

- 220 -

modification of the program string, e.g. the insertion of an object,
there may be a temporary delimiter imbalance in the string and thus the
{program string> does not always conform strictly to the <program> syn-

tax.)

Each activify has-a current position in the program and is modeled
as béing. itself an item in the string together with the symbols of the
prograﬁ. There are communications connections between activifies allow-
ing an activity to transmit objects to and recelve objects from con-
nected acfivities. These connections support tree structures of activi-
ties Qith each aptivity capable of being connected to a superior
| activity (identified as RO) and a number (6) of subordinate activities

(identified as R1l, R2 etc.).

An activity is executing symbols from éome instruction source,
either the program string or the objects transmitted from a connected
activity. |[Messages such as "copy", "take" and " execute" sent from a
superior activity to a subordinate actiQity are instructions executed by
the subordinate activity as a result of its instruction source being the
connection to 1ts supefior activity ("execute" switches the instruction
source to be the program string); the effect of' the "eval" operator,
executed by an activity P, is achieved by‘P's instructién source being

the connection to the subordinate activity which 1is evaluating the

operand.]

Normally execution is sequential, with the activity’s position mov-
ing past each item in the string as it is executed, or successive items
being” executed as they are received from the connected activity. The

following Sections describe the effects of executing the different types

- 221 -

of items from the instruction source, namely deiimiter symbols, primi-
tive data items and various types of instructions. The different types
~of instructions are: Access iﬁ;tructions which operate on the program
striné as a data structure, reading objects from the string to be
transmitted to a conne;ted activity and modifying the string with

objects received from a connected activity; Addressing instructions
which move the position of the activity within the string and also may
suspend the activity and switch its 1nstr;ction source; Operation
instructions which perform for example arithmetic operations on objects
received from connected activities énd transmit the result to connected
activities; Creation instructions which generate parallelism Ly creating

new activities; Exception instructions for handling various exception

conditions.

When an activity’s instruction source is the program string the
next item may be anothér activity rather than a symbol of the program.
Generally two activities aécessing the string (i.e. with the string as
instrpction source or executing an access instruction) will follow each
ofher through the string with the activity on the left waiting ‘for the
other to progress. However the activity on the right, PR, must be
passed by that on its left, PL, 1f the furthér progress of PR is depen-
dent on &an event that could possibly never occur (that is, if it hés
been suspended and thus is dependent on another activity to modify the
string, or is dependent on a connected activity sending it an object,

for example when its instruction source is a connected sctivity).

\\
AN

- 222 -

A.2 - Delimiters

An activity has a current object of execution in the string-. 1f
the instruction source is the program string and the next item is the
closing delimiter of the current object then the activity and its subor=-

dinates terminate. 1In all other cases a delimiter is ignored and execu-

tion continues with the next item from the instruction source.

The current object'is established as being the objéct to the right
of the activity when (i) the activity 1is first created, (ii) the
instruction source is switched from being the connection with its supe-
rior to be the program string, (iii) the activity executes the first
non-addtessing instruction after a series of addressing instructions one

of wvhich moved the activity outside the previous current object.

A.3 - Pata Items

Data items have two roles. Firstly a data iteé may be the next
item to be executed from the instruction source in which case the
activity retains its current position in the program string and its
instruction source 1is switchéd to be the connection to the superior
activity [from which typically an access instruction, e.g. to "copy" tbe

data item, will then be received].

Secondly data items form the operands of operators which are

descfibed, together with the syntax of data items, in 4.6,

.
N

=223 -
A.4 — Access Instructions

Caccessd 1:= <actiond <actd
<action)> ::= copy | repl | take | imsert
<actd t:=RO | Rl | R2 ... R6 | .

An access Instruction generally specifies some action on a target
object in the program string ana a connected activity (RO, Rl etc.) to
which that object is transmitted or from which a new object for the
string is received. The target object is the object to the right of the
activity’s position (to the right of the access inst;uction itself if it
is executed from the string). A copy transmits a copy of the target
object. A replace replaces the target object with the new object. A
take 1s a destructive copy, transmitting the target object and deleting
it from the string. An insert inserts the new object in the string to
the immediate left of the next symtol to the right of the activity. A
ey Indicating a "nullfactivity", can be specified instead of an actual
activity. An object transmitted to < is just discarded. An object
received from . is always the empty object (). Thus, for example, take.
just deletes the target object and repl. replaces it with (). On com-
pletion of any access instruction the activity is positioned to the

immediate right of the target or new object in the string.

An action (replace or take) which deletes an existing object uiil
proceed a symbol at a time, deleting each symbol iﬁ turn. There may be
another activity positioned within the object being deleted and the
deletion will generally wait at that point until the other activity
moves . HowéQer, in circumstances mentioned in A.]l, it may be necessary
for the deleting activity to pass the otﬁer activity and in doing so

that activity is terminated.

- 224 -

[In the example used in Section 4.l.4 to discuss the general KkCF
model it was mnecessary for the replace action to be acknowlédged. In
the LEGO implementation this acknowledgement is implicit in the communi-
catio#s flow control mechanism. However alternative implementations
might not have that implicit acknowledgement. Explicit Acknowledgeﬁent
can be programmed when required. The replace instruction, followed by
the new object, is generally sent from an activi;y P to a subordinate Q
positioned at the object to.be replaéed. After sending the new object,
P can use routing opefations (see A.6) to send instructions to G which

cause Q to send the required acknowledgement to P.]
A.5 - Addressing Imstructions

<addressing)> ::= <sé1ectbr> <switchd> | <selectord> ? <switchd |
I<selectord> <switchd> | I<selectord> ? <switch>

- <selector> :: out | start | <~ | / | in | ~> | end | esc | § <act>

<switch> ::= [fe | [<actd> | /

An addressing instruction includes a selector which specifies a new
position for the activity and a switch to possibly change its instruc=—
tion source. The selectors out ... escape are those defined in Figure
25 of ECection 4.1, and are relative to the position of the activity
(following the addressing instruction itself if that is executed from
the program string). For selectors $RO ... $R6 the new positién is to
the immediate right of the specified activity. 1f a subordinate

'activity En 1is specifiéd but does not exist then the BRan subordinate of
the superior is used, and if it does not exist then that of 1its supe-
rior, etd..\ [A $Rn will form the first selector of a base-relative

address, used for example in addressing procedure parameters, and is

defined such that in the sub-tree of activities executing the procedure,

- 225 -

all activities can address parameters relative to the position of a par-

ticular subordinate of the sub-tree’s root activity.]

The switch in an addressing instruction may specify that following
the execution of the instruction the instruction source is to become the
prbgram string at the new position (/e); the instruction source 1is to
become the connection to a specified activity (/Rm) (if the null
activity is specified, /., then the activity terminates); or that there
be no change (/). [In a normal address where the addressed object is
executed, the last selector would have a /e suffixj In a quoted address
"where the addressed object 1s not to be executed, the last selector
would have a /RO suffix switching control to the superior, as occurs

when executing a data item.]

The selector may be suffixed by a ? specifying that the activity be
suspended at its new position. The suspended activity will be reac-
tivated when another activity performs a replace or take action on the
object at the new position or an imsert action to insert a new object at

that position. [The "unknown argument", "(?)", would be represented as

(out?/;).]

The selector may be prefixed by a ! in which case the rest of the
instruction is not executed and the instruction (if it is in the progrém
string) is modified by the ! being removed. [This provides the exclu-

sion argument, "(excl)", which in machine code is (lout?/;).]

- 226 -~

A.6 — Operations

<operation> ::= <typed op.> | <compare op.> | <special op.>
<typed op.> ::= <int op.> | <bool op.> | <bit op.>

<int op.> =+ | = | O~

<bool ope> z:=& | 1| ~1 | =

<bit op.> ::= ‘& | ‘1| ~1 |

{compare 0Op.> ::= = | *= | >I>=| < | <=
<special op.Y ::= 1f | == | 3= l act> , <act) ::= <act>

<data item> ::= <value> | <error>

<value> ::= <int> | <bool> | “<bit> | "<char>

<int> TIE e -2 I _l '0 ' 1 ' 2 ce s

<bool> ::=T | F

<bit> ::=11]0

<{char> ::= <any ASCII character>

<error> ::= #

<obj> ::= <instructiond> | <valued | ({ <obi> })

<any> ::= <objectd>

An operation instruction processes operand objects to produce a

result object as defined by its operator. Each operand is received from
~ a specific subordinate activity (usually there is one operand from R2
and one from R3). The result is transmitted to subordinate Rl. 1f
there is no R]l subordinate then the result will be sent to the superior
RO in response to any object from the superior. 1f there is no superior
either then the result is just discarded. Figure Al shows all the
operators and the types of valid operands and results produced, these
types being specified by the syntax for <data item>, <obj> and <any§.
The typed operators are straightforward, each having as its operands and
results primitive objects of the same type (integer, boolean or bit).
The other operators may involve compound objects and the special error
object. An error object is produced as the result of applying an opera-

tor to an operand of the wrong type (e.g. multiplying two characters or

an integer and an error object). In defining the type of valid operands

- 227 -

there is a distinction between a general object, <any>, and an object,

<obj>, restricted to exclude error objects.

oper=-
ator operands result " meaning
T R2 R3 R4 <actd> A 1
integer
+ dnt> <int> - <Lint> add
- <int> <int> <int> subtract
0- <intd> <int> unary minus
boolean : .
& <bool> <bool> <bool> and
! <bool> <tool> <bool> cr
“1 <bool> <bool> <kool> nmor
- <tool> , <bool> not
bit :
‘& <bit> <bitd <bit> and
‘1 <bitd> <btitd> <bit> or
! <bitd> <bit> . <bit> nor
e <bit> <bitd <bit> not
compare :
= <obj> <obj> <bool)> . equal
f= <obj> <obj> <bool> not equal
> <obj> <obj> <bool> greater
>= <obj> <obj> , <tool> greater or equal
< <obj> <obj> <bool> 1less
<= <obj> <obi> <tool> less or equal
special
if <any> <any> <bool> ' conditional
== <any> <any> <tool> equivalent
= <any> <any> identity
= ' <any> <any> routing
Figure Al - The Operators

A compafe operator treats its operands as two strings of symbols
(i.e. delimiters, instructions and data items) which are compared in

pairs from left to right. The strings are equal 1if all pairs of

- 228 -~

corfesponding symbtols are.equal, otherwise thé result is the result of
comparing the leftmoét'unequal palr according to the following ordering
-) (lowest); ‘O; ’‘1; F; T; integers in numeric order; characters in
standérd order;vinstructions in arbitrary order; (. [The position of
the delimiters in thig_ordering gives the_effect of recursively compar-

ing compound objects, for. example -

(("e "v "e)) < (("e ™v "e) "j) < ((Me ™v "e) ("j “i m))]

The conditional operator (if) has three operands and the result is
the first (R2) or second (R3) defending on whether the third (R4) is
True or False. The equivalence opefator (==) tests the operands for
gquality and allows an object to be tested for error. For the identity
operator (:=) there is a single operand which is transmitted unchanged
as the result. For the routing operator (::=) the result is its single
operand from a specified source activity and copies are transmitted to
two specified destination activities. If the null activity . is speci-
fied as the source then () is'used as the operand object. 1f a destina-

tion activity Is non-existent or is specified as . then its copy is just

discarded.

The routing operator is used in conjunction with access instruc~
tions to replicate objects and to organise any communication that may be
needed in addition to the simple operand/result communication pattern of
the other operations. As an example the following sequence of instruc-
tions synchronise the executing activity P with its Rl subordinate, Q -

.11 . 12 i3
A

I_;Aﬁ L LY L A a N
copy Rl <,RO ::=,; <, ::=RIl;

The first, copy, instruction transmits to Q the following instruction,

- 229 -~

42. When Q has finished executing the previéus instruction from P it
will execute the i2 which specifigs that Q transmit to its superior, F,
the empty object (). The next instruction executed by P, 13, requires
an object from its Rl subordinate, Q, and thus synchronises those two

activities. When P receives that object, (), it is just discarded.
‘A.7 — Activity Creation

<{creationd> ::= sub <act)> |
source <act)> |

par
A sub instruction, such as sub Rm, creates a new subordinate
_activity (Bn) to the the immediate left of the creating activity. 1lhe
new activity is connected to the creating activity as its supcrior and
that 1s its initial instruction source. The new activity itself has no
subordinates. A source instruction is the same except that the new
subordinate activity 1s to the right of its superior, the iInstruction
source for the created activity is implicitly switcﬁed to be the program
string, and the instruction source for‘thé creating activity is impli-

citly switched to be the connection with the created activity.

‘A parallel instruction creates a new independent activity which
has the same current object as the creating activity, the same position
as the creating activity (following the par instruction if that is exe~
cuted from the program string) and with the program string as its
instruction source. The creating activity then executes an implicit =>/
addressing ~{nstruction so that the next object it executes is that fol-

lowing the first object executed by the created activity.

- 230 -
A.8 -~ Exception Bandling
<exceptiond::= ok | err | skip | skip <act

Associated with an activity is an error status which indicates
whether an error hgg_occurred.‘ This is cleared by an ok instruction,
set by an err instruction and is also set by the occurrence of some of
the exception conditions described telow. A skip instruction tests the

error status of the activity itself or a specified activity and exe-
cutes an implicit =>/ addressing instruction if the status is clear
(that is, the activity skips over the following object which would con-

tain code to deal with exceptions).
The exception conditions that can occur are -

(1) Invalid instruction source .- If the instruction source is switched
to be the connection to a non-existent activity or a connected
activity terminates while the connection to it is the instruction

source, then the activity terminates.

(i1) InQalid selectors - A selector in an addressing instruction exe-
cuted by an activity P is invalid if: it is an in/ gelector and the
next symbol to P’s right is a primitive object or a); it is a ' =>/
(or <-/) selector and the next symbol to P’s right (or left) is a.)
(or (); it is an out/ or escape/ selector and P’s enclosing object
is the outermost object, the total program; it is a $Ran selector
where Rn does not exist or the null activity, ., is specified. 1lhe
error status is set and the effect on P’s position is that of a

"null" selector, //, (except in the case of an invalid out or

escape/ selector which will act as a start or end selector).

- 231 -

(iii1)Invalid access instructions - An access iﬁstruction is invalid if
the activify. to which the target object is to be transhitted, or
the activity frog which the new object is to be received, does not
éxist, or (except in the case of insert) the next symbol to the
;ight of the activity is a).” The error status is set and' wheré

appropriate the error object is transmitted as the target object.

(iv) Invalid operation - An operation instruction is invalid if one of
A the operand objects is of the wrong type or the activity from which
it should be received does not exist. 1The error status is set and

the error object is transmitted as the result.

(v) 1Invalid creation — A sub Bn or source Ra instruction is invelid if
the specified subordinate already exists or the null activity, .,
is specified for Rn. The error indicator is set but otherwise Athe

instruction has no effect.

A.9 - An Example

In order to illustrate the relationship between the machine lcode
described here and the programming constructs used in Chapter Four, Fig-
ure A2 shows the machine code equivalent to some of those constructs.
The example program fragment used (a) is part of that in Figure 39. 1he
motivation for this example and its general operation was discussed in
Section 5.1.7. The machine code instruction sequence corresponding to
each;consFruct in (2) is shown in (b) which contains comments explaining

the detailed- operation of that machine code.

- 232 -

(2) example ,
P Q R .
l'(I iter- (I c2 c3 (?)) (I = 6 /out) 1 /E v)"
| ¢ D: ’ r:
(b) machine code ' . .

program o
construct , machine code

"jter"- [An iterative operator on stream operands — P sets up sub-
ordinates at operands and result and repeatedly takes
operand values and inserts result values]

[Set up]

(sub R2; [creates R2 subordinate G with F as instr. source]
copy R2; [Q is sent the following object to execute]

" escfe; [address of C, specifying execution (/e)]
sub R3; copy R3; (esc/; ->/e;) [as 1-3, for R,on L]
sub R1; copy Rl; (esc/; =>/; ~>/e;) lsimilarly S,r]

LW N

[Repeated operations] o
(copy R2; take RO; [CG is sent instr. to take object to F]
copy R3; take RO; [as 7, causing R to return its result]
copy Rl; insert RO; [as 7- S inserts next object sent]
~; [P performs subtraction on objects from § and R, send-
ing result for insertiom by §&]
11 out/;)) [return and repeat from last (]

OOV~

":=" -~ [A normal (not iterative) operator]
12 (sub R2; copy R2; (esc/; =>/e; copy RO; [e3) 3=3)
[as 1,2,7,10 tut -
using copy instead of take with termination
of subordinate activity; single operand for
identity operation, := (instead of subtraction);
, no result activity, R3, thus result to kU]
13 ~>/e; [skip over single argument, the folowing 6]

14 "(?7)" (out?/;) [suspends activity activity to await operands]

B A [A compound address executed by S]
15 (source R5; [A sub. activity 1 is created to execute rest
of this object]
16 copy RO; [following object sent to T’s superior, §]
17 (esc/; =>/; « » « <=/e;) [selectors corresponding to /E]
18 /+;) [terminate T)

Figure A2 -~ Machine code for part of example in Figure 3$

A

- 233 -

References

1.

2-'

3.

4,

5.

6.

7.

9.

10.

11.

12,

13.

14,

P.C. Treleaven, "Exploiting Program Concurrency in Computing Sys~—
tems," 1EEE Computer, pp.42-50. (January 1979).

J. Darlington, P. Eenderson, and [L.A. Turner (eds.), Functional
Programming and its Applications, Cambridge University Fress
(1982).

J. Backus, "Can Programming be Liberated from the wvon Neumann
Style? A Functional Style and Its Algebra of Frograms," Comm. ACM
Vol. 21(8), pp.€613-641. (August 1578). .

R. Kowalski, Logic for Problem Solving, Elsevier-North-Holland
(1979). . '

D.A. Patterson and C.H. Sequin, "Design Considerations for Single
Chip Computers of the Future," IEEE Transactions on Computers Vol.
C-29(2) (February 15&G).

C.H. Sequin, "Single Chip Computers, The New VLSl Building Elocks,"
CALTECH Conf. on VLSI, pp.435-445 (January 1979).

A.M. Despain and D.A, Fatterson, "X~tree: A TIree Structured Mhul-
tiprocessor Computer Architecture," Proc. Fifth. Int. Symp. Com-
puter Architecture, pp.l44-151 (1678).

H.T. Kung, L.J. Guibas, and C.D. Thompson, "Direct VLSl Implementa-
tion of Combinatorial Algorithms," Proc. Conf. on VLSI: Architec-
ture, Design, Fabrication, California Institute of 1lechnology,
pp.505-525 (1579). :

E.D. Lazowska et. al., "The Architecture of the Eden System,"
Technical Report €1-04-01, University of Washington (April 1S&1).

Elliot Crganick, A Frogrammer’s view of the INIEL 432 b5ystem,
McGRAW-HILL, ’

1. Barron, "The Transputer," pp. 343-357 in The Microprocessor and
its Applications, ed. D. Aspinall, Cambridge University Fress
(1578). ‘

R.P. Hopkins et. al., "A Computer Supporting Data Flow, Control
Flow and Updatable Memory," Technical Report 144, Computing
Laboratory, University of Newcastle upon lyne (September 1%7%).

"R.P. Hopkins, "A Data Flow Computer with Addressable Memory," Proc.

Data ' Driven and Demand Driven Languages and Machines workshop,
Tolouse ‘France (1579).

P.C. Treleaven and R.E. Hopkins, "Decentralised Computation,” Froc.
Eighth Int. Symp. Computer Architecture (May 1¢81).

. - 234 -

15. P.C. Treleaven, R.P. Hopkins, and P. Rautenbach, "Combtining Lata
Flow and Control Flow Computation," Computer Journal Vol. 25(2),
pPpP.279-290 (198€2).)

16, P.C. Treleaven, D.R. Brownbridge, and R.F. kopkins, "Data ULriven
and Tlemand Driven Computer. Architecture," Computing Surveys Vol.
14(1) (March 16£2).

17. P.C. Ireleaven and R.P. Hopkins, "A Recursive Computer Architecture
for VLS1," Proc. Ninth Int. Symp. Computer Architecture, pp.22%-23%6
(1982). '

18. 1. Gouveia Lima, R.P. Hopkins, L. Marshall, D. Mundy, and EFE.C.
Treleaven, '"Decentralised Control Flow - BAsed on unlX," Proc. S1G-
PLAN §3 Symp. on Programming Language issues in Software Systems,
SIGPFLAN Notices Vol. 18(6) (June 16§3).

1. T.L. Wat, "The Implementation of a JUMEC Computer on Three MN6&GOU
Microcomputer Systems,”" M.Sc. Dissertation, Computing Laboratory,
University of Newcastle upon TIyne (1%79). :

20. D.R. Brownbridge, "A Simulator for Concurrent Architectures," M.Sc.
Dissertation, Computing Laboratory, University of MNewcastle upon
Tyne (1979).

21, 2. Maona, Mathematical Theory of Computation, McGraw hill (1574).

22.,. D.P., Friedman and D.S. Wise, "CONS should not evaluate 1ts argu-
ments," pp. 95-103 in Automata, Languages and Frogramming, ed. 5.
Michaelson and R. Milner, Edinburgh University Fress, Edinburgh
(1576). ’

23. P. hEenderson and J. Morris, "A Lazy Evaluator;"b Proc. 3rd. ACM
Symp. on the Principles of Programming Languvages, pp.%5-1G3 (1576).

24, Arvind et. al., "The 1d Report: An Asynchronous Frogramming
Language and Computing Machine," Technical Keport 114, CLepartment
of Information and Computer Science, University of (alifornia,
Irvine (May 1$78).

25. J. McCarthy et. al., The LISP 1.5 Programmers Manual, Camtridge,
Mass., (1962).

26. W.B. Ackerman , "A Structure Processing Facility for Lata Flow Com-—
puters," Computation Structures Group Memo 165, MI1T1 Laboratory tor
Computer Science.

27. A.L. Davis, "The Architecture and System Method of LIMl: A hecur-
sively Structured Data Driven Machine," Proc. Fifth lnt. Symp. Com-
puter Architecture, pp.210-215. (April 1%78).

2. J. McCarthy, "A Basis for a Mathematical Theory of Computing, PP
33-70 1in Computer Programming and Formal Systems, ed. P. Braffort
and D. Hirschberg, North-Holland (1%63).

26.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

- 235 -

D.P. Friedman and D.S. Wise, "An Indeterminate Constructor for
Applicative Programming," Conf. Record of 7th Annual ACM Symp. on
the Principles of Programming Languages, Las Vegas (January 16L0).

W.A. Kornfield, "Combinatorially Implosive Algorithms," Comm, ACM
Vol. 25(10) (October 1982), :

J.H. Patel, "Processor-Memory Interconnection for Multiprocessors,"
Proc. Sixth Int. Symp. Computer Architecture, pp.16&-177 (April
1879). T

R.J. Swan, S.H. Fuller, and L.P. Siewiorek, "CM*: A Modular Mul-
tiprocessor," Proc. Nat. Comp. Conf., pp.637-644 (June 1977).

P.C. Treleaven et. al., "The Design of highly Concurrent Computing
Systems," Technical Report 126, Computing Laboratory, University
of Newcastle upon Tyne (1578). .

L. Foti, D. English, R.P. Hopkins, D. Kinnement, P.C. Tlreleaven,
and L. Wang, '"Design of a Reduced Instruction Set Multi-
Microprocessor System — RIMMS," Internal Report, Computing labora-
tory, University of Newcastle upon Tyne (February 15&3).

J.B. Dennis and D.P. Misunas, "A Freliminary Architecture for a
basic Data Flow Processor," Proc. Second Int,., Symp. Computer Archi=-
tecture, pp.126~132. (1975).

1. Watson and J. Gurd, "A Frototype Data Flow Computer with Tloken
Labeling," Proc. Nat. Comp. Conf. Vol., 48 , pp.623~-6z86. (1579).

W.E. Kluge and H. Schlutter, "An Architecture for the DLirect Execu-
tion of Reduction Llanguages," Proc. Int. Workshop on hLigh level
Language Computer Architecture, Fort Lauderdale, Fla., pp.l74-18&0,
University of Maryland and Cffice ot Naval Research (May 1%&0).

P.C. Treleaven and G.F. Mole, "A Multi-Processor Reduction Machine
for User-I-fined Reduction Languages," Proc. Seventh Int. Symp.
Computer Architecture, pp.121-129 (May 19%&0).

J.W. Clark et. al., "SKIM - The § K I Reduction Machine," L1SP-£0
(1¢80).

J. Darlington and M. Reeves, "A Reduction Machine for Parallel
Evaluation of Applicative Languages," Proc. Conf. on Functional

Programming and Computer Architecture, MIT (Oct. 1S€1).

‘R.M. Keller et. al., "A Loosely-coupled Applicative Multi-

processing system," AFIPS Conf. Proc. Vol. 48, pp.£61-670. (157¢€).

J.B. Dennis, "The Varieties of Data Flow Computers," Proc. First
Int.) Conf. on Distributed Computing Systems, pp.436-435. (Cctober
1879).

43.

44,

45.

46.

47.

52.

53.

54.

55.
56.
57.
5€.

5S.

- 236 -

D.A. Turmer, "A DMNew Implementation Technique for Applicative
Languages," Software Practice and Experience Vol. S, pp.31-4¢,
(1679).

B.H. Liskov, "A Design Methodology for reliable Software Systems,"
AFIFS Conf. Proc. Vol. 41, pp.191-199 (1872).

B.H. Liskov et. al., "CLU Reference Manual," Computer Science NMemo
161, MIT (July 197€).

D.P. Friedman and D.S. Wise, "Aspects of Applicative Frogramming
for File Systems," Proc. ACM Conf. on lLanguage Design for keliable
Software, SIGPLAN notices Vol. 12(3), pp.41-45 (March 1977).

M.R. Mclauchlan, "A Purely Functional VLS1 Layout Language," lnter-
nal Report FMM S0, Computing Laboratory, University o£ Mewcastle
upon Tyne (Sept. 1980) .

P. Henderson, Functional Programming Applications and Implementa-
tion, Prentice Hall International (198CG). ‘ '

L.S. Wise, Private Communication.

D.D. Chamberlin, "The Single Assignment Approach to Parallel Pro-
cessing.,”" Proc. Nat. Comp. Conf. Vol. 39 , pp.263-26S. (1%71).

L.G. Tesler and H.J. Enea, "A Language Design for Concurrent
Processes.," Proc. Nat. Comp. Conf. Vol. 32 , pp.403-406. (196¢&).

B. Randell, "The Structuring of Distributed Computing Systems,"
Technical Report 181, Computing Laboratory, University of Newcas-
tle upon Tyne (1583).

V.M. Glushkov et. al., "Recursive Machines and Computing Technol-
ogy," Proc. IFIP Congress, pp.65-70 (1574).

R.M, Barton, UK Patent Specification] 503 321-325.

W. Wilper, "Recursive Machines," Internal Report, Xerox Falo Alto
Research Centre (1980G).

D.M. Ritchie and K. Thompson, "The UN1X Time-Sharing System," Comm.
ACM Vol. 17(7), pp.365-275 (July 1$74).

The Conference on Pata System Languages (CCDASYL) DB1G report,

October. 1569,

A. Boare, "Communicating Sequential Processes," Comm. A(M Vol.
21(8), pp.€6€-677 (August 78).

?.CM§§ and R. Taylor, "CCCAM," 1983 Conf. on Parallel Processing
1¢8

60.

€1,

€2.

63.
€4,

€5.
€6.

67.

D. Ingelle, "The Smelltalk-76 Progrsmming System Lesign and Imple-
mentation," Proc. S1GFLAN Conf. on the Frinciples of Frogramming
Languagee, pp.9-15. (1978).

D.A. Turner, Frivate Communication.

C.L. Seitz, "ECystem Timing," in Introduction to VLS1 Systems, cd.
C. Mead and L. Conway, Addison kesley (19¢GC).

P.R. Brownbridge, L.F. Marshal, and B. Randell, "lhe Newcastle Con-
nection or UNIXes of the Worid Unite," Software Fractice and
Expericnce Vol. 12 (1562). :

D.A. Patterson and C.kL. Sequin, "RISC 1: A Reduced Instruction Set
VLSl Computer," Proc., Eighth Int. Symp. Computer Architecture,
pp.443-457 (1581).

W. Wilner, "Instruction Execution," Internal Report, Xerox Falo
Alto Research Centre (1¢81). :

H. Simon, "The Architecture of Complexity," Proc. American Fhilo-

~ sophical Society Vol. 106(6) (1%62).

M. vanEmden and R. Kowalski, "Semantics of Frolog as a Frogramming ‘
Language," Journ. ACM Vol. 7(3), pp.733-742 (1976).

	348164_001
	348164_002
	348164_003
	348164_004
	348164_005
	348164_006
	348164_007
	348164_008
	348164_009
	348164_010
	348164_011
	348164_012
	348164_013
	348164_014
	348164_015
	348164_016
	348164_017
	348164_018
	348164_019
	348164_020
	348164_021
	348164_022
	348164_023
	348164_024
	348164_025
	348164_026
	348164_027
	348164_028
	348164_029
	348164_030
	348164_031
	348164_032
	348164_033
	348164_034
	348164_035
	348164_036
	348164_037
	348164_038
	348164_039
	348164_040
	348164_041
	348164_042
	348164_043
	348164_044
	348164_045
	348164_046
	348164_047
	348164_048
	348164_049
	348164_050
	348164_051
	348164_052
	348164_053
	348164_054
	348164_055
	348164_056
	348164_057
	348164_058
	348164_059
	348164_060
	348164_061
	348164_062
	348164_063
	348164_064
	348164_065
	348164_066
	348164_067
	348164_068
	348164_069
	348164_070
	348164_071
	348164_072
	348164_073
	348164_074
	348164_075
	348164_076
	348164_077
	348164_078
	348164_079
	348164_080
	348164_081
	348164_082
	348164_083
	348164_084
	348164_085
	348164_086
	348164_087
	348164_088
	348164_089
	348164_090
	348164_091
	348164_092
	348164_093
	348164_094
	348164_095
	348164_096
	348164_097
	348164_098
	348164_099
	348164_100
	348164_101
	348164_102
	348164_103
	348164_104
	348164_105
	348164_106
	348164_107
	348164_108
	348164_109
	348164_110
	348164_111
	348164_112
	348164_113
	348164_114
	348164_115
	348164_116
	348164_117
	348164_118
	348164_119
	348164_120
	348164_121
	348164_122
	348164_123
	348164_124
	348164_125
	348164_126
	348164_127
	348164_128
	348164_129
	348164_130
	348164_131
	348164_132
	348164_133
	348164_134
	348164_135
	348164_136
	348164_137
	348164_138
	348164_139
	348164_140
	348164_141
	348164_142
	348164_143
	348164_144
	348164_145
	348164_146
	348164_147
	348164_148
	348164_149
	348164_150
	348164_151
	348164_152
	348164_153
	348164_154
	348164_155
	348164_156
	348164_157
	348164_158
	348164_159
	348164_160
	348164_161
	348164_162
	348164_163
	348164_164
	348164_165
	348164_166
	348164_167
	348164_168
	348164_169
	348164_170
	348164_171
	348164_172
	348164_173
	348164_174
	348164_175
	348164_176
	348164_177
	348164_178
	348164_179
	348164_180
	348164_181
	348164_182
	348164_183
	348164_184
	348164_185
	348164_186
	348164_187
	348164_188
	348164_189
	348164_190
	348164_191
	348164_192
	348164_193
	348164_194
	348164_195
	348164_196
	348164_197
	348164_198
	348164_199
	348164_200
	348164_201
	348164_202
	348164_203
	348164_204
	348164_205
	348164_206
	348164_207
	348164_208
	348164_209
	348164_210
	348164_211
	348164_212
	348164_213
	348164_214
	348164_215
	348164_216
	348164_217
	348164_218
	348164_219
	348164_220
	348164_221
	348164_222
	348164_223
	348164_224
	348164_225
	348164_226
	348164_227
	348164_228
	348164_229
	348164_230
	348164_231
	348164_232
	348164_233
	348164_234
	348164_235
	348164_236
	348164_237
	348164_238
	348164_239
	348164_240
	348164_241
	348164_242
	348164_243
	348164_244

