
Ol~ THE SELECTION AND IHPI~'T..~'rION OF

lh.D. lhcsis

DA.TA STRUCTURE REFTIESENTA'rIONS

R. :B. cneon

Y.I2.rOh 1978

I would like to thank Dr. Peter Hendersonfor his supervision

dur.ing the research, for his patience during its wri ting up and for

his helpful commentson its presentation.

Thanks also to MXs. Jill Kerr for her rapid and accurate t,yping

of the thesis, and to past ~~d present colleagues at Newcastle for

Providi..'I1gthe right environment for the work to be carried out.

The research was supported by the Scia."lceResearch Council.

<,

ABSTRACT

The.selection and the implementation of representations for the
data used in a computer program are considered in order to see ,,,hat
assistance can be provided to the programmer in carTying out these
responsibilities. The notational and s,ystemsupport required to enable
a library of generally applicable data representations to be established
and used d.urineprocram development are investigated.

An approach to data representation has been developed whi.ch is
based on transformations applied to the source language form of a
program. A description is given of a notation for expressing such
transformations in a form suitable for inclusion in a library of rep-
resentations. An experimental system to aid selection and implementation
of data representations has been developed in order to investigate the
consequences of adopting a transformational approach to data represen-
tation. Examples are presented of the operation of the experimental
systen to demonstrate how a programmer may guide the choice of represen-
tations for use in a program.

Some conclusions are drawn concerning the feasibility of the
transforma;i;ionalapproach, and its possible further development.

.£Q.NTENTS

CHAPl'ER 1 INTRODUCTIOU 1

1.0 Summary

1.1 Complexi"bJand Programming

1.1. 1 ~e human factor
1.1 .2 'lhe programming task

1

1

1.2 The Representation of Data in Programs
1.2.1 Twoexample problems

1.3 Assisting the Progre,mmingTask

1.3.1 Someapproaches
1~3.2 Assisting data representation

6

1.4 A Transfor.m~tional Approac~ to Data Representation 11

1.4.1 Objectives
1.4.2 Approach
1.4.3 Benefits to be gained

Relation to Other HOIX
1.5.1 Hork on program transformation
1.5.2 l.1orlcon assisting data representation

14

1.6 Ore;a...-Usationof Subsequent Chapters 18

CRAPrER 2 DATA RSElESEllTATIOn ron PROGRAl1S 20

2.0 Summary 20

2~1 FitUng tl1e Problem Solution to the Hachine

2-.1.1 'Ihe t..'l.reetlanenau~
2.1.2 ~1e solution 2~goritr~

2.1.3 ImpleJTlentincthe algori tl1.n
2.1.4 Raising the level of the tareet Language

20

Abstraction, Representation and Transformation
2.2.1 Hastering complexity
2.2.2 Procedural abstraction
2.2.3 Data abstraction
2.2.4 Representation
2.2.5 Program transformation

Data ~es for Abst~ction
2.3.1 Basic types
2.3.2 Progra.mmer-defined types
2.3.3 ~e specification

D:I.ta Strnctures
2.4.1 Structures in progra.mning languages
2.4.2 Structures for specification
2.4.3 Structuring methods
2.4.4 The representation of structures

23

29

34

CHAPTER 3 EXPRESSTIrG DATA REPRESENTATIONS AS TRANSFORr-1ATIOlTS45

-. --_

3.2

Examples of Data Structure Representations
3.f.1 Set J.:.'epresentedas a sequence
3.f.2 Packed data

'Applying a Transformational Approach
3".2.1 Ex:pressing representations
3.2.2 l-Tatchingand implementing transfomations

The Structure Transfor.rration
3.3.1 The general form

Example Structure Transformations
3.4.1 Set as seqLlenCe
3.4.2 racked iata
3.4.3 Indirect representation

3.5 Applying Strnctu"re T:!."ansformationsto Prograns
3.5.1 r·1'a,tching strnctures
3.5.2 Transforning structures

45

45

47

50

51

55

Constructing a Librar,y of Representations
3~6.1 Sequences of transformations
3~6.2 Completeness of a librar,y
3.6.3 An example librar,y

59

CHAPTER 4 DATA. OPERATIOHS EXPlli!SSED AS ':i:RANSFORHATIONS • 65

4.1 Problens in Expressing Data Operations 65
4.1,.1 Representation dependence
4.1.2 lTeed to express unconventional operations
4.1.3 Need to distinguish references and values

4.2 References and Values
4. 2-~'1 Storage derivations
4.2.2 Definitions
4.2.3 Assignment
4.2.4 Structured va,riables

ss

Classification of Data Operations
4~3.1 O\omership of operations
4.3.2 Operation categories
4.3.3 EOCample operations
4~3-. 4 Example program

Operation Transfornations 84
4.4.1 The general form
4.4.2 EOCample operation transformations

4.5 Applyip~ Operation ~~sfor.mations to Programs 88
4~5.1 Hatching operations
4.5.2 TransforLcine operations
4.5.3 Optimisation

CHAPTER 5 AS SISTDIG TIIE SELECTION OF REPRESSllTATI01!S

5.0 Summary

5.1 !!he Experimental System
5.1".1 OvcraJ.l fozm of the system

5.1.2 Use of the system

5.2 :r-ratching Representations
5". i.1 Conditions to aid seleotion

5.2.2 E:campleof' matching

5.3 Evaluating Representations

5.3~1 Aims of' evaluation
5.3.2 Related work on evaluation
5.5.3 Approach used in experimental system

5~3.4 Storage space evaluation
5.3.5 Ex:ecution time evaluation
5".3.6 Problems of' evaJ.uation to assist seleotion
5.3.7 Evaluation and the transf'ormational approaoh

93

93

93

98

105

5.4 Directing the Applioation of' Transf'ornations 121
5.4~1 An example of' use of the experimental system

5·.4~2 F4uivalence transformations

5.4.3 Options in guiding use

~ 6 ASSESSI"IENT OF TRAlTSFOR!-lATIOHAL APPROACH

6.0 Summary

6.1 Benef'its of the Approach
6.1.1 Concise notation
6.1.2 Selection and implementation
6~1".3 Buildine; of' libraries
6.1.4 Re-use of' sof-b..m.re

135

135
135

6~2 Limitations and Ex:tcnsions of the Approach

6.2.1 Selection and evaluation
6'.2-.2 J.'!orethan one representation per type
6~2.3 Representation of more flexible data

6.2.4 Further investigations

6.3 Conclusions

APPENDIX I Summary of the Structuring Hethods and 'J.Y'pes

used in the Experiments

APPEHDIX II Example ITograms

APPEHDIX III Example Representation Library

APPENDIX IT Elca.1Il)?leRepresentational Choice Session

REFEREECES

137

143

145

149
151

164

176

- 1 -

JNTRODUCTIOU

1.0 Summary

. This chapter describes the context in which the subsequent

investigations are set. The representation of data structures is

viewed as an important aspeot of the progranmdngpro.cess in which it

appears feasible and useful to augment the knowledgeand skill of the

programmerwith machine aid. The fom that such aid might take is

outlined, and. the approach investigated in this thesis is introduced.

The rela.tionship to other work in similar areas is described.

1.1Complexi tv and Programming

Over the past few years there has been a growing realisation of

the difficulties that m~, and often do, arise whenwriting computer

programs. Much attention is nowbeing given to investigating how these

difficul ties maybe reduced, both by the use of various methodologies and

by providing computer assistance with the programmingtask.

1.1.1 'the Hunan Factor

Programminginvolves problem solving, and despi te attempts to

automate parts of the task, the humanprogrammerstill plays the central

role in developing a program. Dijkstra [13J has pointed out that

developing a successful program depends on a full appreciation of the

difficulties involved, and that the intrinsic limitations of the human

programmermust be respected. ~..,reinberg[55J has considered the many

ways in which human factors affect programming, and advocates a deeper

-2-

study of such factors. For example, the problem solving abili~3 of

the progra.n:meris central to the pt'ogrammingtask, and a sui table

environment is needed in which such problem solving can take place for

it to be successful. The information capacity of the humanmind is

strictly limited in its ability to recall quickly large amounts of
,

information. If the difficulties of programmingare to be reduced,

assistance (both methodological and mechanical) is required for those

aspects of the task in which the programmer's ability is limited.

However, at the same time "Ie do not wish to hinder the programmer's

control over the eventual fom of the program~ vTe wish to augment the
. -

capabili ties of the programmer, not to replace him or her.

1.1.2 The Programming Task

Many complexities arise in programming. Constraints on the size

and efficiency of the final programmean that it must often be expressed

in machine oriented terms, which are very different from the machine-

independent terms in which the problem to be solved is expressed. 'nle

. amount of program code that has to be produced can lead to the inability

of the programmerto comprehendall the code and its complex inter-

relationships, which in turn adversely affects its correctness and

maintainabili ty.

'lhe progr~tlnmingtask can be viewed as one in which tre gap between

the problem to be solved and the nachfne on which it is to be solved must

be bridged. Having established the problem concepts and worked out an

overall method of solution, it is the progTammer's job to produce a

machine-acceptable, suitably efficient program to carry out the solution

algori th:rri~

In order to bridge the problem-machinegap, the progra;mnerhas to

choose representa,tions for the processing and data concepts of his abstract

- 3 -

solution and express them in tems of the basic concepts provided by the

machine or language actually used to implement the solution.

'lhe programmeris therefore faced with the difficul W of ohoosing

suitable representations for the processing ald data concepts he "rishes

to use in his solution. His choice is constrained by the limits on

the size and execution speed of the final program, as well as by the

basic programmingconcepts available in the language in which t..h.a.t

program is to be "Trltten. Having chosen a representation, the programmer

must also correctly implement his choice in terms of the basic concepts of

the language.

1.2 'Ibe Representation of Data in Programs

For this work, 've consider in particular the selection and

implementation of represent?tions for the data used in programs. 'lhe

choice of \.,rhichdata representations should be used is a basic factor in

the design of a program, but one which is far from simple. We\-'ish to

consider the effect of making it the central theme of the development cf a

program, so that the attention of the programmeris concentrated on

making representational choices. ~ this meanswe hope to make the wide

rBn;;;,e<-e of possible choices more explicit to the prograzrmer, and give him

better faaili ties for exploring that range in orde.r to select sui table

representations for his program.

Conventionally, the programmeronly has his experience and intuition

to help him choose a suitable representation for his abstract data concepts.

Themul tiplici ty of different ,.,raysof representing data makes the choice

of representation for any specific data construct difficult. Usually

data is organised in compoundstructures, each componentof which could

itself be compound. A..rr;r single componentof a compounddata structure

could involve a reprcsentai:ional choice frOI!!many conventional stora.o~

-4-

techniques, such as lists, trees or hash tables, as \'lell as many

unconventional storage techniques that are invented in an ad hoc fashion

by programmers. So choosing representations for compounddata

structures can becomevery complex-.-

The programmer, faced with the need to makemanyrepresentational

cboi-ce's, and usually under pressure to design and write a program quicJdy,
)

'nIl often not consider a lot of possible representations. He is liable

to consider making a choice only from amongthose representations with

\-lhichhe is familiar, and ,,!ill not have time to search the available

literat~ for a representation more suitable for his data. In addition,

his evaluation of the representations that he does consider is likely to

be ske~ or even non-existant. He will possibly just pick vThathe

intui tively feels to be the most appropriate representation, implement it

in his program, and only reluct8l1tly consider changing it when the progra.."U

is found to be too inefficient.

There is therefore strong motivation for investigating vlhether

assistance can be provided to help the programmerin selecting and

implementing data representations.

1.2.1 TltIO ExampleProblems

Tb illustrate ~~e kind of problem to be faced when choosing data

representations, we shall introduce two examples from those used during

the experimentation, one fairly simple and the other aomewhafmore complex.

~ese examples will be used throughout the text to demonstrate the

concepts being discussed. Here we present the problems vii th some ira..! tial

contempla.tion of the variety of data representations that !l"J.ghtbe used

in their solution.

Birt..'ld8\}TsF};;:ample(Initial problem): An unordered file

of data is given corrtafzdng +he day in the year on v/hich

-5-
each of a collection of people were born. Each entry

in the file consists of a pair of integers, the first

representing the identification number (in the range

1 to 5000) of a person and the second representing

their birthday (in the range 1to 366). There are

about 50, and not more than 100 pairs of data on the

input file. It is required to) list, for each day of

the year for whf.ch there is a.t least one birthday, the

identification numberof each person having a birthd~

on the.t day.

In this example, we require a data. representation for the storage

of the data. during the execution of the solution. It is necessary to

store the input data in the program since it is not possible to determine

the first item to be output until the last item has been input. The data.

maybe stored in manyways. It is necessaxy to choose a storage

representation which is practicable and suitably efficient for a proposed

implementingmachine, in terms of both storage capacity and execution

time-.

Card Game Example (Initial ;problem): It is required

to model the playing of a card. game. In this gamethere

are tHOplayers whouse a standard 52-card. deck of

playing cards. The gameprooeeds as fo~lovls. The cards

are shuffled and placed in a pile face down. Each player

takes seven cards from the pile. The next card on the top

of the face downpile is turned over to fom the bottom card

of a newface-up pile. The players then take turns "'ith the

object of disc:?.rding all the cards in their hand, the winner

being the first player to achieve this. At each tum a

player mayplace one card from his hand face up 011 the top

-6-

of the face-up pile but only if that card is either the

same suitor the same rank as the card currently top of

the face-up pile. If no discard can be made in this

wa;y, the pl8\Y'ermust pick up the top card of tre face-

downpile.

~s example is chosen to demonstrate a case in ,.,hich several data.
J

structures are closely related in one problem. Representations must be

chosen for the pl8\Y'in€:cards and the way in '~hich they fom t\olO piles,

one face-up and the other face-down, each used in a different vlay.

'lh.ehands of the two pl8\Y'ers, and the insertion of cards into and

removal of cards from the hands, must also be represented. Howmight

a programmerrepresent the data involved, say in denoting the hand of

one of the pl8\Y'ers? Possibly he will draw some schematic diagrams of

how the available storage cells will be used, as shown in JiJ.gure f.-1.

However, even having drawn such diagrams, the proGrammeris then still
-

left with the problems of vThethera better representation has been over-

looked, how to evaluate and choose bet\oleenthe different representations,

and hO~1to code the pieces of program that are required to implement the

Chosen representation~ Clearly a more systematic approach to Choosing

data representations could be of great help.

1.3 Assisting the ProgranmdngTask

Many different approaches are being tried Qy manypeople in an attempt

to assist the pro~a.mming task. In recent years the whole field has

assumed reore importance; the complerity of the problems being tackled

has increased, \-lhichhas in tum shownthe inad.equacies in the previous

ad hoc approaches to programming. Attmnpts are being made to provide

assist81lce both du.ring the development of a program and in guiding

-1-

'----v-----"___..,.___._____._ 4
ca.rd1 card2 card3 card4 \..last card ma:tker

HAND

number card1 card2, card3 card4
of cards

c r- number of' cards

card1 - card3

,-- number of cards

In any of -the above, the rank and suit could be packed into one cell:

HAltD 100101001001101000001001011010011010011110001001010001I
1 t 52
. bit i represents the presence in the hand

of the ith card in the pack

Figure 1.1 Di!?[;TaT'1sshoi-Tine;SOMe representations for a. hand of cards

-8-

the form that the completed program should. take. Irozra,mmingmethod-

ologies seek to provide a fraroe\fork which the progranmer can adopt in

his approach to the task, and computer based tools can give mechanical

aid to the various stae-es of producing a program. In addition,

programming languages and notations have a marked, if not

disp~portionate, influence on the programming task, and much ...TOrk
)

has been carried out on devising new languages that try to provide

features more closely related to a given problem domain.

{~3~1 SomeApproaches

Programming languages, as pointed out by Cheatham[7], have

evolved a great deal to\·ra.rdsincluding facilities to aid the prograrraner

in coding his solution. Language concepts such as the procedure or

subroutine allow the programmer to ,·Trite a program ill manageable sections.

High-level languages such as Algol 60[44J include control structures

that can be understood more easily than the labels and jumps of

assembler code. E:x:tensible Languages [19, 57J enable the programmer

to a certain extent·to include data and operations more suited to his

problem. Very-high-level laIlo"U.a....,n-eS,such as SET!.[47] or SAIL[18] ,
include general set-theoretic concepts, so that the pro~nmer can express

his problem solution in an almost completely machine-independent fashion~

Besides programmingmethodologies that advocate various kinds of

stepwise approach to program development, the programmermay be assisted

by computer-based tools tha.t support each development. Experiences, such

as that of the TOrn system[23,24] ,have 8110\-111 how database support for

the gro...f.U1g program during development enable the programmer to concentrate

on elaborating the abstract concepts in his soluti·::m in a controlled. naaner,

One of the other "Wczy'sin \-Thichthe e.rnountof progre..L1code that has

to be written can be reduced is by using eXisting routines to carry out

-9-

the more straightforward calculations. In some application areas, for
example numexical analysis and statistics, libraries of useful programs
and routines have been established which the programmer can link into
his own program. Such re-use of existing tried components both reduces
the workload on the programmer and may increase confidence in the
correctness of the components.

Another approach to easing the progralluningtask is that of the
program manipulation system, as described by, for example, Imuth~?J pg282)0

Using such a system, the programmer first specifies his program in an
easily expressible but possibly inefficient foxm, then the program is
transfoxmed by the system into an acceptably efficient one. Such a
system may be completely automatic, for example a conventional optimiser
as included in some compilers, or may be used interactively by the
programmer to help guide the choice of the transformations to be applied.

1.;.2 Assisting Data Representation
It is natural to consider how these sorts of approaches may be

applied to helping the choice of data representations in programs. The
p:r:ogrammermust be aware of the range of representations available for him

to use, a range which may increase as new representations are devised.
Follo\o1ingthe idea of the use of libraries of useful numerical and other
algorithms, it appears beneficial to establish, if possible, a librar,y of
useful data representations, which could be extended as suitable new
representations were found.

In order to make effective use of such a data representation libra..ry,
tecl~ques are required for selecting from the libr~J, evaluating
suitable representations for use in programs, and implementing the chosen
~presentations in the programs.

- 10 -

Other approaches have been attempted to help the programmermake

effective use of data in Programs. Wesuggest that someof these

approaches have not gone far enough, and someof themhave gone too

far in the amountof assistance given to the prOBrammer. For example,

the class notation of Simula 67 [10J is a language feature which

-provides a good wayof expressing problem-oriented data concepts
)

required in the development of a program. The body of the Simula class

can be used to define the representation of the class of data objects in

question, in terms of both the storage for and operations allo'Ned on

those objects. The class construct is therefore suitable for

expressing the representation of a partic~lar olass of object in a

particular program. Howeverit is not adequate to a~lcw a Bb ra:r.yof

different representations for each of a set of general data concepts to

be set up (as will be seen later) nor does it ease the difficulties of

selecting appropriate representations. In this sense, the Simula class

does not go far enough in helping the choice of data representation.

A second approach to aSSisting the programmeris that of the so

called very-high-level language such as SETL. In this language, the

main way of expressing the problem is in set-theoretic terms. The

language itself provides an implementation of general sets, so that the

pn>gra.mm.erdoes not need to get involved in representing his problem-

oriented concepts at all. Hm'lever, this is -going too far in 'assisting'

the pro~~er since the given implementation of sets will often be

inappropriate and therefore inefficient for the particular use made of

the sets by the progTamIller.

MOrerecently, the designers of SETLhave turned to investigating

wa;ysin ""hichmore control can be introduced over the representations

used in implementing SE'TLprograms (Schwartz [47,48J).

- 11 -

Wefeel it to be essential that the programmershould be able to

use representations for the data which are suitably efficient for his

particular problem. This means that ultimately the control over the

choice of representations must remain with the progrannner, and wewish

to assist him makea sui table choice, rather than to impose an unsuitable

.ohoice upon him.

1.4 A Transformational Approach to Data Representation

In this thesis we present a transformational approach to the rep-

resentation of data in programs, and report on the investigations carried

out to examinehowthe approach can assist the selection and implemen-

tation of data representations.

The work is directed specifically at the representation of the

data used in individual programs, where the manipulations to be carried

out on the data are to a large extent known. A different approach may

be required in si tuatd ona, such as the representation of the data in

databases, where the use madeof the data is often more diverse and

llllpredictable.

1.4.1 Objectives

'lhe objectives of the "IOrk were therefore to examine the problems

involved in describing and setting up a library of useful data

representations, expressed as transformations, also to see if such a

library could be used to help the programmerin the selection and

implementation of data representations for his prog-.cams.

The program transformation approach has already been applied to

local program optimisation and to control flmv manipulation (as

discussed in the next section). In the approach, having written an

initial program, succensive t~ansformations m~ be applied to it which,

- 12 -

",hile preserving the specified action of the program on execution, alter

other features of the program (such as its efficiency) in a beneficial

wrq.

'Ibe transfo:rmationaJ. approach has also been adopted as one means

of obtaining program correctness. By startirgwi th an obviously correct

program, the application of provably correct transfoxmations enable an
acceptable final program to be obtained which it would be difficult to

prove correct in isolation.

Our objective is to adapt the approach so that tre transformations

consist of the implementations of chosen data representations. B.1
.

starting with an initial programwhich uses abstract representation-

independent data concepts, successive transformations maybe applied to

it in order to produce an efficient version of the programwhich uses

only ooncrete data concepts which are directly supported by a

programminglanguage implementation.

In order to apply this approach, means of expressing data

representations as transformations are required in a form that allows

them to be included in libraries. Their selection and implementation

from the libraries should be straightforward, and the range of

representations that can be incorporated in pzograaa in this w~ should

be large and uncons'bradned;

Since the selection and implementation of representations is likely

to involve actions (such as searching libraries and oonsistently

applying transformations to programs) which the humanprogrammeris not

well sui ted to carry out, the extent to which machine aid can be applied

to assisting these aotions is also of concern in the investigation of

the transformational approach.

- 13 -
1.4.2 Approach

The approach taken to the above objectives \vas to develop an

experimental s,ystemfor aiding the choice of data representations

that could act as a test-bed f'or the associated ideas. Because o£

the current l~k of' knowhageconce~ed with describing data

representations in a concise enough fonmfor use with a machine, it
'I

is initially necessar,y to investigate the problems to which this

approach may give rise. The experimental system therefore was

developed to aJ.lowdif'f'erent ideas to be tried iil order to discover

the problems and the important f'actors involved. This thesis

expands upon the problems and f'actors involved in assisting the choice

of data representation using atransfozmational approach, as brought to

light by the experimental system. ~e system was not des.Igned as a

model f'or a f'inal production system, and the ef'f'iciency of' the system

implementation and its humanengineering aspects, :for example, were not

therefore of' prime consideration: ~e examples of the use of the

system given later are intended to illustrate points concerned ,·dth

data representational choice rather than to showhowa practical system

might appear.

1.4.3 Benefits to be Gained

~ expressing data representations as trans:fo~ations in a

systematic fashion, certain benef'its maybe gained.

• The range of' choice from which a representation f'or a particular

data concept maybe chosen becomes explicit, giving less chance that

a sui ta.ble l.'epresentatioll maybe overlooked.

• The algori thms requ:i.red to implement the representation are

presented in a f'onn suitable for direct application 'vithin a program,

reducing progTazmningeffort by such re-usable eomponenbn,

- 14-

• ~e representation description is compbte, and may be tested
before inolusion in a representation librar,r. It is also more
amena.ble to the kind of proof oorreotness described by, for example,
Hoare [26J • Use of suoh pre-tested oomponents is an aid to program
reliabili ty.

• • Describing transformatioI¥J in a machine-readable fom, enables
machine aid to be used in their selection and implementation.
• Machine assistance in seleoting representation enables larger

libraries of representations to be oontemplated than the unaided
programmer oould reasonably search.
• Machine application of the transformations when implementing a

representation 8Voids possible programmeD-introduced errors in their
implementation.

1.5 Relation to Other '~{ork
The present work is related to, and brings together, two main

fields of current interest. These are, f.irstly, the transformational
approach to program development, and seoondly ~le provision of assistanoe
in the selection of data representations.
1.5.1 Work on Program Transformation

In one of the first of a growing list of published work on program
transfomation, Knuth [32] suggests hO,"Tan interaotive program
mani~ilation system oould be used to enable a programmer to sucoessively
transform a correot, well-structured but possibly inefficient program
into a suitably effioient form.

Various other authors have also considered the application of
transfo:onations in progrannning [1,3,8,49,54] , mainly in the area of
local optimisations to program segments. Some of these authors propose

- 15 -

the development of interactive program manipulation systems, and give
some exa~ples of the kinds of transformation they hope might be
achieved through the use of the systems, howeven published experience
of the development of their systems is not yet available.

Transformational systems whiCh have been developed inolude that of
Darlington & Burstall [11,6], who provide sets of transformation

)applicable to pJDgr~~s expressed as first order recursion equations.
Their transformations include recursion removal, e~imination of common
subexpressions, and in-line expansion of procedure bodies. Loveman [38J
describes various transformations that can be applied to a tree-structured
representation of a progra~ also mainly to achieved local optimisations
of data access and control fiOl>1. A recent paper by Kibler et. al.[30J
describes how an interactive program manipulation system was implemented
using a special technique for organising sequences of program trans-
formations. They give an example of the kind of optimisations that can
be carried out on a matrix multiplication program.

!ihough some authors, including Knuth [32] and Balzer et.al.[3]
suggest that the transformational approach could be applied to the
representation of data as well as to the optimisation of program see;ments,
detailed considerations of how such an approach could be carried out have
not yet been made.

The correctness of transformations applied to programs is considered
by Gerhart [20] •

1.5.2 Work on Assisting Data Rep~~sentation.

The need for a means of isolating data representational choices has
been pointed out for several.years (Balzer [2], d'Imperio [15J, Nealy [j2J),
hOVlever it is only fairly recently that any worlehas been carried out on
providing automatic assistance to the programmer in this u1sk.

- 16-

Low [39] describes a ~Jstem designed to demonstrate the feasibili~
of automatically selecting low-level data structures for a program
expressed in terms of high-level structures based on relations, sets and
sequences. His system works in three phases. Firstly, it analyses
the-program wri tten in a high-level language (a subset of SAIL) which

.uses the data structuring methods of lists and sets. The analysis
)

gathers information on how the program manipulates the data, and attempts
to partition the data into equivalence classes, in.which the members of
each class will use a common representation. The second phase selects
a representing structure for each equivalalce class from a Iibraxy of

fixed structures suc~ as variously linked lists, trees and hash tables.
These structures are directly implemented in an assembly language.
Selection ends when a representation has been chosen for each equivalence
class. The th:frd phase consists of 'preparing the user's program for

compilation and execution. One of the important parts of the selection
phase is the evaluation of alternative structures using space and time
cost estimates. This will be discussed further in section 5.3.

Low and Rovner [40,46] go on to discuss the exten.sion of Low's
system to also handle associations (temaz"J relations) as one of the high-
level data structuring methods,· besides sets and lists.
similar to that already described by Low [39J •

Gotlieb and Tompa [22] describe an algorithm for selecting a storage

The approach is

schema for some information whose logical structure has been specified.
The logical structure to be represented is described using a relational
model, or what Gotlieb and Tampa describe as a 'substructure model',

and the operations upon the data. structure required by the user are also

specified. In ozde r to choose a storage schema (i.e. a representation)
for the infoID,3.tionstructure, it is first subdivided into substructures,
so that a suitable representation c~~ be cil0sen for each. The

representc-.tionsare chosen from a known set "mch includes such schema

- 17 -

as binary rirg, contiguous store, hash, .threaded binary t-reeand
unary chain. .An algori thInis described which initially eliminates
those schema which are not applicable to a given substructure, either
becattse they conflict with previously chosen schema, or because they do
not implement· operations required by the user, or because they would
require more storage space than is available. From the remaining

)

schema, an efficient one must be cbosen for the substruci-ure. The
evaluation technique used by Gotlieb & Tbmpa to select a cost-effective
schema is described more fully in Tompa,[51] , and \Olillbe referred to in

section 5.3.
Eoth the repres:nt~tional choice schemes described by Low and Tompa

consider the representation of a data structure as an essentially single-
step transformation from a high-level notation to a low-level implemen-
tation. The tlTOrk presented here differs in th2.tit considers data.
representations as being composed of a series of transformations within
a single notation. In other 'vords, the same notation is used to

express the initial abstract program as is used for t..'lefinaJ. concrete
program, the change from one to the other being achieved by a series of
transfo~ations each denoting a particular representational choice.

Two additional papers have recently appeared on the selection of
data represent~tions. Ka~t [29J describes the design of a 5,Ystem which
aids the selection of representations for abstract constructs in a veT,1-

high-level program descri~tion. The system acts as an evaluator of the
efficiency of application of refinement nues from a separate knowledge
base of such rules. Rosenschein &,; Katz [45] present a model of the
process of choosing representations which is ultimately intended as the
basis of a knowledge-based interactive system. The model uses a special
progra.m-.independent language for describing the data structure

requirements, and cons idexs the <.traysin ,,,Mch representations may be
combined to meet these requirements.

- 18 -

1.6 Organisatton of Subsequent Chapters
The following chapters report on the concepts tha"t'V1eredeveloped

and used in the experimental representational choice system and on the
conclusions'that can be drawn from use of the system. Little ,dll be

said about the actual implementation of the system, since, as has been
men~ioned, the objective was to investigate the concepts involved

)

rather than the provision of a production system.
The next chapter takes a general look at the role of data

representation in programs, how problem-oriented data concepts can be
transformed into machine-oriented terms, and the par:bplayed by

abstraction in progr~ development. Some terminology that will be
used in the rest of the thesis is presented, including that ef data t,ypes
and data structures, and the specification of the former in terms of
the latter.

Chapters 3 and.4 introduce the notation that was developed to
express data representations as transformation in the experimtn tal
By"stem. In Chapter 3 we consider the kinds of representation to be
expressed, and how a transformational. approach can be applied to theme
We then take a closer iook at transforming the structural specification
of data. In Chapter 4 the fonms of operation involved in the
manipulation of data are considered, and a classification of these
operations is introduced. The transformation ef data ope=ations is
given oloser attention in the remainder of this chapter.

In Chapter 5 the experimental representational choice ~Jstem is
introduced, and its method of use described, including the matching of
representations from the library. The evaluation of representations is

given particular attention here. Exampm s of the use of the experimental
By"stem ax'a also presented.

- 19 -

An assessment of the transformational approach to data

representation is made in Chapter 6, "lhich concludes by SUIJI!l8.rising

the achievements of the "10rk~

)

- 20-

CHAPTER 2

DATA REPRESENTATIONFOR pmGRAl1S

2.0 Sumna1':£

In this chapter we consider the, general role of data representation

in programs, demonstrating the part i t pl~s in pmgram development. In

particular, we consider abstraction, a fundemental aid to help for.mulate

programs, and relate it to the concept of a data type. '!his leads to

the specification of data types in terms of data structures, and we tr.r to

clarify some of the c·onf'usion that exists between data types and data

structures.

/

2.1 ;Fitting the Problem Solution to the Hachine.

2.1.1 - The Target Language.

'lhe objective of computer programmingis to derive and express an

algorithm for the solution of a given problem in a subsequently machine

executable form. The algori tbmwill generally be expressed as a

P2'Ogramin somekind of programmingLanguage, ranging from machine code

to a 'very-high-level' language, so that the program can subsequently be

COmpiledand executed (or interpreted) to solve the problem. The

ProgTamming l~"Uage, in "'hich the fully developed program is to be

expressed, will be called the tarr;et languar;e.

It is the prograrrnner's job to develop a ta.rget Language program

that can be used to solve the given problem. Sometimes the programmer,

.. especially if he is inexperienced or believes the problem too small to

'Warrant more care, will immediately try to code a suitable prcg-.cam,

keeping only in his head. details of the algori tbm and data. representations

being used. However, the "hurahLe prograrmner' [13] , who realises hov

- 21 -

easily small yet vi tal details can be overlooked in this fashion, will

try to makeexplicit the various assumptions madeat each stage in the

developnent of the program. Indeed for large problems, which require

correspondingly large programs, it is essential to break the program

development downinto manageable stages.

)

2.1.2 The Solution Algor! thro •
.~.

Aprogram reflects a certain chosen approach to solving the given

problem. It is the embodimentin the target language of en algori tbm

for solving the problem. The derivation of a suitable algorithm,

expressed in problem-oriented rather than target-language terms, is

usually the first step in reaching a solution. The expression of such

an algorithm can take many foms, of varying degrees of precision.

Sometimesthere are standard algorithms that can be used if the problem

is fairly common.

Example: If the problem is to find the average of a set

of numbers, a standard algorithm is to 'find the sumof

the numbers and then divide this by the numberof items

in the set'. Note that the algorithm is completely

independent of such target-Ia.nguage-oriented features as

the representa.tions of the indiVidual numbers, or of the

set, or the order of taking the numbers etc.

2.1.3 Implementing the Algorithm

Having decided upon a sui table algorithm to solve the problem,

expressed in problem-oriented terms, the progrruT~erthen ha.s the task of

deriving a target language proeram to implement that algorithm.

However,usually the concepts available in the target language are very

difi'erent from those of the problem. Even if the required concepts are

- 22-

available in the language, that language Ii1aiY not provide suitably

efficient implementations of them for the given problem. The

programmer's job therefore is to br:iJige the gap between the p:oblem

concepts and the language concepts in such a way that the ultimate

execution of the solution on the machineis acceptably efficient.

Example: Auseful data concept whenwriting a

compiler is that of.a 8,Ymboltable (with someassociated

operations that can be performed upon such a table, like

finding whe ther a given symbol is currently in the table).

However, if the target language in which the compiler is

eventually to be written is, for example, assembler-code,

the language does not directly implement the data concept

of a ~bol table. It is therefore necessary to express

the problem-oriented data concept in ter.msof concepts

such as words of storage which the assembler code does

support.

So, in order to attain an efficient naebfne solution of the original.

problem it is necessar,r not only to derive and express an algorithm

for the solution of the problem, but also to implement that algori thIn

efficiently in machine terms~

2.1.4 Raising the level of the target Language,

Onea})lroaoh to bridging the problem-machinegap has been the

development of higher level languages that try to incorporate concepts

that are more sui table for expressing algorithms in problem-oriented

terms. High-level languages such as Algol, and so-called very-high-

level languages such as SETL,have provided means of expressing an

algori thm in -termscloser to that of the problems within their scope of

- 23 -

application and so less dependent on machine features. Ho",lever,when

such languages use fixed implementations for their structures and

operations, as embodied in their compilers and interpreters, in general

the higher the level of the Janguage, the Je ss efficient the resultant

exeoution of the program maybecome.

Example: A symbol table and its associated operations

could be expressed in set-theoretic terms, and thus be

directly expressible in a set-theoretic target language.

However, such a language, since it must support complex

operations such as generalised set tmion, mayimplement

its sets as, for example, linked lists of elements.

Hol-leVerthis fixed implementation is pl.'t>bablycompletely

inappropriate and therefore inefficient for the particular

restructed set of operations actually required on the

s,ymboltable in the application being considered.

In other words, the higher le vel language approach to bridging the

p~blem-machine gap generally takes away from the programmerthe control

over the implementations ultimately used in the machine that executes the

p~gram, ani thereby reduces the efficien~ of execution. Whatwe wish to

do is not to take control a....vay from the programmer, but to assist him to

makemore efficient use of the control that he can exercise. Wemust

therefore consider in more detail how the problem-machine gap can be bridsed

in a controlled manner.

2.2 Abstraction and Representation.

2.2.1 Mastering Complexity

loJhentrying to tackle any complicated task, humanlimitations

- 24-

dictate that to avoid confusion and error the task must be broken down

into manageable sta.ges.
-

Because of the requirements for precision and

efficiency in programs, program development, especially for programs of

a non-trivial size, is certainly a complicated task. It is therefore

necessar,y to apply techniques that will allow the program to be developed

in easily understood stages.
)

If we vfish to express a complexproblem-

oriented al,gori thIn in machine-oriented terms, it is foolish to attempt

to do this in one step, since that step would i tsel! be too complex:to be

fully understood. Instead, the complexity of the task has to be overcome,

and a prime means for trying to understand oomplexphenomenais that of

abstraction.

2.2.2 Prooedural Abstraction.

To demonstrate the role abctraction can play jJl program development,

wewill first consider what is perhaps its most frequent use at the

present, namely the procedure. Essentially a procedure is a means of

grouping someprogram text together and giving ita single name, whioh

can subsequently be used to stand for the given piece of programwhen

constructing other progr~~ text. Hote that we are tald.ng 'procedure'

in its most general sense, including such similar concepts as subroutines,

functions and macros, and not implying any particular implementation

(s'qch as a stack for passing parameters and holding return links).

At the momentwe are considering program development, in which, for

eXample, it is often useful, to introduce a procedure simply to group

program text in to a mana.geableunit. (The procedure mayonly be called

from one place and so be more efficiently implementedby being expanded

in-line in the final prof,rram.) In fact, the abEi ty of a procedure to

be used to break a progr31llinto manageable pi.eces is exactly why it is

- 25 -

useful to overcomecomplerity in program design. It allows the program

designer to ignore the detail of the procedure body, and use instead

simply the procedure name, in the context of the calling program section.

Tho' design o:f the procedure body can then be considered in its ownright,

using what Dijkstra [14J calls the 'separation of concerns'.

Card GameExample: A procedure maybe declared so that

the identifier 'play' will stand :for the actions taken by

one player whenit is his turn to pl~. '!he prograrrmer

may then call this procedure wheneverhe requires these

actions to be taken in the program, without considering how

the computation is to be per:formed. He can separately

decide the way in which a player acts whenit is his move,

and then program the body o:f the procedure accordingly.

Procedural abstraction is provided as a facilit,y in most bigh-

level prograJ!mlinglanguages, and even most assembly languages provide

somemacro-de:finition :facilities. However, though procedural

abstraction has received most attention in the past, data abstraction

is nowbeing recognised as at least of equal importance in the develop-

ment of programs.

2.2.3 Data Abstraction.

In the sameway that procedural abstraction allows the implementation

of a procedure to be ignored at one level, and only considered in detail

at an appropria,te stage in the program development, so data abstraction

allows the representation o:f a data object to be ignored at one level,

and considered seperately in detail at another level. Data objects

differ somewhatfrom procedural objects in that firstly where a

- 26-

procedure m8\1have severaJ. invocations, a data type mayhave instead

several instantiations, and secondly a single data item maybe

manipulated in various ways (by assignment ~tc.) at various points in

a program. Thus a data abstraction consists at one level of the

introduction of a single identifier to stand for the t,ype of data being

considered, and aJ.so the identification of those data operations which

\..J ID8\1 be applied to instances of the data type. At this level the

representation of the abs.tract type is ignored and instances of the type

maybe created and manipulated in abstract terms. Only at someother

appropnate stage need the representation of tre type be considered in

detail, together with the implementation of the operations on the type.

:Birthdays Example: In the programfor tilis problem

it is necessary to somehowstore the Jarson-date

values which are input, and later to retrieve them

in a certain order. A data abstraction 'table'

maybe created for this, on which operations such

as 'insert-person..date' and 'any-person-with-the-

given-date?' maybe defined. The programcan

then be written in terms of these concepts without

considering at that stage the ~·rayin \ofhichthe

table ''iill be represented.

- 27-

2.2.4 Representation

The separation, provided by the use of abstraction, between the

the introduotion of someconcepb and its elaboration allows the

elaboration to.be given more preoise oonsideration. The representation

of an abstraot concepti in terms of more conorete concepts both for

prooedural and data abstraotions, determines the effioienoy \-lith whioh

that abstraot oonoept maybe handled in the program.

:By determining the use madeof the abstraot concept in an abstraot

fo~ of the program, a better ohoioe m~ be madefor its representation

in the more ooncrete forms of the program. Also, the implementation

details of the concep-t, partioularly where operations on abstraot data

are oonoerned, ~ be better oomprehendedwhenoonsidered separately

from their abstraot use. /

If appropriate oonstruots are allowed in the target language, the

representations chosen for use in tre programmaybe distinguishable

in the final program text. For example, if the target language supports

prooedures, prooedural abstraotion is direotly visible in the distinotion

between a prooedure oall and the body of the prooedure being oalJe d.

The representation of the prooedural abstraotion determines the form of

the prooedure body.

Often, however, the target language is noli well sui ted to expressing

in the final program text the representations that have been chosen

duxing program development. In this oase, it will depend on the

documentation of the program development as to whether the representations

implemented in the final programare clearly distinguishable. It is

important that the representations used in a program are clearly

.distinguishable both for maktng the initial ilnplementation of them in the

programmanageab'Ieand comprehensible and also for allO\"lingfuture

- 28-

changes in the program to be carried out in a controlled fashion.

2~"2.5 ProgramTransformation.

ihe program development process, which takes the solution

algori thm and implements it in terms of a target language, maybe

considered as a series of transformations that transform the abstract

problem-oriented concepts "into concrete target-Ia~age-oriented

concepts. If such transfoDnations can be clearly expressed, the

program development process maybe described by the application of a

given series of transformations to an ini tiaJ. abstract version of the

solution algorithm.

Program transformations can be performed from one form of the

program expressed in one notation to another fom of the program

expressed in a different notation. In this case, the transformation

is applied to the complete program. For example, a compiler applies a

transformation from a source to an object language program. Frequently,

however, it is useful to perform transformations from a form of the

program expressed in somenotation to another form of that program

expressed in the samenotation. In this case, such transfoma tions can

be successively applied to selected parts of the program. Tilhensuch

transformations are applied to the program expressed in the target

language (or .sour ce language for someobject program), they are mown as

source-to-source program transformations (see, for example, r.c;veman['38]).

Certain program transformations are of frequent use in program

development, and in sore sense ID8J' be said to capture the programmer's

knowl.edgeabout the kinds of '.!a:ys he can proceed during the development

(Gerhart [21J). If they can be expressed in a suitably concise form,

they provide a useful uni t for inclusion in a Iibrary of reusable pzogxan

development concepts.

- 29-

Wewish to apply program transformations to the representation of

data concepts during program development. In order that successive

transformations ID8\Y' be applied to parts of the program that are concerned

with each data concepf in tum, the transformations will be between foms

of the program expressed in the samenotation. This notation must allow

the expression of both the abstract form of data required in the ini tiaJ.

abstract solution, and of· the concrete form required in the target

language-.
'~,

2.3 Data TYPesfor Abstraction

As a first step towards considering the representation of abstract

data concepts in p:rograms, we look at the role of t:re data type for

expressing data abstractions.

Basic types are familiar from tradi tionaJ. p:rogra.minglanguages.

More recent languages allow programmer-defined types to be introduced

in p:rograms, and for their specification in terms of language-defined

structuring methods:

2.3.1 Basic Types.

Data_. types provided as primitives in programing languages are

familiar from languages such as Algol 60.' There, the simple types

integer, real and bodean are basic to the language, and allow the use

of data items of those types without the need to oonsider the

representation of the items in more primitive machine-orient8d terms.

Upondefining a variable as, for example,

boolea.ll b;

then it is implied that variable b can only take the conceptual values

- 30-

true or false. It does not matter Whetherthe variable is represented

as a single bit or a comple te word.in the store of the machine on which

the language is implementedor whether true is represented by a '0'

or '1' val.ue, Provided the implementation consistently supports the

tru,e-false abstraction, it can be ignored whenprogI.cunmingin Algol 60.

The language also provides certain basic operations that can be

performed on booleans, such as 'and', 'or' and 'not.', whose implementation

can also be ignored, provided the results of applying the operations are

consistent with the abstract notion of the operation~ effects.

Similarly, reals and integers in Algol 60 have associated sets of

values that they may take, and operations that maybe applied to them.

Each operation requires operands of a certain type, and a compiler can

perform type checking in order to detect (in most situations) whether

a programmingerror has led to an incorrect use of somedata items.

For a given target language, we shall call data types that are

. directly implemented in the la.ngua.gebasic types. So therefore,

for exa.."Ilple,real, integer and boolean are the basic types of Algol 60.

Similarly we shall call the operations on such types that are directly

implemented in a given language the basic type operation~ for that

language. So, for example, division / is a basic type operation

on reals in Algol 60.

2.3·. 2 Programme~efined Types.

Languagesproviding a fixed set of data types, such as Algol 60,

may allmi a programmerto define his own 'operations' in the form of

procedures. This has tre advantage that sdnce a procedure declaration

in Algol 60 must generally specify the ty-pes of i t8 parameters, including

that of any result, type checking maybe applied to the procedure ca.lLs,

- 31 -

However, the programmer cannot define his owndata types in such languages,

and thereby misses the opportunity to tailor the data concepts and the

associated type checking to his ownneeds;

Twomain approaches to the inclusion of programmer-defined types in

programmingLanguages maybe distinguished. The first apl1' oach is

characterised by the use of types in Pascal [28] and of modes in

Algol 68 [57] • In these languages, the programmerm~ introduce an

identifier to stand for a kind of data concept. This type identifier is

used whendeclaring variables or specifying parameters in order to

distinguish the type of data item involved; this enables type checking

to be used to trap somekinds of programmingerror. Whena programme~

defined type is declared in such a'language, it must be specified to

have a particular (often structured) set of values. The structuring

methods al.Lowedin the declaration are directly implemented by the

language, so the type declaration therefore effectively fixes the

representation used for the ~ to be that provided for the declared

structure by the language. Operations allowed upon data items of the

programmer:-defined type are tho se provided by tre language on tl:& structure

that the .t.r.Pe is specified to have

Example: In Pascal, a programmer-defined type could be

declared as

~ hue = W 91. colour

This would fix the representation of data items of type

'hue' to be that provided for sets by the Pascal

implementation (usually a bit representation "Ti thin one

machine "'lord). It would also fix the operations that

could be applied to data items of type 'hue' to be

union, intersection, set diffe~~nce and set 'membership.

- 32-

The second approach to the inclusion of programmer-defined ty:pes

in programming languages is that of the 'class' or 'abstract data type',

illustrated in languages such as Simula 67 [10J) CLU[35,33,34J

and Alphard [60J. In these languages, the pzcgzamme r not only introduces

an identifier for his new type, but also defines the operations that may

be applied to instances of the type. Programs may -therefore be written

using the abstract concept of the type without any knowkedge of its

representation. The representation of the t,ype is defined by giving

the structure of the data used to represent an instance of the type and

by implementing the programmer-defined operations in terms of language-

specific operations on the structured data. The representation,thougb

Partly depending on the language-implemented strltcturlng methods as in

the fll' st approach, is essentially programmedindividually for each of

the programmer-defined types.

Example: In Simula 67, a programmermay introduce the

da.ta concept. of a bounded queue of integers, with

operations to join and leave the queue, and to test

whether it is currently full or empty. Instances of the

a.bstract type 'integerqueue' could be created:

ref (integerqueue) q;
q:- new integerqueue;

and used with the defined operations in ivri ting the program:

- - - q.join (m); - - -
- - - II q. empty ~ q. leavehead (n);- - -

- 33 -

!lberepresentation for the queue is defined in a class:
class integerqueue;

begin integer front, back;
inteGer array Q [1:20].

procedure join (i); ;i.p_tege.;:i;
begin.
front:= mod (front, 20) + 1;
Q, [front] :=i;
end;

end integerqueue;
whioh uses the language-provided array struoture, plus
prograrnme~efi~ed bodies for the operations, to give
the desired implementation.

2.3.3 Type Specification. /

Before a representation can be ohosen for a programmer-defined t,rpe,
the speoification to which the representation must oonform must be kncvn,

Example: In the previous example, besides knowing the
identifiers and parameters of the operations on the t,ype
•integerqueue', it is also necessary to know the meaning
of the operations before either a program can be "Tritten
which uses them, or a representation can be chosen for
the t.rPe.

A type spacification may be left as an informal notion in the mind
of the programmer, or an attempt may be made to document the specification
wi th varying degrees of fomaH ty. In order to assist the selection of
representations .for the data concepts used in a program, some explicit
form of sJ;ecification is required.

- 34-

Idskov and Zilles [36] describe various ways in which data

abstractions may be specified. They identify five techniques:

i) use of a fixed formal. domainof objects

ii) use of an appropriate, but otherwise arbi tary, known
·formal. domain

iii) use of a state machinemodel

iv~) use of axiomatic defini tions

v) use of algebraic defini tions

The above categories are in increasing order of 'abstractness of

specification', the earlier ones tending to exhibit more representational

bias than the later ones.

For our purposes, a methodof data specification was required which,

while hopefully being largely representation-independent, was sufficiently

capable of f1 tting into the program development process that useful aid

could be provided in choosing data representations. The specification

methodused is most closely related to Liskov and Zilles second categor,y,

the use of an arbi tary fomal discipline, which, as they point out, is

analogous to writing programs in a language which provides several data

structuririg facHi ties. ''Ie shal.l return to this approach in .

subsection 2.4.2.

2.4 Data Structures,

Although we 'ilish to take a broader Vie'il of the term 'data structure',

it is useful fimt to consider the kinds of structures that are used in

conventional programminglanguages.

2.4.1 Structures in Progranun1ngLanguages

In Algol 60, for exampl.e, the only kind of structure available for

data is the array. 'lhis consists of a mappingfrom a particular sub-

- 35-

range of the integers (or the Cartesian product of integer subranges in

the case of mu1 ti-dimensional arrltys) onto a basic type of the language

(integer, real or Boolean). There is an operation associated with the

array structure, namely that of indexing an element of the array.

Example: In an Algol 60 program an array could be

declared as

intege~ array A[}:10J

in vfu.ichcase the indexing operation A[i], where ie[1, 1~,
would select the i 1;helement, of type integer, in the arraur.

The relative lack of data structuring facilities in !1g01 60 led to

the development of various Algol-like languages that tried to incorporate

better facilities. For example, Algol W[58J includes records as a

structuring method, allowing the Cartesian product of several dif'f'erent

data types to be constructed and namedand so define what is essentially

the set of values of a newdata type. As we described in 2.3.2,
Pascal [28] makes such type definitions even more explioit, and

introduoes further structuring methods, including variant records and

sets, \-1h11stin the deolaration of' modes,Algol 68 [57] uses structures

--such as discr:i.minated unions and flexible arrays.

The data structuring techniques available in these and similar

l~ages all share a commonpropert,r - the language provides a fixed

methodof implementation f'or each kind of structure. Once the programmer

has written his program in terms of' tm se structures his representational

task is over, since the target language has been reached and no further

representational choioes need be made.

- 36 -

2.4~2 Structures for Specification.

Our approach to the representation of data uses data structures in

a way that al.Lowa data concepts to be specified in tems of structures,

but does not restrict their implementation as in a conventional

programing langu~.

Tn order to specify an abstract data type, and its associated

operations, we require that its (abstract) values aee expressed in

terms of a structure chosen from a certain set of abstract data

structuring methods, and its operations are expressed in terms of

manipulations applicable to the specified structure. The set of data
.

structuring methods, and the fixed set of manipulations defined on those

structures act as a foxmalism for the purposes of specification.

Consider, for example, the programme:t'-definedtype 'complex',

introduced as an abstract data type into a program dealing with complex

numbers. Ilhe programmermight also define operations 'add' and

'subtract' on complexvalues, and so be able to write an abstract

program that manipulates complex:i -rems,ignoring for the time being how

those item~ are to be represented: Of course, whenhe uses the operation

'add' on two complexvalues in his abstract program, the programmerknows

how the operation should behave, though he maynot yet have thought about

howhe will actually implement it in terms of the target language. lly

giving a specification of the type 'complex', in tem.s of the logical

structure by which it could be described, and the effects of the operations

on such a structure, the programmercan define his conceptuaJ. view of the

type that he has introduced.

Example: The t,ype 'complex' and the operation 'add'

might be specified as follows, using an ad. hoc syntax:

~ complex= (real_part: real; imag_part: real);

- 37-

add (01:comp~x, 02:complex): complex

= complex (01. real.J>art + c2. imag_:pa.rt,
01.imag_part + c2.imae_part)

'!his denotes that a. complex item is considered as

composedof t\olO components, both of type real. which

can be selected by the identifiers 'real-part' and

'imag-part'. The 'add' operation is specified as

taking t\vo complex items and construoting a °ne"1

oomplex item, whose first component is the sum of the

reaJ-part's of the operands, and whose second component

is the sum of "the imag-parts. In other woms the type

can be specified in terms of' a Cartesian product structure,

and the operations on the ty:pe can be specified in terms

of opera.tions associated \o,ith that structure (construction

of an item from its components, and selection of an

identified component of an item, in the above case y.

Note that suoh a specification hasn't necessarily implied a particular

implementation of the type, since the Cartesian produot structure, or the

operations associated 'Ni th it, such as construction, need not be basf,c to

the target language. Wewill discuss this further in a moment.

~rst we define our usage of the term data structure-~o

A data structure is a means of specifying the way in which objeots

of a compoundty:pe are composedin terms of consti went objeots of

other types.

Each data structure is composedusing one or more strl..lctur:ip.'j

l!l§!thods. 'lbese are the type combinators from which complex st.ructurea

may be bull t.

- ;8 -

Example: A Cartesian product is one kind of

structuring method. In the above comp~x number

examp'l.e, the logical structure of a complexnumber

was defined using a Cartesian pro~uct combination

of two real types.

A structuring method maybe fomally specified. Hoare [25]
gives axiomatic definitions of all the structuring ne thods used in

subsequent chapters. Weshall concentrate on the use to which such

structuring meihods maybe put rather than en their formal specification.

For each struc~ng method there are an associated set of

operations which ~ be used to refer to or manipulate data objects

defined to have the given structure.

Example: In order to refer to the two componentsof

complex data objects, selection operatio~ were used

above, and a new complex item was constructed from its

constituent parts. Both the selection an.dconstruction

operations are specifically associated with the

Cartesian. product structuring method.

In order to be able to help the programmer to choose representations

for his data, we require that he specify the logical structure of the

abs-tract data types in his program in terms of a given set of structuring

methods (described in the next subsection). In addition, the operations

that he requires on hi.a abstract data types must be specified in tems of

manipulations on those logical structures, using the given operations

associated with structures (illustrated in section 4.3). Once the

program has been expressed in terms of these structuring methods and

- 39 -

their associated operations, representations m~ be chosen for the data

struc~sso that they can be implemented in the target language.

2.4.3 Structuring Hethods.

For the purposes of sIScifying the structure of data types a

fixed set of structuring methods were used during the present

investjgations. They correspond closely with those given by Hoare in

his 'Notes on Data Structuring' [25], and were chosen to allow many

commonlyencountered data structuring concepts to be expressed by a

relatively small set of structuring methods. For example, the concepts

of a stack, a list and a queue are all particular uses of the general

structuring method of a sequence.

The structuring methods used are the following:

integer subrange, Cartesian product, discriminated union,

~, set, sequence, recursive definition.

Wehave omit1;ed enumeration from tl'e techniques discussed by Hoare

for the sake of simplicity. The transformation from an enumeration to

an integer subrange is stm1ghtfonTard. and of only syntactic significance.

Example (Card.game): Rather than specifying the type of

the suit of a playing card. as

~ SUIT= (hearts, clubs, diamonds, spades);

we shall presume that each value of the type is mapped

onto an integer and spacify the type as

~ SUIT = 1 .. 4;

This kind of representation will be presumed for all ty~es

that could have been specified as enumerations.

(strictly, enumerations and integer subranges do not specify structured

- 40-

types, and should net therefom be called structuring methods. However,

in a situation where a structured t,ypemaypossibly be represented in

terms of an unstructured type, as in the example that follo''1s in

3·.4.2, the distinction is no longer so clear: Weinclude integer

subrange as a structuring method so that we can refer to the structuring

methodused in a type specification no matter v,hether the type is

structured or unstructured in conventional terms).

The structuring methods that we use include most of those

encountered in conventional programminglanguages. Wepresume for our

present purposes tha ~ the target language towards which the program

development is proceeding implements somerestrict.ed subset of the

given structuring methods.

Example: Pascal [28] implements all the given

structuring nethods, but only in a restricted form.

A Pascal file, for example, is a restricted form of a

sequence, and a set ID9\Y only have a lind ted maximum

cardinali ty, dependent on the vl0rd size of the

implementation. Low-level assembly

languages generally only t implementt a single arr~

structure, being the indexable storage of the machine

itself.

Whenwriting the intial problem solution in the form of an abstract

program, the programmermayuse a:ny of the structuring methods in their

most general form. The objective during the representational choice

process vrill be to implement those structures which the prograomer has

in fact used in terms of the restricted structuring methods available

in tlB target language.

- 41 -

~e structuring methods are described informally in Appendix I,
which also includes a description of the data operations associated
with each method (to be discussed further in Chapter 4). Hoare [25]
presents a more formal, axiomatic, definition of the methods. We
shall illustrate the use of the structuring methods by giving the
type specifications used in the abstract forms of the programs for
the two example problems.

Birthd~s example (t.ypespecifications):

~. DAY = 1 •• ;66;

~ PERSON = 1 •• 5000;

~ GROUP = set of PERSON;

~ TABLE = arra,yDAY ofGIDUP;

~es nAY and PERSON, both defined as integer sub-
ranges, will be used for the day of the year of a

birthday and the identification number of a person, as

required in the problem specification. A type GRUUP is
introduced, specified as a set of people, to denote a group
of people born on the same d~. The data to be stored in
the program can then be defined as a type TABLE, specified
to have one group of people for each dzy" of the year.
'lhisis tm abstract form of the data~ In praotice,
the arr~ will be sparse (since the problem specified a
maxdmum of 100 people, so many d~s \'1illhave an empty
group of people), and need not necessarily be represented
as 366 contiguous components. The representation for the
sets etc. has also still to be decided.

- 42 -

Card Gameexample (type specifications):

~ PLAYER= 1•• 2;

..ID.it RANK - 1•• 13;

.:W!L SUIT = 1 •• 4;
~ PLAYING-CARD= (suit:SUIT; ran.k:RAHK);

~ HAND= ~ Q!.. J'LAYllJG-CARD;
ID.£. PLAYH'~ = array PLAYER Q.f. IDN D;

.~ FACE-BP_PTIil<)= sequence PLAYIN~CARD;

~ FACE-DO\VN-PILE= sequence PLAYING-CARD;

'1\.,0 players are involved in the game, and a type PLAYER

is specified as having the vaJ.ues 1 or 2 to denote each

player respectively. The RAJ:1X and SUIT of a card. are

specified as integer subranges also~ The type FLAYING-

QL~ can then be specified as a Cartesian product (or

zecozd) having components of types RANK and SUIT, and

giving selectors in order that each component may be

identified separately. A hand of cards is defire d

then as a set of pla;ying cards. '!he data relevant to

the states of both of the pl~ers hands of cards are

denoted by the type PLAYERS,\'lhich defies one RAND for

each player~ The other cards in the game, not in either

of the pl~el."s hands, are in one of the two pILEs.

Uote that though both RAND and the PILEs contain PLAYING..

CARDcomponents, the first is specified as a set and the

second tt'TO as sequences. This reflects the fact that

the cards in a hand are not in any specific order, and

will no t be inserted and removed in a predetermined

faShion, vThereas in a pile the cards are o~~ered and

- 43 -

will be added or removedfrom a specific place, such

as the top of the pile. The twokinds of pile are

specified as different t,ypes because their manipu-

lation will be significantly different, and therefore

a different representation m~ be required for each.

Weassociate one representation per t,rpe, rather than

one representation per instance of a t,rpe, so in order

to allow different representations to be chosen, we

must have a different type for each pile. This

restriction will. be discussed at more length in

section 6.2.2.

2.4.4 The Representation of Structures.

Having defined the logical data structures required in the program,

it remains to represent these in a sui table target language form. A

structuring method such as a sequence or a set maynot be implemented

directly in the target language. Tn fact the kind of target language

most likely to be used fOI the sake of efficiency m3¥only include the

array as a basic structuring method. It is therefore necessary to

express data having, say, a sequence structure in tems of some

representing data structure, and to express manipulations of the

sequence data in terms of corresponding manipulations on the representing

data.

Besides those data structures which use structuring methods which

are not implementedin the target language, it is also necessary to

represent compJex data structures formed from a hierarchy of components

each using a possibly different structuring method. In general,

therefore, we '.rish to have representations not only for vard ous data

structuring methods, but also for crmpound data Structures.

- 44-

A data structure representati~ consists of the representation of

a given (possibly compound}data structure in terms of someother

(possibly compound)data structure and th9 implementation of each of

the operations associated with the first structure in terms of the

operation associated \Olith the second structure.

Example: A data structure consisting of a sequence

of items of sene "type Tmaybe represented. in tenus of

an array of i terns of type T together vIith the index of

the end of the sequence. The operation of inserting

a new item of type T onto the end of the sequence is

implemented in terms of updating the end index and

inserting the item into the appropriate element

of the array.

In the next chapter data structure representatiors are discussed

in more detail, and in particular it is shownhow they can be expressed

as program transformations.

· - 45 -

EXPRESSING DATA R.:"SPRESENTATIONS AS TRANSFORMATIONS

3.0 Summa;ry

In this chapter we go on to consider how program transfoma tions m8¥
be used to express data representations.

First we look at some examples to illustrate the kinds of represen-
tations that we wish to express, and we discuss the factors involved in
applying a transformational approach to describing such representations.
The next sections in-the chapter are conce~ed with transforming the data
structure specification of a data t,ype,ana examples are given of how
representations may be expressed and applied in these terms. Fbr a
full description of a representat.:i.on,it is also necessary to consider
the transformation of the operations upon the t,ypebeing represented,
fuller discussion of this being left to too following chapter. Finally
in this chapter we consider the construction of libraries of data
representations, and show how the transformational approach may assist
in building libraries.

3.1 Examples of d~~~ structure representations.
Firstly in this chapter, then, we consider some examples of the kinds

of data structure representations that may often be useful in pm grams.
They illustrate the sorts of representations that could suitably be
included in a library.

3.1.1 Set represented as a sequence.
Suppose that a set of similar items is required to be manipulated

in a program.

Example(Birthdays): In the birthdays problem, we

require to store the set of people whohave a birthd8\V

on the sameday of the year, for each such day. As

the input data is analysed, newelements will be added

to the appropriate sets. To produce the required

output, the elements of each set are listed.

A connnonrepresentation for such a set is to use a linked lis t of

i terns, one item for each current memberof the set. Whenan item is

to be added to the set, it will be linked into the l:is t, possibly with

a check to see if that item is already in the list. If an item is to

be removedfrom the set, a search ,dll be madefor it in the list, and

it will be removedby manipulating the relevant links. In fact, there

are several ways of representing lists, with different linking arrange-

ments, or even contiguously wi thin a piece of storage.

A generalisation and abstraction of the list, namely the sequence,

is one of the structuring methods adopted in 2.4.3 for specifying data

types. The representation of a set in terms of a sequence is therefore

a useful transformation to apply in the representational process. The

choice of a subsequent representation for the sequence can be made

independently.

3.1.2 Packed data.

Another exampleof data represent?tion, usually only madedirectly

aVailable to the programmerof Low-LevaL languageo, is that of packed

data. This normally is required whenit is necessary to store several

'. data items, each of which will only take a small range of v8111es,and

where it wouldbe inefficient to use one word of storage for each item.

- 47-

Of course, describing packed data. representation in these terms depends

ver:r muchon factors such as the word size of the machine. However,

it is possible to consider abstract counterparts to packed data.

representation in a machine-independent form, better suited to inclusion

in a general librarJ of representations.

Example: Given two separate items i and j \o[hosevalues

can range over, sa({, the integers 1- to 10 and 1 to 20

respectively, it is possible to represent these two

integer subranges in terms of a single subrange 1 to 200,

with value (~-1)x 20+ j corresponding to given i and j

values.

3.2 Applying a Transformational Approach.

Whenwewish to investigate applying a transform8,tional approach to

the representation of data, there are two main aspects to consider.

Firstly, representations like those of the previous section must be

expressed as transformations, so that they can be included in libraries

etc. Secondly, it must be possible to dete:cminewhethez a particular .

transformation is applicable to a given program, and, if so, how that

transformation is to be implemented.

3.2.1 Expressing Representations.

In order to express the representation of one data structure in

terms of another, as a transformation to be applied to a program, we

require a suitable notation for the task. This notation will be used

to wr:i..te an ini tial version of the program corrtadrifng abstract data.

concepts, will be used in the transformation descriptions to express

the changes to be made to the program, \-1ill documentthe programat

each stage of transformation, and will finally be used to express the

- 4.8 -

target version of the program. It will include meansfor describing

not only abstract and concrete data structures, but also the manipu-

lations to be carried out on data items in programswhich use such

structures.

Wewish to illustrate someof the factors involved in choosing and

using such a notation. Wehave not considered in detail the design of

a notation to meet these requirements, so that the' subsequent use of

specific notations is for purposes of illustration rather than a

suggestion for a new language. \olrerepossible we shaJ.l adopt a Pascal-

like notation [28] in order that details irrelevant for our discussion

need not be explained at length.

In expressing a data representation as a transformation, two par-bs

maybe distinguished. 'Ibe structure transformation part describes

howa data type specified in terms of a particular data. structure waybe

represented by a different structure.

Example: To describe the representation of 3.1.1,

the structure transformation will express howa

t,ype specified to be a set maybe represented

instead as a type SIB cified to be a sequence.

'l~heoperations transfo:t'rnations part describes howeach of the operations

applicable to the initial structure that are to be implementedby the

representation mayre transforne d into operations upon the new structure.

Example: FbI' the representation of 3.1.1, an

operation such as inserting an item into a set

will be transformed into operations upon the

sequence ",hich represents that set.

- 49-

Matching and ImplementingTransformations.

Besides devising a mlitable notation in which to express data

representations as transformations, such transformations must be applied

to a pmgram in an appropriate fashion. 9iven an abstract data concept,

specified as having a particular structure in a program, and given a

library of possible transformations, there is firstly the selection of

those transformations from the library that might be used in the

representation of the data.

In order for a transformation to be applicable, the data structure,

and the operations on the structure, which it transforms must match the

specification and use of the data in the program.

Example: Fbr the set-as-sequence representation of

3.1.1, a transformation that expresses this

representation will not match, and hence not be

applicable to, a program if the representation

does not include a transformation for an operation,

such as removing an element from a set, \'Thichis

used in the programon an ~tem of the type being

represented.

Given that a set of transformations maybe matched as being applic-

ab'l,e to a data type in a pl.'Ogram,there remains firstly the choice of

which of these, if aJ:JY, to use in the program, and secondly the

implementation of the chosen one. The selection 0: the trm1sformation

to implement involves an evaluation amongthe set that has been matched.

The implementation of the chosen transformation is carried out by

applying its constituent structure transformation and operation

transformations to the program, giving a newversion of the program

- 50-

to whiCh further transformations may be applied.

;.; 'ilieStructure Transformati on
In tlus section we introduce a notation for describing the structure

transformation paxt of a data representation. 'lhestructure transfor-
mati on shows how a data t.ype in a program, specified by a particular
data structure, may be represented by a different kind of structure.

In section ;.4, the fo~ that the structure transformation takes
is described in more detail by oonsider"J.ngspecific examples. Here
we introduce its general form.

;.;.1 The General Form.
The general form that a structure transformation takes in our

experimental system is as follows:

t,r.pe specification
for 'old' structure =>

t.ype speoification
for 'ne'\"I' structure

The 'old' structure is to be represented in te~~s of the 'new' structure,
so that a data. type which has the 'old' structure in a program m8¥ be
transformed to have the 'new' structure.

Either or both of the structures m8\Y"be simple or compound;

A simple structure consists of a single t.ype specification, and a
compound structure consists of a related set of type specifications.
Examples of each will be given in the next section.

In order that a given structure transformation be applicable to a
given type in an abstract program, the specification of the ii'JPe in the
program must match that of the old structure. If the old stzuc ture is

simple, only the s pecifi ea tion of the we itself need rna+oh, If the
old structure is compound, not only tllespecification of the type, but

- 51 -

also that of its related subtypes in the programmust match the compound

structure". Matching is considered more fully in section 3.5.1.

3;4 Examplestructure Transformations

WeshaJ.l illustrate somepossible foms of structure transformation

by giving those that might be written for the two representations

introduced in section 3.1, plus an addition more general kind of

representation.

Set as sequence.

~e structure transformation for this representation can be straight-

forwardly ,a1tten as:

~A=mofB; => ~ A = sequence of B;
The t,ype identifiers A and B stand for two distinct t,ypes in some

The transformation expresses the fact that if sometype A
in a program is specified as being a set of componentsof type B, then

if the set-as-sequence representation is implementedfor t,ype A, its

specification is to be transformed to that of a sequence of components

of type :a.
In this case, both the old and new tne specifications have a

simple structure.

3.4.2 Packed data.

For this exanp'l.e, two integer subzangee are to be represented by a

single subrange. This is expressed as:

~ A = (s1:B; s2:C);
~"B = k •• l:

~ C = m•• n;

Here there is a compoundold structure and a simple new structure.

- 52-

The old structure specifies that the type to be represented, A, must be

specified as a Cartesian product of two other types, B and C, each in

tum specified to be an integer subrange, The bounds of the subranges

for types B and C are shownas constant id~ntifiers, so that they will

match with lmatever vaJ.ues the bounds for the corresponding types in a

programma;}'"have. The new structure specifies that type A 'Hill be

transformed into an integer subrange with lower bounds of zero and an

upper bound given by an expression whosevalue ~ be dete:cnined once

the appropriate values for k,l,m and n are resolved-.

3.4.3 Indirect Representation.

Ageneral representation that ma;}'"be applied to any data item, but

is particularly used for items of unknovmor variable size, introduces

a level of indirection into data manipulation. In this indirect

l.'epresentation, instead. of storing a data item in a given place in store,

which maylead to difficulties when the size of the item varies, a

pointer of fixed size is sto:red in that position which in turn points

to the actual item. 'lhe item itself is then sto:red in a suitably

sized section of a storage area containing other items of the same

kind. Usually somesort of storage allocation mechanismand possibly

garbage collction must control the commonstorage area, allowing the

size of the individual items to vary dynamically and yet the total

storage required to remain under control. Indirect representations of

this sort can be used, for example, for several sequences of varying

length, or for recursive data structures vrhere the depth of recursion

ma;yvaxy. They also allow techniques such as shared data items, wheze,

if two i terns have the samevalue, they need only be implemented in tems

of pointers to a cormonshared value (though, as Hill be discussed in

- 53-

section 4.1, this leads to problems with selective updating)~

Note that 'ole class such use of pointers as a particular choice

of representation for the data concerned, not as an essential part of

the defin! tion of such data, as is required in manyprogramming

languages (for example, records and references in Algol VI [58J)

Wewish to define sequences and recursive structures in abstract terms,

so that the choice of representation is left open in order that a

sui tabl;}refficient choice may be made. from a set of al tematives.

An extension to the notation introduced so far is required for

expressing representations such as the indirect representation. This

is because these representations require some 'global storage'. The

notation used so far has only allovred the description of representations

where there is a one-for-one change in the structure for each i ten of

the t,ype being represented. Each i tern of the type having the old

structure is implemented in terms of the new struoture. However, in

some cases, such as indirect representation, besides this change in

the form of each individual item, there is also a need for somedata

that is commonto all i tans of the type being represented and is

therefore global to the range in >-Thiohi tans of the tne m8iY'occur.

The follovdng structure transformation demonstrates the notation

used in the experimental system to cater for this and other extensions

to the notation presented so f~

'!y::p'eA= anystruc;

=> ~ A = 1 •• MAXNUM (A);
~ U= (lastused:A; s:S'IDRE);
~ STORE = array AQ[B;

~ B :: anystruc;
global uu:U;

- 54-

The specification of the old structure in this transformation consists

of the keyword anystruc, which stands for my structuring method. The

representation can therefore be applied to a~ t,ype, no matter what its

structure spebific8.tion. Hherever the keyword is repeated in too new

structure, in this case in the specification of t,ype B, it vdll correspond

to that of the old specification of t,ype A. Whenthe transformation is

applied to a program, whatever structure type Ahas before the transfor-

mation will be used by type B after it.

The new structure given to type A in the representation is al integer

subrange, wre re the upper limit to the subra.nge,!1AXNUMCA),is a special

value. It denotes the maximumnumberof data items of type A that will

be used in the program, and is one of a set of type properties that are

madrrtadried in the experimental system and maybe used in \,lriting

representations. A full list of the properties are given in Appendix I.

At the end of the specifications of the types on the right hand

side of tre transformation there is a declaration of the global IRrt of

the representaii on. This consists of a variable 'uu' of type U,

-deckazed using global rather than val.', l'lhich is to be added as a global

variable in the programwhen the representation is implemented for a

type. Cllie preseI.Vation of the uniqueness of identifiers when

transformations are applied will ensure that .a different global

Variable is used for each type that might use the indirect representati. on).

The type of the global componentU is specified to consist of an

indication of the 'nextfree' item of the new type A, and a storage

componentmadeup of an array of elements each having the structure of

t..lJ.eoriginal type A. In other words, storage is madeglobally available

to store the maximumpossible number of items of the type being represented,

and this storage is managedby keeping track of the next free arraur

element that maybe used by the program. Iter.J.sof the old type A are

- 55 -

nowrepresented as an index to the element in the storage at which its

value is held, effectively acting as a pointer to the stored value.

The representation therefore allaYS sharing of pointers in the

conventional manner of indirect referencing.

This is only one of the possible ''1a~sof handling an indirect

representation. Other examples could be \vri tten \ihich deal ''1ith

storage allocation in a more sophisticated fashion~

3.5 Applying structure transformations to programs

In order to app:ty a data representation to a type in an abstract

program, the representation must first be found 10 match with the given

type, and then the programmust be transfonned to reflect the new

representation. Weshall consider the matching and transformation for

the structure transformation in this section, leaving the addi tionaJ.

consideration of the operation transformations to the follo~r.Ulgchapter.

Matching structures.

In order for a structure transformation to be applicable to a

given type in an abstract program, the old structure specificati. on in

the transforJ"!lationmust match with the specification of the type (and arty

necessary subtypes of that type, if the old structure is compound)in

the program.

Example: Given a structure transformation such as that

for the set-as-sequence representation:

~ A = set of 13;=> ~ A = selluence of B;

the identifiers .A and B in the old structure

specification maybe matched to specific type

.. 56-

identifiers in a program only if those
identifiers are specified such that t:refirst type
is a set of components of the second type. If

in the program we have the s~cifications:

me HAHD = ~ of PLAY lNG-CARD;

.tY:P£ PLEl mG-CARD = (s :SUIT; r:RANK);

then tre above structure transformation may be
matched for the type ID.ND, with A and B being
matched to HAND and PLAYING-CARD respectively.

Fbr a compound structure specification, the t,ypescan be regarded
as forming a directed graph with t,ype identifiers at the nodes and
\od th a link from one type to each of the other types used in its
specification. So, given an old structure with the CD mpound

specification:

'~ A = (s1 :B; s2:0);

~B = ~of D;

~ C = arrgy E of D;

the following directed graph is obtained:

In order that thjs specification matches that of a type to be represented
in a program, the corresponding portion of the program's ~e graph
must be isomorphic in structure to the above, as \'1ellas having
corresponding structurir_g methods. So given the following type

- 57 -

specifications in a progr&u:

~ T1 = (x:T2; y:T3);

~ T2 = ~ .Q.£ T4;
..ta2g, T3 = array T5 of T6;

this gives the directed graph:

which is not isomorphic to the previous graph. Hence type T1 cannot be
matched with the old structure speCification of the repr2sent2.tion.
If in the program type T3 was specified differently as:

~ T3 = array T5 2i. T4;

then a match would be possible, since the graphs are then isomorphic
as well as the structures of the specifications corresponding.

As well as identifying the correspondences between the program
types and the old structure specification types, the matching may also
be used to fix other identifiers in the old structure, such as subr~~
bounds.

Example: Given the old structure specification for
the packed data representation of subsection 3.4.2:

~ A = (s1:E; s2:0);
~ B = k•• l;

~ 0 = m•• n;

- 58 -

and given the following type specifications in

a program:

~ PLAYING-CARD= (s: SUIT; r: RANK);

~ SUIT = 1 .. 4;
,r ~ R.A.NK = 1•• 13;

then type PLAYTIJG-CARDmaybe rnatched with the old

structure specification with correspondences set

up as follows:

Old structure A n C s1 s2 k 1 m n
.

Program PLAYDlG-CARDSUIT RANK s ·r 1 4 1 13

3.5~2 Transforming structures.

Once a data type in a program has been matched with a particular

data representation, and it has been decided to implement that

representation for the type, the program is transformed to meet the new

representation. In the case of the structure part of the representation,

the structure specification of the type is transformed from the old

structure to tre new structure. All identifiers in the new structure

which have had correspondences established 'vith program valiEls in the

matching stage will be replaced by their program val.ue, Any add! tional

identifiers in the new structure are incorporated into the program

tcl~ing care that they do not clash with existing program identifiers.

In the experimental system, each such identifier is modified by appending

a pair of digits unique to that implementation of the rep:t'esentation,

thus ensuring freedom from identifier clashes (assuming identifiers with

this form were not used in the original abstra.ct program).

- 59 -

Example: Continuing the example given in the

previous subsection for the ~cked data

representation, the new structure specification

for this representation is:

..m. A = 0 •• (1-lc+1)';':-(n-m+1)-1;

On replacing :id entifiers \,lith their program

correspondences, and evaluating the arithmetic

expression, the transformed specifications for

the types in the program are:

~ PLAYD~G-CARD = 0•• 51;

~ SUI'!' = 1.. 4;
,~ RANK = '1'.. 13;

3'.6 Constructing a library of Representations

Whencontemplating the construction of a library of data represent-

ations from which choices can be made for implementation in a program, .

sevex-al factors must be considered. The feasibility of constructing a

useful library depends largely on the number of representations that need

to be included, and the relative completeness of the ones that are
included. Clearly it is impossible to enumerate all possible

represent3.tions, just as it is impossible to enumerate 811 possible

p:rbgrams. The questdon remains as to wrether a 'useful' set of

representations m~ be expressed in a manageably sized libra27.

Weshall consider how the transfonnationa.l approach may help reduce

the size of the library required, and discuss the completeness of

representation libraries. As an example of the kind of transformations

that could be incorpora.ted in a library, "le summarise those used in the

experimental system~

-60-

Sequences of transformations.

In our approach to the l:'epl:'esental1on of data, it is necessary to

apply successive transformations to tre program, until eventually the

data is specified only in target language terms. This approach

contrasts to that of, s~, Low [39J ' whoconsiders a data representation

to take a data construct in an abstract program directly to a target

language implementation.

The advantage of considering the separate individual transformations

as only a partial step f~m the abstract to the concrete, is that

different transformations maybe combinedinto sequences in many varied

It is therefore possible to achieve a greater range of represen-

. tations of the abstract in terms of the concrete program,'lith relatively

few simPleindividual transformations.

Example: Consider the diagrammatic representation for

a hand of playing cards that was suggested in 1.2.2. as

below:

HAND I ~tl rank rank
~t ~t

number card1 card2 card3
of

cards

where each playing card is packed into one array element,

and the first element of tre array denotes the number of

oards in the hand: This representation can be achf.evadby

a series of transformations. Given the initial type

- 61 -

specifications for the hand:

~ HAND = ~ of PLAYnTG-CARD;

!¥.:rut PLATING-CARD = (r:RAUK; s: SUIT);

~ RANK = 1 •• 13;
~ SUIT = 1.. 4;

Wecan first choose to apply the set-as-sequence

representation of 3.4.1 to obtain.

~ HAND= sequence of PLAYmG-CARD;

~ PLAYJNG-qAIID = (r:RAUK; s:SUIT);

~ RANK = 1•• 13;
~ SUIT = 1.. 4;

(where we only show the transformed structure, though

corresponding changes would be Made to the rest of the
.

program as well). Next we apply a transformation which

represents the sequence as an array of corrtdguous elements

with an indication of the current length of the sequence

(and we'assume a maximum sequence length of 52):

~ HAnD = (length:A; elenents:E);

ID1t E = array C of PLAYmG-CARD;

~ A = 0 •• 52;

~C=1 •• 52;
~ PLA.ymG-CARD = (r:RANK; s:SUIT);

~ R..~EK= 1•• 13;

~ SUIT = 1 .. 4;

Thenwe can choose the packed representation of

- 62

3.4.2 for the cards:

~HAND = (length:A; elements:B);
,~ B = array C .Qf. PLATING-CARD;

.El:rut A = O. ~52;

~ C = 1••52;
!'l.llit PLAmm_CARD = O~!51;

Finally some further trcnsformations can be applied
which represent the subrange values for PLAymG-CARD

and A as the basic type int. and amalgamate the length
field into tirearra:y to give:

~ HAND = array D of int;

~ D = 1'.',53;

The separation, as demonstrated in the above example, between say
the transformation of a set into a sequence, then the transformation of
the sequence to something else, allows the set to use all the possible
fJequence representCl.tionsthrough the inclusion of only one transfoDIlation

I

in a library. In a similar vray, only a sirgle version of the packed
data representation may be used in combination with othertransformations
in many varied transformational sequences.

3•.6.2 COmpleteness of a library.
It is clear that no library of data representations can ever be

complete in the sense that it encompasses a~l possible representationa,
since new representations are continually being devised. A libra:cy,
such as the one used in the experimental system for these investigations,
is inherently extensible so that newly-developed representations can be
added as required.

- 63 -

'!he number and kind of representatLons that should be included

in a practically useful library would largely have to be determined

through experience. To a certain extent, the representations that

might be found worth including could be dependent on tlE nature of the

programs in which they were to be used and the target language in which

the concrete programs were to be written.

Example: If the target environment allowed bi 1:-

addressable manipulations, it would probably be

necessary to' include the representation of sub-

ranges in terms of varied length bit sequences as

well as the fixed int t,ype.

3.6.3 An example library.

The library of representations that was used during the experimen-

tation was devdsed to include examples of manycommonrepresentations.

It probably does not, however, include a sufficiently varied range of

representations for a practical library. For example, only one hashing

algorithm is included, whena choice of several might be desirable.

A full listing of the representations in the example library is

given in Appendix III. Here we shall summarise the various

representations to give an idea of the range available.

Those concozncd lli th subzanges, products and unions':
SUBREP~~br~nge represented as a basic ini ~rpe

C8.rtesian product packed into a single subrange
discrird.nated union Hith null al tenl8.tive packed into
a single subrange

1JU3 union ,·Ii th null aJ. tema tive given a separate -tag field
SUBDU1disjoint unfon packed into a single subrange

SUBDU2non-d:i.sjoint discrininated union packed into a subrange

SUJ3CP

DU1

- 64-

Those concerned with arrays:

ARRAY sparse arr.zy expanded into a non-sparse e:.rray

:BITS array of bits re-rresented as array of int
HASH sparse array hashed into non-sparse array

SPARRAYsparse array as default plus sequence of non-defaul ts

Those concerned with sets:

POW1 set represented as array of bits
POW2 set represented as sequence

Those concerned with sequences:

SEQ). sequence as contiguous array with first element pointer

SEQ2 sequence as singly linked list

SEQ3 sequence as doubly linked list

SEQ5 several sequences as singly linked lists in commonstorage
SEQ6 sequence as contiguous array with last item marker

Others:

JNDmECT all instances of a type in commonstorage with pointers

In addition, there are various transformations that act as

equivalences between different structures (such as a cartesian product

with two componentsof the same type, and an array \'lith two elements of

that type), whose application i-Till be discussed in section 5.4.

- 65 -

CHAPI'ER4

DATA OP&'1ATIONS EXPRESSED AS TRANSFORHATIONS

4.0 Summary

In this chapter we tum our attention from the structure part to
the operations part of data representations expressed in terms of
program transformations. In the operations part of a representation,
data operations applicable to the 'old' structure are transformed
into operations on tpe 'new' structure.

When expressing the manipulation of data, and in particular when
~ting operations on data structures, certain problems arise that
must be considered before a satisfactory means of ,.,rriting representations
for the data can be devised. \{elook at these problems in the following
section, and then go on to draw an important distinction between data
references and data values to clarify the concepts involved. This
leads to the introduction of a classification of data operations, and
the associated notation which was used in the experimental system.

~e general form and some examples of operation transformations
are then given, and finally the ~plication of such transformations to
programs is discussed.

4.1 Problems in Expressing Data Qperations
Firstly, then, we consider some of the factors involved in data

manipulation, and look at the sorts of problems that arise particularly
when operating upon abstract data whose representation has yet to be
chosen. We wish to be able to write an abstract program that uses the

- 66-

abstraot data t,ypes deolared by the programmerand expresses the problem

solution in a data representation-independent fashion. The operations

'on the data used in the abstraot programmust howevezbe transformable

into appropriate operations on the final oonorete data as the

representations to be used for the data are fixed.

4.1.1. Representation dependenoe.

In a oonventionaJ. programmingLanguage, each kind of. data .struoture

is represented in a partioular fixed way, so that the operations available

on the struotures (euch as indexing an element of an array, or selecting

a oomponentof a reoord) are implemented to suit the representation.

However,whenmanipulating data struotures whose representation has not

yet been decdded, the prograrnner does not yet knowwhioh operations "'ill

be effioiently implemented. Indeed the ohoice of the representation

will be madein order to provide suitably effioient implementation of

the .operations required in the abstract program.

The operations that maybe used on data structures whenwriting

abstract programs must therefore be a sufficiently general set that the

programmercan express the abstract manipulations to be carried out,

but must also allow for the selection of representations for the

structures which perhaps only implement a restricted set of general

operations.

The selection of an appropriate general set of data structure

operations is a complex task. The set of operations we have used in

the experiments is not necessarily intended to be a complete or sufficient

set, but does illustrate the need for operations not normally distinguished

in progrrumninglanguages.

- 61-

4.1.2 Need to express unconventional operations.
As an illustration of the kind of data structure operation that

appears necessary in a general set of operations, consider an arr~
structure. If 'ole decla.re a type and a variable of that type as

follows:
~ A = array 1.. 10 2f. 1.. 8;

~a:A;
then the conventional operation on a variable of an array structured
type is that of indexing

a [1J
All changes in value of the array variable are made by selective updating
of its components, a technique which suits the conventional representation
of allocating one array element per storage cell.

However, if we wish to represent an arr~ (which, say, is sparse,
having few element :values differing from a common default value) as
a default element value plus a list of those elements whose values
differ from the default, then other arr~ operations become desirable.
For example, tlUs representation can easily implement an operation whf ch
sets all array elements to have the same value. Such an operation
could also be implemented for the conventional representation as a loop
which assigned the common value to each element in tum.

A note of caution is necessary, however, to check the.toperations
which are too special-purpose, even though efficiently implemented by
a particular representation, are not allowed to produce an over-large
set of data operations. It is not clear "That criteria should be used
in judging whe thez an operation is of sufficient general use to be made
available in vlr.i. tirgabstract programs.

- 68 -

4.1.3 Need to distinguish references and values.
Not only are additional operations required beyond those

conventionally used on data structures, but the existing operations
are often too loosely used in programming notations for direct adoption
when expressing data representations. For example, returning to the

array of the previous subsection, the indexing operation has a different
meaning, and hence may re.quirea different implen:entation, depending on
its context. vfuenused on the left hand side of an assignment

8o[iJ :=

it denotes a. reference to an array element, whereas on the right hand side

:= a[i]
it denotes the value of an array element.

In the case of the conventional array representation, "1ith one e.Ieraenf

per storage cell, an indexed element has both a reference, enabling it
to be updated, and a value. Hm.,rever,say we used a representation "thich
packed the complete array into one word of storage, as we could indeed
do for the above array, taking three bits per element for the ten elements.
In this case there is no way of individually obtaining a reference to an
element of the array (presuming a conventional target language 01'machine
which does not allow bit-addressing).

Fo1'this reason ve shall draw a clear distinction between data
references and values in order to distinguish da.taoperations more clearly.

4.2 References and Values
In order to clarify the different operations that may be applied to

data.items, and to identify those operations that a given representation
can implement, we shall make the distinction between data references and

- 69 -

data values more explicitly than in most programming languages. This
distinction, at its most basic, corresponds to the distinction between
the address of a cell in a computer store and the contents of that
cell. we shall consider it in those terms first, and then generalise
to its use when dealing "lithabstract data that has not yet been
represented in terms of storage -cells.

Storage derivations.
The distinction between references and values, particularly in the

oontext of programming languages, arises when relating the semantics of
programs to the underlying implementations in storage (see, for exaQple,
Barron [5] , Iomet [31] and Walk [52J). Take, for example, the
case of two variables in Algol 60, declared as:

integer i,j;
When the block containing this declaration is entered during the
execution of the program in which it occurs, two storage oells will be
allocated, one for each variable. These will be used to hold the
values of the variables as they change during the subsequent manipu-
lations. These storage cells are referred to by their address in
storage, and when they are allocated, a conceptual relation is set up
between the variable identifier in the progran and the address of the
associated cell in store. I'Jhen,therefore, the variable is manipulated
in the program, the relevant cell in the language implementation can be
located and rn2nipulated accordingly. Possibly the ~ost co~~on form of
data manipulation in Algol is assignment, so consider the assignment
statement within the block containing the above declaration:

i := j;

In storage terms, this means that the contents of the cell eor-respond.lng

- 70-

to the variable j should be stored at the address of the cell

oorresponding to the variable i. Tn other "lords, the variables must

be interpreted to meandifferent things, the location of a cell or the

contents of a cell, depending on whether they ocmlr on the left-hand or

right-hand side of the assignment statement. Strachey [50] pointed

out this distinction and used the terms L-value and R-value to refer to

the different results of evaluating the expression on each side of an

assignment statement. Tn Algol 60, besides a simple variable identifier,

manydifferent kinds of .expression maybe written on the right-hand side

of an assignment, for example:

i := j+1;
i :=!£ j=O~ 0 else j+1;
i := a [j] ;

(assuming 'a' is declared as an integer array). Each right-hand side

expression evaluates to an R-value, in other words an integer value in

these cases. However,on the left-hand side, Algol 60 only allows one

kind of expression besides the simple variable identifier, namely the

arr~ subscription:

a [of] : = '.... J,
Here, the left-hand side must be evaluated to produce an L-value, in

other words the address of the arr~ element that is to have a newvalue

a~signed to it. Oneof the early languages that was developed based on

Algol 60, ePL (Barron et. al. [4]) extended tlll s idea to allow more

general I-value expressions. For example, the folloi'ling assignment

could be written in CPL:

(.). , .). 0~ J-+3., J .= ;
meaning that ei ther i or j was to be assigned the value 0, dependir..gon

- 71 -

the value or the relational expression i>j. In other "lOrdS, the

conditional expression.

i)j+i,j

retums the address of an integer variable as a resul t in tltis context,

but would return an integer vaJ.ue as a result if placed on the right-

hand side of an assignment.

To try and overcomethe ambiguity of interpretation, somelanguages

have adopted a specific syntax to showthe action of taking the contents

rather than the address denoted by a variable identifier. For example

Bliss [59J uses a dot notation '.' to denote the 'contents' operation,

so the above examples would be wri tten:

'. j~ .= •
i := .a [.j]
a Gi]:= .j etc.

Algol 68 [57J uses the tems 'name' and 've~ue' instead of left-

hand value and right-hand value, and allows the nameof a data item to

be a manipulable value itself, of mode~ N, }1being the mode(or

t,ype) of the item. This a.llows a large scope for manipuJation of

references, and the dangerous potential of manylevels of indirection,

which with the complex coercion xu1es of the language can le ad to

difficul ty in unders tanding the action of programs (see for example

Hoare [27]).

Defini tions.

vIe shall adopt the tenns 'reference' and 'value't but will not

consider references as manipulable items in the Algol 68 sense. We

prefer to use these terms rather than, say, 'address' and 'contents'

since wewish to consider abstract data structures and their

- 72 -

representation. Real storage concepts such as addresses, which are
essentially low level concepts, will not be intmduced until necessary
at an appropriate stage in tre representation process.

So now consider the reference-value distinction in a general
representation-independent sense. A data reference of a given type
denotes a piece of abstract storage that may contain a ~ veJ.ue of
the associated type. (The reference may eventually map onto a specific
addressable storage location, or may not, depending on the representation
chosen for the type in question). Nothing is assumed of the abstract
storage (i.e. it is not necessarily of fixed or known size, or contiguous
or mmposed of uniform component cells eto.), except that it may hold
any value of the associated type. As representations are ohosen for
the type and any of its components, the actual fom of the storage will
be deCided, so that the final program will use explicit target language
storage concepts.

4.2.3 Assignment.
Given a reference to a particular data item, a spacific value may

be set in the abstract storage denoted by the reference using an.

assignment operation. At any moment the current value associated "lith
a given reference may be derived by a 'contents' operation. A
reference to a data item is estahl.Lsbs d either \'111enstorage is initially
allocated for the it~!'l(e.g. on entering the block: in "'mch a v2xiable
is declared) or when a new data item is insorted L~to a data structure
(e.g. inserting a new item into a seouence }, Let us consider t!:lis
for particular exampLes , firstly for a vard ahLe of an unstructured type,

- 73 -

then for a strQctured variable.

If the following unstructured t,ypehas been declared in an

abstrac t program

~ RANGE= 1•• 20;

a variable of the we maybe declared as

~ r: RANGE;

Conceptually, this implies that if the abstract programwere executed,

upon encountering the declaration during execution someabstract

.storage must be al.Loca.tedsufficient to hold any of the values of t,ype

RAl~GE(i.e. 20 distinct values) but not necessarily one wordof

concre-te storag'e,or even 5 bits of concrete storage, will be allocated,

since this will depend on the representation of type RANGEchosen

subsequently. \'Jhenthe abstract storage is allocated, a reference is

established to the storage, and an association is set up between the

variable identifier 'r' and the reference. \o/hen'r' is then used in

the program, it will be taken to stand for the variable. So, upon

execution of a statement such as

r : = 3;

the assignment takes the reference to the storage denoted by 'r' on the

left-hand-side, and the value of the expression on the right-hand-side,

and sets the contents of the storage to be the given value. In order

to access the current value of the variable, given the reference to the

storage in whdch it is stored, a 'contents' operation can be used, which

we shall denote by the postfix operator '@'. For example, the

statement:

r : = r@ + 1;

accesses the current contents of the variable whose reference is denoted

by 'r', adds one to that value, and assigns the result back to the

- 74-

variable's storage. In a program expression such as this, it is
possible to infer the existence of the contents operator, and therefore
omitit in the program text to conform to normal, Algol-like syntax:

r:=r+1;
Bo,.,ever,the operation must still be carried out, and we may require
that it have a particular implementation s~cified for it in the
operation implementation section of a representation.

4.2.4 Structured variables.
Now consider the declaration of a structured variable in an abstract

program.:
~ PAIR = (first RANGE; second: R4.NGE);
n!:!. p : PAIR;

On encountering the variable declaration during program execution,
abstract storage must be allocated to hold any value of type PAIR

(i.e. 20 x 20 = 400 different values). Again, whether these values are
eventually stored"with one word for each component, or packed into a.

single word, will depend on the representations chosen for t,rpesPAIR,

and RAlJGE. A reference to this abstract storage is fixed upon allocation,
and denoted by the variable identifier 'p' in the program. But, since
we wish to be able to selectively update the components of p, references
also are established to the two components of p, and may be used on the
left-band-side of assignment statements. These component references
may be derived from the reference to the complete variable, denoted by p,
by a reference-selection operation:

~first
So, to selectively update the 'first' componerrt of the variable, we

- 75 -

maywrite:

p.first : = 4;
(the notation is presented more fully in the next section). Given the

reference to a component, its current value maybe derived by the

'contents' operator, as for the unstructured example, so wemaywrite

statements such as:

l>~second: = p.first@;

(again, the '@' maybe omitted and inferred from context, since the

expression is on the righ~hand-side of an assignment, and therefore

must denote a value rather than a reference). But as well as taking

the contents of an unstructured componentof a structured variable,

we also "fish to 00 able to obtain the (structured) value of the whole

variable from its reference by the contents operation:

pg

In fact, if the type PAIRis represented in tems of a single vlOrd of

concrete storage, by packing both componentsinto a single cell, it

maybe impossible to individually reference the componentswithin the

word in order to selectively update them. In lvhich case, it is

necessary to obtain the value stored in the cell, in other \"ords the

structured PAIRvalue, and perform 'value-selection' operations to

obtain the componentvalues. Since in the abstract programwe do not

yet knov hOHt.l-tetype \iill be represented, we cater for both refE):!:'ence-

selection. and value selection, transforming between tl'E t\'TOas necessary vThen

a particular represent2.tion is to be Lmp'l.emented , So, V.ven a structure value

of type PAIR, the value of its 'first' componentmaybe obtained by a

value-selection whi ch uses the notation:

'first

which can be applied to the complete val.ue of the variable p as follows:

~'fir.::t

mailto:p.first@;

- 76-

In these examples, we have already begun to introduce the notation

for data operations used in the experimental system. The next section

classifies such operations and introduces the syn~~ developed to

distingnish between the various kinds of oper2,tion.

4.3 Classifj.c2,tion of D8.ta.Ouer2,tions

Having shownthe need to distinguish between data references and

data values '."Thenconsidering data. represcnt8"tions, and also shownthe

need for unconventional data operations, we now try to clarify the

possible data" operations. In this section we classify the operations

according to their operands and their semantics. vie also introduce a.

notation for textually distinguishing the different kinds of operation

when\>Triting programs or ,·rriting operation implementations in

represente.tions. The notation is not put for.rard as a proposal for

ino1usion in an implementedprogra!'nminglanguage, but as an aid to

understanding certain data manipulations. It will be used in the

subsequent examples of data transformatj,ons-~

.s->:

4.3.1 ~i.nership of operations.

A funda.mentalnotion that we adopt is that each data operation has

one and only one associated data type, whfch 'o\ms' the given operation.

~s is because, whena representation is chosen for a data type having

a. particular structure, it is necessary to implement each of the operations

on data items of that type in terms of operations on the representing

data. Thus it is necesaary to know'f!1ichoperations must be elaborated

whena particular data type is represented, namely those oper8.tions ovmed

- 71-

by the ~e in ti1e abstract program.

'lhe ownership of operations by a particuJ.ar type is similar to

the Simula class concept and its derivatives mentioned previously.

However', there is an impOl'tant difference between the use in classes

and the use required here. In Simula, the operations in a class are

associated with an instance of the class, rather than the class as a

whole. In other vozds, conceptually each data object has its own set

of operations different from those used on other objects, even though

the objects maybelong to the same class. Syntactically in Simula,

each operation is pr~fixed by the object instance to which it must be

applied; so each operation has a unique parameter of an object of the

mmer class. 'lhis makes o}Erations, such as equality, between two

objects of the cl.ass inherently asymmetrical. In Simula this ';Tould

be written:

a • equals (b)

Here the operation 'equals' belongs to the object instance 'a', whereas

the other object tb', of the same class as 'a', is relegated to be a

subordinate parameter. By saying that the operation 'eque.ls' is owned

by the class (or ~e in our notation) of the two compareditems, each

item can be a parameter of equal importance:

a=b

Operation categories.

Weclassify all data operations into eight categories, and give a

particuJ.ar distinguishing syntactic ~bol to most of them in the

notation. Each category contains operations Hi th a commonpa.rameter

specification and semantic interpretation.

- 78 -

Catezo1)'" Symbol General syntax Result

1. Update · xr:op(params)·
2. Reference-select • xr~op(params) yr

3. Contents @ x:t'@ xv

4. Value-select xv'op(params) yv

5. Contruction ~ Xiop(params) xv

6-. Attribute ? xv?op(params) ZV'

7. Relation e.g. xv1=xv2 lv

8. Iteration e.g. for yv in xv do S-- - -

\fuere: X is the ownex data type of the operation.
xr is a reference to an item of type X.
xv is a value of type X.
op is the operation name,

Y is the t.rPe of a component of X (hence yr,yv).
zv is a value of a atandard type such as logical or int.
Lv is a value of type logical.
params are a set of value par2llleters.

Figure 4.1 ~eratio~ CategQries

- 79-

The distinguishing chal~cteristics of each category are listed

in Figure 4.1. VIeshall here briefly summarisethe intent of each

category, and in the next subsection will give examples of data

operations whi.chuse the suggested notataon,

Each data operation is applicable to data. references or values of

its owner type, and may take values of other types as parameters and

return references or values of various ty:pes as a result. Each

category of operation takes a particular combination of 0,1 or 2

references or values of the owner type, as shownin the general syntax

column. Somekinds. of operation may take a bracketed parameter lis t

of one or more additional data values of ty:pes which depend on the

particular operation. The characteristic ~bol distinguishes the

category by the syntax for six of the operation kinds, the relation

and .iteration having their ownindividual syntax. \Ji thin a category

each operation has its ownindividual name,

An update operation acts to change the value associated "1i th the'

data item whose reference is given. It is the only operation which

causes a change in the stored data values. Assignment is the most

commonform of update operation, whoseoperation 'name' is the symbol=,
and which requires one additional value parameter of type Xwhich is the

value to be assigned to the referenced data i.tem~

The ~."okinds of selection, reference-select and value-select have

been briefly introduced in section 4.2, as has the contents operation.

A construction operation constructs a newvalue of the ownec type,

generally taking a list of parameters to do so. It mayalso be used to

construct, say, an empty set or sequence, in which case no para~eters

are required. .

.An attribute operation is used to obtain, for exampLe, the length

- 80-

of a sequence, or ",hether a set is emptyor not. It differs from a

value-select in that the latter selects a distinguishable component

of a structure, of a type depending on the structure specification.

The result of an attribute operation is of a standard type such as

integer or logical. Whereasa value-select usually has a counterpart

reference-select operation, the attribute operation has no such

reference-returning counterpart.

A ~elation is the conventional comparison operation between two

vaJ..uesof the owner type.

An iteration operation is not conventionally considered as an

operation related to a particular data structure. Ho",ever, some

iterations, such as repeating someaction for each item in a sequence

or set, clearly depend for their implementation on the representation of

the structure concerned. It is therefore necessar,y to consider how

such an iteration is to implementedwhen representing the data structure,

and so the operation belongs in a ca.tegory of the data operations.

4.3.3 ~xampleoperations.

In order to illustrate the semantics and syntax of the various

operation categories, we give several examples in this subsection. A

more complete description of the ope ratdons associated 'l:lith each of the

struct11.ringmethods that were used in the experiments is given 1."1

Appendix I.

For the follm'1ing examples, we presume the existence of various

types and variables given by the follo\il.ng declarations:

!'rpe A = set pf :8;

~ C = arr~ D .Q£ E;
m.e D = 1•• 100;

(81 :F; s2 :G);

Y.B:"!:: ~. A;a..

yg b: :s-,
var c: c-,

- 81 -

By declaring variables in this :way, a variable identifier such as 'd'
may be used in a program to denote a reference to the data item of
type D that is allocated by the declaration. 'ilievalue of the item is
obtained by the contents operation

d@

which m~ be used, say, in an arithmetic expression.
be assigned to the variable in the conventional way

d := 8

using an update operation (where the brackets arotmd the single parameter

A new value may

'8' are omitted to give the conventional assignment s,yntax). Tests on

the current value of the variable use the conventional relation operations
such as

d@= 6

In the case of structured variables, such as the array 'Cl, elements
of the arr~ are obtained by selection operations.
such as

Reference-selection

o.index(7)
takes a ref~rence to the variable 'c' and returns a reference in this
case to the element indexed by the value 7.

d@'inde:x:(7)
takes a value of type C i.e. 'c@' and returns the value of the seventh

A similar value-selection

element of the array. Since the elements of the arr~ are themselves
structured a.sa Cartesian product with "b.-ro components selected by the
selectors s1 and s2, it is possible to concatenate selection operations
to obtain, say a reference to the second component of tIm d array element

c.index(3).s2
or the value of the first component of the last array element

o@'inde:x:(100)'s1

- 82-

Turning now to the set structured variable 'a', as well as possibly
using assignment operations on such a variable, other update operations
allows elements to be inserted into or removed from the set, for
example

a:insert(b'§)
inserts the value of variable fbI into set 'a'. Attribute operations
m~ be used to test whether a particular value is currently an element
of the set value

~as(bQ))

or whether the set is empty
a.@?empty

or determine the number of elements in the set
a.@?numel

In addition, it is possible to construct a new empty set value
A:lternpty

so that, using an assignment, the set variable can be made empty
a := Afl,empty

Finally, it is possible to repeat some action's' for each element of
the Bet in tum

i.Q£ bv in. a@ do S
where the identifierbv m8\Vbe used in S, and fOT each itere.tion will
denote the value of a different element from the set.

4.3.4 Example progxam,

As an illustration of the use of the notations introduced so far,
we give the abstract program written for one of the tHO exsmp'Ies
introduced in'the first chapter.

- 8;-

:Sirthda;y-sExample: Figure 4.2 gives the program

as input to the experimental aystem. The type

definitions are as explained 'in section 3.3.1.
Three variables are declared, the first is the

table of people having birthda;y-s on given da;y-s,

the others being auxiliary va.riables required

in the execution. In the executable part of'

the program, the table is initialised so that

"each of its componentsis an empty set. In

the input phase, controlled by the wMle loop,

the identity numberof each person in turn is

inserted in the set indexed by their birthday.

In the output phase, hlo nested loops, both befng

iteration data operations, cycle first through

each day, and secondly through. each element in the

chosen set, in order to write the identity

numbers of' those people with birthda;y-s on each

day.

'!he abstract program for the other example program is listed in

Appendix II, and provides a further illustration of the notation.

TYOE TABLE=o\qpo\y DAY OF GROIJP;
TYOF r).AY=t•• ~6"';
TY:>E I;ROlJo=SC:T OF PERSI'JN;
TYPF °ERS~N=1 •• '00C;VAR T:TABLE; VAR D:DAY; VAR P:PFRSON;

BFGINT:=TA~LFeALL(~qOUo'F~OTV);
READ(O) ;
WHILE 0..,=0 on

BF:GIN RFAr)(O);
T.INOEX(D):INS~RT(P);REAf"}{O) ;
F'\IO;

FOR D on
E1'=GIN WRITC:(I)};
F'R P~ TN T'INDEX(D) on WRITE(PP);
E"lf"};

FNr)

- 84-

4.4 9J?eration Transfonnat:_on~.

Wehave alree,dy described the transformation of the structure

part of a representation in section 3.3. In this section we describe

the second part of the representation, the operation transfonnations~

!!he structure transforI!1?,tion showsh~., the type being represented has

its structure specification modified from the old to the new structure.

~e OIe ration transformations showhow operations on the old structure

are modified into operations on the now structure so that the desired

manipulation of the data. is still carried out.

Example: The structure transfonnation for the packed

data representation, Given in 3.4.2, showed howa

Cartesian product of t1'Tointeger subranges could

be represented as a single subr2nge. It is necessary

to aJ.so express operation transfonnations so that, for

eX2~ple, changing the V2~ueof a selected componentof

the old structure is transfomed into an appropriate

change in the value of the nev structure.

've shall describe the ceneral form of the operation transfoI.'!llation

and then go on to illustrate somespecific transformations.

Tne general form.

The genera~ form taken by an operation transformation is similar

to that for the structure transform~,tion:

operation on

'old' structure
=> operations or piece of program

acting on 'neH' s bruc ture

Just as the structures nay be simple or compound,so the operat:tons

upon themmaybe simple or compound. A conpoundoperation consists of

a continguous set of data operations, and ,.,ill be illustr<"'.tcd Ln the

- 85 -.

follo\dng subsection. The implementation of the operation, given
on the right hand side of the transformation, may consist of a single
or compound operation, or may even be a piece of program carrying out
a series of operations on the new structure.

For each representation there m~ be a number of operation
transformations, one for each of the operations on the old structure
that the writer of the representation wishes to support on the new
structure. In order that a representation be applicable to a data
type in a program, each of the operations on that type that are used
in the program must be implemented by the representation. In other
words it is necessary that each operation owned by that type in the
program is matched by an operation on the left hand side of one of the
operation t~nsformations for the representation. lo'Iatching and
transforming operations is considered in the next section. Heanwhile
we give some examples of operation transformations.

4.4.2 Example operation transfoxmations.
For this set of example operation transformations we will consider

those that might be written for the packed data representation. :!he
structure transformation for that representa~on, introduced in

3.4.2, was as follows:
!Y~ A = (s1: B; s2: C);
~ B = k•• l;

~ C = m•• n; = ~ A = 0 •• (1-k+1)*(n-m+1)-1;
Firstly, consider a value-select operation on the old structure, whose

implementation can be given as the follo'.vingtransformation:
av's1 => a:v!!!29. (1-k+1) +k

in 'vlhichav stands for any data val.ue of we A. On the left hand side

- 86-

of the transformation there is a simple value-select operation

applicable to the old structure. On the right hand ~ide is an

ari thmetic expression (modbeing ihe integer infix operator that gives

the remainder on dividing the first operand by the second), where av

is nowinterpreted as being a value of the new structure, henoe a value

of an integer subrange. A similar implementation oan be given for

selecting the value of the second componentof the old structure.

The next operation that can be implemented for this representation

is construction of a newvalue of t,ypeA:

A* (by,cv) => (ov-m)·:+(1-k+1)+ (bv-k)

Given values bv and ov of types B and C respeotively, constructing a

Cartesian product value of the old type A can be implemented as

evaluating the B-1venarithmetic expression to give a va..1ueof the new

t,ype A.

If we now ~ to implement a reference-select operation on the

old structure, we find that it is not possible to return a reference

to a oomponentin the new structure since the 'struoture' is a single

integer value. HOHever,it is possible to implement a compound

operation ",hich updates a oomponentof the old structure:

ar.s1 := bv => ar:= (a:t@£d..:L (1-k+1))*(1-k+1) + (bv-k)

where ar is a reference to an item of type A,_and bv is a value of

t,ype B. The left hand side is a compoundoperation conSisting of a

referenoe-seleot and an assi~ent operation, meaning that the value of

the s1 componentof the referenced data item is to be changed to by.

!this is implemented as an assignment of a netvalue, computedfrom the

ourrent value of the referenced item and by, to the referenoed item.

A similar implementation can be used for assigning a newvalue to the

- 81-

other component.

To surmnarise, therefore, in Figure 4.3 we give the complete set

of structure and operation transformations for the packed data

representation.

~ A = (s1 :B; s2:0);

~ B = k •• l;
~ 0 = m•• n; => ~ A = 0•• (1-k+1)*(n-m+1)-1 ;

av's1 => av mod (1-k+1) +k;

av's2 => av Qiy, (1-k+1) -fin;
ar.s1 :=bv => ar:=(~ iU!. (1-k+1)}*(1-k+1) + (bv-k);
ar.s2:=cv => ar:=(cv-n)*(1-k+1) + (ar-] mod (1-k+1));

A#(bv,cv) => (cv-m)*(1-k+1) + (bv-k);

Figure 4,3 Transformations for packed renresentation

- 88 -

4.5 Applying Operation Transformations to Progra~s

In order to apply a data representation to a type in an abstract

program, the two-stage process of matching and transforming applies to

the operation transform2.tions just as for .the structure transformations

discussed in section 3.5. First the representation must be found to

match the t,ype to be represented, and then, if the representation is

chosen as the one to be implementedfor the t.ype, the programmust be

transformed to reflect the new representation.

Hatching operations.

Tomatch data operations it is necessary to determine that the

representa·tion implements each of the oIllrations used in the program

which is ownedby the type to be represented. Thi 3 maybe done by

making a scan of the program and, whenever an o~ ration ownedby the

type is found, a search is made through the o~ ration transformations

of the representation to find a matching 'old' operation.

The identifiers in the operations of the representation must be

interpreted according to the assocdatdone set up in the structure stage

of matching. Any additional identifiers in the left hand side of an

operation transformation are bound to specific program elements whena

match is made, so that subsequently the right hand side identifiers can

bgve appropriate substitutions madefor them on implementing the

operation transformation.

- 89 -

Example: Taking the packed data representation of
4.4.2, and applying it to the follovTing types in a
program:

~ PLAYJNG-CAIID = (s:SUIT; r:RANK);

~ SUIT = 1 .. 4;
~ RANK= 1.. 13;

we obtain the correspondences shown in section 3.5.1,

including
Representation A 81

Prog;-am PLAymG-CARD 8

On encountering the following operations in the program
therefore

where p and q are both variables of type PLArn~G-CARD,

there are two 012 rations which the representation \vill
match:

A#(bv,~) will match PLAYING-CAl~(••• , •••)

giving the additional identifier bindings
bv to q@'s
cv to 13

and also
.av's1 will match q@'s

giving the additional binding
av to q@ •

Certain special operations owned by the type being represented need
not appear in tileoperation transformations of the representation, but
will not cause a match to feil. These operations are the ones that may

- 90-

apply to items of any type, no ne.tter what structure the type may be
specified to have, and '''illmean the same whether applied to an item of
the type before or after the representation has been implemented.
They are the aasd.gnmen t operation (:=) and the contents operation (@}~

Example: In the previous example the assignment
and contents operations in

p:= PLAYTIJG-CARD ~ (q@'s, 13);

belong to type PLAYJlrG-CARD. However .there is no
need for them to be implemented by the packed data
representation since they will apply equally well
to the type "lhether it is structured as a cartesian
product or a single integer subrange ,

If a representation requies these operations to be implemented in

a special w~, they can be included in the operation transformations
along with the other implemented operations, and their defined implemen-
tation will be used rather than defaulting.

4.5.2 Transforming operations.
On deciding that a representation which has been matched to a data

type in a proeram will be implemented for that type, the program is
transformed accordingly. In the case of the operation transformations,
each operation in the program which has been matched \vith the left hand
side of an operation transformation is replaced by the right hand side
of the transformation. All identifiers in the right hand side whfch
have had correspondences established with program values in the matching
stages are replaced accordingly.

- 91 -

Example: For the tHOoperations considered in the

previous subsection, their right hand sides in the

representation description are respectively (see 4.4.2):

(cv-m)*(1-k+1) + (bv-k)
and

a:v !nQ.S!. (1-k+1) + k

On substituting the identifiers bound by the structure

rnatclling and each opera.t rnatching these become:

(13-1) * (4-1+1) + (q@'s - 1)
and q@mod (4-1+1) + 1

In the first of these, the operation q@'s, originating

from the pro~am before application of the representation

itself,uses the implementation given in the second line.

~s the original program statement

is transformed into

4.5.3 Optimisation.

Of course applying a set of separate transformations to a program

may lead to a new proeram in which various .redundant expressions, or

expressions ,;hich maybe simplified, ivill occur. Various degrees of

optimisation may therefore be a.pplied after a program transformation.

In the experimental system a simple optimisation of evaluating all

arithmetic expressions vrher-epossible w~s applied and found to be

lareely sufficient.

Example: The above transformed pro~ram statenent

would be simplified by the experimenta.1 system to

p := 48 + q ~ 4;

- 92-

The transformational app;each does not necessarily imply a macro-

like implementation of all data operations. If an operation

implementation was a non-trivial piece of programand it was required

several times in a program, implementing it as a single procedure

declaration with a procedure caJ.l at each point of use might be

preferable·~ Ho\-lever,the additional complications introduced when

procedures are used have not been investigated (see section 6.2 f.

- 93-

CffAPTER 5

ASSISTING THE SELECTION OF REPIQ;SENTATIONS

5.0 Stunma!Y

Having described an approach to data representation by program

transformation, and investigated someof the notational techniques

such an approach could adopt, we next go on to' see howusing the

approach could assist the programmerin the selection of data

representations.

First we give a"brief description of the experimental system the.t

was used as a test-bed during the investigations. Next, the matching

of representations is further discussed to showhowrepresentation

selection maybe aided by more tailored matching.

'!he choice of representations is aimed at obtaining a suitably

efficient final program, in terms of storage space and execution

time. The evaluation of representations in terms of their effect on

program costs is discussed in the third section. finally, by use of

examples from the experimental system, the '''ay- in which the application

of a series of transfonnations can be guided to produce an acceptably

efficient target program is considered.

5~1 The EX'DerimentalSystem

As a means of seining experience "ith the problems involved in

takine a transforIno-,tion?.J.approach to data representation, an

experimental interactive system was procraJ'!1l!ledto run on the m·i 370/168

at NC'VlcastleUniversity. The objective in implementing the system VIas

to provide a test-bed for examlrung tle selection of data representations,

- 94-

rather than to investigate the detailed design of such a system itself.
We shall therefore give an overall view of the system in order that the
resul ts of the experiments carried out in using it may be understood,
but avoid a description of its detailed implementation.

5.1.1 Overall foro of the system.
.An overall diagram of the systernis shown in Figure 5.1

REPRESENTATION
• LIBRARY

ABSTRACT
PRQGRAJ.1

EXPEllTI'BIJTAL

CHOICE SYSTEl'l
CONCRETE
PROGRAl1

Figure 5,1 Overall ·System Diagram

The representation library consists of a file of all the data
representations available for selection and implementation in the
user's abstract program. 'Ibelibrary is searched for suitable
representations wheneve r a specified type in the user's proGram is
to have a representation chosen for it. Initially, the user's abstract
program is input to the sy?"tern. Then, under the user's control, the

system helps in the selection, eYaluation and implementation of

- 95 -

representations for the data ~esin the abstract program, until

finally all the types and structures in the prot3TaJnare basic to the

target language, and the final concrete version of the program can be

output. The'user controls the represent~tional choice process by

interactively monitoring the order in whi.chdata types are represented,

and by choosing the representation actually to be implemented£rom the

set of feasible representations selected and evaluated by the system

for any given data type.

The notation used to express both the representations stored in

the libra~ and also. the abstract programshas been described already.

A part of the system, that "Till not be elaborated further here, act as

a s.yntax analyser ~~d checker for the notation, and generates an internal
. /

code vers ton of either data represent"'.tions or abstract progr2JllS. This

internal code, which has been checked as forming a syntactically valid

representation description or program, is tie form in whf ch representations

are stored lJ::1 the librar,y, and programs input to the choice system,

respectively.

TaldTIg a closer look nowat the internal organisation of the

experimental system, it consists of several logical sections indicated

in Figure 5.2. vIeshall consider the purpose of each of these sections

in tum.

The abstract program, on being ini tia1ly input to the system, is

stored there in its internal code form. \fuenever the set of sui table

representations are to be examinedfor a c;-ivendata type in th8 prograP ,

the current stored programis accessed to determine the structure

specification and the data operations of the given t7pe. 1:Jhena chosen

- 96-

LIBRARY USER

.A:BSTRACT --+---~
PROGRAl·l

~-----I~ CONCIlli'TE

PROGRAM

Figure 5,2 Internal Or~isation of System

/

representation for a data type in the program is implemented, the stored

:programis transfonned to incorporate the new represen ta ti.on, both in

the structure specification of the ~J1>e and in the operations performed

on items of that t,ype, In other words, the current program stored in

the system ab-lays reflects the set of data represent?_tions that have

been implementedup to that point in the representational choice process.

Oncea chosen represent~tion has been implemented, the stored form of

the programhss been irrevocably chanced, and it is not possible to

subsequently restore it by 'undoing' the represent'~tion of a given type,

since later represen ta tions may have in their turn transfonned the whoLe

of or parts of the structure specification or operations of the type.

- 97-

Use of the system.

At any given stage in the representation process, the system user

has the choice from the current data t,ypes in the program of which

type to investigate next. :By issuing an appropriate command to the

system he may request the system to search its libra~ for all the

suitable representations for a given t,ype. The selection of the set

of feasible representations for that t,ype involvea matching the current
specification of the type in the program with each representation in

the lihrary. An evaluation of each of the feasible representations is

made in order to est~mate the storage cost of each representation.

This evaluation, and the evaluation of execution time cost, is dealt

with further in section 5.3. Having seen the choices of representation

available to him, and been £riven some guidance as to the rel:::.tivecosts

of each choice, the user is then free to select one of those choices to

be implemented. The wzy in ',lhichiniplement~.tion of a representation

transforms the stored prosram has been described already. If the

user decides that none of the possible choices is suitable at that

point in the representational choice process, he is free to speci£,y a

different abstract type and investigate its representation.

A large amount of guidance is therefore required from the user of

the experimentcl system, especially in choosing the order in \·rhichthe

abstract types in the program are to be represented. This freedom was

designed into the systeTI on purpose so that different orders of choice

could be easily tried and the consequences of different selection

strategies investigated. The interactions bet\'Teenthe choices of

represenktions, particularly be tween hierarchically related types such

as the representa.tion of a set a.nd the representation of its elements,

- 98 -

-can becomecomplex. Some-of the possible options available to the

user are discussed in section 5.4.
-When all the typ;!s and structures have been represented in tems

_ofbasic target language constructs, the final programcan be output

by converting the internal form into the syntax of the target language

!though th.i_swas not a feature included in the experimental system).

5.2. Hatching Represent2.tions

In order to determine the feasible representations that maybe used

for a given data type at somepoint in the representational choice

process, a scan of the library of representations is madein order to

find those whi ch match the typ;! specification. In fact, in the

experimental syste~, matching representations is a three-stage process,

as shown in Figure 5. 3. Firstly, the structure specification of the

t.ype being represented, and any of its constiJeuent t,ypes if necessary,

is matchedwith the 'old' structure specification of the representation

(as described in subsection 3.5.1). If it is found to match, a

condition~ expre~sion in the representation description, if present,

is evaluated. This expression al.Lows the representation writer to

describe the circumstances in which the representation maybe chosen.

This condition is described more fully in subsection 5.2.1. If the

condition is true, the third steee is undertaken, consisting of a scan

of the procedural part of the program checking that each data operation

O\-JIledby the data ~JPe being represented is implementable by the

representation (this was described in subsection 4.5.1). Only if all

wee possible stages in the matchfng process are successful can that

particular representation be consi~ered as a feasible one for the given

data type.

- 99-

}~tch structure specifications
of ~JPe and representation

no

false

Natch operation specifications
of ~JPe and representation

no

Representation
Matched

Representation
Not l'Iatched

Figure 5.3 NB,tchine Repre sentations

100 -

Conditions to aid selection.

For somerepresentations, the conditions under which a representa.tion

is applicable to a given data structure cannot be detennined by the

structure and operation matching alone. For this reason, a representation

mayinclude a conditional expression, defined by the writer of the

representation, which is evaluated during ~atchi~~. The expression

mayinvolve values, such as subrange bounds and structure properties,

which are determined during the structure matching of the representation

to a given type. Only 'if the condition eval.ua.tea to 'true' may the
.

m~ the matching continue to determine whether the representation is

applicable to the typeo
The condition maybe used in two ~stinct w8\Y's,both, o:f which

were found useful in the experimental system. The :first use is 1.."1

order to specify a condition ,.,hich must be true for the representation

to be applicable.

Example: The follo"!ing representation incl.udes such

a condition:

.m.~A= (bb::sfcc:c);!:l:l2§. B=k •• 1; ~O=m •• n;

=> ~ A = k•• n;
concHti on 1<m;

In this case, it is possible to represent the

discriminated union of' two subrange values by a single

subrange value having the same total range, provided

the two initi8l subrances are disjoint. The condition,

expressed in terms of the subrange limits, which'i11 be

bound to specific values whenmatched to the structure

of' a given data type, is necessary to ensure the

representation CRn only be fully matched if the r~"1ges

do not overlap.

- 101

The second use for the condition is pragnatlc, in that many

represent~tions maybe logically applicable to a given structure,

butit woul.dnot be poasdble to consider them as f'easdble in practice

because of other constr2~nts. The vrriter of a representation may

therefore use the condition to reduce the number of feasible

representations considered for any given structure by stating the

constraints he wishes to Lmpos e on the matching of the l.'epresentation.

Example: Te~e the packed data representation of a

cartesian produot of t\iO subranges:

~ A=(bb::B; cc:C); ~ B = k.~l; ~ C = m•• n;
=> ~ A = O•• CARD(A)-1;

oonditi on CARD(A) <CAHD(~:n.:~) ;

·Here we have used one of the type property

functions CARD,which gives the cardinality of

the argument type. (See Appendix I for a

description of the properties catered for in

the experimental system). In this example

CARD(A)is equivalent to (1-k+1)-:;·(n-m+1).

'nle condition will only al.Lowthe

representation to be applied in th:is case if

the cardina1i ty of the type being represented

is less than that of the basic type int. The

reason for this restriction is pragmatic in

that, though the representation can in theory be

applied to such a type no ra tter ,",hat its

.cardinali ty, in practice the resul tant subrange

must itself be represented eventually. If its

card.tnali ty is greater than that of en int value,

- 102 -

it cannot be represented in texms of a single ~n~,

and therefore it must be split into manageable

subranges again. Ra ther than allO\ofthe ini tial

subranges to be combined only to be Latel.' spli t

again, the writer of the representation has

excluded its application in this case.

5.2.2 Example of matching.

The matching process will be illustrated in full for an example to

bring toge ther the S~ruc ture matching (3. 5. 1) , opera ti.on matching

(4.5.1) and use of the conditional expression (5.2.1).

~e as an exampl.e the following representation, \-1ritten in a form

similar to that in whi ch it wou'l.d be added to the re!)resentation library

of the experimental ~Jstem.

rep subdu2;
~ A = (bb:Bfcc:C);

~ B = k •• l;

~ C = m•• n;
=> ~ A=O •• CARD(B)+CARD(C)-1J

~ B=k •• l; 1Y..:P.£. C=m..n;
condi tion CARD(A)<CARD(,Wi);

o12er2,tions
ax+bb => ax+k;

ax'cc => ax-CARD(B)+m;
ax?bb => ax(CAl1D(]3);

ax:?cc => ax>=CABl)(B);

A.i+bb(bx) => bx-k]

Aicc(cx) => cx+CARD(B)-m;

enclre_p

('Ibe synt2_ctic differences required to enable tlns representation to be

added to the expezdmentaf, library are minor ones vlhich identify ax as a

- 103 -

value of type A, and bx and ox as values of type B and C respectively.

Theyhave been omitted here for the sake of clarity).

The representation, named 'subdu2' , allows a discriminated union

of two subxanges to be represented by a single subzange, Values of

type B, discriminated by the selector tag "bb ", will be represented by

a value in the range O•• CA.RD(B)-1,while the other alternative, with

selector tag 'cc', ''Till be represented by values Ln the ranee

CAIID(B)••CARD(B)+CARD(C)-1. The operations in the representation

allow the value of each alternative to be obtained (th8se value-

select operations px:sume that the progranmcr has already dete~ned

that the appropriate altemate holds for the operation to be valid),

allo'\ofit to be determined ,..Thether a given alternate is currently

assigned, and alIa", the construction of a value of one alternate or

the other. The specification of types Band. C are repeated on the

right hand side of the strtlcture transformation since these ~JPes

keep the same specification after the representation has been

implemented,and values of the ~JPes are used on the right hand sides

of the operation transformations.

Ho\·" suppose we "'ish to select a sui table representation for

~JPe T specified in a procram as:

~ T = (se11:U/seI2:V);

~U=1 •• 10;

~ V = 3.. 7;

Thenupon encountering the above representation in the scrunof the

The first stq;e of the natching

process i·Till succeed in matching the structure specifications, and \Till

have the additional effect of setting up associations between identifiers

- 104-

in the repre:Jentation and the actual type specifications as fo1lo\'1s:

Represent~tion identifier Programidentifier

oc

T

8e11

U

se12

V

1
10

3
7

A

bb
B

C

k

1

m
n

\'lith these associations set, the condftional expression in the

representation may be evaluated as

CARD(T) < CARD (~)

uhich '.JOu1(l be -~ruein this case, since CARD(T:'=15, i'lhichiG

less than the cardinality of the basfc integer type~

The structure matching and condition evaluation having both been

successful, the next st8.0""einvolyes natching each operation upon type T

in the proera.'"J.'Iitll the operations implementedby the representati<?n.

For exampl.e , if the follo~·Tingst;::tenent occurred in the program:

g t?se11 ~ x::: t'se11;

(vTheret is e.v£',riable of we T and x is a variable of type int).

there aze tvlO open:.tions ownedby type T, t?se11 and t'se11. In the

list of opel'2.tions in the representation "re have the follm-ling tvTO

defini tions:

a:x:?bb

ax+bb

=> ax <CAIlD(B);

=> ax+ le:

Usinc the associa.tions alr'2ady established, the first matches t?se11,

giving the additional association of ax with t. This association will

105 -

be used upon implementing the operation in order to enable its

implementation to be uri tten as

(note CA1UXU)=10)

A m.milar match is possible for the other o~ration, so that the

original statement wouf.dtherefore be transformed into the follouing

upon implementation of the representation:

it t<10 ~ x:= t+1;

5~-3 Elvc:QuatinR'represent2.tions

In this section we consider the ev-aluation of feasible c1a-;;a,

representations, and present the simple evaluation scheme that was

used in the experimental systern as a means of giving insight in to the

problems involved~ /

Aimsof evaluation

Given an initial abstract program, ve wish to choose sui table

representations for the data used in the program, in order to arrive

at an efficiently executable target Lenguageprogra.'TI. In other ''lords,

we "dsh to reduce to an acceptable level the cost of execution of the

resul t::>ntprograa, both in terms of the stor2.ge used and the time taken,

and therefore require .some means of ev8~uating this cost. OneWEzy' of

eval.uating the resul tent programwould of course be to monitor its

actual execution on somemutable test data~ This method has the

disadvantage of being slo"\o'and wasteful in this context, houever,

requiring the time and expense of conpi12_tionand execution of the

program as "reIl as the selection of one, or possibly several char2,cteristic

sets of test d2.ta.

- 106-

Complete accuracy of cost evaluation is not generally required when

Choosing data representations. Rather, good estimates of costs are

suffioient to comparedifferent representations, especially when the

costs being comparedmay differ by en otder of magnitude. A static

evaluation of a program, estimating its execution costs from the staUo

program text, therefore appears preferable in the circumstances. Fbr

a given target language, the average stor~ge space' and exeoution time

required for each of the basic data types end operations in the languaee

maygenerally be determined. If, in add!tion, information is avcilable

about the relative frequency of execution of the al temative and

repetetive constructs used in a given program (for ex~ple, the

probabili ty that the conditional in an ii. or while sta tenerrb will evaluate

to t:rue), total eatino-ted Space and -CiJ.""lercC]_uirepcntscan be cal cul.e.ted

from the prog-.camtext.

1-1henchoosing data representations using the transfomational

approach ·described here, however-,a sequence of representational choices

'\-rill have to be made for the varf.oua abstract data types before a ta·rcet

latlo""U8t:,noeprog-.caDis achi.eved; If costs estimates can only be madeon

target la.nguage programs, comparisons Hill only be possible be~·reen

complete sequences of represent2,tionaJ. transfon·!1ations. T'nis will

provide little help in naklng a. choice for an individual represent2.JGion,

and therefore be less effective in guiding the sequence of chosen

representations to a result~t efficient proB~m. Exhaustive evcluation

of 211 of those possible sequences of representational choices that

resul t in a target Language :progran is iI"..f'easible 'because of the

oombinatorially large nltnber of possible sequences.

For those rOMons, an at tenpt '..as made to see if useful estimates

- 107 -

of cost could be derived in order to compare the a1terne.tives for a

single ~~presentational choice. In the case that an alternative _

:resul ts in an implementation involving only types and operatdons of the

target language, tre cost estimates voul.d reflect the real target

language costs. I:f, on the other hand, the al ternative was expressed

in terns of further ebstract types and OIErations, not directly

implemented in the target language and therefore r~quiring further

:representational choices to be made, estimates would be made of the

costs of the abstract ~JPes and operations. The]a tter estimates mus t

inevi tably be only a:pproximate, since the true costs Hill depend on the

subsequent representations chosen for the abstract entities involved.

One of the points of investigation cancexning the evaluation procedures

used in the expcnlmorrtal, system 'vas "Ihether such estimates could still

be a useful ad.d in selecting sui table data representations'.

Related ",ork on ev21uation

Apart from the nathematical analysis of eJ.cori thIns (see, for

eX2II1ple,Y.nuth[31J), whi.ch provides a mathematical approach to

estimating progran execution times, and is at present beyond the scope

of au toma tion, various other appzoachea to program evaLua'tfon using

the st<:"tic proeraD text have been attempted.
, ,

Wegbreit [53J describes a. system vhi ch is able to perform completely

automatic anakysd s of sitlple Lisp programS, Hith no additional infomation

provided by the progra.r:ner beyond the pro[;ram.te xt i tealf • lIe shaHS

hO\-1a closed-fom expression for progrc>lnrunninG time con be obtained,

e:h.~ressedin to~~s of the size of the inlJUt. lIouever, in its described

state his system is only sui te.ble for analysing simple Lisp proGrams.

- 108 -

Cohenand Zuokerman[9] present a means of estimating program

effioienC"J in \ihioh the program to be analysed, "rritten in a special

laneuage, is first transformed into a s.ynbolic fonmula representing

the execution' time of the program. This formula is then passed to

an interactive system, where the user maybind symbolic or numeric

values to the varia.bles in the formula (including such variables as

the basio operation execution times and tile probabilities of conditional

expressions evaluating to true or fa~se), simplify the fonnulae, and, when

suffioient variables have been found, to plot the numeric resul ts for

the program execution times.

Niddleton [43J models a program as a graph, and shows howstorage

space and execution tima requirements for a given program can be derived

fron the resource equations applicable to each of the basio graph

constructs. For example, for a FORTRAN :u,-1001) construct he gives

resource equations of:

Tn-IE (DO(N,a) = To+H*(T,+ T]}IE(a)+T,.)+T,

STORE (DO(N,a)) = So+SI+S~+STORE(a)
where :N is the nunbe r ef conp'Le te cyoles of the loop

a is the action formine the body of the loop
To, T" Tt. and. So, S, ,52. ar2 the time and storage
requircDents for initialisation, t::-sting and
incrementing the control variai)le respectively.

This model allOi'Tsthe effectiveness of certain time/store,ge tJ."Sd.e-

offs to be enalyscd, ':ii.lichLs one of the factors timt is of Impcr bance

in compaz-ingdata ropresent.,.tions-.

Here Sl)ccificclly cleali...YlG Hi th data rcpresent8.tions, Tenpa [51J
has described 2.11 eVC',luationrie thod involvinG' 2.:t1 sv2,h12.tionna-c::ix.

By using a special Language ('Co1.illtcr') devised for the PUrpOS8,

first Irrtroduced in 211 carli:::r paper [22], the cost of each storage

109 -

schema (i.e-. representation) from uhich a choice C2!l be made is

expressed in terns of para.J:'.eterisedformulae. ~~ese are then used

to construct an eval.ua't.i on matfix in \·lhich the element pair in rovl i

and co.lumn j represents the run time and storage space contributed

by the jth structure when iItplemented using the i th representation.

TompashO\'18[51J that in general, however-, the least overall cost

(expressed as a spa~e-time product) ~ not necessarily obtained by

selecting the least-cost representation for each individual structure.

~o avoid the exhaustive .examination of all possible combinations of

structures and representations that woul.d othenTise be necessary, he

presents a branch and bound algorithm to reduce the search space to a

manageable size.

Usil18'the sene apJ.1'oach as Tonpa, 1.0", [39,40] also evaluates

data representations by using space and time cost functions associated

with each representation. The cost fonmulae, parameterised by

information such 2.S the maxlmum numberof componentsof the structure

being represented, are determined manuaJ.lyfrom the primitive storage

required ~~d the execution time tQken by implementing code for the

represen t2.tion. IniormCl-tionabout the use of the structures to be

represented is derived from the program in which they aze used in

order to provide the appropriate parameters for the evaluation. This

iD.rormation is derived partly from monitoring sampl,e executions of the

progran, and partly by direct interroeation of the user.

:BothTompaend 10\'1 consider the representation of an abstract

data str1.1.cturedirectly in terms of a concrete representation. They

are therefore able to estimate the cost of using a partic1.112.r

representation directly in te~s of the cost of implementing primitives.

- - 110 -

In the approach described here, however', several representational

tr211sfomations will in c;eneral be madebefore a given abstract

structure is implemented in tenns of concrete prim tives. Because

of thi3, the approach to eval.ua tdng representations '.las made more

difficul t than in the .,'ork described in this section.

5.3.3 Approach used in the experimental ~stem •.

A static evaluation approach was investigated in the ex:perimental

s.1stem, estimating the program execution costs from the static program

text. To determine.the cost of using Cl. particular data re:i.?resentation

for a given ty:pe in a program, the representation was implemented and

the resultant transformed program evaluated, By comparing the costs of

the various resultant programs, therofore, the effectiveness of each of

a set of :feasible representations :for a given type can be conpared.,

A progrC1Jnis evaluated in tenns of the storage space required to

hold all the data i terns used by the program, and the time taken to

execute the co nple te procram; no attenpt is made to give a single

overall cost, say in ter:::s of a space-time product, since the relative

importance of the t\'lO factors mayvary according to particular

circumstances, o:ften the time being minimised within a :fixed maximum

space.

\Jhen static pro0~ analysis is cc:rried out, cert8in information

concerning the behaviour of the procram at execution time, ..,11ichcannot

be derived :from the procram text alone, must be additionally supplied.

In o~~r to catcula te storage requirenents it is necessary to sIBcify,

for e:mnple, the maximumexpected number of components in a sequence,

or the maxirrun expected number' of non-default valued range eler.len"t;sin

a spars e CJ.rr;ZY- • Similarly, to calculate execution times it is neceaaary

- 111 -

to specify, for example, the expected number of time a ,·,hile loop

will be executed, or the expected probabilit,y that the condition in

an if statement ¥Till evaluate to tnte. One \'T~ to obtain such info~':a-

tion is to morri tor the actual execution of the al gori tbm being

programmed,as suggesbod by LO\v [39J. lm:y implementation nay be used

for the algoritilm in oxder to do this monitoring, it is not neccss~J

to choose en efficient Impl.ementatd on, since this of course is the

object of the evaluation in tre first place. Having ob'bafned the usage

information, this can then be used to select an efficient implement2,tion

of the algori tm:i. If the programmerhas no idea of hOHhi s algori thm

will behave, it maybe necessary to IErform this initial trial and

monitoring process. Hm"ever, the programmerwill often be able to

give zeasonab'l,e estim2,tes of the]_X) rformmce of his algori tbm in order

to supply the usage ir.i'orr12..tionin his abatrracb procram. (Indeed, it

maybe suggested that the programmerwhocannot estimate such infar'mation

does not knowsufficient about his algori thIn in the first place). If

the initial usage estimates are found to be inaccurate in the light of

the actual progreJ:lexecution, they can be revised and the representational

choice system can be used to determine whether a different implementation

would be more sui to.ble.

In the experimental system, the progra.r:un~rmust provide all the

necess~J usau~ information in the abstract procram initi2~ly input

to the S,Ystem. In a more sophisticated system, it might be possible

to derive someof the information from c2..reful an2~ysis of the program.

]br exampl.e, if the conditioncl in an i£ statement consisted of a

predice,te testing vhethe'r a particul2x data item Has an elenent of a

given set, the probabili t,y that the conditional voul.d evaluate to ~

- 112 -

could be determined from the ratio of the average number of elements

in the set to the total possible nuraber. In fc.ct, when"Tn ting
representations for the librar.1 this kind of reasoning is needed to

speci~ such information in the implementations of the data operations.

In the experimental system, such probabilities etc, must be

specified as formulae by the '-Inter of the representation. In a

more sophisticated system, they might be derived automatic~~ly. Such

calculations for COBpJex algorithms, however', mayrequire teclmiques

such as the mathematical analysis mentioned earlier[31] , and so be

beyond the present ccopo of automatdon,

A refinement of the requireBent for full information on program

usage to be supplied by the programmer, vroukdal.Lovfor interactive use,

in '.Thichthe sys ten requests from the procra!7IDeronly those i toms of

information needed at any given momentin the choice process.

In the follovTing three subsections, further details are given

of the storage space and execution time evaluation methods used in

the experimental system, and somecommentson estimating costs for

abstract proGramsare r:J.ad.e'.

Storaee space evaluation.

In order to simplii'y the eval.uatdon of store.ge requirements and

unify the data items in a program, tre experiment81 system uses a

special type 'GLOBAL' to encompassall the programvariables. The

stor2ge used ~J a procram therefore consists of a single instnnce

- 113 -

of this type.

Exerop1e: Given an ini tial program i'Iith the

follClTing type and variable declar8.tions:

ID.9.. A := - - -;

~ 13:= - - -;

~ 0 == - --;

y£ a:A; y.?£. b:B; sss: c:O;

this is held in the experimental system Ln the form:

~ GLOBlI.L= (a:A; b:13; c:O);
~ A:= - --;

~ 13 == - --J

~ 0 == - --;

~ g:GLOBAL;

and all references to ochevariables a, b and o are

instead held as reference-selec~ions [S.a, g.b ond

g.c from the single global variable g.

Introducing such a global type also enables repJ.'esentations to re

chosen for this type, so that, for example, ell the data in the program

can be represented in 2. single e:rray of integers (corresponding to the

basic storage of an assembler-orientcd tsrget machine). Evaluating the

storage required by a prograEl therefore consists of working out the

storage required by an instance of ty:pe 'GID:sAL'.

!Ibe c2.rdm81ity of a data type is the number of dictinct val.ues that

belong to the tyre, and \Thich can therfore be assigned to an instmce

of the type. If c is the c2.rclinali ty of a type, an ins t~'l1ceof that

"bJpeHill rscll_li:cea rdrdmum of

bi ts of stor?.gc to hold 2n;J val.ue of the t.Y'pe. This is therefore the

minimmnamount of stora.:;-e thc.t 2. re~,rosent:-tion of that type could use,

- 114 -

though it mayuse more storage. Each kind of strncturing combinator

has an associated method of calculating the ce-rdinali ty C~'l.RD(T)of a

type T specified in terms of that combinator:

InteGer SubrcmS'e: ~ T = m••n
CARD(T) = n-m+1

Cartesian Product: ~ T = (s1 :'1'1; s2:T2; ••• ; Sn:fu)
CA.RD(T) = CARD(T1)xCARJ)(T2)x ••• xCARD(Tn)

Discriminated Union: ~ T = (k1 :T1/k2:T2! ~.~. 1kn.:Tn)
CARD(T) = CAilD(T1)+ CARD(T2)+. •• -t-CARD(Tn)

Array (Non-Sparse): ~ T = arr2}T T1 of T2
CARDe T) = CAH.D(T2) CARD(T1)

PO"lerset~on-Sparse): ~ T = set of T1
CARD (T) :-;C"J\Till(T1)

'lhe cardinality of a basic structure type such as int depends upon the

defini tion of the ty-pe as implerrentec1in the target Language ,

In the cases of sparse arrays (in wh.l oh most domain values map

onto the same clefault range value), sparse pOirersets (in "hich each

set value corrtad.ns only a fei'l of t..l,.epossible set element values) and

sequences (which vottLd otherwise have infinite cardinality), the

caJ.culation of the cardinality is somewhaf more complex and depends on

the maximummunber of components the structures 'dill contain.

Sparse Array: ~ T = array U !2i. V (HAXC01IP:::m)

Here, m denotes the maximumnumber of domain values, of ~ U,
that ';Jill map onto non-default range values, of type V.

Let t", = CARD(T) 'vit_l,.HAXCOHfbm, u = CARD(U), v = CARIl(V).

llien to = v (a single defaul t value).

t~ = t~, + v (~) (v-1)' (oc)
(i.e. increasing i by one increases the cardinality of
the array by the number of possible non-default

donadn-crange combinations ivith exactly i non-default
entries).

~ (u) L llny~+I~s tm = v c_ . (v-1) & -:::-r for U»m.~o 1 m.

115 -

Sparse Powerset: ~ T = set of U (MAXCOHP.::m)
Here, m denotes the maximum number of set elements, of type U,
in any value of type T.

let t,., = GARD(T) ".Iith HAXCOHIkm, u;::CARD(U).
Then to = 1 (the empt,y set)

tl. = t~, + (~) (i)O)
(i.eo increasing i by one increases the cardinalit,y of
the set by the number of set values with exactly i
elements).

lJhus tM = "'i:. (,:)
(,=:0 ~

lCml for u»m.

Sequence: ~ T = seguence U (J.1AXCOHIkm)
Here, m denotes the maximum number of sequence elements, of type Ut

in any value of type T. /
Let t", = CARn(T) wi·i;hHAXCOIlP.::m,u = CARD(U).
'Ihen to = 1 (the empty sequence),

t~ = t~_, + u" (rso)
(i.e. increasing i by one increases the ccrdinality of
the sequence by the number of sequence values with

exactly i elements).

'"~s tM= 2: ut
L"'or~I-1 u>1u-1=
m + 1 u.=1

- 116 -

Given a set of abstract type specifications in a program, the

above fo:r:mulaeenable the minimumtheoretical storage space required

for the program to be calcuJa ted. In practice, the represent?tions

chosen for the abstract types in the program Hill result in more

storage space being used, because to compress the data to its most

compact form woul.drequire unacceptable overheads for packing and

unpacking individual data items as they \,rere needel for manipuJation

in the program. For exarspl,e , often an integer subrange of small

cardinali ty, such as ~T=1 •• 10

will be represented CIS an into "lith a resultant increase in the

storage evaluation, simply because, if the instances of the type are

frequently m8nipulated in the program, no extra execution time overhead

need be incurred for :pGc!:ingand unpacking the values into a smal.Ler

number of bi ts.

Execution TimeEvaluation-.

The calcule.tion of tile estimated execution time of a Given proeram

can be broken dO',m, in to tvo parts. Firstly the determination of the
time taken to perform each individual data operation in the program,

such as selecting a componentof a s truc tur-e, cons t'ruotdng a nev ve.Iue

from somecomponentvalues, or assignine' a new value to a named data

item. Seconclly, the combina tion of the individual operation tim s

accorddng to the expected f'Lowof control in the program to produce an

overall time for execution of the complete ~roc~an. For data ~'Pes end

strtl.Ctures wh.i.chare baai,c to a given tareet lanCU2g8, the avoreee

execution times for the data operations on tl:ose ~'Iles and struc tarres -;r:a;y

be deterralned for the particul8.r implementation of that languY:_:,'""8th2~t

will be used to compile and execute the fin::>1procra,"l. For exc\.;:Jple,

WiChmann[56]has produced such analyses for several diffe~'e:nt

- 111 -

implementations of Algol 60. On the other hand, estimating the tine

to execute data operations for abstract types, "'mch have not yet been

represented in target 18ngu8~e terms, is very difficult. It is

considered fu}:,thcr in the re xt subsection.

}1eamlhile, assuming times have been allocated for each individual

data operation, it remains to combine these times according to the

structure of the program:~

CompoundOperation: For a compounddata operation, such as

ax. curr := ax' aa! index (ax' curr) 'next;

the execution time is the sum of the times for the component

operations.

Compoundst? tertlent: s:: ben'in S1; s2; ... ; Sn £n!!.
time (S) = time (S1)+time(S2)+ ••• +time(Sn)

If Statenent: The probabili i7.f P th2.t the condition C of fhe it

st-',teIJent Hill evaluate 2.S~ at execution time is

provided by the programmer (~tactically in the

experimental system it is included as an expression
enclosed in ,%, brack-rta after the condition).
S ~ if C 5~pSGthen S1 ~ S2
time (S) = time(C) + pxtime(S1) + (1-p)xtime(S2)

or alt)rnatively if the '~' part is omitted

S !: if. C S~p5~ t4..@.. S

time (S) = tine (C) + p x time(S1)

i,'1hile Stat~rlent: The aver2.ge numbe r of times, f that the body

of '~he loop "ill be executed is provided by the programmer.
S ~ vThile C $.£S~ ££ S1
time (S) = (f+l) x time (a) + fx time (S1)

For St2tenents: As in the ~hne stC);';sT".cnts,the tWer2ee numbvr of

times the loop ~dll be executed is provided by the

The first form of f.2E. statemerrt i terat?s over (at cost)
all the val ues thEtt C2n be taken by a named data item

H of a type T, the owner of the stZ'~teI-ent.

S ;:: for N ~~.~~jQ. S1

time (S) = tine OJ) + fxtime (81)

- 118 -

If no exits are made to tenninate the iteration early,

f = C1L-::m(T).
The second form of for statement iterates a statement
i.'ore2..ch of the element values in a given set or sequence
value V of "bJpe T.

S = for X in V ~~b £lQ. S1
time (S) = time (V) + fxtime (S1)
If no exits from the loop are made, the number of iterations
will depend on the ave rage number of componentsin the set
or sequence, a number vThichC211 be specified by the
progranmer when declaring the set or sequence type,

s = AVCOHP (T).

!Ibe third form of f2!. statement iterates for a nameddata
item N taking values over a given integer subrange, the
bounds of whf.ch are specified by integer val.uee V1 and V2

S == f.Ql: U:V1 •• V2 %f% 2.Q. S
time (S) == time(n)+tdrne (V1)+time(V2) + fxtime (S1)

If no en ts fro~::the loop. are made, and V1, V2 are

constants that are known at the time of evaluation,

f = V2 - V1 + 1.

In the ex:perimentG'~system no extra times were added in the above

calcula.tions to allmv for branching or looping overheads. In general,

such overheads \'Till be small compared to the total time of execution

for the s trvtemerrtavTi th which they are associated. If necess~J, for

greater accurGcy, the overheads incurred by such brcnching etc. could

be determined for the specific ta.r8'Ct Languagebeing used, and the

appropr-La te add.itional anounbs included in the above formulae.

Problens of eval.uatc on to ass.iat selection.

For a Given type, specified by a p'J.rticul2x data str-'cturc, it has

been Sh01VIl in subsection 5.3.4 how the minimumsto rage space required for

values of such a "bJP8 mw be detn:ninecl. This minimumconceptual stor8.[;'e

- 119

m~ be used as a representation-independent w~ of assessing storage

cost. Unfortunately, there is no equivalent l18.:y of assessing the

cost of o~er8.tions on structures in a representation-independent

fashion. The cost of inserting an element into a set, for eX2~ple,

depends entirely on the representation of the set, and in turn on

the costs of the operations in that representation that implement

the insertion. ~e true cost of such an insert operai;ion \.,rill only

be knownwhen the set has been fully implemented in terms of primitive

language operations.

In the experimental system, the effects of providing very crude

estimates of the costs of abstract operations was investigated.

However, these experiments did not provide a useful guide to the

ul timate execution time costs of the chosen representations. In

general different representations mayhave different balances of costs

'amongthe operations they implement. Hhereas with storage it is

possible to set a minimumon the amountof storage that maybe used

to represent a data type Ins tance , ,vi th data operations no such

minimum can be set. Representations cen be devised that minimise the

cost of one of their operations at the expense of making the other

operations more time con~~. HOIlever,it woul.dnot be possible to

assume such a minimumfor each of the operatdons of a representation,

since they cannot simultaneously achieve these minima.

E-,.wnpleso:f the storage evaluation provided by the experimental

sys tem during the choice process are shown in the next section. They

demonstrate that the sto:r2.geevaluation alone is only of s881l use in

guiding the selection of representations.

- 120 -

Evaluation and the transformational approach.

Despite tIe inadequate evaJ.uation of representations that could.

be provided durfng the choice process, the evaluation mechanisms

incorporated in the exper-irnorrta'l system are still of importance in

allo\-line a static program evaluation to be madeonce a target Language

form of the program has been reached. ~be evaluation experiments

the.t "Terecarried out did ShOH'th2_t infornation on. control flou, whf ch

is required in making en eval.uatd on of execution time, could be c2.rricd

through the represent~tional stages from abstract to concrete yrogram.

It is reasonabm to ask the progra.'T!I!lerto supply such Lnf'ozmatd cn for

the abstract program that he has \m +ben, Ho,'Jever, it woul.d be

foolish to expect him to give suCh information for the concrete form of

the procram aft0r it h~s undereone several transformations. If it '..texe

not possible to carry the inform8,tion through from abstract to concrete

program, evaluating representations using the transformation2~ approach

would be extremely difficult from the program text, and woul.drequire

dynamic execution of the concrete program to gather execution-time

statistics. Our experiments have demonstrated that the information can

be carried through, and that static evaluation is therefore feasible.

The meansby which the selection of representD.tions during the

choice process can be guided by evaluation is. still largely unresolved.

Onepossibility is to use the storage eval.uo.Hon as a coarse fH tor to

eliminate representations "Thichrequire excessive s torage and so reduce

the space of fer,sible represent2.ticns. If the search sIB.ca can be

reduced to a relatively sma'lL number of sequences of tre.nsfornations

applied to the program, st;;..tic evaluation of the concrete proCJ."8<::resulting

from each sequence can be used to select the most efficient. The

advantae;e of using a system of the kind presented here is that the

- 121

investigation of different sequences of transformations is made

relatively easy. iiith the implementation of +ranarormatdona,

the maintenance of evaluation inform~tion, and the final evaluation

of concrete prOCTarlforms carried out au'toma.td ca'Hy by the system,

the user of the system can a£ford to investigate alternative sequences

of represent~tional Choices.

5.4 Directinfl; the Application of Transforrnati""'ns.

In order to see ho~ the transformational approach may be guided

by a prograI:!merin conjunction Hith machine support, we next consider

an example of use of the experimental system. The example is used

to demonstrate the storage evaluation included in the sy~tem, and in
/

p2,:!:'ticul,',rto show how the user is 2.ble to c1irect the C',pplicntion of

transformations in order to achieve a fin21 target Language program.

The example demonstrates also someof the problems and someof

the expediences taken to avoid problems in the system. 'ilie amount

of guidance given d.h'ectly by the system in choosing representations

is ShO\0111to re sLlall, end possible means for 2,Ssisting the programmer

further in the choice of representatiom are consic.ered.

An example of use of the experimental system.

This extended examp'Le '''ill ShOHthe compJete representation of the

data in a program, starting vd th tre proerarnrner-"rritten abstract form

and finishing witll a target Language compatible fom. The exampl.eto

be used is the Birthdays Problem, described initially in 1.2.1 end

used for vsrious other ex~ples in the rest of the text.

An abstract program to solve the problem was given in 4.3.4
and the actual program input to the experimental sys torn at the start

- 122 -

of the session is shown in Appendix II. '!he latter differs from the

former only in including someadditional information. For t'\{0 of the

data type declarations:

~ TABLE == array: DAY of Grroup

me GIlOUP = lW.i of P8RSON

(AVCOlIP=50, 1~'(COHP =100);
(AVCOHP = 1, lIAXCOHP =10);

the additional information is given by the progr8pmer to initialise the

properties of the releva.nt types concerned Hi th program dependent

usage of the types. In each case the informrdi on specifies the

maximum and averag"9number of componen ts that an ins te,nce of the t,)'Pe

,.,rill contain. In t1).eCase of the arra~r, it refers to the maxirrum and

average numberof array elements that differ from a commonvalue (in this

case the empt,r GROUPset). In Us case of the set, it refers to the

infoJ:'J1l2,tionis used to cal.cul.ate the amount of storage required by the

·data, 8.S discussed. in 5.3.4. The other difference is. that in the

body of the abstract prog:carnthe programmerhas provided additional

information about the frequency of execution of the loops, vrhfch is

required for carrying out the execution time eval.uata on discussed

~le shall presume fOT this example that the t2.rget langu.8.eefor

which the user ,·rishes to J..'t?presentthe data is one Hhich incluo.es

only varlp,bles of basic ty-pe int. and also singly dimensioned arrays

of elements of type int. In other 1-10rds,at the end of the

represellt?,tion8~ choice session the data (i. e. the sincle Lnstance of

'bJpe GLOllI\L) should have the form of a Cartesie.n product whose e'Lements

are either of i.,-ypeint_, or of types ~;pecified 2$ arrays of .ini ,'Ii th

VIe :D.01'1 give a cormentary on tl:e interaction of the: user ,vi tIl the

system uhen selecting anel implementing representations for the data.

- 123 -

User input to the system is distinguished by w prefix ">".
Once the initial abstract pro{1Tamla s been input to the system,

the system is ready :for use:

** REPRESENTATIONAL CHOICE SYSTE~ **
COMMMJDS:

TYPES, PFPS <TyoE>, EVAL, PRINT. roUTT.
SPLIT <TY~E> <S~L> <SEL>

>PRTNTTYPE GLOBAL=(P:oERSON.o:nAY;T:TABLE);
TYPE TA8LE=ARRAY D~Y OF GROUP (MAXCC~P=100 AvcnMP=50 ,.
TYPE nAY=l •• "'l")f>;TYPE GROlJP=SET o= PERSON (MAXCO"",P=10 AVCOMP=l);
TYPE P~RSON=1 ••5000;
VAq, G:GLORAL;

~EG IN ~
G.T:=(TA8LEIIALL (GRnUPfJ'E',1!lTY);
READ(G.D);
WHILE Gii)'P.,=ODJ

BI='GINREAD(G.D);
G.T.INOEX(G»'9):INSERT«(;@'P);
READ(G.O);
EN,);

FClRs.n I)"')
8":GINWRITE(Gv'D);
FOR PP IN G~'T'IND~X(G~'n) DO

WRITE(~P);
END;

END

The commandsavailable to the system user have the following

meanings:

list the ~YFe definitions in the current fOImof

the program.

R'EPS<type> list the representations from the library whi.ch

rnatch the given type.

TYPES

EVAL evaluate the storage and execution time for the
current fonn of the program.

PRn.1T print the complete current fonn of the prosram.

QUIT terninate the session.

SPLIT... see subsection 5.4.2.
'lhe user has printed the current forn of the proZr?..m,wlrl ch consists

of the initial abstract progre.ffiaugmentod by the sys ten-dritrroduced

GLOBALtype (see 5.3.4).

124 -

>RFPS TARLECURRf~TLY ST8R= 106508
c-rorcr FOR TI\BLE

ARRAY STOR=
SPARRAY STnq=
HASH ST~R~

TO I~PLE~FNT RE? GIVE

37~6?B
11256l-3
113Y)['3
CHDSE~~ REP NAME

Rere, a request has been made for the system to list the feasible

representations for the type TABLE. The system responds with an

indication of the minirm..unstorage it computes to be necessary for the

current form of the program (10650 bits), and then goes on to list the

representations it has matched from the libr8X'Je In this case three

represen-ta.tions, with the identifiers ARRAY,SPARRAYand HASH,have been

matched, and the system has evaJ.uated the new minimal storage used if

each were to be implemented. The user is invited to name one of the

fully matched representations to implement in the program.

REP ARRAY;
TYPE A=ARR'Y B OF C; => TYPE A=ARRAY e OF C;

GLOBAL B9:8;
CONDITION CAQn(8)(100000 AND MAXCOMP(A»O;
OPER ~TI ONS
5) AX"A:=A4<ALL(CX"C) => FOR FO ~CAr(O(O)y. DO AX.INDEX(B'3):=CX;
R) AX"A.IN'"lEX(RX"I:l) => AX.I'IOEX(F'lX);
V) AX"A'INf)'=X(~3X"9) => AX'INDr::X(!3X);

ENDPEP

'Ibe A.l.tRAYrepresentation listed above, which sinply aJ.lows a sparse

a.iTay (as the program "bJPe TABLEis in this case) to be represented as a

non-sparse array, is chosen by the user for implementation. (~1e outcome

of choosing differently at this point is considered in 5.4.3).

TyPE GLn~AL=(R901 :O\y;o:oFRS8N;o:n~Y;T:TA8LF);
TYPE pr::~~n'\j=1•• ~000;
Tvr>r:: !),\Y=l •• ~F,I'):
T Y PET f\ 8 L ~ = <\ R '-~<\ Y DAY (JF (;r~0U,' ;
TyPE GRO'JP=3ET OF DEPS'lN (',,1AXCflMo=10 AVCO'-1P=1);

The system carries out the implementation by transforming the

internally stored prorrram according to the represen ta tion description,

and prints out the type apec.i I'Lca't'i ons of the new f'orra of the program.

- 125 -

These differ from the original in two respects in this case. Firstly,

the global variableB3 from the ARRAY representation has been ll1cluded in

the GLOBA.L type as an additional componenf with selector Bl301, derived

from the variable name by adding a qualifyin~ pair of digits to ensure

uniqueness. Secondly, the NAXCOHP and AVCOHP qualifiers no longer

appear on ~e TABLE, showing that the arr~ is no lon_ger considered as

being sparse.

The user no,",requests that representations for the ~e GROUP be

matched.

>REDS Grwup
.CURQE~TLY STnn= 373A~O
CHOIe!=:: FOt:< GROUC>

paWl' STOR=1834ROlB
POW? STOR= 47643R
INDIRECT ST~R= 40n66R

Til 1'''PLE'Af=NTREP, GIVE CHf)Sr-N PEP NI\",H':
>PO',oJ2

TYPE GL09AL={SP02:INT;OU01:DAY;P:PERSON;O:OAY;T:TAOLE);
TYPE OAY=1 •• ~A6;
TYPE PERSD~=1 •• 5000;
TYPE TABLE=A!"~RA.Y DAY OF GROUP;
TYPE GRDUP=SEQUF::"IC'7: OF PFRSON (MAXCOMP=lO AVCOto.1P=l);

The system matches three :possible choices, from which the user

selects the FO'.12representation to be implemented, ,...hich represents -the

t,ype as a sequence in place of a set.

>RF::PC; GRIlUP
CURPENTLY STOR= 476438
CHO ICE FOR GROU'"

SEQl STOR=
IN~IRECT STnR=
SEQ2 STOR=
SEQ3 STOR=
SF05 STOR=
SEQ~ STOR=

TO JMPLE~ENT REo, GIVE
>SEQl

4913'19
50 '~4Al3
F,2(,81r3
7131+ 198
9601 1r~
t:;2\'l.:m
CHllSEN RCP NAMF

The user C4.;.?'8.inasks to choose a re,,)resentation for wpe Gl1.0UP, and

now six possible representations are found to match the sequence. The
user chooses the one \"i th the least storage requirements, SEQ1. This

- 126 -

representation has the follo\-,l.ng structure transformation:

REP SFQ1~
TYP~ A=SEQUE~CF OF S; =>

TYPE A=(~qST:~; AA:C);
TYPE C=A~~~Y 0 o~ a;
TyoE D=I ••~~XCOMP(A);
TYPE E=O •• ~AXCO~P(A);
GLOBAL I:INT;

hence new types with appropriate specifications will be introduced

with identifiers C03, 1X)3, EJ3 and a new component I03 is added to the

GLOBALt,ype for the additional global variable (03 being the pair of

qualifying digits associated with this representation implementation).

The user prints out the current fom of the program at this stage,

which shows the new t,ypes as we'LLas the changes that have b.eenmade to

the data operations since the original abstract program was printed •
./

>PRINT _
TYPE GLOBAL=(I03: INT:SP02:INT;8BOl:DAY;P:P~RSON;D:DAY;T:TAgLE);
TYPE DAY=I •• 36~;
TYPE PERSON=I •• 5000;
TyPE TABLE=ARRAY Dt\Y OF "ROIIP;
TYPF GQOUP=(FRST03:E01;AAO~:C03);
TynE CC3=ARRAY 003 OF PFRSON;
TYPE 003=1 •• 1C';
TYPF 1'.":03=0•• 10;
Vf>.R G:GLOflAL;

BEGIN
FOP G.E3901 DO

G.T.INDEX(G@'S901).FRST03:=(O);
RFAO(G.P) ;
WHILE G@'P..,=') f)CJ

BEGI"J
READ(G. o i :
G.sn02:=(G~'T'INO~X(G~'n)'FRST0~);
WHILE (,(G@'5002<1 ~R G@'SP02>lC)

AI\jf)G,)'T' INDEX(fjil'f) 'AAC.3' INDEX(G<l)'SP02)-,=G·-'1'P) no
G.SPO?:=«Sv'S~~? - I»;

IF (Gv'S?C2<1 8R G~'SoC2>10) THEN
REG I ~J
G • T • IN') t- X (G @ , 0) • p r;> S T 0 :I: -= ((G:;: , T ' I NI') EX (G·~ 'D) , FRS T o 1 + 1»);
G.T.I~f)EX(~@'D).AAC3.INnFX(G~'T'IN~EX(G~'n)'FRST03):=(G@'O);
!':"J,);

PFAf1(G.O);
E"'I) ;

FOR G.r:lDO
"'EGI"l
-'I:) 1 T F.: (G ,~ , f)) ;

FOR G. 103: 1 •• G,;)' T' I"IDr:::X(r;Q)'D) 'r'f~STC< DO
W f~ I TE (G@ , T' I N [) E X (G oj , [)) , .\ A 0:3 ' I "I DEl((r;@ • I C :3)) ;

END;
EI\jf)

- 121 -

Twointeger subrange t,r.pes PERSONand E03 are next chosen in turn,

and each is represented, using SUBREP,as the basic t.ype ~nt.

>P':::PSPEPSON
CU~DE~TLY ST~R= 491398
CH1IC~ FOR P~RSQN

SUHREP STOR= l1AA98R
TO P'PLFMENT PEP, GIVE CHOSEN REo NAMF'
>SUBPEP

TyPE GLO::3AL=(103: INT;SP02: INT;8801 :DAY;P: INT;O:OAY;T: TA3LE);
TYP~ OAY=1 ••~6~;TYPE TA8L~=ARRAY DAY OF GROUP;
Tyr>E GROIJP=(F"RST03:F03;AA03:C03i:
TyoE E0"3"=,)•• 10;
TyPE CO~=ARRAY 003 OF INT;
TY0F:: D03=1 •• 10:

>REDS E03
CURRF"NTLY STOR= 1186988
CHOICE FOR E03

SU9REP STnR= 128946R
TO IOAPLF"'ENT REP, GIVE CHUSEN RED NAME
>SlJBI1EP

TYP"" GLOBAL=(103: INT;SP0?: INT:P.[)()l:I"JAY;o:INT:O:OAY;T:TABLE);
TY?!;?DAY=1 ••"36~;
TYPE TAgLE=A~RAY DAY OF GROUP;
TYPE GROU~=(FRST03:rNT;AA03:CO~);
TyPE CO,=ARRAY D03 OF INT;
TYPE 003=1 •• 10:

Both of these representations, the first in particular, showhow

the minimumstorage requirements can increase when a representation is

applied whi.chis "vasteful' of space. In the case of t,r.pe PERSONthe

subrange 1••5000 theoretically requires muchless space than the 32 bits

presumed fo'r type int, however the savfngs in execution time of operations

for accessing the latter type ma~e the application of ~e representation

worth,...hf.Le,

In order to progress further towards obtaining the desired target

Language structures, it is necessary to apply certain transfomations to

the program whdch are not strictly data representations, but transform

a struc ture to an equivalent form that is raore sui ted to subsequent

transfomations. In the experimental sys+orc, these kinds of transfonn-

ations were ;rri tten as if they were representations so that they could

be st01~d in the representation libra~, selected and implemented by the

- 128

samemeans as more conventional representations.

Oneof these equivalence transfonnations, given the nameSYU2in the

library, has the follm'ling sbructure transformation;

REP SYN2;TYPE A=(BB:B:CC:C); TYPE C=ARRAY O.OF S; TYPE D=~ •• N;
=> TyPE A=AR~AY E OF R; TYPE E=M ••N+l; TYPE D=M •• N;

It shows the equivalence between a Cartesian product, Hith one component

being an array \vi th elements of the same type as the other componentof

the product, and a single array with all elements of that type.

>REDS GROUP
CURRrNTLY STOR= 12e9469
CHOICE FOR GR8UP •

SYNCP STOQ= 12Rq46B
SYN2 STOR= 12~9469
tN REP INDIQECT FnLLO~!NG N~T T~PLE~FNTED:-

G.T.IN~EX(G@·~P01).FRST03TO IMPLEMENT REP, GIVE CHOSEN REP NAMF:
>SYN?

TY~E C,L(11!\L=(It\3: H.T;Sfl')?: INT;8P.Ol :Cl\y;i:l:INT;r:OI\Y;T:TI\HLE);
TYPE DAY=1 •• '?6;
TyPE TABLE=~~R'Y DAY OF GROU~;
TyPE GRnup='~R~Y E06 OF INT;
TYPE F06=1 •• 11;
TyoE 003=1 •• 10;

The SYN2equivalence has been applied to type GROUP,so that it now

takes the f'orm of a single array, allovdng a further equivalence to be

applied to type TABLE.(The system indicates above a representation which

failed to match, in order to aid analysis of its action).

>RC"t>S TAHLF
CURQENTLV STCJR= 12'39468
CHOICE FOR T<\BLE

SYNAR STnR= l~~QSAB
SYN~ STnQ= 12894GPTO '~PLEMFNT qEP, GIVF CHUSEN REP NAME

>SYN5
TYPE GL'J':3I\L=(TO~~ !l\iT;SP02: INT;BOOI :OAY;D: INT;f):DAY;T:TAOLE);
TyoE 06,Y-=l•• 16(,:TyoE TA1L~=~?qAY ~~7 ~F INT;
TYp~ ~Q7~(8~07:DAY;Dn07:E06);
TYPE EO'S=l •• 11 ;

The application OI sy}T5 converts type TABL~to a single array of

integers, but ,vi th a Cartesian product index type. This type, Fa7, is

a Cartesian product of hTO subranges, and so can be converted to a.

single subr'ange by -th e SUBCPrepresentation.

- 129 -

>RFPS F07
CURRFNTLY STnR= 1289468CH'1ICE FOR FI)7

IN PEP SYNCP FOLLO~ING NOT J~PLEMENTED:-
F 0 7 /I (G@, 99'1 1 • 1 1)

suncp STOR= 12R9468
TO tMPL~~FNT RE~. GIVE CHOSEN REP NAwE
>SUBCP

TyPE GLn9AL=(IC3:INT;SPC?:I~T;9nOl:rAy;p:INT;~:~~Y;T:TA8LE);
TYo= DAY=1 ••36fl;
TYPE TABLE=ARQAY F07 OF INT;
TYPE F07=O ••4025;TYPE E06=1 •• 11;

>REr:lS D!'\YCURRENTLY STQR= t2e9468
CHOICE FOR DAY

SU8RE~ STOR= 1?R992B
TO IMPLE~ENT REP. GIVE CHOSEN REP NAME
>SURREP

TyPE GL08f\L=(101: y"T;SPO?:JNT;SR01:YNT;P: YNT;O: INT;T:T.~8LE);
TYPE TABLE=ARRAY F07 OF INT;
TyPE F07=O ••4025;

Finally, type DAYis represented as an iD! to achieve a set of type

specifications which conform to the requirements of the target language.

The user requests an evaluation of the final fonn of the proGram:

>FVl\LCURRENTLY STOR= 1299928 TIME=].08'+C5

which shows that it requires storage of 128992bits (i.e. 4031 idlicells),

and that the predicted execution time is 1.08 x 105FS (for the basic

operation costs preset in the system for the target language).

The final intenlal f'orm of the program can nov be printed, showing

the structures and transformed program in its concrete target language

compatible form, and the representational choice session is

termina ted.

- 130 -

">PRtNT
TYPE ~LO~AL=(I03:INT;SP~?:TNT;nR01:INT;P:INT;O:TNT;T:TABLE);
TYPE TABLE=ARq~y F07 OF TNT;
TyPE F07=O ••40~5;
VAR C;:GLORAL;

~FGIN
FOR G.~A01:1 ••366 no

G.T.IN~FX«G~'B901+3659»:=(0);READ(G.P);
WH I LEG ru'0.., = O' r) 0

8EGI"JREAD(G.n);
G.SP02:=(G~'T'INDEX«G@'n+3659»);
w~ILE (~(G@'SPO~<l OR Gru'SPO?>lO)

A~r) G~'T'I~n~X««G@'SP02-1)*366)+(G@'D-l»)~=G@'P) 00
G.s012:=((Gii>'SP02-1»;

I~ CGru'soO~<l nq G~'SP02>10) THFN
AEGI"J
G.T.INOEX«G~·n+~65q»:=«G@'T'INDEX«Gru'D+3659»+1»;
G.T.INr)EX««G@'T'INDEX«G@'D+3659»-1)*366)+(G@'O-1»):=(G@'P);FNn;

RFAO(G.P) ;
F"!O;

FQR G.O:l ••166 DO
BEGI"!
WRITE(Gii>'D);
F:JR G.IO~:1 ••G;;)'-r'INOFX«G@'D+3f>59» nn

WRTTE(G@'T'IN~FX««Gm'I03-1)*366)+(G@tD-l}»);
r=~m ;

END

By perfonning some t11vial editing (\'lhich includes chancing the sinele

instance of type GLOBALback into a set of variable declarations), the

final concrete program can be transliterated into the syntax of a Language

such as AlgoHl, and this program can be c8mpiled and executed as nonnal.

BEGIN INTEGFR 5P02.0.D;
INTEG~R ARRAY T(0::4025);

REGI"!FOR BB~I:=l UNTIL ~66 00
T«B~01+365q»:=(0);

REAO(P);
WHILE 0.,=1'1DO

REGIN
REAO(O) ;
SP02:=(T((f)+~6'59»); .
WHILE (.,(S~02<t OR SP02>10)

~ND T ((((Sn ')2 - 1) '" 366) + (0 -1))) -.=P) 00
SP02:=«S002-1 });

1= (5002<1 ~R 5PO?>lO) THEN
BEGIN .T«D+365g}):=«T«O+365Q»+1»iT(« (T((1)+36,,)9))-1)"'3nf,)+(0-1») :=(P);
END;

PEAn(O) ;
F:ND:

F~R D:=1 UNTIL ~66 D~
8EGIN
\'IRITF:(O);
F:JRIO 3:= 1 UN TTL T ((rH:1 n5q» 00

WRIT r::: (T((((to 3- 1)*366)+ (0-1),)):
END;

EN£)
FN!).

- 131

Equivalence transformations.
In the example session shown in the previous section two transform-

ations were used 'vhich express equivalences among different data
structures. These transformations were included in the representation
library as pseudo-representations SYN2 and SYN5. It was found necessary
to include a set of these transformations (SY.N1 to SYN5 shown in
Appendix III) to express such structure equivalences, and also ~;TO

others (SYlJCP and SY1'JA.~)whi.ch express equivalences among operations
for tiolO structuring methods. By writing these equivalences in the form
of representations and including them in the represcntL tion library, it

.
was possible to use the same matching, selecting and implementing
routines for them as for the more conventional representations.

One further kind of equtval.ence was not f'ound to be expressible in
the pseudo-representation form, but the necessit.y for its incl~gion in
the representation process required that a special comnand be included
to allow the system user to invoke its application. The need for this
equivalence arose from the desire to apply representations and equiv-
alences to Cartesi~n product and discri~inated union structures with
more than two components. The form of representation used in the
experimental s~ tem cannot express representations for these structures
having arbitrary numbers of components, and the representations in the
library include only tivo-component structures in their 'old' structure
specifications. It is possible to extend the application of these
representations to many-component Cartesian products a.nddiscriminated
tmions by repea~edly splitting two-component parts fron the many-conponent

structure. T'niscan be achieved by using the equivalence:
~ A = (s1:A1;s2:A2;s3:A3; ••• ;sn:An); =)

~A = (s:B;s3:A3; ••• ;sn:An);
~B= (s1:A1;s2:A2);

- 132 -

'lllereare associated equivalences among the operations that can be

applied to each structure. A special system command was introduced to

perform this transformation:-

SPLIT (type> (ge11> (8e12)

which splits from the named ~e a t,ypewith a two-component structure

having the given selectors. Subsequently, the type Hi th the h,O-

component structure can be.represented as normal, and if necessary

further two-oomponen t parts can be spl.f,t from the remaining 'bJPe.

Options in guiding use.

The experimental system was implemented so that the user must

decide what to do next at any given moment during the choice process.

The 'b..,0 kinds of decision vThich affect the action of the system on the

procram are, firstly, the choice of '-Thichrepresentation to implement

when given a set of matched possibilities, and secondly the order in

which representations are to be attempted for the various data types

current at a given stage in the choice.

The first kind of decision could be made automatically if the

evaluation of different represeni:;ations was of use as a guide. The

second kind of decision is one for which it appears difficult to give

guidelines, \-Thetherin order to carry it out automatically or to assist
the user to get best results from the system. 'The decisions made are

important because they can affect the represenations applicable a.t

different stages in the choice, and hence the resultant representations

used in the final program.

In some instances, chOOSing and implementing a representation for

type A, then one for ~e B, \-Tillresult in exactly the same program as

the ca.se when B is implenented before A. Houever, in other cases,

particularly "'hen one of A or B is a structural component of the other,

the inplementation of one in a particular '-T8,yfirst may rule out a

- 133 -

subsequent representation for the other.
Ex:ample: In the example session of subsection 5.4.1, if type
PERSON had been represented as an int using SUBB3P before
investiga~ing the representation of type GROUP, it would
then have been impossible to use the BITS representation
for GROUP.

As an example of the choices open to the user, and the 1:Ta.yin which
the storage evaluation acts as a possible guide to selection, in

Figure 5.4 we surmnarise some of the paths that can be taken to arrive
at a concrete program for the Birthde.ys problem. Each path shows a
sequence of representational choices for the various types in the program.
At each branching node in the tree, the storage evaluation provided by
the system is shown for each branch. At the leaves of the tree,
denoting possible concrete proeTams, a full eValuation can be performed
by the system for both storage space and execution time. Only a small
number of the possible sequences of representation6l choice have been
shown,

It can pe seen that the sixth route minimises the stora..gecost from
among the eight routes, and that the minime..lexecution times are given
by the second and fourth routes, though these use apprecd abIy more
storage. (These evaluations depend on the target lan£~age costs that
are preset in the system, and the relative merits of the different
options may change if the basic costs are altered).

lJheexample session of 5.4.1 f'o'l.Lowcdthe second route throne,h the
tree, selectine the 'array' representation :ror "bJJ!e TABLE, 'IX)'\·,2' for
type GROUP, and 'soq1' for "b~e GROUP iu tu~ (plus further selections
not shown in the figure) to give a concrete program requiring 126k bits
of storage and 0·11 seconds execution time.

- 134 -

indirect sparray

12·5 13·8

GROUP
povr1

TABLE
array

1800

CO2
bits

AA01
pow2seq1 seq2 I

I
I
t 15·1

(j)
•

AA011
seq11

I
I
I

@I•
46·1
0·11

I@:
•
240

0·11[::~~O~~~O~:~execution time (seconds)

sto~se space (k bits)

l!b1
du;

13·9
GROUP GROUP
seq5 I pov12

I

I
I

(j)1
~

69·1
O· 91

GROUP I

seq5 I
I
I
I
I

@I,
12·8
0·21

F2gure 5.A Baths to a concrete pro~. and evaluation, for
Birthdays problem

space
(k bits)

It can be seen from the intennediate storage evaluation figures,

provided by tile ~stem along the various choice route~ that they do

provide a limited relative indication of the final storage costs.

Em"ever, the earlier evaluations £rive Ii tHe indication of the final

absolute costs for eny given route. l:ihere such evaluation maybe of

help is in eliminating routes, such as route one in the figure, which

will lead to unacceptablyhieh storage costs , and therefore reduce the

representational choice space that need be searched.

- 135 -

CHAPrER 6

ASSESS1-'IENT OF TRANSR)RHATIOHAL APPROACH

6.0 SwmnsP;Y.

In th:is chapter we assess the transformational approach to data

representation that has been described and demonstrated in the fore-

going chapters. The original objective was to investigate techniques

that woul.dhelp the programmerin the selection and implementation of

data structures during program development. The approach that was

developed during the course of the investigations and which 'de have

presented here will be critically evaluated to see hOHfar it contributes

towards the original ·objectives.

'!he assessment first consi ders the benefits of the appr oach, "/hich

"Terelargely the motivation for the direction taken in the research.

It then goes on to discuss the limitations to the approach that were

discovered, and other "rays in which the approach might be extended but

which could not be further investigated ,·Ii thin the extent of the present

worle.

FinaJ.ly we conclude by summarising the main results that can be

dra\fn from the investigations.

6.1 Benefits of the A~proach.

'lhe expression of data representations in terms of program transfor-

mations as demonstrated in the present work has seve'ral, benefits which

will be considered in tnDn.

Concise notation.

The notation developed and used for the investigations has allowed

a range of data representations to be VIti tten in a urri f'ozmand.comf.se

- 136 -

fashion. Someof the representations "lhich ,.,ere 'ITitten during the

course of experimentation are shownin AppendixIII. It "las found that

the methodof presentation of the representations, separating the

structure and operations, and fi tUng the latter into the categories

described in section 4.3, provided a useful frameworkwhich enabled

the form of a newrepresentation to be developed in a thorough

manner. At the sametime, the notation is concise allowing the main

features of a representation to be more quickly isolated, and it enables

essential simple representations, which fom the building bricks for

more complicated representational transformation sequences, to be

individually expressed.

Selection and implementation.

The selection of representations to be used in programs is aided by

the approach. Firstly the range of choice from which representations

ma;r be chosen is mademore explicit, and it is therefore less easy to .

overlook feasible representations. Secondly the selection of feasible

representations is helped, particularly whenmachine assistance, of the

form of the experimental system used here, is available., The

representation description clearly distinguishes the nature of the data

structure, and those of its associated operations, \'lhich it is designed

to represent. ~Iatching feasible representations therefore becomes

straightforward.

Having the representation described in a machine-manipulable

form also helps whenimplementinga chosen representation, since errors

introduced by manual implementation can be avoided, and the linplementation

effort is consider~bly reduced.

131 -

6.1.3 Building of libraries.

The conoise form of the notation, and the general applioabili~

of the relatively small number of representations that were used

during experimentation, make it appear feasible that useful libraries

of reasonably limited numbers of data representations oould be

construe ted, Houever, only more extensive experiments could determine

whether the large range of representations ourrently in general use

oould be obtained from various oombinations of entries in a relatively

small li braxy.

6.1.4 Re-use of soft,,,are.

'Ibe progr81nrninginvolved in \m ting the implementing code for a

representation oan be used to its maximumby the approaoh, since a

fixed set of implementations oan be re-used many times in different

programs, or even in the same program. If the implementation is

thoroughly tested, or even proved to be correot, then uhen used \-d th

machine applied transfo~ations,the re- use of suoh sof~fare oould

inorease the reliability of those significant portions of programa

whioh are ooncerned with supporting data representations:

6.2. Limitations 8nd Extensions of the Approach

The transformational approaoh to data representation as presented

here has raised oertain further questions, and there are other

limi tations to the present approach that \-Tereintentionally imposed to

restriot the investigations to an appropriate time and scope. In

add! tion there are various extensiom that would be desirable in order

to make the use of the approach nore feasible in a produotion enVironment,

but "'hioh voul.d require further investiGation:

- 138 -

Selection and evaluation.

The original objective of the ''lork was to provide the programmer

with assistance in the choice of data representations, but not to take

away-his con+ro'l,over those represent2,tions ,vhich could be selected.

This objective has been achieved to a large extent. However, as the

example and discussion in section 5.4. has shown, the control that

must be exercised by th3 programmerin directing tJ:.eaction of' the

experimental s.ystcmis fairly extensive. This implies that a reasonably

close knovl.edgeof the working of the system is' required to make

effective use of its capabilities •.
It is a matter for further consideration as to hO\·1muchmore

assistance could be automatically provided in order that a less

experf enced user could. benefit from the system'. Onedirection in

''lhich more help night be Given is in making a closer link betveen the

evaluation provided by the system and the control over the investigation

of sequences of transformation. Aheuristic approach to limi t the

space of representations tmder consideration might be possible, but

involves further investigation beyond the scope of the present work-.

Nore than one representation per type.

Oneof the limitations of the approach adopted in these experinents

is that each type in a proeram is restricted to a si:r>..glerepresentation.

"/henever a representation, is chosen for a specific '!;Ine, all items and

operations bclonc;in::;to the type must be implcmr:mtedin terns of the

neH structure ruldoperations of the representation. If, howevez, there

are, for exanpl,e, t\'lO data items '1hich conceptuaJ.ly have the aame

structure, but whf ch are used in different ',:ays in a program, they

- 139 -

might be better represented in different wa:;j'. To do thi s :in the

experimental system each item would have to be defined to be of a

different type.

Example: In the card game example, t\'10 kinde of

pile of cards are defined:

~ PILE 1 = s,eguence of FLAYDJG-CARD(EAXCOI-IP:52,AVCOllP=16)

~ PlLE2 = seg~ of PLAYDTG-CARD (HA.xCONP::52, AVCOI·ill::30)

The two separate types, whdoh howevexhave the same

conceptual structure, can be given separate usage

inf'onnation as shown, and a.Il.owvariables of each

type to be declared and used in separate ,.,ays.

They cen also possibly have separate representations

chosen for themo

Amongreasons for "lanting to relax the rule of one representation

per type, ti'TOcan be illustrated, both of whi.chhave inherent compli-

cations.

Firs~ly, consider the situation deacrdbod above, "Theredata itans

of conceptually the sane 'bJPe might require the use of different

representations, and where it Bay not be easy for the programner to

allocate each a different t,ype beforehand. Attempting to overcome

this by using a different representation for each data item rather

than one representation per data type leads to complications when

there aze data operations that have OIE r2.tions of the same 'b.roebut

using different representations.

140 -

Example: Given the declarations

~ PILE= sequence of PLAYDTG-CARD;

~ face-up : PILE; Y.S:E. face-down : PILE;

and if different representations are chosen for

the variables face-up and face-down because of

their different usage in the program, then an

operation such as

face-up := face-do\m;

would involve a difficult representation-transfer

implementation.

'!he second reason for relaxing the one representation re r type rule

is in the case of a single data. item \-Those usage is very different in

different parts of a program. In this case a different representation

might be best for each program part. Complications arise here in

deciding at what point-a representation change becomes suitable, and,

as in the previous case, in carrying out such a change in representation .•

Representp-tion of more flexible data.

The fonn of procram used during the experiments has been of the

most simple kind, limiting the data to be glo~llly and statically

declared, and not consider!ne the division of the program into sub-

componentssuch as procedures. These limitp-tions were imposed in

order to keep the scope of the investiG2.tions ,"Ti thin reasonable bounds.

It is likely that aIlY practical applic2.tion woufd require more flexible

data to be considered.

Such f1exibili 'bJ could Lnc'lu-le block structured pro,S'Tamsand

associated storage allocation, the inclusion of procedures ':ri th pa..L'2[lJetcrs

of types "Those representation were under consideration, and the e::t8n:31Cn

of represent~tiona1 choice to input/output data. All those possi.bih ties

141 -

involve non-trivial extensions beyond the present investigations, and

could prove difficult or even impossible vIi thout changes to the

approach,

Though the approach presented here is app'l.Lcabl.eto recursively

defined data structures, the experimental system was not extended to

support such structures, and so practical experiments on their

representation weze not carried out. HandLdrig such structures, where

their manipulation often involves recursive procedures, raises the

same kind of problems as inclusion of procedures for program subdivision.

FUrther investigations.

:Besides .::theproblem areas and limi t8,tions that have already been

pointed out 2.S requiring nore study, manymore topics associated id th

da~ repr~sentation could be singled out for further investigation.

"Ie will give someexamp'les of the peripheral areas that have arisen

during these studies.

The structuring methods used in the experimental system were

selected from those used by Hoare in his Notes on Data Structuring [25J
further structuring methods could be included, in particular the

extension to include the n-ary relation as a structure voul.d

significantly increase the range of expressible structures, especially

to include trose often found in data-base applications. The represent-

ation of daba in elata-bases is currently a topiC of interest, and much

work has been published on it. Tne automatic design of the data.

orgcmisation for such applications has been considered by HcCuskey[41J
The use of relations as structuring nethods in high-level programming

languages has been explored by Eo,dey [16J , FeldmDll~ 'r] and others.

- 142 -

'.!hequestion of orderings on the componentvalues of data

structures, such as the componentsof a sequence, and al.so orderings

on the values of a data type, such as type PLA.Y:lliG-CAHDdenoting the

cards in a pack of playing C2,rdS,have been I argely ignored in the

current investieations. Considerations of such orderings would

probably affect the representation chosen for the data. For example

an o~dered sequence might be represented as an ordered binary tree, so

that insertion of a componentvalue into the correct position could be

performed more easily.

~tting the rep~esentations chosen in a program to the paxticulax

data t<JPesand structuring methods available in a given target language

is another area of possible further investj.gation. The choice of

which repl'csentations to nake aV2,ilable Jn a Ii brary is likely to be

affected by ,·,re ther or not, say, the Languageincludes the Cartesian

product (record) as a structuring method-. If' it does not include the

structure, representations must be availahle to implement a Cartesian

product in terms, such as an a:rre:y, that the Languagedoes support.

- 143 -

6.3 Conclusions

The investigations reported here have aimed to show the require-

ments for and feasibilit,y of program transformations as an approach

to assisting data structure representation. In previous chapters

the concepts th8.t were developed in order to express such representations

in a machine-manipulable rom have been described, and the experiences

gained from an experimental system embodyingthe concepts have been

presented.

The main results obtained from the investigations can be summar-ised

as follo\ofs

• '''e have exposed the concepts needed to express data representat.ions

as program transformations, and embodied these concepts in a notation

which allows such transformations to be expressed in a conoise but

readable form.

• Wehave used the notation to ,vrite a library of data represent2-tions

which enable many commonlyencountered traditional representations to
be enumerated and made available for use in programs.

• Wehave shownhO~'Tmanyrepresentations can. be expressed as vz.rious

combinations of the basic transformations included in the library,

allowing the size of the library to be kept ",ithin reasonable limits

while still providing a large r2nge of possible representations.

• Wehave designed and inplemented an experimental system to aid in

the selection ai d implementation of representations, ,..,hichhas enabled

the identific2,tion of those features which vroul.d be desirable in a

practical represent,="tional choice system.

• Wehave demonsbra+ed 1101 the experimental system C81l be used to

select and implement representations for some eX2mpleprograms.

- 144 -

~le field of data structures and their representation is a very

large one that permeates aJ.l forms of computing. As such, the

investiGations reported here have madeonly a small, but still

significant, contribution towards making the task of data representation

somewhafeasier. !nevi tably perhaps, manyaspects of providing

assistance v,ith .the choioe of representntion have been shownto

require furti.ler investigation. However,only by attempting the

kind of study reported here can progress be made towards a better

understanding of the concepts involved~

- 145 -

APPENDIX I

SUBIIARY OF THE STRUCTURUJG NElHODS AIID TYPES USED IN 'IRE EXPERll'IENTS

The f'ollo,;dng structuring methods "lere adopted f'or the specif'ication

of data types in the experimental system. For each structuring method

are given the syntax used in declarations of types which have that

structure, the calculation of the cardinality of such a type, the data

operations that were defined on operations belonging to that ~, and

the type property functions (used in ,mting represerrtatdons) whf.ch

apply to that type.

In addition to the· operations specific to each structuring method

that are given beLow the contents operation @, the assignment update

operation := and the equality operator = are applicable to data items of

In addition to the specific property functions that are given balm·"

the follm·ring property functions arply to any type T:

CARn(T) cardinalit~r of T.
STOR(T) sto~ze required by a value of' ~ T (=/iOg1.. CAIITf.T5]).
HAXlJUH('1".£1) maxdrnum number of items of t<JPe T used in program.

AVHUE(T) average number' of items of type T used in program.

a) Integer Subr?Thc;e

Syntax: ~ T = m••n

Cardinali ty: CA1D(T)= ri-m+l

Operations:
T4Kiv) construct a value of "bJPe T from ini value iv.
T4nJ~(tv) construe t an in t value from a T value tv.
(The above "b.·10 operations vrhieh perform "bJpe-eonversion between

subrange values and basic vJpc int values can be inferred from

context in ",ri tiI1..gpro,sT81l1Sand representations, and need not
be expliei tly shownin system input and output).

tss: tr QQ. S repeat statencnt S for tr taking each val.ue of' type T
in turn,

- 146 -

. b) Cartesian Product

Syntax: ~ T = (S1:T1; ••• ;sn:fu)

Cardinali ty: CAL'lD(T)= CARD(T1)x ••• x CARD(fu)

Operations:
'l1ft(t1v,.
tr.s!
tv'si

.£g£ tr £!Q. S

••• , tnv) construct a value of type T from componentvalues.

reference-selection of the ith component.

value-selection of the ith component.

repeat statement S for tr taking each value of

type T in tum.

0) Discriminated Union

Syntax:

Cardinality:

~ T = (k1:T1 ••• kn:Th.)

CARD(T)= CARD(T1)+ ••• + CARD('lh)

Operations:

T#ki(tiv)
tv?ki
tr.ki
tv'ki

construct a value with the ki altemate value tiv.
test whether tv is currently the k! alternate.
reference-select component of a ki alternate.
value-select component of a ki alternate.

d) Ap;a;r

Syntax: ~ T = array T1 2! T2

Cardinali ty: CARD(T) = CARD(T2)CARD(T1) (see also subsection 5.3.4)
Operations:

T4tA1L(t2v) construct array ,\<lith all elements having value t2v.

tr. TImEX(+tv) reference-select array element indexed by t1vo

tv'nmEX(t1v) value-select array element indexed by t1v.

Properties: HAXCOEP(T), AVCOHP(T) maximum and average number's of
elements in arrays of t<Jpe T whi ch differ from a
common defaul t (sparse arrays).

e) Set

Syntax: ~ T = g1 of T1

Cardincli ty: CA..Tt_l)(T)= 2CARIl(T1) (see also subsection 5.3.4)

Operations:

~.1FTY
tr:UTSERT(t1v)
tr:m].~OVE(t1v)

tv?HAS(t1v)

tv?UIPrY

147 -

construct an empty set value.
insert element l'lith value t1v into set tr.
remove " " " " "" "
test whethe r set tv contains value t1v.

test ",hether set tv is empty.

tv?NUHEL :return number of elements currently in set tv.
!.2E. t1v in tv rut S repeat S with t1v taking value of each element

of tv in turn.

Properties: HAXCOlTP(T), AVCOHP(T) maximumand average munbers of
elements in sets of t,ype T.

r) Seguence

Syntax:

. Cardinali ty:

~: T = sequence Qi. T1

(but see subsection 5.3.4)-
Operations:

TtEHFTY construct eMPtysequence value.

tr:AFFElTD_JnRST(t1v) append t1v to beginning of sequence tr.
tr:APPEi:JD_LAST(t1v) It tI" end" It "

tr: lID·rOVE_FIRST
tr: llEHOVE_LAST

tr.FIRST
tr.LA.ST

tv 'FIRST

tv'LAST

remove first element from sequence tr.

" " "" "last
reference-select first element of tr.

" " " ..last

value-select first element of tr.

" .. " "last
tv?EI'IPrY test whether sequence tv is empty.
tv?:r:TUl:EL return number of elements in sequence tv.
!.2E. t1v in. tv £.Q. S repeat S for t1v taking values of each

element of sequence from first to last in

turn.
~e follouing sequence operations allow a 'pointer' of type int

to be used to denote a position in the sequence for selecting,
inserting and removing elements.
tv?FIl1ST

tv?LAST

tv?lillXT(IN)

returns int pointer to first element.

" "" " last"
returns pointer to next element after that

indicated by pointer pv.
returns pointer to previous element before
that indicated by pointer pv ,

- 148 -

tv?NOCURR(pv) tests whether pv does not indicate, a currently

valid element of the sequence.
tr.CURR(pv) reference-selection of element pointed to by pv.
tv'GUrnl~(pv) value-selection of element pointed to by pv.

tr:DmERT.JrEXT(pv,t1v) insert value +tv after element pointed

to by pv.
tr:n~SERT_PREV(pv,t1V).insert value t1v before element pointed

to by pv.

tr:REI-IOVE_CUPJl(pv) remove element pointed to by pv.

Properties: HAXCOIIP(T),AVCOllP(T)maximumand aver8ee numbers of

elements in sequences of t,ype T.

In the experimental system three basic types were included with the

follo''1ing characteristics.

1) Basic type:

Storage:

Values:
Operations:

2) Basic type:
Cardinality:
·Values:

Operations:

int
32 bits
211 2" 1.. .. -

/

+,-,*,div,rem,=,~=,>,<,>=,<= as in'conventional languages
ir:SETBIT(jv,lv) the integer denoted by ir has the bit.

in position jv set to 1 or 0 depending
on whether the logicaJ. value Iv is true

or faJ.se.
returns true or faJ.se depending onivIBIT(jv)

~mether bit jv is set to 1 or O.

irue,false
AND, OR,NOT as in conventional languages.

3) Basic me: m1ll
Cardinali ty: 1
Value: nll
Operations: none.

- 149 -

~mIX II

EXANJ?LE PROGRA1TS

The following listings show the abstract programs written for the
two example problems used in the main text. These are in the form
that they are input to the experimentaJ. choice system, including the
prograomer-provided usage information about the number of components
in structures and the frequency of execution of loops etc.

Abstract program for Birthdays Problem

TYPE TABLE=ARQAV ~AY OF GROUP (AVCOMP=50.MAXCOMP=100);
TynE I:JAVc=I•• '166:
TYPE GRO"P= SET r)F oERSON (AVCOMP= 1.MAXCOMP= 10);
TyPE ~ERSQN=1 •• 5000;
VAR T:TABLE: VAR O:OAY; VAR P:PERSON;

9EGTNT:=TA9LE~ALL(GPOUOHEMoTY);
R~AO(P) :
WHILE o~=~ %50.~ no

AEGI"'l READ(f»;
T.INDEX(~):I"'lSERT(P);
RE AD (0) :
END;

FOR D %366.'Y. n')
FEG!N WRTTF(f')};FaR 00 TN T'TNDEX(O) %1.5% 00 WRJTE(PP);
EN~;

FND
•

- 150 -

Abstract pror;ram for Card Game Problem

TyoE PTLF1=<:;C=QU>::NCEf")FDL!\VYN(; C6.RD (MAXCI1MP="i?'\VCOMO=lfl);
TYDE PILE2=SEOU~NCE OF oLAYING-CAPD (MAXCOMP=52.AVCOMP=30);
TyoE PL6.YFRS=ARRAY PLAYC=P OF HAND;
TyPE PLAY~R=I •• ~;TynE HAND=SET OF PLAYING CARn (MAXCOMP=52.AVCOMP=3);
TYPF PLAYING CI\RD=(SUIT:SUJT:PANK:RANK);
TY~~ ~A~K=I.;I~; TYD~ SUIT=1 •• 4;
VAR PLAYERS:oL_YEqS; V6.q.PLAYER:PLAY~R:
VAP FACE UO:~IL~t; VAR FACF nOWN:PTLE2;
VAR P:PLAYFR; VAq PLAYEO:LOGICAL;
VAR S:SUIT; VAR R:RANK; VAR C:PLAYING CARD: VAR I:INT;

RFGIN -
FACE IJP:=PILEl,FMPTY; FACE OnWN:=PILE2~EMPTY;PLAYERS:=DLAY~RS~6.LL(HANDHEMPTV); .
FOR 1:0 •• 51 ¥.52.% noFACE nOWN:APPEND FIRST(PLAVING CAPDNeT DIV 13+1.1 REM 13+1»;
FOR P %2.% Df") -

FOR 1:1 ••7 %7.% ry~
BEGINPLAYEos.INn~x(p):INSEnT(FACF DOWN'FIRST);
FACE D,WN:REMOVE FlnST; -
END; -

FACE UP:APoENn FIRST(FACE DOWN'FIRST);
FACE-nOWN:REM~ijE FIRST; -
PL AY €Q : =, ; -WHI~E .,(PLAYERst I"lDEXCl)?E~'nTV nn PLAVERS'INOEX(2)?EMPTY) %30.% DO

8EGIN PLAYED:=FALSF; S:=l;WRITE(F6.CE UO'FIPSTtPANK); WRITF(FACE UP'FIRST'SUYT);
WHILE .,PLAYED AND S<=4 %3.76" DO -

BEGINC:=PL6.YTNG_CAqD~(5.FACF_UP'FtRST'RANK};
IF PLAYERS'INDEX(PLAYER)?HAS(C) %0.n6% THEN

QEGI"I
FACF UD:AoPENf) FTnST(C)~
PLAY~RS.INOEX(5LAYER)!REMOVE(C);
PLAYED:=TRUE;
END

ELSE 5:=S+I;
END;

R: = 1 ;WHILE ~PL~YED AND R<=13 %6." no
BEGINC:=PLAYY"IG CAQD¥{FACF UP'FIQST'SUTT.R);IF PL'YE~sTtNDEX(~LAV~R}7HAS(C) %0.06% THEN

REGI"I
FACE UD:6.DPEND FIRST(C);
PLAYE~S.tNDEX(DLAYFR):REMOVE(C);
PLAYEf):=TPUr=.;
FNn

ELSF R:='"Hl;
ENI');

IF ~~LAYEf) %0.57% THEN
BEGIN'A'RTTE(OL\YFR) ;
WRtTE(F_~E Da~N'FtPSTtRANK); WRtTE(FACF nOwNtFIRSTtSUTT);
PL·\YERS. I 1\Jr;f'X(~LI\Yrq): HISERT (FACE DO\,I"ItFT~ST);
FACE_D1WN:RFM~VE_FTRST; -
END;

0LAYEQ:=~L~YER RFY ? +1;
E'In;WRITE(PLAYERS'INOEX(I)?FMPTY);

END
•

- 151 -

AFPL'llIDIXDI

EXAHPLE REFRESElTTATION LIBRARY

llie .follm-ling listings showthe representations that were included

in the library used during the experimentation. The representations

are divided into "b.vogroups, the first e;roupbeing those that provide

the conventional representational trans.formations, ~d the second

group being pseudo-repl.""esentations that dc.fine equivalences be-tween

di.f.ferent structures and their operations and whoseuse was illustrated

in the example of section 5.4.
The choice of operations that are implemented for each representation

and the evaluation information that is provided in each representation

are both at the discretion o.f the writer of the representation. No

detailed analysis has been c8xried out on howappropriately these

factors have been covered in the example library, except that the

choice of operations has proved adequate for the experiments carried

out using the librar,y.

For ease of syntactic analysis in the experimental system, two con-

ventions were used in i-lI'iting the operation transformations. Firstly,

each opera.tion tr8nsformation is preceded by the annotation S), R) or

V) depending on whether the operation being transformed ta~es the form

o.f a stateBent, a data reference or a daia value respectively. Sec9ndly

.for each formal parameter on the le.ft hand side o.f en operation trans-

formation, the type of that pararnetex is given by appending it '.Ii th a

double quote after the paramete r identifier. Taus JV..tlA denotes a

parar::eter o.f type A i·1ith identi.fier AX.

152

REP SUBREP;
TYPr: A="' •• "l; => TYPE I NT;
Cl1NnYTYON CAf~n(A)<CM~[)(INT);
OPFQATIO"lS
V) AoIfINT(,\X"-\) => AX;
V) A It (I It I NT) ="> I;
5) FOR AX"A D[J S"STAP:r~r:NT => FOR AX:M •• N %CARD(A)'Y, on S;

ENDf..~EP

subrange represented as a basic ini t,ype

REP SlJf3C>;
TYPE A=(RB:S:CC:C); TYPE B=K •• L; TYPE C=M •• N; =>

TvrE A=05.CAQ~(A)-1: TvnF H=K •• L; TYPF C=~ •• N;
cnNnITlnN CA~D(A)<CARn(INT);
OPERATIONS
V) AX"AI~R => AX RF.:M o/'L-K+l'Y, +Ki
V) A X It A • C C => r\ X D I V '",L - K + 1 V. + M ;
V) i\tl(ryX"S.CX"C) => «:x-'nX<"~L-K+l% f(RX-K');
S) AX"A.Bf:l:=AX"5 =» AX:=(AX DIV %L-K+UO*%L-Kfl% +(llX-K);
S) Ax"A.CC:=Cx"C => ."x;::(c.X-~O"";L-K+l% +(I\X RF.:M %L-K+l%);

ENDRFP

SUBOP: Cartesian product packed into a single---subrange

REp DUI;
TYPE A=(KI:NIJLLIK?:3); TYPE R=M •• N; =>

TYPE A="' •• N+l; TYDE '~=M •• N;
OPFPATIONS
V) A~Kl(NTL) ~> %N+l%;
V) AI/K2(RX"!3) => 3)(;
V) flX,IIA'KI => ~~IL;
V) AX"AIK2 => AX;
V) I\X"A.?Kl ="> AX=%N+1Y.:
V) AX"A?K~ => A.X<%N+l~:

END REP

DU1 : discriminated union Hi th null 9.1ternative packed into
a single subrange

REO nU3;
TYPF A=(KI :NULLIK?:R): =>

r v=r: A=('\LT:C;V:F·'; TY'f: C=O •• r :
DPF.YATlnNS
S) t, X " A : = A Ir< 1 (~'l L) == > ,,\X • /\ LT: == 0 ;
5) AX"A:=f,I'iK'?(-IX"~l) => FlEGIN AX.ALT:=O; AX.V:-=8X E~n;
p) ,'>.X"A.K? => ",x.V;
V) AX""IKI => NIL;
V) .t..X","1(2 => t\X'V;
V) AX"A?Kl ==> AX'f\LT=0;
V) AX"A?K? => AX'ALT·-=:1;
V) ,'tiK2(F3X"A) => AfI(1 ,f-lX);

END;~FJ:'

1m3 : discriIi!inated un.ion ",ith null alternative represented
vIi th a separate tac field

153 -

qE~ SlIBDUl;
TYPE A=(HP:S!CC:C); TyrF B=K •• L; TYPE C=M •• I\; =>

TYPE A=K •• N; TYPE 8=K •• L; TYPE C="' •• N;
CON') I T ION L < "', ;
ODFRATIQNS
V) ·A X .. A • B B = '> .A.X ;
V) AX"A'CC => AX;
V) AX"A?RB ='> .A.X<=L;
V) A X " A? CC '= > A X'> = ", ;
V) Ab"B'3(BX"G) => '3X;
V) AIICC(CX"C) => CX;

ENDc:wn

SUBDU1 disjoint discriminated union packed into a sil~le subrange

REO SU!3DU~;
TYPE A=(R8:glcc:c); TYPE O=K •• L; TYPE C=M •• N; =>

TYPE A=O •• CA~D(3)+CAnn(C)-l; TyrE O=K •• L; TYPE C=~ •• N;
CONDITION CAR0(~)<CARD(INT);
OPFRATIONS •
V) AX"A'SR => AX+K;
V) AX"A'CC => AX-O";CAPn(R)-M'Y.;
V) AX"A?9B => AX<CAnO(Il);
V) AX"A?CC ='> AX>=CARD(B);
V) A Ii t3 R (B X "(3) = > B X- K ;
V) A~CC(Cx"C) => CX+%CARI)(A)-M%;

ENl)oEr>

SUBDU2: non-disjoint discriminated union packed into a subra.nge

REO AC~RAY;
TYPE A=ARRAY g OF C; => TYPF A=ARRAV B nF C;

CLOBAL ::n:3:
CG~nITION C~R~(A)<100Cro AND ~AXCnMP(A»O;
'JcH::~ATIONS
S) -\x"A:=t\lI't~LL(C)(IIC)=> FOR RB %CAPr)(8)% DO AX.INDF.X(RB):=CX;
q) AX It A. I NI) E X (R X t"3) = '> A X. I N 0 E l((ElY) ;
V) AX"A'IN~EX('1X"9) ='> AX'IN'lEX(RX);

ENrRE::l

ARRAY sparse array expanded into a non-sparse array

- 154

RED DtTS;
Type A=APq.<\y 3 Oc LOGICAL; TYPE R=M ••N; =>

TYPE A=AqR~Y C OF INr; TYPE C=O •• (N-~)OIV 32; TYPE 8=M •• N;
C;L08AL CC: C;

OP['PI\TIONS
V) AX"A'INDEX('l'l(II~.3) => AX'INfJEX{(8X-M) OIV 32)'f"3yT«9X-M) RE'.1 32);'
5) I\xttA.IN!)E'«:)X"'l)::::L"l_rJGIC~L =>

AX.tND~X«(BX-~) DIV l?):SETBIT«OX-M) PE~ 32,L);
5) I\X"A:=AtlI\LL(TRUC) => Fm~ CC ~~(N-r",) c r v ,2% no AX.INnEX(CC):=O-!;
S) AX"A:=AIIALL(F\LSE) => FOR CC %(N-~·f) DIV 32% DO AX.• JNOEX(CC):=O;
V) AH~LL(T~Ur::) => AIl'ALL(O-l);
V) AIIALL(Ft..LSE) ='> AIII\LL(O);

ENDREn

BITS array of bits represented as array of ini

REP ~ASH;TYPE A=ARQAY 8 OF C; Ty?E n=~ •• ~; =>
TY?E A=(D~F:C;QEST:n);
TYPE D=A~QAY E OF F;
TYPE E=O •• ~AXCOMP(A)-l;
TYPE F=(~'NF:NULLlsOME:G);
TYPE: G= (I'~'"):-~:VAL :C);
TyrE B=M •• '\i;
GUE'3AL 1(:F;

CONnlTtON MAXC~MO(A»O;
,)PEr~.ATIONS
5) AX"A:=AlII\LL(CX"C) =>

BEGIN AX.OEF:=CX;
FOR K %",I\XCO\1P(A)% on ,~X.:~EST.INDEX(K):=F1tNONE(NIL);
EN!):

V) AtlALL(CX"C) ='> AIi(CX.[)#ALLP=Il'NONr::(~!L»);
V) AX"A'INfJE:X(YX"9) =>

BEGII\I K:="X r~EM '~"xcnr'p(I\);
WH [L~: 1\ X ' h! EST' I 'J I):=: x (K) ? '\111\ c:

ANn ...,<\x'qr:ST'I'lnEX(K) ",n\'E' nW-=BX ~O.R'Y. 1)0
K:=(K+l) RE'" :IAxCC1f1PL\); .

RESULT IF AX'QEST'INOEX(K)?NO'lc:
%1-~vcnMP(A)/C4PO(A)o/ TH~N AX'DEF

F:LSE <\XtRFST'INDEX(K)tSO~E'VAL EN!);
S) AX"A.I~')C:X('3X"'3):=CY"C =>

BEGIN 1(:=9X RE~ ~AXCnMP(A);
WI-fILF I\X'~F:STI.I·,!r)~X(K)?~ni\C

AND AX • Rt:' ST' I ',j [) EX (K) t So ~M~ , r ND= '3 X Yo 0 • R. x f) 0
K:=(Kf-l) Pf"~ '·~Axcrr~p(,\);

AX.REST.I~OFX(K):=FnSO~E(G.{HX,CX»
ENO;

S) A X " A. I N f) ~ X ('1)(" 9) : 6, NY 11p ~>
BEG INK: =) x q,= M ,_.,A XC 11r~P (A) :
WHILE ",,'\X'~FST' I'Jf)["X(K)?;\jll1\E

A"JD ...,"xt~~ST· T'jf)"=V(K)'S'l~IE'INn=~x %0.8% on
K : = (K" 1) r.: ~ '.~ '1.\ xc n ~.'D ('\) ;

I FAX • ~.-= ST' I N r' F x (V) ? '·Ii 1~; F .~1\vee '.' r") (\l / ~•% T H <=',~
8 E G I 1\1 1\ X • ':;1 F. ST. I r~ f) r:: x (i<) : = F kS Cl'~E (G ;t (R X , '\ x • f) F F)) ;
AX. -EST. Y"lfJi::X (.() • Sf)'·1"= .vvt.: AI\IVr)D; E'JD

ELSE ~x.~EST.INn~X(K).Sn~F.V~L:ANVOJ:
END;

HASH: sparse array hashed into non-sspar-se array

- 155

REP SPI\R'1AY:
TYP~ A=AR~AY i OF C; =>

TYPE A=(D~~:C:qEST:D):
'TYPE O=SEQUENCF ~F F (MAXCOMP=MAxCOMO(A),AVCOMP=AVCOMP(A»;
TYPE E=(IND:OiVAL:C);
GLO'1I\L SP:I"lT:

CON~ITION ~AXCOMP(A»0;
OP~RATIO"JC;
S) AX"A:=A~ALI_(CXIIC) => nr-:r,rN AX.nEF:=CX; I\X.REST:==f)1IE~PTY ENn;
V) AIIALL(CX"C) =) A1f(CX.[)IIE1~PTY);
S) AX" A. I N C) EX (~ X":j) : =Cx" C -=">

IF ... (C X=-\(, ;) re: t=) "!, A VC()MP (A) / C A q n (B.) % THE N
BEGIN Sp:=\x·q~ST?F[RST;
WHILEAX·REST?Ni)(:UliH(SP) ANn ... (AX'REST'CURR(SP) I INO=DX)

%AVC8MP{A)*O.9% on
SO:=I\XlqFST?NExT(sn);

IF I\.X"H::ST?NOCU:·H«SP) o-'l-AVCO',IP(A)/CARO(fi)% THEN
AX.RFST:AnPE"\J[) FI'~ST(r:"(nX.cX»

ELSE AX.REST.CUP~(SP).V~L:=CX;
END:

S) AX"A.INDEX(flx"r~):ANYnp =>
8EGIN SP:=AX'REST?FIPST;
WHILE ...l\.x';~r=:ST?N(JCUf:>R(SD) ANn ...(AX'REST'CURR(SP)' INO=E3X)

%AVCO~P(I\)*O.q% DO
SP:=AX'REST?NEXT(SP);

IF AX'REST?N')CURR(SP) O{l-AVCOMP(A)/CARO(f3)% THEN
BEGIN ~X.~~ST:APpr:Nn_FIRST(EM(OX.AX'OEF»;
AX.REST.FrRS~.VAL:ANY~P; ENO

ELSE AX.REST.CURR(SP).VAL:ANYOP;
END;

\I) AX"A'IN'1EX(9X"R) =>
BEG I "I 5 .:> : = ~X ' qEST? F I :~ST ;
WHILE ,~X'~EST?NOCURR(SP) AND ~(AX'REST'CURR(SP)'INO=BX)

%AVCO~P(~)*O.B% ~o
SP:~~X'REST?N~XT(SP);

RESULT f F .'\ l(, q r:: S T? ,~(le tn,~(S n)< 1 -A VCr_'v P (1\) / CAR'; ('3) '; rtt E 1'1'\ X • :~F F'
ELSE 4X'~EST'CUfR(SP)'VAL E"IO;

SPARRAY : sparse array as default plus sequence of non-defaults

I,

RE'O P'lW 1 ;
TynE A=SET ~~ ~: =~TY P E.\ = (\1\1 ~I~3EL: o ; EL: C);

TYPE C="Rq.\y~ or LDGICAL;
TyPE n=o •• ~'Rn(~); GLOBAL 38:e;

CON~ITICN CAQn(g)(10000n;
,)PEPATIllNS
5) '\X"A:I"!Sr.:?T(AXlt<"1),_=>,. •

REGIN "X.r:-L.II\:')t:X<·~X) .=TPUF,
AX.NU'4'3:::L:-=AX.NUMi3EL+l;
END;

S) ,",Xu.\:REMnV:::<'-'XII9) ="> _
REGIN ~x.f'::L.I~.J:-:X(lX):=r'/\LSI-;
AX. NU\.1E'\C::L :70.AX.'JU'-1I~EL-l;
ENO; ~

\I) AX It A? EM::>TY = > AX ' ~ '.J f'.H1.. L = 0 ;
S) 1\ X " A : = A ~=-'~~T Y = >

9FGIN
AX.NU·":~~L ~ =(':
AX.EL:=C.ALL(FALSF);
END; (_))V) ~ t:' ~ \1':>T Y = ~ t\ Ii (.) • C /01 '\ L L. f',~ I__":", [:

5) r L1!--i B X r 1\1 1\ '("1\ :) J S <'; T 1\ n .;1= !-l1 = >
F'J q B 9 /. C 1\ t< f") (f3) Yo n(J

IF'" .\X'f7L' !"lnr::x(1'») ~!.n.vcn'.A~(A)/CA:~f)(~l)"< T"H='l S vJITH ey=rl~-j:
V) AX It I\.?HA r; ('1X"9) = > '\ X • E: L ' I 1·.'n F X (Cl)() ;
V) .'\xlt.r..?'lU\1'~!_ => AX' NlJ!'Flf'l..:

EN')j.:.,~cn

R)\v1 set represented as arrc,yof bi t5

156 -

REP pnw2;
.TYPE A=SFT QC ~; =>TYPE A=S~~UENCE ~F 8 (MAXCOMP=MAXCOMP(A).AVCOMP=AVCOMP(A»;

GLOBAL SP: [NT;
OPET<AT IONS
S) AXtlA:INSE~T(BXtf8) =>

BEGIN S~:=AX?FIRST;WHILE ,~X?NOCURR(SP) AND AX'CURR(SD),=BX %AVCOMP(A)*O.8% DO
SP:=~X?NcXT(sn);

IF AX?N~CURq(SP) %O.R% THEN AX:APPEN~_FIRST(9X);
END;

S) A)(.t A: RE 'A[) V E (nX" []) = ">
BEGIN S~:=AX?FIRST;
WHIL~ -.AX?NnCURR(SP) AND AX'CURR(SP),=OX %AVCOMD(A)*O.R% 00

SP:=AX?\J>::XT(SP);
IF -.AX?NOCUI?R(SP) Y.O.~~% THFN AX:f~EMOV.E_cu ..~rHSP);
END;

V) AX"A?HlI5('~X"9) => .
BEGIN S0:=hX?FIRST;
WHILE ,~X?NOCU~~(SP) AND AY·CURR(SP)-.=BX %AVCn~p(A)*O.8% DO

SP:::A'<7"1FXT(~P);
RESULT ,AX?NOCURq(SP) END;

V) AX"A?E~PTY =') AX?E'~~TY;
V) A'X " A ? NU v F L :: > A X? NUr' EL;
V) AHEMPTY => AqE~PTY;
S) FOR 8X IN AX"A DO S"STATEMENT =>

FOR BX IN AX %AVCOMP(A)% no s:
ENDREn

roU2 : set represented as sequence

- 157 -

REO SFQ 1 ;
TYPr- A=SEOUF:~CF OF 1; =>

TyoE A=(FRSr:E; AA:C);
TYPE C=A~HAY f) DF F':
TY~E D=I •• ~AXCO~P(A):
TYPE E=O •• ~AXCO~P(A):
GLO'3AL I: I '-JT:

OPERATIONS
R) AX"A.FIRST => AX.AA.INDEX(AX'FRST);
V) A Xl' A ' F I ~ 5 T = > "X' A A' I N DE X (A X • FRS T)
q) AX"A.LAST => AX.AA..INnEX(l);
V) ,o,X"A'LAST -=> AX' !\t\' INnFX(1)
V) AX"A?EMPTY => AX'FRST=O;
V) AX"A?~U~EL => \X'FQ~T;
S) AX"A:A'='JE~JO_Fyr<ST(:lX'''3) =>

8EGIN AX.FRST:=AX'FRST+l:
AX.AA.I~nEX{\X'FRST):=gX; ENn;

S)A.X"A:R1='MlVE FI;~ST => AX.FRST:=J\X·FRST-l
S) AX"A:RC""10VE-ClJnr:(c:;pIITNT) =>

BEGI~ AX.ERST;=AX'FRST-l;
FOR I:SP •• AX'FRST 'Y.AVC(1MP(A)/;>.% 00

A X • A.A • I '\I DE X (I) != ;\X 'A\ I IN f')EX (1+1) ;
EN£): •

S) AX"A:ADP~NO LAST(PX"8) =>
8EGIN AX.~RST:=!\X·FRST+l;
FOR I:o,X~FRST •• 2 %AVCOMP(A)% DO

AX .AA. INOEX(I):=AX'.\A' INDEX(I-l)~
AX.AA.l~~EX(1):=9X;
END;

5) A X" A: INS",qT N~ XT (S P" I NT t r3X "'3 i >>
9FGIN ~)(.~<ST:=~X'C"~ST+l;
FOR I: A X ' F q ~)r • • CO) -4- 1:~ A VC' j '01P (A)/ ?% f) n

AX • 1\ A • IN') F)((I) : = r... X ' ,\A' IN 0 F X (1- 1) ;
AX.AA.INDEx(Sp):=nx;
END; - •AX"A:INS<=qT PREV(SP"INT.£3X"!l} =>
BEGIN AX.F~ST:=~X'FnST+l;
FOR I:AX'F~ST •• so+2 %~VCO~~(A.)/2.% DO

AX .AA. INDEX(I) :=~x 'AA· INDEX(I-I);
AX.AA.I'\lDF.X(SrJ+l): =BX;

S)

V)
V)
V)
V)
V)
R)
V)
S)
S)

END;
~X"A?1=Iq5T => AX'FPST;
AX"A?LAST => 1;
/\ X " A ? ~ EXT (S 0 ''1 NT) :: > 5 P - 1 ;AX"I\?pp':.V(sn"I!'JT) => '3P+l;
AX"A?NOCUR>~(SP"INT) => SP<l C'~ SP>MAXCOMP(A);
AX"A.CUR'~(:~D"H.JT) => AX.AA..Il\nF.X(SD);
AX"A'CUqq(SP"INT) => AX'AA'rNOF.X(SP);
_AX .. A : = '" 'f E '., :> T Y = > A X • r R S T : :: 0 ;F~R RX IN AX"'" DO S ..Sr.\TFF.I\;T=>

FOR I:l •• AxtFRST %AVCOMPCA)% DO S WITH HX=AX'AAtINDEX(I);

S~1 : sequence as contieuous arnw v,ith first element poi.nter

- 158

REP SEQ2;
TYPF A=SEQUENC~ OF S; =>

TYPE A=(FRST:E;FPEF:E;NUEL:E;AA:C);
TYPE C=ARRAY n OF F;
TyPE F=(VAL:8;NEX:E);
TYPE D=l •• ~AXCn~p(A); TYPE E=O •• ~AXCOMP(A);GLOBAL I: INT;

OPERATIONS
S) AX"A:=A~E~PTY =>

BEGIN AX.F~ST:=C; AX.FREF:=l; AX.NUFL:=O;
FOR J:l •• MAXCO~P(A)-l %MAXCOMP(A)-lX DO

AX.AA. INDEX(I).NFX:=I+l;
AX.AA.r~~EX(~AXCOMP(A».NEX:=O;
END;

R) AXItA.Fr~ST => AXoAA.INDEX(AX'FRST).V,".L;
V) AX"A'FIRST => AX'AAtINDEX(AX'FRST)'VAL:V) AX"A?E~~TY => AX'FRST=O;
V) AX"A?NUVEL => AX'N1JFL;
S)AX"A:APr.JFN~ FIRST(8X"8) =>

BEGIN I:=~X'FREE; AX.FREE:=AX'AA'YNDFX(AXfFREE)'NFX;AXoAA.IND~X(T):=FU(BX.AX·FRST);
AX.FRST:=I;. AX.NUEL:=AX'NUFL+l;
END;

S) AX"A!RE'10VE FIRST =>
BEGIN 1:="4:X'AA' T"mEX(AX'l=qST) 'NEX;
AX.AA.I~DEX(AX'FRST).NEX:=AX·FREE;
AX.FR~E:=AX·FRST;
AX.FRST:=I: AX.NUEL:=AX'NUEL+l;END;

V) AX"A?Flc.>ST =>\X'Fq<;T;
V) AX"A?I\:t=:XT(SP"INT) => ~X'AA' INDEX(SP)'NEY;
V) AX"A?NOClJC~~(SO"INT) => SP=');
R) I\X"A.CURR(SpuINT) => AX.,\A.IN!)EX(SP).VAL;
V) AX"A'CURq(SOffINT) => AX'AA'INDEX(SP)'VAL;
S) A X "A : INS E R T '"EXT (Sp ..INT. H l(., '3) = >

BEG INI: = l\X •F R E E; AX •Fn f.' E := AX •A. A ' fN DE X (A X •F R E E) •NE X ;
AX. 1\ A. IN D c:: X (I):=F II (R X •AX •A A' INI1FX (SP)•NE X) ;
AX.AA. INDEX(SP) .NFX:=I; AX.NUEL:=I\X'NUEL+l;END;S' FOR BB IN I\X"A 1)8 S"STATFMENT =>
BEGIN I:=AX'FPST;
WHILE 1~=0 %'VCC~P(I\)o/ 118

BEG INS WIT H iJ '3= A X •.~/\• IN DEY (I),V AL ;
I:=~X'AI\'INnEl(I)'NFX;
END;

END;
ENOREO

Sm,2 : sequence as singly linlced list

- 159 -

~
I
I
\

REP SFQ3;
TYPE A=SECUENCF ~~ B: =>

TYPE A=(~qST:E;L5T:E;FRrE:E;NUEL:E:AA:():
TYPE (=ARRAY 0 OF F:
TYPE F=CVAL:S;PPE:E;NEX:E);
TYPE D=1 •• ~AXC0M~(A); TYPE E~O •• MAXCOMP(A);GLOBAL I:tNT;

OPERATIONS
51 AX"A:=AHF'-10TY ='>

BEGIN AX.FqST:=O; AX.LST!=O; AX.FREE:=1; AX.NUEL:=O;
FOR I:l •• ~"'XCOMP(A)-l %MAXCOMPCAI-l% DO

AXA.T"Jr)EX(T).~JEX:=t+l;
AX.AA.I~DFX(M~XCnM~(A».NEX:=C;
END;

RI AX"A.FI~5T => AX.AA.INOFX(AX'FQST).VAL;
V, AX"A'FT'~ST => AX'AA'INDEX(AX'FRSTI'VAL:
R) AX"A.Lt\ST ='>'I.X.:\A.T"Jf)EX(\XILST).V\L;
V) AX"A'LAST => AX'AAtINDEX(AX'LST)'VAL;
V) AX"A?EMPTV =>X'~RST=0;
VI AX"A7~U~EL => AX'NU~L:
5) AX"A:ADPE~f) FIRSfCflX"Fl) =>

BEGIN I:=~X'F~EF: AX.F~EE:=AX'AA'INnEX(AX'FRFE)'NEX;
A X • lJ.. A • r '-.I 0 E X (r) : -= F II (fJ X , 0 , A X ' FRS T) ;
AX.FRST:=I; AX.NUEL:=AX'NUEL+1;ENO;

S) AX"A:APClEND LAST(l-3X"rn ='>
BEGIN I:=~X'FR[E; AX.FPCE:=AX'AAIINDEX(AX'FRFEI'NEX;
AX.AA.rNDEX(I):=FH(~X,AX'LST,O):
AX.Lsr:=I; A~.NUFL:=AX'NUEL+l;
END;

5) AX"A:RF~nVE FI~ST =>
BEGIN I:=~)(tAAt INDr:X(AXtFRST, 'NEX;
AX.~~.rND~X(AX·F~ST).NEX:=AX·FREE;
AX.FREE:=AX·FRST;
AX.FRST:=I; AX.NUEL:=AX'NUEL-l~EN!);

5) A X If A : r.(C Tl V:::: L,\ S T ='>
BEGIN I! =AX' A\I IN'1EX(AX'LST) I~)RE;
AX •. ~ «, r N DE X (A X I L S T) • ~Jrx :=A X I F RE ~ ;
AX.FPEE:=AX·LST; AX.NUEL:=AX1NUEL-l; AX.LST:=I;END:

VI AX"A?FJqST => AX'FRST;
VI AX"A?LAST => ~X'LST;
V) I\X"A?I\J::XT(S~"rNr) => AX'AA'INDEX(SP)'N~X;
VI AX"A7PP.':V(SP·'I"lT) => AX'AA'I"J,)EX(SP)'PR-=;
V) AX"A?NllClJ~'1(S:>lq"JT) ='> sp=o;
R) I\X"A.CUT-?(S;:>"TNT) => ,\X.AINDFX(SP).VAL;
V) A X nA • C lJ (R (S:>" I ~JT) = > ~X ' 1\ A ' IN') EX (S P) , V.4 L ;5) A XHA: INS E I~ T '\J "'_X T (SP If I t-.l T •;1X ":~) = >

BEGIN I:=~X'~~E~; 4.x.FREE:=AX'AAtJ~f)fl«(""XtFREE)'~EX;
AX •A .A • I ~ D c: v (I) : == r tI (IlX,S p • ~>(I \ A • I ~i D C: X (S P)' N F X) :
AX.AA.TNDEX(SO).NFX:=T; 4X.NUEL:=AX'NUFL+l;END;

5) AX " A: INS ER T ~ EXT (S ~ If I NT, [3X";1) = >
8FGIN I:=~X'F~FC; ~X.F~E~:~AX'AA'IND~XCAX'FREE)'NEX;
A X • A " • r "J')'=' Y (T) : =.-=II (fJ X •. ~ X • 1\ :\' I '" D F.X (S p) • PR F •SP);
AX.AA.I"JDEX(SP).PR:::=I; AX.NUF.L:=AX':'\IUEL+l;ENO;

5) AX"A:RE'10V':::_CURR(S0ftINT) =>
BEG I 1-.1

AX •A 'I..T 'l') '= xr '\X •J\.'l. I IN D EX (Sp ,.p:~ F)•NE X := A X·." A ' J '\JnE X ('3r) I '\J:: X ;
AX. AA. r~!)E'>«(4X'l\AI 11'IDEY(SD) 'NEx) .PRE:=AX'~A' !"JDF.X(SP) ".:J~E;
AX.AA.I~DCX(3P).~EX:=AX'Fq~F; AX.FREE:=sn;
AX.NU':L:=t\X'''IUEL-l;
FNO;

5) FqR RA IN t\X"t\ ,)U S"ST.,\Tt:.H:I~T =>
B~GI'\J I:=:\x'=PST;
WHILE I~=~ %AVC~V0(t\)~ Dn

BEGT\I S ,,;TTH 'l"':I\X' \.\, rr-..;f)FX(r)'V!~L;
T := 1\ X '\ , ' ! 'I!)c: l((I) I •~r: \(;
ENf);

EN[);

sequence as doubly linked list

- 160 -

RE::> SE05;
TyPE A=SEQUENC~ OF B; =>

TYPE A=O •• ~~XCO~P(A)*~AXNU~(A);
TYPE G=(L~STU:4;STnpF:H);
TYPE H=AqR~Y ~ J~ ~;
TYPE K=(VAL:~;~~X:~);
T Y PEW = 1 , <\ l(C n. \1o (A) * \1A X N I.) M (A) ;
GLOBAL ST:G; GLOB~L I:A; GL08AL J: INT:

OPFq~TIONS
S) INIT =~ ST.LASTU:=O;
V) A_E\1DTY => 0;
V) AX"A?EM::>TY => ~X=O;
V) AX"A?NUV~L =~

BEGIN J:=0; Y:=AX;
WHILE I~=0 %AVCO~P(~)~ DO

BFGI"l J:=J+l; r:=ST'<:;TClRE'INDEX(I~'N[X FNf);
RESULT J Ef\l');

5) AX"A:A,PDENf) FIr<5T(BX"9) =>
BEGIN ST.[lSTU:=ST'LA5TU+l;
I:=AX; AX:=ST'LASTU;
5T.STORE.INDEX(~X):=K~(BX.I);
ENO;

S) AX"A:RE\1"V.E_FI~ST => AX:=ST'STor<~' INDFx(AX)lNr.:X;
R) AX"A.FlqST =~ ST.STnRE.INnEX(AX).V~L;
V)AX"A'FI~Sr => ST'STORE'INf)EX(AX)'VAL;
V) AX"A?FIqST => AX;
V) AX"A?N':XT(SD"INT) => ST'STORE'rf\:OEX(SP)'I\EX;
V) AX"A?NOCLlQP(Sr:>"I"'T) => SP=O;
R) <\ X" .\ • C U q;H s> ''1~"T) = > ST. S T (J q r • r I\!J r-: X (S·:>) • V "l ;
V) AX"A'CUq,,«:,>c>"I"-iT) ~> ST'STOPF'INDEX(SP)'VAL;
S) AX"A:lt-::;E~T "JF:"XT(S::>"INT,UX"F3) =>

BEGIN ST.[\STU:=ST'LASTU+l;
5 T •5 T)R F • INf)EX (S T ' LAS TU):= K IJ (8 X, S T'S T o RE I I N nE X (So ,•"JE X) ;
5T.STOf~!".:.lNOEX(se) .NEX:-=5T'LASTU;
EN!);

5) FOR AX IN ~X"A DO S"ST~TE:-1ENT -=")
Bt=GIN I:=~X;
WHILE I~=n %AVCC~P(A)~ no

BEGIN S WITH px=ST'STOqE'INO~X(I)IVAL;
I: =ST' STIlRE' INDEX(I)' NEX;
END;

END;
ENDREP

S~5 several sequences as singly liw(cd lists in cor:r~onstorage

- 161

QEP SF.Q6;
TYPE A=SE~UF.NCE nF 9; =>

TYPE A=AqR~V C OF D;
TY~E C=O ••MAXCO~~(~);
TyoE ~=(LST:NULLlvAL:A);
GLOBAL I: INT;

OPERATIONSR) AXuA.FyqST => AX.YNnEX(O).V.c\L'
V) AX"o\IFyr~C:;T=> AX'YNOEX(O)'V&\L;
R) AX"I\.LAST =>

BEGIN t:=!";W~ILE AX'TNnEX(I)?VAL%AVCOMP(Al% DO 1:=1+1;
RESULT AX.INDEX(T-l).VAL END;

V) AX"A'LAST =>
AF.GI"l 1:=0;WHILc AX'INnEX{l)?VAL XAVCnMP(A)X 00 1:=1+1;
RF.SULT AX I IN!)EX(I- 1) IVAL END;

V) AX"A?EMOTY => AX'I~nEX(O)?LST;
V) AX"A?NU~CL =>BEGI"lI:=O;WHILE AXIINOEX(I)?VAL %AVCnMO(A)% DO 1:=1+1;

RESULT I END; .S) AX"":=A~E~PTY => I\X.INDEX(O):=nHLST(NIL);
V) AHEMoTV => AHALL(DHlST(NIL»;
S) AX"A:AOOC"'D FTRST(BX"B) =">

BEGIN 1:=3; .WHILF. AX'IN~EX(I)?VM %AVCOMP(A)~ on 1:=1+1;
FOR 1:1+1 •• 1 %twCnMP(A)% DO AX.TNDEX(I):=AX'INDEX{I-l);
~X.IN~F.X(O):=DHVAL(BX); ,
END;S) AX"A:APPE~D LAST(8X"B) =>
BEGT'" 1:=0';WHILE AX'INOEX{I)?VAL %AVCOMP{A)X DO 1:=1+1;
AX.IW)FX(T):=f)tlVALf'1X);
AX. I N f)E X (I + 1) : = 'VIL S T (NIL) ;
FNf);

5) AX"A:RE~nVE FIRST -:::>
BEGIN 1:=(5;WHILE AX'INDEX(T)?VAL %AVcnMP(A)X DO

gcGIN AX.INDEX(I):=AX'INDEX(I+l); 1:=1+1 END;
END;

5) AX"A:REM!)VE LAST -=>
BEGIN 1:=0;WHILE AX'Y~~EX(I)?VAL %AVCOMP(A)% DO 1:=I+l;
AX.TNI)EX(I-l):=DflLST(NIL);
EN!);

V) AX"A?FyqC:;T => 0;
V) AX""?LAc:;T =>

REGI'" T:=O;WHILE AX'INDEX(I)?VAL %AVCOMP(A}X D~ 1:=1+1;
RESULT 1-1 FN~;V) AX"o\?\I~'J(T(S,..t"JTl => 51">+1;

V) AX"A?NOCtJQR(C:;~tlINT) => AX'INnEX(SP)?LST;
R) AX"I\.::tr~R(S:l"I"IT)=> AX.INnEX(SP).VAL:
V) ~X"A'CURR(S:l"INT)=> ~X'INI)FX(so)'VAL;
5) AX"A:INSEqT NEXT(SO"INT.I1X"!3) =>

BFGI'" I:=SP;WHILE AX'I"'DEx{I)?VAL %AVCm1p(A)~ 1)0 1:=1+1;
FnR I:I+l •• SP+2 XAVCnMP(A)/2.% nn AX.INDEX(I):=AX'INDEX(I-1);AX.TNDEX(so+l):=~~VAL(BX);
EN,);

5) AX"A:REM'1VE ClJRR(SP"TNT) =>
BEGIN 1:=5D;WHILE AX'J~O~X(I)?V~L ~AV~nMD{~)% DO

3cGIN AX.INDEX(J):=AX'INDFX(!+l); 1:=1+1 ENO;
F"If);S) FOR AX IN I\X"A 00 S"STATEMFNT =>
FlI=GI"'J 1:=');WHILE I\X' TN11F:X(Il?VAL %AVCor-1PfA)°1.DO

FlEGIN 5 WITH BX=AX'INDFX(J)'VAL;
T : = T + 1 ;.
EN~;

EN');

sm6 : sequence as contiguous array \-li th last element ma.r.cer

- 162 -

REP INDIRECT;
TYPF A=ANYST~I IC; =>

TYf.>E A=1 •• \1AXNU'vI(t\}i
TYPE U=(LAST~:G; S:STORE);
TYPE B=O •• ·\.1AXNUrv,(A) :
TYPF 5Tn~E=AR~AV A nr AA:
TYPEA t\ = t\NY ST ,~t IC (~< AX CO0,1P= MAXcnM P (A) • AVCOMp-=t\ v C n 'vi D (1\)) :
GLOBAL uu r u :

cnN0IT[ON ~AXNU\.1(A»l AND STOR(A»STnR(tNT);
OPFRt\TIONS
S) INJT => UU.Lt\STU:=');
V) !\X"A'ANYO' => Uti' SI PJ[1FX{ AX) tANVrJP;
V) A X " A? ANY DP = > U lJl S I} NnE X (A X) ? ANY 0 P ;
V) AIIANYOP =>

BEGJN UU.LASTU: =tIlI'LI\STU+l;
UU.5.IND:::X(UU'LASTI) :=AA.IIANVOP;
RE5UL T UU I L'\STtJ I::~~I);

S) 1\ 1" A: = A~"A = '> ~ 1 : = ,\2 ;
V) A1"b,=A?".\ ='> ("l=~?) nl~ (lHJ'S'[ND[':X(A1)=LJU'S'YNOEX(A2»
5) AX"A:ANYOP =>

BEGIN lJU.LASTU:=III,'LASTIJ+l;
UU.S. INOEX(UU'LA'")TU} :,.=UU'S' tNI)EX(,'\X);
UU.S.IN'1F.X(UlJ'LASTlJ):ANy()n;
AX:=UU'Lt\STU;
END;

S) FOR 8X IN AX"" 1)0 S"STATF.MENT =>
FOR BX I'J UU'5' INf)EX(AX) 'Y,AVCCP-1P(A)% DO S;

llIDIRECT all instances of a t,ype in common storage with pointers

Ebui_valence +ransf'o'rna td ons

REP $YNCP;
TYPE A=(S1:H;52:C); => TYPE A=(Sl:S;S2:C);
OPERATIONS _
5) AX"A:=!\y"A =>. i3EGTN AX.S1 :=.t\Y'SJ; AX.S?:=I\Y'S2 t=:NO;
V) AX"A=AY"A => (AX'<;l=AV'Sl) ANI) (A)(fS:::'=AY'S;»;
S) AX'IA:=AfJ(i1X·"1.CX"C) => ~EGJN .,\X.S1:=FlX; AX.S2:=CX ENO;
v)<\ X " A= A II (1'3)("'1 • ex" C) => (AX ' 5 1= F:I X) M~ :1 (A .X' 5 2 = C x) ;
R) AX"".51 ='> I\X.51;
R) lI.X"A.S? =>\X.'3:::>;
V) "X"A'S1 ='> I\X' SI;
V) AX"A'S2 => AX'52;

ENDRFP

REP SY'\IAR;
TYP~ "=ARPAY 9 ~F c; => TYPF A=ARqAV P OF C;

GLOBAL R9:~; GLOBAL EQ:LOGIC~L;
COt-.()ITtON '.1I\XC'l'-1P(A)=0;
O~FRATIONS
s)\ X ,,\ : = AY ,,'\ = > >= 0 ~ ~ R x CA! ~r; ('-'3)" Gn .\X • I N f) EX ('3 F1) : ='\ V' I "l n E X (13:l)
V) AX"A=AV"A =>

HEGt"l fJ:=TI<UF.;
FOR 8~ ~CARD(R)% DO

E f) : :: F. 'J t ~,J!) (A X ' I t--! DEX (I~fl) -= Av '. I N f' F.X (,~c~))
RFSULT F.1 E'!'1;

S) AX"A:=A'i'l.LL(C)(tlC) => FnF t"·-~ ~~C,,\Rr:(C')Y, or. AX.TND;':-Y(31):=CX;
R) -"X"A.T"·nE:I(~~)(W~) ='> AX.l!-..j')":l«[1X);
V) 6.X"A' IN)"'l«:~.X"M) => AX' P·!'1FX(E)x);

END~FD

- 163

REP SYN 1 ;
TYPE A=(Bt:R;A2:B); => TYPE A=ARRAY C OF A; TYPE C=O •• I;
OPFRATIONS
R) AX"A.Rl => AX.INf)EX(O);
R) AX"A.H? => 6.X.IN'1EX(t);
V) AX"A'OI => I\X' TN'1EX(O);
V) AXIIA'B2 ~> AX'INf)EX(l);

ENDREP

REP SYN2;
TYPE A=(BA:3;CC:C); TYPE C=ARRAY D OF B; TYPE D=~ •• N;
=> TyPE A=ARQAY E OF H; TYPF E=M •• N+l; TYp~ n=M •• N;

O':>ERAT IONS
R) ~X"A.Ra =>,AX.TNDEX(%N+l~);
R) AX"A.C:C.I"J:)EX(,)D"f) => AX. I~OEX(f)');
V) AX'tA'BS => AX'HH)EX(%t-,I+l'Y.);
V) AX"A'CC' p..lf)c)(')O"D) => AX' INCFX(f1f);

ENDr~FP

REP SYN~;
TyPE A=(B8:9;CC:C); TYPE f-3=AHPAY D OF e; TYPE f)=M •• N;
=> TYPE A=A~RAY ~ OF e; TYPE E=M •• N+l; TYPF D=~ •• N;

OPERATIONS
R) 1\ X II A • CC = > A.X • INn E X (%N + 1 x) ;
R), AX'·A.'3B.IN!)FX(f)f)"I')} => AX. INDExeD');
V) AX"A'CC ='> AX' INDEX(%N+l"t.);
V) Ax"AI BB' I!\IO~X{f)D"I') => AX' INDEX(OD);

ENDREP
/

RF~ SYN4;
TYPE A=('3~3:E3;CC:C); TYPE
=> TyPE A=A.qRAY G OF F;

OPERATIONS
R) AX"A.RFl.T!\I')ExeOX"D) =>
R) Ax"A.CC.tNOFX(FX"F) =>
V) AX"A'I]O'YN,)!?X(DX"I) =>
V) AX"A'CC' INf)Ex(FX"F) -=>

ENORFP

,

P=APRAY D nr E; TyPE C=ARRAY F OF E;
TYPE G=(')O:oIFF:F);

AX.INf)EX(GIff)O(r,X» ;
AX.INDEX(r;'I'EF(FX»;
AX' PJCFX ((j.'l[)D t o x)) ;
AX' INDFXCr;4'FF(FX»;

REP c;v"J5;
TYPE A=APR~Y 9 OF c; TyDE C=ARRAY C OF E;
=> TYPE A=AqRAY F OF E; TYPE F=(~3:~;Dn:D);

OPERATIONS
q) AX"A.l"Jnr:"«(~X"9). T~Jnr:X(f)\("f) ="> x x , I"JnJ::X(FII('1X,DX»
V) AX"A' IN')r-:X('-~X·t,])· If\jDEX«()X"') => ~X' TNDFX(F4'(i)X,t>X»
V) A"'ALL(C~I\LL(EX"E» => Alil\lL(EXl;

ENDR[P ,

- 164-

AFPEJ:IOIX IT

EXAHPLE R"'::PllESEHTA TI01TAL CHOICE SESSION

As another example of the use of the experimental system, besides
that given in section 5.4, the following listing shows a complete
sequence of representational choice made for the Card Game Problem.
It is presumed that the target language includes single-dimensioned
arrays as its only structuring method. The representations that are
matched and implemented during the course of thiS session are all
detailed in Appendix IJI.

- 165

** Re~RESENT~TION~L CHOICE SYSTEM **
CO\1MANDS:

TYPES, RF~S (TynE>, FVAL, oRINT, QUIT,
SPLIT (TyPE> (SEL> (SEL>

>TyoES .
TYPE GL08AL=(I: INT;C:PLAvING CAI~r;;p:RAI\IK;S:SUTT:

P LAY ED: L ')G IC !\ L ;o :PL .\ YF r < iF 0\ C F N] ',v N : i=' TLE? ;F ACE UP: D I L E 1
PLAYE~:PLAYE~;PLAvERS:oLAVEn~); -

TYPE PIL~I=SEQUE~Cc OF PLA~ING CARD (AVCO~P=lS MAXCO~?~S2):
TyPE DILE2=3E'lUFNCF ()F PLAYINf3-CAPO (AVCCvn=30 \1AXCO'~I)=52) i
TyPE PLAYEq5=A~RAY PLAYFR OF HAND:
TYPE PLAYE~=1 •• 2:
TyPE HAND=SET OF PL~YING CA~D (AVCO~P=3 MAXCOMP=52);
TYPE PLAYIN~_CARO=(SUIT:~UIT:RANK:RANK)
TynE RANK=1 •• 13:
TYPE SUI T=I •• If:

>REOS QLAVTNG CARl)
CUP~ENTLY STO~= 913a
CHnICE F~R PLAYING CARD

IN REP SYNCP - FOLLO~JNG NOT I~oLEMENTED:-
PLAYING CA~O.1i«(Gii)·I PE.., 13) + l),«GQ:'I DIV 13) + 1»

SUPCP STOR= 813B
TO IMPLE~ENT REP, GIVE CHOSEN REP NAME
>SU8CP

TYPE GL03AL=(I:INT;C:PLAYING CARD;R:RO\NK:S:SUIT;
PLAYED:L')GICAL;?:nLAYFP:FA~E OONN:PILE~;FACF Un:PILE1:
PLAYER:OLAYER;PLAYERS:PLAYER§); -

TYPE PLAyING CAQQ=0 •• 51:
TynE SUIT=1.;4;
TYPE RANK=1 •• 13:
TY~E PLAYE~=1 •• 2;
TYPE PILE?=S~~U~NCE OF PLAYING CARD
TYPE PIL~l=S;::)'Jr='\;('c.::IF ~L.\YI'-lr;-C!,r<'l
TY~~ PLAYE~S=~:~~Y cLAYER ~F H~N'l:
TY~E HAN~=S~T IF PLAYING CAR~ (AVCovP=3 v~XCO~O=52);

>RF.:PS H~"Ir)
CURf~ENTL Y STOR=
CHOICE FOR H~ND

onW1
00\l!2
['JDIRECT

T r) 1 ~·'DLf:;ME N T
>00'·'11

(AVCCM~=30 M~XCOM~=52);
(!\VC,::,,,.o=16 M\XCf]"r'I="i?);

8138
STOR=-
STD'<=
STOR=

R!:;P, GIVE

791R
13~7B
8178

CHOSEN REP NAA.AE

TYO~ GL09AL=(9R02:cLAyING CA~r);I:INT;C:~L~YI~G C\RO;R:R~NK;
S:S0TT:OL\YE0:LOGTCAL:PY~LAYER;FACE DO~~:oIL~2:
FACE UD:~ILcl:PL!\VE~:PLAYEq:nL~Y~RS!PL\yc.:qS):

TYoF P[AVINS CAR'l=0 •• 51;
TYPE RANK=1.:13;
TYOE SU I T= 1 •• /~ ;
TYPE PLAYE~=l •• ?:
TYPE PIL~?=SEGU~~~E n~ ~L~YIN(_CA~'l
TYOE PIL'=l:·SE)U:='JCE o r oLAYl'.JC:_CA~f)
TyPE PLAyc~;~A~~~V DL\YF~ or HAN~:
T YO FHA" f) = (NIPA :1 r:= L) 2 : f"\ !) '? ; EL C 2 : CC?):
TyoE C02=AO~o\Y PLAYING CARD OF LCGICAL:
TY~E D02=~ •• ~2; -

>P.E'=>c:. C02
ClJR~':'N:rLY S F1R=
CH.,JICt::FOR en?

I"J '~EP SY"JAR FOLLfl'oJING NOT TYDLE:vIENTE'J:-
CO?IIALL(FAL'3r:)

1"1 RED IN'lI~cCT =OLLn~I"G N~T IV~LrVENTC~:-
G.PLAYEqS.I"'n:=:X(Gi)'P).fL02.rNr;EX(G~'FACE f)n;\)N'FE~ST)

9lTS ST~~= 91R~ -'
T n pm L E "1ENT R !.:: ~, G IV =: ~ H 0 S FN ;~r:P N A. ~. c
'>9ITS

(A V C'J 'JI 0= ")0
(AVCC-.1=>=16

~At\ X C 0 'JP = ') 2) :
v1,\'><CC)'An=5?):

7930

- 166

TYPE GL08AL=(CC03:C03;B302:PLAYING CARD;I:I~T;C:PLAYING CARD;
R:RANK;S:SiJIT;PLAYCn:LOGICAL;P:~[~YFR;FACE_nOWN:PILE2r
FACE_Uo:~rL~1;PLAYER:PLAYE~;PLAYERS:PLAYER5);TYPE PLAYING CAon=O •• 51;

TyoE RAN'<-=1.;13;
TYPE 5lH T=l •• 4;
TYPE PLAYEq=l •• 2;
TYPE PILE2=SFCUENCF.: OF PLAYH~G CAHO CAVCOMP=30 M-\XCo;...,P=52);
TYPE PILEl=SE:1U':"ICF OF PLAYING c;u~n (AVCO~F'=16 M<\XCOMt>='32);TYPE PLAYE~S=AR~\Y PLAYE~ OF H~Nn;
TYPE HANI)=(f\JUM9EL02:n02;EL02:C02);.TYPE n02=r) •• '32;
TYPE C02=A~~AY C03 OF INT;
TYPE C03=0. el:

>REoS r)02
CURPENTLY STOR= 819B
CH'l I eE FOR DO~

SlJ[1PEP, STr)R= 870R
TO IMPLEMENT RE~. GIVE CHOSEN REP NAME> SlJrJF<FP

TYPE GLO~AL=(CC01:C03;8802:PLAYING c~~o:r:INT;C:PLAYING CARn;
R:QANK;S:SUIT;PLAYrD:LnGrC~L;p:~['YE~;FACE nOWN:PILE2T
FACE_UP:PILEl;PLAYER:PLAYER;PLAYERS:PLAYER§);TYPE C03=0 •• 1 ;

TYPE PLAYI~G CA~D=O •• 51;
TYPE RAI\K=l. ;13;"
TYPE SUIT=1 •• 4;
TyoE PLAYER-=1 •• 2;
YYPE PILE2=SEOUENCE OF PLAYING CARD (AVCOMP=30 MAxcn~p=52);
TYPE PILEl=SEQ'JENCI= OF PLAYING-CARr) C4VCO'-1P=16 t...,AXCOMP=52);TYPE PLAYERS=ARRAY PLAYER OF H~ND;
TYPE HANO=CNUM9EL02:JNT;EL02:CO?);TyoE cn2=A~lAY C~~ ~F INT;> R'=')5 P L<\ Y r:: ps

CUR~F"ITLY ST~R= 970A
CH,)ICE" FOR PL.\YERS

SYNAR STOR: 87?'8
TO tMPLE~~NT REP, GIVE CHOSEN REP NAME>SYNAR

TYPE GL09AL=(EQ05:LOGICAL;~305:PLAyc~;CC03:C03;
B 802 :PL Ayr N G CAP o :r: INT; c :.::> LAY I~G C to. q o ;R : f;> A ~>JK ;S :SUI T :
OLAYED:LaGIClL;P:PL~YER;F'CE_r)OW"l!PILE2;FACE UP:PIL~l;OLAYER:oL<\YFR;PLAYERS:PLAYERS); _TYPE C03=0 •• t ;

TYPE °LAYI"IG CARr)~O •• 51;
TYPF RAN'<=1.;13;
TYPE SUIT=1 •• 4;
TYPE 0LAYF~=t •• ?;
TYPE PILE2=SECUENCE nF PLAYING_CARD (AVCOMP=3C MAXCO~P:~2);
TYPE PILEl=SE~lIFf\JCE UF PL~YTNG CARt) CAVCOMP=16 ~AXCO~P=52);TYPE PLAY:::~S=M<~AY PLAYER OF ~ANf);
TYPE HANr)=(NUV9EL0?:INT;EL02:CO?);TYPE C02-=Aqq~y C03 OF If\JT;>REPS ~A"IO

CURR~NTLY ST,p= ~728
.CHiJIC:F: I':"n~H~"I')

SYNC:> STO~= 37?r~
[N RED SYN? FOLLnNING NOT rMPLE~ENTED:-HANf)HCO.C0?HALL(O»
IN PEP INDIRECT FOLLO~JING N:]T Ir.'PLFMFNTED:_. G.t:lLAY'=RS. T"If)E)«C-1.'P).FL');!

TO IMPLEMENT REo. GIVE CH~S~N REo NAVI=>,SYI'I(O

167

TY PEG L 0'1AL = (E (}0 5 :LOG r 0\ L :an 0"):PL "Y FR :C C C :3 : C 0 ~ :
BR02:PLAYING CARD;I:INT;C:PLAYTNG CARQ;R:RANK;S:SUIT;
PLA YF:f):LDG ICAL; ~: PLAY ER; F h,CE DO'NN:P ILE2 ;FACE UP: PILE 1 ;PLAYER:PL~YER;PLAYERS:PLAYERS); -

TYPE PLAYER=t •• 2:
TYPE C03=0 ••];
TYPE PLAYING_C~RD=O •• ,,)l;
TYPE RANK=1 •• 13;
TYPE SUIT=1 •• 4;
TYPE PIL':'2=SI='<:JUENCcnF PLAY ING CARn ("VCr:~P=30 MAXCO'~P=52);
TYDE PIL""I-=31='1UF..NCFOF PL"YING-CI\Rn (AVCCMo=16 MAXC(Y1P=52);TYPF PLAYERS=ARqAY PLAYER OF HlNO;
TyPE HAND=(NUMgELC2:INT;FL02:CC2);
TYPE C02=ARRAY C03 OF INT:

>RF.PS C02
CURR~NTLY ST~~= 8728
CHOICE FOR C02

IN RfP BASI FnLLO~rNG NOT I~PLE~ENTFO:-C02t1ALLC")
SYNAR STOR= 874R
I NRc PIN f"' IR r=. CT F 0 L i.nw J NG N (J T r M r::L FM ENT E o : _

G.PLAYERS.IN~EXCG@'P).FL02.INDFX«G~'FACF DOWN.FIRST DIV 32»TO JMPLEMENT RF.;D. GIVE CHOSEN REP NAME>SYNAR

TyPE GLn9AL=(EQ07:LnGrCAL;RR07:C01;~QC5:LCGTCAL;8R05:PLAYFR;
CC03:C01;3~02:PLAYIN~ CARD;r:INT;C:PLAYING C~~8;R:R~NK;
s:surT;PL'YED:COGrCALfp:PLAYER;FACE DOWN:pILE?;
FACE UP:"JrLEl ;:>LI\YFr~:PLAYER;PLAYEqS:PLAYFRS);TYPE PLAYE~=I •• ?;

rv=s C03=0 •• 1 ;
TYPE PLAYING CARO=O •• Sl;
TYPE RANK=l.;ll;
TYPE SUIT=t •• 4;
TYPE PtL",?=S,:I')U:::"JCcor PLAYING ChP!,) (l\VCIJIv'o=l')'A!\XCO'P='32);
TYPE prL:::l=3'~Jur:."~c~11F i'LAYI'\I(;CA";) (AVCC"1P=16,\AAXCt:J'-1P='521;TYPE PLAYEqS=A~q~y DLAYFR I)F H~Nn;
TYPE HAND=(N~'A3~L02:INT;EL02:C02);
TYPE C02=A~~AY CO~ OF INT;>REPS HAND

CURRENTLY STOR= 9748
CWJICE FOR Hl\NJ

SYNCP STOR= R74B
SYN2 STOR= gJ48
IN REP INDIRECT FOLLOWING N~T !MDLEMENTEC!-

G.PLAY:::RS.INDEX(G@·9R05).NuvnELn?
TO I~PLE~ENT ~E~. GIV~ CH~SEN PEO NAME
>SYN2

TYPE GLD9AL=(Ea07:L~~ICAL;R3'7:C03;~aC5:LCGICAL;~H05:PLAYER;
CC03:C)3;a~02:PLAYING_CARD;I:INr;C:PLAYING_CARO;R:PANK;
s:surT;PL~YED:LOGICAL;P:PLAYFR;FACF DOW"J:PILE2:Fl\CE UD:OILEI;PLAYFR:PLAYE~;PLAYFRS~OLAYEqS):TYPE C03=0 •• t ;

TyeE PLAYER=t •• ?;
TYPE PLAYI"JG CAQO~O •• 51;
TYPE RANK=l.;l"l;
TYPE SUIT=1 •• 4;
l'YPE PILr.:2=SF"O'JE~.;cF!IF ::>LAYING rA~')
TYPE PIL":l =S;:O:QI)t::NCf:OF PL ..\YTNG-CARf)
TYPE PLAYEqS=A~RAY PLAYER OF H~ND;
TyPE I-IAN")=~RRAY E'JA OF rur :
T,YPF EOS=O •• ?;

>REPS ":>LAYEqS
CUr.?Pf"HLY ST')P:
CH~rCE FOR PLAYERS

SYNAR STOK=
SYN~ ST0R=

TO rV~L~~tNT R~? GIVE
>SYN5

(AVCC~P=lC YAXCOMo=~2);
(.AVCC.-1P=lF:> ""AXCO"'='=S2);

8748

'376n
"174 "1

CHlSU'J

- 168 -

TY PE GL 0 '3 AL = (E 1)07 : L[JG TC .\L:PP. I) 7 : COl; FQ 0'5:L (';G J e!1.L : '1~30 S : PL A.YE r~ :
C CO 3: C 'J 3 : ,] fl 0 ~ : PLA.Y I i-JG CAR D ; I: IN T ; C :PL AY II\!r, C A ;~D ; P : HANK;
S:SUIT;PLAVE~:LOGICALTp:PLA.YEP;FA.CE DOWN:p1LF?;
FACE UP:~TLE1;PLAYER:PLAYER;PLAYERS~PLA.YEPS);

TynE C0'3-=0•• 1;
TYPE PLAYE<=I •• 2;
TyPE PLAyING CA~n=C •• 51;
TYPF RAI\!K=I.-;l~;
lYPE SUIT=1 •• 4;
TYPF PILE2=SE~U~NCF OF PLAyING CAPn (AVCOMP=30 MAXCO~P=5?):
T Y PEP I L r:_: 1 c:: '3 F 0 U ;:: ~IC F:: r)F P LAY I N G - CAP n (A vee '! F = 1 (, .~ A X C n WO,= '5;->) ;
TYPE PLAVEqS=ARRAY FOo OF INT;-
TyPE F09=(~~0~:PLAYEP;OD09:EOe);
TYPE E08=O •• 2;

>REPS F09CUR~FNTLY STaR= ~749
CHOICE FOR F'J9IN ~EP SYI\!C~ FOLLOWING NOT IWPLEMENT~D:-

F0911(r;1)I~[3I")S,2}
SUPCP STOR= 874P

TO I~PLE~ENT REP, GIVE CHOSEN REP NAME
·>SUfJCP

T Y PEG L o '3 AL = (E 00 7 : LOG I CAL; RR0 7 : COl ;E0 0 5-: LOt; T CAL ;'1']C5 : ?LAy F R ;CC03:Co3;SBO?:PLAYING CARO;I:INT;C:PLAVTNG CARO:R:RANK;
s:surT;PLA.Y~O:LOGICALTn:PL~VLR;FACF CO~N:nlLE2;
FACE U~:PILEl;PLAYFR:PL~YE~;PLAYFRS1pL4YEQS);

TYDE C03=0 •• 1 ; •
TYPE PLAYFR=1 •• 2;
TYPE PLAYI~G CARO=O •• ~I;
TYPE RANI(=I.-;13;
TYPE SIJIT=1 •• 4:TyPE PILE2=SEOUE"ICF OF Pl.AY I!\IGCARl)
TYPE PIL~I=SFOUENCE OF PLAYING-CARD
TYP~ PLAy~qS=APQAY Fnq OF INT;
TY'::>s FC~--=0 •• :~:
TYOE E0<3=O •• 2:

>REPS PILEICUqRFNTLY STClQ=
CHOICE FOR PILEISEQI ST0R=

SFQ2 ST~R=SEQ, STQR=
SEOS ST~R=
SE06 5TnR=

TO T~PLEMENT REP. GIVE
>SEOI

(AVCC~P=~0 MAXCO~P=52);
(tl.VCCf\1P=16 Mtl.XC0\1P=52);

~749
912R

123hf3
155 -:El
I236n
91 ?!1

CHOSE"'I

T Y PEr; LOg AL = (I11 : INT : r: c o7: LtJGTCAL ;~--l0307: C (\-.;F0 ()'):L ClG ICAL;
El:105 : rtL A VER; C e o :3 : r:Cl-.;~ f: 0 2 :PL \V II\ir. C ;\R D :T :I'J T ; C :PL.. AV T~J G C·\;-,~D ;
R :P. ANK ;s :SI)!T :P LAY f-'I): LeG IC!!"L :P :-~LAY f h' ; F f.C<::: OO"N: ,J rL F 2: -
FACE up:prLEl;PLAYFR:PLAYER;PLAYERS:~LAYER§);

TYDF C03=0 •• 1;TY.:>c.:::PLI\Y<=-=<=l•• ?;
TyPE PlAYJW-; CAR'1=(' •• ')1;
TyoE ~~N~=1.:1~;
TYr>E SUIT=1 •• 4;
TyPE PTL:=?=SEOUr:-'ICF (1F Pt AYING_('V~[) (AVCO'J.P=30 '-4AXCO'_"P=C:;2);
TY P E D ILEI::.:(;:::RS Til: F 1 1 ;1\ i\ 1 1 :ell)~
TYP::: CI1=o.R~AY :)11 '1F Pl_,\Yl'JG_C\f;'n;
TV:>E 011 =1 •• 5?;
TYPE 1=11=·1 •• '5~;TYPE PLAYERS=A~~AY Frq OF INT;
TY::JE ~oq=~ •• r::;;

>RE.:lS :->ILc~
CUq~~~TLY ST~q= ~12R
CHllCE FOR PILE2SEal STn~= 9~0R

S~~? STn~= 1?74"
SC::Q~ SFH= 1<')1'1
S;:;:Q') ST,-:U= 1 27:~HSf':Or- S Tn,~= QC::I1(>

TO I;<"PLE'-IENTRF;:" SI VF. CtHISJ:':N REP N~~)f=
>S~Ol

169 -

TYPE GLOR/\L=(112: 11\;T; I 11 :INT~EQ('I7:LCGICAL~RRC7:CC'3;
E 005: VJG I C 4L ; fHl05: PL AY ER; CCO 3: (01 : RflO2: PLAY t NG CARD; I : 1: NT;
C:PLAYING CARO:R:RANK;S:5IJIT;PLAYEC:LOG1CAL;P:~LAYER;
FACE DOW~!PILE2;FACE UP:PILE1;PLAYER:PLAYER;PLAYERS:PLAYERS

TYPE C03-=0 •• 1; -
TYPE PLAYFR=1 •• 2;
TYPE PLAYING CA.RD=O •• 51;
TYPE RA"IK=I.;13;
TYPE SUIT=-I •• 4;
TYPE PILE2=(FqSTI2:~12;AA1?:C12);
TYPE Cl~:::\RRAY 1)12 ()F PLAYlr~G CAR!);
TYPE D12=1 •• S?; -
TYPE EI2=0 •• 52;
TYPE PILE1=(FRSTll :r::ll ;.AAl1:Cll);
TYPE PLAY~RS=ARQAY FOG OF INT;
TyoE r=:11=') •• 52:
TYPE CII:=ARRAY 011 DF PLAYING_CARD:
TYPE F09=') •• "':
TYPE 011-.:1 •• ,,)2;

>RFPS PLAYING CAQD
CURRE~TLY ST8~= 9508
CHorcr=: FOR PLAYING_CARD

SUBREP STOR= 37068
TO I~PLEMENT REP. GIVE CHOSEN REP NAME
>SUBREP

TyPE GL08AL=(IL?:INT;Il1:INT;EC07:LOGTCAL;SR07:C01;
E Q 05 : L " G I CAL; B 305 : P I AYE f~ ; CC C:3 : C 0.:'1 ; :lCO?: I NT; I : I "lT ; C : I NT;
R:RANK;S:SUIT;PLAYFO:LOGIC\L;P:PLAYER;FACE 00WN:PILE2i
FACE_UP:DILEI ;PLAYER:PLAYE~;PLAYERS:PLAYER~);

TYPE (03-:::(' 001 ;

TYPE PLAYFR~1 •• 2;
TYPE RANK=1 •• 13;
,YPI:: SUIT=1.o4;
TYDE PIL~?=(C~ST12:~12;~612:Cl?);
TY p ~ P I L f 1 = (F ~sr 1 1 : I:: t 1 ; A;~ 1 1 : ~ 1 1) ;
TYPE PLAYED5=ARDAY Fr0 UF TNT;
TypE E12=O ••S?;
TyoE C12=AR~AY 012 OF INT;
TYPE Ell =0 •• 5';>;
TYPE Ctl=A~R'Y 011 OF INT;
TYPE Fl)o=O •• 5;
TYPE Dl 2=1 •• S?;
TYD E D 1 1= 1 ••. 52 ;

>REP~ FII
CUqRENTLY ST';P=
CH]ICE FOR Fll

SUPREP . STOR= 37~2e
TO I~PLE~ENT R~D, GIVE CHOSEN REP ~A~E
>SUBPEo

370613

TYPE GLOfOJAL=C 112: INT; II t :INT;F.C07:LOGICI\L:8B07:C03;
E 0 r; ') : L '1r, I C 1\L ; ;3 --l ') <:; : P LAY E P ; eel) .3 : r: o , ; 9 n o ? : !NT; [: I 'l T ; C : I ~~T ;
R : RAN K : s : S: J IT: P LAY F f) : L f J G I C 1\ L ; P: DL f!" Y E ~~; F ACE DCl \'JN : p r L E 2 ;
F ACE _ tp : :l I LEI ;;:J LAY Fp: p L,<\ v E '1 ; P LAY 1::PS: P LAY FRS) :

TYPE CO]:.:0 •• 1;
TYPE PLAYF?=I •• ?;
TYPE RAI'·K=1 •• 1];
TYDF= C:;UIT=I •• 'l;
TYPE PIL~2=(F~ST1?:E12;AAl?:Ct?);
TYPE PILEl:::(r,{sTll: HIT ;AAll: Cl1)
TYPE PLAYE~s-=~nRAY fOq OF I~T;_
TyoE El ?=I) •• ')?:
TYPt= Cl(>=t,~~\y o i > nF t n r :
TY~~E C1I ::-\r,"\Y '111 or- nJT;
TyoE F09=0 •• S;
TYPE D12=1 •• ");~;
TYDE r)11=1 •• 5?;

'>RC:PC; E12
CU~RE~TLY ST1~= 37320
CWJIC:-: FOR E12sun~EP STnR= ~7,)ln
TO P:'')LE~'''FNT r<~p. GIVE CIHl.-;[['J PEP NA'..,r=:
> 5lJfHU::P

- 170

TYPE GLOAAL=(Il~:INT;111:INT;EQI)7:LOGICAL;f3W:)7:C03;
EQ 05 : L oGI C 1'\L ; !l'Jo 5 : ~ IJ\ Y r:- r~ ; CC 03 : C en ;BfJ 0 ? : PH ; t : TNT ;C : INT;
R :RAN K ;5 : SUI T ;P LAY F f) : LnG I CAL; P :•.~L 1\Y F R ; F AC F: 1)0.<1N : P 1L E 2 ;
FA CE_LP: ::> I LEI ; 'J LAY F t~ : P LAY E'~ ; ;..> L 1\ Y [: ~ s :P L 1\ YEr<5) i

TYPE CO ~=" •• 1 ;
TYPE PLAYE~=1 •• 2;
TyPE R1'\NK=I •• 1.1i
TYo,,:·SUIT=l •• /.j.;
TyoE PIL~2=(=~ST12:INT;AA12:C12);
TYPE P ILE 1 = (F RS TIl: INT; ,II.. A t 1: C 1 1);
TYPE PLAYEqS=~RRAY Fo0 OF INT;
TYPE CI2=AR~AY D12 OF INT;
T Y PE C 1 1 = A ;~R ~ Y D 1 1 OF I r'-l T ;
TYPE F09='J •• "1;
TyoE 012=1 •• 52;
Ty,:lE 1")11=1 •• '32;

>R€PS PILEI
CURRENTLY STr)R=
CHI1TCE FOR PIL":1

'3YN(P STr)R=
SYN2 STOR=

TO I~PLE~ENT REP, GIVE
>SYN2 .

37,,),9l1
37,)f-l11

CHOSEN RED NAME

TYPE GL03l\L=(H2: INTi I 11: INT;EQ07:UJGICAL;281:'7:CC3;
E Q I) 5 : L,., G I C AU "'.J o 5 : PL 1'\ YE R ; eel) :3 : C(' ~~; 13s 0 ?: I '\J T ; I : I NT; C : PH ;
R:RANK;S:SUIT;PLAYEn:LOGJCf\L;P:PLAYER;FAC~ OOWN:PILE2;
FAC~_UP:~IL~l;PLAYER:PLAYER;PLAYEnS:~L~YEn~);

TYPE (03=') •• 1;
TYPE PLAYER=1 •• 2;
TYPE RANK=1 •• 13;
TYPE SUtT=I •• ~; /
TypE DIL~?=(~l~T12:TNT;~a12:C12)
TYPE PILEl=AR~4Y ~l~ OF TNT;
TYPF.: Flf,=1 •• 51;
rv= e Dl1=1 •• S2;
TYPE PLAYEQS=AQP~Y FO~ OF INT;
TyPE C12=ARRAY D12 OF INT;
TYPE FOQ=0 •• S;
TYPS;: 012=1 •• ,2;

>REDS PILF2
CURqFNTLY STJR=
CHDICE FOR PILF.:2

SYNCP STOR=
'3Yf\'2 C;TOq ==

TO IMOLE~ENT RED, GIVE
>SY"J?

37598
375Rn
1758'1

CHnSFf\l REP NAWF

T YPEG L 0 31\L= (I1 2: IN T ; I 1 1 : INT; F QC 7! L C1G ICAL; ·:E3o 7 : CO 3 ;
EQ05!LJG!CAL;~~05:oLAYFr;(C03:C03;8P0?:INT;I:INT;C:INT;
R : o ANI(; S : SUI T : i.....L r.v r o : I, [j r; r C !\ L ; P: ::>L .A v r > ; F ,."C Ere .'J~! : P I L ,. ? ;
FACE U?:~TLEl ;PLAYE,<:PLAYFR;PLAYEkS:PLAYC::RS);

TYPE C03=0 •• I;
TYPE PL~YER=1 •• 2;
TYPE RAI\I(=1 •• 1~;
TYPF SUIT=I •• '~;
TYPE DIL=2=AR:~I\Y El7 OF INT;
TYPE ":17==1•• s,,;
TYPE D12=1 •• 5?;
TYPE PILEl=A~qAY El~ ~F INT;
TYPE PLAYE~5=APRAY enn OF INT;
TYPE' C16=1 •• 5"';
TYP;: FOC)=C •• :;;

>RfPS CO~
CUPPF~TLY ST~R= ~75RB
CH 1T(f F!)PC,) "3

S U~ ,: ~ P c; r 'J;~-= ::< h '~f' !;
TO T"DLEViENT R!::':>, GIVF CH()SEN RE~') NA"-'O::
>SUfjJ=::EP

- 171

TYPE GL03AL=(I1~: INT; Ill: INT;F007:LOGICALiR907: INT;
E QO 5: L:JG I C t\ L ;B fI 0") : PL AY ER ; CC c 3: IN T ;bEl I) 2: IN T ; I : IN T ;C : I I\j T ;
R:R~NK;S:SUIT;PLAYED:LOGICAL;P:PLAYER;FACE DOWN:PILE2;
FA.CE lP::>tL'-t ;PLAYF.f~:PLAYER;pL.AYEnS:PLAYf.RS);

TYPE P[AYF~=1 •• 2;
TYPE RANK=1 •• 13;
TyoE 5UIT=1 •• 4;
TYPE nIL~2=ARRAY E17 nF INT;
TYPE PIL~l=t\PqAY E16 nF INT;
TY~E PLAYERS=ARRAY F00 OF INT;
TYPE E17=1 •• 53:
TYPE E16=1 •• 53;
TYPE FQ9=Q •• 5;

>REoS PLAYFR
CURRE~TLY ST~R= 3~208
CHOICE FOR PLAYER

SU~REP STO~= 3q13g
TO I~'PLEMENT REP. GIVE CHOSEN REP NM>1E
> SUf3r~EP

TYPE GLO'3AL=(112: INT; III: 1NT ;EQr")7:UJG1CAL ;f3BC7: tNT:
E 005: L lG IC.\ L ;8'305: IN T ;CC03: IN T ;flR02: IN T ; I : IN T ;C : TNT; q : f~ ANI(;
S:SUIT;PLAYEO:LOGICAL;p:INT;FACE ~OWN:PILE2;FACE UP:PILEl;
PLAY~R:INT;?Lt\YERS:PLAYEqS); - -

TYPE RANK=1 •• 13:
TYPE SUIT=t •• t.;.
TYPE PILE2=ARQAY E17 nF INT;
TYPE PTLEl=ARRAY E16 or- INT;
TYPE PLAYF~S=ARRAY F09 OF INT;
TYPE El7=1 •• 53;
rv= r E16=1 •• '33;
TYPE ~Oq=o •• c;;

>REoS R~NK/
cu>= I\IT L Y C; T'lQ= 3') 1'38
C'"i()ICE F'lr~ Pt\NI(

SURD~P STOR= ~Q410
TO IMPL~~ENT R~p. GIVE CHOSEN REP NAME
>SlJ3REP

TYPE GL084L=(T12: INT; Ill: INT;EQI)7!LOGICAL;BR07: INT;
E Q 05: L,)G [C "L ; 8 B0 '5: I NT: CC 03: IN T ; [1f1f)?: I!\! Til: IN T ; C : IN T : P : I NT;
S:SUIT:PLAYEO:LOGICAL:P:INT;FACE DOWN;PILE2;F4CE UP:PILE1:PLAYER:I\lT;PLAYERS:PL/\VFRS); - -

TYPE SUIT=1 •• 4;
TyPE PIL~?=~RqAY El7 OF INT;
TYPE PILEl=~qRAY El~ nF INT;
TYPE PLAYE~S~ARDAY F09 OF INT;
TYPE El 7= 1 •• 5:1;
TYPE E16=1 •• 33;
TYPE F09=O •• 5;

>RE'=>S SUIT
CURRENTLY ST'lh= 39418
CH!l{CE FOR SUIT

SUSR~P ST!l~= 3]719
TO I~DLE~ENT RE~. GIVE CHOSEN RFP N~~~
>SUE3R~P

TY PEG L 0'3 A!_ = (I 1 '2: I NT; I 1 1 : T f\ T :f~(1(' 7 : L 'JG I c t-. L : ROC 7: IN T ;
E Q 0 <) : LnG I C.AL : '3 B 0 S! I ""T : CC 0 l : r NT; rl P C'? : I NT; r : I NT: c : I NT: r..;: : IN'· ;
S:INT;?L~YE~:LOGICAL:?: INT;FAC~ OOWN:PILF?;FACE UP:PILElPLAYER:I\jT:?LAYt:RS: :lLAY[!~S); - -

TYPE PILE'=A?RAY Et! 'l~ INT;
TYPE PIL~l=/\~~~Y E16 OF INT;
TYPE PLAY~R;~~~RAY Frq OF INT;
TYPE E17=1 •• S3;
TYPE r:::16=1 •• S1i
TYPE F 0 0 = '" •• 5 ;

>EVAL
CU~RfNTLY STQR= 30718 TrM~= S.58't04

-~172
'>PRINT
TYPE GL03AL= (112: INT; 111 : rNT; E1)07:LOG I CAL; R8()"7: INT;

E Q 0 5 : L '1 G I C l\ L ; R R 0 s : I ~J T ; CC ().] : 'N T : '1 [l O? = I NT; r : I NT; C : I NT; r~: I NT;
S: I NT; :>L lI, Y F f) : LnG I c A L ; i): I NT; FA C F DO '1./ N : P I LE 2 ; F ACE tJ:>: P I LEI ;PLAYEq:I~T;nLAYEPS:PLlI,YFRS); - -

TyoE PILE2=lI,RR~Y ~17 OF INT;
TYPE PILEl=ARRAY E15 OF INT;
TYPE PLAYFRS=AqR~Y F09 OF [NT;
TYPE E17=1 •• 5:l;
TY:JE EI6=1 •• 51;
TyoE F09=0 •• S;

F3EGIN
G.rACE UP.INDEX(53):=rO);
G.FACE-nOWN.rN~~X(~3):=(O) ;
FOR G.§S05:1 •• 2 DO

BEGIN
G.PLAYERS.INDEX(CG~·RH05+3»:=(O);
FOR G.SB07:0 •• 1 no .

G.PLAYERs.rNOEXC«Gm9RR07*2)+CG@'RB05_1»):=CO);END;
FOR G.1:0 •• 51 no

REGIN .
G.FACE DOWN.1NDEX(51):={(G@·FACF DOWNtINDEX(53)+1»;
G.FACE-DOWN.JNDEX(G~·FAcr OOW~' I~DEX(5~»:=
«{«(Gv'! REM 13l+1)-1)iiC4)+{({GO)tI DIV 13)+1)-1»);

E"H) ;
F(JR G.P:l •• 2 1)'1

FOR G.I:l •• 7 no
BEGIN
G.DU\YERS.INDEX{({(Gd·FACr= rO\llN'INOEX«;v'FACF DOWNtINDE)«53»

DIV 32)*2}+(G~,c-I »)):sEi8IT({G~'FACF oO~N'TNOEX(G~
'FACE_OOWN'IN:)EX(S3» r~E\1·l?). TRUe);

G •PL A Y Ef~ S e . I "l f) E" X { (C; 1) I P +~)) : = ((Giil • P L A v E ~~S ' I NI) F: X ((G;,)' o +3))to 1)) ;
G.FACE_DnWN.INOEX(53):=«G~'FACE_DOWNtINDEX(53)_1 »;END;

G.FACE UP.INDEX(53):=«G~'FACE_UP.tNf)EX{53)+I»;
G.FACE-UP.INf)':X(G;j)tFACE_lJP' INOEX(53)):=

(G ii)T FA C r:: f)l'N \J' I"H) "= X (r, .,;'f:- AC f= 0()'./N' 1N r; E X (c:; 1))) ;
G • F fI. C t:: I)0 \~N: I "l ') ': X (") J) : = ((G i •r= AC r= r; I]~, ~J I I N'l E x (5:>) _ 1)) ;
G.DLAyER:=(l); -
WHILE ~(G~'PL~YERS'INOEX(~)=C OR G~'PLAYE~S'INDEX(5)=O) DO

REGIN
G.PLAYEO:=(FALSE);
G.5:=(I);
WPITE«(G;;)tFACE tP'INDEXCGiil'FACF UP'INDEX("5)) f)IV (+)+1»;
Wf~ I TE (((G 1) , F 1\ C f: - UP' I NDE X (G iil • F ACE - U :1' r N IJ E X (5 3» ~~E ~ 4) + 1)) ;
WHILE (-.r;ii)'~LAYEO A'W G~)fS<=4) DO

BEGIN
G • C : = ({ ((((G;j) , FA CE_ Un' IN 0 EX (G v t F 1\CE_ U;:>I J NOEX (503 » D I V 4)

+1)-1) *!~) +-cr;))' S-I»);
IF G~'DLAY'?RS'I"lD=X«{{(;?'C DIV 32)*2)+(G@IPLAYER-I»)

IRYT«G;V'C REM12» THEN
'3EGIN
G.FACE JP.INf)EX(5~):=«G~'FACE UptrNDEX(S3)+I»;
G • F .,\C E -, J? • I NO=:X (G·j) , F ACE I)o tIN 0E X (5 3)):-:::(G .1) , C) ;
G.PLAY~RS.I"lf)EX««G2IC-DTV ~2).2)+(G~tPLAYER-1»)

:S;::T9IT«Ga)'C r~~·o.1 3?l, FALSE);
G.PLAYE~S.I~I)~X«(G~'PLAYER+~):=

((r; 'i) • DL 1\ YE q;' HP) r:: X ((G ,j) I P LAY r.:: q+])) - 1));G.PL~Y~n:=(TRUE);
ENDELSF
G. 5 : = ((Gv 'S + 1)) ;

END;
G.R:=(l);
WHlLE (~Gv'PLAYED ~~n G~'R<=13) D8

'9EG r N

G • C : = ({ ((r; i) • ~ - 1) '* I~) +- (((r; i) • f= A C r:: {J'" tIN Q ".' X ((; ii': • F 1\ CE UP I IN,),;: X (') "'l)
R<::'A 4)+1)-1»); -

rF G@':>LAVERS'TNr.EX««Gv'C f)JV 12>.?)+«(;@'DI_,\YEQ_t»)
, r1 I T ((G~)' C -(F~ .~?» T ~ E N

REGI"J
r; • F ACE _U ~ • I N f) E X ("; .3) : :; ((G @ • F t\. C F _ !jP. I !\! ,) f' X (3:3) + 1)) ;
G. F A.C E _ U·-:J • I "l f) EX (G v ' ,::AC E _I) P' T N f) >= ')f ('3])) : -= (r; 'v ' c) ;
G.PLI\Yr:::RS.r~F)EX««((;,,;JC O(V J?)*~)+(r::a:'':")LAYEr~-l»)

:SFT9[r«r;~·(:?F"]2), FA!'St=);
G • P LAY F ~ S • r NI) E X« .., <1: I C) L A. Y FP + .l) l : =

((S,) IlL\ Y [;(S ' T~1 i) ~ X ((G;J) , PL AVF ~ + :3)) - t)) ;
G.PL,\V'::'):={ TRUE);
EN!)

ELS:::
G.R:=«G·v·Q+1 »;

EN!);

- 173

Ir- ~G@.oLAYEQ THEN
BEGIN
WRITE(r,~·oL~YER);
WRITE«(G~'FACE DnWN'JNnEX(G~'FACE DOWN'JNDEX(~3» nIV 4)+1»;
WR rT E (((r;@ , F AC E - Q OWN' T NnE x (G@I FA C F= Dr)"';N' IND E X (c;:~ » f~ '="'1 4) + 1)) ;
G.PLAYFRS.INnEXr(((G~tFACE COWN'INDFX(G~'FACE DOWN'INDEX(C;3»

D I V 3 ~) J!c 2) +(G ii) , rJL A YE R- 1 i):s ~T 8 r T ((G;j) t FACE _ i) CI'.o!N• I'\JOEX (G @
'FAO:::: f)il\vN' IN"r::X(5:3» I:}F'~ 32), TRUE) i

G.PLAYEqS:I~Q~X«~~'PLAYER+3»:=
((G ~. '>L~ yE RS' I N !)I~·X ((G~) , oL AYE R.."3)) + 1));

G.FACE_f)n~N.INDEX(53):=«G~'FACE_DOWN'INf)EX{53)-1));
EN,);

G.PLAYER:=«(G~·PLAYEn REM 2)+1»;
END;

WRITE(G@'PLAYERS'INDEX(4)=O);
END

'!he final action in the above session was to print the concrete form

of the program in the system notation.

As was done for the Birthdays program in section 5.4.1, the final

program for the Card Gameproblem has been transliterated into Algol'i"

to give the program shownon the following page. '!his program can

then be compiled and executed as normal.

- 114 - .

BEGIN Hnr=(;E;~ Il?,yl1.CC('13.U[i()2.C,r~.S.PLAY[P~
LOGICAL EQ07.EaO~.PLAYFJ; .
INTEGER ARP~Y F~CE DnWN(1::~3);
INTEGER ~RPAY FACE-UP(1::S1);
INTEGER ARRAY ~L~Y~RS(O::5);
LO.GICAL PROCt=OtJRE BIT(I"'TF.GER VALUE T .f1ITNUM);

«BITSTRIW;CI) SHL l3lTNU',.q ANI)1f~f)OO} = 11"3001);
PROCEDURE SETBIT(INTEGFR V.\LlJE f~FSl)L T I; INTEGER VALUE B ITNU"1;

LOG rCAL V~LlJE ON);
I F ON THEN I: =NUMDEIH ':1ITST R P.JG ([) OR (lIf30 1')0 SHR n I TNIJf\1»

ELSE I :=NUW3FR(BITSnHNG(I) A~n ,(~3('laO SHR £3ITNlJ\1»;
REGIN
FACE UD(~3):=(0);
FACE-nOWN(~~):=(0);
FOR BA05:=1 UNTIL ~ Dn

REGIN
PL AYERS ((BR05+~)) : = (0) ;
FOR RB07:=0 UNTIL t nn

PL AY F: ~ S (((n 9 0 7 ~ 2) + (1-3R o 5- 1))) : = (0) ;
END;

FOR 1:=1 UNTIL 5? DO
nEGIN
F.\CF f)OWN("53) :=((FlICE no'm.J(53)+1»;
FACE-DOWN(F~CE DO~N(5~»:=
«(T«1 REM 13)+1)-1).4)+«(1 DIV 11)+1)-1»);

E"JO;
FOR 0:=1 UNTTL 2 00

FOR 1:=1 UNTIL 7 DO.
REGIN
SETBIT{nL~YFPS««FACE OOWNrF~CE f)OWN{53»

DIV 32)*2)+{D-1l).(FACE noN{
FACE D'J\I(53}) Rr:M3~) • -TRUE);

PL AY FRS ((~+ 3)) : = ((f~ L ~ Y t=!~ S ((P + 3)) + 1)) ;
FACE_Da~"J(53):=({FACE_nn.N(5])-1»;
ENI);

F~C~ UP(53):=({FACE UD(53)+1»;
FACE-UD(FACF UO(5~)T:=

(FACE D~~~(FACE ~OWN(511)1;
F,\C'? [V)'.'IN(S'):=«FAC'=- I)OJJI~(~3)-1);
PL4YFR:=(1); -
WHILE ~(PL~Y~~S(4)=0 nR DLAY~RS(5)=O) no

BEGIN
PLAYED:=(FALSE};
S:=(1);
WRITE{«FACE UP(F4CE' ue rs s i : r rv 4)+1»;
WqITEON({(FAC~ UP(FACF UP(S3» REV! 4)+1»,
WHILE (,PLAYFD-ANf) 5<=4) 00

BEGIN
C:=«««FACE UP(FACE I)P(S3» f)IV 4)

+1)-1)*4)+(;-1»); -
IF 8IT(PLAY~PS((C nlv 32)*2)+(PLAYE~-1»)

,(C ~E'~ 3~» THEN
BEGJ"l
FACE U:>(53):=«FACE UP(53)+1»;
FACF-UP(EhCE UP(53)f:=(c);
SETOIT(PLAY~RS««C D!V 3~)*2)+(PLAYER-l»)·

.(C RE'-1 l?), EALSF);
PLAYFR5«~L\YER~~»:~

« PLAYEf~S ((;:?L AYFr~+3))-1 »;
PLAYED:=(TRUF);
END

ELSE
5:=«5+1»;

END:R:=(1);
WHILE (,PLAYED AND R<=13) on
,REGT"!
C:=« ({R-l)*4)+«(FACF Up(FACr UP(53»

~E \' 4) + 1) - 1))) -; -
IF nrT(PLAYEPS«{(C DIV 12)*2)+(PLAYER-l»)

,CC °E~ 32» THEN
9EG!\I
FACE U::>(C)1):=«FACE UD(53}+1»;
FACE-U~(FACE UP(~3)T:=(c);
SETBIT(PLAYERs««c nTV 32).?)+(PLAYFR-l»)

• (C P'E'~ 3'?), F.'I.LSF) ;
PLAYERS{ (DLAYEP+~»:=

{(PLI\Y~:~S((PLW[fH3) }-1»;
PLAy>=n:=(Tr,UF);
F"I,)

ELse
R : = { (.~+ 1)) ;

END;

175 -

IF ..,oL AYEO THE'N
BEGIN
WRITE(OLI\YER," PICKS UP OI);
wRITEON«(FACE OOWN(FACE OOWN(51» f)IV 4)+1»;
WRI TEOI\!(((FI\C'7:-OO\<ltJ(I=ACE-nChIN (5 ~» ~~[t.' 4) + 1)) ;
SETBIT(PLI\YERST(«FACE CnWN(FACE f)~W~{53»

DIV 32)*2)+(OLAY~R-IT»,(FACE RO~N(
FACE nOWN(53» 4EM 32). TROE):

PLAYERS(T~L\YER+3» :=
«PLI\YERS((PLAyr::-r~+·n)+1»;

FACE: f)JW'lCS3) :=((FACE f)\JWN(5:3)-1»;
END;

PLAYER:=«(PLAYER REM 2)+1»;
END;

WJ1ITE(PLAYERS(4)=O." r>LAYER 1 WINS");
F.Nf)

El\lf).

/

- 176 -

REFERENCES

[1] Arsac, J.J.
'Program Transforms as a Programming Tool I.

Univ. Pierre et }Tar:i.eCurie, Inst. de Programmation Report 1976.
[2] l3a.1zer, R.M.

'Da taless Programming'.

Proc. AFIPS 1967 FJCC. pp 535-544.

[3] Balzer, R. , Goldman, N. & \file, D.
'Qn the Transformational Implementation Approach to Programming'.

Proc, 2nd Int.Conf. on Soft\ro.re Engineering, San Francisco,

Oot. 1976; pp 337-344.
[4] l3a.rron,D.':T., :Buxton,J.N., Hartley,D.F., Nixon,E. & Strachey,C.

'!flle Hain Features o:f CPL'.

Computer Journal, 6. 1963. pp 134-143.

[5J Barron, D.v,
'.An Introduction to the Study o:f PrograJllIIll.ngLanguages '.

Cambri~ University Press 1977.
[6] :Bursta1l, R.H. & Darlington, J.

lA Transformation System for Developing Recursive Programs'.

'JACH24,1. Jan. 1977. pp 44-67.
[7] Cheatham, T.E.Jnr.

''llie Recent Evolution of Programming Languages'.

Proc. IFIP CongTcss, At~. 1971. pp I/118-I/134.
[8] Cheatham, T.E.Jnr. & \.J'egbreit, B.

'A Laboratory for the Study of Automatic ProGTa1l1r.ung'.
Froc. AFIPS 1972 SJCC. pp 11-21.

[9] Cohen, J. & Zuckerman, C.

'Two Languages for :bstimating Program Efficiei:cy'.

CACH 17,6. June 1974. pp 301-308.

- 177 -

[10] Dahl, O-J. , VJyhrhaug,B. & Nygaard, K.

'Simnla CommonBase language'.
Nor.·TegianComputing Centre 1970.

[11] Darlington, J. & Burstall, R.N.

'A System ",hich Automatically Improves Programs'.

Frec. 3rd Int. Coni. on A.I., Stanford 1973. pp 479-485.

[12J Dijkstra, s.v,
'Notes on Structured Programming'.
In Da.hl,Dijkstra,IIoare 'Structured Programming'. Academic

Press 1972.

[13] Dijkstra, E.\I.

'The Humble Programmer'.

CACH15,10. ·Oct. 1972. pp 859-866.

[14] Dijkstra, E.I·I.

'A Discipline of Programming'.
Academic Press 1976.

[15] D'Imperio, H.E.

':rata Structures and their Representation in Storage'.

ARAP 5, 1969. pp 1-75.

[16] Earley, J.
'Relational Level:rata Structures for Programming Languages'.

Acta Informatica 2. 1973. pp 293-309.

[17J Feldman, J.A. & Rovner, P.D.
'An Algol-Based Associative Language'.

CACH12,8. Aug. 1969. pp 439-449.

r-18] Feldman, J.A. , Low, J.R. , Swinehart, D~C.& Taylor, R.H.
'Recent Develo~ments in SAIL- an Algol-based language for A.I.'.

Proc. AFIPS 1972 FJCC. pp 1193-1202.

~19] Galler, B.A. & Perlis, A.J.
'A Proposal for Definitions in Algol'.

CACH10,4. April 1967. pp 204-219.

- 178 -

[20] Gerhart, S.L.

'Correctness-Preserving Program Transformations'.

Free. 2nd Syt!lP.on Principles of· Frog. Iangs , t Palo Alto,
Jan. 1975. pp 54-66.

_[21] Gerhart, S.L.
'Knowledge about Programs: A Hodel and Case Study'.
Proo , Int. Conf. on Reliable Soft\vare, Los Angeles,

April 1975. pp 88-95.

[22J Gotlieb, C.C. & Tompa,F.H.
'Choosing a Storage Schema'.

Acta Informatica 3, 1974. pp 297-319.

[23] Henderson, P. & Snowdon, R.A.

'A Tool for Structured Program Development'.

Froc. IFIP Congress, St~ckholm. Aug. 1974. pp 204-207.

-[24] Henderson,P., Snm-Tdon,R.A.,Gorrie,J .D. & King, I.I.
'lli.e TOPD System'.

Univ. of l'Je"rcastle-upon- 'l'yne 'I'echnd caf, Report 77. Sept. 1975..

[25] Hoare, C.A.R.
'Notes on Data Structuring'.

In Da.hl,Dijkstm,IIoare 'Structured Programming'.
Academic Press 1972.

[26J Hoare, C.A.R.
'Proof of Correctness of Data Representations'.
Acta Informatica 1, 1972. pp 271-281.

[27] Hoare, C.A.R.
'Hints on ProgTamr.liIlg La.neuage Design'.
Stanford Univ. Report ST.AlT-CS-73-403.Dec. 1973.

[28] Jensen, K. & \1irth, N.

'PASCAL User HanuaJ.and Report'.
Lecture Notes in Comp, SCi. 18. Springer-Verlag 1974.

[29] Kant, E.
'The Selection of Efficient Implementations for a High-Level

Language , •

SIGP.LANNotices 12,8. Aug. 1977. pp 140-146.

- 179 -

[30] Kibler,D.F., Neighbors,J .H. & Standish, T.A.
'Program Hanipulation via an Efficient Production System'.
SIGPLANNotices 12,8. AW;. 1977. pp 163-173.

[31] Knuth, D.E.
'}1athematical Analysis of Algori thros'.

Proc. IFIP COngTess.Aug. 1971. PP I/135-I/143.

[32] Y.nuth, D.E.
'Structured Pro~ with tgoto' Statements'.

Comp.Surveys 6,4. 1974. PP 261-301.

[33J Liskov, B.
'A Note on CLU'.
HIT Complltation Structures GroupNemo 112-1. Nov , 1974.

[34] Liskov,B., Snyder,A., Atkinson,R. & Schaffert,C.
'Abstraction Hechanisms in CLU'.

CACH20,8. Au.e. 1977. pD564-576.

[35] Lis1:0V, TI. 6; Zilles, S.

I I:ro[,"I'a.tl!Iling,.,i th Abstract illta Types'.

SIGPL.ANl;otices 9,4. April 1974. pp 50-59.

[36] Liskov, B. & Zilles, S.
'Specification Techniques for Data Abstractions'.

~ Trans. on Softl·rare Engineering SE-1,1. 11arch 1975. PI' 7-19.

[37 J Lomet, D.B.
'Objects and Values: 'Ihe Basis of a Storage Eodel for
Procedttral Lanellages'.

IBl-T J. Res.& Dev , 20,2. Har-ch 1976. pp 157-167.

[38 J Loveman,D.B.
'Program I~Drovement by Source to Source Transformation'.

JACH24,1. Jan. 1977. pp 121-145.

[39] Lov1, J.R.

'Automatic Codins: ~1oicc of Data Structure'.

Stanford Univ. Re:port sr~T-CS-74-452. Aug. 1974.

[40] 1ovl, J. & Rovner, P.

'Techniques for the Automatic Selection of Data Strllctures'.

Proo, 3rd A(,'H Symp. on Frinciples of Prog, Langa; , Atlanta,
Ja.'I1. 1976. PP 58-07.

- 180 -

[41] l-1cOuskey,«.s:
'On Automatic Design of Data Organisation'.

Frec. AFlPS 1970 FJCC. pp 187-199.

[42J Mealy, G.R.
'Another Look at Data t ,

Froc. ~~PS 1967 FJCC. pp 525-534.

Hiddleton, A.G.

'A Structured Hodel of Programs for Analysing Time/Storage

Trade-Offs' •
SIGPLANNotices 9,9. Sept. 1974. pp 18-28.

[44J Naur, P. et.af.
'Revised Report on the Algorithmic Language Algol 60'.
CAm16,1. Jan. 1963. pp 1-17.

[45J Rosenschein, S.J. & Katz, S.lI.
'Selection of Representations for Data Structures'.

SIGPLANNotices 12,8. Aug. 1977. pp 147-154.

[46J Rovner, P.D.
'Automatic Representation Selection for Associative Data
Structures' •

Rochester Univ. Re:port TR10. Se:pt. 1976.

[47J Sch\ro.rtz, J. T.
'Automatic and Semiautomatic Optimisation of SETL'.

SIGP.LA.NNotices 9,4. A:pril 1974. :pp43-49.

[48J -Schwartz, J.T.

'Automatic rata Structure Choice in a Language of Very

High Level'.

CACf.118,12.De6. 1975. :pp 722-728.

[49] Standish, T.A., Kibler, D.F. & Heighhors, J .H.
'Improving and Refining Programs by Progran Hani:pulation' •

Proc. ACEConf., Houston, Oct. 1976. :pp 509-516.

[50J Strachey, C.
'Tmmrcls a Fomal SeBantics'.

In T.B.Steel 'Formal Language DeSCription L~lages',
North-Holland 1966. 1'1)198-220.

- 181

[51J Tompa, r.v,
'Evaluating the Efficiel10Y of Stora..ge Structures '.
Univ. of Uaterloo Report CS-75-16. Nay 1975.

[52J \-Talk, K.
'l!odelling of Stora.ge Properties .of Higher-Level Languages ",

Int.J. Comp.&Inf. Sci. 2,1. Harch 1973. pp 1-24.

[53J ".'legbreit, B.
'MecpAnical P.ro~ Analysis'.

CACH18,9. Sept. 1975. pp 528-539.

[54] I-Ieg-breit, B.

'Goal-Directed.Progr.Mu Transformation'.
Proc, 3rd SymP. on Principles of P.rog. l.angs., Atlanta,

Jan. 1976. pp 153-170.

[55] \feinberg, G.H.
'lli.e Psychology of Compu~er Programming'.
Van lTostrand Reinhold Co. 1971.

[56] \'licbmann, B.A.
'Algol 60 Compilation and Assessment'.

Academic Press 1973.

[57] 11ijngaarden, A.van. et.al.
'Report on the Algon thrrdc Language Algol 68'.
lfu:r!JerischeHathematik 14, 1969. :pp 79-218.

[58] \Olirth, N. & Hoare, C.A.R.
'A Contribution to the De-velopmentof Algol'.

CACI':I9,6. June 1966. pp 413-432.

[59J \fu.lf',~l.A., Russell,D.B. le Habermann,A.H.
'BLISS: a Language for Systems Programming'.

CACH14,12. Dec. 1971. pp 780-790.

[60J \'lulf',~:I.A.,London,R.L. & Shai'T,l'I.

'Abstraction and Verification in ALFHAIill:Introduction

to Language /!; lTethodology'.
USC-lSI Report ISI/RR_76-46. June 1976.

