
' .. _._ .. _ ... _-----
r\EWCA~ 1 LE :"::'Ci:'J TYI£
U~:lV~~:~'iTY lI2?:.~Y 1-------_··

ACCESSION No.

83-10990

LOCATION

GEt'ERAL rU;U'OSE DEC~~;~:T&\LISED Cm~rlJ"l'F!{ /,RCHI'ILC'IUX T"e:!>'~

L.:l,,2..

Richard F. Hopkins

Computing laborato:ry, University of !\c\Vcastle upon lyne

l'h .D. lhesi s 1$£3

· .6:.8 S 11:1. C'l"

lhis thesis is concerned ~ith decentrnliscd highly concurrent
computer nrchitectul"e£ ~hich may eventually provide alternatives to
the centralised sequential erchitectures of conventional g~neral­
purpose computers. illere is currently consiclerable research into
such alternatives, for which the principal motivations sre the use
of concurrency to improve performance, the support of various
novel, very high level programming languages, and the exploitation
of very large scale circuit integration (VLSI). ihe different pro­
posed alternative architectures are surveyed and analysed, and
architectures synthesising their underlying concepts are proposed.

The thesis consists of three main parts. Ihe first part is an
analysis and survey of proposed general-purpose decentralised
architectures. lhree classes of architectures are identified s
namely control flo~, data flow and reduction. ihe analysis shews
that each class has particular, complementary, streng"ths and
~eaknesses.

The second and third parts cover the develoIJment of t\\O archi­
tectures \\hich com tine the different concepts underlying control
flow, data flo~ and reduction in order to overcome the indi\ddual
weaknesses in each. 'Ihus the second part presents a IIdata/control
flow" architecture lo,;hich is a syntr.esis of data flo... and control
flow. lherc is an experimental implementation of this architecture
in which 8 numb.::r of standard microcomputers cooperate in the ex e··
cution of a program.

In contrast the third part presents a "recursive control £10 ... 11

(ReF) architecture ~hich is a synthesis of control flow, dat& tlo~
and reduction. 'Ihis architecture is based on a set of ECner&1
principles of recursive structuring ",;hich are intended to l:.rovicJe a
common basis for decentralised system organisation at Vari(HlS
architectural levels, ranging from VLSI design to geographically
distributed networks. 'Ihe RtF work is thus not only an invcstigu­
tion into the possibility of incorporating control flo~, dat& flo~
and reduction concepts in a single parallel computer but &100 an
initial investigation of the application of the recursive structLr­
ing pril1d pIes. lhese two aspects of the ~ork are closely rf!lated
in that recursiVE structuring facilitates the modularity ~hich is
required for the synthesis of control flow, data flow and reduction
into a coherent overall system.

lIn implementation of the ReF architecture, using a numLer of
idEntical Plicrocoml'utet's, is proposed. ihe detailed design of a
special-purpose LSI microcomputer chip for this lm~lementation is
currently being Froduced.

(1)

,

I gratefully ackno~ledge the diligence and interest taken in this
research by my colleagues in the Computer Architecture Research Group,
principally Philip 1releaven and Paul Rautenbach, aud my thesis supervi­
sor Brian Randell. Particularly 1 thank I'hilip 'Ireleaven and Brian Kan­
dell for having patiently read various drafts of this thesis and having
made some improvement in my ability to ""rite.

1bis research \\'ould have been imIiossible but for financial support
from the Science and Engineering Research Council of Great hitain both
for myself as a research student and research bssociate, and for the
computing facilities that I have used.

(11)

cmtlE!~TS

1 INTRODUCTICN.......... ~ _ ,. 1

2

2.1

2.2

2.3

2.4

3

3.1

3.2

3.3

3.4

• 1
.2

Background.
Thesis Gutline.

ANALYSIS AND S~R'~Y.

Operational Models ••
.1 Control Flow.
.2 Data Flow.
.3 Reduction. . .
.4 Discussion.· •

· • •
• 1

5

~ . . - ,.9

,. • • 9 . . • .10
• • 13
• • • • 14IS

Program Organisation. ,. • • .. •• ,. .24
.1 Data Structures. • • • • 24
.2 Conditionals. • • • •• •• • ••• 28
.3 Procedures and Iteration. • •• 31
.4 Non-Dete~inocy.

Y~chine Organisation
.1 Classification.
.2 Control Flow.

and Implementations •. • 1.3
• • •• 43

• • • • • .47
.3 Data Flow. • • • 4(;
.4 Reduction •• • • ~o

F:valuation. . . ,. . • • ,. · .. .53
.1 Expressive Fower. • .53
• 2 Concurrency and Ferforroance • · 54

':I Exploiting VLSI. · 5~ .-
• 4 Generali ty • • • .56

CCM.eINING DATA FLOW l>.1m CmmOL FLOW. .. • .59

Operational llo~el. • . • • • • • • . • ,. ,. fO

Program Ocga.nisatj.on. • • • .. • • • • ,. •• 65
.1 Data Structures. • 65
.2 Conditionals. •• .t5
.3
.4

Iteration and Procedures.
Non-Determinacy.

. . .0
• 71

11<:Jcbine Or~a!lisation and lmplementation. • 73

Sum1l:l,'ll:Y and Discussion •••• _ 76

(iH)

4 CE~EI~ALISING CONTROL FLOW. 79

4.1 Operational Model 80
.1 Storage Organisation •••••••••• EO
.2 Addressing •• 0 •••••••••••• &2
.3 Program Representation. • •••• ot6
.4 Program Execution ••••••••••• tS
.5 Further Examples •••••• 0 ••••• S4
.6 Discussion •••••••••••••• 99

4.2 Frogram Organisation. • •• .. 102

4.3

5

.1 Notation. • • • • • • • 102

.2 Including Control Flow, Data Flow
and Reduction. • • • • .1GS

.3 Data Structures. • • • • • • • .116

.4 Conditionals ••••••••••••• lIt

.5 Iteration •• ~ • • • • • • • • •• .120

.6 Procedures •••••••••••••• 122

.7 Higher Order Procedures •••••••• 126

.S ~on-Determinacy. • • • • • • • •• .131

.9 Discussion •••••••••••••• 133

Machine Organisation.. .. • • .. • • 135
.J General Structure ••••••••••• 136
.2 Special-Purpose Computing Elements •• 142

?
• 4

Extensibility •••••••••• 0 0

Locality •••••••••••••••
.144
146

Stmmtary and Disc'llssion. • 149
.J Combining }iodels. • •••••• 14S
.2 Recursive Structuring ••••••••• 152

RECURSIVE SYSTEMS IMFLEMENTA1IONS.157

5.1 DIe LECO Design 158
.J Memory •••••••••••••••• 160
.2 Processing. • • • • • • • •• ~ 161
.3 Activity Migration and

Resource Allocation. • •• 163
.4 Communications ••••• 0 • • Jt7
.5 Control Elements. • • • • • • • • 171
.E Multi-level Orianisation ••••••• 173
.7 Discussion ••••••• ~ •••••• 175

5.2 UNIX llnited ISS
5.3 DASIX. • .. • • • 191
5.4 RII~S 192
5.5 R.M. • • • • • • .196
5.6 DiEcussion. 199

(iv)

.6 CONCLUSlcr~S • • • .. • ·w 201
~

.1 Summary and Discussion. • • . • • • . .207

.2 Current snd Future Research. 214

APPENDIX A - A ReF If.achinc Co~e 219

A.I MDchine l1odel ••••••• ' •••••••• 21S
A.2 Delimiters. • • • • • • • • • • • • 222
A.3 Data ltems •••••••••••••••• 222
A.4 Access Instructions •••••••••••• 223
A.5 Addressing Instructions •••••••••• £24
A.6 Operations •••••••••••••••• £26
A.7 Activity Creation. • • • • • • • • •• .229
A.a Exception Handling •••••••••••• £30
A.9 An Fxample. • • • • • • • • • • 231

REFERENCES.. .. •• • • .. .,. .. .• .. • .. ,. 233

(v)

1
2
3
4
5
6
7
C
9
10
11
12
13
14
15
16
17
18
IS

20
21
22
23
24

25
26
27
2e
29
30
31
32
33
34
35
36
37

Al
A2

INDEX '10 FIGURES

CIll,?TF.R 2.
Conventional Control Flow. • • • • • • . . . · • • • It-
Multi-thread Control Flow. • • • • • ••• 11
Parallel Control Flo.. • • • • • •••••••••]2
Data Flow. ••• 13
String Reduction ••••••••••••••••••••••• • li
Graph Reduction. • • • • • • • • • • • • • • • • • •••• lb
Control and Data Mechanisms •••••••••••••••••• 20
Unbounded Bata Structures. • • • • • • • • • • • • • • •• 27

· . · . . • •
')(

• ,,;I Two Forms of Conditional in L?ta Flow ••
Procedures and Iteration in Lata Flo~ •• . . • • · . . · . . • 33
.Procedures in String Reduction. • • • • • • •••••••• 35
Higher Order Procedures in Reduction ••••••••••••• ~37
Non-determinacy in Data Flow •••••••••••••••••• 40
Machine Organisations. • • • • • • • • • • • • •••••• 44
Some Novel Architectures •••••••••••••••••••• 47
Packet Circulation for Multi-thread Control Flo~ ••••••• • 4t
Packet Circulation for tata Flow •••••••••••••••• ftS
Expression Nanipulation for String Reduction •••••••••• 51
Pointer Reversal for Implementing Graph Reduction ••••••• 52

CIlAPTF.R 3
Data/Control Flow. • • • • • • • • • • • • • • • ~l
Conditionals in DCF. • • • • • • • • • • • ••••••• 66
Procedures in DCF. • • • • • • • • • • • • • • • • • • • tS

-" Non-Determinacy in tCF ••••••••••••••••••••• /£

DCF Machine Organisation and Implementation. • • •• •• 73

CR..\PTER 4
Addressing Eelectors in RCF •••••••••••••••••• c~
Progra.m Representa tion in keF. • • • • • • • • • • • • • • • • c~
Program Execution in ReF •••••••••••••••••••• SI
An ReF Instruction ~hich Cperates on Streams •••••••••• ~,6
An RCF Instruction with Programmed (,perator and Arg\'i!Uents ••• S7
Different Organisations for Expression Evaluation in ReF ••• lIt
Unbounded rata Structures in ReF ••••••••••••••• IIi
Three Forms of Conditional in ReF ••••••••••••••• IIS
Iteration l1sing FlFO Queues in ReF •••••••••••••• ILl
Procedures in ReF. • ••••••••• 0 ••• 0 • 0 •• 0 .IL;
Higher Order Procedures in ReF. • • • • • • • • • • • • • • • 127
Non-determinc::.cy j n RCF. • 0 • •

Recursive }racbine Crganisatiollo
.

CllAP1ER. 5
LEGO lmplementation. • • • • • •• • ••
Execution of Iterative Data Flow in ReF ••
UNIX and tNIX United Filestore Structure.

APPElmn A
The Operators ••••••••••••
~'lachine Code for part of Example in

(vi)

• • •
Figure

... • 132

· . .
• • • • •

• •••):;7

• • • • .15 S
• 0 •• It-I

• • • • • • • ••• le7

• • • • • · . . . on7
3S. • • • • • • • .232

1. n~'TRODUCTI0N

1.1. Eackground

Conventional von Neumann architectures crin be characterised by a

number of "von Neumann principles":

1. linear organisation of fixed size memory cells

2. one level address space, where each address is globally unique

3. low level machine code in which instructions are elementary opera­

tions performed on elementary operands

4. sequential, centralised control of execution

5. centralised machine organisation of a single computer incorporating

processor, communications and memory

Although these principles have for over 30 years provided an adequate

basis for general-purpose computers, there has recently been much

interest in possible alternative general-purpose architectures. lhcre

are currently at least 20 research groups ~orking cn experimental, non­

von Neumann architectures in which one or more of the above principles

are modified.

'lbere are three main, related, motivations for this interest in

novel architectures. Firstly there is the continUing demand for

increased computing pOwer, parti.cularly in applications such as \.cather

forecasting and wind tunnel simulation. lhe technologj~s available (snd

ultimately the natural laws of physjcs) limit the pos6ible perfornance

- 2 -

attainable for a single processor, and thus the ability of convention­

ally organised high-speed computers to meet these demands[l]. TIle util­

isation of a large number of processors cooperating ona single task

offers the potential of ·overcoming the technological performance limita­

tions.

Secondly there is the interest in new classes of very high level

programming languages, particularly

languages[2,3], and logic languages [4] ,

functional

which are

or applicative

claimed to have

greater expressive power than conventional languages and are intended to

provide easier means of producing reliable programs. Whereas existing

sequential assignment-based languages are well matched to the von Neu­

mann architecture, these new classes of language are based on radically

different principles, and implementations on conventional architectures

tend to be relatively inefficient. lUi essential characteristic of

these languages is that a program does not specify a sequence in which

statements are to be executed and this naturally leads to highly con­

current implementations.

Thirdly there is the need to exploit very large scale integration

(VLSI) i.n the design of general-purpose cOITlputers. 11lCre are a number

of considerations in VLSI design which make it desirable to find an

alternative to conventional architectures[5,6]. In particular there is

the need to implement storage and processing functions close together on

the same chip in order to minimise com:n'.mications. These considerations

lead to architectures such as [7] in \o7hich a large powerful computer is

constructed from a multiplicity of simple single-chip microcomputers

each incorporating a general-purpose processor and local memory.

- 3 -

Research projects motivated by one or more of the above considera­

tions have resulted in a number of experimental special-purpose and

general-purpose architectures which are able to utilise many processors

operating concurrently on a single task under decentralised control. In

the special-purpose decentralised architectures the hardware organisa­

tion is closely matched to the concurrency structure 6f a particular

class of tasks, as for example in Systolic Arrays[8]. The concern of

this thesis however is with general-purpose decentralised architectures

which can be programmed to perform effectively, and exploit implicit

concurrency in, a large range of tasks.

Three classes of general-purpose computer architectures can be

identified as control flow, data flow and reduction. These classes

differ fundamentally in their operational models, that is in the way

instruction execution is initiated and the way data is communicated

between instructions. In control flow the execution of an instruction

is triggered by the flow of control through the program, and data is

communicated between instructions by being stored in shared memory

cells. (Conventional von Neumann architectures have a single flow of

control ~~ereas control flow architectures providing concurrency' have

multiple flows of control.) In data flow the execution of an instruction

is triggered by the availability of the input data that it uses and when

executed an instruction stores its result directly into thoseinstruc­

tions which use that result. In reduction the execution of an instruc­

tion is triggered by the requirement for the output data which it gen­

erates and wl1en executed an instruction is replaced by (is reduced to)

its result. The single nost important characteristic of the novel data

flow and reduction models is that they are implicitly concurrent. If

- 4 -

several data flow instructions have all their inputs available then they

can all be executed concurrently. If one reduction instruction requires

the outputs from several other instructions then those instructions can

be executed concurrently. In contrast, the concurrency provided by mul-

tiple flows of control is explicitly controlled by the programmer.

Parallel computers form one of two major fields of decentralised

computing systems research, the other being that of geographically dis-

tributed computer networks. 'There, is some degree of relationship

between these t\-'O fields. The design of individual computers may be

affected by the likelihood of their being connected into computer net-

vlOrks. Similar functions may be found in both types of decentralised

system, for example to organise the cooperation between concurrently

executing program units, and the decentralised allocation of system

resources. There is the possibility of the same microcomputer being

used as one of the. processors for a general-purpose parallel computer,

as the main processor of a node in a local area network, or as a com-

ponent of an embedded system such as an on-board flight control system.

This latter class of system could be considered as either a special-

purpose parallel computer or a small-scale computer netvlOrk. 10us the

distinction between parallel computer architecture and computer network

architecture is becoming more a matter of degree than fundamental

difference. These considerations have contributed towards developments

such as the "building sized computer" of [9], the Intcl 432[10] and

transputers [11]. In terms of the threel classes of archi tectures identi-

f~ed above, these developments are all based on the conventional control
-

flow model (rather than one of the novel, implicitly concurrent models)

and carry forward most of the von Neuman principles.

- 5 -

1.2. Thesis Outline

The principal work reported here consists of an analysis of control

flow, data flow and reduction computers' and the synthesis of their

underlying concepts, together with the application of principles of

recursive structuring, in the design of general-purpose decentralised

computer architectures. The application of recursive structuring prin­

ciples in the context of geographically distributed computer networks is

also considered. This research constitutes a major part of the work of

the Computer Architecture Research Group at the University of Newcastle

upon Tyne. Nuch of the work covered by this thesis, together with

related work of other members of the group, has been previously reported

elsewhere[12-18].

The first part of the thesis, Chapter Two, is an analysis and sur­

vey of existing control flow, data flow and reduction architectures.

The basis for this analysis is the classification first developed by

Treleaven and myself in [14] and subsequently expanded by ourselves and

Brownbridge in a broad survey of data flow and reduction computers[16j.

This Chapter repeats and further develops those parts of [16] to which I

made a major contribution. It covers for each class of architecture the

operational concepts on which it is based, the ways in ""hich machlne

code programs are organised, and the ways in which machine resources are

organised. The analYSis shows that a fundamental characteristic of an

architecture, largely determining its particular strengths and

w~aknesses, is the choice of mechani.sms provided for propagating control

and data through a program. The strengths and weaknesses of control

flow, data flow and reduction are largely complementary which suggests

- 6 -

experimenting with combinations of the concepts and mechanisms found

separately in each.

All the novel computer architectures discussed in this Thesis, data

flow and reduction covered .in Chapter 1 and the experimental archit€c-

tures developed subsequently, provide for computing machines that are

Universal, in the Turing Machine sense. Thus the only ultimate criteria

for their evaluation is their "efficiency" in terms of hardware cost,

program execution performance, and production costs of software to pro-

vide an effective user interface and to organise the effective exploita-

tion of machine resources. Quantitative evaluation of an architecture

in those terms requires extensive experimentation on "realistic" imple-

mentations. However at the time of writing, development of novel data

flow and reduction architectures has only progressed to the point of

"demonstration" rather than realistic implementations. Thus they can as

yet only be evaluated in qualitative terms of particular conceptual

strengths and weaknesses which may be expected to affect their quantita-

tive characteristics. These comments apply even more to the highly
..

experimental arc~itectures covered in the subsequent Chapters which

build on the concepts of data flow and reduction and are in an even ear-

lier stage of development.

The second part of the thesis, Chapter Three, presents an experi-

mental architecture which is a synthesis of data flow and (concurrent)

control flow[13,15]. The original idea of sllch a syn.thesis was first

suggested by Treleaven and developed into this architecture principally

by Rautenbach and myself. This Chapter is a summary of the full report
. .

on the architecture[12] covering its operational model, program organi-

- 1 -

sation and machine organisation. Implementations of the architecture,

based on several cooperating microcomputers, were subsequently developed

by other members of the Computer Architecture Group and are reported on

in detail elsewhere[19,20].

The third part, Chapters Four and Five and Appendix A, presents a

second experimental architecture, the recursive control flow architec­

ture, which is a synthesis of control flow, data flow and reduction

obtained by general ising the conventional von Neuman architecture. This

generalisation is based on the use of recursive decentralised struc­

tures, and involves the replacement of all the von Neuman principles by

corresponding "recursive principles":

1. hierarchy of variable length memory cells

2. contextual address space, where an address is a variable length

sequence of selectors like a telephone number

3. recursive machine language in which instructions may contain ele­

mentary or complex operations or operands

4. parallel, decentralised control of execution

5. network of computing elements with each element incorporating

processor-communications-memory and a group of computing elements

being functionally equivalent to a single computer

Chapter Four covers the architecture's operational model, its program

organisation'and machine organisation. Also, towards the end of Cbapter

Four there is a discussion of the applicability of the recursive control

flow operation model and machine organisation in the context of

- 8 -

geographically distributed netYlOrks. Chapter Five covers a proposed

hardware implementation of the recursive control flow architecture using

large numbers of a special-purpose LSI chip. Appendix A defines a

machine code instruction set for this implementation. Chapter Five also

covers a number of other computing system implementations which incor-

porate similar recursive structuring concepts, including both a

general-purpose parallel computer and a computer network system.

The material contained in these two·Chapters and the Appendix is

original to this thesis and has not been published elsewhere, although

it is based on outline ideas proposed by Treleaven and myself in [17].

The proposed implementation is now being developed by another member of

the Computer Architecture Group in order to produce a detailed chip

design.

Chapter 6 presents the main conclusions of the thesis. It is

claimed that the recursive control flow architecture enables the dif­

ferent styles of control flow, data flow and reduction programs to be

easily combined, so that each can be used where appropriate. Also that

the architecture in general provides a promising basis for future

general-purpose decentralised VLSI computing systems, and warrants

further development. Further work to be done and possible lines of

future development are then identified.

- 9· -

2. ANALYSIS AND SURVEY

This Cbapter covers recent rcscarch into general-purpose decentral­

ised architectures, particularly in the areas of data flow and reduc­

tion. Currently there are many research groups working in these areas,

a number of whom have produced experimental machine designs[16]. The

purpose of this Chapter is to identify the concepts and relationships

within these areas of research and to discuss the advantages and disad­

vantages of different approaches. The Cbapter starts by introducing the

operational models underlying control flow, data flow and reduction

architectures, then discusses ways in which the architectures are pro­

grammed and implemented, and finally evaluates their main advantages and

disadvantages.

2.1. Operational Models

Control flow, data flow and reduction architectures are each based

on different concepts of the way programs are represented and executed

and the way control and data are passed from one part of a program to

another. In order to illustrate and compare these basic concepts I will

discuss the representation and execution of an example program fragment,

the statement a:= (b+I) * (b-c), in terms of simple operational models

for each class of architecture. For the operational models an abstract

machine code representation will be used in which an instruction is a

sequence of arguments delimited by brackets. For example the (b+!)

might be represented as the machine code instruc tion (+ b 1 tl) with

four arguments, the last of which, tI, identifies the destination of the

result. At a particular point in the executioa of a machine code

- 10 -

program there will be (one or more) active instructions to be eXecuted.

For example in a conventional architecture the instruction }:-ointed to by

the program counter is the single active instruction. In discussing the

operational models, the progress of execution through a program will be

indicated by marking a currently active instruction with a I, referred

to as an "activ:ity". For example 0+ b 1 tl) means that the + operator

is about to be executed and the activity, . I, can be thought of as

representing an actual processor to execute that operator.

2.1.1. Control Flow

Figure 1 shows a conventional control flow representation for the

example a:= (b+I) * (b-c). Ihere is a sequence of instructions, 11, 12

and i3, and some shared memory cells, b, c, tl etc., for passing data

betwe0n instructions. Each instruction (e.g. 11) consists of an opera-

tor (+), input arguments each of which may be a literal (I) or a refer-

ence (b) to a memory cell, and a reference (tl) to the memory cell for

the result. Ihe references to memory cells are also sho~n as solid

arcs.

---~.--- ----- - --)-.. _----- ------~. --- - - -- --~
i1: i2: i:':

••• (+ l~~/t2
(4) (2) (5) ()

a) •••

~
()

b: c: tl: t2:. a:

Figure 1 Conventional Control Flow

There is a single activity, I, shotvn at i2, "'hich passes from one

- 11 -

instruction to the next along the thread of control shown by dottE:d

arcs. To execute· an instruction, addressed operands are loaded from

memory, the result is computed as defined by the operator, the result is

stored back in memory, and the activity then implicitly passes on to the

next instruction in sequence.

There are also forms of control flow which provide concurrent pro-

gram execution. In the "multi-thread" form of control flow, conven-

tional control flow is augmented by special control operators for creat-

ing and synchronising multiple threads of control, such as the FORK and

JOIN shown in Figure 2. After the execution of the FORK there are two

activities, one at its implicit successor, 11, and one at the addressed

instruction, 12. Instructions 11 and 12 thus execute concurrently.

Both activities will then reach the JOIN instruction, either via the

explicit GOTO following 11, or as the implicit successor of i2. 111e

Jom synchronises the two activities and then execution c.ontinues with

its implicit successor, the multiply instruction. Apart from the inelu-

sion of such special control operators multi-thread control flow is

similar to conventional control flOtI1.

~--..-----..... ,,-----,". "" ><~\ '.-:b.. ... ___ _ . ___________ ~.,; ,IIff\. _ _____ ~,.---~----,~
il: 12: 13:

••• (FORK i2) (I + b 1 tl) (GOTO 13) (I - b c t2) (JOIN 2) (* tl t2 a) •••

+r-~~t . (41 (2) rS) () ()
b: c: tl: t2: a:

Figure 2 - UnIt i-thread Control Flm#

- 12 -

Another form of concurrent control flow, shown in Figure 3, is'

"parallel" control flow in whIch instruction execution is controlled by

explicit control signals or control tokens, rather than there being

implicitly sequential threads of control. All instructions can poten-

tially execute in parallel, b~t each instruction requires some nlwber of

control tokens from other instructions before it can actually execute.

In Figure 3 each? in an instruction is a control argument representing

the requirement for a control token. Hhen an instruction has executed

it transmits control tokens to successor instructions identified by its

final reference arguments (the flow of control tokens is represented by

dotted arcs). A reference for a control token, such as 13/2 in 12,

specifies a particular argument position, 2, in a particular instruc-

tion, :1.3. This fonn of control flow is logically equivalent to multi-

thread control flow, with multiple successors (as in 14) corresponding

to a FOIllr, and multiple control arguments (as in 13) corresponding to a

JOIN.

i4:
(• .:.o_!.,l / 1 i2(1)

--- -- I
f-- '¥

(1 ? + b 1 tl i3/1) (I ? - b c t2 i3/2)
11: I \ J i2: //- _/---

I .., --.
, ---

(I , f * tl t2 a 000)

i3: I \"

'f',K
(4)

b:

JL
(2)

c:

~~
(S)

t 1:
1 ~ ~ ()

t2: a:

FIgure 3 - Parallel Control Flow

- 13 -

·2.1.2. Data Flow

Data flow archHecturcs provide highly concurrent program execution

without the programmer needing to organise the concurrency eXf,licitly •

. lhis is achieved by bas~ng execution on the availabiU ty of data so that

concurrency is implicit any instruction can execute if all its

operands have been produced.

(~) ~dne ~ representation (!) graphical representatio~

Figure 4 - Data Flow

Figure 4 shows a data flow program for the same example, using in

(a) a machine code representation and in (1:;) a more usual &r8Fhical

representation (data flow programs are often referred to as data flo~

graphs, with the instructions being referred to as nodes). An instruc-

tion (e.g. ill consists of an operator (+), input arguments each of

~hich may be a literal (1) or an unkno~n (1), and output argtunents each

o{ which is a reference (13/1). lIn output reference identifies a desti-

nation instruction (13) and a parti~ular \.mkno"n aq;\.rrnent position (1).

(These references specify the flo~ of data through the program "hich 1s

- 14 -

also shown by solid arcs.)

All instructions are notionally active and can potentially execute

in parallel, execution being constrained by the availability of data.

~1en an instruction (e.g. 14) has executed it transmits its result (the

value of b, i.e. 4) as data tokens to the other instructions using that

result. (Data tokens are shown as black dots flowing down the arcs.) A

data token overwrites an unknown in the destination instruction, thereby

making its value available to that instruction. w~en all of an

instruction's operands are available, i.e when all unknowns have been

replaced by results, it can execute, computing its resul t \\Thich is then

transmitted to further instructions. (In terms of the graphical

representation, an instruction executes when a data token is present on

each of its input arcs and places its result on all its output arcs.)

2.1.3. Reduction

In data flow and concurrent forms of control flow, the ~ajor diver­

gence frOM conventional control flow is in providing for concurrent pro­

gram execution. These architectures retain the conventional form of

program representation in which a program is a collection of fixed size

instructions whose arguments are primitive operators and operands. In

contrast, the principal concern in reduction architectures is the direct

support of very high level applicative programming, which motivates a

different fonl of program representation. In reduction an "instruction"

is an expression comprising a function or primitive operator and its

arguments. Each argument Day be a simple operand or a nested expres­

sion. A program is a set of named expressions each defining a value.

- 15 -

For example the program fragment -

a :£ (b+l) .* (b-c) where b s 7-3, c ~ 2

gives a definition for a using subsidiary definitions for band c.

Unlike a named variable of control flow, a named definition has a fixed

value (possibly determined by parameters). Thus a reference such as b,

its defining expression, 7-3, and its value, 4, are all 1l1athematically

equivalent and can be freely interchanged without affecting the result

of the program. Tne interchangeability of a reference and the refer-

enced expression is an important property known as "referential tran-

sparency". This property is claimed to facilitate both informal under-

standing of a program and its formal manipulation in for eX.:lT!lple program

verification.

In executing a reduction program instructions are progressively

eval uated and replaced by their resul ts until the program has been

reduced to its simplest form. Reduction architectures differ both in

the order in which instructions are selected for evaluation and in the

way in which instructions are represented and manipulated. TIle order of

evaluation is not explicitly controlled by the programmer but is deter­

mined by an implicit It computation rule". There are a nwnber of possible

computa tion rules [21], the main differences being between It innermost"

and "outermost" rules. &1 innermost computation rule only selects

instructions with literal (fully evaluated) operands (initially the

instruction defining b in this example) • The evaluation of these

instructions will result in other instructions being selected. An

outermost computation rule starts '-lith the instruction for the required

resul t (the mul ti.plication in this example) and is recursively applied

- 16 -

to evalua te, the' required operands. Every computation rule produces the

same result for a prograI:1, if the program terminates with that rule.

However there are programs which terminate with an outermost computation

rule but not with an innermost rule, and subsequently I will concentrate

on reduction architectures using outermost computation.

There are two forms of expression representation and manipulation

found in reduction architectures, referred to as string reduction and

graph reduction. In string reduction, as illustrated in Figure 5(i), an

expression is represented as a string of symbols comprising operators,

operands and references to other definitions, with structure represented

by delimiter symbols (and). As the expression is evaluated the refer-

enced definItions are copied into the string. In graph reduction, as

illustrated in Figure 6(i), the components of an expression are always

separate definitions, referenced by the expression. Referenced defini-

tions are executed in place rather than being copied into the referenc-

ing expression.

" Figure 5 shows some stages in the execution of a string reduction

program. At (i) the evaluation of a is required, indicated by an

activity at its outermost instruction, the multiplication. The evalua-

tion of an instruction, such as the multiplication, demands the evalua-

tion of its operands, indicated in (ii) by activities at their opera-

tors, and then suspends until their evaluation is complete. Where an

operand is a reference to a separote definition, such as the references

band c in (~i), a copy of the deHnitiou is taken, replacing the refer-

ence, .and its evaluation is then demanded (iii). Where an instruction

has purely literal operands, as in the first subtraction in (iii), it is

- 17 -

executed and replaced by its result so that the result is stored

directly as a literal into the instruction using it (iv). When all an

instruction's operands have become literals it is re-enabled and exe-

cuted as shown in (iv) - (vii).

b: c:
(- 7 \)2)

(1) a: f
(l * (+ b 1) (- b c))

(11) <I * (l+bl) (1- b c))

JJf r~~!~
(l +~ 1) (iii) (I * (! - (I - 7 3) 2))
~

~" ."
(iv) (I * ~ (1-~2))

~~ j-lt'
W (I * 5· (I - 4 2))

~
)t~ po.

~) <l * 5 2 ~ \ 'I\f

(~)
f
10

Figure 5 - String Reduction

Figure 6 shows some stages in the execution of a graph reduction

program. At (i) the evaluation of a is required, indicated by an

activity at its operator. The evaluation of an instruction demnnds the

evaluation of instructions referenced by its input arguments, and then

suspends. In (ii) such demands for evaluation have thus propagated

throughout the program. Each activity at an instruction represents a

demand for its result and the dotted arc represents the source of that

demand which has to be re-enabled when the demanded instruction has been

- 18 -

-
evaluated. A demanded instruc tion with purely literal operands, such as

b in (li), is executed and replaced by its result so that the instruc-

tions, tl and t2, referencing it then reference the actual values for

their operands (iii). Those instructions are re-enabled, their operands

loaded, and the instructions replaced with the results, as shown in

(iv). Any instructions which are no longer referenced, such as band c

in (iv) are deleted. In (v) the evaluation of a is complete, and all

intermediate results in that evaluation have been deleted.

~---~--
(i) (ii)

b:(- 7 3) c:(2)

tl:(+ ~ t2)-b l
b:(II - 7 3) c:(I2)

/' " " " " " " "" /' ':Ak
tl:(l + b 1) t2:(1 - b c)

,\1
a:(I * tl t2)

..... "
..... "
'~ Jt:.//

a:(l * tl t2)

b:(114) c:(12)
/ "J ,," " /

~ 'A,)!
tl:(I + b 1) t2:(1 - b c) " /' , "

..... ~ .,1:.'/

a:(l * tl t2)

{

tl:(I5) t2:(I2)
't- ' ~ ".' ,,,
I ,/

~)4
a:(I * tl t2)

}~ .:(10)

(iii)

Figure 6 - Graph Reduction

These examples have illustrated concurrent evaluation of reduct1.on

programs, the concurrency being achieved by simultaneously demanding

both operands of an operator. However reduction programs can just as

well be executed without concurrency in which case the second operand is

not demanded until the first has been evaluated.

- 19 -

2.1.4. Discussion

Each of the various operational models presented in this Section

has particular advantages and disadvantages which are largely a result

of the particular mechanisms used for organising the flows of data and

control through a program[14]. A data mechanism defines how an argument

can be accessed by a number of instructions and three such mechanisms

can be identified:

1· by-literal (in all models) - an argument's value is known at com­

pile time and is included in each accessing instruction

2 by-value (in data flow and string reduction) an argument is

evaluated at run-time when a separate copy of its value is stored

in each accessing instruction

3 by-reference (in control flow and graph reduction) - an argument is

evaluated at run-time and its value is shared by each accessing

instruction having a reference to it

A control mechanism defines how one instruction causes the execution of

other instructions, and again three mechanisms can be identified:

1 sequential (in conventional and multi-thread control flow) a

thread of control signals an instruction to execute and passes feom

one instruction to its implicit successor

2 parallel (in data flow and parallel control flow) - control signals

the availabHity of (control or data) arguments with an instruction

being executed ~:hen all its arguments are available

- 20 -

3 recursive (in reduction) - control signals the need for argR~ents

with an instruction being executed when a result it generates is

required by an invoking instruction

The relationship of these mechanisms to the operational models is

summarised in Figure 7.

Data Hechanisms

by-value (& -literal) by-reference (& -literal)

conventional control flo w
sequential multi-thread control flow

Control
parallel data flow parallel control flow

Mechanisms
recursive string reduction graph reduction

Figure 7 - Control 'and Data 11echani6~:t.S

All models have the by-literal mechanism in some form since othen-lise

all constant data would have to be provided as run-time input. Each

model also has one or other of the by-value and by-reference data

mechanisms. The advantage of by-value compared with by-reference is

that the data is directly available in the instruction using it and thus

the extra step of loading data from a separate memory is avoided. The

corresponding disadvantage is that there is a separate copy of a value

(or its definition) for every instruction using it.

Each model has just one of the sequential, parallel and recursive

control mechanisms. lbe sequential and parallel control mechanisms are

in a sense opposites in that the former is best suited for programs that

are mainly sequential whereas the latter is best suited for programs

- 21 -

that are highly concurrent. For sequential execution the "implicit suc­

cessor" of the sequential control mechanism is more efficient than the

explicit propagation of tokens required by the parallel control mechan­

ism. Conversely, using separate instructions, such as FORK and JOIN,

for organising concurrency is relatively inefficient when there is con­

currency at the level of individual instructions.

The recursive control mechanism is not

concurrent execution. The major benefit

primarily concerned with

of the recursive control

mechanism is that instruction execution is only initiated when actually

needed thus conserving machine resources and to some extent freeing the

programmer from that consideration.

The particular combination of by-reference data mechanism and

recursive control mechanism found in graph reduction allows it to sup­

port "Lazy Eva1uation"[22,23] in which only the minimum necessary compu­

tation is actually performed. In both string and graph reduction the

. recursive control mechanism means that a computation is not performed

unless its result is actually needed. In string reduction the by-value

data mechanism means that a shared definition is evaluated more than

once, as in the multiple evaluation of (- 7 3) in Figure 5 (iii)-(v).

In graph reduction however the bY-I·eference data mechanism allows such· a

shared definition to be evaluated only once, as In Figure 6(11)-(iii).

The operations discussed so far, such as addition, are "strict" which

means that the result always depends on the value of all operands. For

a program with only strict operations all instructions will always need

to be executed and thus there is no real advantage to the recursive con­

trol mechanism and lazy evaluation. However these are at an advantage

- zz -

in handling non-strict operations for which one or other of the operands

will not be needed in a particular case. TIle most common example of

non-strictness is in conditional instructions, to be discussed in the

next Section.

An important diffe'rence between control flow, data flow and reduc­

.tion is the extent to which an instruction interacts with other instruc­

tions during its execution. In the case of data flow, an instruction

receives all its inputs before it starts executing, processes them com-

pletely and then outputs its results. This form of execution is

referred to as "atomic" since to the external environment execution

appears as a single indivisible operation. In control f10"" and reduc­

tion execution is non-atomic due to memory accesses in the former and

acceptance of results demanded from other instructions in the latter.

The non-atomicity in control flow generally has undesirable conse­

quences. For example consider a program which cont~ins the three

instructions - il: a:=I, i2: a:=2, i3: a:=a-a - and has a program design

constraint that the content of location a should always be non-negative.

Each instruction individually preserves that property, but in executing

them concurrently there is a possible ordering of the five separate

accesses to a which would result in a having a final value of -1 (the

storing of 2 in a by i2 occurring between the two loads from a by i3).

Such undesirable consequences cannot however occur with reduction since

changing a location's content only changes the representation of its

fixed value, rather than changing its value. Furthermore, non-atomic

execution can be beneficial in increasing concurrency and allowing the

termination of programs that would not terminate with atomic execution.

- 23 -

To illustrate the potential benefits of non-atomic execution con­

sider a logical OR operator in for example C = A OR B. If, say, the

value True were received first for B, then the value True could be pro­

duced for C before the value for A had been calculated. This would

result in additional co?currency between the evaluation of A and those

parts of the program which depend on C. Also i~ might be possible for

the program to produce its final result despite non-termination of the

evaluation of A. The differences between atomic and non-atomic execu­

tion are important not only in individual instructions but also in

groupings of instructions as functions and procedures, as will be dis­

cussed in the next Section.

- 24 -

2.2. Program organisation

The term program organisation is here being used to cover the way

programming requirements are supported by an architecture's machine

code. This Section discusses how control flow, data flow and reduction

architectures support data structures, conditionals, procedures, itera­

tion, and non-determinacy.

2.2.1. Data Structures

Host general-purpose architectures allow the representation. and

manipulation of data structures. In control flow this is generally

achieved by allowing explicit program control over storage allocation

and the ability to apply ordinary arithmetic operators to addresses.

Components of a structure can be stored in contiguous memory cells with

the whole structure represented by a reference to the first component

and any other component accessed by for example adding a displacement to

that reference. In data flow and reduction 'architectures however

storage allocation is not under explicit program control and special

facilities are provided to support data structures.

In a data flow architecture supporting data structures (not all do

so) there are special operators for structure manipulation, such as the

append and s~lect operators of Id[24] which respectively extend a data

structure with a new component and select a specific component from

within a data structure. TIle result of an append operator is a slightly

modified copy of the input data structure and this result is communi­

cated as a single (large) data token to those instructions (selects or

- 25 -

further appen1s) which use it.

A r~duction architecture typically provides the CONS, CAR and CDR

operators of LISP[25] which respectively form t",ro (simple or structured)

values into a two-component structure and select one or other of the

components from such a structure. In string and graph reduction archi-

tectures data structures are represented in different ways, correspond-

ing to the different ways expression structures are represented. In

string reduction a data structure is represented as a string of data

items with structure being represented by delimiters, as in for exam-

ple «All, AI2), (All, A22». An operator such as CDR ("second com-

ponent") operates on whole data structures -

••• CDR ((All, AI2), (All, A22)) ...
-» ••• (A2I, A22) •••

In graph reduction a data structure is represented using references to

its components and an operator such as CDR manipulates references -

The by-reference data mechanism of control flow and graph reduction

means that a data structure can be efficiently communicated and manipu-

lated using references whereas the by-value data mechanism of data flow

and ~tring reduction means that, at least in principle, the whole data

structure has to be copied and manipulated. In practice some data flo\v

- 26 -

architectures use control flow concepts to support data structures'with

structures being stored in separate memory and references being passed

as tokens[26].

A particular benefit of graph reduction is that (in conjunction

with lazy evaluation) it can support unbounded data structures. These

are data structures for which there is no explicit specification of

actual or maximum size. The data structure is defined in terms of a

notionally infinite number of components and is incrementally generated

as components are actually needed in the computation. Consider for

example a data structure Priaes, defined as a (probably infinite) list

of the prime numbers -

Primes :3 P (2)
Where P (x) ; CONS (x, P (Next (x»)

where Next (p) ~ (•••)

This definition uses a recursive function P (recursive functions will be

discussed in more detail later). This function has a prime as its

parameter, x, and notionally returns a list of all primes including and

following that parameter. This is achieved by CONStructing a list with

x as the first component and the remainder of the components being the

sub-list returned by the recursive call P (Next (x}). In this call of P

the Next (x) returns, as the call's parameter, the next prj.me after x.

The list is actually incrementally generated as its components are

accessed, as shown in Figure 8. In (b) is shown two stages in the par-

tia! generation of the Primes structure, namely that before (bI) and

a~ter (b2) the evaluation of an accessing expression shown in (a).

(al)

(* 10

(~)

(* 10

(21)

(* 10

(.10)

- 27 -

2 3
(CAR (CDR (CDR Primes»»

~

(CAR (CDR .4 1car J.ltar

cdr cdr
Primes---.~.~P(next(3»

'---v--'
.,."

"---v----I .,. " i ".,.",,,,
,~ ,,'"

(CAR.) /;,"

~~-------d-;m~;t- -";' .

~
(* 10 •) t2 ar tar lj ar
'--y---J

cdr cdr cdr
Prime ---7>'~ ----~P(next(S» C&,\

50

(~) Accessing Expression (~) Data Structure

Figure 8 - Unbounded Data Structures

The expression in (a1) accesses a particular prime by selecting the

appropriate node in the Primes. s truc ture using CDR and CAR. operators.

The initial stages of evaluation «a1) - (a3» select existing nodes of

the structure in (bl) and so do not require any further generation of

that structure. From stage (a3), further evaluation of the expression

requires the actual value of CAR(P{ Eext(3) ». Ibus the evaluation

of the expression P (Next(l)) is demande.d in order for the first com-

ponent (CAR) of its data structure result to be accessed. As shown in

(b2) the execution of that data structure expression v/lll cause it to be

- 28 -

replaced by a node for \"hich the car ore points to 5 and the cdr a-rc

points to the next recursive call. The required operand, 5, is no.,

available and is used in the original expression «a4) - (a5)) without

requiring further generation of primes. TIle same technique could be

used in string reduction, but the lack of lazy evaluation would mean

that every time a particular prime was needed, all the primes up to that

point would have to be re-generated.

2.2.2. Conditiollals

Every general-purpose architecture provides some form of condi­

tional instruction to select between alternatives. In a control flow

archi tee ture there will be a conditional branch instruc Uon \>lhich has

two alternative successor instructions. \\1!1en executed it selects one or

other of the alternatives thus, so to speak, S\vl. tching an incoming flow

of control onto one of two output paths.

In data flml architec tures there are two possible fonus of condi-

tionals one with conditional selection of values to be used and the

other with conditional selection of instructions to be executed. Both

are shown in in Figure 9 using as an example z = - (if c then a els~ b)

where a, band c are computed from i by program fragments A, Band C.

The first fonn (value selection) uses an instruction with a conditional

operator, refe.rred to as a "switch-in" instruction. This is illustrated

in Figure 9(i) with the switch-in represented as a hexagonal node. Uke

all pure data flow instruc tions, the S\o.'i tch-in executes when all its

inputs (a, b and c) are available. It then outputs for use by Z either

the a or the b depending on whether c is True or Fabe.

- 29 -

(.!.) switch-in switch-out

Figure 9 - Two Forms of Conditional in Data Flow

The second (instruction selection) form of data flow conditional,

illustrated in Figure 9(ii), uses a "switch-out" i.nstruction which con-

troIs the flow of data through the program. Here the hexagonal node is

a switch-out instruction which switches the i input onto one or other of

its output arcs, depending on the value of the c input. TIle instruction

causes either A or B to be activated and thus determines whether Z

receives a or b. In (ii), taking c as True, B is not executed even

though its only input, i, is available. This departure from pure data

availabili ty is to avoid unnecessary computati on and is essential if

recursion is to be supported. (If this example were part of a recur-

sion, with c the termination condition and n the recursive call, then

the pure data availability of (i) would result in non-termination which

is avoided in (ii).)

- 30 -

In reduction there is a single conditional construct, namely a con-

ditional operator which selects bHween alternative values and also, due

to the recursive control mechanism, selects between alternative instruc-

tions. A conditional operator, if, will be part of a conditional

instruction such as (if C t:hen A else B). lhis is executed by first

demanding the evaluation of C and then, depending on the result c,

demanding the evalua tion of either A or Band replaci.ng tlL" \oihole

expressi.on with that result, either a or b.

An important consideration in the organisation of conditionals is

the extent to which unnecessary computation mDy be performed. lhis can

be illustrated by considering the following two alternative conditional

structures for computing 8 value r -

(a) a:= (•• ~ A •••); b:= (••• B •••);
r:= (if cl then a else b) * (if c2 then a else d);

and -

(b) r:m (1f cl then (••• A •••) else (••• B ••• » * (if c2
then (••• A •••) else d)j

In both control flow and data flow either of th~se structures is possi-

ble. (In data flow, (a) is conditional value selection as in Figure

9(1) and (b) Is conditional instruction selection as in Figure 9(li).)

If cl and c2 are both True then, using structure (a), B would be

unnecessarily evaluated, whereas using structure (b) A would be executed

t\<."ice. Thus for either choice of structure there is the possibility of

unnecessary computation being perfonned. 1n string reduction the copy-
,

jng of definitions means that B might be executed t~ice. Graph reauc-

tion, using lazy evaluation, is the only model for ~hich unnecessary

C'or:putation can ah.'ays be avoided for this type of exataple.

- 31 -

2.2.3. Procedures and Iteration

An essential requirement for any general-purpose computer is to

allow one program fragment (e.g. procedure) to be executed many times

using different sets of data values (e.g. parameters) each time. The

term "environment ll will be used for the data values and other informa­

tion which are different for different executions of the same .. program

fragment. There are two ways of obtaining such multiple execution in

conventional control flow, namely procedure calls and iterations. (The

term procedure will be used to cover both procedures with side effects

and functions which return their results.) With (recursive) procedure

calls several nested environments for the same procedure will coexist.

Consequently there must be mechanisms for keeping the environments

separate and allowing a single reference in the shared procedure code to

identify data within different environments. This is achieved by using

a stack to store environment information (parameters, local variables

and return links) and indirect addressing via a register which refer­

ences the current environment within the stack. In iteration each exe­

cution of the repeated code is completely finished before the next exe-

cution starts. Consequently the successive environments can share

storage and there is no need for any special storage and addressing

techniques.

Data flow architectures can also support both procedures and itera­

tion (although not all do so). With procedures (even without recursion)

tl)ere may be'several concurrent executions of the same procedure. The

enviro~~ent for each execution consists of data tokens for the parame­

ters, internal partial results (corresponding to local variables in

- 32 -

control flo~) and the return links. Whereas in control flo~ the by­

reference data mechanism allows data for each environment to be stored

in a separate area of memory accessed via a reference, this is not pos­

sible with the by-value data mechanis@. Instead a scheme of labelling

tokel1s is used to separate environments. Each active environme-nt has a

distinct identifier which is used to label all tokens assodated ~vith

that environment. An individual instruction in the procedure 1l1ay exe-

cute many times in different environments. Each execution takes a. &et

of input tokens with the same environment identifier and uses that iden­

tifier to label its output tokens.

Figure 1C(i) shows the operation of this scheme using as an.example

the procedure F in the following definition for factorial (~hich is

some\o;hat unusual as it will also be used to illustrate iteration) -

Factorial (n) = F (n,l)

F (n, m) = if n=l then m else F(n-l, n*m}

The inputs to the procedure graph are the parameters nand m and tbe

return link r. lhese inputs are tokens labelled with an environment

identifier (the Q in e.g. Q:n). lhe B represents the graph to compute

the partial results n' and m' as parameters for the next call. (If the

termination condiUon n==1 holds then B \oJill instead pass III as the final

r·esult f to the RETURN instruction - the actual constructicln of B is

shown in (11).) The tokens output from B are labelled with the same

environment identifier, Q, as the input tokens from "'hieh they are pro­

d\,1ced. The CALL instruction allocates an environment identifierR to

label a new set of input tokens for the nested procedure call and sends

those tokens back to the top of the graph. Eventually the nested call

- 33 -

produces a result token Q:res \.;rhich becomes the output Q:f of the CALL·

instruc tion. The RETU1lli il1struc tion requires two inputs, f which is the

result value and r which indicates the CALL instruction to which the

result token is sent and the environment identifier 'Nith which it is

labelled. There are actually three tokens shown which are available to

this instruction, the Q:f and Q:r for this call and the P:r' from some

other call (such as an outer level of this recursion). The effect of

the labelling scheme is to enable the correct pairing of the tokens

available to a particular instruction - in this case Q:f being paired

with the Q:r rather than with the P:r' ~lich would have arrived earlier.

r------E.:.J!lo.---------- .

r _R: TIe- - - - - - - -

F

r--

n

[n# I]

n' : = n-I
m': =n*m

m r

J h--""";"--.;..j
. J Q:r

J
I
J
I
I , __ .
1 • L _____ .:... _________ J Q:res

recursion iteration

Figure 10 - PI'ocedures and Iteration in Data Flov

- 34 -

Like an individual instruction, a data flow procedure is atomic.

All its parameters mus t. be produced before it starts executing and if it

has more than one result all of them must be produced before any can be

used. This can restrict the potential concurrency in a data flow graph.

In this example the evaluation of' n' does not depend on the value of the

second parameter, a, and so in principle the procedure could start exe­

cuting with just its first parameter, n, evaluating n' concurrently with

. the evaluation of the second parameter, a, by the caller.

There are two general approaches to supporting iteration in data

flO\Ol. The simpler is that illustrated in Figure 10(11) for the Fac­

torial example. The body B of the iteration is the same as in the

equivalent procedure. II is a comparison instruction, testing for the

termina tion condition and controlling two swi tches. If II gives False

then the swi tches send nand 1I'l to the subtraction and multiplication

instructions which calculate n' and m' as the next values for the itera­

tion. Alternatively if II gives True then the switches send a out as

the final value f and discard n (indicated by a 1). Each iteration com­

pletely terminates before the next one starts, this being achieved by a

synchroniser instruction (SYNCH) which requires both n' and m' as inputs

but performs no computation on them, just passing them back for the next

iteration. If the synchronisation were omitted then the subtraction

instruction might generate successive values of n faster than the multi­

plication instruction could consume them and without additional mechan­

isms there is no way to pa:i.r the Jill with the correct n.

In the alternative scheme for supporting iteration the synchronisa­

tion is omitted and there is some additional mechanism to order the

- 35 -

tokens on an arc. In Irvine Dataflow[2 /.j] this ordering is achieved by

labelling every token with a sequence number (simtlar to the environment

identifier used for procedure~. This is incremented at the end of each

iteration. In the DDMI data flow architecture[27] the ordering is

obtained by associating a first-in-first-out queue or "stream" of tokens

with each input of an instruction.

Whereas in control flow and data flow the basic operational models

have to be extended to accommodate procedures this is not the case for

reduction, which is based on function applications (correspondine to

procedure calls). • Figure 11 shows a string reduction sequence for cal-

culating the factorial of 3 using the same definition for F as above.

CD
(10

<.!.!..i>

• ••

• ••

• ••

F(n,m) ~ if n=1 then m else F(n-1,n*m)

F(3,1) •••

(if 3=1 then 1 else F(3-1,3*1))

F(3-1, 3*1) •••

...

(iv) (if (3-1)=1 then 3*1 else F«3-1)-1,(3-1)*(3*1») •••

(y) • •• F«3-1)-1,(3-1)*(3*1» •••

(y!) · .. (if «3-1)-1)=1 then (3-1)*(3*1)
else F(«3-1)-1)-1 , «3-1)-1)*«3-1)*(3*1») ...

(vi~) ••• «3-1)*(3*1» ...
(yili) ••• 2*3 •••

Figure 11 - Procedures in String F~duction

The initial call in (1) is the instruction F(3~1) which is as usual exe-

cuted by replacing the reference F by a copy of the referenced

- 36 -

definition, and in doing so formal parameters are replaced by actual

parameters giving (11). TI1e conditional is evaluated and replaced by

the selected alternative (Hi) which is another call with different

parameters giving (iv). This process continues until the final result

is produced in (ix).

Any iteration can easily be transformed into an equivalent recur-

sive procedure. Thus it is not necessary to support a separate itera-

tion mechanism in addition to that for recursion, and reduction does not

do so. In control flow and data flow, iteration is where possible used
,

in preference to an equivalent recursion in order to avoid passing the

final result back up through all the levels of recursion (compare Figure

lOCi) and lO(H». However with the reduction model this advantage is

automatically obtained in the execution of those procedures (known as

"tail recursive") which are directly equivalent to iteration. TI1is is

illustrated in Figure 11 where the resul t (ix) calculated when the

recursion terminates (vii) has been returned directly to that part of

the program from which the original call was made in (i).

An important aspect of the reduction model is its ability to sup-

port "higher order functions" (procedures), that is procedures which

have procedures rather than data values as parameters and/or results.

This is Hlus trated in Figure 12 for a higher order procedure Bindl(g)

which has procedures as its parameter and resul t. In (v) there is a

call of Bindl for which the parameter is a two-parameter procedure G

(just the addition operator) , and the resul t is the one-parameter pro-

cedure H. In the definition of Bindl (iv) H is obtained by binding the

first parameter of G to a particular value (pl), leaving G's second

- 37 -

parameter free as His only parameter. When procedure H is called in

(vi) with parameter P2 the effect (viii) is as though procedure G had

been called with parameters Pl and P2.

(1) PI .: 10

<.!.!) P2 := 20

(iii) G(pl,p2) = (+) ---..

(iv) BindI(g) is (g (PI»

(y) H(p2) a Bindl(G)

(H (P2))

,
(vi)
(vii)
(:6i.!)

-» «Bindl(G» (P2»

-» «(+) (PI» (P2»

-» 30

-» «G (PI» (P2»

-» (+10 (P2»

Figure 12 - Higher Order Procedures iD Reduction

The "trick" to this technique is that all procedures and operators

have at most one argument. Thus the expression (PI) + (1'2) must be

represented, as shown in (ix), as «(+) (PI» (P2». The operator + has

one argument, PI wi th value 10. and rettfCns as its resul t (x) the opera-

tor +10. This operator has one argument, 1'2 with value 20 and adds 10

to that argument to produce the result 30 (xi).

The significance of higher order procedures lies in their ability

to encapsulate a general pattern of program execution in a procedure

(function) definition which need only be programmed once. 111i& is

illustrated in the example below where a procedure In.:!gen is used to

- 38 -

encapsulate the general pattern of incremental data structure generation

used in Figure 8.

Incgen (generator, initialvalue·).a

CONS (initialvalue,
Incgen (generator, generator (initia1value »)

P (init) 5 Incgen (Next, iuit)

Next (val) _ (••••)

Primes ::. P (2)

2.2.4. Non-Determinacy

,

Any concurrent program is non-deterministic at least in the (opera-

tional) sense that the exact order of events in its execution is not

pre-determined. I will use the term "non-determinate" in the more lim-

ited (functional) sense of the final output of a program (or part of a

program) being not uniquely defined by just the program and the inputs

it is processing. Although non-determinacy is usually an undesirable

characteristic of a program there are situations in which the use of a

non-determinate program is necessary. The most common example is in the

management of access to shared resources, such as files ~ wi thin a

multi-processing operating system. 'fo ensure the integrity of the

shared resource the non-determinacy must be controlled, typically by

grouping a number of related individual accesses by one process into one

"transactionll for which the process has exclusive use of the resource.

To sl1pp~rt non-determinate programming some primitive mechanisms

for allowing and controlling non-determinacy must be provided. In con-

current control flow non-determinacy i's implicit in the basic opera-

39

tional model whe.re two concurrent instruction execut1.ons can simultane-

ously update the same memory cell with different values. There is usu-

ally some additional explicit mechanism, such as a "test and set"

instruction, for controlling that non-determinacy.

- .

In the data flow model there is a similar potential for implicit

non-determinacy in that two instruction executions could emit tokens

with different values for the same input of another instruction, with

the resul t of the program depending on \vhich arrived first. However the

data flow code generated by a compiler is always constructed so as to

avoid such implicit non-determinacy. For example in Figure lO(H) the

synchroniser instruction is included to prevent non-determinacy in the

execution of the multiply instruction; in Figure 9(ii) the switch-out

instruction ensures that onl'y one of A and B sends a token to the single

input of Z, even though both could do so.

There is only one data flow architecture[24] which provides expli-

cit non-determinacy. This architecture uses the technique of a

"resource manager" to control non-determinate access to a sharable

resource, as shown in Figure 13. The resource manager RH is a form of

procedure which has two inputs, the resource R (e.g. a file) and a com-

plete transaction (p, q, r or s) to be processed. TIle result of one

call is a modified version of the resource, R', which is fed back as

input to the next call. The arcs carry sequences or "streams" of tokens

and each token is labelled wi th a "stream number", 1, 2, 3 etc. These

numbers serve the same role as the environment identifiers in the pro-

cedure call example, ensuring that the resource m3nager itself is deter-

minate. The non-determinacy and its control are combined in the expli-

- 40 -

cit HEitCR operator which merges its two input streams into one output

stream. On each execution it takes a token from either input, ignoring

the input stream numbers, and outputs it labelled with the next output

stream number.

IUser A]
I • • 2:s l:q 1 :p 2:r

1: R

4:r 3:s 2:q 1 :p

2:R'

Figure 13 - Non-determinacy in Data Flow

In reduction the only form of update is to replace an expression

with the result of evaluating it. This cannot lead to non-determinacy,

as can the less constrained form of update found in control flow. If

non-determinacy is required it must be introduced with some special

operator. Non-determinate operators that have been proposed are the

"AMBiguity operator" [28] , and more recent.ly :nWNS[29]. An example of an

expression using ANn is

r E! ((A) Mm (n))

The result of the whole expression is the result of evaluating one or

other of its operands, (A) or (B). Operationally, demanding the value

of r cause s both CA) and (B) to be demanded and computed concurren tly.

When one computation, say (A), has terminated its result a replaces the

whole definition. The other computation is then no longer needed and

thus forcibly terminated. AMB can be used to program a merge procedure

- 41 -

which then forms tbe basis for resource management in the same style as

in Figure 13. Although necessary for resource management, the inclusion

of non-determinacy destroys some of the desirable properties of deter-

minate reduction programs, such as referential transparency. For cx.sm-

pIe the definition x = r-r woUld give x the value zero for any value of

r, but replacing the reference r by the defining expression above

gives

x = ((A) AMB (D)) - ((A) AHB (E))

In this expression the two distinct A!m operators may give different

results and thus a non-zero x.

There are uses for non-determinacy other than in the resource

manager type of application. An example is when there are tlo.'O 8lgo-

rithms (A) and (B) for computing a value r and one or other may be very

inefficient or fail to terminate for particular cases v.hich are diffi-

cult or impossible to predict. lhe expression r = «A) ~1B (E» will

alt.1ays terminate with a resul t for r if eitber algorithm terminates.

Furthermore (assccing machine resources are divided fairly between (A)

and (B» its execution time in a particular case will be proportional to

that for the more efficient of the two algoritl®s for that particular

case.]n this example concurrency in evaluation of r's operands is

essential to the logic of the program. (The use of concurrency in this

way is explored at some length in [3C].) However for other examples of

potential concurrency, such as in r :: «A) * (ll», the logic of the pro-
,

gram is not dependent on there being actual concurrent execution. FOI

reduction architectures which do not support operators such as AM~ the

exploitation of potential concurrency is entirely an Jmpl(:mentation

4·2 -

issue. As discussed ill the next Section, some reduction implementations

do exploit concurrency and some do not.

4~ -

2.3. Machine Organisation and llIilple:l.1entations

The term machine organisation is being used to cover the way a

machine's resources are configured and allocated. lbis Section starts

by identifying the different classes of machine organisations used for

control flow, data flow and reduction, and then outlines some particular

implementations.

2.3.1. Classification

Three classes of machine organisatio~ can be identified which are

referred to here as the centralised, packet communication, and expres-

sion manipulation organisations. These organisations, illustrated in

Figure 14, are principally distinguished by the organisation of

communication(C) between processor(P) and memory(M) resources.

Centralised - This organisation consists of one or several processors

and one or several memory units with a central communication system pro-

viding each processor with direct access to all memory. In this organi-

sation a program (or part of a program) being executed by one processor

has one active instruction, the execution of which typically requires

several communications with the global memory.

Packet Communication This organisation consists of a circular

instruction execution pipeline of separate resources in which processors

and memories are interspersed with "pools of work" through which they

communicate.' Parallelism can be obtained by having a number of identi-
.~

cal resources between successive pools as shown; or by replicating and

connecting the circular pipelines. In this organisation an executing

MI Hm

<.~) Centralised

(b) :packet communication

- 44 -

. . .

•
f

•

(vector)

(tree)

,
• •

(~) expression manipulation

~ Figure 14 - Uachine Organisations

. . .

program consists of a large number of independent self-contained items

or work packets (e.g. individual instnlctions and tokens) which split

and merge and move into different work pools for different stages· of

processing. The operation cycle for a resource is to take a packet from

an input pool, process it in isolation from other resources, and produce

a modified packet in an output pool.

Expression Manipulation - This organisation consists of a large number

of resources, referred to as "computing elements", each being a complete

microcomputer with local processor and memory and a capability for

- 45 -

comml1nicating with a small number of other computing elements. The com-

munications capabilities are used to connect the computing elements i.nto

some regular structure such as a vector or tree. In this organi.sation

an executing program consists of one large program structure ("expres-

sion") with logically related parts of the program being allocated to

physically related computing elements. Some components of this struc-

ture are active whilst some are inactive. Each computing element exam--

ines its part of the overall program structure looking for active items

to execute. Executing an item will involve communications with the

other items that it references. Programs generally exhibit considerable
,

"locality of reference" which means that references tend to be between

items closely related in the logical structure. Consequently most com-

munications are internal to one computing elemeat or between close

neighbours.

A major motivation for the novel packet communication and expres-

sion manipulation organisations is to alleviate the communication prob-

lems that arise in a centralised organisation as the number of proces-

sors increases. In a centralised organisation the perfonlance of a pro-

cessor is dependent on the transit time of a memory access through the

global communication system (including in "transit time" any queueing

for access to the communications system). In the packet communication

organisation however (provided there is sufficient concurrency) perfor-

mance is not dependent on the transit time of a packet through the com-

munication system but only on the total communication bandwidth being
,

sufficient to match the total throughput of the processors. Whereas the

transit delay must eventually increase as system size and load

increases, there are communication systems organisations[31] where the

- 46 -

bandwid.th per processor remains substantially constant as the system is

extended to accommodate more processors and memories. In the expression

manipulation organisation locality of reference is relied on to overcome

the global communication problem.

Modern computer designs often incorporate adaptations to their

basically centralised (single-processor) machine organisation which to

an extent overcome the similar processor-memory communication problems

that arise from increasing processor power. These adaptations are the

pipelining of instruction execution, producing a similar effect to that

of a packet communication organisation, and the introduction of memory ,
caches, to exploit locality as in an expression manipulation organisa-'

tion. The approach of pipelining conventional architectures (introduc-

ing some parallelism) is restricted however by the limited number of

pipeline stages that can be introduced and the need to support a

strictly sequential operational model. A multi-processor machine orean-

isation incorporating a local cache "lith each processor would in effect

be a form of expression manipulation organisation.

Most of the machine organisations described above are at least

being investigated for the implementation of each different class of

architecture, as shown in Figure 15. The rest of this Section discusses

some of these proposed implementations.

- 47 -

concurrent reduc tion
control data. stri.og graph

flow flow

Centralised 01* GMD SKIM

Packet Circulation GCF MIT, MAN Alice

Expression Manip. RIMMS DDM SPJ1 AMPS

CM* - Modular Multiprocessor[32]
CCF - Generalised Control Flow[33]
RIMMS - Reduced Instruction Set Multiprocessor System[341
MIT - MIT Data flow computer[35]
MAN - Manchester Dataflow Computer[36]
DDM - Utah Data Driven Machine[27]
GMD - GMD Reduction Machine[37]
SRM - Ne'lTcastle String Reduction Hachine[38]
SKIM - Cambridge S-K-I Reduction Machine[39]
Alice - 'l'he Alice Reduction Hachine[40]
AMPS - Applicative Multi-processing System[41]

Figure 15 - Same Novel Architectures

2.3.2. Control Flow

For control flow implementations the main issue is the way in which

global memory access is provided. In the centralised and expression

manipulation organisations an instruction being executed will send load

and store messages to the appropriate memory units and wait for the

replies before continuing. A more novel approach is that taken by a

packet circulation organisation such as the Generalised Control Flow

architecture where the instruction goes to the data rather than vice-

versa. In this architecture there is a single pool of work accessible

to all resources which takes the form of a slotted communication ring

circulating each slot past every resource as shown in Figure 16. A slot

may contain a work packet, such as an instruction requiring an operand

- 48 -

to be loaded from memory. A resource that can service a work packet,

such as the memory unit containing an instruction's operand, removes it

from the ring as it passes, leaving that slot empty_ When the service

has been performed the modified packet, such as an instruction with is

loaded input operand, is 'placed· back on the ring in a passing empty

slot. The modified packet is then picked up by another resource, such

as a processor to compute its result.

,
Figure 16 - Packet Circulation for

Multi-thread Coutrol Flow

2.3.3. Data Flow

A data flO\-l implementation requires a scheme for handling the

activation of concurrent instruc tions by data tokens. There are two

such schemes[42] namely "token storage" in which a token is stored

directly into an instruction and "token matching" in which tokens are

kept separately until a complete set of tokens for onc instruction exe-

cution have been matched togethcr.

~xamples of the token storage scheme include the ~lIT computer whose

packet circulation organisation is shovffi in Figure 17(a). In this

- 49 -

IProcessors J-- . /Processors)i-
PI • • • Ppi lPl ••• PI'

,~ontrol
tokens

executable executable
JI\instructions -

I~instruc tions
data

'I
data

I
token;' tokens'

Instruction Instruction J Matching
'. Stores - Stores token Stores

MI . . • Mm MI . . • Mi sets Mi ••• Hm

(~) with token storage (.£) with token matchina

Figure 17 - Packet Circulation for Data Flow

organisation each path between the processors and the instruction store

memories is 'a routing network which delivers packets to their destina-

tions and also acts as a work pool temporarily storing packets. A data

token packet emitted by a processor arrives at an instruction store and

its value is stored directly in the appropriate argument position of its

destination instruction. If it is the last token for thAt instruction a

copy of the instrllc tion 'vi th those argument values is sent as an execut-

able instruction packet to the processors. This token storage scheme

'does not support the simultaneous existence of tokens for separate

instances of an instruction since one could overwrite the other in the

instruction store. Thus recursion is not supported and iteration

requires some synchronisation scheme such as is shown in Figure 10(i1).

In the MIT data flow model the synchronisation required for iteration is

achieved by a "control token" being always implicitly sent from the

receiver of a data token to its producing instruction indicating when it

is safe for another instance of the token to be produced.

Examples of data flow computers with token matching include the

Manchester machine whose packet circulation organisation is shown in

Figure 17 (b) • Here there is a matching store, separate from the

instruction store, which collects together into a token set those tokens

for a particular execution of an instruction. When a complete set has

been collected it is sent as a token set packet to an instruction store

where it is combined with a copy of the instruction and sent to the pro-

cessors for execution. For the token matching scheme the environment

identifiers of Figures lOCi) can be used for (recursive) procedures.

There may simultaneously be several partially complete token sets for

the same destination instruction which are distinguished in the matching

store by their different environment identifiers.

2.3.4. Reduction

,
Whereas supporting concurrency is the major motivation for the

novel control flow and data flow architectures, that is not tI,e case for

reduction architectures. In three of the implementations included jn

Figure 15 (AlicE', SRH and 1,MPS) there is concurrent instruction execu-

tion, and in two (SKIM and GND) there is not. In either case the prin-

cipal issues are organising the recursive control structure and the

storage management needed for a program which expands and contracts as

it is executed. 1n for example the centralised organisation of the ('hL

string reduction machine there is a single Foint of exe:cution in tl!e

program and stacks are used to deal with both issues. lhe ~tole program

is a parenthe~ised expression which is initially stored on one stack.

lhe processor repeatedly traverses this expression by copying it from

one stack to another replacing any executable expression by its result

51 -

in the process. For simple expressions, such as (* (+ 4 1) (- 4 2»,

the effect is that the processor traver"ses to the right until a) is

encountered; then to the left until an operator is encountered which is

executed; then to the right etc.

The Newcastle string reduction machine works in a similar way but

with many processors and many connected stacks. This has an expression

manipulation organisation with a vector of processors as shown in Figure

18. The expression being executed is stored in a sequence of double-

ended queue (DEQ) memories. Each processor has access to one end of

each of two DEQs which to a processor appear as stacks, allowing it to

traverse part of the program expression.

. . J..* (+ 4
• DEg ft1f

' Pi

DEQ
2))

~
• • •

1) ~
DE

- 4

Figure 18 - Expression 11anipulation for String Reduction

In graph reduction pointers are used to allow sharing of results in

an executing program and storage management requires periodic garbage

collection of unreferenced parts of the program. To organise the recur-

sive control structure there must be a return pointer from a demanded

instruction to each instruction demanding it, as was shown in Figure 6.

If the operands of an instruction are evaluated in sequence then there

will be a simple chain of these return pointers which can be stored on a

separate stack as in conventional procedure calling. This is the scheme

used in the SKIM reduction machine (which is based on the interesting

- 52 -

concept of "combinators as machine code"l43]). If however the operands

of an instruction are evaluated concurrently then the return pointers

will form a more general graph structure which can be implemented using

the "pointer reversal" scheme shown in Figure 19. Here propagating

demand from il to 12 and 13 adds to those instructions return pointers

and replaces the original pointers with unknowns. lhis part of the pro-

gram now has the form of a data flow graph and can be execut.ed in the

same way. This is the scheme used for AMPS in which "demand tokens"

carrying return pointers flow up the program graph and data tokens car-

rying computed values flow back down.

i2:(+ 4 1)

\
il:(* i2

1

/

- 4 2)}~{12:(+ 4 1 il/~13:::;~)}l2)

i3 a) 11:(* 1 ? a)

Figure 19 - Pointer Reversal for Implementing Graph Reduction

- 53 -

2.4. Evaluation

In the introduction three motivations were given for the develop­

ment of novel general-purpose architectures, namely supporting languages

with increased expressive power, increased performance through con-

currency and suitability for VLSI implementation. 'lhis Section

discusses the extent to which concurrent control flow, dataflow and

reduction architectur~s appear able to satisfy each of these particular

motivations. It then considers the range of applications which these

architectures can effectively support and thus the extent to which they

can be considered general-purpose.

2.4.1. Expressive Power

The expressive power of a programming language is largely concerned

with how much organis,Ational detail has to l:,e explicitly specified jn

the program. A benefit of the novel data flow and reduction architec-

tures is that they directly support

languages by automatically handling some

more expressive applicativc

of the operational details.

Control flow architectures are based on a low level operational model in

which the programmer has to organise all the details of program exec.u­

tion - sequencing instructions to ensure that values are COffiFuted tdore

being used, allocating storage for intermediate results, and explicitly

manipulating, and even performing arithmetic on, references. Extending

sequenUal control flO'-i to concurn;·nt. control flow generally compound£.

rather than 'simplifies these proLlems ¥iith the progrsmu!er often havin~

to deal loIith complex synchronlsation requiremf;l1ls.

- 54 - .

Data flo\07 and reduction provide higher level models in which the

programmer is not explicitly concerned \-lith sequencing and storage allo­

cation. Sequencing is implicitly controlled by the availability or need

for values and storage is automatically allocated and released as values

are creat.ed and used. .Reduction is more powerful than data flow since

computation is only performed when absolutely needed and so the program­

mer is not concerned with avoiding the initiation of unnecessary compu­

tation. This is particularly important in recursion where unnecessary

computation could lead to non-termination. Also, (graph) reduction sup­

ports the use of unbounded data structures and higher order functions

used in very high level applicative programming languages. It is

claimed by proponents of such languages that the use of these techniques

often leads to a simplification of program structure, compared with what

would be required in a conventional language, and that they thus provide

an easier means for producing reliable programs.

Greater power of course requires more sophisticated implementation

for its efficient realisation. In a control flow implementation the

major complex component is the processor for instruction execution. In

a data flow implementation there is additionally the mechanism for token

matching and in some cases sophisticated storage for data structures.

In a reduction implementation there are also the mechanisms for pro­

pagating demand and for garbage collection.

2.4.2. Concurrency an.d Perfoll!iancc

Exploitation of very high levels of concurrency requires a simple

scheme for activating and synchronising instructions and this Is best

- 55 -

provided by data flow. In concurrent forms of control flow the communi­

cation of control is separate from the communication of data and is a

considerable overhead when the grain of concurrency is at the level of

individual instructions. In reduction there is the overhead and delay

of propagating demand tprough the program. Although this ens~res that

only the necessary computation is performed it reduces the concurrency

and better performance might be obtained for a large number of proces­

sors by initiating possibly unneeded computation as can happen in data

flmv.

Data flow's activation by data availability gives highly concurrent

programs, although in some architectures pure data availability is aban­

doned. There are two particular potential difficulties in the perfor­

mance of data flow architectures. Firstly a large amount of token

storage may be required because the producer of a value generates

separate copies for fll its users. Secondly there is the fact that

individual instructions and procedures are atomic, and may depend on the

availability of data which is not actually needed. This means that

resources that could otherwise be usefully employed may be wasted on

computing that data, and that spare resources may be unused because com­

putations that could use them are delayed awaiting the availability of

that data.

2.4.3. Exploiting VLSI

One of ~he most important considerations in VLSI design is to

mi.nimise communication both between chips and between different areas of

the same chip. This requires close association of processing and

- 56 -

storage functions (ymich is made possible in VLSI by the use of the same

technology for storage and processing elements). An expression manipu-

lation organisation, with each computingelcruent being a single chip or

even an area within a chip, is the only machine organisation which

attempts t.o satisfy these requirements. As is shown in Figure 15, all

classes of architecture can be implemented using the expression manipu-

lation organisation. The success of such an implementation is dependent

on programs exhibiting locality of reference. In data flow and string

reduction there is very strong locality at least within a procedure

since the only more global communication is for parameters and results

at the start and end of the procedure. In control flow any instruction

can in principle reference any item of memory but in fact most referenc-

ing is local to a procedure and this is particularly true when modern

design methodologies such as data abstraction[44,45] are used~ For

graph reduction with lazy evaluation the actual execution tends to have
,

a very convoluted structure in which there may be very little locality

of reference.' This is because the evaluation of one expression may

cause the evaluation of another expression anywhere in the program

structure.

2.4.4. Generality

Control flo, ... archi tee tures are recognised as being very general-

purpose. Evidence for this is that they have been successfully employed

in a very large range of applications, and for implementations of all

ct'asses of programming languages including applicative languages which

rE'qllire emulation of the reduction operation model. Their generality is

largely due to the low level of the operational model which in giving

- 57 - .

explicit control to the programmer/compiler allows any required

behaviour to be produced. This is partlcularly· important in real time

applications where sequencing and timing may be crucial. Data flow is

probably the least general-purpose. Most data flow architectures do not

provide the mechanisms for controlled non-determinacy needed in operat­

ing systems· applications and there are some data flow architectures

which do not even support arrays or recursion. It is impossible to

effectively emulate such features if they are not directly supported, or

to emulate a different operational model, as can quite easily be done in

control flow. The advocates of applicative programming see reduction

architectures as truly general-purpose and there have been successful

experiments in producing applicative file systems [46], graphics sys­

tems[47] and compilers and interpreters[48]' (although not yet applica­

tive process control systems which have been identified by a pioneer of

applicative programming [49] as typifying the last remaining application

area in which the adequ~cy of applicative programming is in doubt). The

main difficul ty is in the acceptability of applicative languages which

are radically different to currently popular languages. Also the inclu­

sion of non-determinate operators, necessary for operating system appli­

cations, is still somewhat questionable.

In summary, the main benefit of control flow is its lack of res­

triction and its operational nature which make it very general-purpose;

the corresponding weakness is the need to exercise careful operational

control which can be extremely difficult in programming a complex highly

concurrent algorithm. lbe benefit of data flow is that it is simple and

hi.ghly concurrent offering potentially high performance in sui table

applications; its principal ~leakness is that it is not very general-

- 58 -

purpose, having difficulties with more sophisticated control and data

structures. Ibe main benefits of reduction are in its expressive power

and the main disadvantages are that the applicative style of programming

is not the most natural or efficient in many cases. Compared with con-

trol flow, data flow is primarily an improvement in performance, reduc-

tion is an improvement in expressive power and both are less general-

purpose.

- 59 -

"3. COMBINING DATA FLOW AN)) CONTROL FLOV

As shown in the last Chapter control flow and data flow architec­

tures have complementary advantages and disadvantages. This Chapter

describes the combination of control flow and data flow concepts in an

experimental highly parallel architecture referred to as the

Data/Control Flow (DCF) architecture. The DCF is based on an opera­

tional model which includes the (parallel) control flow and data flow

models as subsets and so allows compilers to generate control flow or

data flow style machine code. Thus the architecture supports both con­

ventional programming languages used to program control flow machines,

and the class of simple applicative languages, known as "single assign­

ment languages"[50,51), which are used to program data flow machines.

It would also be possible for these two styles to be usefully mixed.

For example a compiler for a conventional language might generate data

flow style code for el'aluating expressions (which have an applicative

structure) and control flow style code for the other elements of the

program.

This Chapter follows the same structure as Chapter Two. First the

basic concepts of the DCF operational model are covered. This is fol­

lowed by a discussion of program organisation. Finally the

architecture's machine. organisation and two implementations are dis­

cussed. The DCF architecture is described at greater length in [12) and

details of the two implementations are given in [19] and [20].

- 60 -

3.1. Operatlo~al Model

The complementary advantages and disadvantages of control flow and

data flow are largely a result of the particular control and data

mechanisms found in their operational models. Parallel control flow and

data flow both have a parallel control mechanism, the difference being

that in the former instruction activation is by control tokens whereas

in the latter it is by data tokens. Control tokens give the programmer

explicit control over instruction activation whereas data tokens provide

implicit activation by data availability. The DCF model has a parallel

control mechanism which is a synthesis of these two schemes. Instruc-

tion activation is controlled by generalised tokens, each token either

carrying data for the activated instruction (a data token) or carrying

"null" (a control token).·

The control flow and data flow operational models each provi?e two

of the three data mechanisms: by-reference and by-literal for control

flow; by-value and by-literal for data £10\11. The DCF model includes all

three mechanisms allowing data to be embedded in the instruction (by­

literal), communicated as a data token (by-value), or communicat.ed via a

shared memory cell (by-reference). In control flow a memory cell can

contain not only basic values but also references to instructions arid

other memory cells. In DCF there is the same generality in the kinds of

data that can be stored in memory and carried by tokens.

Figure 20(a) shows a representation of DCF machine code for the

example a:= (b-H) * Or-c) and (b) shows an abbrevia ted representa t:l.on

similar to that used for data flow graphs (a control token ls shown as

61 -

.'). This machine code representation combines elements from the paral-

leI control flow and data flow representations used for the same example

in Figures 3 and 4(a).

i4:
(

(I
11:

b:(4)

a: ()

(~) machine code representation

. .. I I ••• I
i'

II~ II 2t
'" .. ""!1. ,~
Ib+11 Ib- J

~}
I a:= * I

I
4#
I
V

(~) abbreviated.
representation

Figure 20 - Data/Control Flow

Each instruction consists of a sequence of arguments. The types of
•

arguments are operators, literals, unknowns (represented by ls, each

specifying the requirement for some input - a control token or data

token), memory references (for accessing operands and storing results),

and instruction references (for communicating tokens to other instruc-

tions). First will be (zero or more) control arguments (1s) each speci-

fying the requirement for a control token as in control flow. Next

comes the operator (e.g. +) which is followed by input arguments. An

input argument may be a literal (e.g. 1), an unknown (1) specifying the

requirement for a data token as in data flow, or a memory reference

(e.g. b) as in control flow. Finally there are output arguments each of

which references either a memory cell to be updated with the

- 62 -

"instruction's result (e.g. a in 13) or the destination for a token (e.g.

i3/1 in il for a data token carrying the result, or 16/4 in 13 for a

control token indicating that the result has been stored).

All instructions are notionally active and can potentially execute

in parallel, execution being constrained by the arrival of tokens. The

instruction execution cycle combines the control flo\-1 and data flow

cycles, comprising the following stages.

(i) activation (as in parallel control £10\\1 and data flow) the

instruction is activated when tokens for all t arguments have

arrived

(ii) memory load (as in control flow) - any required data residing in

memory is retrieved using memory cell references

(iii) operator execution (as in all models) - result data is computed

from operand data as defined by the operator
•

(iv) memory update (as in control flow) - data is stored into memory

cells identified by memory cell references

(v) token emission (as in parallel control flow and data flow) - Dut-

put (control and data) tokens are emitted to argume.nt posi-

tions in other instructions identified by instruction refer-

ences and these tokens then contribute to the activation stage

of those instructions.

In this execution cycle any information used (Le. a data item, a memory

cell reference or an instruction reference) in a particular stage may be

provided as an embedded literal in the instruction itself or d~lamically

- 63 -

provided at any preceding stage (as a data token received at stage (i),

loaded from memory at stage (ii), computed as the operator's result at

stage (iii)). This allows considerable flexibility in the low level

organisation of programs and gives orthogonality between operatprs and

data access.

A data item output by an instruction, as the value for a data token

or memory cell update, may be not only its operator's result but also

any of its input data. This allows the possibility of low level optimi-

sation of the program graph. For example in a graph for «b - c) + b)

the subtraction instruction could emit two tokens to the addition

instruction, one providing its own result· and the other passing on the

value of b. This would mean that in the interval between the execution

of the instruction generating b and the execution of the subtraction

there is only one copy of b. (In contrast, in pure data flow there

would be two copies, each occupying machine storage resources, one copy

for use by the addition aild one copy for use by the subtraction.)

The essential point however is the flexibility of combining the

control flow and data flow models at the level of individual instruc­

tions. For instance 11 uses control flow for input and data flow for

output whereas i3 uses data flow for input and control flow for output.

In this particular example the data flow model is used for communicating

an expression's partial results (which are only used once), v,'hereas the

control flow style is used for manipulating and controlling access to

shared data such as band a. However in the DCF model there is no par­

ticular constraint on the way instructions use the data tokens, memory

cells and control tokens which support the instruction level combination

- 64 -

of control flow and data flow. The combination of control flow and data

flow at higher levels of program organisation is discussed in the n.ext

Section.

- 65 -

"3.2. Program Organisation

This Section discusses how the forms of program organisation dis­

cussed for data flow and control flow architectures in Chapter Two are

combined in the DCF architecture.

3.2.1. Data Structures

In the DCF architecture data structures are manipulated in the same

way as in control flow architectures, namely by communicating references

and perfol~ing arithmetic on them. However a reference representing a

data structure can be passed as a data token giving the effect of com­

municating the whole data structure asa single token, as in data flow

architectures. In particular, the availability of the structure can

activate the instructions that manipulate it.

3.2.2. Conditionals

In the DCF architecture the various forms of conditional found in

control flow and data flow architectures are supported by a single con­

ditional switch operator. Figure 21 shows three instructi.onswhich use

the switch operator (represented as Y) to produce the effect of (a) the

switch-in instruction of data flow which selects its output value from

two alternative inputs; (b) the switch-out instruction of data flow

which swi tches a data token to one of two a1 tentative instructions; (c)

the conditional branch instruction of control flow which switches a flow

of control (control token) to one of two alternative instructions.

- 66 -

J/1 J/1
T

.... lIi'If---+y

1/1 It
,

1/1 :II ! ~'",
~E~J:6

(a) Switch-in (~) Conditional branch

Figure 21 - Conditionals in DCF

The switch operator, Y, has three operands and one result. The

first operand is a boolean which selects one of the other two operands

as the result. Each instruction has four inputs. One of the inputs is

the boolean (True or False) controlling thesvTi tch. Each of the other

inputs is either a data token carrying a value (6 or 7), a data token

carrying an instruction reference (Ill or 3/1 identifying the first

argument position of instruction I or 3), or a control token

(represented as a I). Each instruction has one output token represented

as "destination:value" (with I as the value for a control token). In

the token emission stage of instruction execution this output token is

constructed from the instruction's inputs and the operator's result.

The different effects of the swi tch operator in these three instructions

depend on whether its result is used as the value for the instruction's

output (in (a» or as its destination (in (b) and (c». These examples

particularly illustrate the orthogonality between operator and data

access. The same switch op.erator could also be used in instructions t.o

- 67 -

store a conditionally selected value hl memory cell or store a value in

a conditionally selected memory cell.

3.2.3. Iteration and Procedures

The DCF architecture supports both iterations and procedures.

Iteration is possible using either the scheme used in control flow or

that used in data flow. As in control flow memory cells can be reused

for successive iterations and an instruction, such as the conditional

branch of Figure 2l(c), can transfer control back to the start· of the

iterative code. In the data flow scheme for iteration, which was illus­

trated in Figure 10(ii), data tokens are synchronised at the end of each

iteration and fed back to the start. This scheme requires a "syn­

chroniser ll instruction which would be a normal DCF instruction with a

NOOP operator (just outputing its inputs, rather than producing a new

result). The two schemes can also be combined with some data items

being communicated to the next iteration via memory cells and some being

passed as data tokens.

The support of procedures depends on the separation of coexisting

environments accessed by shared code. In the DCl" architecture an

environment can consist of both information stored in memory cells (as

in control flow) and tokens (as in data flow). Each active environment

has a distinct identifier which provides both a token label (as used i.n

data flow procedures) and a reference to a local memory area for the

environment (as used in control flow procedures). An individual

instruction in a procedure may execute many times in different environ­

ments. Each execution takes a set of input tokens vd th the same

- 68 -

environment identifier; all memory addresses in the instruction for

loading and storing data are relative to the reference provided by that

identifier; and all output tokens are labeled with that identifier.

In a data. flow archi tec ture procedure call and return are provided

as single instructions (as illustrated in Figure 10(i». The DCF archi­

tecture provides more primitive instructions for manipulating environ­

ments which can be used to construct procedure calls and returns. These

primitives include: HewE which creates a new environment, allocating its

local memory area and generating the unique envirorunent identifier;

Ki.ll{E} which terminates the specified environment, deallocating its

local memory area and deleting any remaining tokens; ~etE(E) which

passes information to a specified environment - instead of the environ­

ment identifier of its input tokens being used to identify the environ­

ment of its outputs (tokens and memory updates) implicitly, the explicit

operand value (E) is used so that those outputs go to that environment.

Figure 22 illustrates the general structure of the way these primi­

tives can be used for procedures. The procedure F has two parameters,

pI and p2 calculated by program fragments Pl and P2, and two results, rl

and r2 calculated by program fragments FI and F2. The procedure call

consists of five separate instructions: N, AI, A2, CI, C2. Instruc tion

H creates the new environment for the called procedure and passes its

identifier, E', to the other instructions in the call. The creation of

the new envirOlIDlent by N is activated by a control token from program

fragment PO which determines whether or not the procedure call is actu­

ally made (e.g. depending on the termination condition in a recursion).

The Listruc tions CI and C2 pass the parameters, pi and p2, into the ne,"

- 69 -

environmcn t. Parameter pI is communicated by data tokens, whereas

parameter 1'2 is communicated vla memory cells, .1 and D2, \vi th 8ssoci-

ated control tokens. The instructions Al andAl pass into the new

environment the information needed for the two results to bf\ returned to

the calling environment. lbe required information is the calling

environment's ~dentifier E and references to the instructions Xl and Xl

in the calling environment.

AI:

(••• PI • ••) (• •• ~O • ••) (
I

pI ·'1 I'

E'

r-v hE' SETE C 1 :f SETE

:"XI-1 " F"

Called Environment
(E')

E,X2

)

r~
(. ..)

rl

1/ II R2: ----+---, "f-------- ,-.---,
~----~~~~~ 4r----r ~~--~------~

rl

Figure 22 - Proced1lres in DCF

I
U6

I .l ;/<r2)'

X2:~ "

The procedure return consists of three separate instructions: KO,

Rl and R2. Instructions Rl and R2 pass the resul ts back to the calling

- IU -

environment and RO terminates the called environment when both results

have been returned. For rl all communicati.on uses data tokens, whereas

for r2 both data token and memory cell communication is used.

In this example some of the parameters and results are communicated

as data tokens (as in data flow procedures) and some are communicated

via memory cells (as in control flow). The ability to combine control

flow and . data flow at this procedure level is a direct consequence of

the combination of control flmv and data flow provided by the basic

operation model at the level of the individual (SETE) instructions used

to communicate the parameters and results.

The procedure structure used here has separate instructions for

communicating each parameter and each result, so that the procedure is

non-atomic. Non-atomic procedures generally provide greater possibili­

ties for concurrency. In this example ins truc tions in FI lyhich calcu­

late result rl, and then Xl which uses rl, are concurrent with instruc­

tions in P2which calcu\ate the parameter p2 (not itself used in the

calculation of rl). Non-atomic procedures also tend to lead to a

clearer structuring of programs in that the grouping together of

instructions into procedures can be determined purely by the logical

structure of the program without being influenced by the need to exploit

potential concurrency. In order to exploit the potential concurrency

between Xl and P2 using· atomic procedures, such as are provided in data

floW, it would be necessary to split F into two procedures, one contain­

ing the instructions of Fl and the other containing those of F2.

A Sete instruction, as any other instruction, can ha\~e a number of

inputs and outputs. All outputs ",ould be labelled with the spe.ci tied

- 71 -

environment identifier. lhus tIle primi lives provided in LeE could be

used to construct atomic procedures. Eor the eXf,lllple·in Figure 22 this

would te achieved by combining all the input Sete instructions (i.e. AI,

el, C2 and A2) into a single Sete instruction having E', pI, and p2 as

inputs. Similarly the output instructions (RI and R2) would be com­

bined. With an atomic procedure structure there is the disadvantage of

a possible loss of potential concurrency. Ihe benefit is that the

red uced level of concurrency can be organised wi th fewer instructions

and with fewer tokens (one E' token instead of four, one control token

for instruction RO instead of two).

3.2.~. Non-Determinacy.

In the DCF operational model there are two potential sources of

non-determinacy, namely simultaneous updates of memory cells (as in con­

trol flow) and the simultaneous emission of two tokens for the sam~ des­

tination (as in data flow). Ihe synchronisation of normal instruction

activation can be used to control non-determinacy. lhis is illustrated

in Figure 23 using the same resource manager structure as was used for

data flow in Figure 13.

Ihere are two concurrent users A and B of a resource which they

access by sending "transaction" data toke.ns (p, q) to the re~ource

manager. lhe resource manager is a critical region which can only pro­

cess one transaction at a time and is protected by P and V instructions

as in standard control flow techniques using semaphores. ('Ihese· t"'o

instructions are here sholo.'Il \Vith l-ioor opera tors a1 thougl1 any or~rator

could be used in ~uch instructjons). lhe. two inputs nEeded for the

- 72 -

• "User A". "User Il" •
• •
• •

I I p q I I
~ All A. / .

..... ...
• r#'--J,"~/ •
• · p:l NOOP I

~ "Resource critic<}l region
I ",." Manager"

~ V: NOOP .

'-------!

Figure 23 - non-Determinacy in OCF

--
activation of P are a control input provided by a "semaphore" control

token "'hich signals that the critical region is free; and a data input

provided by one of the transaction data tokens which are sent, possibly

simultaneously, by users A and B. In the activation stage of executing

• instruction P there would be an arbitrary choice of one of the available

data tokens to match with the control token, the oth-.;r dsts token

remaining until it could be matched with another semaphore token. The

operator of instruction P is a liOOP and the instruction just outputs its

data input, thus releasing the transaction into the critical region.

When all the critical processing (updating the resource) has been com-

pleted instruction V is activated. This again is a NOOP to free the

critical region by providing a control token for another activation of P

and thus release another transaction into the critical region.

. - 73 -

J".3. Machine Organisation arid Implementation

There were two experimental DCF implementations, carried out as

separate dissertation projects by M.Sc. students. Both implementations,

one in software[201 and onc in hardware[19], are based on the design

shown in Figure 24. This design has a packet communication organisation

wi th token matching, similar to the data flow machine organisation shown

in Figure 17(b). The successive stages of the instruction execution

cycle are split into separate machine resources \vhich form a circular

execution pipeline. Packets of information flow around the pipeline,

each packet representing an intermediate state in the execution of an

instruction or a communication from one instruction to another.

FIFO PROCESSING UNIT r-----' r------------ --,

<executable
instruction) I

I
I

<executed
instruc tion)

• ~I I LRxecution~> L __________
L_ ---- .J

• t

r - - --------.,
I I

I
IData~\ I

Store I
I

II\. Instruc tion ,
activated Store II 1<

1 instruc tion) l ____ _
.I

HEMORY UNIT

,
FIFO

r - - --,

'.>update) :
!' '-- -J

c-----,
I <token I

:<. set) , ,
I ,
'- ___ .I

FIFO

DistribuUon

- ~---- -- ..J

FIF o r---
I <tokcn~!t
t.. - -- - - ...J

r - -- - - ..
I

I Matching
I Store

L _____ -I

HATCHING UNIT

Figure 24 - DCF t:i .. chine Organi.sation and hple.aeIi.tatioD.

The Matching Store receives tokens and collects them into token

sets. Each token set contains tokens· for the same destination

- 74 -

instruc.tion and is sent to the Instruc tiOD Store when the set is com-

plete. There the tokens combine with the destination instruction to

form an activated instruction. Meinory cell references are then de­

referenced by loading data from the Data Store to produce an executable

instruction which is sent for execution. The operator is executed to

give an executed instruction which spec.ifies some memory updates (lnd

output tokens for distribution to the Data Store and }wtching Store.

The main components of the design are organised into three fUTlc-

tional uni ts • The Matching Unit implements the Natchi.ng Store. The

Hemory Unit implements the Instruc Uon and Data Stores as a single

address space (so that the machine can compile its own programs). Tne

Processing Unit implements operator execution and output distribution.

These Units commul).icate by sending packets which are temporarily stored

in separate first-in-first-out (FIFO) queues between the Units. The

design could be easily extended for greater parallelism by including

several Processing Units.

In the hardware implementation each of the three functional units

is a separate M6800-based microcomputer. The purpose of this implemen­

tation was as an exercise in build:i.ng a novel multi-processor computer

from "off the shelf" components. In the software implementation each

functional unit is a process in a SINULA program.· The purpose of this

implementation was both as a machine code interpreter to experiment with

programming the DCF architecture and as a machine simulator to determine

performance characteristics. Results of experiments performed using the

simulator are reported in [20]. The m:3.in conclusion that can be drawn

is that the performance of the Hatching Unit is the limitinz factor 1.n

- 75 -

t·he design. On average each instruc tion execution generates two tokens

and for each token it receives the Matching Unit has to search its

Matching Store to find any previously received tokens with which the

newly-received token can match. To balance the design it would be

necessary for token matching to take half the time taken by operator

execution. This would be difficul t to achieve using conventional memory

organisation for the Matching Store and it would probably be necessary

to use a special-purpose associative memory or have several Matching

Units per Processing Unit.

- 76 -

3.4. SUJ:mlary and Discussion

The DCF architecture combines elements from control flow and data

flow architectures. It includes both their separate data mechanisms

(i.e. by-reference and by-value) and has their common parallel control

mechanism and packet circulation machine organisation. The DCF opera­

tional model includes as subsets the operational models of control floW'

and data flow and integrates their various forms of program organisation

so that both control and data flow styles of machine code can be easily

combined.

Comparing the DCF architecture ltli th the more conventional sequen­

tial and mul ti-thread forms of control flow architectures, the major

difference is in the parallel control mechanism and by-value data

mechanism. These mechanisms, supported by the packet circulation

machine organisation, facilitate the execution of highly concurrent pro­

grams. Comparing the DCF architecture with data flow architectures, the

real difference is in the mor~ primitive level of machine code interface

that it provides. As'in the DCF architecture, data flow architectures

can include separate memory accessed by "reference tokens" (for data

structures), "control tokens" (both the acknowledge tokens in the MIT

data flow machine and the outputs of switch-out conditional instructions

act like control tokens), envirorunent manipulation (for procedures) and

non-determinate instruction activation (for resource managers). In data

flow such features are incorporated into higher level constructs, for

example CALLand MERGE instructions. In contrast, they are provided as

primitive features in the DCF architecture. The more primitive inter­

face of course puts a somewhat greater burd.;n on the

- 77 -

programmer/compiler, but gives a more flexible general-purpose architec­

ture. This flexibility is illustrated by the ability to have both

atomic' and non-atomic procedures and the ability to use a control token

for any synchronisation requirement.

The main deficiency of the DCF is that although it includes all

three of the data mechanisms it only includes one of the control mechan­

ism~. The absence of the sequential 'control mechanism means that there

would be poor performance for a purely sequential program since a con­

trol token would have to circulate completely around the machine between

each instruction execution. The absence of the recursive control

mechanism means of course that the DCF still has the disadvantages dis­

cussed in Chapter Two of data flow and control flow compared with reduc­

tion.

There are two particular weaknesses in this combination of control

flow and dataflow concepts. Both of these concern the way addressable

memory has been incorporated. Firstly there is a potential implementa­

tion problem in supporting' the conventional view of memory which

requires that an instruction's memory updates are completed before its

successor instructions are activated. In the actual implementation this

view is easily supported because both memory updates and instruction

ac tivations go to the same single Hemory Unit and the former can be

given priority. However there might be a serious difficul ty in a more

distributed implementation.

Secondly there are the differences between "instructions" and

"data". Both an instruction argument and a memory cell act as a con­

tainer into which an ins true tion can store a value. However these two

- 78 -

types of containers have. very different properties: an instruction argu­

ment can contain either an unknown or an actual value (as a literal)

whereas a memory cell can only contain a value; a memory cell can be

updated whereas an instruc tion argument cannot (an attempt to overwrite

a literal with a data token results in an error); the arguments of an

instruction form a structure with each component being identified by a

two-part instruction/argument reference, whereas memory cells are

unstructured. Essentially there are two separate, by-value and by­

reference, data mechanisms, with their respective characteristics inher­

ited froIn data flow and control flow. In its data mechanism the DCF

architecture is thus only a combination of control flow and data flow,

whereas in its control mechanism it is a genuine synthesis. The control

mechanism provides a single integrated notion of activation by a com­

plete set of tokens which includes, as special cases, activation by just

control tokens (as in control flow) and activation by just data tokens

(as in data flow).

- 79 -

4~ GENEr~ISING CONrROL FLOW

Having described in the previous Chapter an architecture, the DCF t

which supports both control flow and data flow, this Chapter describes

an architecture, referred to as the Recursive Control Flow (RCF) archi-

tecture, which supports all three of control flow, data flow and reduc-

tion. ~~ereas the basis of the DCF was a direct combination of specific

concepts from parallel control flow and data flow, the RCF is based on a

set of general principles, the "recursive principles" mentioned in the

introduction, which have been proposed[17] as the appropriate basis for

future general-purpose decentralised computing systems using VLSI tech-

nology. These principles of recursive architecture are a generalisa-

tion, based on the use of recursion, of the von Neumann principles

underlying conventional computing systems. The von Neumann princ.iples

not only form the basis for conventional general-purpose computers and

langt~ges used to program them, but also govern much of the design of

computer networks since their components are von Neumann computers. The

recursive • architecture princip~es are here developed principally in the

context of highly parallel computers. They are however also relevant in

the context of geographically distributed computer networks[52] and that

aspect is explored towards the end of the Chapter. The concept of

recursive architecture came originally from the early work of Glush-

kov[53j and subsequent work of Barton[54] and Wilner [55] whilst its

realisation in the RCF architecture is based on the investigations of

control flow, data flow and reduction covered in Chapter Two.

This Chapter follows the same general structure as the preceding

Chapters, starting wi th the RCF operational model, followed by a

- 80 -

discussion of program organisation and finally covering machine organi­

sation. A proposed implementation of the architecture is covered in

some detail in the subsequent Chapter, together with a comparative dis­

cussion of of several other decentralised computing systems (including a

computer networking system) which incorporate similar recursive princi­

ples.

There are two major aspects to the RCF architecture. The first is

the general principles of recursive structure. Sections One and lbree

concentrate on these principles and their realisation in, respectively,

the RCF operational model and the machine organisation supporting it.

The second aspect is the combination of control flow, data flow and

reduction in a single architecture. Section 2 concentrates on this

aspect, covering the various forms of program organisation discussed for

control flow, data flow and reduction in Chapter Two.

4.1. Operational Model

The conventional, control 'flow, operational model is based on the

von Neumann principles for the organisation of storage, addressing and

program representation and execution. This Section discusses the alter­

native recursive principles and their realisation in the ReF operational

model.

4.1.1. Storage Organisation

A conventional arch5.tecture provides static, linear storage struc­

tures of fixed size units, such as words of main memory or blocks of

backing store. The elementary actions on such a structure are to copy,

- 81 -

replace or execute the contents of a single storage unit such as a

memory cell containing a simple data item or machine code instruction.

A recursive architecture provides a dynamic storage structure supporting

a single hierarchy of variable length units, referred to as "objects",

similar to the hierarchy of a block structured program or operating sys­

tem filestore. Each object is either a primitive object, such as an

integer or instruction, or recursively a compound object comprising a

sequence of component objects. The elementary actions supported for

such a structure are to copy an object, replace an object, insert a new

component into an object, delete a component from an object, or execute

an object.

In the ReF architecture the hierarchic object structure is

represented as a string of symbols comprising data s)~bols for

representing primitive objects and structuring symbols (and) for del­

imiting objects. For example, with integers as data symbols, a 3X3 mul­

tiplication table might be represented as -

((123) (246) (3 , 9))

At the machine code level the data symbols are just 0 and 1 and each

integer in this table would actually be represented as a delimited

sequence of Is and Os, such as -

(((1) (10) (11)) ((IO) (IOO) (110)) ((II) (110) (IDOl)))

- 82 -

4~1.2. Addressing

A conventional architecture uses absolute addreRsine within a one

level address' space, an address being for example the ordinal number of

a word in main memory. A recursive architecture uses contextual

addressing \oTi thin a hierarchic address space, an address being similar

to a filename in the filestore of an operating system such as u~IXl56]

or an international telephone number. This contextual addressing is

based on a set of selectors which can be applied in the context of one

object to select a related object. For example a selector /2, meaning

"second component", applied in the context of the object (3 6 9) would

select the object 6. An address is a sequence of such selectors, with

each selector being applied in the context selected by the preceding

selector. Thus an address, such as /6/3/2 meaning "2nd component of 3rd

component of 6th component", specifies a path from an initial context to

a particular object. (In this Chapter a I will be used at the start of

all addresses and individual selectors, in order to distinguish an

address from the object it addr~sses and to delimit the component selec­

tors of an address.)

In the ReF architecture, where the object structure is represented

by a string of symbols, a selector identifies a position in the string

between two symbols, selecting both the existing object to the immediate

right of that position and a space where a new object could be inserted.

The selectors are illustrated in Figure 25(a) with each selector,

/<- ("prior"), /-> (llnext") etc., being shown as labeling the position

in. the stringrhich it v:ould identify relative to the position labeled C

(which is itself identified by the null selector, I). Excluding the

- 83 -

/start and /escape selectors, these are a minimum set of primitives from

which an address for any relative position in the structure can be con-

structed. The various nOu-primitive selectors that will be used are

also defined in Figure 25(b) as sequences of the primitive selectors.

(a) Simple positional selectors

"prior" "next"
lout 1<- lin 1-)

...) ((...) ... (...) ((...) ... (...)) (...)
c:

Istart /
"null"

(b) Derived Selectors

"nth next" "nth prior" "nth component"

•
Figure 25 - Addressing Selectors in ReF

lend

(...)) (...
lese

"escape"

There are two forms of addresses, "self-relative" and "base-

relative". The former is just a sequence of s~lectors, such as

/out/->/->. This would itself be an object in the string, with the

individual selectors as its component objects, «lout) (/-» (/-»).

TIle initial context for such an address is the position in the string at

which the address itself starts. Thus using the multiplication table

above as an example data structure B, the self-relative address for the

object 4, from within a program fragme:nt C adjacent to that structure

- 84 -

wbuld be as in -"

.= :::::::-------- -- ---- - - - ----., ---.... . "
...... "
~ "

(•••) ((1 2 3) (2 4 6) (3 6 9 » (••• /out/<-/2/2 •••)
A: B: c:

In base-relative addressing a previously selected position in the

string is used as the initial context or "base" for a sequence of selec-

tors -

~~--- ---------." -- - -- -- - - --., .
............. ----- ,

............... ------- ... - "
.... ,... --.... -... _- ''''', , ----~ " ~,-- ... ---

(•••)« 1 2 3)(2~4 6)(369 »(••• set$ '/out/<--;.:-$/2/2 •••)
A: B: c:

The $ in the base-relative address $/2/2 identifies the base position,

B, previously selected by the set$ /out/->. The remaining selectors

/2/2 are relative to that base, identifying the same object 4 as before.

This form of addressing corresponds to the use of "working directories"

and "root directories" in the UNIX file naming system, the use of

"currencies" in the data manipulation language of a network data base

• model [57], and, in conventional machine code, addressing relative to a

base address stored in a register.

Compared with conventional storage and addressing there are a

number of benefits in a dynamic recursive storage structure and contex-

tual addressing such as are provided by the ReF architecture. TI1ere is

direct support for the representation of commonly used storage struc-

tures (such ~s lists, stacks and queues) and the required addressing

(e.g._ "next", "first component" and "end") and manipulation (e.g.

"insert") of their components. There is no architectural limit on a

- 85 -

machine's address space, as would be imposed by a fixed address size.

The total address space of a machine is contained in one (outermost)

object and for example the machine's address space can be extended by

the insertion of a new object at the end of that outermost object. Also

the address spaces of several machines can in principle be combined

(thus extending each) by embedding each of their outermost objects as

components within a larger containing object. Such address space exten-

sions do not affect the validity of previously used addresses and the

resulting address space is completely homogeneous.

Contextual addressing does however have two particular potential

drawbacks. Firstly, the representation and interpretation of an address

is relatively inefficient if the address comprises a long sequence of

selectors. (References will however tend to be between objects which

are relatively close in the structure and thus most addresses can be

expected to be fairly short.) Secondly there is not necessarily a fixed

correspondence between an address and the object which it will select

when used. In the situation shown above the self-relative address
,

/out/<-/2/2 selects the object 4. However that address would identify a

different object if sayan additional component were inserted between B

and C or if the address were used in the context of A rather than C.

This can clearly cause problems, particularly when on~ part of the pro-

gram needs to communicate an address for use in another part of the pro-

gram.

The sec~nd form of addressing, using a pre-selected base as the

initial context, alleviates both of these problems. Once a base has

been set to a particular position it directly identifies that position

- 86 -

and can be used many times' without the need to re-specify and re-

interpret the full selector sequence. Also It continues to identify

that same position regardless of ~There it is used or of changes to the

object structure. (A base in the object structure is analogous to a

bookmark in a loose-leaf folder - it identifies a position between two

objects (leaves) and retains significance as objects in its vicinity are

inserted and removed, but is no longer usable if the surrounding object

(whole folder) is destroyed.)

In subsequent examples "absolute addresses" will be used, such as

the absolute address /B to select the 4 from two different contexts in -

(/B/2/2 •••) ((1 2 3) (2 4 6) (3 6 9)) (••• /B/2/2 •••)
A: B: C:

This is just a notational convenience and the /B in these addresses 1.5

intended to represent the appropriate sequence of selectors (/out/->

from within A, or /out/<- from within C).

4.1.3. Program Representation

The operational model of a conventional architecture is embodied in

a low level machine language in which instructions are elementary opera-

tions performed on elementary operands. A recursive ~rchitecture pro-

vides a recursive machine language supporting nested program structures,

such as is found in the string reduction model. In such a language an

instruction has an "operation object", which Ulay be a simple operator or

say a procedure, operating on "operand objects", which Ulay be simple

data items or complex structures.

- 87 -

The operational model of the ReF architecture is e.. generalisation

of the conventional sequential control flow model which includes the

control flow, data flow and reduction models as subsets. In this model

a program is structured into executable objects, instructions and argu-

ments, as for example in the ·struc ture -

executable object
, A ,
Instrl Instr2 Instr31 Instr32 Instr4

A

" A '" ~ A. • , , , ,. ..
op in in out op in out ·op in out op in op in in out

(Ala Alb Ale AId A2a Alb Ale (AlIa Allb Alle A32a A32b) A4a A4b A4c A4d)

The executable object contains a (sub-structured) sequence of instruc-

tions (Instrs), each of which comprises a sequence of arguments (As),

themselves executable objects. Execution of such a object, invoked by

some instruction in the program, would normally proceed sequentially

from instruction Instrl through to instruction Instr4 and then ter-

minate. In a subordinate object such as (Instr31 Instr32) the con-

tained instructions are executed in sequence. Of the arguments forming

an instruction such as Instrl, the first is the operation (op) which
•

detennines the interpretation of the following arguments. TI1e operation

is fo11 o\,'ed by input arguments (ins) providing its operands. These

argtnuents are subordinate executable objects, e.g. expressions, which

are recursively invoked in parallel by the operation and return the

operands. The simplest form of operand is a data item such as an

integer which when invoked returns itself. Following the input argu-

ments are th~ output arguments (outs) specifying where the results of

the ~peration are to be stored. For an instruction at the end of its

containing object an output argument may be absent, as for instruction

- 88 -

Instr32, in which case the result is returned to the invoking instruc-

tion. (An executable object may comprise a number of such return

instructions and will thus in the general case return a sequence of

results rather than a single result). An address may be given in an

argument position, in which 'case the addressed object. is used as though

it occurred as the actual argument.

Figure 26 shows a representation of the example from Chapter Two -

n. = (b+l) * (b-c) where b=7-3, c=2

The object A comprises two instructions, il 8.nd i2, which are executed

in sequence. The instruction iI, - 7 3 In, computes the value 4 and

stores it at B for use by subsequent instructions, as in the conven-

tional control flow model. Instruction 12, * (i3) 114, is structured as

in a reduction model: it has no output argument so that its result is

returned to whatever operation invoked A; its operands are provided by

recursively invoked instructions 13 and 14. The first of these, 13, is

embedded directly as an actual argt~entwhereas the other, 14, is

invoked via its address /14. Boeh 13 and i4 have the address of B as an

input argument to access the value computed by 11, and have no output

arguments so that they return their results to 12.

A: B: c: 14:
(- 7 3 /B * (+ /B 1) /14) 0 2 (- /B Ie) • • •
~

'---.r---J i3 \ ... I

i1 Y'
J 14

i2

Figure 26 - Prograa Representation j.n ReF

- 89 -

This example has illustrated the combined use of concepts from con­

trol flow and reduction styles of program representation. The Section

on Program Organisation will consider in more detail the way in which

ReF programs" can be organised as in control flow, data flow and reduc­

tion. In addition to the gen"eral concepts of program representation

presented here, this will require the provision of specific types of

primitive arguments, such as the? ("unknown") arguments used in data

flow and parallel control flow.

4.1.4. Prograa Execution

lbe conventional operational model has a sequential control mechan­

ism with a single locus of control or "activity" proceeding serially

through the program.

ments reflects the

The interface between an operator and its argu­

basic processor/memory interface of load and store

operations on single memory cells. A recursive program representation

requires some form of recursive control mechanism such as that of the

reduction models presented in Chapter Two. In a reduction model there

is a tree of concurrent activiti~s each evaluating some part of the pro­

gram strue ture and returning its result to the activity which invoked

it. The basic operator/argument interface is the demand for an argument

to execute and the return of the result produced by its execution.

The RCF model incorporates the sequential, parallel and recursive

control mechanisms. An executable object (generally comprisi-ng a

sequence of instructions) is executed by an activity which moves sequen­

tially through the instructions executing each operation. in turn. TI1ere

may be several independent activities executing instrcction sequences in

- 90 -

parallel. lhe execution of an operation by an activity will involve

subordinate activities which recursively execute the objects forming the

operation's arguments. To accommodate various operation/argument inter-

faces, such as demanding and returning operand values, the model incor-

porates general commu~icatio'n of "message" objects between superior and

subordinate activities as they cooperate in the concurrent execution of

a program structure.

This model of execution is illustrated in more detail in Figure 27

which shows successive stages in the execution of the example j.n Figure

26. The position of activities in the program string are, as previ-

ously, indicated by I symbols. To illustrate the progress of execution

this Figure also shows the tree structured relationships between supe-

rior and subordinate activities (identified as P, Q, R, etc.) and the

messages communicated between them. These messages are primitive

objects representing integers or specifying particular actions to be

performed at the destination. For example in (v) the replace-with mes-

sage followed by the message 4, sent to the activity S, causes the

object 4 to replace the object 0 at which S is positioned. ,

Execution of an operator consists of the following five steps,

exemplified by activity P executing (in (i) - (vi» the - operator of

the control flow style instruction - 7 3 IB, and the same activity then

executing (in (vii) - (xi» the * operator of the succeeding reduction

style instruction * (+ IB 1) 114.

1. As shown in (ii) and (viii) two subordinate activities, Q and R,

are positioned at the input arguments and a subordinate activity,

S, is positioned at the output argument (if there is one).

(!)
il

"p~
(}- 7 3 IB * ... /14) ••• 0

B:

(ii) 'p

:e{x~:yexec
P Q R S

(}- }7 }3 J/B * ... /14) ••• 0
B:

(~~pl}oPY
p Q R r---------~ S , . ~

(}- 17 13 IB * ... /14) ••• 10
B:

(ll) Ir
P Q R S

(1- }7 }3 IB * ... /14) ••• 10
B:

"-(y) p

/I~
P Q R () S

(1- 17 13 IB * ••• /14) ••• 10
B:

" (vi) P
--(-\7 3 IB 1* ••• /14) ••• 4 . '-_____ ..1 E:

- 91 -

12
"- P, A ,

(- ••• 1* (+ /B 1) 114)
••• 4 2 (- Ih IC)

B: c: 14:

(viii) 'p

exec/\ exec , ~
P Q R

(••• 1* 1(+ IE 1) 1/14)
••• 4 2 (- IB IC)

B: c: 14:

"-
(ix) P

~~\opy . r'"
P Q S 'I

(••• }* (1+ liE II) 114)
.......... R

P
(••• 1*

(xi)

"'" ••• 4 2 (1- IB Ie)
B: c: 14:

H:"
/;.~

Q R
y-+~4 4,- ~2

Q 'I)
(1+ IB II) 114) I

I
I
I
I ,
~s l V R

••• I I 4 I 2 (1- 11 Ie.)
".. B .1'(.. 14' I / , -.. ., , L __ h: _______ -' "

L _______ -1

(••• *,(+ IE 1) 11~
'- __________ J

• • • 4 2 (- IB 1(.)
IS: c: 14:

Figure 27 - Program Executiou in ReF

- 92 -

2. These s.ubordinate activities .are sent execute messages to initiate

the execution of those arguments. There are three main types of

arguments that may be executed.

2(a). In the case of an address, such as the /B executed by S
,

«ii) (iii» or the /I4 executed by R «viii) - (ix», the exe-

cuting activity is re-positioned at the addressed object. It con-

tinues executing there as though that object were the actual argu-

mente

2(b). In ·the case of a data item, such as the 7 executed by Q

«ii) (iii» or the 0 executed by S «iii) - (iv», no fur ther

evaluation is possible. The executing activity just remains posi-

tioned at that object until a message is received specifying some

action on it, such as copy (iii) or replace-with (v).

2(c). In the case of a subordinate instruction, such as the

(+ /B 1) executed by Q «viii) ~ (x», the same steps are recur-

sively applied in the execution of its operator, creating in (ix)

the activities Sand T as subordinates of Q. lhe complete tree

structure of activities which is created by this recursive execu-

tion, and the positioning' of those activities by the various

addresses, is shown in (x). The operators being executed by P, Q

and R are shown at the nodes of the activity tree. The activity

tree structure corresponds to the infix structure ((BTl) * (B-C))

of the expression being evaluated.

3. Mter P has initiated the (concurrent) execution of the input argu-

ments by subordinate activities, Q and R, their results are

accessed by sending copy messages «iii) and (ix». \Vhere the

input argument is a data item, a copy of that item is returned

- 93 -

«iii) - (iv». Where 8n argument is a subordinate instruction;

(~ IB 1) or (- IB Ie), the result, 5 or 2, of that instruction is

returned.«ix) - (x».

4. !he returned values are then used to compute a result which is han-

dIed in one of two ways depending on whether an output argument was

used.' If there was an output argument then, as in (v) - (vi), the

result, 4, is sent with a replace-with message to the activity, S,

which executed that argument, causing the result to replace the

object at which that activity is positioned. A subsequent instruc-

tion may need to access the new value of the reylaced object (in

this example 12 does so). 10 ensure correctness in such a cir-

cumstance P will not continue until the replace-with has taken

effect, as indicated by an acknowledgement message from S (the

empty object () is here used, arbitrarily, for the acknowledge-

ment) • If there was no output argument then, as in (x), the

result, 10, is returned. In (x) is shown the complete flow of

returned values up the tree of activities recursively created by

the execution of the nested instructions •
•

5. Finally subordinate activities terminate and P moves past the

operator's arguments to execute the next operator j.n sequence (vi)

or terminate if it is at the end of the sequence (xi).

In this model the organisation of an activity, P, is analogous to

the organisation of a conventional processor. Ihe activity's position

in the program string corresponds to a processor's instruction counter.

The other activities with \o.hich it can communicate correspond to regjs-

ters each of ~hich makes available a val~e or a location in addressable

- 94 -

storage. In this example the only activity "registers" used 'vcre those

for an operator's operands (e.g. P's subordinates Q and R) and for the

result (P's S subordinate or superior). The actual machine code

(defined in Appendix A) provides for a larger number of subordinate

activities which act as "general-purpose registers". Apart from access­

ing operands, a subordinate activity, $, can be used as the base· for an

address such as the $/2/2 discussed earlier, vIi th the remainder of the

address being relative to the activity's position. In fact all address­

ing is relative· to the position of an activity, the usual form of

address, e.g. /out/<-/2/2, being relative to the initial position (the

address itself) of the activity executing the address.

4.1.5. Further Examples

The concepts of program representation and execution in the RCF

model ~ere introduced above by an example based on the concepts of con­

trol flow and reduction introduced in Chapter Two. In that example an

instruction's operation object is a conventional operator; each argument

is (the address of) a simple data item or an instruction returning a

simple data item; the communications between activities consist of

storage access requests c.opy an.d replace-with (supporting load and store

of the conventional operato r/ 8.rgument interface), execute requests (sup­

porting demands of reduction's operator/argument interface), and simple

data items returned in responsf! to those requests. More generally, an

operation or argument is a progrc:m fragment t,lhich organises the creation

of subordinate activities, the sending of messages to subordinate and

superior activ:f.ties and the processing of messages received from them.

A message communicated to an activity can be any structured or primitive

- 95 -

object, including a data item, a selector to re-position the activity

and a specification of one of the elementary actions on an object,

namely: execute, replace-,01ith, copy (these three have been illustrated

in Figure 27), insert (followed by an object which is inserted at the

activity's position), and take (which is a destructive copy, deleting

the object). The use of the. model for different possible

operator/argument interfaces will be discussed using two examples shown

in Figures 28 and 29. The first of these uses the storage actions take

and insert applied to streams of values as an alternative pair to copy

and replace applied to simple memory cells. The second illustrates the

use of actions other than the elementary ones di.rectly supported by the

architecture.

~~ alternative to the use of addressable memory cells for communi­

cating data is the use of addressable streams of values. Whereas for a

memory cell the data's producer replaces the value of the cell and the

consumer copies the latest value, for a stream the producer inserts a

value at the end of the stream and the consumer takes the first unused

value from the front of the stream.

The example shown in Figure 28 illustrates the use of streams as

operands and result of an addition instruction, i1. The addresses,

IAlin, /B/in and /C/in/end, used in this instruction identHy the first

elements of the operand streams A and n and the end of the result stream

c. The state of the streams prior to the execution of the instruction's

operator by activity P is shown in (1). The operator stream+, behaves

exact~y as the usual addition operator + except that instead of using

copy and replace-with to access arguments, take is used for inputs and

- 96 -

insert is used for output. Subordinate activities Q, Rand S for the

input and output arguments' are created and positioned by the addresses

as shown in (ii). In (ii) is also shown all the communication between P

and its subordinates, namely take messages to access operands, the

returned values 3 and 6, and an insert message with the result 9 of the

addition. (An insert does not generally require the acknowledgement

used for replace-with in Figure 27(v).) In (iii) the first elements of

the operand streams have been deleted by the take actions of Q and R,

and the 9 has been inserted at the end of the result stream.

tV
p

Istream+ /A/in /B/in /C/in/end ••• (2 6) (3 4 5) (6 8 10)
~~ __________ ~y~ ______________ -J'

C: B: A:
il

(1.1) Her'> ___ t_a_k_e~ ___ t3_ke_: ~Z ~
P S R Q

/A/in /B/in /C/in/end ••• (2 6 I) (13 4 5) (16 8 10)

~\ \, \ .. ------------9.-=-___ 1 B=! Al
','--------------------------' I '-------- ----- - - - -- ------- - --- - -- --- ----'

lstream+

",..------------- --'-~
,~ ~

streamt;~ /A/in /B/in /C/in/cnd I ... (2 6 9) (4 5) (8 10)
c: B: A:

Figure 28 - }~ RCF Instruction ~~ich Operates on Streams

In the organisation of concurrent systems communication via

streams, as in il of Figure 28, and communication by updating shared

m~mory, as in i1 of Figure 27, can be considered as complementary

mechanisms of equal importance. The UNIX operating systern[56] supports

both as primitives, in the form of files and "pipes", and there an!

- 97 -

programming languages [58,5S,IE] in which both have equal status. In

the next Section there will be particular examples of the use of the

general concept of ,,'stream operands" in the organisation of iteration

and resource management.

The second example,' in Figure 2S, illustrates the possibility of

instructions with complex operators and operands.

(1) 0
-p~

I (ave) , /A /A /E
v=
il

• • • «set)(••• »
B:

~ rr_i_n_s t"ance ,
((set) (I 7 5 3 b 6))

A:

(li) "e" fI 0" "u" "N" "'I II

(. · · I ...)

p
(ave) /A /A /B I

, ':I('--------'
. .

(,'s" "U" "N")

• 5 «set) (I 7 5 3 a 6))
B: A:

(l i 5 3 f, to»

Figure 29 - An RCF Instruction w1~h Progr~ed Operator and Ar~~ents

The instruction 11 has two input arguments and un output arg~ment.

Rather than being an elementary type of data j.tem, such as an integer,

an operand object, A, is of a program defined type, namely a set of

numters (set) for y,'hich the defined access actions include SUlIl (return-

ing the sum of all melOters), count (returning the numler of U1€lllLe:rS) "nd

replace-y"ith (which as usual replaces the whole object Y.'ith a spe:cified

value). Rather than being an elementary operator, such as -+, . the opera-

- 98 -

tion 0 is a program defined operator ave which takes set operands,

dividing the sua. of the first oper'and by the count of the second so that

if the two operands are the same set (as in this example) the result is

its average.

In (i) activity F'is about to execute the operator of the instruc-

tion i1. This operator is a program fragment comprising instructions to

achieve the effects shown in (ii). As for an elementary operator,

subordinate activities Q and R are created to execute the operands and

are sent messages specifying actions on them. Here the messages are

compound objects, with characters ItS", "U" etc. as components, specify-

ing the actions sua and count, rather than primitive objects specifying

the elementary copy or take actions used previously. The first com-

ponent of the object A represents the A's type, set, as a program frag-

ment, executed by accessing activities Q and R. TI1is type objtct

comprises instructions to recognise messages such as the character

string ("S" "u" I'M"), and implement the specified actions. (The second

component of A contains the data specific' to this particular instance of

the set type, namely the actual set members, manipulated by the "type"
,

program fragment.) The value, 30, returned by Q is divided by the value,

6, returned by R to produce the result, 5. As for a standard operator,

this result is sent to the subordinate activity S with a replace-with

message which is acknowledged by a () message. The set program fragment

executed by S responds to this message by replacing the whole of its

containing object with the 5, as sho\o."O. in (iii).

The progra~ structuring approach us~d in this example is similar to

that used in "object-oriented" programming[60]. lbis approach is

- 99 -

intended to .support modularity and flexibility in the construction of

programs from more or less independently conceived program fragments.

The basis for this approach is that the code for performing actions such

as count on a data structure is included as part of the data structure,

rather than being part of the program fragment using the data structure;

and that there is a common framework for interactions between all opera-

tors and operands, whether elementary or program-defined. Examples of

the resulting modularity and flexibility are that the program containing

o can be used without modification on instances of any data types (e.g.

lists and matrices) which support the required actions; changes in the

implementation of the set data type (e.g. the count and sua being main-

tained as members are inserted, rather than calculated on each access)

can be implemented by changes local to the "type" program fragment; an

instance of the set type supporting the standard replace-with action

could be used as the result destination of even an elementary operator.

4.1.6. Discussion

In all aspects of the ReF model, as in any recursive system, there
,

is a general framework which embodies the essential concepts of the sys-

tem and a set of relatively arbitrary primitives ~lich are a basis for

constructing more complex structures within that framework. The essen-

tial concept of storage is the grouping together of an arbitrary number

of (primitive or compound) objects as a compound object. The essential

concept of addressing is a sequence of selectors each being relative to

t~e positiouidentified by its predecessors in the sequence, or, for the

first ·selector, relative to the pre-establi~hed position of an activity

in the object structure (either the activity executing tim address and

- 100 -

thus the position of the address itself, or a distinct "base" activity).

For program representation the essential concept is an "instruction"

being the application of a (primitive or compound) operation to (primi­

tive or compound) arguments. For program execution the essential con­

cept is the execution of objects by dynamically created trees of con­

current activities with communication along the arcs of a tree.

For storage and addressing a fair;ty minimal set of primitives have

been adopted which although inadequate for a practical system are suffi­

cient to illustrate the concepts of recursive storage and contextual

addressing (and to initially investigate the utility and implementation

of those concepts). 1he storage structure primitives are the delimiters

(and) for constructing sequences of objects and the primitive objects

such as integers, ultimately represented as delimited sequences of Os

and Is. The addressing primitives are selectors identifying simple

positional relationships (such as "priorI!) between objects. For program

representation and execution (l similarly minimal set of primitives tvould

be: (i) the elementary actions of copy, take, replace-with, insert and

execute applied to an object; (ii) 8imple facilities for the creation of

subordinate activities and communication between related activities;

(iii) data operations on communicated values, just NOR. 011 ~minterpreted

bit-strings being sufficient; (iv) the composition of these primitives

by sequential execution. Programming in the general style 0'£ Figure 29

requires that primitive machine operations such as creating and communi­

cating with subordinate activities be directly available at the machine

cO,de intet'f~ce. The earlier examples were discussed in terms of

slightly higher level construe ts, such as the operators +, * and

stream~, which use those primitive machine operations in a standard way

- 101 -

of sufficient general usc to be provided as elementary operators in a

machine code instruction set. The following Section descri.bes a com­

plete set of such machine code constructs for the representation of pro­

grams organised in the particular styles of control flow, data flow and

reduction.

.- 102 -

4.2. Program Organieation

One of the main purposes of the ReF architecture is to allow pro-

grams to be organised in the styles of control flow, data flow and

reduction programs. This Section discusses the way in which the basic

control flow, data flow and reduction models are supported and then, as

in previous Chapters, discusses data structures, conditionals, pro-

cedures, etc. First however it is necessary to describe the (machine-

code level) programming constructs used in this Section, elaborating the

basic concepts of program representation and execution introduced in the

last Section.

4.2.1. Notation

Structures -

(Instrl Instr2 (Instr31 Instr32) Instr4)

In executing a structured object its components are executed in

sequence. Execution terminates at the final). Internal delimiters

(such as those containing Instr31 and Instr32) are ignored and in par-
I

ticular the empty object 0 acts as a NOOP. Termination at the end of a

structured object is a default that can be overriden by, for example,

addresses which explicitly transfer control. This default requires a

difference between transferring control within the object being executed

and transferring control to a different object. Whilst the activity

remains within its current object, reaching the end of that object will

- 103 -

terminate the activity -

object r "\

((•••) (••• /esc/-> •••) (•••) (•••) (•••))
,.'1----------~....... ".?f"- -------:),1

' '------- - -----'
start of execution termination

If however an address takes the activity outside of its cqrrent object

then it is the end of the addressed object which causes termination of

the activity -

new

, old object o~

((•••) (••• /esc/-) •••) (•••) (•••) (•••))
.;r,----~... .,..--~ .,' I '--- ----- --- --,' I I

start of execution re-start termination

~ manipulation operators -

(i) ••• operator input ••• out pat ••••

(ii) (••• operator input •••)

(iii) ••• streamoperator input ••• output •••

The operator defines the number of input arguments (usually two) and

• output arguments (usually one), all of which are objects executed con-

currently by subordinate activities. In the usual case (i) the operator

uses the objects returned by the activities executiIlg the input argu-

ments or copies the objects identified by them, producing a result which

replaces the object identified by the execution of the output argu.'llent.

Execution then continues following the last argtwent used. In the case

of an instruction with no output argument, a "return instruction" (ii),

the result is instead returned to the superior activity. For a stream

operator (iii), as in the stream+ of Figure 28, ta~~ and insert are used

- IG4 -

instead of copy and replace. lhe data manipulation operators that ~ill

be used in this Section are: subtraction (-), addition (-I), multiplica-

tion"(*), identity (:=) for which the result is just the value of the

single operand, comparison (=) for which the result is TnJ.e if the two

operands are identical _and False otherwise, and conditional (if) which

has three operands, the result being the second operand if the first

operand is True, and the third operand is the first operand is False.

Data items -

intescr

boolean

The executing activity stops at the data item, identifying it for subse-

quent use by the superior activity. If there is no superior activity

then the activity executing the data item just terminates. lhe..!. (stop)

represents an arbitrary data item included only for its effect of stop-

ping the executing activity.

Addressing -

(i) Isel/sel/ ••• /sel ,
(ii) $/sel/sel ••• /sel

(iii) setS argument

As discussed earlier, a sequence of selectors (/sels) forming on address

acts as a branch instruction, re-positioning the executing activity at

the addressed object. An address is either "self-relative" (i), i.e.

relative to its ovm position in the program, or "base-relative" (li),

i.e. relative to a previously selected base position. lhe $ prefix in a

- 105 -

base-relative address is a form of selector which identifies the context

for the remainder of the address as being the position of a subordinates

activity of the particular activity executing the address. (For the

purposes of this Section only one base, identified by $, is needed, how­

ever in the machine code there may be several subordinates providing

different bases identified as $1, $2 etc.) T~e set$ operator (iii) is

used to select the base position for the second form of address. It has

a single argument (an address) which positions a subordinate activity at

an object for use as a base in subsequent addresses •.

Concurrency control -

(i) ... par ObI par Ob2 par

(11) ••• (? •••) •••

(iii) ••• (excl • ••) ...

The parallel operator par (i) supports the parallel control mechanism in

which program fragments are executed independently. An independent

activity is created and positioned at the following object, Obl, whilst

the original activity continues at the object following that. If (as in

(i)..: ~s are used to separate the program fragment components ObI, Ob2

etc., of a structure then those' components are all executed in paral­

lel). There are two constructs for synchronising concurTent activities.

The first (11) is an "unknown", represented as a ?, similar to that

used in the data flo,,, model. An unknown wi thin an object, say Ob,

causes the execut1.ng activity to be suspended to the immediate left of

Ob. It rema~ns suspended until it is no longer adjacent to Ob, i.e.

until 01) is deleted or replaced, or a new object 1.s inserted before it.

Execution then continues normally with the object following the deleted

- 106 -

object, or with the replacement or inserted object. TI1e second con­

struct (iii) is an "exclusion" argument, excl, which prevents simultane­

ous execution of an object by more than one. activity. When first exe­

cuted the excl turns into a 1. Thus the first activity to attempt to

execute an object containing a excl will succeed, but subsequent activi­

ties will be suspended by the? reSUlting from the first execution.

Evaluation control -

(i) Isellsel ••• Isel!:..

(11) ':object

(iii) ••• Isel/seleval/sel •••

(iv) ~ operand

The default is that an argument is executed and similarly that the

object finally identified by the last selector in an address argument is

itself executed (although the objects identified by preceding selectors

in the address are not executed). These defaults can be overridden as

indicated by the use of (underlined) quote (!:..) and eval constructs. An

address with a quote suffix for its last selector (i) (which will be

referred to as a quoted address) indicates that the finally addressed

object is to be treated as tho"llgh it were a data item - the activity

executing the address is just positioned at the addressed object rather

than executing it. Similarly an object with ~ quote prefix (ii)

(referred to as a quoted object) is itself treated as a data item rather

than being executed. TI1e inhibition of evaluation produced by the use

of quotes is ,complemented by an evaluate construct, eval, which forces

extra evaluation. This can be included as a suffix to a selector within

an address(Hi). The object, say Ob, identified by the selector

- 107 -

sequence up to that point will be itself executed by that activity, say

P, which is executing the address. lypically Ob will itself be an

address to re-position P and that new position becomes the context for

the next selector in the original address. The eval construct can also

be used as an operator (iv). The single input argument is executed by a

subordinate activity to produce the actual operand in the normal way.

That operand (e.g. a computed address) is then itself executed, just as

though it were in the place of the eval operator.

Structures, operators, data items and addressing have been dis­

cussed at some length in the preceding Section. However the newly

introduced constructs for controlling concurrency and evaluation require

some discussion before their uses are illustrated in the remainder of

this Section.

The unknown and exclusion arguments for controlling concurrency

each support a particular synchronisation structure in w!dch one

activity delays the execution of its program fragment uutil another

activity completes the execution of its program fragment. In the case

of the exclusion argument the two activities are executing the S3me pro-

gram fragment this is the synchronisation structure used wi-til the

sequential control mechanism (typically with mUltiple processes execut­

ing a shared program). In the case of the unknown argument the two

activities are executing different program fragments (e.g. two data flow

instructions) this is the synchronisation structure used with the

parallel control mechanism. TIle third synchronisation structure is the

impli~it synchronisation of an operator waiting for the return of an

o~erand. In this case the two activities are executing nested program

- 108 -

fragments this is the synchronisation structure used with the recur-

sive control mechanism.

The evaluation control constructs (.: and eval) support the impor-

tant requirement that an executable program fragment can also be treated

as data, as for example in editing a program, and vice-versa, as for

example in executing the data produced by a compiler. In a control flow

architecture the content of a memory cell is treated as data if used as

an· operand for an instruction, but is executed if that memory· cell is

encountered in the flow of control. Most data flow architectures main-

tain a strict separation between the program (graph) and the data

(tokens), and consequently most data flow machines cannot be used to

compile or edit their ov.7!l programs. In reduction everything is normally

executed and there are special operators such &s the «UOTE and BVAL

operators of LISPI25] for explicitly inhibiting &nd forcing execution.

For the ReF architecture tile only essential is that there be the ability

to control precisely executi.on of addressed objects using the ~ suf-

fix to force execution and the ~ suffix to Frevent execution. (A norm&l

address without selector suffixes, /sl/62/s3, is equivalent to

/sl:/s2:/s3eval, i.e. the final addressed object is executed but inter-

• mediate objects selected are not.) The other two constructs, the eval

operator and a .: prefixing an object, correspond to the EVAL and «VOlE

operators of reduct jon and are included for their convenience. 'lhe

effect of using a quoted object could be achieved by using the quoted

address of the object - for t'xample executing <:Oh) 11&5 the same effect

8S executing '«/esc:) Ob), i.e. the executing activity is just posi-

tioned at Ob. !he effect of the eva! operator could be BeLieved by

storing the operand returned by .i ts argUlllent and transferring cont rol to

- 109 -

that operand (as is done in control flow).

4.2.2. Including Control Flow, Data Flow and Reduction

Figure 30 shows six different organisations for the example expres-

sion a = (b+l)*(b-c) 'the first five being organised as in one of the

specific models covered in Chapter Two. The conventional control flow

program (i) has essentially the same representa~ion as in the standard

control flow model (originally illustrated in Figure 1) and requires no

further explanation, other than to observe that quoted addresses are

used in order to reflect conventional semantics.

In parallel control flow and data flow (as originally illustrated

in Figures 3 and 4) all instructions are executed concurrently and com-

municate by passing tokens. In (ii) and (iii) parallel operators (pa~)

are used as separators between objects to create the required con-

currency and the' execution of each object is explicitly terminated by a

final •• The need for a "token". is represented by an unknown, (?), to

suspend execution until the token arrives. In (ii) each unkno~n

represents the need for a "control token". Such unknowns precede the

instruction's main operator, thus completely suspending execution of the
•

rest of the object. Each control token is communicated by an instruc-

tion such as i which replaces a specific (1) in another object by a ()

(I.e. a NOOP) to remove one synchronisation constraint on the execution

of that object. For this instruction, :- :() Ix, the output argument is

the address of the unknown; the single input argument is a quoted object.

so that the actual operand is that object, 0; the operator is the iden-

dty operator, :,.., so that the result with which the addressed object is

- 110 -

(~) Conventional Control Flow -- b: c: t 1: t2: a:
(+ Ib'.:.. 1 Itl-'-~) (- Ib'.:.. Ic" It2:':') (* Itl'.:.. It2: la'.:..) • 0 0 4 2 5 0 ()

(l!.) Parallel Control FIm" -- ' ()"control tokenll

r---- ---- -- ----- -----..-- - -- - --- - -'.
I' "

par «?) + Ib 1 Itl (: = ::"'0 IX.!.» par « 1) - Ib Ic (:=::"'0 IY .!.» oJ

~ f:- ---- ----- ----__ r
i ~ (?) (?) * Itl It2 la •••

x: Y:

(iii) Data Flow ---- "data token" 5
I • ~

par (+ (?) 1 li3/2 .!.) par (- (?) (?) li3/3 .!.) par (* (?) (1) ...
,t -i3:

(iv) Strina Reduction

/ \ \
(* r + (:= Ib: lout" lout) 1 lout: lout)

\.

I"" T

l.
lout: ~opy of (- (: = Ib: lout'.:.. lout) (:= Ic'.:.. lout'.:.. lout)

definition
lout" lout) . . • I - • 0 . 2 (- 7 3 lout.':.. lout)

c: b:'-----v= " B

(~) Graph Reduction

(* (+ Ib 1 lout: lout) (- Ib Ic lout'.:.. lout) lout'.:.. lout) • . •
~

execute • • 0 2 (exel- 7 3 lout: lout)
definition c: b:'-- 'Y

J

B •
(vi) Combined Control Flow, Data Flow and Reduction -----

i1 i2 13 , A , I
,. , , A-

" par (+ /b 1 /i3/+1 .!.) (- Ib Ie li3/+2 'Ie (1) -'ft,0 I a'.:..) •••

~ ~ ~t "- t-
o •• () (excl - 7 3 IOllt: lout) 2

a: b:-' - I c: , v
B

Figure 30 - Different Organisations for Expression Evaluation in RCF

::..... ..

- 111 -

replaced js just the operand. In (iii) each unknown represents the need

for a "data token" and forms a particular argument of an instruction,

thus suspending execution of just that argument. Each data token is an

instruction's result stored at the appropriate argument position in the

instruction using that result.

In string and graph reduction (as originally illustrated in Figures

5 and 6) an instruction is an expression ~hich replaces itself with its

result. 1hat result is then executed (in general the result may ~e a

further expression which again replaces itself with its result). In

(iv) and (v) reduction expressions are represented by objects of the

form (operator operand operand lout~ lout). 1his includes two single­

selector, lout, addresses which address the object itself. Ihe first

such address is the output argument for the operator, causing the result

to replace the whole object (this must be a quoted address to specify

the object itself rather than cause its execution). Ihe second such

address is a simple branch instruction causing execution to continue

with the result.

String and graph reduction treat referenced definitions such as B

in different ways. 10 string t;eduction a copy of the definition

replaces the reference and is then executed. 11ds form ot self-

replacing Ieference

(:- Ib~ lout~ lout).

is represented in (iv) by an explicit instruction

(This instruction has the form of reduction

expression with an identity operator for which the input argument is the

quoted address of the referenced object, B, so that the operand 1s »

itself rather than the result of executing it.) In glaph reduction the

referenced definition is executed in place and so a simple address, Ib,

- 112 -

is used to reference it in (v). Graph reduction is able to support lazy

evaluation where a shared expression is only evaluated once. In (v)

lazy evaluation of B is achieved by preceding its operator with an

. exclusion argument, excl, to prevent multiple execution. The first

activity to execute B will change the excl to a ? and continue executing

the operator. Any subsequent activities will encounter the ? and thus

be suspended at B until it is eventually replaced by the result of the

operator.

A possible combination of these different organisations is used in

(vi) • The independent instructions il and 12 are executed in parallel

as a result of the initial par operator. In contrast, 12 and 13 (which

is dependent on 12's result) are executed sequentially. The shared

sub-expression, B, is organised for lazy evaluation as in graph redl!C-

tion. Both 11 and 12 store their results directly into the input argu-

ments of :1.3 which is the only user of those resul ts. The argwnent in 13

for the result of 11 is an unknown to synchronise those two instruc-

tions. In contrast, the argument for the result of :1.2 is just the empty

object, acting as a place-holder, since synchronisation is unnecessary.

The ReF model 1.s based on the conventional control flow model with ,
implicit sequential execution and explicit transfers of control, and the

ability to address and manipulate any storage location explicitly. The

inclusion of data flow and reduction depends on two generalisations of

the conventional model. Firstly there is the generality of information

structure and addressing. This allows an instruction to address another

instruction's input argument as a storage location for its result, as

r~quired for data flow. It also allows a large object such as a struc-

- 113 -

ture of nested expressions to be directly replaced with its result, as

required for reduction. Secondly there is the generalisation of includ­

ing execute as well as load and store for access to arguments, and the

convention of using the more flexible execute for initial access to

arguments. Consequently control over the interpretation of an argument

resides in the argument rather than the operator using it, allowing an

argument to be not only a literal or address, as required for control

flow, but alternatively a subordinate instruction, as required for

reduct:f.on, or a synchronisation primitive, as required for data flow.

The approach of synthesising control flow, data flow and reduction as

subsets of a more general model allows considerable flexibility in the

way these three are combined, as illustrated in (vi) above. TIlis

approach also gives orthogonality between the various elements of pro­

gram representation, as illustrated by all the above examples using the

same multiply operator which is independent of the way its operands are

organised. An alternative approach to combinfng these three models of,

say, providing three different classes of instructions, would limit this

flexibility and orthogonality and lead to a generally more complex

architecture.

It is worth reflecting on the cHoice of control flo ... , as the basis

for a generalisation synthesising control flow, data flow and reduction.

The advantage of control flow for this purpose is its low-level opera­

tional model and the separation between control and data which allow

maximmn choice in how a program is organised. Data flow and reduction

are higher level models incorporating particular assumptions of program

organisation, particularly that control of instruction activation is

tied to the availabili ty of input data or the need for output data. The

data flow notion of activation by data availability can be generalised

to include the flow of control,. (as was done in the DCF architecture) by

including "control tokens" as "null" data items. It is however diffi­

cult to see how to generalise the data flow model to conveniently

include activation by need, or to conveniently generalise the latter to

include activation by the flow 6f control or data availability.

The moti-vation for including control flow, data flow and reduction

within a more general model is to obtain the particular advantages of

each, which were identified in Chapter Two. Each model in itself pro­

vides particular program organisation benefits, specifically in its par­

ticular way of controlling instruction activation. In some cir­

cumstances the explicit activation of instructions provided by control

flow is an advantage, whereas in other circumstances the impli.cit

activation of instructions by the availability of data, as in data flow,

or by the need for data, as in reduction, is an advantage. TIle dif­

ferent organisations used in Figure 30 allow these different activation

mechanisms to be used and thus the advantages of each to be obtained

where needed. Also for graph reduction there are particular advantages

of being able to use higher order fun.ctions and unbounded data struc­

tures as program organisation consttucts. The use of these constructs

within the RCF model will be discussed later in this Section.

Apart from program organisational advantages each model has partic­

ular advantages concerning the performance of particular types of pro­

grams on computers implementing the model. The RCF architecture, and

its implementation discussed in the next Olapter, is principally aimed

at exploiting concurrency. Thus it would not be very effective for a

program

model.

- 115 -

predominantly based on the conventional sequential control flow

However, the basic sequential control mechanism of an activity

moving from one instruction to its immediate successor is the basis of

the architecture and the use of short control flow sequences of instruc­

tions is an effective way to program the architecture. The data flow

and reduction models are implicitly concurrent and thus more suitable

for the overall organisation of programs for the ReF architecture.

Although the main motivation for the reduction model is its program

organisational advantages, there are some performance advantages. Prin­

cipally there is the advantage of lazy evaluation in graph reduction

which prevents processing resources being used on unnecessary computa­

tion. The graph reduction form of program organisation used in Figure

30(v) achieves this effect. For a shared expression object of the form

(excl op (••• A •••) (••• B •••) lout: lout) there may be several activities

positioned at the object. However only one of those will actually

evaluate the shared expression, which might be very large. The princi­

pal motivation for the data flow model is the exploitation of con­

currency for improved performance. The execution of a data flow style

program is discussed in some detail in the next Chapter on Implementa­

tion.

The examples in Figure 30 have illustrated the use of the various

programming constructs, introduced at the start of this Section, for the

organisation of control flow, data flow and reduction programs at the

small scale of expressions on simple data items. The remainder of this

Section illustrates their use in the larger scale organisation of pro­

grams.

- 116 -

4.2.3. Data Structures

One of the important principles of recursive architecture is that

an operand can equally be a simple data item or a data structure such as

an array. The represe~tation of data structures must ensure that the

execution of a data structure operand is compatible with the execution

of a simple data item, that is the executing activity must be positioned

at the data object. This is illustrated in the following example where

two operands, the first of which is a data structure, are compared for

equality by the = operator -

u­
p

a:
I Clout: 1 2 3) 17)
Q R.

Within the data structure a, the first component acts as type informa-

tion declaring a to be a compound data item. This "type" is the quoted

address of a itself, that is the lout selector quoted to prevent re-

execution of a. When activity Q executes this quoted address it will be

positioned at a which will thus be used in its entirety by the operator.

(It is important that, as a result of contextual addressing, all data

structures can have the same lout: first component, and thus there is

. correct comparison of structures wll thout thIs detail of structure

representation being incorporated into comparison operators.)

A data structure using this representation can be communicated

between instructions in any way that a simple data item can. As in con-

trol flow and graph reduction, a data structure, or its compolwnts, can

be addressed by the instructions sharing it. As in data flow, a data

stru~ture can be passed as a "data token" replacing a (1) as an
...

- 117 -

instruction's argument. As in string reduction, a data structure gen-

era ted as a result can replace the instruction g~nerating it as the

operand for a containing instruction.

An important characteristic of graph reduction is that it allows

the use of unbounded (notionally infinite) data structures ~hich are

incrementally generated as the components are needed. Figure 3] shows a

possible ReF representation of such a data structure, L, and an access-

ing expression, E.

L:

E:
(* 6

(/out" 1 1 2 3 5 (gen))

t 7'''' I{/Leval/2eval/->eval/->eval/ •••))
R --- --- --- ---

Figure 31 - Unbounded Data Structures in ReF

L is a partially generated list of the fibonacci numbers with the infin-

ite tail of the list represented by a program fragment gen. Gn each

execution of gen it will insert to its left tIle sum of the preceding tv..o

numbers and posi tion the executing activity at that nev..ly inserted

object. The expression E contains as its second operand (exE:;cuted by

activity R) the address of an as yet un-generated element of the list.

This address is a sequence of selectors to identify first L itself, then

its second component (the first genuine element of the list), then the

next component etc. Each of these selectors has the eva1 suffix so that

the object which it identifies 1s executed by R before the next selector
-

is applied. 1f the object is an actual datB item (or dsta structure),

as in the first few cases, then the effect is the same as if a norms!

- 118 -

selector had been used (rather than an eval selector). That. is,

activity R will just be positioned at the object. If however the object
..... ~ "£.

is the gen program fragment then it ,dll . be executed by R· with . the

result that the next component of the list is generated. R is posi-

tioned at that new component where it will either apply the next se1ec-

tor in the address (thus generating the next component) or be used Ly

its superior to access that component.

This scheme generalises to any level of nested lists. For example

if L were a list of the rows in Pascal's triangle then gen would not

insert the actual data structure representing a row. Instead it would

insert an object to incrementally generate the elements of the row on

demand. The inserted object would have the form (fout,: subgen) where

subgen implements the algorithm for generating the next element in a row

from the other elements of the triangle. TIle address of, say, the 2nd

element of the fourth row would be -

/Leval/2eval/->eval/->eval/->eva1/2eval/->eva1

~'\'--------,,-y-~----_--JI\~--""T""'--.J

triangle 4th row 2nd clement

Execution of this address causes generation of only those elements of

the triangle needed to compute the addressed element.

4.2.4. Conditionals

In the ReF architecture the conditional operator can be used to

support various forms of conditionals including those discussed in

-
Chapter Two. This operator if has three operands all of which are

evaluated concurrently. Its result is the second or third operand

- 119 -

depending on whether the first operand is True or False. Figure 32

. shows three uses of this operator for the different control

flow, data flow and reductlon organisations of the conditional

structure x:= If c then ra else rb where ra and rb are the result values

of program fragments (••• A •••) and (••• B •••).

,..------------------ -- - - -- --- ---- ---"\ , ,
(eval (if c ' .. :../a ::"'/b)) ••• ,,(••• A •••) ••• ~ ••• B •••)

\ ,'a: b: , , _______ - - ___ ______ J

••• • • •

<!) Alternative Addresses

/
(••• B •••) •••

rb ~
if ~(1) (1) . ..) /

(••• A •••)
ra . .. (•••

(i!) Alternative values

••• (if c ::"'< ••• A •••) ::"'(••• B •••) lout: lout) •••

(iii) Alternative Expressions

Figure 32 - Three Forms of Conditional in ReF

In (i) the control flow organisation is used. This illustrates the typ-

ical use of the eval operator to force execution, in conjunction with

the inhibition of execution by ::.,.s. Rete the conditional operator use.,;;

quoted objects <::"'/a and ::"'/b) as its input arguments. Consequently the

objects themselves (addresses /a and /b) are the actual operands and the

result is one or other of those addresses. This address result is the

operand of an eva! operator, causing that conditionally selected address

to be executed. The complete instruction thus has the effect of a con-

trol flow conditional branch instruction to execute either (••• A •••) or

(••• B •••). In (ii) the data flow organisation is used. l~re the

- 120 -

conditional returns one of two. alternative values, ra or rb, which arc

provided as "data tokens" from instructions in (••• A •••) and (••• B •••),

giving the effect of data flow "switch in" instruction. In (iii) the

reduction organisation is used. Here the conditional returns one of two

alternative expressions, (.... A •••) or (••• B •••), which replaces the com-

plete instruction, as in reduction. As in (i) the expressions forming

the operands of the conditional operator are quoted objects so that the

actual expressions are used rather tlmn the results of evaluating them.

4.2.5. Iteratlon

Iterative execution is obtained by a lout single-selector address

being executed at the end of any repeated object. For a control flow

style iteration a whole sequential structure of instrucUons is repeated

and there would be a conditional branch instruction (as in Figure 32(1»

controlling the iteration. For example DO SI; S2; 53 Ul~TIL done might

be represented as -

lout lescape r---------------, ,r--------------------\
I \ I \
~ \1 ~

••• ((SI) (S2) (S3) eval (if done "/esc "/out)) •
l:. ,- - - -'" IJ. -I v I

• •

REPEAT condi tiona'l branch CONTINUE

Here the lout positions the executing activity at REPEAT whereas the

lescape positions it at CO~~INUE. For a data flow style iteration each

instruction is separately repeated by terminating it with a lout -

• • • par (opera~or operand operand result lout) ~~ • • •

- 121 -

One way of organising data flow iteration discussed in (Jwpter ho

is that in
,~

which an operator's arg1.1ments are streams of tokens, as in

the DDNI data flowarchitec ture [27] • Figure 33 shows this technique,

using as an example e:= (a+b)-6 which is repeatedly executed for

sequences of values aI, a2, a3, etc., and bI, h2, b3, etc.

A: B:

il:
stream+ (a5 a6 a7 (1» (t5 b6 b7 (1))

\ -------~~ {= a4-tb4}
~3{= a3-tb3}

Ie / out) ••• . .. (

. .. (stream- (cl c2 (1)) (:= 6) IE / out) •••
i2: c: D:

Fig-ure 33 Iteration Using FIFO Queues in ReF

There are two instructions, il and i2. Instruction il repeatedly per-

forms additions to produce results for repeated subtractions performed

by instruction i2. Each input argument of instruction il is a stream ot

operand values terminated by an unknown. 'Ihe subordinate activity exe-

cuting an input argument will either provide the first item in the

operand stream, e.g. a5, as the operGnd or (if the stream is empty) Le

suspended by the terminating (1) until an item is inserted. 'Ihe opera-,
tor stream+ is a stream operator, as previously used in Figure 28, with

the input arguments being accessed by destructive take rather than copy

operations, and the result being inserted at the position identified t.)'

the result argument rather than replacing the object there. Ihus on

each execution of 11 a pair of operand values is taken from its operand

streams and the result is added to the end of 12'5 operand stream.

Instruction 12 has the same structure except that one operand is an

- 122

embedded literal, 6, for which there is an instruction, (:z 6), to

return that value on each execution.

In reduction there is no special organisation for iteration, this

being achieved entirely by recursive procedures.

4.2.6. Procedures

Procedures can be of two different types in the ReF architecture.

These are a replicated procedure where the procedure definition is

copied by each call and executed in the context of the call, and a re-

entrant procedure where the procedure definition is executed in place by

possibly several independent concurrent calls. Procedures using data

flow and reduction style instructions, which are modified during exec.u-

tion, would need to be copied, whereas those using control flo\v style

instructions, which are re-entrant, need not be. For both replicated

and re-entrant procedures it is generally necessary to support both

"dynamic binding" where the procedure definition contains addresses

relative to the context of the call (e.g. for accessing parameters) and

"static binding" where the definition contains addresses relative to the

context of the definition (e.g. for calling other procedures or lUodHy-
,

ing "own variables").

Figure 34 illustrates the two types of procedure for the same exam-

pIe, a calIon procedure F. This call has the same effect as a+ opera-

tor (which the called procedure uses). In both cases the procedure call

instruction consists of an operation object, the call, followed by

parameter arguments pI, p2 and p3. As for a simple + operator t the pI

and p2 arguments are executed to provide the operands, the p3 argument

- 123

is executed to identlfy the position at which the result is stored, and

. execution continues at S, immediately after those arguments. The call

itself is constructed as an apply operator which is used as though it

were an elementary operator with the procedure address IF as its single

operand.

<.~) Replicated Procedure

<.~)
ca.J) ,
ape.,ly

.,
P' .. s:

(H := /esc / out:' lout) /F) pI p2 p3 •••

••• n(+ /out/out/+1 /out/out/+2 /out/out/+3 /out/out/+4)
F:'
~efinition

"

(g)

p, , s: ,

(H+ /out/out/+1 /out/out/+2 /out/out/+3 /out/out/+4) /F) pl •• p3 ••
\ f-

(b) Re-entrant Procedure -
(1.)
, caJ.I

aEL\l 'l.
,

X:
, .,

s:
(H setS /X::'") /F) pI p2 p3 •••
P

••• (+ $/+1 $/+2 $/+3 $/+4)

F~' v- I ..
procedure definition

(.!.!.)

X: s:
I ((set$ IX:) (1:')?1P1 p2 p3 •••
$,

\

'$/+1 $/+4) \ , .••• I(+ $/+2 $/+3
, ;If '- ______ - - - -;' P

,
Figure 34 - Procedures in ReF

- 124 -

For the replicated procedure (a) the apply instruction replaces

itself with and then executes· a copy of the addressed procedure, as in

string reduction. The procedure definition is a quoted object as other-

wise it would be executed where it is rather than being copied to the

call for execution there. The effect of an activity F executing the

call (i) is shown in (ii). TIle replicated procedure is executed in the

context of the call. Consequently normal addressing, such as the

/out/out/+l to access parameter pi, gives dynamic binding. To support

static binding (not actually needed in this case) the procedure address

is retained in (ii) as an extra parameter which the procedure code could

use for addressing objects in the context of its definition (as will be

illustrated in the following discussion of higher-order procedures).

For the re-entrant procedure (b) the activity P executing the call

(i) is re-positioned at the procedure definition and executes it in

place (ii). Thus normal addresses in the procedure definition give

static binding.
t

The dynamic binding needed to access the parameters is

provided by the base-relative addresses such as $/+1 which addr~ss

parameters relative to the position of the activity $. This activity is

"a subordinate of activity P, set up as a result of P executing the apply

instruction. That instruction's operator is set$ and its operand is the
..

quoteu address of the call, X. The activity $ is positioned at the

addressed object to provide the necessary context for subsequent

addressing from wi thin the called procedure. TI1US in this case the

apply has a function similar to that of an instruction to load the

return address onto the stack in a conventional call sequence. After

executing the apply, P executes the address IF re-positioning it at the

procedure definition. In general the procedure will be a nested program

- 125 -

structure executed by a sub-tree of activities with P as its root.

Nested objects in such a structure would need to address the procedure's

parameters. Thus an activity executing one of those objects needs to

inherit P's $ activity to provide the required context for parameter

addresses. (In the machine code this inheritance is achieved by a

default mechanism - if when an activity executes a $1 ••• form of

address it does not itself have a $ subordinate then that of its supe-

rior is used, or that of its superior's superior etc.)

The.replicated procedure mechanism is simpler than the re-entrant

procedure mechanism in that it does not require the relatively sophlsti-

cated base-relative type of addressing. The form of procedure call in

(a) for a replicated procedure is self-modifying in a way that prevents

it from being used in a program that is intended to be re-entrant. It

is in fact possible to construct a call instruction for a replicated

procedure which can be part of a re-entrant program fragment. Tnis

would be achieved by a change to the apply instruction in (a) to insert

the procedure copy at the end of the call object, rather than overwrit-

lng the apply instruction. Thus if there are several concurrent execu-

tions of the call then there would be multiple copies of the definition

..
call

r'-------J~~------------______________ ~, s: F:
((••• apply •••) IF (copyl) ••• (copyn» pI p2 p3 • . . "(...)

These copies are all hidden within the call object and have no effect on

the surrounding program structure. For example the correct interpreta­

Uon of a parameter address within a copy is not affected by the unknown

number of other copies.

Similarly, a procedure executed in place as in (b) could contain

self-modifying instructions, which would require that the procedure

definition insert and execute a copy of itself, adjacent to itself.

Thus whether or not procedures are copied to the context of the call

does not necessarily depend on whether self-modifying or ~e-entrant

instructions are used but can be determined by other criteria. for

example if data accesses (to parameters) in the context of the call

predominate over accesses (to "own variables") in the context of the

definition then it would be appropriate to copy the procedure to the

calling context.

4.2.7. Bigher-order Procedures

One of the major features of (graph) reduction is its ability to

support higher-order procedures (functions). Ihe principal benefit of

these is that for a multi-parameter procedure, e.g. R(pI, p2, p3), suc-

cessive parameter expressions, PI - P3, can be bound to the procedure

definition at different points, giving a progression of more particular-

ised procedures -

B(pI, p2, p3) s some function of three parameters

G(p2, p3) = R(PI)

F(p3) = G(P2)

..

E() ~ F(p3) = «B (PI» (P2» (P3»

Figure 35 illustrates the \o.'ay this procedure
,

represented in ReF. It also shows a call, X, of tbe

procedure E. 'Ihe base procedure B is an expression

parameters. Each of the intermediate procedures

structure might be

final, parameterless,

involving all three

G, F and E, contains

- 127 -

three components. The first components form a chain 01 addresses wldch

leads to B and is used in executing the actual call, x. lhe second com-

ponent is the particular parameter which that intermediate procedure

provides for H. Each such parameter, e.g. pI in G,is the address of

the actual parameter expression, PI, which tNill generally use and be

used by other expressions in the neighbourhood ot G. 'lhe third com-

ponent is the (quoted) address of the next more general procedure.

These addresses form a chain which is used by B :f.n accessing parameters.

H:
H(p], p2, p3) = 11(+(*(+ pI p2)(';' p3 pI) 2)

.~

G: \, pI: 1'1 :
G(p2, p3)::: (\/E IPI IE':) ••• (.0.)

t·--· ~
Il'",

F: '- p2: F2:
F(p3)::: (\/G IP2 IG") ••• (•• 0)

;---::- -''''.''--_.- ---=--- ---_. -~
,.~------, ... _-'"\

E-' ~. \ P3: • \ p..... \
EO = (\/F /P3 './F") 0 0 • (•••)

..(-_.... -.. , -
l.~-------­
", _-" ----lito_-apply'" ._-- ___ ,

X: r_--...JA ~, f 1: f~: "
((: = /esc out" out)', /E /EII) I , - , - ,

'\._ - __ - - __ ___ jflo----.:..

'~ I •

• •
I

X: ,- A , f 1: f ~:,'
((+(*(+ p] p2)(- p3 pI) 2) /E liE")

I I I .. j.-
I I 1-----/f2eval/2:
I I ---- l
I 1-----/f2eval/3eval/2}-J
I
1-----/f2eval/3eval/3eval/2

,Figure 35 - Higber Order Frocedures in ReF

The call, X, is very similar to the call used for a replicated PIO-

- 12£ -

cedure in Figure 3~(a). It comprises the same apply instruction which

'When executed replaces itself with the procedure objec t identified by

the execution of the following argument, "namely the address IE. lhe

activity executing IE will execute the addressed object, B, and thus its

first component, namely the address IF of F. Similarly the first com-

ponents of It and then G, are then executed." 1hus the activity follows

the chain of addresses back to li, and so it is a copy of that procedure

which replaces the apply instruction in X and is executed there.

As for each intermediate procedure, the last component of X is an

address used by n to access its parameters. lhe address p2 for the

second parameter P2, executed from within the copy of H, is -

The first part of the address identifies £2, the address of E, which is

executed (as a result of the eval suffix), thus identifying E. 'lhe

second part identifies E's third component, the address of F, which is

also executed, thus identifying F. 'Ihe final part idE.:nt.ifies F' 5 second

component, the address of the desired paraUlc:ter, which is the final des-

t:ination of the complete address. 'lhe activity executing the original

address is thus positioned to execute the address, within ~, of the
..

parameter and thus executes the parameter in place. 'Ihat parameter ~ill

be a graph reduction type of expres~d.on, replacing itself "ith and then

returning :its result. lhe addresses for the other t~o parameters are

similar, each having a different numl:er of 13eval parts depending on the

distance along the addressing chain of the required par2mcter.

'Ihis representation uses t\o;o address chains, running through the

- 12S -

first and third components of the intermediate procedures. lhe first

chain, used in the call, is structured in such a way that it is always

implicitly followed to its end. Ihus the program fragment forming the

call, X, is independent of the length of the chain. For example~, and

intermediate procedures F and G, would be unaffected if, say, B were

replaced with a further intermediate call of another function with one

more parameter. However, the chain for accessing parameters is con­

structed in such a way that a parameter address in H can go as far along

the chain as is necessary to access the particular parameter required.

Thus the program fragment forming n is dependent on the length of the

chain, necessarily so since that length is the number of paramtters

expected by the procedure. Ihe representation used for these chains

also illustrates the use of the eval selector suffix for achieving quite

sophisticated addressing 5tructures. As used here, an eval selector

corresponds to an indirect address where the addressed object is itself

an address. '1his ReF notion of indirect addressing is actually mote

powerful than that in conventional architectures since the addressed

object is executed and thus can be not only an actual ~ddress but also a

program fragment to achieve the effect of an address. For example the

object F could have been a (lazily evaluated) procedure call, say

Eindl(G) where Bindl(g);; g(P2). When Urst executed as a result of a

call such as X, this call would replace itself with the required struc-

ture.

Ihe above scheme for procedures achieves most of the benefits of

graph reduction for this type of example. Specifically, different

parameter expressions can be bound to the procedure at different points

in the program structure, and there can be lazy (;valuation of those

- 130 -

expressions. For example if P2 had been previously evaluated by some

other construct in the neighbourhood of F, then that expression would

have been replaced by its result, and thus not evaluated again by the

call, X. The main shortcoming of this scheme for the RCF model, com­

pared with one based on a pur'ely graph reduction model [43], is the com­

plete copying of the procedure n into the call X. One effect of this

copying is that there may be multiple evaluation that would be avoided

in a pure graph reduction model. One of the expressions wi thin S,

namely (+ pI p2), does not use the last parameter, P3. If there \<.'ere

several intermediate procedures, EI and E2, at the level of E, that par-

ticular expression would be a constant in those procedures. In pure

graph reduction, there would only be one evaluation of that constant,

say by a call of E2, and the resulting value would be used by calls of

HI. In the RCF scheme used for this example, the copying of H means

that both calls of EI and E2 would cause evaluation of that constant.

Avoiding such mUltiple evaluation requires that all procedures be

executed in place, as occurs in graph reduction. The use of higher­

order procedures results in programs comprising very general procedures

which are very frequently used. Although this is beneficial from the

programming vie~~oint, access to a frequently used procedure definition

is a potential system bottleneck, particuiarly if each access Is a com­

plete execution of the definition in place rather than just the copying

of the definition for execution elsewhere. For this reason execution in

place 1s recognised by researchers in the graph reduction field[61] as

being a possible major disadvantage of the pure graph reduction model

for a-decentralised computer architecture. For the ReF model to support

execution in place with higher-order procedure structures a greater

- 131 -

sophistication in the base-relative addressing scheme would be required

to Imndle the more convoluted addressing structures. In view of the

potential access problem and the fact that the benefit of avoiding mul­

tiple evaluation is likely to be a minor effect, the incorporation of

such additional sophistication is unlikely to be worthwhile.

4.2.8. Non-determinacy

In the ReF architecture there is the potential for non-determi.nacy

in that two concurrently executing

modify the same object. There are two

instructions can simultaneousl~

schemes for controlling non-

determlnacy whlch correspond to the techniques used in control flow and

data flow. These are illustrated in Figure 36 for two dHferent ",ays of

organisi.ng a resource manager. In (a) the resource manager is H control

flow style procedure executed re-entrantly by the activities, PI and P2,

which use the resource. The resource manager (i) ('.ontains a critical

region protected by an exclusion argument, (~xcl). This acts in a simi­

lar way to the "test and set"instruction often used to implement criti­

cal regions in conventional architectures. When executed by one

activity, PI, it becomes a (1) which prevents a subsequent activity, P2,

entering the critical region (ii). On exit from the critical region

(iii) instruction S is executed to set the (1) back to (excl) and thus

allow another activity to enter the region.

In (b) the resource manager is a continuously executing object

which on each execution takes one transaction from the transaction

stream, in the same way as each execution of the addition operator in

Figure 33 takes one token from its token stream. Each user of the

- 132 -

(~)
Resource Manager

r~--------------------~~~--------------------~'
P2 T: S:

(· ... I I (excl) (:= :(excl)
P1

,
'f ..

critical region

(ii)
P2

(· .. I (7) • • • I . .. (:== :(excl)
P1

(iii)
(££!)

P2 It ~
(• •• I (excl)" .. (:= :(excl)

(a) Using a Critical Region

(.!.)
Resource
Manager

,r __ J.A

Transaction
Stream , r~--------~A~----____ ~\

IT) ••• ,

IT) ...

IT) I
P1

)

)

. ..)

User
Code

P2, •
(••• lout) ((T6) (T7) (T8) (7))

R~
• • . I I (stream:= Tn IR)

P1

(!J)

(••• lout) ((T7)

'---IT 6)
(T8)

P2
(T9) (7» ••• (stream:= Tn IR) I i

!\~ ____ /P1 (TI0)\~_ .

(b) Using Transaction Streams

Figure 36 - tion-determinacy in RCF ..

resource (activity PI or P2, both executing re-entrant "user code") com-

municates with the resource manager by inserting a transaction, Tn, at

the end of the transaction stream. TIlis stream implicitly orders inputs

inserted from concurrent sources into a single sequence and thus acts

like the merge operator used in a data flow resource manager.

- 133 -

4.2.9. Discussion

The examples in this Section have attempted to illustrate two

aspects of the ReF model. Firstly that it incorporates the basic models

of control flm-1, data f.low and reduction for simple expression evalua­

tion and allows those models to be combined even within a single

"instruction". Secondly that the ReF model can be used effectively for

the representation of the program organisation constructs used to pro­

gram architectures based on those other models. Of particular relevance

to control flow programs is the use of repeated sequences of simple

instructions and the use of re-entrant procedures. Of particular

relevance to data flow programs is the use of stream operands for itera­

tion and the ability to communicate whole data structures as single

"data tokens". Of particular relevance to reduction is the use of

unbounded data structures and higher order procedures. The examples at

this higher level of program organisation did not illustrate any general

combination of models as was illustrated for the lower level of simple

expression organisation. Nevertheless it is hoped that the examples

demonstrate that the ReF model would accommodate a programming language

synthesising control flow, data flow and reduction constructs at all

levels of program organisation. The actual achievement of such a syn­

thesis would be a question of language and compiler design.

The set of program representation constructs used in this Section

were principally developed for simple control flow, data flow and reduc-

t~on instructions, as illustrated in Figure 30. These constructs are

however of quite general utility in program organisation, as illustrated

in the other examples discussed. Delimiter symbols (and) are used for

representing all levels of program and data structure, including expres­

sions, arrays, loops and procedures. The explicit structure allows par­

ticular standard selector sequences to be used for particular addressing

needs such as for access to procedure parameters and for loop repeti-

tion. One set of operators, such as +, are used in all instructions,

whether control flow, data flow or reduction, in which single operands

are accessed. A complementary set of operators, such as streaTh+, are

used for all instructions in which operands are sequences of values.

Normal addresses /sel/ ••• /sel are used for all situations in which the

addressed object is to be executed, such as for a control flow branch,

for invoking a subordinate reduction expression, or for invoking a pro­

cedure. Quoted addresses, /sel/ ••• /se1:, are used for all situations in

which the addressed object is not executed, such as for the result loca­

tion of an instruction, for a procedure definition to be copied, or for

manipulating addresses as in conditionals. An unknown argument, 1, is

used for all situations in which execution is dependent on the arrival

of information, such as for the operand of a data flow instruction or at

the end ofa stream. An exclusion argument, excl, is used for all

situations in which multiple execution is to be avoided, as for lazy

evaluation in reduction and critical regions in control flow •

..

- 135 -

4.3. Machine Organisation and Implementation

The first Section of this Chapter discussed recursive structuring

for storage organisation~ addressing, and program representation and

execution in the RCF operational model. The recursive model provides a

general framework for constructing program structures from a (relatively

arbitrary) set of "primitive" constructs. This Section starts by

describing a similar general framework for the recursive organisation of

machine resources in a decentralised computing system, and discusing the

relationship between that recursive machine organisation and the ReF·

model that it supports. Three particular aspects are then discussed,

namely the way in which the machine organisation and model accommodate

special-purpose machine components ,dthin a general-purpose system, and

their extensibility and locality properties.

There are two broad types of decentralised computing systems,

namely parallel computer architectures and geographically distributed

computer networks. Previous Chapters (and previous Sections of this

Chapter) have bt!en concerned solely r,n th parallel computers, which is

the main theme of the thesis. However the recursive machine organisa-

tion, and the concepts of the operational model it supports, are of
..

relevance to computer networks and both types of decentralised systems

are discussed here. Implementations of the recursive machine organisa-

tion, in both parallel computers and computer networks, will be dis-

cussed in. the next Chapter •

. :,.~.

- 136 -

4.3.1. General Stnlcture

A conventional ~omputer architecture has a centralised machine

organisation comprising one computing element with a single processing

unit connected to a single memory. A recursive architecture, as illus­

trated in Figure 37(a), has a recursive machine organisation comprising

a structure of nested computing elements (CEs) and local communication

(and control) systems (CSs). In the general case a computlng element,

such as CEO, functions as a complete general-purpose computer with

memory, processing and communication capabilities and consists recur­

sively of subordinate computing elements, CEI - CE3, which provide its

memory and processing capabilities and use its communication capability

to cooperate in the concurrent execution of programs. The CS component

may incorporate some relatively centralised control functions concerned

with, for example "strategic" allocation of its subordinate computing

elements' resources. This recursive structure will terminate in IIprimi­

tive computing elements" such as CEI and CE21 which do not continue the

general structure of subordinate computing elements but have separate

processor (PE) and memory (ME) elements.

This machine organisation accommodates heterogeneous components, as

for CEO where one component, eEl, is a primitive computing element and

another, CE2, is a structure of com~uting elements. For a coherent sys­

tem comprising heterogeneous components it is important that there be a

common interface between components. The principal characteristic of a

recursive machine organisation is that all computing elements at all

levels in the structure support the same external interface. For the

RCF architecture the common interface embodies the essential concepts of

- 137 -

(a) physical organisation of machine resources

CEO

CEI

,
I

I ,

/\
PEl ME

CS ... --..---.-,
-- I

CE21 ,
I
cs

/\
PE2 ME

, ,

(b) logical/physical mappi~

(r -CEll (~E21="\ C~~~22~ - ~CE23";:~ '~CE3)l
A :' A2 : B : X: C :

«1(•••)1(•••• » « •••)(1(•••) (••• I /C •••) (•••)(••• ») (••• »
. ,,1

S R______ . ~Q .. "". /

~ ~ ~p " I

"copy" I ~... I
i

...... I
~, I'

0:

j

Figtlre 37 - Recursive Machine Organisation

the ReF model, namely nested variable length objects, contextual

addresses and communication of messages within a dynamically created ,
tree of concurrent activities.

In order to illustrate how the logical RCF model is supported by

the physical machine organisation, Figure 37(b) shows an example of the

former's object, address, and activity s truc ture wi th a possible mapping

onto the latter's computing element structure (the object stnlc.tl.u:'e is

- 138 -

not meant to be a particularly meaningful example). TI1e computing ele-

ment CEO contains the object 0, and its subordinate computing elements,

CEI, CE2 and CE3, are each supporting one of that object's components A,

Band C. At this level there is a strict (static) correspondence

between logical objects and physical computing elements. However, as in

the case of object B and computing element CE2, there need not be such a

strict correspondence between the internal logical and physic.al struc-

tures. In this case each subordinate computing element will contain a

relatively arbitrary (changing) sub-structure of the object, for example

CE21 containing the entire first component of B and part of its second

component. A primitive computing element will generally incorporate

some internal memory management mechanism to support a changing struc-

ture of variable length objects. Similarly, a higher level computing

element, such as CE2, may incorporate mechanisms for redistributing the

object structure between its subordinates as different parts of the

structure expand and contract.

The processing capability of a computing .element will support

activities positioned at the .objects contained by the computing element.

For example computing element CEO is supporting the tree of activities

comprising activity P and its subordinates Q, Rand 5, with processor

PE2 supporting activity P, PE3 supporting activity Q and PEl supporting

both Rand S. A primitive computing element will provide some (machine

code) interface for contextual addressing, and creation of and communi-

cation between activities. Generally it will incorporate some
,

multi-programming mechanism for sharing the capacity of its processlng

element between the activities it is supporting. {A processing element

could possibly comprise a pool of processors a primitive computing

- 139 -

element is not typi.fied by there being a single processor, but rather by

there being an internal separation of processing and memory resources.

such that it cannot be considered to recursively consist of subordinate

computing elements.) Above the prim~tive computing element level, allo­

cation of processing load to processing resources is, at least conceptu­

ally, integrated with the memory management mechanisms since an activity

is allocated to the. same computing element as the object which it is

executing.

The communications capabilities together provide a multi-level com­

munication systeTn for transmission of messages between activities in

different computing elements (as when activity P sends the copy message

to activity S), and the migration of activities between computing ele­

ments (as occurs when activity Q executes the address IC). Logically,

the copy message from P to S is transmitted along a direct channel from

CE21, supporting P, to CEl, supporting S. This logical channel, shown

by a dotted arc in Figure 37(a), passes through the communication sys­

tems of CE2 and CEO, each of which provides a local logical channel

("virtual circui til) supporting a segment of the complete channel. Typi­

cally each communication system would have a pool of local channels mul­

tiplexed on its physical communications medium. Each local channel

would have an identifier unique to that system which would be used to

label a message traveling through that system in order to identify its

logical channel and thus destination. (For example, using a "logical

port" of the destination computing element to identify a channel, the

copy message traveling to.rithin CE2's system might be labeled

CE2/outport20, causing it to be switched out to CEO's system in which

its label would be, say, CEl/inportlO.)

- 140 -

It is the migration of an activity, a terminal point of a complete

channel, which causes the allocation and deal location of local channels,

and establishes each c'onnection between a pair of local channels in

neighbouring systems which form adjacent segments of the same complete

channel. The migration of Q, as a· result of executing the address /C,

requires a message from CE22 to CEl, carrying any state information that

is associated with the activity (for example, information needed to

implement the communication of messages between that activity and its

related activities). For this type of message the destination is iden-

tified by the sequence of selectors forming the address, actually

/esc/esc/esc. These selectors, identifying first position 1, then j,

then C, are interpreted incrementally by the successive computing .ele-

ments on the path. The first selector, interpreted by CE22, causes Q to

migrate to CE2l where the remainder of the selectors are i.nterpreted and

cause. the further migration of Q to CEl which contains the addressed

object, C. When Q migrates to CEl the channel connecting it to its

superior, P, is extended into CEO's communication system. This exten-

sion requires the allocation of a local channel identifier there, which

would be deallocated when Q terminates or, say, migrates back within

eE2.

Although the concepts of recursive architecture have here been

developed in the context of highly parallel computer architecture, they
I

are equally relevant in the context of geographically distributed com-

puter networks. Interpreting Figure 37 in that context, computing ele-

mcnt CEO would correspond to a local area network wIth its subordInate

computing elements, CEI, CE2 and CEl, being the individual computers at

the network nodes, and the objects A, Band C being their filestores.

- 141 -

The connections betv.Teen activities such as between P and Rand betw·een P

and S, model the mul tiple logical communication channels (ports) in an

inter-node communication protocol. These connecti.ons would at this

level. be typically used for the transfer of files between- nodes, as

would result from the copy message sent to activity R positioned at

llfile" Al. The migration of an activity to execute an object in a dif-

ferent node, such as when Q migrates to CE3, corresponds to "remote exe-

cution". A subordinate activity executing in a different node than its

superior corresponds to the concept of a "remote agent" used. in the

structuring of programs for geographically distributed systems.

In the implementation of various decentralised systems covered by

the general recursive architecture there will be a variety of design

choices reflecting, for example, differences between communication sys-

terns for occasional movement of large files between distant computers

and those for frequent movement of small data items within a computer.

There are a number of specific implementation issues which will be dis-

cussed in the next Chapter, particularly: the allocation of logical

objects to physical computing elements; the memory management and

address interpretation mechanism needed to support a dynamlcally chang-

ing structure of variable length objects; and mechanisms for organising

communication between activities which can migrate between computing

elements. First however some particular aspects of the general machine

organisation will be discussed, namely the way in which it can accomroo-

date special purpose computing elements and its extensibility and local-
,

ity properties.

- 142 -

4.3.2. Special-Purpose Computing Elements

'The recursive machine organis,ation and ,the ReF model which it sup­

ports are intended to accommodate special-purpose computing elements in

much the same 1ay as the memory organisation and operational model of

conventional architectures support "special-purpose" memory cells for

memory-mapped I/O, and the filestore organisation and system call inter­

face of the UNIX operating system[56] accommodates for example line

printers as special-purpose files. Incorporating such special-purpose

entities into a general model requires that they must recognise the gen­

eral interface, even though they may support it in a limited or special­

ised way. For example, a line printer, represented in the UNIX file-

'store as a file, supports standard file "write" operations and recog­

nises but rejects standard file "read" operations. As an exam.ple of a

special-purpose computing element, CE3 might be a hardware implementa­

tion of the square root function. The functionality of this computing

element is modeled as an object, C, in the information structure so that

it can be integrated within the general ReF model. In this case there

is a strict correspondence between logical object and physical computing

element so that the address of /e, /esc/esc/esc from within X, is in

effect the address of the corresponding computing element. That address

would be part of a procedure call X (as in Figure 34(b» to be executed

by Q. When Q executes the address it -will be positioned at and "exe­

cute" the "object" C, in fact invoking the square root operation pro­

vided by CE3.. Provided that the same interface for accessing parame­

ters, - etc., is supported, the program fragment X is unaffected by

whether the function of object C is implemented as a special-purpose

.,.' - 143 -

computing element or a normal procedure definition which can be executed

by any general-purpose computlng element.

The minimum capability required of any computing element supporting

an object structure S is to recognise the arrival at S of an activity

which has migrated from another computing element (to execute S or with

the remainder of a partially interpreted address intended to position

the activity within S); and the arrival of messages, such as the primi­

tive execute, replace-with etc. messages, for an activity thus posi­

tioned in S. However a computing element can have a limited or special­

ised response to the arrival of activities and messages for them. In

the case of the square root function, CE3 would allow the execution, of

its object C, but would signal an exception in response, say, to an

attempt to select a component of C or replace it with a different

object.

The notion of special-purpose computing elements is also relevant

in the context of networks as they often include specialised "server"

nodes. For example if computing element eEl were a "print server", its

corresponding object C would effectively be a print queue, supporting

say the insert primitive for adding objects to the queue for printing,

but rejecting any o"ther attempted access. It would also be possible for

the operational model of a special-purpose computing clement to be a

particular subset of the ReF, model., For example CE3 could be a "data

flow server" with internally a data flow architecture optimised for and

limited to the execution of data flow style programs. Such a computing

element would accept the insertion of program fragments, as components

of its object C, for subsequent remote execution. It would need to ver-

- 144 _.

ify that a program !ragment to be inserted used only the appropriate ReF

subset (for example, verifying that it conformed to the structure used

in Figure 30(iii) which is directly equivalent to that for a data flow

computer, as in Figure 4). Thus a potential benefit of synthesising

other models within the ReF model is that it allows a program fragment

organised according to one of the other models to be executed either by

a general-purpose computing element or by a computing element special­

ised for that model. Also it allows the specialised computing element

to be easily integrated into the overall architecture.

It would in fact be possible for the machine organisation to con­

sist entirely of special-purpose computing elements, for example a net­

work of control flow, data flow and reduction systems with each system

l?eing a computing element with either control flow, data flow or reduc­

tion computers as its subordinates. In such an organisation the combi­

nation of the different models supported by the full ReF model would not

occur at the level of individual instructions (as occurs in Figure

30(vi». The combination would instead occur at a higher level of pro­

gram organisation such as procedure calls between program modules writ­

ten in languages based on different operational models and independently

compiled for execution on different classes of computing elements.

4.3.3. Extensibility

,
A major motivation for a recursive structure is its potential

extensibili ty. This is. relevant in· contexts of both geographically dis­

tributed networks and parallel computers, and particularly in the con­

text of exploiting YLSI technology. Important extensibility charac-

- 145 -

teristics ·of the recursive architecture are (i) the common interfac.e for

all computlng elemen ts at all levels which means that a primitive com­

puting element and any structure of computing elements are functionally

equivalent and thus logically interchangeable; and (ii) the ability of

the hierarchic object structure and contextual addressing to accommodate

unlimited address space expansion. These characteristics allow major

system extensions and re-configurations to be accommodated without

correspondingly major re-design. In the context of computer networks

such changes include: increasing the level of distribution by replacing

a single computing element (e.g. multi-user computer) with a network of

computing elements (e.g. personal computers and file servers); integrat­

ing previously independent computing elements (separate computers) as

subordinates (nodes) in a new higher level computing element (network).

In such changes it is possible to retain the original object (filestore)

structures and the validity of previously used addresses (filenames).

Relevant extensions in the context of (VLSI) computer architecture

are: to increase the processing power and storage capacity for a com­

puter design by connecting a number of the comp..lters together as comput­

ing elements within a larger computer of the same overall design; to

accommodate the increasing amount of loglc circuitry which can be

integrated on a single chip as a result of continuing technological

advances in miniaturisation of semi-conductor logic devices. In a more

conventional, single processor, appr'oach to computer archi tecture an

increase in the logic·circuitry available for a single "microcomputer"

chip would be typically exploited by, for example, increasing the

sophistication of the instruction set. This would entail major

re-design of the chip itself and re-design or re-programrning of the

- 146 -

hardware or softtvare systems in which it is llsed. With a recursive

architecture the design of a computing element as, say, a single chip

can be scaled down to a fraction of a chip and replicated to give a

. multi-processor single chip computing element which is functionally

equivalent (both in terms of instruction set supported and communica­

tions interface), but more powerful in storage capacity and processing

power. Such a scaling down might entail some low-level re-design in

that different design parameters vary in different ways as a function of

the scale of the design, but the overall computing element organisation

and its external interface would be stable.

4.3.4. Locality

An important consideration in decentra1ised systems, principally

affecting resource allocation, is the need to support and exploit the

locality properties of programs. Programs tend to be organised as logi­

cal hierarchies of "modules" such as procedures comprising instructions

and local variables; sets of related procedures and the shared data

structure on which they operate; and further groupings of such modules

into higher level modules. Locality is the property t~~t, at any level

in the hierarchy, local references and interactions between l03ically

"close" elements within the same module at that level will tend to be of

greater frequency than global references and interactions b~tween logi­

cally "distant" elements within differe~t modules. The recursive archi­

tecture allows this logical hierarchy to be explicitly represented with

each module being an object in the storage structure. The contextual

addressing scheme, with variable-length addresses, means that the rela­

tively frequent addresses between logically close elements will be

- 147 -

relatively short. The hierarchic communication structure of the machine

organisation means that, in so far :as logically close objects can be

allocated to physically close computing elements (as occurs to a large

extent in Figure 37), global communication will be minimised with local

communication resources providing the necessary communication bandwidth

for local interactions.

In computer architectures intended to utilise VLSI technology the

need to localise communications will be an increasingly dominant factor.

At the chip level this is because, with increasing miniaturisation, the

costs in term of delay, power consumption and chip area associated wi.th

off-chip "global" communication increase dramatically relative to the

costs associated with local processing and communication within a chip.

Localising communication will also become an important factor in the

internal organisation of. a chip. Increasing miniaturisation of circuits

on a chip produces corresponding increases in the time taken for "glo­
I

bal" communication of data across a chip, relative to the time-scale of

data processing by the logic circuitry. Eventually the discrepducy

between system-wide communication and processing time-scales will mean

that organising a complete chip as a single synchronous system becomes

ineffec tive [62]. Thus it will become necessary for even a single chip

to be organised as a decentralised system of asynchronous componE::ots, as

provided for by the recursive machine organisation.

In summary, a general form of recursive architecture and machine

organisation would provide a common model of extensible system organisa-

tion for heterogeneous decentralised systems, spanning both geographi-

cally distributed computer networks and multi-processor computers,

- 148 -

incorporating general-purpose and/or special-purpose computing elements.

All computing elements at all levels would recognise a common interface

and general-purpose operational model which might however be implemented

in a limited or specialised way by a special-purpose computing element.

The next Chapter will describe a simple implementation of the recursive

architecture in the form of a parallel computer comprising identical

general purpose components and will discuss some other recursive systems

implementations, including a network of conventional computers.

- 149 -

4.4. Summary and Discussion

There are two related aspects to the ReF architecture covered by

this Chapter, firstly the synthesis of control flow, data flow and

reduction and secondly the general principles of recursive structure on

which that synthesis is based. Section Two dealt principally with the

ways in which control flow, data flow and reduct.ion styles of program

organisation are represented and executed in the ReF model whilst Sec­

tions One and Three dealt principally with the recursive principles and

their application in the ReF operational model and machine organisation.

4.4.1. Combining Models

The initial motivation for the ReF architecture was to combine con­

trol flow, data flow and reduction program styles, in order to obtain

the particular advantages of each, as discussed j.n Chapter Two. They

can be combined by different arguments of an instruction being organised

according to different models (which requires a programming language and

compiler based on the ReF model). More. modestly, they can be combined

by a procedure organised according to one model calling a (separately

compiled) procedure organised according to a different model, which

might be supported by a different computing element specialised for that

model. This ability to combine models is largely a consequence of the

modularity and flexibility of the recursive· architecture and the ReF

operational model. Most important is that an operator's arguments are

executed so that the organisation of an argument is largely independent

of the particular operator and the organisation of other arguments in

the same instruction. This approach requires that programming

- 150 -

primiti ves such as unknowns, addresses and literals be defined in terms

of their effect when executed as independent arguments of an instruc­

tion, rather than in terms of the complete instruction. For exam~le in

the data flow model the unknown arguments in an instruction are used to

indicate the number of data tokens required as operands for the instruc­

tion as a whole to be activated, whereas in the ReF model an unknown is

an instruction to suspend the activity executing it. lhus the overall

organisation of an instruction is independent of whether it contains any

unknown arguments and an unknown argument can be combined ",1 th say a

reduction expression argument in the same instruction.

The principal constructs identified for the representation of con­

trol flow, data flow and teduction program fragments are:

(i) an object containing instructions executed in sequence, providing

the implicit sequentiality of conventional control flow

(ii) the parallel operator (~) ""hich initiates the independent exe­

cution of its operand , explicitly providing the form of con­

currency found in parallel control flow and data flow

(iii) the unknOvm (1) and exclusion (excl) arguments eXf;licitly

representing the synchronisations used in parallel control flow

(1s indicating the requirement for control tokens), data flow (15

jndicating the requirement for data tokens) and reduction's lazy

evaluation (~ preventing multiple simultaneous executions of

an object)

(iv) a data item "'hich identifies (or returns) itself, providing the

literals found in all models

- 151 -

(v) two kinds of address selectors, namely /seleval causing the

selected object to be itself executed, as in reduction, and Isel~

just identifying the selected object, as in control flow
~¥

Although these constructs were princ.ipally motivated by the need to

explicitly represent control flow, data flO\o1 and reduction style

instructions, they were shown to be of general utility in the organisa-

tion of programs.

Also important in the representation of reduction and data flow is

the generality and flexibility of the storage, addressing and execution

structures. The storage and addressing structure allows an

instruction's operand to be a nested program structure as required for

reduction, and allows a result argument to address an operand within

another instruction as required for data flow, or to address the

instruction itself as required for reduction. The execution structure

of mUltiple trees of activities includes, as 1:I.miting cases, the single

activity of control flow, the multiple independent activities of data

flow, and the single activity tree of reduction.

An important consideration in control flow, data flow and reduc-

tion, discussed in Chapter Two, is their different control and data

mechanisms. The RCF architecture has a sequential control mechanism i.n

the sequential execution of an object's component instructions, a recur-

sive control mechanism in the recursive evaluation of an operator's

operands, and a parallel control mechanism in the independent execution

of an operand of the special parallel operator. The archltecture inc or-

porates what is baSically a by-reference data mechanism with an

operator's operallds and results being accessed from and stored into

152 -

explicitly addressed locations. However the stora.ge and addressing

structure allow any operand (even an array) to be adjacent to the opera­

tor, as in the by-literal mechanism, and a result to be stored directly

into another instruction as in the by-value data mechanism.

4.4.2. Recursive Structuring

The second aspect of the ReF architecture is as one possible reali­

sation of the recursive architecture principles for the organisation of

decentralised systems. A recursively structured system provides a gen­

eral recursive framework which embodies the essential principles of the

system and a relatively arbitrary set of primitive constructs. Ihe

recursive structuring principles identified in Sections One and Th.ree

are:

(i) a recursive storage structure of nested variable length objects

(ii) a contextual addressing scheme in which an address is a sequence

of selectors w~th the first selector being relative to the pre­

established position of an activity and each subsequent selector

being relative to the position identified by its predecessor in

the sequence

(iii) a recursive form of program representation with an instruction

consisting of (operation, input and output) argument objects any

of which may be a nested structure of instructions

(lv) the recursive execution of objects by dynamically created trees

of concurrent activities with communication along the arcs of a

tree

- 153 -

(v) . a recursive machine organisation of nested computing elements

connected by local communication systems with all conlputing ele­

ments at all levels supporting the same basic interface for the

addressing of objects it contains, the migration of activities

between computing elements and the communication of objects

between activities in different computing elements

In order to investigate the application of these principles, a particu­

lar set of primitives were identified for the ReF architecture and its

implementation. These primitives included, for example, sequence delim­

iters, simple positional selectors, and copy and take actions.

The most important benefits of the recursive principles are the

modularity and flexibility of the resulting architecture, and its local­

ity and extensibility properties. Within the framework of the essential

concepts summarised above, there is a considerable degree of logical

independence between different entities in the recursive structure. In

the object and addressing structure, each object 0 provides a local

address space in which a selector s (such as "first component" or "next

component") is independent of the possibly changing address spaces con­

taining 0 and internal to O's components, and independent of the other

selectors in the address of which s is a part. The general framework of

a particular opera.tionl argument message interface, such as "execute and

copy" for input arguments and "execute and replace" for output argu­

ments, can accommodate interactions between a variety of types of opera­

tion and argument objects. TIlese include primitive operators and data

items, procedures and parameters, program defined operators and data

types (where operation and argument objects may be: complex program

- 154

structures) and even "objects" which correspond to special-purpose com­

puting elements. Such different types of objects may be freely combined

in a program, even in a single instruction, and the implementation of a

particular object may change without affecting the program structure

using it. In the recursive machine organisation, a computing element is

concerned purely wi th the communication bet\veen its component computing

elements, but not with their internal orgal'tisation. Thus there is a

logical independence between component computing elements any of which

may be primitive or structured and general-purpose or special-purpose;

and a physical independence in that c.ommunications within a particular

component are supported entirely by its local communications system. To

the extent that programs exhibit locality of reference and logically

"close" objects are allocated to physically close computing elements,

there will be a minimisation of global commtmication, which is perhaps

the single most important design goal for a decentralised system imple­

mentation whether at the level of asynchronolls components within a sin­

gle chip or at the level of a geographically distributed network.

The two kindb of extensibility that were discussed were "outward"

extension of connecting together previously separate computing systems

into a network, or connecting together replications of the same computer

design to give a more powerful design; and "inward" extension of replac­

ing a single computing element with a sub-tree of computirrg elements.

The recursive system structure ensures that such extens:1.ons can take

place ~~thout encountering address space limitations or requiring major

re-design or re-programming. Host importantly the extended computing

system has an homogeneous address space, existing addresses retain their

validity, and there is the same mechanisms for communicating bet'tJeen

- 155 -

differertt parts of the program structure.

The main emphasis in this Chapter has been on the application of

the recursive structuring principles to concurrent computer architec­

ture. Those principles emphasise the relationship bet\'leen entities

(objects, selectors, instructions, activities and computing elements)

rather than the characteristics of the entities themselves. As a conse­

quence of this abstraction the general principles can be applied at all

levels of computing systems organisation. For example an object can

represent any level of information structure from an integer to a file

or group of files. The same addressing scheme and accessing operations

can be applied to selecting and manipulating an integer in an array, or

a file in a directory. The communication between concurrent activities

can model all communication within a computing system from the communi­

cation of a simple data item as an operator's operand to the communica­

ti-on of large data structures between concurrent processes executing in

different computers. The recursive machine organisation can be applied

at any level of implementation from that of a VLSI computer to that of a

geographically distributed system. At the former level computing ele­

ments would be single chips or even parts of ch:l.ps and a special-purpose

computing element would provide for example floating point operations.

At the network level computing elements would be separate computers and

a special-purpose element would be for example a print server. The

essential difference between the different levels of computing systems

organisation lies in the degree of complexity of what are viewed as the

primitive entities (size and sub-structure of objects, Gophistication of

addressing selectors, "power" of instructions and the logical activities

and physical processors needed to execute them). As ~~ll be discussed

- 156 -

more fully in the next Chapter, these differences motivate corresponding

implementation differences at different levels of recursive systems

organisation. Despite such differences, the RCF architecture can pro­

vide a common programmi.ng model which allows multiple computing elements

within a computer and mUltiple computers in a network to be programmed

to cooperate in program execution in the same way, and facilitates

changes in system organisation such as increasing geographic distribu­

tion or increasing integration of components onto a single chi-po

- 157 -

5.. FJ!:CURSIVE SYSTEMS IMPLEMENTATlONS

1hi5 Chapter covers a number of computing system implementations

which, :in varying degrees, incorporate

structuring discussed in the preceding

the principles of recursive

Chapter. 'lhe first sys t{!m

described, referred to as LEGO, is a parallel computer designed as part.

of this thesis ,,'ark specifically to support the RCF model. 'lhe remain­

ing four systems are: a computer networking extension to the Lt-;lX

opera ting system (UNIX United); a reduced instruc tion set parallel com­

puter (RUJMS); a recursive computer architecture (R.N.); and an inter­

preter for a programming language based on the M.F olJerational moclt::l.

(PASIX). 7hese are more or less iDdependently conceived SystChlS

included here to illustrate possible alternative realisations of the

recursive architecture concepts and BS a basis for discussing various

implem~ntation issues.

1he UNIX United systenl is an illustration of the application ot

recursive structuring concepts in the context of conventional computer

networks. RIHMS is closely related to the l\CF work, rCJ;rcsE'nting all

in tennedjate stage bctl;'t'en conventi anal computer architec tures and the

full generality of the ReF architecture, achieved by m1nimal extensions

to 8 conventional microcomputer design. 'lhe 1\ .M. architec ture is the

one example, other than .the RCF architecture, of principles of rec\Jl"sive

structuring being used throughout a parnllel computer design - the prin­

cipal difference between the two is in their models of program execu­

tion. BASIX'is a concurrent programming lcnglmge rather than a ~arallel

computer or computer netlo.'orking design. It is includ€d only be.c':l1.!se it

is directly based on, and constitutes the first 'coropleted implEmentation

- 15& -

of, a recursive control flow model. Finally a nl~b€r of general design

issues in the· implementation of a recursive machine organisation are

discussed in the context of the UNIX Uni ted, lUMl-1S, R.M. and LEW

designs.

5.1 • lhe LEW Des:! gn -

lhe LEGO recursive computer design is based on the general recur­

sive machine organisation of Figure 37. It comprises a basic parallel

computer design which can be extended to allow connection into hibher

levels of recursive machine organisation. 'lhe basic design, illustrated

in Figure 38(a), is for a parallel computer comprising many (upto a few

hundred) identical general-purpose computing elements (CEI - CEn) con­

nected into a ring. In addition there is a control element (C~O) per­

forming special functions such as initiaU sa tion and external communica­

tion. Each element is intended to be implemented as a single LSI chip.

The detailed design of these chips is currently being produced by

another member of the Computer Architecture (.roup. 'lhe components of a

computing clement are a memory element (M), processing element (P) and

communications unit (C). Each of these is connected to the correspond­

ing components in the two adjacent comFuting elements. lhe cont.rol ele­

ment CEO is principally concerned with communication functions and does

not have any general. procesGing or memory element. lhe following

description of a computing element's functional orgsnisation (Figure

38(b») represents the starting point for the the detailed dE:sign and

chip layout ~ork. Square brackets [•••] are used to indicate estimated

information about the detailed design.

- 159 -

.
(J!) comEuter orgcmisation (.£) mul ti -coIDEuter or~isation

r- . .--

M I- M f.- ..• ···Memory .•..... -

I I
PI- P !--····Processing····- C.

I I 0

- C 10- C ~········Comms·· - 7 M.

C CEn -
p

-
/c, GE-G tJ

I{c]E 1

C!.3 CE4 r-- E-O CE1 CE2 -
~ ...-- .-- R

- C ~ C C C ~ ... - ct} Ct2 ~

I f I , ~ ~ '-' C t-- C. f-...... -

Pf- P P P f- ••• - ~ P r-- F f-••••• -

I j I I --- M r-- M f-...... -
~ ~

H I- M 1'1 ~ ... -
00'

Dl: :

(d) (tel) (e2)(e3))(f) C e
0
0

P- ·
D: E: F: r----- H o m · · · I-- r M 0 · · · -& F r · · · u ~ (~) computing element orgnnisatiop C1~ · · · 1 :p:

o • E- 'r: ---- 0

C RR k 0:
....

/c,
CE0

, c:
~

,
-"- · e : - · LR - 5 :

0

s : ~ -> £ -> ~ <- ~ ct} CE.~ · i :
RO R] R2 R3 R4 R~ R6 ~ ~

o 0

- C f- (; f-...... - :n: · ·
"" \ 7 77

i-o- P f- F fo- •••••• - : g !
' ..

P~~
i---J:!.~& 1-'" ... - : : c

• 0

: : 0

I ~\I~ s · .
C : :nl · .
E
wCPU~

C. : : Dl
.- · .

2 r---N U : : s
M

· ..
r-- r

......... ~ 1
CI:.n U

1

M e] ~
E-

E: ~ k
I (I~}l)l C CE.O }

DEQ DEQ ~
I -......... -......... ...-

-

Figure 38 - LECO Implementation
- • I ... -.. ~- - ~ ~ ... ---....

- 160 -

5.].1., Memory

The total memory of the computer supports a hierarchic structure of

variable-length objects, the program string, represented as a sequence

of "quats". Each quat _is one of the four symbols - (and) structure

symbols for delimiting objects and 1 and 0 bit symbols for encoding

prjmitive objects (such as integers and machine code instructions). lhe

memory-memory connections between adjacent computing clements allow

movement of the string around the ring as different parts of the total

object structure expand and contract due to insertions and deletion5.

For example, in Figure 38(a), if new components were being inserted in

object D and components were being (independently) deleted from F then

there would be a general anti-clockwise shifting of the intervening sec­

tion of the string. Ihis shifting maintains the total sequencing ot

symbols whilst moving free storage capacity to the area where it is

needed.

An individual computing element's memory, as shot-,n in Figure 3b(b),

is physically organised as tlo."O double ended queues (DEQs), one on each

side of the processing element. lhese provide varjable length storage

[for up to 100 symbols] \oJhich accommodate locBI string expansion and

contraction and the shifting of the string between adjacent com}::uting

elements. Each DEQ provides the processing element with a stack inter­

face (push and pop operations) ~hich allows insertion of symbols into

the string (push), deletion of symbols from the string (pop) ElIld e.hift­

jug of the string in either direction (pop and push on oPt,osHe sides).

Fach DEQ of one computing element is connected to the complementary lEt<

of the adjacent computing element. 1h1s connection is used to shift

- 161 -

symbols from one Dr:Q to the other in order to balance the munLer of sym­

bols beld by each.

5.1.2. Processing

Each processing element can support (be occu~ied by) one activity,

executing instructions contained in its associated memory element. lhe

activity's position in the string, indicated by the I in Figure 3b(b) is

between the two symbols at the internal ends of the two memory DF.Qs.

Each activity can have a superior activity (identified as RO) and up to

six subordinate activities (identified as Rl ••• R6). An activity can

either be executing the progra~ string, or executing messages, such a

copy instruction sent from its superior. lhe same machine code instruc­

tions are used in both cases. For example the 1-) addressing 5clector

is a machine code instruction "'hich can be executed as an address argu-

ment in the program string. Alternatively an activity executing an

operator argument can send that selector instruction as part of a ID(;,S­

sage to be executed by a subordinate activjty, in order to position the

subordinate at one of the operand arglunents. lhe instruction sel pro­

vides: data operations such as arithmetic functions on integers (01 any

length), logical functions on booleans and comparison and conditional

selection functions on arbitrary objects; the addressing beleclors 1<-,

1-), lin, lout, lese, Istart, lend, and $Rn (identifying a particular

related activity as the base for base-relative addressing); creation ot

subord:fna te activities; communication bet't.:een activities; copy, take,

r~place, lnsertal\4 execute acUons on objects (of any length); and the

f and excl synchronisation primitives. An instruction is a variable

length object [4 - 12 bits]. A full instruction set is describ~d in

- 162 -

Appendix A.

A vacant processing element, i.e. one not currently occupied by an

activity, will shift symbols from one of its DEQs to the other in order

to balance the number of symbols held by each. A D~Q does the same with
-

respect to its neighbour in the adjacent computing element and thus (for

resource allocation reasons discussed below) the string will tend to

spread evenly over the total memory between successive occupied proc€ss-

ing elements.

Figure 38(b) outlines the functional organisation within a frocess-

ing element. lhe processing element has external access to two of the

symbols stored in the associated memory element, and to single-symlol

input and output buffers (RO - R6) for communication with the associated

related activities. 1he environment [50 bits] accessible to the central

processing unit (epU) i.ncludes tha t memory and communications data, and

some registers internal to the processing element. lhe ep~ iunctions as

a finite state machine (implemented as one or more fLAs) "'hich on each

cycle generates a new environment state dependent on the previous

environment. [Typically 15 bits of env:lronment is relevant to the set

of transitions for executing a particular instruction.] As an illu5tra-

tion of the possible function of this design, consider the execution of

a + data operation. 1his is performed bit-serially with its operands

be:lng received from R2 and R3 and its result being transmitted to RI.

The principal state transition is to set new bit values for the Itl out-

put buffer, and an internal carry register, as determined by the values

of the R2 and R3 input buffers, and replace the used R2 and R3 input

val ties with "empty" markers. If hov.'ever an input buffer is still empty

- 163 -

or an output buffer still full from a previous cycle then "no-cl,ange"

transitions will occur until the communications system . has

filled/emptied the buffers.

'Ihe processing element's internal registers include: the current

instruction (IR); the current instruction source (CIS) indicating

whether the next instruction is to be taken from the program string or a

particular Rn buffer (in either case ,the instruction is loaded into the

instruction register a symbol at a time); some supplementary state

(SSR), such as the carry bit; and an tlp/ do\-JU counter (DID). lhis latter

is used to count matching brackets \o;hen compound objects are b€:ing IJro­

cessed. For example executing a /-) selector involves moving symbols

from one DEQ to the other, counting up and do\o;n the level of nesting as

(and) symbols are encountered, un til the COllO t returns to zero. [A

counter of]0 bits, allowing upto 1C24 levels of obj~ct nesting, is

probably sufficient for any size machine].

5.1.3. Activity Migration and Resource .Allocation

'Ihere are two types of activity migration, local and remote •. Local

ndgration is the migration of an activity from its cut'rent computing

el~m€nt to an immediately adjacent computing element. As described in

detail below, this occurs in order to provide an activity .ith access to

information (symbols of the program string), or to some hardy,are

resource (storage or processIng capacity) which is not immediately

available 'in, the activity's currEnt computing element. lhe migration is

negotjated using the connections bct~een adjaCEnt processing EIEm~nts.

If, say, the activity 1s migrating to the right then the sequence of

- 1G4 -

symbols occupying the right DEQ of the original computing element and

the left DEQ of the new computing element are shifted, by the new com­

puting element, to its right DEQ. '1his ensures that when the activity

. has migrated it will retain tbe same logical position in the information

structure. . lhus the two DEQs separating the two computing elements are

emptied before the migration actually occurs. lhe actual migration is

achieved by activity state information [8 bytes] being sent as a message

from the old incarnation of the activity to the new incarnation. ('1he

organisation of the message communication system is such that during the

transmission of this message the new incarnation can safely migI8te

again if necessary.)

There are four possible causes of local migration to consider -

(i) To provide access to the string - An activity is popping s}mtol s

from the DEQ to its right or left, and the DEQs between itself and

the next activity in that direction become empty. lhe activity

migrates through the intervening processing elements until it is

adjacent to that other activity and then swaps position with it.

1his type of migration occurs in traversing the program string (as

a result of sequentially executing instructions, performing copy,

take and replace actions, and executing addIessing selectors).

(ii) To provide access to storage - An activity is pushing symbols onto

the DEQ, to its ri.ght or left, and all the DEQs beu.een itself £Ind

the next activity in that direction become full. In this case the

rightmost of the two activities is forced to migrate to the pro­

cessing element to its right. lhis produces a pair of empty I~lf{s

between the tY:o activities and so allo",s the symLol pl1shir,g to

- 165 -

continue. 'Ihis type of migration can occur in traversing tile

€xisting string or inserting a new object.

(iii) To provide access to processing elem~nts - An activity is al~ays

created by another activity, at the same position in the string,

and at creation t~e new or original activity is forced to migrate

to the processing element to the right (since only one activity can

occupy the original processing element).

(iv) Propagated migration - An activity P is forced to migrate to the

right (as in (ii) or (iii» to obtain resources (for itself or ~os­

sibly in (ii) for the activity to its left) and the required

resources are not immedia tely available. Eefore r can migrate the

destination processing element must be vacant and the intervening

DEQs empty. 1f there is an activity Q occupying the required pro­

cessing element then the original migration of P is propagated to Q

Q is forced to migrate to its right, possibly forcing further

propagated migration. Once Q has migrated P's migratior1 can be

completed. (Emptying of the two DEQs can also cause further

activity migration, as in (ii), since it "ill involve pushing sym­

bols onto the DEQ to the right).

The local migration mechanism thus provides a simple scheme for the

decentra1ised allocation of processing Bnd memory resources ~hich

ensures that local resource requiremEnts are always satisfied if there

are sufficient free resources anywhere in the machine. 'Ihis scheme

r~lies on the circular connec tion of computing elements "hich UlE-anS that

a free resource can al~ays be considered as being to the right of the

particular computing element needing it.

- 166 -

An important aspect of the resource allocation scheme is that tllC

program string expands and contracts not only in response to insertion

and deletion of objects but also in response to the creation oud termi­

nation of activities wi thin them. For example consider the expression

(* (••• A •••) (••• B ••• ». lhe machine code program for this expression

might initially be in one com~uting element's memory. Ihe activity exe­

cuting the multiply will create subordinate activities to execute tIle

(••• A •••) and (••• B •••). lhese activities must migrate to the next t~o

computing elements and in doing so they, so to speak, s~eep the two

objects in front of them. lhus the (••• A •••) and (••• B •••) are shifted

to two different computing elements where they are executed cor,­

currently. Generally, an executing program fragment ~ill expand over

sufficient computing elements to provide the necessary processing

resources, and will subsequently contract again when it no longer needs

those resources but another expanding part of the program ~tructure

does. As mentioned above, the operation of vacant computing elements is

such that the program string will tend to spread evenly over a number of

adjacent vacant computing elements. lhus if there are spare memory

resources in the neighbollrhood of an inactive progrem fragment (i.e. one

containing no activities) the program fragment ~ill Expand over those

resources in anticipation of the expansion ,that ~ill be need~d if it

does become active.

lhe other, remote, type of migration is initiated by execution of a

$Rn type of selector supporting base-relative addressing. 'lIds selector

PQsitions an" activity directly at another activity ~hich may be an)'~here

in the program string. Remote migration is negotiated by a tnNiSage to

the specified destination activity (Rn) using the general communications

- 167 -

system, rather than by using the direct connections bet\>.een adjacent

processing elements which are provided to facilitate local migration.

On receipt of this message, the destination activity's computi~g element

initiates a new incarnation of the migrating activity in the adjacent

processing element (as in case (Hi) above) and tlle.n the state of the

migrating activity is transmitted from the old incarnation to the new

incarnation just as occurs in local migration.

5.1.4. Communications

lhe communications unit,s together provide a communications s}stem

for the transmission of messages between related activities in possibly

non-adjacent computing elements. 'Ihis communication system functions as

two slotted rings rotating in opposite directions (LR, left ring, and

1m, right ring). Each symbol of a message is transmitted as a separate

packet in a passing empty slot of one of tbe rings, and is acknowledged

when it has been accepted by the destination processing element. 'Ihe

acknowledgement provides simple flow control - the destination llas only

B single-symbol buffer, and so a further symbol cannot be f>ent until the

buffer has been emptied. One reason for using only single s)mbol

buffering is that when an activity migrates from one computing cllment

to another, any message symbols that had be€:n receivE:d by the old com­

puting element, but not yet processed, must be transferred to the new

computing element. Single bufferjng for such unprocessed s)mbols

reduces the amount of information to be transferred and simplifie5 the

m~gration mechanism. If a buffer contains a symbol of a message then

there- cannot be another symbol packet in transit and thus the buffer

contents of a migrating activity can be sellt to its ne\\' incarnation bi

- 168 -

the normal message passing mechanism with no danger of packets arriving

there out of sequence. Also, as will be discussed later, progtan,s cnn

easily be organised to use the variable length object structure for

efficient, unbounded, buffering.

Associated with each output buffer is a'routing flag (a) or <~) to

determine which of the two rotating rings is to be used for transmitting

symbol packe ts from that buffer. (An acknowledge packet is always

transmitted in the reverse direction from that in "which ~as received the

symbol packet being acknowledged.) This routing flag is an estimate of

which direction provides the shorter path to the destination. 'lhe com­

munication channel between two activities is established when one (the

superior) executes an instruc tion to create the other as its Rn subordi­

nate. The two activities will be initially in adjacent computing ele­

ments and the creating instruction specifies l\hether the subordina te is

created to the right or left of its superior. lhat information deter­

mines the initial setting of the RO flag in the subordinate and the Rn

flag in the superior. Subsequent migration of the activities can result

in a routing flag indicating the "wrong" directions, i.e. the direction

in which packets have to travel more than half way round the ring. Cne

scheme for correcting the routing information is to divide the ring into

a number of sectors and to provide in an acknowledge packet a count ot

the number of sector boundaries which that packet has ctossed during its

transmission. lhe receipt of an acknowledge packet with a sector count

exceeding half the total number of sectors indicates that the packet

w~ich it acknowledges was (probably) transmitted in the wrong direction.

lhis- causes the routing flag of the appropriate output buffer to be

inverted so that the next symbol packet \oii11 be sent in the "correct"

- 169 -

direction. 'Ihis scheme requires that a number of compuUng elements

(evenly spaced around the ring) are "sector boundary" elements. lhe

communication unit of such an element will increment the sector count of

any acknowledge packet passing through it.

'Ihere are two circumstances in which the routing information should

be corrected. Firstly two related activities may cross. lor example

activity R2 initially to the right of its superior executes a 1<- selec­

tor which re-posi tions it to the left of its superior. 5econdly the two

activities may migrate further apart until they are separated by mote

than half the total number of computing elements. lhe former cir­

cumstance, of ac tivities crossing, 1s likely to be the more frequent,

and also the more important to detect since the two activities will typ­

:lcally be very close in the "correct" direction, and thus very distant

1n the "wrong" direction. 'lhree sectors is sufficient to always deal

with this circumstance and is a particularly appropriate choice since

the same amount of information (2 bits) is needed for the sector count

in an acknowledge packet as is needed for the symbol c8rried by a symbol

packet. Also the need for a "sector boundary" element to increment a

2-b:lt sector count in a passing acknowledge packet is unlikely to be a

limiting factor on the packet transmission rate. lor the other cit­

cumstance, two related activities migrating very far apart, the likeli­

hood of correct detection by this scheme depends on the number of sec­

tors. With only three sectors, the ~orst Cbse is that a packet may

traverse two-thirds of the ring in the "wrong" direction, rather tt.an

o~e-third in'the "correct" direction. 'Ihe expected locality properties

of programs suggest that this circumstance ,,;0111 be relatively rue.

Thus the additional complexity of increaslng the number of &ec tors j n

- 170 -

order to better handle this circumstance would be unlikely to be effec­

tive.

The addressing of messages in the communication system is in terms

of logical activities rather than physical computing elements since an

activity may at any time migrate from one computing element to another.

For a message from an activity to a subordinate, the destination is

identified as A/n where n· specifies the particular subordinate and A is

an ac tivi ty identifier, unique wi thin the computer. lor a message from

a.subordinateto a superior, the destination is identified as AlO. An

activity identifier, A, thus identifies a (bi-directional) logical cban­

nel carrying all communications between that activity and its subordi­

nates. (Those, leaf, activities that do not currently have subordinates

do not need identifiers.)

The computer maintains a decentralised pool of activity identif­

iers, the number of identifiers being equal to the. total number of com­

puting elements in the computer. (The number of activities needing

identifiers is naturally bounded by the number of computing elements,

although generally is much smaller). Each activity identiUer is either

allocated to a particular activity, in which case it is part of the

state of that activity, or it is free in which case it is held in an

identifier store wi thin the communications unit of some computing ele­

ment. Each identifier store can hold one such free activity identifier.

When an activity needs to be allocated an identifier (i.e. ~hen it first

creates a subordinate) it places an "allocate" message on one of the

rotating rings. Ihat message will be serviced by the first encountered

communications unit with a non-empty identifier store. lhe identifier

- 171 -

is taken from that store and sent to the requesting activity, leaving

the store empty. When the activity terminates, it releases its activity

identifier by emitting a similar de-allocate message carrying the freed

activity, identifier. lhis message is serviced by a communication unit

with .an empty identifier store into which 1s stored the freed identif-

ier. \

lhere are similar motivations for this scheme for the allocation ot

activity identifiers (logical communication channels) and the scheme for

the allocation of processing B.nd memory resources. Both resource allo­

cation schemes are fully decentralised. Resource requirem~nts will gen­

erally be satisfied from locally available resources. ho~·ever a

requirement will if necessary be satisfied by an available resource any­

where in the machine.

5.1.5. Control Element

The principal function of the control element, thO, is to interface

the ring .of computing elements to its external environment. lhe exter­

nal environment may be a higher level of recursive machine organi sa tion

with the computing element ring functioning as one component of. a

mul ti-Ievel LEGO machine. lhe role of the CEO element in such an oq,an­

isation is discussed in the next Section. Alternatively, as is the case

for Figure 38(a), the computing element ring may function as a complete

LEGO machine. In this case the external environment ~ould be a user

terminal or. ~during development) a conventional host computer. 'lhe (.E<J

element of a complete LEGO machine has three functions. F'irstly there

1s the machine's 1ni tiaUsation. lni HaUss tion includes establishing a

- 172 -

different "activity identifier" in the free activity i,dentifier store ot

each computing element's communications unit, and establishing particu­

lar. computing elements as "sector boundaries". 'lhese initialisation

functions could be implemented by constructing each computing el~ruent

slightly differently._ However (for at least manufacturing yield rea­

sons) it is preferable to make all computing elements identical and

establish these minor differences by messages transmitted from CEO to

other elements during an initialisation sequence. lhe initialisation

sequence would also need to establish a "null" initial program state

with all processing elements vacant and memory DEQs empty.

Ihe second, principal, function of CEO is interaction ~ith the

external system. The basis for this interaction is a "monitor" activity

which is created as the final stage of initialisation. (It would be

initially created in a particular computing element, say CEl, but could

subsequently migrate as can any other activity.) The monitor activity

behaves as the subordinate of a conceptual "user" activity residing in

the external system. Ihe monitor acUv1ty has :its superior activity as

instruction source and will respond to messagps received from its supe­

rior in the same way as does any other activity. lhe communiCation unit

of CEO will inject into, and extract from, the communications s)'stem

messages between the monitor and the user activities, in the same way as

does the communication unit of any computing element. Ihc messages gen­

erated for the monitor by the external system ~ould be standard machine

code instructions and other objects (as described in Appendix A). 'lypi­

cf,111y there would be messages to: insert a program object into the

objec i struc ture; create an independent BC tivity to execute tha t proglbm

object; create subordinate activities to read different parts of the

- 173 -

program structure in order to monitor the execution progress of the pro-

gram and retrieve results being generated for output; possibly insert,

and create ac tivi ties to execute, new "diagnostic" program fn'lgments;

finally, delete the entire program object.

'Ihe third function of the CEO element . would be monitoring the

behaviour of the computer itself (rather than the program it is execut­

ing). For example, it could collect and provide the external system

with information about message traffic. Also it would be possible to

incorporate in the computing element design facHi ties to allow Q..O to

determine, for example, how many computing elements ~ere vacant at a

particular point in time.

5.].6. Multi-level organisation

Figure 38(c) shows part of a multi-computer organisation comprising

a ring of computers each having the internal organisation of Figure

38(a). This extension involves changing the role of the ctO control

element in each computer's local ring, but requires no changes to the

design of other elements or their interconnections. Ihe multi-~omputer

organisation is exactly the same as that within an individual computer.

Externally each computer, through its CEO, functions exactly as one of

its computing elements, with memory, processor and communication connec-

tions for the shifting of objects, migration of activities and transmis-

sion of messages. lhe CEO elements of adjacent computers connect the.

memory and processing elements of one computer's lo~ order comfuting ,

element to those of the adjacent computer's high order COlIlputing ele-

ment. The effect is exactly as if all the computing elements of all the

- 174 -

computers were connected in one large ring, with CEO elements forming a

higher level communication system by which a message from, say, tIm in

COMPUTER I to CEI in COMPUTER3, by-passes COKPUTER2's local communica-

tions system. Logically, migration of activities and ~hifting of pro-

gram string over co~puter boundaries is exactly the same as "'ithin a

computer, although there may be physical differences such as slower

transmission and different transmission protocols (in which case the

func tion of a CEO elements would include interfacing between internal

and external transmission).

A CEO element has principally a communications function similar to

that of a gateway node connecting different computer networks. It must

recognise whether a message received from an adjacent computer is des-

tined for a computing element within its computer, and if so switch it

into the local communications system. Similarly it must when appropri-

ate switch messages from the local system onto the more global s}stem.

Within a local communications system, a message's destination is identi-

fied by a locally unique activity identifier. Within the more global

communications system there must be a different set of unique activity

identifiers for identifying messages between superior and subordinate

activities in different computers. (Locality considerations suggest

that in the majority of cases an activity and its subordinates "'ill all

be :In the same computer, and so the number of more global activity lde:n-

tifiers required is much less than the total number of local activity

identifiers in all computers.) In switching a message from one eommuni-
'.

cation level to the other the CEO also performs the mapping between

local and global activity identifiers. lhus a CEO must maintain a

(two-way) identifier mapping table ""hieh is updated as activiUes

- 175 -

migrate in and out of the. associated computer. Within the multi-

computer organisation there will be a control computer, COMlU1ERO (not

shown), serving the same role as the CEO control element wi thin a single

computer. lhat is, either connecting into a yet higher level of recur-

sive machine organisation or interfacing to an external user system.

'Ihis general scheme clearly extends to higher levels of machine organi-

sation in the same way.

5.1.7. Discussion

lhe principal motivation for the LEGO design was to obtain a rea-

sonably simple machine supporting the full conceptual sophistication of

the ReF model and general recursive machine organisation. lhe machine

instruction set provides all the basic mechanisms for the various forms

of program representation and execution discussed in the last Chapter.

In contrast, both the other major recursive systems implementations to

be discussed in the following Sections, the UNlX Dni·ted networking 5yS-

tem and the R.M. computer architec ture, support models sOlUewhat less

general than ReF (although the u~IX United and ReF model are remarkably

close) •

lhree major aspects of the general recursive machine organisation

were discussed in the preceding Chapter, namely extensibility, locality

and special-purpose computing elenlents. Ihe LEGO design is full} exten-

sible to any level of recursive machine organisation and the resul ting

multi-level design provides n hierarchic communication system supporting
",

program locaU ty. Even wi thin a single level design wi th a large numt~r

of computing elements, the two counter-rotating communications rings

- 176 -

provide some degree of locality. lhe executions of, say, t~o (adjacent)

programs by two non-overlapping sub-trees of activities will proceed

largely independently, wi th no communications interference. (lhe only

interaction between two such disjoint computations is beneficial in that

they effectively shar~ a common pool of processing and memory resources

around their mutual boundary.) The LEGO design cannot however support

special-purpose computing elements in the way discussed for the general

recursive machine organisation, since that ~~uld require a particular

object to be permanently resident in a particular special-purpose com­

puting element. Such a requirement would compromise the LE~O resource

allocation scheme which depends on objects being able to freely shift

around the ring of computing elements.

There are some particular aspects of the LEW design ~hich allow a

computing element to be reasonably simple, considering its generality.

Firstly, there is the small amount of external information directly

accessible to a processing element. '1his information consists of the

two symbols on either side of the activity in the program string, and

one symbol each of messages to and from a fe~ (typically three) related

ac tivities. Consequently the CPU has a simple cycle for the serial pro­

cessing of data. An important aspect of this design is that the most

basic level of a CPU cycle accommodates the asynchronous COIDClI.mic&tion

of information bet~een computing elements, an essential e.1eme.nl of the

RCF model. At this level the main problem of the 1£00 design is likely

to be a processingl communication imbalance. 'lhe un-buffered comrouuicf.­

tfon of single-symbol packets via off-chip connections, is unlikely to

keep· pace ,":i th the CPU processing of, purely on-chip, information.

There would be a closer balance for a VLSI realisation (m1.1ch mote in

- 177 -

keeping with the general design philosophy) ",here each chip cOl.lld con­

tain a number of computing elements with a significant proportion of the

communications being via much faster, on-chip, communicaUon paths.

Such an implementation would use .the multi-level design ot Hg\lre 3c(c)

with each COMPUTER being a single chip, and a CEO element providing the

only off-chip connections (",hich are the same as those for a single com­

puting element LSI chip). It might also be desirable to provide multi­

ple buffering. and to use multi-symbol packets transmitted in parallel

(achieving a better balance between addressing information and useful

data). Such a widening of the communication path lIiould be more viable

for a VLSI implementation than for an LSI implementation since in the

latter the computing element design is constrained by off-chip bandwidth

limitations.

A second, related, aspect is the choice in the LEGO design of pro­

viding quite low level instructions, closely corresponding to basic

machine operations, and the direct implementation of the general model

without any optimisations. Ihese aspects of the design can result in

significant program representation and execution inefficiences. laking,

as an extreme example, the expression (< 2 3) which compares two sim­

ple constants. Ihe operator would require a number of machine eode

instructions to create subordinate activities, position them at the

operands, instruct them to execute those operands and finally to perform

the actual (bit-serial) comparison of the returned results. lhe choice

of providing such primitive machine code instrce tions II rather than say

i~plementing' each operator as a single machine code instruction, is

partly to keep the computing element design simple and partly to facili­

tate experimentation with different operator types (such as stream+) and

- 17& -

other constructs at the program organisation level.

The execution of (< 2 3) involves the full mechanisms for c~eat-

ing, and allocating computing elements 'to, subordinate concurrent

activities.' lhe advantage of this approach is that the same instruc-

tions and mechanisms deal with, say, (< (••• A •••) (••• B •••)) ~here

(••• A •••) and (••• B •••) are complex program fragments returning large

nested data structures. However for a realistic implementation it might

well be necessary to complicate the design by incorporating some optimi-

sations. For example, it may be desirable to provide special instruc-

tions for the common cases where an operator's operands are values or

addresses short enough to be loaded into CPU registers and processed in

a more conventional way.

Addressing is based on a very primitive (almost minimal) set of

selectors which can give very inefficient program representation. For

example selecting the 2J,t component of an object will require t~ellty

/-> selectors. For a realistic implementation it would be necessary to

include the fuller set of selectors given in Figure 25. lhe DE.Q

memories provide a simple hardware mechanism for storing and accessing

variable length objects. One consequence of this impleme-ntation,

reflected in the machine code definition, is that when an activity

accesses, e.g. copies, an object, it is necessarily re-positioned at the

following object. 'Ihis is convenient when serially accessing adjocent

objects, but inconvenient when repeatedly accessing the same object.

The main consequence of the DEQ memory implementation is that interplet-,

ing an address to position past an object requires a scan of the ~hole

sub-structure of the object (different parts of this scan may be per-

- 179 -

formed in sequence by different computing elements). 1m. approach to

alleviating this problem (adopted in the R.M. implementation to be dis-

cussed later) is for a computing element of,incorporate an index to the

structure of its part of the program string. One simple indexing scileme

is the following-

relative level
index

string

"absolute"
level

MF..MOR~

left index

m
right.index

m
(010) (•••)) (•••)) ((•••)

I I II III f
7 776 656 6

The left (right) index records the difference of program string nesting

level bet~veen the position at the memory's left (right) boundary Clnd the

least nested position in the memory. As, say, a /-> selector scans an

object, say OB, a count is maintained of the current nestirlg level

within OB. If, when the scan reaches this memory, the count is greater

than the left index then the.end of 08 is not contained in this memory

and the scan can immediately continue at the next memory (with the count

being decremented by the value in the left index Bnd incremented by the

value in the right index). A simple algorithm for maintaining these

indexes involves incrementing and decrementing them as delimiter symbols

are shifted across the memory's boundaries. (This algorithm can rebull

in the "safe" error of the indexes both being too bJgh by the same

amount, sometimes causing an unnecessary SCBn which can be used to

correct them.)
,

The circular connection of computing elements and the choice of at

most one activity per computing element results in simple, totally

- 1S0 -

decentralised, schemes for the integrated allocation of processing and

memory resources to activities and program string, and for the alloca­

tion of logical channels (activity ide?tifiers) for communication

between activities. lhe restriction to a single activity per computing

element, and th~ form of memory organisation, can lead to excessive

migration of activities and shifting of program string, particularly in

view of the frequent creation of subordi,nate activities implied by the

direct implementation of the general RCF model for even simple instruc­

tions. This can clearly lead to poor performance, particularly for con­

ventionally organised programs which do pot exploit any of the machine's

concurrency and communications potential.

Performance is not a major motivation for this design and tl,e

design choices discussed above were principally motivated by the resul t­

:fng- simplicity of the initial implementation. ho¥:ever it is ¥:orth dis­

cussing the machine's behaviour for a style of program bHter suited to

• its 'capabili ties than is the conventional style. lerformance ¥:ill be

best for program fragments in which a particular pattern of activit.les

is maintained for a reasonable length of time. Figcre 3S shows an ex~m­

pIe program fragment with this characteristic. lhis program fragm€nt is

a development of the data flow style of iteration using stre~m operands,

shown in Figure 33 of Chapter Four, and is representp.d using the nota­

tion developed there.

'The operator of iI, 1ter+ is similar to the stream+ of Figure 33.

The executi~g activity P positions subordinates, Q and R, at the start

of its "stream" operands (the value sequences aI, a2, a3 , etc., and bI,

b2, b3, etc.), and subordinate activity S at the end of its stream

- 181 -

result. For'this iter ~ype of operator the executing activity P then

repeatedly performs take (destructive read) actions on the objects at

which Q and R are positioned and adds the returned values, 'an Gnd bn, to

produce a result cn. lhis result is sent to S as part of an insert

action to append, that result to the end of i2's operand stream.

... ~ i 1 :
(

A:

a~other instructions

i9 I B:
liter+ (I a6 a7 J (1» (I b6 b7 b8 J (?)) Ie)
--<-Q-~ __ I R--o(f---'

as 5

I
s D:

•••

••• par (f c2 c3 c4) (1))
.--.oIIE--Q ~ - ~- - - -' C:

(1:= 6 lout) If:.) ••• ,

6

Figure 39 - Execution of Iterative Data Flow in RCF

Instruction 12 has the same structure as il except that the second

operand is an embedded literal, implemented as' the object (:- 6 lout).

This has the normal (as opposed to stream or iter) type of operotot t :-,

to return its single operand 6. It is follo~ed by an loot address to

re-position the executing activity outside the object "'hich it then re-

executes, thus returning a stream of constant values to its invoker. An

operator such as ~ 1n this representation is actually a sequence of

primitive' m~chine code instructions to achieve the described behaviour.

(Actu?l machine code for this example is given in Appendix A as ~n

illustration of the instruction set defined there.)

182

Instructions 11 and 12 would be part of an iterated group of

instructions, separated by R!! operators so that they are all executed

in parallel. On the first execution of the group, the ~ operatoI&

create activities at all the group's components (such B.6 11 and 12)

which in turn create subordinate activities at their operands and

resul ts. This creation of activities will cause the ~hole gIOUp to

expand over sufficient computing elements to provide a processor for

each activity (causing contraction in other, no longer active, parts of

the program). 'lhe iteration actually occurs at the instruction argument

level (rather than at the instruc tion level, as in Figure 33, or the

instruction group level, as in conventional control flow) • lach

activity repeats a small sequence of machine operations, remaining

essentially at the same position in the object structure. 'lhe ini tial

iteration in effect sets up a logical, data flow, net connecting the

computer's processing elements. As indicated by directed arcs in Figure

39, the flows of data pass through the communications system (solid

arcs) implementing the connections between activities, and through the

memory system (dotted arcs) implementing the stream operands. 'lhese

streams and the DEQ memories supporting them aetas buffers in the data

flow paths, accommodating differences in execution rates between the

different instructions. After the net has been established, there will

generally be no shifting of the string or migration of activities

between computing elements. lhe exception is in the case ~here a

discrepancy in processing rates resul ts in an operand stream expanding

beyond the capacity of one computing element's memory and thus causes ,

the s~ifting of the string to provide the necessary local space.

- 1D -

The data flow style communication of values from 11 to 12 is

achieved by the value's generator P and its eonsumcr P' being indepen­

dent ae tivi ties Yihich communicate via memory. 1M s, as in data flow

archi tec tures, allows maximum concurrency but may consume considerable:

resources (in this case the storage for the operand streams). In the

case of the second operand of 12, the values are generated by an

activity R' created as a subordinate of the consumer, P'. lhese operand

values are returned directly on tIle (lmbuffered) communications path

from the generator to the consumer. In this case, flow control in the

communications system means

effect driven by demands from

results in effectively

that the execution of the generator is in

the consumer. As in reduc tion, this

less concurrency, but conserves ruCiC hine

resources.]n this case if instruction D were represented in the same

"Jay as instruction 11, with 12's second operand being a stream, it could

quite rapidly, and uselessly, fill up a large amount of ~torag€ ~ith 6s.

lhus the demand driven execution conserves storage resources. Im~ever

the choke of one activity per computing element, wi tll Ii' r,ermanently

occupying a processing element, means that the possible conservation of

processing resources is not in fact exploited as it might be in a imple­

mentation which shared processing elements bet~een activities.

'Ihe lEGO design discussed in this 5ection was developed specifi­

cally to obtain a complete realisation of the heF model and principles

of recursive machine organisation. lhe following Sections cover four

computing systems which, in varying degrees, incorporate concepts simi­

ler to those'in the recursive control flo~ medel, recursive machine

organisation and LEeO machine design. lhe similarities and differences

between ne LEGO design and these other systems illustrate Ii number of

- 164 -

general implementation issues which are discussed at the end of this

Chapter.

- us -

5.2. mnx llnited

The Newcastle Connection[63] is a soft~are subsystem, developed at

Newcastle University, which can be added to each of a set of physically

inter-connected UNIX systems (computers running the LNlX(5t] operating

System) so as to construct a distributed system, referred to as L~lx

United. lhe resulting UNIX United system is functionally indistingui.sh-

able, at both the user's system command language (llshell") interface and

program's system call interface, from one of the lJr-tlX systems from "'hich

it is constructed. Thus it meets a principal criterion for a recur-

sively structured system. Although in no way directly part of this

thesis work, UNIX United and UNIX itself exemplify many of the. concepts

discussed in this Chapter. lhe system is discussed here because it

illustrates one end of the possible range of recursively structured com-

puting systems and it provides a particularly familiar context for the

discussion of implementation issues. Also, close analogies that can be

drawn between (often independently arrived at) concepts and mechanisms

in ReF and UNIX provide some evidence of their value. lhe L~lX Lnited

system, being an extension to the existing 1JNIX operating syst.em, has

been implemented quite rapidly and an initial version is currently

available commercially.

Viewing UNIX and UNIX United as an illustration of the recursive

architecture concepts, the recursive storage structure and contextual

addressing is that provided by the 1JNIX filestore and the file naming
~. \

"

scheme, the operational model is that embodied in the LN]x shell and

system call interfaces, and a primitive computing element is a single

UNIX system.

- 186 -

The filestore provides three levels of "objects": single, fixed-

length bytes as primitive objects; files as com~ound objects each

comprising a variable length sequence of by~esj directories providing Q

hierarchy of higher level compound objects each comprising a variable

number of files and directories. (UNIX does provide the facility for

one file to be linked into several directories, thus departing from a

pure tree structure. However this feature will be ignored here as it is

used relatively infrequently, causes some difficulty in u~IA Dnited, and

is not very general in that above the file level there must be a strict

tree structure of directories.)

A file or directory (a files tore node) is specified by an identif-

fer comprising a sequence of context-relative selectors, in the same way

as an object is addressed in the RCF model. lhe principal type of

selector is a name, e.g. brian, identifying a particular node ~ithin a

directory (this corresponds to a In RCF selector identifying a part1cu-

lar component by its position). lhere are no "global" names, eacC. name

being relative to and unique within a particular directory. lhe file-

store tree structure is usually represented as in Figure 40, where the

nodes represent files or directories and are labelled by their names

within parent directory. lhe other selector which can be used is the

parent selector, •• , which corresponds exactly to the lout selector of

ReF. A complete node identifier, of the form e/sel/sel/ ••• , corresponds

to the base-relative form of addressing in ReF. lhe starting context C

of the identifier is one of two previously identified directories,

namely the user's "root directory" or "current working directory". At
-

the file level there is a discontinuity in the addressing scheme,

with the addressing of bytes within a file being totaliy~~ifferent from

- 187 -

the addressing of directories and files. Each byte is addressed by its

absolute position in the file (corresponding exactly to a In ~CF sclec-

tor) or relative to the current position in the file (corresponding

exactly to a l+n or I-n ReF selectors).

lib

filel

Figure 40 - UNIX and UNIX United Fl1estore Structure

UNIX United provides a generalisation of the UNIX filestore struc-

ture. Each individual LNIX system has its own tree of directories. lhe

root node of the tree is logically an object containing that system's

complete filestore (in Figure 40 the directories group} and group2 coulo

be roots of separate UNIX systems). 'Ihere can then be a higher level

directory (or more generally a superstructure of directories) which con-

tains those indiv:fdual root directories as its components. 'lhe complete

UNIX Un:fted filestore structure thus forms one tree ~lth a homogeneous

contextual addressing scheme lYhich is the same as that within an indivi-

dual LNIX system. In fact any directory node in the tree, such as jolm

in Figure 40, can be the root of a separate DNIX system. ~ode ident1f1-

cation is the same regardless of ~hether LNIX system boundaries are

crossed. In Figure 40 the complete tree might be contained in one Lh11

system, or group} and group2 might be separate tNIX systems. In eitber

- 188

case, richard's file] could be identified from the context of bri.sn as

/ •• / •• /group2/richard/fllel.

lhere are significant similarities between the keF model of program

execution and the model presented by the UNIX shell and system call

interface. UNIX provides a tree structure of user processes, each· of

Which is executing a program file (object) from the filestore structure.

Associated with a process are a number of file descriptors, each giving

read (ReF copy) and write (ReF replace) access to the byte at a current

position in a file. A file descriptor is dynamically created by an Orl~

command specifying a file identifier of the form discussed above. ln

UNIX United an OPEN executed in one machine can identify a file in a

different machine, in which case read and write accesses are implemented

by messages between the two systems. lhe tree of . UNI~ user processes

corresponds closely. a tree of ReF activities. A file descriptor

corresponds closely to an ReF activity which is a leaf of the activity

tree, used by its superior to access as data the object at which it is

posi tioned.

A UNIX process can create subordinate processes by FORK commands.

The subordinate is initially a t the same position as its superior, ex€-

cuting at the same point in (a new copy of) the same program file. lhe

subordinate process will then typically execute an EXEC comnl£lnd, moving

itself to execute a different program file. lhe destination file 1s

specified by a file identifier of the form discussed above. In the case

of UNIX Uriited the identified file can be in a different uNl~ system, ,

impli~itly causing the process to migrate to that system. A subordinate

process initially inherits the same connec tivity with the filestoI€ as

- 189 -

its superior, that is it is given copies of all its superior's file

descriptors. This connectivity can subsequently be changed by closing

files and opening different files. lhese mechanisms in u~l~ are very

similar to those in the LEGO implementation of the ReF mode~. In LEGO a

subordinate activity is initially positioned adjacent to its creating

activity and typically then executes an address to re-position itself at

the actual object to be executed (which may cause it to migrate to a

different computing element). When an activity is first created it

effectively inherits the addressing contexts provided by the other

subordinates of its superior (as required to support procedure calls

discussed at the end of Section 4.2.6).

One significant difference between UNIX and ReF is that in the

former there is no notion of a process being able to address relative to

its Ol-.'Il position in the filestore structure (e.g. relative to tile direc­

tory from which was selected the program file it is executing). 1h1s

results in a problem with, for example, a library program which uses a

sibling program or data file in the same" library" directory. ~uch a

library program must contain an identifier for that sibling file, but in

UNIX there is no addressing context which can be robustly used for such

an identifier. 'Ihe omission of "program relative" addressing, \\'bleh

would easily solve this diffieul ty, is perhaps a resul t of the conven­

tional view that main memory in which a program is executed is very dis­

tinct from the filestore memory from which the program is loaded for

execution. (In contrast, ReF at least conceptually uses the same memory

space for both object execution and "permanent" object storage.)

UNIX implements its variable length "object" structure and multifle

- ISO -

process model using standard operating systems techniques. Ihe byte

sequence comprising a file is stored in a number of (arbitrarily posi­

tioned) disc blocks which are dynamically allocated and released as the

file expands and contracts. A directory (itself implemente~ as a file)

contains a list of its component files and pointers to the physical

blocks in which they are stored. Ihe additional mechanisms provided by

UNIX United are those for handling remote file execution and access,

resulting from an EXEC or OPlm call with a file identifier that goes

outside the current UNIX system. Both cases correspond to activity

migration in ReF and involve the migration of a process (the user pro­

cess or a system, file access, process) essentially as was described for

the general recursive machine organisation in thapter Four •. Ihe migrat­

ing process is embodied in a message by which the process state is

transmitted to its destination. Ihe destination· is specified by the

file identifier used in the system call to name the remote file. Ihis

identifier is incrementally interpreted as the process migrates through

the UNIX systems on the path to the destination. As the process

migrates a logical connection between its source and destination is

established which is used for subsequent direct communication. (ladl

segment of the comp~ete logical connection is implemented by a system

"forwarding" process in the UNIX system through "'hich it passes.) for a

user process the state that has to be transmitted (of the order of ;vv
bytes) is principally that providing its connectivity to other parts of

the filestore structure, that is its file descriptor information.

The tJ'NIX Uni ted system is "transparent" in two important respee ts.

Firstly it exhibits the extensibility properties of recursive systems

discussed previously. Enhancing a UNIX system to be a component of a

191

larger UNIX United system has no effect on the user's interface, even

though that interface then provides access to remote data and pro&ram

files. Users (and their existing programs)'~hich do not exploit the

enhancement are completely unaffected by it (particularly, exist~ng'

filenames retain their validity). Secondly, the enhancement is imple­

mented without modification to the standard UNIX software, i.e. the

operating system kernel and various utility programs. 1his is achieved

by the Newcastle Connection software which implements the enhancement

being inserted as a separate layer between the kernel and the user (and

utility) programs. To user programs the Connection layer impersonates

the kernel, providing the same system call interface. 10 the kernel it

impersonates the user programs, using the standard interface provid~d by

the kernel. 'Ihe principal func tion of the. Connec tion is to trap any

system call relating to a file in a remote system and to implemEnt the

necessary inter-system communications required to service the call.

(Other system calls are passed straight down to the.kernel.)

5.3. BASlX

BASIX [Ie] is a computer programming language ("BASed on the unIX

system command language") rather than a decentrali sed computing sys tem.

It is mentioned briefly here as it is the first working implementation

of a RCF model. Also its implementation is based on exploiting the

similarities between RCF and UNIX. Although developed as a separate

project, by Isabel Gouveia Lima and David ~rundy, there has been design

.work by members of the Computer Architecture Group, myself and Ihilip

Treleaven, and by a member of the Vn!x Un! ted team. Lindsay }j.ushall.

192

The language follows closely the concepts of the ReF operational

model developed in Chapter Four, but at the conventional prog ramming

language level. An object is either a unit of program structure (8

"block" , procedure, expression, etc.) or a unit of data struc ture (e.g.

an array). ~n object's compdnents (e.g. local variables, nested data)

can be addressed by name or position. lhe execution model is that of a

tree of processes (activities) each executing an object, with communica­

tion of results from subordinates to superiors. lhe language provides a

fairly conventional syntax for expressions, FOR loops etc. lhe s~ntax

for specifying relationships between concurrent processes (data commurd­

cation and synchronisation patterns) is largely based on the syn tax of

the UNIX shell system command language.

The BASIX implementation is an interpreter ~hich runs on the L~ll

operating system. .1he UNIX filestore struc ture and processes are used

to implement the object structure and concurrency (for reasons of imple­

mentation expediency rather than efficiencyl). 'lhe main benefi ts found

in the use of the language are the ease of organising concurrency and

information structures.

5.4. RlMMS

lhe Reduced Instruc tion Set Mul t1-Microprocessor System (RHJ}15l34])

is a parallel computer, supporting a mul ti-thread control flow model,

which has been influenced by some of the ReF concepts. lts design

attempts to ,apply the reduced instruction set design ph1losophy[64] to a

parallel computer. lhe overall design of RIMMS has been worked on as a

joint venture by members of the Computer Architecture Group, including

193

myself, with detailed design and implementation being done by lewis Foti

and L. Wang.

RIMMS has two, well separated, levels of machine organisation. lhe

lower level is that of an individual computing element and the higher

level is that of the parallel computer obtained by connecting a number

(upto 255) of those computing elements together by a slotted ring type

communications system. The higher level provides three primitives,

LOAD, STORE and EXEC, for communication between its component computing

elements. LOAD and STORE (corresponding to the RCF copy ,and replace

primitives) allow a process (activity) in one computing elcm~nt to

access memory locations in a different computing element. EXEC supports

the migration of a process to a different computing element. lhese

primitives are implemented using messages between computing elements ot

the form -

type (LOAD, STORE or EXEC) : destination (16-bit) operand (1~-bit)

The destination field is an address identifying the location being

accessed by a LOAD or STORE, or the next instruc tion of the process

migrating by an EXEC. At this, parallel computer, level an address has

the form /element/word identifying a particular word within a rarticular

computing element. lhe operand is the return address for a LOAD, the

value for a STORE, or the migrating process's state for an EXEC.

,An individual computing element consists of a 16-bit microcomputer

with 256· words of local memory. Each computing elcm~nt Can support a ,

number of concurrent processes. lhe instruction set, based on the

reduced instruction set philosophy, has less than t~enty different

194

instructions and only two . addressing modes.· 'lhere are two context

registers, Data and Code, and the two forms of address are /D/d or /C/d

where d is a displacement relative to one of those registers. 'lhe dis-

placement is an 8-bit quantity sufficient to address the memory of one

computing element, whereas the context registers are 16-bit quantities

sufficient to address the entire system's memory. If the actual addre&s

used to LOAD an· instruction operand or STORE its result is in a dif-

ferent computing element than that in which the instruction is being

executed then a LOAD or STORE operation of the higher level machine is

automatically invoked. Ihe Data register, which can be explicitly set,

identifies the process's current workspace. (The workspaces of dif-

ferent processes are not necessarily disjoint.) The Code register is the

process's program counter, identifying its current instruction. (lhis

register is principally used to access literal values embedded in the

code) • 'Ihe Code register is automatically incremented 8S the proce.ss

moves sequentially through its code and can be explicitly set by a

branch instruction. In either case, if the new Code register v&lue

points outside the computing element, then the EXEC primitive of the

higher level machine is automatically invoked to migrste the process to

the computing element containing its next instruction. 'lhe only process

state infomation that needs to be communicated to the ne\>.' computing

element is the Data register value.

'There are two major features of the RlMMS design worth emphasising.

Firstly it implements the notion of process migration between computing
..

elements, and in order to do so efficiently the amount of procE:ss state

is kept to a minimum. Secondly the design is intended to minimise the

impac t of the higher level, roul ti- computing element organi sa tion on the

195

programming interface provided by an individual computing element. lhp.

design thus illustrates a possible approach to transparently extending

an existing micro-computer design to a multi-microcomputer system. In

this respect there is some similarity with the transparency of L~l~

United. From within a computing element the only,visible effect ot com­

bining several computing elements in the higher level organisation 1s

that the address space is extended. 'lhere are no explicit mechanisms

for programming interactions between computing elements. Instead such

interactions are implicitly invoked by the program fragment in one com­

puting element generating an address in a different computing element.

The only effect on the design of a computing element is that such remote

addresses must be trapped and mapped into corresponding communication

messages. lhe implementation of this additional functionality in each

computing element (corresponding to the l-.e~'cast1e Connection software

used to implement UNIX Uni ted) is entirely separable from the inlplemen­

tat10n of the rest of the design.

Currently there is a software simulator for Rl}ili5, produced mainly

to evaluate the machine's programmability. Ihe main success is the

transparency of computing element communication and the minimisation of

process state. lhe main shortcomings are the limited number of address­

ing modes and a restriction of literals and addt'ess modifiers to f)-bit

quantities. Work has now started on a hardware design.

that in the future RIMMS will be extended to include more

It is expected

of the con-

cepts of the ReF architecture, such as allol.o;ing instruction operands to

be variable length byte sequences.

- lS6 -

5.5. R.M.

The concept of recursive computer architecture originally c.E.me from

Wayne rJilner's Recursive Machine (R.M.) deslgn[55,65]. lhe kCF archi­

tecture and LEGO implementation are in some ~ays very similar to the

R.M. ~Tork and in some ways very differen t. 'lhe R.H. operational model

provides the same hierarchic structure of delimited objects, represented

as a sequence of (,), 0 and 1 symbols. lhere is a similar form ot con­

textual addressing with an address being a sequence of selectors inter­

preted incrementally •. lhere are however a number of significant differ-­

ences in the addressing schemes. Firstly there is a form of absolute

addressing where the starting context of the address can be specified as

the outermost object of the entire object structure. (The provision of

such addressing compromises the possibiH ty of an un-premeditated join­

ing together of existing systems, as can occur in for eX6mple Lhll).

Secondly there is a much more sophisticated set of addressing selectors,

including facUities for selecting a component object by specifying its

content rather than its position. lhirdly thetOe is nothing correspond­

ing to the ReF's base-relative form of addressing, all addresses being

relative to their point of use.

The major difference between R.M. and RCF is tbe Dlodel of progt<lm

execution. lhe R.M. model[65], deriving from ~ork on object-oriented

computation[60J, is a particular form of parallel control flow and docs

not directly support other models. An instruction can use an addless to

send a message (itself an object) to the addressed object. ~uch a m~s­

sage -is a forked flow of control. lhe arrival of the message at the

destination object calise the creation of a process or II BC tivity". lhe

197

message is typically a structure of instructions ~hjch are executed by

the new activity. lhis execution is in the context of the destination

object so that addresses in the message are relative to that object and

the message can cause modifications in the neighbourhood of its destina­

tion. Simple examples of the types of messages are -

(1) (insert 20)

created.

- A new component of the destination object is

(ii) (copy /self to /address-of-X) - A copy of the destination object

(identified by the selector /self) is sent as a message to X. 'lhe

copied object, say a procedure definition, is then executed in the

context of X, thus achieving a procedure call using the components

of X as parameters.

If there are two messages for one destination object then there

will be some sequence to their arrival, and the activity associated ",i th

the second message to arrive is delayed until that associated with the

first message has finished. lhis mutual exclusion is the one process

synchronisation mechanism provided.

In effect, as in the RCF model, an activity c~m crec"itc another

activity which is positioned at an addressed object and sent a Ulessage

for execution. '!he fundamental dHference between the t\o.O modele. is in

the activity structure. In the RCF model the created activity c~\n be 6

subordinate of the creating activity and there can be further direct

communication between them, particularly the return of a result. 'lhe

R.M. model is essentially a subset of the ReF model in which a created

activity is necessarily independent and so no further direct comoamica-

198

tion is possible beyond the original message. If subsequent communic~­

tion is required, as in example (ii) above, the created Dctivity must

send a message to an object in the neighbourhood of the creating

ac tivity. This requires that the original message contain the return

address, /address-of-X, of its originator relative to the context of its

destination. Hotvever it is not clear that there is a robust general

scheme for constructing such return addresses within a dynamically

changing object structure.

The R.M. implementation accommodates a tree structure of nested

computing elements, as in Figure 37. 'lhe basic memory organisa tion is

similar to that of the LEGO implementation with the expansion and con­

traction of the object structure being accommodated by DE« Ditmory ele­

ments and by the movement of objects bet~een adjacent computing ele­

ments. As an additional mechanism for handling variable length objects,

a shift register can overflow to a RAM associated with its computing

element, which in turn can overflow to higher levels of storDge hierar­

chy, such as discs, associated with higher level computing elements. A

primitive computing element can contain several activities at objects in

its memory. lhe execution cycle is to search the memory for an

activity, execute that activi ty to completion and then search again.

The communication system supports messages from an activity to a desti­

nation object. The sequence of selectors forming the address is inter­

preted incrementally by communications units on the route from the

source to the destination. Each communication \mit (of a non-I-r1ru1tivE.

computing element) is itself actually a primitive computing el~ment.

A11communications un! ts keep a record of the absolute address of the

start and end of the object structure contained in its computing

element's memory. Ihis information 'provides a structure of indexes into

the memory, thus avoiding some of the searching which occurs 1n Ll('O.

The communications units also perform an additional load balancing iunc-

tion, determining in conjunction with the neighbouring computing element

whether objects should .be shifted between them.

5.6. Discussion

The LEGO computer, UNIX United networking system, Rn1N~ computer

and R.M. computer provide examples of various different approaches to

the implementation of recursive systems. The most significant issue is

the mapping of logical objects to physical storage structure. lhe basic

choice is between a static storage structure with permanent objects

allocated to particular units of physical memory; or a dynamic storage

structure with objects being freely created and deleted and shifting

between memory units as the object structure changes. RlllM~ impl~ments

the extreme of completely static storage, whereas L~GO and ~.M. im~le-

ment the other extreme of completely dynamic storage. Ih~ t~11 Lnited

filestore is intermediate between these u .. o. At the level 01 a dilec-

tory representing a UNIX system there is a static storage structure.

Although directory objects at this level can be created and deleted,

that is not part of normal operations. Within a Ltd}, systt:m component

directories and files can be created, deleted. expanded and contracted,

as a result of which there will be changes in the allocation of logical

objects to physical storage. (For example, contracting and then £:xpand-
",

ing a file may cause a change in which actual disc blocks contain the

'-
file.) Dynamic storage is more flexible but requires a more sophisti-

cated address interpretation mechanism and also a storage allocbtion

200

scheme which needs to be decentralised if (as in LE~O and A.M.) the

dynamically allocated storage includes more than one computing clement.

Generally dynamic storage is likely to be inappropriate at the computer

network level, being either impractical due to the inter-node communica­

tion required for storage "allocation, or unacceptable due to the

resources at different nodes being owned by different users. (with the

recursive machine organisation there is no absolute distinction bet~een

a "parallel computer" and a "computer network" and in this context

perhaps the distinction between dynamic and static storage structure

provides the best definition of the "parallel computer" level of recur­

sive machine organisation.)

For a system with dynamic storage structure there is the question

of how physical storage is organised to implement the,changing object

structure. Here there is a strong distinction bet~een serial access

techniques, such as wi th the DEQs used in LEGO and h.N. (or, in a more

conventional context, magqetic tapes), and direc t access tecllnique s,

such as with discs used for the t~lX filestore. In tlle former, ttle

structure of the physical storage devices directly supports tllc inser­

tionand deletion of objects and the structure of informAtion is encoded

direc tly in the information, as delimiter ,symbols. lhese characteris-

tics are very amenable to localised processing and impose no limit on

object size. Direct access techniques involve add! tiona1 mecLanisms,

beyond those implicit in the physical storage medium, for allOCating and

structuring the storage medium. Supporting a structure of variable

length objects would typically require lists of free space, pointers to

an object's components and the system functions to maintain tt.at Cldd1-

tional information. lhese characteristics lead to more centr61ised

201

processing. However, given these additional mechanisms, the addressing

of information is easier than with serial access techniques. Intermedi-

ate bett-.'een these two is the "index sequential ll technique, as used in

R.M., with supplementary information to aid addressing of information

stored in sequential access devices.

A basically sequential storage technique is the more appropriate it

a computer is to support the manipulation of variable length, arbi-

trarily long, objects at the level of individual data items (e.g.

integers), particularly as the "bit" components of those objects do not

generally need to be directly addressable. However at the levd v.here

larger objects are being stored and operated on (such as "files" being

moved between "directoriesll
) it would be more appropriate to use direct

access techniques t-.1. th which such operations can be more efficiently

achieved by manipulating pointers.

The second major issue is the implementation of activities

(processes) and their migration, particularly organising the delivery of

messages to "moving targets ll
• In all four of LEC,O, LNIX United, ~lNW.)

and R.M. there are multiple activities and the processing element sup-

porting an activity is that associated t.lith the stor&gE~ unH in which is

stored the object being executed by the activi ty. Ihis minimises the

communications overhead of instruction access ("hlch is predictably very

frequent) at the possible expense of data access (~lich is not easily

predictable). Ihree levels of, increasingly more autonomous, processing

resource "allocation can be identified. Ihe highest level is that where

there is a static storage structure which gives the user implicj t con-

trol over which computing element will support an activity. F"or eX6m-

202

pIe, in UNIX United, this can be deliberately controlled by copying a

program file into the directory tree of a particular LNIX system and

executing that copy. (This would be done either to exploit particular

processing characteristics of that system, or minimise the amount of

inter-system communication n~eded for the program's file accesses.)

The intermediate level is where there is a dynamic storage struc-

ture involving several computing elements. ~t this level there is

automatic processing resource allocation which is an integral part of

storage allocation. lhe influence of processing load on storage alloca-

tion may be very large (as in LEGO where creation of ncw activities cun

cause considerable shifting of objects) or minimal (as in R.M. where the

only influence is that activi ty state information USCl:i some general

storage capacity and so creation of activities might require some shift-

ing of objects to provide the space).

lhe lowest level j s that internal to a primi tive computing ell'ment

where processing resource allocation is an autonomous system function.

Apart form the degenerate case of a single activity per computing e1£-

ment, as in LEGO, there is the basic cho:lce of \o.Ihether (as in It\lx) a

processing element is time-multiplexed between activities in the comput-

ing element. lhe alternative (as in both RIMHS and k.M.) is to allocate

a processing element exclusively to one of the activities until it lias

terminated, m:lgrated or become (temporarily) unable to continue (fo r

example jn RIMMS, waiting for the response from a remote operand LOAD).

'The inclusion of mul tiplexing will depend on the g rain of concurrc'ncy ,

and degree of physical parallelism. Multiplexin8 is desirable tt.hHC, as

in UNIX, activities may be lIihole programs interE,cting ".ith diffcn.:nt

- $'.'

- 7.03 -

users and running on the same physical processor. however· multiplexing

is not so necessary, and the additional complE'xity of impl()mentation

unlikely to be effective, where, as in R.M., each user program will be a

separate object with exclusive use of mllny process:lng clements for the

support of its activities and many activi ties will be very short-livEd,

for example created just to insert one data item into a structure.

The migration of an activity from one computing elc~ent to another

requires the transmission of activity state data. In the case of LECO,

RIMMS and R.M. activity migration is a basic part of a des:!.gn which

therefore attempts to minimise the amount of dsta that has to be

transmitted. 'Ihis data is principally the id€ntificlltion of the

activity's destination and information about its connectivay with other

activities and thus the rest of the obj~ct structure. lhere may also be

some internal state information. In LEeO the destination identification

is a single selector. 'Ihc connectivity informc;tion is its o\\n activity

identifier and that of its superior (to allow the ernhsion and rr.ception

of messages to and from its subordinates and superior) clOd the content

of the single-symbol buffers used for those messages. In li.HL\15 the des.­

tination identification j s the Code reg:! stcr and the conn£:oc tiv Hy Infol·­

mation is the single Data register. In R.M. the deHinatioll is identi­

fied by a sequcnce of selectors \vhlch contrac ts 4JS the ~ct1vi ty moves

towards its destlnatiqn. ihere is no djrect connectivity to other

activ:!tles or objects. Any objects, other than the destination, .hich

the activity needs to ac.cecs "-'ill be ineludrd :in, or addlesr.ed by I the

message sent'with the migrating activity. lhi~ message, the 8ctlvity's

internal state, can be of any length.

204

The original UNIX design did not anticipate the process migration

which occurs in UNIX United and quite. a large amount of data has to be

transmitted. As in R.H. the destination is identified by a sequence of

selectors which contracts as the process moves towards its destination.

Connectivity information is tohat associated with the process's olJen

files. lhere can be quite a large number of these and this information

constitutes most of the transmitted data.

,The. question of communication between activities only arises in

LEGO and UNIX United where there is a persistent structure of act:lovities

(processes). These two system illustrate two general approaches to

implementing communication between migrating activities. In LEGO the

communication is achieved by the broadcasting of messages. A message is

not physically addressed to a particular destination computing element.

Instead it is logically addressed to a particular destination activity

specified by an activity identifier, unique within the computer. lhe

system relies on the computing element containing the destination

ac tivity being the only one to recognise the logical address Dnd thus

accept the message. In UNIX United remote communicDtion :Is achieved by

the forwarding of messages. lhe path from the source (user process) to

destination (a system process supporting remote file access) uses a

chain of forwarding agents (system processes), one in each ~~lX s>st~m

on the path. lhus at each stage of its transmission a message: is pllysi­

cally addressed to a specific L'NIX system - the one containing the n(:xt

forwarding agent in the chain. lhe forwarding system is more appropri­

ate at the'computer network level since migration is relatively infr~­

quent- and so once the forwarding chain has been estabU shed it will lsst

for some time. Also, at that level, the chain ~ill typjcally involve

205

only a few stages, and in any case it ~ould not be practicable to use

system-wide 'unique process identifiers. In contrast, at the level 01 a

parallel computer like LEGO, migration is very frequent Bnd B chain of

forwarding agents would involve a large number of stages. At the higher

level of mul Uple LEGO computers there is effectively a fon-'arding sys­

tem, for the same reasons as in a network organisation. I:.ach CJ.t.O "gate­

way" computing 'element acts as a forwarding agent for messages between

an activity in its computer and an activity in another computer.

lhe concepts of the ReF model and recursive machine organisation

provide a general framework for decentralised systems at all levels.

However, as the above discussion illustrates, there are different

characteristics at different levels which motivate different implementa­

tions of those concepts. lhe principal distinctions are at the level

separating a (possibly mul ti-level) "computer net~ork" from const! tuent

(possibly mul ti-level) "parallel computers" and at the level of an indi­

vidual computing element. Above the parallel computer level there would

be a static storage structure implemented using direct access t.ech­

niques. !he concurrency and communication that needs to be supported is

that of long-lived user processes wi th relatively infrequent cOlllmllnic&­

tion within a structure which is fairly stable, both logically in terms

of connection between processes and "open files", and physically in

terms of process residency in particular net~'ork nodes. Also at this

level the connectivity of a process (the number of open files and subor­

dinate processes) is likely to be relatively high.

At the lower levels there would be a dynamic storage structure

employing serial access techniques. 1he concurrency and communication

- 206 -

that needs to be supported is that of concurrent activities execllting

individual instructions and accessing individual data items,. ~ith rela-

tively frequent communication within a rapidly changing but simple

structure (e.g an ac tivi ty having two subord inates for its instruc tion's

operands). 'Ihe lowest, single computing element, level is typified by B.

separation of storage and processing resources, as in conventional com-

puters. 'Ihis separation principally effects the allocation of process­

ing resource which at this level is not tied to storage allocation.

Also of course messages between activities in the same computing element

can be transmi tted v:fa the computing element's local memory rather than

requiring physical communication between dHferent computing elemt·nts.

This might effect the processor allocation strategy. For cxampl~ it

might be appropriate for allocation of processing Iesources among a

sub-tree of activities in the same computing element to be based on a

pre-order traversal of the sub-tree - a processing element would be

allocated to a subordinate activity as soon as it is created and re-

allocated to the superior activity when the subordinate terminDtes.

This corresponds to conventional expression evaluation and would allow a

simple stack to be used for the communications along the arcs of tIle

activity sub-tree.

Given these various issues a major area of further research 1s the

possible development of a general approach to recursive systems imple­

mentation which accommodates the different characteristics at different

levels, wi th minimum compromise to the uni ty of the general concepts.

- 207 -

6. CONCLUSIONS

6.1. Summary and Discussion

lhis thesis has investigated various general-purpose decentra1ised

architectures providing highly concurrent program execution. lhe prin­

cipal motivations for developing such architectures are the utilisation

of concurrency to improve performance, the support of novel implicitly

concurrent programming languages, and the exploitation of \lLSl tecl.no1-

ogy. The architectures covered were the control flow, data flow and

reduc tion classes of· archi tec tures surveyed in Chapter 'lwo and the L(;F

and ReF architectures developed in Chapters 'lhree and Four. In ead,

case the basic concepts of the architecture were described in terms of

an operational model of program representation and execution follOwed by

a discussion of the way in which various forms of program organisation

are supported and the way in which machine resources are organised.

The novel data flow and reduction architectures have oferational

models which are radically different from the control flow medel. In

dat~ flow an instruction is executed \I'hen its inputs are available and

in reduction an instruction is executed when its outputs arc needed.

Both these models are implicitly concurrent whereas in concurrent forms

of control flow the .initiation and synchronisation of concurrency is

under explicit program control.

The main result of the analysis of the various architf.ctures in

Chapter 'I~ o was a c1assiHcation of their underlying control flnd data

mechanisms and anunderstaud1ng of the consequences of an architecture

- 208 -

adopting a particular set of mechanisms. lhe control m~chanjsms id~nti-

tied were sequential, parallel and recursive. lhe m~in benefi t of the

sequential control mechanism is in providing the proglammer with com-

plete operational control and 1n the execution of programs with little

inherent concurrency_ 'Ihe main benefit of the parallel control mechan-

ism is in the parallel execution of highly concurrent programs. lhe

main benefit of the recursive control mechanism is for the more 50~his-

ticated program structures of applicative programming languages and in

conserving machine resources by only executing what is actually needed

to produce the required result. Ihe two principal data mechanisms iden-

tified were by-value which is at an advantage in manipulating simple

data items, and by-reference which is at an advantage in manil'ulating

data structures.

mlereas all the architectures surveyed in Chapter 'Iwo are based on

a particular pair of control and data mechanisms, the architectures

developed in subsequent Chapters incorporate combinations ot those

mechanisms, allowing the control flow, data flow and reduction models to

be used as different styles for programming a single computer so that

each can be used where its particular advantages are needEd. lv«m if

eventually data flow or reduction were to completely replace control

flow as the dominant model for general-purpose progranunine, it ",ould

nonetheless be important for some time that a general-purpose computer

continue to support existing languages and programs based on the control

flow model.

Chapter Three described the combination of control flow and data

flow in a single architec ture, the DCF. Farallel control flow, rot her

20'S

than sequential control" flow, was used since parallel control flow and

data flow architectures are very similar. Both Lave a parall~l control

mechanism using tokens for instruction activation and are particularly

suited to implementation on a packet communication machine orgonisation.

In the DCF architecture. concepts from parallel control flow and data

flow are very directly combined. Ihe parallel control mechanism Ubes

tokens to control instruction execution, each token being eitlter a con­

trol token, as in parallel control flow, or a data token, as in data

flow. An instruction's operand may either be provided by a token (the

by-value data mechanism of data flow), or referenced from the instruc­

tion, as in control flow. Ihe packet communication machine organisation

has processors, a matching store (as in data flow) Bnd a separate

addressable memory (as in control flow). Apart from the inclusion of

both control flow and data flow concepts, an important feature of the

DCF architecture is that it allows "non-atomic" procedures which start

executing as soon as any inputs are available. Ihis gives greater con­

currency than the "atomic" procedures provided in proposed data flo,",

architectures.

In the architectures covered in (.hapters lwo and Ihree the f'Iinci­

pal emphasis is on organising concurrent instructiol1 execution within a

single program and supporting that concurrency on a single computer with

some multi-processor machine organisation. Generally only the princi­

ples of instruction execution and machine organisation are different

from those in conventional architecture, with the other von ~eumann

principles of storage structure, addressing and instruction representa­

tion remaining unchanged. In contrast the \f.'ork covered in (.hapter Four

was based on systematically generalising each of the von ~,t;:\.'inon

- 210 -

principles to a corresponding recursive principle. Ihese recurshe

principles were formulated to provide a coherent frame~ork for meeting

the general requirements. of future general-purpose complJting systems,

particularly using VLSl technology. Wi th VLSl technology it is both

possible and desirable to include greater processing po~er with memory

and this should be used to support in hardware a more powerful storage

structure, closer to the logical structure of the information being

stored. Address spaces should be arbitrarily extensible and support

locality by allowing addresses between structurally close entitie& to be

relatively short. Program representation and execution should more

closely reflect logical program struc tures and support modularity. lhere

should be a flexible operational model accommodating a wide variety of

programming languages and styles. The need for centralised functions J

such as global resource management, should be avoided, and global com-

munication minimised. The development· of sophisticated VLSl de&ign

technology will enable increasingly diverse special-purpose sub-systems

to be implemented in hardware and these should be easily incorpoIE. ted in

the overall general-purpose computing system. Lifferent levels of both

hardware and software in computing systems should be unified - for Exam­

ple by adopting the same machine organisation principles both for com­

ponents on a chip and for computers in a network; and the snme stoI6ge

and addressing models both for program variables and for operating sys­

tem files.

Ihe most significant characteristic of computing systems is

i~creasing complexity. Ihere are strong arguments that hierarchic

structuring is the only way to cope with complexlty[66) and this is

borne out by the (increasing) predominance of hierarchic structure in

- 211 -

all aspects of computing systems. lhe important concept embodied in b

coherent "recursive" structure (as opposed to a hierarchy of heterogene­

ous levels) is that there is a general scheme for constructing any l~vel

in the hierarchy from the lower level. Wi th the recursive archi tec ture

principles this concept is applied throughout the architecture.

Although hierarchy does not adequately reflect actual structures (for

example a two-dimensional matrix has to be represented, inadequately, as

a vector of vectors) it is possibly the richest general structure of

sufficient simplicity to be directly supported in hard~are.

Chapter Four presented a computer architecture, the ReF architec­

ture, based on and intended to illustrate the broad recursive principles

but with the emphasis, as in previous Chapters, being on program

representation Bnd execution, and particularly on the combination of

control flow, data flow and reduction styles of program organisation.

The ReF operational model provides a general framework which can support

the specific mechanisms of the other models (such as the self-modifying

instructions of reduc tion, the "unknown" arguments and data tokens of

data flow) without incorporating them as an essential part of the model.

This approach to the synthesis of other models is very different to, and

more successful than, that taken in the reF architecture. lhe essen­

tials of the ReF model are the execution structure of a tree of communi­

cating activities which model both processes for program execution and

registers (or "file descriptors") for data access; the concept that an

instruction's arguments are program fragments to be executed rather than

data to be manipulated; the ability to access an instruction bnd Bny of

its components as an addressable memory cell.

- 212 -

Of the various principles of recursive structuring the most funda­

mental are the nested objects of the storage strue ture and 'nested com­

puting elements of the machine organisation. lhe dynamic recursive

storage structure naturally leads to variable length contextual

addresses and a recursive form of program representation and execution,

just as the conventional storage structure naturally leads to conv~n­

tional addressing, program representation and execution. lhe recursive

storage structure could be implemented on a non-recursive machine organ-

isation (as occurs within a UNIX system). Conversely a recursive

machine organisation could be used to support the conventional storage

structure, addressing and operational model (as, to 3n extent, occurs in

some computer network and parallel computer organisations).

Chapter Five considered a number of computing system designs \t.hich

incorporate some of the recursive architecture principles. lhe princi­

pal design discussed ~as that of the LEGO computer ~hich incorporates

all the recursive principle6 and supports the full RtF model. Lf the

other systems t the UNIX United computer o('l\t.lorking system and the k.N.

(Recursive Machine) computer architectuH' are the most relt:!v~nt to this

discussion since their development was 111l"scly independe.:nt of tl',e k(.F

work. lhe UNIX United system provides nn example of the applicllbllity

of the recursive architecture prinCiples to computer net\t.ork organisa­

tion. It also illustrates a very differ~nt, more conventional approach

to their realisation than the approach adopted in the LE('O design. lhe

R.M. work provides an example of a comput~r design, other than LE~O, for

which principles of recursive struc turing "('re adopted from the outse t.

The principal differences between tht' t~o is that R.H. has a more

sophisticated imp! emen ta tion (particul:nly in allowing 6cv~ral

- 213 -

activities per computing element, providing more powerful addressing

selectors and incorporating indexes into the object structure) ~hereas

LEGO has a more general operational model which provides for a recursive

program execution structure.

The various systems covered in Chapter Five were used to illustrate

a general discussion of a number of implementation issues arising in

(recursively structured) decentralised computing systems. 1he most ftm­

damental aspect of" an implementation is the relationship between logical

and physical structure, i.e. the relationship of objects, activities and

logical communication channels to memories, processors and physic&l con­

nections. 'lhese relationships are principally determined by the scheme

used for allocating logical objects to computing elements' physical

memory since activities within an object are allocated to processors in

the same computing element, and this allocation in turn determines the

communication structure. (Other resource allocation considerations such

as the mul tiplexing of a computing element's processor beu.een the

~ctivities that it is supporting are of less significance.) 'lhe main

distinction identified was that between static allocation ~h<;:re a logi­

cal object is synonymous with a particular computing el~ment, and

dynamic allocation where objects can move bet~een computing elements

under control of some di stributed resource allocation scheme. 111e

former is appropriate for special-purpose computing elements and com­

puter networks where the allocation of objects is generally fixed or

needs to be under expl1ci t user control. However the latter is more

appropriate "for the internal organisation of a computer ~here the struc­

tureof program and data objects" changes fairly rapidly as proglams exe­

cute.

- 214 -

Three motivations ,,:ere Identified for tIle development of novel

general-purpose computer archt tec tures, nam~ly the D€'cd to improve {ler­

formance by the use of concurrency, the need to support the increased

expressive power claimed for applicative langu~ges, and the need to

exploit VLS] technology. Ihe RCF architecture and its initial lEGO

imple~entation provide the physical parallelism, asynchronous communica­

tions and decentralised control of resources needed to implement con-

currency. They also support the programming struc tllres Bnd mechanisms

needed to exploit and control that concurrency. however, as for other

novel highly parallel architectures, it is not clear at this early stage

of development the exact extent to "-'hich performance bCN~fits ,,-1.11 ulti­

mately be gained from the potential for concurrency. Ihe major benefits

claimed for applicative languages are unbounded data structures, higher

order functions and the general lazy evaluation on which these are

based, all of which have been included in the RCF progrom organisation.

111e recllrsive machine organisallon Dno liCO inlplementation meet the Illain

design requirements for VLSI, namely the need for locali~ed and asyn­

chronous communications and for highly repetitive d(;dgns '-hleh ClIn be

easily scaled down and replicated as the level of integration increases.

6.2.' Current and Future Rcsccl1.cb

Ibere are a number of directions for further investigation of thE.

ReF architecture and the recursive principles on \>.hich it is based.

Firstly there is the imple.mentation of the I,3rticu18r llW design

described 1n Charter Five and Appendix A. 'lhe (tSl) circuit layout 01

the single chip computing element for this iUlplc-!IlE'ntatlon is currently

being cesigned. lhat ,",erk, bt2ing carried out by or-other member 01 the

- 215 -

Computer Architecture Group at Newcastle University, is partly motiv~t~d

by the need of the Group to gain experience in the realities of

integrated circuit design.

There are a number of possible developments of the R(;F 'architecture

in the areas of storage structure and addressing, program representation

and execution, machine organisation and implementation •. A realistic

machine would have to at least include selectors such as "nth component"

at the machine code level. It may also be found desirable for the

addressing scheme to recognise, within the normal object hierarchy, a

sparser hierarchy of particularly significant objects such a ,,·
~ . one

user's programs and data; one program; one program block. lhis could be

achieved by using special delimiters, e.g. l ...], for such objects and

including a lout[selector to identify the lowest containing object ~ith

those delimiters. Thus an address could select relative to the context

of such an object regardless of its own depth of nesting lvithin tLe

object. The inclusion of some form of content addressing would also be

worth investigating.

In the operational model there is an important difference bet~~en

the execution of instructions transmitted between activities and tbe

execution of instructions in the program string. 1n the formEr case

• instructions are discarded as they are executed whereas in the latter

case the instruc tions can form an iterative algorithm'. If the modt:l

could be extended to allow a general program fragment to be transmitted

for execution it would then, for example, accommodate variable instruc-

t10n sets with the program fragment being an interpreter, and completely

general addressing with the program fragment being a pattern motchin8

- 216 -

algorithm. In addition to programming languages based on control flow"

data flow and reduction, there are two other classes of languages which

a future general-purpose architecture may need to support, n8mely

object-oriented languages such as Smalltalk[60] and logic longuages such

as PROLOG[67]. It will be 'necessary to investigate the suitability of

the ReF model for these languages.

For the machine organisation the most 'important areas are the

fuller development of a multi-level organisation emplo}ing different

implementation techniques at different levels; the incltlsion of

special-purpose computing elements; and the inclusion of computing ele-

ments with differing memory/processor ratios (ronging from the

equ:fvalen t of backing store wi th a very high ratio to cache with a rela-

tively low ratio). 'Ihe outstanding research issue is the development ot

a general resource allocation scheme for the dynamic mapping of a cl~ng-

ing hierarchy of objects onto a fixed (heterogeneous) hierarchy of

machine resources. Such a scheme would need to be highly d€ccntr~lised,

specialisable to accommodate and utilise effectively the differing

characteristics at dHferent levels of recursive machine organisation,

and able to manage the movement of objects between computing elements

with differing memory/processor ratios in response to the changing dis-

tribution of activities within a program structure.

There needs to be considerable experimental investigation into the

programm:fng of the ReF architecture and the combined use of control

flow, data flow and reduction models in the same program. 'lhe I<.Cf'

architecture incorporates the concepts underlying conventional l£nguas~s

and novel applicative languages used to program data flow and reduction

- 217 -

machines. 'Ihus one line of investigation is to consider in detail the

generation of ReF machine code from one or more such languages. A

promising starting point for investigating the combination of various

models would be to implement a common procedure call interface, based on

the ReF model, for interfacing between (independently compiled) pro­

cedures programmed in, for example, existing control flow and applica­

tive languages, with the other language features implemented .in their

standard ways.

The ReF architecture as discussed in this thesis and its proposed

initial LSI implementation are principally concerned with applying the

recursive architecture principles to the design and programming of a

single multi-processor computer. 'Ihe complementary approach is to

investigate the application of the ReF concepts to a net~ork of conven­

tional single processor computers. An experimental netwoIk implementa­

tion of the ReF architecture, obtained by programming each computer in &

network to emulate the ReF model, would also be a useful simulation of a

single multi-processor RCF computer. Compared with an actual hard~are

implementation, such a "network" implementation would be quick to

develop and very flexible, whereas compared with a normal simulation it

would be a relatively realistic implementation supporting several simul­

taneous users and allowing investigation of genuine concurrency in ~ro­

gram execution and g~nuine communications characteristics. 'Ihe close

sim:f1ar:ities between the ReF architecture and the uNIX United system

suggest that the latter could be initially used as the basis for a net.

work RCF implementation.

It is intended that the next stage in the developmf:nt of the ideas

- 218 -

covered by tliis thesis \vi11 be two implementation exercises. lhe first

of these will be to implement a full ReF syst~m on 8 net~ork of conven­

tional computers to provide a framework for investigating the program­

ming and resource management issues, and for possible developments of

the ReF model. 'Ihe second -will be further I,-;ork on LSI and VL~l imple­

mentation of computing elements based on the RCF model.

- 219 -

Appendix A - A Machine Code for the LhGO Coaputer

lhis Appendix describes a machine code designed for the initial

LEGOimplementation of the RCF architecture discussed in ~ection 5.1.

First there is a general description of the machine as seen by the

machine code programmer, followed by a detailed description of the

machine code. lhis is presented by defining a symbolic assemtler code

using a. BNF syntax notati,on in which braces { •• '.} indicate zero or more

repetitions of the enclosed material. Where motivation of the machine

code facilities seems necessary, notes in [•••] brackets are included to

relate those facilities to the programming constructs discussed in

Chapter Four. Boldface is used for terminal symbols of the syntax.

A.I - Machine Model

<program> ::= ({ <object> })
<object> ::= <primitive object> I ({ <object> })

<program string> ::= ({ <item> })
<item> ::= <symbol> I <activity>
<symbol> ::= <delimiter> I <primitive object>
<delimiter> ::c (I)

<primitive object> ::c <data item> I <instruction> ;
<instruction> ::= <access> I <addressing> , <operation>

<creation> I <exception>
<activity> ::= I

The two major elements of the machine are the s}~bols representing

the program and the activities executing it. lhe program :Is structured

as a hierarchy of objects comprising primitive objects (instructions and

data) and, matching pairs of delimiter symbols for the start (and end)
",

of compound 6bjects. As the program is executed it is modified and its

-
current state is the <program string>, a sequence of itents ""blch

includes the symbols of the program representation. (turing a

- 220 -

modification of the program string, e.g. the insertion of an object,

there may be a temporary delimiter imbalance in the string and thus the

<program string) does not always conform strictly to the (program) syn­

tax.)

Each activity has-a current position in the program and is modeled

as being itself an item in the string together with the symbols of the

program. There are communications connections between activities alloi>J­

ing an activity to transmit objects to and receive objects from con­

nected activities. These connections support tree structures of activi­

ties with each activity capable of being connected to a superior

activity (identified as RO) and a number (6) of subordinate activities

(identified as Rl, R2 etc.).

An activity is executing symbols from some instruction source,

either the program string or the objects transmitted from a connected

activity. [Messages such as "copy", "take" and" execute" sent from a

superior activity to a subordinate activity are instructions executed by

the subordinate activity as a result of its instruction source beine the

connection to its superior activity ("execute" switches the instruction

source to be the program string); the effect of the "e\'al" operatol',

executed by an activity P, is achieved by P's instruction source being

the connection to the subordinate activity which is evaluating the

operand .]

Normally execution is sequential, with the activity's position mov­

ing past e~ch item in the string as it is executed, or successive items

being-executed as they are received from the connected activity. lhe

following Sections describe the effects of executing the different types

- 221 -

of items from the instruction source, namely delimiter symbols, primi-

tive data items and various types of instructions. Ihe different types

of instructions are: Access instructions which operate on the program

string as a data structure, reading objects from the string to be

transmitted to a connected activity and modifying the string ,,;-1 th

objects received from a connected activity; Addressing instructions

which move the position of the activity within the string and also may

suspend the activity and switch its instruction source; Operation

instructions which perform for example arithmetic operations on objects

received from connected activities and transmit the result to connected

activities; Creation instructions which generate parallelism ty creating

new activities; Exception instructions for handling various exception

conditions.

When an activity's instruction source is the program string the

next item may be another activity rather than a symbol of the progrbm.

Generally two activHies accessing the string (i.e.· wi th the string as

instruction source or executing an access instruction) will follo~ each

other through the string with the activity on the left waiting for the

other to progress. However the activity on the right, PR, must be

passed by that on its left, PL, if the further progress of FR is depen-

dent on an event that could possibly never occur (that is, if it has

been suspended Bnd thus is dependent on another activity to modify the

string, or is dependent on B connected activity sending it an object,
I

for example when its instruction source is a connected activity).

- 222 -

A.2 - Delimiters

An activity has a current object of execution in the string. If

the instruction source is the program string Bnd the next item i~ the

closing delimiter of the current object then the activity and its subor-

dinates terminate. 1n all other cases a delimiter is ignored and execu-

tion continues with the next item from the instruction source.

The current object is established as being the object to the right

of the activity when (i) the activity is first created, (ii) the

instruction source is switched from being the connection with its supe-

rior to be the program string, (iii) the activity executes the first

non-addressing instruction after a series of addressing instructions one

of ~nich moved the activity outside the previous current object.

A.3 - Data Items

Data i terns have two roles. Firstly a data item may be the next

i tern to be executed from the instruc tion source in \-;hich Cllse the

activity retains its current pOSition in the program strJng and its

instruction source is switched to be the connection to the superior

activity [from which typically an access instruction, e.g. to 'Icopy" the

data item, will then be received].

Secondly data items form the operands of operators which are
,

described, together with the syntax of data items, in A.6.

, ,

- 223 -

A.4 - Access lns~ructions

<access> ::= <action> <act>
<action> ::= copy I rep! I take insert
< ac t> :: = RO I IU I R2 ••• R6 I •

An access instruct_ion generally specifies some action on a target

object in the program string and a connected activity (RO, Rl etc.) to

which that object is transmitted or from which a new object for the

string is received. lhe target object is the object to the right of the

activity's position (to the right of the access instruction itself if it

is executed from the string). A copy transmits a copy of the target

object. A replace replaces the target object with the new object. A

take is a destructive copy, transmitting the target object and aeleting

it from the string. An insert inserts the new object in the string to

the immediate left of the next syml-ol to the right of the activity. A

., indicating a "null activity", can be specified instead of an actual

activity. An object transmitted to • is just discarded. An object

received from. is always the empty object (). lhus, for example, take.

just deletes the target object and repl. replaces it with (). Gn com-

pletion of any access instruction the activity is positioned to the

immediate right of the target or new object in the strj.ng.

An action (replace or take) which deletes an existing object ~111

proceed a symbol at a time, deleting each symbol in turn. lhere may be

another activity positioned within the object being deleted and the

deletion will generally wait at that point until the other activity

moves. However, in circumstances mentioned in A.I, it may be necessary

-
for the deleting activity to pass the other activity and in doing so

that activity is terminated.

- 224 -

[In the example used in Section 4.1.4 to discuss the general l-,(;F'

model it was necessary for the replace action to be acknowle'dged. In

the LEGO implementation this acknowledgement is implicit in the communi-

cations flow control mechanism. However alternative implementations

might not have that implicit acknowledgement. Explicit Acknowledgement

can be programmed when required. lhe replace instruction, followed by

the new object, is generally sent from an activity P to a subordinate Q

positioned at the object to.be replaced. After sending the new object,

P can use routing operations (see A.6) to send instructions to ~ which

cause Q to send the required acknowledgement to P.]

~5 - Addressing Instructions

<addressing> ::= <selector> <switch> I <selector> ? <switch> I
I<selector> <switch> I I<selector> ? <switch>

<selector> :: out I start I (- I I I in I -) I end I esc I $ <act>
<switch> ::= Ie I I<act> I I

An addressing instruction includes a selector which specifies a new

position for the activity and a switch to possibly change its in&truc-

tion source. The selectors out ••• escape are those defined in Figure

25 of Section 4.1, and are relative to the position of the activity

(following the addressing instruction itself if that is executed from

the program string). For selectors $RO ••• $R6 the new position Is to

the immediate right of the specified activity. If a subordinate

activity En is specified but does not exist then the En subordinate of

the superior is used, and if it does not exist then that of its supe-

rior, etc.. [A $Rn will form the first selector of a base-relative

addre~s, used for example in addressing procedure parameters, and is

defined such that in the sub-tree of activities executing the procedure,

- 225 -

all activities can address parameters relative to the position of a par­

ticular subordinate of the sub-tree's root activity.]

The switch in an addressing instruction may specify that following

the execution of the instruction the instruction source is to become the

program string at the new position (Ie); the instruction source is to

become the connection to a specified activity (/Rn) (if the null

activity is specified, I., then the activity terminates); or that there

be no change (I). [In a normal address where the addressed object is

executed, the last selector would have a Ie suffix; In a quoted address

. where the addressed object is not to be executed, the last selector

would have a IRO suffix switching control to the superior, as occurs

when executing a data item.]

The selector may be suffixed by a ? specifying that the activity be

suspended at its new position. lhe suspended activity will be reac­

tivated \then another activity performs a replace or take action on thE.

object at the new position or an insert action to insert a new object at

that position. [The "unknown argument", "(1)", would be represented as

(out?l;).1

The selector may be prefixed by a I in which case the rest of the

instruction is not executed llnd the instruction (if it is in the program

string) is modified by the I being removed. [~his provides the exclu­

sion argument, n(excl)", which in machine code is (lout?!;).]

- 226 -

A.6 - Operations

<operation) ::= <typed op.> I <compare op.> I <special op.>

<typed op.> ::= <int op.> I <bool op.> I <bit op.>
<int op.> ::c + I - I 0-
<bool op.> :: = & I I I I ..
< bi top. > :: &:: ' & I ' I I ''''1 I 'A

<compare op.> ::= ~ A=
<special op.> ::= if ==

> I >- I < I <-
:- I <act> , <act> ::- <act>

<data item> ::= <value> I <error>
<value> ::= <int> I <bool> I '<bit> I u<char>
<int> ::= ••• -2 I -1 10 I 1 I 2 •••
< boo 1) :: c T I F
< hi t> :: = 1 , 0
<char> ::= <any ASCII character>
<error> :: II: #

<obj> ::= <instruction> I <value> I ({ <obj> })
<any> ::= <object>

An operation instruction processes operand objects to produce a

result object as defined by its operator. Each operand is received from

a specific subordinate activity (usually there is one operand from R2

and one from &3). The result is transmitted to subordinate RI. If

there is no RI subordinate then the result will be sent to the superior

RO in response to any object from the superior. If there is no superior

either then the result is just discarded. Figure Al shows all the

operators and the types of valid operands and results produced, these

types being spec:1fied by the syntax for <data item>, <obj> and <an}>.

lhe typed operators are straightforward, each having as its operands and

results primitive objects of the same type (integer, boolean or bit).

lhe other operators may involve compound objects and the special error

o~ject. An error object is produced as the result of applying an opera-

tor to an operand of the wrong type (e.g. mUltiplying two characters or

an integer and an error object). In defining the type of valid operands

- 227 -

there is a distinction between a general object, <any>, and an object,

<obj>, restricted to exclude error objects.

oper-
ator o~erands result meaning

r----""\ 'R2 R3 R4 <act>"
, , ,

integer
+ <jnt> <int> <int> add

<int> <int> <int> subtract
0- <int> <int> unary minus

boolean
& <boo1> <boo1> <boo1> and
I <bool> <boo1> <boo1> or
"'1 <boo1> < boo 1> <bool> nor

<boo1> <boo1> not

ill
'& <bit> <bit> <bit> and
, I <bit> <bit> <bit> or
''''1 <bit> <bit> <bit> nor , ... <bit> <bit> <bit> not

comEare
= <obj> <obj> <booD. equal
... = <obj> <obj> <booD not equal
> <obj> <obj> <booD greater
)= <obj) <obj) <booD greater or equal
< <obj) <obj) <booD less
<= <obj> <obj> <oooD less or equal

sEecial
if <any> <any> <bool> conditional
== <any> <any> <booD equivalent
:= <any) <any) identity
: := <any> <any> routing

Figure Al - 'l'be Operators

A compare operator treats its operands as t~o strings of symbols
"

(j.e. delimiters, instructions and data items) ~hich are compared in

pairs from left to right. lhe strings are equal i.f all pairs of

- 228 -

corresponding symbols are equal, otherwise the result is the result of

comparing the leftmost unequal pair according to the following ordering

) (lowest); '0; '1; F; Tj integers in numeric order; characters in

standard order; instructions in arbitrary order; (. [The position of

the delimiters in this ordering gives the effect of recursively compar-

ing compound objects, for example -

«lie "V lie» < ({ffe "v lie) tlj} < «lie "V "e) ("j "i I'm»]

The conditional operator (if) has three operands and the result is

the first (12) or second (RJ) depending on whether the third (R4) is

True or False. The equivalence operator (=-) tests the operands for

equality and allows an object to be tested for error. For the identity

operator (:-) there is a single operand which is transmitted unchanged

as the result. For the routing operator (::-) the result is its single

operand from a specified source activity and copies are transmitted to

two specified destination activities. If the null activity. is speci-

fied as the source then () is used as the operand object. If a destina-

tion activity is non-existent or is specified as • then its copy is just

discarded.

The routing operator is used in conjunction with access ins truc-

tions to replicate objects and to organise any communication that may be

needed in addition to the simple operand/result communication pattern of

the other operations. As an example the following sequence of instruc-

!Jons synchronise the executing activity P with its Rl subordinate, Q -

il i2 i3
~ ~ ~
c.opy Rl; .,IlO : :-.; .,. ::-=R.l;

The first, copy, instruction transmits to Q the following instruction,

- 229 -

f2. When Q has finished executing the previous instruction from P it

will execute the 12 which specifies that Q transmit to its superior, P,

the empty object (). The next instruction executed by P, 13, requires

an object from its Rl subordinate, Q, and thus synchronises those two

activities. When P receives that object, (), it is just discarded.

A.7 - Act1vity Creation

<creation) ::= sub <act) I
source <act)
par

A sub instruction, such as sub RD, creates a new subordinate

activity (En) to the the immediate left of the creating activity. Ihe

new activity is connected to the creating activity as its superior and

that is its initial instruction source. Ihe new activity itself has no

subordinates. A source instruction is the same except that the new

subordinate activity is to the right of its superior, the instruction

source for the ~reated activity is implicitly switched to be the program

string, and the instruction source for the creating activity is im{-li-

citly switched to be the connection with the created activity.

A parallel instruction creates a new independent activity "hich

has the same current object as the creating activity, the same l'osition

as the creating activity (following the par instruction if that is exe-

cuted from the program string) and with the program string as its

instruction source. The creating activity then eXeclltes an implicit ->1
addressing . instruction so that the next object it executes is that fol,.-, .
lowing the first object executed by the created activity.

- 230 -

A.B - Exception Dandling

<exception> : : = ok I err I skip I sk1.p <ac t>

Associated with an activity is an error status which indicates

whether an error has.occurred. This is cleared by an ok instruction,

set by an err instruction and is also set by the occurrence of some of

the exception conditions described below. A skip instruction tests the

error status of the activity itself or a specified activity and exe­

cutes an implicit ->1 addressing instruction if the status is clear

(that is, the activity skips over the following object which would con­

tain code to deal with exceptions).

The exception conditions that can occur are -

(i) Invalid instruction source - If the instruction source is s~itched

to be the connection to a non-existent activity or a connected

activity terminates· while the connection to it.is thc inStruction

source, then the activity terminates.

(ii) Invalid selectors - A selector in an addrcssing instruction exe­

cuted by an activity P is invalid if: it is an in/ selector and the

next symbol to P's right is a primitive object or a); it is a . ->/

(or <-I) selector and the next symbol to P's right (or left) 1s a)

(or (); it is an outl or escape/ selector and P's enclosing object

is the outermost object, the total program; it is a $Rn selector

where Rn does not exist or the null activity, ., is specified. lhe

error status is set and the effect on P's position is that of a

"null" selector, II, (except in the case of an invalid out or

escape! selector which will act as a start or end selector).

- 231 -

(iii)Invalid access instructions - An access instruction is invalid if

the activity to which the target object is to be transmitted, or

the activity from which the new object is to be received, does not

exist, or (except in the case of insert) the next symbol to the

right of the activity is a). lhe error status is set and where

appropriate the error object is transmitted as the target object'.

(iv) Invalid operation - An operation instruction is invalid if one of

the operand objects is of the wrong type or the activity from which

it should be received does not exist. Ihe error status is set and

the error object is transmitted as the result.

(v) Invalid creation - A sub Rn or source in instruction is inv~lid if

the specified subordinate already exists or the null activity, .,

is specified for RD. Ihe error indicator is set but otherwise the

instruction has no effect.

A.9 - An Exaaple

In order to illustrate the relationship between the machine code

described here and the programming constructs used in Chapter Fout' , Fig­

ure A2 shows the machine code equivalent to some of those constructs.

The example program fragment used (a) is part of that in Figure 3S. Ihe

motivation for this example and its general operation was discussed in

Section 5.].7. 1he machine code instruction sequence corresponding to

each construct in (a) is shown in (b) which contains comm~,nts explaining

the detailed'operation of that machine code.

- 232

example
P Q R 5

"(I iter- (I c2 c3 (?)) (I := 6 lout) I IE)"
c: D: r:

(!) machine ~

program
construct machine code

"iter"- [An iterative operator on stream operands - P sets up sub­
ordinates at operands and result and repeatedly takes
operand values and inserts result values]

(Set up]
1 (sub R2j [creates R2 subordinate ~ with r as instr. source]
2 copy R2j [Q is sent the following object to execute)
3 esc/e; [address of C, specifying execution (Ie»)
4 sub R3j copy R3; (esc/j ->/ej) [as 1-3, for R,on t)
5 sub Rlj copy Rlj (esc/j ->/j ->/e;) [similarly S,r]

7
8
9

10

11

(Repeated operations]
(copy R2j take ROj [Q is sent instr. to 'take object to F)

copy R3j take ROj [as 7, causing R to return its result]
copy RI; insert ROj [as 7- S inserts next object sent]
-j [P performs subtraction on objects from Q and R, send­

ing result for insertion by ~]
out/j)) [return and repeat from last (]

II : ... " - [A normal (not iterative) operator]
12 (sub R2; copy R2; (esc/;->/e; copy RO; I.;) :-;)

13

14

15

16
17
Ie

"(1)"

"E"

[as 1,2,7,10 but -
using copy instead of take with termination
of subordinate activity; single operand for
identity operation, := (instead of subtraction);
no result activity, R3, thus result to iL)

->/e; [skip over single argum~nt, the folo~ing 6)

(out?l;) [suspends activity activity to a~ait operands]

[A compound address executed by S]
(source RSj [A sub. activity 1 is created to execute rest

of this object]
copy ROj [following object sent to l's superior, S1
(esc/; ->1; ••• <-Ie;) [selectors corresponding to /1]
I.j) [terminate I]

Figure A2 - lfachine code for part of cxSJIple in Figure 39

· - 233 -

References

1. P.C. Treleaven,o "Exploi ting Program Concurrency in Computing EYb­
terns," IEEE Computer, pp.42-50. (January 1979).

2 •. J. Darlington, P. Eenderson, and B.A.
Programming and its Applications,
(1982) •

lurner (eds.), Functional
Cambridge University Freas

3. J. Backus, "Can Programming be Liberated from the von ~eumann
Style? A Functional &tyle and Its Algebra of Programs," Comm. AC.N
Vol. 21(8), pp.613-641. (August 1578).

4. R. Kowalski, Logic for Problem Solving, Elsevier-North-Holland
(1979).

5. D.A. Patterson and C.H. Sequin, "Design Considerations for Single
Chip Computers of the Future," IEEE Transactions on Computers \'01.
C-29(2) (February 1980).

6. C.H. Sequin, "Single Chip Computers, 'lhe New \'LS1 Building blocks,"
CALTECH Conf. on VLSI, pp.435-445 (January 1979).

7. A.M. Despain and D.A. Fatterson, "X-tree: A lree Structured hul­
tiprocessor Computer Architecture," Proc. Fifth. Int •. Symp. Com­
puter Architecture, pp.144-151 (lS78).

8. II.T. Kung, L.J. Guibas, and C.D. 'lhompson, "Direct VLSI ImplemeIlta­
tion of Combinatorial. Algorithms," Proc. Conf. on VLS 1: Architec­
ture, Design, Fabrication, California Institute of lechnology,
pp.50S-525 (1979).

9. E.D. LaZOltolska et. al., "The Architecture of the E.den System,"
Technfcal Report 81-04-01, University of Washington (April 1Sbl).

10. Elliot Organick, A Frogrammer's vie~ of the l~lEL 432 System,
McGRAW-HILL.

II. I. Barron, "lhe 'lransputer," pp. 343-357 in 'lhe Microproc.essor and
its Applications, ed. D. Aspinall, Cambridge University Press
(1978) •

12. R.P. Hopkins et. al., "A Computer Supporting Data Flo~, Control
Flot.; and updatable Memory," Technical Report 144, Computing
Laboratory, University of Newcastle upon lyne (September lS7S).

13.R.P. Hopkins, "A Data Flow Computer with Addressable !-lemory," hoc.
Data Driven and Demand Driven Languages and ~~chines workshop,
Tolouse'France (197S).

14. P.C. Treleaven and R.F. Hopkins, "Decentralised c.omputation," hoc.
Eighth Int. Symp. Computer Architecture (~~y ISBl).

- 234 -

15. P.C. lre1eaven, R.P. Hopkins, and P. Rautenbach, "Comlining Lata
Flow and Control Flow Computation," Computer Journal Vol. 25(2),
pp.279-290 (1982).

16. P.C. lreleaven, D.R. Brownhridge, and R.P. hopkins, "Data Driven
and Demand Driven Computer Architecture," Computing &urveys Vol.
14(1) (March ISS2).

17. P.C. lreleaven and R.P. Hopkins, "A Recursive Computer Architecture
for VLSl," Proc. Ninth Int. Symp. Computer Architecture, pp.2~S-2':'b
(1982) •

18. I. Gouveia Lima, R.P. Hopkins, L. Marshall, D. Mundy,. and P.C.
Treleaven, "Decentralised Control Flow - BAsed on unU.," Proc. 51(,­
PLAN b3 Symp. on Programming Language issues in Software &ystems,
SIGFLAN Notices Vol. 18(6) (June IS83).

19. T.L. Wat, "The Implementation of a JUMIlCi Computer on lhree l-l6MiL
Microcomputer Systems," M.Sc. Dissertation, Computing Laborstory,
University of Newcastle upon lyne (1979).

20. D.R. Brownbridge, "A Simulator for Concurrent Architectures," N.&c.
Dissertation, Computing Laboratory, University of ~ewcastle upon
lyne (1979).

21. Z. Manna, Mathematical Theory of Computation, M6Graw hill (IS74).

22 •. D.P. Friedman and D.S. Wise, "CONS should not evaluate its argu­
ments," pp. 95-103 in Automata, Languages and Froglamming, ed. 5.
Michaelson and R. Miln~r, Edinburgh University Press, Edinburgh
(1976).

23. P. Benderson and J. ~10rris, "A Lazy Evaluator," Proc. 3rd. ACM
Symp. on the Principles of Programming I~nguages, pp.S5-1C3 (lSi6).

24. Arvind et. a1., "lhe Id Report: An Asynchronous
Language and (,omputing Machine," lechnical Report 114,
of Information and Computer Science, University of
Irvine (May 1978).

Proglamming
te pa r tmf:n t

<.al1£orn1a,

25. J. McCarthy et". a1., The LISP 1.5 Programmers ~.I8.nual, CamlridLe,
Mass. (1962).

26. W.B. Ackerman, "A Structure Processing Facility for Data Flow (.om­
puters," Computation Structures Group Memo 165, MIl Laboratory tor
Computer Science.

27. A.L. Davis, "lhe Architect·ure and System Method of DLM1: A F-ecur­
sivelyStructured Data Driven Machine," Proc. Fifth Int. &ymp. Com­
puter Architecture, pp.210-215. (April lS78).

28. J. McCarthy, "A Basis for a z.1athematical lheory of (,omputing," pp.
33-70 in Computer Frogramming and Formal Systems,ed. P. Braffort
and D. Birschberg, North-Holland (IS63).

- 235 -

29. D.P. Friedman and L.S. Wise, "An Indeterminate Constructor for
Applicative Programming," Conf. Record of 7th Annual A(;M 5ymp. on
the Principles of Programming Languages, Las Vegas (January lSlu).

30. W.A. Kornfield, "Combinatorially Implosive Algorithms," Comm. AU1
Vol. 25(10) (October·IS82).

31. J.H~ Patel, "Processor-Memory Interconnection for Multiprocessors,".
Proc. Sixth Int. Symp. Computer Architecture, pp.16b-1i7 (April
1979).

32. R.J. Swan, S.H. Fuller, and L.P. Siewiorek, "01*: A Modular Nul­
tiprocessor," Proc. Nat. Comp. Conf., pp .637-644 (June IS77).

33. P.C. 'Ireleaven et. al., "The Design of highly <.oncurrent <.omputing
Systems," 'Iechnical Report 126, Computing Laboratory, university
of ~ewcastle upon lyne (1578).

34. L. Foti, D. English, R.P. Hopkins, D. Kinnement, P.C. lreleaven,
and 1. Wang, "Design of a Reduced Instruction Set lvlulti­
Microprocessor System - RU1MS," Internal Report, Computing labora-'
tory, University of Newcastle upon lyne. (February IS83).

35. J.B. Dennis and D.P. Misunas, "A Preliminary Architecture for a
basic Data Flow Processor," Proc. Second Int. Symp. Computer Archi­
tecture, pp.126-132. (IS75).

36. 1. Watson and J. Gurd I "A Prototype Data Flow Computer with loken
Labeling," Proc. Nat. Compo Conf. Vol. 48 , pp.6~3-6~&. (lS79).

37. W.E. Kluge and H. Schlutter, "An Architecture for the Lirect Execu­
tion of Reduction Languages," Proc. Int. Workshop on high Level
Language Computer Architecture, Fort Lauderdale, Fla., pp.li4-1BL,
University of Maryland and Office 01 Naval Research (May 1S~0).

38. P.C. 'Ireleaven and G.F·. Mole, "A Multi-Processor Reduction lvlachine
for User-rfined Reduction Languages," Proc. Sev€nth Int. Symp.
Computer Architecture, pp.121-129 (lv~y 19&0).

39. J.W. Clark et. al., "SKIM - The SKI Reduction Machine," LlSP-f,O
(1980).

40. J. Darl:1ngton and H. Reeves, "A Reduction Machine for Parallel
Evalua tion of Applicative Languages," Proc. Conf. on Functional
Programming and Computer Architecture, MIT (Oct. lSel).

41. ·R.M. Keller et. a1.,· "A Loosely-coupled Applicative Nult1-
proceSsing system," AFIPS Conf. Proc. Vol. 48, pp.t61-S70. (ISH.).

42. J.B. Dennis, "lhe Varieties of Data Flow Computers," Proc. FirE>t
Int. Conf. on Distributed Computing Systems, pp.43G-43S. (October
1S79).

43.

- 236 -

D.},. Turner, "A t-ew· Implementation 'lechnique
Languages," Software Prac tice and Experience
(1979).

for Applicative
Vol. 5, pp.31-4~.

44. B.B. Liskov, "A Design Methodology for reliable Software flystems,"
AFIPS Conf. Proc. Vol. 41, pp.lSI-199 (1972).

45. B. B. Liskov et. al. t "CU) Reference Manual," Computer Science l1emo
161, MIT (July 19]f).

46. D.P. Friedman and D.S. Wise, "Aspects of Applicative hogramming
for File Systems," Proc. ACM (,onf. on Language Design for keliable
Software, SIGPLAN notices Vol. 12(3), pp.4~-45 (~~rch 1977).

47. M.R. Mc.Lauchlan, "A Purely Functional VLSI Layout Language, II Inter­
nal· Report fMM 90, Computing Laboratory, University of he~castle
upon lyne (Sept. 1980).

48. P. Henderson, Functional Programming Applications and Implementa­
tion, Prentice Hall International (ISBO).

49. D.S. Wise, Private Communication.

50. D.D. Chamberlin, "The Single Assignment Approach to Parallel Pro­
cessing.," Proc. Nat. Compo Conf. Vol. 39 , pp.2t3-269. (ISil).

51. L.G. Tesler and H.J. Bnea, "}. Language Design for Concurrent
Processes.," Proc. Nat. Compo Conf. Vol. 32 , pp.4CJ3-4C&. (lS6~).

52. B. Randell, "The Structuring' of Distributed Computing Sys tems,"
Technical Report lSI, Computing Laboratory, University of ~e~cas­
tIe upon lyne (1983).

53. V.M. Glushkov et.· al., "Recursive Nachines and tomputing 'lechnol­
ogy," Proc. IFIP Congress, pp.65-70 (1974).

54. R.M. Barton, L~ Patent Specification 1 503 321-325.

55. W. Wilner, "Recursive Machines," Internal Report, Xerox ralo Alto
Research Centre (1980).

56. D.M. Ritchie and K. 'Ihompson, "The UNIX Time-Sharing System," Comm.
ACM Vol. 17(7), pp.365-375 (July 1S74).

57. The Conference on Data System Languages (COtAS)L) Db'lG report,
Octo ber. 1569.

58. A. Hoare, "Communicating Sequential Processes," Comm. AtM Vol.
21(8), ~p.66f-677 (August 78).

5S. D. May and R. Taylor, "OCCM-l," 1 583 Conf. on Parallel Processing
(IS83).

- 237 -

60. D. lngalls, "'Ihe EE121ltalk-76 Programming System tesier! and lmple­
mentation,lI Froc. SIGFLAN Conf. on the l'J:inciples of Frogramming
Languages, pp.9-15. (1978).

fl. D.A. 'lurner, Private Communication.

62. C.L. Seitz, "System 'liming," in lntroduction to VLSI Systems, cd.
C. Nead ;md L. Conway, l,ddison liesley (15(0).

63. D.R. Rrolombridge, 1 .• F. l-'Larshal, and B. Randell, lillie 1-.ewcastle Con­
nection or na:Xes of the World unitE::," Soit"'are Practice and
Experience Vol. 12 (lSS2).

64. D.A. Fatterson and C.li. Sequin, "RISC 1: A Reduced Instruction ~et
VLS I Computer til Proe. Eighth lnt. Symp. Computer .lIrchi tec ture,
pp.443-457 (IS8l).

65. W. Wilr,er, "lnstruction Exeeution,1I lntern:!.l Report,
Alto Research Centre (ISSl).

lerox 1'al0

66. H. Simon, "'Ihe Architecture of (.omplexity,1I Proe. lIluerical1 l'hilo­
sophical Society Vol. 106(6) (1962).

67. M. vanEmden and R. Kowalski, II Semantics of Prolog as a Frogramming
Language," Journ. ACH Vol. 7(3), pp.733-742 (1S76).

	348164_001
	348164_002
	348164_003
	348164_004
	348164_005
	348164_006
	348164_007
	348164_008
	348164_009
	348164_010
	348164_011
	348164_012
	348164_013
	348164_014
	348164_015
	348164_016
	348164_017
	348164_018
	348164_019
	348164_020
	348164_021
	348164_022
	348164_023
	348164_024
	348164_025
	348164_026
	348164_027
	348164_028
	348164_029
	348164_030
	348164_031
	348164_032
	348164_033
	348164_034
	348164_035
	348164_036
	348164_037
	348164_038
	348164_039
	348164_040
	348164_041
	348164_042
	348164_043
	348164_044
	348164_045
	348164_046
	348164_047
	348164_048
	348164_049
	348164_050
	348164_051
	348164_052
	348164_053
	348164_054
	348164_055
	348164_056
	348164_057
	348164_058
	348164_059
	348164_060
	348164_061
	348164_062
	348164_063
	348164_064
	348164_065
	348164_066
	348164_067
	348164_068
	348164_069
	348164_070
	348164_071
	348164_072
	348164_073
	348164_074
	348164_075
	348164_076
	348164_077
	348164_078
	348164_079
	348164_080
	348164_081
	348164_082
	348164_083
	348164_084
	348164_085
	348164_086
	348164_087
	348164_088
	348164_089
	348164_090
	348164_091
	348164_092
	348164_093
	348164_094
	348164_095
	348164_096
	348164_097
	348164_098
	348164_099
	348164_100
	348164_101
	348164_102
	348164_103
	348164_104
	348164_105
	348164_106
	348164_107
	348164_108
	348164_109
	348164_110
	348164_111
	348164_112
	348164_113
	348164_114
	348164_115
	348164_116
	348164_117
	348164_118
	348164_119
	348164_120
	348164_121
	348164_122
	348164_123
	348164_124
	348164_125
	348164_126
	348164_127
	348164_128
	348164_129
	348164_130
	348164_131
	348164_132
	348164_133
	348164_134
	348164_135
	348164_136
	348164_137
	348164_138
	348164_139
	348164_140
	348164_141
	348164_142
	348164_143
	348164_144
	348164_145
	348164_146
	348164_147
	348164_148
	348164_149
	348164_150
	348164_151
	348164_152
	348164_153
	348164_154
	348164_155
	348164_156
	348164_157
	348164_158
	348164_159
	348164_160
	348164_161
	348164_162
	348164_163
	348164_164
	348164_165
	348164_166
	348164_167
	348164_168
	348164_169
	348164_170
	348164_171
	348164_172
	348164_173
	348164_174
	348164_175
	348164_176
	348164_177
	348164_178
	348164_179
	348164_180
	348164_181
	348164_182
	348164_183
	348164_184
	348164_185
	348164_186
	348164_187
	348164_188
	348164_189
	348164_190
	348164_191
	348164_192
	348164_193
	348164_194
	348164_195
	348164_196
	348164_197
	348164_198
	348164_199
	348164_200
	348164_201
	348164_202
	348164_203
	348164_204
	348164_205
	348164_206
	348164_207
	348164_208
	348164_209
	348164_210
	348164_211
	348164_212
	348164_213
	348164_214
	348164_215
	348164_216
	348164_217
	348164_218
	348164_219
	348164_220
	348164_221
	348164_222
	348164_223
	348164_224
	348164_225
	348164_226
	348164_227
	348164_228
	348164_229
	348164_230
	348164_231
	348164_232
	348164_233
	348164_234
	348164_235
	348164_236
	348164_237
	348164_238
	348164_239
	348164_240
	348164_241
	348164_242
	348164_243
	348164_244

