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Abstract

This thesis is concerned with an investigation and evaluation of collocation

algorithms for solving two-point boundary value problems for systems of ordinary

differential equations. An emphasis is on developing reliable and efficient adaptive

mesh selection algorithms in piecewise collocation methods.

General background materials including basic concepts and descriptions of the

method as well as some functional analysis tools needed in developing some error

estimates are given at the beginning. A brief review of some developments in the

methods to be used is provided for later referencing.

By utilising the special structure of the collocation matrices, a more compact block

matrix structure is introduced and an algorithm for generating and solving the

matrix is proposed. Some practical aspects and computational considerations of

matrices involved in the collocation process such as analysis of arithmetic

operations and amount of memory spaces needed are considered. An examination of

scaling process to reduce the condition number is also presented.

A numerical evaluation of some error estimates developed by considering the

differential operator, the related matrices and the residual is carried out. These

estimates are used to develop adaptive mesh selection algorithms, in particular as a

cheap criterion for terminating the computation process.

Following a discussion on mesh selection strategies, a criterion function for use in

adaptive algorithms is introduced and a numerical scheme to equidistributing values

of the criterion function is proposed. An adaptive algorithm based on this criterion

is developed and the results of numerical experiments are compared with those using

some well known criterion functions. The various examples are chosen in such a way

that they include problems with interior or boundary layers.



In addition, an algorithm has been developed to predict the necessary number of

subintervals for a given tolerance, with the aim of improving the efficiency of the

whole process.

Using a good initial mesh in adaptive algorithms would be expected to provide some

further improvement in the algorithms. This leads to the idea of locating the layer

regions and determining suitable break points in such regions before the numerical

process. Based on examining the eigenvalues of the coefficient matrix in the

differential equation in the specified interval, using their magnitudes and rates of

change, the algorithms for predicting possible layer regions and estimating the

number of break points needed in such regions are constructed. The effectiveness of

these algorithms is evaluated by carrying out a number of numerical experiments.

The final chapter gives some concluding remarks of the work and comment on results

of numerical experiments. Certain possible improvements and extensions for further

research are also briefly given.
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chapter 1
Introduction and Preliminaries

1.1 General Background

Two-point boundary value problems associated with systems of linear and

nonlinear ordinary differential equations occur in many branches of mathematics,

engineering and the various sciences. In these problems, conditions are specified at

the endpoints of an interval and a solution of the differential equations over the

interval is sought which satisfies the given endpoint conditions. Since it is usually

impossible to obtain analytic solutions to the two-point boundary problems met in

practice, numerical approaches must be considered to tackle these problems. Here we

restrict our consideration to the collocation methods for solving first order system of

ordinary differential equations.

A fairly general first order system of n differential equations may be written in

the form:

x'(t) = f(t~(t)), a < t < b. . .. (1.1)

with a given linear constraint as the two-point boundary condition

BJ x(a) + B2 x(b) = fJ

Here x(t), f(t~(t)) and fJ are n-vectors; BJ and B2 are (nxn) matrices.

Throughout this thesis we confine our attention to first order linear systems of the

form

... (1.2)

x'(t) = A(t) x(t) + yet), a < t < b ... (1.3)

which for convenience will be expressed in linear operator form

Lx(t) == x'(t) - A(t) x(t) = yet) ... (1.3a)
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subject to the linear separated two-point boundary conditions

... (1.4)

in which A(t) is a given (nxn) matrix valued function and yet) is a given

n-dimensional vector. B, is an (mxn) matrix where m < n, and Bi, is an «n-m)xn)

matrix; these two matrices have constant elements. PI and Pz are fixed vectors

of size m and (n-m) respectively.

When nonlinear problem of the form (1.1) are encountered a choice of procedures

is available. Either non-linear algebraic equations are set up and solved by an

iterative procedure or the problem itself is linearised and solved successively. Even

though we are not going to examine further detail of these procedures in this thesis,

here we note that the Newton-Raphson-Kantorovich method as an example of the

second of the alternatives is widely used in practice. The convergence of this scheme

has been investigated by Kantorovich and Akilov [32]. Further discussion may also

be found in Roberts and Shipman [43].

1.2 Collocation Methods

In this section the collocation methods with global and piecewise polynomials

will be introduced, followed by initial consideration of the basic ideas in break points

placement for piecewise polynomials collocation methods.

1.2.1 Global and Piecewise Polynomial Solutions

Although the basic idea of the collocation method is very general, it basically

involves forming an approximate solution as a linear combination of a convenient set

of functions, the coefficients of which are determined by requiring the linear

combination to satisfy the boundary conditions and the differential equations at

certain interior points in the specified interval.

Suppose the boundary value problem (1.3)-(1.4) will be solved. Let Xq denote

the collocation solution which is required to satisfy the differential equation (1.3)

2
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exactly at q distinct points {~} and the boundary conditions (1.4). A set of points

{ ~k}, 1 ~ k ~ q, known as the collocation points is chosen distributed throughout

interval [a,b]. If Pi and If/i(t) denote constant coefficients and the basis functions

forming the approximate solution respectively, the collocation solution can then be

written in the form of a finite sum

z

Xq{t) = I Pi If/i (t)
;=1

... (1.5)

where z denotes the number of unknown vectors. Since there are n equations

formed by the boundary conditions, (qxn) equations generated at collocation points,

we in total have «q+ l)xn) equations, hence the number of unknown vectors is (q+1).

The constant vectors Pi = [Pil Pi2 ••• Pin]T, 1 ~ i ~ z. can be found by

collocating the differential equations (1.3) on the selected points {~}, which lead to

(qxn) equations satisfied by the constant vectors Pi, i.e.

zL Pi Llf/i{~k) = y{~),
;=1

l~k~q ... {1.6)

By constraining the approximate solution to satisfy the boundary conditions we

then have n remaining equations needed to determine the unknowns, namely

... (1.7)

Any polynomials such as simple powers, Chebyshev polynomials or Legendre

polynomials are an obvious and natural choice for the basis functions If/i{t). As

described in [32], Karpilovskaya considered and use some orthogonal polynomials

in particular the Chebyshev polynomials as the basis functions. This was followed by

an extended work carried out by Shindler and Vainiko as described in [46]. By

transforming the differential equation into an associated operator equation, they

showed that using the zeros of some orthogonal polynomials the collocation methods

3
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can be shown to converge and the rate of growth of the norms of such operators may

be obtained.

Some practical considerations and the application of the methods to nonlinear

problems using Chebyshev polynomials as the basis function have been investigated

by a number of researchers, for example Clenshaw and Norton [15] and Wright [54].

Cruickshank and Wright [18] have intensively used Chebyshev polynomials In

investigating some computable error bounds for collocation solutions.

So far, we have introduced the collocation methods which use one polynomial

formed by linear combination of certain basis functions to represent the solution over

the whole range [a,b]. These methods which are the so called global collocation

methods have been shown to be considerably reliable algorithm for solving some

kind of problems [12,15,17]. Further work in numerical analysis has generally

suggested that using piecewise polynomial functions lead to better convergence

results and simpler proofs than using global polynomials. Particularly the piecewise

collocation methods have great flexibility in placing the collocation points to

accommodate the cases where the problems behave badly in some regions.

To construct a piecewise collocation solution, firstly the interval [a,b] is

subdivided into a number of subintervals, not necessarily of equal size, to form a

partition

1tw : a = tl < t: < t3 < ... < tw < tw+1 = b ... (1.8)

where w denotes number of subintervals. In each subinterval (tj, tj+I), 1 Sj S w, the

solution is approximated by xWq[j), a linear combination of certain basis functions, by

requiring it to satisfy the differential equation (1.3) at a set of q distinct points

{~j} c [tj, tj+d, 1 S k S q, as in the case of global collocation methods. For

simplicity, the collocation points are chosen to be distributed in the same way in each

subinterval.

The piecewise approximate solutions xwq[j) form an approximate solution for

whole range [a,b] and let Xwq denote this approximate solution. Obviously, the

piecewise polynomial function Xwq is required to satisfy the boundary conditions

(1.4). Moreover Xwq is also required to be continuously matched (like the exact

4
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solution) on the break points {tj}, 2 ~ j ~ w. Such restrictions will be called the

continuity conditions.

By expressing the piecewise polynomial collocation solution as

z
Xwq(t) = L PiUllfl;(t),

;=1

tj ~ t~ tj+l, i= 1,2,3, ... ,W ... (1.9)

the unknown vectors PiUl can be found by solving the linear system generated by

• n boundary conditions

Ba xwq(a) = PI
Bb Xwq(b) = /h.

• n(w-1) continuity conditions

xwqU-ll (tj) = xwqUl (tj), j = 2,3, ... ,w

• nqw collocation conditions
zL Pi[j]LIf/;(gej) = Y(9cj),
;=1

1~ k ~ q, 1~j ~ w

Piecewise collocation methods not only allow great flexibility in placement of the

collocation points but also provide a wider choice of basis functions. Ahmed [1],

Gerrard [26] and Seleman [48] in their theses have used local Chebyshev

polynomials. The use of B-Spline can be found in Ascher et al. [8], de Boor [22] and

Dodson [24]. Hermite polynomials were used by de Boor and Swartz [23]. Ascher

et al. [8] also used monomial basis functions and further application of this kind of

basis can be found in Ascher [6] and Ascher et al. [10].

As mentioned earlier, to guarantee the convergence of the global collocation

methods the collocation points should be chosen from known orthogonal

polynomials. In most references mentioned the collocation points are either the zeros

of Chebyshev polynomial (Chebyshev zeros) or the zeros of Legendre polynomials

(Gauss points). A discussion of piecewise collocation based on Lobatto and Radau

points can be found in Ascher and Bader [7], while Wright [56] considered the use of

zeros of the ultra-spherical polynomials which is a generalisation of the choice of

collocation points which includes Chebyshev and Gauss points.

5
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1.2.2 Adaptive Mesh Selection Algorithms

There are some problems of the form 0.3) in which a collocation method using

only uniform meshes will be either inefficient or it will not work at all. In this

category will be most problems whose solutions (or their derivatives) have very sharp

gradients such as problems with boundary layers.

Choosing a good mesh is essential if a method is to be efficient, in the sense a

sufficiently accurate solution should be obtained as inexpensively as possible, for

problems with solution having a narrow region of rapid change such as occur even

for the very simple problems of this type.

Since the collocation methods on a computer involve repetitions of some

computation processes to achieve a desired approximate solution, two issues arise.

Firstly a reliable strategy in choosing the break points in a mesh is needed; secondly

a good initial mesh to start the collocation process is also important. The first issue

corresponds to adaptive mesh selection, where the approximate solution and the

mesh are repeatedly updated until prescribed error criteria are deemed satisfied. The

second one relate to initial consideration of the problem itself, possibly by a

preliminary mathematical analysis, for instance an initial solution profile can be used

to construct an initial mesh, the stiffness may give some hint that in some regions we

should place more points than other regions.

Despite the tremendous importance of mesh placement strategies in collocation

methods, very little has been carried out about the problem of choosing those

nonuniform meshes in the way most adequate for a given problem. Beside the most

outstanding contribution of de Boor [22], the other references include Ahmed [1],

Russell and Christiansen [45], Seleman [48] and Wright et al. [60].

1.3 A im

This thesis is primarily concerned with developing some reliable, in terms of

accuracy and efficiency, collocation algorithms for solving boundary value problems

for system of ordinary differential equations. In particular we shall investigate a

6
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variety of mesh selection strategies for piecewise collocation methods. An efficient

criterion function to be used in adaptive mesh selection algorithms will be introduced

and some results of numerical comparisons will be discussed, followed by drawing

some conclusion.

When attempting to develop an adaptive mesh selection algorithm, at least we

deal with the process of

• choosing an initial mesh

• setting up and solving system of linear equations

• constructing a new mesh for the next stage

• a criterion for terminating the process.

In this work all the above will be considered in detail, and some discussion and

evaluation based on numerical experiment will be presented.

Some error estimate processes based on consideration of the differential operator

involved and on the residual will be evaluated in numerical experiments. One of

these estimates will then be used in constructing a new mesh and for terminating the

computation process.

1.4 Structure of the Thesis

In chapter 2, the boundary value problem of the form (1.3) is transformed and

defined in operator form. This enables us to relate it to the theory of the projection

method needed in developing our work. Subsequently, a brief review of recent

developments in collocation algorithms is presented.

Chapter 3 deals with developing algorithms for solving the system of linear

equations generated in the collocation process. Some computational considerations

such as column scaling schemes for reducing the condition number of the matrix

involved in the equation system will be examined and some practical results will be

displayed and discussed. Analysis of arithmetic operations and amount of memory

needed for both full matrix representation and developed block matrix are considered

and then followed by carrying out numerical comparisons.

7
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Some numerical evaluations of the error estimates are presented in chapter 4.

Particular attention is given to boundary value problems having severe layers, from

which we observe the reliability of the error estimates when dealing with these

problems.

Chapter 5 consists of investigation of some adaptive mesh selection algorithms

and their numerical comparisons. Firstly we present some basic concepts used in

adaptive mesh selection algorithms, followed by discussing some well established

algorithms. We then introduce the rh, criterion function including the motivation for

using it, and developing special numerical scheme to equidistribute the terms rihi in

mesh placement algorithms. Finally, a comprehensive numerical comparison is

carried out.

A possibility of using multiple interval increment/decrement in mesh selection

algorithms is introduced in chapter 6. The developments discussed here are based on

results of chapters 4 and 5.

In chapter 7, we introduce some possibilities in determining location of the layer

regions based on consideration of behaviour of the eigenvalues of the matrix in the

differential equations. This is followed by introducing an algorithm for estimating the

width of layer regions and determining an initial mesh in the layer regions.

Finally, the last chapter gives some concluding remarks and final notes. These

lead to some possibilities in further improvement and extension.

It is now convenient to state that a variety of algorithms developed in this work

were implemented in g++which is a free C++compiler provided by GNU Project. All

computations were performed in double precision arithmetic on a PC based on Intel

Pentium" ill 650MHz processor with 256 MHz RAM running Linux Mandrake TM 7.1.

Some graphical illustrations were generated using MATLAB® 5.2. running on

Microsoft Windows® 2000.

8



chapter

Review of Some Developments
in the Collocation Methods

2.1 Introduction

As we have mentioned in the previous chapter we are principally concerned with

the practical aspects in developing collocation algorithms. However much of the

argument which we need to justify our developed algorithms utilise and make use

some theoretical aspects of the collocation methods. These background materials

involve a variety of areas in numerical analysis, as well as some functional analysis

tools in addition to ordinary differential equation theory.

In this chapter, we first introduce the theoretical background for certain operator

equations and their approximate solution. Most of the results are well known but are

included for completeness. Based on these results the collocation method can be

considered as projection method from which some properties may be deduced.

Following discussion on the relationship between the projection and the collocation

method we provide a brief survey of some development in the theory of these

methods as a convenient review for later referencing.

A model problem we will consider is a linear system of n first order differential

equations of the form

x'(t) = A(t) x(t) + yet), a < t < b ... (2.1)

subject to the general form linear two-point boundary conditions for a first order

system

B, x(a) + Bb x(b) = P ... (2.2)

here Ba and Bb E R'?" and P E R". It is notable that, even though in all our work

the boundary conditions considered are in the separated form, there is no difficulty to
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convert a problem with condition of the form (2.2) to the separated one. A simple

trick to do this can be found in Ascher et al. [10], though it does double the size of

the system.

2.2 Collocation and Projection Method

To examine the relationship between the collocation and the projection method

we need to introduce some concepts and notations usually used in functional

analysis. A nice book of Moore [38] provides a practical approach to the theory of

functional analysis and contains those basic concepts.

Let X and Y be nonned linear spaces and suppose 11.11 x and 11.11 y denote the

norm in X and Y respectively. Let [X,y] denotes the space of bounded linear

operator mapping X ~ Y with subordinate norm. Suppose we are given an equation

of the form

Fx = y ... (2.3)

where F E [X,y], yE Y. The equation (2.3) is to be solved for x E X.

Since it is not always possible to solve (2.3) analytically, a numerical method

should be considered to approximate (2.3). Le.

F s = y ... (2.4)

should be solved for x, where x E X C X and y E feY, F E [X ,f].

Let qJ be a projection from Y ~ f, i.e. ~Y) = f = ~f). With this

background we now define a projection method as a method in which an approximate

solution for equation (2.3) is sought to satisfy an equation in the form

~Fx-y) = 0 ...(2.5)

In words, we can say that for any approximate solution x to problem (2.3) the

value of (F x - y), known as the residual, should be made to be as close to zero as

possible (since this is so for the true solution) and the projection methods require the

approximate solution x to satisfy the condition that the corresponding residual is

mapped to zero under the influence of the projection method.

10
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Having introduced the projection method in general setting, it is now

demonstrated that collocation process can be viewed as a projection method.

As described in detail in chapter 1, the basic idea of collocation methods has great

generality and simplicity. Given a system of ordinary differential equations which

can be written as an operator equation and its associated boundary conditions, an

approximate solution is then sought in the form of a linear combination of some basis

functions. The coefficients in the linear combination are found by substitution into

the equation, then by satisfying the boundary conditions and the differential equation

at certain distinct points. The number of collocation points is chosen so that the

number of generating equations is equal to the number of unknowns.

Suppose a collocation solution for problem (2.1) in the form

~
xq(t) = L Pilf/i (t)

i=1

... (2.6)

is sought by requiring xq(t) to satisfy the boundary condition (2.2) and the equation

(2.1) exactly at a set of distinct points {Q}, 1 ~ i ~ q. Let f/Jq be the projection

from Y 7 Y mapping each continuous function using interpolation at the

collocation points {Q}. This means that for a continuous function y, f/Jq y can be

expressed as a combination of q basis functions for Y and is such that

Since the method requires that the approximate solution xq(t) exactly satisfies the

differential equation at the collocation points. Le.

x~ (Q) - A(Q ) Xq(Q) - Y(Q) = 0, 1s i s q ... (2.7)

By rewriting (2.1) as

Lx(t) == x'(t) - A(t) x(t) = y(t) ... (2.8)

then equation (2.7) can be written

11



Chapter 2 Review of Some Developments in the Collocation Methods

This means that the polynomial of degree (q-l) interpolating the residual at these q

points must be identically zero, i.e.

.. .(2.9)

It is clear that the approximate solution Xq satisfies an equation of the form (2.5)

showing that we have indeed a projection method. Even though we have shown this

fact in this fairly specific case, but the collocation method is in fact a projection

method under very general circumstances. For further details can be seen in [17]

and [26].

As mentioned in the previous chapter, Karpilovskaya described in [32], Shindler

and Vainiko described in [46] have considered and use some special polynomials as

the basis functions in the global collocation methods. In their analysis the differential

equation is transformed into an associated operator equation, the collocation

condition then turns out to be equivalent to a projection of the operator equation into

finite dimensional subspace. It is also described in [46] that despite of classical result

of Natanson saying that the projection operator cannot be uniformly bounded, by

using the special case of interpolation at the zeros of some orthogonal polynomials

the collocation methods can be shown to converge and the rate of growth of the

norms of such operators may be obtained.

2.3 Error Bounds for Collocation Solutions

The result in the previous section in which it is shown that the collocation

methods may be viewed as projection methods is the starting point to theoretically

obtain some error bounds. Concepts in functional analysis are other important tools,

though this will not be discussed in detail here.

The following analysis is related to work of Anselone [5], Cruickshank [17],

Kantorovich and Akilov [32], and Phillips [41].

To be more consistent in using notation, let Xq and Yq be subspaces of the

normed linear spaces X and Y respectively and let ({Jq denotes linear projection

12
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Y ~ Yq. So far, there is no restriction in dimensionality, here the subscript q

indicates the dimension of subspace Yq•

In the following discussion we are concerned with the operator F defined in

equation (2.3) which may be split into two parts

F = D - M ... (2.10)

where the operator D denotes the differentiation operator which is assumed to be

invertible, i.e. there exists D-1 E [Y,X]. In certain circumstance F may be deduced

to be invertible as well. Note that equation (2.3) may now be written as

(D-M)x = y ... (2.11)

and equation (2.9) becomes

or
rpq(Dxq - MXq - y) = 0 ... (2.12)

It is assumed that rpqDxq = Dxq" i.e. D is defined in Xq establishes a bijection

between Xq and Yq = rpqY. Hence equation (2.12) can further be simplified

(D - rpqM) Xq = rpqY ... (2.13)

An illustration of the concept described can be drawn as follows

(D-M)

x (D-rpqM)

(D - rpqM): Xq ~ Yq

Y

(D -M): X ~ Y.

13
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For the purposes of analysis it is convenient to work in terms of the functions

U = Dx and uq = Dxq, which satisfy the equations

(/ -K) U = Y ... (2.14)
and

(/ - ((JqK)uq = ((JqY

where I denotes the identity operator and K =MD-I.

... (2.15)

Let the residual be defined as

rq = (/ - K) uq - Y ... (2.16)

then the error e« = (uq - u) in uq is related to rq by

... (2.17)

and the error in Xq is related to e, by

D-IXq-X = eu ... (2.18)

so that once a bound on 11(/ - K)-I II has been obtained, (2.17) can be used to bound

II eu II and bound for the error can be obtained from (2.18).

By considering the collocation method as projection method and applying

Anselone's proposition [5]

(/ _K)-I = / + (/ -K)-IK

a bound on II (/ - K)-III can be related to bound on projection operator II (/ - ((JqK)-III
by

if ... (2.19)

In [18] Cruickshank and Wright consider the mIll-order linear differential equation

of the form

m-I

x(m)(t) + L p/t)x(j)(t) = yet),
j=O

a <t c.b

with m associated boundary conditions. This may be written in operator form

14
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(Dill- M)x = y

where Dill denotes the differential operator (DlIlx)(t) = d
m

x(t).
dtm

In the paper they discussed how to bound the norm of the operator (I - rpqK)-! by

relating it to the matrix used in the numerical solution of the original problem. They

also analysed some other quantities needed to establish a bound on II(I - K)-!II.
Further investigation by Wright [56] where he introduced certain matrix called

matrix Wq which is related to q-point global collocation solution of mth-order

differential equation. The Wq is related to the associated collocation matrix using

Wq = CoC!

where Co is the collocation matrix corresponding to Dill and C is that of (Dill-M).

It was shown that if the zeros of certain orthogonal polynomials are taken as the

collocation points, then the matrix Wq has maximum norm which tends, as q ~ 00,

to the maximum norm of the operator (I - K)-! related to the differential equation.

In similar spirit, for piecewise polynomial collocation with w subintervals

Gerrard and Wright [27] shown that under suitable conditions if the maximum

subinterval size tends to zero as w ~ 00, the norm of certain matrix Wwq related to

q-point piecewise collocation solution of mtll-order differential equation, tends to the

norm of (I - K)-! .

An extended analysis of Ahmed and Wright [2] in which they considered the

related operator in the form (D - M) rather than (I - K) as in equation (2.16)

resulted in introducing certain matrix Qwq. In the paper the matrix Qwq is defined as

the matrix that maps the right hand side values into solution values where the right

hand side is evaluated at the collocation points while the solution is evaluated at a set

of points which, for simplicity, could be the collocation points. The results suggest

direct estimates for the error in the solution rather than the use of the mtll derivative as

an intermediate stage. Under some assumptions it is shown that the norm of this

matrix tends to the norm of (D - M)-!, provide either q ~ 00 or q fixed and w ~ 00.

15
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2.4 Brief Review of Some Other Developments

In early 1970's, Russell and Shampine [46] analysed a class of collocation

methods for the numerical solution of BVP for a higher order ordinary differential

equations. They considered existence and uniqueness of a collocation solution for

single higher order ordinary differential equations, and the convergence of such

solution as h tends to zero. Here h denotes the maximum subinterval size of the

partition rt, Moreover, their results also indicate that the solution of an mth order

linear ordinary differential equation can be approximated to within O(lhlk) by

collocation when using spline function of order (m+k) on a partition Tt and the

solution is in er». Their estimate is to be compared with error of O(lhlk+m) often

achievable with the same spline spaces using certain other projection methods, such

as Galerkin's method, the least square method and certain of its variants.

Russell and Shampine's work was extended and supplemented by a number of

ways, for example de Boor and Swartz [23] shown the same order of convergence

O(lhlk+m) can be achieved by collocation with spline function in em-I) using zeros of

the Legendre polynomial (Gauss points) relative to each subinterval as the

collocation points, provided the differential equation is sufficiently smooth.

Furthermore, at the end of each subinterval additionally convergence order called

superconvergence order, i.e. an order of convergence higher than the best possible

global order, is also achieved. In [23] it was shown that the approximation is

O(lhI2k) accurate at these points.

While the concept of stability plays important rule for initial value problems as a

description of asymptotic behaviour (t ---t 00), sensitivity of boundary value

problems on a finite interval is more appropriately described in terms of conditioning

which is closely connected with concept dichotomy. Details discussion of these can

be referred to [10] and [11]. An interesting paper of Swartz [50] discusses, in

particular, the conditioning of collocation matrices.

Ascher and Bader [7] considered stiff problem and carried out some comparisons

using Gauss, Lobatto and Radau points. One of important results in the paper is that
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using collocating at Gauss points give better results. Also when solving certain very

stiff boundary value problems there is a reduction in the superconvergence order of

Gaussian collocation points, and no such order reduction is present for collocation

with Lobatto or Radau points.

We have mentioned stiffness without looking in further detail. Stiffness cannot be

defined in precise mathematical terms in a satisfactory manner, even for restricted

class of linear constant coefficient systems [36]. However, for our purposes,

qualitatively a boundary value problem is said to be stiff if its solution rapidly

change in some narrow regions. Stiffness has close connections with singular

perturbation problems; indeed system exhibiting singular perturbation can be seen as

a sub-class of stiff system [36]. Solving these problems with collocation have been

widely discussed and references include Ascher and Weiss [9], Kreiss et al. [34,35],

Russell and Shampine [47]. More general approach in solving such problems can be

found in Aitken (ed.) [4], Ascher and Russell (eds.) [11], Hemker [29], Hairer and

Wanner [31].

Another important issue is how to choose the basis function If/i(t) so as to obtain

an efficient and stable method. In series of Wright's papers and his PhD student's

works the Chebyshev polynomials have been intensively used as basis function. The

other references include Ascher at al. [8] and Clenshaw and Norton [15] . Notes on

applied computing by the National Physical Lab. [39], Fox and Parker [25]

summarise the properties of these famous polynomials and indicate their use in

numerical analysis. The choice of B-Spline basis representation motivated primarily

by the fundamental work of de Boor and Swartz [23] has been increasingly popular,

for example Ascher et al. [10] provide a general purpose code for solving boundary

value ordinary differential equations. Despite the popularity of B-Splines including

their utility in approximation problems such as surface fitting and curve design, some

doubt has been expressed as to their suitability for solving differential equations,

especially when low continuity piecewise polynomials are used. With this motivation

Ascher et al. [8] carried out some comparison of various representation of the

solution. A notable point of their work is that using Chebyshev series representation

17
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is recommended since experimentally it produces roundoff errors at most as large as

those for B-splines, and it is much easier and shorter to implement. Moreover it is

slightly cheaper than the others.

Most of the references mentioned deal with single higher order differential

equations though some of them theoretically consider a general form of first order

system of differential equations. Some theoretical and practical considerations for

system of differential equations has been made by Russell [44].

A discussion of block matrix structures arising in the discretisation of a given

boundary value problem can be found in Ascher et al [10], where they considered

general banded matrices arise when one is solving a boundary value problem using

multiple shooting or finite difference scheme. While in [58] a parallel treatment of

some matrices in the solution of boundary value problems is discussed and some

numerical comparisons are presented.

As mentioned in the previous chapter, very little has been added about the

problem of choosing those nonuniform meshes in the way most adequate for a given

problem. By utilising the matrix Qwq mentioned in §2.3, Ahmed [1] introduced the

use of such matrix in adaptive mesh selection algorithm. The algorithm works well

for problems having smooth solutions, however the algorithm is very expensive since

it involves forming for the inverse of the collocation matrix. The work of Seleman

[48] tried to reduce the cost by developing some modified algorithms, but the cost is

still fairly high. In [48] an algorithm based on an error estimate is also introduced.

This error estimate is obtained by multiplying two polynomials, one representing the

residual and the other approximating the Green's function at collocation points.

Numerical results indicate that this algorithm performs better than those using the

matrix Qwq, however, again the computational cost is not cheap. For further

references, two comprehensive reviews of some developments in error estimation

and mesh selection for collocation methods illustrated with some results of numerical

experiments can be found in [57] and [59].

The most recent work published by Wright et al. [60] introduce some subdivision

criterion functions developed by taking into account the influence of the behaviour in
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one subinterval on the error in others. They show that the algorithms developed do

work well when the solution is sufficiently smooth. Unfortunately, their numerical

experiments also indicate that the most sophisticated criterion function, SINFLB,

gives very poor results when severe layers are present.
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chapter

Developing Algorithms for
Solving the Collocation Matrix

3.1 Introduction

We shall consider the linear system of n first order differential equations of the

form

x'(t) = A(t) x(t) +yet), a «t c b ... (3.1)

subject to the linear separated two-point boundary conditions

... (3.2)

in which x(t) and yet) are n-dimensional vectors. A(t) is an (nxn) matrix valued

function. Ba and Bb are (mxn) matrix and ((n-m)xn) matrix respectively, where

m < n. PI and /h. are fixed vectors of size m and (n-m).

Suppose the partition:

where w denotes number of subintervals, is chosen and we wish to compute a

piecewise approximate solution of the boundary value problem (3.1)-(3.2) using q

collocation points in each subinterval. In each subinterval [tk ,tk+d, the q collocation

points are determined by

):,'k = tk + tk+1

2
- tk (1+ ):,.), where l' 12k 1 2~, ~, = , , ...,q; =, , ...,w.

{ ;;"}, i = 1, 2, ... , q, denote the chosen reference points in interval [-1,1]. In

principle, any point in [-1,1] can be taken as reference points, though they are

particularly chosen as the zeros of either Legendre polynomials (Gauss points) or

Chebyshev polynomials (Chebyshev zeros/points).
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After carrying out the discretisation process to the boundary value problem (3.1)-

(3.2) over the partition 1tw we then encounter the need to solve a large, staircase form,

system of linear equations

Cp = g ... (3.3)

here, matrix C and vector p will be referred as the collocation matrix and the

parameter of collocation process respectively.

In this chapter, firstly we shall studysome numerical considerations in solving the

collocation equations, specifically, some column scaling scheme will be examined

and implemented to observe the numerical behaviour. Secondly we shall examine

some well-known techniques in setting up the collocation matrix and, finally,

followed by discussing some proposed algorithms to construct and deal with the

special structure of the collocation matrix.

Gaussian elimination with partial pivoting works very well in practice, even

though an accurate solution is not absolutely guaranteed, in the sense there exist ill-

conditioned systems that simply can not be solved accurately in the presence of

roundoff errors. A more accurate algorithm can be guaranteed, if the complete

pivoting strategy is employed in the algorithm. The theoretical superiority of

complete pivoting over partial pivoting is discussed in detail in [28] and [51].

In spite of the theoretical superiority of complete pivoting over partial pivoting,

Gaussian elimination with partial pivoting is much more widely used for some

reasons, firstly it works very well in practice, and secondly it is much less expensive.

Hence, the Gaussian elimination with partial pivoting will be used as basic tool for

solving the linear system (3.3).

3.2 Computational Consideration of Collocation Matrices

In this section, some relationship between the condition number of a matrix and

column scaling operations will be highlighted. The column scaling operation

particularly developed for collocation matrix will also be described in some details.

Finally, a number of illustrative numerical results are presented.
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3.2.1 Scaling Operation and Condition Number

The condition number K(C) of any non-singular matrix C is defined as IIclill c'].
The condition number K(C) provides a simple but useful measure of the sensitivity of

the linear system Cp = g. If K(C) is large we say that C is ill conditioned.

It is well known that any matrix that has columns whose norms differ by several

orders of magnitude is ill conditioned. The same can be said of the rows. Thus a

necessary condition for a matrix to be well conditioned is that the norms of its rows

and columns be of roughly the same magnitude.

Any equation in linear system (3.3) can be multiplied by any nonzero constant

without changing the solution of the system. Such operation is called a row scaling

operation. A similar operation can be applied to the columns of matrix C. By contrast

this so called column scaling operations do change the solution, hence an appropriate

descaling operations needs to be carried out afterward.

Although the rows and columns of any matrix can easily be rescaled so that all

rows and columns have about the same magnitude, there is no unique way of doing

it. This suggests that a particular matrix may need some special treatments such that

its condition number reduces.

Gaussian elimination with partial pivoting, although not unconditionally stable, is

stable in practice. Therefore, this could guarantee that if the collocation matrix is well

conditioned then this method will solve the linear system (3.3) accurately.

In studying the methods for solving linear systems, some linear systems are ill

conditioned simply because they are out of scale, this turns out that scaling

operations are necessary since these operations may affect the numerical properties of

a system.

This section contains the work on column scaling of collocation matrices. Firstly

we consider the simple full matrix resulting from implementation of the global

collocation method, then it is followed by considering the column scaling process for

piecewise representation.

Let an approximate solution Xq of boundary value problem (3.1)-(3.2) for global

collocation method be written as follows
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z

Xq = I Pi If/i(t)
;=1

... (3.4)

where Pi = [pi] Pi2 ••• Pin]T and { If/i} are the unknown vectors and certain

polynomials of degree (r-I) respectively.

In the collocation process, the linear system generated will be in the form

[C](nzXnz) . [Pl<nzXI) = [g] (nzXI) ... (3.5)

where

C is a matrix associated with the collocation, continuity and boundary conditions

g is a column matrix, associated with the right hand side of equation (3.1)

P represents the unknown parameters of the collocation process which is a

column matrix, the solution of the linear system Cp = g.

In the discretisation process, for convenience the elements of the collocation

matrix C and parameters Pi are arranged such that they have the form

Pi
P2[cl (nzXnz) =

Pil

Pi2where Pi = 1s i $ z

Pz (nzXl) gz (nzXl) Pin (nXl)

Looking at the parameter P = [PI I PI2 ••• PIn 1 P21 P22· •• P2n 1 ... 1 PzI P'l2··· pznf,

we can see that the blocks [pi] Pi2 ... Pin], 1 $ i $ z, correspond to the (i-l)-degree

of polynomial If/i, hence elements of the matrix C associated with these blocks will

be treated in the same way.

The column scaling operation will be applied to the collocation matrix C by

multiplying C with block diagonal matrix D(nzXnz) = diag(dj), j = 1, 2, ... , Z, to

give

d1 0
o d2

[cs] (nzXnz) = [c] (nzXnz)

o
o

o 0 dz (nzXnz)

where dj are diagonal matrices of form
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0 0JSC
0 0

dj = lC

0 0 0 le
(nXn)

se is the scaling parameter and it is an integer. Here, 0 denotes square zeros matrix

Diagrammatically, the column scaling process will look like:

1/(1 SC) 1/(2SC) 1/(ZSC)

~ A\ 4\
x x x x x x x x X PII
X X X X X X X X X PI2

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

X X X X X X X X X

x x
x x

x x x
x x x

x
x

x x xx x x

x x
x x

x
x

PzI

Pz2

x x x PZIl

For the piecewise representation similar scaling is applied such that all elements

of the subintervals corresponding to the same order of polynomial representation are

treated in the same way.

Let xwqUl be the collocation solution for l-subinterval and it can be written as

linear combination of basis functions If/; as follows

XwqUl = :t PiU] If/i(t) ,
i=1

24
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where j = 1, 2, 3, ... w; w is number of subintervals and t is the independent

variable in the lh-subinterval and PiU] = [PilU] PiZU] ... PinU] ]T. Note that the

unusual notation for the additional index [j] which appears in vector PiU] is for

clarity since Pi itself is a vector.

The collocation parameter P then has the form :

P = [P1[1] PZ[I] ... Pz[l] I PI[Z) PZ[Z) .•• Pz[Z)

<:> <:>
I PI[w] PZ[w) ... Pz[w)]T

corresponding to: 1st -subinterval 2nd-subinterval w'h-subinterval

Elements of the collocation matrix C associated with the elements of P will be

treated in the same ways as follows:

where i = 1,2,3, ... , z; j = 1,2,3, ... , n; k = 1,2,3, ... , w.

3.2.2 Some Results of Numerical Experiments

For illustration we employ such column scaling operation in the collocation

algorithm for solving the following boundary value problems.

Problem 1 :

[
X;] [0 I O][XI]
x~ = 0 0 I x2 +
x3 I -t 0 x3

-1 < t < 2

BCs : xl(-l) = e-I + 1; xz(-l) = e-I - 3; xl(2) = eZ
- 8

Problem 2:

These two problems have smooth solutions and their coefficient matrices vary

slowly in the specified intervals. Nevertheless, since problem 2 is an almost singular

BVP we may expect that they have some different behaviour when column scaling

treatment is applied in numerical experiments.
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Tables 3.1a, 3.1band 3.1e display some results of numerical experiments for

problem 1. Here, se stands for scaling parameter; Ch, Ga, Cex, Eq indicate the type

of collocation points used, i.e. Ch and CEx are respectively indicating that

Chebyshev and Chebyshev extrema points are used; Ga is Gauss Point and Eq stands

for equi-spaced points.

Table 3.1a shows the condition number K(C) for global collocation matrix with

various types and numbers of collocation points. The results demonstrate the

superiority of the Gauss points over the others, in the sense that using Gauss points

the collocation matrices without column scaling operation have the condition

numbers K(C) smaller than to those using the others. However, the collocation

method using Chebyshev points generate matrices in which their condition numbers

are reasonably close to those using Gauss points. Nevertheless, it seems that if

column scaling operation is applied to the collocation matrices then the collocation

algorithm using Gauss points is a little bit better than those using Chebyshev points,

in which using Gauss points with scaling parameter se = 1gives the similar results to

those using Chebyshev points with scaling parameter se = 2. Perhaps, the most

notable observation from this table is that the collocation algorithm using equi-

spaced points produces a collocation matrix which has a very large condition number

K(C). For example, with 40 subintervals using equi-spaced points K(C) is in

order 1013 while using Gauss and Chebyshev points they are in order 104 . In this

case, although the column scaling operation is able to reduce the condition numbers,

they are still reasonably large.

Table 3.1b and Table 3.1e show some results of numerical experiments for

piecewise collocation method using Chebyshev zeros and Gauss points respectively.

These results indicate that in most cases we need to increase the scaling parameter se

if the number of subintervals w increases. Increasing the number of subinterval and

number of collocation points will result in a need for larger scaling parameters. In

comparing Table 3.1b and Table 3.1e, the results clearly show that significant

reduction are made in both case. Further more, it is observed that collocation at the

Chebyshev points need larger scaling parameters to reduce the condition number
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K(C) compared to those using Gauss points. It is also observed that without column

scaling operation the condition numbers for Gauss collocation points are smaller than

those collocation at Chebyshev points.

For problem 1 it is observed that reducing the condition number is not necessarily

reducing the global error. It is important to realise that truncation error usually

dominates roundoff error when one is using collocation methods for solving BVPs.

However, numerically, we often, but not always, encounter cases where reducing the

condition number may result in improving the accuracy of the collocation solutions.

Problem 2 which is an almost singular BVP exhibits some interesting numerical

results in Table 3.2. As shown in this table, the results indicate that employing

column scaling may result in not only reducing the condition number K(C) but also

improving the accuracy of the solution.

Though it is still not clear how to choose a sensible scaling parameter se without

calculating the condition number of the collocation matrix, the numerical results

indicate that in all cases taking se = 1 or se = 2 will result in reducing the condition

number. In addition, Table 3.2 shows that in most cases if se is taken to be one or

two the accuracy improves by a small but significant amount. This suggests that it is

reasonable to take either se = 1 or se = 2 if one simply wants to employ scaling on

collocation matrices without doing massive computation task.
Table 3.1a

(Condition Number- Global Representation)
No of Collocation Points

Se Iq -+ 3 5 7 10 12 15 20 30 40
Ch 0 6.183e+01 1.864e+02 4.092e+02 1. 036e+03 1. 703e+03 3.180e+03 7.23ge+03 2.358e+04 5.503e+04

5.984e+01 1.138e+02 1. 775e+02 3.107e+02 4.232e+02 6.306e+02 1. 077e+03 2.355e+03 4.150e+03
7.700e+01 1.062e+02 1. 252e+02 1.551e+02 1.748e+02 2.174e+02 3.476e+02 7.027e+02 1.193e+03

3 1.610e+02 2.37ge+02 3.583e+02 6.277e+02 8.585e+02 1.27ge+03 2.275e+03 5.223e+03 9.56ge+03, 5.542e+02 1. 231e+03 2.394e+03 5.561e+03 8.816e+03 1.578e+04 3.434e+04 1. 07ge+05 2.571e+05

Ga 0 4.825e+01 1.183e+02 2.334e+02 5.354e+02 8.42ge+02 1. 512e+03 3.30ge+03 1. 03ge+04 2.385e+04

5.206e+01 8.540e+01 1. 214e+02 1.904e+02 2.454e+02 3.44ge+02 5.528e+02 1.133e+03 1. 936e+03
8.467e+01 1. 250e+02 1.791e+02 3.026e+02 4.107e+02 6.18ge+02 1.100e+03 2.544e+03 4.773e+03

3 2.671e+02 5.462e+02 9.890e+02 2.056e+03 3.057e+03 5.044e+03 9.831e+03 2.72ge+04 5.751e+04, 9.805e+02 2.905e+03 6.857e+03 1. 913e+04 3.321e+04 6.644e+04 1.666e+05 6.301e+05 1.726e+06------------------------------------------------------------------------------------ --_----------------------
CEx 0 9.666e+01 2.680e+02 5.693e+02 1. 397e+03 2.278e+03 4.214e+03 9.518e+03 3.07ge+04 7 .165e+04

1 8.131e+01 1.46ge+02 2.261e+02 3.898e+02 5.305e+02 7.876e+02 1. 342e+03 2.928e+03 5.152e+03
2 9.25ge+01 1. 216e+02 1. 418e+02 1. 740e+02 1.965e+02 2.563e+02 4.168e+02 8.546e+02 1.457e+03
3 1.707e+02 2.372e+02 3.122e+02 5.784e+02 8.106e+02 1. 264e+03 2.352e+03 5.572e+03 1.028e+04

5.087e+02 1. 05ge+03 1. 965e+03 4.493e+03 7.124e+03 1. 316e+04 3.090e+04 1. 087e+05 2.634e+05
---- - - -_ - - - -- - - ------ -----------------------------------------------------_-------------- -------------------------
Eq 0 7.12ge+01 2.853e+02 1. 240e+03 8.726e+03 3.812e+04 4.498e+05 1.66ge+07 2.485e+10 3.414e+13

7.378e+01 2.045e+02 6.650e+02 3.584e+03 1. 337e+04 1. 216e+05 3.315e+06 3.333e+09 3.461e+12
2 1.014e+02 2.307e+02 6.322e+02 3.577e+03 1. 241e+04 8.928e+04 2.511e+06 2.196e+09 2.026e+12

2.83ge+02 7.871e+02 2.51ge+03 1.835e+04 7.326e+04 5.553e+05 1.64ge+07 1.634e+10 1. 620e+13
1.04ge+03 4.27ge+03 1. 631e+04 1.455e+05 5.766e+05 4.974e+06 1.807e+08 2.154e+ll 2.485e+14--------------------- ---------------------------_---------------_------------------------ -------------------------
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Table 3.lb
(Condition number -- piecewise representation -- Chebyshev Points)

----------------------------------------------------------------------------
wlsc 3 5 7 10 12 15

----------------------------------------------------------------------------

5/0 4.098e+02 1.448e+03 3.580e+03 9.70ge+03 1.634e+04 3.111e+04
1 1.492e+02 3.470e+02 6.444e+02 1.282e+03 1.837e+03 2.866e+03
2 1.092e+02 1.705e+02 2.375e+02 3.448e+02 4.196e+02 7.330e+02
3 1.376e+02 1.636e+02 1.83ge+02 2.082e+02 2.630e+02 4.193e+02
4 2.186e+02 2.314e+02 4.682e+02 1.171e+03 1.907e+03 3.512e+03

10/0 1.308e+03 4.85ge+03 1.221e+04 3.346e+04 5.648e+04 1.078e+05
1 4.394e+02 1.10ge+03 2 .131e+03 4.338e+03 5.955e+03 9.351e+03
2 1.792e+02 3.092e+02 4.54ge+02 6.908e+02 8.135e+02 1.056e+03
3 1.513e+02 1.926e+02 2.264e+02 2.677e+02 2.822e+02 3.187e+02
4 2.144e+02 2.325e+02 2.660e+02 6.826e+02 1.123e+03 2.08ge+03

20/0 4.548e+03 1.736e+04 4.403e+04 1.17ge+05 1.994e+05 3.812e+05
2 5.357e+02 9.71ge+02 1.482e+03 2.313e+03 2.896e+03 3.797e+03
3 2.480e+02 3.311e+02 4.061e+02 4.985e+02 5.504e+02 6.175e+02
4 2.367e+02 2.627e+02 2.812e+02 4.44ge+02 7.397e+02 1.391e+03
5 3.645e+02 3.724e+02 9.113e+02 3.143e+03 6.045e+03 1.367e+04

32/0 1.096e+04 4.154e+04 1.057e+05 2.916e+05 4.934e+05 9.435e+05
3 5.128e+02 7.22ge+02 9.075e+02 1.135e+03 1.263e+03 1.42ge+03
4 2.817e+02 3.220e+02 3.505e+02 3.775e+02 5.977e+02 1.132e+03
5 3.87ge+02 4.035e+02 6.402e+02 2.222e+03 4.285e+03 9.716e+03

----------------------------------------------------------------------------

Table 3.10
(Condition number--piecewise representation--Gauss Points)

----------------------------------------------------------------------------
wlsc 3 5 7 10 12 15
--------------------------------------------------------------------------

5/0 2.461e+02 7.320e+02 1.660e+03 4.216e+03 6.915e+03 1.283e+04
1 1.004e+02 1.981e+02 3.344e+02 6.136e+02 8.502e+02 1.281e+03
2 8.588e+01 1.203e+02 1.543e+02 2.067e+02 2.418e+02 2.984e+02
3 1.18ge+02 1.361e+02 2.276e+02 5.228e+02 8.127e+02 1.410e+03
4 1.981e+02 5.05ge+02 1.321e+03 3.904e+03 6.926e+03 1.416e+04

10/0 7.898e+02 2.490e+03 5.796e+03 1.496e+04 2.46ge+04 4.606e+04
1 2.925e+02 6.282e+02 1.108e+03 2.105e+03 2.955e+03 4.50ge+03
2 1.350e+02 2.044e+02 2.774e+02 3.912e+02 4.68ge+02 5.872e+02
3 1.300e+02 1.546e+02 1.738e+02 3.497e+02 5.550e+02 9.865e+02
4 1.975e+02 2.721e+02 7.281e+02 2.193e+03 3.920e+03 8.085e+03

20/0 2.743e+03 8.956e+03 2.114e+04 5.508e+04 9.113e+04 1.704e+05
2 3.918e+02 6.388e+02 9.044e+02 1.322e+03 1.608e+03 2.046e+03
3 2.040e+02 2.571e+02 2.996e+02 3.505e+02 4.287e+02 7.776e+02
4 2.153e+02 2.348e+02 4.424e+02 1.358e+03 2.44ge+03 5.095e+03
5 3.475e+02 7.391e+02 2.603e+03 1.063e+04 2.231e+04 5.61ge+04

32/0 6.611e+03 2.18ge+04 5.195e+04 1.358e+05 2.250e+05 4.212e+05

3 4.126e+02 5.401e+02 6.437e+02 7.686e+02 8.375e+02 9.261e+02
4 2.498e+02 2.787e+02 3.372e+02 1.04ge+03 1.903e+03 3.983e+03
5 3.675e+02 5.06ge+02 1.798e+03 7.383e+03 1.552e+04 3.917e+04

-------------------- --------------------------------------------------------
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Table 3.2
(Condition number & Actual Error -- Gauss Points)

-~---~--t---~~-~---------~---------------~----------------~--------------~---------------~---------
8 3 I K(C) I 2.011e+08 7.775e+07 3.830e+07 3.900e+07 6.222e+07

terror t 2.2607276e-02 2.2607275e-02 2.2607276e-02 2.2607275e-02 2.2607275e-02

, I K(C) 11.68ge+08 5.602e+07 3.36ge+07 4.291e+07 6.942e+07
terror t 5. 8773596e-04 5. 8773594e-04 5. 8773602e-04 5. 8773592e-04 5. 8773602e-04

5 I K(C) 12.773e+08 7.610e+07 3.887e+07 4.505e+07 7.03ge+07
terror t 7.5306217e-07 7.5309675e-07 7.5299208e-07 7.5291883e-07 7.5314650e-07

8 5 I K(C) I 6.13ge+08 1.593e+08 5.512e+07 4.471e+07 6.470e+07
terror t 1. 6222150e-08 1. 6039261e-08 1. 6195687e-08 1. 6138884e-08 1. 607348ge-08

7 1 K(C) It 1.U4e+09 2.761e+08 7.294e+07 4.931e+07 6.63ge+07
error 1. 5222268e-10 1. 6232082e-10 1. 3861712e-10 1. 2780266e-10 9. 2167607e-ll

107 It K(C) 12.120e+09 4.077e+08 1.035e+08 5.254e+07 6.720e+07
error 2.596944ge-11 3.3728575e-12 2.7202240e-11 3.294919ge-11 2.7739144e-11

5 8 It K(C) 18.802e+08 1.584e+08 5.472e+07 5.008e+07 7.224e+07
error 1. 5561996e-10 2. 9401814e-ll 4.67297 31e-ll 9.74 75361e-ll 8.1422868e-ll

108 It K(C) 13.005e+09 5.155e+08 1.172e+08 5.487e+07 6.792e+07
error 2.1915358e-ll 1.8389290e-11 2. 3828495e-11 3. 2525094e-ll 1.6675550e-12

5 10 1 K(C) 1 1.583e+09 2.31ge+08 6.545e+07 5.265e+07 7.296e+07
error 2.7195135e-11 2.6083623e-11 2.2418511e-11 7.8483442e-11 8.2020613e-11

10 It K(C) 1 3.62ge+09 5.172e+08 1.005e+08 5.470e+07 6.792e+07
error 2.1026514e-10 2.7818636e-11 2.6207037e-11 1.1342660e-10 3.4949821e-12

121 K(C) 1 2.594e+09 3.206e+08 7.631e+07 5.483e+07 7.347e+07
error 1.6648372e-10 2.0892754e-10 2.4420910e-10 7.4883211e-11 1.5580515e-10

10 12 I K(C) I 9.00ge+09 1.081e+09 1.734e+08 6.250e+07 6.981e+07
I error I 1.12097He-10 7. 0147887e-ll 1.1l79235e-10 9. 8926645e-ll 1. 0296963e-10

3.3 Basic Structure of the Collocation Matrix

Let us reconsider the boundary value problem (3.1) and its separated boundary

conditions (3.2). Note that, instead of considering the general boundary conditions of

the form

... (3.7)

where Ba and Bb E Rnxn and P E R", we particularly confine the boundary

conditions to be the separated ones. This is particularly convenient, both theoretically

and practically. In practice, many boundary value problems in application come with

separated boundary conditions. Moreover, it is an advantageous to consider the

boundary value problems with separated boundary conditions, since the structure of

collocation matrix obtained will be in a simpler form than those from non-separated

boundary conditions. Furthermore, as mentioned in chapter 2 a simple trick can be

used to convert non-separated boundary conditions into a separated one.
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In point of view of theoretical aspects, the separated boundary condition can be

viewed as having allocated the increasing and decreasing modes such that to the left

end a there correspond the decreasing modes while to the right boundary b there

correspond to increasing ones. Thus the purely fast deceasing and purely fast

increasing modes are well separated as far as the boundary conditions are concerned,

and in turn this property can be utilised further when one is tempting to estimate the

layer width (will be discussed in chapter 7).

We shall now examine some ways in setting up the collocation matrix. Let Xwq

be the piecewise approximate solution as defined in equation (3.6). The collocation

solution Xwq is then uniquely determined by n( q+ I)w coefficients PiU], where PiU]

are vectors of the form PiU] = [PilU] Pi2U] Pinu]]T, 0 ~ i ~ (q+I). These

coefficients are calculated from

• n boundary conditions,

• nqw collocation conditions and

• new-I) continuity conditions.

Arrange these equations in the order they arise when moving from left to right.

That is,

1. the first equations are those from the left boundary conditions

2. then the collocation conditions at each point in the first subinterval

3. then the continuity condition at the first break point t:

4. repeat steps (2) and (3) corresponding to appropriate subintervals, till the last

break point t;

5. for the last subinterval, set up the equations corresponding to the collocation

points and followed by those from the right boundary conditions.

The resulting matrix consists of a number of rectangular blocks, each block is

related to a subinterval. The structure of the matrix will look like
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fig.l Structure of tbe Collocation Matrix
(number of subintervals w = 5)

Left BCs
[m x n +1]

Collocation
[nq x n(q+1)]

Continuity
[n x n(q+1)]

Continuity
[n x n(q+l)]

Continuity
[n x n( +1)]

Collocation
[nq x n(q+1)]

Collocation
[nq x n(q+1)]

Continuity
[nxn( +1)]

Continuity
[n x n( +1)]

Continuity
[n x n( +1)]

Collocation
[nq x n(q+1)]

Continuity
[n x n( +1)]

Collocation
[nq x n(q+1)]

Continuity
[n x n( +1)]

3.4 Block Matrix Representation

As described in previous section, discretisation of a boundary value problem lead

to a system of linear equations Cp = g. Based on the fact that collocation matrix C

is large and sparse with its nonzero elements concentrated near the main diagonal, we

shall utilise the structure of the collocation matrix to reduce the amount of fill-in.

Afterwards, an analysis of arithmetic cost and memory space needed will be

discussed.
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3.4.1 Reduction to Block Matrix Form

The full matrix can directly be solved using Gaussian elimination with partial

pivoting to guarantee the stability. However, an improvement in terms of storage

required and time consumed can be achieved by constructing an algorithm using the

properties indicated by the following procedure

1. Set up the collocation matrix where the first equations are from collocation

conditions in the first subinterval (instead of the left boundary conditions as in the

previous section); the continuity conditions at the first break point ti. then the

collocation conditions in the second subinterval, etc. Finally the right boundary

conditions followed by the left boundary conditions.

2. The Gaussian elimination with partial pivoting can be used to obtain the upper

triangular matrix in the first block.

3. The non-zero elements in the last rows corresponding to the left boundary

conditions can be eliminated using the elements of first block and as the result

there will be non-zero elements in the next block associated with the second

subinterval.

The resulting matrix then looks like

nq+n nq+n

X x
nq+n

0

0
nq+n X

X N

o I 0 I o o right BCso
o o x

PI-subinterval 2"d-subinterval 3rd-subinterval w'lt-subinterval
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Note that since we employ the Gaussian elimination with partial pivoting,

certainly, the row interchanges include the rows corresponding to boundary

conditions.

4. The procedure continues until the last block associated with wth subinterval.

5. Finally we deploy backward substitution to obtain the solution of the system.

Note that, in implementation the above procedure is still in full matrix form. To

make it more convenient and more efficient we will represent the collocation matrix

using a 3-dimensional data structure, the first dimension refers to the block, while the

others refer to the row and column of the a block. In the implementation we have w

blocks, where each block is a [n(q+l)+m x 2n(q+l)] matrix as follows

1. The first block associated with the first and second subinterval consists of nq

rows from collocation conditions, n rows from continuity conditions and m rows

of the left boundary conditions. This block will look like

n

nq+n nq+n

X 0

X X

X 0

nq

m

2. The second block associated with the second and third subinterval consists of nq

rows from collocation conditions, n rows from continuity conditions.

n

nq+n nq+n

X 0

X X

0 0

nq

m
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3. The third block, fourth block, until the (w_l/h block is similar to the second

block

4. The last block associated with the wth subinterval consists of nq rows from

collocation conditions, (n-m) rows from the right boundary conditions and the

rest is zeros. This last block will be in form of

nq

nq+n nq+n

X 0

X 0
0 0
0 0

(n-m)

m
m

The upper triangular form may be obtained by performing the Gaussian elimination

with partial pivoting to the first block and then move the rows associated with the left

boundary conditions to the second block. The result looks like

n Move to the next block

nq

m

from the previous block

nq+n nq+n

nq X 0

n X x

~ X 0

Finally, the solution can be found by employing backward substitution.
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3.4.2 Analysis of Work and Amount of Memory Spaces

In implementation, the block matrix algorithm works quite well and its

performance is very impressive, in the sense there is a massive saving in terms of

memory spaces used and, in particular, reducing computation time compared to

treatment as a full matrix. In some cases using the full matrix representation result in

'out of memory' while block matrix algorithm works smoothly. This is not surprising

since the full matrix representation needs (n(q+ 1)w)2 memory spaces, on the other

hand for the block matrix it is roughly 2w(n(q+2)l This means that if the number of

collocation points q is large enough, the block matrix representation needs memory

spaces about (2/w) of those needed by full matrix representation. For example, a

system with three differential equations, 12 collocation points in each subinterval and

100 subintervals, the full matrix representation needs

(n(q+1)w)2 = (3*(12+1)*100)2 = 15,210,000 memory spaces,

while for the block matrix representation requires

2w(n(q+2»2 = 2*100*(3*(12+2»2 = 352,800 memory spaces

which is only about (1/43) of those required by full matrix representation.

In term of amount of arithmetic operations performed, the full matrix

representation has total cost of the arithmetic about ((n(q+ 1)w)3 / 3) flops.

By contrast, the block matrix representation has cost of arithmetic about

(2(n(q+ 1»3w / 3) flops only. The calculation of cost for block matrix representation

is as follow

1. For the first block, the reduction to triangular form is carried out in

(n(q+ 1)+m -1) steps. In the first step appropriate multipliers of the first row are

subtracted from each of the other rows to create zeros in the first column, apart

from the first row. The appropriate multiplier for the ith row is

mil = ki1/kll, i=2,3, ... ,n(q+l)+m

Then we carry out the operations

kJI) = kij - milklj, j = 2, 3, , 2n(q+ 1). i = 2, 3, ... , n(q+ 1)+m

gP) = gi-milgl, i=2,3, ,n(q+1)+m

... (3.8)

... (3.9)
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2. The arithmetic cost in the first step are (n(q+1)+m-1) divisions and

[(n(q+1)+m-1) + (2n(q+1)-1)( n(q+1)+m-1)] = [(n(q+1)+m-1)][(2n(q+1)] flops.

Ignoring terms of order (n(q+l)+m) or less the cost is about

(n(q+l)+m-l)(2n(q+1» ==: 2(n(q+l)i flops.

3. For the second step, third step till the (n(q+1)+m-1ih step the costs are

2(n(q+1)-1)2, 2(n(q+1)-2)2, ... , 2(2)2

4. Thus the total cost for reducing to the triangular form is

2(n(q+l»2 + 2(n(q+l)-1)2 + 2(n(q+1)-2)2 + 2(2)2 ==: 2(n(q+l»3/3 flops

5. Since there are w blocks, the total arithmetic cost of this algorithm is about

2w 3
-(n(q+1» flops
3

Note that there are three other costs to consider. Firstly that of finding the largest

pivot at each step, secondly that of physically interchanging the rows, and thirdly that

of moving the last m-rows to the next block. These costs do not involve any

arithmetic, but time is required to make comparison in order to get the largest pivot.

In interchanging and moving the rows the time is needed to fetch and store numbers.

To illustrate how much the arithmetic cost could affect the performance of the

algorithm, let us examine a system having 3 differential equations, to be solved using

4 collocation points in each 50 subintervals. The full matrix representation costs

about

(3*(4+1)*50)3/3 = 140,625,000 flops,

while the block matrix representation costs about

2*(3*(4+1»3*50/3 = 112,500 flops.

This means, roughly, the block matrix algorithm may theoretically perform

(140,625,000 / 112,500) = 1250 times faster than full matrix algorithm. In the next

section, some results of numerical observations are presented.

Comparing the full and block matrices performance, theoretically we can say that

for q sufficiently large the block matrix representation only requires (2/w) than to
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those required by full matrix representation. In the meantime, in term of arithmetic

cost the block matrix representation will only cost (~) than to those the full one.
w

As mentioned before, the full matrix representation has arithmetic cost about

(n(q+ 1)w)3 / 3 flops. In this case, if the number of subintervals w is doubled then the

arithmetic cost will increase by factor 23• Mean while, the block matrix

representation having total cost about 2w (n(q + 1»3 flops, doubling the number of
3

subintervals w will result in increasing the arithmetic cost by factor two only. In other

words, if we double w then the arithmetic cost will double as well. This result is very

important since in developing the adaptive mesh selection algorithms, we shall carry

out a lot numerical computations in which the number of subintervals w will vary

substantially.

3.5 Computational Illustrations

We consider two illustrative examples as follows

Problem 3:

[xi] = [-1/(2t) 2/(t
3
)] (Xl), O<t<1

X2 -t12 -1I(2t) X2

The boundary conditions are

Xl(O) = 0 and Xl(1) = 0

Problem 4:

[
Xi] [0 I 0 O][Xl]X2 = 0 0 1 0 X2 +
x~ 0 0 0 1 x3
x~ 0 0 0 0 X4

0< t < 1

with boundary conditions

Xl(O) = X2(0) = xl(l) = x2(1) = 0

Problem 3 has been chosen since its coefficient matrix has some components

which vary rapidly if t close to left hand boundary. For this problem, by increasing

the number of subintervals w the first columns of collocation matrix will have large
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values. On the other hand, the last columns of the matrix will have small values.

Meanwhile, problem 4 of order 4 is intended to make comparison more

straightforward, i.e. to observe the effect of doubling the size of problems, regardless

the problems themselves are different.

In the following tables, T indicates computation time in millisecond (ms), while

Qt stands for quotient of computation time of two consecutive computation. As can

be seen in the tables, we always double the number of subintervals w so that we may

observe the effect of doubling the number of subintervals.

The results for problem 3 are given in Table 3.3. They show that for full matrix

representation, as can be seen on column under heading Qtl' if the number of

subintervals w doubles then the factor Qtl gradually tend to 8. In the meantime, for

block matrix representation it is clear that values on column Qt2 is about 2.

Similar observation can be seen in Table 3.4 displaying results for problem 4. By

looking at columns Qtl and Qt2' it is clear that Qtl and Qt2 tend to 8 and 2

respectively. It is also notable that for large w the full matrix representation needs

massive computation time and we can say that it is not sensible to use it in real

applications. On the other hand, the block matrix performance is very impressive,

for example from Table 3.4, let us take a look at w = 160, q = 8, for full matrix its

computation time is 10019460 ms ::= 2 hrs 46 mins 4 sees, while for the block

representation it is only 8310 ms ::= 8.3 sees

Comparing Table 3.3 and Table 3.4 and looking at the rows having the same w

and q, it is observed that if w is large enough the arithmetic cost also increases by

factor 8 and 2 for full matrix representation and block matrix representation

respectively. For example, let us take a look at the rows of Table 3.3 and Table 3.4

in which number of collocation points q = 8 and number of subintervals w = 160;

for full time representation the quotient of time is (10019460 1 1250490) ::::8,

while for block matrix representation it is (8310/4580) = 1.8
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Table 3.3
(boundary value problem 3)

full matrix block matrix
-------------------------------------------------------
w q 2'1 Ot1 2'2 Ot2

-------------------------------------------------------
5 3 100 90
10 3 190 1.900 170 1.889
20 3 520 2.737 340 2.000
40 3 2360 4.538 680 2.000
80 3 15120 6.407 1360 2.000
160 3 112410 7.435 2700 1.985

5 4 110 100
10 4 240 2.182 190 1.900
20 4 760 3.167 390 2.053
40 4 4110 5.408 760 1.949
80 4 28360 6.900 1520 2.000
160 4 216920 7.649 3040 2.000

5 5 120 110
10 5 290 2.417 210 1.909
20 5 1110 3.828 440 2.095
40 5 6660 6.000 850 1.932
80 5 47960 7.201 1710 2.012
160 5 373050 7.778 3430 2.006

5 8 180 150
10 8 540 3.000 290 1.933
20 8 2980 5.519 580 2.000
40 8 20680 6.940 1140 1.966
80 8 158280 7.654 2290 2.009
160 8 1250490 7.900 4580 2.000

5 10 230 190
10 10 820 3.565 350 1.842
20 10 5130 6.256 690 1.971
40 10 36950 7.203 1370 1.986
80 10 287420 7.779 2720 1.985
160 10 2277920 7.925 5420 1.993

-------------------------------------------------------
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Table 3.4
(boundary value problem 4)

full matrix block matrix
-------------------------------------------------------

w q T1 Qt1 T2 Qt2-------------------------------------------------------
5 2 130 120
10 2 310 2.385 230 1.917
20 2 1140 3.677 470 2.043
40 2 6700 5.877 920 1.957
80 2 48120 7.182 1840 2.000
160 2 373520 7.762 3680 2.000

5 3 150 140
10 3 440 2.933 270 1.929
20 3 2220 5.045 540 2.000
40 3 14810 6.671 1090 2.019
80 3 111740 7.545 2170 1.991
160 3 879640 7.872 4330 1.995

5 4 200 160
10 4 670 3.350 320 2.000
20 4 3940 5.881 630 1.969
40 4 28030 7.114 1250 1.984
80 4 216340 7.718 2510 2.008
160 4 1713210 7.919 5000 1.992

5 6 310 210
10 6 1490 4.806 410 1.952
20 6 9960 6.685 810 1.976
40 6 74870 7.517 1640 2.025
80 6 589480 7.873 3290 2.006
160 6 4694010 7.963 6580 2.000

5 8 490 270
10 8 2870 5.857 530 1.963
20 8 20470 7.132 1060 2.000
40 8 157700 7.704 2090 1.972
80 8 1249620 7.924 4160 1.990
160 8 10019460 8.018 8310 1.998

-------------------------------------------------------
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chapter

Numerical Evaluation of
the Error Estimates

4.1 Introduction

This chapter is mainly concerned with numerical investigation of error estimates

for the collocation solution of linear system of differential equations. Our main

goal is to obtain a reasonable error estimate to be used directly in estimating the

number of subintervals needed in an adaptive mesh selection algorithm. Hence,

these error estimates should be inexpensive computationally and they can easily be

implemented. Some error estimates based on consideration of the linear operator

involved and on the residuals will be examined in some details.

Firstly, let us state precisely the form of problem considered and notations

used. We shall consider the linear system of n first order differential equations of

the form

x' - A(t) x(t) = yet), a < t c b ... (4.1)

where x(t) and yet) are n-dimensional vectors with components Xi(t) and Yi(t),

1::; i::; n, respectively. A(t) is an (nxn) matrix valued function.

The system of ordinary differential equations (4.1) is furnished by m and (n-m)

associated homogeneous boundary conditions at the left and right boundaries

respectively, for some positive constant m < n.

The equation (4.1) may be written in operator form

(D-M)x = y ... (4.2)
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where X E X and Y E Y in which X and Y are suitable Banach space. Here D

denoting the differentiation operator Dx(t) = dx/dt is the principal part of the

operator, and we assume that both operators D and (D - M) with the associated

conditions are invertible, Le. D-1 and (D - M)-I exist.

Suppose xwq denote the collocation solution found by collocating at q points in

each subinterval using the partition:

1tw : a = tl < ti < ts < ... < i; < tw+1 = b.

where w indicates the number of subintervals. In each subinterval [tk, tk+I],

1 :::;k :::;w, the q collocation points are uniquely determined by

tk I -tk • h . 1 2~ik = tk + + 2 (1+ ~i ) , were t = , , ... , q.

where {~;"}, 1:::; i ::;q, are the chosen reference points in interval [-1,1].

Let Xwq and Ywq be subspaces of X and Y respectively and f/Jwq is a

projection Y ~ Ywq- The approximate solution xwq taken in a subspace Xwq is

found by applying an interpolatory projection f/Jwq to the equation (4.2) with xwq

substituted for x, that is

f/Jwq(DXwq - MXwq - y) = 0 ... (4.3)

By assuming f/JwqDxwq = DXwq that is that the operator D restricted to Xwq

establishes a bijection between Xwq and Ywq so that the equation (4.3) may be

simplified as follows

f/JwqDxwq - f/JwqMxwq = f/JwqY

(f/JwqD - f/JwqM)xwq = f/JwqY

or

... (4.4)
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To be used in constructing the error estimate, it is convenient here to define the

compact operator K by

K = MD-I ... (4.5)

As described by Anselone in [5], the inverse of (I - K) where I the identity

operator on space X can be expressed in terms of the so called resolvent operator

(I - K)-IK as follows

(I-K)-I = I+(I-K)-I K ... (4.6)

4.2 Behaviour of the Collocation Matrix Norms

For solving single higher order differential equations, Ahmed and Wright in [2]

introduced certain matrices Qwq developed from Ahmed's thesis [1] and the

properties of those matrices were discussed in some detail. They also suggested

some efficient ways in defining and constructing such matrix Qwq. Firstly they

consider two vectors, i.e. the evaluation vector tPq: y ~ Rq to give a vector

consisting of the values of a function at the collocation points; and an additional

evaluation vector tPs: X ~ RS relating to a set of evaluation points {Si}' 1 ~ i ~ s

for some s. Secondly, for convenience they define those evaluation vectors as

Xo = tPs xwq and Yo = tPqy, both based on the collocation points. The matrix Qwq

can then be written as

xn = QwqYo ... (4.7)

that is the matrix Qwq relates the values of the right hand side and the approximate

solution at the collocation points. The equation (4.7) can be regarded as the

definition of Qwq. Under some assumptions and conditions it has been shown in [2]

that by keeping q to be fixed the norm of matrix Qwq converges to the norm of

(D - M)-I as w tends to infinity.
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The results presented in [2] confirm the intuitively reasonable notion that a

collocation matrix inverse can give an idea of the error magnification inherent in

the collocation process, justifying the use of IIQwq II as estimates of II (D - M)01 II.
The details of matrices Qwq will not be discussed further here since our motivation

is to see the idea of using those matrices in constructing the error estimates.

For solving the first order systems of boundary value problems using global and

piecewise representation, here we have carried out further work on observing the

convergence of IIQwq II based on numerical investigations. The usefulness of

IIQwq II as estimates of II (D - M)0111 is observed. Moreover, in some cases the

IIQwq II may settle down early. Briefly, the numerical results which are not

presented here indicate that

and

IIQwq II ~ II (D - M)0111 ' as q ~ 00, w fixed

However, since the evaluation of IIQwq II involves the inversion of a large

matrix generated by the collocation process, certainly it is a massive computational

task and the estimate is very expensive. This in tum suggests that one would expect

considerable cancellation in using this estimate for adaptive mesh selection

algorithms.

4.3 The Res id u a I

Having carried out the collocation process, suppose an approximate solution Xwq

satisfying the differential equation (4.1) and its associated boundary conditions has

been found. The residual of the approximate solution xwq denoted by r wq is

defined as

rwq = (D -M)xwq - Y '0.(4.8)
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Using the following simple algebraic manipulation and applying the equation

(4.4) we have relationship

rwq = (D - M + f/JwqM - f/JwqM )xwq - y

= (D - f/JwqM)xwq - MXwq + f/JwqMxwq - y

= f/JwqY - Y + f/JwqMXwq - MXwq

= (f/Jwq - I)y + (f/Jwq -I)Mxwq

= (f/Jwq -1)(Mxwq +y) ... (4.9)

From the equation (4.9), it is clear that the residual rwq is the error in the

interpolation of the function (Mxwq + y), hence this enables us to examine its

behaviour using some properties of the interpolation theory.

The Cauchy remainder theorem for polynomial interpolation described in detail

in Davis [20] states that in interpolating a continuous function fit) over the closed

interval [a,b] based on (n+1) interpolation points: a :5 to < tl < ... < t« :5 b

providing r=» exists at each point of (a.b), the remainder RnCt) then satisfies

where the point ~ depend upon t, to, tl, ... , tn and function f
As we can see from the Cauchy theorem, the remainder RnCt) splits into two

n
parts. The first part, the factor (n~l) IT (t - ti) , is independent of function fit), but

i=O

depends upon the interpolation points. The second part, jn+I)(?>, depends upon

function interpolated, but is independent of the manner in which the interpolation is

carried out. The second part tells us that the remainder RnCt) is affected by the

smoothness of fit).

Looking at the function CMxwq + y), if we assume that the coefficient ACt) in

differential equation (4.1) is sufficiently smooth and using the fact that xwq itself is

a piecewise polynomial function and if yet) is assumed to be smooth enough as
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well, then r wq should be well approximated by a piecewise polynomial found by

interpolation using additional points in each subinterval. Furthermore the residual

rwq will have a factor

in the kth-subintervals.

This suggests that the residual may split into two parts, the first part called the

principal part of the residual consists of a polynomial which is interpolating the

residual; the second part is the error in the interpolation. Let r;q denotes the

principal part of the residual rwq and r;; denotes the error term in the interpolation

we then have

From this point, there are several ways to construct a polynomial interpolation

for the principal part of residual r;q. At least there are two considerations which

should be taken into account in constructing such a polynomial. Firstly, we wish

that the integration process of the chosen polynomial interpolation can be carried

out in a simple way, since we need to carry out the integrations to form D-1 r;q
(discussed in the following section). Secondly, the polynomial interpolation should

be sufficiently accurate even for the cases where the number of interpolation points

is small. For the first consideration, it is convenient to represent r;q as a

Chebyshev series since the integration process can be carried out easily. The

second consideration relates to the way of choosing the interpolation points. Here,

since the residual is zero at the collocation points, one might consider to choose

points between the collocation points, so as to get close to the extrema of the

residual. If the end points of the subintervals are not the collocation points, one
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might also consider to take them as additional interpolation points. Based on those

considerations, it is convenient to use (2q+1) interpolation points determined by

t, = cos(~-~1£), i = 1, 2, ... ,(2q+l); q is the number of collocation

points, and then express r;q as

• *rwq (t ) 2q *= I Cj 1)(t ),
j=O

... (4.10)

where 1)(t*) are Chebyshev polynomials and t* denotes a local variable in each

subinterval.

To examine how well the polynomial interpolation based on equation (4.10)

performs in computation, we observe some results of numerical experiments using

a number of problems having different nature.

In tables (4.1), (4.2) and (4.3) the capital letters R, R*, R** denote values of the

norms, i.e. R = Ilrll, R* = II r;q II, R** = II r;; II; the letters C and G standing for

Chebyshev and Gauss indicate whether Chebyshev zeros or Gauss points have been

used as the collocation points. As usual, q and w indicate the number of

collocation points and the number of subintervals respectively.

For the first illustration, let us consider the following problem

Example 1 :

constrained by the boundary conditions

x1(-1) = e-1 + 1. x2(-1) = e-1 - 3;

x1(2)= e2_8
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This boundary value problem is chosen since the coefficient matrix A(t) is

smooth and the non-homogeneous term can be well approximated by polynomial

interpolation. Hence, for this example we would expect the residual ret) will be

well approximated by polynomial interpolation r:q reflected by small interpolation

error norm II -: II.

As shown in Table 4.1 below, using two Chebyshev zeros per subinterval the

interpolation error r:; reduces smoothly when the interval size reduces. The

results show that in all cases the interpolation error r:; is relatively much smaller

than interpolation value r:q indicating the residual is well approximated by r:q.
Similar observation is shown for q = 3. It is notable from this table that for

q = 3 (increasing by 1 point only), the interpolation error dramatically reduces and

for w = 40 we can say that in practise II r:; II is equal to zero. An interpolation

error converging quickly to zero is desirable, since we need it in developing a

cheap error estimate.

Table 4.1
(Chebyshev zeros)

W --> 5 10 15 20 30 40

q ·2

R 4.3841307e-01 1.5928095e-01 4.0367927e-02 1.8028252e-02 1.0164341e-02 4.5273507e-03 2.5492555e-03
RO 4. 3793652e-01 1. 5923643e-01 4. 0366326e-02 1. 8028031e-02 1. 0164288e-02 4. 5273434e-03 2. 5492538e-03
ROO 5.1845056e-04 4.8827495e-05 1.7652092e-06 2.4411925e-07 5.9370546e-08 8.0130628e-09 1.9251040e-09

q ·3

R 2. 7402297e-02 6. 7546930e-03 9. 2418064e-04 2. 8481734e-04 1. 2258035e-04 3. 7041080e-05 1.5778951e-05
RO 2.7401488e-02 6.7546656e-03 9.241803ge-04 2.8481735e-04 1.2258036e-04 3.7041080e-05 1.5778951e-05
R" 9. 9127848e-07 3. 3633036e-08 3. 0401111e-10 1. 8684450e-11 2. 5615681e-12 1.5484255e-13 2. 531385ge-14

The following example is intended to observe the performance of the

polynomial interpolation (4.10) when the right hand side yet) and matrix A(t) of the
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model problem (4.1) are not polynomials. Furthermore, the coefficient matrix A(t)

will vary faster if t is close to the left boundary. The problem is

Example 2:

o < t < 1

accompanied with boundary conditions:

xz(O) = 0

xl(l) = 0

Unlike example 1, in example 2 the coefficient matrix A(t) is not a simple

polynomial matrix.

As shown in Table 4.2 on the following page, by comparing the values of R*s

and R**s, the interpolation error is reasonable. However, by carefully comparing

the results in this table to those in Table 4.1, it is very clear that r:q' s presented in

Table 4.2 are less accurate than those in Table 4.1, for example from Table 4.2 we

take a look at R (or R*) having order of accuracy l O" for some integer s > 0, we

can see that the order of R** is greater or equal to io=. On the other hand, by

looking at R with similar order in Table 4.1 we observe that higher order is

obtained in which the order of R** is less than io=.
Regarding the type of collocation points, we observe that for small q, when

Gauss points are used as the collocation points the interpolation error R**

produced by the interpolation is marginally smaller than those using Chebyshev

zeros. By contrast, for larger q, i.e. q = 4, we found that using Gauss collocation

points gives less accurate approximation than using Chebyshev zeros, though the

difference in accuracy is marginal. This clearly indicates that using Chebyshev

zeros may gives competitive results.

49



Chapter 4 Numerical Evaluation of the Error Estimates

Table 4.2
(Chebyshev and Gauss points)

w 5 10 15 20 30 '0

2C
R 6. 66683He-03 2. 5309352e-03 6. 6156370e-04 2. 987111ge-04 1.693887ge-04 7. 5904320e-05 4. 3027545e-05
R* 6. 6649100e-03 2. 5307770e-03 6. 6155845e-04 2. 9871048e-04 1.6938862e-04 7. 5904297e-05 4. 3027545e-05
RH 6. 8745250e-06 2.1464742e-06 5.1021116e-07 2. 2477360e-07 1. 2605108e-07 5. 5901756e-08 3.1421035e-08

2Q

R 8.9179692e-03 3.3867337e-03 8.8553475e-04 3.9986827e-04 2.2675765e-04 1.0161377e-04 5.7395882e-05
R* 8. 916044ge-03 3. 3865755e-03 8. 8552950e-04 3. 9986756e-04 2. 2675748e-04 1.0161375e-04 5. 7395877e-05
RH 6. 7733724e-06 2.1038636e-06 4. 9892835e-07 2.1970792e-07 1.2319160e-07 5. 462769ge-08 3. 0703752e-08

3C
R 3.187424ge-04 7. 691308ge-05 1.0630613e-05 3. 2712877e-06 1.4067561e-06 4. 2493404e-07 1.8101575e-07
R* 3.1874392e-04 7. 6913108e-05 1.0630613e-05 3. 2712877e-06 1.4067561e-06 4. 2493404e-07 1.8101575e-07
RH 2. 2628941e-08 2. 688573ge-09 1. 6120582e-10 3.1592284e-ll 9. 968401ge-12 1. 9650607e-12 6. 2160635e-13

3Q

R 5.1493314e-04 1.2445751e-04 1.6993276e-05 5.1897122e-06 2. 2231427e-06 6. 6893156e-07 2. 8439878e-07
R* 5.1493462e-04 1.2445753e-04 1.6993276e-05 5.1897122e-06 2. 2231427e-06 6. 6893156e-07 2. 8439878e-07
R** 2.3632020e-08 2.8086347e-09 1.6845818e-10 3.3016364e-11 1.041803ge-11 2.0535213e-12 6.4933853e-13

4C
R 1. 7495632e-05 2.6385067e-06 1.8616282e-07 3.8345555e-08 1.239295ge-08 2.5009590e-09 7.9989082e-10
R* 1. 7495650e-05 2.638506ge-06 1.8616282e-07 3.8345555e-08 1.239295ge-08 2.5009591e-09 7.9989081e-10
RH 2.2943182e-10 2.2587793e-ll 1.2498627e-12 2.4130636e-13 7.599610ge-14 1. 4794067e-14 5.7388310e-15

4Q

R 3.185031ge-05 4.7404210e-06 3.3082205e-07 6.7881663e-08 2.189606ge-08 4.4100346e-09 1.4090773e-09
R* 3.1850302e-05 4.740420ge-06 3.3082205e-07 6.7881662e-08 2.189606ge-08 4.4100346e-09 1.4090772e-09
RH 2.3631290e-10 2.3270295e-11 1.2875823e-12 2.4822248e-13 7.7821640e-14 1.5649680e-14 7.2245647e-15

As the last illustration, we examine the following problem taken from

Russell [44]. The problem is

Example 3:

o < t < 1

The boundary conditions are

XI(O) = 0 and

XI(l) = 0

Unlike two previous problems, here the matrix A(t) is constant, though one of

its component is large. The right hand side of the problem is a trigonometric

function, so it can be well approximated by a polynomial.
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Table 4.3 displays results including those with large w. Looking at columns

under heading q = 2, they show that if the number of subintervals w increases then

the accuracy of r:q improves. It is also observed that even though r:q is relatively

large for small number of subintervals w it provides an adequate approximation for

Twq indicated by small R**. Similar indication is obtained for small number of

points.

It is also notable that by doubling the number of subintervals w the accuracy of

r:q converges faster than the convergence of r:q itself, for example for q = 3, R*

decreases by factor of order 10-1 while R** reduces by factor 10-2 as the number

of subintervals is doubled.

Comparing the results using either two Chebyshev zeros or two Gauss points, it

is interesting to note that in all cases even though their interpolation norms are not

the same their maximum interpolation errors are identical. The other results

indicate that using both types of point the interpolations produce almost identical

errors. This result shows that the polynomial interpolation based on equation (4.10)

can be used to obtain a good approximation for the residual, regardless the type of

collocation points.

Table 4.3
(Chebyshev and Gauss points,value problem 3)

q~ 2 I 3 I 6 I
---------------------------------------------------------------------------------w

C Q leG le Q I

R* 9.911e+OI 1.227e+02 2.758e+Ol 4.08le+Ol l.828e-Ol 3.656e-Ol 5
R** l.076e-02 l.076e-02 2.526e-05 2.526e-05 2.498e-13 3.626e-13
R* 4.392e+Ol 5.605e+Ol 6.89ge+OO l.057e+Ol 6.71le-03 l.35ge-02 10
R** 3.49le-04 3.49le-04 2.052e-07 2.052e-07 4.047e-13 3.703e-l3

R* l.587e+Ol 2.066e+Ol 1.303e+OO 2.025e+OO 1.666e-04 3.3S5e-04 20
R** 1.0S3e-05 1.0S3e-05 1.591e-09 l.591e-09 2.93ge-13 3.165e-13
R* 4.90Se+OO 6.440e+OO 2.044e-01 3.1SSe-Ol 3.311e-06 6.734e-06 40
R** 3.4l2e-07 3.412e-07 1. 26ge-ll 1. 276e-ll 3.69Se-13 3.62ge-13
R* l.376e+OO 1.Slle+OO 2.S78e-02 4.494e-02 5.S4ge-OS l.l90e-07 80
R** I.068e-OS l.068e-08 3.686e-l3 3.82ge-13 3.537e-13 3.543e-l3-----------------------------_----------------------------_ ----------------------_---
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4.4 The Error Estimates

In this section we shall explore some error estimates derived by considering the

equation (4.2) and the equation (4.8). There has been considerable discussion

concerning the error estimates based on examining the operator form and related

matrices and on the residual in Ahmed's thesis [1], and further development can be

found in Ahmed and Wright's paper [2] where they dealt with single higher order

differential equations, even though they did not give much attention for problems

with severe layers. The work developed here, essentially based on their idea,

focuses on numerical investigation of the error estimates for system of differential

equations rather than just single differential equations. Moreover we will observe

numerically the performance of the error estimates for problems having severe

layers, as well as smooth problems.

Recall the equation (4.8). Combining this and (4.2) the residual Twq can be

related to the error ewq as follows

rwq = (D - M) Xwq - Y

= (D - M) Xwq - (D - M) X

= (D - M)(xwq - x)

= (D -M) ewq
or

... (4.11)

Taking the norm of the last equation, this immediately gives

... (4.12)

and then using IIa; II described in §4.2 as an approximation for II (D - M)-III
we have an error estimate

... (4.13)
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This error estimate is likely to be larger than the error since it is an estimate of a

bound on the error. Furthermore, the operator (D - M)-l is essentially an integrating

operator, hence one would expect considerable cancellation in the evaluation (4.11)

of ewq which again suggest that inequality (4.12) is likely to be very crude.

Note that rwq may be evaluated at any point without difficulty since Xwq is a

piecewise polynomial and it will have an oscillatory nature since it is constrained to

be zero at the collocation points. These suggest that the residual rwq might be

taken into account in developing an error estimate for collocation methods. This

can be done, firstly by writing the operator in a different form and the using the

compact operator K defined in equation (4.5), we have

(D - M)-l = ((I - MD-1)Dr1

= ((/-K)Drl

= D-1(/_K)-1 ... (4.14)

this allows the identity (4.6) to be used giving

ewq = D-\I + (I -K)-IK)rwq

= D-1rwq + (D - M)-IKrwq ... (4.15)

Using results in §4.3, in which r:q (t) can be used as approximation for rwq(t), it

is clearly straightforward to evaluate both D-1 r:q and Kr:q as they involve

integration of piecewise polynomials and then to estimate IID-1 r:q II and IIK r:q II
by evaluation at a suitable selection of points.

Using IIQwqll for approximating II(D -M)-lll the equation (4.15) then gives

the following error estimate

... (4.16)

where II r:; II is also estimated by evaluation at a suitable choice of points.

53



Chapter 4 Numerical Evaluation of the Error Estimates

A simplified estimate can be obtained by ignoring II r:; II which should be valid

if sufficient points are used in constructing r;q. The simplified estimate will then

be in the form

... (4.17)

Recall equation (4.4) which can be written as

Xwq = (D- {jJwqM)-I{jJwqY,

This suggests that the original approximation (D - {jJwqM)-1 {jJwq should be used

to approximate the operator (D - M)-l in equation (4.15) which will give an

approximate function rather than just its norm. Hence, using (4.4) and (4.15), we

define

* D-1 * CD M)-l K *ewq = rwq + - {jJwq (jJwq rwq ... (4.18)

The last approach is very convenient, since it makes use the same matrix as in

the original approximate solution but with a new right hand side, Le. K r:q

instead of y.

The error estimate then can be defined as

... (4.19)

again if r* is a good approximation for r then II r;; II can be ignored and the

error estimate will be in the simpler form

E* = II ewq* II ... (4.20)

The error estimate E* is relatively much cheaper as we do not need to

construct the matrix Qwq.
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As mentioned above, the residual ret) may be evaluated at any point, hence it is

local in nature and so IIret) IIk the norm of the residual related to kth subinterval,

1 ~ k ~ W, which is giving some idea of error measure. Furthermore, another simple

error measure is also provided by evaluating IIret) IIk hk (further discussion can be

found in chapter 5). Simply by taking the maximum of these local error measures,

we have two simple error estimates

Ilrll = max IIret) IIk
k

and

Ilrhll = max Ilr(t)hllk
k

In our developed algorithm, two error measures above do not add more

computational cost, in particular the second one since we have constructed r;q to

approximate the residual and have computed the quantity IIrh II to be used in our

adaptive mesh selection algorithm.

4.5 Numerical Experiments

In the numerical experiments, both the Chebyshev zeros and Gauss points

have been used as collocation points, in addition Chebyshev extrema was also used

for boundary value problem 4. The basis functions constructing Xwq will be either

Chebyshev or Legendre polynomials. In all computation we implemented the

uniform mesh points and the norm values presented in the tables were estimated by

evaluation at 400 equispaced points.

For the first illustrative example let us recall example 2 discussed in §4.3. This

boundary value problem taken from Ascher [6] has smooth solution but the

coefficient matrix whose non-polynomial component is rapidly varying near the

left boundary. Moreover, the coefficient matrix ACt) has singularity at t = 0, and
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this causes big trouble for some procedures [10] while here it is shown that the

collocation algorithm performs very well.

The problem considered is

Problem 1 :

o < t < 1

The boundary conditions are

X2(O) = 0 and x)(l) = O.

And the analytical solution is given by

(XI) = (2In(7/(8-t2)))
X2 (4t)/(8 - t2)

Table 4.4A and Table 4.4B display results using Chebyshev zeros and Gauss

points respectively. Note that for simplicity the interpolation error r;; is not

presented in these tables but it can be referred to Table 4.2. Looking at the last two

columns of the tables, we observe that the estimate E* performs well, in particular

for q = 3 where collocation algorithms implementing both type of points produce

quite accurate estimates.

Using two Chebyshev points the results show that E* underestimates the error

slightly, but it is still very close. Using two Gauss points on the other hand

slightly overestimate the error, even though it is again reasonably close. It is

notable for this case that both types of points produce estimates which are almost

identical, the difference is in accuracy of the solution where the error values using

Gauss points are a bit smaller than those using Chebyshev zeros, as would be

expected from the results of de Boor and Swartz [23].

Comparing the columns under headings IIr II and IIrh II, the results clearly

indicate that no matter what the points chosen the value of IIrh II is significantly

smaller than IIr II and it much closer to the error with improvement as the interval

size decreases.
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Table 4.4A
(Chebyshev Points)

q w IIrll Ilrhll IW'roll IIKr*11 E

2 3 6.66Se-03 2.222e-03 7.99Se-04 3.S08e-03 8.632e-04 1.006e-03
5 2.S31e-03 S.062e-04 1.90ge-04 1.248e-03 2.S02e-04 3.3S4e-04
10 6.616e-04 6.616e-OS 2.S9Se-OS 3.10Se-04 S.S34e-OS 7.842e-OS
20 1.694e-04 8.46ge-06 3.391e-06 7.7S3e-OS 1.314e-OS 1.906e-OS
40 4.303e-OS 1.076e-06 4.337e-07 1.938e-OS 3.20ge-06 4.7S2e-06

3 3 3.187e-04 1.062e-04 2.212e-OS 2.723e-OS 1.80Se-OS 1.734e-OS
5 7.691e-OS 1.S38e-OS 3.493e-06 3.88Se-06 2.88Se-06 2.72ge-06
10 1.063e-OS 1.063e-06 2.S4Se-07 2.680e-07 2.ll8e-07 1.976e-07
20 1.407e-06 7.034e-08 1.721e-08 1.76Se-08 1.43Se-08 1.330e-08
40 1.810e-07 4.S2Se-09 1.11ge-09 1.133e-09 9.343e-10 8.624e-10

-----------------------------------------------------------------------------

Table 4.4B
(Gauss Points)

q w Ilrll Ilrhll IIKr*11 E

2 3 8.916e-03 2.973e-03 2.831e-04 4.683e-03 7.S86e-04 2.83Se-04
5 3.387e-03 6.773e-04 6.S01e-OS 1.667e-03 2.2S2e-04 6.S1Se-OS
10 8.8SSe-04 8.8SSe-OS 8.S62e-06 4.148e-04 S.160e-OS 8.S72e-06
20 2.268e-04 1.134e-OS 1.100e-06 1.036e-04 1.2S3e-OS 1.101e-06
40 S.740e-OS 1.43Se-06 1.39Se-07 2.S8ge-OS 3.096e-06 1.39Se-07

3 3 S.14ge-04 1.716e-04 9.408e-06 4.37ge-OS 9.394e-06 9.336e-06
5 1.24Se-04 2.48ge-OS 1.4S0e-06 S.602e-06 1.446e-06 1.446e-06
10 1.69ge-OS 1.69ge-06 1.037e-07 3.482e-07 1.037e-07 1.037e-07
20 2.223e-06 1.112e-07 6.94ge-09 2.173e-08 6.948e-09 6.948e-09
40 2.844e-07 7.ll0e-09 4.498e-10 1.3S8e-09 4.498e-10 4.498e-10

-----------------------------------------------------------------------------

As the second illustration, the followings boundary value problem describing

the symmetrical bending of a laterally loaded circular plate [46] consists of three

differential equations.

The problem is as follows

Problem 2:

[
X; J [0 1 0 J[ Xl J [ 0 JX~ 0 0 1 X2 + 0 ,
x; 0 lIt2 -lit X3 lit

1 < t < 2
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The associated boundary conditions are

O.3X2(1) + x3(1) = 0

O.15x2(2) +x3(2) = 0

x)(2) = 0

and the exact solution is given by

[:;] =

t( -1 + 1nl..) _t(0.7 + 2.1n 2) - 2.6 (In 2)(In1..) +n + 1n2
4 2 8 1.3 3 2.1 2 2.6 3

1..(-1 + 1nl..) + 1..(0.3 - 2.ln 2) - 2.6 (In 2)(1)
2 2 4 1.3 3 2.1 t
.l(In 1..)+ .l(0.3 - 2.1n 2) + 2.6 (In 2)(..l..)
2 2 4 1.3 3 2.1 t2

Table 4.5 on the following page displays results of numerical experiments

using Gauss collocation points, other results for Chebyshev zeros though not

presented here indicate a similar observation.

This problem exhibits the fact that using Gauss points the estimate E* may

underestimate the error, as it occurred for Chebyshev zeros in the previous

example. However, as we can see the estimate is reasonably close to the actual

error. It is also notable for this problem that even though both the coefficient A(t)

and the right hand side yet) are not polynomials the estimate r;q performs very

well indicated by small II r;; II values.

*It is observed that the estimate E is satisfactory and always very close to the

actual error even for the high accuracy solutions as well as in cases where it

underestimates the error. It is also worth to note here that II rh II is a good estimate

for the error, even though in fact theoretically it is a very crude error estimate.

Meanwhile the norm of residual IIr II is significantly larger than the error,

especially for high accuracy solutions. Comparing II rh II and IIr II ' the results of

numerical experiments presented in Table 4.5 clearly indicate that IIrh II

consistently produces better estimate for the error than II r II.
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Table 4.5
(Gauss Points)

-----------------------------------------------------------------------------------
q w Ilr""1I IIrll IIrhll IW'r"1I IIKr*1I E" E

----------------------------------------------------------------_------------------
2 3 5.237e-05 1.030e-01 3.435e-02 3.254e-03 3.696e-03 7.481e-03 3.138e-03

5 5.966e-06 4.547e-02 9.096e-03 8.712e-04 1.023e-03 1.240e-03 8.511e-04
10 2.546e-07 1.344e-02 1.344e-03 1.298e-04 1.564e-04 1.344e-04 1.282e-04
15 3.741e-08 6.338e-03 4.225e-04 4.092e-05 4.973e-05 4.074e-05 4.058e-05
20 9.387e-09 3.674e-03 1.837e-04 1.782e-05 2.175e-05 1.763e-05 1.770e-05
30 1.308e-09 1.684e-03 5.6l3e-05 5.451e-06 6.683e-06 5.397e-06 5.427e-06
40 3.194e-10 9.620e-04 2.405e-05 2.337e-06 2.872e-06 2.318e-06 2.32ge-06

----------------------------- ------------------------------------------------------

3 3 4.613e-07 1.480e-02 4.934e-03 2.582e-04 2.847e-04 2.774e-04 2.600e-04
5 2.1l3e-08 4.160e-03 8.320e-04 4.720e-05 5.135e-05 4.780e-05 4.732e-05
10 2.462e-10 6.446e-04 6.446e-05 3.885e-06 4.425e-06 3.893e-06 3.887e-06
15 1.658e-ll 2.05ge-04 1.373e-05 8.443e-07 9.771e-07 8.450e-07 8.445e-07
20 2.377e-12 9.02ge-05 4.514e-06 2.804e-07 3.272e-07 2.806e-07 2.805e-07
30 1.494e-13 2.782e-05 9.272e-07 5.818e-08 6.844e-08 5.81ge-08 5.818e-08
40 2.125e-14 1.197e-05 2.992e-07 1.887e-08 2.22ge-08 1.887e-08 1.887e-08

------------------------------------------------------- ----------------------------
5 3 2.650e-ll 1.978e-04 6.593e-05 1.856e-06 1.964e-06 1.841e-06 1.846e-06

5 1.958e-13 2.244e-05 4.488e-06 1.335e-07 1.423e-07 1.338e-07 1.336e-07
10 9.314e-16 9.533e-07 9.533e-08 2.993e-09 3.255e-09 2.995e-09 2.994e-09
15 9.024e-16 1.398e-07 9.318e-09 2.980e-10 3.294e-10 2.982e-10 2.981e-10
20 1.007e-15 3.504e-08 1.752e-09 5.655e-11 6.301e-ll 5.658e-ll 5.656e-11
30 1.088e-15 4.877e-09 1.626e-10 5.297e-12 5.951e-12 5.333e-12 5.298e-12
40 8.900e-16 1.190e-09 2.976e-ll 9.742e-13 1.09ge-12 1.038e-12 9.740e-13

---------------------------- --------------------------------- ----------------------

As the third illustration, we consider a boundary value problem corresponding

to the bending of a thin beam clamped at both ends [46]. This problem has been

chosen since the coefficient is a simple constant matrix and the non-homogeneous

term is not a polynomial but it can be well approximated by polynomial

interpolation" Moreover its solution is smooth" The problem is

Problem 3:

Xl 0 1 0 0 Xl 0

X2 0 0 1 0 X2 0
+ ,0<t<1

X3 0 0 0 1 X3 0
x4 0 0 0 0 x4 (t4 + 14t3 + 49t2 + 32t -12)e'
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The boundary conditions at both end points are determined by

XI (0) = X2(0) = 0

XI(1) = X2(1) = 0

and the analytical solution is given by

=
t2(I-t)2e'

(2t-5t2 +2t3 +t4)el

(2-8t-t2 +6t3 +t4)el

(-6-6t + 19t2 + 1Ot3+t4)el

The results of numerical experiments are displayed in Tables 4.6A and 4.68 on

the following page. From these tables, we can see that in most cases the error

estimate E* improves steadily as the number of collocation points increases.

Comparing the results displayed in both tables it is observed that using Gauss

points gives more accurate solutions compared to those using Chebyshev points.

The results in Tables 4.6A and 4.68 also show that both types of collocation

points appear to occasionally underestimate the error slightly. The estimates

produced, nevertheless, are still reasonably close to the actual errors. As we can

see, the underestimation occurs for different q values, for Chebyshev zeros q = 2

and Gauss points q = 3.

Detailed inspection of IIr II, IIrh II and E for different w reveal that the error

estimate IIrh II is more satisfactory than IIr II. Comparing Table 4.6A and

Table 4.68, it is observed that even though an IIr II in Table 4.6A is significantly

smaller than that corresponding IIr II in Table 4.68, this does not imply the actual

error E in Table 4.6A will be smaller than the error E in Table 4.68. It is

important to realise that a smaller residual does not necessarily correspond to a

smaller error.
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Table 4.6A
(Chebyshev Points)

-----------------------------------------------------------------------------------
q w "rll Ilrhll IIKr*11 E-----------------------------------------------------------------------------------
2 3 9.340e+00 3.114e+00 1.14ge+00 1.14ge+00 9.308e-01 1.426e+005 3.676e+00 7.352e-01 2.831e-01 2.831e-01 2.303e-01 5.002e-0110 9.834e-01 9.834e-02 3.904e-02 3.904e-02 3.234e-02 1.234e-0115 4.471e-01 2.981e-02 1.195e-02 1.195e-02 9.97ge-03 5.468e-0220 2.544e-01 1.272e-02 5.126e-03 5.126e-03 4.298e-03 3.071e-0230 1.14ge-01 3.830e-03 1.544e-03 1.544e-03 1.300e-03 1.363e-0240 6.51ge-02 1.630e-03 6.566e-04 6.566e-04 5.543e-04 7.665e-03------------------------ ------------------- ----------------------------------------3 3 5.238e-01 1.746e-01 4.04ge-02 4.04ge-02 4.140e-02 3.98ge-025 1.255e-01 2.510e-02 6.014e-03 6.014e-03 6.034e-03 5.780e-0310 1.700e-02 1.700e-03 4.162e-04 4.162e-04 4.141e-04 3.940e-0415 5.175e-03 3.450e-04 8.506e-05 8.506e-05 8.446e-05 8.013e-0520 2.213e-03 1.106e-04 2.737e-05 2.737e-05 2.716e-05 2.573e-0530 6.646e-04 2.215e-05 5.500e-06 5.500e-06 5.453e-06 5.158e-0640 2.823e-04 7.056e-06 1.755e-06 1.755e-06 1.73ge-06 1.644e-06------------------------------------------- ----------------------------------------5 3 5.93ge-04 1.980e-04 2.035e-05 2.035e-05 2.608e-05 2.497e-055 5.061e-05 1.012e-05 1.050e-06 1.050e-06 1.300e-06 1.248e-0610 1.694e-06 1.694e-07 1.76ge-08 1.76ge-08 2.148e-08 2.063e-0815 2.283e-07 1.522e-08 1.593e-09 1.593e-09 1.925e-09 1.847e-0920 5.481e-08 2.741e-09 2.871e-10 2.871e-10 3.524e-10 3.320e-1030 7.302e-09 2.434e-10 2.553e-11 2.553e-11 3.70ge-11 2.937e-1140 1.743e-09 4.357e-11 4.572e-12 4.572e-12 1.363e-11 5.315e-12---------------------------------------------- -------------------------------------

Table 4.6B
(Gauss Points)

-----------------------------------------------------------------------------------
q w Ilrll Ilrhll IIKr*11 E-------------------------------------------------- ---------------------------------
2 3 1.24ge+01 4.162e+00 3.942e-01 3.942e-01 4.084e-01 3.692e-015 4.918e+00 9.837e-01 9.450e-02 9.450e-02 9.291e-02 8.980e-0210 1.316e+00 1.316e-01 1.275e-02 1.275e-02 1.253e-02 1.238e-0215 5.986e-01 3.990e-02 3.873e-03 3.873e-03 3.822e-03 3.79ge-0320 3.406e-01 1.703e-02 1.654e-03 1.654e-03 1.637e-03 1.631e-0330 1.531e-01 5.104e-03 4.962e-04 4.962e-04 4.927e-04 4.916e-0440 8.662e-02 2.166e-03 2.106e-04 2.106e-04 2.095e-04 2.092e-04-------------------------- ---------------------- -----------------------------------3 3 8.478e-01 2.826e-01 1.668e-02 1.668e-02 1.61ge-02 1.640e-025 2.006e-01 4.012e-02 2.44ge-03 2.44ge-03 2.426e-03 2.436e-0310 2.686e-02 2.686e-03 1.680e-04 1.680e-04 1.676e-04 1.678e-0415 8.145e-03 5.430e-04 3.423e-05 3.423e-05 3.420e-05 3.421e-0520 3.476e-03 1.738e-04 1.100e-05 1.100e-05 1.09ge-05 1.100e-0530 1.042e-03 3.473e-05 2.207e-06 2.207e-06 2.206e-06 2.206e-0640 4.421e-04 1.105e-05 7.036e-07 7.036e-07 7.035e-07 7.035e-07---------------------------------------------- -------------------------------------5 3 1.145e-03 3.817e-04 1.211e-05 1.211e-05 1.211e-05 1.211e-055 9.724e-05 1.945e-05 6.286e-07 6.286e-07 6.286e-07 6.286e-0710 3.247e-06 3.247e-07 1.064e-08 1.064e-08 1.064e-08 1.064e-0815 4.372e-07 2.915e-08 9.594e-10 9.594e-10 9.653e-10 9.594e-1020 1.04ge-07 5.246e-09 1.731e-10 1.731e-10 1.804e-10 1.730e-1030 1.397e-08 4.657e-10 1.540e-11 1.540e-11 2.115e-11 1.54le-1140 3.334e-09 8.335e-11 2.75ge-12 2.75ge-12 1.044e-11 2.778e-12-----------------------------------------------------------------------------------
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As a further illustration we consider an almost singular boundary value problem

for which one might expect a stability problem to occur. The specification of

problem as follows

Problem 4:

its boundary conditions are

x)(O) = 0 and x)(l) = 0

and the unique solution is

(
Xl) ( sin(m) )
x2 1l" cos(m)

For this problem we also present the results using Chebyshev extrema as

displayed in Table 4.7C, while Table 4.7A and Table 4.7B contain the results using

Chebyshev zeros and Gauss points respectively.

In Table 4.7A it will be noticed that all IIr II are significantly smaller than the

errors. This also occurs when Chebyshev extrema points are used as shown in

Table 4.7C. By contrast, using Gauss points this only occurs occasionally.

Using three collocation points per subinterval, for w = 3, 5 and 10 in Table 4.7A

it seems that the solutions are quite poor and they become worse as w increases.

Results for w = 10 are exceptional, probably the collocation matrix is almost

singular in this case. Looking at the results in Table 4.7e, we found a similar

indication though there is no such a dramatic rise in the error for w = 10. In

contrast, Gauss points again show their superiority over the others in which the

errors are very small and they consistently improve as the interval size decreases,

moreover the error estimate E* perform quite satisfactorily.

Despite their superiority for small q, using Gauss points with larger q may

produce solutions which become worse as w increases as displayed in the last two

rows of Table 4.7B. In these cases the values of E* are unsatisfactory, since they
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in contrast decrease as w increases. This effect is probably due to round off error as

the errors are very small in these cases. On the other hand the results for

Chebyshev extrema points show that they consistently reduce as intervals size

halved.

Table 4.7A
(Chebyshev Zeros)

q w Ilrll Ilrhll IIKr*11 E

3 3 4.200e-04 1.400e-04 3.500e-05 1.26ge-04 3.3lle-02 3.l6Se+OO
5 S.09ge-04 1.620e-04 4.050e-05 1.33Se-04 2.S1Se-Ol 3.354e+OO
10 7.l2le-Ol 7.l2le-02 1.7S0e-02 5.593e-02 S.055e+05 1.422e+03
20 2.117e-04 1.05ge-05 2.646e-06 S.314e-06 2.793e-Ol 2.096e-Ol
40 2.49Se-05 6.244e-07 1.56le-07 4.904e-07 1.54Se-02 1.234e-02

5 3 1.577e-04 5.25Se-05 5.527e-06 2.005e-05 2.740e-Ol 2.63Se-Ol
5 1.4S0e-05 2.960e-06 3.l11e-07 1.02Se-06 1.636e-02 1.423e-02
10 4.S47e-07 4.S47e-OS 5.095e-09 1.60le-OS 2.666e-04 2.29le-04
20 1.53le-OS 7.654e-1O S.045e-ll 2.527e-1O 4.200e-06 3.602e-06
40 4.796e-1O 1.19ge-ll 1.260e-12 3.95ge-12 6.576e-OS 5.650e-OS

------------------------------ ----------------------------------------------------
7 3 2.S27e-07 9.422e-OS 7.S5le-09 2.S4Se-OS 2.505e-04 2.260e-04

5 S.753e-09 1.75le-09 1.45ge-1O 4.Slge-1O 4.431e-06 3.95ge-06
10 7.124e-ll 7.l24e-12 5.936e-13 1.S65e-12 1.76ge-OS 1.57Se-OS
20 5.627e-13 2.Sl2e-14 2.347e-15 7.343e-15 6.S70e-ll 1.9l7e-1O
40 5.675e-15 1.533e-16 S.040e-17 1.955e-16 3.012e-13 1.S66e-1O

----------------------------- -----------------------------------------------------

Table 4.7B
(Gauss Points)

q w [z-] Ilrhll IIKr*11 E

3 3 5.26ge-02 1.756e-02 1.124e-03 4.07ge-03 6.1S3e+OO 5.273e+OO
5 2.l2Se-02 4.256e-03 2.725e-04 9.000e-04 S.36le-Ol 4.230e-Ol
10 2.457e-03 2.457e-04 1.573e-05 4.943e-05 1.035e-02 5.913e-03
20 3.l00e-04 1.550e-05 9.925e-07 3.11Se-06 1.623e-04 9.3lle-05
40 3.SS6e-05 9.7l5e-07 6.220e-OS 1.954e-07 2.576e-06 1.493e-06

5 3 3.29ge-04 1.lOOe-04 3.652e-06 1.325e-05 1.737e-04 9.635e-05
5 2.S45e-05 5.6Sge-06 1.SSge-07 6.24le-07 1.232e-06 7.530e-07
10 9.270e-07 9.270e-OS 3.07Se-09 9.671e-09 3.S72e-09 3.420e-09
20 2.927e-OS 1.463e-09 4.S60e-ll 1.527e-1O 4.727e-ll 1.366e-1O
40 9.l70e-1O 2.292e-ll 7.6l3e-13 2.392e-12 1.060e-12 1.965e-1O

_----------------------------- -------------------- --------------------------------
7 3 6.01Se-07 2.006e-07 4.396e-09 1.595e-OS 4.6S5e-09 4.475e-09

5 1.S63e-OS 3.725e-09 S.163e-ll 2.696e-1O S.704e-ll 1.3Sle-1O
10 1.516e-1O 1.5l5e-ll 3.32le-13 1.043e-12 2.272e-12 4.325e-ll
20 1.196e-12 5.9S0e-14 1.3l2e-15 4.11ge-15 1.532e-12 7.003e-ll
40 1.157e-14 2.S5le-16 1.616e-16 2.S2Se-16 3.0l7e-13 1.S70e-1O

----------------------------------------------- -----------------------------------
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Table 4.7C
(Chebyshev Extrema Points)

q w Ilrll Ilrhll ~Kr*~ E

3 3 2.446e-04 8.152e-05 2.648e-05 9.588e-05 1.247e-02 3.152e+OO
5 4.50ge-04 9.018e-05 2.92ge-05 9.672e-05 9.785e-02 3.21ge+OO
10 1.45ge-03 1.45ge-04 4.737e-05 1.488e-04 3.798e+OO 5.040e+OQ
20 3.666e-04 1.833e-05 5.952e-06 1.870e-05 9.41ge-01 6.283e-01
40 3.871e-05 9.677e-Q7 3.l43e-07 9.873e-07 4.l8le-02 3.3lle-02

5 3 4.693e-04 l.564e-04 2.808e-OS 1.Olge-Q4 2.S46e+OO 1.48Se+OO
5 2.BOOe-OS S.600e-06 l.OOSe-06 3.320e-06 S.67Se-02 4.794e-02
10 9.002e-07 9.002e-OB l.6l6e-OB S.076e-08 B.624e-04 7.39le-04
20 2.843e-08 l.42le-09 2.SSle-lO 8.0lSe-lQ l.348e-OS l.l55e-05
40 8.907e-lO 2.227e-ll 3.997e-12 1.256e-ll 2.106e-07 1.804e-07

----------------------------------------------------------------------------------
7 3 5.456e-07 1.8lge-07 1.567e-08 5.686e-08 2.698e-04 2.463e-04

5 1.692e-08 3.383e-09 2.9l6e-10 9.632e-10 4.965e-06 4.453e-06
10 1.377e-lO 1.377e-ll l.l87e-l2 3.72ge-l2 2.0l2e-08 l.79le-08
20 l.087e-l2 5.437e-l4 4.687e-lS 1.472e-l4 7.90ge-ll l.Sl7e-lO
40 9.S6ge-lS 2.694e-l6 l.346e-l6 2.783e-l6 l.074e-l2 3.211e-ll

------------------------------------------------------ ----------------------------

Finally let us examine a boundary value problem where its fundamental

solution contains rapid growing and decaying terms. Stability difficulty arises when

using shooting method to solve this problem [10]. The problem having a problem

parameter Jl is specified by

Problem 5:

the boundary conditions and its unique exact solution are respectively given by

cos2(m) )
(~)sin(2m)

Taking problem parameter Jl = 102 and collocating at Gaussian points,

Table 4.8 shows the results of computations.
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The figures indicate that E* is a reasonable error estimate even if the solution

is very poor, which occurs when q and lor ware small. On the other hand, in all

cases, the norm of residual II r II clearly overestimates the error significantly. By

contrast, the II rh II is much better in the sense it is closer to the error and in some

cases it is reasonably satisfactory.

Note that the matrix A(t) in this example is large and it is clear that IIKr;q II is

greater than IIDol r;q II so that the second term in expression for E* (see equation

4.18) will be dominant and in some cases resulting in a poor estimate E*.

One of the most notable observations for this problem is that the estimate E*

smoothly reduces and it is closer to the error as q or w increases. This last result

is very important since we shall develop some adaptive mesh selection algorithms

utilising the error estimate E*.

q w

2

3

5 3
5
10
15
20
30
40
50

Table 4.8
(Gauss Points, problem parameter p = 102)

Ilrll

3
5
10
15
20
30
40
50

1.017e+02
7.822e+01
5.762e+01
4.556e+01
3.688e+01
2.547e+01
1.857e+01
1.412e+01

3.38ge+01
1.564e+01
5.762e+00
3.037e+00
1.844e+00
8.48ge-01
4.643e-01
2.823e-01

3.154e+01
1.115e+01
3.344e+00
1.42ge+00
7.220e-01
2.458e-01
1.057e-01
5.277e-02

4.082e+01 1.361e+01
2.310e+01 4.620e+00
7.035e+00 7.035e-01
2.596e+00 1.731e-01
1.113e+00 5.565e-02
2.813e-01 9.377e-03
9.486e-02 2.371e-03
3.871e-02 7.741e-04

IW"r'li

3.274e+00
1.521e+00
5.612e-01
2.958e-01
1.796e-01
8.267e-02
4.522e-02
2.74ge-02

2.01ge+00
7.141e-01
2.140e-01
9.147e-02
4.623e-02
1.573e-02
6.770e-03
3.378e-03

4.518e-01
1.534e-01
2.336e-02
5.748e-03
1.848e-03
3.114e-04
7.875e-05
2.571e-05

IiKr*1i

3.274e+02
1.521e+02
5.612e+01
2.958e+01
1.796e+01
8.267e+00
4.522e+00
2.74ge+00

2.01ge+02
7.141e+01
2.140e+01
9.147e+00
4.623e+00
1.573e+00
6.770e-01
3.378e-01

4.518e+01
1.534e+01
2.336e+00
5.748e-01
1.848e-01
3.114e-02
7.875e-03
2.571e-03

1.556e+01
6.626e+00
1.131e+00
4.704e-01
2.311e-01
9.492e-02
5.254e-02
3.206e-02

1.150e+01
1.775e+00
2.896e-01
1.195e-01
5.857e-02
1.875e-02
7.651e-03
3.657e-03

1.261e+00
2.722e-01
3.426e-02
7.192e-03
2.114e-03
3.401e-04
8.32ge-05
2.657e-05

E

9.65ge-01
6.087e-01
3.014e-01
1.821e-01
1.303e-01
7.125e-02
4.231e-02
2.690e-02

7.838e-01
3.060e-01
1.22ge-01
6.543e-02
3.667e-02
1.351e-02
6.087e-03
3.133e-03

1.873e-01
8.154e-02
1.720e-02
4.855e-03
1.64ge-03
2.935e-04
7.603e-05
2.512e-05----------------------------------------------- ------------------------------------

3
5
10
15
20
30
40
50

9.463e+01
5.577e+01
3.344e+01
2.143e+01
1.444e+01
7.373e+00
4.230e+00
2.638e+00
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4.6 Numerical Evaluation of the estimate E* for Stiff' BVPs

Although here the concept of stiffness for system of differential equations will

not be discussed in detail, in this section using numerical experiments we shall

observe performance of the error estimate E* when dealing with stiff problems

having severe layers.

Firstly let us consider the following problem

Problem 6:

(;:) = (: ~)(;:)+LcOS'(,")+~'COS(2mJ
The boundary conditions and the analytical solutions are given by

XI(O) = xl(l) = 0

This is a 'real' problem and one reason for choosing this problem is that it has

been used elsewhere to show that some procedures do not perform well [19]. In

this problem, since the solution X2 behaves badly, i.e. it undergoes a drop from

X2 = ~Jl to X2 = 0 within small subinterval [0,. II'JJl] and near the right end it

rises from X2 = 0 to X2 = ~Jl within subinterval [~I , 1], we may expect that

the errors in calculating X2 should be worse compared to those in calculating XI.

Moreover, even though the non-homogeneous term of this problem is not a

polynomial it can be well approximated by a polynomial, hence the residual will

be well approximated by r;q in which the interpolation error r;; will be very

close to zero, hence we would expect that the cheaper estimates E* can be used

instead of the estimates E2 and E3•

Using the Gauss points, Table 4.9A and Table 4.9B contain results with

problem parameter Jl = 102 and Jl = 104 respectively.
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In Table 4.9A it is observed that the estimate E* is reasonably satisfactory even

if the approximate solution is poor. The estimate improves as the number of points

q increases as well as the interval sizes decrease. Looking at q = 2 and w = 3,

since IID-l r;q II is much smaller than IIKr;q II it is clear that large IIKr;q II results
in a poor error estimate. Comparing the norms IIr II and IIrh II it is again very

clear that IIrh II provides a better approximation.

With problem parameter Jl = 104 the problem is set to have more severe layers.

As can be seen in Table 4.9B, this implies that 11K r;q II become even larger and in

all cases IIK r;q II is much larger than liD-I r;q II. It is clear that 11K r;q II is the

*dominant term in the equation forming E. From this table, it is notable that if the

solution is very poor then the estimate will also be very poor. With this important

note, we realise that the estimate may perform very poorly at initial stages of a

mesh selection algorithm.

q w

2 3
2 5
2 10
2 20
2 40
2 50

3 3
3 5
3 10
3 20
3 40
3 50

5 3
5 5
5 10
5 20
5 40
5 50

Table 4.9A
(Gauss Points, problem parameter ~ = 102)

IIrOO II
4.07ge-02
3.415e-03
1.lOBe-04
3.43Be-06
1.OB3e-07
3.556e-OB

2.657e-04
B.01Be-06
6.514e-OB
5.048e-10
4.031e-12
9.01Be-13

2.507e-09
9.861e-12
1.013e-13
9.490e-14
9.702e-14
1.OB1e-13

Ilrll
2.971e+01
1.312e+01
4.661e+OO
1.466e+OO
4.156e-01
2.730e-01

6.77ge+OO
2.592e+OO
5.038e-01
7.95Be-02
1.123e-02
5.891e-03

3.0BBe-01
4.037e-02
1.942e-03
7.645e-05
2.691e-06
9.033e-07

Ilrhll
9.BBge+OO
2.624e+OO
4.661e-01
7.32ge-02
1.03ge-02
5.460e-03

9.262e-01
2.51Be-01
4.526e-02
7.134e-03
1.012e-03
5.317e-04

IIKr*11
1.196e+01
3.25Be+OO
5.37ge-01
B.OB2e-02
1.121e-02
5.B64e-03

1.30Be+OO
2.B40e-01
2.B50e-02
2.300e-03
1.640e-04
6.B9ge-05

3.33Be-02
2.737e-03
6.65Be-05
1.311e-06
2.306e-OB
6.190e-09

E E

2.260e+OO
5.1B4e-01
5.03Be-02
3.97ge-03
2.B07e-04
1.17Be-04

1.245e-01
3.11ge-02
3.157e-03
2.526e-04
1.790e-05
7.521e-06

5.0B4e+OO
4.92Be-01
5.290e-02
7.790e-03
1.067e-03
5.55ge-04

B.192e-01
2.3BBe-01
4.613e-02
7.362e-03
1. 035e-03
5.424e-04

1.02ge-01 3.361e-03
B.074e-03 2.647e-04
1.942e-04 6.416e-06
3.B22e-06 1.267e-07
6.727e-OB 2.232e-09
1.B07e-OB 5.995e-10

1.796e-01
3.25ge-02
3.074e-03
2.506e-04
1.7B6e-05
7.511e-06

1. 094e-01
2.BBOe-02
3.081e-03
2.50ge-04
1.787e-05
7.513e-06

3.695e-03 3.165e-03
2.766e-04 2.5Bge-04
6.3B7e-06 6.37ge-06
1.265e-07 1.265e-07
2.234e-09 2.231e-09
6.024e-10 5.994e-10-----------------------------------------------------------------------------------
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Table 4.9B
(Gauss Points, problem parameter J.i = 104)

-----------------------------------------------------------------------------_-----
q w Ilr"lI IIrll IIrhll IID-1r'lI IIKr*1I E' E

-----------------------------------------------------------------------------------
2 3 2.936e+OO 1.017e+04 3.38ge+03 3.274e+02 1.146e+04 1.556e+03 4.144e+Ol
2 5 2.458e-Ol 7.822e+03 1.564e+03 1.521e+02 1.290e+04 3.146e+02 4.475e+Ol
2 10 7.975e-03 5.746e+03 5.746e+02 5.595e+Ol 5.612e+03 1.131e+02 3.014e+Ol
2 20 2.475e-04 3.687e+03 1.843e+02 1.795e+Ol 1.796e+03 2.311e+Ol 1.303e+Ol
2 40 7.793e-06 1.857e+03 4.643e+Ol 4.522e+OO 4.522e+02 5.254e+OO 4.231e+OO
2 60 1.028e-06 1.108e+03 1.846e+Ol 1.798e+OO 1.798e+02 2.095e+OO 1.805e+OO
2 80 2.440e-07 7.330e+02 9.162e+OO 8.923e-Ol 8.923e+Ol 1.033e+OO 9.187e-Ol

-----------------------------------------------------------------------------------
3 3 1.912e-02 5.997e+03 1.99ge+03 1.265e+02 2.01ge+04 1.150e+03 7.838e+Ol
3 5 5.772e-04 5.505e+03 1.lOle+03 7.035e+Ol 7.141e+03 1.775e+02 3.060e+Ol
3 10 4.68ge-06 3.344e+03 3.344e+02 2.140e+Ol 2.140e+03 2.896e+Ol 1.22ge+Ol
3 20 3.634e-08 1.444e+03 7.220e+Ol 4.623e+OO 4.622e+02 5.856e+OO 3.667e+OO
3 40 2.903e-1O 4.230e+02 1.057e+Ol 6.770e-Ol 6.770e+Ol 7.651e-Ol 6.087e-Ol
3 60 2.202e-ll 1.752e+02 2.920e+OO 1.86ge-Ol 1.86ge+Ol 1.954e-Ol 1.767e-Ol
3 80 8.473e-12 8.83ge+Ol 1.105e+OO 7.074e-02 7.074e+OO 7.020e-02 6.832e-02

-----------------------------------------------------------------------------------
5 3 1.804e-07 3.85ge+03 1.286e+03 4.271e+Ol 4.518e+03 1.261e+02 1.873e+Ol
5 5 7.088e-1O 2.310e+03 4.61ge+02 1.534e+Ol 1.534e+03 2.722e+Ol 8.154e+OO
5 10 8.585e-12 7.035e+02 7.035e+Ol 2.336e+OO 2.336e+02 3.426e+OO 1.720e+OO
5 20 8.821e-12 1.1l3e+02 5.565e+OO 1.848e-Ol 1.84Be+Ol 2.114e-Ol 1.64ge-Ol
5 40 9.651e-12 9.486e+OO 2.371e-Ol 7.875e-03 7.875e-Ol 8.32ge-03 7.603e-03
5 60 9.670e-12 1.807e+OO 3.012e-02 1.OOOe-03 1.OOOe-Ol 1.017e-03 9.B3ge-04
5 80 9.462e-12 5.194e-Ol 6.492e-03 2.156e-04 2.156e-02 2.142e-04 2.136e-04

-----------------------------------------------------------------------------------

For the second illustration let us recall problem 5 and take the problem

parameter f.l = 1o'.
The following table displays some results using Chebyshev and Gauss points.

For the initial stage with small w, the results clearly indicate that the estimate is

very unsatisfactory, even though there is an improvement as w increases, but it is

quite slow. Looking back at the Table 4.8 and take a look at the second row, we

can see that the error and its estimate are 6.087E-Ol and 6.626E+OO respectively,

while in Table 4.10 for q = 10 and w = 10 (where the error actual error is close to

6.087E-Ol) the value of E* overestimates the actual error very significantly, Le.

the error and its estimate are 6.771E-Ol and 1.727E+02 respectively.

Detailed inspection of IIr II and IIrh II reveals that IIrh II gives a better

approximation than IIr II, unfortunately this error measure is not very close to the

actual error.
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Table 4.10
(Chebyshev and Gauss Points, f.i = 104)

-----------------------------------------------------------------------------------
q w Ilrll Ilrhll IW"r'll IIKr*11 E' E

-----------------------------------------------------------------------------------

7C 3 1.134e+05 3.781e+04 3.l5le+03 3.l5le+07 8.045e+04 1.134e+Ol
7G 3 1.76ge+05 5.895e+04 1.292e+03 1.292e+07 2.l93e+05 1.770e+Ol

7C 5 4.l20e+04 8.240e+03 6.866e+02 6.866e+06 1.052e+04 4.l20e+OO
7G 5 6.385e+04 1.277e+04 2.798e+02 2.798e+06 2.850e+04 6.390e+OO

7C 10 9.324e+03 9.324e+02 7.76ge+Ol 7.76ge+05 3.l0ge+02 9.322e-Ol
7G 10 8.673e+03 8.673e+02 1.900e+Ol 1.900e+05 4.l3le+02 8.472e-Ol

7C 20 8.273e+03 4.l36e+02 3.447e+Ol 3.447e+05 7.033e+Ol 8.26ge-Ol
7G 20 7.992e+03 3.996e+02 8.757e+OO 8.757e+04 1.164e+02 7.2l5e-Ol

7C 40 6.9l6e+03 1.72ge+02 1.441e+Ol 1.44le+05 2.050e+Ol 6.904e-Ol
7G 40 7.130e+03 1.783e+02 3.906e+OO 3.906e+04 2.3l0e+Ol 5.76ge-Ol

------------------------------------------------------ -----------------------------

10C 3 9.9l7e+03 3.306e+03 1.8l6e+02 1.816e+06 4.662e+02 9.9l7e-Ol
lOG 3 7.89ge+03 2.633e+03 3.887e+Ol 3.887e+05 3.560e+02 7.9l0e-Ol

10C 5 9.603e+03 1.92le+03 1.055e+02 1.055e+06 3.866e+02 9.602e-Ol
lOG 5 7.8l5e+03 1.563e+03 2.308e+Ol 2.308e+05 3.338e+02 7.750e-Ol

10C 10 8.311e+03 8.31le+02 4.565e+Ol 4.565e+05 1.350e+02 8.3l0e-Ol
lOG 10 7.270e+03 7.270e+02 1.073e+Ol 1.073e+05 1.727e+02 6.771e-Ol

10C 20 6.863e+03 3.432e+02 1.885e+Ol 1.885e+05 3.263e+Ol 6.857e-Ol
lOG 20 6.35ge+03 3.l80e+02 4.694e+OO 4.694e+04 3.090e+Ol 5.23ge-Ol

10C 40 4.884e+03 1.22le+02 6.708e+OO 6.708e+04 1.116e+Ol 4.868e-Ol
lOG 40 5.llle+03 1.278e+02 1.886e+OO 1.886e+04 7.885e+OO 3.45le-Ol

------------------------------------ -------------------- --------------------------_
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chapter

Adaptive Mesh Selection Strategies
for Collocation Algorithms

5.1 Introduction

At some stage of the piecewise polynomial collocation methods for solving

boundary value problems, discretisation of the differential equations on a mesh is

involved. The purpose of this chapter is to study the practical selection of such a

mesh, with the objective of achieving a sufficiently accurate solution as cheaply as

possible.

We will start by introducing some basic concepts. For comparison purposes, it

will then be followed by reconsidering some well known mesh selection algorithms.

Subsequently, we will introduce and discuss a proposed criterion function to be used

in adaptive mesh selection algorithms. Finally some results of numerical

comparisons are presented.

The basic problem considered is the two-point boundary value problem

x'(t) = A(t) x(t) + y(t), a <t< b ... (5.la)

... (5.lb)

Here we assume that there is an unique solution x(t) that we wish to compute and

that matrix valued function A(t) is sufficiently smooth.

In the collocation process using q collocation points per subinterval, the

discretisation of the differential equations will be carried out on the mesh

1t : a = tl < ti < ... < tw < tw+1= b ... (5.2)
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where w denotes number of initial subintervals.

The mesh sizes are defined as hi = ti+l - t, , 1 ~ i ~ wand the maximum mesh size

is h = max hi. For convenience, the resulting collocation solution on the mesh 1t
i

will be denoted by x1t(t) rather than Xwq(t) as in previous chapters.

Since we shall be interested mainly in developing our proposed criterion function

and examining its performance by carrying out numerical comparisons with those

well known mesh selection strategies, here the problem of selecting a good mesh is

considered independently from error estimates. To be precise, in the numerical

experiments we shall directly examine and compare the performance of algorithms

by looking at the actual error at certain number of collocation points w.

For simplicity and to make numerical comparisons more straightforward and

more clear, in implementing the adaptive mesh selection algorithms to be presented

here the number of subintervals will be incremented by one subinterval per iteration.

This means that neither the possibility of adding a number of knots nor reducing the

number of knots will be pursued here, however it will be considered in the next

chapter.

5.2 Some Basic Concepts

In the three following subsections some basic concepts underlying our work will

be introduced.

5.2.1 Structure of Adaptive Mesh Selection Algorithms

The idea of adaptive refinement of a mesh and a redistribution of meshes are now

well established. A number of robust mesh selection algorithms are available and

have been applied widely in developing many software packages.

There is not much theoretical justification for the different strategies which have

been used widely. Even though some strategies based upon asymptotic formulas

perform quite satisfactorily in many practical applications, despite this lack of

rigorous theoretical justification. It is important to realise that in the development of
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mesh selection algorithms that the choice of a good mesh is not very sensitive; i.e.

often there is a wide range of acceptable meshes of a given size w for a given

boundary value problem, even when a uniform mesh of the same size yields poor

results.

In developing mesh selection strategy, the aim is to find an algorithm which

determines a sequence of partitions defined by the points (knots) in an adaptive way,

so that an accurate solution to the problem is obtained with as small number of

subintervals w as possible.

To be more precise, let TOL be the desired tolerance, and suppose we wish to

compute the approximate collocation solution x1t(t) of BVP (5.1) over partition (5.2)

using q collocation point per subinterval. Having computed x1t(t) on mesh n, our

main goal is to efficiently determine a new partition of [a, b]

*n ... '" '" lie ba = tl < t2 < ... < two < twO+1 = ... (5.3)

such that w* is small but if the collocation solution is computed using n* then the

global error e(t) satisfies

II ell == max II e(t) II s TOL
as/Sb

... (5.4)

Needless to say that the mesh (5.3) and collocation solution may need to be

repeatedly updated until (5.4) is satisfied.

It is clear that some criterion function Ti(t) is needed to construct a new mesh n*.

Basically, there are two approaches to do this, firstly by trying to redistribute Ti(t)

which should be some measure of the error in the ith-subinterval, such that they have

approximately the same norm in whole range [a, b], i.e. by requiring

IITi II = constant = F;, 1$ i$ w ... (5.5)

secondly, we directly attempt to minimise Ti(t) simply by searching for the

subinterval(s) having large IITi II and then subdivide these subintervals.
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Having chosen a particular criterion function, an adaptive mesh selection

algorithm can be constructed by means of an iterative procedure, adding or removing

points as necessary to equilibrate to level E. An approximately equilibrating mesh is

produced such that the equation (5.4) is fulfilled.

An outline of basic structure of the procedure is as follows

o

1. Compute the first stage collocation solution on initial mesh n

2. Evaluate the global error and check whether either

(5.4) is satisfied or
number of iterations exceed some prescribed constant Imax or

number of subintervals greater than some constant wmax

~ and then break

3. Evaluate the criterion function

4. Construct a new partition n· based on result of step-3

o

o

5. Compute the collocation solution on new mesh n·

6. Repeat step-2

5.2.2 Error Equidistribution and Criterion Function

A particular approach to adaptive collocation schemes was introduced by

de Boor [22]. In the paper, de Boor proposed to equidistribute some certain measure

of the error in each subinterval [ti, ti+d. Furthermore, a paper of Pereyra and

Sewell [40] discusses in some detail the concept of equidistribution for discrete

solutions. In the paper they extend the idea of de Boor to discrete variable

approximation for more general for boundary value problems.

Recall 'Zl the local error measure mentioned in the previous section. The

requirement using equation (5.5) may be regarded as the basic definition of the

equidistribution concept. However, as described in Ascher et al. [10], since this

error measure is not independent of its associated subinterval [ti, ti+1] and in

general 'Zl increases as the mesh size increases, it will tum out to be convenient to
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consider a corresponding error measure fA which only varies linearly with hi , Le.

they are related by

... (5.6)

where T, is independent of mesh size hi.

Having chosen a suitable criterion function 11 (or perhaps, the converted one of

the form (5.6)) the new mesh n· may be found by requiring max II fA II to be
l$i$w

minimised. This brings us to the minimax problem with one constraint as follows

find the set of points {I;, I;, ... , I:.} c (a, b) such that

max II t, II (/;+1 - I;) is minimum,
l$i$w·

where (/;+1 - t;) > 0 and the sum of (t;+1 - t;) must satisfy

•w
,,* *~ (ti+l-ti) = (b-a).
i=l

The above optimisation problem can be solved, simply by making all f/J; = T, hi

equal to the same constant E. This result enables us to define formally the concept

of equidistribution as follows

Definition: A mesh points is said to be equidistributing with respect to the function

T(t) if and only if

II T(t) II i hi = constant, i = 1,2, ... , w ... (5.7)

For the sake of generality, especially to understand what has been done by de

Boor, we can extend the definition (5.7) by considering a more general function p (t),

instead of just discrete values function II T(t) II i on partition rt. Let us assume that

a positive valued function At) is continuous and sufficiently smooth. With these

assumptions, we come to the following definition.
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Definition: A mesh is said to be equidistributing with respect to a monitor

function !Xt) on interval [a, b] if for some constant Eo

(+1J,' p(t)dt = Eo,, i = 1,2, ... ,W ... (5.7a)

From which, it follows that

Eo = ~ f p(t)dt

5.2.3 Mesh Placement and Mesh Subdivision Strategy

The adaptive mesh selection algorithms can be distinguished into two types,

firstly mesh subdivision algorithm where additional knot(s) are inserted into a given

mesh. The second one is called equidistribution or mesh placement where a new

mesh is chosen at each stage so that some criterion function should have the same

value in each subinterval. The second type enables us to obtain a new mesh which is

completely different with the previous mesh. Recall the basic structure of the

adaptive mesh selection algorithms in §5.2.1, apparently these two types only differ

in step-4, however the effectiveness and efficiency of the algorithms could be

different significantly.

The procedure for mesh subdivision is straightforward and is much more simple

than mesh placement. In this procedure it is expected that the subinterval with

maximum II 1; II determined using some criterion function gives maximum effect on

the error IIell, consequently, it seems sensible to subdivide the subinterval having

the largest II 1; II·
For mesh subdivision algorithm with one point increment, an outline of the basic

procedure is as follows
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or w > wm••' for some constant wm••

1. Solve the BVPusing a crude initial mesh points

2. Evaluate the criterion IltJ, i = 1,2, ... , W

3. Searching for the subinterval which has maximum IItJ
4. Halve this subinterval
5. Repeat first step till either (5.4) is satisfied

Note that, the basic procedure above can be developed further to obtain an adaptive

mesh algorithm with multiple subdivisions.

For mesh placement algorithms, a special procedure is needed which involves

setting up and finding the inverse of a certain function. A detailed description on this

can be found in §5.4.2.

5.3 Some Well Known Criterion Functions

In the following subsections, we shall examine some well known criterion

functions widely used in applications. Our main attention is the maximum residual

and de Boor criterion functions which will be employed for numerical comparisons.

Some other criteria will be described briefly.

5.3.1 Maximum Residual

Residuals have been commonly used to estimate the local errors for mesh

selection. Carey and Humphrey [14] studied in detail the use of residual as criterion

function in developing adaptive mesh selection algorithms. In their work they also

found some empirical relations for some specific problems for which they come to

conclusion that reducing the residuals in some region will reduce the residual in

whole interval and consequently, the global error. This result is also pointed out in

Seleman's thesis [48].
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To recall, for a given mesh 1t of (5.2) and q given collocation points in each

subinterval, the residual r1t(t) for the boundary value problem (5.la-5.1b) is

determined by

rit) = (D - A) xit) - yet) ... (5.8)

where D denotes the differential operator defined in chapter 2.

Implementing this strategy which will be called the MR strategy is fairly simple.

The main task is to search for the subinterval having the largest residual and then

subdivide the subinterval into two equal subintervals. As we can see in

equation (5.8), the residual can be evaluated at any point straightforwardly,

nevertheless obtaining its maximum is not a cheap computation task, especially if the

mesh is a non-uniform one. Obviously, the success of a maximum residual strategy

also depends on the success of estimating the largest residual. There are various ways

that an approximate residual can be found and used for this purpose, here we will

make use the polynomial interpolation discussed in chapter 4 to obtain an estimate

of maximum residual.

5.3.2 De Boor's Algorithm

De Boor's paper of 1973 [22] is recognised as one of the most outstanding

contribution in developing adaptive mesh selection algorithms. De Boor introduced

a criterion function based on the error analysis given in de Boor and Swartz's

paper [23]. A comprehensive paper of Russell and Christiansen [45] discusses

further de Boor's idea, and this is implemented in the COLSYS code by Ascher,

Christiansen and Russell as described in Ascher et al. [IO].

For comparison purposes, first of all we shall take a look at de Boor's idea in

constructing an adaptive mesh placement algorithm.

Let us start by reconsidering some theoretical results about collocation

approximation method and its error estimates which can be found in [22,45].
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For t E (ti, ti+1) , under certain conditions it is known that for some integer d > q

the global error e(t) satisfies the local inequality

... (5.9)

and

IIx1t(t) - x(t) II i :5 O(hd), 1:5 i:5 w+1

where hi, h denote the interval sizes and C is a constant determined by

1 r q
C = 1 max {l IT(s - qj )ds}

2q+ q! -rs.sr 1 j=l
... (5.10)

where Q are the collocation points in [-1,1]

It is also shown that closer examination of the error reveals that (5.9) can be

replaced by the equality

... (5.11)

This implies that, for sufficiently small h

... (5.12)

and therefore suggest that break points tz. ts, ... , t; be placed so as to minimise the

maximum of local terms hj
q+11Ix(q+1) (t) II j. This can be achieved by requiring

hj
q+1 Ilx(q+I)(t) II i = constant, i = 1,2, ... ,W ... (5.13)

Based on (5.13) de Boor constructed an adaptive mesh selection procedure which

produces a complete new mesh in each iteration, in other words it is a mesh

placement algorithm. Due to unavailability of X(q+1)(t), and since X1t(q+1)(t) is zero

within each subinterval, de Boor proposed a numerical scheme to obtain an

approximate for the terms IIx(q+l)(t) II j using values in neighbouring subintervals.

The piecewise constant function to approximate X(q+1) (t) is determined using
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211 ~ x~q)(t3l2) II
t3 - t1

DB(t) = ... (5.14)

Here, fj. denotes the forward difference operator with ti+1I2= (ti + ti+I)/2. As we

can see this amounts to taking for DB(t) on the subinterval (ti' ti+l) as the slope at

middle point tusn of the parabola which interpolates the qth derivative of the

approximate solution x1t(t) at ti-1I2, ti+1I2 and ti+312.

In order to make a clearer comparison with our mesh subdivison algorithm, we

slightly modify de Boor's algorithm by searching for the i!h subinterval 1:::; i.:::; w

such that

htl II X(q+l) (t) IIi. = max { hi
q+1 Ilx(q+I)(t) IId, 1:::; i:::; w

I

where X(q+l) (t) is approximated by piecewise constant function DB. This procedure

is called de Boor mesh subdivision algorithm.

5.3.3 Other Criterion Functions

In chapter 4 we have discussed some error estimates for the numerical solution of

a linear first order system of ordinary differential equations by piecewise polynomial

collocation which are based on consideration of the differential operator involved

and related matrices and on the residual. It is also shown that a significant advantage

may be obtained by considering the form of the residual rather than just its norm.

This, in particular, gives us an error estimate E* which provides an estimate of the

error as a function of variable t. Unfortunately, some results of early numerical

experiments clearly indicate that direct attempts to use those error estimates, in
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particular E*, as criterion function in developing an adaptive mesh selection

algorithm for solving system BPVs give unsatisfactory results. Though, Wright,

Ahmed and Seleman [60] have shown that if the influence of the behaviour in one

subinterval on the error in others is taken into account then some criterion functions

based on those error estimates for solving single higher order boundary value

problems may give a good results in some cases. These modified criteria tum out,

however, to be very expensive and their practical utility is doubtful.

For solving single higher order boundary value problems, there have been many

suggestions for criteria. Some of these aim to reflect some measure of smoothness of

the approximate solution, for example the magnitude of a particular derivative of the

collocation solution in each subinterval. For this purpose, White [53] suggested the

use of arc-length, while Dodson [24] proposed to approximate the particular

derivative by differentiating the piecewise linear function that interpolates the

derivative at the middle of subintervals. Other criterion functions relate to some

measure of error. These criterion functions, however, will not be considered further

here except to remark that the de Boor algorithm which involves approximating the

particular derivative of xit) is widely used and performs quite well as pointed out by

Russell and Christiansen [45]

5.4 Using rh, as the Criterion Function

In this section, a criterion function to be used in developing adaptive mesh

selection algorithm will be introduced. Firstly we consider some motivation for

choosing this criterion and then it is followed by developing a numerical scheme for

mesh placement algorithm based on our criterion function.

5.4.1 Motivation for Using rh, as the Criterion Function

The standard analysis of collocation process for solving the boundary value

problem (5.la-5.lb) using q points per subinterval over mesh points (5.2), yields the

error e(t) which can be expressed as
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e(t) = f f+1 G(t,s)r(s)ds
;=1 I

... (5.15)

where res) is the residual defined in equation (5.8) and G(t,s) denotes the Green's

function. For t E (ti' ti+l) let us consider the terms

ej(t) = rG(t,s)r(s)ds, i = 1,2, ... , w.
I

.. .(5.16)

It is notable that firstly the residual res) is local in nature and has been used as

criterion function in adaptive mesh selection algorithm [10,14,59], secondly

regarding the relationship between the global error and local terms Russell and

Christiansen [45] have pointed out that the global error is asymptotically dominated

by local term when Gauss points are used. Lastly, in applications usually the Green

matrix function is diagonally dominant [29,31]. These results suggest that ei(t) in

equation (5.16) is dominated by the residual res) and G(t,s) may be taken to be

constant for t E (ti' ti+l) , S E (ti' ti+l) and zero elsewhere, we then have the local

term

Ilei(t) II = II c t+1 r(s)ds II s C f+
1
Ilr(s)lIds = Cllrlli hi

I I

... (5.17)

For some constant C. hi, as usual, denotes the mesh size of ith -subinterval.

Since the equation (5.17) reflects some measurement of the error and is local in

nature, it seems reasonable to take it as a criterion for an adaptive mesh selection

algorithm which will be called RH mesh selection algorithm.

Furthermore, taking equation (5.17) as criterion is also suggested by the following

results. Suppose the collocation points are the zeros of certain orthogonal polynomial

and we take the number of collocation points q to be even, i.e. the ODE (5.1a) will

not be collocated at the middle of subintervals. Using the fact that the residual ret) is

zero at the collocation points Qj, it has been shown in [45] that in each subinterval

the residual satisfies
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... (5.18)

Since the middle of subinterval is not the collocation point solving (5.18) for X(q+l)

in term of r(ti+ll2) gives

(q+I)( )X ti+1I2 =

By taking the norm of the last equation and substituting into (5.11) we then have

an error estimate

... (5.19)

This suggests, corresponding to the discussion in §5.2.2, that trying to

equidistribute the equation (5.19) introduce a mesh selection algorithm with respect

to the function T(t) (see equation (5.6»

II T(t) II i == II r(ti+1I2) II '

hence equation (5.17) can be regarded as the general form of equation (5.19).

It is notable that in computing the error estimate E*, we have to evaluate residuals

and construct an approximate residual r*(t). This, in tum, makes the application of

criterion rh, more convenient and less expensive if we develop an adaptive mesh

selection algorithm while also using the error estimate E*, since we can make use

the computed r *(t) for approximating the local terms II r(t) II i » It is also notable that

the RH algorithm is as cheap as the MR algorithm since the main cost is to evaluate

the residual in each subinterval.

5.4.2 Developing the Scheme for Equidistributing the Terms rh,

We will now employ the equation (5.17) in constructing two adaptive mesh

selection algorithms, i.e. RH mesh subdivision and RH mesh placement algorithms.
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The RH mesh subdivision algorithm is quite simple in implementation, where the

main task consists of searching for the subinterval which has maximum II r(t) II i hi,
and then subdividing this subinterval into two equal subintervals.

Unlike the RH mesh subdivision algorithm, the RH mesh placement algorithm

needs a special scheme to equdistribute the local terms II r(t) II i hi which will be

developed in this section.

The residual r(t) can be related to mesh size hi by equation

... (5.20)

for some positive constant k, and some constant integer s.

Multiplying both sides by hi we have

... (5.21)

Therefore, equidistributing the local terms in (5.17) is equivalent to equidistributing

the local terms kihrl.

Having computed rn on the initial mesh n, a new partition n* of the form (5.3)

producing a more accurate solution is desired.

Supposed that the width of ith-subinterval in new mesh n* is denoted by

* * *h i = (t i+1 - t D. To equidistribute (5.21), it requires

k1h1*s+1 - k h*s+1 - - k h*s+1- 22 -···-ww

to give

(h~ / h;) = (k2 / k1)1/(s+1)

o; /hi) = (k3 / k1 )lI(s+ 1)
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By taking (k, / kl)lI(s+l), 1 ~ i ~ w, as the slopes of a piecewise linear function

with the slope in the first subinterval is set to be one, we can then construct a

piecewise linear function fJ.,t) as follows

fJ.,t) ::: ... (5.22)

where ki::: Ilrll J ht , i::: 1,2, ... ,w.

Here we approximate ret) using the principal part of the residual (described in

chapter 4) formed by evaluation at a suitable set of Chebyshev extrema.

Since fJ.,t) is a continuous and monotone increasing piecewise linear function,

we can then easily compute e-I(t) and evaluate it at the (w *+1) points

((i-I) e(b) / w\ 1s i s (w*+1)

giving us a new mesh n*.

For illustration, suppose the current number of subintervals w ::: 4 and it is

increased by one subinterval in the next stage, i.e. w * ::: 5. Using the approximate

residual /(t) we then construct the piecewise linear function e(t). The new mesh n*

having break points {t*;}, 1~ i ~ (w*+l), is determined as follows

* ::: e-I(O) . * e-I( 8(b) )t I ::: a t 2 :::
w*

* e-I( 2 8;b) ). * e' 3 8(b)t 3 ::: t 4 ::: (~)W

* e-I( 4 8;b) ). * b ::: e-I(fJ.,b»t 5 ::: t 6 :::
w

A graphical illustration of the process is shown by the graph on the following page
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...---- B(t)

5.5 Numerical Results

o

Several numerical experiments were performed with the adaptive mesh selection

algorithms described in the previous sections. In order to give an impression of the

performance of the algorithms we consider some examples having various features.

These include some problems having either interior or boundary layers as well as

problems with a singularity at an end point.

In the tables below displaying some results of numerical experiments, MR stands

for maximum residual indicating the maximum residual is used as the criterion

function. RH and DB indicate max RH and de Boor algorithms respectively, while

subd and pic stand for subdivision and placement algorithm. The integer in the square

bracket [...] shows the number of subintervals in the layer regions. The last

abbreviations the capital letters C and G indicate that Chebyshev and Gauss points

are used in the numerical experiments.
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In all computations, we start with four-equal subintervals and then increase the

number of subintervals w by one. At certain w, we retrieve the actual error to be

displayed in the tables.

As the first example we consider the following problem

Problem 1 :

furnished by boundary conditions

X2(0) = ° and xl(l) = 5.5

The analytical solution is given by

(
Xl) ( -t + _~S-"-sii~--:-~("':-:(~~i J
X
2

= lOt cosh(2t) - 5sinh(2t)

t2 sinh(2)

This boundary value problem is taken from Russell and Shampine [47] in which

they discuss some collocation methods for dealing with singular boundary value

problems. The problem has a singularity at t = 0, but only in the coefficient and its

solution is smooth. In their paper, it is also shown that numerically the maximum

error always occurred at the left boundary. In this example, it is expected that the

adaptive mesh selection algorithms should concentrate break points near left

boundary.

Tables S.lA and S.lB contain the results obtained by using two and five

collocation points per subinterval respectively. By looking at the actual error, it is

clear that all strategies perform quite well. In both tables we can see that the accuracy

improves smoothly as the number of subinterval increases indicating the

convergence of the collocation solution.

It is interesting to note that for the subdivision strategies, all criterion functions

used produce identical results, this means if we use subdivision strategy for this

problem the cheapest criteria MR may be adequate to obtain a sufficiently accurate
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solution. However, the results indicate that the RH mesh placement algorithm, over

all, gives the most sensible results.

Looking at number of break points in the subinterval (0, 0.01) placed by each

algorithms, apart from de Boor placement algorithm, all algorithms put the same

amount. This means that the algorithms react by putting more break points as

required in the region where the worst errormay occur.

Comparing the choice of collocation points, using Chebyshev points produce

comparable results to those using Gauss points, though slightly poorer.

Table 5.IA
(2 collocation points per subinterval)

w q MR RH-subd DB-subd I RH-plc DB-plc
------------------- ----------------------------------------------------------- -----------------

I
S 2C 3.015e-03 [OJ 3.015e-03 [OJ 3.015e-03 [OJ I 2.670e-03 [OJ 3.S55e-03 [OJ

2G I.S46e-03 [OJ I.S46e-03 [OJ I.S46e-03 [OJ I I.OS6e-03 [OJ 2.516e-03 [OJ
I

10 2C 5.674e-04 [OJ 5.674e-04 [OJ 5.674e-04 [OJ I 5.414e-04 [IJ I.S4ge-03 [OJ
2G 2.4SSe-04 [OJ 2.45Se-04 [OJ 2.4SSe-04 [OJ I I.213e-04 [OJ I.654e-04 [1J

I20 2C 1.1SSe-04 [1J 1.1SSe-04 [1J 1.1SSe-04 [1J I 1.225e-04 [1J 2.S12e-04 [OJ
2G 3.193e-OS [1J 3.193e-OS [1J 3.193e-OS [1J I 1.430e-05 [1J 9.114e-05 [2J

I
40 2C 2.733e-OS [3J 2.733e-OS [3J 2.733e-05 [3J I 2.917e-OS [3J 1.962e-04 [OJ

2G 4.074e-06 [3J 4.074e-06 [3J 4.074e-06 [3J I 1.730e-06 [3J 1.123e-OS [2J

Table 5.IB
(5 collocation points per subinterval)

w q MR RH-subd DB-subd RH-plc DB-plc
------------------- ------------------------------------- ---------------------------------------
S SC 2.445e-OS [OJ 2.44Se-OS [OJ 2.445e-OS [OJ S.320e-09 [OJ 1.730e-08 [OJ

SG 1.S31e-OS [OJ 1. S31e-OS [OJ 1.53Ie-OS [OJ 3.457e-09 [OJ 1.098e-08 [OJ
10 SC 4.308e-10 [OJ 4.308e-10 [OJ 4.30Se-10 [OJ 7. S31e-ll [OJ 1.30ge-10 [1J

SG 2.723e-10 [OJ 2.723e-10 [OJ 2.723e-10 [OJ 5.134e-ll [OJ S.483e-ll [IJ

20 SC 7.153e-12 [1J 7.153e-12 [1J 7.1S3e-12 [1J 1.206e-I2 [1J 5.S21e-12 [2J
5G 4.S3ge-I2 [1J 4.53ge-12 [1J 4.53ge-12 [1J 7.940e-13 [1J 5.407e-12 [1J

40 SC 1.37Se-12 [3J 1.375e-12 [3J 1.37Se-12 [3J 1.2SSe-12 [3J 7.03Se-13 [2J
SG 1. 37Se-12 [3J 1.375e-12 [3J 1.375e-12 [3J 7.73ge-I3 [3J 1.353e-12 [4J

---_--_---------------- ----------------------------------- -------------------------------------

We take the following BVP as an illustrative example since its solution is highly

oscillatory near left boundary. Hence we expect to have a chance to examine how the

adaptive mesh selection algorithms handle this situation.

The problem considered is
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Problem 2:

with boundary conditions at both end points

xl(1/(3n) = 0
and

xl(2) = sin(1).

The analytical solution is given by

(
X ) ( sin(lI t) J
x: = - (cos(lIt))lt2

Tables 5.2A and 5.2B display results of numerical experiments using two and five

collocation points per subinterval respectively. As in the previous example, various

mesh selection strategies are implemented.

From Table 5.2A, we can see using the MR algorithm with Chebyshev points, it is

not easy to observe the convergence of the solution after doing almost 40 iterations,

since after performing with w = 40 the accuracy does not improve, while the other

criteria reduce the actual errors though not in a dramatic way.

The most notable result from this table is that in the subinterval (0, 0.1) the MR

algorithm puts more points than others, but it does not produce reasonable solutions.

Comparing the performance of all algorithms, it is again observed that the RH

placement algorithm gives the most sensible results.

Looking at the last two rows of Table 5.2B and comparing the columns under

heading MR and DB, it is clear that in the subinterval (0,0.1) the MR algorithm puts

many more break points than DB algorithm, but in fact it gives a worse solution. On

the other hand, the RH algorithm places less points than MR, and produces

significantly better accuracy. It is also observed that the RH algorithm is slightly

better than de Boor algorithm.

From this numerical experiment we can point out two important results, firstly

the RH algorithm places the break points in such a way that the accuracy improves

significantly; secondly, the MR algorithm subdivides some intervals without

reducing the actual error.
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Though using Chebyshev points result in reasonable accuracy, for this problem

we found that in most cases using Gauss collocation points give more accurate

solutions.

Table S.2A
(2 collocation points)

w q MR RH-subd DB-subd RH-plc DB-plc
--------------------------------- ---------------------------------------------------------------
5 2C 4.56Ie+01 [1] 4.56Ie+01 [1] 6.440e+01 [0] 4.256e+01 [2] 4.851e+01 [1]

2G 1.684e+01 [1] 1.684e+01 [1] 4.636e+01 [0] 1.528e+01 [2] 2.003e+01 [1]

10 2C 2.065e+01 [6] 1.271e+01 [5] 2.49ge+01 [5] 8.382e+00 [5] 1.797e+01 [4]
2G 3.672e+00 [6] 1.618e+00 [5] 3.848e+00 [5] 3.506e-01 [6] 1.871e+00 [4]

20 2C 2.047e+00 [15] 3.541e+00 [12] 3.465e+00 [12] 2.341e+00 [11] 3.981e+00 [9]
2G 3.032e-01 [15] 1.447e-01 [12] 1.923e-01 [12] 9.732e-02 [11] 1.831e-01 [9]

40 2C 2.673e+00 [32] 6.242e-01 [24] 6.812e-01 [24] 5.908e-01 [23] 1.032e+00 [18]
2G 1.72ge-01 [32] 1.677e-02 [24] 2.321e-02 [24] 8.408e-03 [23] 1.91ge-02 [19]

--------------------------------- -------------------------------------------------------_-------

Table S.2B
(5 points per subintervals)

_--_--------------- ----------------------------------------------------------_-------------------
w q MR RH-subd DB-subd RH-plc DB-plc

--------_--------- --------------------------------- ----------------------------------------------
5 5C 3.350e-01 [1] 3.350e-01 [1] 8.236e+00 [0] 9.01ge-02 [2] 2.772e+00 [1]

5G 2.295e-01 [1] 2.295e-01 [1] 6.53ge+00 [0] 8.494e-03 [2] 1.993e+00 [1]
10 5C 1.021e-02 [5] 9.400e-03 [4] 1.71ge-02 [3] 6.724e-04 [4] 1.962e-02 [2]

5G 5.205e-03 [5] 1.922e-03 [4] 8.058e-03 [3] 3.04ge-04 [4] 7.600e-03 [2]
20 5C 1.238e-04 [11] 3.653e-05 [10] 1.066e-03 [6] 6.622e-06 [9] 3.123e-04 [6]

5G 3.324e-05 [11] 1.880e-05 [10] 5.307e-04 [6] 3.190e-06 [9] 1.233e-04 [6]
40 5C 3.972e-05 [23] 1.955e-06 [20] 7.238e-06 [15] 1.185e-07 [19] 4.843e-06 [12]

5G 4.92ge-06 [23] 3.582e-07 [20] 3.422e-06 [15] 4.65ge-08 [19] 3.902e-06 [12]---------------- ------------------------------------- --------------------------------------------

Now we tum to boundary value problem having an interior layer centred at the

middle of specified interval. The problem taken from Aziz [12] is as follows

Problem 3:

where e= 1/u; fL is the problem parameterwith I fL I » 1

The boundary conditions are

xJ(-O.I) = oi and = 0.1
~(e+D.Dl) ~(E+O.Ol)
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The solution having an interior layer of thickness --Je is given by

For this problem we present some numerical results obtained by taking problem

parameter Ii = 104 and Ii = 108. Tables 5.3A and 5.3B obtained by choosing Ii = 104

display the results using three and five collocation points respectively, while tables

5.3C and 5.3D resulted by taking Ii = 108 shows the results using eight and twelve

collocation points respectively. The Chebyshev zeros and Gauss points are applied in

all computations.

Table 5.3A shows that all cases indicate that the collocation solutions are

converging as the number of subintervals increases. Occasionally, using Gauss

points produces a bit more accurate solution, while using Chebyshev points steadily

gives competitive results. Again, we observe that MR algorithm puts too many points

in the layer region (-0.01, 0.01) producing poor accuracy. Similar results to those in

Table 5.3A are observed in Table 5.3B.

With a severe interior layer in the middle interval, the results of numerical

experiments displayed in tables 5.3C-5.3D show very clearly that de Boor algorithm

performs badly in both subdivision and mesh placement strategies, while the

cheapest scheme, the MR algorithm works pretty well though not as good as the

RH algorithm. Looking at the number of break points placed in the layer region

(-0.0001, 0.0001), in all cases the de Boor algorithm fails to put more points in the

region where they are required and consequently gives very poor results. This might

be caused by the fact that the de Boor algorithm involves the interval size in

constructing the linear piecewise constant function DB(t) [see equation (5.14)] in

such a way, if there is a drastic decrease in the interval size in some region then

DB(t) might increase dramatically. As a result the collocation process may continue

by subdividing this subinterval until it reaches the stage where the other term of

DB(t) is small enough to compensate the interval size effect. On the other hand, in
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the RH algorithm this will not occur since decreasing the interval size will

automatically result in decreasing the value of ~t).

These two tables also indicate the superiority of the Gauss points, where in most

cases they produce better approximate solutions.

Table 5.3A
(problem parameter u = 104)

w q MR RH-subd DB-subd RH-plc DB-plc
---------------_--- ------------------------------------- ----------------------------------------
S 3e 4.387e+Ol [1] 4.387e+Ol [1] 3.646e+Ol [1] 4.8l8e+Ol [2] 8.2lSe+Ol [0]

3G 1.12le+02 [1] 9.l9ge+00 [1] 1.04ge+02 [1] 3.484e+Ol [2] 7.638e+Ol [0]

10 3e 1.OSSe+00 [3] 1.OSSe+00 [3] 7.062e+00 [1] 7.764e-Ol [3] 3.843e+00 [3]
3G 8.846e-02 [3] 8.846e-02 [3] 1.92ge+00 [1] 1.OS2e-Ol [3] 7.ll0e-Ol [2]

20 3e 1.443e-Ol [9] S.8l4e-02 [7] S.8l4e-02 [7] 4.l0le-02 [7] S.207e-02 [5]
3G 1.644e-02 [9] 1.S23e-02 [7] 1.S23e-02 [7] 6.lSSe-03 [7] 1.664e-02 [6]

40 3e 1.443e-02 [21] 1.830e-03 [15] S.101e-03 [13] 2.928e-03 [15] 4.0S6e-03 [12]
3G 1.997e-03 [21] 7.294e-04 [15] 1.266e-03 [13] 2.80le-04 [IS] 1.16Se-03 [12]

---------------------------- -------------------------------- ------------------------------------

Table 5. 3B
(problem parameter jJ = 104 )

w q MR RH-subd DB-subd RH-plc DB-plc
------------------------------- ----------------------------- ------------------------------------
5 se 1.10ge+Ol [1] 1.10ge+Ol [1] 1.998e+01 [1] 6.S71e+00 [2] 2.S32e+Ol [0]

SG 1.8lle+01 [1] 1.81le+01 [1] 2.690e+01 [1] 6.873e+00 [0] 2.73ge+Ol [0]

10 se S.S86e-03 [3] S.S86e-03 [3] 4.894e-Ol [1] S.342e-03 [3] 7.808e-Ol [1]
SG 3.S92e-03 [3] 3.S92e-03 [3] 1.928e-Ol [1] 1.6S7e-03 [3] S.466e-02 [2]

20 se 1.992e-03 [9] 2.481e-04 [7] 4.926e-Ol [1] 1. 2l4e-04 [7] S.3l4e-04 [S]
SG S.S48e-04 [9] 9.34le-OS [7] 6.S28e-04 [S] 3.S9Se-OS [7] 8.244e-04 [5]

40 se 1.48Se-OS [17] S.627e-06 [13] 1. 476e-OS [11] 1.437e-06 [15] 1. 362e-OS [9]
SG 7.94le-06 [17] 1.92le-06 [13] 7.900e-06 [11] 3.8S7e-07 [15] S.SlOe-06 [10]

------------------------------ ----------------------------- -------------------------------------

Table 5.3C
(problem parameter jJ = 108)

w q MR RH-subd DB-subd RH-plc DB-plc
--------------------_---- ------------------------------ ---------------------------------
S 8e 6.112e+03 [1] 2.442e+03 [1] S.038e+02 [1] 8.833e+03 [0] 3.l24e+03 [0]

8G 6.113e+03 [1] 6.l13e+03 [1] S.082e+02 [1] 8.690e+03 [0] 3.l24e+03 [0]
10 8e 9.982e+03 [1] 8.724e+03 [1] 6.l62e+03 [1] 8.0lSe+01 [1] 9.42ge+03 [1]

8G 9.984e+03 [1] 9.894e+03 [1] 6.l0ge+03 [1] 7.336e+00 [1] 9.37Se+03 [1]
20 8e 3.706e+02 [1] 3.706e+02 [1] 9.744e+03 [1] 1.78le-01 [3] 6.714e+03 [1]

8G 2.4l0e+Ol [1] 2.4l0e+Ol [1] 9.7S6e+03 [ 1] 1.97ge-03 [3] 4.3S7e+03 [1]
40 8e 1.078e-02 [9] 1.18ge-03 [9] 3.704e+02 [1] S.S82e-04 [7] 1.382e+Ol [1]

8G 2.l04e-OS [9] 3.371e-06 [9] 2.4l0e+Ol [1] 6.367e-07 [7] 8.7S8e-Ol [1]------------------ ------------------------------------------ -------------------------------
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Table 5.3D
(problem parameter p = lOB)

w q MR RH-subd DB-subd RH-plc DB-plc

5 12C 6.106e+03 (1] 2.475e+03 [1] 5.46ge+02 [1] 8.716e+03 [0] 3.25ge+03 [0]
12G 6.112e+03 [1] 2.446e+03 [1] 5.058e+02 [1] 8.666e+03 [0] 3.25ge+03 [0]

10 12C 9.973e+03 [1] 8.655e+03 [1] 6.131e+03 [1] 7.341e-01 [1] 9.091e+03 [1]
12G 9.983e+03 [1] 8.802e+03 [1] 6.047e+03 [1] 1.571e-02 [1] 7.727e+03 [1]

20 12C 1.733e+00 [1] 1.733e+00 [1] 1.150e+04 [1] 7.317e-05 [3] 1.693e+03 [1]
12G 2.690e-02 [1] 2.690e-02 [1] 1.183e+04 [1] 3.066e-07 [3] 1.966e+03 [1]

40 12C 1.454e-06 [9] 1.883e-07 [9] 1.733e+00 [1] 1.330e-08 [7] 6.455e-01 [1]
12G 7.241e-09 [9] 8.216e-10 [9] 2.690e-02 [1] 1.794e-09 [7] 2.270e-01 [1]

------------------------------ --------------------------------------------------------------

As the fourth example consider the following problem which can be found in

Hemker [29] in which the phenomenon of stiffness in boundary value problems is

discussed. The problem is chosen since it has a layer at the left boundary. It is a

simple problem with constant coefficient but could raise difficulties for some

numerical algorithms.

Problem 4:

where u; is the problem parameterand I pi » 1.

The differential equation is accompanied by boundary conditions

Xl(O) 1 + exp(-p-l)

xJ(1) = 1 + exp(-I).

The exponential vector valued function

(
Xl) ( exp«,u+I)(t-l) + exp(-t) J
X2 = (,u + 1) exp«,u + I)(t -I) - exp(-t)

is the unique solution of the BVP.

Tables 5.4A and 5.4B show the results using four and seven collocation points in

each subinterval respectively with problem parameter fl = 104.

From Table 5.4A, we observe again that in most cases using the mesh placement

algorithm with the RH criterion function gives the best approximate solutions.
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Regarding the collocation points, though in most cases Gauss points produce a better

solution, it is notable that for w = 30, RH and DB mesh placement algorithms with

Gauss points dramatically fail to put required break points in the layer region, while

using Chebyshev they react as expected by putting more points.
Meanwhile, in the last column of Table 5.4B we can see for w = 50, DB mesh

placement algorithm behaves badly by producing very poor solution though it has

previously produced a better one. We suspect that there might be a dramatic change

in the interval size in some region raising this trouble.

Table S.4A
(problem parameter f.i = 104)

-------------------- -------------------------------------- --------------------------------------
w q MR RH-subd DB-subd RH-plc DB-plc

------------------------------- ---------------------------- -------------------------------------
10 4C 2.495e+03 [3] 1.15ge+04 [0] 1.15ge+04 [0] 1.197e+04 [0] 1.187e+04 [0]

4G 1.427e+03 [3] 1.138e+04 [0] 1.138e+04 [0] 1.190e+04 [0] 1.177e+04 [0]

20 4C 8.83ge-02 [13] 2.495e+03 [3] 4.766e+03 [2] 8.772e+03 [0] S.91ge+03 [0]
4G 5.194e-02 [13] 7.415e+03 [0] 7.415e+03 [0] 8.528e+03 [0] 8.466e+03 [0]

30 4C 7.558e-03 [23] 6.312e-02 [13] 9.14ge-02 [12] 3.54ge-04 [25] 1.704e+00 [23]
4G 4.505e-03 [23] 5.970e-01 [8] 5.970e-01 [8] 1.940e+03 [3] 5.841e+03 [1]

40 4C 2.735e-03 [33] 1.661e-03 [23] 9.346e-03 [20] 8.383e-04 [21] 3.041e-Ol [11]
4G 3.933e-04 [33] 4.580e-03 [18] 8.433e-03 [18] 3.602e-04 [24] 1.468e+01 [6]

50 4C 2.735e-03 [43] 3.864e-04 [33] 1.217e-03 [30] 9.741e-05 [34] 2.290e-02 [17]
4G 7.257e-05 [43] 3.986e-04 [28] 5.60ge-04 [28] 6.77ge-05 [28] 3.906e-03 [19]

60 4C 2.735e-03 [53] 7.S00e-05 [43] 3.878e-04 [39] 3.72ge-05 [43] 4.55ge-03 [21]
4G 3.423e-05 [53] 6.624e-05 [38] 2.245e-04 [3S] 7.873e-06 [45] 2.417e-03 [26]

----------------------------------------------------- -------------- -----------------------------

Table S.4B
(problem parameter f.i = 104)

----------------------- ------------------------------ -------------------------------------------
w q MR RH-subd DB-subd RH-plc DB-plc

---------------------- -------------------------------- ------------------------------------------
10 7C 2.852e+02 [3] 7.564e+03 [0] 8.947e+03 [0] 9.333e+03 [0] 9.388e+03 [0]

7G 1.710e+02 [3] 7.946e+03 [0] 7.946e+03 [0] 8.366e+03 [0] 8.362e+03 [0]

20 7C 3.40Se-05 [13] 6.203e-04 [9] 5.622e+03 [0] 1.92ge-02 [15] 6.712e+03 [0]
7G 2.14ge-05 [13] 4.383e-03 [6] 5.525e+03 [0] 3.417e+03 [0] 5.647e+03 [0]

30 7C 9.3S8e-07 [23] 3.884e-07 [19] 7.142e-03 [8] 2.838e-08 [21] 2.963e+03 [1]
7G 5.620e-07 [23] 7.846e-07 [16] 1.710e+02 [3] 1.961e-OS [21] 2.423e+03 [1]

40 7C 9.275e-09 [33] 2.341e-08 [29] 5.390e-05 [13] 4.484e-09 [30] 8.300e-04 [10]
7G 1.053e-08 [33] 2.69ge-08 [26] 3.31ge-05 [12] 1.911e-08 [30] 1.98ge-03 [24]

50 7C 1.401e-OS [43] 1.597e-08 [39] 7.017e-05 [15] 2.643e-OS [42] 1.602e-Ol [5]
7G 4.684e-09 [43] 1.053e-08 [36] 3.057e-05 [14] 3.694e-09 [36] 4.658e+01 [3]

60 7C 1.402e-08 [53] 1.597e-08 [49] 1.418e-05 [17] 9.382e-09 [54] 3.290e-05 [13]
7G 4.6S8e-09 [53] 4.691e-09 [46] 9.020e-06 [17] 5.494e-08 [51] 3.S9Se-06 [19]------------------------------------------------- --------- --------------------------------------
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Lastly, we consider a problem having non constant coefficient matrix. The

problem which is again taken from Hemker [29] has a layer at around the right

boundary t = 1.

The problem is

Problem 5:

Where J)" IJ),I» 1, is the problem parameter.

The associated boundary conditions are

Xl(O) = sin(5nI12) + exp(-f..l)
and

Xl(1) = 1 + sin«51t112) - 1).

Here we present some results of numerical experiments for problem parameter

J), = 104 in Table 5.5. As we can see the cheapest strategy using the MR criterion

function performs much better than the de Boor algorithm, though using the RH

algorithm which is also cheap, is preferred in particular for larger w, since it clearly

gives more reasonable results.

From this table we observe that in most cases the de Boor algorithm gives the

worst results. For example, looking at the rows where w = 40, we can see that using

Chebyshev zeros and Gauss points the de Boor placement algorithm puts only one

and two break points respectively in the layer region while the others put many more

break points. Consequently, in this case the de Boor algorithm gives the worst

approximate solution.

It is observed that at the beginning of computation process the MR algorithm is

better since it puts more break points in the layer region than the other algorithms,

though for higher accuracy the MR algorithm places more break points than the

others without producing better solution.

The numerical results also indicate clearly that the RH placement algorithm with

either Chebyshev or Gauss points gives very sensible results.
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Table 5.5
(problem parameter # = 104)

--------------_-_-------------------------------------------------------------------------------
w q MR RH-subd DB-subd RH-plc DB-plc

------------------------------------------------------------------------------------------------
10 se 1.286e+03 (3) 9.071e+03 (0) 1.006e+04 (0) 1.02ge+04 (0) 1.018e+04 (0)

SG 7.S92e+02 (3) 1.0S4e+04 (0) 9.614e+03 (0) 1.087e+04 [0) 1.0S8e+04 [0)

20 se 2.462e-03 (13) 1.834e-01 (7) 7.030e+03 (0) 4.716e+02 (6) 7.69Se+03 (0)
SG 9.100e-03 (13) 1.S86e+02 (4) 6.808e+03 [0) 4.984e+03 (0) 6.78Se+03 (0)

30 se 6.310e-OS (23) 6.213e-04 [17) 1.834e-01 (8) S.SOSe-06 [24) S.361e-03 [11)
SG 4.19ge-OS (23) 8.S76e-04 (14) 1.824e+03 (2) S.36ge-OS [16] 4.382e+03 [1]

40 se 2.12ge-OS [33] 1.S7Se-OS [27] 7.240e-04 [18] 1.677e-06 [31] 2.29ge+03 [1]
SG 6.497e-06 [33] 3.436e-OS [24] S.S43e-03 [12] 1.SS2e-OS [22] 1.74ge+03 [2]

SO se 2 .11ge-OS (43] 4.S40e-06 (37] 3.377e-04 (23] 2.686e-07 [40] 1.817e-01 (11)
SG 3.38Se-06 (43) 3.6SSe-06 (34) 3.947e-04 (22) 1.867e-07 (40] 2.642e-04 (16)

60 se 2.121e-OS (S3) 7.434e-07 [47) 1.830e-04 (26) 1.690e-07 (SO) 1.371e-03 (18]
SG 2.S02e-06 (S3) 8.S03e-07 [44) 2.143e-04 (23] 7.124e-08 (49) 3.083e-04 (18]

--------------------------- ----------------------------------------------------------------_----
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Chapter

Predicting the Number of Subintervals
Needed in the Collocation Processes

6.1 Introduction

All algorithms discussed in the previous chapter allow us to use multiple

subdivisions, though in our numerical experiments there the mesh and the approximate

solution were repeatedly updated using one subinterval increment until either the

required precision is satisfied or the number of subinterval is greater than some constant

number. In this chapter we shall make use of the results in the previous chapter by

predicting the necessary number of subintervals w * and then by using this w * in the

algorithms.

The automatic mesh placement algorithms developed in chapter 5, in particular the

RH algorithm, perform very well and the numerical evidences show that the RH mesh

placement algorithms we are proposing are more reliable than the others considered.

Here we shall restrict consideration to the RH algorithm and develop a technique to

estimate the number of subintervals w * needed to reduce the error to a tolerance TOL.

Since predicting a reasonable value for the number of subintervals needed in the

collocation process is quite important to improve the efficiency of algorithms where a

small value may result in time wasting by requiring further stages, while using a larger

value than necessary the algorithm may spend too much time at earlier stages. Having

obtained a basic algorithm for estimating w * we shall develop it further in order to

obtain more reliable algorithms.

In the spirit of previous chapters we shall consider the first order linear system of n

differential equations

x'(t) = A(t) x(t) + yet), a < t < b ... (6.1)

furnished by associated homogeneous boundary conditions at the end points.
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Suppose that the interval [a,b] is subdivided into w subintervals by the break

points {t2, ts, ... , tw} to form a partition

rr : a = tl < t2 < ts < ... < t; < tw+l= b

with

h = max hi' hi = ti+l - ti
ISiSw

Having obtained the collocation solution X7t(t) based on collocation over the mesh rt,

a more accurate solution xn.(t) over new partition

n• '. ••• < < * < * ba = II < t2 < t3 ... two two +1 =

is desired. Here w· > 0 denotes the number of subinterval in the new mesh. Introducing

the notation for mesh sizes • • •hi = ti+l- ti ' 1 ~ i ~ w·, we then have the maximum

mesh

• •h = max hi'
l~i~w·

The error of some collocation methods generally yields that the error can be

expressed as

e(t)= f G(t,s)r(s)ds = f {i+IG(t,s)r(s)ds
i=l I

... (6.2)

where G(t,s) and res) are the Green's function and the residual respectively, while w

denotes the number of subintervals.

Looking at t E (ti' ti+d, isis w, and corresponding local term of (6.2)

ei(t) = {HI G(t,s) res) ds ,
I

... (6.3)

By assuming that the Green's function is constant in rectangle t E (ti' ti+l), S E (ti' ti+l),

and taking the norm of the above expression we then have

is isw ... (6.4)
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The equation (6.4) is the starting point for the work in developing our proposed mesh

selection algorithms.

It is convenient here to introduce some notations and basic definitions used in this

chapter. Since in our algorithms we found not only the estimate for number of

subintervals needed in the next iteration but also the estimate for number of subintervals

needed in each subinterval, let us denote such estimates as w;.
The maximum and average of subintervals needed are respectively denoted and

calculated by

and
w

w· = (Lw;) / w
;=1

The standard deviation STD is defined as

STD =

6.2 Mesh Placement Algorithms

As described in the previous chapter the residual norm in each subinterval can be

written in the form Ilr(t) II; = k;h:, J 5 i 5 W, for some constants kj, s > 0, hence

equation (6.4) may be written as

... (6.5)

for some constant C.

·thBy assuming that ej(t) is large in 1 subinterval but small elsewhere, taking the

maximum of these norms, give us

max IIell j = max C IIr II; hj = max C k; h:+1

I
... (6.6)
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and therefore suggests that the break points { t;, t;, ... , t:*} in new partition Tt+ be

placed so as to minimise

max { C kj(h;_*)s+1 }
I

by requiring

... (6.7)

for some constant E, where TOL is a desired tolerance and 15' i 5'w +.

The exact determination of such points {t;, t;, ... , t:*} from equation (6.7) is

very difficult. But, this task is equivalent to determining {t;, t;, ... , t:*} so that

(C k
i
)1I(s+1) h;_* = (E)1/(s+1) :::: (TOL)1/(s+1) ...(6.8)

and produces therefore asymptotically the same distribution of t; 's as the problem of

determini {* * *} hetermining t2, t3, ••• , tw* so t at

w
(C ki )lI(s+ 1) h;_* = -;.. I (C ki )1I(s+ 1) h;_*

w i=1

since k, are constant values, the above can be written as

t+l(Cki)1/(S+1)dt =
I

... (6.9)

where k(t) is a piecewise constant function, i.e. k(t) = k;, t E (t;, t;+l)

Using (6.8) and (6.9) we have

~C1l(s+1) t k1/(s+1)dt = (TOL)1I(s+1)
w

or

+
w =

f k1l(s+ 1)dt

(TOL)1I(s+ 1)
C

... (6.10)
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Our developed numerical scheme to determine the break points {t;, t;, ... , t:.}

using criterion function rh, does not have the form 1kl/(s+l)dt, hence we slightly

modify the equation (6.9) by multiplying both sides with factor dc}J(S+l) to give

I _1_C1/(s+1) ~ kll(s+l)dt =
(A;F(s+l) w* .b

I

I (TOL)7+i
(A;F(s+l)

-;'Cll(S+I) l(kl kl)l/(s+l)dt =
w

or

*w =
f (k I kl )lI(s+ I) dt

(TOLl Ckl)lI(s+l)

The estimate w *, therefore, can be written

... (6.11)

here the notation r ...1 indicates the smallest integer greater than expression.

With a given TOL, w * can be calculated easily since ~ is the value of the piecewise

constant function at the right boundary described in §5.4, ki = II r II i I h/ , while C is a

constant estimated using the algorithm on the following section.

Let w; denotes the estimate of number of subintervals needed in i1h-subinterval for

the next iteration. This estimate will be proportional to r (k I kl )lI(s+ I)dt , and can be
,

determined

ClI(s+l) f+l (k I kl)lI(s+l) dt
I

Cl/(s+ I) f (k I kl )lI(s+ I) dt
*W

to give

w; = I(T~L)I/(S+I) f+l (k)lI(s+l) dt l, 1 s i ~w ... (6.12)
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6.3 Estimating the Constant C

Let the error estimate for the current iteration E* be found using the formulae

described in chapter 4. It has been shown that for problems having sufficiently smooth

solution and the matrix coefficient is not very large the error estimate E* is a very

reliable estimate even if the approximate solution is very poor. The basic idea here is to

employ the estimate E* in predicting the constant C in equation (6.7).

Since the residual res) is zero at the collocation points, it can be written in form

... (6.13)

By considering the local terms e. , 1 ~ i ~ W, as in equation (6.3) and then using

(6.13) and the properties of the Green's function, it has been shown in [23] that the

global error e(t) = x(t) - xwq(t) satisfies the local terms:

... (6.14)

where x(t) and xwq(t) are the exact and the approximate solution respectively, and the

constant C shown in the appendix part of [45] is dependent only on the number of

collocation points q, and satisfies

q

C = \ max {~ IT (s - ~j )ds}, ~ the collocation points in [-1,1]
2q+ q! -1~t~1 11 j=t

Furthermore, Russell and Christiansen [45] have also shown that the residual ret) and

exact solution x(t) are related by

Using equations (6.7) and (6.14), the RH algorithm may be regarded as an adaptive

mesh algorithm trying to equidistribute the local terms in equation (6.5).

Hence, using equation (6.6) we then have

max {C IIr IIi hj} = max { C k, h;'+l } =
i I

max Ilellj
I

1s t ~W

this immediately gives an estimation for C
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c: = E* / (max {II r IIi hd)
i

... (6.15)

It is also worthwhile to note here that for some boundary value problems having

severe layers the estimate E* is unsatisfactory if the approximate solution is very poor,

in particular it is larger than the actual error. As the result, the estimate C*might be very

large. This clearly indicates that the estimate w * should be used carefully, especially in

the initial stages of the collocation process, where the approximation may be very poor.

6.4 Practical Implementation

As mentioned in the previous section the approximation w;' might be very poor in

the first iterations of the collocation process, especially when the initial mesh points are

very crude and the problems have severe layers. From this point of view, it is

unreasonable to apply the estimate w * into algorithm without any additional restrictions

in the first few iterations. Hence, to implement a practical mesh selection strategy,

additional modifications are needed to ensure that the strategy does not go awry.

Firstly we note that it seems sensible to restrict the size of w * particularly in the first

few iterations. Some simple techniques widely used in mesh adaptive algorithms, for

example doubling the number of subintervals, immediately give us an obvious choice of

such restriction, i.e. w * should be taken no more than doubling the current number of

subintervals w. Furthermore, we may utilise some values arising in the computation

process, for example the average and the maximum of w;·. Involving the average and

standard deviation might be relevant since these two quantities are widely used as a

simple tool to examine the distribution of data, hence in our case they would be useful

to predicting the homogeneity of w;' .

Basically the outline of proposed strategies which could be applied before directly

attempting to use w * is as follows

A. If the estimate w * is greater than 2w, there are two obvious choices

1. The number of subintervals in new mesh 1t* is set by doubling the current one,

i.e. w* = 2w.
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2. Increasing the number of subintervals by one, i.e. w * = (w+1).

B. Before applying the first restriction mentioned in A, one may include some

additional test in the algorithm by searching for the maximum of {w; } where w; 's
are the estimations of number of intervals needed for each subintervals, 1 5 i 5 w,

and then calculate the average w· and, if necessary, the standard deviation STD.

The strategies then are

1. If w~x is less than 2w· we may expect that the local terms are sufficiently

equidistributed. Hence, we keep using the current mesh points and halve all

subintervals where the estimate w; is greater than w* , i.e. we use subdivision rather

than mesh placement.

2. Like the above step Bl, however here, we restrict subdivision all subintervals

having w; > (w* +STD), and keeping the rest.

C. This is a variant of algorithm B, where firstly we check some constraints mentioned

in B, if they are not satisfied, then we use the second strategy of A, i.e. increase w

by one.

We summarise the above by writing them in C++ like pseudo code form for each

strategy as follows

if (w' > 2w) w = 2w;
else w' is used in the next iteration;

Algorithm Al:

if (w' > 2w) w' = (w+l);
else w' is used in the next iteration;

Algorithm A2:
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Algorithm Bl:
" -"if (wmax < 2 W

(

// the mesh sufficiently equidist

int j=O;
for(i=l; iSw; i++)
{

" _.
set», >W

{

// halving this subinterval

hal ve i thsubinterval;
j++;

}
}
w* wr+i,

}
else if (w' > 2w) w' = 2w;
else w' is used in the next iteration;

Algorithm B2:
" -"if (Wmax < 2W

(

// the mesh sufficiently equidist

int j=O;
for{i=l; i5w; i++)
{

" -"secw, >(W +STD))

{

// halving this subinterval

halve i<hsubinterval;
j++;

w* = w*+j;

else jf (w' > 2w) w' = 2w;
else w' is used in the next iteration;

Algorithm Cl:. -"if (wmax < 2 W )

(

// the mesh sufficiently equidist

int j=O;
for(i=l; iSw; i++)
{

// halving this subinterval

{
halve ithsubinterval;
j++;

}
}

w* w*+j i
}
else if (w' > 2w) w = (w+l);
else w' is used in the next iteration;
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for(i=l; iSw; i++)
{

if (w; > (w· +STD) )

{

II halving this subinterval

Algorithm C2:
* _.

jf (wmax < 2 W

{

II the mesh sufficiently equidist

int j=O;

halve ithsubinterval;
j++;

}
}
w* = w*+j;

} . .
else jf (w > 2w) w = (w+l);
else w' is used in the next iteration;

To illustrate how the above strategies work in practice and to show how important

the estimate w * can be in improving efficiency of the collocation algorithms, we

consider two problems having severe boundary layers.

Problem 1 :

[::] = (; a~HpCos2(m)+°2Jr2COS(2mJ 0< t< 1

subject to boundary conditions:

XICO) = Xl(1) = 0

fl is the problem parameter, Ifll » 1

Taking the problem parameter fl = 108, the problem has severe boundary layers with

thickness 10-4 near both ends. Tables 6.1A - 6.1B - 6.2 and 6.3 display selected results of

numerical experiments using different strategies. In the tables, E and E* indicate the

actual error and its estimate, while the sequence of w value displays the number of

subintervals for each iteration. The rows indicated by time show the total time needed to

satisfy a required accuracy. The error estimate E* is used to terminate the computation

process.
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The following Table 6.1A is intended to show what may happen if the estimate w * is

directly taken as the number of subintervals in next stage of the collocation process

without any additional restriction.

Table 6.1A
(w' used without any additional restriction)

roL --> 1e-01 1e-02 1e-03
-------------------------------------------------------------------------
q = 3
E* 7.400e-02
E 3.988e-02
time 0:6:10

E* 6.620e-03 E* 4.153e-04
E 2.69ge-03 E 3.084e-04
time 0:6:36 time 0:11:1

w 255 w 404
417 407
80 133
85 155
163 217
126 187
104 165
130 152

160
220

w 161
454
49
50
129
100
61
67
76
93
105
100

-------------------------------------------------------------------------
q = 4
E* 8.666e-02 E* 4.147e-03 E* 9.301e-04
E 9.145e-03 E 2.623e-03 E 1.182e-05
time 0:5:5 time 0:4:40 time 0:7:46

w 83 w 123 w 180
384 375 355
36 45 72
33 48 75
46 89 108
47 93
53 112
52 87
55 109
57 109
57 121
59 113
89 186

-------------------------------------------------------------------------
q = 5
E* 1.61ge-02 E* 3.71ge-03 E* 5.970e-04
E 1.202e-02 E 1.711e-03 E 3.627e-04
time 0:2:27 time 0:3:36 time 0:4:7

w 52 w 73 w 102
269 317 320
38 37 4019 27 7136 50 45

44
50

-------------------------------------------------------------------------
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As we can see in Table 6.1A, the estimate w * is quite large in particular for the first

two iterations so that most computation time is spent at these stages. We suspect these

poor estimates are caused by poor estimates at early stages of computation process

which results in a poor estimate of C*. It is clear that if, by some means of numerical

scheme, we are able to avoid using a poor estimate at early iterations, a considerable

improvement may be obtained.

Using single subinterval increment, Table 6.1B presents results using just three

collocation points in each subinterval. Comparing Table 6.1B with the first part of

Table 6.1A, the results given in Table 6.1A indicate that firstly the number of

subintervals in the final iteration is reasonably close to the corresponding one in

Table 6.1B, secondly the estimates E* is quite satisfactory later in the process. These

results are telling us that the estimate w * works satisfactorily and the error estimate E*

performs well as the criterion to terminate the process.

Table 6.1B
(single interval increment)

---------------------------------------------- ---------------------------
TOL --> 18-01 18-02 18-03-------------------------------------------------------------------------

q = 3 q = 3 q = 3
E* 4.240e-02 E* 7.240e-03 E* 9.533e-04
E 2.792e-02 E 5.825e-03 E 5.657e-04
time 0:5:48 time 0:10:33 time 0:43:53
w 90 w 112 w 186

In Table 6.2 on the following page the notation: indicates that the values increase

by one. From this table the results show that both algorithm A1 and algorithm A2

perform satisfactorily, even though at this point it is not clear which algorithm is more

reliable. However, we can say that for this problem the algorithm A1 and algorithm A2

are competitive to each other. Comparing the results displayed in Table 6.1A and the

results given in Table 6.2, they illustrate quite clearly that using algorithm A1 and

algorithm A2 significantly reduce the computation time.
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Table 6.2
-------------------------------------------------------------------------------------

Al A2
-------------------------------------------------------------------------------------
q I TOL --> 18-01 18-02 18-03 18-01 18-02 18-03-------------- --------------------------------------------- --------------------------
3 I time 0:3:52 0:3:11 0:8:28 0:1:21 0:2:12 0:5:28

w 8 8 8 5 5 5
16 16 16
32 32 32 14 14 14
64 64 64 18 18 18
128 128 128 24 24 24
256 256 256 40 40 40
47 74 118 64 64 64
94 148 216 65 65 65
125 136 188 66 66 66
85 94 158 67 67 67
78 144 152 70 112 68
58 290 106 84 106
62 352 156 94 140
100 132 212
131 200 148
66 238
94 320
132

--_------------------ --------------------------- ------------------------------
4 I time 0:1:35 0:2:6 0:5:46 0:2:59 0:3:22 0:3:48

w 8 8 8 5 5 5
16 16 16
32 32 32 14 14 14
64 64 64 20 20 20
128 128 128 28 28 28
117 173 254 40 40 40
36 51 71 41 41 41
37 58 89 42 42 42
74 89 113 43 43 43
58 59 114 57 57 57
47 75 109 73 73 73
50 73 118 90 90 90
84 119 130 130 130

115 180 180 180
120 29 42 62
114 52 71 92
154 53 75 138

52 112 194
56 164
55
76

--------------------- ---------- ----------------- ------------------- ------------
5 I time 0:1:17 0:0:58 0:1:33 0:1:20 0:1:42 0:1:45

w 8 8 8 5 5 5
16 16 16
32 32 32 14 14 14
64 64 64 18 18 18
128 128 128 24 24 24
47 66 92 32 32 32
21 27 38 42 42 42
35 48 36 43 43 43
28 48 44 44 44
28 56 56 56 56
24 44 70 70 70
32 37 92 92 92
34 62 116 116 116
33 24 34
39 33 58
65 50 80

74
----------------------- -------- ----------------------- -------------- -------- -------
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Detailed inspection of the sequence w displayed in Table 6.2 reveals some

interesting observations. For columns under heading Ai, we can see that w is doubled

until a certain number and then it starts to reduce (or increase) precisely at the same

stage for all tolerances; for instance look at the number of points q = 3 and tolerance

TOL = 10-1, 10-2, 10-3, the number of subinterval w is doubled at the first 7 iterations

and then it reduces to 47, 74 and 118 for each desired accuracy. For the algorithm A2

we observe that w increases by the same value (not always one) and then start to differ

until the desired accuracy is satisfied. These results confirm that the accuracy in

estimating w * may be very poor at the early iterations and improves after several

iterations.

Still with problem l we observe now in more detail the performance of each

algorithm by examining their computation time as displayed in Table 6.3 on the

following page.

For more straightforward comparison, for all algorithms we tabulate selected results

in Table 6.3. We realise that it is not easy to make a comprehensive comparison using a

limited numerical results. Perhaps one of the best ways to assess the performance of

each strategy is to observe which algorithms perform badly in the sense their

computation time is considerably larger than the others.

From Table 6.3, it is observed that in all cases the algorithms Ai, A2, Bl give

somewhat worse results, whilst algorithms B2, Cl and C2 perform better and indicate

roughly even performance. As we can see the algorithm Bl works very well for q = 4

and TOL = 10-1 , but for q = 3 and TOL = 10-3 its computation time is the worst. Similar

observations can be found in columns under heading Ai and A2. In this table it will be

noticed that the algorithm C2 consistently works well and is never the worst in term of

computation time.

The estimate E* is again reasonably close to the actual error indicating that it is a

reliable error estimate and suitable as a criterion for terminating iteration.
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q = 3
TOL=1e-1
E* -->
E -->
time -->

q = 3
TOL=1e-2
E* -->
E -->
time -->

q = 3
TOL=1e-3
E* -->
E -->
time -->

q = 4
TOL=1e-1
E* -->
E -->
time -->

Al

3.501e-02
8.206e-03
0:3:52

6.757e-03
3.38ge-03
0:3:11

1.181e-04
6.17ge-05
0:8:28

A2

Table 6.3
(problem 1)

Bl

3.412e-02 2.501e-02
3.414e-02 6.67ge-03
0:1:21 0:4:4

5.226e-03
2.376e-03
0:2:12

1.237e-04
1.036e-04
0:5:28

6.798e-03
6.804e-03
0:3:4

2.426e-04
5.338e-05
0:9:2

B2

8.743e-02
1.72ge-02
0:1:33

8.472e-03
3.598e-03
0:2:9

7.670e-04
1.072e-04
0:7:2

Cl

4.771e-02
2.660e-02
0:1:12

6.472e-03
1.891e-03
0:2:11

6.137e-04
4.05ge-04
0:3 :13

C2

2.602e-02
1.838e-02
0:1:2

9.287e-03
1.241e-03
0:2:29

6.606e-04
5.883e-04
0:2:56

6.967e-03 I 7.902e-02 I 7.815e-02 I 3.547e-02 I 9.720e-02 I 2.285e-02
4.727e-03 I 1.585e-02 I 5.573e-02 I 1.972e-02 I 1.842e-02 I 7.390e-03
0:1:35 I 0:2:59 I 0:1:0 I 0:1:2 I 0:1:0 I 0:1:7

--------------------------------------------------------------------------------------
q = 4
TOL=1e-2
E* -->
E -->
time -->

9.80ge-03 I 2.00ge-04 I 2.377e-03 I 1.050e-03 I 4.242e-03 I 1.748e-03
2.144e-03 I 1.224e-04 I 1.61ge-03 I 1.035e-03 I 5.401e-04 I 2.536e-04
0:2:6 I 0:3:22 I 0:1:23 I 0:1:44 I 0:1:12 I 0:1:54

--------------------------------------------------------------------------------------
q = 4
TOL=1e-3
E* -->
E -->
time -->

9.342e-04
6.968e-05
0:5:46

6.844e-05
2.084e-05
0:3:48

3.381e-04
7.763e-OS
0:2:1S

4.083e-04
3.995e-OS
0:2:46

3.264e-04
8.704e-OS
0:1:54

1.308e-04
8.11Se-OS
0:3:11

------------------------------------------------------------------------------------
q = 5
TOL=1e-1
E* -->
E -->
time -->

1.245e-02
3.131e-03
0:1:17

6.674e-02 I 1.17ge-02 I 7.901e-02 I 3.392e-03 I 7.901e-02
6.51ge-02 I 1.175e-02 I 4.388e-02 I 1.S63e-03 I 4.388e-02
0:1:20 I 0:0:44 I 0:0:S8 I O:O:SO I 0:0:59

--------------------------------------------------------------------------------------
q = 5
TOL=1e-2
E* -->
E -->
time -->

6.88ge-03
3.51Se-03
0:0:S8

2.802e-03
9.S38e-04
0:1:42

3.363e-04
3.30ge-04
0: 1: 6

7.738e-03
1.873e-03
0:1:17

6.428e-03
2.2SSe-03
O:O:SO

4.2S6e-04
4.227e-04
0:0:49

--------------------------------------------------------------------------------------
q = 5
TOL=1e-3
E* -->
E -->
time -->

1.322e-04
1.024e-04
0:1:33

1.78Se-04
1.606e-04
0:1:4S

2.247e-04
8.341e-05
0:1:3

8.534e-04
7.637e-04
0:1:5

1.227e-04
3.412e-05
0:1:3

9.885e-OS
9.568e-OS
0:1:4

--------------------------------------------------------------------------------------
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We now consider as the second illustrative example a problem having a layer near

the left boundary as follows

Problem 2:

BCs:

P, is the problem parameter, I p, I » 1

Though a variety of values of p, have been used in numerical experiments, they

indicate similar results so Table 6.4 only presents the results with problem parameter

p, = 104•

From Table 6.4 we observe that algorithm Ai does not perform very satisfactorily

while A2 and Bl give roughly similar more satisfactory results, however they

occasionally produce the longest computation time. Though Cl produces reasonable

computation time in Table 6.3, here it performs very badly in some cases, for example

for q = 4 and TOL =10-5. A final note made here is that the algorithms B2 and C2 give

comparable results, and overall C2 consistently performs well.

Looking at the estimate E* in most cases it is very satisfactory, though occasionally

it overestimates the error slightly but it is still close to the error.

Table 6.4
(problem 2, problem parameter ~ = 104)

-------------------------------------------------------------------------------------
Al A2 Bl B2 Cl C2

q = 4
TOL = 1e-03
E* -->
E -->
time -->

I 6.502e-04 I 5.138e-04 I 8.954e-05 I 4.171e-05 I 7.665e-04 I 4.171e-05
I 4.435e-05 I 5.078e-04 I 2.576e-05 I 3.768e-05 I 3.092e-05 I 3.768e-05
I 0:3:26 I 0:1:48 I 0:1:57 I 0:1:54 I 0:2:58 I 0:1:54

-------------------------------------------------------------------------------------
q = 4
TOL = 1e-04
E* -->
E -->
time -->

I 3.156e-05 I 1.995e-05 I 1.242e-05 I 4.171e-05 I 2.54ge-05 I 4.171e-05
I 2.632e-05 I 1.688e-05 I 8.914e-06 I 3.768e-05 I 1.803e-05 I 3.768e-05
I 0:2:58 I 0:1:58 I 0:2:41 I 0:1:54 I 0:3:29 I 0:1:54

-------------------------------------------------------------------------------------
... conti r d
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•••(cant 'd)

q = ,
TOL = 1e-05
E* -->
E -->
time -->

q = 5
TOL = 1e-03
E* -->
E -->
time -->

q = 5
TOL = 1e-04
E* -->
E -->
time -->

q = 5
TOL = 1e-05
E* -->
E -->
time -->

q = 8
TOL = 1e-03
E* -->
E -->
time -->

q = 8
TOL = 1e-04
E* -->
E -->
time -->

q = 8
TOL = 1e-05
E* -->
E -->
time -->

Table 6.4

Al Bl ClB2

I 9.561e-06 I 3.045e-06 I 6.681e-06 I 3.850e-06 I 9.637e-06 I 3.850e-06
I 4.343e-06 I 5.442e-07 I 4.096e-07 I 1.221e-06 I 4.558e-06 I 1.221e-06
I 0:3:27 I 0:2:56 I 0:3:29 I 0:2:58 I 0:6:27 I 0:2:59

I 3.110e-04 I 3.673e-04 I 1.676e-05 I 7.900e-04 I 4.611e-05 I 7.900e-04
I 1.21ge-04 I 3.660e-04 I 1.657e-05 I 7.895e-04 I 4.294e-05 I 7.895e-04
I 0:1:34 I 0:0:51 I 0:1:12 I 0:0:46 I 0:1:24 I 0:0:46

I 3.135e-05 I 6.052e-05 I 4.832e-06 I 1.601e-05 I 6.343e-06 I 1.601e-05
I 3.58ge-06 I 5.935e-05 I 4.156e-06 I 1.434e-05 I 2.862e-06 I 1.434e-05
I 0:2:13 I 0:0:58 I 0:2:21 I 0:1:4 I 0:1:29 I 0:1:4

I 3.923e-06 I 3.332e-06 I 2.066e-06 I 3. 581e-06 I 4. 576e-06 I 3. 581e-06
I 2.497e-06 I 1.362e-07 I 8.696e-07 I 2.417e-07 I 3.644e-06 I 2.417e-07
I 0:2:26 I 0:1:29 I 0:4:58 I 0:1:36 I 0:2:2 I 0:1:36

I 9.546e-04 I 3.460e-04 I 9.311e-05 I 7.388e-04 I 7.715e-04 I 7.388e-04
I 2.341e-04 I 3.361e-04 I 5.167e-05 I 6.628e-04 I 4.396e-04 I 6.628e-04
I 0:1:12 I 0:1:34 I 0:1:1 I 0:0:21 I 0:0:51 I 0:0:21

I 3.236e-05 I 4.602e-06 I 7.082e-06 I 7.044e-05 I 7.476e-05 I 3.695e-05
I 2.824e-05 I 1.682e-06 I 6.531e-06 I 1.950e-06 I 1.892e-06 I 3.452e-05
I 0:1:36 I 0:0:49 I 0:1:0 I 0:0:29 I 0:0:41 I 0:0:48

I 2.461e-06 I 3.257e-06 I 2.878e-06 I 2.924e-06 I 4.381e-06 I 3.442e-06
I 1.80ge-06 I 9.585e-07 I 1.574e-07 I 1.262e-07 I 4.252e-06 I 6.464e-07
I 0:1:36 I 0:0:52 I 0:1:12 I 0:0:33 I 0:0:23 I 0:0:46

6.5 Mesh Subdivision Algorithms

Apart from replacing the integral process used in section 6.3 with appropriate

summation notation, in principle there is no difference in obtaining the estimate w * for

mesh subdivision algorithms. Nevertheless, for completeness, we briefly derive the

estimate w * and then take a look another simple way to obtain it.

112



Chapter 6 Predicting the Number of Subintervals Needed in the Collocation Process

We have to solve the problem of determining {t2, t3, ... , two } C (a,b) so as to

minimise the problem:

max { C kiCh;*)S+l} = max { lie Iii }, 1 s i sw*
i I

which is equivalent to determining {t;, t;, ... , t:.} c (a,b) so that

(Cki)lI(s+l) ~* = (E)lI(s+l) ~ (TOL)l/(s+l) ... (6.16)

(Cki)l/(s+l) h;* = ~ ((Ck1)1I(s+1) h~ + (Ck1)1I(s+1) h; + ... + (Ck
1
)1I(s+l) ~*

W

*w

w
LkF(s+l)~I i=l l

(TOLl C)1I(s+1)
... (6.17)=

The number of subintervals in i'h-subintervals w; needed for next iteration, will be

proportional to (Cki)1/(s+1)hi, to give

* (Cki )lI(s+ 1)hi *wi = Ww
C1/(s+ 1)L k~/(s+ 1)h-

I I

i=l
or

* r (Cki )1I(s+1) h l 1s i sW ... C6.18)wi = TOL I

For completeness, on the following page we will describe how to establish the

equation (6.18) using a different way.
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Consider h;*, the width of lh-subinterval for next iterations, since we attempt to

equidistribute the terms kj ht+1 , this requires

or

h:s+1 =
I

TOL
ci,

= (TOL)l/(s+l), 15 i 5w
a;

The estimate of number of subintervals for ith-subintervals in the next iteration, then

can be found using

*W·I

or, in simpler form

*Wi 15 i 5w.

6.6 Numerical Illustrations

For mesh subdivision algorithms, unlike mesh placement algorithms, the number of

subintervals will always increase for each stage of collocation process. Strictly

speaking we can not reduce the number of subintervals to be smaller than the current

one, though the optimal W * might be smaller than the current w. Consequently, for this

type of strategy we have to be more careful using the estimation of w. As for the mesh

placement algorithms, the approximation Wi' might be very poor in the first iterations of

the collocation process, especially if the initial mesh points are very crude.

This poor estimate Wi' may be caused by O(hQ+2) term in (6.14), where it dominates

the local terms Crh, and it can not be ignored. Another source of trouble is the fact that
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the error estimate E* might be very unsatisfactory at the first stages of the collocation

process, as a result the estimate C* might be very poor, more precisely the value of C*

may be larger than it should be.

Basically, the strategies which will be applied here are the same as described in the

previous section. By carrying out some numerical experiments we shall observe which

strategies are more suitable for mesh subdivision algorithms.

For convenience and to make comparison more clear we consider the problems

examined in section 6.4.

The following tables 6.5 and 6.6 display some results for problem 1 with problem

parameter Jl = 104.

As can be seen in Table 6.5, after the initial stages in which the mesh is doubled the

figures in the table clearly show that the algorithm A1 place too many break points in

the mesh. Unlike in mesh placement algorithms in which A1 and A2 is comparable, here

it is quite clear that A2 performs much better than Al.

Examining performance of the estimate E* as the criterion function for terminating

the computation process in Table 6.5, we observe its reliability indicated by the

closeness of E* and the actual error E.

To make comparison more straightforward, in Table 6.6 we display some results

using all algorithms. From this table we may conclude that A1 has to be discarded when

using mesh subdivision, despite the fact that the estimate E* performs quite

satisfactorily.

Looking more deeply at the column under heading A2, though in most cases

algorithm A2 works very well, we observe that it occasionally performs unsatisfactorily

as we can see for q = 3 and TOL = 10.2,10-3. However it is still much better than Al.

For algorithms B1 and B2, the numerical results show that these algorithms in some

cases take unreasonably long computation time, even though again E* approximate E

closely.

Another notable observation from these tables is the superiority of algorithms Cl

and C2, in particular C2 where we observe its performance is very impressive.
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Table 6.5
(problem 1, mesh subdivision algorithm)

Al A2

ql TOL I 1a-01 1a-02 1a-03 1a-01 1a-02 1a-03
--------------------- ---------------------------------- ------------------------------
3 E* 6.466e-02 9.286e-03 9.707e-04 9.030e-02 5.147e-03 4.207e-04

E 6.471e-02 9.292e-03 9.693e-04 7.751e-02 1.421e-03 4.192e-04
time 0:25:1 9 0:38:12 1:21:32 0:1:57 0:10:1 0:16:1

w 8 8 8 5 5 5
16 16 16
32 32 32 44 89 116
64 64 64 45 90 117
128 128 128 46 91 118
256 256 256 47 92 119
458 512 512 48 93 120
470 648 734 49 94 121
478 668 768 98 95 122
479 684 798 110 184 228
480 799 112 192 252

800 201
211

4 E* 5.698e-02 8.867e-03 9.513e-04 6.056e-02 5.893e-03 7.273e-04
E 5.195e-02 8.50ge-03 9.244e-04 5.626e-02 7.640e-04 2.650e-05
time 0:11:22 0:14:31 0:34:54 0:1:23 0:1:49 0:6:52

w 8 8 8 5 5 5
16 16 16
32 32 32 36 38 53
64 64 64 37 39 54
128 128 128 38 40 55
256 256 256 39 41 56
334 378 450 40 74 57
342 390 466 76 80 58
346 396 478 80 95 116

479 81 110 122
480 126

134
142
148
156
206

-------------------------------------------------------------------------------------
5 E* 8.835e-02 5.600e-03 5.555e-04 6.431e-02 5.552e-03 8.442e-04

E 7.907e-02 5.130e-03 5.532e-04 5.894e-02 5.541e-03 8.42ge-04
time 0:5:29 0:14:6 0:19:8 0:0:49 0:0:52 0:1:16

w 8 8 8 5 6 5
16 16 16
32 32 32 29
64 64 64 30 30
128 128 128 31 31 32
220 256 256 32 32 33
228 316 342 33 33 34
230 322 354 34 34 35

326 358 42 46 68
44 50 73

74
-------------------------------------------------------------------------------------
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Table 6.6
(problem 1, mesh subdivision algorithm)

--------------------------------------------------------------------------------------
Al Bl B2 Cl C2

--------------------------------------------------------------------------------------
q = 3
TOL=1e-1
E* -->
E -->
time -->

q = 3
TOL=1e-2
E* -->
E -->
time -->

6.466e-02 I 9.030e-02 I 8.037e-02 I 8.526e-02 I 2.514e-02 I 2.514e-02
6.471e-02 I 7.751e-02 I 8.050e-02 I 8.537e-02 I 2.518e-02 I 2.518e-02
0:25:19 I 0:1:57 I 0:8:18 I 0:2:27 I 0:2:59 I 0:2:8

9.286e-03
9.292e-03
0:38:12

5.147e-03
1.421e-03
0:10:1

9.286e-03
9.292e-03
0:7:2

8.315e-03
8.318e-03
0:6:31

4.466e-04
3.910e-04
0:6:59

5.141e-03
1.256e-03
0:3:47

--------------------------------------------------------------------------------------
q = 3
TOL=1e-3
E* -->
E -->
time -->

9.707e-04 I 4.207e-04 I 9.175e-04 I 6.378e-04 I 1.897e-04 I 5.706e-04
9.693e-04 I 4.192e-04 I 9.162e-04 I 2.580e-04 I 9.403e-05 I 5.687e-04
1:21:32 I 0:16:1 I 0:35:29 I 0:7:30 I 0:9:59 I 0:6:37

--------------------------------------------------------------------------------------
q = ,
TOL=1e-1
E* -->
E -->
time -->

5.698e-02
5.195e-02
0:11:22

6.056e-02
5.626e-02
0:1:23

4.807e-02
4.328e-02
0:3:33

3.767e-02
1.707e-02
0:1:14

5.698e-02
5.195e-02
0: 2: 6

3.767e-02
1.707e-02
0:1:14-------------------------------------------------- ------------------------------------

q = ,
TOL=1e-2
E* -->
E -->
time -->

8.867e-03 I 5.893e-03 I 8.867e-03
8.50ge-03 I 7.640e-04 I 8.50ge-03
0:14:31 I 0:1:49 I 0:6:9

8.866e-03
8.508e-03
0:2:27

1.833e-03
1.783e-03
0:2:56

5.112e-03
8.877e-04
0:2:8

--------------------------------------------------------------------------------------
q = ,
TOL=1e-3
E* -->
E -->
time -->

9.513e-04
9.244e-04
0:34:54

7.273e-04
2.650e-05
0:6:52

9.130e-04
8.877e-04
0:12:20

7.281e-04
2.926e-05
0: 11:9

5.281e-05
3.635e-05
0:3:20

1.347e-04
2.154e-05
0:5:26

--------------------------------------------------------------------------------------

q = 5
TOL=1e-1
E* -->
E -->
time -->

8.835e-02 I 6.431e-02 I 9.691e-02
7.907e-02 I 5.894e-02 I 6.644e-02
0:5:29 I 0:0:49 I 0:2:47

6.431e-02
5.894e-02
0:0:52

3.330e-02
3.158e-02
0:1:35

6.431e-02
5.894e-02
0:0:35

--------------------------------------------------------------------------------------
q = 5
TOL=1e-2
E* -->
E -->
time -->

5.600e-03
5.130e-03
0:14:6

5.552e-03
5.541e-03
0:0:52

5.600e-03
5.130e-03
0:3:33

5.551e-03
5.541e-03
0:0:59

9.910e-03
9.892e-03
0:1:24

9.910e-03
9.892e-03
0:0:45

--------------------------------------------------------------------------------------
q = 5
TOL=1e-3
E* -->
E -->
time -->

5.555e-04 I 8.442e-04 I 5.555e-04 I 8.472e-04 I 8.472e-04 I 8.472e-04
5.532e-04 I 8.42ge-04 I 5.532e-04 I 8.42ge-04 I 5.635e-04 I 8.42ge-04
0:19:8 I 0:1:16 I 0:5:58 I 0:1:5 I 0:2:33 I 0:0:44

--------------------------------------------------------------------------------------
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The following two tables present numerical results for problem 2 with problem

parameter Ii = 104.

In Table 6.7, AO indicates that the estimate w * is used for next iteration without any

of the modifications we have discussed before. As indicated by the numerical results,

here we emphasise that it is not sensible at all using w * without any additional

constraints for mesh subdivision, even though it might be all right for mesh placement

algorithms. Looking at the other algorithms, the best performance is shown by

algorithms A2 and C2 while algorithm Cl is also reasonable though it puts too many

break points when w increases from 72 to 112. On the other hand algorithm B1 gives

somewhat poorer results in terms of both time and final w. Again we observe that the

algorithms A1 lead to completely unsatisfactory results, even though the order of

accuracy obtained is the same with other algorithms.

Table 6.7

AO Al A2 Bl B2 Cl C2--------------------------------------------------------------------------------------
q - 4
'l'OL-le-3

time

9.418e-04
9.246e-04
1:40:4

9.552e-04
9.377e-04
0:48:16

9.050e-04
6.090e-04
0:1:11

9.552e-04
9.377e-04
0:9:7

8.668e-04
8.458e-04
0:1:49

9.284e-04
9.003e-04
0:1:44

8.365e-04
8.262e-04
0:0:47

E*
E

w 806 8 5 6 5 6 5
867 16 6 8 6 8 6
877 32 7 12 8 12 8
882 64 16 10 16 10

128 24 11 24 11
256 38 37 14 37 14
512 39 51 16 51 16
620 40 102 19 52 19
631 41 204 23 70 23
636 42 312 26 71 26

43 323 30 72 30
54 328 36 112 36
58 41 119 41

82 121 42
127 43
137 44
141 59

68
69------------- ---------------------------------- -------------- -------------------------
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As the last illustration, the following table presents results when the proposed

algorithms are used to solve problem 2.

The most notable observation about these results is that the algorithm BI performs

very badly where in most cases its computation time is the worst. As indicated in

Table 6.6, here again we found the fact that though in most cases algorithm B2 performs

in reasonable computation time, in some cases it needs longer computation time than

the others. Of other algorithms A2, Cl and C2 give reasonable results, with algorithms

Al and Cl producing marginally worse results than those using algorithm C2.

Looking at the estimate E* and the actual error E, it is clear that this error estimate

is quite reliable as a criterion to terminate the computation process. Moreover in all

cases it is very close to the actual error.

Before we end this chapter it might be useful to make some final concluding

remarks regarding our proposed algorithm in determining the number of subinterval

needed in the next stage of collocation process.

Since there are many minor variants in the algorithms it is not easy in making

assessment, however at least we observe some interesting and useful facts. Firstly using

the estimate w * without any restriction may lead to completely unsatisfactory results, in

particular for mesh subdivision strategies. Secondly, if the estimate w * is greater then

2w then the simple techniques to determine the number of subinterval in next iteration

such as doubling the current number of subintervals w or setting w * = (w+ 1) can be

utilised further to obtain more reliable algorithms.

The results of numerical experiments indicate that the algorithm Ai may perform

comparably with the others in mesh placement algorithms but not for mesh subdivision

algorithms. Using the algorithm BI the results indicate similar observation. Conversely

algorithms A2 may be efficient in mesh subdivision strategy, but it can be very

inefficient for mesh placement algorithms. For the algorithm B2 though it usually gives

satisfactory results, unfortunately in all tables we found that it occasionally produces a

poorer result.

The most notable result is that the algorithm C2 performs efficiently in both

strategies placement and subdivision while algorithm Cl is also comparable.
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q = 4
TOL = 1e-03
E* -->
E -->
time -->

q = 4
TOL = 1e-04
E* -->
E -->
time -->

A2

I 9.050e-04
I 6.090e-04
I 0:1:11

9.140e-06
8.97ge-06
0:1:30

Table 6.8

Bl

9.552e-04
9.377e-04
0:9:7

9.735e-05
9.254e-05
0:13:16

B2

8.668e-04
8.458e-04
0:1:49

9.176e-05
9.048e-05
0:2:28

Cl

9.284e-04
9.003e-04
0:1:44

9.590e-05
9.504e-05
0:2:16

C2

8.365e-04
8.262e-04
0:0:47

8.540e-05
8.417e-05
0:1:9

---------------------------------------------------------------------------------
q = 4
TOL = 1e-05
E* -->
E -->
time -->

I 2.721e-06
I 5.173e-07
I 0:3:38

9.126e-06
8.97ge-06
0:31:59

9.121e-06
8.237e-06
0:6:15

9.78ge-06
8.858e-06
0:2:11

8.650e-06
8.192e-06
0:2:8

---------------------------------------------------------------------------------
q = 5
TOL = 1e-03
E* -->
E -->
time -->

5.943e-04
5.920e-04
0:0:38

7.898e-04
7.88ge-04
0:6:53

7.898e-04
7.88ge-04
0:1:43

8.39ge-04
8.392e-04
0:1:4

8.39ge-04
8.392e-04
0:0:39

---------------------------------------------------------------------------------
q = 5
TOL = 1e-04
E* -->
E -->
time -->

I 8.412e-05
I 8.396e-05
I 0:0:40

8.481e-05
8.396e-05
0:8:37

9.423e-05
9.33ge-05
0:3:38

8.406e-05
8.396e-05
0:1:15

8.406e-05
8.396e-05
0:0:46

---------------------------------------------------------------------------------
q = 5
TOL = 1e-05
E* -->
E -->
time -->

4.504e-06
4.440e-06
0:1:2

8.434e-06
8.147e-06
0:14:13

9.193e-06
9.097e-06
0:1:52

7.53ge-06
7.361e-06
0:1:38

7.540e-06
7.361e-06
0:0:52------------------------------------------------ ---------------------------------

q = 8
TOL = 1e-03
E* -->
E -->
time -->

6.057e-04
5.868e-04
0:0:18

2.183e-04
2.070e-04
0:1:32

6.057e-04
5.868e-04
0:0:32

7.443e-05
7.193e-05
0:0:50

6.057e-04
5.868e-04
0:0:19

---------------------------------------------------------------------------------
q = 8
TOL = 1e-04
E* -->
E -->
time -->

5.270e-05
5.107e-05
0:0:20

5.26ge-05
5.107e-05
0:2:7

1.446e-05
1.405e-05
0:0:20

1.446e-05
1.405e-05
0:0:52

1.446e-05
1.405e-05
0:0:20

---------------------------------------------------------------------------------
q = 8
TOL = 1e-05
E* -->
E -->
time -->

6.458e-06
5.724e-06
0:0:20

8.220e-06
7.454e-06
0:2:4

6.458e-06
5.724e-06
0:0:59

4.624e-06
4.402e-06
0:0:47

4.624e-06
4.402e-06
0:0:30---------------------------------------------------------------------------------

120



chapter

Locating the Layer Regions and

Estimating Their Initial Mesh Points

7.1 Nature of Stiffness

Throughout this chapter we are concerned with the standard first order linear

system ODE of the form

x'(t) = A(t) x(t) + yet), a < t c b ... (7.1)

with associated boundary conditions at the end of range [a,b].

Here, we assumed that there exists one small parameter e occurring in the

boundary value problem.

In studying IVPs, the problems whose solutions exhibit both quickly and slowly

change modes in such a manner that a numerical computation process for its solution

must be stable for all step sizes to facilitate efficiency in the computation process, are

referred to as stiff differential equations. They are important in numerical analysis

since they frequently arise in practical problems and they are difficult to solve by

some numerical methods, even though the methods perform quite well in solving

non-stiff problems.

Stiffness arises if there is a conflict between stability and accuracy requirements

that appear in certain problems. Focusing on initial value problems, Lambert [36]

discuss in some detail various aspects of the phenomenon of stiffness, and propose to

use word 'phenomenon' instead of 'property', since the latter rather implies that

stiffness can be defined in precise mathematical terms. In [36] it is also illustrated

that two different systems of ordinary differential equations with the same conditions

could have identically the same exact solution, but they behave very differently when

tackled numerically. This implies that the phenomenon cannot be a function of the
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particular solution, it must be a property of the differential equation itself. In tum this

suggests that we consider, not the particular solution of problem satisfying the given

boundary condition but the general solution of the systems, which in tum requires us

to look at the eigenvalues of the coefficient matrix of the systems. In general, if the

eigenvalues of matrix A vary over several orders of magnitude, there are difficulties.

There are essentially two features of stiff boundary value problems that make

their solution by numerical methods difficult. One is that the matrix A has large

eigenvalues. The second is that there may be turning points in the problem. The

concept of a turning points is not particularly well defined in the literatures [34],

however, for our purposes we take it to mean a subinterval of [a,b] to which an

eigenvalue of A changes its order of magnitude and its sign from positive to

negative.

When studying singular perturbation theory, it can be found that there seem some

connection between stiffness and that phenomenon; As described in [36] systems

exhibiting singular perturbation can be seen as a sub-class of stiff system. Though we

are not going to pursue this connection further, let us quote a simple example as

follows

Let A be a constant (2x2) matrix and yet) :: 0 and consider a system in form

Suppose that matrix A has real eigenvalues AI, ,1,2 such that ,1,1« ,1,2 < O. By

eliminating XI and X2 we obtain the equivalent second order scalar equation

Since Al ,,1,2 are the zeros of the quadratic

which can be written as

As Al ---f _00 we have the singular perturbation situation.
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7.2 Eigenvalues for Predicting the Layer Location

In solving some simple boundary value problems a crude equal-spaced initial

mesh might suffice to obtain the required approximate solution successfully in terms

of effort and time consumed. However for boundary value problem having severe

layers, it might be not sensible to expect the collocation iteration schemes to perform

efficiently when one does not have some reasonable estimate of the location of layer

regions.

In this section, our aim is to involve computing eigenvalues of matrix A(t) within

interval [a,b] and using their magnitude and rate of change to predict possible

transition regions.

Firstly let us consider the linear constant coefficient system

x'(t) = Ax(t) + yet), a < t < b ... (7.2)

where A is a constant (nxn) matrix with eigenvalues Ai E C, and corresponding

eigenvectors "1, i = 1, 2, ... , n.

The general solution of (7.2) takes the form

m

x(t) = I c, exp(Ait) "1 + y(t)
;=1

... (7.3)

where c, are arbitrary constants and y(t) is a particular integral.

In general we will deal with situation where ~ is very large in magnitude for

some i = 1,2,3, ... , n. If the imaginary part of the eigenvalues Ai , i = 1, 2, ... , n

of matrix A is dominant then we would expect that the solution of the system will

have oscillatory behaviour.

Let ReciApI) be the maximum of Re(IAi I), i = 1,2, ... , n and let us consider two

cases for the matrix A in equation (7.2)

1. Suppose that Re(Ap) < O. If Ap is very large in magnitude, the term

exp(Re(Ap)t) will decay rapidly if t is close to the left boundary a and it will be

slower when t is away from a. We could then expect that there is a boundary

layer around a.
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2. Suppose that Re(Ap) > O. The term exp(Re(Ap)t) will increase rapidly if t is

closer to the right boundary b. Again if Ap is very large in magnitude, we then

could expect that there is a boundary layer around b.

Having considered a linear system having a constant coefficient matrix, we now

examine a first order system in the form of equation (7.1). Let the coefficient matrix

A(t) assumed to be constant (or 'frozen') in a subregion [t*-8, t*+bJ c [a, b] for

some t* E [a, b] and 8> o. By taking Ac = A(t*), the differential equation in this

small region may be written as x'(t) = AcX(t) + y(t). With this constant matrix An

behaviour of the exact solution x(t) will not be correctly represented. However, if

the matrix A is taken to be piecewise frozen, then we could expect that the solution

of this frozen system to behave like the exact solution. Moreover, in cases of

boundary layers, since the layers are located in small regions around end points, it is

reasonable to expect the solution corresponding to the frozen matrix Ac to behave

like corresponding to those of A(t) in these small regions. In cases of transition

layers, the similar situation is expected to occur around small region in which the

eigenvalue changes sign from positive to negative, since it is well known that if an

eigenvalue changes sign from positive to negative around to there might be a

transition layer around to [4,29]. For this case we should examine behaviour of the

solution in two small subregions, i.e. by taking t* E [to-8, to] and then t* E [to, to+bJ.

By assuming that the matrix A(t) can be locally frozen, then the equation (7.1)

takes the form x' = Ax + yet). By ignoring yet) in our analysis we can conclude

that the behaviour of the solution x' = AcX where Ac is a piecewise frozen of the

matrix A, in some way locally represents the behaviour of the solution of (7.1), thus

justifying the use of the linear test equation x' = AcX in predicting the location of

layer region.

Let t* be some fixed value of t; then the piecewise frozen of A would assert

that in some neighbourhood of t*, the solution of (7.1) behaves like those of

x' = A(t*)x. Since A(t*) is constant matrix the general solution of x' = A(t*)x has

the form of (7.3) and we can carry out similar analysis.
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Let Ai(t), i = 1,2, ... , n be eigenvalues of matrix A(t) and suppose that Re(IAp(t)l)

is the maximum of Re( IAi(t)1 ), for some p E { 1, 2, ... , n } and t E [a, b]. We

now observe a number of possibilities as follows

1. Suppose that for some tt. E [a, b], and t* E [a,td the term lexp(Re(Ap(t*) t))) -

exp(Re(Ap«t*)) t2))1 is much larger than It2 - td for all t), ti E [a,td, then for

t E [a,td the term exp«Ap((t*))t) will vary rapidly if t is close to the left

boundary a and it will be slower when t is away from a, we then could expect

that there is a layer around left boundary a.

2. Suppose that for some tR E [a, b], and t* E [tR, b] the term lexp(Re(Ap(r*) t))) -

exp(Re(Ap(t*) t2))1 » It2 - td for all t), tz E [b - te, b] , then for t E [b-tR, b]

the term exp«Ap(t*)t) will vary rapidly if t is close to b and will be slower when

t is away from b, we then could expect that there is a boundary layer around b.

3. From 1 and 2 it is possible to have boundary layers at both sides

4. Suppose that the eigenvalue Ap(t) changes sign from positive to negative at to for

some to within small subinterval (tn, t72) c (a,b). Let t* E (tTl, to) and suppose

that the term lexp(Re(Ap(t*) t})) - exp(Re(Ap(t*) t2))1 is much larger than It2 - td
for all t), t: E (tTl, to), then for t E (tT), to) the term exp«Ap(t*)t) will grow

rapidly. It is also assumed that that the term exp(Re(Ap(t*) t) varies faster if t tend

to to-. Similarly, let r* E (to, t72) and suppose that the term lexp(Re(Ap(t*) t})) -

exp(Re(Ap(t *) t2))1 is much larger than It2 - td for all t), t2 E (to, t72), then for t E

(to, t72) the term exp«Ap(t*)t) will decrease rapidly. We could expect there is a

transition layer inside subinterval [tTl, t72 ].

It is worth noting that all observations also take into account the rate of change

in the fundamental solution component x(t) = exp(Re(Ap)t) which is assumed to be

large. In particular, for determining the location of transition layer, we need to check

whether it varies over several order of magnitude as well as checking whether the

eigenvalue (equivalently the derivative term) changes sign in such a neighbourhood.

To illustrate how we work out to locate possible layer regions, we consider a

number of examples. Firstly consider the following problem

125



Chapter 7 Locating the Layer Regions and Estimating Their Initial Mesh Points

Example 1 :

fl is the problem parameter, Ifll »1

The boundary conditions are

xJ(O) = 0

xJ(2) = O.

The eigenvalues are AI = 0, ,.1,2= -fl; and Ap = -fl. The term exp(Apt) = exp(-flt)

will vary very rapidly within subinterval [0; -lIfl]. It will vary more rapidly if t is

closer to the left boundary and will be slower if t is away from the left boundary.

We may expect that there will be a boundary layer around the left hand boundary.

Example 2:

The boundary conditions are

xJ(-l) = 0

xJ(l) = O.

While fl is a parameter, Ifll » 1.

The eigenvalues are AI = 0 and A2(t) = flt· Ap is given by Ap(t) = iu. By taking

a fixed point t* on small subinterval (-1, -1+£5) for some 8 > 0 sufficiently small,

the term exp(Ap(l)t ) = exp{flt* t) will vary rapidly if t is close to the left boundary.

Similarly, if we take t* E (1-8, 1) for some 8 > 0 we also found that the term

exp{flt*t) will vary rapidly if t is close to the right boundary. As we can see there is

a change of sign of the eigenvalue but there is no interior layer as the change of sign

is from negative to positive. In this case we could then expect that there are two

boundary layers, i.e. one boundary layer for each side.
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Example3 :

BCs: xJ(-l) = xJ(1) = 0 f.J is a parameter, 1f.J I » 1.

The eigenvalues are AJ = 0 and A2(t) = -j.Jt. The second eigenvalue A2(t) changes

sign from positive to negative at point t = O. Let t* be a fix point within subinterval

(-8, 0) for some £5 >0 sufficiently small, then the term expi -j.Jt*)t) varies rapidly if

t ---t 0-. Similar observation can be obtained if t* is taken from (0, b) and t ---t 0+.

Looking at the following graphs where f.J = 102 we can see that the term exp«-j.Jt)t)

will vary rapidly if t is around the origin points t = O. Moreover the derivative term

(-2j.Jt)exp«-j.Jt)t) changes sign and it varies rapidly around t = O. We then could

expect that there is a transition layer at the middle of interval.

O~

os
0

Of

Of

o~
0<

m
01 1 _\
-1 ()'5 0 05

Fig.7 . 1 Graphs exp (-/-lt2)

~'r---~----~--~----,

10

O~---___.J

-1C

-1 os o 0,5

Fig.7.2 Graphs (-2/-lt)exp(-/-le)
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The next example illustrates situation where the interior layer is not at the origin.

Example 4:

BCs: XI (0) = XI (1) = 0, P, is a parameter, Ip, I » 1.

The eigenvalues are Al = 0 and A_z(t) = -f-l (t-0.5). The second eigenvalues A_z(t) changes

value from positive to negative at t = 0.5. Taking a fix point t' E (0.5-&, 0.5) for some 6> 0

sufficiently small and then checking the rate of change of the term exp(-f.1(t·-0.5)t) for

t E (0.5-&, 0.5), we can see that the term varies rapidly and it will be faster if t~0.5-.

Similar observation found if t' is taken from (0.5, 0.5+b) and t tend to 0.5 from right side.

For illustration, the graph of the functions exp( -f.1(t-0.5)t) and (-f.1(2t-0.5) )exp( -f.1(t-O.5 )t)

around the middle of interval are depicted below. As shown in the graphs the term

exp( -f.1(t-0.5)t) will vary very fast if t is around the point t = 0.5. Moreover the derivative

term (-f-l (2t-0.5»exp( -f.1(t-O.5)t) changes sign and varies rapidly in small region around

t = 0.5. We then could expect that there is a transition layer.

1 .4 .------r------,

1.1

0.9

100

180

0.49 0.5 0.51

Fig.7.3 Graphs exp(-p(t-O.5)t)

0,-------.------,

0.55

Fig.7.4 Graphs (-P(2t-O.5))exp(-p(t-O.5)t)
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The following example shows the case where the eigenvalue changes sign but

there is no a transition layer.

Example 5:

The boundary conditions are

XI(O) = 0

and

XI(1) = O.

While Jl denotes the problem parameter, IJlI »1.

Two eigenvalues are AI = 0 and A2(t) = Jl (t-0.5). Here the second eigenvalue

A2(t) changes value from negative to positive at t = 0.5.

Even though the second eigenvalue changes sign at t = 0.5, we observe that for

a fixed t* E (0.5-a, 0.5) the term exp(Jl(t*-0.5)t) will vary slower if t~0.5-. Similar

case if l is taken within subinterval (0.5;0.5+b), the term will vary slower if t~0.5+.

The following graphical illustrations on the following page,figure 7.5 andfigure 7.6,

show that the term exp(Jl (t-0.5)t) does not vary rapidly if t is around the point

t = 0.5. Comparing with its behaviour around the left and right boundaries, this

function is a smooth in subinterval ('h-a, Y2+b), for some 0 > O. Similar behaviour

is shown by the term (Jl(2t-0.5»exp(Jl(t-0.5)t), even though it changes sign at

t=0.5.

In this example, the term exp(jl(t-05)t) will vary rapidly if t tends to the end

points, i.e. it varies rapidly in a small region around boundary points.

For this problem we may expect that there are boundary layers at end points.

This example confirms the well known fact that a boundary value problem having

changing eigenvalue at a point is not necessarily to have an interior boundary layer at

that point.
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_,~ ~ ,

0.'
0.•

left boundary

Fig.7.5 Graphs exp(#(t-O.5)t)

Example 6:

X 1023
8 r-----.----,------,

OL-_..I.o:oc:::::"""""'___...J

0.94 0.96 0.98

Fig.7.6 Graphs (#(2t-O.5))exp(#(t-O.5)t)

right boundary

BCs: x}(-l) = x}(l) = O. f.i is the problem parameter, If.i I » 1.

The eigenvalues are determined by functions

Aj(t) = -~j.J(2_t2)

A2(t) = ~j.J(2_t2)

There is no changing values in both eigenvalues. The first eigenvalue A}(t) has

negative values in the whole interval [-1,1], while the second one has positive values.
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Taking a fixed point t* close to the left boundary, it is clear that the solution
*component set up by this fix point varies rapidly around the left boundary. For t

close to the right boundary, the similar situation is observed. In this problem, we

may expect there is a boundary layer at each end point.

7.3 Determining the Width of Layers

Having predicted possible layer regions, we shall now attempt to determine the

width of the layer region and initial mesh points in such region. Here, the term width

of layer is taken to mean a suitable width of layer for collocation process such that

using it in the collocation algorithms should improve the performance of the

algorithms.

Recall equation (7.1), and let us assume, for simplicity, that there are n.. rapidly

decreasing modes and n., rapidly increasing modes throughout interval [a, b]. In case

of separated boundary conditions, then the initial n.: boundary conditions control the

decreasing modes and the n+ terminal boundary conditions control the increasing

modes.

Let us examine a simple test problem

x' (t) = M(t), 0:5; t :5; 1

x(o) = 1

... (7.4)

The coefficient A represents an eigenvalue, so it is in general complex.

Let AR denotes the real part of the eigenvalue A

Assuming that AR < ° and its magnitude is very large, i.e. IARI »1. It is also

assumed that the highly oscillatory case is excluded by assuming that

pi AR I ~ I Im(A) I , for some constant p of moderate size.

Let x(t) be the solution of (7.4). Since IARI » 1, x(t) is a fast decreasing mode in

small subinterval [O,c] c [0,1] for some c > ° and is sufficiently smooth in

subinterval [c,1]. This situation is illustrated graphically as follows
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1

gradient = -I

As t moves away from the left boundary the magnitude of gradient of the

solution x(t) = exp(ARt) will decrease. When the magnitude of gradient is equal to

one the solution x(t) could be said to be no longer in fast decreasing mode. This

enable us to determine c, a suitable subdivision point, in a simple way by requiring

or

We then take the natural logarithm of both sides

to give

hmaxl = c = ... (7.5)

We may extend the idea to more general problem of form (7.1). Let A!R'
i = 1,2, ... , n denote the real part of the negative eigenvalues of matrix A. Obtaining

expression like (7.5) for each negative eigenvalue, we have a set of points {c.},

i = 1, 2, ... , n and the width of the left layer region hmaxl may be taken as their

minimum.

hmax1 ::::: min {-In(A~) / A~}, i = 1,2, ... , n_
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Similarly, the point d close to the right end point b can be determined by

considering the positive eigenvalues.

Note that the points c found using the equation (7.5) depend solely on the

parameter AR,more precisely there is no direct relationship with the desired tolerance

TOL. The following alternative estimation of the layer region attempts to relate not

only the parameter AfR but also the required tolerance TOL.

Since the fundamental solution component x(t) = exp(ARt) decays rapidly in a

small region [O,e] close to the left boundary, and outside this region it is

approximately zero. This gives us another simple way to determine such point e, by

requiring

we then take the natural logarithm of both side to give

ARe < In (TOL)

which finally gives us the desired point

hmax2 = e = In (TOL)

AR ... (7.6)

Note that hmax2 will increase if the desired tolerance TOL decreases, in other words a

more accurate desired approximate solution will produce a larger layer region.

7.4 Initial Mesh Points in the Layer Regions

Pade approximations provide both the optimal rational approximations and the

error in the approximation for exponential function exp(t). Here we shall relate

these optimal approximations to the fundamental solution component x(t) = exp(ARt)

and use them in estimating the number of initial mesh points in the layer regions.

The (k,j) Pade approximation is given by the rational function:
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k k(k -1) t2 k(k -1) ...1 tkPk/t) = l+--t+ + ...+-....;_____;..--
j+k (j+k)(j+k-l) 2! (j+k) ...(j+1) k!

= I--j-t+ j(j-l) t
2

- ••• +(-I)j j(j-l) ...1 t'
k + j (k + j)(k + j -1) 2! (k + j) ...(k + 1) j!

The error for Pade approximation is given by

( 1Y· j!k! tj+k+1 + O(tj+k+2)ep = -
(j+k)!(j+k+l)!

... (7.7)

It is the unique rational approximation to exp(t) of order (j+k) such that the

degree of numerator and denominator are k and j respectively. The diagonal Pade

approximations are those with k = j.
As discussed in chapter 2 the solution of an mth-order ordinary non-linear

differential equation can be approximated to within order O(hq) by collocation when

using spline function of order (m+q) and the solution is in c=« Here, h is the

maximum mesh length of the partition n, Furthermore the results of investigation of

the direct effect of using certain collocation points in improving the accuracy of the

collocation solutions indicate that the (m+qyh order of approximation can be

achieved by collocating the Gauss points, provided the solution is in C2q+m) and the

differential operator is sufficiently smooth. Moreover, at the ends of each

subinterval, the approximation is O(h2q
) accurate.

In point of view of the stability concept, a paper of Wright [55] studied the

stability function of collocation methods. In the paper it is shown that the stability

function of the collocation points based on the points ~1' ~2' ... , ~q is given by the

rational function

R(t) = M (q) (1) +M (q-I) (l)t + + M (l)tq = pet)
M (q) (0) +M (q I) (O)t + +M (O)tq Q(t)

where

It is also shown that for any polynomial M(t) of exact degree q, R(t) is an

approximation to exp(t) of order greater or equal to q and its error is given by
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/ _ R(t) = (tq+1 iel(l-~) M (~)d~) I Q(t)

Moreover, Hairer and Wanner [31] show that the stability function of some

numerical schemes for solving test function x' = Ax, x(O) = 1, Re(A) < 0 satisfy

diagonal Pade approximation.

Let us now consider the fundamental solution component vet) = exp(ARt) which

is assumed to dominate the behaviour of the solution in the layer region. We can

relate this solution component with the Pade approximation by firstly noting that for

a given degree of the numerator and the denominator the Pade approximation is a

rational function having highest order of approximation. Secondly, from the above

results the collocation solution using q Gauss collocation points has an

approximation of order (2q) at the end of subinterval, and thirdly the diagonal Pade

approximation should be used since it is associated with the stability function.

We are now attempting to relate the error of the Pade approximation determined

in (7.7) with the required tolerance TOL by choosing h appropriately. By taking k = j

and the fact that the Pade approximation is of order O(j+k) which have to be equal

to the order of q stage collocation solution, these give

k+ j = 2q, ... (7.8)

hence

j = k = q ... (7.9)

If hp. denotes the estimate of the first subinterval used in the collocation

algorithm and TOL is a required tolerance, we then apply the equation (7.9) into

equation (7.7) and obtain

TOL = q/ q/ (A. h • )2q+l
(2q)/ (2q +1)/ R p

to give

(2q)! (2q + I)!
2q+l TOL

q! q!
... (7.10)

135



Chapter 7 Locating the Layer Regions and Estimating Their Initial Mesh Points

The next step, using the results from previous section, there are now three

computable values hp*, hmaxl' and hmax2 which immediately give two estimates for

the number of initial subintervals in the layer region, they are

w~ = rhmaxl / hp*l ... (7.11)
and

... (7.12)

Since hp*, hmaxl' and hmax2 are real numbers, in implementation we have to take

the integer part of the estimates w~ and w~. Here notation r ...1 indicates the round

up of a real number.

In preliminary numerical experiments using the estimates (7.11) and (7.12) it

was observed that these estimates are not satisfactory when dealing with problems

having severe layers. This can be explained since for problems having severe layers

the additional accuracy at break points in the Gauss collocation scheme due to higher

order O(h2q) is lost, and the order of approximation is then O(hq+1). Such reduction

in superconvergence order has been pointed out by Ascher and Bader [7].

Now let hp be the estimate of the first subinterval. Using similar steps to obtain

equation (7.10), we then have

k+j=q+1
or

j = k = (q+1) / 2 ... (7.13)

and substitute equation (7.13) to equation (7.7) giving us

(q+J)!(q+2)! / I I
hp = q+2 TOL AR

(( q + 1)12)! (( q + 1)12)!
... (7.14)

Using equation (7.14) we now have the estimates for the number of initial

subintervals in the layer region

w~ = rhmax1 / hp1 ... (7.15)
and

... (7.16)
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Using either w~ or w; as the estimate of the number of initial mesh points in the

layer region, and let wZ denotes the actual estimate, the initial mesh points will be

no: a = tJ < a+hp < a+2hp < ... < a+(wZ -1) hp < t; < ... < ... < b = tw

layer region smooth region

For illustration, let us take wZ = 4 to give a typical example as follows

layer region smooth region

b

7.5 Numerical Implementation

In this part, our aim is to observe how well the estimates w: and w~ perform in

the numerical computation. In practice it is reasonable that the estimate for layer

region width hmax is taken from max{hmax1, h111l1X2}, this gives the number of initial

subintervals in the layer region to be WO = max { w:' w~}. In case both ends have

boundary layers, wZ and w; will denote the estimate for initial subintervals in the

left and right boundary respectively. For the smooth region, at the first sight the

simplest choice for initial number of subintervals is to take the maximum of wZ and

w;, even though as we will see later in the numerical experiments a small

modification may be helpful.

In the numerical experiments, firstly we employ WO the estimates of number of

initial subintervals in the layer regions taken from max{ w; ,w~}, in cases either

w~ > 2 w; or w; > 2 w~we make a slight modification. i.e. WO = 2w; or WO = 2w~.
In the smooth region we place (wO_I) break points. Through experiments, we shall

intensively compare the performance of the RH algorithms and de Boor algorithms

using multiple and single point increment as well as the effect of using Gauss and

Chebyshev collocation points. For predicted initial mesh we use algorithm C2
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described in chapter 6. In addition, for comparison purposes we also implement the

adaptive mesh algorithms using a crude initial mesh, here we use 4-equally spaced

initial mesh.

7.5.1 Mesh Placement Algorithm

As the first illustration, we consider a boundary value problem having a severe

layer at the left boundary, where the layer thickness depends upon the problem

parameter p.

The problem is

Problem 1:

BCs: Xl(O) = xl(2) = O. p is the problem parameter, Ipi » 1

Taking p = 102, tables 7.la, 7.lb and 7.2 display the number of initial

subintervals in the layer region obtained using hp, hmaxl' hmax2, q Gauss collocation

points per subintervals, the desired tolerance TOL, and eigenvalue IARI = 102• In

these tables the single subinterval increment is used. The tables also contain values

wand WC which denote the total number of subintervals and the number of

subintervals in the layer region used in the final stage of the collocation process. The

heading hfirs, and hiasl indicate the width of the first and the last subinterval in the

final computation process respectively. The columns under heading i and T show

the number of iterations and the time needed in the numerical computation. The

results using 4-equal initial subintervals are indicated by B in the tables.

From tables 7.la and 7.lb where the problem parameter p = 102, it clearly

indicates that using predicted initial subintervals improve the performance of the

collocation algorithm, especially in terms of decreasing number of iterations and

time needed in computation process. From these tables it is also observed that the

width of the first subinterval in the actual computation is reasonably close to hp,
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moreover the number of mesh points in the layer region is reasonable. It is notable

that for q = 2 and TOL = 10-4, A and B give almost identical results for wand wc,

however in term of number of iterations i (and computation time Ty; there is a

significant improvement, i.e. i = 11 in A compared to i = 80 in B. In the

meantime the estimate WO is reasonable not only for lower accuracy but also for

higher accuracy, though in some cases the final stage puts too many points in the

layer region, for example from Table 7.la for q = 3 and TOL = 10-4 the actual

number of subintervals in the layer region WC is 40 subintervals (computation time

T = 6 secs) which is larger than those needed in the computation B. Similar

indication is also observed for number of collocation points q = 5 with tolerances

10-5, 10-8; and q = 8 with tolerances 10-8, 10-1°, 10-12•

In Table 7.lb, the numerical results using the de Boor criterion function are

presented for comparison. For this criterion function, it can be seen that using the

predicted initial subintervals the algorithms clearly perform better in terms of

iterations and time needed compared to those using 4-equal initial subintervals.

Comparing Table 7.la and Table 7.lb, the most notable result we have is that in

all cases the RH criterion function gives much better results than those using de Boor

criterion function. A dramatic improvement shown when q = 2 and the tolerance

TOL = 10-4 where de Boor algorithm needs 61 iterations (computation time

9 minutes and 21 seconds), in contrast the RH algorithm just needs 11 iterations

(1 minutes and 2 seconds), further more it is also observed that the de Boor algorithm

puts too many points in the layer region before reaching the desired tolerance, even

when the width of the first subintervals in both algorithm is reasonable close.

As mentioned above, in some cases, the results in A are poorer than B. Since

these appear in cases where w~ is greater than twice w;, hence we might suspect

that these might be caused by putting too many points in the layer and smooth region

at the first stage of the computation process. This suggests making a slight

modification to the predicted initial mesh points by taking

WO = 2 w; if w~ is greater than 2 w;
or

WO = 2 w~ if w; is greater than 2 w~.
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Table 7.1a
(problem 1, RH Criterion, 1-interval increment, 11 102

)

----------------------------------------------------------------------------------------------------
q TaL bp 1l..axl b..a,a w; w· raP bUrst blut rtr w j T2

-------------------------------------------------------------------------------------------------
A 1e-01 1.377e-02 4.605e-02 2.303e-02 3.676e-03 7.747e-01 7 13 0,0,1

1e-02 7.746e-03 4.605e-02 4.605e-02 1. 771e-03 6.366e-01 13 22 13 0,0,6
1e-03 4.356e-03 4.605e-02 6.908e-02 10 15 15 8.332e-04 6.23ge-01 32 41 12 0,0,18
1e-04 2.44ge-03 4.605e-02 9.210e-02 18 37 37 3.784e-04 6.367e-01 76 84 11 0,b2

1e-01 1. 516e-02 4.605e-02 2.303e-02 8.234e-03 8.046e-01 3 10 0,0,1
1e-02 9.564e-03 4.605e-02 4.605e-02 4.355e-03 1.593e+00 6 12 0,0,1
1e-03 6.034e-03 4.605e-02 6.908e-02 7 11 11 1.894e-03 1. 76ge+00 18 24 0,0,2
1e-04 3.807e-03 4.605e-02 9.210e-02 12 24 24 1.082e-03 1.607e+00 40 49 0,0,6

1e-01 2.493e-02 4.605e-02 2.303e-02 1 1. 382e-02 1. 030e+00 8 0,0,1
1e-02 1.698e-02 4.605e-02 4.605e-02 2 1.038e-02 1.004e+00 9 0,0,1
1e-03 1.157e-02 4.605e-02 6.908e-02 5 5.32ge-03 1. 42ge+00 7 13 0,0,1
1e-04 7.883e-03 4.605e-02 9.210e-02 11 11 2.272e-03 1. 793e+00 19 24 0,0,3

1e-01 2.511e-02 4.605e-02 2.303e-02 3.000e-02 7.79ge-01 6 0,0,0
1e-02 1.807e-02 4.605e-02 4.605e-02 2 1.574e-02 1. 062e+00 2 8 0,0,1
1e-03 1. 301e-02 4.605e-02 6.908e-02 3 6.438e-03 1. 355e+00 6 12 0,0,1
1e-04 9.361e-03 4.605e-02 9.210e-02 4 3.190e-03 1. 79ge+00 15 20 0,0,3
le-OS 6.737e-03 4.605e-02 1.151e-01 6 17 17 2.171e-03 1. 530e+00 27 35 0,0,5
1e-08 2.511e-03 4.605e-02 1.842e-01 18 73 73 4.963e-04 2.513e-Ol 133 147 O,b11

1e-01 4.967e-02 4.605e-02 2.303e-02 8.920e-02 8.826e-01 0,0,0
1e-02 3.946e-02 4.605e-02 4.605e-02 1 4.701e-02 1.007e+00 5 0,0,0
le-03 3.134e-02 4.605e-02 6.908e-02 2 2 2.365e-02 1. 263e+00 7 0,0,1
le-04 2.490e-02 4.605e-02 9.210e-02 1 3 3 2.165e-02 8.944e-01 2 0,0,1
le-OS 1.977e-02 4.605e-02 1.151e-01 2 5 5 1. 492e-02 6.42ge-01 4 11 0,0,1
1e-08 9.911e-03 4.605e-02 1.842e-01 18 18 9.911e-03 1. 00ge-01 17 36 0,0,4
1e-10 6.253e-03 4.605e-02 2.303e-01 36 36 6.253e-03 4.916e-02 35 72 1 0,0,13
1e-12 3.946e-03 4.605e-02 2.763e-01 11 70 70 1.114e-03 4.358e-02 100 141 2 0,b39----------------------------------------------------------------------------------------------------

B 1e-01 3.980e-03 1. 378e+00 7 12 9 0,0,1
1e-02 1. 758e-03 6.42ge-01 13 22 19 0,0,7
1e-03 8.321e-04 6.413e-01 32 41 38 0,0,31
1e-04 3.841e-04 6.32ge-01 74 83 80 0,3,12

1e-01 6.38ge-03 1. 853e+00 10 7 0,0,1
1e-02 4.537e-03 1. 767e+00 11 8 0,0,1
1e-03 2.930e-03 9.021e-Ol 11 17 14 0,0,4
1e-04 1.575e-03 8.947e-01 23 29 26 0,0,16

1e-01 9.676e-03 1. 762e+00 9 0,0,1
1e-02 9.676e-03 1. 762e+00 9 0,0,1
1e-03 6.562e-03 1.653e+00 10 0,0,1
1e-04 4.390e-03 1.174e+00 10 14 11 0,0,3

5 1e-01 1.463e-02 1. 781e+00 3 5 0,0,1
5 1e-02 1.463e-02 1. 781e+00 3 5 0,0,1
5 1e-03 1.463e-02 1. 781e+00 4 5 0,0,1

1e-04 8.812e-03 1. 782e+00 6 9 6 0,0,1
le-OS 5.877e-03 1. 491e+00 9 12 0,0,2
1e-08 1. 796e-03 1. 530e+00 32 35 32 0,0,39

8 1e-01 2.738e-02 1.683e+00 1 0,0,1
8 1e-02 2.738e-02 1.683e+00 1 0,0,1
8 1e-03 2.738e-02 1.683e+00 2 0,0,1
8 1e-04 2.738e-02 1.683e+00 0,0,1
8 re-os 1. 460e-02 1. 732e+00 5 0,0,1
8 1e-08 1. 011e-02 1. 735e+00 8 10 7 0,0,2
8 1e-010 6.21ge-03 1. 52ge+00 13 16 13 0,0,8
8 1e-012 3.452e-03 1. 651e+OO 25 27 24 0,0,30

--------------------------------------------------------_- ------------------------------------------
A using predicted ini tial subinterval
B , using 4-equal initial subinterval
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Table 7.1b
(problem 1, de Boor Criterion,
I-interval increment, J.L = 102

)

---------------------------------------------------------------------------------------------------------
q TOL hp .h"".,.l .ll,...,a W;l w~,PI' h~1r.t h1.. t wP w i T------------------- --------------------------------------------------------------------------------------

A 2 le-Ol 1.377e-02 4.605e-02 2.303e-02 1 3 2.548e-03 1.l42e+00 8 14 9 0:0:2
le-02 7.746e-03 4.605e-02 4.605e-02 5 5 5 9.0l7e-04 1. 76ge+00 20 30 21 0: 0: 13
le-03 4.356e-03 4.605e-02 6.908e-02 10 15 15 4.376e-04 1.650e+00 56 66 37 0: 1: 31
le-04 2.44ge-03 4.60Se-02 9.2l0e-02 18 37 37 1. S2ge-04 1. S03e+00 124 134 61 0: 9: 21

le-Ol 1. S16e-02 4.60Se-02 2.303e-02 1 3 9.988e-03 1.722e+00 4 10 0: 0: 1
le-02 9.S64e-03 4.60Se-02 4.60Se-02 4 4 4.735e-03 1.607e+00 6 14 0: 0: 2
le-03 6.034e-03 4.60Se-02 6.908e-02 7 11 11 2.090e-03 3.7S2e-Ol lS 2S 0: 0: 3
le-04 3.807e-03 4.60Se-02 9.2l0e-02 12 24 24 1.274e-03 1. S40e+00 27 49 0: 0: 6

le-Ol 2.493e-02 4.60Se-02 2.303e-02 1 1 1.3S0e-02 1.792e+00 9 0:0:1
le-02 1. 698e-02 4.60Se-02 4.60Se-02 2 2 2 1.092e-02 4.440e-Ol 10 0:0:1
le-03 1.lS7e-02 4.60Se-02 6.908e-02 3 S S S.96ge-03 1.79ge+00 7 13 0:0:1
le-04 7.883e-03 4.60Se-02 9.2l0e-02 11 11 2.l95e-03 3.807e-Ol 16 2S 0:0:4

le-Ol 2. Sl1e-02 4.60Se-02 2.303e-02 1.388e-02 1. 66Se+00 9 0:0:1
S le-02 1. 807e-02 4.60Se-02 4.605e-02 2 1.476e-02 1. 763e+00 9 0: 0: 1
S le-03 1.30le-02 4.60Se-02 6.908e-02 S 6.902e-03 1.756e+00 7 13 4 0: 0: 1
S le-04 9.36le-03 4.60Se-02 9.2l0e-02 4 9 6.076e-03 1.76Se+00 12 20 3 0:0:3
S le-OS 6.737e-03 4.60Se-02 1.1Sle-Ol 6 17 17 4.202e-03 1.438e+00 12 3S 2 0:0:5

le-08 2.S11e-03 4.605e-02 1.842e-Ol 18 73 73 4.547e-04 1.60ge+00 118 147 2 0: 1: 11

8 le-Ol 4.967e-02 4.60Se-02 2.303e-02 0 1 6. S8ge-02 1. 272e+00 0 6 0:0: 1
8 le-02 3.946e-02 4.60Se-02 4.60Se-02 1 1 6. S8ge-02 1.272e+OO 0 6 0: 0: 1
8 le-03 3.l34e-02 4.60Se-02 6.908e-02 2 2 2.877e-02 1.688e+OO 2 S 0: 0: 1
8 le-04 2.490e-02 4.60Se-02 9.2l0e-02 3 3 2.S47e-02 1.680e+OO 3 4 0:0:1
8 le-OS 1.977e-02 4.60Se-02 1.1Sle-Ol S S 2.l64e-02 1. 6l0e+00 5 12 3 0: 0: 2
8 le-08 9.911e-03 4.60Se-02 1.842e-Ol 18 18 9.911e-03 1. oose-ci 17 36 0:0:4
8 le-10 6.2S3e-03 4.60Se-02 2.303e-Ol 7 36 36 6.253e-03 4.9l6e-02 35 72 0: 0: 13
8 le-12 3.946e-03 4.605e-02 2.763e-Ol 11 70 70 7. nOe-04 1. 416e+00 116 141 0: 1: 42

--------------------------------------------------------------------------------------------------------
B 2 le-Ol 3.276e-03 1. 306e+00 13 10 0: 0: 2

2 le-02 6.9lge-04 1.l2ge+00 21 30 27 0: 0: 14
2 le-03 1.8l8e-04 1.3S8e+00 60 73 70 0: 2: 15

le-04 1.lS2e-04 1. S02e+00 US 563 lSl 0:17:30

le-Ol 7.8l3e-03 1. 828e+00 S 10 7 0:0:1
le-02 4.897e-03 1. 82Be+00 7 13 10 0:0:2
le-03 2.S76e-03 1. 49Se+00 14 22 19 0: 0: 8
le-04 1. ?lSe-03 6.322e-Ol 30 41 38 0:0:39

le-Ol 1.40le-02 1. 7Bge+00 9 0: 0: 1
le-02 1.144e-02 4.l47e-Ol 10 7 0: 0: 1
le-03 6.678e-03 B.337e-Ol 6 13 10 0: 0: 3
le-04 4.393e-03 1.142e+00 10 17 14 O:O:S

le-Ol 1. 385e-02 1. 705e+00 6 0:0:1le-02 1.385e-02 1. 705e+00 6 0:0:1
S le-03 1. 38Se-02 1.705e+00 6 0:0:1
5 le-04 6.482e-03 9.64Se-Ol B as 12 0: 0: 4
5 le-OS S.S47e-03 1.176e+00 10 17 14 0:0:6
5 le-08 1.27Be-03 8.340e-Ol 4S S6 S3 0: 2: 6

le-Ol 6.974e-02 1.23Se+00 0:0:1
B le-02 2.62ge-02 1. S77e+OO 0:0: 1
B le-03 2.62ge-02 1. S77e+OO 2 S 0:0:1
8 le-04 2.62ge-02 1. S77e+00 3 S 0:0:1
8 re-os 1.6Sge-02 1. 23Se+00 S 11 8 0: 0: 3
8 le-08 1. 028e-02 S.08Se-Ol 10 19 16 0: 0: 12
8 le-10 S.766e-03 1.936e-Ol 18 31 28 0: 0 :40
8 le-12 2.620e-03 8.203e-02 3S S7 S4 0:3:20

---------------------------------- -----------------------------------------------------------------------A : using predicted initial subinterval
B : using 4-equal initial subinterval

The last four columns of Table 7.1c present some numerical results using the

modified algorithm, in which 'mod' stands for modified algorithm, '4-eq' and

'without mod' indicate that 4-equal initial subintervals and predicted subinterval

without modification are used respectively. Comparing the modified algorithm and
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without modification, it is clear that the modified algorithm gives better estimate WO

indicated by impressive reduction in both the actual number of subintervals wO in the

layer region and actual number of subintervals. It is observed that in some cases the

modified algorithm still produces larger WC than those using 4-equally spaced initial

mesh. However, if we take a look at the computation time, using 4-equally spaced

initial mesh needs longer computation time. It is also notable that since in these cases

the estimate WO is close to the associated WC in the column under the heading 4-eq

indicating that the estimate wO is reasonable, we may suspect that the large w might

be caused by putting too many points in the smooth region.

Table 7.10

4-eq without mod mod
------------------------ ----------------------------------------------------------
q TOL WI wzl Til' Til' w !I'.tme 1 Til' Til' w !I'.tme 1 Til' Til' w !I'.tme I
--------------------------------------------------------------------------------

RH I

5 1e-05 6 17 1 - 9 12 0:0:2 17 27 35 0:0:5 13 17 27 0:0:2 15 1e-08 18 73 1 - 32 35 0:0:39 73 133 147 0:1:11 36 57 73 0:0:191
8 1e-05 2 5 1 - 5 8 0:0:1 5 4 11 0:0:1 4 4 10 0:0:1 18 1e-08 4 18 1 - 8 10 0:0:2 18 17 36 0:0:4 9 12 20 0:0:2 18 1e-10 7 36 1 - 13 16 0:0:8 36 35 72 0:0:13 14 16 29 0:0:5 18 1e-12 11 70 1 - 25 27 0:0:30 70 100 141 0:1:39 23 27 47 0:0:231

de Boor I

5 1e-05 6 17 1 - 10 17 0:0:11 17 12 35 0:0:5 13 19 28 0:0:281
5 1e-08 18 73 1 - 45 56 0:2:6 73 118 147 0:1:11 36 48 74 0:1:081
8 1e-05 2 5 1 - 5 11 0:0:3 5 5 12 0:0:2 4 5 11 0:0:2 18 1e-08 4 18 1 - 10 19 0:0:12 18 17 36 0:0:4 9 11 20 0:0:8 18 1e-10 7 36 1 - 18 31 0:0:40 36 35 72 0:0:23 14 18 30 0:0:191
8 1e-12 11 70 1 - 35 57 0:3:20 70 116 141 0:1:42 23 19 53 0:1:121---------------------- ----------------------------------------------------------

As the last illustration for problem 1, Table 7.2 contains results of numerical

experiments using the estimate for number of subintervals needed w * (the details is in

chapter 6) to be used in the next stage of the collocation process. Here, the problem

parameter is taken to be 105 and Chebyshev zeros are chosen as collocation points.

For comparison purposes, the results for single point increment algorithm are also

presented. As before, here we also compare the experimental results of using

predicted initial mesh points and 4-equal subintervals initial mesh points.

From Table 7.2, in comparing part A and part B, by looking carefully at columns

under heading i, it is clear that using predicted initial subintervals could improve the
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RH algorithm performance even though for some i in A it is occasionally worse than

those in B. Comparing the results using multi and single subinterval increment, it is

observed that using multi points performs quite better than using single subinterval

algorithm indicated by smaller WC and i. Perhaps, the most notable observation

from this table is the fact that using single point increment may lead to putting too

many points in some regions before the collocation solution dramatically improves,

these are shown in most cases of using single subinterval increment. This

phenomenon can be understood since in single interval increment algorithms, there is

no direct relationship between obtained collocation solution and the desired tolerance

TOL, for which in any stage of collocation process the algorithm just tries to improve

the accuracy of collocation solution by adding one more subinterval in the next

iteration. From these results it is clear that using multi points algorithm is not just

giving better performance in term of number of iteration needed but also providing a

more reliable algorithm.

Table 7.2
(problem 1, RH Criterion, p. = 105

)

multi-point. I-point increment------------------------- ---------------------------------------------------------
q TaL hp w~ w' tI' I ll~lr.t tI' 1 hL,b·.t tI' 12-------------------------------- ----------------------------- ------------------------

A 3 1e-02 9.564e-06 12 4 12 7.65ge-07 49 10 3.764e-07 126 117
3 1e-03 6.034e-06 19 11 19 4.300e-07 88 9 3.764e-07 126 103
3 1e-04 3.807e-06 30 24 30 1.303e-07 190 14 2.736e-07 144 98

4 1e-02 1.698e-05 6 2 6 2.34ge-06 19 11 9.737e-07 84 101
4 1e-03 1.157e-05 9 5 9 7.816e-07 58 10 9.737e-07 84 95
4 1e-04 7.883e-06 14 11 14 9.077e-07 50 10 9.737e-07 84 85
5 1e-02 1.807e-05 6 2 6 5.220e-06 10 11 1.567e-06 62 84
5 1e-03 1.301e-05 8 5 8 2.026e-06 25 10 1.568e-06 62 80
5 1e-04 9.361e-06 12 9 12 1.22ge-06 32 17 1.570e-06 62 72

8 1e-02 3.946e-05 2 1 2 1.455e-05 4 14 1.303e-05 8 66
8 1e-03 3.134e-05 3 2 3 9.301e-06 7 12 1.31ge-05 8 64
8 1e-04 2.490e-05 4 3 4 7.281e-06 9 19 1.32ge-05 8 62------------------------------------- ------------------------------------------------

B 3 1e-02 9.05ge-07 42 22 3.764e-07 126 137
3 1e-03 2.581e-07 147 19 3.764e-07 126 137
3 1e-04 1.613e-07 234 19 2.426e-07 158 166
4 1e-02 2.332e-06 19 25 9.737e-07 84 109
4 1e-03 8.587e-07 53 24 9.737e-07 84 109
4 1e-04 1.00ge-06 47 16 9.737e-07 84 109
5 1e-02 5.235e-06 10 33 1.566e-06 62 92
5 1e-03 2.007e-06 26 23 1.566e-06 62 92
5 1e-04 1.977e-06 25 16 1.566e-06 62 92
8 1e-02 2.281e-05 3 21 1.357e-05 8 668 1e-03 1.397e-05 6 22 1.357e-05 8 668 1e-04 1.018e-05 7 16 1.357e-05 8 66--------------------------- ----------- ------------------ -------------------------

A using predicted initial subintervals
B : using 4-equal initial subintervals
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As a further illustration, an example is given to show how well the estimates w~

and w~ perform in case the problem has two layers one at each end. The problem is

also used to observe the effect of using Gauss and Chebyshev points as the

collocation points.

The problem is

Problem 2:

The boundary conditions are

x)(O) = 0
and

x)(l) = 0

This 'real' problem has been considered in chapter 4. Here we shall carry out

some numerical experiments by setting the problem parameter to be large.

Table 7.3a-7.3b and Table 7.4 present results of numerical experiment with

problem parameter Jl = 106 and Jl = 1010respectively. The results in the tables

indicate that using estimates w~ and w: give satisfactory results, even though in

some case they occasionally overestimate the WC slightly, for example in the first part

of Table 7.3a for q = 8 and TOL = 10-4 and TOL = 10-5. Furthermore the results

show that the width of the first subinterval and the last subinterval in the final

iteration are reasonably close to hp, this means the estimate hp is quite satisfactory.

Comparing results in Table 7.3a and Table 7.3b, we observe that the RH

algorithm with predicted number of break points performs better than those using

single subinterval increment. Looking at the computation time and in particular the

number of iterations, in most cases using multi points algorithm needs shorter

computation time and smaller numbers of iteration.
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Table 7.3a
(problem 2 , single subinterval increment, p= ut)

- ... --- ... ------------------------------- ..------------------------- ..._---------------------------------------------
q TOL bp w; w· w~ w; h~lr.t b1, .. e E w~ w; '" 1. Tz
.........................................................................................................................................................................................................................................................................................................................................

I. Criterion • RH (Gauss Points)
4G le-02 1.698e-03 4 2 4 4 8.118e-04 8.118e-04 9.532e-03 4 4 27 16 0:0:15
4G le-03 1.157e-03 5 5 5 5 5.108e-04 5.108e-04 9.384e-04 7 7 38 24 0:0:37
4G le-04 7.883e-04 8 11 11 11 3.143e-04 3.143e-04 9.835e-05 13 13 56 24 0:1:25
4G le-05 5.371e-04 12 21 21 21 1.950e-04 1.950e-04 8.934e-06 23 23 84 22 0:3:5

5G le-02 1.807e-03 3 2 3 3 1.275e-03 1.275e-03 4.321e-03 3 3 19 11 0:0:7
5G le-03 1.301e-03 5 5 5 5 9.411e-04 9.411e-04 6.548e-04 4 4 23 9 0:0:9
5G le-04 9.361e-04 7 9 9 9 6.103e-04 6.103e-04 6.430e-05 8 8 33 7 0:0:15
5G le-OS 6.737e-04 10 17 17 17 3.49ge-04 3.49ge-04 2.277e-06 15 15 54 4 0:0:22

8G le-02 3.946e-03 1 1 1 1 3.672e-03 3.690e-03 6.571e-04 1 1 13 11 0:0:5
8G 1e-03 3.134e-03 2 2 2 2 3.457e-03 3.483e-03 4.203e-04 1 1 13 8 0:0:4
8G le-04 2.490e-03 2 3 3 3 2.580e-03 2.632e-03 5.343e-05 2 2 14 6 0:0:4
8G le-05 1.977e-03 3 5 5 5 1.606e-03 1.606e-03 2.027e-06 4 4 19 5 0:0:6

II. Criterion • de Boor (Gauss Points)
4G le-02 1.698e-03 4 2 4 4 8.703e-04 8.703e-04 8.096e-03 5 5 47 36 0:1:6
4G le-03 1.157e-03 5 5 5 5 5.465e-04 5.465e-04 9.207e-04 8 8 67 53 0:2:52
4G le-04 7.883e-04 8 11 11 11 2.305e-04 2.258e-04 7.531e-05 16 15 120 88 0:13:46
4G le-OS 5.371e-04 12 21 21 21 1.724e-04 1.525e-04 9.103e-06 29 27 195 133 0:55:20

5G 1e-02 1.807e-03 3 2 3 3 1.627e-03 1.627e-03 8.667e-03 3 3 33 25 0:0:32
5G 1e-03 1.301e-03 5 5 5 5 1.027e-03 1.027e-03 7.334e-04 5 5 47 33 0:1:16
5G le-04 9.361e-04 7 9 9 9 6.916e-04 6.916e-04 8.030e-05 8 8 73 47 0:4:0
5G 1e-05 6.737e-04 10 17 17 17 3.54ge-04 3.984e-04 5.793e-06 14 15 107 57 0:11:6
8G le-02 3.946e-03 1 1 1 4.853e-03 4.853e-03 4.77ge-03 1 1 20 18 0:0:14
8G le-03 3.134e-03 2 2 2 2 3.666e-03 3.666e-03 6.487e-04 1 1 24 19 0:0:21
8G le-04 2.490e-03 2 3 3 3 2.701e-03 2.701e-03 6.453e-05 2 2 30 22 0:0:36
8G le-OS 1.977e-03 3 5 5 5 2.071e-03 2.071e-03 7.941e-06 4 4 37 23 0:0:58

III.Criterion. RH (Chebyshev points)
4C le-02 1.698e-03 4 2 4 4 7.152e-04 7.152e-04 9.576e-03 5 5 28 17 0:0:17
4C 1e-03 1.157e-03 5 5 5 5 4.234e-04 4.234e-04 8.695e-04 9 9 42 28 0:0:50
4C 1e-04 7.883e-04 8 11 11 11 2.530e-04 2.530e-04 9.34ge-05 17 17 65 33 0:2:18
4C 1e-05 5.371e-04 12 21 21 21 1.481e-04 1.481e-04 9.498e-06 30 30 105 43 0:7:51
5C le-02 1.807e-03 3 2 3 3 1.327e-03 1.327e-03 6.554e-03 3 3 18 10 0:0:6
5C 1e-03 1.301e-03 5 5 5 5 8.951e-04 8.951e-04 7.668e-04 4 4 24 10 0:0:11
5C le-04 9.361e-04 7 9 9 9 6.273e-04 6.273e-04 8.587e-05 7 7 32 6 0:0:12
5C 1e-05 6.737e-04 10 17 17 17 3.755e-04 3.755e-04 9.254e-06 14 14 53 3 0:0:16
8C 1e-02 3.946e-03 1 1 1 1 3.250e-03 3.333e-03 4.101e-04 1 1 12 10 0:0:4
8C le-03 3.134e-03 2 2 2 2 2.777e-03 2.785e-03 1.250e-04 2 2 13 8 0:0:4
8C le-04 2.490e-03 2 3 3 3 2.176e-03 2.183e-03 5.378e-05 2 2 15 7 0:0:5
8C le-OS 1.977e-03 3 5 5 5 1.61ge-03 1.61ge-03 3.388e-06 4 4 19 5 0:0:6

IV.Criterion. de Boor (Chebyshev)
4C 1e-02 1.698e-03 4 2 4 4 7.426e-04 7.426e-04 8.BOBe-03 6 6 53 42 0:1:31
4C le-03 1.157e-03 5 5 5 5 3.B95e-04 3.B98e-04 6.9B6e-04 10 10 B1 67 0:4:49
4C le-04 7.8B3e-04 B 11 11 11 1.772e-04 2.012e-04 6.40ge-05 20 1B 147 115 0:24:50
4C le-OS 5.371e-04 12 21 21 21 9.47Be-05 9.605e-05 6.954e-06 42 40 272 210 2:29:16
5C 1e-02 1.B07e-03 3 2 3 3 1.4B5e-03 1.485e-03 8.106e-03 3 37 29 0:0:43
5C le-03 1.301e-03 5 5 5 5 9.715e-04 9.715e-04 8.271e-04 5 5 55 41 0:1:59
5C le-04 9.361e-04 7 9 9 9 6.521e-04 6.521e-04 9.037e-05 8 8 71 45 0:3:43
5C le-OS 6.737e-04 10 17 17 17 3.825e-04 7.520e-04 9.387e-06 13 12 102 52 0:9:13
8C 1e-02 3.946e-03 1 1 1 1 4.287e-03 4.287e-03 3.071e-03 1 1 21 19 0:0:158C 1e-03 3.134e-03 2 2 2 2 3.645e-03 3.645e-03 9.567e-04 1 1 24 19 0:0:218C 1e-04 2.490e-03 2 3 3 3 2.38ge-03 2.38ge-03 3.893e-05 3 3 33 25 0:0:468C le-OS 1.977e-03 3 5 5 5 1.970e-03 1.970e-03 8.452e-06 4 4 40 26 0:1:12----------------------------------------------------------------------------------------------------------------
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Table 7.3b
(problem 2 , multiple subintervals, p = Id)

--------------------------------------------------------------------------------------------------------------
q TaL bp w~ w· w· w· ht'1r.t hI••t B w' w' '" 1. T, L R I. R
--------------------------------------------------------------------------------------------------------------

RH, Gauss Points
4G 1e-02 1.698e-03 4 2 4 4 8.492e-04 8.492e-04 7.230e-03 6 6 36 5 0:0:10
4G 1e-03 1.157e-03 5 5 5 5 5.486e-04 5.486e-04 9.851e-04 7 8 38 8 0:0:14
4G 1e-04 7.883e-04 8 11 11 11 1.601e-04 1.601e-04 7.388e-06 27 28 111 6 0:1:16
4G 1e-05 5.371e-04 12 21 21 21 2.056e-04 2.056e-04 8.161e-06 23 23 84 9 0:0:44

5G 1e-02 1.807e-03 3 2 3 3 1.542e-03 1.542e-03 6.732e-03 3 3 20 6 0:0:5
5G 1e-03 1.301e-03 5 5 5 5 1.054e-03 1.054e-03 8.568e-04 5 5 26 5 0:0:8
5G 1e-04 9.361e-04 7 9 9 9 6.565e-04 6.565e-04 5.975e-05 7 7 37 9 0:0:13
5G 1e-05 6.737e-04 10 17 17 17 4.510e-04 4.510e-04 7.973e-06 12 12 47 7 0:0:20

8G 1e-02 3.946e-03 1 1 1 1 2.692e-03 3.080e-03 1.275e-03 2 2 16 5 0:0:4
8G 1e-03 3.134e-03 2 2 2 2 3.134e-03 3.134e-03 2.017e-04 2 2 18 4 0:0:4
8G 1e-04 2.490e-03 2 3 3 3 2.681e-03 2.681e-03 6.946e-05 2 2 17 7 0:0:6
8G 1e-05 1.977e-03 3 5 5 5 1.925e-03 1.925e-03 4.807e-06 3 3 18 5 0:0:5

RH, Chebyshav points
4C 1e-02 1.698e-03 4 2 4 4 4.246e-04 4.246e-04 5.975e-03 8 8 40 7 0:0:12
4C 1e-03 1.157e-03 5 5 5 5 2.470e-04 2.470e-04 2.867e-04 15 15 69 11 0:0:38
4C 1e-04 7.883e-04 8 11 11 11 1.545e-04 1.545e-04 1.757e-05 28 28 111 5 0:1:14
4C 1e-05 5.371e-04 12 21 21 21 9.702e-05 9.702e-05 3.032e-06 48 48 164 10 0:2:1
5C 1e-02 1.807e-03 3 2 3 3 1.472e-03 1.472e-03 8.521e-03 3 2 21 6 0:0:5
5C 1e-03 1.301e-03 5 5 5 5 4.953e-04 4.953e-04 9.453e-05 8 8 41 4 0:0:9
5C 1e-04 9.361e-04 7 9 9 9 6.474e-04 6.474e-04 8.676e-05 7 7 36 9 0:0:12
5C 1e-05 6.737e-04 10 17 17 17 2.17ge-04 2.17ge-04 1.200e-06 24 24 86 5 0:0:18
8C 1e-02 3.946e-03 1 1 1 1 2.713e-03 3.885e-03 5.190e-04 2 1 18 4 0:0:4
8C 1e-03 3.134e-03 2 2 2 2 3.618e-03 3.596e-03 9.065e-04 1 1 14 4 0:0:3
8C 1e-04 2.490e-03 2 3 3 3 1.394e-03 1.396e-03 2.525e-06 4 4 21 9 0:0:5
8C 1e-05 1.977e-03 3 5 5 5 1.020e-03 1.020e-03 4.187e-07 6 6 28 8 0:0:6--------------------------------------------------------------------------------------------------------------

When the problem 2 is set up having very severe layer (;.i = 1010) , the results

presented in the last two rows of Table 7.4 demonstrate a more dramatic difference,

for example collocating at 4 Chebyshev points to obtain an accuracy of order 10-2

using single point increment algorithm needs 329 iterations (computation time 7 hrs,

11 mins and 19 sees), while using multi points algorithm just needs 9 iterations

(computation time 6 mins and 3 sees. Detailed inspection of width of the first and

last subintervals produced by both algorithms we can see that they are reasonably

close to each other. However, by looking at the values of wZ and w~, the single

point increment algorithm clearly places more points at the layer regions than those

using multi points. It is clear from Table 7.4 that it is not sensible to use single

subinterval increment algorithm in 'real' computation.

Looking again at Table 7.3a it is observed that de Boor algorithm using

Chebyshev points gives rather poorer results compared to those using Gauss points.

Perhaps, these results can be understood by noting that in the de Boor algorithm the



Chapter 7 Locating the Layer Regions and Estimating Their Initial Mesh Points

process involves the collocation solution, where a more accurate collocation solution

might result in better mesh point distribution. Since using Gauss points could

produce better collocation solutions, one may expect that this may produce a better

mesh point distribution.

Comparing the results for RH criterion using Gauss and Chebyshev points by

looking carefully at the number of iteration i, number of subintervals wand

computation time T in Table 7.3a-7.3b and Table 7.4 clearly shows that Chebyshev

points give satisfactory results, and it is very competitive to those using Gauss points.

Table 7.4
(problem parameter p = 10JO)

-------------------------------------------------------------------------------------------
q 2'OL bp WO w; w;' w; btJr•t hl.. t Brr w' w' 1. 2'I L •-------------------------------------------------------------------------------------------
4G 1e-02 1.69Se-OS 6 2 6 6 1.646e-06 1.646e-06 9.0S7e-03 2S 27 9 0:9:32
4C 1e-02 1.69Se-OS 6 2 6 6 1.SS7e-06 1.SS7e-06 S.631e-03 2S 2S 9 0:6:3
SG 1e-02 1.S07e-OS 6 2 6 6 3.S13e-06 3.S13e-06 4.434e-03 14 14 12 0:6:3S
SC 1e-02 1.S07e-OS 6 2 6 6 3.202e-06 3.202e-06 1.100e-03 16 16 9 0:4:37
SG 1e-03 1.301e-OS S S S S 4.36Se-06 4.36Se-06 6.0S0e-04 12 12 9 0:S:40
SC 1e-03 1.301e-OS S S S S 2.20Se-06 2.20Se-06 S.321e-OS 23 24 11 0:6:17
SG 1e-02 3.946e-OS 2 2 2 2.796e-OS 2.792e-OS 9.03Se-03 3 3 lS 0:4:40
SC 1e-02 3.946e-OS 2 1 2 2 1.33Se-OS 1.340e-OS 3.47ge-04 S 6 11 0:2:36
SG 1e-03 3.134e-OS 3 2 3 3 2.093e-OS 2.094e-OS 9.602e-04 3 3 9 0:3:44
SC 1e-03 3.134e-OS 3 2 3 3 1.02Se-OS 1.02Se-OS 2.772e-OS 6 6 12 0:2:S1
SG 1e-04 2.490e-OS 4 3 4 4 7.S93e-06 7.S93e-06 1.610e-06 S S 10 0:4:47
SC 1e-04 2.490e-OS 4 3 4 4 7.S32e-06 7.S32e-06 7.96Se-06 S S 9 0:4:37
SG le-OS 1.977e-OS S S S S 1.111e-OS 1.111e-OS S.624e-06 6 6 S 0:7:4S
SC le-OS 1.977e-OS S S S S S.761e-06 S.761e-06 2.743e-07 11 11 9 0:S:4
SG le-OS 9.911e-06 11 lS lS lS 2.721e-06 2.721e-06 2.033e-10 29 29 6 0:24:11
SC le-OS 9.911e-06 11 lS lS lS 3.722e-06 3.722e-06 7.SS1e-10 21 21 7 0:23:17
lOG 1e-02 S.17Se-OS 2 0 2 2 2.167e-OS 2.167e-OS 2.317e-03 3 3 11 0:3: 11
10C 1e-02 S.17Se-OS 2 0 2 2 2.492e-OS 2.49ge-OS S.913e-04 3 3 13 0:2:3
lOG 1e-03 4.271e-OS 2 1 2 2 1.7S7e-OS 1.7SSe-OS 1.616e-OS 4 4 13 0:3:4S
10C 1e-03 4.271e-OS 2 1 2 2 1.S2ge-OS 1.S31e-OS 2.621e-OS 4 4 12 0:2:27
lOG 1e-04 3.S26e-OS 3 2 3 3 1.46ge-OS 1.46ge-OS 1.SSSe-06 S S 10 0:3:17
10C 1e-04 3.S26e-OS 3 2 3 3 1.S0Se-OS 1.S0Se-OS 1.190e-06 S S 11 0:2:47
lOG le-OS 2.910e-OS 3 3 3 3 1.112e-OS 1.112e-OS S.3S2e-OS 6 6 10 0:4:42
10C le-OS 2.910e-OS 3 3 3 3 1.113e-OS 1.113e-OS 1.116e-07 6 6 10 0:4:10
lOG le-OS 1.636e-OS 7 11 11 11 7.164e-06 7.164e-06 9.47ge-10 12 12 7 0:12:S0
10C le-OS 1.636e-OS 7 11 11 11 7.666e-06 7.666e-06 1.794e-10 12 12 7 0:2S:S
single incram.nt:
4G 1e-02 1.69Se-OS 6 2 6 6 S.721e-06 4.S1ge-06 9.3Sge-03 43 41 372 S:3S:42
4C 1e-02 1.69Se-OS 6 2 6 6 9.22Se-06 S.472e-06 S.972e-03 41 41 329 7:11:19-------------------------------------------------------------------------------------------

To illustrate the behaviour of the above aspects when the matrix ACt) has

eigenvalues which vary in the specified interval, we consider the following example
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Problem 3:

The boundary conditions are determined by

xI(-l) = 0

XI(1) = 0

and the eigenvalues are

AI(t) = -~,u(2_t2)

A2(t) = ~,u(2_t2)

u; IJlI» 1, is the problem parameter. This problem has boundary layers at both

end points.

The first eigenvalue AI(t) has negative values in whole interval [-1,1], while

the second one has positive values. The eigenvalues at both ends are Al = -..Jji and

.12 =..Jji which will be used for predicting the width of layer regions and determining

the initial mesh in the layer regions. Results of numerical experiments with problem

parameter Jl = 104 are presented in Table 7.5 on the following page.

For this problem, as in the previous problems it is observed that the estimates wZ
and w~ are reasonably close to wi and w~, and the break points are well

distributed in the layer regions indicated by the fact that the width of the first and the

last subinterval are very close to hp. It is again shown that in terms of number of

iterations and time needed in most cases the de Boor algorithm using Gauss points

produces better results than using Chebyshev points, on the other hand the RH

algorithm using Chebyshev points give reasonable results.

Comparing the RH algorithm and de Boor algorithm it is clear that the RH

algorithm performs significantly better than the de Boor algorithm.
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Table 7.5
(problem parameter Ii = 104

)

RH

q TaL 1.

30 1e-02 6.762e-03 5 I 6,062e-03 6.062e-03
se la-02 6.762e-03 5 I 5.4268-03 5.426e-03

30 1e-03 4.2678-03 11 111 3.4818-03 3.481e-03
se 1e-03 4.2678-03 11 111 3.148e-03 3.148e-03

30 1e-04 .2. 692e-03 24 241 1.648e-03 1.648e-03 20 20 74
ac le-04 .2.6928-03 24 241 1.574e-03 1.574e-03 21 21 75

30 le-OS 1.69ge-03 47 471 8.117e-04 8.1178-04 45 45 143
se le-OS 1.69ge-03 47 4718.012e-04 8.012e-04 45 4S 143

40 1e-02 1. 2018-02 2
4C le-02 1.2018-02 .2

1.233e-02 1.232e-02
1.0598-02 1.05ge-02

40 1e-03 8.182e-03
4C le-03 e .182e-03

7.54ge-03 7. 54ge-03
7.312a-03 7. 312e-03

40 1e-04 5.5748-03 11 1114.437e-03 4.437e-03
4C 1e-04 5.574e-03 11 III 4.2998-03 4.29ge-03

40 le-OS 3.798e-03 21 21[ 2.238e-03 2.2388-03 19 18 65
4C le-OS 3. 798e-03 21 21[ 2. 202e-03 2. 202e-03 19 19 65

50 le-02 1.278e-02
se le-02 1.278e-02

2.17Sa-02 2.136e-02
2.103a-02 2.07ge-02

50 le-03 9.198e-03 5
5C le-03 9.198e-03 5

1.08ge-02 1. 08ge-02 3
1.084e-02 1.084e-02 3

50 le-04 6.6198-03
se 1e-04 6. 61ge-03

6.350e-03 6.350e-03
6.192e-03 6.192e-03

50 le-OS 4. 764e-03 17 17[ 3. 551e-03 3. 551e-03 14 14 52
SC le-OS 4.764e-03 17 17[ 3.558e-03 3.S58e-03 14 14 52

80 1e-02 2. 790e-02
8C 1e-02 2. 790e-02

1 [ 4. 724e-02 4. 822e-02
1 [ 5.8669-02 5.9758-02

2 [ 4.846e-02 4.915e-02
2 1 4.386e-02 4.434e-02

80 le-03 2.216e-02
8C le-03 2. 216e-02

80 le-04 1.760e-02 3 I 2. 344e-02 2. 344e-02
8C le-04 1.760e-02 3 I 2. 394e-02 2. 394e-02

80 le-OS 1.398a-02 5 1.654e-02 1.654&-02
8C le-OS 1.398e-02 5 1.688e-02 1.688a-02

de Boor

23 9 0:0:6 I 6.848e-03 6.868e-03 29 15 0:0:13
25 11 0:0:8 1 5.S48e-03 5.S51e-03 33 19 0:0:19

37 0:0:9 1 2.700e-03 2.661e-03 10 11 57 25 0:1:9
40 0:0:16[ 2.160e-03 1.960e-03 12 ro 65 33 0:1:46

0:0:19I1.02ge-03 1.170e-03 23 21 105 34 0:5:2 I
0:0:2718.847e-04 1.012e-03 28 26 127 56 0:10:381

0:1:5 5.903e-04 6.138e-04 41 47 196 56 0:28:101
0:1:6 5.4368-04 9.253e-04 63 57 259 119 1:23:311

15 10 0:0:3 1.427e-02 1.427e-02
16 11 0:0:4 1.283e-02 1.2838-02

21 16 0:0:8
23 18 0:0:11

22 0: 0: 6 8. 745e-03 8.7459-03
22 0:0:6 7.71Se-03 7.115e-03

31 17 0:0:20
36 22 0:0:31

35
35

8 47 15 0:0:42
11 57 25 0:1:27

0:0:6 5.4738-03 4.47ge-03
0:0:6 3.915e-03 3.021e-03

0:0:181 2.480e-03 2.125e-03 16 16 80 18 0:2:15
0:0:18[ 1.711e-03 1.9909-03 19 19 95 33 0:4:59

11
11

0:0:2 2.362e-02 2.362e-02
0: 0: 2 2. 213e-02 2. 213e-02

16 11 0:0:5
17 12 0:0: 6

18
18

0:0:3 1.692e-02 1.6929-02 2
0:0:3 1.536e-02 1.536e-02 2

21 0:0:6
23 0:0:9

2.
2.

0:0:5 1.013e-02 1.015e-02
0: 0: 5 1. 022e-02 1.023e-02

33 0:0: 14
33 0: 0: 14

0:0:101 6.181a-03 6.181e-03 11 11 53
0:0:101 6.3488-03 6.348e-03 11 11 53

0:0 :15
0:0:15

0:0:1 6.682e-02 6.682e-02
0:0:1 5.786e-02 5.786e-02

10
11

0,0,2
0:0 :3

0:0:1 5.302e-02 5.302e-02 0
0:0:1 5.116e-02 5.116e-02 0

12
12

0:0 :3
0:0:3

12
12

0:0:2 3.876e-02 3.87'7e-02
0:0:2 3.555e-02 3.554e-02

15
16

0:0: 5
0:0 :6

17
17

0:0:3 2.864e-02 2.857e-02
0: 0: 3 2. 50ge-02 2.5138-02

20
21

0:0:7
0:0 :9

7.5.2 Mesh Subdivision Algorithm

In order to make numerical comparisons clearer and more straightforward, the

examples in the preceding section have been used in carrying out further numerical

experiments comparing subdivision algorithms. For convenience, the notations are

also retained and we present similar tables to those in § 7.5.1, though in some tables

we simplify the tables by reducing some columns and rows.

Unlike the mesh placement algorithms, in implementing the mesh subdivision

algorithms the number of subintervals will always increase. In the other words, once

we start the computation process with w initial subintervals then in the next iteration

the number subintervals increases and we will never get a smaller number of

subintervals than the current one, even though the actual number of subintervals
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needed is less than w. This means that if the number of initial subintervals in the

layer region WO is too large compared to the actual requirement, we will never have

chance to reduce it, moreover this will force the algorithms to carry out unnecessary

computations.

Tables 7.6a - 7.6b - 7.6c and Table 7.7 corresponding to problem 1 present the

results of numerical experiments with problem parameter Jl = 102 and Jl = 105

respectively. In the experiments it is shown that similar observations to those from

tables 7.la - 7.lb - 7.lc and Table 7.2 are observed, in which the estimate WO is

satisfactory.

Table 7.6a
(problem 1, RH Criterion, I-interval increment, )J = 102)

-----------------------------------------------------------------------------------------------------------
q 'l'OL .hp WO W~ ~ .hu.ne .hlue w: W i T1

------------------- --------------------------------------- -------------------------------------------------
A 2 le-Ol 1.377e-02 3 1 3 3.444e-03 6.5l3e-Ol 7 17 12 0:0:3

2 le-02 7.746e-03 5 5 5 9.682e-04 3.908e-Ol 18 30 21 0:0:13
2 le-03 4.356e-03 10 15 15 5.445e-04 1.287e-01 46 66 37 0:1:32
2 le-04 2.44ge-03 lS 37 37 3.062e-04 5.156e-02 107 148 75 0:13 :4

5 le-03 1.301e-02 3 5 5 1.301e-02 3.S62e-01 4 13 4 0:0:2
5 le-04 9.361e-03 4 9 9 9.36le-03 2.l20e-Ol S 20 3 0:0:3
5 le-05 6.737e-03 6 17 17 3.36ge-03 1.10ge-Ol 17 36 3 0:0:8
5 le-OS 2.511e-03 lS 73 73 1.256e-03 2.487e-02 79 153 S 0:4:51

8 le-04 2.490e-02 1 3 3 2.490e-02 6.360e-Ol 2 8 3 0:0:1
8 le-05 1.977e-02 2 5 5 1.977e-02 3.770e-Ol 4 12 3 0:0:2
8 le-08 9.9lle-03 4 18 18 9.911e-03 1.00ge-Ol 17 36 1 0:0:4
8 le-10 6.253e-03 7 36 36 6.253e-03 4.9l6e-02 35 72 1 0:0:14
8 le-12 3.946e-03 11 70 70 1.973e-03 2.462e-02 71 142 3 0:2:34------------- ------------------------------ --------------------- ---------------
----------------- --------------------------------------- ------------------------------------------------

q 'l'OL hp WO WO ~ .hur•e hl ... e ~ W i T1 2---------------- -------------------------------- -------------- ------------------------------------------
B 2 le-Ol 3.906e-03 5.000e-Ol 8 16 13 0:0:3

2 le-02 9.766e-04 5.000e-Ol 18 29 26 0:0:13
2 le-03 4.883e-04 5.000e-Ol 46 58 55 0:1:16
2 le-04 2.44le-04 5.000e-Ol 107 119 116 0:8:31

5 le-03 7.8l2e-03 5.000e-Ol 5 12 9 0:0:2
5 le-04 7.8l2e-03 5.000e-Ol 6 13 10 0:0:3
5 1e-05 3.906e-03 5.000e-Ol 12 19 16 0:0:8
5 1e-08 9.766e-04 5.000e-Ol 41 47 44 0:1:22

8 1e-04 3.125e-02 5.000e-Ol 2 8 5 0:0:1
8 1e-05 1.562e-02 5.000e-Ol 3 9 6 0:0:2
8 1e-08 7.8l2e-03 5.000e-Ol 10 16 13 0:0:8
8 le-10 3.906e-03 5.000e-Ol 18 23 20 0:0:19
8 le-12 1.953e-03 5.000e-Ol 31 37 34 0:1:5-- - - -- -- - -- -- -- -- -------------------------------------- ---------- ----------------------- ----------------
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Table 7.6a and Table 7.6b present some results of numerical experiments using

the RH and the de Boor criterion functions respectively to the problem-I with

problem parameter Jl = 102• Comparing Table 7.6a and Table 7.6b, unlike in the

mesh placement algorithm where it is very clear that the RH algorithm is very

competitive, in the mesh subdivisions the superiority of the RH algorithm over de

Boor algorithm is less impressive, even though in most cases the RH algorithm is still

a bit better than the de Boor algorithm. In addition, Table 7.6b also illustrates the

cases where an inefficiency in computation process could occur when using very

crude initial mesh points, as shown for q = 2 and TOL = 10-4 in which using 4-equal

initial mesh points the collocation process requires 400 subintervals (computation

time 4 hrs 14 mins and 36 sees) while it only needs 188 subintervals (computation

time 27 mins and 8 secs) if the estimate wO is employed in the initial mesh.

Table 7.6b
(problem I, de Boor Criterion, I-interval increment, '" = Id)

-------------- ------------ ---------------------------------------- ----------------------------------------------
q TaL bp wf W2 tI' b~1r.r: bla•t tI' ., 1. 2'

------------ ------------ ------------------------------------ --------------------- --------------------------
A 2 1e-01 1.377e-02 3 1 3 1.722e-03 6.513e-01 10 19 14 0:0:4

2 1e-02 7.746e-03 5 5 5 9.682e-04 3.908e-01 29 41 32 0:0:23
2 1e-03 4.356e-03 10 15 15 5.445e-04 1.287e-01 67 87 58 0:3:26
2 1e-04 2.44ge-03 18 37 37 3.062e-04 5.156e-02 147 188 115 0:27:8

5 1e-03 1.301e-02 3 5 5 1.301e-02 3.862e-01 4 13 4 0:0:2
5 1e-04 9.361e-03 4 9 9 9.361e-03 2.120e-01 8 20 3 0:0:3
5 1e-05 6.737e-03 6 17 17 3.36ge-03 1.10ge-01 17 37 4 0:0:11
5 1e-08 2.5Ue-03 18 73 73 1.256e-03 2.487e-02 79 154 9 0:1:31

8 1e-04 2.490e-02 1 3 3 2.490e-02 6.360e-01 2 8 3 0:0:1
8 1e-05 1.977e-02 2 5 5 1.977e-02 3.770e-01 4 12 3 0:0:2
8 1e-08 9.911e-03 4 18 18 9.9lle-03 1.00ge-01 17 36 1 0:0:4
8 1e-10 6.253e-03 7 36 36 6.253e-03 4.916e-02 35 72 1 0:0: 13
8 1e-12 3.946e-03 U 70 70 1.973e-03 2.462e-02 71 142 3 0:2:42

--------- -- - - -- - ------------- ----------------------------------- ------------------------ -----------------
B 2 1e-01

2 1e-02
2 1e-03
2 1e-04

1.953e-03 5.000e-01
9.766e-04 5.000e-01
4.883e-04 5.000e-01
1.221e-04 5.000e-01

11 19 16
25 37 34
86 98 95
388 400 397

0:0:5
0:0:24
0:5:2
4:14:36

5 1e-03
5 1e-04
5 1e-05
5 1e-08

7.812e-03 5.000e-01 5
7.812e-03 5.000e-01 7
3.906e-03 5.000e-01 13
9.766e-04 5.000e-01 56

13 10 0:0:3
15 12 0:0:4
22 19 0:0:11
67 64 0:3:22

8 1e-04
8 1e-05
8 1e-08
8 1e-10
8 1e-12

3.125e-02 5.000e-01 2
1.562e-02 5.000e-01 4
7.812e-03 5.000e-01 11
3.906e-03 2.500e-01 23
1.953e-03 1.250e-01 44

8 5 0:0:1
12 9 0:0:4
20 17 0:0:13
36 33 0:1:1
63 60 0:4:26---------------------------- ------------ ----------- ---------- -----------
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Looking more closely at Table 7.6a and Table 7.6b, it is notable that in cases w~

is greater than 2 w~ the numerical results in part-A indicate that the algorithm inserts

too many subintervals in the layer region compared to those in part-B, for example in

part-A of Table 7.6a for q = 5 and TOL = 10-8 the number of subintervals in the layer

region WC is 79 while it is 41 in part-B. This case also occurred in the mesh placement

algorithm when we attempted to obtain the higher accuracy solutions using for q = 5

and q = 8 (see Table 7.1a). Similar to the numerical results obtained using the mesh

placement algorithms, it seems that these are due to using too many points initially in

the boundary layer as well as in the smooth region. As can be seen these cases appear

when w~ is larger than double w~, hence give us a hint that this might be caused by

putting too many points in both the layer and smooth region at the initial stage of

computation process. In Table 7.6c we use the modification proposed in §7.5.1, i.e.

by taking either WO = 2 w~ if w~ > 2 w~ or WO = 2 w~ in case w~ > 2 w~. The last

three columns of Table 7.6c present some numerical results using the modified

algorithm, in which 'mod' stands for modified algorithm. The notation '4-eq' and

'predicted' indicate using 4-equally spaced initial mesh and predicted mesh (without

modification) respectively. It is clear that in both adaptive algorithms the

modification gives better estimate wO indicated by an impressive reduction in both

the final number of subintervals WO in the layer region and final total number of

subintervals wc.

Table 7.6c
4-eq predicted mod------------------ --------- --------------------------------------

q TOL WO w2 I wi' w" w I wi' w" w wi' w" W1

----------------- -------------------------------------------
RH

5 le-05 6 17 - 12 19 17 17 36 13 14 295 le-08 18 73 - 41 47 73 79 153 36 43 86
8 le-05 2 5 - 3 9 5 4 12 4 4 118 le-08 4 18 - 10 16 18 17 36 9 9 218 1e-10 7 36 - 18 23 36 35 72 14 14 338 1e-12 11 70 - 31 37 70 71 142 23 24 55

d. Boor
5 1e-05 6 17 - 13 22 17 17 37 13 14 325 le-08 18 73 - 56 67 73 79 154 36 43 91
8 le-05 2 5 - 4 12 5 4 12 4 4 118 1e-08 4 18 - 11 20 18 17 36 9 9 228 1e-10 7 36 - 23 36 36 35 72 14 14 348 1e-12 11 70 - 44 63 70 71 142 23 24 69--------------------- -------- ---------- --------------------------
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In the following Table 7.7 the RH algorithm is used. By comparing the numerical

results which are obtained by implementing single subinterval increment and multi

points algorithm, it is observed that using multi points algorithm is able to improve

the performance significantly. Another important observation from Table 7.7 is that

in some cases, even though the predictive initial mesh is employed, the adaptive

mesh selection algorithm with single subinterval increment may performs very

inefficiently, for example using three collocation points and TOL = 10.3, using single

subinterval increment needs more than five and half hours while using multi points

algorithm the computation time is just about 36 minutes.

The results in Table 7.7 highlight the cases for which the estimates «:s are

greater than w~.s, hence in practice the estimate w; will be the actual estimate wo.

By looking at columns under heading hp and hfirst , it can be seen that the associated

values of these columns are reasonably close, in addition the results in column WC

indicate that the estimate WO is also reasonable. Comparing the results in part A and

part B, by looking carefully at the number of iterations i and computation time T it

is clear that using predicted initial mesh points dramatically improve the RH

algorithm performance, especially when using multiple subdivision algorithms in

which the estimate w * is employed.

Table 7.7
(problem 1, RH Criterion, 1-interval increment, p = 105

)

multi-points single subinterval
-------- ------------ ------------------------------- ------------------------- ---------------

q TaL bp w~ w; tI' bnr•t if 1 T bt.tr.t if 1 T

-------- ----------- ------------------------------ ------------------- ------------------
A 3 1e-02 9.564e-06 12 4 12 7.970e-07 56 28 0:13:41 7.856e-07 56 29 0:30:52

3 1e-03 6.034e-06 19 11 19 5.028e-07 109 76 0:36:31 3.301e-07 105 85 5:31:23
3 1e-04 3.807e-06 30 24 30 2.380e-07 180 97 0:55:48 1.877e-07 184 62 1:39:21

4 1e-02 1.698e-05 6 2 6 I 2.123e-06 23 38 0:8:6 1.691e-06 22 22 0:13:28
4 1e-03 1.157e-05 9 5 9 I 1.286e-06 37 17 0:16:26 1.776e-06 34 39 0:28:25
4 1e-04 7.883e-06 14 11 14 I 5.631e-07 56 46 0:37:21 6.414e-07 61 34 0:35:59

5 1e-02 1.807e-05 6 2 6 4.518e-06 13 41 0:6:31 3.543e-06 12 19 0:16:29
5 1e-03 1.301e-05 8 5 8 3.252e-06 19 10 0:6:40 2.325e-06 17 18 0:16:11
5 1e-04 9.361e-06 12 9 12 2.340e-06 26 19 0:13 :47 1.786e-06 28 19 0:19:0

8 1e-02 3.946e-05 2 1 2 1.973e-05 4 55 0:3:48 1.356e-05 4 53 0:3:49
8 1e-03 3.134e-05 3 2 3 1.567e-05 6 48 0:3:55 1.017e-05 5 51 0:3:49
8 1e-04 2.490e-05 4 3 4 1.245e-05 8 36 0:3:46 1.085e-05 6 50 0:3:53----------- --------- --------- -------------------------- ------------ ---------------- ----------- -------------

...cont'd
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...cont'd Table 7.7
----------------------------------------------------------- -------------------------

q TaL l2., w~ w' 'II' h,.lr.t 'II' 1 2' h,.1r.t 'II' 1 2'2

----------------------------------------------------------- ---------_---------------
B 3 1e-02 - I 5.977e-07 54 166 0:40:57 9.537e-07 53 180 0:37:34

3 1e-03 - I 3.771e-07 98 197 1:13:16 4.768e-07 98 226 1:9:25
3 1e-04 - I 2.380e-07 175 253 2:51:17 2.384e-07 176 309 2:51:5

4 1e-02 - I 2.123e-06 22 113 0:15:23 1.907e-06 22 124 0:16:23
4 1e-03 - I 1.446e-06 35 126 0:22:52 9.537e-07 34 137 0:21:27
4 1e-04 - I 9.854e-07 56 136 0:33:15 9.537e-07 56 159 0:32:23

5 1e-02 - I 4.518e-06 12 87 0:9:33 3.815e-06 12 94 0:9:16
5 1e-03 - I 3.252e-06 17 89 0:11:14 3.815e-06 17 100 0:11:2
5 1e-04 - I 2.340e-06 26 90 0:14:15 1.907e-06 27 111 0:15:0
8 1e-02 - I 1.973e-05 3 58 0:4:2 1.526e-05 3 57 0:3:52
8 1e-03 - I 1.567e-05 5 58 0:4:24 1.526e-05 5 60 0:4:25
8 1e-04 - I 1.245e-05 6 58 0:4:48 7.62ge-06 6 61 0:4:38------------------------------------------------------------------_------------------------------- --------------

Table 7.8 corresponding to problem-2 with problem parameter J...l = 106 contains

some numerical results obtained by implementing the RH and de Boor algorithms.

Using the results shown in this table we shall focus on comparing the performance of

the RH algorithm and de Boor algorithm. On the other hand, Table 7.9a and

Table 7.9b are intended to illustrate the effect of using Gauss and Chebyshev

collocation points as well as comparing single and multi points increment when we

deal with the problems which have more severe layers indicated by a large problem

parameter, i.e. J...l = 1010.The results in the tables show that the estimates w~ and

w~ are reasonably close to the actual number of mesh points in the layer region

required in the computation.

From Table 7.8, the numerical results confirm the indication obtained in the

previous section that the RH adaptive mesh selection algorithm performs very well

and it is much better than the de Boor mesh selection algorithm. An observation can

be taken from this table is that in some cases the performance of the de Boor mesh

subdivision algorithm is very poor, for example for q = 8 and TOL = 10-8 the de Boor

algorithm required 61 iterations (number of subintervals w = 114, computation time

T = 20 mins and 13 secs) while the RH algorithm just needs 8 iterations (number of

subintervals w = 61, computation time T = 1 min and 17 secs). Looking at the

columns w~, w~ and w, a further important observation which can also be made is

that the de Boor algorithm may put too many points in the smooth region, even

though the distribution of mesh points in the layer regions are as good as those using
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the RH algorithm. As can be seen for case q = 8, TOL = 10-8 the number of

subintervals in the smooth region is 77 (= 114-19-18), while for the RH algorithm it

is 24 (= 61-19-18), even though the number of mesh points in the layer regions

produced by both algorithms is same. From this observation it seems that the de Boor

criterion function puts unnecessary break points in the smooth region before placing

required points in the layer region.

'l'able 7.8
(problem parameter u = ](1)

------------_ ..... ------------- ..._---------------------_ ..- .... _ .._-------------------------------------------
q TOL lip WO w· w· w· llt1rat hl••t Err w' w' w i T1 2 L R L R
..................................................................................................................................................................................................................................................................................................................
I. Criterion I RH (Gauss Points)

4G le-02 1. 69Se-03 4 2 4 4 S.492e-04 S.492e-04 7.230e-03 36 25 0: 0: 34
4G le-03 1.lS7e-03 5 5 2.S93e-04 2.S93e-04 9.14le-04 10 49 35 0: 1: 15
4G le-04 7.SS3e-04 S 11 11 11 1. 971e-04 1. 971e-04 9.960e-OS lS lS 6S 36 0:2:41
4G le-OS S.371e-04 12 21 21 21 1. 343e-04 1. 343e-04 7.SSge-06 35 34 l1S 56 0:11:34

SG le-02 1. S07e-03 9.037e-04 1. S07e-03 7.47Se-03 4 3 23 15 0:0:12
SG le-03 1. 30le-03 6.S04e-04 6.S04e-04 7.207e-04 6 6 32 lS 0:0:26
SG le-04 9.36le-04 7 4.6Sle-04 4.6Sle-04 6.743e-OS 11 10 45 19 0: 0: 55
SG le-OS 6.737e-04 10 17 17 17 3.36ge-04 3.36ge-04 9.l73e-06 20 20 65 15 0:1:3S

SG le-02 3.946e-03 1 3.4S4e-03 3.946e-03 3.0l0e-03 16 14 O:O:S
SG le-03 3.l34e-03 2 2 2 3.l34e-03 3.134e-03 2.0l7e-04 2 lS 13 0:0:10
SG le-04 2.490e-03 2 3 3 2.490e-03 2.490e-03 4.44Se-OS 3 3 19 11 0:0:11
SG le-OS 1.977e-03 3 5 5 5 1.977e-03 1.977e-03 S.473e-06 5 5 25 11 0:0: lS
SG le-OS 9.911e-04 6 lS lS lS 4.9SSe-04 9.9lle-04 6.S0le-09 19 lS 61 0: 1: 17
----------------------------------------------_ .._-----------------------------------------------------
II. Criterion I de Boor (Gauss Points)
4G le-02 1.69Se-03 4 2 4 4 S.492e-04 S.492e-04 7.230e-03 6 5 35 24 0: 0: 31
4G le-03 1.1S7e-03 5 5 5 5 2.S93e-04 S.7SSe-04 6.7Sge-04 11 9 71 57 0: 3: 27
4G le-04 7. SS3e-04 S 11 11 11 1.971e-04 1.971e-04 S.77ge-OS 19 19 94 62 0: 7: 3
4G le-OS S.371e-04 12 21 21 21 1.343e-04 1.343e-04 7. SSge-06 36 36 167 105 0:34:41

SG le-02 1. S07e-03 3 3 9.037e-04 9.037e-04 7.47Se-03 4 4 40 32 0:0:53
SG le-03 1.30le-03 5 5 5 6.S04e-04 6.S04e-04 7.207e-04 6 6 40 26 0:0:49
SG le-04 9.36le-04 7 9 9 4.6Sle-04 4.6Sle-04 6.743e-OS 11 10 6S 42 0:3:16
SG le-OS 6.737e-04 10 17 17 17 3.36ge-04 3.36ge-04 9.l73e-06 20 19 114 64 0:13:31

SG le-02 3.946e-03 1 1 3.4S4e-03 3.946e-03 4.l77e-04 21 19 0: 0: 16
SG 1e-03 3.l34e-03 2 2 2 3.l34e-03 3.l34e-03 2.0l7e-04 2 2 22 17 0:0: 17
SG le-04 2.490e-03 2 3 3 2.490e-03 2.490e-03 4.44Se-OS 3 3 24 16 0:0 :20
SG le-OS 1.977e-03 3 5 5 1.977e-03 1. 977e-03 S.473e-06 5 5 34 20 0:0:46
SG le-OS 9.911e-04 6 lS lS lS 4.9SSe-04 9.911e-04 6.S0le-09 19 lS 114 61 0:20:13
...... -_ ............................................................................................................................................................................................................................................. -------------------

By employing the estimate of the number subintervals needed in the collocation

process w * in the RH algorithm, some numerical results are presented in Table 7.9a,

while Table 7.9b shows the results using single subinterval increment.

Detailed inspection on columns under heading i and T in Table 7.9a and

Table 7.9b reveal two obvious indications that firstly using multi points algorithm is

significantly better than those using single point increment, secondly it is again

observed that single subinterval increment algorithm may perform very inefficiently

as we can see for q = 4 and TOL = 10-4.
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Results in Table 7.9a and Table 7.9b clearly indicate that in terms of computation

time T and number of iterations i, the Chebyshev collocation points may be able to

produce a better numerical results compared to those using Gauss collocation points.

Further observation on the columns under heading hp, hfirsb and h1ast , it is clear that

the hp is reasonably close to the width of the first and the last subinterval obtained

from actual computation, this enables us to come to conclusions that, firstly hp could

be used to obtain a good estimate for the number of initial mesh points in the layer

region; secondly the number of break points in both layer regions is reasonable.

Table 7.9a
(multiple subintervals, jl = 1010)

----------------------------------------------------------------------------------------------
q TOL hp w~ w· WO w; hUrat hleat Err w' w' j T2 I. L R----------------------------------------------------------------------------------------------4G le-02 1.698e-05 6 2 6 6 2.83le-06 2.83le-06 5.052e-03 19 19 40 0:9:39
4C le-02 1.698e-05 6 2 6 6 1.4l5e-06 1.4l5e-06 8.24le-04 36 36 46 0:18:14
4G le-03 1.157e-05 9 5 9 9 7.232e-07 7.232e-07 9.377e-05 52 52 70 0:27:43
4C le-03 1.157e-05 9 5 9 9 9.642e-07 9.642e-07 1.880e-04 51 51 65 0:23:8
4G le-04 7.883e-06 14 11 14 14 4.927e-07 4.927e-07 1. 096e-05 84 84 93 0:43:54
4C le-04 7.883e-06 14 11 14 14 4.927e-07 4.927e-07 1.586e-05 89 90 76 0:30:9
4G le-05 5.371e-06 21 21 21 21 3.357e-07 3.357e-07 4.662e-07 129 129 102 1:39:22
4C le-05 5.371e-06 21 21 21 21 2.984e-07 2.984e-07 2.827e-06 138 136 72 0:46:1
8G le-02 3.946e-05 2 1 2 2 1.973e-05 1.973e-05 1.58le-03 4 4 51 0:6:23
8C le-02 3.946e-05 2 1 2 2 1.973e-05 1.973e-05 6.055e-03 4 3 35 0:3:7
8G le-03 3.134e-05 3 2 3 3 1.567e-05 1.567e-05 8.20le-05 6 5 39 0:6:54
8C le-03 3.l34e-05 3 2 3 3 1.567e-05 1.567e-05 1.320e-04 6 5 31 0:3:40
8G le-04 2.490e-05 4 3 4 4 1.245e-05 1.245e-05 2.353e-05 7 6 26 0:7:138C le-04 2.490e-05 4 3 4 4 1.245e-05 1.245e-05 9.883e-05 7 6 15 0:3:13
8G le-05 1.977e-05 5 5 5 5 4.944e-06 4.944e-06 2.l9le-06 11 10 29 0:7:58C le-05 1.977e-05 5 5 5 5 4.944e-06 4.944e-06 6.707e-07 12 11 27 0:7:9
lOG le-02 5.l75e-05 2 0 2 2 2.587e-05 2.587e-05 3.0l4e-03 3 3 47 0:6:1410C le-02 5.l75e-05 2 0 2 2 2.587e-05 2.587e-05 6.760e-04 3 3 36 0:3:16
lOG le-03 4.271e-05 2 1 2 2 2.l36e-05 2.l36e-05 7.671e-05 4 3 43 0:5:5910C le-03 4.271e-05 2 1 2 2 2.l36e-05 2.l36e-05 6.760e-04 4 3 29 0:2:45
lOG le-04 3.526e-05 3 2 3 3 1.763e-05 1.763e-05 3.527e-05 4 4 34 0:4:5710C le-04 3.526e-05 3 2 3 3 1.763e-05 1.763e-05 5.46le-05 4 4 25 0:3:15
lOG le-05 2.9l0e-05 3 3 3 3 1.455e-05 1.455e-05 1.765e-06 6 5 25 0:5:4310C le-05 2.9l0e-05 3 3 3 3 1.455e-05 1.455e-05 2.700e-06 6 5 16 0:5:41----------------------------------------------------------------------------------------------
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Table 7.9b
(single subinterval, p = 10'0)

----------------------------------------------------------------------------------------------
q TOL bp w; w; w;' w; b~1r.t blut Err w' w; i T

L----------------------------------------------------------------------------------------------
4G 1e-02 1.698e-05 6 2 6 6 2.123e-06 2.123e-06 7.724e-03 21 20 154 0:42:41
4C 1e-02 1.698e-05 6 2 6 6 1.101e-06 1.01ge-06 8.372e-04 39 41 176 0:49:3

4G 1e-03 1.157e-05 9 5 9 9 1.446e-06 1.446e-06 8.931e-04 48 49 205 1:39:37
4C 1e-03 1.157e-05 9 5 9 9 9.642e-07 9.642e-07 8.561e-04 49 49 198 1:23:8

4G 1e-04 7.883e-06 14 11 14 14 2.885e-07 2.885e-07 6.806e-05 96 96 314 6:33:54
4C 1e-04 7.883e-06 14 11 14 14 2.88ge-07 2.88ge-07 6.214e-05 109 109 338 6:57:42

4G le-OS 5.371e-06 21 21 21 21 1.173e-07 1.176e-07 8.365e-07 157 157 361 7:46:12
4C le-OS 5.371e-06 21 21 21 21 5.844e-07 5.852e-07 3.892e-06 148 149 346 7:8:1

8G 1e-02 3.946e-05 2 1 2 2 1.973e-05 1.973e-05 1.581e-03 4 3 66 0:8:41
8C 1e-02 3.946e-05 2 1 2 2 1.973e-05 1.973e-05 2.435e-03 4 3 54 0:6:3

8G 1e-03 3.134e-05 3 2 3 3 1.567e-05 1.567e-05 8.781e-04 5 4 68 0:9:26
8C 1e-03 3.134e-05 3 2 3 3 1.567e-05 1.567e-05 9.428e-04 5 5 62 0:8:48

8G 1e-04 2.490e-05 4 4 4 1.245e-05 1.245e-05 7.565e-05 6 5 67 0:9:1
8C 1e-04 2.490e-05 4 4 4 1.245e-05 1.245e-05 3.707e-05 7 6 59 0:6:52

8G le-OS 1.977e-05 5 5 5 5 9.887e-06 9.887e-06 4.97ge-06 9 8 71 0:12:50
8C le-OS 1.977e-05 5 5 5 5 9.887e-06 9.887e-06 7.642e-06 9 7 58 0:6:37

lOG le-02 5.l75e-05 2 0 2 2 2.587e-05 2.587e-05 3.0l4e-03 3 3 56 0:7:26
lOC le-02 5.l75e-05 2 0 2 2 2.587e-05 5.175e-05 4.948e-03 3 2 44 0:4:2

lOG le-03 4.271e-05 2 1 2 2 2.l36e-05 2.l36e-05 7.671e-05 4 3 58 0:7:56
10C 1e-03 4.271e-05 2 1 2 2 2.136e-05 2.136e-05 1.196e-04 4 3 45 0:4:11

lOG le-04 3.526e-05 3 2 3 3 l.763e-05 l.763e-05 9.88ge-06 4 4 56 0:7:19
lOC le-04 3.526e-05 3 2 3 3 1.763e-05 3.526e-05 1.513e-05 4 3 47 0:4:46

lOG le-OS 2.910e-05 3 3 3 1.455e-05 2.9l0e-05 4.4l8e-06 5 3 56 0:7:10
10C le-OS 2.910e-05 3 3 3 1.455e-05 1.455e-05 6.770e-06 5 4 50 0:5:22

----------------------------------------------------------------------------------------------

As the last illustration, the following Table 7.10 corresponding to problem-3

displays some results of numerical experiments comparing the RH and the de Boor

algorithms as well as Chebyshev and Gauss points. From this table, it is again

observed that w~ and w~ are reasonable estimations for number of subintervals in

the layer region. This is also indicated by the fact that the width of the first and the

last subinterval are reasonably close to hp. It can again be seen that the RH algorithm

with Chebyshev points may perform well, moreover in some cases it can be better

than those using Gauss points. In contrast, the de Boor algorithm with Chebyshev

collocation points never produces better results than using Gauss points.

In comparing performance of the RH and de Boor algorithms, the numerical

results in this table demonstrate the superiority of the RH algorithm over the de Boor

algorithm.
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q TaL

JG 1e-02 6. 762e-03
le le-02 6.762&-03

'l'able 7.10
(problem parameter J.l = 104

)

6.7629-03 6.762e-03 5
3.381e-03 3.381e-03 6

RH

w~w; w 1

3G le-03 4.2678-03 11 11 2.133a-03 2.133e-03 13 13 52 20 0:0:52
ac le-03 4.267e-03 11 11 2.133e-03 2.133e-03 14 14 56 24 0:1:8

)0 16 0:0:15
32 18 0:0:18

de Boor

T I h~1r.t

6.762.-03 6.7628-03
3.381.-03 3. 381e-03

w~w; w 1

2.1338-03 2.1338-03 13 13 54 22 0: 0: 59
2.133e-03 2.133e-03 14 14 58 26 0: 1: 13

30 16 0:0:15
32 18 0:0:18

30 le-04 2.692.-03 24 24 1.346e-03 1.346e-03 27 28 92 21 0:2:48 1.3468-03 1.346e-03 27 28 94 23 0:3:9
le le-04 2.6928-03 24 24 1.346e-03 1.346e-03 30 31 105 34 0:5:14 1.3468-03 1.3469-03 )0 31 108 37 0:5:52

40 le-02 1.201.-02
4C 1e-02 1.201e-02

3G le-OS 1.69ge-03 47 47 8.493e-04 8.493e-04 56 57 175 35 0:15:38 8.493e-04 8.493e-04 55 56 175 35 0:15:31
3C le-OS 1.6998-03 47 47 8.4939-04 8.493e-04 60 61 187 47 0:22:25 8.493a-04 8.493a-04 59 60 187 47 0:22:23

21 16 0:0:8
21 16 0:0:8

4G 1a-03 8.182e-03
4C 1e-03 8.182e-03

1.201e-02 1.201e-02
1.201e-02 1.201e-02

4.091e-03 4.091e-03
4.091e-03 4.091e-03

20 15 0:0:7
20 15 0:0:7

4G la-04 5.574a-03 11 11 2.787e-03 2.787e-03 11 12 46 14 0:0:38
4C la-04 5.5748-03 11 11 2.787e-03 2.787e-03 12 13 49 17 0:0:49

29 15 0:0:16
28 14 0:0: 14

5G 18-02 1.278.-02 2
SC 18-02 1.278e-02 2

4G Ie-OS 3.7988-03 21 21 1.8998-03 1.89ge-03 22 23 75 13 0: 1: 35
4C le-OS 3.7988-03 21 21 1.89ge-03 1.89ge-03 23 24 78 16 0:1:57

16 11 0:0:5
16 11 0:0:5

50 18-03 9.1988-03
se 18-03 9.1988-03

5G 1a-04 6.619.-03
5C la-04 6. 61ge-03

1.2788-02 1.278e-02
1.278e-02 1.278e-02

9.1988-03 9.1988-03
9.1988-03 9.198e-03

6.6198-03 6.61ge-03 8
6.61ge-03 6. 61ge-03 8

24 10 0:0:10
23 9 0:0:9

33 0 :0:14
33 0:0:14

BG 1.-02 2.7908-02
Be 1e-02 2. 790e-02

50 le-OS 4.764e-03 17 17 4.7648-03 4.764e-03 16 17 55
5C le-OS 4.764.-03 17 17 4.764e-03 4.764e-03 16 17 55

11
11

80 1e-03 2.216e-02 2
se 1e-03 2.216.-02 2

eo 1.-04 1.760.-02
8C la-04 1.760.-02

80 le-OS 1.3988-02
8C le-OS 1.398e-02

3.501.-02 2. 790e-02
3.5018-02 2. 790e-02

2.216.-02 2. 216e-02
2.216.-02 2.2169-02

1.7608-02 1.760e-02
1.7609-02 1. 760e-02

1.3989-02 1. 398e-02
1.3988-02 1. 398e-02

14
14

rs
16

21
21
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1.201.-02 1.201e-02
1.201.-02 1.201e-02

8.1828-03 8.182e-03 5
8.182e-03 4.0919-03 6

5.5749-03 5.574e-03 10 11 47 15 0:0:42
2.7878-03 2.7878-03 11 13 58 26 0:1:31

29 15 0:0:16
39 25 0:0:38

1.278.-02 1.2788-02 2
1.278.-02 1.2788-02 2

1.899.-03 1.8998-03 22 23 87 25 0: 3: 32
1.8998-03 1.8999-03 23 24 93 31 0:4:36

18 13 0:0:7
18 13 0:0:7

9.198.-03 9.198.-03
9.1988-03 9.1988-03

6.6198-03 6.6198-03
6.619.-03 6.6198-03

0:0 :27
0:0:26

4.7648-03 4.7648-03 16 17 55
4.7649-03 4.764.-03 16 17 55

0:0 :3
0:0 :3

3.5018-02 2.7909-02
3.501.-02 2. 790e-02

0:0 :5
0:0:5

2.2168-02 2.216.-02
2.216e-02 2.216.-02

0:0:5
0:0:6

1.7608-02 1.760e-02
1.7608-02 1.760e-02

0:0 :9
0:0 :9

1.398.-02 1.398.-02
1.3988-02 1.3988-02

26 12 0:0:13
26 12 0 :0:13

35 0:0:19
35 0:0:19

0:0 :27
0:0 :26

11
11

0:0:3
0:0 :3

14
14

0:0 :5
0:0 :5

rs
17

0:0:5
0:0:7

23
23

0:0: 13
0:0: 13



chapter

Concluding Remarks and
Future Improvements

As stated at the beginning of this thesis, we primarily intended to investigate

some collocation algorithms, in particular our aim was to develop practical mesh

selection algorithms by comparing their performance with those using some well

known algorithms. This task certainly needed a lot experimental works which in tum

required substantial programming. Nevertheless, more importantly we also needed

background theoretical aspects of the methods to be used in developing and

implementing such algorithms which this was covered in chapter 2.

In Chapter 3, by utilising the special structure of the collocation matrices we have

developed a block matrix with more compact structure. A very significant reduction

in the amount of memory needed and number of arithmetic operation performed has

been shown, and computational examples demonstrated that a tremendous time

saving can be made. An improvement in condition number made by the use of

column scaling operations is also presented in chapter 3 . It was observed that

without any column scaling operation the condition number for Gauss collocation

points are smaller than those using Chebyshev points. Note also that the results show

that significant reductions are made in both cases. Moreover, the results indicate that

employing column scaling operation may result in not only reducing the condition

number but also improving the accuracy of the solution, even though this may occur

only in a few problems.

For future extension, it might be interesting to do further development in order to

obtain a parallel version of this block matrix structure, such that it can be solved

using multi processor machines.



Chapter 8 Concluding Remarks and Future Improvements

From chapter 4, firstly we note that the interpolation polynomial for the residual

is fairly good and its form is also convenient for carrying out the integration needed

in developing the error estimates. Secondly, some error estimates have been
*described and for our purposes it is more convenient to use the cheapest one E .

Numerical evidence indicates that the error estimate E* described is effective and

does appear to be satisfactory at least later in the process, especially for problems

with sufficiently smooth solution. Nevertheless, the results of numerical experiments

clearly indicate that the estimate is pretty poor when dealing with problems having

severe boundary or interior layers, and it is worse when the approximate solution

itself is very poor. This result implies that adaptive mesh selection algorithms

utilising this error estimate may lead to inappropriate results in whole process since a

poor approximate solution at the initial stage of collocation process is likely. It is

hoped to consider further investigation for the estimate E* in future, possibly by

developing some additional corrections when dealing with difficult problems.

In chapter 5, we have discussed in some detail various aspects of the mesh

selection strategies including their theories and motivations. For the RH algorithm, a

special scheme to equidistribute local terms rh; has been developed and it seems

that this scheme is fairly simple with low cost since we used the approximate residual

developed in chapter 3. It is notable that although the MR algorithm often performs

very well, unfortunately in some other cases it gives very unsatisfactory results, by

putting too many break points in some regions without improving the accuracy of the

approximate solution. On the other hand, the widely used de Boor algorithm though

better than the MR algorithm occasionally gives unsatisfactory results. Unsatisfactory

results using de Boor algorithms were also observed by Seleman [48] where he

considered Q matrix mesh selection algorithm for solving boundary value single

higher order differential equations.

Perhaps the most notable observation about results in chapter 5 is that in our

selected examples the RH algorithm is more reliable than the de Boor algorithms,

indicated by the fact that in some cases the de Boor algorithm performed very

unsatisfactorily while the RH algorithm worked very well. In most cases using the

160



Chapter 8 Concluding Remarks and Future Improvements

RH algorithm gave better results than those using de Boor algorithm. In particular,

the results of numerical experiments clearly indicate that in most cases using the

mesh placement algorithm with the RH criterion function gave the best approximate

solution.

In chapter 6, we have derived and evaluated w*'s the estimates for number of

subintervals needed in the next stage of collocation process which enable multiple

subdivisions to be applied in the adaptive algorithms. The results of numerical

experiments clearly show that using the estimate w * without any additional

restrictions may lead to completely unsatisfactory results, in particular for mesh

subdivision strategies. This is not surprising since these estimates make use the error

estimate E* which may perform very poorly in the early stages of collocation process.

To cope with this problem some modified algorithms have been introduced, and

together with the supporting numerical results of section 6.4 and section 6.6, it is

clear that they are sound and valuable. It is also notable that one strategy may be very

efficient in, for example, mesh subdivision strategy but it performs unsatisfactorily in

mesh placement strategy, and vice versa. The results in chapter 6 provide practical

indications about which modified algorithms more suitable for each strategy. Further

study and experiments would be useful to obtain more efficient algorithms, possibly

by using a more refined statistical approaches.

In the beginning of chapter 7 we have described phenomenon of stiffness arising

in some boundary value problems. This phenomenon has connection with the

eigenvalues of associated coefficient matrix in the differential equations. We then

utilised these eigenvalues to predict the layer locations. This was followed by

developing some algorithms to estimate the width of such regions and suitable

number of breakpoints in such regions. Finally, a number of numerical experiments

were carried out and some improvements, especially in term of computation time,

were observed. Moreover the estimates for number of subintervals needed in the

layer regions perform satisfactorily in practice. This investigation needs further work,

for example on how to determine suitable number of break points in an interior layer,

as well as more experiments using a wider selection of problems. Also the possibility
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of unequal distribution within the layer, and multiple layers in larger systems should

be considered.

Comparing the results using Gauss and Chebyshev points, in most cases the

superiority of Gauss points over Chebyshev points in producing higher accuracy

solutions was observed. However, the results also indicate that the RH algorithms

using Chebyshev points gives very satisfactory results and they are comparable with

those using de Boor algorithms with Gauss points.

It is important to realise that since the numerical experiments we have carried out

here are based on a limited set of test problems, even though they have been chosen

carefully to accommodate problems with various natures, some conclusions which

have been drawn should not be generalised too far. What we can say is that the

results of numerical experiments presented here indicate the relative merits of

algorithms. Clearly, a more extensive comparison both on a wider selection of

problems and with alternative algorithms would be valuable.
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