atomic view of state A. There are to edges exiting A.
The exiting transition from substate D of A to F specifies that A should be exited
only when event a occurs in substate D. On the other hand, the transition from
A to F specifies that A should be exited starting from any of substates B, C, D
when event b occurs. Figures 4.7b and c show respectively the wrong and right
ways of representing these two exit transitions when we consider A an atomic
state.

Aggregation We have introduced the concept of generalization/specialization
of states and some related notation. Now, we define the aggregation of states,
capturing the property that, being in a aggregated state, the system must be in
all substates of the aggregate. We represent aggregated states by splitting the
aggregate into its components using dashed lines.

Figure 4.8 shows a state H consisting of aggregated components A and D,
with the property that being in H entails being in some combination of B or C
with E, F, or G. We say that H is the aggregation (orthogonal product) of A and
D. Entering H from the outside, in the absence of any additional information, is
actually entering the combination (B,F) be the default edges. If event a occurs,
then it transfers B to C and F to G simultaneously, resulting in the new combined
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state (C,G). This illustrates a certain kind of synchronization: a single event
causing two simultaneous happenings. If, on the other hand, d occurs at (H,F) it
affects only the D component, resulting in aggregated state (B,E). This, in turn,
illustrates a certain kind of independence, since the transition is the same whether
the system is in B or in C in its A component. Both behaviours are part of the
orthogonality of A and D, that is, a property of the aggregate state H.

An application of aggregation is in splitting a state in accordance with the
independent subsystems that compose it.

Structural Model and Control Model

A control model specifies the behaviour of a class of objects as state machines. In
this Section we evaluate what happens to the state machines associated to a class
when classes are organized in hierarchies. First, we consider what happens to
the state machines when only single inheritance is used to form class hierarchies.
Next, we assess the inheritance of state machines when multiple inheritance is
used in a class hierarchy.

Single Inheritance The assumption of strict inheritance as the norm for the
generalization/specialization relationship (Section 3.1.1) allows us to derive a set
of rules about the inheritance of transition systems associated to each class [104].

Rule 1 A subclass cannot delete a state of any of its parent classes. For example,
suppose that class, say A, has a state space SA = {SAp···, SAn} where n
is the number of states of A, then the state space of class B, subclass of
A, is given by SB = {sAll···,SAn,SBIl···,SBm} where m is the number of
states introduced in class B that were not in class A. It is possible to define
a function that associates states of B to states of A. Thus, it is possible
to modify states in the sense that their representation may be remapped
into other states, provided the external behaviour of the methods involved
does not change. This rule is a consequence of the requirement that the
method invariant hold for every method of the classes involved in the strict
inheritance.

Rule 2 Any new state introduced in a subclass is wholly contained in an existing
state of one of the parent classes. There may be design factors that lead to
a further refining of the states of B. In such case, one of two situations is
possible, (i) the additional refinement does not involve changing any of the
original states of the state space of A or, (ii) the refinement of the state space
of B is based only on internal states that were not used in the mappings used
to create the state space of A. In the former case, the result is the creation
of an state in B that is substate of an state of A. The latter case results
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in a set of states that are independent of and disjoint from the original
states of A. In this case an instance of B can be thought of as being in one
state from each set concurrently. A third possibility is rejected as invalid.
This possibility involves the creation of states for A and B that overlap.
Such situation is not allowed if the class hierarchy has to comply with the
requirement of strict inheritance.

Rule 3 A subclass may not delete a transition from the state machine of one of
its parent classes. If a transition were deleted then the method that imple-
ments that transition must have been modified to loosen its postcondition,
a violation of the method invariant. However, it is possible for a subclass to
override an inherited method and change its implementation provided that
its postcondition remain as they were or become more restricted than those
of the overridden method.

Multiple Inheritance The use of multiple inheritance as the basis for a new
class adds complexity at both the implementation and design levels. At the im-
plementation level, some mechanism must exist to resolve any conflicts that arise
from the merging of the state machines. For example, names of external states
might be duplicated. Techniques to recognize and solve some of these problems
have already been developed during the implementation of object-oriented lan-
guages and state machine interpreters [69]

At design level, the requirement a class hierarchy has to comply with is that the
classes being used as parent classes must represent independent concepts [104].
The independence of the concepts implies disjoint representations.

The representation of the parent classes define state machines for their original
classes. The independence of concepts and the disjointness of the representations
imply that the state machines of the separate classes do not have any overlap. The
class that results from the inheritance of the multiple parent classes should have
a state machine that contains the machines of the parent classes simultaneously.
The subclass then is in a state of each of its parent classes concurrently.

Finally, we can summarize the control model in a set of principles.

Cl A state describes an external state of an object. Every object has an external
state space associated to it that can be used to control some of the activities
of the object.

C2 An event is something that happens at a point in time. In the object and
action model adopted by the management system, events are methods im-
plemented as atomic methods.

C3 A guard is a boolean atomic method. Values returned by guards determine if
an object is in a certain state and are used to decide whether or not a certain
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Figure 4.9: Vigil's structural model.

transition should fire when an event happens. Guards are implemented as
atomic methods.

C4 Actions are instantaneous atomic operations associated to events.

Cs A change of state caused by an event is a transition. When a transition fires
it traverses from a predecessor state to a successor state. In the management
system, a transition is represented by a triple. The first and second terms
of the triple are an event and a guard, respectively. They are specified as a
Boolean predicate that involve results returned by sensors. The third term of
the triple is an action that is specified as an atomic action involving the exe-
cution of actuators. In the management system this triple is termed guarded
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action. Nested atomic actions are used to implement guarded actions. In
Vigil, the class GuardedAction is used to represent guarded actions. Perhaps,
a better name for this class could be Transition but we have decided to keep
the name that we used in the implementation of the system.

C6 A state can be defined as a substate of another state; substates and su-
perstates are defined using the generalization/specialization relationship for
states. In Vigil, the class State represents the most general state an ob-
ject can have associated to it. All states in a control model are, directly or
indirectly, represented as subclasses of the class State.

C7 A state can be defined as an aggregation of states; aggregate and component
states are defined using the aggregation relationship for states.

Cs A transition system is a collection of guarded actions and states. Every
manageable class has a transition system associated to it. In Vigil, the class
TransitionSystem is used to represent a transition system.

4.3 Implementation
We can turn our attention to the realization of the management system that corre-
sponds to the abstract model described in the previous Sections. Figure 4.9 shows
the structural model that describes the relation maintained between the various
components of Vigil and Stabilis. Vigil's structural model has been designed in
function of principles Cl to C8• Principle C8 states that each manageable class
has a transition system associated to it. Consequently, we have modelled classes
as having a transition system associated to them. From principle Cs we have the
associations between guarded actions and states. Principles C6 and C7 were used
to model the relationships between states that we see represented in the model
(Figure 4.9, class State).

The representation of the structural model of Vigil is carried out in the same
way as the representation of any other model (database schema) in Stabilis. A
schema program is created to instantiate metaclasses for each of the classes of the
model. The execution of the schema program creates the backstage structures
that are needed to index objects that represent control models, i.e., metaobjects.
During the booting up of Stabilis the metaclasses of the structural model of Vigil
are created together with the meta-metaclasses and metaclasses of Stabilis.

The architecture of Vigil is essentially identical to the architecture of Sta-
bilis with a difference in their implementation: transition systems are not stored
as database objects. Figure 4.10 shows where the implementation of both sys-
tems stand in relation to each other, when storage of information in database
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Figure 4.10: (Meta)object layers in Stabilis and Vigil.

objects is considered. For example, metaobjects of Stabilis are used to repre-
sent meta-metaobjects of Vigil (Figure 4.10, second row from top to bottom).
We can observe that all information related to Stabilis components is stored in
database objects. This is not the case with the information related to Vigil. Meta-
metainformation and metainformation regarding transition systems is stored as
database objects but information, that is, a transition system, is not. They are
maintained as executable programs in the file system of the host operating sys-
tem. This restriction in the implementation of the architecture does not represent
a major problem for users as it is possible to implement a version-checking al-
gorithm to make sure that application objects and control objects are properly
matched, that is, that a user is not executing mismatched versions of control and
application programs when it runs his distributed program. Ideally, the object
store of the management system should be able to handle executable code; this
would allow Arjuna, Stabilis and Vigil to have complete control over objects and,
therefore, would make the system even more flexible and easy to use.

4.3.1 On Circularity

Ifwe had followed strict object-orientation principles, then states, or state spaces,
could have been considered attributes derived from the internal states of objects.
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Therefore, in the structural model of Vigil (Figure 4.9) we could have modelled
an external state as being an attribute of the class Class. In this case, we would
not have classes StateS pace and State in the structural model of Vigil, instead,
we would have the class State as a subclass of the class Attribute.

Suppose that we have a model were the class State is a subclass of the class
Attribute. This design creates a circularity in the system because an attribute of a
class represented as a database object is itself (represented as) a database object.
An analogy might help us here. There are programming languages, such as
Smalltalk and Lisp, that are based on such strict object-oriented design. In these
languages, every concept of the programming system is implement as an object,
e.g., instances of primitive types are objects, operators are objects, etc. This is
not the case with C++ where instances of operators and primitive types are not
objects. For example, we do not have in C++ a class Int from which integers
are instantiated. In the design of Stabilis and Vigil we have decided to comply
with the programming abstraction provided by C++. This is the reason behind
the use of different classes to represent states; the class State stores information
about states of a transition system associated to a class and the class StateSpace
is used to store the state spaces of an object during runtime.

The class StateS pace implements an external state space as a graph using
an adjacency list whose interface has methods set..state(String state) and
test..state (String state). Additionally, the interface of class Object has been
augmented with methods set..state(String state) and test..state(String
state). These methods are used in the implementation of transitions to ma-
nipulate the external state spaces of objects. Suppose that we have a class A
that is derived from class Object with an attribute StateSpace state. Then,
if we have an instance of class A, say a, we can write "a.set..state(IISII) ;".
The method set..state("S") of class Object is executed, which calls the method
set_state("S") of class StateSpace.

Suppose that the external state space of class A, implemented by the variable
state, has two external states El = {E, F, G} and E2 = {H, l}. If we want
to retrieve an instance of class A with current state {F, l}, then we can specify
the following query: A a("A(state == 'F' k&:state == 'I')", ... ). This
query is resolved by Stabilis against the value of the attribute state using graph
traversal methods implemented by the class StateS pace. The name of the StateS-
pace attribute can be repeated up to as many times as the number of external
states of the class. In this example, state can appear up to two times in the
query expression.
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II Class Narne I Class Definition lines II
State 4.1 3-12 (constructors), 15-17

GuardedAction 4.2 4-13 (constructors), 16-18
TransitionSystem 4.3 2-11 (constructors), 14-16

Table 4.1: Families of methods: State, GuardedAction, and TransitionSystem.

4.3.2 Classes Interfaces

The structural model of Vigil (Figure 4.9) is part of the structural model of the
management system. The same indexing protocols used in Stabilis are also valid
for the metaclasses of the structural model of Vigil. We discuss the interfaces of
the classes of Vigil very concisely because we know already how structural models
are represented in Stabilis. We group attributes and methods into families to
facilitate our discussion.

Methods

The constructors of the classes State, GuardedAction, and TransitionSystem (Ta-
ble 4.1) have signatures and functionality identical to the constructors of the
classes of the structural model of Stabilis. There are constructors that are used
only during the booting of the management system and constructors that are
used during the normal operation of the system, with queries being passed as
parameters. In fact, in almost every other method the interfaces of these classes
are similar to the interfaces of the classes of the structural model of Stabilis.
The most important difference is in the addition of methods for the automatic
generation of control programs (transition systems).

Code Generation

Automatic code generation (Table 4.2) is implemented by a branch of the family
of methods of code generation that have their execution triggered when a user
instantiates an object model, an instance of class Model, and sends to it a message
gen.ccda. The method gen.ccde has parameters specifying a path where the
generated code is to be written and a version number.

For example, suppose that a programmer wants to generate a control program
for application object a. The generation of a control program for an application
object entails three steps: (i) the retrieval (activation) of the object a, (ii) the
retrieval of the object model of the application, say m, and (iii) execution of
m.gen.cods ( ... J a). Additionally, if the parameter of type Object is null, then
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II Class Name I Class Definition I lines II
State 4.1 13, 14

GuardedAction 4.2 14, 15
TransitionSystem 4.3 12, 13

Table 4.2: Family of code generation methods.

~ __A__~rl-O,-l--------o-,n~I B __

Figure 4.11: Relationship multiplicity and code generation.

gen.code will traverse the whole object model (database schema) and generate
control programs for each of the objects indexed by it.

Relationship multiplicity and code generation Suppose we have designed
an structural model where two classes, say A and B, are related to each other
as shown in Figure 4.11. Further, let us suppose that we have k instances of B
identified by bi, 0 :S i :S k related to one instance of A, say a, and that A's control
object has to have access to bj• If we call gen.ccds ( ... J a), then the control
program generated for application object a has the form: C; :: [Cabl ~. " ~Cabk],

where each object Cab; is an instantiation of the transition system of the class A
for object b, of the class B, i.e., we have an instance of the transition system of
A for each object of class B related to a.

4.3.3 An Example Program

Let us introduce a very simple example to show how the control model of Vigil
allows us to instantiate and interpret management programs that are based on
transition systems. We already know that a Stabilis program consists of two
autonomous subprograms: a schema program and an application program. Sim-
ilarly, a Vigil program consists of a schema program and a control program.

When a schema program instantiates metaclasses of the control model it gen-
erates objects that define a control model: the states, guarded actions, and transi-
tion systems. The internals of Stabilis use information stored in these metaobjects
to generate C++ programs that implement control programs. Later, the code of
the control programs is linked to Vigil's libraries to create an executable control
program. The schema program for a control model generates the backstage ob-
jects that represent transition systems. This schema program is run only once to
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Class 4.1 Class State.

class State: public Object
{
protected:
(1) String name;
(2) Boolean initial;

private:
(3) Boolean save.common.statef 0 bjectState&);
(4) Boolean restore.common.statef Ob jectState&);

protected:
(5) virtual Opflistory« volatlle.rcf);
(6) virtual OpHistory« permanent.rct ):

public:
(7) Sratet Context«, Birth, OpHistorye ): / / class for class
(8) State(String a.name, Context», Class», Birth, Opfllstory»);
(9) State(String sexpr, Context», Birth, Oplllstory»);
(10) State(String sexpr, Context», Reincarnation, Opflistory»]:
(11) State(String sexpr, Contexte, Provide, Oplllstory«):
(12) Statet Pip», Context», Reincarnation, Op llistory-};

(13) Opflistory» gen.codetString path, unsigned version, Object»):
(14) OpHistorye gen.coderStrlng path, unsigned version, Object»,

StringList& models, StringList& classes);

(15) virtual Boolean save...state (ObjectState&, ObjectType);
(16) virtual Boolean restore...state(ObjectState&, ObjectType);
(17) virt ual ostream& print( ostream& );
}j
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Class 4.2 Class GuardedAction.

class GuardedAction : public Object
{
protected:
(1) String guard;
(2) String on;
(3) String action;

private:
(4) Boolean save.common.statef ObjectState&);
(5) Boolean restore.common.statef ObjectStatezz );

protected:
(6) virtual Opfiistory» volatlle.rct ):
(7) virtual OpHistory* permanent.rcf ):

public:
(8) GuardedAction( Context», Birth, Oplfistorye ); / / class for class
(9) GuardedAction(String a.name, Context», Class», Birth, OpHlstory«);
(10) GuardedAction(String sexpr, Context», Birth, Opflistory»};
(11) GuardedAction(String sexpr, Context», Reincarnation, Op History»};
(12) GuardedAction( String sexpr, Context», Provide, Opflistory«];
(13) Guarded Actionf Pip«, Context», Reincarnation, Opflistory«):

(14) Oplfistory« gen.codet String path, unsigned version, Object«);
(15) Op llistory« gen.codefString path, unsigned version, Object»,

StringList& models, StringList& classes);

(16) virtual Boolean save.state (ObjectState&, Object.Type]:
(17) virtual Boolean restore_state(ObjectState&, ObjectType);
(18) virtual ostream& print(ostream&);

};
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Class 4.3 Class TransitionSystem.

class TransitionSystem : public Object
{
protected:
(1) String name;

private:
(2) Boolean save_common...state(ObjectState&);
(3) Boolean restore.common.statel ObjectState&);

protected:
(4) virtual Opfllstory» volatile.rci );
(5) virtual Opflistory- permanent.rcf ):

public:
(6) TransitionSystem(Contexh, Birth, OpHistory«): / / class for class
(7) TransitionSystem(String a.name, Context», Class», Birth, Opliistory«):
(8) TransitionSystem(String sexpr, Context», Birth, Op'Historye ):
(9) TransitionSystem(String sexpr, Context», Reincarnation, Opfiistory«):
(10) TransitionSystem(String sexpr, Context», Provide, Opflistory«):
(11) TransltionfiystemtPlp«, Context», Reincarnation, Opltistory»);

(12) Op'History» gen.codefString path, unsigned version, Object«):
(13) Opflistory» gen.codetString path, unsigned version, Object»,

StringList& models, StringList& classes);

(14) virtual Boolean save...state (ObjectState&, ObjectType);
(15) virtual Boolean restore...state(ObjectState&, ObjectType);
(16) virtual ostream& print(ostream&);

};
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define a transition system schema which is going to be used as the basis for the
creation and execution of many replicas of control programs.

The Plant-Pollinator system (Figure 4.12) has been chosen as an example
because it allows a reasonably complete, but simple description of Vigil's func-
tionality. Next, we specify the system informally. We are required to specify a
control program to govern the pollination process of an insect-pollinated plant.

The structural model of the Plant-Pollinator system is very simple: a plant is
associated to a pollinator in a one-to-one association (Figure 4.12). Both classes
have to be derived from the base class Object. Inheritance from class Object guar-
antees access to pre-defined sensors and actuators that allow the manipulation of
the external state of objects.

Object

~
Plant Pollinator

String genus; String species; String genus; String species;
int visitor;
int photosynthesizet); 1 1 int move(int x, int y);
int opent); int have_visitor(); int pollinatet);
int supply_nectar(); int nectan); int pollinatedt); ...
int withdraw nectart); ...

Figure 4.12: Plant-Pollinator structural model.

In our idealized system, a plant goes through a very simple life cycle: as soon as
it is born it begins to photosynthesize (Figure 4.13, subtransition system A). The
transition "/photosynthesizeO" means "when true do photosynthesizeO".
The guard is always true, meaning that actuator photosynthesizeO is executed
continuously; this transition is always enabled; thus, it always fires.

The specification "/photosynthesizeO" (Figure 4.13, subtransition system
A) is equivalent to "I (Plant).photosynthesizeO"· The latter uses a class quali-
fier enclosed in angular brackets to specify that the actuator photosynthesizeO
belongs to an instance of the class Plant. When, in our notation, the actuator or
sensor is not prefixed by a class qualifier it belongs to the instance of the class to
which the control model is associated.

During the flowering season a plant opens its flowers when the sun rises and
closes them when the sun sets (Figure 4.13, subtransition system B). Plants are
very economical, while open they do not offer nectar continuously (Figure 4.13,
subtransition system OPEN). They only start producing nectar when a pollinator
is visiting the plant, that is, when the pollinator has become associated to the
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/{photosynthesizeO;}

PLANT
withdraw_nectar()/{ }

Figure 4.13: Plant control model.

plant. Once they have offered nectar to the pollinator for a period of time, they
stop offering nectar to it. The control program of a plant determines it has a
visitor using sensor Boolean have_visitorO. The actuator supply..nectarO
is executed by the control program of a plant to make it offer some nectar to
its associated pollinator. After a period of time sensor vi thdrav..nectarO be-
comes true and the guarded action that makes the transition from NECTAR_ON
to NECTAR_OFF is fired. The specification of this transition introduces addi-
tional notation; if a transition has its action part empty or specified by an empty
statement "{}", then a null action is executed during the transition firing.

A pollinator is a simple creature, immediately after its birth it starts searching
for nectar (Figure 4.14 subtransition system A). As soon as it finds a plant with
flowers open it becomes associated to it in the hope of getting a steady supply of
nectar. An association between plant and pollinator is only possible when their
coordinates match. If the nectar supply is not to the liking of the pollinator it
departs in search for a better nectar supplier. If a plant offers nectar at least
once, then the pollinator tries to pollinate it (Figure 4.14, subtransition system
B).

In the control model of class Plant (Figure 4.13) we have deliberately repre-
sented all aspects of the behaviour of our idealized plant. We have done this
to show that it is the responsibility of the designer of the distributed program
the decision of how much of the behaviour of the program he wants to model
using transition systems. As designers of the Plant-Pollintator program, we have
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A move(x,y)

POSITION

POLLINATOR

B

VISIT

pollinatedtj/] }

<Plant>.nectar()/{ pollinatet); }

POLLINATE

Figure 4.14: Pollinator control model.

have_ visitor() && openOI
{ supply jiectarf); }

withdraw_nectarO/{ }

PLANT

Figure 4.15: Simplified Plant control model.

decided that certain aspects of it can be resolved by the application program
because we are only interested in the management of the pollination process.
Thus, we reduce the control models to only those transitions that we see as being
relevant to the management of the pollination process.

Photosynthesis and the opening/closing of flowers are functions that have an
indirect impact on pollination, then we can reduce the control model of the plant
to the transitions that are inside the state OPEN (Figure 4.15). Photosynthe-
sis and opening/closing flowers has become concern of the implementors of the
application program for the class Plant. At management level, we are interested
in representing explicitly only the transitions related to the offer of nectar be-
cause they have a direct relationship with the pollination process. If we compare
the reduced control model (Figure 4.15) to the original (Figure 4.13) we can see
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VISIT POLLINATE

pollinatedtj/] }

Figure 4.16: Simplified Pollinator control model.

that the guard of the transition from state NECTAR_OFF to state NECTAJLON
in the reduced control model (Figure 4.15) is specified using two sensors, one of
them is the sensor open O. This sensor hides from the implementor of the control
program the details of the system that were explicitly represented in the original
control model (Figure 4.13). To us the components of the system that deal with
photosynthesis and opening/closing of flowers have become atomic. Similarly,
we can reduce the control model of the pollinator (Figure 4.14) to a submodel
were subtransition system A is not considered (Figure 4.16). This simplification
is made because we consider the movement of the pollinator and its association
to a plant not to be a management concern.

Once we are satisfied with the design of the structural and control models
for the Plant-Pollinator system, we can write the schema program for it. An
excerpt of the schema program for the control model of class Plant is shown in
Program 4.1. Schema programs create backstage objects. To represent a control
model we have to create metaclasses TransitionSystem, GuardedAction and State.

The structure of the schema program mirrors the structure of the object model
(structural and control models) of the Plant-Pollinator system (Program 4.1).
Line 1 has the function of creating the model for the Plant-Pollinator. In Line
2, we create the class responsible for indexing instances of class Plant. In line
3 we indicate that this class is part of the Plant-Pollinator object model by re-
lating it to the instance created in line 1. Lines 1, 2, and 3 create backstage
objects that belong to the representation of the structural model. Line 4 creates
an instance of TransitionSystem which represents the root of the Plant control
model. Next, line 5 relates the transition system to its class, in accordance with
principle C«. Lines 6, 7, and 8 create instances of class State. We have an in-
stance for each state of the Plant control model (Figure 4.15). Lines 9 and 10
create the SuperState-SubState relationships between state PLANT and states
NECTAR_ON and NECTAR_OFF. Finally, lines 11, 12, and 13 create metaob-
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jects that represent a guarded action. This excerpt illustrates that diagrammatic
representations of a transition system can be translated into a database schema.

Program 4.1 Schema for Plant-Pollinator control model.

mainf ) {
(1) Model- modeLPlantPollinator = new Model(

IIModel(name == 'PlantPollinator') II,universe, BIRTH, oph);
(2) Class» m.Plant = new Class(IIClass(name == 'Plant')II, universe,

BIRTH,oph);
(3) *oph += model.Plant Polllnator-srelatef "Boot C'l.assII,m.Plant);
(4) Transltlonfiystem« plant-vigil = new TransitionSystem(

"TransitionSystem(name = 'Plant')", universe, PROVIDE, oph);
(5) -oph += m_Plant-relate(IITransitionSystemll, plant-vigil);
(6) State» plant = new State("State(name = 'PLANT') II,universe, BIRTH, oph);
(7) State- nectar-off = new State(IIState(name = 'NECTAR_[)FF'

i:i: initial = 1) II,universe, PROVIDE, oph);
(8) State» nectar.on = new State(IIState(name = 'NECTAR_ON')",

universe, PROVIDE, oph);
(9) *oph += plant-relate("SubStatell, nectar.on);
(10) *oph += plant-relate(ISubState", nectar.off};
(11) Guarded Action= gl = new GuardedAction("GuardedAction(

guard = 'have_visitor() i:i: open O" .t.t
action = ,{ supply_nectarO; }')", universe, PROVIDE,

oph);
(12) *oph += gl-s relatef "Predecessor" , nectar.off );
(13) *oph += gl-relate(ISuccessor", nectar.on): }

4.4 Developing Distributed Programs
After the execution of the schema program we have all the necessary backstage
structures in place and can consider the generation and execution of control
programs. Before proceeding to the explanation of how control programs are
interpreted we make explicit the process we have followed so far to develop a
distributed program.

Problem Analysis In this phase the designer/implementor of the distributed
program has to write or obtain an initial description of the problem and
analyze it to delimit requirements and goals.

Modelling Identify classes and attributes. Attributes include data terms, meth-
ods and relationships. Relationships are used to simplify the structural
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Figure 4.17: Automating the process of model representation.

model of the distributed program. Developing a control model is the next
step of the process. In this step we have to prepare a control model for each
class that plays an important role in the reconfiguration of the components
of the program. At the end of this phase the designer of the distributed
program has finished the preparation of the program's object model.

Model Representation The object model is represented as a database schema.
Currently, the programmer of the application has to translate object models
into schema programs. This step can be totally automated using a graphical
model editor and a model compiler. The model compiler is responsible for
the translation of the graphical representation of the object model into all
schema program (Figure 4.17).

Program Generation The generation of parts of the distributed program IS

carried out in two steps:

1. The object model of the distributed program is retrieved from the database
and the message gen.codef ... ) is passed to it. This message triggers
the generation of the C++ source code that defines the classes of the
model. The code of a application-specific interactive query interpreter
is also generated by gen.codef ... ). Now the user has to complete the
implementation of the methods of the classes. Clients are also imple-
mented during this step. Using the interactive query interpreter the
programmer instantiates application objects. For example, the code
of the automatically generated header file for class Plant is shown in
Class 4.4. In lines 1 to 4 of the header file (Class 4.4) we can see the
attribute declarations. In lines 5 to 8 we have the methods used by the
object manager to manipulate the state of objects. The constructors are
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declared in lines 9 to 12. In lines 14 and 15 we see some of the sensors
and actuators of the class. Finally, in lines 16 to 17 we have the methods
required by the state manager of Arjuna.

Class 4.4 Class Plant.
class Plant: public Object
{
protected:
(1) String genus; int number;
(2) String species; int visitor;
(3) int open;
(4) StateSpace state;
private:
(5) Boolean save_common...state(ObjectState&);
(6) Boolean rastore.common.statef ObjectState&);
protected:
(7) OpHistory» volatile.rei};
(8) Op History= permanent.rcf );
public:
(9) Reference(String sexpr, Context», Birth, OpHistory«};
(10) Reference(String sexpr, Context», Reincarnation, Oplfistory»];
(11) Reference(String sexpr, Context», Provide, Oplfistory«):
(12) Referencel Pip«, Context», Reincarnation, Opflistorye]:
(13) int photosynthesizel ):
(14) int have.visitorl ): int openl};
(15) int supply .nectarf ); int withdraw .nectarf ):
(16) virtual Boolean save...state (ObjectState&, ObjectType);
(16) virtual Boolean restore...state(ObjectState&, ObjectType);
(17) virt ual ostrearn& print( ostrearn&);
};

2. Using the query interpreter the programmer retrieves the object model,
say m, and application objects. For each application object of the Plant-
Pollinator system, m.gen_code( ... ) is executed. Let us Suppose we
have an instance of class Plant, say p of species "sp", the execution
of m.gen_code( ... , p) causes the generation of the Program 4.2. The
control program obtains a reference to Stabilis (Program 4.2, line 1) and
to the application object which it is controlling. The code of transitions
1 (Program 4.2, lines 3-7) and 2 (lines 8-10) is created using the control
metainformation stored in Stabilis. In the main program we have the
instantiation of the scheduler (Program 4.2, line 11), the registration of
transitions (lines 12-13), and the activation of the scheduler (line 14).
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Program 4.2 Control program for class Plant.

/ * automatically generated code */
/ * Plant species = sp */
(1) Context- universe = new Context("Universe", REINCARNATION, oph);
(2) Plant plant("Plant(species == 'Sp')", universe, REINCARNATION, p.oph};
(3) int guard.If)
(4) { return (plant.test..state("NECTAR...oFF") && plant.have.visitorf ) &&
(5) plant.opentj); }
(6) int action.I ()
(7) { plant.set..state(INECTAR...oN"); plant.supply.nectart ); }
(8) int guard-2()
(9) { return (plant.test..state("NECTAR...oNI) && plant.withdraw.nectarf l): }
(10) int action-2{) { return 1; }
mainf ) {
(11) const unsigned DELAY = 30; Vigil vigil(DELAY);
(12) vlgll.reglsterfguard.Laction.L):
(13) vigil.regtsterfguard.z.actlon.z):
(14) vigil.runt); }

Execution To execute the distributed program the programmer runs the control
program and application programs. Reconfiguration can be accomplished by
changing the relationships between the objects of the program.

4.4.1 Scheduling of Guarded Actions
In this Section we show the code of the interpreter of transition systems. We
have implemented to schedulers of guarded actions.

An important element of the object and action model adopted in this work
is that concurrency is represented by interleaving. This means that two objects
executing in parallel never execute their atomic methods at precisely the same
instant, but take turns in executing atomic methods. When concurrent compu-
tation is represented by interleaved computation two problems arise:

Interference Atomicity guarantees absence of interference between concurrently
executing guarded actions. The degree of concurrency allowed in the compu-
tation of the guarded actions can be increased through the implementation
of different of atomic action models.

Independent Progress The problem of independent progress is that, in an par-
allel execution, the computation of each object of the distributed program,
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keeps advancing, since each guarded action is independently responsible for
its own progress. In an interleaved computation, the requirement for con-
trol objects is that enabled transitions be continuously chosen and executed.
If there is nothing to disallow a computation in which only one transition
is ever chosen, then such a computation ensures progress of the preferred
action, or actions, but keeps all other guarded actions stagnant.

The solution to the problem of independent progress is the introduction of the
requirement of fairness into the computation model of interleaved computations.
According to Ben-Ari, four possible specifications of fairness are:

Weak fairness If an object continuously makes a request, eventually it will be
granted.

Strong fairness If an object makes a request infinitely often, eventually it will
be granted.

Linear waiting If an object makes a request, it will be granted before any other
object is granted the request more than once.

First-in first-out (FIFO) If an object makes a request, it will be granted before
that of any object making a later request.

The first scheduler is based on a simple algorithm that is not fair. Class 4.5
and Program 4.3 show the header file and implementation of method run for the
base class Vigil. The constructor of the scheduler accepts a parameter (Class 4.5,
line 2) that specifies the delay time in milliseconds between transition evaluations.
The method registre( ... ) (Class 4.5, line 2) is used to register transitions with
the scheduler, it accepts pointers to methods as parameters: the first parameter
is a pointer to a guard, the second is a pointer to an action. The attributes
(Class 4.5, lines 6-9) provide the data structures used to manage transitions.

The code of the method runO of class Vigil (Program 4.3) is simple. The ini-
tialization (lines 1-4) creates an operation history, initializes temporary variables
used to test the result of guards and actions, and declares a pointer to an atomic
action. The scheduler sits on an infinite loop (line 5) doing the following:

1. select a guarded action (line 6),

2. start an atomic action (line 10),

3. evaluate the guard of the selected transition (line 11).

4. if the guard of the selected transition is true, then evaluate the action of
the selected transition (line 12),
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5. if both guard and action have executed without problems, then commit the
atomic action, otherwise, abort it (lines 13-15),

6. wait de l ay rt i.me before starting the evaluation of the next transition (line
17).

Class 4.6 and Program 4.4 show the header file and code for a subclass of the
class Vigil where method run schedules guarded actions using a priority-queue
based algorithm; this algorithm implements weak fairness. Apart from the use of
a priority queue to select the next transition to be evaluated, this algorithm has
an structure similar to the one we have discussed above.

Weak fairness is termed justice in [102, pages 103-175] where the algorithm for
class jVigil is detailed. Manna and Pnueli claim that this algorithm can generate
every fair computation of a program based on interleaved execution of guarded
actions [102, pages 158-159].

The design of Vigil is such that at any time a programmer can specialize the
base class Vigil and implement a new scheduler for guarded actions. We have
experimented with these two algorithms primarily because they are simple.

Class 4.5 Base class Vigil.

(1) const int MAX_GA = 500; / / Maximum number of guarded actions
class Vigil
{ public:
(2) Vigil(unsigned delay .time = 5);
(3) ",VigilO;
(4) void registre(int (*guard)O, int (*action)O);
(5) void runf );
private:
(6) unsigned delay .time;
(7) int gan; / / actual number of guarded actions
(8) int (*guards [MAX_GA])O;
(9) int (*actions[MAX_GA])O;
};
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Program 4.3 Implementation of method run for class Vigil.

void Vigil::runO
(1) { OpHistory* oph = new OpHistory;
(2) int guard...satisfied = 0; int action...satisfied = OJ
(3) unsigned unslept = 0;
(4) Atomic.Action= A; int i = 0;
(5) for (;;) {
(6) i = (i + 1) % gan;
(7) A = new Atomicnctionf );
(8) guard...satisfied = 0; action...satisfied = 0;
(9) if «guards[i] of; 0) && (actions[i] of; 0»
(10) { *oph += A-BeginO;
(11) guard...satisfied = (*guards[i])Oj
(12) if (guard...satisfied of; 0) action..satisfied = (*actions[iDO;
(13) if «guard...satisfied of; 0) && (action...satisfied of; 0))
(14) *oph += A-EndOi
(15) else *oph += A-AbortOj
(15) delete Ai A = OJ
(17) unslept = sleep( delay _time); } } }

Class 4.6 Class jVigil, justice-based scheduler of guarded actions.

(1) const int MAX_GA = 500j / / Maximum number of guarded actions
class pVigil : public Vigil
{ public:
(2) Vigil( unsigned delay .time = 5) j
(3) ",VigilOj
(4) void registre(int (*guard)O, int (*action)O)j
(5) void runf );
private:
(6) unsigned delay.time;
(7) int gan: / / number of guarded actions registered
(8) int (*guards [MAX-GADOj
(9) int (*actions[MAX-GADOj
(10) int priority[MAX-GAli
(11) int minlmumf );
( 12) void set-priori ty( int k) i
};
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Program 4.4 Implementation of method run for class jVigil.

void Vigil::runO {
(1) Opflistory« oph = new OpHistory;
(2) int guard.satisfied = 0; int action.satisfied = 0;
(3) unsigned unslept = 0;
(4) Atomic.Action» A;
(5) int i = 0;
(6) for (;;) {
(7) i = minimumt );
(8) A = new Atomic Actionf};
(9) guard.satisfied = OJaction.satisfied = 0;
(10) if «guards[i] =I 0) && (actions[i] =I 0»
(11) {
(12) =oph += A--.BeginO;
(13) guard.satisfied = (*guards[i])O;
(14) if (guard.satisfied =I 0) action.satisfied = (*actions[i])();
(15) if «guard.Batisfied =I 0) && [action.satisfied =I 0»
(16) *oph += A--.EndO;
(17) else *oph += A--.AbortOj
(18) delete A; A = OJ
( 19) unslept = sleep( delay .time): }
(20) seLpriority(i); } }
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4.5 Conclusions
We have started this Chapter arguing that implementors of adaptable distributed
programs have to be concerned with the explicit representation and management
of structural and control information about a distributed program. Further, we
have argued that it is beneficial during program development to maintain the
implementation of management policies separated from the implementation of
functional aspects.

The notion of reactive programs has played an important role in the defini-
tion of the functionality of Stabilis and Vigil. From the point of view of the
management system a distributed program is seen as the superposition of two
reactive programs: an application program and a management program. Appli-
cation programs are implemented using the facilities provided by Arjuna, control
programs are implemented using the same facilities, but are state machines whose
interpretation is the responsibility of Vigil's guarded-action scheduler.

Having specified that control programs were implemented as state machines,
or transition systems, we proceeded to define the conventions adopted in the rep-
resentation of state machines (control models). The control model supported by
Vigil allows the representation of states and guarded actions (transitions). Addi-
tionally, Vigil's control model allows the creation of hierarchies and aggregation
of states. The generalization/specialization relationship for states allows the rep-
resentation of superstates and substates. The aggregation of states allows us to
compose state machines that are executed independently.

The implementation of Vigil is based on the instantiation of a structural model
that represents the concepts of the control model. The representation of the
structural model of Vigil is carried out in the same way as the representation of
the structural model of Stabilis. A schema program is created to instantiated
metaclasses for each of the classes of the model. The execution of the schema
program creates the objects that maintain information about control models.

The discussion of the functionality of Vigil is carried out using the example
of the Plant-Pollinator system. With the Plant-Pollinator example we were able
to follow each of the steps of the design and implementation of a distributed
program that uses the management system. These steps include the design of the
object model, its representation in Stabilis using schema programs, automatic
code generation, implementation, and execution.

Finally, we discussed the implementation of two schedulers of guarded actions
for Vigil. The first scheduler is not fair; the second algorithm implements weak
fairness.
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In this Chapter we discuss two examples of use of the management system.
The first example is the result of extending the well-known dining philosophers
problem into a distributed program that shows how dynamic reconfiguration of
objects is achieved using Stabilis and Vigil. The second example is an index
system of a distributed database; it shows how Stabilis and Vigil can be used
to implement a dynamically reconfigurable index. The index system relies on a
cache coherency protocol for its operation, Stabilis and Vigil are used to imple-
ment the control mechanisms of this protocol that have to be integrated with the
mechanisms used in the reconfiguration of the index.

5.1 Evolving Philosophers
The distributed dining philosophers problem [50], diners, is solved for situations
where the population of a community of philosophers can change. The solu-
tion presented here is essentially the same solution presented by Kramer and
Magee [80] for the Conic environment; it has only been reinterpreted using Ar-
juna, Stabilis and Vigil.

In the specification of the diners proposed by Kramer and Magee [80], philoso-
phers are born, live, and die without disturbing the lives of the other philosophers,
despite having to share resources with their neighbours while alive. This version
of the diners problem is known as the evolving dining philosophers.

Philosophers are arranged in rings with neighbouring philosophers sharing a
fork between them. A philosopher is either thinking, hungry, or eating. To
move from hungry to eating a philosopher must acquire both his left-hand and
right-hand forks. The fact that philosophers share forks and must acquire two
forks before they can eat leads to conflicts. To solve the original diners problem
is essentially to design a program to adjudicate conflicts: neighbouring philoso-
phers do not eat simultaneously and hungry philosophers eat eventually, given
that no philosopher is allowed to eat forever. To solve the evolving dining philoso-
phers [80] is to add mechanisms for dynamic configuration of rings of philosophers
while maintaining the overall dependency of the application.

5.1.1 Reconfiguration Management
In the evolving philosophers, the death and birth of philosophers is used as an
analogy to dynamic addition and removal of objects of an application program.
The strategy devised by the Conic team [80] to solve the problem of dynamically
reconfiguring objects of a distributed program includes the following steps:

• Determine the set of objects, say Q, that are affected by the reconfiguration
so that disruption to the activity of the program is minimized.
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• All elements of Q have to be taken from their operational state, that is,
an active state, to a quiescent state, or passive state. Such change has
to be carried out without compromising the correctness of the distributed
program. Quiescence is achieved with the contribution of the application
program, meaning that the program's design has to be extended to provide
the operations used during passivation/activation of its objects.

• The application objects affected by the dynamic change are unlinked. Link
and unlink operations are used to logically connect and disconnect objects.
If an object is logically connected to another then it is able to establish a
communication link with that object when necessary.

• Objects are removed and/or added as dictated by the reconfiguration pro-
cedure.

• The objects affected by the reconfiguration procedure are linked, respecting
the structural model of the distributed program.

• All objects passivated earlier are reactivated, taking the application program
back to a fully operational state.

5.1.2 Structural Model

We can model each philosopher as an object that communicates with its left-hand
and right-hand neighbours by sending messages to them via method execution.
The diners structural model is simple: the class Philosopher is related to itself via
two distinct association relationships: Left and Right, meaning that a philosopher
knows its left and right neighbour (Figure 5.1). These associations represent the
fact that philosophers must be able to communicate with each other in order to
exchange forks.

Right 1 Philosopher
1 Left

1

Left Right

Figure 5.1: Structural model for the diners.
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Class Philosopher

Instances of class Philosopher (Class 5.1) belong to the application program. Con-
sequently, they have to be instrumented with sensors and actuators before their
control objects can gain access to their state.

In our implementation of the evolving philosophers, each philosopher has a
name that uniquely identifies him (Class 5.1, line 1); each philosopher has also
an order number that is unique (Class 5.1, line 2). Additionally, from an analysis
of the solution to the original problem (Section 5.1.3), we can say that each philo-
sopher knows whether or not he has got the forks he shares with his neighbours
(Class 5.1, line 3) and whether the forks are dirty or not (Class 5.1, line 4). If
a philosopher has a token for a fork then he has not got that fork, but has the
right to request it from his neighbour (Class 5.1, line 5). In line 6 we have the
declaration of the philosopher's state space.

We have sensors and actuators for each attribute that is of management in-
terest. For example, we have actuator set-fork( ... ) and sensor fork( ... );
they are used by management objects to control the forks a philosopher has with
him (Class 5.1, line 7). Similarly, we have sensors and actuators for the other at-
tributes whose values we want to control (Class 5.1, lines 8-10). The next Section
brings a thorough description of the sensors and actuators of class Philosopher;
their function can be better understood in the light of the control model that
governs a philosopher's life.

Class 5.1 Class Philosopher.

#define HANDS 2
enum Hand {LEFT, RIGHT}
class Philosopher: public Object {
protected:
(1) String name;
(2) int order;
(3) Boolean fork[HANDS];
(4) Boolean dirty[HANDS];
(5) Boolean token[HANDS];
(6) StateSpace state;
public:
/ / constructors deleted
(7) int set.forkl Hand, Boolean); int fork(Hand);
(8) int sat.rlirtyf Hand , Boolean); int dirty(Hand);
(9) int seLtoken(Hand, Boolean); int token(Hand);
(10) int seLorder( int ); int order();

};
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5.1.3 Control Model
Chandy and Misra [42] describe the behaviour of the diners as follows: "A fork
is either clean or dirty. A fork being used to eat with is dirty and remains dirty
until it is cleaned. A clean fork remains clean until it is used for eating. A
philosopher cleans a fork when mailing it; he is hygienic. An eating philosopher
does not satisfy requests for forks until he has finished eating." When not eating,
philosophers defer requests for forks that are clean and satisfy requests for forks
that are dirty. This solution can be considered to implement a precedence graph
such that an edge directed from a philosopher node U to T indicates that U has
precedence over T (Figure 5.2).

In Chandy and Misra's solution a philosopher U has precedence over his neigh-
bour T if and only if:

1. U holds the fork and it is clean, or

2. T holds the fork and it is dirty.

Chandy and Misra show that if initially all forks are dirty and located at
philosophers such that the precedence graph is acyclic it will remain acyclic since:

1. the direction of an edge, from U to T, can only change when U starts eating,
and

2. both edges of a philosopher are simultaneously directed towards him when he
starts eating. Chandy and Misra prove that since immediately on finishing
eating a philosopher yields precedence to his neighbours, all hungry philoso-
phers will commence eating in a finite time, i.e., no philosopher remains
hungry forever.

(a) (b)

Figure 5.2: Precedence graph. (a) P is hungry. (b) P is eating.
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Initialization

Initially all forks are dirty. Forks are distributed among philosophers such that
the precedence graph is acyclic. If U and V are neighbours then either U holds
the fork and V the request token or vice versa.

Basic Control Model

We describe the control algorithm of a philosopher in function of the control
model we have devised for him (Figure 5.3). The state space of a philosopher
includes states THINKING, HUNGRY, and EATING. The sensors and actuators
necessary to specify the philosopher's control algorithm are:

fork(h) True if philosopher holds fork of hand h (h can assume values LEFT
or RIGHT).

set_jork(h. Boolean) Passes fork of hand h to neighbour which shares this
fork.

token(h) True if philosopher holds request token for fork of hand h.

set_token(h. Boolean) Passes request token for fork of hand h to neighbour.

dirty (h) True if fork of hand h is at philosopher and is dirty.

set_dirty(h. Boolean) Sets fork of hand h to dirty (TRUE) or clean (FALSE).

orderO Returns the unique identification number of a philosopher.

eat ing.z imeout 0 True when eating time is over.

thinking_timeout 0 True when thinking time is over.

other...hand(h) Returns the other fork of hand h that a philosopher uses. For
example, other...hand(LEFT) = RIGHT.

Not all of these sensors and actuators are used in the actual implementation of
the control algorithm, some of them have been included here only as a notational
aid. In the diners control model (Figure 5.3), transitions drawn using dashed arcs
are implemented and fired by application objects or by queries. Although dashed
transitions are not of direct management interest, it would be more difficult to
visualize the behaviour of a philosopher if we had not represented them in the
control model.
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For instance, we can see how transitions t4 and t5 (Figure 5.3) are implemented
by analyzing the code of an application object for the diners (Program 5.1). First,
the object retrieves a philosopher (Program 5.1, line 1). Next, the object enters
a loop (Program 5.1, line 2) that implements what a philosopher normally does
if he is active: he thinks for a while, becomes hungry (Figure 5.3, transition t5),
eats, and goes back to do his thinking (Figure 5.3, transition t4).

Transition t3 (Figure 5.3) could have been represented as a dashed transition
as it is not directly involved in the runtime reconfiguration of a community of
philosophers. In this example, we have decided to implement it as part of the con-
trol program of a philosopher to illustrate that the division between management
and functional aspects of a distributed program is a design decision.

A

t2

~-------------------------

Figure 5.3: Control model for the diners.

A philosopher is at a certain state for a period of time whose duration is
determined randomly. This behaviour of a philosopher is implemented by the
code of line 3 (Program 5.1). Moreover, he always publishes what he has been
doing (Program 5.1, line 4).
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Program 5.1 Philosopher's application program.

maint ) {
(1) Philosopher p("Philosopher(surname == 'P') II,... , REINCARNATION ,... )j

int n = 0;
(2) for (;;)
(3) { srand(time(O»j n = randf ); n = n % MAX...sLEEP; sleep(n);
(4) cout -e; p;
(5) if ( p.testJltate(IACTIVE") ) {
(6) if ( p.test.statel "THINKING")) { p.set.atate] IIHUNGRYII); }
(7) if( p.test...state(IIEATINGII)) { p.setJltate(ITHINKING"); } }

}
}

We can see the code that implements transition t5 in line 6: the philosopher
flips his state from thinking to hungry. Transition t4 is implemented by the code
of line 7: the philosopher decides that he has finished eating and resumes thinking
(Program 5.1).

In line 5 (Program 5.1), we can see that a passive philosopher does not change
his state. When a philosopher is passive he stays at the state his control program
has set him until he is reactivated. The code of line 5 is an example of a program's
contribution to the dynamic reconfiguration of its objects. The algorithm of the
original diners problem does not include the code of line 5. It has been added to
allow dynamic reconfiguration of philosophers.

The transitions that implement the basic control model of a philosopher are
(Figure 5.3, transition system A):

(t l ] Requesting a fork of hand h:

(token(h) /\ -,fork(h))/
{(neighbourh).set_token( other_hand(h), TRUE);
set_token(h, FALSE)}

(t2) Releasing a fork of hand h:

(token(h) /\ dirty(h))/{set_dirty(h, FALSE); set..fork(h, FALSE);

(neighbourh).set..fork(other_hand(h), TRUE);}
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(t3) Philosopher hungry to eating transition:

(fork(LEFT) A fork(RIGHT))/
{set_dirty(LEFT, TRUE); set..dirty(RIGHT, TRUE);}

(t4) Philosopher eating to thinking transition: (eating_timeout())/O

(t5) Philosopher thinking to hungry transition: (thinking_t imeout() / {}

Let us analyze part of the control program where transitions t 1 and t3 are
implemented. The code shown in Program 5.2 implements transition t3. In the
first line of the the same figure we can note the query used by the control object
to get a reference to its application object.

Program 5.2 Implementation of transition t3: HUNGRY to EATING.

/ * automatically generated code */
/* Philosopher surname = 'P' */
Philosopher p("PhiloBopher(surname == 'P') ", ... , REINCARNATION, ... );
/ / Transition: HUNGRY -+ EATING
int guard.Jf) {
return (p.test...state(IIHUNGRYII)&& pJork(LEFT) && p.fork(RIGHT)); }

int action.If) {
p.set...state(IIEATINGII);p.seLdirty(LEFT, TRUE);
p.seLdirty(RIGHT, TRUE); }

The code that implements transition t1 is shown in Programs 5.3 and 5.4; a
philosopher is hungry and has both forks with him then he can start eating. For
example, the code of action...20 (Program 5.3) shows how queries are used by
control objects to name application objects in a context independent way.

In Program 5.4 we can see the code of the main program of this control object.
The code instantiates Vigil, registers guarded actions with it, and runs Vigil's
scheduler by calling vigil. run O.
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Program 5.3 Implementation of transition tl: Requesting LEFT fork.

/ / Transition: Requesting LEFT fork
int guard_2() {
return ( p.test...state(IIHUNGRYII)&& p.token(LEFT) && !p.fork(LEFT) ); }
int action.zf) {
Philosopher left(IIPhilosopher(Left: :Right: :surname == 'P')II, ... ,
REINCARNATION, ... );
left.set-token(RIGHT, TRUE); p.set-token(LEFT, FALSE); }

Program 5.4 Implementation of transition tl: Requesting RIGHT fork.

/ / Transition: Requesting RIGHT fork
int guard.Sf) {
return ( p.test...state(IIHUNGRYII)&& p.token(RIGHT) && !p.fork(RIGHT) ); }
int actlon.Sf ) {
Philosopher right( IIPhilosopher (Right: :Left: :name == ' P , ", ... ,

REINCARNATION, ... );
right.set-token(LEFT, TRUE); p.set-token(RIGHT, FALSE); }

mainf ) {
const unsigned DELAY = 1; jVigil vigil(DELAY);
vigil.register(guard_l .action.J); vigil.reglsterfguard.z.action.z):
vigil.register(guard_3,action..3); vigil.run();
}

Extended Control Model: Dynamic Reconfiguration

In the extended control model we have to consider the creation of a ring (com-
munity) of philosophers, addition of a new philosopher (birth) and deletion of an
existing philosopher (death).

An extended diners program must allow philosophers to enter a quiescent state
and to be logically linked/unlinked to/from another philosopher. The consistency
requirements for the extended diners problem are:

1. that a fork is always shared between two adjacent connected philosophers,
and

2. that the precedence graph remains acyclic.

The case where a community has only one philosopher is dealt with by con-
necting it to itself, thereby allowing it to have two forks.
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Philosopher passivate/activate actions Let us explain the contribution a
philosopher has to make to allow his control program to activate/passivate him.
A philosopher can be passivated if he has not requested a fork and is not hun-
gry or will not become hungry. We model this extended behaviour of a philo-
sopher through state space {SHUTDOWN, PASSIVE, BOOT, ACTIVE}. We
have added states SHUTDOWN and BOOT to ease the implementation of re-
configuration procedures; especially when a query interpreter is used as recon-
figuration managers. Figure 5.3B shows the transition system devised for the
passivation/activation of a philosopher. Again, the dashed transitions are imple-
mented by the application program or can be triggered using a query interpreter.
Transitions t6 and t7 are specified:

(t6) Philosopher becomes passive: [on (...,HUNGRY)]/O

(t7) Philosopher becomes active: [on (...,HUNGRY)]/ {}

Part of the control program generated for transition system B (Figure 5.3) is
shown in Program 5.5. Transition t6 is implemented by guarded action 1 (Fig-
ure 5.5, guard.t O and act ron.f O). Guarded action 2 (Program 5.5, guard..2 0,
action..2 0) implements transition t7.

Program 5.5 Part of control program generated for transition system B.

/ / Transition: SHUTDOWN -+ PASSIVE
int guard.If ) {
return (!p.test..state(IHUNGRY")&& p.test..state(ISHUTDOWN"))}

int action.Jf ) { p.set..state(IIPASSIVE"); }

/ / Transition: BOOT -+ ACTIVE
int guard..20 {
return (!p.test..state(IHUNGRY")&& p.test..state(IIBOOT")) }

int action..20 { p.set.J>tate("ACTIVE"); }

Philosopher link/unlink actions The control model that deals with unlink-
ing and linking of philosophers is represented by transition system C (Figure 5.3).
As in the case of passivation/activation of philosophers, we have not only the
states LINKED and UNLINKED, but two extra states: UNLINKING and LINK-
ING.
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The linking/unlinking of philosophers has to take into consideration consis-
tency requirements regarding the number of forks held by a philosopher to guar-
antee that his community remains with the right number and right distribution
of forks when he is linked/unlinked to/from it. To satisfy these requirements
Kramer and Magee require that each philosopher has a unique identifier and that
these identifiers permit a total ordering. Unique identifiers are used as a mean of
adjudicating who keeps the forks when the number of philosophers in the com-
munity changes. The adjudicator's algorithm can be specified: the philosopher
that precedes his neighbour in the total ordering decides where a fork is to be
allocated. Thus, only one fork is allocated. The specification of transition t9 has
to take into consideration the order of the philosophers being linked/unlinked:

1. a philosopher is being linked (unlinked) to (from) himself, i.e., a philosopher
whose order is equal to this order. See transition t9a below.

2. a philosopher is being linked (unlinked) to (from) a philosopher whose order
is greater than his order. See transition t9b below.

3. a philosopher is being linked (unlinked) to (from) a philosopher whose order
is smaller than his order. See transition t9c below.

(t8) Philosopher becomes unlinked:

[on(PASSIVE)]/ {set..fork(h, FALSE); set_token(h, FALSE);
set_dirty(h, FALSE); }

(t9a) Philosopher sets up a link to himself:

(orderO = (ne igbbourj ).orderO )[on(PASSIVE)]/
{set..fork(h, TRUE); set_dirty(h, TRUE); set_token(h, FALSE);}

(t9b) Philosopher sets up a link to a philosopher whose order is greater than his
order:

( (neighbourh) .order() > order())[ on(PASSIVE)] /
{ set..fork(h, TRUE); set_dirty(h, TRUE);
(neighbourh).set_token( other ...hand(h), TRUE);
(ne i.ghbourj}. set _state("LINKED") }
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(t9c) Philosopher sets up a link to a philosopher whose order is smaller than his
order:

((neighbourh).orderO < orderO )[on(PASSIVE)]/
{ set_token(h, TRUE);
(neighbourh) .set_fork( other ...hand(h), TRUE);
(ne ighbourj ). set_dirty( other ...hand(h), TRUE);
(ne ighbcurj ). set_state("LINKED") }

Implementation of link/unlink actions The implementation of the guarded
actions used to control the linking/unlinking of philosophers is based on a more
detailed version of control model C (Figure 5.3). In its detailed form this transi-
tion system C is specified as two concurrent transition systems (Figure 5.4). The
state spaces defined for the detailed version make explicit the notion of "hand".
For example, the state space of transition system C-Ieft is {UNLINKEDJJEFT,
LINKING.LEFT, LINKED.LEFT, UNLINKING.LEFT}. If we swap the suffix
LEFT for RIGHT in the names of C-Ieft's state space we obtain C-right's state
space. As an example of implementation we briefly discuss the implementation
of part of the control program generated for C-Ieft's control model.

C-Ieft C-right
,-,,

I
I

,-,,
I
I

I,
-'

Figure 5.4: Refined transition system C.

Guard and action 1 (Program 5.6) implement transition t9-left (Figure 5.4).
When a philosopher is passive and must be unlinked from his left neighbour then
it looses its fork.
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Program 5.6 Excerpt of control program for C-Ieft (Part 1).

/ / Transition: UNLINKING_LEFT --+ UNLINKED_LEFT
int guard.If ] {
return ( p.test...state{"PASSIVE") && p.test...state{"UNLINKING...LEFTII)); }

int action.Jf ) {
p.seLfork(LEFT, FALSE); p.set_token{LEFT, FALSE); p.seLdirty(LEFT, FALSE);
}

Guard and action 2 (Program 5.7) implement transition t8-left for the case
where a philosopher is being linked to himself.

Program 5.7 Excerpt of control program for Cvleft (Part 2).

/ / Transition: LINKING_LEFT --+ LINKED_LEFT (left.orderO = this.orderO)
int guard.20 {
Philosopher left( "Philosopher(Left: :Right: : surname == 'P') ", ... ,
REINCARNATION, ... );
return (p.test...state("PASSIVE") && p.test...state(IILINKING...LEFTII)&&

(left.orderf ) == p.order));
}
int action.2() {
p.seLfork(LEFT, TRUE); p.seLdirty(LEFT, FALSE); p.seLtoken(LEFT, TRUE);
p.set...state( "LINKED...LEFT");
}

Guard and action 3 (Program 5.S) implement transition tS-left for the case
where a philosopher is being linked to a left neighbour whose order is greater
than his order. In this case he retains the fork and his left neighbour retains the
token.
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Program 5.8 Excerpt of control program for C-Ieft (Part 3).

/ / Transition: LINKING_LEFT -+ LINKED_LEFT (left.order() > this.order(»)
int guard-3() {
Philosopher left(IIPhilosopher(Left: :Right: :surname == 'P')II, ... ,
REINCARNATION ,... );
return (p.tesLstate(IIPASSIVEII) && p.test..state(IIUNLINKING.LEFTII)&&

(left.orderO > p.order));
}
int action-3() {

Philosopher left(IIPhilosopher(Left: :Right: : surname == 'P J) II, universe,
REINCARNATION, p.oph);

p.seLfork(LEFT, TRUE); p.seLdirty(LEFT, FALSE);
p.set..state( IILINKED.LEFTII);
left.seLtoken(RIGHT, TRUE); left.set..state( IlLINKED-RIGHTII);

}

Having seen the specification and implementation of the control model for a
philosopher we can continue and evaluate how communities of philosophers are
created and evolve.

Creating a community of philosophers

We can create a community of philosophers using the interactive query inter-
preter generated by Stabilis for the diners object model. The initialization of
the distributed program is made with the instantiation of philosophers and the
starting up of the application and control programs. When a philosopher is first
instantiated he is thinking, passive, and unlinked.

For example, the creation of a community of philosophers consisting of five
philosophers involves the resolution of the queries shown in Programs 5.9 and 5.10.
In line 1 (Program 5.9) philosopher P is retrieved; using similar queries we re-
trieve philosophers Q, R, T, and U. Then, they are associated to form a ring
(Program 5.9, lines 2-6); these associations have to be in accordance with the
diners structural model.

In the next step, we have to set the state of the philosophers from UN-
LINKED, their initial state, to LINKING.LEFT and LINKING..RIGHT. Line
7 (Program 5.9) shows the query used to promote P's state from UNLINKED to
LINKING. The states of Q, R, T, and U are promoted to LINKING in a similar
way. By changing the state of philosophers to LINKING we declare that they are
ready to become logically linked to each other.
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Program 5.9 Creating a community of philosophers (Part 1).

(1) > Philosopher p("Philosopher(surname == 'P')", REINCARNATION)
> ...
(2) > p.relate(ILeft", q)
(3) > p.relate(IIRightll, u)
(4) > q.relatett'Lef't ", r)
(5) > r.relate("Left", t)
(6) > t.relate(ILeft", u)
(7) > p.put("Philosopher(state = 'LINKING..LEFT'ti; state
'LINKING..RIGHT')")
> ...

To know if their control programs have acted and effectively made them log-
ically linked we have to retrieve newer versions of them. To do so, we delete
the instances we have retrieved initially (Program 5.10, line 8) and query the
database for instances whose state is LINKED_LEFT and LINKED_RIGHT. For
example, line 9 (Program 5.10) brings the query we have submitted to retrieve P;
we retrieve the other philosophers in a similar way. If a certain philosopher has
not yet reached the state we want then the query fails and we have to retry it.
In order to simplify our examples, we assume that queries are always successful.

Program 5.10 Creating a community of philosophers (Part 2).

(8) > delete p q r t u
(9) > Philosopher p("Philosopher(surname -- 'P'

ti; state == 'LINKED..LEFT'ti; state 'LINKED..RIGHT')",
REINCARNATION)
> ...
(10) > p.put("Philosopher(state
> ...

'BOOT')")

Once we have established that the philosophers are linked we can activate
them. We carry out their activation by setting their state to BOOT; in line 10
(Program 5.10) we do that for philosopher P. Moments later we should have a
fully operational community of philosophers because their control programs will
take them from BOOT to ACTIVE.

Birth of a new philosopher

To add a new object to an executing program we have, according to Kramer
and Magee's reconfiguration strategy, to determine the set of objects affected
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by the reconfiguration procedure and make the elements of this set quiescent.
Suppose that we want to add a philosopher, say S, between philosophers Rand
T (Figure 5.5a). In this case, according to the reconfiguration strategy, the set
of philosophers that have to be made passive is {Q, R, T, U}.

When the reconfiguration procedure is about to be started all philosophers
of the community are active and going about their lives as dictated by their
algorithms. Once again we use the diners query interpreter to carry out the
reconfiguration procedure. We have to start by getting hold of the philosophers
that have to be passivated. Line 1 (Program 5.11) does it for philosopher Q; the
queries for retrieving R, T, and U are similar to this. The query shown in line 2
retrieves philosopher S, the philosopher we are going to add to the ring.

In the next step we have to passivate philosophers Q, R, T, and U. We carry out
the passivation by setting their states to SHUTDOWN. In line 2 we show how we
prepare philosopher Q to be passivated. Similar queries are used to passivate the
other philosophers. Once we have made sure that they are passive, by retrieving
versions of them where they assert their passiveness, we can proceed and unlink
philosophers Rand T from each other (Program 5.11, lines 4-5). In the next
step we make sure philosopher R is already unlinked (Program 5.11, lines 6-7).
Similarly, we have to make sure that philosopher T is unlinked. Statements of
lines 8 to 10 add philosopher S to the ring by unrelating Rand T and relating R
to Sand S to T.

Setting the state of philosophers R, S, and T to LINKING _LEFT and LINK-
ING-RIGHT, as required, allows their control objects to proceed and complete
their logical linking (Program 5.11, lines 11-13). In lines 14 and 15 we see some
of the statements we have to resolve to make sure the philosophers are linked to
each other as desired.

The last steps of the reconfiguration procedure simply reset the states of
philosophers Q, R, S, T, and U to BOOT. The philosopher's control objects
will then promote these philosophers to a fully operational state.
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(a) (b)

Figure 5.5: Birth of a philosopher.

Program 5.11 Birth of a philosopher.

(1) > Philosopher q("Philosopher(surname == 'Q' tt state
REINCARNATION)
> ...
(2) > Philosopher s("Philosopher(surname == '5')", REINCARNATION)
(3) > q.put("Philosopher(state = ' SHUTDOWN')")
> ...
(4) > r.put("Philosopher(state = 'UNLINKING.LEFT')")
(5) > t.put("Philosopher(state = 'UNLINKINGJUGHT')")
(6) > delete r t
(7) > Philosopher r("Philosopher(surname == 'R' tt state
'UNLINKED.LEFT') ", REINCARNATION)
> ...

, ACTIVE') ",

(8) > r.unrelatef rLeft;", t)
(9) > r.relate(ILeft", s)
(10) > s.relate(ILeft", t)
(11) > r.put("Philosopher(state = 'LINKING.LEFT')")
(12) > s.put("Philosopher(state = 'LINKING.LEFT' tt state =
'LINKING..RIGHT') ")
(13) > t.put("Philosopher(state = 'LINKING..RIGHT') '')
(14) > delete r s t
(15) > Philosopher r("Philosopher(surname == 'R' tt state
'LINKED.LEFT') ", REINCARNATION)
> ...
(16) > q.put("Philsopher(state = 'BOOT') ")
> ...
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Death of a philosopher

Suppose that we want to remove philosopher S from the community. The recon-
figuration procedure necessary to remove S can be specified as this (Figure .5.6):

• passivate Q, R, S, T, U (Program 5.12, lines 1-2).

• unlink R from Sj unlink T from S (Program 5.12, lines 3-8).

• remove S (Program 5.12, line 9).

• link R to T (Program 5.12, lines 10-14).

• activate Q, R, T, U (Program 5.12, line 15).

Program 5.12 Removing of a philosopher from his ring.

(1) > Philosopher q("Philosopher(surname == 'Q' tI: state
REINCARNATION)

> ...
(2) > q.put("Philosopher(state = 'SHUTDOWN')"l

> ...
(3) > r.put("Philosopher(state = 'UNLINKING-LEFT')")
(4) > s.put("Philosopher(state = 'UNLINKING...LEFT'1;1; state =
'UNLIKING...RIGHT')")

> '"
(5) > delete r s t
(6) > Philosopher r("Philosopher(surname == 'R' tt state
'UNLIKED...LEFT')", REINCARNATION)

> ...
(7) > r.unrelatef vl.ef t ",s)
(8) > s.unrelate(ILeft", t)
(9) > remove s
(10) > r.relate(ILeft", t)
(11) > r.put("Philosopher(state = 'LINKING...RIGHT')")
(12) > t.put("Philosopher(state = 'LINKING...LEFT')")
(13) > delete r t
(14) > Philosopher r("Philosopher(surname == 'R' tt state
'LINKED...RIGHT')", REINCARNATION)

> ...
(15) > q.put("Philsopher(state = 'BOOT') ")

> ...

'ACTIVE')" ,

The reconfiguration procedure above ensures that R, S, and T are quiescent
before S is removed. Later, during the re-linking of Rand T, they can decide,
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Figure 5.6: A philosopher is removed from his ring.

based on their order, how to allocate the forks they share. Suppose that R has
order 6, S has order 1, and T has order 2. Then, with the removal of philosopher
S (Figure 5.6), philosopher R would not retain the dirty fork shared with T
because it has order greater than T's order. The specification of transitions tlO
and t11 (page 5.1.3), used for linking philosophers, ensure that the precedence
graph remains acyclic when philosophers are relinked, after the death of one of
the members of the ring.

Merging communities of philosophers

If two communities of philosophers, as shown in Figure 5.7, are to be merged then
the following reconfiguration procedure has to be executed:

• Passivate A, B, C, F, P, Q, R, and U (Figure 5.13, lines 1-5) .

• Unlink B from A, A from B, Q from P, and P from Q (Figure 5.13, lines 6-11
and Figure 5.14, lines 12-14). This step breaks the connections represented
as dashed arrows in Figure 5.7.
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Program 5.13 Merging of two communities of philosophers (Part 1).

(1) > Philosopher a("Philosopher(surname == 'A' .t.t state == 'ACTIVE') ",
REINCARN ATION)

> ...
(2) > a.put("Philosopher(state = 'SHUTDOWN')")
(3) > b.put("Philosopher(state = 'SHUTDOWN')")

> '"
(4) > delete a b p q
(5) > Philosopher a("Philosopher(surname === 'A' .t;t state
REINCARNATION)

> ...
(6) > a.put("Philosopher(state == 'UNLINKING..RIGHT')")
(7) > b.put("Philosopher(state = 'UNLINKING...LEFT')'')
(8) > p.put("Philosopher(state = 'UNLINKING...LEFT')")
(10) > q.put("Philosopher(state = 'UNLINKING-RIGHT')")
(11) > delete a b p q

'PASSIVE') ",

Program 5.14 Merging of two communities of philosophers (Part 2).

(12) > Philosopher a("Philosopher(surname == 'A' 1;1: state =
'UNLINKED-RIGHT')",REINCARNATION)

> '"
(13) > a.unrelate("Right", b)
(14) > p.unrelate("Left", q)
(15) > b.relate("Left", q)
(16) > a.relate("Rightl, p)
(17) > a.put("Philosopher(state = 'LINKING..RIGHT')")
(18) > b.put("Philosopher(state = 'LINKING..lEFT') ")

> ...
(19) > delete a b p q
(20) > Philosopher a("Philosopher(surname ==== 'A' 1:1: state =
'LINKED-RIGHT')", REINCARNATION

> '"
(21) > a.put("Philosopher(state = 'BOOT') '')

> ...
(22) > u.put("Philosopher(state = 'BOOT') ")

• Link B to Q, Q to B, A to P, and P to A (Figure 5.14, lines 15-20). This
step creates the connections shown as bold arrows in Figure 5.7 .

• Activate A, B, C, F, P, Q, R, and U (Figure 5.14, lines 21-22).
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Once again, rules tID and tll (Section 5.1.3), defined for linking and unlinking
philosophers, ensure that the right number of forks is properly distributed between
the philosophers being relinked. It does not matter where the fork is placed since
some other philosopher must have two forks. Kramer and Magee [80] argue this
proposition as follows: "There are n philosophers and n forks; the two philoso-
phers being connected have I fork, consequently the remaining n - 2 philosophers
have n - I forks. Therefore, one of these n - 2 philosophers must have 2 forks.
The original algorithm ensures that a philosopher cannot hold a clean and a dirty
fork simultaneously; consequently, the precedence graph must be acyclic."

With this example we have shown how Stabilis and Vigil can be used to im-
plement object-oriented action-based distributed programs that are dynamically
reconfigurable. As the example shows, only philosophers affected by the recon-
figuration procedures had do be passivated allowing the remaining philosophers
to continue with their normal operation.

Figure 5.7: Merging communities of philosophers.

5.2 Database Index
Our second example addresses the implementation of a cache coherency protocol
for a distributed index subsystem of an object-oriented distributed database man-
agement system; index subsystems are responsible for resolving queries. Cache
coherency protocols guarantee that coherency is maintained between copies of
data stored at different objects of the index system.

5.2.1 Specification
The index system has three subsystems arranged in a tree-based hierarchy (Fig-
ure 5.8). At the root of the tree, depth 0, we have the index subsystem; it
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implements the interface between the index system and the database manager
and acts as a query planner, deciding the best way to partition a query before
submitting it to index managers (Figure 5.8). The index subsystem is imple-
mented as an aggregation, or cluster, of index managers. Index managers are
objects that resolve queries and function as clients to index servers, with the
function of coordinating their operation during query resolution. Index managers
are located at depth 1 in the tree (Figure 5.8). Index servers are autonomous
servers with query processing capabilities; they are located at the leaves of the
tree (Figure 5.8). To the database manager the distributed index system provides
an illusion of a virtually centralized query processor (Figure 5.8, dotted-line rect-
angle). Additionally, to database managers the reconfiguration of index systems
is transparent.

Index System

Database Manager

Index

Figure 5.8: Architecture of the index system.

Some of the important requirements that the design of the index system should
meet are:

• concurrency: several queries can be forwarded to an index system concur-
rently and a reasonable organization should maximize concurrency.

• availability: the service provided by an index system should degrade grace-
fully in the presence of failures.

• reconfiguration: it should be possible to substitute objects of the index sys-
tem without having to stop it entirely; only the objects affected by the
reconfiguration procedure should have to be stopped.

In the remaining paragraphs of this Section we study further the organization
of the index system and argue that its design attends the requirements listed
above.

As we have already discussed, the index is organized as an aggregation of index
managers that have references to sets of index servers. An index manager keeps
caches of data related to a single object model (database schema); the names
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of object models are unique within a database. Thus, an index manager can be
uniquely identified by the name of the object model it manages. Furthermore,
we consider that names of classes are unique within an object model and that an
index server only manages data related to one class, that is, all key attributes of
a given class are indexed by a single index server. Consequently, an index server
can be uniquely identified by the name of the class it manages.

Queries are resolved in the following way: the database manager accepts a
query made by its client, e.g., an object model editor, and sends it to the index
system. The index plans the execution of the distributed query using cached
data stored at its index managers, although the data might be stale. Once the
resolution plan is complete the index forwards sub queries to its index managers.
The index managers, in their turn, resolve as much as possible of these sub queries
using their caches; unresolved subqueries are forwarded to index servers. Query
results propagate from index servers to index managers, where they are unified
and sent back to the index subsystem. Finally, the result is sent to the database
manager for delivery to the database manager's client.

The organization of the index aims at minimizing problems of concurrency,
availability and reconfiguration. The association of a tree-based structure with
class-specific index servers allows a reasonable level of concurrency. The tree-
based architecture allows the use of independent transactions on objects belonging
to independent paths of the tree, increasing concurrency. Alternative organiza-
tions are possible; instead of assigning one class to one server as we did, we could
have assigned classes to index servers differently: from an index server being re-
sponsible for the management of a single or a group of attributes of a class to
an index server being responsible for the indexing of several classes of an ob-
ject model. After experimenting with some of these possibilities we have decided
that the one-class-one-server assignment offered a reasonable balance in terms of
concurrency, data encapsulation, and complexity of implementation [36].

The structure of the index and the use of caching allow index servers to be
stopped for a certain period of time with the consequence that only a fraction of
the information related to a given object model becomes unavailable. Thus, to a
certain extent the service offered by the index system offers graceful degradation
of its service in the presence of either dynamic reconfiguration or failure of index
servers. Dynamic reconfiguration benefits from our cache design because index
servers, the main target of dynamic reconfiguration procedures, can be replaced
without causing much disruption to other subsystems of the index.

Finally, the overall performance of the index can be improved by the use of
caches because index managers can optimize communication with index servers
by relying on cached data to resolve queries. Ultimately, the performance of the
index system depends on the combined efficiency of all algorithms used in its
implementation, including the efficiency of the cache coherency algorithm.
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A combination of two different policies is used by the cache coherency protocol:

1. Each index server keeps change ratios for the attribute entries it manages
and determines when it is necessary to send a message to its associated
index manager invalidating the manager's cached data. This will cause index
managers to refresh their caches eventually.

2. The index manager monitors the load of the nodes where the index servers
reside and the load of its own node. When manager and server nodes are hoth
lightly loaded, the index manager sends a message to the server requesting
a refresh. Index servers honor this request by sending up-to-date data to
the requesting manager. The index system behaves opportunely and only
refreshes its caches when the distributed system can afford it.

5.2.2 Structural Model

Three classes: Index, IndexManager and IndexServer, implement the index system.
Instances of class Index have the role of query planners; they coordinate the work-
ings of index managers. In order to simplify our example we do not discuss the
implementation of the class Index, as it does not have a role in the implementation
of the cache coherency protocol which is our primary focus of attention.

Instances of IndexServer implement index servers and instances of IndexManager
implement index managers. In the structural model, an index system is modelled
as a tight aggregation of index managers (Figure 5.9). Perhaps it is opportune
to remember the meaning of a tight aggregation of objects: the existence of the
component depends on the existence of the aggregate. This is the case with
index managers, they have to be aggregated to an index to be able to provide
their services. In other words, instances of class Index integrate index managers
into a modular unity. Index managers are associated to a set of index servers;
index servers are associated to one index manager. The structural model also
shows that managers and servers are associated to a computing system (node),
meaning that they are located at the node associated to each of them (Figure 5.9).
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Node

O,n
1

IndexServer

Figure 5.9: Structural model for the index system.

Our discussion of the classes IndexManager and IndexServer centres on the con-
trol aspects of the cache coherency protocol.

Class IndexServer

This class has to maintain information regarding the invalidation of the cache
of its associated index manager; the attribute stale is used for this purpose
(Class 5.2, line 5). If stale [i] is true then the value of attribute entry i of
the index manager is out-of-date (Class 5.2, line 5). The attribute stale has
its elements set to true by queries that update attribute values; conversely, its
elements are set to false when the index server carries out a refresh of the index
manager's cache.

The cache of an index manager is invalidated when a certain proportion of it
has become stale in relation to the server's data. The sensor changeJatioO
gives a measure of the divergence between the manager's cache and the server's
data (Program 5.15; Class 5.2, line 9).

Program 5.15 Sensor change.z-at io.

float Indexfiervernchange.ratiof )
{
int number.of.updated.entries = OJ
for (int i = OJi < number.of.entries; i++)

if (stale[i]) number_oLupdated_entries++j
ret urn ((float) number .of.updated.entries / number .of.entries);
}

In the code of the change ratio sensor (Program 5.15), the variable number-
_of .updaued.ent r ies holds the number of index entries updated since the last
refresh of the index manager's cache. The attribute number _of_entries holds the
number of index entries currently in use (Class 5.2, line 2). The value returned by
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change...ratio is in the real interval [0.0, 1.0j. For example, if this sensor returns
0.5, it means that half of the data items managed by a server have changed since
the last refresh of its manager's cache.

The sensor ratio~imitO (Class 5.2, line 9) returns the staleness limit over
which a server should notify its associated manager that a refresh is needed. A
database administrator can change the behaviour of the cache coherency protocol
by altering the value returned by this sensor. If the value returned is increased
then it is probably going to take longer for a server to send an invalidation
message to its manager; the opposite effect is obtained if the value returned by
ratio~imitO is decreased.

Class 5.2 Class IndexServer.

'define MAXJNE 50 / / maximum number of data items (attributes)
class IndexServer : public Object {
protected:
(1) int class.name;
(2) int number .of.entries;
(3) float ratioJimit;
(4) float serverJoad;
(5) Boolean stale[MAX_lNE]j
(6) Boolean refresh;
(7) StateSpace state;
public:
/ / constructors deleted

(8) int class.namet ); void seLclass..name(int class.name):
(9) float change.ratiof ):
(10) void refreshf ):
(11) void idlet );
(12) float ratio.Iimitf ); void set.ratio.Ilmittfloat ratio);
(13) float server.Ioadf}; void seLserverJoad(float load);
};

The Boolean attribute refresh (line 6) indicates that the manager has re-
quested a refresh of its cache; this attribute is set by actuator refreshO (line
8).

The sensor class...nameO (line 8) simply returns the name of the class man-
aged by a server as an integer; the same line shows the signature of the actuator
used to update the name of the class.

Finally, sensor server~oadO (line 10) returns a load limit in the real interval
[O.0,1.0j. The implementation of the second cache coherency policy uses the value
returned by this sensor to determine when to request a refresh of the manager's
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cache. If the load of the node where the server is located is less than the value
returned by this sensor, then a refresh can be requested. The value returned by
this sensor can be set by a database administrator to fine tune the operation of
the index system.

Class IndexManager

The sensor model () (Class 5.3, line 4) returns the value of the attribute modeLname
(line 1);

The sensor manage'r.Lcad O (line 5) has a function analogous to the function
of sensor server .Load0 of an index server; it returns the the load limit used to
decide when to trigger refreshes.

This class has to keep track of invalidation messages sent by its associated
servers. It uses an array of state spaces indexed by the name of the server's class
to record such information (Class 5.3, line 3). We have an independent state
space for each server associated to an index manager; consequently, we have as
many independent server-specific control objects controlling a manager as the
number of index servers associated to it.

Class 5.3 Class IndexManager.

#define MAX_SYR 50 / / maximum number of servers
class IndexManager : public Object {
protected:
(1) int model.name;
(2) float manager.load;
(3) StateSpace state[MAX_SYR];
public:
/ / constructors deleted

(4) int modelt}; void set.modelf int model);
(5) float manager.Ioadf );
(6) Boolean idle(int server);

};

Class Node

This class has a sensor load () that returns the average load of a node of a
distributed system as a real in the interval [0.0,1.0]; a return value 0.0 means
that the node is idle, a value 1.0 means that the node is running at its full
processing capacity. This sensor is used by the control program of index managers
to determine when to request a refresh of a cache.
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This class is an example of a class whose function is to be an interface be-
tween services that are not implemented within the object and action compu-
tation model and systems that are implemented within this computation model.
Classes like this have the important function of allowing distributed programs de-
veloped in Arjuna to interact with programs that were developed using different
computation models.

5.2.3 Control Model
In this Section we present the cache coherency algorithm employed by the index
system. Before proceeding any further, we should emphasize that the activity of
refreshing the manager's cache is carried out at application level; it can involve
the transmission of considerable volumes of data in the form of object states. At
control level, we are interested in controlling when refresh requests happen but
not how the refresh is realized. We consider that refresh requests triggered by the
control program of the index system are honored dependably by its application
program.

Index Server

The application objects of an index server are constantly monitored by their
corresponding control objects to ensure that the associated manager is notified
of the staleness of its cache.

The control model for index servers, with states: GATHER and NOTIFY and
transitions tl and t2 is shown in Figure 5.10. A server is in state GA'I'HEH
while the change ratio has not reached the limit over which it is necessary to
invalidate the managers' cache. When the change ratio reaches a specified limit,
then transition tl (Figure 5.10) is fired, sending an invalidation message to the
manager. A server is in state NOTIFY if it has just notified its associated manager
that a refresh is necessary.

The transition from NOTIFY to GATHER, transition t2, happens when the
application program of the server carries out the refresh of the manager's cache
(Figure 5.10). At the application program, transition t2 is implemented in two
steps: first, the index server waits for a refresh request to arrive, attribute
refresh becomes true; second, it sends the update requested by its manager
and moves from NOTIFY to GATHER.

The specification of transition tl is shown below; the code generated by Stabilis
for this transition is shown in Program 5.16.
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(t l ) Invalidating manager caches:

(change..ratioO > ratio~imitO)/
{(associated.ltlanager).set_state("STALE", class...nameO);}

INDEX
SERVER

t2

Figure 5.10: Index server control model.

Program 5.16 Implementation of index server transition tl.

/ * automatically generated code */
/* IndexServer's class name = C */
IndexServer is("IndexServer(class...name == C) "" REINCARNATION,);
int guard.Jf ) {
return (is.test..state(IIGATHERII)&& ls.change.ratiot] > is.ratio.Iimitfj ): }
int action.Jf ) {
IndexManager im("IndexManager(IndexServer: : class...name == C) ""
REINCARNATION,);
im.set..state("STALE", ls.class.namef )'): is.set..state(IINOTIFY");}

Index Manager

The index manager's control model has three states: UPTODATE, STALE and
REFRESH (Figure 5.11). A manager is in state UPTODATE if its cache is
coherent with the data stored at an index server, that is, it has just received an
update for its cache. A manager is in state STALE if it has received a cache
invalidation message from an index server. Finally, the state REFRESH means
that a manager has already requested a refresh of its cache but has not received
it yet.

Transition t1 (Figure 5.11) is represented as a dashed-line arc to show that
it is not implemented by the index manager's control program; this transition is
executed by the action part of transition tl of the index server's control model
(Figure 5.10, Program 5.16).



5.2 Database Index 167

(wr~D~~J
I

\ t3,...
INDEX ~ --
MANAGER

,,------- ....

Figure 5.11: Index manager control model.

Transition t2 (Figure 5.11, Program 5.17) implements the second policy of the
cache coherency protocol: when the load of the manager's node is less than the
value returned by the manager's load sensor and the load of the server's node
is less than the value returned by the server's load sensor, then the manager
requests a refresh to the index server.

(t2) Requesting a cache update:

(( (manager_node).loadO < manager-1oad())/\
((server..node}.loadO < (server}.sever-1oad()))J
{(server}.refreshO;}

Program 5.17 Implementation of index manager transition t2.

t= IndexManager's model name = M */
l= IndexServer's class name = C »l
IndexManager im("IndexHanager(model_name == M)"" REINCARNATION,);
int guard.Jf ) {
Node mn("Node(IndexManager: :model_name == M)"" REINCARNATION,);
Node sn("Node(IndexServer: :class_name == C)"" REINCARNATION,);
IndexServer is("IndexServer(IndexManager: :modeLname == M tt class _name
== C)"" REINCARNATION,);
ret urn (im. test..state( "STALE",ls.class.namef I] && mn .loadf ) < im.manager Joad( )
&& sn.loadf ) < is.server .Ioadl l); }
int action.Jf ) {
IndexServer is("IndexServer(IndexHanager: :modeLname -- M tt class..name
== C)"" REINCARNATION,);
is.refresht ): im.set..state("REFRESH", C); }
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Transition t3 is carried out at application level; a manager goes from state RE-
FRESH to UPTODATE as soon as it receives the cache update it has requested
from an index server.

5.2.4 A Reconfigurable Index

So far, the design of the index system has not taken into account dynamic recon-
figuration; in this Section we extend it to include reconfiguration mechanisms.

Index initialization

When the index system is first instantiated all its objects are passive; objects
might already have been related to each other at database level. A passive index
does not accept query requests and has all its indexing data structures reset.
Subsequently, during activation, the index loads all data it needs to serve queries
and becomes operational. Once activated, an index accepts queries submitted by
database managers and can have one or more of its active subsystems dynamically
reconfigured. In this case, only the subsystems affected by the reconfiguration
are passivated while the remaining subsystems continue in operation.

Reconfigurable Index Server

Activation. At their instantiation, index servers load data of the class they
manage into their indexing data structures; their initial state is NOTIFY and
PASSIVE (Figure 5.12). Immediately after the load, index servers send a refresh
to their associated index manager; having done it, they move from NOTIFY to
GATHER (Figure 5.12). All that remains to be done in order to activate the
servers is to promote them from PASSIVE to ACTIVE. First, using a query
interpreter, we take them from PASSIVE to BOOT; next, their control programs
take them from BOOT to ACTIVE.

INDEX SERVER

t2 t6
[on GATHER]

SHUTDOWN

t3~--

t5

Figure 5.12: Extended index server control model.
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The specification of transition t4 (Figure 5.12) is: [on GATHER]/{}; its code
is shown in Program 5.18.

Program 5.18 Implementation of index server transition t4.

I * automatically generated code *I
1* IndexServer's class name = C *1
IndexServer is("IndexServer(class...name == C) "« REINCARNATION ,);
int guard.It ) {
return (is.test..state(IBOOT") && is.test...state(IIGATHERII

));

}
int actlon.Ij ) { is.set...state(IACTIVE")j }

Passivation. An active server can be passivated when it is in the state GA'l'IlEH
because in this state it is not going to become engaged in a refresh operation.

A passive index server stops processing queries; additionally, it stops notifying
index managers that their cache is stale. Passive servers no longer process refresh
requests.

Transition t6 of the extended control model (Figure 5.12) is specified as:
(idleO)[on GATHER]/{}j its code is shown in Program 5.19.

Program 5.19 Implementation of index server transition t6.

I * automatically generated code *I
1* IndexServer's class name = C */
IndexServer is("IndexServer(class...name == C) "" REINCARNATION .):
int guard.Jf ) {
return (is.test..state(ISHUTDOWN") && is.test..state("GATHER") && is.idle());
}
int actlon.Jf ) { is.set...state(IPASSIVE")j }

Reconfigurable Index Manager

Activation. When instantiated an index manager is in state REFRESH and
PASSIVE, meaning that it is waiting for an update of its cache with data sup-
plied by an index server. The first update allows the manager to assert to the
index subsystem that it is ready to accept queries. The manager becomes fully
operational only when all of its servers have been able to send cache updates to
it.
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Passivation. An index manager can be passivated gradually by setting each
of the manager's control objects to PASSIVE. The index manager involved in
the reconfiguration can continue resolving queries, but it has to stop querying
the index server that is going to be replaced. Queries involving attributes of the
class indexed by the server that is being replaced can still be solved using cached
data, but they might return results with smaller accuracy due to cache staleness.
Further, the index manager has to stop requesting refreshes to the server whose
replacement is being carried out.

The extended control model of the class IndexManageris shown in Figure 5.13.
In a reconfigurable index, transition t2 (Figure 5.13) is allowed to fire only when
the index is active.

tl
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Figure 5.13: Extended index manager control model.

Let us define transitions t5 and t7 of the extended index manager control
model. Transition t5 is specified as:

(t5) Transition from BOOT to ACTIVE: [on UPTODATE] I {}

(t7) Transition from SHUTDOWN to PASSIVE: [on UPTODATE] (idleO) I
{}

As with class IndexServer,a sensor idleO has been added to the index man-
ager's interface to allow the specification of transition t7 (Figure 5.13); this sensor
returns true when the index manager is not processing a query.

Excerpts of code of transitions t5 and t7 are shown in Programs 5.20 and 5.21
respectively. '
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Program 5.20 Implementation of index manager transition t5.

/ * automatically generated code */
/ * IndexManager's model name = M */
/* IndexServer's class name = C */
IndexManager im("IndexManager(modeLname == M)II" REINCARNATION,);
int guard.If) {
return (im.test..state(IIBOOTII, C) && im.test..state(IIUPTODATE", C)); }
int action.If ) { im.set..state( IIACTIVE", C); }

Program 5.21 Implementation of index manager transition t7.

/ * automatically generated code */
/* IndexManager's model name = M */
/* IndexServer's class name = C */
IndexManager im("IndexManager(model.name == M)"" REINCARNATION ,);
int guard.If) {
return (im.test..state(IISHUTDOWNII, C) && im.test..state("UPTODATE", C) &&
im.idle(C)); }
int action.If) { im.set..state(IPASSIVE", C)j }

Assembling an Index System

The initial assembly entails the creation of the objects that compose an index
system using their birth constructors; these objects are created at the nodes
designated to them by the database administrator. Objects of class Node already
exist; they have been created during the installation of the distributed system.
The database administrator must then associate each of the newly created objects
to their respective nodes, that is, to the instances of class Node that represent
the computing systems of the distributed system. All relationships created must
conform to the structural model of the index system.

The next assembly phase begins with the reincarnation of the index manager
and of one of the index servers created before (Program 5.22, lines 1-2). In line 3,
the index manager and index server are related to each other. At this point two
control objects have their execution started: the control object of the manager
that has been generated for server isa, class A, and the control object of index
server isa. The queries executed in lines 4 and 5 of the procedure activate imand
isa. In line 4 we can see how the state space of class IndexManager is used; there
is an independent state space for each server associated to an index manager.
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The index server im is already capable of resolving queries that only involve
attributes of class A. In lines 6 to 9, we reincarnate the index server that manages
attributes of class B, relate it to the manager im. We can now start the control
object of the manager generated for server isb, and the control object of index
server isb.

To verify that the configuration process carried out so far has been successful
the configuration procedure deletes the current instantiation of the objects and
reincarnates them once again but querying for active objects (Program 5.22,
lines 11-13). If any of these queries fail, then there may be something wrong with
the configuration process or some other cause prevented a control object from
activating its application object, for example, a heavily loaded node.

Program 5.22 Assembling an index system.

(1) > IndexManager im("IndexManager(modeLname == M)""REINCARNATION,)
(2) > IndexServer isa("IndexServer(class...name == A)""REINCARNATION,)
(3) > im.relate( IIIndexServer" , isa)
(4) > im.put("IndexManager(state[A] = 'BOOT')")
(5) > isa.put("IndexServer(state = 'BOOT') ")
(6) > IndexServer ish("IndexServer(class...name == B)""REINCARNATION,)
(7) > im.relate("IndexServer", ish)
(8) > im.put("IndexManager(state [B] = 'BOOT') ")
(9) > isb.put(IIIndexServer(state = 'BOOT') II)
(10) > delete im isa ish
(11) > IndexManager im( IIIndexManager (model...name = = M&:t state [A] __
'ACTIVE' &:t state[B] == 'ACTIVE')""REINCARNATION,)
(12) > IndexServer isa("IndexServer(class...name == A 1:1; state ==
'ACTIVE')" REINCARNATION,)
(13) > IndexServer isb("IndexServer(classJlame == B && state ==
'ACTIVE')" REINCARNATION,)

An evolving Index System

One of the major advantages of an object-oriented approach to designing and im-
plementing software systems is that the concepts of generalization/specialization
and inheritance allow existing distributed programs to be extended. In an inte-
grated database environment where many users share a single database, different
users often need to view object models differently. This means that the users
need to modify object models; further, it is highly desirable to be able to modify
dynamically an object model without forcing a system shutdown or incurring sig-
nificant performance penalty. Once the mechanisms for object model evolution
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(modification) are in place then it is fundamental to have indexing subsystems
that can be configured dynamically to reflect the changes made to object mod-
els. The index subsystem discussed in this example has been designed to support
object model evolution.

Suppose we have evolved class A by adding a new attribute to it and want
to evolve the index assembled in the previous Section to reflect this change; the
configuration procedure presented below does exactly this.

The procedure passivates the part of the index manager that indexes class A
and its associated index server (Program 5.23, lines 1-7), unrelates them (line 8),
and removes the index server from the system (line 9). A updated index server
is created for class a (line 10), related to the index manager (line 11). Finally,
both subsystems are made active.

Program 5.23 An evolving an index system.

(1) > IndexServer isa("IndexServer(class_name == A)"" REINCARNATION,)
(2) > isa.put("IndexServer(state = 'SHUTDOWN')")
(3) > IndexManager imf" IndexManager(model_name == M)"" REINCARNATION,)
(4) > im.put("IndexManager(state[A] = 'SHUTDOWN')")
(5) > delete isa im
(6) > IndexServer isa("IndexServer(class_name == A 1:1: state ==
'PASSIVE')"" REINCARNATION,)
(7) > IndexManager im("IndexManager(model_name == M 1:1: state[A]
'PASSIVE')"" REINCARNATION,)
(8) > im.unrelate(" IndexServer", isa)
(9) > remove isa
(10) > IndexServer isa("IndexServer(class_name = A)"" BIRTH,)
(11) > im.relate(" IndexServer", isa)
(12) > im.put("IndexManager(state[A] = 'BOOT')")
(13) > isa.put("IndexServer(state = 'BOOT')")

5.3 Conclusions

We began this Chapter by making a brief account of the experiences we had during
the implementation and execution of the examples we have just described.

The design of any distributed program implemented using Stabilis and Vigil
is carried out in two main phases:

1. the creation of the structural model, where the arrangements, or structure,
of the objects of the application is captured;
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2. the creation of the control model, where the control aspects of the algorithm
of the distributed program are captured. In this phase the user has to
have a clear view that he is developing a reactive program composed of two
subprograms: an application program and a control program. The examples
shown in this Chapter illustrate this point, the design and implementation
of the Evolving Dining Philosophers and of the Database Index involved the
construction of a distributed program with the form DP :: [CP~AP], where
DP is, for example, the Evolving Philosophers; CP is the control program
obtained from the instantiation of the dines control model, and AP is the
program written by the user during the implementation of class Philosopher.

The implementation of an application includes the following steps:

1. representation of the object model (structural model and control model) as
a database schema. This step involves the writing of programs that instan-
tiate metaobjects for each of the classes of the object model devised for the
application. We have discussed these steps in detail in Chapters 3 and 4.

2. to make use of the code generation facilities of Stabilis the user has to write
a program that reincarnates the object that is the root of the application
object model and sends it a message that triggers the code generation. The
generation of the code of the classes is carried out first and results in the writ-
ing of the header files and templates of code files for the application. During
this phase Stabilis automatically generates an application-specific interac-
tive query interpreter that later is used not only as query interpreter but
also as a simple configuration manager. At this point, we should emphasize
that the use of a query interpreter as a configuration manager is a positive
evidence that our thesis has been demonstrated, that is, for object-oriented
action-based distributed systems the run-time management of distributed
programs can be considered an information processing activity.

3. the implementation of the application program is carried out using the files
generated by Stabilis from the structural model. The code of the application
program is compiled and linked to the libraries of Arjuna and Stabilis.

4. objects are created, using the constructors with argument BIRTH, and re-
lated according to the structural model. Once this has been done, the user
can execute the second phase of code generation, that is, he writes a pro-
gram that reincarnates the object that is the root of the object model, the
application objects, and triggers the generation of the code of the control
programs. The control programs have to be then compiled and linked to
object libraries of Arjuna, Stabilis, and Vigil.
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At this point the user can unrelate objects if he wants to, later during the
execution of the application he can relate them again, this time the relationships
created are a function of the run-time needs of the application. For example,
during the preparation of the Database Index we created one index manager and
four index servers. We had to relate them in order to use the code generation
facilities of Stabilis. Prior to the execution of the program we had the objects
of the index system unrelated so that we could experiment with their dynamic
reconfiguration. We started the execution of the database index with one manager
and two servers running, later we added the other two.

The execution of the application entails: running the application and control
objects. For each node where the application is being executed we have to start
Arjuna's run-time system and then the application and control objects. From this
point onwards we can use the query interpreter to reconfigure our application; as
the examples have shown.

Having given an account of the procedure followed to program and run applica-
tions in the environment we have created, we can discuss briefly what happened
during the execution of the two examples shown in this Chapter. Both appli-
cations were executed using networked Unix workstations. Our tests did Hot
make use of the replication mechanisms provided by Arjuna and used objects
with small object state sizes, that is, less than a megabyte. The object states of
the philosophers are inherently small. The object states used for index servers
were kept small by using classes with a small number of simple attributes like'
integers and strings. If Stabilis and Vigil have had to manipulate objects with
large state sizes, say several megabytes, then the performance would probably
have degraded, as the present implementation of the communication subsystem
of Arjuna is not well-suited for transferring large object states.

Application and control objects of both programs have to resolve queries in
order to instantiate the object they manipulate. For example, the client that
implements the application object of a philosopher has to execute a query in
order to obtain a reference to the database object it manipulates. The execution
of the query is processed by Stabilis and involves the activation/deactivation of
persistent objects; the average elapsed time taken by Stabilis to resolve a query
was approximately 6s; this is an average of the query times of both examples. In
the same way, the control object used queries during the firing of transitions. The
average time taken to fire a transition was approximately 8s; therefore, control
objects were firing an average of 7 transitions per minute. The factors affecting
the average times are examined below:

1. the resolution of a query handles large number of remote objects. Arjuna
implements a simple scheme for accessing remote objects [114]: top-level
actions access remote objects through independent single-threaded servers
(processes). In the implementation of Stabilis we have minimized the perfor-
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mance problem created by the use of independent single-threaded servers by
implementing a server multiplexing scheme, but multiplexing alone did not
give us the performance improvement we expected. Ideally, we would like a
future version of Arjuna to have multi-threaded and multiplexed servers.

2. the current object store of Arjuna is not well-suited for database applications
as it does not allow a program to gain access to parts of the state of an object
independently. An alternative solution can be tried and we have done so
in the implementation of the object manager and indexing structures of
Stabilis, but this is not the best solution as our indexing structures had
inevitably to be stored in Arjuna's object store. In an ideal situation, we
would like Arjuna to have an object store with capabilities close to those
found in the object stores of database management systems like GemStone
and O2; in these systems the object stores can directly and independently
manipulate parts of objects. For database applications like ours the time
taken to retrieve the state of an object during the activation/deactivation is
crucial due to the number of accesses performed to resolve queries; this fact
alone explains the times we have obtained.

The examples have provided us with evidence that supports the thesis that
management is fundamentally an information processing activity and that the
object model, as applied to action-based distributed systems and database systems,
is an appropriate representation of the management information. Resolution of
queries on the distributed program's object model enable the management system
to control activities of distributed programs. Certainly, the runtime management
of object-oriented action-based distributed programs can be carried out using the
information processing facilities provided by Stabilis and Vigil.

The implementation of the examples has been greatly simplified by the fact
that Stabilis can generate part of the code of the distributed program automat-
ically; although the current version of Stabilis does not generate the code of the
transition systems automatically.

During the implementation of Stabilis and Vigil we experienced problems only
when we tried to tailor some of the tools provided by Arjuna to our specific
needs. For example, the implementation of the object manager of Stabilis took
much longer than we expected because we had to implement a server multiplexor
for it.

Although the overall performance we have observed during the use of the
management system was not as good as we expected, it should be stressed that
there are several areas of the system that can be improved to increase performance
and that these improvements do not affect the basic system architecture.
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This thesis has addressed the problem of runtime management of object-
oriented action-based distributed programs using an object-oriented active data-
base system. In this thesis, the management of distributed programs is viewed
as an information processing activity. Object-orientation and transactions have
provided us with the model we needed to represent and process structural and
control information about distributed programs. Processing of structural and
control information through the use of queries allows programmers to control
activities of their distributed programs.

In this Chapter we summarize the contributions of this work, pointing out
directions for future research.

Thesis Contributions
The main contributions of this thesis can be summarized as follows:

• Identification and integration of a set of principles and techniques that allow
the management of the runtime behaviour of object-oriented action-based
distributed programs to be viewed as an information processing activity.
The survey presented in Chapter 2 provided much of the insights we have
used in the synthesis of concepts that lead to the formulation of the thesis.
That survey demonstrates that software systems are becoming more and
more alike, especially those whose design and implementation is based on
object-orientation .

• Implementation of a management system based on the ideas of the the-
sis. This management system is composed of two subsystems, Stabilis and
Vigil, that were the result of a design based on our theory. In Chapters 3
and 4 we have discussed their design and implementation. Object-oriented
programming environments usually lack mechanisms that allow program-
mers to represent and manage the configuration (composition) of objects
of a distributed program. Stabilis and Vigil make a contribution towards
complementing object-oriented programming environments with support for
management of metainformation regarding object-oriented programs .

• Active database systems are usually implemented from scratch and in a
monolithic way, that is, all mechanisms used to implement indexes, persis-
tence, atomic actions, and distribution are tightly coupled and, therefore ,
very difficult to modify or extend. Our approach represents a contribution
to the area of extensible active databases; instead of providing programmers
with a monolithic tool we have decided to provide them with a set of tools
that can be used independently. All features of Arjuna, Stabilis, and Vigil
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are equally available to programmers. Therefore, programmers can choose
the combination of tools that best fit their needs.

Stabilis/Vigil: A Concise History

The implementation of Stabilis and Vigil was started in August, 1991. In April,
1992 we had finished the implementation of the first version of Stabilis. This
version provided very simple queries, only attributes of a single class were allowed
in the specification of query predicates using a window-based query interpreter,
implemented using InterViews. The user could create, retrieve and relate objects
using the query interpreter. In this version, object models were not represented
using database objects, that is, metainformation was stored outside the domain
of Stabilis. The first version of the algorithms for automatic code generation were
implemented in this version.

For the first version we had to develop a tailor-made name server and a cached
object manager. Using this implementation we created a distributed bibliography
database, Dbib, and were able to manage a distributed database of around 500
references [36]. The tests with Dbib revealed some of the problems of the cur-
rent implementation of Arjuna; they have already been discussed in the previous
Chapter.

From August 1992 to December 1993 we implemented the second version of
Stabilis, designed and implemented Vigil, and carried out tests of both systems.
In the second version of Stabilis queries can be formulated against any portion of
an object model and there is a good support for navigational queries. The object
manager has been much improved, with the addition of caching and multiplexing
of servers.

The current version of Vigil gave us the minimum capabilities necessary to
verify our ideas. In this version, metainformation concerning control models is
stored not as database objects but as text; information, i.e., transition systems,
is stored as executable programs. Two simple schedulers of guarded action have
been implemented but new schedulers can easily be added to Vigil using inheri-
tance.

A problem we faced during the implementation of these systems was the lack
of support in C++ for program access to metainformation. As a result, we had
to design and implement our own structures and algorithms for manipulation of
metainformation.
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Future Work

During the development of Stabilis and Vigil a number of areas of future work
have become apparent; they are described in this Section.

Although the current implementation of Arjuna uses a simple object store that
provides primitive support for database applications like the ones we have devel-
oped, we believe that our work has demonstrated that it is possible to implement
database applications on top of a system based on explicit transactions.

One of the interesting features of Arjuna is that unlike most of the systems
studied in Chapter 2, for example, Camelot/Avalon (Section 2.3.5), Guide (Sec-
tion 2.1.6), and Argus (Section 2.3.3), it did not modify the language or the
operating system. Therefore, Arjuna is a system that is more easily accepted by
programmers and widely available. In keeping with this design policy we have
implemented a system that uses object-oriented models to represent explicitly
information about distributed programs and standard C++. Object-oriented
modeling is an inherent part of object-oriented programming activity, therefore,
we have chosen them as the representation medium for the explicit representation
of the structural and control aspects of object-oriented programs. Future work
has certainly to address the use of object models to represent other aspects of
distributed applications. For example, we can try to extend object models so
that the specification of relationships maintains information about the type of
communication protocol used by objects. An aggregation relationship could, for
instance, specify if the communication between the aggregate object and its com-
ponents should be implemented using RPCs or messages. Darwin/Regis already
offers facilities for explicit specification of the communication protocol adopted
by objects (Section 2.3.2).

Object model evolution (schema evolution) is an interesting area of future
research. In our system we use object models to represent the structure of dis-
tributed programs, so object model evolution can be used to keep track of the
various versions of distributed programs.

Our management system would greatly benefit from a more flexible object
store. For example, we could investigate ways of adding to Arjuna an object store
with support for B-trees. A very desirable attribute of such an object store would
be the ability for manipulating executable code. B-trees would probably improve
the performance of the system as a whole because smaller units of data could
then be manipulated during activation/deactivation of objects; storing executable
code as objects would allow us to implement a version of Vigil where transitions
systems are maintained as database objects.

Further study of algorithms for transforming state machine specifications into
programs is needed. We have developed and are implementing simple algorithms
for this purpose but we are aware that tools like STATEMATE [69] have a much
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better support for automatic generation of programs from STATECHART spec-
ifications.

During this work we have seen that the splitting of the algorithm of a dis-
tributed program into management and application parts is not always easy; it is
a decision that is left to the designer of the distributed program. Future research
has to explore better ways of approaching this problem in order to simplify the
task of designing and implementing reconfigurable distributed programs.

Research in integration of graphical interfaces and automatic generation of
code can be interesting. The integrated use of these facilities should help reduce
the time taken to develop distributed programs, from design to coding and testing.
Users of the system will benefit from a tool to assist the validation and debugging
of object models. A complete management environment would have an object
model editor, a graphical query interpreter, and a configuration manager.

Interoperability is another interesting issue for future research. We can study
ways of creating bridges between the management system we have implemented
and other management systems. It would be interesting to explore ways of making
environments like Darwin/Regis (Section 2.3.2), ISIS/Meta (Section 2.3.1), and
Stabilis/Vigil to co-operate.

Stabilis and Vigil have reflective architectures, that is, both systems have
structural and functional attributes that make them good candidates for experi-
menting with reflection. Reflection allows the implementation of a system to be
exposed to programmers in a controlled way. Programmers have access and can
redefine the behaviour of certain parts of a reflective system. It would probably
be very interesting to have Arjuna, Stabilis and Vigil running in a system like
Apertos (Section 2.1.8). Stabilis and Vigil could be transformed into a metaspace
of Apertos, In this way, if a programmer wanted to have access to management fa-
cilities he could associate the objects of his program with the metaspace provided
by Stabilis and Vigil.

In Conclusion

Perhaps it is opportune to recall the metaphor of the orchestra we have intro-
duced in Chapter 3 for the description of Stabilis. There, we wrote that the
management system could be seen as being a concert. Users, which we consid-
ered as the audience, only got to see what was played on-stage; we considered
the programming interface as being on-stage. The realization of the concert,
with all its instrument tuning and rehearsals, was backstage and supported what
users saw on-stage. Finally, we described the implementors of the management
system as being the maestros and musicians because they got to see both what
happened on-stage and backstage; they were responsible for the concert. Our
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metaphor describes accurately our intention with this project. From the outset
we were concerned with creating a flexible and simple environment where users
were not only the audience, but also maestros. In Arjuna, Stabilis, and Vigil the
programmer is invited to orchestrate, i.e., to adapt the system to his own liking,
provided he is prepared to respect a set of rules that guarantee the consistency
not only of the management system, but also of the distributed program he is
implementing.

In conclusion, the design, implementation and management of distributed pro-
grams is a complex and error prone task that must be executed correctly if reliable
programs are expected as the outcome. This thesis makes a contribution to the
area of distributed programming using objects and actions by explaining how to
use object orientation, transactions, database management system techniques,
and reconfiguration management techniques to the advantage of the distributed
programming task.
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