

- 219 -

Appendix A - A Machine Code for the LhGO Coaputer

lhis Appendix describes a machine code designed for the initial

LEGOimplementation of the RCF architecture discussed in 5.1.

First there is a general description of the machine as seen by the

machine code programmer, followed by a detailed description of the

machine code. lhis is presented by defining a symbolic assemtler code

using a. BNF syntax notati,on in which braces { •• '.} indicate zero or more

repetitions of the enclosed material. Where motivation of the machine

code facilities seems necessary, notes in [•••] brackets are included to

relate those facilities to the programming constructs discussed in

Chapter Four. Boldface is used for terminal symbols of the syntax.

A.I - Machine Model

<program> ::= ({ <object> })
<object> ::= <primitive object> I ({ <object> })

<program string> ::= ({ <item> })
<item> ::= <symbol> I <activity>
<symbol> ::= <delimiter> I <primitive object>
<delimiter> ::c (I)

<primitive object> ::c <data item> I <instruction> ;
<instruction> ::= <access> I <addressing> , <operation>

<creation> I <exception>
<activity> ::= I

The two major elements of the machine are the representing

the program and the activities executing it. lhe program :Is structured

as a hierarchy of objects comprising primitive objects (instructions and

data) and, matching pairs of delimiter symbols for the start (and end)
",

of compound 6bjects. As the program is executed it is modified and its

-
current state is the <program string>, a sequence of itents ""blch

includes the symbols of the program representation. (turing a

- 220 -

modification of the program string, e.g. the insertion of an object,

there may be a temporary delimiter imbalance in the string and thus the

<program string) does not always conform strictly to the (program) syn­

tax.)

Each activity has-a current position in the program and is modeled

as being itself an item in the string together with the symbols of the

program. There are communications connections between activities alloi>J­

ing an activity to transmit objects to and receive objects from con­

nected activities. These connections support tree structures of activi­

ties with each activity capable of being connected to a superior

activity (identified as RO) and a number (6) of subordinate activities

(identified as Rl, R2 etc.).

An activity is executing symbols from some instruction source,

either the program string or the objects transmitted from a connected

activity. [Messages such as "copy", "take" and" execute" sent from a

superior activity to a subordinate activity are instructions executed by

the subordinate activity as a result of its instruction source beine the

connection to its superior activity ("execute" switches the instruction

source to be the program string); the effect of the "e\'al" operatol',

executed by an activity P, is achieved by P's instruction source being

the connection to the subordinate activity which is evaluating the

operand .]

Normally execution is sequential, with the activity's position mov­

ing past e~ch item in the string as it is executed, or successive items

being-executed as they are received from the connected activity. lhe

following Sections describe the effects of executing the different types

- 221 -

of items from the instruction source, namely delimiter symbols, primi-

tive data items and various types of instructions. Ihe different types

of instructions are: Access instructions which operate on the program

string as a data structure, reading objects from the string to be

transmitted to a connected activity and modifying the string ,,;-1 th

objects received from a connected activity; Addressing instructions

which move the position of the activity within the string and also may

suspend the activity and switch its instruction source; Operation

instructions which perform for example arithmetic operations on objects

received from connected activities and transmit the result to connected

activities; Creation instructions which generate parallelism ty creating

new activities; Exception instructions for handling various exception

conditions.

When an activity's instruction source is the program string the

next item may be another activity rather than a symbol of the progrbm.

Generally two activHies accessing the string (i.e.· wi th the string as

instruction source or executing an access instruction) will follo~ each

other through the string with the activity on the left waiting for the

other to progress. However the activity on the right, PR, must be

passed by that on its left, PL, if the further progress of FR is depen-

dent on an event that could possibly never occur (that is, if it has

been suspended Bnd thus is dependent on another activity to modify the

string, or is dependent on B connected activity sending it an object,
I

for example when its instruction source is a connected activity).

- 222 -

A.2 - Delimiters

An activity has a current object of execution in the string. If

the instruction source is the program string Bnd the next item i~ the

closing delimiter of the current object then the activity and its subor-

dinates terminate. 1n all other cases a delimiter is ignored and execu-

tion continues with the next item from the instruction source.

The current object is established as being the object to the right

of the activity when (i) the activity is first created, (ii) the

instruction source is switched from being the connection with its supe-

rior to be the program string, (iii) the activity executes the first

non-addressing instruction after a series of addressing instructions one

of ~nich moved the activity outside the previous current object.

A.3 - Data Items

Data i terns have two roles. Firstly a data item may be the next

i tern to be executed from the instruc tion source in \-;hich Cllse the

activity retains its current pOSition in the program strJng and its

instruction source is switched to be the connection to the superior

activity [from which typically an access instruction, e.g. to 'Icopy" the

data item, will then be received].

Secondly data items form the operands of operators which are
,

described, together with the syntax of data items, in A.6.

, ,

- 223 -

A.4 - Access lns~ructions

<access> ::= <action> <act>
<action> ::= copy I rep! I take insert
< ac t> :: = RO I IU I R2 ••• R6 I •

An access instruct_ion generally specifies some action on a target

object in the program string and a connected activity (RO, Rl etc.) to

which that object is transmitted or from which a new object for the

string is received. lhe target object is the object to the right of the

activity's position (to the right of the access instruction itself if it

is executed from the string). A copy transmits a copy of the target

object. A replace replaces the target object with the new object. A

take is a destructive copy, transmitting the target object and aeleting

it from the string. An insert inserts the new object in the string to

the immediate left of the next syml-ol to the right of the activity. A

., indicating a "null activity", can be specified instead of an actual

activity. An object transmitted to • is just discarded. An object

received from. is always the empty object (). lhus, for example, take.

just deletes the target object and repl. replaces it with (). Gn com-

pletion of any access instruction the activity is positioned to the

immediate right of the target or new object in the strj.ng.

An action (replace or take) which deletes an existing object ~111

proceed a symbol at a time, deleting each symbol in turn. lhere may be

another activity positioned within the object being deleted and the

deletion will generally wait at that point until the other activity

moves. However, in circumstances mentioned in A.I, it may be necessary

-
for the deleting activity to pass the other activity and in doing so

that activity is terminated.

- 224 -

[In the example used in Section 4.1.4 to discuss the general l-,(;F'

model it was necessary for the replace action to be acknowle'dged. In

the LEGO implementation this acknowledgement is implicit in the communi-

cations flow control mechanism. However alternative implementations

might not have that implicit acknowledgement. Explicit Acknowledgement

can be programmed when required. lhe replace instruction, followed by

the new object, is generally sent from an activity P to a subordinate Q

positioned at the object to.be replaced. After sending the new object,

P can use routing operations (see A.6) to send instructions to ~ which

cause Q to send the required acknowledgement to P.]

~5 - Addressing Instructions

<addressing> ::= <selector> <switch> I <selector> ? <switch> I
I<selector> <switch> I I<selector> ? <switch>

<selector> :: out I start I (- I I I in I -) I end I esc I $ <act>
<switch> ::= Ie I I<act> I I

An addressing instruction includes a selector which specifies a new

position for the activity and a switch to possibly change its in&truc-

tion source. The selectors out ••• escape are those defined in Figure

25 of Section 4.1, and are relative to the position of the activity

(following the addressing instruction itself if that is executed from

the program string). For selectors $RO ••• $R6 the new position Is to

the immediate right of the specified activity. If a subordinate

activity En is specified but does not exist then the En subordinate of

the superior is used, and if it does not exist then that of its supe-

rior, etc.. [A $Rn will form the first selector of a base-relative

addre~s, used for example in addressing procedure parameters, and is

defined such that in the sub-tree of activities executing the procedure,

- 225 -

all activities can address parameters relative to the position of a par­

ticular subordinate of the sub-tree's root activity.]

The switch in an addressing instruction may specify that following

the execution of the instruction the instruction source is to become the

program string at the new position (Ie); the instruction source is to

become the connection to a specified activity (/Rn) (if the null

activity is specified, I., then the activity terminates); or that there

be no change (I). [In a normal address where the addressed object is

executed, the last selector would have a Ie suffix; In a quoted address

. where the addressed object is not to be executed, the last selector

would have a IRO suffix switching control to the superior, as occurs

when executing a data item.]

The selector may be suffixed by a ? specifying that the activity be

suspended at its new position. lhe suspended activity will be reac­

tivated \then another activity performs a replace or take action on thE.

object at the new position or an insert action to insert a new object at

that position. [The "unknown argument", "(1)", would be represented as

(out?l;).1

The selector may be prefixed by a I in which case the rest of the

instruction is not executed llnd the instruction (if it is in the program

string) is modified by the I being removed. [~his provides the exclu­

sion argument, n(excl)", which in machine code is (lout?!;).]

- 226 -

A.6 - Operations

<operation) ::= <typed op.> I <compare op.> I <special op.>

<typed op.> ::= <int op.> I <bool op.> I <bit op.>
<int op.> ::c + I - I 0-
<bool op.> :: = & I I I I ..
< bi top. > :: &:: ' & I ' I I ''''1 I 'A

<compare op.> ::= ~ A=
<special op.> ::= if ==

> I >- I < I <-
:- I <act> , <act> ::- <act>

<data item> ::= <value> I <error>
<value> ::= <int> I <bool> I '<bit> I u<char>
<int> ::= ••• -2 I -1 10 I 1 I 2 •••
< boo 1) :: c T I F
< hi t> :: = 1 , 0
<char> ::= <any ASCII character>
<error> :: II: #

<obj> ::= <instruction> I <value> I ({ <obj> })
<any> ::= <object>

An operation instruction processes operand objects to produce a

result object as defined by its operator. Each operand is received from

a specific subordinate activity (usually there is one operand from R2

and one from &3). The result is transmitted to subordinate RI. If

there is no RI subordinate then the result will be sent to the superior

RO in response to any object from the superior. If there is no superior

either then the result is just discarded. Figure Al shows all the

operators and the types of valid operands and results produced, these

types being spec:1fied by the syntax for <data item>, <obj> and <an}>.

lhe typed operators are straightforward, each having as its operands and

results primitive objects of the same type (integer, boolean or bit).

lhe other operators may involve compound objects and the special error

o~ject. An error object is produced as the result of applying an opera-

tor to an operand of the wrong type (e.g. mUltiplying two characters or

an integer and an error object). In defining the type of valid operands

- 227 -

there is a distinction between a general object, <any>, and an object,

<obj>, restricted to exclude error objects.

oper-
ator o~erands result meaning

r----""\ 'R2 R3 R4 <act>"
, , ,

integer
+ <jnt> <int> <int> add

<int> <int> <int> subtract
0- <int> <int> unary minus

boolean
& <boo1> <boo1> <boo1> and
I <bool> <boo1> <boo1> or
"'1 <boo1> < boo 1> <bool> nor

<boo1> <boo1> not

ill
'& <bit> <bit> <bit> and
, I <bit> <bit> <bit> or
''''1 <bit> <bit> <bit> nor , ... <bit> <bit> <bit> not

comEare
= <obj> <obj> <booD. equal
... = <obj> <obj> <booD not equal
> <obj> <obj> <booD greater
)= <obj) <obj) <booD greater or equal
< <obj) <obj) <booD less
<= <obj> <obj> <oooD less or equal

sEecial
if <any> <any> <bool> conditional
== <any> <any> <booD equivalent
:= <any) <any) identity
: := <any> <any> routing

Figure Al - 'l'be Operators

A compare operator treats its operands as t~o strings of symbols
"

(j.e. delimiters, instructions and data items) ~hich are compared in

pairs from left to right. lhe strings are equal i.f all pairs of

- 228 -

corresponding symbols are equal, otherwise the result is the result of

comparing the leftmost unequal pair according to the following ordering

) (lowest); '0; '1; F; Tj integers in numeric order; characters in

standard order; instructions in arbitrary order; (. [The position of

the delimiters in this ordering gives the effect of recursively compar-

ing compound objects, for example -

«lie "V lie» < ({ffe "v lie) tlj} < «lie "V "e) ("j "i I'm»]

The conditional operator (if) has three operands and the result is

the first (12) or second (RJ) depending on whether the third (R4) is

True or False. The equivalence operator (=-) tests the operands for

equality and allows an object to be tested for error. For the identity

operator (:-) there is a single operand which is transmitted unchanged

as the result. For the routing operator (::-) the result is its single

operand from a specified source activity and copies are transmitted to

two specified destination activities. If the null activity. is speci-

fied as the source then () is used as the operand object. If a destina-

tion activity is non-existent or is specified as • then its copy is just

discarded.

The routing operator is used in conjunction with access ins truc-

tions to replicate objects and to organise any communication that may be

needed in addition to the simple operand/result communication pattern of

the other operations. As an example the following sequence of instruc-

!Jons synchronise the executing activity P with its Rl subordinate, Q -

il i2 i3
~ ~ ~
c.opy Rl; .,IlO : :-.; .,. ::-=R.l;

The first, copy, instruction transmits to Q the following instruction,

- 229 -

f2. When Q has finished executing the previous instruction from P it

will execute the 12 which specifies that Q transmit to its superior, P,

the empty object (). The next instruction executed by P, 13, requires

an object from its Rl subordinate, Q, and thus synchronises those two

activities. When P receives that object, (), it is just discarded.

A.7 - Act1vity Creation

<creation) ::= sub <act) I
source <act)
par

A sub instruction, such as sub RD, creates a new subordinate

activity (En) to the the immediate left of the creating activity. Ihe

new activity is connected to the creating activity as its superior and

that is its initial instruction source. Ihe new activity itself has no

subordinates. A source instruction is the same except that the new

subordinate activity is to the right of its superior, the instruction

source for the ~reated activity is implicitly switched to be the program

string, and the instruction source for the creating activity is im{-li-

citly switched to be the connection with the created activity.

A parallel instruction creates a new independent activity "hich

has the same current object as the creating activity, the same l'osition

as the creating activity (following the par instruction if that is exe-

cuted from the program string) and with the program string as its

instruction source. The creating activity then eXeclltes an implicit ->1
addressing . instruction so that the next object it executes is that fol,.-, .
lowing the first object executed by the created activity.

- 230 -

A.B - Exception Dandling

<exception> : : = ok I err I skip I sk1.p <ac t>

Associated with an activity is an error status which indicates

whether an error has.occurred. This is cleared by an ok instruction,

set by an err instruction and is also set by the occurrence of some of

the exception conditions described below. A skip instruction tests the

error status of the activity itself or a specified activity and exe­

cutes an implicit ->1 addressing instruction if the status is clear

(that is, the activity skips over the following object which would con­

tain code to deal with exceptions).

The exception conditions that can occur are -

(i) Invalid instruction source - If the instruction source is s~itched

to be the connection to a non-existent activity or a connected

activity terminates· while the connection to it.is thc inStruction

source, then the activity terminates.

(ii) Invalid selectors - A selector in an addrcssing instruction exe­

cuted by an activity P is invalid if: it is an in/ selector and the

next symbol to P's right is a primitive object or a); it is a . ->/

(or <-I) selector and the next symbol to P's right (or left) 1s a)

(or (); it is an outl or escape/ selector and P's enclosing object

is the outermost object, the total program; it is a $Rn selector

where Rn does not exist or the null activity, ., is specified. lhe

error status is set and the effect on P's position is that of a

"null" selector, II, (except in the case of an invalid out or

escape! selector which will act as a start or end selector).

- 231 -

(iii)Invalid access instructions - An access instruction is invalid if

the activity to which the target object is to be transmitted, or

the activity from which the new object is to be received, does not

exist, or (except in the case of insert) the next symbol to the

right of the activity is a). lhe error status is set and where

appropriate the error object is transmitted as the target object'.

(iv) Invalid operation - An operation instruction is invalid if one of

the operand objects is of the wrong type or the activity from which

it should be received does not exist. Ihe error status is set and

the error object is transmitted as the result.

(v) Invalid creation - A sub Rn or source in instruction is inv~lid if

the specified subordinate already exists or the null activity, .,

is specified for RD. Ihe error indicator is set but otherwise the

instruction has no effect.

A.9 - An Exaaple

In order to illustrate the relationship between the machine code

described here and the programming constructs used in Chapter Fout' , Fig­

ure A2 shows the machine code equivalent to some of those constructs.

The example program fragment used (a) is part of that in Figure 3S. Ihe

motivation for this example and its general operation was discussed in

Section 5.].7. 1he machine code instruction sequence corresponding to

each construct in (a) is shown in (b) which contains comm~,nts explaining

the detailed'operation of that machine code.

- 232

example
P Q R 5

"(I iter- (I c2 c3 (?)) (I := 6 lout) I IE)"
c: D: r:

(!) machine ~

program
construct machine code

"iter"- [An iterative operator on stream operands - P sets up sub­
ordinates at operands and result and repeatedly takes
operand values and inserts result values]

(Set up]
1 (sub R2j [creates R2 subordinate ~ with r as instr. source]
2 copy R2j [Q is sent the following object to execute)
3 esc/e; [address of C, specifying execution (Ie»)
4 sub R3j copy R3; (esc/j ->/ej) [as 1-3, for R,on t)
5 sub Rlj copy Rlj (esc/j ->/j ->/e;) [similarly S,r]

7
8
9

10

11

(Repeated operations]
(copy R2j take ROj [Q is sent instr. to 'take object to F)

copy R3j take ROj [as 7, causing R to return its result]
copy RI; insert ROj [as 7- S inserts next object sent]
-j [P performs subtraction on objects from Q and R, send­

ing result for insertion by ~]
out/j)) [return and repeat from last (]

II : ... " - [A normal (not iterative) operator]
12 (sub R2; copy R2; (esc/;->/e; copy RO; I.;) :-;)

13

14

15

16
17
Ie

"(1)"

"E"

[as 1,2,7,10 but -
using copy instead of take with termination
of subordinate activity; single operand for
identity operation, := (instead of subtraction);
no result activity, R3, thus result to iL)

->/e; [skip over single argum~nt, the folo~ing 6)

(out?l;) [suspends activity activity to a~ait operands]

[A compound address executed by S]
(source RSj [A sub. activity 1 is created to execute rest

of this object]
copy ROj [following object sent to l's superior, S1
(esc/; ->1; ••• <-Ie;) [selectors corresponding to /1]
I.j) [terminate I]

Figure A2 - lfachine code for part of cxSJIple in Figure 39

· - 233 -

References

1. P.C. Treleaven,o "Exploi ting Program Concurrency in Computing EYb­
terns," IEEE Computer, pp.42-50. (January 1979).

2 •. J. Darlington, P. Eenderson, and B.A.
Programming and its Applications,
(1982) •

lurner (eds.), Functional
Cambridge University Freas

3. J. Backus, "Can Programming be Liberated from the von ~eumann
Style? A Functional &tyle and Its Algebra of Programs," Comm. AC.N
Vol. 21(8), pp.613-641. (August 1578).

4. R. Kowalski, Logic for Problem Solving, Elsevier-North-Holland
(1979).

5. D.A. Patterson and C.H. Sequin, "Design Considerations for Single
Chip Computers of the Future," IEEE Transactions on Computers \'01.
C-29(2) (February 1980).

6. C.H. Sequin, "Single Chip Computers, 'lhe New \'LS1 Building blocks,"
CALTECH Conf. on VLSI, pp.435-445 (January 1979).

7. A.M. Despain and D.A. Fatterson, "X-tree: A lree Structured hul­
tiprocessor Computer Architecture," Proc. Fifth. Int •. Symp. Com­
puter Architecture, pp.144-151 (lS78).

8. II.T. Kung, L.J. Guibas, and C.D. 'lhompson, "Direct VLSI ImplemeIlta­
tion of Combinatorial. Algorithms," Proc. Conf. on VLS 1: Architec­
ture, Design, Fabrication, California Institute of lechnology,
pp.50S-525 (1979).

9. E.D. LaZOltolska et. al., "The Architecture of the E.den System,"
Technfcal Report 81-04-01, University of Washington (April 1Sbl).

10. Elliot Organick, A Frogrammer's vie~ of the l~lEL 432 System,
McGRAW-HILL.

II. I. Barron, "lhe 'lransputer," pp. 343-357 in 'lhe Microproc.essor and
its Applications, ed. D. Aspinall, Cambridge University Press
(1978) •

12. R.P. Hopkins et. al., "A Computer Supporting Data Flo~, Control
Flot.; and updatable Memory," Technical Report 144, Computing
Laboratory, University of Newcastle upon lyne (September lS7S).

13.R.P. Hopkins, "A Data Flow Computer with Addressable !-lemory," hoc.
Data Driven and Demand Driven Languages and ~~chines workshop,
Tolouse'France (197S).

14. P.C. Treleaven and R.F. Hopkins, "Decentralised c.omputation," hoc.
Eighth Int. Symp. Computer Architecture (~~y ISBl).

- 234 -

15. P.C. lre1eaven, R.P. Hopkins, and P. Rautenbach, "Comlining Lata
Flow and Control Flow Computation," Computer Journal Vol. 25(2),
pp.279-290 (1982).

16. P.C. lreleaven, D.R. Brownhridge, and R.P. hopkins, "Data Driven
and Demand Driven Computer Architecture," Computing &urveys Vol.
14(1) (March ISS2).

17. P.C. lreleaven and R.P. Hopkins, "A Recursive Computer Architecture
for VLSl," Proc. Ninth Int. Symp. Computer Architecture, pp.2~S-2':'b
(1982) •

18. I. Gouveia Lima, R.P. Hopkins, L. Marshall, D. Mundy,. and P.C.
Treleaven, "Decentralised Control Flow - BAsed on unU.," Proc. 51(,­
PLAN b3 Symp. on Programming Language issues in Software &ystems,
SIGFLAN Notices Vol. 18(6) (June IS83).

19. T.L. Wat, "The Implementation of a JUMIlCi Computer on lhree l-l6MiL
Microcomputer Systems," M.Sc. Dissertation, Computing Laborstory,
University of Newcastle upon lyne (1979).

20. D.R. Brownbridge, "A Simulator for Concurrent Architectures," N.&c.
Dissertation, Computing Laboratory, University of ~ewcastle upon
lyne (1979).

21. Z. Manna, Mathematical Theory of Computation, M6Graw hill (IS74).

22 •. D.P. Friedman and D.S. Wise, "CONS should not evaluate its argu­
ments," pp. 95-103 in Automata, Languages and Froglamming, ed. 5.
Michaelson and R. Miln~r, Edinburgh University Press, Edinburgh
(1976).

23. P. Benderson and J. ~10rris, "A Lazy Evaluator," Proc. 3rd. ACM
Symp. on the Principles of Programming I~nguages, pp.S5-1C3 (lSi6).

24. Arvind et. a1., "lhe Id Report: An Asynchronous
Language and (,omputing Machine," lechnical Report 114,
of Information and Computer Science, University of
Irvine (May 1978).

Proglamming
te pa r tmf:n t

<.al1£orn1a,

25. J. McCarthy et". a1., The LISP 1.5 Programmers ~.I8.nual, CamlridLe,
Mass. (1962).

26. W.B. Ackerman, "A Structure Processing Facility for Data Flow (.om­
puters," Computation Structures Group Memo 165, MIl Laboratory tor
Computer Science.

27. A.L. Davis, "lhe Architect·ure and System Method of DLM1: A F-ecur­
sivelyStructured Data Driven Machine," Proc. Fifth Int. &ymp. Com­
puter Architecture, pp.210-215. (April lS78).

28. J. McCarthy, "A Basis for a z.1athematical lheory of (,omputing," pp.
33-70 in Computer Frogramming and Formal Systems,ed. P. Braffort
and D. Birschberg, North-Holland (IS63).

- 235 -

29. D.P. Friedman and L.S. Wise, "An Indeterminate Constructor for
Applicative Programming," Conf. Record of 7th Annual A(;M 5ymp. on
the Principles of Programming Languages, Las Vegas (January lSlu).

30. W.A. Kornfield, "Combinatorially Implosive Algorithms," Comm. AU1
Vol. 25(10) (October·IS82).

31. J.H~ Patel, "Processor-Memory Interconnection for Multiprocessors,".
Proc. Sixth Int. Symp. Computer Architecture, pp.16b-1i7 (April
1979).

32. R.J. Swan, S.H. Fuller, and L.P. Siewiorek, "01*: A Modular Nul­
tiprocessor," Proc. Nat. Comp. Conf., pp .637-644 (June IS77).

33. P.C. 'Ireleaven et. al., "The Design of highly <.oncurrent <.omputing
Systems," 'Iechnical Report 126, Computing Laboratory, university
of ~ewcastle upon lyne (1578).

34. L. Foti, D. English, R.P. Hopkins, D. Kinnement, P.C. lreleaven,
and 1. Wang, "Design of a Reduced Instruction Set lvlulti­
Microprocessor System - RU1MS," Internal Report, Computing labora-'
tory, University of Newcastle upon lyne. (February IS83).

35. J.B. Dennis and D.P. Misunas, "A Preliminary Architecture for a
basic Data Flow Processor," Proc. Second Int. Symp. Computer Archi­
tecture, pp.126-132. (IS75).

36. 1. Watson and J. Gurd I "A Prototype Data Flow Computer with loken
Labeling," Proc. Nat. Compo Conf. Vol. 48 , pp.6~3-6~&. (lS79).

37. W.E. Kluge and H. Schlutter, "An Architecture for the Lirect Execu­
tion of Reduction Languages," Proc. Int. Workshop on high Level
Language Computer Architecture, Fort Lauderdale, Fla., pp.li4-1BL,
University of Maryland and Office 01 Naval Research (May 1S~0).

38. P.C. 'Ireleaven and G.F·. Mole, "A Multi-Processor Reduction lvlachine
for User-rfined Reduction Languages," Proc. Sev€nth Int. Symp.
Computer Architecture, pp.121-129 (lv~y 19&0).

39. J.W. Clark et. al., "SKIM - The SKI Reduction Machine," LlSP-f,O
(1980).

40. J. Darl:1ngton and H. Reeves, "A Reduction Machine for Parallel
Evalua tion of Applicative Languages," Proc. Conf. on Functional
Programming and Computer Architecture, MIT (Oct. lSel).

41. ·R.M. Keller et. a1.,· "A Loosely-coupled Applicative Nult1-
proceSsing system," AFIPS Conf. Proc. Vol. 48, pp.t61-S70. (ISH.).

42. J.B. Dennis, "lhe Varieties of Data Flow Computers," Proc. FirE>t
Int. Conf. on Distributed Computing Systems, pp.43G-43S. (October
1S79).

43.

- 236 -

D.},. Turner, "A t-ew· Implementation 'lechnique
Languages," Software Prac tice and Experience
(1979).

for Applicative
Vol. 5, pp.31-4~.

44. B.B. Liskov, "A Design Methodology for reliable Software flystems,"
AFIPS Conf. Proc. Vol. 41, pp.lSI-199 (1972).

45. B. B. Liskov et. al. t "CU) Reference Manual," Computer Science l1emo
161, MIT (July 19]f).

46. D.P. Friedman and D.S. Wise, "Aspects of Applicative hogramming
for File Systems," Proc. ACM (,onf. on Language Design for keliable
Software, SIGPLAN notices Vol. 12(3), pp.4~-45 (~~rch 1977).

47. M.R. Mc.Lauchlan, "A Purely Functional VLSI Layout Language, II Inter­
nal· Report fMM 90, Computing Laboratory, University of he~castle
upon lyne (Sept. 1980).

48. P. Henderson, Functional Programming Applications and Implementa­
tion, Prentice Hall International (ISBO).

49. D.S. Wise, Private Communication.

50. D.D. Chamberlin, "The Single Assignment Approach to Parallel Pro­
cessing.," Proc. Nat. Compo Conf. Vol. 39 , pp.2t3-269. (ISil).

51. L.G. Tesler and H.J. Bnea, "}. Language Design for Concurrent
Processes.," Proc. Nat. Compo Conf. Vol. 32 , pp.4CJ3-4C&. (lS6~).

52. B. Randell, "The Structuring' of Distributed Computing Sys tems,"
Technical Report lSI, Computing Laboratory, University of ~e~cas­
tIe upon lyne (1983).

53. V.M. Glushkov et.· al., "Recursive Nachines and tomputing 'lechnol­
ogy," Proc. IFIP Congress, pp.65-70 (1974).

54. R.M. Barton, L~ Patent Specification 1 503 321-325.

55. W. Wilner, "Recursive Machines," Internal Report, Xerox ralo Alto
Research Centre (1980).

56. D.M. Ritchie and K. 'Ihompson, "The UNIX Time-Sharing System," Comm.
ACM Vol. 17(7), pp.365-375 (July 1S74).

57. The Conference on Data System Languages (COtAS)L) Db'lG report,
Octo ber. 1569.

58. A. Hoare, "Communicating Sequential Processes," Comm. AtM Vol.
21(8), ~p.66f-677 (August 78).

5S. D. May and R. Taylor, "OCCM-l," 1 583 Conf. on Parallel Processing
(IS83).

- 237 -

60. D. lngalls, "'Ihe EE121ltalk-76 Programming System tesier! and lmple­
mentation,lI Froc. SIGFLAN Conf. on the l'J:inciples of Frogramming
Languages, pp.9-15. (1978).

fl. D.A. 'lurner, Private Communication.

62. C.L. Seitz, "System 'liming," in lntroduction to VLSI Systems, cd.
C. Nead ;md L. Conway, l,ddison liesley (15(0).

63. D.R. Rrolombridge, 1 .• F. l-'Larshal, and B. Randell, lillie 1-.ewcastle Con­
nection or na:Xes of the World unitE::," Soit"'are Practice and
Experience Vol. 12 (lSS2).

64. D.A. Fatterson and C.li. Sequin, "RISC 1: A Reduced Instruction ~et
VLS I Computer til Proe. Eighth lnt. Symp. Computer .lIrchi tec ture,
pp.443-457 (IS8l).

65. W. Wilr,er, "lnstruction Exeeution,1I lntern:!.l Report,
Alto Research Centre (ISSl).

lerox 1'al0

66. H. Simon, "'Ihe Architecture of (.omplexity,1I Proe. lIluerical1 l'hilo­
sophical Society Vol. 106(6) (1962).

67. M. vanEmden and R. Kowalski, II Semantics of Prolog as a Frogramming
Language," Journ. ACH Vol. 7(3), pp.733-742 (1S76).

	348164_001
	348164_002
	348164_003
	348164_004
	348164_005
	348164_006
	348164_007
	348164_008
	348164_009
	348164_010
	348164_011
	348164_012
	348164_013
	348164_014
	348164_015
	348164_016
	348164_017
	348164_018
	348164_019
	348164_020
	348164_021
	348164_022
	348164_023
	348164_024
	348164_025
	348164_026
	348164_027
	348164_028
	348164_029
	348164_030
	348164_031
	348164_032
	348164_033
	348164_034
	348164_035
	348164_036
	348164_037
	348164_038
	348164_039
	348164_040
	348164_041
	348164_042
	348164_043
	348164_044
	348164_045
	348164_046
	348164_047
	348164_048
	348164_049
	348164_050
	348164_051
	348164_052
	348164_053
	348164_054
	348164_055
	348164_056
	348164_057
	348164_058
	348164_059
	348164_060
	348164_061
	348164_062
	348164_063
	348164_064
	348164_065
	348164_066
	348164_067
	348164_068
	348164_069
	348164_070
	348164_071
	348164_072
	348164_073
	348164_074
	348164_075
	348164_076
	348164_077
	348164_078
	348164_079
	348164_080
	348164_081
	348164_082
	348164_083
	348164_084
	348164_085
	348164_086
	348164_087
	348164_088
	348164_089
	348164_090
	348164_091
	348164_092
	348164_093
	348164_094
	348164_095
	348164_096
	348164_097
	348164_098
	348164_099
	348164_100
	348164_101
	348164_102
	348164_103
	348164_104
	348164_105
	348164_106
	348164_107
	348164_108
	348164_109
	348164_110
	348164_111
	348164_112
	348164_113
	348164_114
	348164_115
	348164_116
	348164_117
	348164_118
	348164_119
	348164_120
	348164_121
	348164_122
	348164_123
	348164_124
	348164_125
	348164_126
	348164_127
	348164_128
	348164_129
	348164_130
	348164_131
	348164_132
	348164_133
	348164_134
	348164_135
	348164_136
	348164_137
	348164_138
	348164_139
	348164_140
	348164_141
	348164_142
	348164_143
	348164_144
	348164_145
	348164_146
	348164_147
	348164_148
	348164_149
	348164_150
	348164_151
	348164_152
	348164_153
	348164_154
	348164_155
	348164_156
	348164_157
	348164_158
	348164_159
	348164_160
	348164_161
	348164_162
	348164_163
	348164_164
	348164_165
	348164_166
	348164_167
	348164_168
	348164_169
	348164_170
	348164_171
	348164_172
	348164_173
	348164_174
	348164_175
	348164_176
	348164_177
	348164_178
	348164_179
	348164_180
	348164_181
	348164_182
	348164_183
	348164_184
	348164_185
	348164_186
	348164_187
	348164_188
	348164_189
	348164_190
	348164_191
	348164_192
	348164_193
	348164_194
	348164_195
	348164_196
	348164_197
	348164_198
	348164_199
	348164_200
	348164_201
	348164_202
	348164_203
	348164_204
	348164_205
	348164_206
	348164_207
	348164_208
	348164_209
	348164_210
	348164_211
	348164_212
	348164_213
	348164_214
	348164_215
	348164_216
	348164_217
	348164_218
	348164_219
	348164_220
	348164_221
	348164_222
	348164_223
	348164_224
	348164_225
	348164_226
	348164_227
	348164_228
	348164_229
	348164_230
	348164_231
	348164_232
	348164_233
	348164_234
	348164_235
	348164_236
	348164_237
	348164_238
	348164_239
	348164_240
	348164_241
	348164_242
	348164_243
	348164_244

