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ABSTRACT

Path expressions are a new method of describing

synchronization which provides a clear and structured approach

to the description of shared data and the co-ordination and

communication between concurrent processes. This method is

flexible in its ability to express synchronization, and may be

used in differing forms, some equivalent to P,V operations on

counting semaphores.

This method of synchronization is presented, and the

motivations and considerations from which it is derived are

explained. A method for formally characterizing path

expressions is given, together with several automatic means

of translating path expressions into implementations using

existing synchronization operations.
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CHAPTEH 1

INTOODUCTION.

The subject of this thesis is a notation and concept for expressing

the synchronization and co-ordination of asynchronous processes. The design

and construction of the co-operation of such processes is a difficult task,

particularly in large operating systems. Path expressions, first described by

Campbell and Habermann (Campbell and Habermann, 1974), provide a high descrip-

tive level of synchronization which aids in the prevention and detection of

design errors in complex systems and overcomes some of the hazards, like

certain forms of coding errors, that arise in the use of primitive methods

involving, for example, P and V (Dijkstra, 1968a) or Wait and Signal (Habermann,

1972) •

We shall consider a process as operating, by a sequence of actions,

on a known set of objects. Synchronization and co-ordination are required

in order to maintain the integrity of such objects shared among different

processes. Primitive synchronization methods spread the implementation of

such synchronization and co-ordination throughout the programs of various

concurrent processes. Monitors (Hoare, 1974), Secretaries (Dijkstra, 1973)

and message passing systems (Brinch Hansen, 1972) can be viewed as a step in

the direction of associating the specification of synchronization required

with the shared object. For example, monitors enforce mutual exclusion on

the set of operations or entry procedures which may access the shared data

they contain. However, co-ordipation between processes using the monitor

is accomplished by programming, within the entry procedures, the interleaving

of executions of those processes using a sophisticated wait and signal

primitive (Hoare, 1974), (Brinch Hansen, 1972).

The pHth notation allows the specification of the synchronization and

co-ordination of actions to be made independently of the descriptions of

1 •



the processes. To synchronize two actions, each must be provided by a

separate procedure invocation. Synchronization and co-ordination are

specified directly by describing how the body of one procedure, as a unit,

is allowed to execute in relation to others, irrespective of when invoked

by processes. The notation for specifying this 1S called a path expression.

Path expressions may be used to Lnc.or por at.e synchronization rules

into the type definitions that are used to introduce each class of object

(Campbell and Habermann, 1974). The primary function of a type definition

in a program is to describe the implementation of the operations on objects

of this type in terms of earlier defined operations on the structural parts

of such objects. Together, the type definition and path expressions

describe which procedures (operations) may be invoked by a program to access

data objects and how these procedures are to be synchronized and co-ordinated

to allow the objects to be shared among separate processes. Shared data

objects created from such type definitions appear as atomic entities at the

places where used, the details 01' the implementation of the object being

irrelevant and underlying structure not accessible.

In this chapter, we shall introduce our proposal using an exa.mple
notation (Campbell and Ilabermann, 1974) described informally with the aid

of examples. Then, we shall outline our notion of type and discuss how it

complements the synchronization methOd. A brief description of an imple-

mentation for the notation will be given and we will show that it may express

any synchronization given by P,V operations on counting semaphores. Finally,

we shall introduce the topics of the later chapters.

1.1 AN EXAMPLE PArm NOTATION

The example notation, although somewhat arbitrary, is based on regular

expressions which provide a familiar framework and which allow path expressions
")....



to be represented by finite state machines. The notation has been restricted

to permit a description of a simple implementation of path expressions by

means of other, existing, synchronization primitives. In Chapter 3, we

shall formally define a path notation which is similar to this example

notation, and we shall enumerate and justify the decisions tallen in its

construction.

The idea underlying the implementation of the example path expressions

can be envisaged as follows:-

A path expression names the procedures whose execution by

processes ~re to be synchronized. It includes a specification

which describes exactly the way in which the synchronization is

to be organized. Each path expression is implemented by a

controller. Given that an individual synchronized procedure

has been invoked by a process, the controller decides when the

procedure execution should be allowed to commence, and therefore

the process to continue.

The controller mechanism could operate as follows:

Each procedure commences with a prologue and finishes with

an epilogue. A process executing the prologue of a synchronized

procedure enquires of the controller whether it may proceed. The

controller, using the synchronization specification, may decide

to delay execution or to allow it to continue. Finally, when the

process executes the epilogue of the procedure, it notifies the

controller which may now be able to release other delayed processes.

The notation we introduce in this chapter is designed to simplify the con-

struction of these controllers; we show that they might, for example, take

3.



the form of finite 53 tate machines constructed from P,V operations and

semaphores (Dijkstra, 1968a). In Chapters 5 and 6, we shall introduce

notations which require more complex controllers and discuss the merits

of the increased power of these notations and the complexity of their

implementation.

Synchronization Schemes

Each path notation will contain fundamental synchronization schemes

which may be combined by particular rules for the purposes of expressing

complex synchronization. The first two fundamental synchronization schemes

we shall identify for the example notation are the sequence of actions and

the selection from a set of actions. (By action, we mean the execution of

a procedure by a proces~) A sequence of actions permits each one to occur

in the order specified.

Suppose the executions of three procedures p,q and r are to be

sequentially synchronized. Then

p ; q ; r

is an example of a path expressions which would, in our notation, express

that procedures p,q and r are to be executed one after the other in the

sequence given. The procedures may have been invoked by separate processes,

in a different order, and with possible intermediate delays. If an invocation

of q occurs first, the invoking process will be delayed until procedure p

has been executed.

A selection from a set of actions permits only one of those actions

to occur.

Suppose the executions of three procedures p,q and r are selectively

synchronized. Then

p , q , r

4.



is an example of a path expression which would specify that a selection

of one procedure is to be made from p,q or r. The process attempting

to execute the procedure selected is allowed to continue, while the

processes attempting to execute those procedures not selected are delayed

until a new selection is made from amongst p,q and r. The selection is

made from amongst those procedures which have been invol{ed by processes.

The selection is made using an unspecified scheduling algorithm which caters
for any possible simultaneity.

These two basic schemes may be combined to form more complex path

expressions. Thus the path expression :-

p ; (q , r) ; s

synchronizes the executions of procedures p,q,r and s. Executions of q and r

are synchronized selectively. The executions of procedure p, the selected

procedure from q or r, and the procedure s are synchronized sequentially.

Thus, the path allows two possible series of events:-

Either the execution of p precedes that of q which precedes

that of s, or the execution of p precedes that of r which precedes

that of s.

For simplicity in the design of controllers for this notation, we allow

a procedure name to occur only once in any path expression. This restriction

is lifted in Chapter 5, where, however, this leads to a more complex imple-

mentation.

There are two additional synchronization concepts which we find practical

to represent. These are repetition and simultaneous execution.

5.



Repetition permits a path expression, once completed, to be repeated.

Many processes are cyclic in behaviour and this is reflected in the path

notation. In this chapter, we consider an implied loop applying to the

whole path expression. The path expression is, itself, contained between

the keywords path and end. Again, for simplicity in the design of controllers

for our notation, we mru{e the restriction that repeated path expressions may

not be embedded within other path expressions. For a number of problems this

proves to be sufficient. However, in Chapter 3,we extend the notation to

include repetition which may be nested, but in a restricted manner. In

Chapter 5,we shall present a general repetition scheme.

Example: The path expression:-

path P end;

synchronizes the procedure P so that it may be executed by processes

repeatedly. If many processes invoke P, one of them at a time will be

allowed to execute P while the remainder are delayed until their turn

comes. The path expression:-

path A , ( B ; ( C , D ) ) end;

is an example of a complex synchronization scheme involving the procedures

A, B, C and D. At first, either procedure A or B may be selected to

execute. If A is selected then, when execution by the process of A is

complete, repetition will occur and a new selection made between procedures

A and B. If B is selected then, when execution of B by a process is

complete, a selection will be made between the procedures C and D. In

this case, when the procedure C or D which is selected has been executed

by its invoking process, repetition will occur and a new selection made

between procedures A and B.

6.



Simultaneous execution permits several processes to execute a given

procedure concurrently. In many synchronization problems it is often required

that a body of code can be simultaneously executed by several processes provided

that by doing so the processes do not infringe other synchronization restric-

tions. One example of a notation for specifying simultaneous execution with

a path expression was introduced by Campbell and Habermann (Campbell and

Habermann, 1974). This consists of a bracket ( } placed around the path

expression. Nesting of these brackets is not allowed. With this synchroni-

zation scheme, as many instances of the enclosed expression as there are

requests for it are generated until all instances have been completed.

For example, the path expression:-

synchronizes the procedure A so that it may be executed by many processes

simultaneously. Once one process begins to execute A, other processes may

do the same without delay, provided that there are outstanding (uncompleted)

executions of A. As soon as the last of these is finished, the simultaneous

execution is considered to be completed, and further processes invoking A will

be delayed. The path expression:-

path A ; ( B C } end"--'
synchronizes the procedures A, Band C using a combination of several basic

synchronization schemes. Procedure A may be executed first by a process. On
completion of procedure A by a process, the sequence B ; C can be executed by

many processes simultaneously. A process invoking procedure C will be delayed

until the execution of procedure B is completed by some other process.

Procedure Band C may be executed simultaneously ~y many processes. However,

the number of processes executing and which have executed procedure C can

never exceed the number of processes which have executed procedure B. If,

at some time, all requests by processes for the sequence B ; C have been

7.



completed (the number of executed procedures B equals the number of executed

procedures C and there are no more invocations of B), then repetition will

enable a new invocation of A by a process to execute.

TIlisscheme of simultaneous execution has proved difficult to formalize.

Further discussion of this scheme and other more amenable and less restrictive

notations are discussed in Chapter 7.

Path Expression Examples

In our opinion, path expressions provide a clear and compact method

for describing synchronization problems. For example, the path expression:-

path read , write ~;

specifies a series of executions by processes of the procedures read and write

in unpredictable order, none of which overlap in time.

The path expression:-

path (read} , write ~;

specifies a series of executions by processes of the procedures read and

write in unpredictable order. Read executions may overlap other read

executions, but write executions may not overlap other read or write

executions. Reading, once started, will continue for as long as there are

processes invoking read and at least one process executing read.

The above path specifications can be used, for instance, for programming

file processing, and we shall now demonstrate how they may be adapted so that

a particular access priority can be implemented and localized in one place.

In the last example, once reading commences, all ~rocesses requesting reading

may proceed. It is therefore conceivable that one wants a policy in which,

once writing commences, all processes requesting writing will proceed/provided

they do so one at a time. This can be implemented by means of two path

8.



expressions:-

path (read) , (write)~;

path write' end;

where write is the procedure defined by:-

procedure write: begin write' end;

The procedure write' actually performs the writing action. The first path

ens~es that if the read procedure begins to execute, all reading requests

are accepted, and similarly for write. The second path ensures that the

actions of writing are mutually exclusive. Thus, execution~ite are

synchronized with respect to the first path, and executions of its body

(write') are synchronized with respect to the second path. The synchroni-

zation specification given by each path can be understood separately since,

in the notation of this chapter, a particular procedure name can appear in

only one path expression. (In other words, there can lJea separate controller

for each path.) In the paper which first described path expressions (Campbell

and Habermann, 1974) further examples of controlling the access to cl file

using path expressions were given. In particular, it was shown that

strategies could be implemented, for example, letting processes requesting

writing have priority over processes requesting reading (see Courtois, Heymans

and Parnas, 1971). The use of synchronized procedures invoking further

synchronized procedures is discussed in greater depth in Chapter 4.

The examples above and in the papers by Campbell and Habermann and

Habermann (Habermann, 1975), serve to demonstrate the synchronization

facilities that even a simple path notation may provide and illustrate

their power. We shall return to this point in the.next section where we

show that the above notation can be used to program P and V operations on

semaphores. In later chapters we shall discuss more formally the equivalences

and differences between path notations and between path notations and primitive

9.



synchronization operations. While not actually proving the correctness of

the path expressions above, we have been able to make assertions ubout their

behaviour. Throughout the thesis we shall relate our path notations to a

mathematical representation based upon Petri nets (Petri, 1962). This

allows, wherever permitted by Petri net theory, a formal evaluation of the

correctness of a set of path expressions with respect to the synchronization

and co-ordination which they are intended to express. In addition, we

develop a model to investigate the behaviour of programs in which the paths

are used.

1.2 STRUCTURING SYNCHRONIZATION WITH TYPES.

Types, under one name or other, have been used in programming languages

for many purposes. Notable instances of their use are in "type checking"

as in Pascal (Wirth, 1971), for providing mutual exclusion as in Concurrent

Pascal (Brinch Hans~n, 1974), for describing building blocks as in extensible

languages (for example ECL (Wegbreit, 1972)) and for implementing new data

objects and operations as in the classes of Simula 67 (Dahl, 1970) or the

modes of Algol 68 (Algol 68, 1968).

We believe that type definitions should be used to accomplish on behalf

of the construction of data objects the analogue of what procedure declarations

do for operations. Thus, at the place where it is used, the details of the

implementation of an object should be irrelevant and underlying structure

should not be accessible at that moment. The reasons why this should be so

are obviously the same as those that underlie a procedure mechanism:

separation of specification and implementation, and concentration of imple-

mentation issues 50 as to facilitate verification, debugging and modifications.

10.



As a natural consequence of this point of view, a type definition is

used to create new data objects which appear as atomic entities at the places

where used. Drawing the parallel between type definitions and procedure

declarations, accessing a structural part of a typed object is similar to

jumping into a procedure body.

The primary function of a type definition in a program is to describe

the implementation of the operations on objects of this type in terms of

earlier defined operations on the structural parts of such objects. Thus,

another part of a type definition ought to be a description of the detailed

structure that objects of this type will have.

These two functions of a type definition are reflected in a notation

which we have devised to help us in our ideas. The syntax is purely

suggestive and is not intended as a proposal for a new programming language or

any part of one.

For example we might have:-

~ buffer;

.message frame;

procedure read (returns message m): m:=framej

procedure write (accepts message m): frame:=mj

operations read,write

endtype

This example is a definition of a type called buffer, whose structure

consists of a variable frame of type message, and whose operations are the

procedures read and write. (The type message is assumed to have been

previously defined.) Instances of buffers can be declared or created in

the scope of the type definition, and each one will contain its own instance

of frame. The program using a buffer cannot, however, access frame directly

11 •



but must use read and write. The procedure can be applied to them by means

of the Simula 67 dot notation.

For example:-

buffer Aj

message Tj
T:= A.read;

A.write (T)j

The type definition has two important properties:-

1) Protection of its structure by the scope I'ules.

2) Only a fixed, identifiable set of procedures is defined, giving

carefully controlled access to the data of the objects of that type.

Objects created from type definitions can be common to the scope of

two or more processes. However, the type buffer defined above is not satis-

factory when various concurrent processes may simultaneously read and write

a shared buffer, and some form of synchronization is required.

In general, the sharing of objects of a type will be unsatisfactory if

the data contained in the object can be corrupted by several processes

executing procedures simultaneously or in invalid sequences. Monitors

(Hoare, 1974) are an attempt to prevent corruption by allowing only one

process at a time to access and alter the contents of an object. Prevention

of the occurrence of invalid sequences of actions on the object or its contents

must be programmed, however, through the use of a signal and wait primitive.

We will combine our path expressions with our notion of type to introduce

some orderly structure in the sharing of objects.

12.



The restrictions we must place on the operations read and write of

our buffer example in order to preserve the integrity of the contained
data are:-

1) Every read must be followed by a write.

2) Every write must be followed by a read.

3) A read and write must not occur simultaneously.

Provided the buffer obeys these rules we can assert that it will not lose
or destroy any information.

The following type ensures these three properties:-
~ buffer;

message f'rame ;

path write; read end;

procedure read (returns message m): m:=frame;

procedure write (accepts message m): frame:=m;

operations read, write

endtype

The path is applied to the operations to produce the correct synchronization.

A different instance of the synchronization path is associated with each

instance of a buffer. Thus any declaration of a buffer will result in an

atomic object which can be written or read alternately. In Chapter 4 we

shall make a more formal definition of the relationship between a type and

the paths it contains as part of its specification.

This type definition of a buffer may be used to build more complex

data structures, for example objects of type "ring buffer". Suppose that a

number of similar readers and writers wish toexchange information but are

constrained by the amount of space available for buffers. One such device

is demonstrated below a.ndis designed to permit as much concurrency as

possible. A ring of the above described buffers is declared. A send or

13.



receive request allocates a buffer to be read or written on a round-robin

basis. The integrity of the .individual buffers is assured by their type

definition. Allocation is achieved by advancing pointers around the ring of

buffers. Many requests to send or receive may occur simultaneously. However,

each pointer may only be advanced by one process at a time if the integrity

of the allocation mechanism is to be preserved. A type pointer is introduced

which includes the necessary synchronization. Thus we have:-

~ ring-buffer;

array ° to N-1 buffer R;
~ pointer;

integer p==o;

path next~;

procedure next (returns integer I):

begin P:==(P+ 1) ~ N; I:==P;~;

operations next

endtype;

pointer write~slot, read~slot;

procedure send (accepts message m):

begin integer j; j:==write~slot.next;R(j).write(m); ~;

procedure receive (returns message m):

begin integer j; j:==read_slot.next;m:==R(j).read; end;

operations send, receive

endtype;

The implementations of the buffers and the pointers are separated from

the ring-buffer mechanism. Similarl~ the readers ~nd writers can be programmed

independently of the implementation of the buffering system.

14.



1.3 A COMPARISON BETWEEN A PATH NOTATION AND P,V OPERATIONS
ON COUNTING SEMAPHORES

The examples we have described above encourage us in our belief that

the method is worth studying and is a potential contribution to better-

structured and safer synchronization methods.

We shall now show that the synchronization mechanism described above

may express any synchronization constructed with the more primitive

synchronization operations such as P and V operations on counting semaphores

or Signal and Wait (Dijkstra, 1968a), (Habermann, 1972). This provides an

illustration of the ability of a path notation to express synchronization.

For example the path:-

path (V ; p) end

provides the synchronization necessary to implement P and V operations.

The number of executed Ps can never be greater than the number of completely

executed Vs. This path may be embedded within a type description for a

semaphore. Thus:-

~ semaphore;

path (V ; pJ end·--'
procedure V: null;

Erocedure P: null ;

oEerations P,V

endtype;

Variables of type semaphore may be declared and each instance will have its

own synchronization path. The 'value'of the semaphore can only be changed by

executing either a P or a V. In the example above, semaphores are always

initialized to zero. An extension to the above notation would be to include

initialization in types and perhaps in paths. Thus a program restricted to

using our notation has lost none of the potential for expressing

synchronization that the use of P,V operations on counting semaphores would

have given, but has gained the structuring facilities that the use of types

and paths provide.

15.



1.4 IMl)LI~TATION.

One important aspect of our example notation is that it has IL practical

implementation. Controllers for our notation can be implemented using existing

synchronization methods and these may be generated Ilutomatically from the path

expressions, for example by It compiler. We will show one particular implemen-

tation in which path expressions are transformed into appropriate P and V

operations on counting semaphores for use in prologues and epilogues of

the procedures the path expressions name. A complete description of the

algorithm to transform these path expressions is given in (Campbell and

Habermann, 1974). (incidently, this completes the equivalence between

the two synchronization methods.) The following example illustrates

the translation of a path expression into P and V operations.

The path expression:-

path A j ( B , (C j D) ) ; E~;

would result in the following set of prologues and epilogues:-

semaphore 81,82,s3,s4;

sl :=1; 82:=53:=54:=0;

procedures

A begin P(sl); (body of A) j V(s2)j end;

B begin P(s2}; (body of B)j V(s3); end·--'
C begin P(s2)j (body of C) j V(s4); ~;

D begin p(s4}; (body of D); V(53) ; end·--'
E begin P(53) j (body of E) ; V(sl)j end·-'

Initially, any processes invoking a procedure B,C,n or E will be suspended

by the P operations in the prologue of that procedure. A process invoking un

A will, however, be able to decrement semaphore 51, reducing it to zero, and

thus preventing further executions of an A. Oilcompletion of the A, the

process increments s2 in the epilogue of the procedure. This permits one

of procedures Band C to be executed by a process. The selection is implemented

16.



by the processes invoking Band C competing over performing a P operation on
82. If procedure C succeeds, then the epilogue of C, when executed, will

increment s4. This permits a D to be executed. A process executing the

epilogue of D will increment s3. (Similarly, if the procedure B had been

executed instead of a C, tltenthe process executing it would increment s3

in the epilogue of that procedure.) If s3 is incremented, this permi ts a

process to execute procedure E, and will result in sl being incremented 1n the

epilogue of that procedure. This gives the synchronization of the repetition

which allows another A to be executed.

The example described above serves to show that the path expression

provides a structured synchronization technique which emphasises what is

needed, not how it is to be achieved. The P,V implementation of the path

expression does not directly express the synchronization it is used to

create. See also (Brinch Hansen, 1972). Therefore, our mechanism can lead

to automatically generated, well structured uses of synchronization primitives

and the programmer is relieved of the problem of implementing his desired

synchronization.

1.5 INTRODUCTION TO THE MATERIAL IN THE THESIS.

We have introduced a new method of synchronization which provides a clear

and structured approach to the description of shared data and the co-ordination

and communication between concurrent processes. As an example of this method,

we have outlined a notation which we demonstrated had these properties and

was equivalent in its ability to express any given synchronization to P and

V operations on counting sem~phores.

In the remainder of the thesis we shall expand and develop these ideas

and show that there are many possible Path notations. In Chapter 2 we shall
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introdueenotation which will be used in the thesis. Chapter 3 describes

the E-path notation which is a development of the notation above. We

shall introduce two measurements of the power of synchronization of

a given synchronization notation which we shall use in later chapters

to compare different notations. Chapter 4 establishes a mathematical

meaning for the combination of path expressions with Petri net models

of processes. We shall show that the implementation of the E-path

expressions is correct with respect to this meaning. The formalism

of Chapter 4 enables us to give a simple criterion for a limited class

of Path expressions and processes to be deadlock free. In Chapter 5

we shall generalize the notation of Chapter 3 and describe the meaning

and an implementation for this more powerful descriptive method. In

Chapter 6 we shall introduce the possibility of describing the

synchronization of individual actions concurrently, by separate

synchronization specifications. Finally, in Chapter 7 we shall discuss

various ,Path notations which differ from those presented in the body

of the thesis, and describe the problems and advantages of these

notations and how they reflect on the theme of the thesis.
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CHAPl'ER 2

BACKGROUND.

The following notation and definitions will be used in the

remainder of the thesis. This chapter contains a description of

Petri nets, some definitions and theorems from Petri net theory,

and definitions, theorems, and algorithms from the theory of finite

state machines.

Petri nets.

Petri nets may be thought of as bichromatic directed graphs

in which no two adjacent vertices have the same colour. Colour of

a vertex is indicated in our diagrams by its shape, either round or

square (we shall abbreviate a square by a line). Round vertices and

square vertices are called places and transitions, respectively, and

denote conditions and events. A net, being a set of vertices

interconnected with directed arcs, can be used to describe arbitrary

systems of events and their occurrences. This interpretation is

obtained by specifying that an event may occur if all its enabling

conditions hold in the system. This is indicated in the net by

drawing a directed arc ~ the places denoting the enabling conditions

of the event 12 the. transition denoting the event. The occurrence of

an event may subsequently cause other enabling conditions to hold;

this is represented by drawing arcs from the transition representing

the event 12 the places denoting the conditions. The net can be used

to simulate system behaviour by putting tokens in places of the net

to indicate the holding of conditions. A transition is enabled to

!i!! when all it, places are marked with such tokens. The firing of

a transition subtracts a single token from each enabling place and

~ a single token to each place which is on a directed arc from the
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transition (the output place). Thus, the net specifies the set at all

possible sequences of concurrent events of the system.

If two transitions share an enabling place with one token on it,

they are said to be ~ conflict over that place; both are enabled but

only one will tire disabling the other. This implies that a marked

net represents the set ot all sequences of occurrences ot events (firings

at transitions) determined by the holding of the conditions corresponding

to the marked places.

The following definitions will be assumed:-

2.1) A marked net is!!!! it each of its component transitions

is live (Hack, 1912).

2.2) A transition is !!!! at a given marking it there exists a

sequence at tirings which tires it tor every marking reachable

tram a given marking. (That is, an event is live, given the

holding ot some set at conditions,if those conditions may

eventually allow it to occur.)

283) A marking is reachable trom another marking if there exists a

sequence of firing. whioh transforms it from the latter into the

former.
284) A marked net is n-sate (~) if all its component places are

n-safe (safe), (Petri.,1962) •

2.5) A place is n-sate (~) at a given marking if every marking

reachable tram the given marking has at most n (one) tokens on

that place. (I.e., a condition is sate if, given the holding

ot some set at conditions, two or more instances ot the holding

of that condition may never occur simultaneously.)

2.6) In the diagram below:-
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t3 t4

p1 and p2 are shared input and output places, respectively, of
tl and t2.

t3 and t4 are shared initial and terminal transitions, respectively,

of p3 and p4.

207) A State Machine Petri net has shared input and/or output places,

but no shared initial or terminal transitions.

2.8) A State Machine Petri net is strongly connected if and only if

every vertex in the net is 'connected' to every other vertex by

some sequence of directed arcs and vertices (Holt and Commoner,

1910) •

2.9) A Marked Graph Petri net has shared initial and/or terminal

transitions, but no shared input or output places.

2010) A Simple Petri net is one in which every transition has at most

one shared input place (Hack.1912).
The following properties of the State Machine and Marked Graph Petri

nets have been proved by Holt and Commoner (Holt and Commone~ 1910)

and will be used later in the thesis:-

2.11) A strongly connected State Machine Petri net is live and safe

for any marking which places only ~ token on the net.

2.12) A transition in a Marked Graph is !i!! if and only if it is not

contained in an empty cy eLe, (A set of vertices and directed

arcs is said to be empty if no vertex contains a token, and is

a cycle i~ by following the directed arcs,all the vertices

are visited once and the first vertex is reached again.)
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Matrix representations of Petri nets.

To simplify the description of nets and to represent them in a

suitable form for computation they may be presented as matrices

(Lautenbach and Schmid, 1974). For a given net we have two matrices,

a forward incidence matrix (F) and a backward incidence matrix (B).

(Hack,1975). Each column of the matrix corresponds to a transition,

each row to a place. When a place has a directed arc to a transition,

there will be a one written in the forward incidence matrix at the

intersection of the row corresponding to that place and the column

corresponding to that transition. Similarly, if a transition has a

directed arc from it to a place, the backward incidence matrix will

contain a one at the intersection between row and column.

A marking will be represented by a vector (M), each element

corresponding to a place containing a number representing the number

of markers on that place.

Example:-

F transitions

A B C D
1 1

2 1
places

3 1 1

4 1

corresponds to the net:-

B transitions

A B C D
1 1

.
12

places
3 1 1

4 1

22.
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The matrix representation is used in later chapters to simplify

specifying Petri nets and as a computational tool in the controllers

of path expressions. Finally, these matrices have been used in

algorithms to investigate Petri net properties and behaviour

(Lautenbach and Schmid, 1974).

Finite State Machine The0rYo

In Chapter 1 and later chapters we introduce path notations based

upon regular expression descriptions of the synchronization of the

execution of procedures by processes. We shall examine these regular

expression descriptions of synchronization by examining the state

machines to which they correspond. The following definitions will be

used:-

2.13) A finite state automaton over the alphabet E is a system

U = (S,M,So,F)

where S is a finite non-empty set, M is a function defined on the

cartesian product S X E of all pairs of states and symbols with

values in S, So is an element of S (the initial state of U)

and F is a subset of S (the designated final states of U).

(M is the table of transitions, and S is a set of the internal

states of U.) (See Hopcroft and Ullman, 1969.)

2.14) A non-deterministic finite state automaton over the alphabet E
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is a system

v = (S,N,So,F)

where S is a finite non-empty set of states, N is a function

defined on the cartesian product S X E into subsets of S, So

is an element of S (the initial state of V), and F is a subset

of S (the designated final states of V).
2.15) A transition system over the alphabet E is defined to be a

quintuple

T = (S,M,A,F,P)

where S is the non-empty set of internal states, A is a subset

of S and is the set of initial states, F is a subset of S and is

the final set of states, M is a transition function which maps

S X E into 2S, the set of all subsets of S, and P is a binary

relation on S which holds between two states u and v in case

there is a spontaneous transition from u to v. P is called

the spontaneous transition relation. (Harrison, 1965) •

2g16) The language of regular expressions, L, is defined inductively

as follows:-
(1) 1\ is a regular expression.

(2) ~ is a regular expression.

( 3) "'. is a regular expression for i = 0,1 ,•••,k-1 •
1

(4) If Cl' and f3 are regular expressions, then Cl' , f3 is a

regular expression.

(5) If Cl' and f3 are regular expressions, then a f3 is a

regular expression.

(6) If Cl' is a regular expression, then a* is a regular

expression.
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(7) There are no regular expressions other than those given by

steps (1) to (6).

2.17) The behaviour of a regular expression or the set denoted by

a regular expression is defined by the following procedure.

(The behaviour of a is denoted by lal.)

(1) I~I =~, where ~ is the empty set.

(2) 1"1 = (Al.

(3) lail = {ai), for i = 0,1 , ••• ,k-l.

(4) la,131= lalUII3I.

(5) Ia;131 = IaI I ~ I = ( xY I x E Iai, y E Ie I l.
(6) Ia*~ = ("J lJ lal U lallal U lallallal U •••

2.18) There is an algorithm which applies to any given regular expression

a and yields a finite state machine whose behaviour is lal.

(Kleene, 1956).

The following results of finite state machine theor,y will be used

later in the thesis to state and prove properties of path expressions:-

2.19) The following algorithm applies to any regular expression a to

yield an equivalent finite state machine. The algorithm first

constructs a finite transition system whose behaviour is lal.

Prom this one obtains the appropriate finite state machine

by the subset construction (Harrison, 1965) •

1) If a =~.A, aO' a1 •••• ,ak_1! then the problem is trivial.

2} If there is a transition system S having behaviour lal. then

the transition graph below has behaviour 1a*1. (Note that,

in the following figures, the single transition into (out of)

a transition system symbolizes one line to (from) each

initial (final) state.)
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A A

3} If transition systems Sand T have behaviours lal and I~I,
respectively, then the transition system having behaviour

1 a,a'i is shown below:-

S

T

4} If Sand T are transition systems having behaviours lal
I~I, respectively, then the transition system having

behaviour Ia ; 131 is shown below:-

A A·~I s ~----··~I~T _;----~.~

2.20) The minimum state machine with behaviour I a I is unique up to

isomorphism (Hopcroft and Ullman, 1969) •

2.21) Strongly connected state machines are state machines such that

there is a sequence of transitions from any state to any other

state.

We shall now use the above definitions and theorems to introduce

and describe the Elementa~ Path Notation.
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CHAPl'ER 3

ELEMENTARY PATH NOTATION.

In the prelimina~ discussion in Chapter 1 we introduced the

concepts of action, path notation, controllers, and a notion of type.

In this chapter, we shall enlarge upon these concepts and give a

mathematical representation of expressions belonging to a particular

path notation. Various properties of the path notation are discussed,

for example, that this particular notation is inherently free from a

class of deadlocks. Finally, a detailed discussion of an implementation

of this notation is given, together with some comments about the notation

itself.

The Elementa~ Path (henceforth referl1'd to as E-path) notation is

a modified fo~ of the notation discussed in Chapter 1. It omits the

simultaneous execution scheme which is discussed later in Chapter 7,
where it is considered with respect to its inclusion in this and other

notations. However, it includes a limited repetition scheme

of synchronization.

301 MOTIVATION FOR AN "ELEMENTARY PATH" NOTATION.

The E-path notation pe~its the declaration of a set of specific

synchronizations between various actions. This declaration is a static

description of the synchronization. This is analogous to keeping the

array dimensions constant tor the lite of an array, to the creation of

variables in an Algol block, and to the attempts to eliminate the goto

from programming languages. The notation has been designed to be simple,

yet sufficiently powerful to be a programming tool, and be easily

implementable on most present day computers.

To ensure practicality, E-path expressions have been designed to
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be implemented by the mechanism described briefly in Chapter 1 using a

P operation on Some binary semaphore (Shaw,1974) in the prologue of a

synchronized procedure, and a V operation on a possibly different semaphore

in the epilogue of that procedure. This requirement imposes a restriction

on the form that E-paths may take, but nevertheless provides a powerful

synchronizing method.

In later chapters, we shall extend this notation and investigate the

relations between increasing the synchronization power of the notation

(compare Lipton, 1973) and increasing the descriptive ability of the

notation. (This may be compared to a low level language and a high level

language; both have equivalent computational power, but the latter has

more descriptive ability than the former.) In particular, the relations

we shall investigate are the manner in which they may be increased, and

the effects on comprehensibility and the complexity of the controllers.

To achieve these aims we require E-paths to be simple and not to contain

any features which may restrict this possibility of expansion.

The E-paths must be consistent with our thesis: that we want to

describe synchronization between actions, and that path expressions may

be attached to data objects to describe the synchronization which allows

those objects to be shared by several concurrent processes. As we shall

show, both these requirements are satisfied by the notation, and in addition

it helps to prove the validity of our approach.

3.2 CHOICE OF REGULAR EXPRESSIONS AS A VEHICLE.
The form we have chosen to adopt for the E-path notation is based

upon regular expressions. The following reasons motivate this decision:-

1) Regular expressions provide a structured framework in which we

can write our synchronization descriptions.

2) They are well known, and when considered in the equivalent form
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of state machines recognizing strings of symbols, bear a
striking resemblance to the synchronization method we require.

In addition, the state machine suggests several implementation

mechanisms in which it is used as the central part of a

controller for synchronizing various actions.

3) They have been used theoretically by others to describe

Operating System behaviour, for example, as in Message Transfer

Expressions (Riddl~ 1972). Petri used a similar notation for

his communication forms which described the behaviour of subnets

of a Petri net (Petri, 1962). Hence, they are suitably flexible

and descriptive. Pinally, particular properties of state

machines, such as being strongly connected and having minimal

canonical forms, can be used in the study and application of

path expressions.

The decision to implement the E-path expressions using P and V

operations in the prologues and epilogues of procedures implies that the

E-path notation can correspond only to a subset of the class of all

regular expressions. This subset will be restricted to expressions

which can be represented as state machines in which no two transitions

share the same name. This enables the states of such state machines

to be represented by semaphores. The syntax of E-path expressions is

designed to include only regular expressions whose associated state

machines meet the requirement of this mechanism. The syntax, although

not permitting all the expressions representing regular sets accepted

by such state machines., allows the syntactic checking of expressions to be

accomplished and readily automated. A detailed explanation of the

relationship between the implementation, E-path notation and state

machines will follow.
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3.3 ELEMENTARY PATH DEFINITION.

The syntax for the E-path notation is defined by an extended BNF

notation in which the part in the square brackets of a production is

optional. To simplify the description we have assumed an arbitrary

precedence relationship between the separators, i.e. the symbols

( ) ; ,* representing the various synchronization schemes of the

notation. Terminal and non-terminal symbols are distinguished by

context, i.e. terminals do not occur on the left hand side of any

production. The Kleene star will be used to denote repetition of a

subexpression zero or more times. The occurrence of a Kleene star in

an expression is restricted by the productions to ensure that the

expression has a state machine with the required property permitting

implementation.

The construction of an E-path expression is specified by the

following five productions and two restrictions on the use of names

within the path expression.

sequence

path

unit [

sequence )* endP1 : E-path

P2: sequence ]

P3: Wlit : : = element * element

selection

P4: selection o o_.0 _ element [ selection ]

P5 : element procedurename

selection ( sequence J
Restriction R1: No procedurename may occur more than once in a

given path expression.

Restriction R2: No procedurename may occur in more than one

path expression.
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(Restriction Rl will be lifted in Chapter 5, and restriction R2 will
be lifted in Chapter 6.)

The productions form an unambiguous grammar and have been used in

a recognizer for E-path expressions. Production Pl introduces the path

end pair which denotes the path expression, and only permits expressions

which are enclosed by repetition. This enforced repetition

of the synchronization expression is included for an important theoretical

implication which will be described later.

Examples of valid E-paths.

path ( open; ( read; write )* ; close )* end

path ( openfile ; ( openrecord ; write* ; closerecord )*

closefile )* ~

path ( openfile ; (

( openrecord_for_write ; write* ; closerecord_for_write ) ,

openrecord_for_read ; read* closerecord_for_read )

)* closefile )* end

Examples of invalid E-path expressions.

path ( A* )* end

path (( A* ; B )* ; C )* end

~ ( A* ; ( B* ; C ))* end

path (A (B*' C ) . D )* end, , , --

304 E-PATH EXPRESSIONS AS FINITE STATE ACCEPTOR MECHANISMS.

In order to discuss the theoretical properties and describe an

implementation for E-path expressions we shall use a finite state

machine description of the synchronization they express. Since eve~
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E-path expression is a regular expression, and all regular expressions

have equivalent finite state machines (2.18), we may construct an

equivalent finite state machine for any E-path expression. We will

use a modified version of the construction given by Harrison (see 2.19).

The construction involves the generation of a finite transition system

(2.15) for a given regular expression. We directly reduce this transition

system to a finite state machine by simply eliminating the spontaneous

transitions.

Theorem 3.1 : Let Q be a regular expression such that path Q ~

is accepted by the productions of the E-path notation. The

equivalent non-deterministic state machine may be constructed

from the transition system for Q, generated by 2.19, using the

followingl-

Let Cl and C2 be sets of states of the transition system:-

T = (S,M,A,F,P) such that

Cl = (s U M (s,z) -= ~ and s E S 1
z E E

C2::: (s I (U M(t ,z) ) n (s} 1:1: ~ and s E SJ •
z E E
t E S

Given sl is a state of T and if there exists a unique s E S

such that either:-

El: P(sl)::: (s} and sl E Cl (i.e. the only transitions from.l

are spontaneous and go to s), or

E2: p(s} = {sl} and sl E C2 (i.e. the only transitions to sl

are spontaneous and come from s)

then create a new transition systemT' = (S' ,M' ,A',F' ,PI) which

is identical to the original system except that sl and s are
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replaced by [s U st}, Any transitions to or from s1 or swill

become transitions to or from (s LJ s1) and if s or s1 belong to

A (the initial states) or F (the final states), then [s U s11 will
belong to AI or Fl.

(i.e. replace:-

e e

e e

(s1 U

Proof: Trivially, the replacement rules above will not alter the

behaviour of the transition system for a.

It remains to be shown that all spontaneous transitions will be

removed by these rules. R!!h a ~ must be produced by the E-path

set of productions. Ye shall apply the transition system construction

rules of 2.19 to each production and show, by induction, that the

transition system for a has only spontaneous transitions of the form

E1 or E2.

The productions cqrrespond to the following transition systems

(T1-T5c).

T1 : E-path ..-..- path ( sequence )* ~

sequence
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where sl E Cl and C2.

T2a: sequence ·.-·.- unit sequence

A A A·t unit ~ -I sequencell A.

where s2 E Cl and C2.

The initial states are those of 'unit',

the final states are those of 'sequencel'.

T2b: sequence ·.- unit·.-
A -{ ) A

unit •

The initial and final states are those of 'unit' •

T3a: unit : := element* element

where 84 E Cl and C2.

The initial state is 83,
the final states are those of 'element2'.

T3b: unit : := selection

___ A-t{ selection

The initial and final states are those of 'selection'.
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T4a.: selection ·.-·.- element , selectionl

The initial state is s5 E C2,

the final state is s6 E Cl.

T4b: selection ·.-·.- element

1\ .1 element It---II._.
The initial and final states are those of 'element'.

T5a: element : := procedurename

A procedurename A------~.~~~------------------~.~~---~.~
Since 'procedurename' is a terminal, it is the name of a

transition. Hence, the initial and final states are s7 E C2,

and s8 E Cl, respectively.

T5b: element : : = ( selection2)

A

·1
A

selection2 •

The initial and final states are those of 'selection2
,
•

T5c: element : := ( selection ; sequence

A

·1
A .@ A

.,sequence
A

selection ..
where s9 E Cl and C2.

The initial states are those of 'selection',

the final states are those of 'sequence'.
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First, we shall show that the transition system for 'element'

has a single initial state belonging to C2, and a single final state

belonging to C1.

For the initial states of 'element' and 'selection' in the

transition systems T5 and T4 we have:-

·T5a: 'element' has a single initial state, say 57, and 57 E C2.

T4a: 'selection' has a single initial state, say s5, and s5 E C2.

Suppose, as induction hypothesis, that 'selection' has a single

initial state which belongs to C2. Then, we have:-

T5b and T5c: 'element' has the initial states of 'selection',

and hence has a single initial state belonging to C2.

T4b: 'selection' has the initial states of 'element', and thus

has a single initial state belonging to C2.

Therefore, by induction, we conclude that 'selection' in the transition

system T4 has a single initial state belonging to C2, and also that
'element' in the transition system T5 has a single initial state

belonging to C2.

1 • Consider the final states of 'sequence' in the transition

system T2. We have:-

T2b: 'sequence' has the final states of 'unit'.

Suppose, as induction hypothesis, that 'sequence' has the final

states of 'unit'. Then, we have:-

T2a: 'sequence' has the final states of 'sequencet'.

Therefore, by induction, 'sequence' has the final states of 'unit'.

For the final states of 'element' and 'selection' in the

transition systems T5 and T4 we have:-

T5a: 'element' has a single final state, say s8, and s8 E C1.

T4a: 'selection' has a single final state, say s6, and s6 E C1.
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T4b: 'selection' has the final states of 'element'.

2. The transition system for 'unit' is such that:-

T3a: 'unit' has the final states of 'element'.

T3b: 'unit' has the final states of 'seleotion'.

Thus, by T4a and T4b 'unit' has either a single final state which

belongs to Cl, or the set of final states of 'element'.

3. Substituting the results of 2. in 1., 'sequence' has either

a single final state which belongs to Cl, or the set of final states

of 'element'.

Suppose, as induction hypothesis, that 'element' has a single

final state belonging to Cl. Then, we have:-

T4a and T4b: 'selection' has a single final state belonging

to Cl.

3.: 'sequence' has a single final state belonging to Cl.

T5b: 'element' has the final states of 'selection', and hence

has a single tinal state belonging to Cl.

T5c: 'element' has the tinal states ot 'sequence', and hence

has a single tinal state belonging to Cl.

Theretore, by induction, we conclude that 'element' has a single

tinal state belonging to Cl, and hence also that 'selection',

'sequence', and 'unit' each have one single tinal state belonging

to Cl.

The remainder ot the proot uses the above results to show that

the spontaneous transitions of the system for a may be removed.

Consider T5c. Let f be the final state of the transition system

tor 'selection', and at!be the initial state of the transition system
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for 'sequence'. Then, in the transition system T for 'element':-

P(f) = s9, and f E Cl.

Hence, El applies, the spontaneous transition may be removed, and 59

combined with f to give a new state (f IJ s9). Again, we have:-

P({f lJ s9})= a" and (f U s9) E Cl.

Thus, we may combine (f V 59} with a" to form (f U 59 U a"} and

eliminate the spontaneous transitions between 'selection' and

'sequence'.

Consider T4a. Let a and f be the initial and final states of

'element' respectively. Let a" and f" be the initial and final

states of 'selection'. Then in the transition system T for

'selection' we have:-
P(s5) = a and a E C2. Thus, by E2 we may combine s5 and a.

P«(s5 U a))= a" and (s5 U a} E C2. Thus, by E2, we may

combine (s5 U a) and a" to give (s5 U a U a"}. We note that the

initial state of 'selection' is still, after reduction, a member

of C2. In addition, we have:-

P(f) = s6 and f E Cl. Thus, by El, we may combine s6 and f.

P(fll)= (s6 U f) and f" E Cl. Thus, by El, we may combine

(s6 U f} and f" to form (s6 U f U f"l. We note that the final state

of 'selection' is still, after reduction, a member of Cl. Thus, all

the spontaneous transitions introduced by T4 may be removed.

Consider T3a. Let a and f be the initial and final states of

'elementl' and a" and f" be the initial and final states of 'element2'.

Then in the transition system T for 'unit' we have:-

P(s3) = a and a E C2. Thus, by E2, we may combine s3 and a.

P(f) = {s3 lJ a} and f E Cl. Hence, by El, we may combine

(s3 U a1 and f.
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P«(s3 U aUf}) = s4 and s4 E C2. Hence, by E2, we may

combine (s3 U aUf} and s4.

P«(s3 U a LJ f U s4}) = a" and a" E Cl. Thus, by El, we may

combine (s3 U aUf U s4} and a" to form (s3 U aUf U s4 U ali}.

Note that there is only one initial state of 'unit' after reduction.

Thus, all the spontaneous transitions introduced by T3 may be removed.

Consider T2a. Let f be the tinal state ot 'unit', and a" be the

initial state of 'sequencel '. Then for the transition system T for

'sequence':-
p(t) = s2 and t E Cl. Hence, by El, we may combine t and s2.

P«(f U s2}) = a" and (f U s2) E Cl. Hence, by El, we may

combine (f U s2) and a.".
Thus, all the spontaneous transitions introduced by T2 may be removed.

Consider Tl. Let a and f be the initial and final states of

'sequence'. Then in the transition system T for 'E-path':-

P(sl) = f and f E Cl. Hence, by El, we may combine sl and

f. The initial states of 'sequence' are those of 'unit'. However,

even after reduction, 'unit' has a single initial state.

P(a} = {sl U f} and (sl U f} E Cl. Hence, by El, we may

combine (sl U f} and a.

Thus, all the spontaneous transitions introduced by Tl may be removed.

'Procedurename' contains no spontaneous transitions. Suppose,

as induction hypothesis, that the regular expression~, contained in
~, has a transition system which contains only spontaneous transitions

which may be removed. We may apply one of the E-path productions

and its corresponding transition system construction rule to ~ to

obtain V and a transition ~ystem for v. However, all the spontaneous
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transitions introduced in forming the new transition system from that

of S may be removed. Thus, all the spontaneous transitions in the

transition system for ~ may be removed. Therefore, by induction, we

conclude that all the spontaneous transitions in the transition system

for Q given by 2.19 may be removed.

Q.E.D.

As a corollary, the construction 2.19 can be simplified to produce

a finite state machine directly from the E-path expression without

producing an intermediate transition system. In addition, 3.1 implies

the following property:-

Theorem 3.2: Let Q be a regular expression such that path a end is

an E-path expression. Then the non-deterministic finite state

machine constructed by 3.1 is strongly connected.

Proof: Application of 2) of 2.19 to a gives the transition system:-

where a is the regular expression (S)*.,
This transition system is strongly connected (2.21).

Each of 2),3) and 4) preserves the strongly connected property

of the graph and introduces new vertices which are also strongly

connected by having directed arcs to and from other strongly

connected vertices.

Each of the rules El and E2 of 3.1 preserves the strongly

connected property of the graph since it only combines vertices.

Q.E.D.
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This theorem implies that there must always be a sequence of

executions of the procedures in an E-path expression which will lead

to a given procedure being capable of being executed by some process.

Of course, this gives no assurance that the processes are themselves

deadlock free in the manner in which they invoke procedures of the paths~

or that the combination of several paths in a program will not give rise
to deadlocku

The following lemma will be used in a proof that the E-path notation

can be implemented using P and V operations in the prologues and epilogues
of procedures.

Lemma 3.3: Let a be a regular expression such that path a ~ is an

E-path expression. Then the state machine (U) constructed for a

by 3.1 has no two transitions which share the same name, is

deterministic, and is minimal (2.18).

Proof: Each of the four construction rules of 2.19generates transition

systems which have distinct parts corresponding to distinct

subexpressions of the original regular expression. Thus, if two

transitions have the same name (excluding spontaneous transitions),

then they must have been generated from two identical regular

expressions. However, if the original expression a contained two

such expressions, then it would contravene restriction R1 and

l!!h a end would not be a valid E-path expression. Hence, the

transition system for a cannot have two transitions which share the

same nameo 301 removes transitions which are spontaneous but does

not add further transitions. Hence, the resulting state machine U

has no two transitions which share the same name.

Consider the state machine U. If e is a member of the alphabet
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of the state machine and s is one of its states, then the transition

function with arguments e and s can only be single valued since

no two transitions have the same name. Hence, by definition 2.13

and 2.14 the state machine is deterministic.

Finally, assume that the state machine U is not minimal. Then,

the minimal state machine is obtained by finding the equivalence

classes of U (Myhil~ 1957). There must exist at least two states

u and v of the state machine U which belong to the same equivalence

class. However, suppose that a transition from u accepts the first

member e of the sequence z of letters belonging to the alphabet of

the state machine. (There must be at least one such transition from

u since the state machine is strongly connected (3.2).) Then e must

also be accepted by a transition from v. But this contradicts the

result that the state machine U has no two transitions which share

the same name,and hence that the state machine was constructed by

3.1. Thus, the state machine constructed by 3.1 is minimal.

Q.E.D.

3.5 STATE MACHINE CONTROLLERS AND A P, V OPERATION IMPLEMENTATION.

One of the important properties that we require for the E-path

notation is that it should be readily implementable on the majority of

present day machines. In Chapter 1 we illustrated an implementation

in terms of counting semaphores for that form of path notation. In this

chapter we establish an implementation for E-paths in terms of binar,y

semaphores (Shaw,1974).

To implement an E-path expression, we associate with each state in

the equivalent state machine constructed by 3.1 a binar,y semaphore which

will have the value one whenever the machine is in that state and will haVe
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the value zero otherwise. For each synchronized action (represented by

a transition in the state machine), we provide the corresponding

procedure with a prologue containing a P operation on the semaphore

representing the state from which the transition takes place. The

procedure is also provided with an epilogue containing a V operation on

the semaphore representing the state to which the transition occurs. Thus,

tor example, we have for an action P:-

procedure P: begin p(s.) ;
1

(body of procedure P) V(s.) end
J

where s. and s. are semaphores whose values will be used to encode the
1 J

state of the state machine. Execution of the procedure by a process

corresponds to a change of state in terms of the state machine.

For example, the following E-path:-

path ( A ( (B , C) D )* E )* end

has the corresponding state machine:-

E D

C

which is implemented as:-

semaphore s1 = 1; semaphore s2, s3 = 0;;

procedure A: begin P(s1) ; (body of A); V(s2) end·_,
procedure B: begin P(s2); (body of B); V( 83) end·_,

procedure C: begin P(s2); (body of C) j V(s3) end·_,
procedure D: begin P(s3); (body of D)j V(s2) end·_,
procedure E: begin P(s2); (body of E); V( s1) end·_,
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(In Chapter 4 we shall give a meaning to the interaction of a path

expression with the procedure calls of a program using a Petri net

representation. This will permit us to represent mathematically the

interaction between processes and path expressions. In particular, we

shall show that the above implementation is correct with respect to this

represent~~ion, hence permitting the theoretical results obtained from the

representation to be applied in practice.)

The E-path expressions are based upon expressing synchronization

using a restricted regular expression. These restrictions are necessa~

to allow E-path expressions to be implemented using the scheme above. For

example, the following path expression:-

path ( (A X B), (C X D ) )* end

bas no implementation of the form:-

procedure X; begin (mixture of only P, V operations)

(body of procedure X);
(mixture of only P, V operations)

end

The above path expression has the state machine representation (if

we allow the repetition of procedure names):-

initial

state

A process executing any of the procedures X, B, and D can only wait on one
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semaphore at a time. Associating semaphores with states, this implies

we must combine states 2 and 3 together. However, states 2 and 3 cannot 1

be combined without altering the behaviour of the state machine. Hence,

in order to implement this path, we require more than just a simple

association of states with semaphores. For example, we could introduce

variables"and array indexing or conditional statements (see Chapter 5).

(This is similar to the well known problem of the cigarette smokers

(Pati~ 1971), (Parnas,1975), (Habermann, 1972).)

Theorem 3.4: The restrictions imposed by the E-path notation on the

set of regular expressions of which an E-path expression can be

composed are sufficient to allow all such expressions to be

represented by an implementation of the form:-

procedure X: begin P(s.);
1

(body of procedure X); V(s.)
J

end

Proof: As a corollary to 3.3, the finite state machine constructed for

an E-path expression by 3.1 has only one state in which a particular

procedure execution may be accepted. Hence this state can be

represented by a semaphore upon which processes requesting the

execution of that procedure may wait. Again, as a corollary,

given a particular procedure execution, there is only one state into

which the state machine may enter. This allows processes terminating

their execution of that procedure to execute a signal to the processes

waiting upon the semaphore which represents that state. Finally, the

state of the state machine is represented by the semaphore

corresponding to that state having the value one, all other semaphores

having the value zero. Hence, the restrictions are sufficient.

Q.E.D.
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3.6 DECLARATIVE POWER"

There are two measurements we shall make for a given path notation Pi

which will be used to compare the ability of that notation to express

synchronization with the ability of another path notation, say P2. These

measurements are the declarative power and scheduling power of Pl, written

D(Pl) and SP(Pl) respectively. (SP(Pl) will be defined in 4.6.) The

comparison of D(Pl) with that of D(P2) will be used to determine if Pl

is better than P2 at meeting the goal of removing synchronization from

program text and expressing it as a static declaration.

Let Si be the set,of (possibly infinite) sequences of actions

accepted by a path expression Ei. (We will define Si to be the set of

sequences generated by the simulating net of Ei, see simulating nets in

·4.1.) D(Pl) is defined to be the set of elements Si such that Ei Is an

expression of Pl. D(Pl) is at least D(P2) if D(Pl) contains D(P2).

(That is, for every'path expression E2 of P2 there is an El of Pl such thut

S2 is accepted by El.) If the elements of D(Pl) are the same as those of

D(P2) then D(Pl) equals D(P2). If D(Pl) contains D(P2) but there are

elements of D(Pl) not in D(P2) then D(Pl) Is greater than D(P2).

We may obtain an informal characterization of the d.eclarative power

of E-path expressions by identifying the properties of the finite state

machines to which they are equivalent. The state machine corresponding

to an E-path has the following properties:-

1) It is strongly connected (J.2).

2) It only has one state transition to represent any procedure

execution (an equivalent statement of 3.3).

3) It has no non-nested loops. That is, E-pat.hs may generate loops of
the form:-
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B

where the loops are properly nested, but not of the form:-

F

4) It has no non-nested selections. That is, E-paths may generate

selections of the form:-

where the selections are nested, but not of the form:-

5) It allows no parallelism. (This follows directly from 1)

and amounts to an E-path corresponding to one state machine, not

several independent ones.)

The potential power of expression of synchronization belonging to

the implementation of the E-paths may be identified as equivalent to the

expressive power of state machines in which no two transitions share the

same name. This includes state machines with properties such as non-nested

loops and selections as in 3) and 4) above. Thus, to conclude the

discussion of the E-path notation we shall briefly consider other
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notations which would exploit further this implementation scheme to

improve upon the declarative power of E-path expressions.

3.7 REMARKS ON MODIFICATIONS TO THE NOTATION.

We will only consider modifications which would take advantage of

the implem,entation scheme described above to increase the declarative

power ot the notation. In addition, we shall require the modifications

to allow expressions of the notation to be checked syntactically to

determine that they may be implemented using the desired mechanism, Thus,

tor example, we shall not consider permitting any regular expression to be

used within an E-path expression. Such expressions would require more

than a trivial syntactic analysis before a decision could be made that

they were implementable (for instance, by minimizing the state machine

given by 2.19 corresponding to the regular expression). We will

demonstrate that, having such a fixed implementation scheme, increasing

the power of declaration of the path notation is closely linked with the

structure we wish to impose on synchronization specifications. We will

describe two modifications which are successively more powerful and which,

as a result, lose structure.

The first modification replaces the Kleene star by a loop and exit

mechanism. The loop does not terminate until an exit is taken. The

modified notation allows some non-nested loops and selections to be

expressed. For example, we may have:-

loop ( B ( C , E exit D ) F) end

which corresponds to the state machine:-
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initial

state

or we may have:-

path loop (A loop ( ( B,( D ( E exit, F )}} C exit G }end

which has the state machine representation:-

initial

state

However, the modified notation allows expressions to be written which

are not strongly connected. For example:-

C ) end

which has the state machine representation:-

where C may never occur and A may occur once only.

The second modification attaches a label to any sequence. Each

procedure name in the path expression may be followed by a goto. This

notation allows the full potential of the implementation to be utilized.

The problem we have outlined above is one of language design, a trade-off

between the power of description, understandability, and possibility of
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error. We shall not concern ourselves further with the solution to this

problem.

3.8 A SUMMARY OF E-PATH EXPRESSIONS.

We have defined a path notation by giving a set of productions

which generate a synchronization expression based on regular expressions.

Each path expression could be represented by a finite state machine. The

notation was constructed so that path expressions would have corresponding

state machines with properties which would allow them to be easily

implemented using P and V operations on binary semaphores. Finally, we

gave two possible ways in which the power of synchronization of a path

notation could be characterized,and discussed the E-path notation with
respect to one of them.
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CRAPrER 4

PROCESSES AND PATH EXPRESSIONS.

The elementa~ path notation is defined by a set of productions

and a meaning is attached to an expression of the notation by relating

it to a state machine or regular expression. Such a state machine or

regular expression accepts an alphabet composed of the procedure names

which are synchronized by the path expression. The path expression

permits the execution by processes of these procedures in the same

sequence as the corresponding state machine would accept the names of

the procedures. In this chapter we shall provide a more formal

description of the relationship between path expressions and processes.

The finite state machine corresponding to an elementa~ path

expression can be represented as a State Machine Petri net (2.9). In

addition, a general process can be represented by a Petri net of the

appropriate kind, see (Petri,1962). We shall introduce a Petri net

model for programs consisting of systems of processes and path expressions

to provide a framework for the study of the impact of process structuring

and path structuring on the synchronization properties of programs. We
can then demonstrate some of the more obvious results from our model:-

a) The correctness of the implementation of path expressions. (In

later chapters we shall demonstrate the correctness of

implementations of path expressions belonging to other path

notations using the same technique.)

b) A classification of processes based upon the model. For one

such class, together with a subclass of the E-path notation,

there exists a simple criterion which guarantees freedom from

deadlock.
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c) The structuring properties that a type definition imposes on

the representation of processes and paths, and the usefulness

of separating the specification of an object from its .

implementation.

d) Wherever possible, how a general study could be organized to

investigate the synchronization properties of programs described
using that model.

The model of a program is presented first, and this will be used to

describe the relationship between the E-path notation and processes.

We will then present some of the results from our model.

4.1 PATH EXPRESSIONS AND SIMULATING NETS.

We shall use Petri nets in our model of a program to represent E-paths

and to define their meaning. By the use of Petri nets we can provide a

machine independent definition of the semantic meaning of the E-paths.

The problems of scheduling which frequently arise to confuse the issue

of synchronization can be left entirely arbitrary. (The effects ef

different scheduling algorithms on synchronization primitives have been a

source of muoh dilCUI.ioD, tor example ••• (Lipto~ 1973).) Th.4••oriptioD
of E-path expressions will involve only synchronization, allowing a greater

freedom in the way these paths may be implemented. This is reflected in

the Petri net representation. (For example, the work of Patil (Patil,1975)

and others has shown that such Petri nets can be realized with electronic

circuits, hence permitting hardware implementations of E-paths.) In

addition, Petri nets provide a mathematical tool (Lautenbach and Schmid,

1974) about which many theorems and classifications are known or being

developed. Hence they provide a convenient tool with which to analyze

path expressions and their interactions with processes.
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A Petri net whose transitions are labelled with the names of the

procedures in a path expression is the simulating ~ ~ that l!!h
expression if and only if it generates the sequence of actions which are

accepted by the path expression.

(A sequence is generated by a labelled Petri net by repeatedly firing

an enabled transition and recording its label as the next member of the

sequence.) We shall call simulating nets of E-paths E-nets for short.

Translation of an E-path expression into a corresponding E-net is

accomplished trivially by.using the state machine constructed by 3.1 to

specify the corresponding State Machine Petri net (2.7). The initial state

of the state machine is represented by marking the corresponding place of

the net with a token. The following lemma follows directly:-

Lemma 4.1: E-nets are live and safe.

Proof: Prom 3.2 the state machine net will be strongly connected (2.8),

and by construction it will have one marker. Hence, by 2.11 it is

live and safe.

In the present context, the properties of liveness and safeness add

nothing further to the understanding of E-path expressions. However, they
will become important later when we consider problems of deadlock and the

possibility of simultaneous execution of a given procedure.

402 AN ABSTRACT MODEL OF A PROCESS.

An abstract model of a process, for the purposes of this thesis,

consists of a characterization of a process by means of a marked Petri

net (called the simulating net of the process) which generates a set of

sequences of actions that model the execution of the code of the process.

The dynamic behaviour of the process is represented by the movement of
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the simulating nets of E-paths, transitions will be used to represent

tokens through the net as the transitions fire. In a similar fashion to

actions (that is, occurrences of events) and will be labelled by the piece

of code that they represent. Such models have been used by Patil (Patil,

1971), Schmid (Schmi~1974), Lautenbach (Lautenbach,1974), and others.

This model concentrates on representing the 'control structure' of a

process and the notion of data and value are abstracted.

In general, each process of a system is represented by a separate

simulating net. However, if processes can communicate with each other,

this will be represented by connecting their corresponding nets with arcs

and intermediate places. Such an intermediate place will both be an

output place of a transition belonging to the process initiating the

communication, and an input place of a transition in the process receiving

that communication. For more complex forms of interprocess communication

we allow the use of shared procedures. The body of the procedure is

represented by a single subnet with one input place and one output place.

Each call of the procedure in each process is represented by a transition

representing the invocation and prologue of the procedure, a place to mark

return of the procedure. For example, a procedure P which is invoked

from only one point in a process would be represented by:-

Invocation and A place representing Epilogue and

prologue of P the condition that a return of P

(call_P) • procedure call has (return_P) •

occurred.

",-- - - - --- ........ .....'" subnet representing body ...."

" of procedure P •
..... ---.___._----
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Suppose that P can be called from two points in separate processes.

Then we would represent P by:-

Invocation and

prologue of P

(call_P) •

Places representing

the conditions that

procedure calls

have occurred.

Epilogue and

return of P

(return_P) •

Process A.
-- --- - - - --- -- --", Subnet representing body

"
of shared procedure P. ",.... .,.- ------- - - - - -

Process B.-.~ ~

(Note that if both processes invoke P at approximately the same moment

the input places to P will not be safe. However, we may be able to assert

that it is n-safe for some n greater than zero (2.4,2.5). Hence, we may

use this characterization to investigate whether a given procedure may

be executed simultaneously by several processes by using the notion of

safeness and appropriate theorems from Petri net theory.)

In principle, our model ought to represent every atomic action

executable by each process. However, this would lead to extremely

cumbersome simulating nets and would obscure our real purpose. Therefore

we will introduce abbreviations which will allow us to collapse whole

subnets into single transitions when this does not affect our results.

To avoid the general problem of deciding whether or not a particular

abbreviation can be made (Laue; 1972), we shall restrict their use and

form. Abbreviations will be used to remove unwanted detail from the

discussions on synchronization, while the form of these abbreviations

will be restricted to ensure the retention of those properties of the
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program we wish to investigate. In general, we shall restrict

abbreviations to substituting single transitions for subnets which

correspond to subsequences of some of the sequences of actions generated

by a simulating net.

Hence, for example, suppose we have the simulating net:-

which generates the set of sequences:-

A B c c D E

or A B G H D E

or A B J K D E

then subsequences of some of those sequences are:-

c c

or G H.

These may be abbreviated to a single transition X, the resulting net

being:-

A

o~·I-..j
EII())--·*I _...,.,.O

which generates the set of sequences:-

A B X D E

or A B J K D E
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In particular, the form of the abbreviations will be as follows:-

a) For a subnet representing a sequence we can abbreviate the sequence

from the form:-

A B

0 -, -0 ·1 -0
to:-

A;B
0 1 -0

b) For a subnet of the form:-

A:: :00=

we can substitute the abbreviation:-

A,B
0 -I -0

c) For a subnet of the form:-

In+1
In+2

I
m

where I1-In are input places only of transition A,

or f~r a subnet of the form:-



O~1

0~2
•
• A B
•

0q

we can substitute the following abbreviation:-

•
•
•

for all values of m, p and q such that 0 ~ n ~ m and 0 ~ p ~ q.

d) For a subnet of the form of a procedure call:-

Procedure body

we can abbreviate the body and calls of the procedure by a set

of single transitions, provided that we are not interested in

investigating whether that procedure may be executed simultaneously

by several processes:-
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where n, m, p and q ~ 1.

In the unabbreviated net, P may be enabled by the firing of A or C.

The abbreviation is to replace the single transition for the procedure

P by a set of transitions all representing P. A transition

labelled P can fire, in the abbreviation, whenever the single

transition labelled P in the original net can fire.

Lemma 4.2: The abbreviations a), b), c) and d) leave the behaviour

of the surrounding simulating nets unchanged.

Proof: For a) and b) the proof is trivial. For c) we note that there is

no way in which the surrounding net can distinguish between the

firing of an A and the firing of a B. In the first subnet form of c),

the surrounding net having deposited token. on eaoh ot 11-In oannot

remove them since these places are only input places to transition

A. Hence, it cannot detect an A occurring until a B has

occurred. In the second subnet form, the occurrence of an A implies

the occurrence of a B and hence is independent from the surrounding

net.

Finally, for d), if A fires in the original net, first P and

then B must eventually fir~marking places at the ends of the arcs

b1-bm• The actual occurrences of A, P or B are indistinguishable
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from each other with respect to the surrounding net. Hence, making

the abbreviation does not alter the behaviour of the surrounding net.

Q.E.D.

4.3 A MODEL FOR A PROGRAM CONSISTING OF PATHS AND PROCESSES.

The model of a process may be combined with the Petri net

representation of E-paths given in Chapter 2 to provide a model for

programs. A program may include several processes and path expressions.

The individual Petri net representations of these paths and processes

may be combined by identifying individual actions in the paths and processes

and ensuring that they may only occur when both the set of processes

requests those actions, and the set of paths permi tf' those actions to

occur. The following intersection transformation gives the required

combination:-

TR4.3 Intersection transformation for processes and E-paths.

1) Abbreviate all calls upon shared procedures using 4.2 d).

2) A given action or procedure name will occur once only in a set

of E-path expressions as a result of the restriction on the repetition

of names within and between E-paths given in Chapter 3. Hence, for

each labelled transition in the simulating nets of the path

expressions there will be a set of transitions labelled with an

identical name in the simulating nets of the processes. Perform

the following transformation on such transitions:-
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path •••
A0-+0 ...

c:::==[>
path •••

...A
process •••o-f.<) ... process •••

A
process •••o+o... process ••• ...
The initial marking of the net is left unchanged by the transformation.

The firing of a transition in the simulating net of the process is now

made to be dependent on the appropriate condition holding in the simulating

net of the path. This construction places the synchronization around the

procedure call mechanism. (This may be seen by expanding the shared

procedure abbreviation for A in the above transformation.) Hence, we may

examine the safeness of the input and output places of a shared procedure

body to determine whether it is in a 'critical section' or may be executed

simultaneously by several processes.

Example of a program consisting of paths and processes.

Two processes are communicating with each other by sending messages

through a buffer. An E-path synohronizes the use of the buffer so that

the action of sending a message must be followed by the action of receiving

path ( send_message receive_message )* end

This has the following simulating net:- (In this and later examples,

to illustrate the component subnets of a Petri net, we will draw some of

the arcs with dotted rather than solid lines. Of course, the dotted lines

have no role in any theoretical or analytical study of the nets. We shall

use dotted arcs in the following to distinguish the subnet corresponding
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to the simulating net of the E-path.)

send message
~----:J-----~
, - - -I-- - - - ,1

receive_message

The simulating net model of the two processes is:-

process A.

send_message

send_message I/O

.~----------~------------~~--------_.+-------~
process B. receive_message I/O

where the shared procedures 'send_message' and 'I/O' have been abbreviated.

Using the intersection transformation to combine the processes and paths

yields:-

.. ..
process A. ~ ...send_messa~;'P
® I" - 'f= - - - - : ~)-----t.~II----___', -0

J

I/O

send_message

" -----.~---------1~----------~
process B, receive_message I/O

Finally, to examine whether the buffer may be accessed simultaneously

by processes, we may expand the procedure call abbreviations and find

whether the net is safe:-

62.



,
I

~
/ '\

I' ~
I ,
I process
\, •
" <,

" " "--- - - ----•
process B.

,

~\
I
I
I

receive_message

The input and output place to send_message is one safe because of the

surrounding path expression net. The input and output places of I/O are not

one safe (for example, if send_message occurs followed by receive_message ).

We have introduced a model of a program based on Petri nets. In the

following section we shall investigate the structure imposed upon

synchronization and co-ordination by type definitions, describing this

structure by means of the model of a program.

4.4 TYPES.

To complete the model of a program we shall discuss a representation

for types and objects created by instantiating types. This will serve

two purposes:-

1) It will permit a program to be factored into logical units which

may be repres~nted independently.

2) It will allow an investigation into the st ructure resulting from

associating path expressions with type definitions to describe

shared objects.
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The representation for a ~ will be a Petri net which is used as

a definition for the construction of nets representing individual

instances of that type (ioe., objects). As such, the representation of

a type does not appear in a program, although instances of its

representation will occur. The type may contain calls upon procedures not

included in that type and hence a characterization of a particular type is
considered with the surrounding program or environment in which it is

defined.

An instance or object created from a type is a subnet of the program

which is isomorphic (Hara~,1969) to the net representing the type. The

transition labels will be different; if the Simula dot notation is followed,

then a transition labelled (name) in the type definition will appear as:-

(identifier_of_instance) • (name)

in the object.

(Note that we wish to use a Simula-like dot notation for its

convenience, without entering into a discussion about the use and

representation of reference variables. Hence we shall restrict the notation
we use to meet our requirements and represent that notation in the

simulating net in the simplest possible way.)

For the purposes of investigating program behaviour, the properties
of a given type definition will recur in each of the subnets of the objects

in the programo Hence, such investigations can be simplified to an

examination of the connections of the subnets of each object to the

surrounding program net and the way in which these connections affect the

internal properties of the object. The number and manner of connections
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which can be made from an instance of a type to its surrounding program

is restricted. In accordance with such programming languages as Pascal

and its monitors, the restriction we impose is that all the connections

made in this way must be done through a group of procedures called the

operations (Campbell and Habermann, 1974) of the type (these are termed

entr,y procedures in monitors). Hence, the connections will be made, in

terms of the Petri net representation, as procedure calls.

Example of the use of types in a program of path expressions and processes.

A compiler has been written to compile code using three passes

corresponding to lexical analysis, semantic analysis and code production.

Each pass of the compiler is implemented by a separate process, these

processes communicating through a buffering system to permit concurrent

operation. The lexical analysis produces output called 'tokens', the

semantic analysis produces output called 'I-code' and the code production

produces output called 'O-code'. Buffering is required for the tempora~

storage of the 'tokens' and the 'I-code', and is provided by an instance

of type 'buffer'. Each instance of type 'buffer' has two 'frames' which

are used to store information. These instances of 'frame' are used

alternately, and one may be '.mpti.d' whil.t the other 1. 'filled'. The
type 'frame' has two operations, 'fill' and 'empty', and they are

synchronized by the following E-path expression:-

path ( fill empty )* end

The type 'frame' can be described by the following net (the E-net

corresponding to the E-path is shown with dotted arcs):-
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fillO~------~~----~·OOperation fill. ..,.
~ bOperation empty. '"~.'O~--------·~F--------~·Oempty

The type 'butter' has two operations 'read' and 'write'. The operation

'write' chooses between tilling a 'trame' 'A' or a 'trame' 'B'. The

choice is made alternately and is entorced by a subnet. The operation

'read' chooses between emptying a 'trame' 'A' or a 'trame' 'B'. Again,

the choice is made alternately and is entorced by a subnet. The type I

'butter' is shown below. 'trame' 'A' is distinguished by dotted arcs,

and the alternating choice mechanism of 'frame' 'A' or 'B' by solid arcs.
..... ' .'..~ . ...:."'"

Operation write .' ~~ ." '.'~. - - r-.,.
/A fOU : a.rrn - '_:o""'r\0:- .-:-:-:-:.:-....... ~...._._._1__ -1~ ~ V

~ 6 ~ ¢. . " ,-

o:-0o~oo.:oo~oo. oo:~o •• mpty 0: lB.empty __ --:.-P
Operat10n read, ~ -0- - _- ..., _---- .

" - - --- - ..- .

- -

The processes use operations on two instances ot a butfer called

'tokens' and 'I-code'. In the following diagram, the individual instances

of buffer are distinguished by dotted and dashed arcs respectively. The

processes are distinguished by solid arcs.
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input_source_text.

tokens.A. fill tokens.B. fill
------, ----- ....... ----.-~-,_,;/,,'-i::::-----~~:Q~~~-...: ~~J--..'.~:-'-'--

.". \!) ..........- ..- ------------ -------.....o----------~- -'9 ~ --9
o-_-<:~~----':f~-_.---'-(!).. - - - -- -- --J'" --

" ------- ..0--------- ..... _--.., .-_-_-_-_-_----.....c.-..:.:- -- - -- _- ,. ...
--_-----_ .....

tokens.A. empty. tokens. B. empty.

semantic_analysis,

I-code.A. fill. I-code.B. filL

output_code.

.....' .. ... . .. ... .. ..... .. ~........

:::,::.:.:•.-: I~..:~:::..••:::,:~:~,,::~:~~.::::,:':~:1" .'.,,".:.:.::.: ..::::.;
.» j::: ...······..·..··~· ..·..········..···:.d....

<;) 6 c{) Q
• :i:'; :.:::" '" .·':-:·t.;.:f.:;':·· :'. '" 0-· J:...'

-; .,._

, " " : ;:::: :.:: ·.·:·.··:·~:7..2.:,~~~.:.:;~.;:: :::~ <:". : ::..-::..
.. ... ..... . . . , . ..'..................

I-code.A. empty I-code.B. empty,
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In this last example, the structure of the program into various objects

corresponding to type definitions is reflected in the final simulating net.

The connections from such objects to the surrounding net are uniform with

respect to their original type definition as a result of the restriction

that connections of such a subnet can only be made through operations to

its surrounding net. Hence, properties that can be shown about the

original type definition may be applied to instances of the type definition,

given that the operations are used in the correct manner.

4.5 CORRECTNESS OF IMPLEMENTATION OF E-PATH EXPRESSIONS.

We can now show that the implementation described in Chapter 3 using

semaphores and P, V operations is correct with respect to the presentation

that we have described for paths and processes in that they both generate

the same .equences of actions. We shall use the realization given by

Lautenbach and Schmid of a semaphore and the operations upon it.

Petri net representation of a semaphore (Lautenbach and Schmid,1974).

Lautenbach and Schmid describe a net repre~ntation for a
semaphore which corresponds to the informal definition given by Dijkstra

(D1jk.tr.,'968a). From their Petri net representation, they derive

the semaphore theorem of Habermann (Habermann,1972) which describes a

special invariant characterizing the way in which the primitives work.

The net they give is as follows:-

1 • process 2.
I

signal.
place s containing _jL_¢ wait 1.

wait 2.
I
t •
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Lautenbach and Schmid write:-

'In this Petri net the semaphore is represented by the place 8. The

standard signal (s) operation corresponds to the firing of the

transitions "signal" and possibly "wait2", and the wait(s) operation

to the firing of the transitions "waitl" and possibly "wait2",

whereby it is presumed that the transition "wait2" fires as often as

possible. '

They give the semaphore theorem as:-

Number of firings of wait2 = minimum( number of firings of waitl,

C + number of firings of signal)>>

where C is a constant representing the initial value of the semaphore.

Petri net representation of the P, V implementation of a procedure

synchronized by a path expression.

Suppose we have a procedure q synchronized by an E-path expression.

The general form of that procedure, when implemented using the mechanism

described in Chapter 3, is as follows:-

procedure q: begin p(s.};~ (body of procedure q); V(s.} end;
J -

where p(s.} is in the prologue of q and V(s.) is in the epilogue. We
~ J

shall represent the P operation as occurring at the beginning of the

procedure prologue, before the procedure call mechanism. Similarly, the

V operation will occur at the end of the procedure epilogue, after the

procedure return mechanitim. Only one semaphore in the E-path Unplementatiot'\_

may have a value 1. Since q begins by executing a P operation, the V

operation cannot be performed on a semaphore with value 1. Hence, the

binary semaphores behave as counting semaphores with values 0 and 1,
permitting q to be repres~nted as a Petri net using the subnets for a

semaphore described above:-
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prologue epilogue

call of body return from body

of procedure of procedure

wait1 wait2 q (q). q ( ~ ). signal

body of procedure q

.. (possibly shared with

other processes).

In general, the body of the procedure will be shared between many

processes and the semaphores will have other P and V (wait and signal)

operations performed on them by different procedure prologues and epilogues

(these are represented in the diagram by additional arcs to and from s.,
1

s. and the body of the procedure q). From abbreviation c) we may contract
J

'wait2' and the call of procedure q ( q ) to a single transition.

Similarly, the return from procedure q ( ~ ) and 'signal' may be contracted

to a single transition:-

wait1 q

body of procedure q.

Finally, we may apply the abbreviation c) to wait1 and the new q to give

a transition q', and the abbreviation d) to q' and ~ and the body of q

to give the transition q in a net:-
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q

s.
J

By lemma 4.2, these abbreviations will not affect the behaviour of the

surrounding net. Hbwever, TR4.3 gives for the same procedure q the

following characterization:-

process process... _
q

The characterization we have obtained from abbreviating the Petri net

representation of the implementation scheme for procedure q is identical

to that given by TR4.3. In addition, our earlier analogy in Chapter 3

between semaphores and states (places in the E-net of an E-path) is clearly

shown by the correspondence of the places in the path above to the

semaphores s. and s .•
l. J

4.6 SCHEDULING POWER.

Associated with a given synchronization specification is an implicit

mechanism which resolves conflicts between alternate sets of sequences of

actions which are permitted by that specification. A conflict is identifieQ

in the simulating net of a path expression and process by transitions which

are in conflict over places. (See Chapter 2 for a definition of conflict in

a Petri net). Lipton defines a scheduler for a generalized parallel procesQ

as a predicate on the timings of that process, where a timing is a finite o~

infinite sequence of actions of that process (Lipton,1973). The

implementation of a synchronization specification (whether the specificatio~
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is given by a path expression or a P or V operation on a semaphore) must

permit exactly the sets of sequences of actions which are permitted by the

specification and must also include a scheduler which will resolve possible

conflicts in that specification. Such a scheduler will be called the

implicit scheduler of the synchronization specification. Suppose we have

two synchronization notations NI and N2~ The scheduling power of NI, denoted

SP(Nl) is at least that of SP(N2) if every expression E2 of N2 has an

implementation in which all the conflicts of E2 are expressed as conflicts

of specifications written in NI. That is, if the conflicts of N2 can be

resolved by the implicit scheduler of NI. In addition, we define:-

SP(Nl) equals SP(N2) if SP(Nl) is at least SP(N2)

and SP(N2) is at least SP(Nl).

SP(Nl) is greater than SP(N2) if SP(Nl) is at least SP(N2)

but there exists at least one conflict in an expression of NI

which cannot be expressed as conflicts in expressions of N2.

As an example of the scheduling power of the E-path notation, we shall

construct a semaphore notation which has equal scheduling power. The semaphore

has two states (corresponding to 0 and 1), but unlike a binary semaphore a V

operation may only be completed if the semaphore is in the state corresponding

to O. This semaphore notation may be used to construct critical sections

and to signal between processes which are the basic requirements outlined by

Dijkstra for constructing synchronization and co-ordination between concurrent

processes (Dijkstra,1968b). The semaphore is described by the type definition

(Chapter 1) as:-

~ semaphore;
path ( V ; P )* end;

procedure P: null;

procedure V: null;

operations P, V

endtypei
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Declarations of the above type:-

semaphore s;

introduce semaphores which have an initial 'value' zero. Semaphores with

initial 'value' one may be introduced by declaring a further type semaphorel
whose path expression has the positions of P and V reversed. Synchronization

expressions written in this notation will have the form:-

s.V and s.P

The scheduling power of the E-path notation is at least that of this

semaphore notation because the implementatiqn expresses every conflict which

may arise in a P or V expression as a conflict in an E-path expression. Supposes

however, we wished to implement E-path expressions in terms of this semaphore

notation. Trivially, we may substitute this semaphore notation for the binary

semaphore notation we used in 3.5 to implement E-paths. Thus, we conclude that

the scheduling power of this semaphore notation is at least that of the E-path

notation, and hence that the two notations have equal scheduling power.

Finally, we will show that this semaphore notation conforms to the

semaphore theorem of Habermann (Habermann,l972). The type semaphore above can

be represented by the following simulating net using the ideas of 4.4:-

---.0..- -

Opera~ion V

V

____-I\- __
... - ~ -

(To distinguish the simulating net of the E-path, its arcs are dashed.)

The input place to transition P is only an input place to transition P (a

process cannot request a P operation on more than one semaphore at a time)

and we may introduce an additional transition before P which may be removed by

application of abbreviation c) without affecting the synchronization
specification. This gives the net:-
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Ope ra tLcn V Ope.ration P
\

'~ ,- ~ .--. -------

Pl

v
-----·0---, .... .... - ...

P

The Petri net of a semaphore given by Lautenbach (4.5) is identical to the

above net except for directed arcs from P to V and the additional marked
place. Lautenbach derives from such a net the semaphore theorem of

Habermann. The extra arcs and place in the above net impose the following

additional restriction on the firing of P and V:-

o ~ number of Vs number of Ps ~ 1.

This restriction corresponds to the difference between this semaphore notation a~
and a counting semaphore notation.

407 A CLASSIFICATION OF PROCESSES.

A study of general processes and their interactions with path

expressions would be a substantial task. However, several subclasses

of processes may be identified and are useful. These subclasses of

processes allow certain aspects to be studied. The classification of

processes will be restricted to ones that may be described by regular

expressions. The first classification we shall make is to describe

E-processes (these processes resemble E-paths) and show that a criterion

exists which will guarantee freedom from deadlock for a program

consisting of such processes and E-paths. In later chapters we shall

introduce other classes of processes which have differing properties.

E-processes.

We will characterize E-processes by means of a set of productions and

74.



restrictions using a similar technique to that used to describe E-paths.

E-process production rules.

p1 : E-process : := process ( p-sequence )* end

p2:

p3:

p-sequence 00_
00- p-unit [ p-sequence J

p-unit 00_
00- p-element * ; p-element

p-selection

p4: p-selection : := p-element [ p-selection J

p5: p-element o ._..- pro cedurename

( p-selection [ ; p-sequence J )
Restriction R1: No procedurename may occur more than once in a process.

Restriction R2: No procedurename may occur in more than one process.

The two restrictions and the productions are almost identical to those

for E-paths and serve a similar purpose. Thus, no procedure name may be

executed under more than one sequencing condition. The corresponding

state machine to an E-process can be constructed by treating the

expression a found in process a ~ as a regular expression and applying

the construction 2019. Because of the similarity between E-path

expressions and E-processes we may use 3.1" to simplify the construction,
and the results obtained in Chapter 3 for E-paths and their corresponding

state machines also apply to E-processes and their corresponding state

machines. The simulating net for an E-process is trivially generated

by constructing the State Machine Petri net which is equivalent to the

state machine corresponding to that process.

Procedure declarationso

E-processes may execute procedures which have been given procedure

bodies. A procedure body is introduced by the following declaration:-
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p6: E-procedure : := procedure identifier p-element

where p-element is the body of the procedure with name 'identifier'.

The productions for lp-element' are those given in p5 above. The

following restriction applies to the use of procedures with E-paths and

E-processes: -

Restriction R3: No procedure named in a path expression may, during its

execution, invoke by a series of other procedure calls, another

procedure named in that path expression.

Restriction R3 is a necessary condition imposed to prevent

inappropriate procedure invocations leading to a deadlock. Further

discussion of this restriction and of hierarchies of procedure calls

involving path expressions is postponed until later in this chapter.

The restrictions R1 and R2 for E-processes include the procedure bodies

that the processes may execute. Thus, no procedure may be executed under

more than one sequencing condition. Alternatively, E-processes are

constructed so that constituent actions need not be implemented as true

procedure calls using a mechanism to represent the 'control flow', as would

b. neoes.ary it 1dent1oal aot1on' oould appear more than ono. in & ,1••n
process or in several processes. Instead, they may be implemented by a

simple 'macro expansion' and substitution. This allows us to reserve

the procedure call representation for more complex processes, and will

permit discussions of E-process behaviour to be simple. As a conclusion

to these remarks, a procedure body may be directly substituted for the

occurrence of the corresponding 'procedurename' in the appropriate process.

The procedure declaration introduces a regular expression lp-element'

which has a corresponding state machine and simulating net representation.
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The simulating net for a procedure body is the simulating net for

'p-element' enclosed between an event representing the invocation of

the procedure, and an event representing the return from the execution

of that procedure. The procedure declaration:-

procedure identifier: p-element

gives a procedure body:-

return identifiercall identifier simulating net

for p-element

which may be directly substituted in an E-process for the transition

labelled with the procedure name 'identifier'. (That is,

identifier call identifier return identifier

-___....·I-.....····
becomes:-

simulating net

for element

'rhe representation of a procedure invocation by an E-process is a

simplification of that given in 4.2; the place representing the condition

that a prooedure oa11 ha. been made is omitted.)

Example of an E-process.

Suppose that we have the following process:-

process ( read; calculate ; write_summa~ )* end

This has the simulating net:-

·0 ..I .O~"......-I )
calculate write_summa~read
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Procedure read may not be an atomic action and perhaps has a body

defined by the following procedure declaration:-

procedure read: ( open_file read file close file

which has the simulating net:-

call~re_ad-1.()~~_op_e_n_",,~*,i_l_e__ ~q5 close file return read

read record

Substituting the procedure body of read for read in the process gives:-

write_summary

Finally, for procedures whose bodies have been given by p6 and which

occur in an E-path, we make the following replacement in the body of the

E-net:-

proa.du:r.namlo .., ·0
call prooedurename return_prooedurenameo - ~ ·0 ·1 "0

Example of a simulating net for a set of E-paths, E-processes and

procedures.

The set ef E-paths, E-processes and procedures:-

process ( A )* end

process ( D )*~
procedure A: ( B ; C

path ( A ; D )* end,--'
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has the simulating net:~

call A B C return A

, -I -- __ J"\_ "
l -~--- I

&--~-----o-/

where the subnet corresponding to the path has dashed arcs. Note that the

dashed arcs and place between call A and return_A can be removed without

affecting the synchronization of the net.

Type definitions.

Types (as in Chapter 1) may be used in a program to introduce paths,

processes and procedures to represent objects. Instances of types have

their locally defined operations, procedures and actions identified and

distinguished from other instances by the use of the Simula dot notation.

Types for use with E-paths and E-processes are as follows:-

Produotion rule. for tyP•••

p7: type : : = ~ identifier ;
(collections of types, paths,

procedures, processes and instances

separated by semicolons) ;

operations < list of procedures>
endtype

The simulating net for a type definition is the simulating net for the

constituent path expressions and processes. For example, the simulating

net of the type uf,finition:-
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~ virtual_output_device;

path ( store ; retrieve )* end;

process (retrieve ; format ; output)* end;

procedure put: ( store ) ;

operations put

endtyPe;

is:-

output )

where the dashed lines represent the simulating net of the path expression.

Instances of a type are introduced as follows:-

pS: instance ::= (name_of_type) (identifier list separated by

commas)

The simulating net of an instance is a copy of the simulating net of
the corresponding type definition in which the labels on the transitions

of the net given by the type definition are replaced by the name of the

instance followed by a dot and the original label (see 4.4).

Finally, a program is given by the production:-

p9: program ..-..- begin (collections of types, paths, processes

procedures and instances separated by

semicolons.)

~.
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4.8 EXAMPLES OF PATHS AND PROCESSES.

The following set of examples illustrate programs, types, E-paths

and E-processes.

1. Synchronous processes (Bekker" 1974).
The following example was given by Bekkers and concerns the problem

of synchronizing two processes so that, at one stage of their execution,

each process must wait for the other process and the processes can then

restart together. For this particular solution, the processes are aware

of their separate identities. (In Chapter 5 we will give a solution in

which this is not the case.) The synchronization is incorporated in a

type definition called synchro:-

~ synchro;
arrivel depart2 )* end;

path arrive2 departl)* end;

procedure synkl: (arrivel departl);

procedure synk2: ( arrive2

operations synkl, synk2

.ndtYp"

depart2 );

If process 1 invokes synkl, it will execute arrivel and then wait to

execute depart1. It will only be able to proceed after the process 2

has executed arrive2. If process 2 executes synk2 before process 1 has

executed synkl, then it must wait to execute depart2.

2. Producer/Consumer processes.

The following examples describe several buffer systems in which

two processes, a producer and a consumer, communicate by placing messages

in two shared message slots.
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In the first example, the producer process ~reates a message by

executing either a procedure produce or produce', and places such

messages alternately in one slot and then the other. The consumer process

removes a message from each slot alternately, and consumes such messages

by executing either the procedure consume or consume'. Using the

requirements for a buffer which were given in 1.2 with respect to its

integrity, the following program may be constructed:-

begin

~ slot;
path ( write; read )* ~;

operations read, write

endtYpe;

slot A, B;

process produce; A.write ; produce' ; B.write )* ~;
process A.read ; consume; B.read ; consume' )* end;

~.
where read and write are procedures which perform reading and writing

on the butfer, the details of which, tor brevity, we have omitted.

The type definition of slot has a simulating net:-

write readGQ--~·I----~~()~--~·'--)
Two different instances of the type are created by the instantiation,

these nets being formed from the net description of the type by prefixing

the names with the identifier of the instance:-

A.write
..I -0

A. read

·1 )
B.write B.read<t__ ~I_.o_---=-.""'_1____,)
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Each individual process gives rise to a net as follows:-

produce A.write produce' B.write

..I ·0 "I ·0 ·1 ·0 -I
~

)
A.read consume B.read consume'

f ..I ...() -I "0 ..I ~O ~ )
Finally, we take the intersection of the process nets and path nets

giving:-

consume'

Considering each individual slot, since they are described by only one

path expression, Theorem 4.1 implies that the read and write operations

are live and safe:- that is they are mutually exclusive and it is

always possible to have a sequence of process invocations which will allow

anyone of them to be executed. It is trivial also to verify that the

final program is live and safe. The slots will always preserve the

integrity of the data they contain and synchronize the procedures reading

and writing correctly.

Let us now consider the buffer as a whole. It consists of two slots

and is dependent on the selection of the correct slot by the program. For

example, the following program deadlocks:-
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begin

~ slot;

path ( write ; read )* end;

operations write, read

endtype;

slot A, B;

process produce A.write )* end'--'
process ( B.read ; consume )* end;

end.

Another example of incorrect behaviour, but one which is less

noticeable, concerns the degree of parallelism permitted in a program.

For example, we have assumed in having two slots in the buffer that they

might be used in parallel. Suppose, however, that the buffer is used in

path ( write ; read )* end;

the following way:-

begin

~ slot;

operations write, read

endtype;

slot A, B;

process produce ; A.write ; produce' ; B.write ~;

process B.read ; consume; A.read ; consume' ~;

end.

then reading and writing can only take place in mutual exclusion.

To demonstrate the correct behaviour of the buffer in the first example,

we need to know about the processes using it. To continue a theme of the
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thesis we observe that if the selection of the slot is left to the buffer
to decide, then the buffer can be designed so as to be correct, irrespective

of the use that is made of it by the program in which it is declared.

Such a buffer will use the slots alternately for writing and reading.

The following type buffer will enforce the correct discipline on the

use of the slots by means of two paths; We shall assume that the type slot

has already been declared.

~ buffer;

!YE! ring;

slot A, B;

path ( readl • read2 )* end·, --'
writel ; write2 )* end;

procedure readl: ( A.read); procedure read2: ( B.read );

procedure writel: ( A.write ); procedure write2: ( B.write )j

operations readl, read2, writel, write2

endtype;

ring R;

procedure write': R.writel , R.write2 );

procedure read': R.readl , R.read2 );

operations read', write'

endtype;

The type buffer has two operations read' and write' and these

permit the buffer to be used by processes as if it contained a single

slot. The net representing each slot is as before, and the net

representing the type buffer can easily be constructed. The
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type mechanism provides a structuring mechanism both for the program and

for the simulating net for that program, and hence is useful in designing

and studying the behaviour of programs. This last example is similar to

the ringbuffer example of Chapter 1 for a ring with two slots. The

selection of a slot in procedures write' and read' and the path expression

synchronizing the use of the slots correspond to the pointer mechanism of

the earlier example.

The examples we have presented are simple and are easy to analyze.

For more complex programs we could use the formal proof techniques of their

properties using the mathematics and research of, for example, Petri

(Petri 1962), Lautenbach (Lautenbach,1973), and Holt and Commoner

(Holt and Commone~ 1970). However, such detailed investigations would be

lengthy and divert attention from the main theme of this thesis.

4.9 PROPERTIES OF E-PROCESSES.

The class of E-processes has several properties which are useful in

investigating program behaviour. Because of the similarity between

transformation rules and restrictions of E-paths and E-processes we can

a.Bert tha~l-

Lemma 4.4: An E-process has a live, safe, strongly connected simulating

net.

Proof: The proof follows directly by comparing the transformations,

productions and restrictions for E-paths and E-processes.

Since the restrictions we have imposed on processes do not allow

procedure names to occur in more than one process, the only interactions

between processes in a program of E-processes and E-paths must happen as a
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result of performing the intersection transformation. This transformation

combines paths and processes by means of combining their transitions.

Deadlock can only occur because two or more transitions have tokens on

their input places but are not enabled. (This follows because each

component subnet (from processes or path expression) is live, safe and

strongly connected.)

Example 1.

path ( A

path ( B

B )* end·--'
A )* end·--'

This has the simulating net :-

----0- ---
.__----0-- --

which is dead (that is, not live). (The dashed arcs denote an empty

cycle, i.e. a cycle containing no marker (2.12), and characterize the

deadlock situation.)

Example 2.

path ( A B )* end;

path ( C D )* end·--'
process B C )* end·--'
process ( D A )* end·--'

The corresponding simulating net to these paths and processes is:-

,,.,- --,

c D

--0---
"

which is again dead. (The dashed arcs denote an empty cycle.)
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However, there is at least one class of programs consisting of E-paths

and E-processes for which we may guarantee liveness (that is, the absence

of deadlock). Let Eo-paths and Eo-processes be E-paths and E-processes which

contain no selections or repetitions (except for path (•••)* ~). The

simulating net of Eo-processes and Eo-paths may be classified as follows

after the application of the intersection transformation:-

Theorem 4.5: T.he simulating net of a program consisting of Eo-paths and

Eo-processes is a safe Marked Graph (See 2.9).

Proof: First we show that such a net is a Marked Graph. Since there are

no selections or repetitions allowed in Eo-paths and Eo-processes,

the simulating nets will have places with only one input arc and one

output arc (see 2.19 and 3.1). The intersection transformation

applies only to transitions, leaving the places unchanged. Procedures

are expanded by substitution and hence there are no shared procedures

and no requirement for the net representation of a procedure call.

Thus the procedure mechanism introduces places with only one input

arc and one output arc. Therefore, the simulating net of a program

of Eo-paths and Eo-processes will have only places with one input

an4 output arc and will be a Marked Graph (2.9).

The simulating nets of indi.idual Eo-paths and Eo-processes are

safe. (4.1 and 4.4}. Since the sharing of procedures between processes

is excluded by R2, the procedure mechanism does not affect the

safeness of the simulating nets of the processes. Finally, safeness

is a property of places and since the intersection transformation

operates only on transitions it remains unaffected by 4.3.

Q.E.D.

The above classification allows us to choose a result concerning
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liveness from Petri net Theory (2.1 ,2.2) upon which a criterion can be

based for such programs to guarantee freedom from deadlock. We must

restrict such programs so that they are represented by Marked Graph

simulating nets which do not contain empty cycles. Consider the following

criterion:-

Criterion C4:

Given a set of Eo-paths and Eo-processes in a program,

then this set cannot contain paths and processes in

which there are procedures X1 to Xn forming sp-quences:-

X1 X2

X2 X3

Xn X1 ...
Example. The following program does not meet the criterion:-

path ( A ; B )* end;

process ( B ; C ; D E )* end·--'
nath ( C . G • H )* end'
~ " --'
process ( H ; A )* end;

since it contains the sequences:-

A B

B C

C H

H A
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Examples 1 and 2 above also dQ not satisfy the criterion.

Theorem 4.6. The criterion C4 is a necessa~ and sufficient condition

for programs consi~~ing of Eo-paths and Eo-processes to have a live

and safe Marked Graph simulating net.

Proof: The simulating net of a program which meets C4 is a safe Marked Graph

Petri net from Theorem 4.5. A n~cessary and sufficient condition

for a Marked Graph to be live is that it contains no empty cycle

(2.12). The individual simulating nets of the Eo-paths and

Eo-processes are live by 4.1 and 4.4. The intersection transformation

applies only to transitions, and leaves the places unchanged. Because

there are no shared procedures in E-processes, there is no

requirement for a net representation of a procedure call and no further

interconnections between processes. Hence, empty cycles can only be

generated by the intersection transformation. It is trivial to

verify that a program of Eo-paths and Eo-processes containing a

forbidden set of sequences under 04 will have a simulating net which

has an empty cycle:-

The set of paths and processes will have individual simulating

nets as follows:-

X2-<r--t-Q.
X3

· . -o--t-O.

. . . . -0--+-0.
which become, under the intersection transformation:-
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X2... . ..
X3

.. ....~ ...

(The dotted lines between places indicate that the places belong

to the same component simulating net.)

Thus, the necessary condition is ~stablished.

Suppose an empty cycle exists in the simulating net of a

program of Eo-processes and Eo-paths. The circuit must have been

formed by the intersection transformation since all circuits in the

component nets have places which are live (4.1, 4.4). Suppose we

have an empty cycle:-

~ ... ~

ha .. ~
Then there must be a set of sequences from A to B, and a set of

sequences from B to A and we conclude that C4 is not met.

Thus, the sufficient condition is established.

Q.E.D.

In general, however, more complicated algorithms must be used to

detect deadlock in E-paths and E-processes. For example:-

path ( C ; A B )* end'-'
process ( (A , D) ; E ; B )* end;

process ( C )* end;

deadlocks. The simulating net is as follows:-
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E

--- .,- - - - - - -_ ..
Here, although no empty cycle is initially present, one may

form if a process executes the procedure D. The empty cycle which then

results is indicated in the diagram above by dashed arcs.

The next example has a dead transition A which corresponds to

starvation (Dijkstra,1968a):-

path ( (B C) A)* end', --'
process ( B ; ( C , A ) )* end;

with simulating net:-

B C

4.10 HIERARCHIES OF PROCEDURE CALLS INVOLVING PATH EXPRESSIONS.

So far in this chapter, we have discussed interactions between paths

and processes without investigating the effects of procedures within path

expressions invoking other procedures also named within path expressions.

First, we shall show that restriction R3 (no procedure named in a path

expression may, during its execution, invoke by a series of other

procedure calls another procedure named in that path expression) is
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a necessary condition to prevent deadlock.

Theorem 4.7: Restriction R3 is a necessary condition to prevent

deadlock.
Proof: Let X and Y be procedures named in the same path

expression such that X, during its execution, invokes (perhaps by a

series of procedure invocations) the procedure Y. Suppose a process

has invoked X and is about to execute Y. We have the following

marking on the simulating net of the path and process:-

call x

body of x

......
,.
.'

....
• 0 ••••••••••• 0'

The simulating net corresponding to the path expression is marked

with dashed lines, and that of the process is marked with solid

lines. Call_x has been enabled by both process and path and has fired.

Eventually, the process puts a marker in the input place of call_y.

The other input place of call_y must receive the token generated by

the firing of return_x. However, return_x cannot fire until call_y

and return_y have fired. Hence, we conclude that call_y cannot fire,

and the process is deadlocked.

Q.E.D.

Sometimes it will be impossible to write a set of synchronization and

co-ordination constraints in one path expression (see the Readers and

Writers problem in (Campbell and Habermann,1974)). Further, it may be of

advantage structurally and in design if synchronization cons'traints can

be written separately but applied to one particular set of operations.
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Example.

A file system has four operations:- read, write, open and

close. The file system requires that these operations are

synchronized for use in a parallel processing environment in the

following way:-

open; ( read, write) close )* end

For one particular use of the filing system as a buffer we require:-

~ath ( write; read )* ~

However, an E-path expression of this kind would contravene R2,

the restriction on repeating a name in more than one path. In

this example, we may impose a hierarchy of procedure calls so

that both synchronization constraints must be obeyed by defining

two new operations read' and write' and a path expression:-

path ( write' read' )* end

where

~ocedure write': write;

procedure read': read;

The filing system,used as a buffe~ now has operations open, read',

write', and close. However, the filing system may still be used

separately with read, write, open, and close.

In general, when a set of path expressions is used in this

way, care must be taken to avoid deadlock. In particular, we

make the following remark:-
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Let Pl synchronize executions of procedures pl and p2.

Let Ql synchronize executions of procedures ql and q2.

Further, suppose pl and ql have procedure bodies:-

procedure pl: ( body invokes q2 )

procedure ql: body invokes p2 )

Then, if pl and ql are executed simultaneously by two separate

processes, a deadlock may occur.

Proof: Suppose, the process executing pl invokes q2. If a second process

is executing ql, then the path expression Ql prevents the first

process from immediately executing q2. The first process is

suspended awaiting completion by the second process of the procedure

ql. Now suppose that the second process executing ql invokes p2.

The path expression prevents this process from immediately

executing p2 and it is suspended awaiting completion by the first

process of the procedure pl. Hence, the processes are deadlocked.

The above remark is illustrated by the following example:-

~ ( pl p2 )* end'-'
path ql , q2 )* end'--'
procedure pl: q2;

procedure ql: p2;

process (pl)* end;

process (ql)* end;

The simulating net of this set of paths and processes is shown below:-
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............................................... ,. .
.'

....
return_q1~

0 .
call_p1

...-..-a- -----.. .
,'q2 """ call_q1
,_ .....:>

--------- "- - - - --

where the simulating nets of the processes have solid arcs, the net of the

path P1 has dotted arcs, and that of the path Q1 has dashed arcs.

If both call_p1 and call_q1 fire, then deadlock ensues. Return_p1 and

return_q1 may not fire since, although both will have one input place

which is marked, they will have one input place which is empty.

Similarly for p2 and q2. Since there are only four tokens in the net,

this results in a deadlock. However, the deadlock does not necessarily

happen since the execution of procedure p1 may always precede that of

procedure q1.

4.11 SUMMARY OF PROCESSES AND PATH EXPRESSIONS.

In this chapter we have described a representation for processes

which allowed us to investigate the relation between paths and processes.

We were able to show that the E-path implementation of Chapter 3 is correct

with respect to this representation. A representation for types

was introduced, and this.illustrated the structuring properties that the type:

afford the description of objects, and in particular, when used with path

expressions, of shared objects.

An interesting class of processes was described which has useful
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propertie~ with respect to investigating program behaviour. Indeed, for
a subset of the class of paths and processes considered, a criterion

exists which guarantees the absence of deadlock. Finally, we have outlined

a few of the problems that may occur within hierarchies of procedure

calls involving path expressions.

91.



CHAPl'ER5

REGULAR PATH EXPRESSIONS.

The E-paths of Chapter 3 permitted the separation of synchronization

from the description of procedures and processes and could be used with

types to describe shared data objects.

The remainder of the thesis investigates possible alternatives and

improvements to the E-path notation. Even a simple modification to the

E-path notation may encounter difficulties as we shall show in Chapter 7

where we describe a parallel synchronization construction which can be added

to the notation. For example, adding the simultaneous construction of

Chapter 1 to a notation may result in the notation being more difficult

to understand, and more difficult to implement (see also Chapter 7).

An E-path uses a limited regular expression to specify synchronization.

The limitation consists of restricting the use of the Kleene star and

forbidding the repetition of a procedure name within a path. The

resulting set of expressions is less powerful in terms of declaring

synchronization than would be a path notation allowing the full generality

of regular expressions. In this Chapter, we shall investigate such a

Regular Path (R-path) notation.

5.1 REGULAR PATH EXPRESSION DEFINITION.

The R-path specifies the synchronization between the executions by

processes of a set of procedures using a regular expression embedded in a

~ end bracket. R-paths are given by the following production and

restriction: -
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Production rule for R-paths.

p1 : R-path ..-..- path ex end

where a is a regular expression of procedure names denoting the order in

which they may be executed by processes.

Restriction R1: A procedure name maY'not occur in more than one R-path.

Within an R-path, a given procedure name may be repeated several

times. We shall assume that different procedures always have different

names, and that therefore a repeated name in a path expression means that

a given action (represented by the execution of the procedure by a process)

may occur in more than one circumstance. The simulating net for an R-path

will represent the multiple occurrences of a procedure name in the

appropriate manner.

Examples of R-paths.

In 3.6 we remarked that non-nested selections and non-nested

repetitions could not be represented using E-paths. These may now,

however, be represented as R-paths:-

For the non-nested repetition or loop given by the state machine:-

we may write the R-path:-

path ( A B ( c D B )* E F )* .!lli!.

For the non-nested selection given by the state machine:-
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G

we may write the R-path:-

path ( A ( B c ) , ( D ( F c ) , E ) G )* end.

In both examples, the non-nested construction is reflected in the

repetition of procedure names. Other examples of R-paths follow :-

A file: The following R-path describes the synchronization of the

operations of a file:-

path ( open ( read* , write) close )* end

Pollowing execution of 'open' by a process, either zero or more reads

occur, or a single 'write'. Between opening and closing a til~ a

mixture of reads and writes is not permitted.

A buffer: The following buffer allows precisely two 'reads' to

be performed for eve~ 'write':-

path ( write read read )* end

R-paths as finite state acceptor mechanisms.

Givp.n an R-path expression, we may construct a finite (deterministic)

state machine for the regular expression which it contains using the

construction 2.19. In addition, we may minimize such state machines using
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the standard minimization algorithm involving the subset construction

of Myhill (Myhill,1957). Thus, we may use a finite state machine which

corresponds to the regular expression of the R-path as an equivalent

definition of the synchronization described by the R-path. This will be

of use in the representation of R-paths as simulating nets and in the

establishing of a correct implementation for R-paths in terms of other

synchronization primitives.

5.2 SIMULATING NETS OF R-PATHS.

As in Chapter 4, we shall describe the relationship between R-paths

and processes in our model of a program by means of Petri nets. The

simulating net (R-net) of ~ R-path expression is trivially obtained by

constructing the State Machine Petri net (2.7) which is equivalent to

the deterministic finite state machine corresponding to the regular

expression of the R-path. However, repeated procedure names in the R-path

may appear as separate transitions bearing the same label in the simulating

net. These transitions will be regarded as abbreviations for a calling

mechanism to a single transition to represent that particular procedure.

expression in much the same way as the procedure call mechanism does for

the processes in Chapter 4. The abbreviation is as follows:-

Suppose that procedure X occurs three times in an R-path, and hence

the R-net has three transitions labelled X:-

X

0-+-0
X

0-+-0
X

0-+0
These are abbreviations for the following subnet:-
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Thus, whenever X can occur in the abbreviated net, it occurs in the

unabbreviated net. Although the abbreviated simulating net is a State

Machine Petri net, the unabbreviated one will not be since in general

such a net will have transitions with more than one output or input

place (2.7). (These extra places will be introduced by the calling

mechanism.)

Lemma 5.1: R-nets are Simple Petri nets.

Proof: The calling mechanism which replaces a repeated transition name

introduces two transitions to manage the call. The first of these

two transitions shares one output place with all the other similar

transitions from other calling points in the R-net. Similarly, the

second of these two transitions shares one input place. No transition

is introduced which shares more than one place. Hence, by definition

2.10, an R-net is a Simple Petri net.

Q.E.D.

The simulating net for an R-path is constructed from the deterministic

state machine corresponding to the R-path because R-paths are acceptor

mechanisms for strings of procedure executions, whereas their simulating

nets generate those strings of procedure executions. Consider the following

state machine which is non-deterministic:-
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B

C

The state machine decides whether an A should be followed by a B or

a C when a B or a C is detected in the string of procedure executions

being accepted. However, the equivalent State Machine Petri net:-

generates either the sequence AB or AC, and this is detennined when the

event A occurs. The simulating nets of R-paths will be used to determine

the behaviour of paths and processes, and also to prove the correctness

of an implementation for R-paths. If the Petri net corresponding to a

non-deterministic state machine representation of an R-path is used as

the simulating net for that R-path, then the net will make decisions
before the information needed for that decision is available. Por example,

suppose the above net is a simulating net for an R-path and a process

invokes the procedure A. In general, it will not be possible to decide

whether a process is going to invoke a B or a C next. Thus, the

appropriate simulating net for an R-path expression is based upon a

deterministic s~te machine representation of that R-path. The simulating

net for the synchronization given in the example above would be:-
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Finally, we note that, in the interests of economy, the simulating
,

net for a given R-path should be constructed from a minimum detenninistic

state machine. However, whether or not they are will not in general

affect the results which follow in this chapter.

Examples of simulating nets of R-paths.

The following R-path:-

.p!!!! ( A B (A , C) )* end

has the minimum deterministic state machine:-

A

initial

state.

C

The corresponding simulating net contains abbreviations for the taIling
mechanism to the procedure A:-

Expanding the abbreviation for the calling mechanism of the procedure A

gives:-
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This next example illustrates that the repetition construction may

result in an abbreviated simulating net containing abbreviations for the

calling mechanism.· The R-path:-

~(A ( B , (C D)* E»* end;

has the abbreviated simulating net:-

C

(Note that the simulating net corresponds to a minimized state

machine and hence is unique up to isomorphism (2.20) with other

minimized state machines with the same behaviour. Thus there can be no

equivalent simulating net with the same behaviour which does not include

the use of the calling mechanism. This demonstrates that the E-path

notation must restrict the use of the Kleene star if the implementation
described in Chapter 3 is to be used for E-path expressions.)

A restriction on R-path expressions which has a useful property.

Consider the following modification to the production rule for

R-paths:-

pl' pl : : = path ( (1 )* end

where (1 is any regular expression. All R-paths which are written using

production pl' will be restricted to describing synchronization by means

of a regular expression consisting of a Kleene star embedding a fUrther
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regular expression. This has the following property:-

Suppose that an R-path has accepted a sequence of procedure

executions. Then there will be a sequence of procedure executions

permitted by the R-path which will allow a process to execute any

procedure in that R-path that it may invoke.

Thus, we have the following:-

Theorem 5.2: The transitions labelled with procedure names in the

unabbreviated simulating net (Simple Petri net) of the R-path given

by pl' will be live.

Proof: The abbreviated simulating net (State Machine Petri net) of the

R-path is equivalent to the regular expression of the R-path with

respect to its behaviour. The firing of a given transition in the

abbreviated net implies, by construction, the eventual firing of the

transition with the same label in the unabbreviated net. If an

R-path has accepted a sequence of procedure executions, then there

will be a corresponding sequence of labelled transitions which will

have fired in the abbreviated net and in the unabbreviated net.

Sinee the~. will b••• e~~.no. of p~pg.d~r•• xeo"tien. p.~itt.d

by the R-path which will allow a process to execute any procedure

in that R-path that it may invoke, we deduce that there must be a

sequence of firings of transitions which will lead to the firing of

a transition labelled with that name in both the abbreviated and

the unabbreviated nets. However, there is only one transition

labelled with that name in the unabbreviated.net, and hence it must

be this one that fires. Therefore, we conclude by definition 2.2

that the labelled transitions of the unabbreviated simulating net

must be live.

Q.E.D.
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The liveness property of the transitions labelled with procedure
names in the unabbreviated simulating net of an R-path is useful in proving

properties about systems of R-paths and processes. For example, if a

system involving only cyclic processes and R-paths has a simulating net in

which some of these labelled transitions are not live, then we may assume

that the specification of the system is incorrect since certain events

cannot recur. If the R-paths used in this system are not of the form

given by pl', then they will introduce labelled transitions which may not

be live under any combination of paths and processes. For example,

consider the following system composed of an R-path and an E-process:-

path ( A ; B )* ; B end

process ( A ; B )* ~

The transition labelled A in the simulating net for the system may

fire and it will always be followed by the transition B firing, and vice

versa. However, the following R-path gives rise to simulating nets in

which the labelled transitions A and B will never be live, no matter

what other processes are included in the system:-

Finally, we note that not all the transitions in a simulating net of

an R-path given by pl' are live. For example, the following R-path:-

path ( A B* )* end

has the abbreviated simulating net:-
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and the unabbreviated simulating net:-

which has two unlabelled transitions indicated by t which can fire only

once. Note, however, that the labelled transitions are always live, as

proved in Theorem 5.2.

Theorem 5.3: The simulating net of an R-path is safe.

Proof: The abbreviated simulating net of an R-path is safe by construction.

The unabbreviated net is identical to the abbreviated one except for

the calling mechanism. The calling mechanism increases the number of

tokens on the net to two, but these tokens are on different places.

The number of tokens is reduced back to one after the transition with

the appropriate procedure label has fired. Hence, the net is safe.

Q.E.D.

Thus, R-path expressions used in a restricted fonn share conmo n

programming properties with E-path expressions. The liveness of an
R-net produced by p1' implies that it is impossible to write an R-path

in this form which inherently contains a deadlock. Similarly, for all

R-paths, the safeness indicates that it is impossible for a given

synchronized procedure to be executed simultaneously by two or more

separate processes.

5.3 A MODEL FOR A PROGRAM CONSISTING OF PlI)CESSES AND R- PATHS.

We can use a similar charaeterizationfor the combination of R-paths

and processes to that used in Chapter 4 for E-paths and processes.
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An intersection transformation can be used directly to give the simulating

net for programs of R-paths and processes. However, R-paths allow

procedure names to be repeated. Suppose that the R-net for some R-path

has, when abbreviated, n transitions which correspond to n occurrences of

the same procedure. Further, suppose that the process simulating nets may

be abbreviated using 4.2d) so that they have r transitions representing

r invocations of that procedure. Each of the r invocations of that

procedure may be associated with one of the n invocations of that procedure

name in the path. Hence, there will be n x r possibilities of the

procedure occurring, which will be represented using the abbreviation 4.2d)

as n X r transitions in the simulating net of the program. The

intersection transformation isas follows:-

TR5.1 Intersection transformation for the nets of processes and R-paths.

Abbreviate the simulating nets of the R-paths. A given action

or procedure name will occur in only one of the simulating nets of

the R-paths because of restriction R1. For each different name in

the R-nets of the R-paths do the following:-

1. Identify the set of transitions in the abbreviated R-nets labelled

with that name.
2. If, in the process nets,the name corresponds to the body of a

procedure embedded in the procedure calling mechanism, then abbreviate

the calls upon that procedure by replacing them by transitions

labelled with that name.using abbreviation 4.2d). Identify the set

of transitions labelled with that name.

3. Apply the following transformation to the sets of transitions

identified.
Replace the subnet:-
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G ~ ~
n transitions

e x -8·1 belonging to

Petri net model

of the processes.

CB
X ·0·1

e- X .e- - - -- + - - - -- r tra.nsitions
X

@- - - - - + - - - -- -e belonging to a

simulating net

of an R-path.

e- X ----8- -- - +- -
(We will distinguish subnet s belonging to R-nets by giving them dashed arcs .)

by:- X
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n X r transitions

belonging to

the reSUl.ting

Petri net model

of the program

consisting of

the R-path and

processes.



The places of the subnets involved (for clarity the places are

labelled in the diagrams above) are not affected by the transformation

although they may be given more output or input arcs to transitions

labelled X. Each process of the n processes is connected to each of

the r paths through arcs to and from the n X r transitions. The n X r

transitions are all labelled with the same name and their firing

corresponds to the execution of the procedure X. Thus, the transitions

we have introduced above are abbreviations (4.2 d» for the calling

mechanism to a unique transition labelled X.

Example of the intersection transformation between an R-net and a Petri net
representing two processes.

The following R-path describes operations on a file. A validate

operation may be performed at any time in between reads and writes, but

must be done after a write. Many reads may occur without requiring a

validate operation on the file.

path ( validate (read* , write) )* end

The abbreviated simulating net of this R-path is as tollows:-

validate read read

write validate

For the purpose of this example, we shall ignore processes which validate

and write. We shall assume that there are two processes which read from

the file and a model of these two processes is shown below:-

read consume1a-4--o--~- ..... _ \- .. --------- ."

read consume2a -4--.0 --'- -..,
._ ... ----~--,
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Combining the nets of the processes and the simulating net of the

R-path using the intersection transformation gives:-

- __ --------

5.4 CLASSIFICATION OF PROCESSES.

As in Chapter 4 where we introduced an E-process as a counterpart to

an E-path we now introduce an R-process as a counterpart to an R-path.

R-processes are characterized by the following production and restriction:-

R-process production rule.

P2: R-process ..-..- process ex end

where ex is a regular expression.

Restriction R2: No procedure name may occur in more than one process

(including the procedures that the process may invoke).

The state machine corresponding to the regular expression in the

R-path can be constructed using 2.19. The simulating net for an

R-process is trivially generated by constructing the State Machine Petri

net which is equivalent to the state machine describing that process.

This State Machine Petri net is the abbreviated net for that process,

and the abbreviations may be expanded using 4.2 d) to give the
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actual simulating net in a similar manner to that for R-paths.

(A description of R-processes first appeared in (Lauer and Campbell,1975)

where the generalized Kleene star was not used.)

Procedure declaration.

Like E-processes, R-processes may exeeute procedures which have been

given procedure bodies. A procedure body is introduced by a declaration

given by the following production:-

P3: procedure : : = procedure identifier: (a)

where ~ is a regular expression.

The following restriction applies to the use of procedures with R-paths

and R-processes:-

Restriction Rl: No procedure named in a path expression may, during its

execution, invoke by a series of other procedure calls another

procedure named in that path expression •

. Restriction R3 is similar to that of R3 in Chapter 4, and is a

necessa~ condition imposed to prevent inappropriate procedure invocations

leading to deadlock (see 4.10).

To conclude the discussion of this classification of R-processes we

make the following remarks:-

R-processes are the first model of processes we have considered which

involve a realistic model of procedures. The procedures of E-processes

allow abstraction, ,operations on types, and hierarchically structured

synchronization when used with paths. The procedure of an R-process may,

in addition, be used to shorten the source text and the 'object code'

(in the model, the simulating nets). For example:-
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process ( compute ; fill ; compute ; fill )* end

procedure fill: (openfile ; write; closefile);

would generate the following simulating net using the procedure

call mechanism of 4.1:-

call fill return fill call fill return fill

Pinding a criterion which would ensure freedom from deadlock for

R-processes is more difficult than for E-processes. Let Ro-paths and

Ro-processes be R-paths and R-processes respectively, constructed from

a regular expression ( a )* where a contains no selections or repetitions.

Then there is no criterion analogous to C4 of Chapter 4 which ensures

freedom from deadlock (4.6) unless repeated names within individual

paths and processes are forbidden. Combining the simulating nets of

Ro-paths and Ro-processes using the intersection transformation does

not in general lead to a Marked Graph simulating net. (The intersection

transformation introduces shared place. when repeated name. occur.)
Of course, Ro-paths and Ro-processes are Eo-paths and Eo-processes if

repeated names are forbidden. Hence, we must examine other Petri net

classes and theorems if we require a criterion for freedom from deadlock

for R-paths and R-processes.

5.5 IMPLEMENTATIONS OP R-PATHS.

R-paths cannot be implemented in the simple manner described

for E-paths using a P operation in the prologue of the synchronized

procedure and a V operation in the epilogue. In Chapter 3 we demonstrated

that restrictions were necessary on a regular expression synchronization
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notation in order to allow an implementation in this manner, and showed

that the restrictions imposed in the E-path notation were sufficient.

In this chapter, instead of restricting the notation, we shall consider

other implementation mechanisms.

The implementation mechanism for R-paths must incorporate the state

machine nature of the R-paths within it in a more complex form than that

for E-paths. One such mechanism is to utilize the Petri net hardware

described by Patil (Pati~ 1915) to implement the simulating net of the

R-path directly. The other alternatives we suggest are based upon using

the state machine representation of the R-path expression. The first of

these alternatives that we shall suggest introduces a primitive operation

in terms of which R-paths may be simply implemented. Another solution is to

incorporate the state machine representing the regular expression of the

path in a controller mechanism which is consulted on procedure ent~ and

exit.

Implementation of R-paths using P,V selector operations on semaphores.

This, the first of the two alternative implementations we suggest

tor R-paths, i. a method which introduces two primiti.' operation. pI and
V' which have as arguments sets of semaphores. Informally, the

implementation scheme is based on representing the states of the state

machine corresponding to the R-path by semaphores, as in the implementation

for E-paths given in Chapter 3. However, a given procedure execution may

be accepted from one' of several possible states of the state machine, and

it may leave the state machine in one of possibly many states. A process

requesting to execute a given procedure will execute in the prologue to

that procedure a pI operation on all the semaphores corresponding to the

states from which that procedure execution may be accepted. The pI
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operation delays the process until it may decrement anyone of the set of

semaphores. Given the state from which a given procedure execution is

accepted, there is a state in which acceptance of the procedure execution

will leave the state machine. The semaphore which corresponds to this state

is incremented by the process executing a V' operation in the epilogue of

that procedure. The P' operation provides an index indicating the state

responsible for the executien of the procedure, and hence pI can be

regarded as a function. The V' operation uses this index to select the

appropriate semaphore to increment from amongst the set of possible

semaphores associated with the destination states of the transitions

involving this procedure. Hence, the V' operation has an extra argument,

i.e. that of the value of this index.

The P' or P selector operation will be written:-

P' (sl,82,•••,sn)

and will have the value v .•
J

The V' or V selector operation will be written:-

V' (vj ,.1' ,112', ••• ,.m')

where the value of V. indicates which semaphore from the set
J

sl' ,s2',•••,sm' is to be incremented.

Synchronized procedures will be implemented in the following form:-

procedure procedurename:

begin (comment start of prologue)

index semaphore_to_be_freed;

semaphore_to_be_freed := P(s1,s2, •••,sn);

(comment end of prologue)
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(body of procedure)

(comment start of epilogue)

V(semaphore_to_be_freed,sl' ,s2' ,•••sn');

(comment end of epilogue)

end of procedure;

I

(For simplicity, we have omitted any parameters that the procedure might

have.) sl-sn and sl'-sn' are semaphores, and semaphore_to_be_freed is

an index which records the value of the index of the semaphore

decremented by the pI operation. This index is then used to increment

the appropriate semaphore in the V' operation. For illustration purposes

we shall abbreviate the implementation to:-

P" (sl ,s2, •• 0 ,sn) procedurename VI(s11,s21, ••• ,snl)

The appropriate pI and V' operations and semaphores for an

implementation of an R-path expression can be generated from the

determiniltic state machin. corresponding to the regular expr.ssion of
the R-path (constructed by 2.19) using the informal description we have

given. (Later, we shall give a precise definition of the pI and V'

operations using the simulating nets of the R-paths.) An implementation

can be constructed by using the following algorithm:-

1) Declare and associate a semaphore with each state of the state

machine.

2) Give the semaphore corresponding to the initial state the initial

value one, and give all other semaphores the initial value zero.

3) A given procedure name may be used for the name of several
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transitions in a state machine. The P selector operation used

for that procedure includes, as arguments, all the semaphores

representing states from which these transitions may occur. To

each state which allows one of these transitions to occur, there

will be a state to which the state machine is taken as a result of

the transition occurring. The semaphores representing these

states are included in the V,selector operation in an order

determined by the P selector arguments.

Example. Consider the following R-path:-

path ( B A B A B )* end

This has the state machine given below, the states have been labelled

with the names of the semaphores that will represent them.

~_B __ ~.()~ A__ ~.()~ B__ ~.()~ A .~

The implementation of the procedures is as follows:-

semaphore sl,s2,s3,s4,s5;

sl:=l; 82:=83:=84:=85:=0;
pI (sl,83,s5) B V' (s2,s4,sl)

pI (s2,s4) A V' (s3,s5)

A 'B' may be executed first, decrementing sl and incrementing s2. This

permits an 'A' to occur, decrementing 82 and incrementing s3.

Definition of P and V selector operations.

We shall define the operations P' and V' by means of our model of

processes and R-path expressions. The operations will correspond to

subnets of a simulating net containing shared procedures synchronized by

R-path expressions. A general characterization of such a shared procedure
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is given below and is derived from the intersection transformation TR5.1

after the abbreviations for shared procedure calls (see abbreviation 4.2 d) )

ha~e been expanded. To simplify the following description of the

operations we shall label the places of Petri nets.

process process

shared procedure X.

The primitive operations are subnets of this net.

The P selector operator (written P(sl,s2, •••,sn) and with value v.)
J

is defined as:-

process

••• process
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The V selector operation (written V(v.,sl' ,s2',•••,sn') )
J

is defined to be:-

process

process •••

Having defined these two operations, we shall now give a chara~terizationof

them in terms of programming constructs. Later, we shall indicate how they

might be implemented.

The places sl-sn and sl'-sn' and the transitions they are connected

to behave in a similar fashion to semaphores and P, V operations. (See the

Petri net representation of a semaphore given by Lautenbach (4.5).)

The P selector operation is a selection of a P operation (represented by

the transition with input place si) from amongst a set of such P operations

on semaphores. The selection is made arbitrarily between all those

transitions with input places belonging to the set sl-sn and which are

enabled. The additional freedom that a process may execute a synchronized

procedure under one of possibly many conditions requires an additional

implementation mechanism. This mechanism will be in the form of a scheduler

as it is a predicate on the timings of .proceasea (Lipton, 1973) • In addition

to selecting a P operation on some semaphore, the P' operation records which

semaphore was decremented by marking a place v .• This corresponds to the
J

P selector operation returning the index of the semaphore decremented as a
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value to the process which invoked it.

The V selector operation is a selection of a V operation

represented by the transition with output place sj' from amongst a

set of such V operations on semaphores. The selection is predetermined
by the place vj containing a token. This corresponds to an index into
the set of semaphores which has the value vj.

Implementation of P,V selector operations.

A simple mechanization of P,V selector operations can be made

using a list structure, a critical section, P and V operations

(Dijkstra, 1968b), and a scheduling scheme. The list structure

associates with each P,V selector operation 'semaphore' a queue of

items representing requests for P' operations to be perf~rmed on that

'semaphore'. The suspended P selector operation on a set of 'semaphores'

is represented by a P' operation request in the queue of each of

these 'semaphores'. Processes are actually suspended using their own

private semaphores antithe locations 0 (' these are also included in the

items on the queues for the 'semaphores'. The critical section is

used to synchronize mcdifications to the list structure. A scheduling

decision must be taken when a V' operation increments a 'semaphore'

upon which several processes are waiting and hence there is a choice

of which process to release from its waiting state.

An alternative mechanization of P,V selector operations could

be based upon a hardware implementation of these operations using

the Petri net representation of them.

Implementation of R-paths using P,V operations on counting semaphores
directly.

This scheme is suggested as an alternative to the one above,

and implements the controller mechanism for R-paths directly in
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teTms of counting semaphores, P,Y operations and a representation

of the automaton corresponding to the State Machine Petri simulating

net of the &-path. In the previous implementation, &-paths were

implemented by P,Y selector operations which were in turn implemented

by P,Y operations on the private semaphores of processes. The

controller implements the synchronization of processes by P,Y

operations on semaphores corresponding to the procedures which the

processes wish to invoke.

A set of variables is associated with each &-path to represent

t};eautomaton and record state information. These variables are

introduced by declarations which we give in the following Algol-

like programming language:-

integer array

semaphore array

integer state;

semaphore mutex;

(1: :n,1: : j) table;

(1::j)S;

The table is a variable containing the state table representation

of the automaton. The columns of the table correspond to the transitions

which may occur in the automaton, the rows to the states', The

automaton is presumed to have n states and j transitions. For

example, suppose we had the &-path:-

path(A; A; (n , D ) B)* end

then we would have n=4 and j=3 and initialization code to write

the following matrix into the table.
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table(i,1) table(i,2) table(i,3)

transi tions (A) (B) (n)
states

table(1,k) 2 0 0

table (2,k) 3 0 0

table (3 ,k) 0 4 4

table(4,k) 0 1 0

For example, in state 3 the transitions with non-zero

entries in the row table(3,k) correspond to procedures

which may be allowed to be executed by processes.

Thus, a B or a D may be executed. When a transition

(procedure) occurs from state 3, the resulting new

state is given by the appropriate non-zero entry in

table (3 ,k)•

The semaphore array includes a semaphore tor each procedure
and provides the mechanism to allow processes requesting a

procedure to wait. The integer state contains the current state of

the automaton, held as an index from 1 to n.

State changes are implemented in the prologues and epilogues

of procedures. During the execution ot a procedure the state is

given the value zero. The prologue of a synchronized procedure is as

tollows:-
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prologue

begin integer next_state; integer constant action;

P(mutex};

next state: = if state = 0 then 0 else table (state,action);

if next state = 0 then

begin V(mutex}j

P(s(action}}j

next state:= table (state,action);

end·-,
state:=O;

V(mutex} ;
The value of action is the index into the table of the column

corresponding to that procedure. Next state is a local variable of

the procedure and records between the prologue and epilogue the value

of the next state. The process is not allowed to continue until the

value of next state is non-zero.

The epilogue uses a scheduling procedure 'select' which returns

from the table, semaphore array and state,the index of a procedure

which may now be allowed to execute. 'Select' may use the identity

of the procedures invoked by processes in order to choose between

continuing the execution of one process as against another. This

is different from the scheduling in the previous implementation

where the scheduling operation could only choose between processes

waiting for the same 'semaphore', and any given 'semaphore' might

control the synchronization of more than one procedure. If there

are no processes waiting to execute a procedure which may be

accepted in the given state, 'select' returns a zero.
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epilogue

begin integer next_action;

P(mutex};

state:=next_state;

next action:=select (table,S,state);

if next_action=D ~ V(mutex)

else V(S(next action»;

end'--'
end of procedure;

Next action is an index into the columns of the table and is a
temporary variable used to hold the result of 'select'. If 'select'

finds that there is a process waiting to execute a procedure which

is permitted to execute by the new value of state, then that process

is released to execute the procedure by the appropriate V operation.

The released process is left executing in the critical section of a

prologue. If there is no process to be released by the epilogue,

then a V(mutex) is performed to allow other processes to enter the

critical section.

Example: Suppose in the earlier example that state

has the value 1. Suppose a process invokes B. The

process will enter the prologue of B and read the entry

table(1,2) with value ° into next_state. Hence, the

process will suspend itself by executing P(S(2)}.

Suppose a process invokes D. The process will enter

the prologue of D, set its next_state variable to the

value of table(1,3} which is 0, and suspend itself by

executing P(S(3)}.

Suppose a process invokes A. The process will
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enter the prologue of D, set its next state variable to table (1,3)

which has a value of 0, and suspend itself by executing P(S(3».

Suppose a process invokes A. The process will enter the

prologue of A, set its next state variable to table (1,1) which has

a value of 2, set state to zero, and proceed to execute the body

of A.

Suppose another process invokes A. The process will enter

the prologue of A, find the value of state is zero, and suspend itself

by executing P(S(l».

Eventually, the process executing the body of A will enter

the epilogue and set state to the.value of next_state, a 2. The

select procedure has only one procedure to choose from. This is the

procedure of A which has been invoked since S(l)=-l. Hence select

returns the value 1 and the process executing the epilogue now

executes a V(S(l~ releasing the process waiting to execute a second

A. The released process sets its next_state to table (2,1) which

has the value 3, sets state to zero, and executes the body of A.

Eventually, it will execute the epilogue of A, set state to

3, and call select. This time select may choose between returning

a 2 or a 3, depending upon its scheduling policy.

We have given several implementations with the intention of

illustrating that R-paths are sufficiently general in nature to

be implementable on many different computing systems. The P, V

selector operations described above allow the implementation of

the R-paths to be undertaken at the process level of descriptio~

that is we activate or suspend individual processes by the

mechanism. An alternative is to implement the R-paths at the

machine level by including hardware to represent the simulating

nets of the paths. Finally, we have given an implementation
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at the level of procedure invocations. The first implementation

requires a global list structure and critical section in which to

manipulate it. The last implementation given could be integrated

ve~ efficiently and effectively with a machine architecture which

supports procedure calls in a manner of the B6700 and could be the

topic of further research. A further implementation consideration

is the trade-off between making the compilation efficient, and

reducing space in the program compiled. We shall not consider

these aspects in depth, but shall merely point out that there exist

many techniques to reduce the size of a state machine and that

these techniques may be applied to R-paths. Thus, many implementations

of R-paths can be envisaged, and it is reasonable to expect that the

method adopted in any given practical implementation will be

tailored to suit the characteristics of the underlying computing

system.

5.6 A COMPARISON OF R-PATHS AND E-PATHS

As a direct measure of the declarative power (If synchron iaat i.or,

of R-pat.hs we may use the expressive power of regular expressions

and of state machines. Hence, we conclude that R-paths

have more declarative power than E-paths. The scheduling power of the
R-path notation is at least that of the E-path notation since any E-path

expression is equivalently an R-path expression. The scheduling power

of the E-path ~otation was shown to be that of a semaphore notation in

4.6. This semaphore notation could be used in the implementation of an

R-path (5.5) in place of the binary semaphore since no V operation is
performed on a semaphore with value 1. However, from Theorem 3.4,

although the E-path notation resolves conflicts between sets of sequences

of actions it imposes the restriction that the predicate upon which a

127.



procedure is permitted to be executed must depend upon only one synchroni-

zation condition. The R-path notation allows a procedure to be executed

by a process under one of several different synchronization constraints.

This results in an inability to express conflicts in an R-path solely in

terms of conflicts in E-paths (or the semaphore notation of 4.6) and

additional programming in the form of a scheduler must be introduced to

resolve conflicts. We, therefore, conclude that R-paths are more powerful

than E-paths with respect to scheduling power.

Finally, we shall make some remarks about the conversion of

R-paths to E-paths. A given R-path may not be in its simplest form,

and hence it may not be immediately obvious whether it is equivalent

to some E-path or not. However, the state machine corresponding to this

R-path may be minimized and by 2.20 the resulting minimized state

machine is unique up to isomorphism with other minimized state machines

with the same behaviour. However, from Chapter 3 we have the Lemma 3.3

which states that the state machine constructed for an E-path by 3.1

is a minimum state machine. Hence, proving equivalence between

an R-path and an E-path is a trivial matter, For the construction

of an E-path from a given R-path we may minimize the state machine

of the R-path and then construct an appropriate regular expression

which is equivalent to this state machine and which is acceptable

to the set of E-path productions, using construction rules based

upon 3.1 and 2.19 used in reverse. Of course, not all R-paths

have equivalent E-paths.

5.7 FURTHER EXAMPLES OF &"PATHS.

SynChronous Processes. (Bekkers, 1974).

In this example we have two proceases, At one stage of

execution, each process must wait for the other process so that

the two processes can restart together. For this particular
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solution, we will assume that the processes are not aware of their

separate identities. In our illustration we shall declare a type

called synchro which will incorporate the correct synchronization.

~ synchro;

path (arrive ; arrive ; depart ; depart)*end;

procedure depart: ( body of depart) ;

procedure arrive: ( body of arrive) ;

procedure synk:
operations synk

endtype

arrive ; depart) end;

A process invoking synk will execute arrive and then wait to execute

depart. It will be able to proceed only after a second process

has executed arrive. The example illustrates the use to which the

unrestricted Regular Expression nature of an R-path may be put. A

similar type including only E-path expressions would require additional

variables or that the processes are aware of their separate identity

(see 4.8). Each procedure arrive and depart may occur under two

different synchronization constraints (that is, as the first occurrence

of a request for that procedure or as the second).

File handler.

The next example concerns file handling. A process may request

the use of a file to either just read, or just write, or to both read

and write it. Once the request has been granted, the file cannot grant

access to another process until the first relinquishes its facility

to read or WI"ite. Requests are performed by opening the file; requests

are terminated by closing the file. Once opened, the file may be used

by many processes to read or to write. Mutual exclusion prevents
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synchronization errors in reading or writing. The file operates

in one of three modes depending on the access request:-

reading, a write, and reading and writing arbitrarily

intennixed •

.:!:.Y££ file;

procedure

procedure

« ropen : read*; rclose) , (wopen; write; wclose),

(rwopen ; (read, write)*; wclose)) *end

read: (read routine);

write: (write routine);

operations ropen, rclose, wopen, wclose, rwopen, rwclose,
bufferopen, bufferclose

endtype

We leave the open and close actions undefined for brevity; they

might, of course, have null bodies.

The type file allows reading and writing to occur in a number

of different synchronization constraints. The single R-path is

sufficient to allow all these synchronization constraints to be

expressed wit.hout recourse to any add itional programming.

R-paths used to implement co-ordinated but parallel executior. of

actions.

The R-path mechanism can be used to implement synchronization

and co-ordination between a group of parallel processes invoking

operations on data in which several of the operations may be

executed simultaneously, but in mutual exclusion to other operations.

For example, let us suppose that operaticnA,B and Care

to be synchronized so that execution of an A occurs concurrently
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with the execution of the procedure B. However, the operations
A and B are mutually exclusive with the execution of a C. The

following type definition provides this synchronization:-

~ X;
path«start_A; start_B) ,(start_B; start_A) ;

(finish_B

procedure B: finish B );

procedure C: body_of_C);

operations A, B, C

endtype;

The type definition synchronizes only the beginnings and

endings of the procedures A and B.allowing concurrent execution

of their bodies. In general, this technique for specifying possible

concurrent execution of procedures subject to other synchronization

constraints results in large R-path expressions which are not

readily comprehensible. In the next chapter we shall consider

an extension to E-paths and R-paths which permits a clearer
statement of such forms of concurrency.

5.8 SUMMARY OF R-PATHS.

We have generalized the notion of a path notation based on

regular expressions given in Chapter 3 and found that the

generalization provides more flexibility and power to the

programmer. The resulting R-path expressions were shown to have

implementations using P and V operations on semaphores. The

implementations are, however, more complex than that for E-paths.

The extension of E-paths to R-paths required a definition of
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the meaning of the repetition of a procedure name within a path. We

also extended our classification of processes to include a more

realistic notion of a procedure and demonstrated that this new class

of processes, together with R-paths represented as simulating nets,

required a more sophisticated approach to its analysis than that

described in Chapter 4 for E-paths and processes.

Finally, we noted in the last example that path expressions

could be used in type definitions to synchronize the occurrence of

concurrent events. This provides the motivation for the extension

to path expressions considered in the next Chapter.
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CHAPl'ER 6.

GENERAL PATH EXPRESSIONS

To conclude the examination of path notations based upon

regular expressions, we shall examine a notation in which several

regular expressions may simultaneously describe the synchronization

and co-ordination of an action. In the previous chapters we imposed

the restriction that a given procedure name may occur in only one

path expression. In this chapter we shall examine the effect of

relaxing this restriction and of placing a particular interpretation

upon the repetition of an action in different paths. We shall show

that this notation is more flexible and has greater declarative power than

the previous notations and that it has a significant effect upon structuring

synchronization specifications of actions. We shall also investigate

the implementations of this notation and compare them with the

implementations for E-paths and R-paths.

Whereas E-paths and R-paths allow an action to be synchronized

with respect to a sequence of actions, the General Path (or G-path)

notation permits an action to be synchronized with respect to

several independent and concurrent sequences of actions. A General

Path expression will comprise of several E-paths or R-paths which

have procedure names in common. The occurrence of a given procedure

name in several path expressions will imply that the synchronization

conditions specified in each path for that procedure must hold

simultaneously for that procedure to become eligible for execution

by a process. Unlike E-paths and R-paths, a G-path may include

several procedures which, although synchronized with respect to

other procedures, may be executed concurrently with respect to each

other.
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As in the previous chapters, we shall describe the meaning

of G-paths with respect to processes using a Petri net

representation and describe various implementations. We shall

illustrate the structuring that G-paths permit for the description

of synchronization problems. A further sub-class of processes is

introduced which permits the examination of processes which share

procedures, and properties are examined of the combination of such
processes and G-paths. Finally, the advantages and disadvantages of
this notation over that of E-paths and R-paths are examined.

6.1 GENERAL PATH NOTATION.

A general path expression (G-path) is a collection of E-path

expressions and R-path expressions in which the names of actions

occur in more than one path. The R-paths and E-paths are defined

by the description in Chapter 5 and Chapter 3, respectively, ignoring

however the restriction which prevents the repetition of procedure

names between path expressions. A G-path permits a procedure

to be executed if all the path expressions in which that procedure

name occurs allow that procedure to be executed. For example:-

The G-pa.th,

path (A

path (A

B . A)*end, --
C)*~

synchronizes the procedure A so that it may only be executed

by processes if both path expressions allow it to be executed.

Hence, if two processes invoke A, after the first process

has executed A,the second process must wait until both the

procedures Band C have been executed by other processes

before it may execute A.
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The simulating net for the G-path is constructed from the

simulating nets of the constituent E-paths and R-paths by a

transformation given below. The transformation ensures that all

the synchronization conditions in all the appropriate paths must

hold before a given action may occur:-

TR6.1 Transformation to generate the abbreviated simulating net of

a G-path.

1) Generate the abbreviated simulating nets of any

component R-paths (5.2) and the simulating nets

of any component E-paths (4.1).
2) Select any simulating net of a path expression

in the G-path and call it the primary net.

Replace this primary net with a new primary net

by selecting one of the remaining simulating nets

of the component path expressions of the G-path

and performing the following construction:-

3) For each unique procedure name which occurs both

in the primary net and in the simulating net do

~).
4) Identify all the transitions in the primary net

which are labelled with that name (suppose there

are n such transitions).

Identify all the transitions in the simulating

net which are labelled with that name (suppose

there are r such transitions).

Transform these transitions in the following

manner:-
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Transitions with label X from

primary net.

pll pll '
p12 p12'

pla pla'

p21 p21'

p22 p22'

p2a p2a'

pnl

pna'

pnl '

pn2 pn2'

pna

by:-

81 82

••
• "" - -w_Wf'III
p1aO
p210-__
p220 ---
·
p2aO-

Transitions with label X from

simulating net.

X

81 srs2

• •X

81 ' s2' sr'

sr

pl1 '
p12'

. ,pla

--- __...Q p21'

_...() p22'

- -~ p2a'

pn1 0- P pnl'
.. '

pn2O- - -- -.() pn2'
~-- .

~naO
, ...D ~na'
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where the box:-

sl s2

pkl 0-- --
pk2 0-------

pka 0---

sl ' s2'

sr

, _.() pk l '_-
--------0 pk2'

-_ - - ~ pka !

sr'

is an abbreviation for:-

pka

81 82 5r

pkl

pk2

51' 52' sr'

'.

1 k S n ).
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(The number of transitions generated for a given procedure name
at each application of the above transformation will be the product

of the number of times the transition occurred in the simulating

net, and the number of times it occurred in the primary net. Thus,

in the diagram above,the transformation has created n x r transitions

labelled X. Each of these transitions is an abbreviation for the

calling mechanism to a single transition labelled X which represents

the actual execution by a process of the procedure X (see 5.2).

The number of input and output ar~for each transition in the

original primary net is increased by one corresponding, in the new

primary net,to the extra constraint imposed by the addition of

another path. Thus, in the above diagram,X has 'a' input arcs

in the original primary net, and a+1 input arcs in the ne~ primary

net. )

5) While there are simulating nets of component path

expressions of the G-path which have not been combined

with the primary net, replace the present primary net

with a new one constructed by applying 3) to one of

these simulating nets and the present primary net.

6) The final primary net is the abbreviated simulating

net of the G-path.

To obtain the simulating net for the G-path the

abbreviated simulating net is expanded (see 5.2).

Examples.

Consider the following G-path:-

path ( A B . A )* end, --
A C )* end

Let the simulating net of the first path be the primary net. This

net is as follows:-
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The simulating net of the second path expression, (distinguished

by dashed arcs) is:-

c;r- -_ ... ... ,+e
6- _-

Combining the two nets using the transformation yields:-

,
- - -- "I

I

-t-e

,----------
where the boxes are abbreviations. If we expand the boxes we

obtain the simulating net for the G-path:-
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0,----------------
\

•A'. \
\
\

- - -- "\,
\

B
1 C,-

, \

, I

tj.-----------~------------"'
From the abbreviated simulating net of the G-path it may be seen

that the transitions Band C may both occur at the same time.

This corresponds to procedure Band C both being executed simultaneously

by separate processes.

The order in which the simulating nets are taken in the

construction does not affect the resulting simulating net. If,

instead of the first net, we choose the second net as the primary

net then, re-arranging the layout of the nets a little, the result

of combining the two nets is:-

I
\
I
\

"

Expanding the box abbreviation and again re-arranging the layout

of the nets a little gives the simulating net shown above.

The transformation can be simplified if the G-path is

composed solely of E-paths. Let a GE-path be a G-path composed
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only of E-paths. By Lemma 3.3 the simulating net of an E-path will

have only one transition labelled with a given procedure name,

Consider part 4) of the transformation. Whenever a primary net is

being combined with the simulating net for an E-path,r equals 1.

Assume that the initial primary net is chosen to be a simulating net

of an E-path, then n equals 1. Given any primary net such that it

has only one transition labelled with a'given procedure name then

if it is combined with the simulating net of an E-path, the

transformation will result inn X r transitions with the same name,

i.e.,one transition. Hence, by induction the transformation

applied to the simulating nets of the component paths of a

GE-path will always generate a new primary net in which only one

transition is labelled with any given procedure name. Thus, 4)

of the transformation can be simplified to:-

Replace:-

Transition with label X from

primary net.

Transition with label X from

simulating net.

p11

p1~

p11 '
pia'

sl

pla pla' sl'

by:-

Transition with label X in new primary net.

pll pll '

p12 p12'

pla'pla
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The following comparison can be made between G-paths and GE-paths:-

A procedure synchronized by a GE-path may be executed by a

process if !!l of a set of conditions hold.

A procedure synchronized by a G-path may be executed by

a process if !!! of a set of conditions hold in one of the

elements of a set of sets of conditions.

Examples of G-path Expressions.

The G-path expressions allow synchronization specifications

which are too complex to be written simply as an R-path or an

E-path expression. The following examples illustrate the

synchronization which may be expressed.

The Cigarette Smokers Problem of Patil.

Patil (Patil, 1971) introduced the following synchronization

problem:-

"Three smokers are sitting at a table. One of them

has tobacco, another has cigarette papers, and the third

has matches; each one has a different ingredient required

to make and smoke a cigarette but he may not give an

ingredient to another. On the table in front of them,

two of the three ingredients will be placed, and the smoker

who has the necessa~ third ingredient should pick the

ingredients from the table, make a cigarette and smoke

it. tt Further ingredients are not put on the table until

the old ones have been consumed. Other smokers must not

interfere with the smoker who has the ingredients on

the table before him. Hence co-ordination is required

between the smokers.

The cigarette smokers problem can be restated (Lauer and

142.



Campbell, 1975) in the following way:-

1) Decide which of the ingredients should be put on the table.

2) Produce each ingredient and place it on the table.

3) Choose the correct consumer to consume the available

ingredient.

4) Go back to 1).

Where 1) is an arbitrary choice from producing:-

1.1) tobacco and a match. ("supplytm")

1.2) a match and paper. ("supplymp")

1.3) paper and tobacco. ("supplypt")

Where 2) is determined from the decision made in 1) in the

following way:-

2.1) given "supplytm" or "supplypt" produce tobacco.

2.2) given "supplymp" or "supplytm" produce a match.

2.3) given "supplypt" or "supplymp" produce paper.

Where the choice 3) is determined upon 2) such that:-

3.1) tobacco is consumed by either "matches-smoker" or

"paper-smoker".
3.2) paper is consumed by either "tobacco-smoker" or

"matches-smoker".

3.3) a match is consumed by either "paper-smoker" or

"tobacco-smoker".

The ingredients tobacco, match and paper are manipulated by

several processes and are shared objects. The decision to supply

a given ingredient, to produce and to place it on the table, and

to consume it are all operations on that ingredient. For each

ingredient we may write a path expression which co-ordinates the

execution by processes of these operations. For example, for the
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ingredient tobacco we may write:-

path «supplytm,supplypt)

paper_smoker» *end

The following GE-path describes the synchronization and co-ordination

tobacco (matches_smoker,

of the Cigarette Smoker's problem; each separate component path

expression of the GE-path describes how the operations on a

particular ingredient may occur:-

path «supplytm, supplypt) tobacco (matches_smoker,

paper_smoker»*end

path «supplytm,supplymp) match (tobacco_smoker,

paper_smoker»* end

path «supplypt,supplymp) paper (tobacco_smoker,

matches_smoker»*~

Although the GE-path is structured into sequential components

(the E-paths), it 8tates the synchronization required for a problem

in which concurrency occurs. Each E-path component describes the

synchronization with respect to a particular shared object, the

GE-path describes the combined synchronization properties ot those

obaeets treated a. a compo_ite aharea objeot. The simulating net
for the GE-path is as follows:-
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pa.per_smokersupplytm toba.cco

match

supplymp paper tobacco smoker

(Note that this net is almost identical to the Petri net definition

of the problem given by Patd I (Patil, 1971) .)

An Example based on the Five Dining Philosophers of Dijkstra

The manner in which GE-paths a.llow separa.te components of a

synchronization specification to be combined avoids some of the

problems described in Chapter 4 on hiera.rchies af procedure ca.lls

involving path expressions. The following GE-path (which is.simila.r

to the Five Dining Philosophers problem of Dijkstra (Dijkstra, 1973»

synchronizes five procedures PO-P4 so that only two of tpem ma.y be

executed concurrently at anyone time. The GE-pa.th permits a.

procedure to be executed if its neighbouring procedures a.re not

being executed. That is, it will permit the execution of procedure

Pi if neither procedure P(i+l modulo 5) nor P(i-1 modulo 5) a.re

being executed by processes. Thus, for example, P'Ima.y be executed

if PO and P2 are not being executed, and Pl and P3 may be executed

concurrently by processes provided no process is executing a.ny of

the procedures PO,P2 and P4.
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path (ro,Pl)* ~

~ (Pl,P2)* ~

l!!h (P2,P3)* end

~ (P3,P4)* ~

~ (P4,ro)* end

(Each component E-path expression of th& GE path corresponds to the

synchronization specification required to allow a fork in the Five

Dining Philosophers problem to be used by only one Philosopher at

a time.)

This synchronization may be written as a set of disjoint

E-paths which are hierarchically structured by procedure calls.

However, this synchronization specification may lead to deadlock,

as in the following example. A process first in'rekes a procedur-e PH

which then invokes Pi. If five processes simultaneously invoke and

execute the five procedures POO-P44, deadlock will arise as they

proceed to invoke PO-P4 (see the last remark of 4.10).

pa.th (roo , Pl)* end

path (Pl1 , P2)* ~

.i!lh (paa , Pl)· !nd

~ (P33 , P4)* end

l!!h (P44 , ro)* end

Similarly, non-deadlocking hierarchical structures of this

kind lead to giving a priority to processes executing one

procedure over those executing others. For example:-

~ (ro , Pl)* ~

l!!h (PII , P22)* ~

path (P2 , P33)* ~
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path (P3 , P44)* end

path (P4 , POO)* end

where Pii invokes Pi.

If all the Pii procedures are invoked simultaneously by separate

processes, then P33 ,P44,POD, and one of P 11 or P22 may be executed

concurrently. However, the process e~ecuting P33 cannot execute

P3 because another process is executing P44. Similarly the process

executing P44 cannot execute P4 because another process is executing

POD. If the process invoking P11 is allowed to execute P11, then

the process invoking P22 will be delayed. The process executing

P11 will invoke P1. However, the process executing POD will invoke

PO and executions of PO and P1 are mutually exclusive. Thus, in

this case, only one process is permitted to execute a procedure

from the procedures PO-P4, whereas the original specification allowed

two. Similar problems arise with other configurations of procedures

and paths (see Dijkstra, 1973).

Thus, from the examples above, we conclude that GE-paths

allow a given synchronization problem to be structured into

••~v.ntl.l ggmpoft.nt~(•• in t~. ti~.t ~ .~~~l •• ) ~hiah .r.
combined automatically and correctly, as opposed to the difficulties

that arise (which was illustrated in the last two examples) when

sequential components are combined by means of hierarchically

structured procedure calls. Finally, we believe that the GE-path notation

allows complex problems of synchronization to be expressed clearly

and simply.

6.2 PROPERTIES OF THE SIMULATING Nm'S OF G-PATHS

As in earlier chapters for R-paths and E-paths, we shall

examine the properties of G-paths by investigating their
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simulating nets (G-nets). R-paths generate simulating nets which,

in their unabbreviated form, belong to the Simple Petri net class

(Lemma 5.1). G-paths, however, do not belong to this classification

because transformation TR6.1 permits a transition to have more than

one shared input or output place, contra~ to the definition of a

Simple net (2.10). Por example, suppose the procedures A, Band

C are in component paths of a GE-path and are in simulating nets:-

A

.0=
~

path • . :::0. · • path

B
and B

path • . . 0=- :t :0. · • path
C

The G-net formed by TR6.1 from these nets will have a subnet:-

path ••
A

.~.

. .
C

• • path

path •• • • path

Simple Petri nets are the largest sub-class of nets contained within

General Petri nets described by Holt and Commoner (Holt and Commoner,

belonging to General Petri nets if we use their cla~sification

scheme. The transformation TR6.1 generates G-nets from the nets of

R-paths or E-paths, and hence an abbreviated G-net is decomposable

into safe State Machine Petri nets. Thus, although G-nets belong

to a classification of nets which is more general than Simple Petri

nets, they belong to a sub-class of General Petri nets.

Theorem 6.1: G-nets are safe.

Proof: In general, a G-path will be constructed from a set of
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component R-paths (the set of regular expressions which may be

written within an E-path expression is a subset of the regular

expressions which may be written within an R-path). From

Theorem 5.3, the unabbreviated simulating net of an R-path

is safe and is a Simple Petri net (lemma 5.1) t Henc.ethe first

primary net generated by the tranEformation (TR6.') is safe in its
unabbreviated form. We will prove the theorem by induction

on the number of primary nets that are generated during the

transformation.

Suppose, as induction hypothesis, that the qth primary net

generated is safe in its unabbreviated form. Suppose that

we have a simulating net of an R-path which has not yet been

combined with a primary net (if there is no such net the

transformation terminates).

Let X. be the ith unique procedure name which labels r.
1 1

transitions in the abbreviated simulating net of this R-path.

Before applying part 3 of TR6.l, the unabbreviated simulating

net of this R-path will contain a subnet:-

or.
1

The places are labelled for convenience, the dashes represent

connections to the rest of the simulating net. Since the net

is safe only one ·token can mark any of 11.- Ir. at anyone
1 1

moment. No further token can mark 11 .-Ir., once marked, until
1 1

the terminal transitions from 0,. - Or. have removed a token
1 1

(note this applies even if afrom one of 0, - °
i ri

place O. is also labelled I ).
Ji ni

After applying 3, the subnet
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will be as follows (the dots represent connections to the rest of

the q+1th prima~ net).

°r.1.
th(We suppose that the procedure name Xi occurs in the q prima~

net as well as in the simulating net otherwise the second net would

be identical to the first and there is nothing to prove. The number

increased, but they are not all shown. If the

(5.2) to X. will be
1.

th
q prima~ net had

of subnets representing the calling mechanism

n. such calling mechanisms for the transition labelled X., then the
1. 1.

new one will have n. X r. (see TR6.1).)
1. 1.

Every initial transition of the 'input place of transition X.1.

above has an input place belonging to the set 11. - Ir.•
1. 1.

an input place Ik. will result in the eventual marking of
1.

original

Marking

place

Ok.' as in the
1.

can mark one of 11.
1.

transitions fire.

subnets. If Ik. is marked then no other token
1.

has one of its terminal- Ir. until Ok.
1. 1.

Hence the q + 1th unabbreviated primary net

is safe. Hence, by induction, on application of part 3 of

TR6.1, the net constructed by TR6.l is safe in its unabbreviated

f'o rm , Q.E.D.

The safeness of G-nets indicates that, although in the earlier
examples we demonstrated that G-paths may describe actions occurring

concurrently, an individual procedure described by a
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G-path cannot be executed simultaneously by several processes.

G-path expressions do, however, allow synchronization

expressions to be written which are deadlocked or may result in

deadlock. Consider the following GE-path:-

Bend
A end

The component E-paths have simulating nets which are

individually live. However, when TR6.1 is applied to these

nets, the resulting simulating net for the GE-path has no

transitions which are live:-

G·o:P becomes

under

The deadlock can also be recognized by a theorem of Petri net

theo~. The simulating net for the GE-path is a Marked Graph

(2.9) and includes an empty cycle. Therefore, we conclude

(from 2.12) that not all the transitions of the net will be live.

In Chapter 4 we gave a criterion C4 which ensured that a set of

Eo-paths and Eo-processes were deadlock free. We may write a

similar restriction to ensure that a sub-classof the GE-path

notation cannot include a deadlock, (see criterion C5, and

Theorem 6.6 on page 164.)

6.3 A KlDEL FOR A PROGRAM CONSISTING OF PROCESSES AND

G-PATHS.

The model we shall give for a program consisting of

G-paths and processes is based upon our earlier models in 4.3
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and 5.3. The following intersection transformation gives the

abbreviated simulating net for a program consisting of G-paths

and processes.

TR6.2 Intersection transformation for the nets of processes and

G-paths.

Abbreviate the simulating nets of the G-paths (5.2).

A given action or procedure name may label several

transitions in a G-net. (Unlike TR5.1, these transitions

may have several input and output places.) For each unique

name do the following:-

1) Identify the set of transitions in the abbreviated

G-net with that name.

2) If, in the process nets, the name corresponds to

the body of a procedure embedded in the proc.edure

calling mechanism, then abbreviate the calls upon

that procedure by replacing them by transitions

labelled with that name using abbreviation 4.2 d).

Identify the set of transitions with that name.

) A~,l~~h~ '~lloW~A'i~~n~IQ~~~'~n-~U thl ••t et
transitions identified.

Replace the subnet:-
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X
plO . I -0 pl'

X
p2Q • I ·0 p2' n transitions

belonging to

the Petri net
X

pn 0 ·1 ·0 pn' model of the

processes.

gll'

g12'

glaO·...... ....--0
g210 -.... ..._...--0
g220 _-__-:.~:-=:1..:.~:-i:__--0

.,."""",-- ....... , ......

gla'

g21' r transitions

g22' belonging to

the simulating

net. of the
g2b o: "''''0 g2b' G-path.

grl 0-_-___ _ --0 grl'

gr2 0-- ----=~~-=--_j:"-~=='------- --0 gr2'
• X

~~ ..
grc 0'''' ..--0 grc'

(Subnets belonging to the G-net are distinguished by dashed arcs.)

153.



by the subnet:-

p1
p2'
p1 '

p2

pn , pn',,

g11 g11'

g12 g12'

g1a gla'

g21 g21 '

g22 g22'
, ,,, ,,, .. . ,...

'"
.. .. " ,

I, ...., ','d/;~,
g2b ""~bg2b'

gr1

grc'

gr1 '

gr2 gr2'
'- -,

,,', ,
" ,,,

• ,,

grc
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The places of the subnets involved (for clarity the

places are labelled in the diagrams above) are not affected by

the transformation although they may be given more input or

output arcs to transitions labelled X. Each process of the

n processes is connected to the G-path through arcs to and

from the n x r transitions. The n x r transitions are all

labelled with the same name and their firing corresponds to

the execution of the procedure X. Thus, the transitions we

have introduced are abbreviations (4.2 d) for the calling

mechanism to a unique transition labelled X.

Example of the intersection transformation between a G-net

and a Petri- net model of a program.

The following G-path

path (A

path (B

(A , B) )* end

D)* ~
has the simulating net (abbreviated):-

Suppose we have a set of processes (distinguished by dashed arcs):-

process
Ac:r-------~--------~
A

(r--- ----1-----Q I
I
IB I I

process 0":--------4------ ....' :
(r-----t----- -----_/
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Then combining the processes with the G-path using TR6.2 gives:-

A
process - - ~-:J;J

_" ,
_- I,,

process

I.,

where the dashed arcs correspond to the subnet representing the

processes. The final net contains four transitions labelled A

and these represent abbreviations for the calling mechanism of

(4.2 d) to a single transition labelled A. The net permits the

A and B to be executed in sequence followed by possibly simultaneous

execution of D and A.

For a model of GE-paths and processes, TR6.2 becomes much

simpler. In this case, the number (r) of transitions labelled with

an identical procedure name in the abbreviated GE-net will be at

most one (see TR6.1, the simplified transformation to generate the

simulating net for aGE-path). Suppose part 3 of 6.2 is applied to

the procedure name X and there are n transitions in the process net

representing abbreviations to the procedure calling mechanism of X.

The result of the transformation specified in 3 will be a subnet

containing n x r transitions (i.e n transitions since r=1) representing

abbreviations for the calling mechanism. Thus,the number of

transitions representing procedure calls to X in the process model
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will remain unchanged in the model for the program consisting of

those processes and GE-paths.

6.4 A G-PROCESS CLASSIFICATION OF PROCESSES.

As in 5.4 and 4.6 we may introduce a G-process as a counterpart

to a G-path. A G-process consists of a set of R-processes or

E-processes in which procedure names are allowed to appear in more

than one path. The occurrence of a given procedure in several

processes is treated as if that procedure is shared between the

processes and may be executed, perhaps concurrently, by the processes

in which it occurs. The abbreviated simulating net for a G-process

consists of the abbreviated simulating nets of the component

processes. The simulating net for the G-process is obtained by

removing the abbreviations using 4.2d). A G-process consisting only

of E-processes will be called aGE-process.

Example. Consider the following G-process:-

process (A B)* end

process A C ; A end

The processes have simulating nets which are respectively:-

and:-
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Removing the abbreviations gives:-

The processes may both execute A simultaneously and, in the

net above, the input place of the transition labelled A is two safe

(that is, it may have two tokens marking it). G-processes introduce

procedures into our classification scheme which may be executed

concurrently, and hence may be used to model problems of

indeterminacy and data corruption.

Theorem 6.21 A O-prooess in whioh the maximum number Qt tim•• Any
procedure is repeated between R-processes is N has a simulating

net which is N safe (see 2.4 and 2.5).

Proof: Suppose a procedure name occurs in K different R-processes.
There will be at least K procedure calls from those processes to the

procedure body corresponding to that name:-

process

K calls

of

procedure

process

shared procedure body

process
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Each of the K processes may make a procedure call to the

procedure body simultaneousl~ resulting in the input place to the

procedure body containing K tokens. Thus, the safeness of the whole

simulating net of a G-process corresponds to the safeness of the

input place of the procedure which is shared by the largest number

of processes.

Q.E.D.

The property of safeness can be used to investigate concurrency

within a given program of G-processes and G-pa.ths.

Example of an asynchronous ring buffer system.

The following example is an extension of an example in 4.7 and

is an equivalent expression of the synchronization required for an

asynchronous ring buffer to that described in 1.2. The ring buffer

system has three 'frames' which are used for the buffering and are

allocated for use in a round robin fashion. There are two consumers

and two producers. The program describing this system and its

simulating net are shown in the following pages.
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Ringbuffer example program.

begin
~ frame;

path ( write; read )* end

operations read,write

endtype;

~ allocator;

path (first second; third )* ~;
operations first, second,third

endtype;

~ ringbuffer;

frame one,two,three;

allocator h, t ;

Erocedure deposit: ( ( h.first ; one.write ) ,
( h.second ; two .write ) ,
( h.third ; three. wri te) ) j

procedure remove: ( ( t. first one. read ) ,
( t.second two. read ) ,
( t.third ; three. read) ) ;

operations remove, deposit

endtype;

ringbuffer R;

process ( R.remove consume 1 )* end'-'
process ( R.remove consume 2 )* end'-'
process ( create 1 R. deposit )* end,--'
process ( create 2 R. deposit )* end,_,

end.
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The type ringbuffer corresponds to the following simulating net:-

Figure 6.1 call_deposit return_deposit call_remove return_remove
-------

~

------~
\,

one.write

two.read
,
J
I- - _,

~' -- - - - - - - - - - - - - - - - -- --

three.write t.third three. readh.third
----------- ~- - - - --V-

The operations deposit and remove are distinguished in the

figure by solid arcs in their corresponding simulating nets. The

operations deposit and remove may be requested concurrently, and

their input and output places, labelled respectively d,d' and r,r',

behaviour under such circumstances. The subnets representing

instances of type 'frame' are distinguished in the figure by dashed

arcs. These subnets ensure that the operations read and write on

an instance of 'frame' can only occur in mutual exclusion. Further,

the subnets also ensure that a write must occur before a read.

The subnets representing instances of the type 'allocator' are

distinguished in the figure by dotted arcs. These subnets

ensure that the operations first, second and third on an instance

of 'allocator' can only occur in mutual exclusion. In addition,

these subnets also ensure that the instances of 'frame' will be
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used in a round robin manner. The first process executing deposit

must proceed by executing 'h. first' and then 'one.write'. The next

two processes executing deposit will execute 'h.second' followed by

'two.write', and 'h.third' followed by 'three.write' respectively.

Up to three processes may execute their respective 'writes'

simultaneously. Similarly, up to three processes may be executing

'one.read', 'two.read' ,••••, 'two.write', 'three.write'. Only

one process may execute one of 'h.first', 'h.second' and 'h.third'.

Similarly only one process may execute one of 't.first', 't.second',

and't.third'. Thus there may be up to five processes actually

executing actions within the operations 'deposit' and 'remove'

simultaneously. However, many more processes may concurrently be

executing these two operations.

Finally, 'remove' and 'deposit' occur twice in different

processes and hence the shared procedures 'deposit' and 'remove'

will be two safe, that is there may be two simultaneous executions

of 'deposit' or two simultaneous executions of 'remove'. The

simulating net of the processes is shown below where the bodies

of 'R. depolit' and 'R. remove' are Ipecified by the limulating
net of the type definition of ringbuffergiven in figure 6.1.
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-,

..............
,.0 '0 •.. '..' body of deposit
(see Figure 6.1)

••••••••••••••••••••••• 0 ••••

return R.remove consume1

......... ,' .
body of remove .

(see Figure 6.1) .» '

'" .0,·0 .

return_R.remove consume2

The example illustrates that our model of G-processes and G-paths

may be used to describe complex problems. In Chapter 1 we described

a ringbuffer which involved the use of a pointer, addition, an array

and indexing of an array. However, in the example above, we h~ve

described a ringbuffer directly in terms of the actions which may

is a practical tool, and could provide the basis for future research

and the study of the behaviour of operating systems.

Criterion for freedom from deadlock for a set of G-processes and

G-paths.

The following example illustrates a deadlock occurring in a

path expression and two processes:-

path (A B)* end'--'
path (B C)* end'--'
process (C ; A)* end'--'
process (B)* end'--'
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None of the transitions in the following simulating net for

these paths and processes are live:-

,
''0-----

.....,,
\

- -- ----------.0
\

The simulating net above is a Marked Graph (2.9) and includes an

empty cycle indicated by the dashed arcs. Hence the net is not

live by 2.12. In Chapter 4 we gave a oriterion (C" ) on Eo-paths

and Eo processes which guaranteed freedom from deadlock. We may

give a similar criterion for G-paths consisting of Eo-paths and

G-processes consisting of disjoint Eo-processes (that is, the

processes contain no shared procedures).

Criterion C5: Given a set of G-paths and G-processes such that
each G-path consists of Eo-paths, and each G-process consists of

disjoint Eo-processes, then this set cannot contain paths and

processes in which there are procedures Xl to Xn forming sequences<-

X1 X2

X2 X3

Xn ... Xl

Theo rem 6.6: The criterion C5 is a necessary and a sufficient

condition for programs consisting of G-paths and G-processes to

have a live and safe Marked Graph simulating net..
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Proof: The proof of this theorem follows identical arguments

to those given in Theorem 4.6. Inspection of TR6.1 and TR6.2

reveals that when they are applied to G-paths and G-processes

which meet the criterion C5, these transformations are identical

to those of TR4.3.

Q.E.D.

Thus we have a criterion for detecting deadlocks in G-paths

and G-processes, although this criterion can only be applied in

ve~ limited circumstances.

6.5 IMPLEMENTATION.

The implementation of G-paths is much more complex than

that of E-paths and R-paths. As with R-paths, given suitable

hardware, the simulating nets of G-paths could be implemented

directly. However, we shall describe three alternative

implementations, two briefly and a third in more detail.

Implementation of G-paths using R-paths.

An implementation of G-paths can be given in terms of

R-paths in the following manne r, A procedure synchronized by a

O-path will b. implemented by replacing it with & ppoo.dure in
the following form:-

procedure procedurename:

begin

(comment start of prologue)

start_procedurename;

(comment end of procedurename)

(procedure body)
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(comment start of epilogue)

finish_procedurename;

(comment end of epilogue)

end'--'
The procedure is rewritten with a prologue and an epilogue.

The prologue includes an invocation ef a procedure called

start_procedurename, and the epilogue includes an invocation of a

procedure called finish_procedurename. These two procedures are

used to give the synchronization required for the original procedure.

Executions of these two procedures are synchronized by an R-path.

The R-path is constructed to permit processes to execute these

proceaures whenever the G-path synchronization specification would

have allowed a process to execute the original procedure.

For example, consider the G-path:-

path (A

path (A

B)* end'--'
C)* end'--'

The procedures A,B, and C will be implemented in the form:-

procedure A: begin start_A (body of A) finhh_A ~;

procedure B: begin start B (body ot B)

(body of C)
t1nhh_B endI

procedure C: begin start C finish_C ~;

path (start A finish_A ;

start B (finish_B start C finish_C )~

( start C (finish_B finish C ),

(finish_C finish B ) ) ),

st.artC ( finish C ; start_B finish B ),

start_ B ; finish C finish B ),

( finish B finish C ) ) )

)*end'-'
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together with declarations for the procedures start_A,

start_B, ••• , finish_C which will have null bodies.

The R-path which synchronizes the procedures in the

implementation is constructed from the G-path in the following

way:-

1} Replace each occurrence of a 'procedurename' in the

G-path by the regular expression:-

( start_procedurename ; finish_procedurename

Thus, for the G-path used in the example above we

obtain:

.l?!:i!! ( ( start A

l!!h ( ( start A

finish A

finish A

(s1;art_B

(start_C

finish_B) }*end

finish_C} }*end

The new G-path and the procedures in their implementation

form specify the same synchronization for the procedure

bodies as that specified by the original G-path.

2) Generate the state machines corresponding to each component

path expression of the G-path.

J!I"Ah ",1·.. iI.. "uuih~m' 'U'!FI"~II!~emcUn. 1Ie a 8emp9nent path

expression is extended to accept transitions corresponding

to actions which are named in the other component path

expressions of the new G-path, but which are not named

in this component. Such transitions may occur in any

state, and they return the state machine to the state

from which they were accepted. The example G-path would

generate two state machines as follows:-
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First component of the G-path.

transi tions

state start A finish A start B finish B start C finish C- - - - - -
1 2 1 1

2 3 2 2

3 4 3 3

4 1 4 4

(The state machine is extended to accept start C aLd finish_C.)

Second component of the G-path

transitions

stnt. sf.a l·t. A f'Ln i sh A start C finish C start B finish B- - - - -
1 2 1 1

2 3 2 2

3 4 3 3

4 1 4 4

(The state machine is extended to accept start B and finish_B.)

3) We shall construct a new state machfne which accepts a

a sequence of actions if that sequence is also acceptable

to all the state machines constructec by 2). This si-ate

machine and the procedures in their implementation fOnD

specify thn same synchronization for the procedurll bodies

as that specified by the original G-path. However,

the procedures which are invoked in the prologues and

epilogues of the implemented form of the procedures are

constrained by this nev state machine specification of

the synchronization so that they are executed by

processes in mutual exclusion.
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The new state machine is constructed, using a

standard result from state machine theo~, by taking

the cross-product of all the state machines (Harrison,

1965) created in 2) above.

Thus, for the example G-path we would construct the

following state machine:-

transitions
state start A finish A start B finish B start C finish C- - - - - -
11 22

13 14
-14 11

22 33

31 41

33 43 34

34 44 31

41 11

43 13 44

44 14 41

The unreachable states are not shown.

4) Construct a regular expression which has the same behaviour

as the state machine given in 3). (An algorithm for one

such construction is given by Harrison ( Harrison, 1965).)

The R-path which synchronizes the procedures in the

implementation of the G-path is then given by embedding

the regular expression between a path end bracket.

Applying 4) to the state machine obtained for the example

G-path gives the R-path given earlier.
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This implementation may be used directly, as described above,

or it may be adapted to give an implementation of G-paths using one

of the R-path implementation techniques discussed in Chapter 5. This

method of implementation has the advantage tha~ in a programming

environment where there is a mixtu~e of R-paths and G-paths, they

may all be implemented using the same technique without incurring

any overheads for R-paths by virtue of having the G-path facility.

However, a G-path which permits parallel execution of the procedures

that it synchronizes will generate, in general, a very large state

machine cross-product and corresponding R-path. As yet the question

of whether the size of such R-paths would be prohibitive and whether

reduction techniques might be applied to reduce them to a more

manageable size has not been investigated and could provide a topic

for further research. Finally, we remark that procedures which

cannot be executed by any process because of the synchronization

specification in the G-paths

(for example, the G&-path:-

l!!h (A

~ (B

B)* ~
A)* Jii

which has a simulating net which is not live) cannot be

synchronized correctly using the above R-path implementation.

Thus, such incorrect specifications must be detected prior to or

during the application of the constructions.
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Implementation of G-paths using the incidence matrices of the

abbreviated simulating nets and Pt V operations on counting

semaphores.

This scheme is suggested as an alternative to the one above and

has the advantage of being compact. In a similar manner to the

implementation for R-paths using P, V operations on counting

semaphores in Chapter 5, we shall introduce a controller which

co-ordinates the executions of procedures in a G-path. The

controller mechanism uses Pt V operations on counting semaphores and

a representation of the forwards and backwards incidence matrices of

the abbreviated simulating net of the G-path.

A set of variables is associated with the controller of

each G-path recording the current marking of the simulating net and

the two incidence matrices. The controller contains the following

declarations:-

~ array (1::no_places, l::no_transitions) forwards, backwards;

semaphore array (l::no_procedures_in_G-path) S;

£i! array (l::no_places) mark;

1•• ph0E! mutex;

The semaphore mutex is used in the controller to provide a

critical section in which the variables may be accessed and altered.

Mutex is initialized to one. The semaphores used to synchronize

the procedures of the G-paths are declared as an array S whose dimension

corresponds to the number of procedures. The semaphores are initialized

to zero. The forwards and backwards incidence matrices of the

abbreviated simulating net of the G-path are held in two arrays of

bits. These two arrays are initialized with the values of the

corresponding matrices. Since several transitions in the abbreviated
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simulating net may have the same name, the matrices may have several

columns representing the synchronization of the same procedure.

For example, the G-path:-

~ ( (A ,B) ; (A , C) )* end

~ ( B ; (D,E) ; C)* end
has the following abbreviated simulating net:-

(The places are labelled with numbers so that they may be

identified with the rows of the incidence matrices below.)

The incidence matrices corresponding to this net are:-

forwards matrix backwards matrix initial
place

transitions transitions marking

A A B C D E A A B C D E (mark)

1 1 0 I 0 0 0 0 1 0 1 0 0 1

2 0 1 0 1 0 0 1 0 1 0 0 0 0

3 0 0 1 0 0 0 0 0 0 1 0 0 1

4 0 0 0 0 1 1 0 0 1 0 0 0 0

5 0 0 0 1 0 0 0 0 0 0 1 1 0

The incidence matrices have two columns corresponding to

172.



the procedure A. The array of bits called mark is initialized

with the initial marking and will be used to hold the current

marking of the simulating net.

Each synchronized procedure has a prologue and an epilogue

which corresponds to the controller. The prologues and epilogues

are shown below.

Each procedure has a local constant 'semaphore_of_procedure'

which is the index into the array of semaphores S of the

semaphore which will be used to delay processes executing that

procedure until the synchronization specification permits the

procedure to be executed. The array of constants called 'column'

are indices to the columns in the forwards and backwards arrays

which correspond to that procedure. Where an array is indexed

by* this is meant to imply that a whole column from a two

dimensional array is to be used. The operations complement,

~, ~ and £! are logical operations on vectors of bits.

The prologue of a procedure is as follows:-

begin (comment start of prologue)

constant index semaphore_of_procedure = k;

constant index array (1 :: number_of_columns_for_this_procedure)

column = (v1, v2, •••, vr);

index j;

index n;

logical found;

start:found:=false; n:=l;

(comment for each element in column)
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while I found and n S r do

if complement(mark and forwards(*,column(n» = 0

then found:=true else n:=n + 1;

if found then begin (comment change mark)

mark:=mark ~ forwards(*,column(n»;

end

else

begin (comment wait until procedure may be executed)

V(mutex);

p( S(semaphore_of_procedure) );

(comment on awakening, calculate new mark)

B.2 to start;

end·--'

j:= schedule_from(mark,forwards,S);

g j = 0 then

begin (comment no further processes to awaken)

V(mutex)

else

begin (comment awaken process and leave it in a critical

section)

V( S (j) ) ;

(comment rest of prologue and procedure body; n still

has the value of the index of the element of column

which was used to alter mark)
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The procedure 'schedule_from' chooses a value i which is an index into

the semaphore array S such that:-

SCi) < 0 (that is, there are processes waiting to complete

P operations on that semaphore)

and

( complement( mark) and forwards( * , m » = 0

where m is the index in the forwards matrix of a column corresponding

to the procedure which is associated with semaphore SCi).

Thus,the value i chosen corresponds to a procedure for which a

process is waiting and which the present marking of the simulating net

permits to be executed. There may be several values of i possible, and

the one chosen will be dictated by a scheduling policy. If no i can

be found to satisfy the relationship, a value of 0 is returned.

The epilogue of a synchronized procedure is as follows:-

(comment epilogue of procedure)

P(mutex);

mark:= mark ~ backwards(*,column(n»;

j:= schedule_trom (mark,torwards,S);
it j:() then- -

begin (comment no process to be awakened after the

completion of this procedure)

V(mutex)

end

else
begin (comment awaken process and leave it in a

critical section)

V( S (j) );

end

(comment rest of epilogue)

~ ot procedure;
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The epilogue updates mark from the backwards matrix and invokes

'schedule_from'. The process which is awakened by the V operation will

test, at the end of the prologue that it is executing, whether further

processes are allowed to continue as a result of the new value of mark.

This feature of the controller is required in order to permit the

parallelism which G-paths allow (see the example below).

Example of the implementation.

The G-p~th given earlier will be used to illustrate the

implementation mechanism. The following set of procedure executions

may occur:-

Initially, mark has the value:- (1 0 1 0 0).

Suppose that the prologue of procedure B is executed by a process.

The value of the complement of rnark is:-

The value of forwards(*,column(n» for that

procedure when n=l is:-

(0 1 0 1 ).

(1 0 1 0 0).

Thus, (0 1 0 1 1) and (1 0 1 0 0) = 0, and found will

be set to true. Since found is true, mark will be altered to the

value:-
(, p , po) 1aI( l 0 1 0 0)

which is:- o 0 0 0 0).

The invocation of 'schedule_from' will return a value zero and

the process will leave the prologue, executing a V(mutex).

Suppose a process now executes the prologue of procedure A,

the complement of mark is: ( 1 1 ) .
The value of forwards(*,column(n» for n=l is:-

(1 0 0 0 0 ) .
and for n=2:- (0 1 0 0 0 ) .
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Thus, both 1 1 1 1 1 and ( 0 0 0 0)

and 1 1 1 1) and (0 1 0 0 0) are non-

zero and found will be false. Hence the process will execute

V(mutex) and suspend itself by

P( S(semaphore_index_of_procedure_A) ).

Suppose another process executes the prologue of procedure D.

Then, (1 1 1 1 1) ~ ( 0 0 0 1 0 ) is non-zero and the

process will suspend itself on P( S(semaphore_index_of_procedure_D) ).

Finally, suppose the process executing procedure B begins to execute

the epilogue. The value of backwards(*,column(n» for n=1 is:-

(0 1 0 1 0),

and hence mark is given the value:-

(00000).21:(0 o 1 0

(0 1 0 1 0).which is:-

The procedure 'schedule_from' may choose one of the two procedures

A and D to execute next. Suppose that it selects procedure A.

Then the epilogue will execute a V( S(semaphore_index_of_procedure_A)

and the process will finish executing the epilogue of procedure B.

The process which suspended itself in the prologue of A will

commence executing the prologue again. The complement of mark

is:- 1 0 1 0 1 ),

and the value of forwards(*,column(n» for n=1 is:-

o 0 0 0).

Thus, (1 0 1 0 1 ) ~ (1 0 0 0 0) is non-zero. However,

forwards(* ,column(n», for n=2,hasthe value:- ( 0 0 0 0

and (1 0 0 1 ) and (0 1 0 0 0) is zero. Thus,

found will be set to true and mark will be updated to:-

(0 1 0 1 0) xor 0 1 0 0 0)
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which is:- (0 0 0 1 0).
The process executing the prologue of A will now invoke the

procedure'schedule_from'. This will select the procedure D and

return the value of the index of the semaphore corresponding to

the procedure D. The process will execute a

V( S(semaphore_index_of_procedure_D) ) and will continue
executing the procedure A.

The process which suspended itself in the prologue of D will

commence executing the prologue again. The complement of mark

is:- 1 0 1 ) ,
and the value of forwards(*,column(n» for n=l is:-

0 0 0 1 o ).
Thus, the value of ( 1 1 1 0 1 ) and ( 0 0 0 1 o ) is

zero and the process will update mark tobe:- ( 0 0 0 0 o ).
This time 'schedule from' will return the value zero, the

process will execute a V(mutex) and will begin to execute the

body of the procedure D, perhaps simultaneously with the other

process executing the body of the procedure A.

Implementation of GE-paths using P, V multiple operations.

The implementation of G-paths can be simplified if the G-paths

are GE-paths; that is, composed of E-paths only. One particular

implementation for GE-paths uses the synchronization primitives

described by Patil (Patil,1971) •

Let a GE-path and a set of processes contain the procedure X.

Applying TR6.2 to the path and the processes will give the following

abbreviated subnet containing the transitions labelled X:-
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path

path

path

process

process

s1'

52'

sn'

In the above diagrams, places in the paths have been labelled

sl,s2, •••,sn,s1' ,s2',•••,sn'. Each transition X has one input place

from a process and n input places from the GE-path.

We shall define the P multiple operation which is written:-

as the subnet:-

PIn (51 ,52, ••• ,sn)

X

.1

s2

sn

process

When the P multiple operation occurs it removes a token from each of

the places labelled 51,s2, •••,sn.

Each place in the GE-path corresponds to a 'semaphore', and the
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operation 'decrements' each of the 'semaphores' sl,s2, •••,sn

simultaneously. If any of sl,s2,•••,sn are zero (that is, they have

no tokens on them in the diagram above), then the Pm operation does not

occur immediately but waits until it may proceed. In the diagram above,

other transitions may remove tokens from sl,s2, •••, snwhile the Pm

operation is waiting to occur. Hence, the P multiple operation does not

prevent other P multiple operations occurring and decrementing any

'semaphore' upon which it is waiting.

The V multiple operation, written:-

Vm (s1 ' , s2' ,•••,sn'),

is defined as the subnet:-

sl'

s2'

sn'

process

When the V multiple operation occurs, it places tokens on each of the

places sl',s2' ,•••,sn'. In terms of 'semaphores', the V multiple

operation increments each of the 'semaphores' sl' ,s2',•••,sn'

simultaneously.

The implementation of the GE-paths uses a P multiple operation in

the prologue and a V multiple operation in the epilogue of the procedures

being synchronized. For example, the implementation could be written for

a procedure as:-
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procedure X:

begin
Pm( sl,s2, ,sn);

(comment, rest of prologue)

(comment, body of procedure X)

(comment, start of epilogue)

Vm(sl' ,s2',_••,sn');

end---'

The 'semaphores' and operations may be generated from the State Machine

simulating nets of the individual E-paths composing the GE-path in the
..

following way:-

1) Represent each place in the simulating nets by a unique

'semaphore' initialized to zero if the place is empty, or

initialized to one if the place contains a token.

2) For each given procedure appearing in the GE-path generate:-

(i) a P multiple operation with, as arguments, the 'semaphores'

representing all the input places to the transitions labelled

by the name of that procedure,

(ii) a V multiple operation with, as arguments, the 'semaphores'

representing all the output places to the transitions labelled

by the name of that procedure.

For example, the individual state machine simulating nets of the GE-path

expression given for the cigarette smokers problem earlier in this

chapter are:-
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tobacco

paper

The places above have been labelled with the names of unique 'semaphores'.

From the net representation we would generate the following

implementation:-

semaphore 81,s2,s3,84,s5,86,s7,s8,s9;

sl:=s4:=s7:=1; s2:=83:=s5:=86:=88:=89:=o;

procedures

supplytm: begin Pm(sl ,84); (body of suppl ytm] ; Vm(s2,s5) ~,
.upplypt, he sin Frn(.1 ,.7) I (buQY at ."'pplypt) , Vm(.a, as) .!.W!.
supplypm: begin Pm(s4,s7); (body of supplymp); Vm(s5,s8) end,
match: begin Pm(s5) ; (body of match) ; Vm( s6) end,
tobacco: begin Pm(s2); (body of tobacco); Vm(s3) end,
paper: begin Pm(sS); (body of paper) Vm(s9) end,
matches-smoker:begin Pm(s3,s9); (body of m-smoker); Vm(s1,s7) end,
paper-smoker: begin Pm(s3,s6); (body of p-smoker); Vm( sl,s4) ~,
tobacco-smoker: begin Pm(s6,s9); (body of t-smoker); Vm(84,s7) end.
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Implementation of P and V Multiple Operations.

A simple mechanization of P,V multiple operations can be

made using a list structure, a critical section, P and V operations,

and a scheduling scheme. The list structure associates with each

P,V multiple operation 'semaphore' a queue of items representing

requests for Pm operations to be performed on that 'semaphore'.

The suspended Pm operation on a set of 'semaphores' is represented

by a Pm operation request in the queue of each of these 'semaphores'.

Processes are actually suspended using their own private semaphore

and the location of these are also included in the items on the

queues for the 'semaphores'. The critical section is used to

synchronize modifications to the list structure. A scheduling

decision must be taken when a Vm operation increments a 'semaphore'

upon which processes are waiting.

We shall not describe further the details of this

implementation because we have already shown that an implementation

exists for G-paths.
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6.6 A DESCRIPTION OF PETRI NETS BY G-PATHS.

GE-paths, although only a subset of the G-path notation,

are nevertheless a very convenient and powerful method of

describing synchronization. To illustrate this, we will show

that GE-paths can be used to describe a class of General Petri

nets. We will use the following definition to help us describe

this class:-
A Petri net is well-connected if and only if:-

1) Every transition has at least one input and one output place (2.6).

2) Every place is an output, but not an input, place of at

least one transition.

3) Every place is an input, but not an output, place of at

least one transition.

For example, the following Petri net is not well-connected:-
y

x z

In the above net, the marked place is an output place of one

transition, that which is labelled X. However, it is also an

input place of X, and hence the net is not well-connected.

Similarly, the unmarked place is an input place solely of the

transition Z, but it is also an output place of that transition.

However, a very similar net does exist which is well-connected:-

Remarks: The first net could be regarded as an

abbreviation of the second well-connected net (see the

abbreviation )a). Thus, although the subclass of well-connected

nets may seem restrictive, a proportion of thl3 excluded
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General Petri nets may be manipulated into the required form.

Theorem 6.3: A safe, well-connected Petri net can be

described by a GE-path whose simulating net will

generate exactly the set of actions generated by

that Petri net.

Proof: For the proof we shall desc.ribea transformation
which will generate a GE-path from any given safe,well-

connected Petri net. We will then show that the

simulating net for such a GE-path generates exactly the

set of actions generated by the safe,well-connected net.

The transformation is as follows:-

Label each transition of the Petri net with a unique name •

.~or each unmarked place in the net:-

i1 r1 01

include the following E-path as a component of the G~path:-

path «i1 ,i2,•••,in) ; (r1,r2,•••,rk)* ; (01,02,...,Oin»*end

For each marked place in the net:-

i1 r1 01

in Om

include the path:-

185.



path «r1,r2,,,,.,rk)* ; (01,02....,Om) ; (i1,i ,••"in»*end

(Note that once the place is marked, then the initial

transitions (2.6) of that place cannot fire and put another marker

on that place without the terminal transitions having fired in

this path expression description of the net. Hence, the

transformation only represents safe nets. In addition, the

transformation assumes that the net is well-connected. We shall

ignore the case of transitions which do not have an input place

or an output place. Consider the earlier example of a net which

is not well-connected:-

x z

If we apply the transformation to it we obtain:-

path «X, Y)

path «Y ,Z)

X)*end

However, this GE-path does not model the net above since the first

path permits further 'X's to occur after the occurrence of a 'Y',

and the second path allows 'Z's to occur before a 'Y' occurs.)

We shall next show that the component E-paths of the

G&-path yield an equivalent net to the original net when translated
into a simulating net. The path:-

path «i1 ,i2,•••,in) ; (r1,r2,•••,rk)* (01,02,•••,Om»)*end

has the simulating net:-

i1 r1 01
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The unmarked place and transitions are all identical to those of

the original net. However, we have introduced a new marked place

and additional arcs (the additional arcs are dashed in the diagram

above). The place and dashed arcs ensure that the unmarked place is

safe (the original net was safe) but do not affect in any way the

order in which the transitions i1,i2, •••,in or 01 ,02,••.Om, or

rl,r2, •••,rk may occur.

The path:-

path « rl ,r2, ...,rk)* (01,02, •••,Om) (il,i2, •••,in)* end

has the simulating net:-

il rl 01

This time an unmarked place is introduced. The extra arcs

are again distinguished by dashes. Using the same arguments as

before, we conclude that this net allows the same transitions to

occur in a similar order to the original net.

In generating the GE-paths from the original net we only

use the places and the initial and terminal transitions to those places.
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A given transition may have arcs to several places and this is

accounted for by the occurrence of the name of that transition in

as many E-path expressions within the GE-path expression. The

intersection transformation TR6.1 guarantees that on generating a

simulating net for a GE-path, the names of the transitions will be

inspected, and those which are identical used to recreate the

original transition.

Q.E.D.

Example: The safe, well-connected net:-

3

gives a GE-path:-

path «B,A);D)* end

path (B ; D) * ~ .

.E!.!:h «B,A);D)* ~

(for the place labelled 1)

(for the place labelled 2)

(tor the place labelled 3) •

The net is not live (2.4) because the firing of transition A

will prevent any other transition from firing. This is reflected

in the GE-path expression where one can see that the second path

expression only permits the procedure execution of Band D to

alternate, and the first path expression permits a D to be

followed by an A and then a further D (excluding B).

6.7 COMPARISONS BETWEEN PATH NOTATIONS.

To complete the discussion of General Path expressions we

shall compare them with the previous path notations.
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GE-paths and R-paths.

We may express the R-path:-

~(A B; A ; C )* ~

as the following GE-path:-

~(A

.p.!:!!! ( B
(B , C) )* ~

C )*~.

However, there are R-paths for which a direct translation

into an equivalent GE-path is not possible. For example:-

nA.th ( A . A • B )*end~ , , -
We will show that this corresponds to a difference in

declarative power between R-paths and GE-paths rather than any

difference in scheduling power (4.6).

From Theorem 6.3, any safe, well-connected Petri net can be

expressed as a GE-path. Thus, the synchronization of any R-path

which has a simulating net which is well-connected (all R-paths

have simulating nets which are safe by Theorem 5.3) may be

expressed by aGE-path.

Lemma 6.4: Any simulating net of an R-path may be transformed into

an equivalent well-connected simulating net.

Proof: By construction, eve~ transition of the simulating net

will have at least one input and one output place. Examine

each place in turn. If every place satisfies the conditions

2) and 3) for a place in a well-connected Petri net, then the

net is well-connected. However, if the net contains places

which do not satisfy conditions 2) and 3), then we can transform

them into the appropriate form by adding arcs, places and

transitions which are not live.
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Thus, suppose we have a place:-

We make the following transformation:-

The place resulting from the transformation is of the

required form, being an output (but not an input) place of one

transition and an input (but not an output) place of another.
Since these transitions are not live, they will not alter

the behaviour of the net. Hence, the simulating net of an

R-path may be transformed into a well-connected simulating

net.

Q.E.D.

Theorem 6.5: A GE-path may be written to express the synchronization

of any R-path.

Proof:· From Lemma 6.4, the simulating net of an R-path may be

transformed into an equivalent well-connected simulating net.

However, by Theorem 5.3 the simulating net of an R-path is

safe. Hence, by Theorem 6.3, we may construct aGE-path

which expresses the synchronization given by the safe,

well-connected simulating net of the R-path.

Q.E.D.



Example: The R-path:-

has the simulating net:-

which may be transformed into the equivalent well-connected

simulating net:-

and may be written as the GE-path:-

path (t1 ; t2)* end path (t3 ; t4)* end

path «t1,t3) ; A )* end path ( A ; (t2,t4) ) * end

path ( t4 ; B )* ~ path «B, t2) t3 )* end

path «t1 't6) • t }* end path (t6 t7 )* end, 7 -
path ( t6 ; t5 )* end path (t5 . t )* end'6 -

The GE-path written to express the synchronization of an R-path

.does not include any additional scheduling policy, and hence we conclude

that the scheduling power of synchronization of GE-paths is at least that

of R-paths. However, in the above example we have to includ~ in
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the GE-path,additional procedure names and these would require further

processes to invoke them. Hence, the declarative power of GE-paths is

insufficient to describe the synchronization given in an R-path. To
prove equivalence between the scheduling power of G~-paths and K-paths

it is sufficient to remark that in 6.5 we gave an implementation for

G-paths (which includes GE-paths as a subset) in terms of R-paths and
that the implementation did not involve any additional schedu Hng and all
conflicts of G-paths were expressed as conflicts of R-paths. That particular

implementation introduced additional procedures in order to express the

synchronization. In general, the declarative power of R-paths is

insufficient to describe the synchronization given in a GE-path. For

example, R-paths cannot express the possible simultaneous execution of

two different procedures by processes as in the GE-path below without the

use of some additional programming constructions:-

A

A

B )* end

C )* end.

(Procedure Band C may be executed simultaneously by two different

processes. )

G-paths and R-paths.

Since R-paths are contained in the G-path notation we conclude
that the scheduling and declarative power of GR-paths is at least that

of R-paths. From 6.5, G-paths may be implemented using R-paths and

hence we conclude that G-paths and U-paths are equivalent in terms
of scheduling power. However, R-paths have insufficient

declarative power to describe GE-paths and hence we conclude that
G-paths have greater declarative vower titand.-lJClt1u:I.
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GE-paths, G-paths and E-paths.

R-paths have greater scheduling power than E-paths (see Chapter

5) and we have seen that R-paths are equivalent to GE-paths and G-paths

with respect to scheduling power. Therefore we conclude that the

scheduling power of GE-paths and G-paths is greater than that of E-paths.

R-paths have greater declarative power than E-paths, but R-paths have

insufficient declarative power to describe GE-paths or .G-paths. Since

E-paths are contained in both the GE-path and G-path notation, we

conclude that GE-paths and G-paths have greater declarative power than

E-paths.

GE-paths and G-paths.

Since both GE-paths and G-paths are equivalent in scheduling

power to R-paths, we conclude that G-paths are equivalent in scheduling

power to GE-paths. GE~paths are contained in the G-path notation,

and GE-paths have insufficient declarative power to describe R-paths

which are also contained in the G-path notation. Hence we conclude

that G-paths have greater declarative power than GE-paths.

6.8 SUMMARY OF GENERAL PATH EXPRESSIONS.

General path expressions allow the synchronization and

co-ordination of a given action to be specified simultaneously by

separate synchronization expressions. In particular, they permit

descriptions of synchronization which involve the possible

simultaneous or concurrent execution of different procedures by

processes and have a greater declarative power than R-paths and

E-paths. We have given several implementations of G-paths including

one using R-paths.

The synchronization epecified by a class of safe General
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Petri nets can be described by means of a set of GE~paths which are

G-paths composed of Elementary paths. This would suggest that the

General path notation has sufficient scheduling power

to describe many synchronization problems. The equivalence between

R-paths and G-paths in terms of scheduling power implies that this

result also applies to R-paths.
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CRAPl'ER 7

ALTERNATIVE PATH NOTATIONS.

The path notations that were discussed in earlier chapters

were constructed using a regular expression or set of regular

expressions as a basis for specifying the synchronization. The

notations include sequence, selection and repetition and have the

characteristic that each action described in any individual expression

can only be executed by mutually exclusive processes. The remarks

which follow investigate other approaches to the specification of

synchronization by path expressions, for example, the use of

variables within a path expression and a different interpretation

of sequence, selection, and repetition which permits parallel

executions by processes of actions within an individual path.

Wherever possible, we shall outline the problems and benefits of

these alternatives and compare them with the earlier notations.

7.1 THE INCLUSIVE OR CONSTRUCTION.

The first construction we shall consider is the inclusive
or, represented by~. Informally, we define A @ B to mean that

either the procedure A or the procedure B may be executed by a process

o~ both may be concurrently executed by different processes. The

inclusive or could be used in either E-path or R-path expressions

to increase their declarative power of synchronization. However,

such E-paths or R-paths cannot be directly represented as a state

machine because of the possibility of the simultaneous execution

of procedures by processes. The generation of a simulating net

for the construction is difficult and is complicated by special
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cases. For example, the path:-

path (A (B 3 C) D )* end

could be represented by the simulating net:-

(Note the abbreviation for procedure calls to D in the above net.)

If the inclusive or is used within a selection, the simulating net

becomes very complex to construct. For example, a simulating net of

the path:-

path (A; ( B i C) , (D @ E ~ F ) ; G) * end

involves ten transitions representing the calling mechanism for G

if the simulating net is constructed in the same manner as the one

above. Further research is required to find a convenient mechanism

with which to define the inclusive or construction.

Implementation of inclusive or involves similar problems to

those described above for its definition. Using a similar scheme

to the one proposed in Chapter 6 to implement G-paths in terms of

R-paths, it is possible to describe an implementation for the ~

construction. As an illustration of this implementation, we give

the R-path and corresponding procedures which would be required to

implement the example above:-
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path ( A (start_B ;

( (finish B ;

( (start_C finish C D) , D} )

(start_c ;

( (finish_B finish_C) ,

(finish_C finish_B}) D »),

(start_C

(finish C ;
( (start_B finish B D), D} ) ,

(start_B ;

(finish_C finish_B) ,

(finish_B finish_C) }; D } } } ) )* end'--'

procedure A begin (body of A) ~;

procedure B begin start B (body of B) finish_B ~;

procedure C begin start C ; (body of C) finish_C end;

procedure D begin (body of D) end;

where start_B, start_A, finish_A, finish A are declared as procedures

with null bodies.

However, such implementations of path expressions using the

inclusive or may generate ve~ large R-paths if they involve the

possible simultaneous execution of many procedures by processes.

Finally, since paths involving the construction may be implemented

using R-paths, we conclude that such paths have the same scheduling
power as R-paths. and hence. by the results of Chapter

6, as G-paths.

7.2 THE SIMULTANEOUS EXECUTION CONSTRUCTION.

The simultaneous execution construction was introduced in the
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original path notation of Chapter 1 and by Campbell and Habermann

(Campbell and Habermann, 1974) as a useful programming tool. It provides

the following facilities (see examples in Campbell and Habermann):-

1) A means for specifying simultaneous execution of a given

procedure by several processes.

2) A counting facility which can be used in the synchronization

expression.

3) A limited ability to program priority within Path expressions.

Simultaneous execution is denoted by a bracket pair r 1
around an expression and allows as many instances of that expression

to become available to be executed as there are requests for it up

until the moment when all the instances which have been requested

have been completed (See chapter 1).

Simulating nets may be generated for E-paths

involving the simultaneous execution construction. For example,

the path expression:-

path (A; (B} C)* end

has the simulating net:-

The transitions labelled tl ,t2,.••tn and. t t ' ,t2',•••,tn' represent the

flow of synchronization control for invocations of the expression

within the simultaneous execution. They are similar to the control
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mechanism of the R-paths for repeated procedure nam~s and also

keep count of the number of concurrent executions of the procedure B.

We assume that sufficient of these transitions (that is,n) are

provided to meet the requirements of the program in which the

path is used. The occurrence of one of the transitions t1",t2'~•••;tn"

represents the condition occurring that all the instances of the

executions of B which have been requested have now been completed.

Lauer (Laue~ 1974) has also given a simulating net for the construction,

but both his net and the one given above are unavoidably clumsy

because of the necessity of describing a counting mechanism in

terms of a Petri net.

The implementation for simultaneous execution given by

Campbell and Habermann (Campbell and Habermann, 1974) may be easily

adapted to permit the implementation of E-paths and simultaneous

execution using counting semaphores and counters. Implementation

of simultaneous execution in GE-paths is more difficult, however

there are no major problems to such extensions. For example, the

controller described in Chapter 6 for GE-paths may be extended to

implement simultaneous execution by including counters and further
state information. However, the implementation given using P,V multiple

operations cannot be extended in this way. Implementation of

simultaneous execution in R-paths introduces problems of

representing non-determinancy. Consider the following R-path:-

([A;B;A) ·n )* end, --
If the procedures A and B have been executed by processes and another

process executes an A, then we require some mechanism to permit

either a B or a n to be executed. Implementations for simultaneous

executions used within R-paths require further research.

The use of the simultaneous execution with GE-paths allows
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certain well-connected General Petri nets which are not safe to

be described. For example:-

The General Petri net:-

B D

can be described by the GE-path:-

path (B ; A)*end;

path ( ( (B,C); D 1 )*~;

path ( {D ; C} )*end;

The declarative power of the E-path notation when supplemented with

simultaneous execution is greatly increased because we can write

synchronization expressions which involve parallelism between

executions of the same action, and which involve primitive counting

facilities as, for example, when used to describe P,V operations on
counting semaphores:-

A type declaration for a counting semaphore:

~ semaphore;

path {V p) end;

operations P,V

endtype;

The type semaphore above may be used to declare instances of

semaphores initialized to zero. For semaphores initialized to

other values we should require additional notation to state the
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initial status of the path expression. The bodies of the P,V

operations are empty.

7.3 THE PARALLEL CONSTRUCTION.

Synchronization specificat.ions pennitting simult.aneous

execution of procedures by different processes can be programmed

using General Path Expressions using the inclusive or construction,

or using the simultaneous execution construction. Another, more

direct, mechanism to specify the possible parallel execution of

actions is to use a parallel construction which is analogous to

the parbegin, parend construction found in Algol68 (Algol 68,1968).

We shall denote the parallel construction by 'I I'.

The expression:-

A II B

specifies that the procedures A and B may both be executed, possibly

simultaneously, by one process.

The expression:-

(A II }3) ; C

specifies ~hat a proeedure C cannot be executeG bf a praGess until
the procedures A and B have been executed by processes. The path

expression:-

path ( A ; (B II C) ; D)* ~

specifies the same synchronization as the G-path:-

path A B D)* end

path A C D)* end

and could be represented by the simulating net:-
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Further research is required to provide a formal definition for the

parallel construction when it is used within E-paths, R-paths and

G-paths.

E-paths and a limite~ Parallel Construction.

Because E-path expressions have less declarative power but are

simpler to implement tha& G-paths and.R-paths, there is an advantage

in considering extensions to this notation which will increase its

power without making the implementation more complex. One such

possible extension is to include within the E-path notation a

Parallel construction which is limited by the definition of the

notation to appear in E-path e~pressions only where a simple

implementation is possible. (A similar limitation was imposed upon

the repetition construction in Chapter 3.) For example, the path

expre s s Lonr -

pRth ( A ; (B I I C) ; D )* end

has a simple implementation in the form of:-

semaphore s1,s2,s3,s4,s5; s1:=1; 82:=s3:=s4:=85:=O;

procedures

AI 1,.,.40 J-c.nl (~~lIy ~f 4) I vC.a>. V( al)!.W1,

B: begin p(s2); (body of B); V(s4) end·-'
C: begin p( s3); (bod.yof C) ; V( s5) end'--'
D: begin P(s5); P(s4) ; (body of D) ; V(s1)~;

The parallel construction must be limited in its use in an E-path

expression because certain expressions cannot be easily implemented.

Consider for example:-

path «( A I I B ) , C ) ; D )* ~.
The implementation will use different semaphores in the P operations

of the respective prologues of the procedures A and B. However,
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the prologue of procedure C must contain a P operation on both of these

semaphores, but it cannot decrement them simultaneously, Hence, we

have the possibility that a process executing procedure C may decrement

one of these semaphores, and that one of the procedures A and B may

be executed by a different process which decrements the other

semaphore. The result is that only one of the procedures A and B

may be executed and none of the procedures in the path expression

may be executed by further processes.

A suitable set of productions can easily be devised for the
E-path notation and parallel construction which define only those

expressions which may be implemented in the manner outlined above.

7.4 OPEN PATH EXPRESSIONS.

The purpose of this section is to give an example of a notation

which is different from those we have discussed earlier and is not

based on the regular expression. We will demonstrate that this

path notation has more declarative power than the E-path notation

and has an implementation.

The notation is called an open path notation because, unlike

th. p~.v1ou. notatlgn., ~t will have no .nola.1na Qr~tl0&1 M.ot~on.
Sequence and selection will differ slightly in meaning from their

e~rlier definition and the notation may specify the absence of

synchronization. In Chapter 1 we referred to associating path

expressions with type definitions. The open path expression would

permit language designers to enforce, as a necessary part of the type

definition in some language, a complete description of how every

operation on that type is to be synchronized, eliminating the risk

of a programmer overlooking some synchronization constraint.

We shall give a brief description of the notation, giving the

semantics and implementation together in the form of a transformation
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from the notation to P, V operations in the prologues and epilogues of

procedures. Procedure names are restricted (as in E-paths) to

occurring only once in any open path expression.

Example syntax of Open path notation.

P1: path ::= path list end

P2: list sequence ( , list J

p3: sequence ::=item ( ; sequence]

p4: item 00_
00- ( list )

n: ( list )

{list}

procedure name. For simplicity we shall not allow

nesting of simultaneous execution (again denoted r} ).
Implementation of Open path expressions.

An open path expression can be implemented using P and V
operations on counting semaphores in the prologues and epilogues of

the procedures which are named by that path expression. The following

recursive algorithm will translate open paths into this implementation.

translated is labelled by the syntactic entity that it represents in

the production rules above. In general, the path expression to be

translated will be surrounded by two generated synchronization

operations 0L and OR which are on its left and right respectively.

The operation 0Lmay be null, a P or a PP operation. (To simplify

the algorithm two operations PP and VV are introduced which take

three parameters, a counter and two semaphores. These operations

will be explained later in terms of P and V.) The operation OR

may be null, a V or a VV operation.
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Stage 1) Replace path list end by null list null

(The first production does not introduce any synchronization.) •
•

Stage 2) Apply the following set of transformation rules in the

order given by a parse of the path expression using the

production rules above.

a) Replace:- 0L sequence , list OR by:-

0L sequence OR
and

list

(The comma differs slightly from its use in E-paths in that it is

used as a distributive mechanism for the synchronization in which

it is embedded.)

b) Replace:- 0L item sequence OR by:-

0L item V(s1)

P(s1} sequence OR

and declare a counting semaphore 81 with initial value 0.

(The semicolon is used to introduce a sequence in almost the same
manner as for E-paths. The semaphore is a counting semaphore, and

the operations corresponding to 0L and OR may be null or PP, VV

operations as well as P,V operations.)

c) Replace:- 0L n: ( list) OR by:-

P(s2} 0L list OR V(s2}

and declare a semaphore s2 initialized to n.

(This construction permits up to n simultaneous executions by

processes of procedures in list, subject to the restrictions

impo~ed by the synchronization in which it is embedded.)
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d) Replace:- ( list} by:-

list

and declare a semaphore s initialized to one and a

counter initialized to z~ro. (The simultaneous execution

construction is exactly that described in 7.2.)

e) Replace:- 0L procedurename by:-

procedure procedurename:

(body of procedure);

end·--'
The operation pp and VV implement the simultaneous execution

synchronization. Both operations share a counter C1 and a

semaphore s. The semaphore s is used to exclude more than one

process from changing the counter at a time (Campbell and Habermann,

1974'. The pp operation increments the counter, the VV operation

decrements it. If the counter is increased from zero the

synchronization operation synch is invoked (see below)' If the

counter is decreased to zero the synchronization operation

synch. is invoked.

procedure pp (counter c semaphore s; procedure synch):

begin p( s) ;

c: = c+l;

if c=l then synch;

v( s) ;

end·--'
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procedure VV (counter c semaphore s, procedure synch,:

begin p( s) ;

c: = c-1;

V( s) ;

end·--'
The following example illustrates the translation of an

open path expression into its implementation. The translation

is represented as a tree. Each step of the algorithm corresponds

to a node in that tree and the synchronization operations which

have been generated up to a given step are written on either side

of the corresponding node.

The open path expression: - path 1: ( r A B } ) C end

translates as follows:-

path end,-
null ; null

null 1 :() V{sl ) P{sl ) C null
I

p( 112) ( ) V(III1).v(.a)

PF(c,s3,P(s2» I VV(c,s3,V(sl) ;V(s2»)
~ VV(c,s3,V(sl);V(s2»PP(c,s3,P(s2» A V(s4) P(s4) B

The resulting set of procedure prologues and epilogues which

are created by part e) of the algorithm are written below in

program form:-

semaphore sl,s2,s3,s4; counter c;

81:=s4:=U; 82:=s3:=1; c::::O;
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procedure A: begin PP(c,s3,P(s2»; (body of A); V(s4) end

procedure B: begin P(s4); (body of B); VV(c,s3,(V(sl)jV(s2)}) end

procedure C: begin P(sl}; (body of C); end

Execution by a process of procedure A will set semaphore s2 to

zero, semaphore s4 to one and the counter to one. Thus, further

processes may execute A and one process can execute B. When there

are an equal number of executed A and B procedures and no further

processes executing A the counter will have been reduced to zero

and semaphores sl and s2 set to one. C may now be executed by a

process. As many executions of C are permitted as have been groups

of simultaneous executions of procedures A and B.

Examples:

We shall illustrate the open path notation by examples.

The open path:- path 1: (write; read)'end

is equivalent to the E-path:- path (write ; read)*~

The open path notation is equivalent in power to P and V

oparat Ions , For example, we can include the following open path

in a counting semaphore type definition:-

path V; P end,

For a binary semaphore we would use:-

1:( V ; P } end

Some of the open paths which may be written contain redundancies.

For exampl~ the open path:-

path 8: ( A ; 1 2: ( B) C end

is equivalent to:- path 8:{ AB; C ) end

The counting facilities inherent in the notation can be utilised
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in much the same way as the counting facilities of counting

semaphores. For example, we pose the following resource allocation

problem:-

Let 10 buffers be shared amongst 3 sets of processes

A,B and C. To ensure progress in the 3 sets of processes

we ensure that each set of processes has a minimum number of

buffers it can always claim from the pool. However, to

accommodate heavy demand, further buffers may be allocated

to a set of processes which need them, providing that this

does not interfere with the basic requirements of the other

two sets of processes. The minimum requirements for A,B and C

are 2,3 and 1 buffers respectively. One method, which ensures

that these minimum requirements are guaranteed, places an

upper bound on the use of buffers by each set of processes

such that the sum of the upper bounds for any two sets leaves

the minimum number of buffers available to the third set.

Such a set of maximum bounds for A,B,C are 4,5 and 3,respectively.

The path expressions must synchronize the use of the buffers so that

neither are the upper bounds exceeded, nor are there more buffer
requests than buffers available. Such a path is:-

path 10:( 4:(getbufferA;releasebufferA) ,

5:(getbufferB;releasebufferB) ,

3:(getbufferC;releasebufferC))end

where getbufferA is a procedure which allocates a buffer to the set

of processes A and releasebufferA returns the buffer to the pool.

The implementation of such a path for the actions getbufferA
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and releasebufferA is:-

procedures

getbufferA: begin P(s2)iP(s1)j(body of getbuffer)j V(s3)j end,

releasebufferA: begin P(s3)j(body of releasebuffer)jV(s1) ;V(s2) end

where s1,s2,s3, are semaphores initialized to 10,4,0 respectively.

Summary of Open paths.

Open paths give an alternative to the path notation we gave

earlier and show that such alternatives exist. The notation is

as powerful as that of Chapter 1, and can describe counting semaphores

in a simple and economical way. In addition the counting facilities

may be used as a programming tool as was shown in the last example.

The notation illustrates the more general nature of the sequencing

and selection constructions and forms a more natural basis in which

to embed the simultaneous execution construction since in this notation

the "simultaneous execution of expressions" is the general case

and critical sections become special cases.

7.5 POSSIBLE MODIFICATIONS TO THE SELECTION AND REPETITION

CONSTRUCTIONS.

Within the framework of the path notations of Chapters 3, 5

and 6 we can modify selection and repetition to produce additional

ability to describe synchronization. The first such modification

is to allow the execution of one procedure, by a proces~to be

given precedence over the execution of another procedure, by a

different process, in a selection. We develop this scheme py

introducing into the selection a choice mechanism based on the

values of variables. Finally, we apply the same scheme to

repetition.

The motivation for this section is the idea of developing
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a path notation which has the control constructions which are

commonly found in conventional programming languages like Algol.

This would permit a great flexibility in the programming of

synchronization, and we will show that,provided certain restrictions

are made, such notations may be practical.

A Precedence Construction.

The precedence construction, denoted by>, may be used in

a path expression wherever the comma, used to denote selection,

may be used. A > B is a path expression which denotes that there

is a selection to be made between the execution of A or B by

processes such that if both procedures have been invoked, then

the execution of procedure A will have precedence over that of

B. Implementations for path expressions containing the precedence

construction can be devised.

For example, if the precedence construction is used with

E-paths and the E-paths are implemented using the scheme

given in 3.5, then the following implementation may be used:-

Consider the path expression:-

path ( A> B)* end

This may be implemented as:-

procedure A: begin p(s); (body of A); V{s) end

procedure B: begin P{sl); P{s);{body of B); V{s); V{sl) end

where sand sl are semaphores initialized to 1. Only one

process invoking procedure B may compete to execute p{s)

against any number of processes requesting A. Assuming

that the scheduling mechanism for the processes waiting on

semaphore s is a first in, first out queue, precedence will be
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granted to processes invoking the procedure A. This

implementation for the precedence construction may be extended

to cover situations where precedence is expressed between

three or more procedures, as in:-

path (A » B > C)*end

which has for its implementation:-

procedure A: begin P(s);(body of A);V(s) end;

procedure B: begin p(st);P(s);(body of B);V(s);V(s'); end;

procedure C: begin p(s");p(st);P(s);(body of C);V(s);V(s');V(s") end;

Further research is required to obtain a formalism of the notion

of precedence which is applicable to path expressions. This would

then allow implementations to be assessed with respect to whether they

implement precedence correctly, and permit the measures of absolute

and declarative power of synchronization of path expressions to be

applied to path notations containing precedence constructions.

Selections with a Boolean control mechanism.

To increase the versatility of the path expression and to make
it more analogous to the traditional programming language we could

allow the selection construction to include a control mechanism

analogous to the if, then statement of Algol (Algol 68, 1968).

The construction described below has similarities to Dijkstra's

Guarded Commands (Dijkstra, 1975). Each element of a selection may

be prefixed by a 'guard' consisting of an expression which may be

evaluated, without side effects, to a boolean value. A selection

is made by choosing one of the components of the selection whose guard

is true and which has been invoke~. A component of the selection with

no guard is regarded as having a guard which is true. A possible
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production to define this construction is as follows:-

selection ::= boolean expression I element (, selection]

Example: path ( a> 0 I read, a < 10 1 write )* end

describes the synchronization for a buffer which may

store 10 messages. The value of a gives the number

of messages which have been written but not yet read.

We shall impose the following constraints upon the guards:-

1). The guards of a selection are evaluated by the epilogue

of the procedure whose execution leads to the selection

taking place.

the guards.

2). The procedures of a Guarded path may only be executed

This prevents the continuous evaluation of

by mutually exclusive processes. Problems would arise if

variables in the guards could change during the evaluation

of the guards in an epilogue.

3). The variables composing a guard may only be changed

within a procedure belonging to the path expression in

which they are used as a guard. This ensures that 2) is

effective.

Example A:

Consider the problem of allocating buffers to the three sets

of processes described in 7.4. The problem may be programmed as:-

~ allocator;

integer countA,countB,countC; integer available;

countA:=countB:=countC:=O; available:=lO;

path( available> 0 'I ( countA <=4 getbufferA, ,

countB <=5

countC <=3

getbufferB ,

getbufferC )
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countA> 0 releasebufferA

countB> 0 releasebufferB

countC> 0 releasebufferC )* end·--'
procedure getbufferA: begin countA:=countA + 1;

available:=available -1;

end·--'

procedure releasebufferA: begin

countA:=countA -1;

available:= available + 1;

end:

operations getbufferA,getbufferB, •••,releasebufferC

endtyPe;

This example illustrates guards which are nested. A getbuffer

operation can only be performed by a process if the set of

processes to which it belongs has not exceeded the maximum

number of buffers the set is allowed, and if there are bufter.

available.

The guards for a given selection must always permit one of the

possible choices to execute otherwise the path may result in

permanently blocking processes. Implementation could be accomplished
by a similar use of tables of incidence matrices or State machines

as described in the implementation of R-paths and GE-paths and

GR-paths. To be executed, a procedure must be a possible action

that can occur at that moment according to the tables, it must have

been invoked, and must have the relevant guards controlling its
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execution set to true.

Repetition with a Boolean control mechanism.

In a similar manner to the modification made to selection

we can place a guard to control repetition. "hilst the

guard is true, repetition is permitted to occur. A syntax for the

repetition could be:-

while (boolean expression) do element

where element is a sUbexpression of the path expression, and the

boolean expression bas the same properties as the guard of selections.

Example:

A writer may deposit k messages into a buffer. Each of these

messages must be read by reader processes which accept only one

message at a time. K may be of any size. The following type

implements the synchronization:-

!y.p.! distributor;

integer size; size:=O;

. . .
path(deposit ; while size> 0 do remove)* end;

procedure deposit ( accepts integer value k, •.. ):

size:=k; (deposit messages);

end·
--I

procedure remove:

size:=size-l; (removes message);

end·-'
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operations deposit, remove

endtype;

A process may execute deposit, passing the procedure a

parameter k which is the number of messages it is depositing,

Further deposits cannot be wade until these messages are

removed by remove and size has returned to zero, allowing the

repetition to terminate.

Implementation of this repetition construction can be done using

the same mechanism as that for selection. The element to be

repeated is represented as having the boolean expression as a

guard; the following sequence after the repetition has a guard

which is the negation of the boolean expression.

Summa;r of modifications to selection and repetition constructions.

The modifications we have suggested are simple compared with the

numerous possibilities that may be tried. With such constructions

care must be taken to prevent deadlocks arising from erroneous

values of the guards. The constructions provide a greater declarative..
power to the proarammer U8ina path expressions and provide a greater
flexibility. The use of variables to control the flow of execution

through a path expression allows much information to be recorded

in the variables instead of incorporating it in some possibly

large regular expression description of that information embedded

in the path. Further research is required to establish the impact

of such path notations on programming, and in particular whether

such programs are readily comprehensible.
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7.6 SUMMARY OF ALTERNATIVE PATH NOTATIONS.

The purpose of this chapter has been to illustrate that the

path notation we have described is not unique and that there are

many possible variations. Some of the variations are based upon

adding additional constructions to the path notation described earlier.

Amongst these, the parallel construction and the simultaneous

execution have implementations when used with E-paths. Open paths

demonstrate that there are other appropriate forms for expressing

synchronization besides the regular expression based ones we have

described in earlier chapters. Modifications were suggested to

the selection and repetition construction and it was shown that

path notations could be devised in which variables play an important

role in the control of the synchronization of processes. This

would allow greater freedom of expression than earlier path

notations, but would involve greater complexity, additional error

situations and a more complex implementation. In all the

modifications and suggestions made in this chapter, the result has

been to alter the declarative power of the individual path

notations. Little attempt has been made to measure the scheduling

or declarative power of these suggestions and this is a subject

for future research. Finally, the Petri net model of a path

expression is difficult to extend to other path notations which

involve concepts of counting. In our view this difficulty is

caused mainly by the lack of an abstraction mechanism for Petri

nets which eliminates unnecessary detail.
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CHAPl'ER 8

CONCLUSION.

Path notations are a new method of describing synchronization

wt.ich provides a clear and structured approach to the description

of shared data and the co-ordination of communication between

concurrent processes. This method is flexible in its ability to

express synchronization and may, for example, be used in a form
equivalent in synchronizing capability to P and V operations (see

Chapter 1).

The path expression describes synchronization between

executions of procedures by processes. It is a statement of all

permissible sequences of executions of the various procedures

named within it. When combined with our type definition, path

expressions provide a powerful tool with which to design shared

data objects. The type contributes the protection necessary to

avoid carefully designed synchronization schemes being upset

by processes directly accessing the data. The type also collects

together in one place all the implementation details of a shared

object, and provides operations by which a user can manipUlate

the shared object. The path expression specifies the synchronization

constraints needed to ensure the successful sharing of an object

through the use of these operations. These constraints are

expressed directly as permissible sequences of the operations and

procedures which implement the type. This form of expression, in

terms of whole operations or procedures, should be more readily

comprehensible than prior methods for the specification of
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synchronization constraints. It removes the necessity of describing

synchronization indirectly by embedding, within the text of the

procedures, operations on a primitive object with known synchronization

properties (for example, semaphores and P,V operations or conditions

and signals and waits).

Just as there are many programming languages for describing

processes, there are many possible path notations, and a choice of

anyone of them will be dictated by the use to which it is going to

be put. A path notation based on regular expressions specifies

the possible sequences of actions which may be allowed to occur.

This form of expression has the advantage that, not only is it well

known and theory exists about its use, but it has a structure which

is easily learnt and used. Further, it is readily extendable by

the addition of other synchronization constructions and by

generalizations. The following results were obtained for path

notations based upon regular expressions.

E-paths: A path notation which has a simple implementation is

described by a set of production rules. The state machine

corresponding to the regular expression generated from the
productions is used to give a meaning to these expressions.

It is shown that such state machines may be specified by an

algorithm such that they are deterministic, strongly

connected and minimal, and that they have no two transitions

which share the same name. The restrictions imposed by the

E-path notation on the set of regular expressions of which

E-paths can be composed are sufficient to allow the

synchronization for a procedure described in such an
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expression to be implemented by means of a P operation in

the prologue and a V operation in the epilogue of that

procedure. We have given a model for the interaction

between E-paths and processes and shown that the implementation

of E-paths is correct with respect to this model. In addition

the model was used to help establish an equivalence relation

between the scheduling power of a semaphore notation and E-PRths.

Pinally, we gave a syntactic criterion which, for a class of

paths and processes, was shown to be a necessary and

sufficient condition to detect deadlock. This class is very

restrictive, but does suggest that it might be possible to

detect certain deadlocks using such syntactic criteria

during the design and compilation of programs.

R-paths: R-paths are path expressions based upon an unrestricted

regular expression specification of synchronization. We gave

a model for the interaction between R-paths and processes,

and R-paths were shown to have simulating nets which are safe

and belong to the class of Simple Petri nets. This model was

then used to introduce a new synchronization primitive in

terms of which R-paths could be implemented simply. Another

implementation was given in grearter' detail which describes

a mechanism involving ~ V operations, state tables and

scheduling. It was shown that R-paths have greater scheduling

and declarative power than E-paths.

G":'paths: The G-path notation allows simultaneous description

of the synchronization of an action by several path expressions,

each constructed from a regular expression. This permitted
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a synchronization specification to be factored into

sequential components. Parallel execution by processes

of different procedures named by this synchronization

specification is possible if mutual exclusion is not implied

by the synchronization constraints taken as a whole. G-path

expressions are, however, more conceptually complex. For

example, a G-path composed of R-paths may have dynamic

properties. A procedure execution may be constrained by a

particular synchronization specification of one of the

constituent regular expressions of a G-path. It may also be

controlled by one out of several alternative synchronization

constraints in another regular expression of the G-path. A

model for the interaction between G-paths and processes was

given, and G-paths were shown to have simulating nets which

are safe and belong to the class of General Petri nets. A

syntactic criterion for detecting deadlock in a class of

G-paths and processes was given, although again it is ve~

restrictive. We gave an implementation for G-paths in

terms of R-paths and it was thus shown that R-paths are

equivalent to G-paths with respect to scheduling power. The

second implementationwas given in more detail and uses

incidence matrices of the abbreviated simulating net of the

G-path, scheduling and P, V operations. Implementations

of G-paths can be simplified if these G-paths consist only

of constituent E-paths. We gave an implementation of

GE-paths based upon the model of G-paths and processes

using a synchronization primitive first described by Patil.

Path expressions may be based on more complex forms of expression than
regular expressions:
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Open path no tatLon :

Open path expressions specify the synchronization constraints
for a set of procedure executions, some of which may be concurrent.

A set of processes may not only execute different procedures in an

open path concurrently, but, unlike procedures synchronized by G-paths,

they may execute the same procedure concurrently. The

programming of synchronization with this mechanism is different in

approach to that used for path notations based upon regular

expressions. The occurrence of a procedure name in an open path

does not necessarily impose any synchronization upon executions of

that procedure by processes. Synchronization constraints are

imposed upon the executions of procedures by embedding them within

one of the ~nchronization constructions of the notation. Thus,

the approach to specifying synchronization by means of open path

expressions is based upon restricting the executions of procedures

to an appropriate form. ,However, the approach to specifying

synchronization by means of regular expression path notations is

based upon describing the possible sequence of procedure executions

which may be allowed to occur, and hence implicitly excluding those

which are not required.

Repetition and Selection with a Boolean expression control mechanism:
The guarded path notation is again very different from the

previous notations. The synchronization specification depends upon

the values of v&riables which may change dynamically with the

execution of procedures named within the path expression. In

previous notations we have attempted to isolate, as far as is

possible, the synchronization specification from the specification

of the processes. The use of these variables in the guarded paths

implies a stronger dependency between the specification of the

bodies of procedures and synchronization. The dependency is,
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however, introduced in a strictly controlled manner and may be of

practical interest. Further research is required to investigate

such notations. In particular, the ideas proposed above and the

ideas proposed by Dijkstra would suggest that study of a unified

approach to the specification of processes and synchronization

(that is, the use of a similar notation for both) might yield

significant results.

We have introduced two measurements of the power of

synchronization of a path notation. The declarative power is a

quantitative measure and the scheduling power is a qualitative measure

of the synchronization which may be expressed by a path notation.

It is to be expected that a program or specification of a system

written using a path notation with a low measure of declarative

power will make frequent use of procedures whose sole purpose is

to allow further synchronization specifications to be imposed.

Similarly, programs and specifications of systems using a path

notation with a low measure of scheduling power may be expected to

contain scheduling (that is, predicates on the timings of processes).

Thus, the expected cost of using a path notation with poor declarative

power is an increase in the number of procedures which need to be

written, although this cost will be reduced if, f6r example, good

macro facilities are available. The expected cost of using a path

notation with poor scheduling power will be the number of schedulin~

algorithms which need to be written. However, this cost may be

irrelevant in, for example, programs written to interface software

with a machine and which will explicitly specify scheduling. In

addition, these costs may be offset by the expense of implementing
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path notations which are more powerful. We can summarize the

results of our analysis of path expressions with respect to power

by the following diagram. Bi-directional arcs represent equivalences,

and directed arcs represent a decrease in power following the

direction of the arrow. Results which have been demonstrated in,

or follow directly from, the thesis have been given solid arcs

and dashed arcs represent conjectures which have not.yet been

established.

Declarative Power of synchronization.

Scheduling Power of synchronization.
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Any scheme of co-operation and co-ordination amongst a set of

concurrent processes can be used provided that these processes

have the computational capability of a Turing Machine and there

exists some simple mechanism which will arbitrate between thpse

processes over the order in which they communicate with the mechanism.

The design of these schemes is not easy and hence a variety of

standard systems have arisen for specifying synchronization.

Whether these systems have any practical value depends entirely upon

how readily people may use and understand these systems. At present

there is no reason to believe that P, V operations, monitors, or any

other systems yet devised represent the best solution, and it would

be presumptuous if we ceased research into other possible methods.

I have shown that path expressions are an alternative method, in

many ways more advantageous than preceding systems.
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