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· .6:.8 S 11:1. C'l" 

lhis thesis is concerned ~ith decentrnliscd highly concurrent 
computer nrchitectul"e£ ~hich may eventually provide alternatives to 
the centralised sequential erchitectures of conventional g~neral­
purpose computers. illere is currently consiclerable research into 
such alternatives, for which the principal motivations sre the use 
of concurrency to improve performance, the support of various 
novel, very high level programming languages, and the exploitation 
of very large scale circuit integration (VLSI). ihe different pro­
posed alternative architectures are surveyed and analysed, and 
architectures synthesising their underlying concepts are proposed. 

The thesis consists of three main parts. Ihe first part is an 
analysis and survey of proposed general-purpose decentralised 
architectures. lhree classes of architectures are identified s 
namely control flo~, data flow and reduction. ihe analysis shews 
that each class has particular, complementary, streng"ths and 
~eaknesses. 

The second and third parts cover the develoIJment of t\\O archi­
tectures \\hich com tine the different concepts underlying control 
flow, data flo~ and reduction in order to overcome the indi\ddual 
weaknesses in each. 'Ihus the second part presents a IIdata/control 
flow" architecture lo,;hich is a syntr.esis of data flo... and control 
flow. lherc is an experimental implementation of this architecture 
in which 8 numb.::r of standard microcomputers cooperate in the ex e·· 
cution of a program. 

In contrast the third part presents a "recursive control £10 ... 11 

(ReF) architecture ~hich is a synthesis of control flow, dat& tlo~ 
and reduction. 'Ihis architecture is based on a set of ECner&1 
principles of recursive structuring ",;hich are intended to l:.rovicJe a 
common basis for decentralised system organisation at Vari(HlS 
architectural levels, ranging from VLSI design to geographically 
distributed networks. 'Ihe RtF work is thus not only an invcstigu­
tion into the possibility of incorporating control flo~, dat& flo~ 
and reduction concepts in a single parallel computer but &100 an 
initial investigation of the application of the recursive structLr­
ing pril1d pIes. lhese two aspects of the ~ork are closely rf!lated 
in that recursiVE structuring facilitates the modularity ~hich is 
required for the synthesis of control flow, data flow and reduction 
into a coherent overall system. 

lIn implementation of the ReF architecture, using a numLer of 
idEntical Plicrocoml'utet's, is proposed. ihe detailed design of a 
special-purpose LSI microcomputer chip for this lm~lementation is 
currently being Froduced. 
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1. n~'TRODUCTI0N 

1.1. Eackground 

Conventional von Neumann architectures crin be characterised by a 

number of "von Neumann principles": 

1. linear organisation of fixed size memory cells 

2. one level address space, where each address is globally unique 

3. low level machine code in which instructions are elementary opera­

tions performed on elementary operands 

4. sequential, centralised control of execution 

5. centralised machine organisation of a single computer incorporating 

processor, communications and memory 

Although these principles have for over 30 years provided an adequate 

basis for general-purpose computers, there has recently been much 

interest in possible alternative general-purpose architectures. lhcre 

are currently at least 20 research groups ~orking cn experimental, non­

von Neumann architectures in which one or more of the above principles 

are modified. 

'lbere are three main, related, motivations for this interest in 

novel architectures. Firstly there is the continUing demand for 

increased computing pOwer, parti.cularly in applications such as \.cather 

forecasting and wind tunnel simulation. lhe technologj~s available (snd 

ultimately the natural laws of physjcs) limit the pos6ible perfornance 
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attainable for a single processor, and thus the ability of convention­

ally organised high-speed computers to meet these demands[l]. TIle util­

isation of a large number of processors cooperating ona single task 

offers the potential of ·overcoming the technological performance limita­

tions. 

Secondly there is the interest in new classes of very high level 

programming languages, particularly 

languages[2,3], and logic languages [4] , 

functional 

which are 

or applicative 

claimed to have 

greater expressive power than conventional languages and are intended to 

provide easier means of producing reliable programs. Whereas existing 

sequential assignment-based languages are well matched to the von Neu­

mann architecture, these new classes of language are based on radically 

different principles, and implementations on conventional architectures 

tend to be relatively inefficient. lUi essential characteristic of 

these languages is that a program does not specify a sequence in which 

statements are to be executed and this naturally leads to highly con­

current implementations. 

Thirdly there is the need to exploit very large scale integration 

(VLSI) i.n the design of general-purpose cOITlputers. 11lCre are a number 

of considerations in VLSI design which make it desirable to find an 

alternative to conventional architectures[5,6]. In particular there is 

the need to implement storage and processing functions close together on 

the same chip in order to minimise com:n'.mications. These considerations 

lead to architectures such as [7] in \o7hich a large powerful computer is 

constructed from a multiplicity of simple single-chip microcomputers 

each incorporating a general-purpose processor and local memory. 
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Research projects motivated by one or more of the above considera­

tions have resulted in a number of experimental special-purpose and 

general-purpose architectures which are able to utilise many processors 

operating concurrently on a single task under decentralised control. In 

the special-purpose decentralised architectures the hardware organisa­

tion is closely matched to the concurrency structure 6f a particular 

class of tasks, as for example in Systolic Arrays[8]. The concern of 

this thesis however is with general-purpose decentralised architectures 

which can be programmed to perform effectively, and exploit implicit 

concurrency in, a large range of tasks. 

Three classes of general-purpose computer architectures can be 

identified as control flow, data flow and reduction. These classes 

differ fundamentally in their operational models, that is in the way 

instruction execution is initiated and the way data is communicated 

between instructions. In control flow the execution of an instruction 

is triggered by the flow of control through the program, and data is 

communicated between instructions by being stored in shared memory 

cells. (Conventional von Neumann architectures have a single flow of 

control ~~ereas control flow architectures providing concurrency' have 

multiple flows of control.) In data flow the execution of an instruction 

is triggered by the availability of the input data that it uses and when 

executed an instruction stores its result directly into thoseinstruc­

tions which use that result. In reduction the execution of an instruc­

tion is triggered by the requirement for the output data which it gen­

erates and wl1en executed an instruction is replaced by (is reduced to) 

its result. The single nost important characteristic of the novel data 

flow and reduction models is that they are implicitly concurrent. If 
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several data flow instructions have all their inputs available then they 

can all be executed concurrently. If one reduction instruction requires 

the outputs from several other instructions then those instructions can 

be executed concurrently. In contrast, the concurrency provided by mul-

tiple flows of control is explicitly controlled by the programmer. 

Parallel computers form one of two major fields of decentralised 

computing systems research, the other being that of geographically dis-

tributed computer networks. 'There, is some degree of relationship 

between these t\-'O fields. The design of individual computers may be 

affected by the likelihood of their being connected into computer net-

vlOrks. Similar functions may be found in both types of decentralised 

system, for example to organise the cooperation between concurrently 

executing program units, and the decentralised allocation of system 

resources. There is the possibility of the same microcomputer being 

used as one of the. processors for a general-purpose parallel computer, 

as the main processor of a node in a local area network, or as a com-

ponent of an embedded system such as an on-board flight control system. 

This latter class of system could be considered as either a special-

purpose parallel computer or a small-scale computer netvlOrk. 10us the 

distinction between parallel computer architecture and computer network 

architecture is becoming more a matter of degree than fundamental 

difference. These considerations have contributed towards developments 

such as the "building sized computer" of [9], the Intcl 432[10] and 

transputers [11]. In terms of the threel classes of archi tectures identi-

f~ed above, these developments are all based on the conventional control 
-

flow model (rather than one of the novel, implicitly concurrent models) 

and carry forward most of the von Neuman principles. 
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1.2. Thesis Outline 

The principal work reported here consists of an analysis of control 

flow, data flow and reduction computers' and the synthesis of their 

underlying concepts, together with the application of principles of 

recursive structuring, in the design of general-purpose decentralised 

computer architectures. The application of recursive structuring prin­

ciples in the context of geographically distributed computer networks is 

also considered. This research constitutes a major part of the work of 

the Computer Architecture Research Group at the University of Newcastle 

upon Tyne. Nuch of the work covered by this thesis, together with 

related work of other members of the group, has been previously reported 

elsewhere[12-18]. 

The first part of the thesis, Chapter Two, is an analysis and sur­

vey of existing control flow, data flow and reduction architectures. 

The basis for this analysis is the classification first developed by 

Treleaven and myself in [14] and subsequently expanded by ourselves and 

Brownbridge in a broad survey of data flow and reduction computers[16j. 

This Chapter repeats and further develops those parts of [16] to which I 

made a major contribution. It covers for each class of architecture the 

operational concepts on which it is based, the ways in ""hich machlne 

code programs are organised, and the ways in which machine resources are 

organised. The analYSis shows that a fundamental characteristic of an 

architecture, largely determining its particular strengths and 

w~aknesses, is the choice of mechani.sms provided for propagating control 

and data through a program. The strengths and weaknesses of control 

flow, data flow and reduction are largely complementary which suggests 
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experimenting with combinations of the concepts and mechanisms found 

separately in each. 

All the novel computer architectures discussed in this Thesis, data 

flow and reduction covered .in Chapter 1 and the experimental archit€c-

tures developed subsequently, provide for computing machines that are 

Universal, in the Turing Machine sense. Thus the only ultimate criteria 

for their evaluation is their "efficiency" in terms of hardware cost, 

program execution performance, and production costs of software to pro-

vide an effective user interface and to organise the effective exploita-

tion of machine resources. Quantitative evaluation of an architecture 

in those terms requires extensive experimentation on "realistic" imple-

mentations. However at the time of writing, development of novel data 

flow and reduction architectures has only progressed to the point of 

"demonstration" rather than realistic implementations. Thus they can as 

yet only be evaluated in qualitative terms of particular conceptual 

strengths and weaknesses which may be expected to affect their quantita-

tive characteristics. These comments apply even more to the highly 
.. 

experimental arc~itectures covered in the subsequent Chapters which 

build on the concepts of data flow and reduction and are in an even ear-

lier stage of development. 

The second part of the thesis, Chapter Three, presents an experi-

mental architecture which is a synthesis of data flow and (concurrent) 

control flow[13,15]. The original idea of sllch a syn.thesis was first 

suggested by Treleaven and developed into this architecture principally 

by Rautenbach and myself. This Chapter is a summary of the full report 
. . 

on the architecture[12] covering its operational model, program organi-
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sation and machine organisation. Implementations of the architecture, 

based on several cooperating microcomputers, were subsequently developed 

by other members of the Computer Architecture Group and are reported on 

in detail elsewhere[19,20]. 

The third part, Chapters Four and Five and Appendix A, presents a 

second experimental architecture, the recursive control flow architec­

ture, which is a synthesis of control flow, data flow and reduction 

obtained by general ising the conventional von Neuman architecture. This 

generalisation is based on the use of recursive decentralised struc­

tures, and involves the replacement of all the von Neuman principles by 

corresponding "recursive principles": 

1. hierarchy of variable length memory cells 

2. contextual address space, where an address is a variable length 

sequence of selectors like a telephone number 

3. recursive machine language in which instructions may contain ele­

mentary or complex operations or operands 

4. parallel, decentralised control of execution 

5. network of computing elements with each element incorporating 

processor-communications-memory and a group of computing elements 

being functionally equivalent to a single computer 

Chapter Four covers the architecture's operational model, its program 

organisation'and machine organisation. Also, towards the end of Cbapter 

Four there is a discussion of the applicability of the recursive control 

flow operation model and machine organisation in the context of 
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geographically distributed netYlOrks. Chapter Five covers a proposed 

hardware implementation of the recursive control flow architecture using 

large numbers of a special-purpose LSI chip. Appendix A defines a 

machine code instruction set for this implementation. Chapter Five also 

covers a number of other computing system implementations which incor-

porate similar recursive structuring concepts, including both a 

general-purpose parallel computer and a computer network system. 

The material contained in these two·Chapters and the Appendix is 

original to this thesis and has not been published elsewhere, although 

it is based on outline ideas proposed by Treleaven and myself in [17]. 

The proposed implementation is now being developed by another member of 

the Computer Architecture Group in order to produce a detailed chip 

design. 

Chapter 6 presents the main conclusions of the thesis. It is 

claimed that the recursive control flow architecture enables the dif­

ferent styles of control flow, data flow and reduction programs to be 

easily combined, so that each can be used where appropriate. Also that 

the architecture in general provides a promising basis for future 

general-purpose decentralised VLSI computing systems, and warrants 

further development. Further work to be done and possible lines of 

future development are then identified. 
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2. ANALYSIS AND SURVEY 

This Cbapter covers recent rcscarch into general-purpose decentral­

ised architectures, particularly in the areas of data flow and reduc­

tion. Currently there are many research groups working in these areas, 

a number of whom have produced experimental machine designs[16]. The 

purpose of this Chapter is to identify the concepts and relationships 

within these areas of research and to discuss the advantages and disad­

vantages of different approaches. The Cbapter starts by introducing the 

operational models underlying control flow, data flow and reduction 

architectures, then discusses ways in which the architectures are pro­

grammed and implemented, and finally evaluates their main advantages and 

disadvantages. 

2.1. Operational Models 

Control flow, data flow and reduction architectures are each based 

on different concepts of the way programs are represented and executed 

and the way control and data are passed from one part of a program to 

another. In order to illustrate and compare these basic concepts I will 

discuss the representation and execution of an example program fragment, 

the statement a:= (b+I) * (b-c), in terms of simple operational models 

for each class of architecture. For the operational models an abstract 

machine code representation will be used in which an instruction is a 

sequence of arguments delimited by brackets. For example the (b+!) 

might be represented as the machine code instruc tion (+ b 1 tl) with 

four arguments, the last of which, tI, identifies the destination of the 

result. At a particular point in the executioa of a machine code 
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program there will be (one or more) active instructions to be eXecuted. 

For example in a conventional architecture the instruction }:-ointed to by 

the program counter is the single active instruction. In discussing the 

operational models, the progress of execution through a program will be 

indicated by marking a currently active instruction with a I, referred 

to as an "activ:ity". For example 0+ b 1 tl) means that the + operator 

is about to be executed and the activity, . I, can be thought of as 

representing an actual processor to execute that operator. 

2.1.1. Control Flow 

Figure 1 shows a conventional control flow representation for the 

example a:= (b+I) * (b-c). Ihere is a sequence of instructions, 11, 12 

and i3, and some shared memory cells, b, c, tl etc., for passing data 

betwe0n instructions. Each instruction (e.g. 11) consists of an opera-

tor (+), input arguments each of which may be a literal (I) or a refer-

ence (b) to a memory cell, and a reference (tl) to the memory cell for 

the result. Ihe references to memory cells are also sho~n as solid 

arcs. 

---~.--- ----- - --)-.. _----- ------~. --- - - -- --~ 
i1: i2: i:': 

••• (+ l~~/t2 
(4) (2) (5) ( ) 

a) ••• 

~ 
( ) 

b: c: tl: t2:. a: 

Figure 1 Conventional Control Flow 

There is a single activity, I, shotvn at i2, "'hich passes from one 
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instruction to the next along the thread of control shown by dottE:d 

arcs. To execute· an instruction, addressed operands are loaded from 

memory, the result is computed as defined by the operator, the result is 

stored back in memory, and the activity then implicitly passes on to the 

next instruction in sequence. 

There are also forms of control flow which provide concurrent pro-

gram execution. In the "multi-thread" form of control flow, conven-

tional control flow is augmented by special control operators for creat-

ing and synchronising multiple threads of control, such as the FORK and 

JOIN shown in Figure 2. After the execution of the FORK there are two 

activities, one at its implicit successor, 11, and one at the addressed 

instruction, 12. Instructions 11 and 12 thus execute concurrently. 

Both activities will then reach the JOIN instruction, either via the 

explicit GOTO following 11, or as the implicit successor of i2. 111e 

Jom synchronises the two activities and then execution c.ontinues with 

its implicit successor, the multiply instruction. Apart from the inelu-

sion of such special control operators multi-thread control flow is 

similar to conventional control flOtI1. 

~--..-----..... ,,-----, .... .....". .... .... "" ><~\ '.-:b.. ... ___ _ . ___________ ~.,; ,IIff\. _ _____ ~,.---~----,~ 
il: 12: 13: 

••• (FORK i2) (I + b 1 tl) (GOTO 13) (I - b c t2) (JOIN 2) (* tl t2 a) ••• 

+r-~~t . (41 (2) rS) ( ) ( ) 
b: c: tl: t2: a: 

Figure 2 - UnIt i-thread Control Flm# 
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Another form of concurrent control flow, shown in Figure 3, is' 

"parallel" control flow in whIch instruction execution is controlled by 

explicit control signals or control tokens, rather than there being 

implicitly sequential threads of control. All instructions can poten-

tially execute in parallel, b~t each instruction requires some nlwber of 

control tokens from other instructions before it can actually execute. 

In Figure 3 each? in an instruction is a control argument representing 

the requirement for a control token. Hhen an instruction has executed 

it transmits control tokens to successor instructions identified by its 

final reference arguments (the flow of control tokens is represented by 

dotted arcs). A reference for a control token, such as 13/2 in 12, 

specifies a particular argument position, 2, in a particular instruc-

tion, :1.3. This fonn of control flow is logically equivalent to multi-

thread control flow, with multiple successors (as in 14) corresponding 

to a FOIllr, and multiple control arguments (as in 13) corresponding to a 

JOIN. 

i4: 
( • .:.o_!.,l / 1 i2(1) 

--- ........ -- I 
f-- '¥ 

(1 ? + b 1 tl i3/1) (I ? - b c t2 i3/2) 
11: I \ J i2: //- _/---

I .., ..... --. 
, ---

(I , f * tl t2 a 000 ) 

i3: I \" 

'f',K 
(4) 

b: 

JL 
(2) 

c: 

~~ 
(S) 

t 1: 
1 ~ ~ ( ) 

t2: a: 

FIgure 3 - Parallel Control Flow 
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·2.1.2. Data Flow 

Data flow archHecturcs provide highly concurrent program execution 

without the programmer needing to organise the concurrency eXf,licitly • 

. lhis is achieved by bas~ng execution on the availabiU ty of data so that 

concurrency is implicit any instruction can execute if all its 

operands have been produced. 

(~) ~dne ~ representation (!) graphical representatio~ 

Figure 4 - Data Flow 

Figure 4 shows a data flow program for the same example, using in 

(a) a machine code representation and in (1:;) a more usual &r8Fhical 

representation (data flow programs are often referred to as data flo~ 

graphs, with the instructions being referred to as nodes). An instruc-

tion (e.g. ill consists of an operator (+), input arguments each of 

~hich may be a literal (1) or an unkno~n (1), and output argtunents each 

o{ which is a reference (13/1). lIn output reference identifies a desti-

nation instruction (13) and a parti~ular \.mkno"n aq;\.rrnent position (1). 

(These references specify the flo~ of data through the program "hich 1s 
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also shown by solid arcs.) 

All instructions are notionally active and can potentially execute 

in parallel, execution being constrained by the availability of data. 

~1en an instruction (e.g. 14) has executed it transmits its result (the 

value of b, i.e. 4) as data tokens to the other instructions using that 

result. (Data tokens are shown as black dots flowing down the arcs.) A 

data token overwrites an unknown in the destination instruction, thereby 

making its value available to that instruction. w~en all of an 

instruction's operands are available, i.e when all unknowns have been 

replaced by results, it can execute, computing its resul t \\Thich is then 

transmitted to further instructions. (In terms of the graphical 

representation, an instruction executes when a data token is present on 

each of its input arcs and places its result on all its output arcs.) 

2.1.3. Reduction 

In data flow and concurrent forms of control flow, the ~ajor diver­

gence frOM conventional control flow is in providing for concurrent pro­

gram execution. These architectures retain the conventional form of 

program representation in which a program is a collection of fixed size 

instructions whose arguments are primitive operators and operands. In 

contrast, the principal concern in reduction architectures is the direct 

support of very high level applicative programming, which motivates a 

different fonl of program representation. In reduction an "instruction" 

is an expression comprising a function or primitive operator and its 

arguments. Each argument Day be a simple operand or a nested expres­

sion. A program is a set of named expressions each defining a value. 
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For example the program fragment -

a :£ (b+l) .* (b-c) where b s 7-3, c ~ 2 

gives a definition for a using subsidiary definitions for band c. 

Unlike a named variable of control flow, a named definition has a fixed 

value (possibly determined by parameters). Thus a reference such as b, 

its defining expression, 7-3, and its value, 4, are all 1l1athematically 

equivalent and can be freely interchanged without affecting the result 

of the program. Tne interchangeability of a reference and the refer-

enced expression is an important property known as "referential tran-

sparency". This property is claimed to facilitate both informal under-

standing of a program and its formal manipulation in for eX.:lT!lple program 

verification. 

In executing a reduction program instructions are progressively 

eval uated and replaced by their resul ts until the program has been 

reduced to its simplest form. Reduction architectures differ both in 

the order in which instructions are selected for evaluation and in the 

way in which instructions are represented and manipulated. TIle order of 

evaluation is not explicitly controlled by the programmer but is deter­

mined by an implicit It computation rule". There are a nwnber of possible 

computa tion rules [21], the main differences being between It innermost" 

and "outermost" rules. &1 innermost computation rule only selects 

instructions with literal (fully evaluated) operands (initially the 

instruction defining b in this example) • The evaluation of these 

instructions will result in other instructions being selected. An 

outermost computation rule starts '-lith the instruction for the required 

resul t (the mul ti.plication in this example) and is recursively applied 
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to evalua te, the' required operands. Every computation rule produces the 

same result for a prograI:1, if the program terminates with that rule. 

However there are programs which terminate with an outermost computation 

rule but not with an innermost rule, and subsequently I will concentrate 

on reduction architectures using outermost computation. 

There are two forms of expression representation and manipulation 

found in reduction architectures, referred to as string reduction and 

graph reduction. In string reduction, as illustrated in Figure 5(i), an 

expression is represented as a string of symbols comprising operators, 

operands and references to other definitions, with structure represented 

by delimiter symbols ( and). As the expression is evaluated the refer-

enced definItions are copied into the string. In graph reduction, as 

illustrated in Figure 6(i), the components of an expression are always 

separate definitions, referenced by the expression. Referenced defini-

tions are executed in place rather than being copied into the referenc-

ing expression. 

" Figure 5 shows some stages in the execution of a string reduction 

program. At (i) the evaluation of a is required, indicated by an 

activity at its outermost instruction, the multiplication. The evalua-

tion of an instruction, such as the multiplication, demands the evalua-

tion of its operands, indicated in (ii) by activities at their opera-

tors, and then suspends until their evaluation is complete. Where an 

operand is a reference to a separote definition, such as the references 

band c in (~i), a copy of the deHnitiou is taken, replacing the refer-

ence, .and its evaluation is then demanded (iii). Where an instruction 

has purely literal operands, as in the first subtraction in (iii), it is 
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executed and replaced by its result so that the result is stored 

directly as a literal into the instruction using it (iv). When all an 

instruction's operands have become literals it is re-enabled and exe-

cuted as shown in (iv) - (vii). 

b: c: 
(- 7 \ )2) 

(1) a: f 
(l * (+ b 1) (- b c) ) 

(11) <I * (l+bl) (1- b c) ) 

JJf r~~!~ 
(l +~ 1) (iii) (I * (! - (I - 7 3) 2) ) 
~ 

~" ." 
(iv) (I * ~ (1-~2) ) 

~~ j-lt' 
W (I * 5· (I - 4 2) ) 

~ 
)t~ po. 

~) <l * 5 2 ~ \ 'I\f 

(~) 
f 
10 

Figure 5 - String Reduction 

Figure 6 shows some stages in the execution of a graph reduction 

program. At (i) the evaluation of a is required, indicated by an 

activity at its operator. The evaluation of an instruction demnnds the 

evaluation of instructions referenced by its input arguments, and then 

suspends. In (ii) such demands for evaluation have thus propagated 

throughout the program. Each activity at an instruction represents a 

demand for its result and the dotted arc represents the source of that 

demand which has to be re-enabled when the demanded instruction has been 
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-
evaluated. A demanded instruc tion with purely literal operands, such as 

b in (li), is executed and replaced by its result so that the instruc-

tions, tl and t2, referencing it then reference the actual values for 

their operands (iii). Those instructions are re-enabled, their operands 

loaded, and the instructions replaced with the results, as shown in 

(iv). Any instructions which are no longer referenced, such as band c 

in (iv) are deleted. In (v) the evaluation of a is complete, and all 

intermediate results in that evaluation have been deleted. 

~-----------------------------------------------------------------~--
(i) (ii) 

b:(- 7 3) c:(2) 

tl:(+ ~ t2)-b l 
b:(II - 7 3) c:(I2) 

/' " " " " " " "" /' ':Ak 
tl:(l + b 1) t2:(1 - b c) 

,\1 
a:(I * tl t2) 

..... " 
..... " 
'~ Jt:.// 

a:(l * tl t2) 

b:(114) c:(12) 
/ ..... "J ,," " / 

~ 'A,)! 
tl:(I + b 1) t2:(1 - b c) " /' , " 

..... ~ .,1:.'/ 

a:(l * tl t2) 

{ 

tl:(I5) t2:(I2) 
't- ' ~ ".' ,,, 
I ,/ 

~)4 
a:(I * tl t2) 

}~ .:(10) 

(iii) 

Figure 6 - Graph Reduction 

These examples have illustrated concurrent evaluation of reduct1.on 

programs, the concurrency being achieved by simultaneously demanding 

both operands of an operator. However reduction programs can just as 

well be executed without concurrency in which case the second operand is 

not demanded until the first has been evaluated. 
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2.1.4. Discussion 

Each of the various operational models presented in this Section 

has particular advantages and disadvantages which are largely a result 

of the particular mechanisms used for organising the flows of data and 

control through a program[14]. A data mechanism defines how an argument 

can be accessed by a number of instructions and three such mechanisms 

can be identified: 

1· by-literal (in all models) - an argument's value is known at com­

pile time and is included in each accessing instruction 

2 by-value (in data flow and string reduction) an argument is 

evaluated at run-time when a separate copy of its value is stored 

in each accessing instruction 

3 by-reference (in control flow and graph reduction) - an argument is 

evaluated at run-time and its value is shared by each accessing 

instruction having a reference to it 

A control mechanism defines how one instruction causes the execution of 

other instructions, and again three mechanisms can be identified: 

1 sequential (in conventional and multi-thread control flow) a 

thread of control signals an instruction to execute and passes feom 

one instruction to its implicit successor 

2 parallel (in data flow and parallel control flow) - control signals 

the availabHity of (control or data) arguments with an instruction 

being executed ~:hen all its arguments are available 
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3 recursive (in reduction) - control signals the need for argR~ents 

with an instruction being executed when a result it generates is 

required by an invoking instruction 

The relationship of these mechanisms to the operational models is 

summarised in Figure 7. 

Data Hechanisms 

by-value (& -literal) by-reference (& -literal) 

conventional control flo w 
sequential multi-thread control flow 

Control 
parallel data flow parallel control flow 

Mechanisms 
recursive string reduction graph reduction 

Figure 7 - Control 'and Data 11echani6~:t.S 

All models have the by-literal mechanism in some form since othen-lise 

all constant data would have to be provided as run-time input. Each 

model also has one or other of the by-value and by-reference data 

mechanisms. The advantage of by-value compared with by-reference is 

that the data is directly available in the instruction using it and thus 

the extra step of loading data from a separate memory is avoided. The 

corresponding disadvantage is that there is a separate copy of a value 

(or its definition) for every instruction using it. 

Each model has just one of the sequential, parallel and recursive 

control mechanisms. lbe sequential and parallel control mechanisms are 

in a sense opposites in that the former is best suited for programs that 

are mainly sequential whereas the latter is best suited for programs 
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that are highly concurrent. For sequential execution the "implicit suc­

cessor" of the sequential control mechanism is more efficient than the 

explicit propagation of tokens required by the parallel control mechan­

ism. Conversely, using separate instructions, such as FORK and JOIN, 

for organising concurrency is relatively inefficient when there is con­

currency at the level of individual instructions. 

The recursive control mechanism is not 

concurrent execution. The major benefit 

primarily concerned with 

of the recursive control 

mechanism is that instruction execution is only initiated when actually 

needed thus conserving machine resources and to some extent freeing the 

programmer from that consideration. 

The particular combination of by-reference data mechanism and 

recursive control mechanism found in graph reduction allows it to sup­

port "Lazy Eva1uation"[22,23] in which only the minimum necessary compu­

tation is actually performed. In both string and graph reduction the 

. recursive control mechanism means that a computation is not performed 

unless its result is actually needed. In string reduction the by-value 

data mechanism means that a shared definition is evaluated more than 

once, as in the multiple evaluation of (- 7 3) in Figure 5 (iii)-(v). 

In graph reduction however the bY-I·eference data mechanism allows such· a 

shared definition to be evaluated only once, as In Figure 6(11)-(iii). 

The operations discussed so far, such as addition, are "strict" which 

means that the result always depends on the value of all operands. For 

a program with only strict operations all instructions will always need 

to be executed and thus there is no real advantage to the recursive con­

trol mechanism and lazy evaluation. However these are at an advantage 
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in handling non-strict operations for which one or other of the operands 

will not be needed in a particular case. TIle most common example of 

non-strictness is in conditional instructions, to be discussed in the 

next Section. 

An important diffe'rence between control flow, data flow and reduc­

.tion is the extent to which an instruction interacts with other instruc­

tions during its execution. In the case of data flow, an instruction 

receives all its inputs before it starts executing, processes them com-

pletely and then outputs its results. This form of execution is 

referred to as "atomic" since to the external environment execution 

appears as a single indivisible operation. In control f10"" and reduc­

tion execution is non-atomic due to memory accesses in the former and 

acceptance of results demanded from other instructions in the latter. 

The non-atomicity in control flow generally has undesirable conse­

quences. For example consider a program which cont~ins the three 

instructions - il: a:=I, i2: a:=2, i3: a:=a-a - and has a program design 

constraint that the content of location a should always be non-negative. 

Each instruction individually preserves that property, but in executing 

them concurrently there is a possible ordering of the five separate 

accesses to a which would result in a having a final value of -1 (the 

storing of 2 in a by i2 occurring between the two loads from a by i3). 

Such undesirable consequences cannot however occur with reduction since 

changing a location's content only changes the representation of its 

fixed value, rather than changing its value. Furthermore, non-atomic 

execution can be beneficial in increasing concurrency and allowing the 

termination of programs that would not terminate with atomic execution. 
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To illustrate the potential benefits of non-atomic execution con­

sider a logical OR operator in for example C = A OR B. If, say, the 

value True were received first for B, then the value True could be pro­

duced for C before the value for A had been calculated. This would 

result in additional co?currency between the evaluation of A and those 

parts of the program which depend on C. Also i~ might be possible for 

the program to produce its final result despite non-termination of the 

evaluation of A. The differences between atomic and non-atomic execu­

tion are important not only in individual instructions but also in 

groupings of instructions as functions and procedures, as will be dis­

cussed in the next Section. 
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2.2. Program organisation 

The term program organisation is here being used to cover the way 

programming requirements are supported by an architecture's machine 

code. This Section discusses how control flow, data flow and reduction 

architectures support data structures, conditionals, procedures, itera­

tion, and non-determinacy. 

2.2.1. Data Structures 

Host general-purpose architectures allow the representation. and 

manipulation of data structures. In control flow this is generally 

achieved by allowing explicit program control over storage allocation 

and the ability to apply ordinary arithmetic operators to addresses. 

Components of a structure can be stored in contiguous memory cells with 

the whole structure represented by a reference to the first component 

and any other component accessed by for example adding a displacement to 

that reference. In data flow and reduction 'architectures however 

storage allocation is not under explicit program control and special 

facilities are provided to support data structures. 

In a data flow architecture supporting data structures (not all do 

so) there are special operators for structure manipulation, such as the 

append and s~lect operators of Id[24] which respectively extend a data 

structure with a new component and select a specific component from 

within a data structure. TIle result of an append operator is a slightly 

modified copy of the input data structure and this result is communi­

cated as a single (large) data token to those instructions (selects or 
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further appen1s) which use it. 

A r~duction architecture typically provides the CONS, CAR and CDR 

operators of LISP[25] which respectively form t",ro (simple or structured) 

values into a two-component structure and select one or other of the 

components from such a structure. In string and graph reduction archi-

tectures data structures are represented in different ways, correspond-

ing to the different ways expression structures are represented. In 

string reduction a data structure is represented as a string of data 

items with structure being represented by delimiters, as in for exam-

ple «All, AI2), (All, A22». An operator such as CDR ("second com-

ponent") operates on whole data structures -

••• CDR ( (All, AI2), (All, A22) ) ... 
-» ••• (A2I, A22) ••• 

In graph reduction a data structure is represented using references to 

its components and an operator such as CDR manipulates references -

The by-reference data mechanism of control flow and graph reduction 

means that a data structure can be efficiently communicated and manipu-

lated using references whereas the by-value data mechanism of data flow 

and ~tring reduction means that, at least in principle, the whole data 

structure has to be copied and manipulated. In practice some data flo\v 
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architectures use control flow concepts to support data structures'with 

structures being stored in separate memory and references being passed 

as tokens[26]. 

A particular benefit of graph reduction is that (in conjunction 

with lazy evaluation) it can support unbounded data structures. These 

are data structures for which there is no explicit specification of 

actual or maximum size. The data structure is defined in terms of a 

notionally infinite number of components and is incrementally generated 

as components are actually needed in the computation. Consider for 

example a data structure Priaes, defined as a (probably infinite) list 

of the prime numbers -

Primes :3 P (2) 
Where P (x) ; CONS (x, P (Next (x») 

where Next (p) ~ ( ••• ) 

This definition uses a recursive function P (recursive functions will be 

discussed in more detail later). This function has a prime as its 

parameter, x, and notionally returns a list of all primes including and 

following that parameter. This is achieved by CONStructing a list with 

x as the first component and the remainder of the components being the 

sub-list returned by the recursive call P (Next (x}). In this call of P 

the Next (x) returns, as the call's parameter, the next prj.me after x. 

The list is actually incrementally generated as its components are 

accessed, as shown in Figure 8. In (b) is shown two stages in the par-

tia! generation of the Primes structure, namely that before (bI) and 

a~ter (b2) the evaluation of an accessing expression shown in (a). 
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2 3 
(CAR (CDR ( CDR Primes»» 

~ 
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,~ ,,'" 

(CAR. ) /;," 

~~-------d-;m~;t- -";' . 

~ 
(* 10 • ) t2 ar tar lj ar 
'--y---J 

cdr cdr cdr 
Prime ---7>'~ ----~P(next(S» C&,\ 

50 

(~) Accessing Expression (~) Data Structure 

Figure 8 - Unbounded Data Structures 

The expression in (a1) accesses a particular prime by selecting the 

appropriate node in the Primes. s truc ture using CDR and CAR. operators. 

The initial stages of evaluation «a1) - (a3» select existing nodes of 

the structure in (bl) and so do not require any further generation of 

that structure. From stage (a3), further evaluation of the expression 

requires the actual value of CAR( P{ Eext(3) ». Ibus the evaluation 

of the expression P ( Next(l) ) is demande.d in order for the first com-

ponent (CAR) of its data structure result to be accessed. As shown in 

(b2) the execution of that data structure expression v/lll cause it to be 
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replaced by a node for \"hich the car ore points to 5 and the cdr a-rc 

points to the next recursive call. The required operand, 5, is no., 

available and is used in the original expression «a4) - (a5) ) without 

requiring further generation of primes. TIle same technique could be 

used in string reduction, but the lack of lazy evaluation would mean 

that every time a particular prime was needed, all the primes up to that 

point would have to be re-generated. 

2.2.2. Conditiollals 

Every general-purpose architecture provides some form of condi­

tional instruction to select between alternatives. In a control flow 

archi tee ture there will be a conditional branch instruc Uon \>lhich has 

two alternative successor instructions. \\1!1en executed it selects one or 

other of the alternatives thus, so to speak, S\vl. tching an incoming flow 

of control onto one of two output paths. 

In data flml architec tures there are two possible fonus of condi-

tionals one with conditional selection of values to be used and the 

other with conditional selection of instructions to be executed. Both 

are shown in in Figure 9 using as an example z = - (if c then a els~ b) 

where a, band c are computed from i by program fragments A, Band C. 

The first fonn (value selection) uses an instruction with a conditional 

operator, refe.rred to as a "switch-in" instruction. This is illustrated 

in Figure 9(i) with the switch-in represented as a hexagonal node. Uke 

all pure data flow instruc tions, the S\o.'i tch-in executes when all its 

inputs (a, b and c) are available. It then outputs for use by Z either 

the a or the b depending on whether c is True or Fabe. 
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(.!.) switch-in switch-out 

Figure 9 - Two Forms of Conditional in Data Flow 

The second (instruction selection) form of data flow conditional, 

illustrated in Figure 9(ii), uses a "switch-out" i.nstruction which con-

troIs the flow of data through the program. Here the hexagonal node is 

a switch-out instruction which switches the i input onto one or other of 

its output arcs, depending on the value of the c input. TIle instruction 

causes either A or B to be activated and thus determines whether Z 

receives a or b. In (ii), taking c as True, B is not executed even 

though its only input, i, is available. This departure from pure data 

availabili ty is to avoid unnecessary computati on and is essential if 

recursion is to be supported. (If this example were part of a recur-

sion, with c the termination condition and n the recursive call, then 

the pure data availability of (i) would result in non-termination which 

is avoided in (ii).) 
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In reduction there is a single conditional construct, namely a con-

ditional operator which selects bHween alternative values and also, due 

to the recursive control mechanism, selects between alternative instruc-

tions. A conditional operator, if, will be part of a conditional 

instruction such as (if C t:hen A else B). lhis is executed by first 

demanding the evaluation of C and then, depending on the result c, 

demanding the evalua tion of either A or Band replaci.ng tlL" \oihole 

expressi.on with that result, either a or b. 

An important consideration in the organisation of conditionals is 

the extent to which unnecessary computation mDy be performed. lhis can 

be illustrated by considering the following two alternative conditional 

structures for computing 8 value r -

(a) a:= ( •• ~ A ••• ); b:= ( ••• B ••• ); 
r:= (if cl then a else b) * (if c2 then a else d); 

and -

(b) r:m (1f cl then ( ••• A ••• ) else ( ••• B ••• » * (if c2 
then ( ••• A ••• ) else d)j 

In both control flow and data flow either of th~se structures is possi-

ble. (In data flow, (a) is conditional value selection as in Figure 

9(1) and (b) Is conditional instruction selection as in Figure 9(li).) 

If cl and c2 are both True then, using structure (a), B would be 

unnecessarily evaluated, whereas using structure (b) A would be executed 

t\<."ice. Thus for either choice of structure there is the possibility of 

unnecessary computation being perfonned. 1n string reduction the copy-
, 

jng of definitions means that B might be executed t~ice. Graph reauc-

tion, using lazy evaluation, is the only model for ~hich unnecessary 

C'or:putation can ah.'ays be avoided for this type of exataple. 
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2.2.3. Procedures and Iteration 

An essential requirement for any general-purpose computer is to 

allow one program fragment (e.g. procedure) to be executed many times 

using different sets of data values (e.g. parameters) each time. The 

term "environment ll will be used for the data values and other informa­

tion which are different for different executions of the same .. program 

fragment. There are two ways of obtaining such multiple execution in 

conventional control flow, namely procedure calls and iterations. (The 

term procedure will be used to cover both procedures with side effects 

and functions which return their results.) With (recursive) procedure 

calls several nested environments for the same procedure will coexist. 

Consequently there must be mechanisms for keeping the environments 

separate and allowing a single reference in the shared procedure code to 

identify data within different environments. This is achieved by using 

a stack to store environment information (parameters, local variables 

and return links) and indirect addressing via a register which refer­

ences the current environment within the stack. In iteration each exe­

cution of the repeated code is completely finished before the next exe-

cution starts. Consequently the successive environments can share 

storage and there is no need for any special storage and addressing 

techniques. 

Data flow architectures can also support both procedures and itera­

tion (although not all do so). With procedures (even without recursion) 

tl)ere may be'several concurrent executions of the same procedure. The 

enviro~~ent for each execution consists of data tokens for the parame­

ters, internal partial results (corresponding to local variables in 
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control flo~) and the return links. Whereas in control flo~ the by­

reference data mechanism allows data for each environment to be stored 

in a separate area of memory accessed via a reference, this is not pos­

sible with the by-value data mechanis@. Instead a scheme of labelling 

tokel1s is used to separate environments. Each active environme-nt has a 

distinct identifier which is used to label all tokens assodated ~vith 

that environment. An individual instruction in the procedure 1l1ay exe-

cute many times in different environments. Each execution takes a. &et 

of input tokens with the same environment identifier and uses that iden­

tifier to label its output tokens. 

Figure 1C(i) shows the operation of this scheme using as an.example 

the procedure F in the following definition for factorial (~hich is 

some\o;hat unusual as it will also be used to illustrate iteration) -

Factorial (n) = F (n,l) 

F ( n, m) = if n=l then m else F( n-l, n*m} 

The inputs to the procedure graph are the parameters nand m and tbe 

return link r. lhese inputs are tokens labelled with an environment 

identifier (the Q in e.g. Q:n). lhe B represents the graph to compute 

the partial results n' and m' as parameters for the next call. (If the 

termination condiUon n==1 holds then B \oJill instead pass III as the final 

r·esult f to the RETURN instruction - the actual constructicln of B is 

shown in (11).) The tokens output from B are labelled with the same 

environment identifier, Q, as the input tokens from "'hieh they are pro­

d\,1ced. The CALL instruction allocates an environment identifierR to 

label a new set of input tokens for the nested procedure call and sends 

those tokens back to the top of the graph. Eventually the nested call 
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produces a result token Q:res \.;rhich becomes the output Q:f of the CALL· 

instruc tion. The RETU1lli il1struc tion requires two inputs, f which is the 

result value and r which indicates the CALL instruction to which the 

result token is sent and the environment identifier 'Nith which it is 

labelled. There are actually three tokens shown which are available to 

this instruction, the Q:f and Q:r for this call and the P:r' from some 

other call (such as an outer level of this recursion). The effect of 

the labelling scheme is to enable the correct pairing of the tokens 

available to a particular instruction - in this case Q:f being paired 

with the Q:r rather than with the P:r' ~lich would have arrived earlier. 

r------E.:.J!lo.---------- . 

r _R: TIe- - - - - - - -

F 

r--

n 

[n# I] 

n' : = n-I 
m': =n*m 

m r 

J h--""";"--.;..j 
. J Q:r 

J 
I 
J 
I 
I , __ . 
1 • L _____ .:... _________ J Q:res 

recursion iteration 

Figure 10 - PI'ocedures and Iteration in Data Flov 
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Like an individual instruction, a data flow procedure is atomic. 

All its parameters mus t. be produced before it starts executing and if it 

has more than one result all of them must be produced before any can be 

used. This can restrict the potential concurrency in a data flow graph. 

In this example the evaluation of' n' does not depend on the value of the 

second parameter, a, and so in principle the procedure could start exe­

cuting with just its first parameter, n, evaluating n' concurrently with 

. the evaluation of the second parameter, a, by the caller. 

There are two general approaches to supporting iteration in data 

flO\Ol. The simpler is that illustrated in Figure 10(11) for the Fac­

torial example. The body B of the iteration is the same as in the 

equivalent procedure. II is a comparison instruction, testing for the 

termina tion condition and controlling two swi tches. If II gives False 

then the swi tches send nand 1I'l to the subtraction and multiplication 

instructions which calculate n' and m' as the next values for the itera­

tion. Alternatively if II gives True then the switches send a out as 

the final value f and discard n (indicated by a 1). Each iteration com­

pletely terminates before the next one starts, this being achieved by a 

synchroniser instruction (SYNCH) which requires both n' and m' as inputs 

but performs no computation on them, just passing them back for the next 

iteration. If the synchronisation were omitted then the subtraction 

instruction might generate successive values of n faster than the multi­

plication instruction could consume them and without additional mechan­

isms there is no way to pa:i.r the Jill with the correct n. 

In the alternative scheme for supporting iteration the synchronisa­

tion is omitted and there is some additional mechanism to order the 
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tokens on an arc. In Irvine Dataflow[2 /.j] this ordering is achieved by 

labelling every token with a sequence number (simtlar to the environment 

identifier used for procedure~. This is incremented at the end of each 

iteration. In the DDMI data flow architecture[27] the ordering is 

obtained by associating a first-in-first-out queue or "stream" of tokens 

with each input of an instruction. 

Whereas in control flow and data flow the basic operational models 

have to be extended to accommodate procedures this is not the case for 

reduction, which is based on function applications (correspondine to 

procedure calls). • Figure 11 shows a string reduction sequence for cal-

culating the factorial of 3 using the same definition for F as above. 

CD 
(10 

<.!.!..i> 

• •• 

• •• 

• •• 

F(n,m) ~ if n=1 then m else F(n-1,n*m) 

F(3,1) ••• 

(if 3=1 then 1 else F(3-1,3*1) ) 

F(3-1, 3*1) ••• 

... 

(iv) (if (3-1)=1 then 3*1 else F«3-1)-1,(3-1)*(3*1» ) ••• 

(y) • •• F«3-1)-1,(3-1)*(3*1» ••• 

(y!) · .. (if «3-1)-1)=1 then (3-1)*(3*1) 
else F( «3-1)-1)-1 , «3-1)-1)*«3-1)*(3*1» ) ... 

(vi~) ••• «3-1)*(3*1» ... 
(yili) ••• 2*3 ••• 

Figure 11 - Procedures in String F~duction 

The initial call in (1) is the instruction F(3~1) which is as usual exe-

cuted by replacing the reference F by a copy of the referenced 
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definition, and in doing so formal parameters are replaced by actual 

parameters giving (11). TI1e conditional is evaluated and replaced by 

the selected alternative (Hi) which is another call with different 

parameters giving (iv). This process continues until the final result 

is produced in (ix). 

Any iteration can easily be transformed into an equivalent recur-

sive procedure. Thus it is not necessary to support a separate itera-

tion mechanism in addition to that for recursion, and reduction does not 

do so. In control flow and data flow, iteration is where possible used 
, 

in preference to an equivalent recursion in order to avoid passing the 

final result back up through all the levels of recursion (compare Figure 

lOCi) and lO(H». However with the reduction model this advantage is 

automatically obtained in the execution of those procedures (known as 

"tail recursive") which are directly equivalent to iteration. TI1is is 

illustrated in Figure 11 where the resul t (ix) calculated when the 

recursion terminates (vii) has been returned directly to that part of 

the program from which the original call was made in (i). 

An important aspect of the reduction model is its ability to sup-

port "higher order functions" (procedures), that is procedures which 

have procedures rather than data values as parameters and/or results. 

This is Hlus trated in Figure 12 for a higher order procedure Bindl(g) 

which has procedures as its parameter and resul t. In (v) there is a 

call of Bindl for which the parameter is a two-parameter procedure G 

(just the addition operator) , and the resul t is the one-parameter pro-

cedure H. In the definition of Bindl (iv) H is obtained by binding the 

first parameter of G to a particular value (pl), leaving G's second 



- 37 -

parameter free as His only parameter. When procedure H is called in 

(vi) with parameter P2 the effect (viii) is as though procedure G had 

been called with parameters Pl and P2. 

(1) PI .: 10 

<.!.!) P2 := 20 

(iii) G(pl,p2) = (+) ---.. 

(iv) BindI(g) is (g (PI» 

(y) H(p2) a Bindl(G) 

(H (P2) ) 

, 
(vi) 
(vii) 
(:6i.!) 

-» «Bindl(G» (P2» 

-» «(+) (PI» (P2» 

-» 30 

-» «G (PI» (P2» 

-» ( +10 (P2» 

Figure 12 - Higher Order Procedures iD Reduction 

The "trick" to this technique is that all procedures and operators 

have at most one argument. Thus the expression (PI) + (1'2) must be 

represented, as shown in (ix), as «(+) (PI» (P2». The operator + has 

one argument, PI wi th value 10. and rettfCns as its resul t (x) the opera-

tor +10. This operator has one argument, 1'2 with value 20 and adds 10 

to that argument to produce the result 30 (xi). 

The significance of higher order procedures lies in their ability 

to encapsulate a general pattern of program execution in a procedure 

(function) definition which need only be programmed once. 111i& is 

illustrated in the example below where a procedure In.:!gen is used to 
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encapsulate the general pattern of incremental data structure generation 

used in Figure 8. 

Incgen ( generator, initialvalue·).a 

CONS ( initialvalue, 
Incgen ( generator, generator ( initia1value ») 

P ( init ) 5 Incgen ( Next, iuit ) 

Next ( val ) _ ( •••• ) 

Primes ::. P ( 2 ) 

2.2.4. Non-Determinacy 

, 

Any concurrent program is non-deterministic at least in the (opera-

tional) sense that the exact order of events in its execution is not 

pre-determined. I will use the term "non-determinate" in the more lim-

ited (functional) sense of the final output of a program (or part of a 

program) being not uniquely defined by just the program and the inputs 

it is processing. Although non-determinacy is usually an undesirable 

characteristic of a program there are situations in which the use of a 

non-determinate program is necessary. The most common example is in the 

management of access to shared resources, such as files ~ wi thin a 

multi-processing operating system. 'fo ensure the integrity of the 

shared resource the non-determinacy must be controlled, typically by 

grouping a number of related individual accesses by one process into one 

"transactionll for which the process has exclusive use of the resource. 

To sl1pp~rt non-determinate programming some primitive mechanisms 

for allowing and controlling non-determinacy must be provided. In con-

current control flow non-determinacy i's implicit in the basic opera-
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tional model whe.re two concurrent instruction execut1.ons can simultane-

ously update the same memory cell with different values. There is usu-

ally some additional explicit mechanism, such as a "test and set" 

instruction, for controlling that non-determinacy. 

- . 

In the data flow model there is a similar potential for implicit 

non-determinacy in that two instruction executions could emit tokens 

with different values for the same input of another instruction, with 

the resul t of the program depending on \vhich arrived first. However the 

data flow code generated by a compiler is always constructed so as to 

avoid such implicit non-determinacy. For example in Figure lO(H) the 

synchroniser instruction is included to prevent non-determinacy in the 

execution of the multiply instruction; in Figure 9(ii) the switch-out 

instruction ensures that onl'y one of A and B sends a token to the single 

input of Z, even though both could do so. 

There is only one data flow architecture[24] which provides expli-

cit non-determinacy. This architecture uses the technique of a 

"resource manager" to control non-determinate access to a sharable 

resource, as shown in Figure 13. The resource manager RH is a form of 

procedure which has two inputs, the resource R (e.g. a file) and a com-

plete transaction (p, q, r or s) to be processed. TIle result of one 

call is a modified version of the resource, R', which is fed back as 

input to the next call. The arcs carry sequences or "streams" of tokens 

and each token is labelled wi th a "stream number", 1, 2, 3 etc. These 

numbers serve the same role as the environment identifiers in the pro-

cedure call example, ensuring that the resource m3nager itself is deter-

minate. The non-determinacy and its control are combined in the expli-
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cit HEitCR operator which merges its two input streams into one output 

stream. On each execution it takes a token from either input, ignoring 

the input stream numbers, and outputs it labelled with the next output 

stream number. 

IUser A] 
I • • 2:s l:q 1 :p 2:r 

1: R 

4:r 3:s 2:q 1 :p 

2:R' 

Figure 13 - Non-determinacy in Data Flow 

In reduction the only form of update is to replace an expression 

with the result of evaluating it. This cannot lead to non-determinacy, 

as can the less constrained form of update found in control flow. If 

non-determinacy is required it must be introduced with some special 

operator. Non-determinate operators that have been proposed are the 

"AMBiguity operator" [28] , and more recent.ly :nWNS[29]. An example of an 

expression using ANn is 

r E! ( (A) Mm (n) ) 

The result of the whole expression is the result of evaluating one or 

other of its operands, (A) or (B). Operationally, demanding the value 

of r cause s both CA) and (B) to be demanded and computed concurren tly. 

When one computation, say (A), has terminated its result a replaces the 

whole definition. The other computation is then no longer needed and 

thus forcibly terminated. AMB can be used to program a merge procedure 
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which then forms tbe basis for resource management in the same style as 

in Figure 13. Although necessary for resource management, the inclusion 

of non-determinacy destroys some of the desirable properties of deter-

minate reduction programs, such as referential transparency. For cx.sm-

pIe the definition x = r-r woUld give x the value zero for any value of 

r, but replacing the reference r by the defining expression above 

gives 

x = ( (A) AMB (D) ) - ( (A) AHB (E) ) 

In this expression the two distinct A!m operators may give different 

results and thus a non-zero x. 

There are uses for non-determinacy other than in the resource 

manager type of application. An example is when there are tlo.'O 8lgo-

rithms (A) and (B) for computing a value r and one or other may be very 

inefficient or fail to terminate for particular cases v.hich are diffi-

cult or impossible to predict. lhe expression r = «A) ~1B (E» will 

alt.1ays terminate with a resul t for r if eitber algorithm terminates. 

Furthermore (assccing machine resources are divided fairly between (A) 

and (B» its execution time in a particular case will be proportional to 

that for the more efficient of the two algoritl®s for that particular 

case. ]n this example concurrency in evaluation of r's operands is 

essential to the logic of the program. (The use of concurrency in this 

way is explored at some length in [3C].) However for other examples of 

potential concurrency, such as in r :: «A) * (ll», the logic of the pro-
, 

gram is not dependent on there being actual concurrent execution. FOI 

reduction architectures which do not support operators such as AM~ the 

exploitation of potential concurrency is entirely an Jmpl(:mentation 
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issue. As discussed ill the next Section, some reduction implementations 

do exploit concurrency and some do not. 
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2.3. Machine Organisation and llIilple:l.1entations 

The term machine organisation is being used to cover the way a 

machine's resources are configured and allocated. lbis Section starts 

by identifying the different classes of machine organisations used for 

control flow, data flow and reduction, and then outlines some particular 

implementations. 

2.3.1. Classification 

Three classes of machine organisatio~ can be identified which are 

referred to here as the centralised, packet communication, and expres-

sion manipulation organisations. These organisations, illustrated in 

Figure 14, are principally distinguished by the organisation of 

communication(C) between processor(P) and memory(M) resources. 

Centralised - This organisation consists of one or several processors 

and one or several memory units with a central communication system pro-

viding each processor with direct access to all memory. In this organi-

sation a program (or part of a program) being executed by one processor 

has one active instruction, the execution of which typically requires 

several communications with the global memory. 

Packet Communication This organisation consists of a circular 

instruction execution pipeline of separate resources in which processors 

and memories are interspersed with "pools of work" through which they 

communicate.' Parallelism can be obtained by having a number of identi-
.~ 

cal resources between successive pools as shown; or by replicating and 

connecting the circular pipelines. In this organisation an executing 
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. . . 

• 
f 

• 

(vector) 

(tree) 

, 
• • 

(~) expression manipulation 

~ Figure 14 - Uachine Organisations 

. . . 

program consists of a large number of independent self-contained items 

or work packets (e.g. individual instnlctions and tokens) which split 

and merge and move into different work pools for different stages· of 

processing. The operation cycle for a resource is to take a packet from 

an input pool, process it in isolation from other resources, and produce 

a modified packet in an output pool. 

Expression Manipulation - This organisation consists of a large number 

of resources, referred to as "computing elements", each being a complete 

microcomputer with local processor and memory and a capability for 
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comml1nicating with a small number of other computing elements. The com-

munications capabilities are used to connect the computing elements i.nto 

some regular structure such as a vector or tree. In this organi.sation 

an executing program consists of one large program structure ("expres-

sion") with logically related parts of the program being allocated to 

physically related computing elements. Some components of this struc-

ture are active whilst some are inactive. Each computing element exam--

ines its part of the overall program structure looking for active items 

to execute. Executing an item will involve communications with the 

other items that it references. Programs generally exhibit considerable 
, 

"locality of reference" which means that references tend to be between 

items closely related in the logical structure. Consequently most com-

munications are internal to one computing elemeat or between close 

neighbours. 

A major motivation for the novel packet communication and expres-

sion manipulation organisations is to alleviate the communication prob-

lems that arise in a centralised organisation as the number of proces-

sors increases. In a centralised organisation the perfonlance of a pro-

cessor is dependent on the transit time of a memory access through the 

global communication system (including in "transit time" any queueing 

for access to the communications system). In the packet communication 

organisation however (provided there is sufficient concurrency) perfor-

mance is not dependent on the transit time of a packet through the com-

munication system but only on the total communication bandwidth being 
, 

sufficient to match the total throughput of the processors. Whereas the 

transit delay must eventually increase as system size and load 

increases, there are communication systems organisations[31] where the 
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bandwid.th per processor remains substantially constant as the system is 

extended to accommodate more processors and memories. In the expression 

manipulation organisation locality of reference is relied on to overcome 

the global communication problem. 

Modern computer designs often incorporate adaptations to their 

basically centralised (single-processor) machine organisation which to 

an extent overcome the similar processor-memory communication problems 

that arise from increasing processor power. These adaptations are the 

pipelining of instruction execution, producing a similar effect to that 

of a packet communication organisation, and the introduction of memory , 
caches, to exploit locality as in an expression manipulation organisa-' 

tion. The approach of pipelining conventional architectures (introduc-

ing some parallelism) is restricted however by the limited number of 

pipeline stages that can be introduced and the need to support a 

strictly sequential operational model. A multi-processor machine orean-

isation incorporating a local cache "lith each processor would in effect 

be a form of expression manipulation organisation. 

Most of the machine organisations described above are at least 

being investigated for the implementation of each different class of 

architecture, as shown in Figure 15. The rest of this Section discusses 

some of these proposed implementations. 
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concurrent reduc tion 
control data. stri.og graph 

flow flow 

Centralised 01* GMD SKIM 

Packet Circulation GCF MIT, MAN Alice 

Expression Manip. RIMMS DDM SPJ1 AMPS 

CM* - Modular Multiprocessor[32] 
CCF - Generalised Control Flow[33] 
RIMMS - Reduced Instruction Set Multiprocessor System[341 
MIT - MIT Data flow computer[35] 
MAN - Manchester Dataflow Computer[36] 
DDM - Utah Data Driven Machine[27] 
GMD - GMD Reduction Machine[37] 
SRM - Ne'lTcastle String Reduction Hachine[38] 
SKIM - Cambridge S-K-I Reduction Machine[39] 
Alice - 'l'he Alice Reduction Hachine[40] 
AMPS - Applicative Multi-processing System[41] 

Figure 15 - Same Novel Architectures 

2.3.2. Control Flow 

For control flow implementations the main issue is the way in which 

global memory access is provided. In the centralised and expression 

manipulation organisations an instruction being executed will send load 

and store messages to the appropriate memory units and wait for the 

replies before continuing. A more novel approach is that taken by a 

packet circulation organisation such as the Generalised Control Flow 

architecture where the instruction goes to the data rather than vice-

versa. In this architecture there is a single pool of work accessible 

to all resources which takes the form of a slotted communication ring 

circulating each slot past every resource as shown in Figure 16. A slot 

may contain a work packet, such as an instruction requiring an operand 
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to be loaded from memory. A resource that can service a work packet, 

such as the memory unit containing an instruction's operand, removes it 

from the ring as it passes, leaving that slot empty_ When the service 

has been performed the modified packet, such as an instruction with is 

loaded input operand, is 'placed· back on the ring in a passing empty 

slot. The modified packet is then picked up by another resource, such 

as a processor to compute its result. 

, 
Figure 16 - Packet Circulation for 

Multi-thread Coutrol Flow 

2.3.3. Data Flow 

A data flO\-l implementation requires a scheme for handling the 

activation of concurrent instruc tions by data tokens. There are two 

such schemes[42] namely "token storage" in which a token is stored 

directly into an instruction and "token matching" in which tokens are 

kept separately until a complete set of tokens for onc instruction exe-

cution have been matched togethcr. 

~xamples of the token storage scheme include the ~lIT computer whose 

packet circulation organisation is shovffi in Figure 17(a). In this 
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MI . . • Mm MI . . • Mi sets Mi ••• Hm 

(~) with token storage (.£) with token matchina 

Figure 17 - Packet Circulation for Data Flow 

organisation each path between the processors and the instruction store 

memories is 'a routing network which delivers packets to their destina-

tions and also acts as a work pool temporarily storing packets. A data 

token packet emitted by a processor arrives at an instruction store and 

its value is stored directly in the appropriate argument position of its 

destination instruction. If it is the last token for thAt instruction a 

copy of the instrllc tion 'vi th those argument values is sent as an execut-

able instruction packet to the processors. This token storage scheme 

'does not support the simultaneous existence of tokens for separate 

instances of an instruction since one could overwrite the other in the 

instruction store. Thus recursion is not supported and iteration 

requires some synchronisation scheme such as is shown in Figure 10(i1). 

In the MIT data flow model the synchronisation required for iteration is 

achieved by a "control token" being always implicitly sent from the 

receiver of a data token to its producing instruction indicating when it 

is safe for another instance of the token to be produced. 



Examples of data flow computers with token matching include the 

Manchester machine whose packet circulation organisation is shown in 

Figure 17 (b) • Here there is a matching store, separate from the 

instruction store, which collects together into a token set those tokens 

for a particular execution of an instruction. When a complete set has 

been collected it is sent as a token set packet to an instruction store 

where it is combined with a copy of the instruction and sent to the pro-

cessors for execution. For the token matching scheme the environment 

identifiers of Figures lOCi) can be used for (recursive) procedures. 

There may simultaneously be several partially complete token sets for 

the same destination instruction which are distinguished in the matching 

store by their different environment identifiers. 

2.3.4. Reduction 

, 
Whereas supporting concurrency is the major motivation for the 

novel control flow and data flow architectures, that is not tI,e case for 

reduction architectures. In three of the implementations included jn 

Figure 15 (AlicE', SRH and 1,MPS) there is concurrent instruction execu-

tion, and in two (SKIM and GND) there is not. In either case the prin-

cipal issues are organising the recursive control structure and the 

storage management needed for a program which expands and contracts as 

it is executed. 1n for example the centralised organisation of the ('hL 

string reduction machine there is a single Foint of exe:cution in tl!e 

program and stacks are used to deal with both issues. lhe ~tole program 

is a parenthe~ised expression which is initially stored on one stack. 

lhe processor repeatedly traverses this expression by copying it from 

one stack to another replacing any executable expression by its result 
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in the process. For simple expressions, such as (* (+ 4 1) (- 4 2», 

the effect is that the processor traver"ses to the right until a ) is 

encountered; then to the left until an operator is encountered which is 

executed; then to the right etc. 

The Newcastle string reduction machine works in a similar way but 

with many processors and many connected stacks. This has an expression 

manipulation organisation with a vector of processors as shown in Figure 

18. The expression being executed is stored in a sequence of double-

ended queue (DEQ) memories. Each processor has access to one end of 

each of two DEQs which to a processor appear as stacks, allowing it to 

traverse part of the program expression. 

. . J..* (+ 4 
• DEg ft1f 

' Pi 

DEQ 
2 ) ) 

~ 
• • • 

1) ~ 
DE 

- 4 

Figure 18 - Expression 11anipulation for String Reduction 

In graph reduction pointers are used to allow sharing of results in 

an executing program and storage management requires periodic garbage 

collection of unreferenced parts of the program. To organise the recur-

sive control structure there must be a return pointer from a demanded 

instruction to each instruction demanding it, as was shown in Figure 6. 

If the operands of an instruction are evaluated in sequence then there 

will be a simple chain of these return pointers which can be stored on a 

separate stack as in conventional procedure calling. This is the scheme 

used in the SKIM reduction machine (which is based on the interesting 
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concept of "combinators as machine code"l43]). If however the operands 

of an instruction are evaluated concurrently then the return pointers 

will form a more general graph structure which can be implemented using 

the "pointer reversal" scheme shown in Figure 19. Here propagating 

demand from il to 12 and 13 adds to those instructions return pointers 

and replaces the original pointers with unknowns. lhis part of the pro-

gram now has the form of a data flow graph and can be execut.ed in the 

same way. This is the scheme used for AMPS in which "demand tokens" 

carrying return pointers flow up the program graph and data tokens car-

rying computed values flow back down. 

i2:(+ 4 1) 

\ 
il:(* i2 

1

/

- 4 2)}~{12:(+ 4 1 il/~13:::;~)}l2) 

i3 a) 11:(* 1 ? a) 

Figure 19 - Pointer Reversal for Implementing Graph Reduction 
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2.4. Evaluation 

In the introduction three motivations were given for the develop­

ment of novel general-purpose architectures, namely supporting languages 

with increased expressive power, increased performance through con-

currency and suitability for VLSI implementation. 'lhis Section 

discusses the extent to which concurrent control flow, dataflow and 

reduction architectur~s appear able to satisfy each of these particular 

motivations. It then considers the range of applications which these 

architectures can effectively support and thus the extent to which they 

can be considered general-purpose. 

2.4.1. Expressive Power 

The expressive power of a programming language is largely concerned 

with how much organis,Ational detail has to l:,e explicitly specified jn 

the program. A benefit of the novel data flow and reduction architec-

tures is that they directly support 

languages by automatically handling some 

more expressive applicativc 

of the operational details. 

Control flow architectures are based on a low level operational model in 

which the programmer has to organise all the details of program exec.u­

tion - sequencing instructions to ensure that values are COffiFuted tdore 

being used, allocating storage for intermediate results, and explicitly 

manipulating, and even performing arithmetic on, references. Extending 

sequenUal control flO'-i to concurn;·nt. control flow generally compound£. 

rather than 'simplifies these proLlems ¥iith the progrsmu!er often havin~ 

to deal loIith complex synchronlsation requiremf;l1ls. 
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Data flo\07 and reduction provide higher level models in which the 

programmer is not explicitly concerned \-lith sequencing and storage allo­

cation. Sequencing is implicitly controlled by the availability or need 

for values and storage is automatically allocated and released as values 

are creat.ed and used. .Reduction is more powerful than data flow since 

computation is only performed when absolutely needed and so the program­

mer is not concerned with avoiding the initiation of unnecessary compu­

tation. This is particularly important in recursion where unnecessary 

computation could lead to non-termination. Also, (graph) reduction sup­

ports the use of unbounded data structures and higher order functions 

used in very high level applicative programming languages. It is 

claimed by proponents of such languages that the use of these techniques 

often leads to a simplification of program structure, compared with what 

would be required in a conventional language, and that they thus provide 

an easier means for producing reliable programs. 

Greater power of course requires more sophisticated implementation 

for its efficient realisation. In a control flow implementation the 

major complex component is the processor for instruction execution. In 

a data flow implementation there is additionally the mechanism for token 

matching and in some cases sophisticated storage for data structures. 

In a reduction implementation there are also the mechanisms for pro­

pagating demand and for garbage collection. 

2.4.2. Concurrency an.d Perfoll!iancc 

Exploitation of very high levels of concurrency requires a simple 

scheme for activating and synchronising instructions and this Is best 
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provided by data flow. In concurrent forms of control flow the communi­

cation of control is separate from the communication of data and is a 

considerable overhead when the grain of concurrency is at the level of 

individual instructions. In reduction there is the overhead and delay 

of propagating demand tprough the program. Although this ens~res that 

only the necessary computation is performed it reduces the concurrency 

and better performance might be obtained for a large number of proces­

sors by initiating possibly unneeded computation as can happen in data 

flmv. 

Data flow's activation by data availability gives highly concurrent 

programs, although in some architectures pure data availability is aban­

doned. There are two particular potential difficulties in the perfor­

mance of data flow architectures. Firstly a large amount of token 

storage may be required because the producer of a value generates 

separate copies for fll its users. Secondly there is the fact that 

individual instructions and procedures are atomic, and may depend on the 

availability of data which is not actually needed. This means that 

resources that could otherwise be usefully employed may be wasted on 

computing that data, and that spare resources may be unused because com­

putations that could use them are delayed awaiting the availability of 

that data. 

2.4.3. Exploiting VLSI 

One of ~he most important considerations in VLSI design is to 

mi.nimise communication both between chips and between different areas of 

the same chip. This requires close association of processing and 
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storage functions (ymich is made possible in VLSI by the use of the same 

technology for storage and processing elements). An expression manipu-

lation organisation, with each computingelcruent being a single chip or 

even an area within a chip, is the only machine organisation which 

attempts t.o satisfy these requirements. As is shown in Figure 15, all 

classes of architecture can be implemented using the expression manipu-

lation organisation. The success of such an implementation is dependent 

on programs exhibiting locality of reference. In data flow and string 

reduction there is very strong locality at least within a procedure 

since the only more global communication is for parameters and results 

at the start and end of the procedure. In control flow any instruction 

can in principle reference any item of memory but in fact most referenc-

ing is local to a procedure and this is particularly true when modern 

design methodologies such as data abstraction[44,45] are used~ For 

graph reduction with lazy evaluation the actual execution tends to have 
, 

a very convoluted structure in which there may be very little locality 

of reference.' This is because the evaluation of one expression may 

cause the evaluation of another expression anywhere in the program 

structure. 

2.4.4. Generality 

Control flo, ... archi tee tures are recognised as being very general-

purpose. Evidence for this is that they have been successfully employed 

in a very large range of applications, and for implementations of all 

ct'asses of programming languages including applicative languages which 

rE'qllire emulation of the reduction operation model. Their generality is 

largely due to the low level of the operational model which in giving 
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explicit control to the programmer/compiler allows any required 

behaviour to be produced. This is partlcularly· important in real time 

applications where sequencing and timing may be crucial. Data flow is 

probably the least general-purpose. Most data flow architectures do not 

provide the mechanisms for controlled non-determinacy needed in operat­

ing systems· applications and there are some data flow architectures 

which do not even support arrays or recursion. It is impossible to 

effectively emulate such features if they are not directly supported, or 

to emulate a different operational model, as can quite easily be done in 

control flow. The advocates of applicative programming see reduction 

architectures as truly general-purpose and there have been successful 

experiments in producing applicative file systems [46], graphics sys­

tems[47] and compilers and interpreters[48]' (although not yet applica­

tive process control systems which have been identified by a pioneer of 

applicative programming [49] as typifying the last remaining application 

area in which the adequ~cy of applicative programming is in doubt). The 

main difficul ty is in the acceptability of applicative languages which 

are radically different to currently popular languages. Also the inclu­

sion of non-determinate operators, necessary for operating system appli­

cations, is still somewhat questionable. 

In summary, the main benefit of control flow is its lack of res­

triction and its operational nature which make it very general-purpose; 

the corresponding weakness is the need to exercise careful operational 

control which can be extremely difficult in programming a complex highly 

concurrent algorithm. lbe benefit of data flow is that it is simple and 

hi.ghly concurrent offering potentially high performance in sui table 

applications; its principal ~leakness is that it is not very general-
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purpose, having difficulties with more sophisticated control and data 

structures. Ibe main benefits of reduction are in its expressive power 

and the main disadvantages are that the applicative style of programming 

is not the most natural or efficient in many cases. Compared with con-

trol flow, data flow is primarily an improvement in performance, reduc-

tion is an improvement in expressive power and both are less general-

purpose. 
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"3. COMBINING DATA FLOW AN)) CONTROL FLOV 

As shown in the last Chapter control flow and data flow architec­

tures have complementary advantages and disadvantages. This Chapter 

describes the combination of control flow and data flow concepts in an 

experimental highly parallel architecture referred to as the 

Data/Control Flow (DCF) architecture. The DCF is based on an opera­

tional model which includes the (parallel) control flow and data flow 

models as subsets and so allows compilers to generate control flow or 

data flow style machine code. Thus the architecture supports both con­

ventional programming languages used to program control flow machines, 

and the class of simple applicative languages, known as "single assign­

ment languages"[50,51), which are used to program data flow machines. 

It would also be possible for these two styles to be usefully mixed. 

For example a compiler for a conventional language might generate data 

flow style code for el'aluating expressions (which have an applicative 

structure) and control flow style code for the other elements of the 

program. 

This Chapter follows the same structure as Chapter Two. First the 

basic concepts of the DCF operational model are covered. This is fol­

lowed by a discussion of program organisation. Finally the 

architecture's machine. organisation and two implementations are dis­

cussed. The DCF architecture is described at greater length in [12) and 

details of the two implementations are given in [19] and [20]. 
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3.1. Operatlo~al Model 

The complementary advantages and disadvantages of control flow and 

data flow are largely a result of the particular control and data 

mechanisms found in their operational models. Parallel control flow and 

data flow both have a parallel control mechanism, the difference being 

that in the former instruction activation is by control tokens whereas 

in the latter it is by data tokens. Control tokens give the programmer 

explicit control over instruction activation whereas data tokens provide 

implicit activation by data availability. The DCF model has a parallel 

control mechanism which is a synthesis of these two schemes. Instruc-

tion activation is controlled by generalised tokens, each token either 

carrying data for the activated instruction (a data token) or carrying 

"null" (a control token).· 

The control flow and data flow operational models each provi?e two 

of the three data mechanisms: by-reference and by-literal for control 

flow; by-value and by-literal for data £10\11. The DCF model includes all 

three mechanisms allowing data to be embedded in the instruction (by­

literal), communicated as a data token (by-value), or communicat.ed via a 

shared memory cell (by-reference). In control flow a memory cell can 

contain not only basic values but also references to instructions arid 

other memory cells. In DCF there is the same generality in the kinds of 

data that can be stored in memory and carried by tokens. 

Figure 20(a) shows a representation of DCF machine code for the 

example a:= (b-H) * Or-c) and (b) shows an abbrevia ted representa t:l.on 

similar to that used for data flow graphs (a control token ls shown as 
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.'). This machine code representation combines elements from the paral-

leI control flow and data flow representations used for the same example 

in Figures 3 and 4(a). 

i4: 
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(I 
11: 

b:(4) 

a: ( ) 

(~) machine code representation 

. .. I I ••• I 
i' .... 

II~ .............. II 2t 
'" .. ""!1. ,~ 
Ib+11 Ib- J 

~} 
I a:= * I 

I 
4# 
I 
V 

(~) abbreviated. 
representation 

Figure 20 - Data/Control Flow 

Each instruction consists of a sequence of arguments. The types of 
• 

arguments are operators, literals, unknowns (represented by ls, each 

specifying the requirement for some input - a control token or data 

token), memory references (for accessing operands and storing results), 

and instruction references (for communicating tokens to other instruc-

tions). First will be (zero or more) control arguments (1s) each speci-

fying the requirement for a control token as in control flow. Next 

comes the operator (e.g. +) which is followed by input arguments. An 

input argument may be a literal (e.g. 1), an unknown (1) specifying the 

requirement for a data token as in data flow, or a memory reference 

(e.g. b) as in control flow. Finally there are output arguments each of 

which references either a memory cell to be updated with the 
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"instruction's result (e.g. a in 13) or the destination for a token (e.g. 

i3/1 in il for a data token carrying the result, or 16/4 in 13 for a 

control token indicating that the result has been stored). 

All instructions are notionally active and can potentially execute 

in parallel, execution being constrained by the arrival of tokens. The 

instruction execution cycle combines the control flo\-1 and data flow 

cycles, comprising the following stages. 

(i) activation (as in parallel control £10\\1 and data flow) the 

instruction is activated when tokens for all t arguments have 

arrived 

(ii) memory load (as in control flow) - any required data residing in 

memory is retrieved using memory cell references 

(iii) operator execution (as in all models) - result data is computed 

from operand data as defined by the operator 
• 

(iv) memory update (as in control flow) - data is stored into memory 

cells identified by memory cell references 

(v) token emission (as in parallel control flow and data flow) - Dut-

put (control and data) tokens are emitted to argume.nt posi-

tions in other instructions identified by instruction refer-

ences and these tokens then contribute to the activation stage 

of those instructions. 

In this execution cycle any information used (Le. a data item, a memory 

cell reference or an instruction reference) in a particular stage may be 

provided as an embedded literal in the instruction itself or d~lamically 
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provided at any preceding stage (as a data token received at stage (i), 

loaded from memory at stage (ii), computed as the operator's result at 

stage (iii)). This allows considerable flexibility in the low level 

organisation of programs and gives orthogonality between operatprs and 

data access. 

A data item output by an instruction, as the value for a data token 

or memory cell update, may be not only its operator's result but also 

any of its input data. This allows the possibility of low level optimi-

sation of the program graph. For example in a graph for «b - c) + b) 

the subtraction instruction could emit two tokens to the addition 

instruction, one providing its own result· and the other passing on the 

value of b. This would mean that in the interval between the execution 

of the instruction generating b and the execution of the subtraction 

there is only one copy of b. (In contrast, in pure data flow there 

would be two copies, each occupying machine storage resources, one copy 

for use by the addition aild one copy for use by the subtraction.) 

The essential point however is the flexibility of combining the 

control flow and data flow models at the level of individual instruc­

tions. For instance 11 uses control flow for input and data flow for 

output whereas i3 uses data flow for input and control flow for output. 

In this particular example the data flow model is used for communicating 

an expression's partial results (which are only used once), v,'hereas the 

control flow style is used for manipulating and controlling access to 

shared data such as band a. However in the DCF model there is no par­

ticular constraint on the way instructions use the data tokens, memory 

cells and control tokens which support the instruction level combination 
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of control flow and data flow. The combination of control flow and data 

flow at higher levels of program organisation is discussed in the n.ext 

Section. 
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"3.2. Program Organisation 

This Section discusses how the forms of program organisation dis­

cussed for data flow and control flow architectures in Chapter Two are 

combined in the DCF architecture. 

3.2.1. Data Structures 

In the DCF architecture data structures are manipulated in the same 

way as in control flow architectures, namely by communicating references 

and perfol~ing arithmetic on them. However a reference representing a 

data structure can be passed as a data token giving the effect of com­

municating the whole data structure asa single token, as in data flow 

architectures. In particular, the availability of the structure can 

activate the instructions that manipulate it. 

3.2.2. Conditionals 

In the DCF architecture the various forms of conditional found in 

control flow and data flow architectures are supported by a single con­

ditional switch operator. Figure 21 shows three instructi.onswhich use 

the switch operator (represented as Y) to produce the effect of (a) the 

switch-in instruction of data flow which selects its output value from 

two alternative inputs; (b) the switch-out instruction of data flow 

which swi tches a data token to one of two a1 tentative instructions; (c) 

the conditional branch instruction of control flow which switches a flow 

of control (control token) to one of two alternative instructions. 
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(a) Switch-in (~) Conditional branch 

Figure 21 - Conditionals in DCF 

The switch operator, Y, has three operands and one result. The 

first operand is a boolean which selects one of the other two operands 

as the result. Each instruction has four inputs. One of the inputs is 

the boolean (True or False) controlling thesvTi tch. Each of the other 

inputs is either a data token carrying a value (6 or 7), a data token 

carrying an instruction reference (Ill or 3/1 identifying the first 

argument position of instruction I or 3), or a control token 

(represented as a I). Each instruction has one output token represented 

as "destination:value" (with I as the value for a control token). In 

the token emission stage of instruction execution this output token is 

constructed from the instruction's inputs and the operator's result. 

The different effects of the swi tch operator in these three instructions 

depend on whether its result is used as the value for the instruction's 

output (in (a» or as its destination (in (b) and (c». These examples 

particularly illustrate the orthogonality between operator and data 

access. The same switch op.erator could also be used in instructions t.o 
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store a conditionally selected value hl memory cell or store a value in 

a conditionally selected memory cell. 

3.2.3. Iteration and Procedures 

The DCF architecture supports both iterations and procedures. 

Iteration is possible using either the scheme used in control flow or 

that used in data flow. As in control flow memory cells can be reused 

for successive iterations and an instruction, such as the conditional 

branch of Figure 2l(c), can transfer control back to the start· of the 

iterative code. In the data flow scheme for iteration, which was illus­

trated in Figure 10(ii), data tokens are synchronised at the end of each 

iteration and fed back to the start. This scheme requires a "syn­

chroniser ll instruction which would be a normal DCF instruction with a 

NOOP operator (just outputing its inputs, rather than producing a new 

result). The two schemes can also be combined with some data items 

being communicated to the next iteration via memory cells and some being 

passed as data tokens. 

The support of procedures depends on the separation of coexisting 

environments accessed by shared code. In the DCl" architecture an 

environment can consist of both information stored in memory cells (as 

in control flow) and tokens (as in data flow). Each active environment 

has a distinct identifier which provides both a token label (as used i.n 

data flow procedures) and a reference to a local memory area for the 

environment (as used in control flow procedures). An individual 

instruction in a procedure may execute many times in different environ­

ments. Each execution takes a set of input tokens vd th the same 
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environment identifier; all memory addresses in the instruction for 

loading and storing data are relative to the reference provided by that 

identifier; and all output tokens are labeled with that identifier. 

In a data. flow archi tec ture procedure call and return are provided 

as single instructions (as illustrated in Figure 10(i». The DCF archi­

tecture provides more primitive instructions for manipulating environ­

ments which can be used to construct procedure calls and returns. These 

primitives include: HewE which creates a new environment, allocating its 

local memory area and generating the unique envirorunent identifier; 

Ki.ll{E} which terminates the specified environment, deallocating its 

local memory area and deleting any remaining tokens; ~etE(E) which 

passes information to a specified environment - instead of the environ­

ment identifier of its input tokens being used to identify the environ­

ment of its outputs (tokens and memory updates) implicitly, the explicit 

operand value (E) is used so that those outputs go to that environment. 

Figure 22 illustrates the general structure of the way these primi­

tives can be used for procedures. The procedure F has two parameters, 

pI and p2 calculated by program fragments Pl and P2, and two results, rl 

and r2 calculated by program fragments FI and F2. The procedure call 

consists of five separate instructions: N, AI, A2, CI, C2. Instruc tion 

H creates the new environment for the called procedure and passes its 

identifier, E', to the other instructions in the call. The creation of 

the new envirOlIDlent by N is activated by a control token from program 

fragment PO which determines whether or not the procedure call is actu­

ally made (e.g. depending on the termination condition in a recursion). 

The Listruc tions CI and C2 pass the parameters, pi and p2, into the ne," 
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environmcn t. Parameter pI is communicated by data tokens, whereas 

parameter 1'2 is communicated vla memory cells, .1 and D2, \vi th 8ssoci-

ated control tokens. The instructions Al andAl pass into the new 

environment the information needed for the two results to bf\ returned to 

the calling environment. lbe required information is the calling 

environment's ~dentifier E and references to the instructions Xl and Xl 

in the calling environment. 

AI: 

( ••• PI • •• ) ( • •• ~O • •• ) ( 
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pI ·'1 I' 

E' 

r-v hE' SETE C 1 :f SETE 
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E,X2 

) 

r~ 
( . .. ) 
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1/ II R2: ----+---, "f-------- ,-.---, 
~----~~~~~ 4r----r ~~--~------~ 

rl 

Figure 22 - Proced1lres in DCF 
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The procedure return consists of three separate instructions: KO, 

Rl and R2. Instructions Rl and R2 pass the resul ts back to the calling 
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environment and RO terminates the called environment when both results 

have been returned. For rl all communicati.on uses data tokens, whereas 

for r2 both data token and memory cell communication is used. 

In this example some of the parameters and results are communicated 

as data tokens (as in data flow procedures) and some are communicated 

via memory cells (as in control flow). The ability to combine control 

flow and . data flow at this procedure level is a direct consequence of 

the combination of control flmv and data flow provided by the basic 

operation model at the level of the individual (SETE) instructions used 

to communicate the parameters and results. 

The procedure structure used here has separate instructions for 

communicating each parameter and each result, so that the procedure is 

non-atomic. Non-atomic procedures generally provide greater possibili­

ties for concurrency. In this example ins truc tions in FI lyhich calcu­

late result rl, and then Xl which uses rl, are concurrent with instruc­

tions in P2which calcu\ate the parameter p2 (not itself used in the 

calculation of rl). Non-atomic procedures also tend to lead to a 

clearer structuring of programs in that the grouping together of 

instructions into procedures can be determined purely by the logical 

structure of the program without being influenced by the need to exploit 

potential concurrency. In order to exploit the potential concurrency 

between Xl and P2 using· atomic procedures, such as are provided in data 

floW, it would be necessary to split F into two procedures, one contain­

ing the instructions of Fl and the other containing those of F2. 

A Sete instruction, as any other instruction, can ha\~e a number of 

inputs and outputs. All outputs ",ould be labelled with the spe.ci tied 
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environment identifier. lhus tIle primi lives provided in LeE could be 

used to construct atomic procedures. Eor the eXf,lllple·in Figure 22 this 

would te achieved by combining all the input Sete instructions (i.e. AI, 

el, C2 and A2) into a single Sete instruction having E', pI, and p2 as 

inputs. Similarly the output instructions (RI and R2) would be com­

bined. With an atomic procedure structure there is the disadvantage of 

a possible loss of potential concurrency. Ihe benefit is that the 

red uced level of concurrency can be organised wi th fewer instructions 

and with fewer tokens (one E' token instead of four, one control token 

for instruction RO instead of two). 

3.2.~. Non-Determinacy. 

In the DCF operational model there are two potential sources of 

non-determinacy, namely simultaneous updates of memory cells (as in con­

trol flow) and the simultaneous emission of two tokens for the sam~ des­

tination (as in data flow). Ihe synchronisation of normal instruction 

activation can be used to control non-determinacy. lhis is illustrated 

in Figure 23 using the same resource manager structure as was used for 

data flow in Figure 13. 

Ihere are two concurrent users A and B of a resource which they 

access by sending "transaction" data toke.ns (p, q) to the re~ource 

manager. lhe resource manager is a critical region which can only pro­

cess one transaction at a time and is protected by P and V instructions 

as in standard control flow techniques using semaphores. ('Ihese· t"'o 

instructions are here sholo.'Il \Vith l-ioor opera tors a1 thougl1 any or~rator 

could be used in ~uch instructjons). lhe. two inputs nEeded for the 
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Figure 23 - non-Determinacy in OCF 

--
activation of P are a control input provided by a "semaphore" control 

token "'hich signals that the critical region is free; and a data input 

provided by one of the transaction data tokens which are sent, possibly 

simultaneously, by users A and B. In the activation stage of executing 

• instruction P there would be an arbitrary choice of one of the available 

data tokens to match with the control token, the oth-.;r dsts token 

remaining until it could be matched with another semaphore token. The 

operator of instruction P is a liOOP and the instruction just outputs its 

data input, thus releasing the transaction into the critical region. 

When all the critical processing (updating the resource) has been com-

pleted instruction V is activated. This again is a NOOP to free the 

critical region by providing a control token for another activation of P 

and thus release another transaction into the critical region. 
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J".3. Machine Organisation arid Implementation 

There were two experimental DCF implementations, carried out as 

separate dissertation projects by M.Sc. students. Both implementations, 

one in software[201 and onc in hardware[19], are based on the design 

shown in Figure 24. This design has a packet communication organisation 

wi th token matching, similar to the data flow machine organisation shown 

in Figure 17(b). The successive stages of the instruction execution 

cycle are split into separate machine resources \vhich form a circular 

execution pipeline. Packets of information flow around the pipeline, 

each packet representing an intermediate state in the execution of an 

instruction or a communication from one instruction to another. 

FIFO PROCESSING UNIT r-----' r------------ --, 
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I 
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instruc tion) 
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L _____ -I 
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Figure 24 - DCF t:i .. chine Organi.sation and hple.aeIi.tatioD. 

The Matching Store receives tokens and collects them into token 

sets. Each token set contains tokens· for the same destination 
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instruc.tion and is sent to the Instruc tiOD Store when the set is com-

plete. There the tokens combine with the destination instruction to 

form an activated instruction. Meinory cell references are then de­

referenced by loading data from the Data Store to produce an executable 

instruction which is sent for execution. The operator is executed to 

give an executed instruction which spec.ifies some memory updates (lnd 

output tokens for distribution to the Data Store and }wtching Store. 

The main components of the design are organised into three fUTlc-

tional uni ts • The Matching Unit implements the Natchi.ng Store. The 

Hemory Unit implements the Instruc Uon and Data Stores as a single 

address space (so that the machine can compile its own programs). Tne 

Processing Unit implements operator execution and output distribution. 

These Units commul).icate by sending packets which are temporarily stored 

in separate first-in-first-out (FIFO) queues between the Units. The 

design could be easily extended for greater parallelism by including 

several Processing Units. 

In the hardware implementation each of the three functional units 

is a separate M6800-based microcomputer. The purpose of this implemen­

tation was as an exercise in build:i.ng a novel multi-processor computer 

from "off the shelf" components. In the software implementation each 

functional unit is a process in a SINULA program.· The purpose of this 

implementation was both as a machine code interpreter to experiment with 

programming the DCF architecture and as a machine simulator to determine 

performance characteristics. Results of experiments performed using the 

simulator are reported in [20]. The m:3.in conclusion that can be drawn 

is that the performance of the Hatching Unit is the limitinz factor 1.n 
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t·he design. On average each instruc tion execution generates two tokens 

and for each token it receives the Matching Unit has to search its 

Matching Store to find any previously received tokens with which the 

newly-received token can match. To balance the design it would be 

necessary for token matching to take half the time taken by operator 

execution. This would be difficul t to achieve using conventional memory 

organisation for the Matching Store and it would probably be necessary 

to use a special-purpose associative memory or have several Matching 

Units per Processing Unit. 
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3.4. SUJ:mlary and Discussion 

The DCF architecture combines elements from control flow and data 

flow architectures. It includes both their separate data mechanisms 

(i.e. by-reference and by-value) and has their common parallel control 

mechanism and packet circulation machine organisation. The DCF opera­

tional model includes as subsets the operational models of control floW' 

and data flow and integrates their various forms of program organisation 

so that both control and data flow styles of machine code can be easily 

combined. 

Comparing the DCF architecture ltli th the more conventional sequen­

tial and mul ti-thread forms of control flow architectures, the major 

difference is in the parallel control mechanism and by-value data 

mechanism. These mechanisms, supported by the packet circulation 

machine organisation, facilitate the execution of highly concurrent pro­

grams. Comparing the DCF architecture with data flow architectures, the 

real difference is in the mor~ primitive level of machine code interface 

that it provides. As'in the DCF architecture, data flow architectures 

can include separate memory accessed by "reference tokens" (for data 

structures), "control tokens" (both the acknowledge tokens in the MIT 

data flow machine and the outputs of switch-out conditional instructions 

act like control tokens), envirorunent manipulation (for procedures) and 

non-determinate instruction activation (for resource managers). In data 

flow such features are incorporated into higher level constructs, for 

example CALLand MERGE instructions. In contrast, they are provided as 

primitive features in the DCF architecture. The more primitive inter­

face of course puts a somewhat greater burd.;n on the 
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programmer/compiler, but gives a more flexible general-purpose architec­

ture. This flexibility is illustrated by the ability to have both 

atomic' and non-atomic procedures and the ability to use a control token 

for any synchronisation requirement. 

The main deficiency of the DCF is that although it includes all 

three of the data mechanisms it only includes one of the control mechan­

ism~. The absence of the sequential 'control mechanism means that there 

would be poor performance for a purely sequential program since a con­

trol token would have to circulate completely around the machine between 

each instruction execution. The absence of the recursive control 

mechanism means of course that the DCF still has the disadvantages dis­

cussed in Chapter Two of data flow and control flow compared with reduc­

tion. 

There are two particular weaknesses in this combination of control 

flow and dataflow concepts. Both of these concern the way addressable 

memory has been incorporated. Firstly there is a potential implementa­

tion problem in supporting' the conventional view of memory which 

requires that an instruction's memory updates are completed before its 

successor instructions are activated. In the actual implementation this 

view is easily supported because both memory updates and instruction 

ac tivations go to the same single Hemory Unit and the former can be 

given priority. However there might be a serious difficul ty in a more 

distributed implementation. 

Secondly there are the differences between "instructions" and 

"data". Both an instruction argument and a memory cell act as a con­

tainer into which an ins true tion can store a value. However these two 
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types of containers have. very different properties: an instruction argu­

ment can contain either an unknown or an actual value (as a literal) 

whereas a memory cell can only contain a value; a memory cell can be 

updated whereas an instruc tion argument cannot (an attempt to overwrite 

a literal with a data token results in an error); the arguments of an 

instruction form a structure with each component being identified by a 

two-part instruction/argument reference, whereas memory cells are 

unstructured. Essentially there are two separate, by-value and by­

reference, data mechanisms, with their respective characteristics inher­

ited froIn data flow and control flow. In its data mechanism the DCF 

architecture is thus only a combination of control flow and data flow, 

whereas in its control mechanism it is a genuine synthesis. The control 

mechanism provides a single integrated notion of activation by a com­

plete set of tokens which includes, as special cases, activation by just 

control tokens (as in control flow) and activation by just data tokens 

(as in data flow). 
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4~ GENEr~ISING CONrROL FLOW 

Having described in the previous Chapter an architecture, the DCF t 

which supports both control flow and data flow, this Chapter describes 

an architecture, referred to as the Recursive Control Flow (RCF) archi-

tecture, which supports all three of control flow, data flow and reduc-

tion. ~~ereas the basis of the DCF was a direct combination of specific 

concepts from parallel control flow and data flow, the RCF is based on a 

set of general principles, the "recursive principles" mentioned in the 

introduction, which have been proposed[17] as the appropriate basis for 

future general-purpose decentralised computing systems using VLSI tech-

nology. These principles of recursive architecture are a generalisa-

tion, based on the use of recursion, of the von Neumann principles 

underlying conventional computing systems. The von Neumann princ.iples 

not only form the basis for conventional general-purpose computers and 

langt~ges used to program them, but also govern much of the design of 

computer networks since their components are von Neumann computers. The 

recursive • architecture princip~es are here developed principally in the 

context of highly parallel computers. They are however also relevant in 

the context of geographically distributed computer networks[52] and that 

aspect is explored towards the end of the Chapter. The concept of 

recursive architecture came originally from the early work of Glush-

kov[53j and subsequent work of Barton[54] and Wilner [55] whilst its 

realisation in the RCF architecture is based on the investigations of 

control flow, data flow and reduction covered in Chapter Two. 

This Chapter follows the same general structure as the preceding 

Chapters, starting wi th the RCF operational model, followed by a 
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discussion of program organisation and finally covering machine organi­

sation. A proposed implementation of the architecture is covered in 

some detail in the subsequent Chapter, together with a comparative dis­

cussion of of several other decentralised computing systems (including a 

computer networking system) which incorporate similar recursive princi­

ples. 

There are two major aspects to the RCF architecture. The first is 

the general principles of recursive structure. Sections One and lbree 

concentrate on these principles and their realisation in, respectively, 

the RCF operational model and the machine organisation supporting it. 

The second aspect is the combination of control flow, data flow and 

reduction in a single architecture. Section 2 concentrates on this 

aspect, covering the various forms of program organisation discussed for 

control flow, data flow and reduction in Chapter Two. 

4.1. Operational Model 

The conventional, control 'flow, operational model is based on the 

von Neumann principles for the organisation of storage, addressing and 

program representation and execution. This Section discusses the alter­

native recursive principles and their realisation in the ReF operational 

model. 

4.1.1. Storage Organisation 

A conventional arch5.tecture provides static, linear storage struc­

tures of fixed size units, such as words of main memory or blocks of 

backing store. The elementary actions on such a structure are to copy, 
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replace or execute the contents of a single storage unit such as a 

memory cell containing a simple data item or machine code instruction. 

A recursive architecture provides a dynamic storage structure supporting 

a single hierarchy of variable length units, referred to as "objects", 

similar to the hierarchy of a block structured program or operating sys­

tem filestore. Each object is either a primitive object, such as an 

integer or instruction, or recursively a compound object comprising a 

sequence of component objects. The elementary actions supported for 

such a structure are to copy an object, replace an object, insert a new 

component into an object, delete a component from an object, or execute 

an object. 

In the ReF architecture the hierarchic object structure is 

represented as a string of symbols comprising data s)~bols for 

representing primitive objects and structuring symbols ( and ) for del­

imiting objects. For example, with integers as data symbols, a 3X3 mul­

tiplication table might be represented as -

( ( 123 ) ( 246 ) ( 3 , 9 ) ) 

At the machine code level the data symbols are just 0 and 1 and each 

integer in this table would actually be represented as a delimited 

sequence of Is and Os, such as -

( ( (1) (10) (11) ) ( (IO) (IOO) (110) ) ( (II) (110) (IDOl) ) ) 
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4~1.2. Addressing 

A conventional architecture uses absolute addreRsine within a one 

level address' space, an address being for example the ordinal number of 

a word in main memory. A recursive architecture uses contextual 

addressing \oTi thin a hierarchic address space, an address being similar 

to a filename in the filestore of an operating system such as u~IXl56] 

or an international telephone number. This contextual addressing is 

based on a set of selectors which can be applied in the context of one 

object to select a related object. For example a selector /2, meaning 

"second component", applied in the context of the object ( 3 6 9 ) would 

select the object 6. An address is a sequence of such selectors, with 

each selector being applied in the context selected by the preceding 

selector. Thus an address, such as /6/3/2 meaning "2nd component of 3rd 

component of 6th component", specifies a path from an initial context to 

a particular object. (In this Chapter a I will be used at the start of 

all addresses and individual selectors, in order to distinguish an 

address from the object it addr~sses and to delimit the component selec­

tors of an address.) 

In the ReF architecture, where the object structure is represented 

by a string of symbols, a selector identifies a position in the string 

between two symbols, selecting both the existing object to the immediate 

right of that position and a space where a new object could be inserted. 

The selectors are illustrated in Figure 25(a) with each selector, 

/<- ("prior"), /-> (llnext") etc., being shown as labeling the position 

in. the string ... .rhich it v:ould identify relative to the position labeled C 

(which is itself identified by the null selector, I). Excluding the 
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/start and /escape selectors, these are a minimum set of primitives from 

which an address for any relative position in the structure can be con-

structed. The various nOu-primitive selectors that will be used are 

also defined in Figure 25(b) as sequences of the primitive selectors. 

(a) Simple positional selectors 

"prior" "next" 
lout 1<- lin 1-) 

... ) ( ( ... ) ... ( ... ) ( ( ... ) ... ( ... ) ) ( ... ) 
c: 

Istart / 
"null" 

(b) Derived Selectors 

"nth next" "nth prior" "nth component" 

• 
Figure 25 - Addressing Selectors in ReF 

lend 

( ... ) ) ( ... 
lese 

"escape" 

There are two forms of addresses, "self-relative" and "base-

relative". The former is just a sequence of s~lectors, such as 

/out/->/->. This would itself be an object in the string, with the 

individual selectors as its component objects, «lout) (/-» (/-»). 

TIle initial context for such an address is the position in the string at 

which the address itself starts. Thus using the multiplication table 

above as an example data structure B, the self-relative address for the 

object 4, from within a program fragme:nt C adjacent to that structure 
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wbuld be as in -" 

.= :::::::-------- -- ---- - - - ----., ---.... . " 
...... " 
~ " 

( ••• ) ( ( 1 2 3 ) ( 2 4 6 ) ( 3 6 9 » ( ••• /out/<-/2/2 ••• ) 
A: B: c: 

In base-relative addressing a previously selected position in the 

string is used as the initial context or "base" for a sequence of selec-

tors -

~~--- ---------." -- - -- -- - - --., . 
............. ----- , 

............... ------- ... - " 
.... ,... --.... -... _- ''''', , ----~ " ~,-- ... ---

( ••• )« 1 2 3 )( 2~4 6 )( 369 »( ••• set$ '/out/<--;.:-$/2/2 ••• ) 
A: B: c: 

The $ in the base-relative address $/2/2 identifies the base position, 

B, previously selected by the set$ /out/->. The remaining selectors 

/2/2 are relative to that base, identifying the same object 4 as before. 

This form of addressing corresponds to the use of "working directories" 

and "root directories" in the UNIX file naming system, the use of 

"currencies" in the data manipulation language of a network data base 

• model [57], and, in conventional machine code, addressing relative to a 

base address stored in a register. 

Compared with conventional storage and addressing there are a 

number of benefits in a dynamic recursive storage structure and contex-

tual addressing such as are provided by the ReF architecture. TI1ere is 

direct support for the representation of commonly used storage struc-

tures (such ~s lists, stacks and queues) and the required addressing 

(e.g._ "next", "first component" and "end") and manipulation (e.g. 

"insert") of their components. There is no architectural limit on a 
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machine's address space, as would be imposed by a fixed address size. 

The total address space of a machine is contained in one (outermost) 

object and for example the machine's address space can be extended by 

the insertion of a new object at the end of that outermost object. Also 

the address spaces of several machines can in principle be combined 

(thus extending each) by embedding each of their outermost objects as 

components within a larger containing object. Such address space exten-

sions do not affect the validity of previously used addresses and the 

resulting address space is completely homogeneous. 

Contextual addressing does however have two particular potential 

drawbacks. Firstly, the representation and interpretation of an address 

is relatively inefficient if the address comprises a long sequence of 

selectors. (References will however tend to be between objects which 

are relatively close in the structure and thus most addresses can be 

expected to be fairly short.) Secondly there is not necessarily a fixed 

correspondence between an address and the object which it will select 

when used. In the situation shown above the self-relative address 
, 

/out/<-/2/2 selects the object 4. However that address would identify a 

different object if sayan additional component were inserted between B 

and C or if the address were used in the context of A rather than C. 

This can clearly cause problems, particularly when on~ part of the pro-

gram needs to communicate an address for use in another part of the pro-

gram. 

The sec~nd form of addressing, using a pre-selected base as the 

initial context, alleviates both of these problems. Once a base has 

been set to a particular position it directly identifies that position 
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and can be used many times' without the need to re-specify and re-

interpret the full selector sequence. Also It continues to identify 

that same position regardless of ~There it is used or of changes to the 

object structure. (A base in the object structure is analogous to a 

bookmark in a loose-leaf folder - it identifies a position between two 

objects (leaves) and retains significance as objects in its vicinity are 

inserted and removed, but is no longer usable if the surrounding object 

(whole folder) is destroyed.) 

In subsequent examples "absolute addresses" will be used, such as 

the absolute address /B to select the 4 from two different contexts in -

( /B/2/2 ••• ) ( ( 1 2 3 ) ( 2 4 6 ) ( 3 6 9 ) ) ( ••• /B/2/2 ••• ) 
A: B: C: 

This is just a notational convenience and the /B in these addresses 1.5 

intended to represent the appropriate sequence of selectors (/out/-> 

from within A, or /out/<- from within C). 

4.1.3. Program Representation 

The operational model of a conventional architecture is embodied in 

a low level machine language in which instructions are elementary opera-

tions performed on elementary operands. A recursive ~rchitecture pro-

vides a recursive machine language supporting nested program structures, 

such as is found in the string reduction model. In such a language an 

instruction has an "operation object", which Ulay be a simple operator or 

say a procedure, operating on "operand objects", which Ulay be simple 

data items or complex structures. 
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The operational model of the ReF architecture is e.. generalisation 

of the conventional sequential control flow model which includes the 

control flow, data flow and reduction models as subsets. In this model 

a program is structured into executable objects, instructions and argu-

ments, as for example in the ·struc ture -

executable object 
, A , 
Instrl Instr2 Instr31 Instr32 Instr4 

A 

" A '" ~ A. • , , , ,. .. 
op in in out op in out ·op in out op in op in in out 

(Ala Alb Ale AId A2a Alb Ale (AlIa Allb Alle A32a A32b) A4a A4b A4c A4d) 

The executable object contains a (sub-structured) sequence of instruc-

tions (Instrs), each of which comprises a sequence of arguments (As), 

themselves executable objects. Execution of such a object, invoked by 

some instruction in the program, would normally proceed sequentially 

from instruction Instrl through to instruction Instr4 and then ter-

minate. In a subordinate object such as ( Instr31 Instr32 ) the con-

tained instructions are executed in sequence. Of the arguments forming 

an instruction such as Instrl, the first is the operation (op) which 
• 

detennines the interpretation of the following arguments. TI1e operation 

is fo11 o\,'ed by input arguments (ins) providing its operands. These 

argtnuents are subordinate executable objects, e.g. expressions, which 

are recursively invoked in parallel by the operation and return the 

operands. The simplest form of operand is a data item such as an 

integer which when invoked returns itself. Following the input argu-

ments are th~ output arguments (outs) specifying where the results of 

the ~peration are to be stored. For an instruction at the end of its 

containing object an output argument may be absent, as for instruction 



- 88 -

Instr32, in which case the result is returned to the invoking instruc-

tion. (An executable object may comprise a number of such return 

instructions and will thus in the general case return a sequence of 

results rather than a single result). An address may be given in an 

argument position, in which 'case the addressed object. is used as though 

it occurred as the actual argument. 

Figure 26 shows a representation of the example from Chapter Two -

n. = (b+l) * (b-c) where b=7-3, c=2 

The object A comprises two instructions, il 8.nd i2, which are executed 

in sequence. The instruction iI, - 7 3 In, computes the value 4 and 

stores it at B for use by subsequent instructions, as in the conven-

tional control flow model. Instruction 12, * (i3) 114, is structured as 

in a reduction model: it has no output argument so that its result is 

returned to whatever operation invoked A; its operands are provided by 

recursively invoked instructions 13 and 14. The first of these, 13, is 

embedded directly as an actual argt~entwhereas the other, 14, is 

invoked via its address /14. Boeh 13 and i4 have the address of B as an 

input argument to access the value computed by 11, and have no output 

arguments so that they return their results to 12. 

A: B: c: 14: 
( - 7 3 /B * ( + /B 1 ) /14 ) 0 2 ( - /B Ie ) • • • 
~ 

'---.r---J i3 \ ... I 

i1 Y' 
J 14 

i2 

Figure 26 - Prograa Representation j.n ReF 
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This example has illustrated the combined use of concepts from con­

trol flow and reduction styles of program representation. The Section 

on Program Organisation will consider in more detail the way in which 

ReF programs" can be organised as in control flow, data flow and reduc­

tion. In addition to the gen"eral concepts of program representation 

presented here, this will require the provision of specific types of 

primitive arguments, such as the? ("unknown") arguments used in data 

flow and parallel control flow. 

4.1.4. Prograa Execution 

lbe conventional operational model has a sequential control mechan­

ism with a single locus of control or "activity" proceeding serially 

through the program. 

ments reflects the 

The interface between an operator and its argu­

basic processor/memory interface of load and store 

operations on single memory cells. A recursive program representation 

requires some form of recursive control mechanism such as that of the 

reduction models presented in Chapter Two. In a reduction model there 

is a tree of concurrent activiti~s each evaluating some part of the pro­

gram strue ture and returning its result to the activity which invoked 

it. The basic operator/argument interface is the demand for an argument 

to execute and the return of the result produced by its execution. 

The RCF model incorporates the sequential, parallel and recursive 

control mechanisms. An executable object (generally comprisi-ng a 

sequence of instructions) is executed by an activity which moves sequen­

tially through the instructions executing each operation. in turn. TI1ere 

may be several independent activities executing instrcction sequences in 
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parallel. lhe execution of an operation by an activity will involve 

subordinate activities which recursively execute the objects forming the 

operation's arguments. To accommodate various operation/argument inter-

faces, such as demanding and returning operand values, the model incor-

porates general commu~icatio'n of "message" objects between superior and 

subordinate activities as they cooperate in the concurrent execution of 

a program structure. 

This model of execution is illustrated in more detail in Figure 27 

which shows successive stages in the execution of the example j.n Figure 

26. The position of activities in the program string are, as previ-

ously, indicated by I symbols. To illustrate the progress of execution 

this Figure also shows the tree structured relationships between supe-

rior and subordinate activities (identified as P, Q, R, etc.) and the 

messages communicated between them. These messages are primitive 

objects representing integers or specifying particular actions to be 

performed at the destination. For example in (v) the replace-with mes-

sage followed by the message 4, sent to the activity S, causes the 

object 4 to replace the object 0 at which S is positioned. , 

Execution of an operator consists of the following five steps, 

exemplified by activity P executing (in (i) - (vi» the - operator of 

the control flow style instruction - 7 3 IB, and the same activity then 

executing (in (vii) - (xi» the * operator of the succeeding reduction 

style instruction * (+ IB 1) 114. 

1. As shown in (ii) and (viii) two subordinate activities, Q and R, 

are positioned at the input arguments and a subordinate activity, 

S, is positioned at the output argument (if there is one). 



(!) 
il 

"p~ 
(}- 7 3 IB * ... /14) ••• 0 

B: 

(ii) 'p 

:e{x~:yexec 
P Q R S 

(}- }7 }3 J/B * ... /14) ••• 0 
B: 

(~~pl}oPY 
p Q R r---------~ S , . ~ 

(}- 17 13 IB * ... /14) ••• 10 
B: 

(ll) Ir 
P Q R S 

(1- }7 }3 IB * ... /14) ••• 10 
B: 

"-(y) p 

/I~ 
P Q R () S 

(1- 17 13 IB * ••• /14) ••• 10 
B: 

" (vi) P 
--(-\7 3 IB 1* ••• /14) ••• 4 . '-_____ ..1 E: 
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12 
"- P, A , 

( - ••• 1* (+ /B 1) 114) 
••• 4 2 (- Ih IC) 

B: c: 14: 

(viii) 'p 

exec/\ exec , ~ 
P Q R 

( ••• 1* 1(+ IE 1) 1/14) 
••• 4 2 (- IB IC) 

B: c: 14: 

"-
(ix) P 

~~\opy . r'" 
P Q S 'I 

( ••• }* (1+ liE II) 114) 
.......... R 

P 
( ••• 1* 

(xi) 

"'" ••• 4 2 (1- IB Ie) 
B: c: 14: 

H:" 
/;.~ 

Q R 
y-+~4 4,- ~2 

Q 'I ) 
(1+ IB II) 114) I 

I 
I 
I 
I , 
~s l V R 

••• I I 4 I 2 (1- 11 Ie.) 
".. B .1'(.. 14' I / , -.. ., , L __ h: _______ -' " 

L _______ -1 

( ••• *,( + IE 1) 11~ 
'- __________ J 

• • • 4 2 (- IB 1(. ) 
IS: c: 14: 

Figure 27 - Program Executiou in ReF 
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2. These s.ubordinate activities .are sent execute messages to initiate 

the execution of those arguments. There are three main types of 

arguments that may be executed. 

2(a). In the case of an address, such as the /B executed by S 
, 

«ii) (iii» or the /I4 executed by R «viii) - (ix», the exe-

cuting activity is re-positioned at the addressed object. It con-

tinues executing there as though that object were the actual argu-

mente 

2(b). In ·the case of a data item, such as the 7 executed by Q 

«ii) (iii» or the 0 executed by S «iii) - (iv», no fur ther 

evaluation is possible. The executing activity just remains posi-

tioned at that object until a message is received specifying some 

action on it, such as copy (iii) or replace-with (v). 

2(c). In the case of a subordinate instruction, such as the 

(+ /B 1) executed by Q «viii) ~ (x», the same steps are recur-

sively applied in the execution of its operator, creating in (ix) 

the activities Sand T as subordinates of Q. lhe complete tree 

structure of activities which is created by this recursive execu-

tion, and the positioning' of those activities by the various 

addresses, is shown in (x). The operators being executed by P, Q 

and R are shown at the nodes of the activity tree. The activity 

tree structure corresponds to the infix structure ( (BTl) * (B-C) ) 

of the expression being evaluated. 

3. Mter P has initiated the (concurrent) execution of the input argu-

ments by subordinate activities, Q and R, their results are 

accessed by sending copy messages «iii) and (ix». \Vhere the 

input argument is a data item, a copy of that item is returned 
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«iii) - (iv». Where 8n argument is a subordinate instruction; 

(~ IB 1) or (- IB Ie), the result, 5 or 2, of that instruction is 

returned.«ix) - (x». 

4. !he returned values are then used to compute a result which is han-

dIed in one of two ways depending on whether an output argument was 

used.' If there was an output argument then, as in (v) - (vi), the 

result, 4, is sent with a replace-with message to the activity, S, 

which executed that argument, causing the result to replace the 

object at which that activity is positioned. A subsequent instruc-

tion may need to access the new value of the reylaced object (in 

this example 12 does so). 10 ensure correctness in such a cir-

cumstance P will not continue until the replace-with has taken 

effect, as indicated by an acknowledgement message from S (the 

empty object () is here used, arbitrarily, for the acknowledge-

ment) • If there was no output argument then, as in (x), the 

result, 10, is returned. In (x) is shown the complete flow of 

returned values up the tree of activities recursively created by 

the execution of the nested instructions • 
• 

5. Finally subordinate activities terminate and P moves past the 

operator's arguments to execute the next operator j.n sequence (vi) 

or terminate if it is at the end of the sequence (xi). 

In this model the organisation of an activity, P, is analogous to 

the organisation of a conventional processor. Ihe activity's position 

in the program string corresponds to a processor's instruction counter. 

The other activities with \o.hich it can communicate correspond to regjs-

ters each of ~hich makes available a val~e or a location in addressable 
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storage. In this example the only activity "registers" used 'vcre those 

for an operator's operands (e.g. P's subordinates Q and R) and for the 

result (P's S subordinate or superior). The actual machine code 

(defined in Appendix A) provides for a larger number of subordinate 

activities which act as "general-purpose registers". Apart from access­

ing operands, a subordinate activity, $, can be used as the base· for an 

address such as the $/2/2 discussed earlier, vIi th the remainder of the 

address being relative to the activity's position. In fact all address­

ing is relative· to the position of an activity, the usual form of 

address, e.g. /out/<-/2/2, being relative to the initial position (the 

address itself) of the activity executing the address. 

4.1.5. Further Examples 

The concepts of program representation and execution in the RCF 

model ~ere introduced above by an example based on the concepts of con­

trol flow and reduction introduced in Chapter Two. In that example an 

instruction's operation object is a conventional operator; each argument 

is (the address of) a simple data item or an instruction returning a 

simple data item; the communications between activities consist of 

storage access requests c.opy an.d replace-with (supporting load and store 

of the conventional operato r/ 8.rgument interface), execute requests (sup­

porting demands of reduction's operator/argument interface), and simple 

data items returned in responsf! to those requests. More generally, an 

operation or argument is a progrc:m fragment t,lhich organises the creation 

of subordinate activities, the sending of messages to subordinate and 

superior activ:f.ties and the processing of messages received from them. 

A message communicated to an activity can be any structured or primitive 
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object, including a data item, a selector to re-position the activity 

and a specification of one of the elementary actions on an object, 

namely: execute, replace-,01ith, copy (these three have been illustrated 

in Figure 27), insert (followed by an object which is inserted at the 

activity's position), and take (which is a destructive copy, deleting 

the object). The use of the. model for different possible 

operator/argument interfaces will be discussed using two examples shown 

in Figures 28 and 29. The first of these uses the storage actions take 

and insert applied to streams of values as an alternative pair to copy 

and replace applied to simple memory cells. The second illustrates the 

use of actions other than the elementary ones di.rectly supported by the 

architecture. 

~~ alternative to the use of addressable memory cells for communi­

cating data is the use of addressable streams of values. Whereas for a 

memory cell the data's producer replaces the value of the cell and the 

consumer copies the latest value, for a stream the producer inserts a 

value at the end of the stream and the consumer takes the first unused 

value from the front of the stream. 

The example shown in Figure 28 illustrates the use of streams as 

operands and result of an addition instruction, i1. The addresses, 

IAlin, /B/in and /C/in/end, used in this instruction identHy the first 

elements of the operand streams A and n and the end of the result stream 

c. The state of the streams prior to the execution of the instruction's 

operator by activity P is shown in (1). The operator stream+, behaves 

exact~y as the usual addition operator + except that instead of using 

copy and replace-with to access arguments, take is used for inputs and 
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insert is used for output. Subordinate activities Q, Rand S for the 

input and output arguments' are created and positioned by the addresses 

as shown in (ii). In (ii) is also shown all the communication between P 

and its subordinates, namely take messages to access operands, the 

returned values 3 and 6, and an insert message with the result 9 of the 

addition. (An insert does not generally require the acknowledgement 

used for replace-with in Figure 27(v).) In (iii) the first elements of 

the operand streams have been deleted by the take actions of Q and R, 

and the 9 has been inserted at the end of the result stream. 

tV 
p 

Istream+ /A/in /B/in /C/in/end ••• ( 2 6 ) ( 3 4 5 ) ( 6 8 10 ) 
~~ __________ ~y~ ______________ -J' 

C: B: A: 
il 

(1.1) Her'> .... ___ t_a_k_e~ ___ t3_ke_: ~Z ~ 
P S R Q 

/A/in /B/in /C/in/end ••• (2 6 I) (13 4 5 ) (16 8 10 ) 

~\ \, \ .. ------------9.-=-___ 1 B=! Al 
','--------------------------' I '-------- ----- - - - -- ------- - --- - -- --- ----' 

lstream+ 

",..------------- --'-~ 
,~ ~ 

streamt;~ /A/in /B/in /C/in/cnd I ... ( 2 6 9 ) ( 4 5 ) ( 8 10 ) 
c: B: A: 

Figure 28 - }~ RCF Instruction ~~ich Operates on Streams 

In the organisation of concurrent systems communication via 

streams, as in il of Figure 28, and communication by updating shared 

m~mory, as in i1 of Figure 27, can be considered as complementary 

mechanisms of equal importance. The UNIX operating systern[56] supports 

both as primitives, in the form of files and "pipes", and there an! 
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programming languages [58,5S,IE] in which both have equal status. In 

the next Section there will be particular examples of the use of the 

general concept of ,,'stream operands" in the organisation of iteration 

and resource management. 

The second example,' in Figure 2S, illustrates the possibility of 

instructions with complex operators and operands. 

(1) 0 
-p~ 

I (ave) , /A /A /E 
v= 
il 

• • • «set)( ••• » 
B: 

~ rr_i_n_s .... t"ance , 
( (set) (I 7 5 3 b 6) ) 

A: 

(li ) "e" fI 0" "u" "N" "'I II 

( . · · I ... ) 

p 
(ave) /A /A /B I 

, ':I( '--------' 
. . 

(,'s" "U" "N") 

• 5 «set) (I 7 5 3 a 6) ) 
B: A: 

(l i 5 3 f, to» 

Figure 29 - An RCF Instruction w1~h Progr~ed Operator and Ar~~ents 

The instruction 11 has two input arguments and un output arg~ment. 

Rather than being an elementary type of data j.tem, such as an integer, 

an operand object, A, is of a program defined type, namely a set of 

numters (set) for y,'hich the defined access actions include SUlIl (return-

ing the sum of all melOters), count (returning the numler of U1€lllLe:rS) "nd 

replace-y"ith (which as usual replaces the whole object Y.'ith a spe:cified 

value). Rather than being an elementary operator, such as -+, . the opera-
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tion 0 is a program defined operator ave which takes set operands, 

dividing the sua. of the first oper'and by the count of the second so that 

if the two operands are the same set (as in this example) the result is 

its average. 

In (i) activity F'is about to execute the operator of the instruc-

tion i1. This operator is a program fragment comprising instructions to 

achieve the effects shown in (ii). As for an elementary operator, 

subordinate activities Q and R are created to execute the operands and 

are sent messages specifying actions on them. Here the messages are 

compound objects, with characters ItS", "U" etc. as components, specify-

ing the actions sua and count, rather than primitive objects specifying 

the elementary copy or take actions used previously. The first com-

ponent of the object A represents the A's type, set, as a program frag-

ment, executed by accessing activities Q and R. TI1is type objtct 

comprises instructions to recognise messages such as the character 

string ("S" "u" I'M"), and implement the specified actions. (The second 

component of A contains the data specific' to this particular instance of 

the set type, namely the actual set members, manipulated by the "type" 
, 

program fragment.) The value, 30, returned by Q is divided by the value, 

6, returned by R to produce the result, 5. As for a standard operator, 

this result is sent to the subordinate activity S with a replace-with 

message which is acknowledged by a () message. The set program fragment 

executed by S responds to this message by replacing the whole of its 

containing object with the 5, as sho\o."O. in (iii). 

The progra~ structuring approach us~d in this example is similar to 

that used in "object-oriented" programming[60]. lbis approach is 
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intended to .support modularity and flexibility in the construction of 

programs from more or less independently conceived program fragments. 

The basis for this approach is that the code for performing actions such 

as count on a data structure is included as part of the data structure, 

rather than being part of the program fragment using the data structure; 

and that there is a common framework for interactions between all opera-

tors and operands, whether elementary or program-defined. Examples of 

the resulting modularity and flexibility are that the program containing 

o can be used without modification on instances of any data types (e.g. 

lists and matrices) which support the required actions; changes in the 

implementation of the set data type (e.g. the count and sua being main-

tained as members are inserted, rather than calculated on each access) 

can be implemented by changes local to the "type" program fragment; an 

instance of the set type supporting the standard replace-with action 

could be used as the result destination of even an elementary operator. 

4.1.6. Discussion 

In all aspects of the ReF model, as in any recursive system, there 
, 

is a general framework which embodies the essential concepts of the sys-

tem and a set of relatively arbitrary primitives ~lich are a basis for 

constructing more complex structures within that framework. The essen-

tial concept of storage is the grouping together of an arbitrary number 

of (primitive or compound) objects as a compound object. The essential 

concept of addressing is a sequence of selectors each being relative to 

t~e positiouidentified by its predecessors in the sequence, or, for the 

first ·selector, relative to the pre-establi~hed position of an activity 

in the object structure (either the activity executing tim address and 
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thus the position of the address itself, or a distinct "base" activity). 

For program representation the essential concept is an "instruction" 

being the application of a (primitive or compound) operation to (primi­

tive or compound) arguments. For program execution the essential con­

cept is the execution of objects by dynamically created trees of con­

current activities with communication along the arcs of a tree. 

For storage and addressing a fair;ty minimal set of primitives have 

been adopted which although inadequate for a practical system are suffi­

cient to illustrate the concepts of recursive storage and contextual 

addressing (and to initially investigate the utility and implementation 

of those concepts). 1he storage structure primitives are the delimiters 

( and) for constructing sequences of objects and the primitive objects 

such as integers, ultimately represented as delimited sequences of Os 

and Is. The addressing primitives are selectors identifying simple 

positional relationships (such as "priorI!) between objects. For program 

representation and execution (l similarly minimal set of primitives tvould 

be: (i) the elementary actions of copy, take, replace-with, insert and 

execute applied to an object; (ii) 8imple facilities for the creation of 

subordinate activities and communication between related activities; 

(iii) data operations on communicated values, just NOR. 011 ~minterpreted 

bit-strings being sufficient; (iv) the composition of these primitives 

by sequential execution. Programming in the general style 0'£ Figure 29 

requires that primitive machine operations such as creating and communi­

cating with subordinate activities be directly available at the machine 

cO,de intet'f~ce. The earlier examples were discussed in terms of 

slightly higher level construe ts, such as the operators +, * and 

stream~, which use those primitive machine operations in a standard way 
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of sufficient general usc to be provided as elementary operators in a 

machine code instruction set. The following Section descri.bes a com­

plete set of such machine code constructs for the representation of pro­

grams organised in the particular styles of control flow, data flow and 

reduction. 
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4.2. Program Organieation 

One of the main purposes of the ReF architecture is to allow pro-

grams to be organised in the styles of control flow, data flow and 

reduction programs. This Section discusses the way in which the basic 

control flow, data flow and reduction models are supported and then, as 

in previous Chapters, discusses data structures, conditionals, pro-

cedures, etc. First however it is necessary to describe the (machine-

code level) programming constructs used in this Section, elaborating the 

basic concepts of program representation and execution introduced in the 

last Section. 

4.2.1. Notation 

Structures -

(Instrl Instr2 (Instr31 Instr32) Instr4) 

In executing a structured object its components are executed in 

sequence. Execution terminates at the final). Internal delimiters 

(such as those containing Instr31 and Instr32) are ignored and in par-
I 

ticular the empty object 0 acts as a NOOP. Termination at the end of a 

structured object is a default that can be overriden by, for example, 

addresses which explicitly transfer control. This default requires a 

difference between transferring control within the object being executed 

and transferring control to a different object. Whilst the activity 

remains within its current object, reaching the end of that object will 
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terminate the activity -

object ..... r "\ 

( ( ••• ) ( ••• /esc/-> ••• ) ( ••• ) ( ••• ) ( ••• ) ) 
,.'1----------~....... ".?f"- -------:),1 

' '------- - -----' 
start of execution termination 

If however an address takes the activity outside of its cqrrent object 

then it is the end of the addressed object which causes termination of 

the activity -

new 

, old object o~ 

( ( ••• ) ( ••• /esc/-) ••• ) ( ••• ) ( ••• ) ( ••• ) ) 
.;r,----~... .,..--~ .,' I '--- ----- --- --,' I I 

start of execution re-start termination 

~ manipulation operators -

(i) ••• operator input ••• out pat •••• 

(ii) ( ••• operator input ••• ) 

(iii) ••• streamoperator input ••• output ••• 

The operator defines the number of input arguments (usually two) and 

• output arguments (usually one), all of which are objects executed con-

currently by subordinate activities. In the usual case (i) the operator 

uses the objects returned by the activities executiIlg the input argu-

ments or copies the objects identified by them, producing a result which 

replaces the object identified by the execution of the output argu.'llent. 

Execution then continues following the last argtwent used. In the case 

of an instruction with no output argument, a "return instruction" (ii), 

the result is instead returned to the superior activity. For a stream 

operator (iii), as in the stream+ of Figure 28, ta~~ and insert are used 



- IG4 -

instead of copy and replace. lhe data manipulation operators that ~ill 

be used in this Section are: subtraction (-), addition (-I), multiplica-

tion"(*), identity (:=) for which the result is just the value of the 

single operand, comparison (=) for which the result is TnJ.e if the two 

operands are identical _and False otherwise, and conditional (if) which 

has three operands, the result being the second operand if the first 

operand is True, and the third operand is the first operand is False. 

Data items -

intescr 

boolean 

The executing activity stops at the data item, identifying it for subse-

quent use by the superior activity. If there is no superior activity 

then the activity executing the data item just terminates. lhe..!. (stop) 

represents an arbitrary data item included only for its effect of stop-

ping the executing activity. 

Addressing -

(i) Isel/sel/ ••• /sel , 
(ii) $/sel/sel ••• /sel 

(iii) setS argument 

As discussed earlier, a sequence of selectors (/sels) forming on address 

acts as a branch instruction, re-positioning the executing activity at 

the addressed object. An address is either "self-relative" (i), i.e. 

relative to its ovm position in the program, or "base-relative" (li), 

i.e. relative to a previously selected base position. lhe $ prefix in a 
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base-relative address is a form of selector which identifies the context 

for the remainder of the address as being the position of a subordinates 

activity of the particular activity executing the address. (For the 

purposes of this Section only one base, identified by $, is needed, how­

ever in the machine code there may be several subordinates providing 

different bases identified as $1, $2 etc.) T~e set$ operator (iii) is 

used to select the base position for the second form of address. It has 

a single argument (an address) which positions a subordinate activity at 

an object for use as a base in subsequent addresses •. 

Concurrency control -

(i) ... par ObI par Ob2 par 

(11) ••• ( ? ••• ) ••• 

(iii) ••• ( excl • •• ) ... 

The parallel operator par (i) supports the parallel control mechanism in 

which program fragments are executed independently. An independent 

activity is created and positioned at the following object, Obl, whilst 

the original activity continues at the object following that. If (as in 

(i)..: ~s are used to separate the program fragment components ObI, Ob2 

etc., of a structure then those' components are all executed in paral­

lel). There are two constructs for synchronising concurTent activities. 

The first (11) is an "unknown", represented as a ?, similar to that 

used in the data flo,,, model. An unknown wi thin an object, say Ob, 

causes the execut1.ng activity to be suspended to the immediate left of 

Ob. It rema~ns suspended until it is no longer adjacent to Ob, i.e. 

until 01) is deleted or replaced, or a new object 1.s inserted before it. 

Execution then continues normally with the object following the deleted 
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object, or with the replacement or inserted object. TI1e second con­

struct (iii) is an "exclusion" argument, excl, which prevents simultane­

ous execution of an object by more than one. activity. When first exe­

cuted the excl turns into a 1. Thus the first activity to attempt to 

execute an object containing a excl will succeed, but subsequent activi­

ties will be suspended by the? reSUlting from the first execution. 

Evaluation control -

(i) Isellsel ••• Isel!:.. 

(11) ':object 

(iii) ••• Isel/seleval/sel ••• 

(iv) ~ operand 

The default is that an argument is executed and similarly that the 

object finally identified by the last selector in an address argument is 

itself executed (although the objects identified by preceding selectors 

in the address are not executed). These defaults can be overridden as 

indicated by the use of (underlined) quote (!:..) and eval constructs. An 

address with a quote suffix for its last selector (i) (which will be 

referred to as a quoted address) indicates that the finally addressed 

object is to be treated as tho"llgh it were a data item - the activity 

executing the address is just positioned at the addressed object rather 

than executing it. Similarly an object with ~ quote prefix (ii) 

(referred to as a quoted object) is itself treated as a data item rather 

than being executed. TI1e inhibition of evaluation produced by the use 

of quotes is ,complemented by an evaluate construct, eval, which forces 

extra evaluation. This can be included as a suffix to a selector within 

an address(Hi). The object, say Ob, identified by the selector 



- 107 -

sequence up to that point will be itself executed by that activity, say 

P, which is executing the address. lypically Ob will itself be an 

address to re-position P and that new position becomes the context for 

the next selector in the original address. The eval construct can also 

be used as an operator (iv). The single input argument is executed by a 

subordinate activity to produce the actual operand in the normal way. 

That operand (e.g. a computed address) is then itself executed, just as 

though it were in the place of the eval operator. 

Structures, operators, data items and addressing have been dis­

cussed at some length in the preceding Section. However the newly 

introduced constructs for controlling concurrency and evaluation require 

some discussion before their uses are illustrated in the remainder of 

this Section. 

The unknown and exclusion arguments for controlling concurrency 

each support a particular synchronisation structure in w!dch one 

activity delays the execution of its program fragment uutil another 

activity completes the execution of its program fragment. In the case 

of the exclusion argument the two activities are executing the S3me pro-

gram fragment this is the synchronisation structure used wi-til the 

sequential control mechanism (typically with mUltiple processes execut­

ing a shared program). In the case of the unknown argument the two 

activities are executing different program fragments (e.g. two data flow 

instructions) this is the synchronisation structure used with the 

parallel control mechanism. TIle third synchronisation structure is the 

impli~it synchronisation of an operator waiting for the return of an 

o~erand. In this case the two activities are executing nested program 
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fragments this is the synchronisation structure used with the recur-

sive control mechanism. 

The evaluation control constructs (.: and eval) support the impor-

tant requirement that an executable program fragment can also be treated 

as data, as for example in editing a program, and vice-versa, as for 

example in executing the data produced by a compiler. In a control flow 

architecture the content of a memory cell is treated as data if used as 

an· operand for an instruction, but is executed if that memory· cell is 

encountered in the flow of control. Most data flow architectures main-

tain a strict separation between the program (graph) and the data 

(tokens), and consequently most data flow machines cannot be used to 

compile or edit their ov.7!l programs. In reduction everything is normally 

executed and there are special operators such &s the «UOTE and BVAL 

operators of LISPI25] for explicitly inhibiting &nd forcing execution. 

For the ReF architecture tile only essential is that there be the ability 

to control precisely executi.on of addressed objects using the ~ suf-

fix to force execution and the ~ suffix to Frevent execution. (A norm&l 

address without selector suffixes, /sl/62/s3, is equivalent to 

/sl:/s2:/s3eval, i.e. the final addressed object is executed but inter-

• mediate objects selected are not.) The other two constructs, the eval 

operator and a .: prefixing an object, correspond to the EVAL and «VOlE 

operators of reduct jon and are included for their convenience. 'lhe 

effect of using a quoted object could be achieved by using the quoted 

address of the object - for t'xample executing <:Oh) 11&5 the same effect 

8S executing '«/esc:) Ob), i.e. the executing activity is just posi-

tioned at Ob. !he effect of the eva! operator could be BeLieved by 

storing the operand returned by .i ts argUlllent and transferring cont rol to 
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that operand (as is done in control flow). 

4.2.2. Including Control Flow, Data Flow and Reduction 

Figure 30 shows six different organisations for the example expres-

sion a = (b+l)*(b-c) 'the first five being organised as in one of the 

specific models covered in Chapter Two. The conventional control flow 

program (i) has essentially the same representa~ion as in the standard 

control flow model (originally illustrated in Figure 1) and requires no 

further explanation, other than to observe that quoted addresses are 

used in order to reflect conventional semantics. 

In parallel control flow and data flow (as originally illustrated 

in Figures 3 and 4) all instructions are executed concurrently and com-

municate by passing tokens. In (ii) and (iii) parallel operators (pa~) 

are used as separators between objects to create the required con-

currency and the' execution of each object is explicitly terminated by a 

final •• The need for a "token". is represented by an unknown, (?), to 

suspend execution until the token arrives. In (ii) each unkno~n 

represents the need for a "control token". Such unknowns precede the 

instruction's main operator, thus completely suspending execution of the 
• 

rest of the object. Each control token is communicated by an instruc-

tion such as i which replaces a specific (1) in another object by a () 

(I.e. a NOOP) to remove one synchronisation constraint on the execution 

of that object. For this instruction, :- :() Ix, the output argument is 

the address of the unknown; the single input argument is a quoted object. 

so that the actual operand is that object, 0; the operator is the iden-

dty operator, :,.., so that the result with which the addressed object is 
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(~) Conventional Control Flow -- b: c: t 1: t2: a: 
(+ Ib'.:.. 1 Itl-'-~) (- Ib'.:.. Ic" It2:':') (* Itl'.:.. It2: la'.:..) • 0 0 4 2 5 0 () 

(l!.) Parallel Control FIm" -- ' ()"control tokenll 

r---- ---- -- ----- -----..-- - -- - --- - -'. 
I' " 

par «?) + Ib 1 Itl ( : = ::"'0 IX.!.» par « 1) - Ib Ic (:=::"'0 IY .!.» oJ 

~ f:- ---- ----- ----__ r 
i ~ ( ?) (?) * Itl It2 la ••• 

x: Y: 

(iii) Data Flow ---- "data token" 5 
I • ~ 

par (+ (?) 1 li3/2 .!.) par (- (?) (?) li3/3 .!.) par (* (? ) ( 1) ... 
,t -i3: 

(iv) Strina Reduction 

/ \ \ 
( * r + (:= Ib: lout" lout) 1 lout: lout ) 

\. 

I"" T 

l. 
lout: ~opy of ( - (: = Ib: lout'.:.. lout) (:= Ic'.:.. lout'.:.. lout) 

definition 
lout" lout) . . • I - • 0 . 2 (- 7 3 lout.':.. lout) 

c: b:'-----v= " B 

(~) Graph Reduction 

( * ( + Ib 1 lout: lout) ( - Ib Ic lout'.:.. lout) lout'.:.. lout) • . • ...... ............. 
~ 

execute • • 0 2 (exel- 7 3 lout: lout) 
definition c: b:'-- 'Y 

J 

B • 
(vi) Combined Control Flow, Data Flow and Reduction -----

i1 i2 13 , A , I 
,. , , A-

" par ( + /b 1 /i3/+1 .!.) ( - Ib Ie li3/+2 'Ie (1) -'ft,0 I a'.:.. ) ••• 

~ ~ ~t "- t-
o •• () (excl - 7 3 IOllt: lout) 2 

a: b:-' - I c: , v 
B 

Figure 30 - Different Organisations for Expression Evaluation in RCF 

::..... .. 
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replaced js just the operand. In (iii) each unknown represents the need 

for a "data token" and forms a particular argument of an instruction, 

thus suspending execution of just that argument. Each data token is an 

instruction's result stored at the appropriate argument position in the 

instruction using that result. 

In string and graph reduction (as originally illustrated in Figures 

5 and 6) an instruction is an expression ~hich replaces itself with its 

result. 1hat result is then executed (in general the result may ~e a 

further expression which again replaces itself with its result). In 

(iv) and (v) reduction expressions are represented by objects of the 

form (operator operand operand lout~ lout). 1his includes two single­

selector, lout, addresses which address the object itself. Ihe first 

such address is the output argument for the operator, causing the result 

to replace the whole object (this must be a quoted address to specify 

the object itself rather than cause its execution). Ihe second such 

address is a simple branch instruction causing execution to continue 

with the result. 

String and graph reduction treat referenced definitions such as B 

in different ways. 10 string t;eduction a copy of the definition 

replaces the reference and is then executed. 11ds form ot self-

replacing Ieference 

(:- Ib~ lout~ lout). 

is represented in (iv) by an explicit instruction 

(This instruction has the form of reduction 

expression with an identity operator for which the input argument is the 

quoted address of the referenced object, B, so that the operand 1s » 

itself rather than the result of executing it.) In glaph reduction the 

referenced definition is executed in place and so a simple address, Ib, 
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is used to reference it in (v). Graph reduction is able to support lazy 

evaluation where a shared expression is only evaluated once. In (v) 

lazy evaluation of B is achieved by preceding its operator with an 

. exclusion argument, excl, to prevent multiple execution. The first 

activity to execute B will change the excl to a ? and continue executing 

the operator. Any subsequent activities will encounter the ? and thus 

be suspended at B until it is eventually replaced by the result of the 

operator. 

A possible combination of these different organisations is used in 

(vi) • The independent instructions il and 12 are executed in parallel 

as a result of the initial par operator. In contrast, 12 and 13 (which 

is dependent on 12's result) are executed sequentially. The shared 

sub-expression, B, is organised for lazy evaluation as in graph redl!C-

tion. Both 11 and 12 store their results directly into the input argu-

ments of :1.3 which is the only user of those resul ts. The argwnent in 13 

for the result of 11 is an unknown to synchronise those two instruc-

tions. In contrast, the argument for the result of :1.2 is just the empty 

object, acting as a place-holder, since synchronisation is unnecessary. 

The ReF model 1.s based on the conventional control flow model with , 
implicit sequential execution and explicit transfers of control, and the 

ability to address and manipulate any storage location explicitly. The 

inclusion of data flow and reduction depends on two generalisations of 

the conventional model. Firstly there is the generality of information 

structure and addressing. This allows an instruction to address another 

instruction's input argument as a storage location for its result, as 

r~quired for data flow. It also allows a large object such as a struc-



- 113 -

ture of nested expressions to be directly replaced with its result, as 

required for reduction. Secondly there is the generalisation of includ­

ing execute as well as load and store for access to arguments, and the 

convention of using the more flexible execute for initial access to 

arguments. Consequently control over the interpretation of an argument 

resides in the argument rather than the operator using it, allowing an 

argument to be not only a literal or address, as required for control 

flow, but alternatively a subordinate instruction, as required for 

reduct:f.on, or a synchronisation primitive, as required for data flow. 

The approach of synthesising control flow, data flow and reduction as 

subsets of a more general model allows considerable flexibility in the 

way these three are combined, as illustrated in (vi) above. TIlis 

approach also gives orthogonality between the various elements of pro­

gram representation, as illustrated by all the above examples using the 

same multiply operator which is independent of the way its operands are 

organised. An alternative approach to combinfng these three models of, 

say, providing three different classes of instructions, would limit this 

flexibility and orthogonality and lead to a generally more complex 

architecture. 

It is worth reflecting on the cHoice of control flo ... , as the basis 

for a generalisation synthesising control flow, data flow and reduction. 

The advantage of control flow for this purpose is its low-level opera­

tional model and the separation between control and data which allow 

maximmn choice in how a program is organised. Data flow and reduction 

are higher level models incorporating particular assumptions of program 

organisation, particularly that control of instruction activation is 

tied to the availabili ty of input data or the need for output data. The 



data flow notion of activation by data availability can be generalised 

to include the flow of control,. (as was done in the DCF architecture) by 

including "control tokens" as "null" data items. It is however diffi­

cult to see how to generalise the data flow model to conveniently 

include activation by need, or to conveniently generalise the latter to 

include activation by the flow 6f control or data availability. 

The moti-vation for including control flow, data flow and reduction 

within a more general model is to obtain the particular advantages of 

each, which were identified in Chapter Two. Each model in itself pro­

vides particular program organisation benefits, specifically in its par­

ticular way of controlling instruction activation. In some cir­

cumstances the explicit activation of instructions provided by control 

flow is an advantage, whereas in other circumstances the impli.cit 

activation of instructions by the availability of data, as in data flow, 

or by the need for data, as in reduction, is an advantage. TIle dif­

ferent organisations used in Figure 30 allow these different activation 

mechanisms to be used and thus the advantages of each to be obtained 

where needed. Also for graph reduction there are particular advantages 

of being able to use higher order fun.ctions and unbounded data struc­

tures as program organisation consttucts. The use of these constructs 

within the RCF model will be discussed later in this Section. 

Apart from program organisational advantages each model has partic­

ular advantages concerning the performance of particular types of pro­

grams on computers implementing the model. The RCF architecture, and 

its implementation discussed in the next Olapter, is principally aimed 

at exploiting concurrency. Thus it would not be very effective for a 
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predominantly based on the conventional sequential control flow 

However, the basic sequential control mechanism of an activity 

moving from one instruction to its immediate successor is the basis of 

the architecture and the use of short control flow sequences of instruc­

tions is an effective way to program the architecture. The data flow 

and reduction models are implicitly concurrent and thus more suitable 

for the overall organisation of programs for the ReF architecture. 

Although the main motivation for the reduction model is its program 

organisational advantages, there are some performance advantages. Prin­

cipally there is the advantage of lazy evaluation in graph reduction 

which prevents processing resources being used on unnecessary computa­

tion. The graph reduction form of program organisation used in Figure 

30(v) achieves this effect. For a shared expression object of the form 

(excl op ( ••• A ••• ) ( ••• B ••• ) lout: lout) there may be several activities 

positioned at the object. However only one of those will actually 

evaluate the shared expression, which might be very large. The princi­

pal motivation for the data flow model is the exploitation of con­

currency for improved performance. The execution of a data flow style 

program is discussed in some detail in the next Chapter on Implementa­

tion. 

The examples in Figure 30 have illustrated the use of the various 

programming constructs, introduced at the start of this Section, for the 

organisation of control flow, data flow and reduction programs at the 

small scale of expressions on simple data items. The remainder of this 

Section illustrates their use in the larger scale organisation of pro­

grams. 
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4.2.3. Data Structures 

One of the important principles of recursive architecture is that 

an operand can equally be a simple data item or a data structure such as 

an array. The represe~tation of data structures must ensure that the 

execution of a data structure operand is compatible with the execution 

of a simple data item, that is the executing activity must be positioned 

at the data object. This is illustrated in the following example where 

two operands, the first of which is a data structure, are compared for 

equality by the = operator -

u­
p 

a: 
I Clout: 1 2 3) 17) 
Q R. 

Within the data structure a, the first component acts as type informa-

tion declaring a to be a compound data item. This "type" is the quoted 

address of a itself, that is the lout selector quoted to prevent re-

execution of a. When activity Q executes this quoted address it will be 

positioned at a which will thus be used in its entirety by the operator. 

(It is important that, as a result of contextual addressing, all data 

structures can have the same lout: first component, and thus there is 

. correct comparison of structures wll thout thIs detail of structure 

representation being incorporated into comparison operators.) 

A data structure using this representation can be communicated 

between instructions in any way that a simple data item can. As in con-

trol flow and graph reduction, a data structure, or its compolwnts, can 

be addressed by the instructions sharing it. As in data flow, a data 

stru~ture can be passed as a "data token" replacing a (1) as an 
... ......... 
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instruction's argument. As in string reduction, a data structure gen-

era ted as a result can replace the instruction g~nerating it as the 

operand for a containing instruction. 

An important characteristic of graph reduction is that it allows 

the use of unbounded (notionally infinite) data structures ~hich are 

incrementally generated as the components are needed. Figure 3] shows a 

possible ReF representation of such a data structure, L, and an access-

ing expression, E. 

L: 

E: 
( * 6 

( /out" 1 1 2 3 5 (gen) ) 

t 7'''' I{/Leval/2eval/->eval/->eval/ ••• ) ) 
R --- --- --- ---

Figure 31 - Unbounded Data Structures in ReF 

L is a partially generated list of the fibonacci numbers with the infin-

ite tail of the list represented by a program fragment gen. Gn each 

execution of gen it will insert to its left tIle sum of the preceding tv..o 

numbers and posi tion the executing activity at that nev..ly inserted 

object. The expression E contains as its second operand (exE:;cuted by 

activity R) the address of an as yet un-generated element of the list. 

This address is a sequence of selectors to identify first L itself, then 

its second component (the first genuine element of the list), then the 

next component etc. Each of these selectors has the eva1 suffix so that 

the object which it identifies 1s executed by R before the next selector 
-

is applied. 1f the object is an actual datB item (or dsta structure), 

as in the first few cases, then the effect is the same as if a norms! 
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selector had been used (rather than an eval selector). That. is, 

activity R will just be positioned at the object. If however the object 
..... ~ "£. 

is the gen program fragment then it ,dll . be executed by R· with . the 

result that the next component of the list is generated. R is posi-

tioned at that new component where it will either apply the next se1ec-

tor in the address (thus generating the next component) or be used Ly 

its superior to access that component. 

This scheme generalises to any level of nested lists. For example 

if L were a list of the rows in Pascal's triangle then gen would not 

insert the actual data structure representing a row. Instead it would 

insert an object to incrementally generate the elements of the row on 

demand. The inserted object would have the form (fout,: subgen) where 

subgen implements the algorithm for generating the next element in a row 

from the other elements of the triangle. TIle address of, say, the 2nd 

element of the fourth row would be -

/Leval/2eval/->eval/->eval/->eva1/2eval/->eva1 

~'\'--------,,-y-~----_--JI\~--""T""'--.J 

triangle 4th row 2nd clement 

Execution of this address causes generation of only those elements of 

the triangle needed to compute the addressed element. 

4.2.4. Conditionals 

In the ReF architecture the conditional operator can be used to 

support various forms of conditionals including those discussed in 

-
Chapter Two. This operator if has three operands all of which are 

evaluated concurrently. Its result is the second or third operand 
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depending on whether the first operand is True or False. Figure 32 

. shows three uses of this operator for the different control 

flow, data flow and reductlon organisations of the conditional 

structure x:= If c then ra else rb where ra and rb are the result values 

of program fragments ( ••• A ••• ) and ( ••• B ••• ). 

,..------------------ -- - - -- --- ---- ---"\ , , 
( eval ( if c ' .. :../a ::"'/b ) ) ••• ,,( ••• A ••• ) ••• ~ ••• B ••• ) 

\ ,'a: b: , , _______ - - ___ ______ J 

••• • • • 

<!) Alternative Addresses 

/ 
( ••• B ••• ) ••• 

rb ~ 
if ~( 1) (1) . .. ) ... .. / 

( ••• A ••• ) 
ra . .. ( ••• 

(i!) Alternative values 

••• ( if c ::"'< ••• A ••• ) ::"'( ••• B ••• ) lout: lout) ••• 

(iii) Alternative Expressions 

Figure 32 - Three Forms of Conditional in ReF 

In (i) the control flow organisation is used. This illustrates the typ-

ical use of the eval operator to force execution, in conjunction with 

the inhibition of execution by ::.,.s. Rete the conditional operator use.,;; 

quoted objects <::"'/a and ::"'/b) as its input arguments. Consequently the 

objects themselves (addresses /a and /b) are the actual operands and the 

result is one or other of those addresses. This address result is the 

operand of an eva! operator, causing that conditionally selected address 

to be executed. The complete instruction thus has the effect of a con-

trol flow conditional branch instruction to execute either ( ••• A ••• ) or 

( ••• B ••• ). In (ii) the data flow organisation is used. l~re the 
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conditional returns one of two. alternative values, ra or rb, which arc 

provided as "data tokens" from instructions in ( ••• A ••• ) and ( ••• B ••• ), 

giving the effect of data flow "switch in" instruction. In (iii) the 

reduction organisation is used. Here the conditional returns one of two 

alternative expressions, ( .... A ••• ) or ( ••• B ••• ), which replaces the com-

plete instruction, as in reduction. As in (i) the expressions forming 

the operands of the conditional operator are quoted objects so that the 

actual expressions are used rather tlmn the results of evaluating them. 

4.2.5. Iteratlon 

Iterative execution is obtained by a lout single-selector address 

being executed at the end of any repeated object. For a control flow 

style iteration a whole sequential structure of instrucUons is repeated 

and there would be a conditional branch instruction (as in Figure 32(1» 

controlling the iteration. For example DO SI; S2; 53 Ul~TIL done might 

be represented as -

lout lescape r---------------, ,r--------------------\ 
I \ I \ 
~ \1 ~ 

••• ( (SI) (S2) (S3) eval (if done "/esc "/out ) ) • 
l:. ,- - - -'" IJ. -I v I 

• • 

REPEAT condi tiona'l branch CONTINUE 

Here the lout positions the executing activity at REPEAT whereas the 

lescape positions it at CO~~INUE. For a data flow style iteration each 

instruction is separately repeated by terminating it with a lout -

• • • par ( opera~or operand operand result lout ) ~~ • • • 
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One way of organising data flow iteration discussed in (Jwpter ho 

is that in 
,~ 

which an operator's arg1.1ments are streams of tokens, as in 

the DDNI data flowarchitec ture [27] • Figure 33 shows this technique, 

using as an example e:= (a+b)-6 which is repeatedly executed for 

sequences of values aI, a2, a3, etc., and bI, h2, b3, etc. 

A: B: 

il: 
stream+ (a5 a6 a7 (1» (t5 b6 b7 (1) ) 

\ .... -------~~ {= a4-tb4} 
~3{= a3-tb3} 

Ie / out ) ••• . .. ( 

. .. ( stream- ( cl c2 (1) ) ( := 6 ) IE / out ) ••• 
i2: c: D: 

Fig-ure 33 Iteration Using FIFO Queues in ReF 

There are two instructions, il and i2. Instruction il repeatedly per-

forms additions to produce results for repeated subtractions performed 

by instruction i2. Each input argument of instruction il is a stream ot 

operand values terminated by an unknown. 'Ihe subordinate activity exe-

cuting an input argument will either provide the first item in the 

operand stream, e.g. a5, as the operGnd or (if the stream is empty) Le 

suspended by the terminating (1) until an item is inserted. 'Ihe opera-, 
tor stream+ is a stream operator, as previously used in Figure 28, with 

the input arguments being accessed by destructive take rather than copy 

operations, and the result being inserted at the position identified t.)' 

the result argument rather than replacing the object there. Ihus on 

each execution of 11 a pair of operand values is taken from its operand 

streams and the result is added to the end of 12'5 operand stream. 

Instruction 12 has the same structure except that one operand is an 
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embedded literal, 6, for which there is an instruction, (:z 6), to 

return that value on each execution. 

In reduction there is no special organisation for iteration, this 

being achieved entirely by recursive procedures. 

4.2.6. Procedures 

Procedures can be of two different types in the ReF architecture. 

These are a replicated procedure where the procedure definition is 

copied by each call and executed in the context of the call, and a re-

entrant procedure where the procedure definition is executed in place by 

possibly several independent concurrent calls. Procedures using data 

flow and reduction style instructions, which are modified during exec.u-

tion, would need to be copied, whereas those using control flo\v style 

instructions, which are re-entrant, need not be. For both replicated 

and re-entrant procedures it is generally necessary to support both 

"dynamic binding" where the procedure definition contains addresses 

relative to the context of the call (e.g. for accessing parameters) and 

"static binding" where the definition contains addresses relative to the 

context of the definition (e.g. for calling other procedures or lUodHy-
, 

ing "own variables"). 

Figure 34 illustrates the two types of procedure for the same exam-

pIe, a calIon procedure F. This call has the same effect as a+ opera-

tor (which the called procedure uses). In both cases the procedure call 

instruction consists of an operation object, the call, followed by 

parameter arguments pI, p2 and p3. As for a simple + operator t the pI 

and p2 arguments are executed to provide the operands, the p3 argument 
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is executed to identlfy the position at which the result is stored, and 

. execution continues at S, immediately after those arguments. The call 

itself is constructed as an apply operator which is used as though it 

were an elementary operator with the procedure address IF as its single 

operand. 

<.~) Replicated Procedure 

<.~) 
ca.J) , 
ape.,ly 

., 
P' .. s: 

( H := /esc / out:' lout) /F) pI p2 p3 ••• 

••• n(+ /out/out/+1 /out/out/+2 /out/out/+3 /out/out/+4) 
F:' 
~efinition 

" 

(g) 

p, , s: , 

( H+ /out/out/+1 /out/out/+2 /out/out/+3 /out/out/+4) /F) pl •• p3 •• 
\ f-

(b) Re-entrant Procedure -
(1.) 
, caJ.I 

aEL\l 'l. 
, 

X: 
, ., 

s: 
( H setS /X::'" ) /F ) pI p2 p3 ••• 
P 

••• ( + $/+1 $/+2 $/+3 $/+4 ) 

F~' v- I .. 
procedure definition 

(.!.!.) 

X: s: 
I ( ( set$ IX: ) (1:' )?1P1 p2 p3 ••• 
$ , 

\ 

'$/+1 $/+4 ) \ , .••• I( + $/+2 $/+3 
, ;If '- ______ - - - -;' P 

, 
Figure 34 - Procedures in ReF 
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For the replicated procedure (a) the apply instruction replaces 

itself with and then executes· a copy of the addressed procedure, as in 

string reduction. The procedure definition is a quoted object as other-

wise it would be executed where it is rather than being copied to the 

call for execution there. The effect of an activity F executing the 

call (i) is shown in (ii). TIle replicated procedure is executed in the 

context of the call. Consequently normal addressing, such as the 

/out/out/+l to access parameter pi, gives dynamic binding. To support 

static binding (not actually needed in this case) the procedure address 

is retained in (ii) as an extra parameter which the procedure code could 

use for addressing objects in the context of its definition (as will be 

illustrated in the following discussion of higher-order procedures). 

For the re-entrant procedure (b) the activity P executing the call 

(i) is re-positioned at the procedure definition and executes it in 

place (ii). Thus normal addresses in the procedure definition give 

static binding. 
t 

The dynamic binding needed to access the parameters is 

provided by the base-relative addresses such as $/+1 which addr~ss 

parameters relative to the position of the activity $. This activity is 

"a subordinate of activity P, set up as a result of P executing the apply 

instruction. That instruction's operator is set$ and its operand is the 
.. 

quoteu address of the call, X. The activity $ is positioned at the 

addressed object to provide the necessary context for subsequent 

addressing from wi thin the called procedure. TI1US in this case the 

apply has a function similar to that of an instruction to load the 

return address onto the stack in a conventional call sequence. After 

executing the apply, P executes the address IF re-positioning it at the 

procedure definition. In general the procedure will be a nested program 
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structure executed by a sub-tree of activities with P as its root. 

Nested objects in such a structure would need to address the procedure's 

parameters. Thus an activity executing one of those objects needs to 

inherit P's $ activity to provide the required context for parameter 

addresses. (In the machine code this inheritance is achieved by a 

default mechanism - if when an activity executes a $1 ••• form of 

address it does not itself have a $ subordinate then that of its supe-

rior is used, or that of its superior's superior etc.) 

The.replicated procedure mechanism is simpler than the re-entrant 

procedure mechanism in that it does not require the relatively sophlsti-

cated base-relative type of addressing. The form of procedure call in 

(a) for a replicated procedure is self-modifying in a way that prevents 

it from being used in a program that is intended to be re-entrant. It 

is in fact possible to construct a call instruction for a replicated 

procedure which can be part of a re-entrant program fragment. Tnis 

would be achieved by a change to the apply instruction in (a) to insert 

the procedure copy at the end of the call object, rather than overwrit-

lng the apply instruction. Thus if there are several concurrent execu-

tions of the call then there would be multiple copies of the definition 

.. 
call 

r'-------J~~------------______________ ~, s: F: 
( ( ••• apply ••• ) IF (copyl) ••• (copyn» pI p2 p3 • . . "( ... ) 

These copies are all hidden within the call object and have no effect on 

the surrounding program structure. For example the correct interpreta­

Uon of a parameter address within a copy is not affected by the unknown 

number of other copies. 



Similarly, a procedure executed in place as in (b) could contain 

self-modifying instructions, which would require that the procedure 

definition insert and execute a copy of itself, adjacent to itself. 

Thus whether or not procedures are copied to the context of the call 

does not necessarily depend on whether self-modifying or ~e-entrant 

instructions are used but can be determined by other criteria. for 

example if data accesses (to parameters) in the context of the call 

predominate over accesses (to "own variables") in the context of the 

definition then it would be appropriate to copy the procedure to the 

calling context. 

4.2.7. Bigher-order Procedures 

One of the major features of (graph) reduction is its ability to 

support higher-order procedures (functions). Ihe principal benefit of 

these is that for a multi-parameter procedure, e.g. R(pI, p2, p3), suc-

cessive parameter expressions, PI - P3, can be bound to the procedure 

definition at different points, giving a progression of more particular-

ised procedures -

B(pI, p2, p3) s some function of three parameters 

G(p2, p3) = R(PI) 

F(p3) = G(P2) 

.. 

E() ~ F(p3) = «B (PI» (P2» (P3» 

Figure 35 illustrates the \o.'ay this procedure 
, 

represented in ReF. It also shows a call, X, of tbe 

procedure E. 'Ihe base procedure B is an expression 

parameters. Each of the intermediate procedures 

structure might be 

final, parameterless, 

involving all three 

G, F and E, contains 
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three components. The first components form a chain 01 addresses wldch 

leads to B and is used in executing the actual call, x. lhe second com-

ponent is the particular parameter which that intermediate procedure 

provides for H. Each such parameter, e.g. pI in G,is the address of 

the actual parameter expression, PI, which tNill generally use and be 

used by other expressions in the neighbourhood ot G. 'lhe third com-

ponent is the (quoted) address of the next more general procedure. 

These addresses form a chain which is used by B :f.n accessing parameters. 

H: 
H(p], p2, p3) = 11(+(*(+ pI p2)(';' p3 pI) 2) 

.~ 

G: \, pI: 1'1 : 
G(p2, p3)::: (\/E IPI IE':) ••• (.0.) 

t·--· ~ 
Il'", 

F: '- p2: F2: 
F(p3)::: (\/G IP2 IG") ••• ( •• 0) 

;---::- -''''.''--_.- ---=--- ---_. -~ 
,.~------, ... _-'"\ 

E-' ~. \ P3: • \ p..... \ 
EO = (\/F /P3 './F") 0 0 • ( ••• ) 

..(-_.... -.. , -
l.~-------­
", ......... _-" ----lito_-apply'" ._-- ___ , 

X: r_--...JA ~, f 1: f~: " 
( ( : = /esc out" out )', /E /EII) I , - , - , 

'\._ - __ - - __ ___ jflo----.:.. 

_'_~ I • 

• • 
I 

X: ,- A , f 1: f ~:,' 
( (+(*(+ p] p2)(- p3 pI) 2) /E liE") 

I I I .. j.-
I I 1-----/f2eval/2: 
I I ---- l 
I 1-----/f2eval/3eval/2}-J 
I 
1-----/f2eval/3eval/3eval/2 

,Figure 35 - Higber Order Frocedures in ReF 

The call, X, is very similar to the call used for a replicated PIO-
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cedure in Figure 3~(a). It comprises the same apply instruction which 

'When executed replaces itself with the procedure objec t identified by 

the execution of the following argument, "namely the address IE. lhe 

activity executing IE will execute the addressed object, B, and thus its 

first component, namely the address IF of F. Similarly the first com-

ponents of It and then G, are then executed." 1hus the activity follows 

the chain of addresses back to li, and so it is a copy of that procedure 

which replaces the apply instruction in X and is executed there. 

As for each intermediate procedure, the last component of X is an 

address used by n to access its parameters. lhe address p2 for the 

second parameter P2, executed from within the copy of H, is -

The first part of the address identifies £2, the address of E, which is 

executed (as a result of the eval suffix), thus identifying E. 'lhe 

second part identifies E's third component, the address of F, which is 

also executed, thus identifying F. 'Ihe final part idE.:nt.ifies F' 5 second 

component, the address of the desired paraUlc:ter, which is the final des-

t:ination of the complete address. 'lhe activity executing the original 

address is thus positioned to execute the address, within ~, of the 
.. 

parameter and thus executes the parameter in place. 'Ihat parameter ~ill 

be a graph reduction type of expres~d.on, replacing itself "ith and then 

returning :its result. lhe addresses for the other t~o parameters are 

similar, each having a different numl:er of 13eval parts depending on the 

distance along the addressing chain of the required par2mcter. 

'Ihis representation uses t\o;o address chains, running through the 
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first and third components of the intermediate procedures. lhe first 

chain, used in the call, is structured in such a way that it is always 

implicitly followed to its end. Ihus the program fragment forming the 

call, X, is independent of the length of the chain. For example~, and 

intermediate procedures F and G, would be unaffected if, say, B were 

replaced with a further intermediate call of another function with one 

more parameter. However, the chain for accessing parameters is con­

structed in such a way that a parameter address in H can go as far along 

the chain as is necessary to access the particular parameter required. 

Thus the program fragment forming n is dependent on the length of the 

chain, necessarily so since that length is the number of paramtters 

expected by the procedure. Ihe representation used for these chains 

also illustrates the use of the eval selector suffix for achieving quite 

sophisticated addressing 5tructures. As used here, an eval selector 

corresponds to an indirect address where the addressed object is itself 

an address. '1his ReF notion of indirect addressing is actually mote 

powerful than that in conventional architectures since the addressed 

object is executed and thus can be not only an actual ~ddress but also a 

program fragment to achieve the effect of an address. For example the 

object F could have been a (lazily evaluated) procedure call, say 

Eindl(G) where Bindl(g);; g(P2). When Urst executed as a result of a 

call such as X, this call would replace itself with the required struc-

ture. 

Ihe above scheme for procedures achieves most of the benefits of 

graph reduction for this type of example. Specifically, different 

parameter expressions can be bound to the procedure at different points 

in the program structure, and there can be lazy (;valuation of those 
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expressions. For example if P2 had been previously evaluated by some 

other construct in the neighbourhood of F, then that expression would 

have been replaced by its result, and thus not evaluated again by the 

call, X. The main shortcoming of this scheme for the RCF model, com­

pared with one based on a pur'ely graph reduction model [43], is the com­

plete copying of the procedure n into the call X. One effect of this 

copying is that there may be multiple evaluation that would be avoided 

in a pure graph reduction model. One of the expressions wi thin S, 

namely (+ pI p2), does not use the last parameter, P3. If there \<.'ere 

several intermediate procedures, EI and E2, at the level of E, that par-

ticular expression would be a constant in those procedures. In pure 

graph reduction, there would only be one evaluation of that constant, 

say by a call of E2, and the resulting value would be used by calls of 

HI. In the RCF scheme used for this example, the copying of H means 

that both calls of EI and E2 would cause evaluation of that constant. 

Avoiding such mUltiple evaluation requires that all procedures be 

executed in place, as occurs in graph reduction. The use of higher­

order procedures results in programs comprising very general procedures 

which are very frequently used. Although this is beneficial from the 

programming vie~~oint, access to a frequently used procedure definition 

is a potential system bottleneck, particuiarly if each access Is a com­

plete execution of the definition in place rather than just the copying 

of the definition for execution elsewhere. For this reason execution in 

place 1s recognised by researchers in the graph reduction field[61] as 

being a possible major disadvantage of the pure graph reduction model 

for a-decentralised computer architecture. For the ReF model to support 

execution in place with higher-order procedure structures a greater 
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sophistication in the base-relative addressing scheme would be required 

to Imndle the more convoluted addressing structures. In view of the 

potential access problem and the fact that the benefit of avoiding mul­

tiple evaluation is likely to be a minor effect, the incorporation of 

such additional sophistication is unlikely to be worthwhile. 

4.2.8. Non-determinacy 

In the ReF architecture there is the potential for non-determi.nacy 

in that two concurrently executing 

modify the same object. There are two 

instructions can simultaneousl~ 

schemes for controlling non-

determlnacy whlch correspond to the techniques used in control flow and 

data flow. These are illustrated in Figure 36 for two dHferent ",ays of 

organisi.ng a resource manager. In (a) the resource manager is H control 

flow style procedure executed re-entrantly by the activities, PI and P2, 

which use the resource. The resource manager (i) ('.ontains a critical 

region protected by an exclusion argument, (~xcl). This acts in a simi­

lar way to the "test and set"instruction often used to implement criti­

cal regions in conventional architectures. When executed by one 

activity, PI, it becomes a (1) which prevents a subsequent activity, P2, 

entering the critical region (ii). On exit from the critical region 

(iii) instruction S is executed to set the (1) back to (excl) and thus 

allow another activity to enter the region. 

In (b) the resource manager is a continuously executing object 

which on each execution takes one transaction from the transaction 

stream, in the same way as each execution of the addition operator in 

Figure 33 takes one token from its token stream. Each user of the 
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(~) 
Resource Manager 

r~--------------------~~~--------------------~' 
P2 T: S: 

( · ... I I (excl) . . . . .. ( := :(excl) 
P1 

, 
'f .. 

critical region 

(ii) 
P2 

( · .. I (7) • • • I . .. ( :== :(excl) 
P1 

(iii) 
(££!) 

P2 It ~ 
( • •• I ( excl) . . . ." .. ( := :(excl) 

(a) Using a Critical Region 

(.!.) 
Resource 
Manager 

,r __ J.A 

Transaction 
Stream , r~--------~A~----____ ~\ 

IT ) ••• , 

IT ) ... 

IT ) I 
P1 

) 

) 

. .. ) 

User 
Code 

P2, ...... • 
( ••• lout) ( (T6) (T7) (T8) (7) ) 

R~ 
• • . I I ( stream:= Tn IR ) 

P1 

(!J) 

( ••• lout) ( (T7) 

'---IT 6) 
(T8) 

P2 
(T9) (7» ••• ( stream:= Tn IR ) I i 

!\~ ____ /P1 (TI0)\~_ . 

(b) Using Transaction Streams 

Figure 36 - tion-determinacy in RCF .. 

resource (activity PI or P2, both executing re-entrant "user code") com-

municates with the resource manager by inserting a transaction, Tn, at 

the end of the transaction stream. TIlis stream implicitly orders inputs 

inserted from concurrent sources into a single sequence and thus acts 

like the merge operator used in a data flow resource manager. 
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4.2.9. Discussion 

The examples in this Section have attempted to illustrate two 

aspects of the ReF model. Firstly that it incorporates the basic models 

of control flm-1, data f.low and reduction for simple expression evalua­

tion and allows those models to be combined even within a single 

"instruction". Secondly that the ReF model can be used effectively for 

the representation of the program organisation constructs used to pro­

gram architectures based on those other models. Of particular relevance 

to control flow programs is the use of repeated sequences of simple 

instructions and the use of re-entrant procedures. Of particular 

relevance to data flow programs is the use of stream operands for itera­

tion and the ability to communicate whole data structures as single 

"data tokens". Of particular relevance to reduction is the use of 

unbounded data structures and higher order procedures. The examples at 

this higher level of program organisation did not illustrate any general 

combination of models as was illustrated for the lower level of simple 

expression organisation. Nevertheless it is hoped that the examples 

demonstrate that the ReF model would accommodate a programming language 

synthesising control flow, data flow and reduction constructs at all 

levels of program organisation. The actual achievement of such a syn­

thesis would be a question of language and compiler design. 

The set of program representation constructs used in this Section 

were principally developed for simple control flow, data flow and reduc-

t~on instructions, as illustrated in Figure 30. These constructs are 

however of quite general utility in program organisation, as illustrated 

in the other examples discussed. Delimiter symbols ( and) are used for 



representing all levels of program and data structure, including expres­

sions, arrays, loops and procedures. The explicit structure allows par­

ticular standard selector sequences to be used for particular addressing 

needs such as for access to procedure parameters and for loop repeti-

tion. One set of operators, such as +, are used in all instructions, 

whether control flow, data flow or reduction, in which single operands 

are accessed. A complementary set of operators, such as streaTh+, are 

used for all instructions in which operands are sequences of values. 

Normal addresses /sel/ ••• /sel are used for all situations in which the 

addressed object is to be executed, such as for a control flow branch, 

for invoking a subordinate reduction expression, or for invoking a pro­

cedure. Quoted addresses, /sel/ ••• /se1:, are used for all situations in 

which the addressed object is not executed, such as for the result loca­

tion of an instruction, for a procedure definition to be copied, or for 

manipulating addresses as in conditionals. An unknown argument, 1, is 

used for all situations in which execution is dependent on the arrival 

of information, such as for the operand of a data flow instruction or at 

the end ofa stream. An exclusion argument, excl, is used for all 

situations in which multiple execution is to be avoided, as for lazy 

evaluation in reduction and critical regions in control flow • 

.. 
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4.3. Machine Organisation and Implementation 

The first Section of this Chapter discussed recursive structuring 

for storage organisation~ addressing, and program representation and 

execution in the RCF operational model. The recursive model provides a 

general framework for constructing program structures from a (relatively 

arbitrary) set of "primitive" constructs. This Section starts by 

describing a similar general framework for the recursive organisation of 

machine resources in a decentralised computing system, and discusing the 

relationship between that recursive machine organisation and the ReF· 

model that it supports. Three particular aspects are then discussed, 

namely the way in which the machine organisation and model accommodate 

special-purpose machine components ,dthin a general-purpose system, and 

their extensibility and locality properties. 

There are two broad types of decentralised computing systems, 

namely parallel computer architectures and geographically distributed 

computer networks. Previous Chapters (and previous Sections of this 

Chapter) have bt!en concerned solely r,n th parallel computers, which is 

the main theme of the thesis. However the recursive machine organisa-

tion, and the concepts of the operational model it supports, are of 
.. 

relevance to computer networks and both types of decentralised systems 

are discussed here. Implementations of the recursive machine organisa-

tion, in both parallel computers and computer networks, will be dis-

cussed in. the next Chapter • 

. :,.~. 
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4.3.1. General Stnlcture 

A conventional ~omputer architecture has a centralised machine 

organisation comprising one computing element with a single processing 

unit connected to a single memory. A recursive architecture, as illus­

trated in Figure 37(a), has a recursive machine organisation comprising 

a structure of nested computing elements (CEs) and local communication 

(and control) systems (CSs). In the general case a computlng element, 

such as CEO, functions as a complete general-purpose computer with 

memory, processing and communication capabilities and consists recur­

sively of subordinate computing elements, CEI - CE3, which provide its 

memory and processing capabilities and use its communication capability 

to cooperate in the concurrent execution of programs. The CS component 

may incorporate some relatively centralised control functions concerned 

with, for example "strategic" allocation of its subordinate computing 

elements' resources. This recursive structure will terminate in IIprimi­

tive computing elements" such as CEI and CE21 which do not continue the 

general structure of subordinate computing elements but have separate 

processor (PE) and memory (ME) elements. 

This machine organisation accommodates heterogeneous components, as 

for CEO where one component, eEl, is a primitive computing element and 

another, CE2, is a structure of com~uting elements. For a coherent sys­

tem comprising heterogeneous components it is important that there be a 

common interface between components. The principal characteristic of a 

recursive machine organisation is that all computing elements at all 

levels in the structure support the same external interface. For the 

RCF architecture the common interface embodies the essential concepts of 
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Figtlre 37 - Recursive Machine Organisation 

the ReF model, namely nested variable length objects, contextual 

addresses and communication of messages within a dynamically created , 
tree of concurrent activities. 

In order to illustrate how the logical RCF model is supported by 

the physical machine organisation, Figure 37(b) shows an example of the 

former's object, address, and activity s truc ture wi th a possible mapping 

onto the latter's computing element structure (the object stnlc.tl.u:'e is 
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not meant to be a particularly meaningful example). TI1e computing ele-

ment CEO contains the object 0, and its subordinate computing elements, 

CEI, CE2 and CE3, are each supporting one of that object's components A, 

Band C. At this level there is a strict (static) correspondence 

between logical objects and physical computing elements. However, as in 

the case of object B and computing element CE2, there need not be such a 

strict correspondence between the internal logical and physic.al struc-

tures. In this case each subordinate computing element will contain a 

relatively arbitrary (changing) sub-structure of the object, for example 

CE21 containing the entire first component of B and part of its second 

component. A primitive computing element will generally incorporate 

some internal memory management mechanism to support a changing struc-

ture of variable length objects. Similarly, a higher level computing 

element, such as CE2, may incorporate mechanisms for redistributing the 

object structure between its subordinates as different parts of the 

structure expand and contract. 

The processing capability of a computing .element will support 

activities positioned at the .objects contained by the computing element. 

For example computing element CEO is supporting the tree of activities 

comprising activity P and its subordinates Q, Rand 5, with processor 

PE2 supporting activity P, PE3 supporting activity Q and PEl supporting 

both Rand S. A primitive computing element will provide some (machine 

code) interface for contextual addressing, and creation of and communi-

cation between activities. Generally it will incorporate some 
, 

multi-programming mechanism for sharing the capacity of its processlng 

element between the activities it is supporting. {A processing element 

could possibly comprise a pool of processors a primitive computing 
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element is not typi.fied by there being a single processor, but rather by 

there being an internal separation of processing and memory resources. 

such that it cannot be considered to recursively consist of subordinate 

computing elements.) Above the prim~tive computing element level, allo­

cation of processing load to processing resources is, at least conceptu­

ally, integrated with the memory management mechanisms since an activity 

is allocated to the. same computing element as the object which it is 

executing. 

The communications capabilities together provide a multi-level com­

munication systeTn for transmission of messages between activities in 

different computing elements (as when activity P sends the copy message 

to activity S), and the migration of activities between computing ele­

ments (as occurs when activity Q executes the address IC). Logically, 

the copy message from P to S is transmitted along a direct channel from 

CE21, supporting P, to CEl, supporting S. This logical channel, shown 

by a dotted arc in Figure 37(a), passes through the communication sys­

tems of CE2 and CEO, each of which provides a local logical channel 

("virtual circui til) supporting a segment of the complete channel. Typi­

cally each communication system would have a pool of local channels mul­

tiplexed on its physical communications medium. Each local channel 

would have an identifier unique to that system which would be used to 

label a message traveling through that system in order to identify its 

logical channel and thus destination. (For example, using a "logical 

port" of the destination computing element to identify a channel, the 

copy message traveling to.rithin CE2's system might be labeled 

CE2/outport20, causing it to be switched out to CEO's system in which 

its label would be, say, CEl/inportlO.) 
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It is the migration of an activity, a terminal point of a complete 

channel, which causes the allocation and deal location of local channels, 

and establishes each c'onnection between a pair of local channels in 

neighbouring systems which form adjacent segments of the same complete 

channel. The migration of Q, as a· result of executing the address /C, 

requires a message from CE22 to CEl, carrying any state information that 

is associated with the activity (for example, information needed to 

implement the communication of messages between that activity and its 

related activities). For this type of message the destination is iden-

tified by the sequence of selectors forming the address, actually 

/esc/esc/esc. These selectors, identifying first position 1, then j, 

then C, are interpreted incrementally by the successive computing .ele-

ments on the path. The first selector, interpreted by CE22, causes Q to 

migrate to CE2l where the remainder of the selectors are i.nterpreted and 

cause. the further migration of Q to CEl which contains the addressed 

object, C. When Q migrates to CEl the channel connecting it to its 

superior, P, is extended into CEO's communication system. This exten-

sion requires the allocation of a local channel identifier there, which 

would be deallocated when Q terminates or, say, migrates back within 

eE2. 

Although the concepts of recursive architecture have here been 

developed in the context of highly parallel computer architecture, they 
I 

are equally relevant in the context of geographically distributed com-

puter networks. Interpreting Figure 37 in that context, computing ele-

mcnt CEO would correspond to a local area network wIth its subordInate 

computing elements, CEI, CE2 and CEl, being the individual computers at 

the network nodes, and the objects A, Band C being their filestores. 
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The connections betv.Teen activities such as between P and Rand betw·een P 

and S, model the mul tiple logical communication channels (ports) in an 

inter-node communication protocol. These connecti.ons would at this 

level. be typically used for the transfer of files between- nodes, as 

would result from the copy message sent to activity R positioned at 

llfile" Al. The migration of an activity to execute an object in a dif-

ferent node, such as when Q migrates to CE3, corresponds to "remote exe-

cution". A subordinate activity executing in a different node than its 

superior corresponds to the concept of a "remote agent" used. in the 

structuring of programs for geographically distributed systems. 

In the implementation of various decentralised systems covered by 

the general recursive architecture there will be a variety of design 

choices reflecting, for example, differences between communication sys-

terns for occasional movement of large files between distant computers 

and those for frequent movement of small data items within a computer. 

There are a number of specific implementation issues which will be dis-

cussed in the next Chapter, particularly: the allocation of logical 

objects to physical computing elements; the memory management and 

address interpretation mechanism needed to support a dynamlcally chang-

ing structure of variable length objects; and mechanisms for organising 

communication between activities which can migrate between computing 

elements. First however some particular aspects of the general machine 

organisation will be discussed, namely the way in which it can accomroo-

date special purpose computing elements and its extensibility and local-
, 

ity properties. 
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4.3.2. Special-Purpose Computing Elements 

'The recursive machine organis,ation and ,the ReF model which it sup­

ports are intended to accommodate special-purpose computing elements in 

much the same .... 1ay as the memory organisation and operational model of 

conventional architectures support "special-purpose" memory cells for 

memory-mapped I/O, and the filestore organisation and system call inter­

face of the UNIX operating system[56] accommodates for example line 

printers as special-purpose files. Incorporating such special-purpose 

entities into a general model requires that they must recognise the gen­

eral interface, even though they may support it in a limited or special­

ised way. For example, a line printer, represented in the UNIX file-

'store as a file, supports standard file "write" operations and recog­

nises but rejects standard file "read" operations. As an exam.ple of a 

special-purpose computing element, CE3 might be a hardware implementa­

tion of the square root function. The functionality of this computing 

element is modeled as an object, C, in the information structure so that 

it can be integrated within the general ReF model. In this case there 

is a strict correspondence between logical object and physical computing 

element so that the address of /e, /esc/esc/esc from within X, is in 

effect the address of the corresponding computing element. That address 

would be part of a procedure call X (as in Figure 34(b» to be executed 

by Q. When Q executes the address it -will be positioned at and "exe­

cute" the "object" C, in fact invoking the square root operation pro­

vided by CE3.. Provided that the same interface for accessing parame­

ters, - etc., is supported, the program fragment X is unaffected by 

whether the function of object C is implemented as a special-purpose 
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computing element or a normal procedure definition which can be executed 

by any general-purpose computlng element. 

The minimum capability required of any computing element supporting 

an object structure S is to recognise the arrival at S of an activity 

which has migrated from another computing element (to execute S or with 

the remainder of a partially interpreted address intended to position 

the activity within S); and the arrival of messages, such as the primi­

tive execute, replace-with etc. messages, for an activity thus posi­

tioned in S. However a computing element can have a limited or special­

ised response to the arrival of activities and messages for them. In 

the case of the square root function, CE3 would allow the execution, of 

its object C, but would signal an exception in response, say, to an 

attempt to select a component of C or replace it with a different 

object. 

The notion of special-purpose computing elements is also relevant 

in the context of networks as they often include specialised "server" 

nodes. For example if computing element eEl were a "print server", its 

corresponding object C would effectively be a print queue, supporting 

say the insert primitive for adding objects to the queue for printing, 

but rejecting any o"ther attempted access. It would also be possible for 

the operational model of a special-purpose computing clement to be a 

particular subset of the ReF, model., For example CE3 could be a "data 

flow server" with internally a data flow architecture optimised for and 

limited to the execution of data flow style programs. Such a computing 

element would accept the insertion of program fragments, as components 

of its object C, for subsequent remote execution. It would need to ver-
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ify that a program !ragment to be inserted used only the appropriate ReF 

subset (for example, verifying that it conformed to the structure used 

in Figure 30(iii) which is directly equivalent to that for a data flow 

computer, as in Figure 4). Thus a potential benefit of synthesising 

other models within the ReF model is that it allows a program fragment 

organised according to one of the other models to be executed either by 

a general-purpose computing element or by a computing element special­

ised for that model. Also it allows the specialised computing element 

to be easily integrated into the overall architecture. 

It would in fact be possible for the machine organisation to con­

sist entirely of special-purpose computing elements, for example a net­

work of control flow, data flow and reduction systems with each system 

l?eing a computing element with either control flow, data flow or reduc­

tion computers as its subordinates. In such an organisation the combi­

nation of the different models supported by the full ReF model would not 

occur at the level of individual instructions (as occurs in Figure 

30(vi». The combination would instead occur at a higher level of pro­

gram organisation such as procedure calls between program modules writ­

ten in languages based on different operational models and independently 

compiled for execution on different classes of computing elements. 

4.3.3. Extensibility 

, 
A major motivation for a recursive structure is its potential 

extensibili ty. This is. relevant in· contexts of both geographically dis­

tributed networks and parallel computers, and particularly in the con­

text of exploiting YLSI technology. Important extensibility charac-
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teristics ·of the recursive architecture are (i) the common interfac.e for 

all computlng elemen ts at all levels which means that a primitive com­

puting element and any structure of computing elements are functionally 

equivalent and thus logically interchangeable; and (ii) the ability of 

the hierarchic object structure and contextual addressing to accommodate 

unlimited address space expansion. These characteristics allow major 

system extensions and re-configurations to be accommodated without 

correspondingly major re-design. In the context of computer networks 

such changes include: increasing the level of distribution by replacing 

a single computing element (e.g. multi-user computer) with a network of 

computing elements (e.g. personal computers and file servers); integrat­

ing previously independent computing elements (separate computers) as 

subordinates (nodes) in a new higher level computing element (network). 

In such changes it is possible to retain the original object (filestore) 

structures and the validity of previously used addresses (filenames). 

Relevant extensions in the context of (VLSI) computer architecture 

are: to increase the processing power and storage capacity for a com­

puter design by connecting a number of the comp..lters together as comput­

ing elements within a larger computer of the same overall design; to 

accommodate the increasing amount of loglc circuitry which can be 

integrated on a single chip as a result of continuing technological 

advances in miniaturisation of semi-conductor logic devices. In a more 

conventional, single processor, appr'oach to computer archi tecture an 

increase in the logic·circuitry available for a single "microcomputer" 

chip would be typically exploited by, for example, increasing the 

sophistication of the instruction set. This would entail major 

re-design of the chip itself and re-design or re-programrning of the 
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hardware or softtvare systems in which it is llsed. With a recursive 

architecture the design of a computing element as, say, a single chip 

can be scaled down to a fraction of a chip and replicated to give a 

. multi-processor single chip computing element which is functionally 

equivalent (both in terms of instruction set supported and communica­

tions interface), but more powerful in storage capacity and processing 

power. Such a scaling down might entail some low-level re-design in 

that different design parameters vary in different ways as a function of 

the scale of the design, but the overall computing element organisation 

and its external interface would be stable. 

4.3.4. Locality 

An important consideration in decentra1ised systems, principally 

affecting resource allocation, is the need to support and exploit the 

locality properties of programs. Programs tend to be organised as logi­

cal hierarchies of "modules" such as procedures comprising instructions 

and local variables; sets of related procedures and the shared data 

structure on which they operate; and further groupings of such modules 

into higher level modules. Locality is the property t~~t, at any level 

in the hierarchy, local references and interactions between l03ically 

"close" elements within the same module at that level will tend to be of 

greater frequency than global references and interactions b~tween logi­

cally "distant" elements within differe~t modules. The recursive archi­

tecture allows this logical hierarchy to be explicitly represented with 

each module being an object in the storage structure. The contextual 

addressing scheme, with variable-length addresses, means that the rela­

tively frequent addresses between logically close elements will be 
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relatively short. The hierarchic communication structure of the machine 

organisation means that, in so far :as logically close objects can be 

allocated to physically close computing elements (as occurs to a large 

extent in Figure 37), global communication will be minimised with local 

communication resources providing the necessary communication bandwidth 

for local interactions. 

In computer architectures intended to utilise VLSI technology the 

need to localise communications will be an increasingly dominant factor. 

At the chip level this is because, with increasing miniaturisation, the 

costs in term of delay, power consumption and chip area associated wi.th 

off-chip "global" communication increase dramatically relative to the 

costs associated with local processing and communication within a chip. 

Localising communication will also become an important factor in the 

internal organisation of. a chip. Increasing miniaturisation of circuits 

on a chip produces corresponding increases in the time taken for "glo­
I 

bal" communication of data across a chip, relative to the time-scale of 

data processing by the logic circuitry. Eventually the discrepducy 

between system-wide communication and processing time-scales will mean 

that organising a complete chip as a single synchronous system becomes 

ineffec tive [62]. Thus it will become necessary for even a single chip 

to be organised as a decentralised system of asynchronous componE::ots, as 

provided for by the recursive machine organisation. 

In summary, a general form of recursive architecture and machine 

organisation would provide a common model of extensible system organisa-

tion for heterogeneous decentralised systems, spanning both geographi-

cally distributed computer networks and multi-processor computers, 
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incorporating general-purpose and/or special-purpose computing elements. 

All computing elements at all levels would recognise a common interface 

and general-purpose operational model which might however be implemented 

in a limited or specialised way by a special-purpose computing element. 

The next Chapter will describe a simple implementation of the recursive 

architecture in the form of a parallel computer comprising identical 

general purpose components and will discuss some other recursive systems 

implementations, including a network of conventional computers. 
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4.4. Summary and Discussion 

There are two related aspects to the ReF architecture covered by 

this Chapter, firstly the synthesis of control flow, data flow and 

reduction and secondly the general principles of recursive structure on 

which that synthesis is based. Section Two dealt principally with the 

ways in which control flow, data flow and reduct.ion styles of program 

organisation are represented and executed in the ReF model whilst Sec­

tions One and Three dealt principally with the recursive principles and 

their application in the ReF operational model and machine organisation. 

4.4.1. Combining Models 

The initial motivation for the ReF architecture was to combine con­

trol flow, data flow and reduction program styles, in order to obtain 

the particular advantages of each, as discussed j.n Chapter Two. They 

can be combined by different arguments of an instruction being organised 

according to different models (which requires a programming language and 

compiler based on the ReF model). More. modestly, they can be combined 

by a procedure organised according to one model calling a (separately 

compiled) procedure organised according to a different model, which 

might be supported by a different computing element specialised for that 

model. This ability to combine models is largely a consequence of the 

modularity and flexibility of the recursive· architecture and the ReF 

operational model. Most important is that an operator's arguments are 

executed so that the organisation of an argument is largely independent 

of the particular operator and the organisation of other arguments in 

the same instruction. This approach requires that programming 
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primiti ves such as unknowns, addresses and literals be defined in terms 

of their effect when executed as independent arguments of an instruc­

tion, rather than in terms of the complete instruction. For exam~le in 

the data flow model the unknown arguments in an instruction are used to 

indicate the number of data tokens required as operands for the instruc­

tion as a whole to be activated, whereas in the ReF model an unknown is 

an instruction to suspend the activity executing it. lhus the overall 

organisation of an instruction is independent of whether it contains any 

unknown arguments and an unknown argument can be combined ",1 th say a 

reduction expression argument in the same instruction. 

The principal constructs identified for the representation of con­

trol flow, data flow and teduction program fragments are: 

(i) an object containing instructions executed in sequence, providing 

the implicit sequentiality of conventional control flow 

(ii) the parallel operator (~) ""hich initiates the independent exe­

cution of its operand , explicitly providing the form of con­

currency found in parallel control flow and data flow 

(iii) the unknOvm (1) and exclusion (excl) arguments eXf;licitly 

representing the synchronisations used in parallel control flow 

(1s indicating the requirement for control tokens), data flow (15 

jndicating the requirement for data tokens) and reduction's lazy 

evaluation (~ preventing multiple simultaneous executions of 

an object) 

(iv) a data item "'hich identifies (or returns) itself, providing the 

literals found in all models 
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(v) two kinds of address selectors, namely /seleval causing the 

selected object to be itself executed, as in reduction, and Isel~ 

just identifying the selected object, as in control flow 
~¥ 

Although these constructs were princ.ipally motivated by the need to 

explicitly represent control flow, data flO\o1 and reduction style 

instructions, they were shown to be of general utility in the organisa-

tion of programs. 

Also important in the representation of reduction and data flow is 

the generality and flexibility of the storage, addressing and execution 

structures. The storage and addressing structure allows an 

instruction's operand to be a nested program structure as required for 

reduction, and allows a result argument to address an operand within 

another instruction as required for data flow, or to address the 

instruction itself as required for reduction. The execution structure 

of mUltiple trees of activities includes, as 1:I.miting cases, the single 

activity of control flow, the multiple independent activities of data 

flow, and the single activity tree of reduction. 

An important consideration in control flow, data flow and reduc-

tion, discussed in Chapter Two, is their different control and data 

mechanisms. The RCF architecture has a sequential control mechanism i.n 

the sequential execution of an object's component instructions, a recur-

sive control mechanism in the recursive evaluation of an operator's 

operands, and a parallel control mechanism in the independent execution 

of an operand of the special parallel operator. The archltecture inc or-

porates what is baSically a by-reference data mechanism with an 

operator's operallds and results being accessed from and stored into 
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explicitly addressed locations. However the stora.ge and addressing 

structure allow any operand (even an array) to be adjacent to the opera­

tor, as in the by-literal mechanism, and a result to be stored directly 

into another instruction as in the by-value data mechanism. 

4.4.2. Recursive Structuring 

The second aspect of the ReF architecture is as one possible reali­

sation of the recursive architecture principles for the organisation of 

decentralised systems. A recursively structured system provides a gen­

eral recursive framework which embodies the essential principles of the 

system and a relatively arbitrary set of primitive constructs. Ihe 

recursive structuring principles identified in Sections One and Th.ree 

are: 

(i) a recursive storage structure of nested variable length objects 

(ii) a contextual addressing scheme in which an address is a sequence 

of selectors w~th the first selector being relative to the pre­

established position of an activity and each subsequent selector 

being relative to the position identified by its predecessor in 

the sequence 

(iii) a recursive form of program representation with an instruction 

consisting of (operation, input and output) argument objects any 

of which may be a nested structure of instructions 

(lv) the recursive execution of objects by dynamically created trees 

of concurrent activities with communication along the arcs of a 

tree 
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(v) . a recursive machine organisation of nested computing elements 

connected by local communication systems with all conlputing ele­

ments at all levels supporting the same basic interface for the 

addressing of objects it contains, the migration of activities 

between computing elements and the communication of objects 

between activities in different computing elements 

In order to investigate the application of these principles, a particu­

lar set of primitives were identified for the ReF architecture and its 

implementation. These primitives included, for example, sequence delim­

iters, simple positional selectors, and copy and take actions. 

The most important benefits of the recursive principles are the 

modularity and flexibility of the resulting architecture, and its local­

ity and extensibility properties. Within the framework of the essential 

concepts summarised above, there is a considerable degree of logical 

independence between different entities in the recursive structure. In 

the object and addressing structure, each object 0 provides a local 

address space in which a selector s (such as "first component" or "next 

component") is independent of the possibly changing address spaces con­

taining 0 and internal to O's components, and independent of the other 

selectors in the address of which s is a part. The general framework of 

a particular opera.tionl argument message interface, such as "execute and 

copy" for input arguments and "execute and replace" for output argu­

ments, can accommodate interactions between a variety of types of opera­

tion and argument objects. TIlese include primitive operators and data 

items, procedures and parameters, program defined operators and data 

types (where operation and argument objects may be: complex program 
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structures) and even "objects" which correspond to special-purpose com­

puting elements. Such different types of objects may be freely combined 

in a program, even in a single instruction, and the implementation of a 

particular object may change without affecting the program structure 

using it. In the recursive machine organisation, a computing element is 

concerned purely wi th the communication bet\veen its component computing 

elements, but not with their internal orgal'tisation. Thus there is a 

logical independence between component computing elements any of which 

may be primitive or structured and general-purpose or special-purpose; 

and a physical independence in that c.ommunications within a particular 

component are supported entirely by its local communications system. To 

the extent that programs exhibit locality of reference and logically 

"close" objects are allocated to physically close computing elements, 

there will be a minimisation of global commtmication, which is perhaps 

the single most important design goal for a decentralised system imple­

mentation whether at the level of asynchronolls components within a sin­

gle chip or at the level of a geographically distributed network. 

The two kindb of extensibility that were discussed were "outward" 

extension of connecting together previously separate computing systems 

into a network, or connecting together replications of the same computer 

design to give a more powerful design; and "inward" extension of replac­

ing a single computing element with a sub-tree of computirrg elements. 

The recursive system structure ensures that such extens:1.ons can take 

place ~~thout encountering address space limitations or requiring major 

re-design or re-programming. Host importantly the extended computing 

system has an homogeneous address space, existing addresses retain their 

validity, and there is the same mechanisms for communicating bet'tJeen 
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differertt parts of the program structure. 

The main emphasis in this Chapter has been on the application of 

the recursive structuring principles to concurrent computer architec­

ture. Those principles emphasise the relationship bet\'leen entities 

(objects, selectors, instructions, activities and computing elements) 

rather than the characteristics of the entities themselves. As a conse­

quence of this abstraction the general principles can be applied at all 

levels of computing systems organisation. For example an object can 

represent any level of information structure from an integer to a file 

or group of files. The same addressing scheme and accessing operations 

can be applied to selecting and manipulating an integer in an array, or 

a file in a directory. The communication between concurrent activities 

can model all communication within a computing system from the communi­

cation of a simple data item as an operator's operand to the communica­

ti-on of large data structures between concurrent processes executing in 

different computers. The recursive machine organisation can be applied 

at any level of implementation from that of a VLSI computer to that of a 

geographically distributed system. At the former level computing ele­

ments would be single chips or even parts of ch:l.ps and a special-purpose 

computing element would provide for example floating point operations. 

At the network level computing elements would be separate computers and 

a special-purpose element would be for example a print server. The 

essential difference between the different levels of computing systems 

organisation lies in the degree of complexity of what are viewed as the 

primitive entities (size and sub-structure of objects, Gophistication of 

addressing selectors, "power" of instructions and the logical activities 

and physical processors needed to execute them). As ~~ll be discussed 
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more fully in the next Chapter, these differences motivate corresponding 

implementation differences at different levels of recursive systems 

organisation. Despite such differences, the RCF architecture can pro­

vide a common programmi.ng model which allows multiple computing elements 

within a computer and mUltiple computers in a network to be programmed 

to cooperate in program execution in the same way, and facilitates 

changes in system organisation such as increasing geographic distribu­

tion or increasing integration of components onto a single chi-po 



- 157 -

5.. FJ!:CURSIVE SYSTEMS IMPLEMENTATlONS 

1hi5 Chapter covers a number of computing system implementations 

which, :in varying degrees, incorporate 

structuring discussed in the preceding 

the principles of recursive 

Chapter. 'lhe first sys t{!m 

described, referred to as LEGO, is a parallel computer designed as part. 

of this thesis ,,'ark specifically to support the RCF model. 'lhe remain­

ing four systems are: a computer networking extension to the Lt-;lX 

opera ting system (UNIX United); a reduced instruc tion set parallel com­

puter (RUJMS); a recursive computer architecture (R.N.); and an inter­

preter for a programming language based on the M.F olJerational moclt::l. 

(PASIX). 7hese are more or less iDdependently conceived SystChlS 

included here to illustrate possible alternative realisations of the 

recursive architecture concepts and BS a basis for discussing various 

implem~ntation issues. 

1he UNIX United systenl is an illustration of the application ot 

recursive structuring concepts in the context of conventional computer 

networks. RIHMS is closely related to the l\CF work, rCJ;rcsE'nting all 

in tennedjate stage bctl;'t'en conventi anal computer architec tures and the 

full generality of the ReF architecture, achieved by m1nimal extensions 

to 8 conventional microcomputer design. 'lhe 1\ .M. architec ture is the 

one example, other than .the RCF architecture, of principles of rec\Jl"sive 

structuring being used throughout a parnllel computer design - the prin­

cipal difference between the two is in their models of program execu­

tion. BASIX'is a concurrent programming lcnglmge rather than a ~arallel 

computer or computer netlo.'orking design. It is includ€d only be.c':l1.!se it 

is directly based on, and constitutes the first 'coropleted implEmentation 
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of, a recursive control flow model. Finally a nl~b€r of general design 

issues in the· implementation of a recursive machine organisation are 

discussed in the context of the UNIX Uni ted, lUMl-1S, R.M. and LEW 

designs. 

5.1 • lhe LEW Des:! gn -

lhe LEGO recursive computer design is based on the general recur­

sive machine organisation of Figure 37. It comprises a basic parallel 

computer design which can be extended to allow connection into hibher 

levels of recursive machine organisation. 'lhe basic design, illustrated 

in Figure 38(a), is for a parallel computer comprising many (upto a few 

hundred) identical general-purpose computing elements (CEI - CEn) con­

nected into a ring. In addition there is a control element (C~O) per­

forming special functions such as initiaU sa tion and external communica­

tion. Each element is intended to be implemented as a single LSI chip. 

The detailed design of these chips is currently being produced by 

another member of the Computer Architecture (.roup. 'lhe components of a 

computing clement are a memory element (M), processing element (P) and 

communications unit (C). Each of these is connected to the correspond­

ing components in the two adjacent comFuting elements. lhe cont.rol ele­

ment CEO is principally concerned with communication functions and does 

not have any general. procesGing or memory element. lhe following 

description of a computing element's functional orgsnisation (Figure 

38(b») represents the starting point for the the detailed dE:sign and 

chip layout ~ork. Square brackets [ ••• ] are used to indicate estimated 

information about the detailed design. 
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5.].1., Memory 

The total memory of the computer supports a hierarchic structure of 

variable-length objects, the program string, represented as a sequence 

of "quats". Each quat _is one of the four symbols - ( and ) structure 

symbols for delimiting objects and 1 and 0 bit symbols for encoding 

prjmitive objects (such as integers and machine code instructions). lhe 

memory-memory connections between adjacent computing clements allow 

movement of the string around the ring as different parts of the total 

object structure expand and contract due to insertions and deletion5. 

For example, in Figure 38(a), if new components were being inserted in 

object D and components were being (independently) deleted from F then 

there would be a general anti-clockwise shifting of the intervening sec­

tion of the string. Ihis shifting maintains the total sequencing ot 

symbols whilst moving free storage capacity to the area where it is 

needed. 

An individual computing element's memory, as shot-,n in Figure 3b(b), 

is physically organised as tlo."O double ended queues (DEQs), one on each 

side of the processing element. lhese provide varjable length storage 

[for up to 100 symbols] \oJhich accommodate locBI string expansion and 

contraction and the shifting of the string between adjacent com}::uting 

elements. Each DEQ provides the processing element with a stack inter­

face (push and pop operations) ~hich allows insertion of symbols into 

the string (push), deletion of symbols from the string (pop) ElIld e.hift­

jug of the string in either direction (pop and push on oPt,osHe sides). 

Fach DEQ of one computing element is connected to the complementary lEt< 

of the adjacent computing element. 1h1s connection is used to shift 
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symbols from one Dr:Q to the other in order to balance the munLer of sym­

bols beld by each. 

5.1.2. Processing 

Each processing element can support (be occu~ied by) one activity, 

executing instructions contained in its associated memory element. lhe 

activity's position in the string, indicated by the I in Figure 3b(b) is 

between the two symbols at the internal ends of the two memory DF.Qs. 

Each activity can have a superior activity (identified as RO) and up to 

six subordinate activities (identified as Rl ••• R6). An activity can 

either be executing the progra~ string, or executing messages, such a 

copy instruction sent from its superior. lhe same machine code instruc­

tions are used in both cases. For example the 1-) addressing 5clector 

is a machine code instruction "'hich can be executed as an address argu-

ment in the program string. Alternatively an activity executing an 

operator argument can send that selector instruction as part of a ID(;,S­

sage to be executed by a subordinate activjty, in order to position the 

subordinate at one of the operand arglunents. lhe instruction sel pro­

vides: data operations such as arithmetic functions on integers (01 any 

length), logical functions on booleans and comparison and conditional 

selection functions on arbitrary objects; the addressing beleclors 1<-, 

1-), lin, lout, lese, Istart, lend, and $Rn (identifying a particular 

related activity as the base for base-relative addressing); creation ot 

subord:fna te activities; communication bet't.:een activities; copy, take, 

r~place, lnsertal\4 execute acUons on objects (of any length); and the 

f and excl synchronisation primitives. An instruction is a variable 

length object [4 - 12 bits]. A full instruction set is describ~d in 
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Appendix A. 

A vacant processing element, i.e. one not currently occupied by an 

activity, will shift symbols from one of its DEQs to the other in order 

to balance the number of symbols held by each. A D~Q does the same with 
-

respect to its neighbour in the adjacent computing element and thus (for 

resource allocation reasons discussed below) the string will tend to 

spread evenly over the total memory between successive occupied proc€ss-

ing elements. 

Figure 38(b) outlines the functional organisation within a frocess-

ing element. lhe processing element has external access to two of the 

symbols stored in the associated memory element, and to single-symlol 

input and output buffers (RO - R6) for communication with the associated 

related activities. 1he environment [50 bits] accessible to the central 

processing unit (epU) i.ncludes tha t memory and communications data, and 

some registers internal to the processing element. lhe ep~ iunctions as 

a finite state machine (implemented as one or more fLAs) "'hich on each 

cycle generates a new environment state dependent on the previous 

environment. [Typically 15 bits of env:lronment is relevant to the set 

of transitions for executing a particular instruction.] As an illu5tra-

tion of the possible function of this design, consider the execution of 

a + data operation. 1his is performed bit-serially with its operands 

be:lng received from R2 and R3 and its result being transmitted to RI. 

The principal state transition is to set new bit values for the Itl out-

put buffer, and an internal carry register, as determined by the values 

of the R2 and R3 input buffers, and replace the used R2 and R3 input 

val ties with "empty" markers. If hov.'ever an input buffer is still empty 
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or an output buffer still full from a previous cycle then "no-cl,ange" 

transitions will occur until the communications system . has 

filled/emptied the buffers. 

'Ihe processing element's internal registers include: the current 

instruction (IR); the current instruction source (CIS) indicating 

whether the next instruction is to be taken from the program string or a 

particular Rn buffer (in either case ,the instruction is loaded into the 

instruction register a symbol at a time); some supplementary state 

(SSR), such as the carry bit; and an tlp/ do\-JU counter (DID). lhis latter 

is used to count matching brackets \o;hen compound objects are b€:ing IJro­

cessed. For example executing a /-) selector involves moving symbols 

from one DEQ to the other, counting up and do\o;n the level of nesting as 

( and ) symbols are encountered, un til the COllO t returns to zero. [A 

counter of ]0 bits, allowing upto 1C24 levels of obj~ct nesting, is 

probably sufficient for any size machine]. 

5.1.3. Activity Migration and Resource .Allocation 

'Ihere are two types of activity migration, local and remote •. Local 

ndgration is the migration of an activity from its cut'rent computing 

el~m€nt to an immediately adjacent computing element. As described in 

detail below, this occurs in order to provide an activity .ith access to 

information (symbols of the program string), or to some hardy,are 

resource (storage or processIng capacity) which is not immediately 

available 'in, the activity's currEnt computing element. lhe migration is 

negotjated using the connections bct~een adjaCEnt processing EIEm~nts. 

If, say, the activity 1s migrating to the right then the sequence of 
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symbols occupying the right DEQ of the original computing element and 

the left DEQ of the new computing element are shifted, by the new com­

puting element, to its right DEQ. '1his ensures that when the activity 

. has migrated it will retain tbe same logical position in the information 

structure. . lhus the two DEQs separating the two computing elements are 

emptied before the migration actually occurs. lhe actual migration is 

achieved by activity state information [8 bytes] being sent as a message 

from the old incarnation of the activity to the new incarnation. ('1he 

organisation of the message communication system is such that during the 

transmission of this message the new incarnation can safely migI8te 

again if necessary.) 

There are four possible causes of local migration to consider -

(i) To provide access to the string - An activity is popping s}mtol s 

from the DEQ to its right or left, and the DEQs between itself and 

the next activity in that direction become empty. lhe activity 

migrates through the intervening processing elements until it is 

adjacent to that other activity and then swaps position with it. 

1his type of migration occurs in traversing the program string (as 

a result of sequentially executing instructions, performing copy, 

take and replace actions, and executing addIessing selectors). 

(ii) To provide access to storage - An activity is pushing symbols onto 

the DEQ, to its ri.ght or left, and all the DEQs beu.een itself £Ind 

the next activity in that direction become full. In this case the 

rightmost of the two activities is forced to migrate to the pro­

cessing element to its right. lhis produces a pair of empty I~lf{s 

between the tY:o activities and so allo",s the symLol pl1shir,g to 
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continue. 'Ihis type of migration can occur in traversing tile 

€xisting string or inserting a new object. 

(iii) To provide access to processing elem~nts - An activity is al~ays 

created by another activity, at the same position in the string, 

and at creation t~e new or original activity is forced to migrate 

to the processing element to the right (since only one activity can 

occupy the original processing element). 

(iv) Propagated migration - An activity P is forced to migrate to the 

right (as in (ii) or (iii» to obtain resources (for itself or ~os­

sibly in (ii) for the activity to its left) and the required 

resources are not immedia tely available. Eefore r can migrate the 

destination processing element must be vacant and the intervening 

DEQs empty. 1f there is an activity Q occupying the required pro­

cessing element then the original migration of P is propagated to Q 

Q is forced to migrate to its right, possibly forcing further 

propagated migration. Once Q has migrated P's migratior1 can be 

completed. (Emptying of the two DEQs can also cause further 

activity migration, as in (ii), since it "ill involve pushing sym­

bols onto the DEQ to the right). 

The local migration mechanism thus provides a simple scheme for the 

decentra1ised allocation of processing Bnd memory resources ~hich 

ensures that local resource requiremEnts are always satisfied if there 

are sufficient free resources anywhere in the machine. 'Ihis scheme 

r~lies on the circular connec tion of computing elements "hich UlE-anS that 

a free resource can al~ays be considered as being to the right of the 

particular computing element needing it. 
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An important aspect of the resource allocation scheme is that tllC 

program string expands and contracts not only in response to insertion 

and deletion of objects but also in response to the creation oud termi­

nation of activities wi thin them. For example consider the expression 

(* ( ••• A ••• ) ( ••• B ••• ». lhe machine code program for this expression 

might initially be in one com~uting element's memory. Ihe activity exe­

cuting the multiply will create subordinate activities to execute tIle 

( ••• A ••• ) and ( ••• B ••• ). lhese activities must migrate to the next t~o 

computing elements and in doing so they, so to speak, s~eep the two 

objects in front of them. lhus the ( ••• A ••• ) and ( ••• B ••• ) are shifted 

to two different computing elements where they are executed cor,­

currently. Generally, an executing program fragment ~ill expand over 

sufficient computing elements to provide the necessary processing 

resources, and will subsequently contract again when it no longer needs 

those resources but another expanding part of the program ~tructure 

does. As mentioned above, the operation of vacant computing elements is 

such that the program string will tend to spread evenly over a number of 

adjacent vacant computing elements. lhus if there are spare memory 

resources in the neighbollrhood of an inactive progrem fragment (i.e. one 

containing no activities) the program fragment ~ill Expand over those 

resources in anticipation of the expansion ,that ~ill be need~d if it 

does become active. 

lhe other, remote, type of migration is initiated by execution of a 

$Rn type of selector supporting base-relative addressing. 'lIds selector 

PQsitions an" activity directly at another activity ~hich may be an)'~here 

in the program string. Remote migration is negotiated by a tnNiSage to 

the specified destination activity (Rn) using the general communications 
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system, rather than by using the direct connections bet\>.een adjacent 

processing elements which are provided to facilitate local migration. 

On receipt of this message, the destination activity's computi~g element 

initiates a new incarnation of the migrating activity in the adjacent 

processing element (as in case (Hi) above) and tlle.n the state of the 

migrating activity is transmitted from the old incarnation to the new 

incarnation just as occurs in local migration. 

5.1.4. Communications 

lhe communications unit,s together provide a communications s}stem 

for the transmission of messages between related activities in possibly 

non-adjacent computing elements. 'Ihis communication system functions as 

two slotted rings rotating in opposite directions (LR, left ring, and 

1m, right ring). Each symbol of a message is transmitted as a separate 

packet in a passing empty slot of one of tbe rings, and is acknowledged 

when it has been accepted by the destination processing element. 'Ihe 

acknowledgement provides simple flow control - the destination llas only 

B single-symbol buffer, and so a further symbol cannot be f>ent until the 

buffer has been emptied. One reason for using only single s)mbol 

buffering is that when an activity migrates from one computing cllment 

to another, any message symbols that had be€:n receivE:d by the old com­

puting element, but not yet processed, must be transferred to the new 

computing element. Single bufferjng for such unprocessed s)mbols 

reduces the amount of information to be transferred and simplifie5 the 

m~gration mechanism. If a buffer contains a symbol of a message then 

there- cannot be another symbol packet in transit and thus the buffer 

contents of a migrating activity can be sellt to its ne\\' incarnation bi 
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the normal message passing mechanism with no danger of packets arriving 

there out of sequence. Also, as will be discussed later, progtan,s cnn 

easily be organised to use the variable length object structure for 

efficient, unbounded, buffering. 

Associated with each output buffer is a'routing flag (a) or <~) to 

determine which of the two rotating rings is to be used for transmitting 

symbol packe ts from that buffer. (An acknowledge packet is always 

transmitted in the reverse direction from that in "which ~as received the 

symbol packet being acknowledged.) This routing flag is an estimate of 

which direction provides the shorter path to the destination. 'lhe com­

munication channel between two activities is established when one (the 

superior) executes an instruc tion to create the other as its Rn subordi­

nate. The two activities will be initially in adjacent computing ele­

ments and the creating instruction specifies l\hether the subordina te is 

created to the right or left of its superior. lhat information deter­

mines the initial setting of the RO flag in the subordinate and the Rn 

flag in the superior. Subsequent migration of the activities can result 

in a routing flag indicating the "wrong" directions, i.e. the direction 

in which packets have to travel more than half way round the ring. Cne 

scheme for correcting the routing information is to divide the ring into 

a number of sectors and to provide in an acknowledge packet a count ot 

the number of sector boundaries which that packet has ctossed during its 

transmission. lhe receipt of an acknowledge packet with a sector count 

exceeding half the total number of sectors indicates that the packet 

w~ich it acknowledges was (probably) transmitted in the wrong direction. 

lhis- causes the routing flag of the appropriate output buffer to be 

inverted so that the next symbol packet \oii11 be sent in the "correct" 
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direction. 'Ihis scheme requires that a number of compuUng elements 

(evenly spaced around the ring) are "sector boundary" elements. lhe 

communication unit of such an element will increment the sector count of 

any acknowledge packet passing through it. 

'Ihere are two circumstances in which the routing information should 

be corrected. Firstly two related activities may cross. lor example 

activity R2 initially to the right of its superior executes a 1<- selec­

tor which re-posi tions it to the left of its superior. 5econdly the two 

activities may migrate further apart until they are separated by mote 

than half the total number of computing elements. lhe former cir­

cumstance, of ac tivities crossing, 1s likely to be the more frequent, 

and also the more important to detect since the two activities will typ­

:lcally be very close in the "correct" direction, and thus very distant 

1n the "wrong" direction. 'lhree sectors is sufficient to always deal 

with this circumstance and is a particularly appropriate choice since 

the same amount of information (2 bits) is needed for the sector count 

in an acknowledge packet as is needed for the symbol c8rried by a symbol 

packet. Also the need for a "sector boundary" element to increment a 

2-b:lt sector count in a passing acknowledge packet is unlikely to be a 

limiting factor on the packet transmission rate. lor the other cit­

cumstance, two related activities migrating very far apart, the likeli­

hood of correct detection by this scheme depends on the number of sec­

tors. With only three sectors, the ~orst Cbse is that a packet may 

traverse two-thirds of the ring in the "wrong" direction, rather tt.an 

o~e-third in'the "correct" direction. 'Ihe expected locality properties 

of programs suggest that this circumstance ,,;0111 be relatively rue. 

Thus the additional complexity of increaslng the number of &ec tors j n 



- 170 -

order to better handle this circumstance would be unlikely to be effec­

tive. 

The addressing of messages in the communication system is in terms 

of logical activities rather than physical computing elements since an 

activity may at any time migrate from one computing element to another. 

For a message from an activity to a subordinate, the destination is 

identified as A/n where n· specifies the particular subordinate and A is 

an ac tivi ty identifier, unique wi thin the computer. lor a message from 

a.subordinateto a superior, the destination is identified as AlO. An 

activity identifier, A, thus identifies a (bi-directional) logical cban­

nel carrying all communications between that activity and its subordi­

nates. (Those, leaf, activities that do not currently have subordinates 

do not need identifiers.) 

The computer maintains a decentralised pool of activity identif­

iers, the number of identifiers being equal to the. total number of com­

puting elements in the computer. (The number of activities needing 

identifiers is naturally bounded by the number of computing elements, 

although generally is much smaller). Each activity identiUer is either 

allocated to a particular activity, in which case it is part of the 

state of that activity, or it is free in which case it is held in an 

identifier store wi thin the communications unit of some computing ele­

ment. Each identifier store can hold one such free activity identifier. 

When an activity needs to be allocated an identifier (i.e. ~hen it first 

creates a subordinate) it places an "allocate" message on one of the 

rotating rings. Ihat message will be serviced by the first encountered 

communications unit with a non-empty identifier store. lhe identifier 
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is taken from that store and sent to the requesting activity, leaving 

the store empty. When the activity terminates, it releases its activity 

identifier by emitting a similar de-allocate message carrying the freed 

activity, identifier. lhis message is serviced by a communication unit 

with .an empty identifier store into which 1s stored the freed identif-

ier. \ 

lhere are similar motivations for this scheme for the allocation ot 

activity identifiers (logical communication channels) and the scheme for 

the allocation of processing B.nd memory resources. Both resource allo­

cation schemes are fully decentralised. Resource requirem~nts will gen­

erally be satisfied from locally available resources. ho~·ever a 

requirement will if necessary be satisfied by an available resource any­

where in the machine. 

5.1.5. Control Element 

The principal function of the control element, thO, is to interface 

the ring .of computing elements to its external environment. lhe exter­

nal environment may be a higher level of recursive machine organi sa tion 

with the computing element ring functioning as one component of. a 

mul ti-Ievel LEGO machine. lhe role of the CEO element in such an oq,an­

isation is discussed in the next Section. Alternatively, as is the case 

for Figure 38(a), the computing element ring may function as a complete 

LEGO machine. In this case the external environment ~ould be a user 

terminal or. ~during development) a conventional host computer. 'lhe (.E<J 

element of a complete LEGO machine has three functions. F'irstly there 

1s the machine's 1ni tiaUsation. lni HaUss tion includes establishing a 
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different "activity identifier" in the free activity i,dentifier store ot 

each computing element's communications unit, and establishing particu­

lar. computing elements as "sector boundaries". 'lhese initialisation 

functions could be implemented by constructing each computing el~ruent 

slightly differently._ However (for at least manufacturing yield rea­

sons) it is preferable to make all computing elements identical and 

establish these minor differences by messages transmitted from CEO to 

other elements during an initialisation sequence. lhe initialisation 

sequence would also need to establish a "null" initial program state 

with all processing elements vacant and memory DEQs empty. 

Ihe second, principal, function of CEO is interaction ~ith the 

external system. The basis for this interaction is a "monitor" activity 

which is created as the final stage of initialisation. (It would be 

initially created in a particular computing element, say CEl, but could 

subsequently migrate as can any other activity.) The monitor activity 

behaves as the subordinate of a conceptual "user" activity residing in 

the external system. Ihe monitor acUv1ty has :its superior activity as 

instruction source and will respond to messagps received from its supe­

rior in the same way as does any other activity. lhe communiCation unit 

of CEO will inject into, and extract from, the communications s)'stem 

messages between the monitor and the user activities, in the same way as 

does the communication unit of any computing element. Ihc messages gen­

erated for the monitor by the external system ~ould be standard machine 

code instructions and other objects (as described in Appendix A). 'lypi­

cf,111y there would be messages to: insert a program object into the 

objec i struc ture; create an independent BC tivity to execute tha t proglbm 

object; create subordinate activities to read different parts of the 
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program structure in order to monitor the execution progress of the pro-

gram and retrieve results being generated for output; possibly insert, 

and create ac tivi ties to execute, new "diagnostic" program fn'lgments; 

finally, delete the entire program object. 

'Ihe third function of the CEO element . would be monitoring the 

behaviour of the computer itself (rather than the program it is execut­

ing). For example, it could collect and provide the external system 

with information about message traffic. Also it would be possible to 

incorporate in the computing element design facHi ties to allow Q..O to 

determine, for example, how many computing elements ~ere vacant at a 

particular point in time. 

5.].6. Multi-level organisation 

Figure 38(c) shows part of a multi-computer organisation comprising 

a ring of computers each having the internal organisation of Figure 

38(a). This extension involves changing the role of the ctO control 

element in each computer's local ring, but requires no changes to the 

design of other elements or their interconnections. Ihe multi-~omputer 

organisation is exactly the same as that within an individual computer. 

Externally each computer, through its CEO, functions exactly as one of 

its computing elements, with memory, processor and communication connec-

tions for the shifting of objects, migration of activities and transmis-

sion of messages. lhe CEO elements of adjacent computers connect the. 

memory and processing elements of one computer's lo~ order comfuting , 

element to those of the adjacent computer's high order COlIlputing ele-

ment. The effect is exactly as if all the computing elements of all the 
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computers were connected in one large ring, with CEO elements forming a 

higher level communication system by which a message from, say, tIm in 

COMPUTER I to CEI in COMPUTER3, by-passes COKPUTER2's local communica-

tions system. Logically, migration of activities and ~hifting of pro-

gram string over co~puter boundaries is exactly the same as "'ithin a 

computer, although there may be physical differences such as slower 

transmission and different transmission protocols (in which case the 

func tion of a CEO elements would include interfacing between internal 

and external transmission). 

A CEO element has principally a communications function similar to 

that of a gateway node connecting different computer networks. It must 

recognise whether a message received from an adjacent computer is des-

tined for a computing element within its computer, and if so switch it 

into the local communications system. Similarly it must when appropri-

ate switch messages from the local system onto the more global s}stem. 

Within a local communications system, a message's destination is identi-

fied by a locally unique activity identifier. Within the more global 

communications system there must be a different set of unique activity 

identifiers for identifying messages between superior and subordinate 

activities in different computers. (Locality considerations suggest 

that in the majority of cases an activity and its subordinates "'ill all 

be :In the same computer, and so the number of more global activity lde:n-

tifiers required is much less than the total number of local activity 

identifiers in all computers.) In switching a message from one eommuni-
'. 

cation level to the other the CEO also performs the mapping between 

local and global activity identifiers. lhus a CEO must maintain a 

(two-way) identifier mapping table ""hieh is updated as activiUes 
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migrate in and out of the. associated computer. Within the multi-

computer organisation there will be a control computer, COMlU1ERO (not 

shown), serving the same role as the CEO control element wi thin a single 

computer. lhat is, either connecting into a yet higher level of recur-

sive machine organisation or interfacing to an external user system. 

'Ihis general scheme clearly extends to higher levels of machine organi-

sation in the same way. 

5.1.7. Discussion 

lhe principal motivation for the LEGO design was to obtain a rea-

sonably simple machine supporting the full conceptual sophistication of 

the ReF model and general recursive machine organisation. lhe machine 

instruction set provides all the basic mechanisms for the various forms 

of program representation and execution discussed in the last Chapter. 

In contrast, both the other major recursive systems implementations to 

be discussed in the following Sections, the UNlX Dni·ted networking 5yS-

tem and the R.M. computer architec ture, support models sOlUewhat less 

general than ReF (although the u~IX United and ReF model are remarkably 

close) • 

lhree major aspects of the general recursive machine organisation 

were discussed in the preceding Chapter, namely extensibility, locality 

and special-purpose computing elenlents. Ihe LEGO design is full} exten-

sible to any level of recursive machine organisation and the resul ting 

multi-level design provides n hierarchic communication system supporting 
", 

program locaU ty. Even wi thin a single level design wi th a large numt~r 

of computing elements, the two counter-rotating communications rings 
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provide some degree of locality. lhe executions of, say, t~o (adjacent) 

programs by two non-overlapping sub-trees of activities will proceed 

largely independently, wi th no communications interference. (lhe only 

interaction between two such disjoint computations is beneficial in that 

they effectively shar~ a common pool of processing and memory resources 

around their mutual boundary.) The LEGO design cannot however support 

special-purpose computing elements in the way discussed for the general 

recursive machine organisation, since that ~~uld require a particular 

object to be permanently resident in a particular special-purpose com­

puting element. Such a requirement would compromise the LE~O resource 

allocation scheme which depends on objects being able to freely shift 

around the ring of computing elements. 

There are some particular aspects of the LEW design ~hich allow a 

computing element to be reasonably simple, considering its generality. 

Firstly, there is the small amount of external information directly 

accessible to a processing element. '1his information consists of the 

two symbols on either side of the activity in the program string, and 

one symbol each of messages to and from a fe~ (typically three) related 

ac tivities. Consequently the CPU has a simple cycle for the serial pro­

cessing of data. An important aspect of this design is that the most 

basic level of a CPU cycle accommodates the asynchronous COIDClI.mic&tion 

of information bet~een computing elements, an essential e.1eme.nl of the 

RCF model. At this level the main problem of the 1£00 design is likely 

to be a processingl communication imbalance. 'lhe un-buffered comrouuicf.­

tfon of single-symbol packets via off-chip connections, is unlikely to 

keep· pace ,":i th the CPU processing of, purely on-chip, information. 

There would be a closer balance for a VLSI realisation (m1.1ch mote in 
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keeping with the general design philosophy) ",here each chip cOl.lld con­

tain a number of computing elements with a significant proportion of the 

communications being via much faster, on-chip, communicaUon paths. 

Such an implementation would use .the multi-level design ot Hg\lre 3c(c) 

with each COMPUTER being a single chip, and a CEO element providing the 

only off-chip connections (",hich are the same as those for a single com­

puting element LSI chip). It might also be desirable to provide multi­

ple buffering. and to use multi-symbol packets transmitted in parallel 

(achieving a better balance between addressing information and useful 

data). Such a widening of the communication path lIiould be more viable 

for a VLSI implementation than for an LSI implementation since in the 

latter the computing element design is constrained by off-chip bandwidth 

limitations. 

A second, related, aspect is the choice in the LEGO design of pro­

viding quite low level instructions, closely corresponding to basic 

machine operations, and the direct implementation of the general model 

without any optimisations. Ihese aspects of the design can result in 

significant program representation and execution inefficiences. laking, 

as an extreme example, the expression ( < 2 3 ) which compares two sim­

ple constants. Ihe operator would require a number of machine eode 

instructions to create subordinate activities, position them at the 

operands, instruct them to execute those operands and finally to perform 

the actual (bit-serial) comparison of the returned results. lhe choice 

of providing such primitive machine code instrce tions II rather than say 

i~plementing' each operator as a single machine code instruction, is 

partly to keep the computing element design simple and partly to facili­

tate experimentation with different operator types (such as stream+) and 
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other constructs at the program organisation level. 

The execution of ( < 2 3 ) involves the full mechanisms for c~eat-

ing, and allocating computing elements 'to, subordinate concurrent 

activities.' lhe advantage of this approach is that the same instruc-

tions and mechanisms deal with, say, ( < ( ••• A ••• ) ( ••• B ••• ) ) ~here 

( ••• A ••• ) and ( ••• B ••• ) are complex program fragments returning large 

nested data structures. However for a realistic implementation it might 

well be necessary to complicate the design by incorporating some optimi-

sations. For example, it may be desirable to provide special instruc-

tions for the common cases where an operator's operands are values or 

addresses short enough to be loaded into CPU registers and processed in 

a more conventional way. 

Addressing is based on a very primitive (almost minimal) set of 

selectors which can give very inefficient program representation. For 

example selecting the 2J,t component of an object will require t~ellty 

/-> selectors. For a realistic implementation it would be necessary to 

include the fuller set of selectors given in Figure 25. lhe DE.Q 

memories provide a simple hardware mechanism for storing and accessing 

variable length objects. One consequence of this impleme-ntation, 

reflected in the machine code definition, is that when an activity 

accesses, e.g. copies, an object, it is necessarily re-positioned at the 

following object. 'Ihis is convenient when serially accessing adjocent 

objects, but inconvenient when repeatedly accessing the same object. 

The main consequence of the DEQ memory implementation is that interplet-, 

ing an address to position past an object requires a scan of the ~hole 

sub-structure of the object (different parts of this scan may be per-
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formed in sequence by different computing elements). 1m. approach to 

alleviating this problem (adopted in the R.M. implementation to be dis-

cussed later) is for a computing element of,incorporate an index to the 

structure of its part of the program string. One simple indexing scileme 

is the following-

relative level 
index 

string 

"absolute" 
level 

MF..MOR~ 

left index 

m 
right.index 

m 
(010) ( ••• ) ) ( ••• ) ) ( ( ••• ) 

I I II III f 
7 776 656 6 

The left (right) index records the difference of program string nesting 

level bet~veen the position at the memory's left (right) boundary Clnd the 

least nested position in the memory. As, say, a /-> selector scans an 

object, say OB, a count is maintained of the current nestirlg level 

within OB. If, when the scan reaches this memory, the count is greater 

than the left index then the.end of 08 is not contained in this memory 

and the scan can immediately continue at the next memory (with the count 

being decremented by the value in the left index Bnd incremented by the 

value in the right index). A simple algorithm for maintaining these 

indexes involves incrementing and decrementing them as delimiter symbols 

are shifted across the memory's boundaries. (This algorithm can rebull 

in the "safe" error of the indexes both being too bJgh by the same 

amount, sometimes causing an unnecessary SCBn which can be used to 

correct them.) 
, 

The circular connection of computing elements and the choice of at 

most one activity per computing element results in simple, totally 
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decentralised, schemes for the integrated allocation of processing and 

memory resources to activities and program string, and for the alloca­

tion of logical channels (activity ide?tifiers) for communication 

between activities. lhe restriction to a single activity per computing 

element, and th~ form of memory organisation, can lead to excessive 

migration of activities and shifting of program string, particularly in 

view of the frequent creation of subordi,nate activities implied by the 

direct implementation of the general RCF model for even simple instruc­

tions. This can clearly lead to poor performance, particularly for con­

ventionally organised programs which do pot exploit any of the machine's 

concurrency and communications potential. 

Performance is not a major motivation for this design and tl,e 

design choices discussed above were principally motivated by the resul t­

:fng- simplicity of the initial implementation. ho¥:ever it is ¥:orth dis­

cussing the machine's behaviour for a style of program bHter suited to 

• its 'capabili ties than is the conventional style. lerformance ¥:ill be 

best for program fragments in which a particular pattern of activit.les 

is maintained for a reasonable length of time. Figcre 3S shows an ex~m­

pIe program fragment with this characteristic. lhis program fragm€nt is 

a development of the data flow style of iteration using stre~m operands, 

shown in Figure 33 of Chapter Four, and is representp.d using the nota­

tion developed there. 

'The operator of iI, 1ter+ is similar to the stream+ of Figure 33. 

The executi~g activity P positions subordinates, Q and R, at the start 

of its "stream" operands (the value sequences aI, a2, a3 , etc., and bI, 

b2, b3, etc.), and subordinate activity S at the end of its stream 
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result. For'this iter ~ype of operator the executing activity P then 

repeatedly performs take (destructive read) actions on the objects at 

which Q and R are positioned and adds the returned values, 'an Gnd bn, to 

produce a result cn. lhis result is sent to S as part of an insert 

action to append, that result to the end of i2's operand stream. 

... ~ i 1 : 
( 

A: 

a~other instructions

i9 I B: 
liter+ (I a6 a7 J (1» (I b6 b7 b8 J (?) ) Ie ) 
--<-Q-~ __ I R--o(f---' 

as 5 

I 
s D: 

••• 

••• par ( f c2 c3 c4) (1) ) 
.--.oIIE--Q ~ - ~- - - -' C: 

( 1:= 6 lout ) If:. ) ••• , 

6 

Figure 39 - Execution of Iterative Data Flow in RCF 

Instruction 12 has the same structure as il except that the second 

operand is an embedded literal, implemented as' the object (:- 6 lout). 

This has the normal (as opposed to stream or iter) type of operotot t :-, 

to return its single operand 6. It is follo~ed by an loot address to 

re-position the executing activity outside the object "'hich it then re-

executes, thus returning a stream of constant values to its invoker. An 

operator such as ~ 1n this representation is actually a sequence of 

primitive' m~chine code instructions to achieve the described behaviour. 

(Actu?l machine code for this example is given in Appendix A as ~n 

illustration of the instruction set defined there.) 
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Instructions 11 and 12 would be part of an iterated group of 

instructions, separated by R!! operators so that they are all executed 

in parallel. On the first execution of the group, the ~ operatoI& 

create activities at all the group's components (such B.6 11 and 12) 

which in turn create subordinate activities at their operands and 

resul ts. This creation of activities will cause the ~hole gIOUp to 

expand over sufficient computing elements to provide a processor for 

each activity (causing contraction in other, no longer active, parts of 

the program). 'lhe iteration actually occurs at the instruction argument 

level (rather than at the instruc tion level, as in Figure 33, or the 

instruction group level, as in conventional control flow) • lach 

activity repeats a small sequence of machine operations, remaining 

essentially at the same position in the object structure. 'lhe ini tial 

iteration in effect sets up a logical, data flow, net connecting the 

computer's processing elements. As indicated by directed arcs in Figure 

39, the flows of data pass through the communications system (solid 

arcs) implementing the connections between activities, and through the 

memory system (dotted arcs) implementing the stream operands. 'lhese 

streams and the DEQ memories supporting them aetas buffers in the data 

flow paths, accommodating differences in execution rates between the 

different instructions. After the net has been established, there will 

generally be no shifting of the string or migration of activities 

between computing elements. lhe exception is in the case ~here a 

discrepancy in processing rates resul ts in an operand stream expanding 

beyond the capacity of one computing element's memory and thus causes , 

the s~ifting of the string to provide the necessary local space. 
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The data flow style communication of values from 11 to 12 is 

achieved by the value's generator P and its eonsumcr P' being indepen­

dent ae tivi ties Yihich communicate via memory. 1M s, as in data flow 

archi tec tures, allows maximum concurrency but may consume considerable: 

resources (in this case the storage for the operand streams). In the 

case of the second operand of 12, the values are generated by an 

activity R' created as a subordinate of the consumer, P'. lhese operand 

values are returned directly on tIle (lmbuffered) communications path 

from the generator to the consumer. In this case, flow control in the 

communications system means 

effect driven by demands from 

results in effectively 

that the execution of the generator is in 

the consumer. As in reduc tion, this 

less concurrency, but conserves ruCiC hine 

resources. ]n this case if instruction D were represented in the same 

"Jay as instruction 11, with 12's second operand being a stream, it could 

quite rapidly, and uselessly, fill up a large amount of ~torag€ ~ith 6s. 

lhus the demand driven execution conserves storage resources. Im~ever 

the choke of one activity per computing element, wi tll Ii' r,ermanently 

occupying a processing element, means that the possible conservation of 

processing resources is not in fact exploited as it might be in a imple­

mentation which shared processing elements bet~een activities. 

'Ihe lEGO design discussed in this 5ection was developed specifi­

cally to obtain a complete realisation of the heF model and principles 

of recursive machine organisation. lhe following Sections cover four 

computing systems which, in varying degrees, incorporate concepts simi­

ler to those'in the recursive control flo~ medel, recursive machine 

organisation and LEeO machine design. lhe similarities and differences 

between ne LEGO design and these other systems illustrate Ii number of 
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general implementation issues which are discussed at the end of this 

Chapter. 
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5.2. mnx llnited 

The Newcastle Connection[63] is a soft~are subsystem, developed at 

Newcastle University, which can be added to each of a set of physically 

inter-connected UNIX systems (computers running the LNlX(5t] operating 

System) so as to construct a distributed system, referred to as L~lx 

United. lhe resulting UNIX United system is functionally indistingui.sh-

able, at both the user's system command language (llshell") interface and 

program's system call interface, from one of the lJr-tlX systems from "'hich 

it is constructed. Thus it meets a principal criterion for a recur-

sively structured system. Although in no way directly part of this 

thesis work, UNIX United and UNIX itself exemplify many of the. concepts 

discussed in this Chapter. lhe system is discussed here because it 

illustrates one end of the possible range of recursively structured com-

puting systems and it provides a particularly familiar context for the 

discussion of implementation issues. Also, close analogies that can be 

drawn between (often independently arrived at) concepts and mechanisms 

in ReF and UNIX provide some evidence of their value. lhe L~lX Lnited 

system, being an extension to the existing 1JNIX operating syst.em, has 

been implemented quite rapidly and an initial version is currently 

available commercially. 

Viewing UNIX and UNIX United as an illustration of the recursive 

architecture concepts, the recursive storage structure and contextual 

addressing is that provided by the 1JNIX filestore and the file naming 
~. \ 

" 

scheme, the operational model is that embodied in the LN]x shell and 

system call interfaces, and a primitive computing element is a single 

UNIX system. 
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The filestore provides three levels of "objects": single, fixed-

length bytes as primitive objects; files as com~ound objects each 

comprising a variable length sequence of by~esj directories providing Q 

hierarchy of higher level compound objects each comprising a variable 

number of files and directories. (UNIX does provide the facility for 

one file to be linked into several directories, thus departing from a 

pure tree structure. However this feature will be ignored here as it is 

used relatively infrequently, causes some difficulty in u~IA Dnited, and 

is not very general in that above the file level there must be a strict 

tree structure of directories.) 

A file or directory (a files tore node) is specified by an identif-

fer comprising a sequence of context-relative selectors, in the same way 

as an object is addressed in the RCF model. lhe principal type of 

selector is a name, e.g. brian, identifying a particular node ~ithin a 

directory (this corresponds to a In RCF selector identifying a part1cu-

lar component by its position). lhere are no "global" names, eacC. name 

being relative to and unique within a particular directory. lhe file-

store tree structure is usually represented as in Figure 40, where the 

nodes represent files or directories and are labelled by their names 

within parent directory. lhe other selector which can be used is the 

parent selector, •• , which corresponds exactly to the lout selector of 

ReF. A complete node identifier, of the form e/sel/sel/ ••• , corresponds 

to the base-relative form of addressing in ReF. lhe starting context C 

of the identifier is one of two previously identified directories, 

namely the user's "root directory" or "current working directory". At 
-

the file level there is a discontinuity in the addressing scheme, 

with the addressing of bytes within a file being totaliy~~ifferent from 
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the addressing of directories and files. Each byte is addressed by its 

absolute position in the file (corresponding exactly to a In ~CF sclec-

tor) or relative to the current position in the file (corresponding 

exactly to a l+n or I-n ReF selectors). 

lib 

filel 

Figure 40 - UNIX and UNIX United Fl1estore Structure 

UNIX United provides a generalisation of the UNIX filestore struc-

ture. Each individual LNIX system has its own tree of directories. lhe 

root node of the tree is logically an object containing that system's 

complete filestore (in Figure 40 the directories group} and group2 coulo 

be roots of separate UNIX systems). 'Ihere can then be a higher level 

directory (or more generally a superstructure of directories) which con-

tains those indiv:fdual root directories as its components. 'lhe complete 

UNIX Un:fted filestore structure thus forms one tree ~lth a homogeneous 

contextual addressing scheme lYhich is the same as that within an indivi-

dual LNIX system. In fact any directory node in the tree, such as jolm 

in Figure 40, can be the root of a separate DNIX system. ~ode ident1f1-

cation is the same regardless of ~hether LNIX system boundaries are 

crossed. In Figure 40 the complete tree might be contained in one Lh11 

system, or group} and group2 might be separate tNIX systems. In eitber 
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case, richard's file] could be identified from the context of bri.sn as 

/ •• / •• /group2/richard/fllel. 

lhere are significant similarities between the keF model of program 

execution and the model presented by the UNIX shell and system call 

interface. UNIX provides a tree structure of user processes, each· of 

Which is executing a program file (object) from the filestore structure. 

Associated with a process are a number of file descriptors, each giving 

read (ReF copy) and write (ReF replace) access to the byte at a current 

position in a file. A file descriptor is dynamically created by an Orl~ 

command specifying a file identifier of the form discussed above. ln 

UNIX United an OPEN executed in one machine can identify a file in a 

different machine, in which case read and write accesses are implemented 

by messages between the two systems. lhe tree of . UNI~ user processes 

corresponds closely. a tree of ReF activities. A file descriptor 

corresponds closely to an ReF activity which is a leaf of the activity 

tree, used by its superior to access as data the object at which it is 

posi tioned. 

A UNIX process can create subordinate processes by FORK commands. 

The subordinate is initially a t the same position as its superior, ex€-

cuting at the same point in (a new copy of) the same program file. lhe 

subordinate process will then typically execute an EXEC comnl£lnd, moving 

itself to execute a different program file. lhe destination file 1s 

specified by a file identifier of the form discussed above. In the case 

of UNIX Uriited the identified file can be in a different uNl~ system, , 

impli~itly causing the process to migrate to that system. A subordinate 

process initially inherits the same connec tivity with the filestoI€ as 
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its superior, that is it is given copies of all its superior's file 

descriptors. This connectivity can subsequently be changed by closing 

files and opening different files. lhese mechanisms in u~l~ are very 

similar to those in the LEGO implementation of the ReF mode~. In LEGO a 

subordinate activity is initially positioned adjacent to its creating 

activity and typically then executes an address to re-position itself at 

the actual object to be executed (which may cause it to migrate to a 

different computing element). When an activity is first created it 

effectively inherits the addressing contexts provided by the other 

subordinates of its superior (as required to support procedure calls 

discussed at the end of Section 4.2.6). 

One significant difference between UNIX and ReF is that in the 

former there is no notion of a process being able to address relative to 

its Ol-.'Il position in the filestore structure (e.g. relative to tile direc­

tory from which was selected the program file it is executing). 1h1s 

results in a problem with, for example, a library program which uses a 

sibling program or data file in the same" library" directory. ~uch a 

library program must contain an identifier for that sibling file, but in 

UNIX there is no addressing context which can be robustly used for such 

an identifier. 'Ihe omission of "program relative" addressing, \\'bleh 

would easily solve this diffieul ty, is perhaps a resul t of the conven­

tional view that main memory in which a program is executed is very dis­

tinct from the filestore memory from which the program is loaded for 

execution. (In contrast, ReF at least conceptually uses the same memory 

space for both object execution and "permanent" object storage.) 

UNIX implements its variable length "object" structure and multifle 
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process model using standard operating systems techniques. Ihe byte 

sequence comprising a file is stored in a number of (arbitrarily posi­

tioned) disc blocks which are dynamically allocated and released as the 

file expands and contracts. A directory (itself implemente~ as a file) 

contains a list of its component files and pointers to the physical 

blocks in which they are stored. Ihe additional mechanisms provided by 

UNIX United are those for handling remote file execution and access, 

resulting from an EXEC or OPlm call with a file identifier that goes 

outside the current UNIX system. Both cases correspond to activity 

migration in ReF and involve the migration of a process (the user pro­

cess or a system, file access, process) essentially as was described for 

the general recursive machine organisation in thapter Four •. Ihe migrat­

ing process is embodied in a message by which the process state is 

transmitted to its destination. Ihe destination· is specified by the 

file identifier used in the system call to name the remote file. Ihis 

identifier is incrementally interpreted as the process migrates through 

the UNIX systems on the path to the destination. As the process 

migrates a logical connection between its source and destination is 

established which is used for subsequent direct communication. (ladl 

segment of the comp~ete logical connection is implemented by a system 

"forwarding" process in the UNIX system through "'hich it passes.) for a 

user process the state that has to be transmitted (of the order of ;vv 
bytes) is principally that providing its connectivity to other parts of 

the filestore structure, that is its file descriptor information. 

The tJ'NIX Uni ted system is "transparent" in two important respee ts. 

Firstly it exhibits the extensibility properties of recursive systems 

discussed previously. Enhancing a UNIX system to be a component of a 
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larger UNIX United system has no effect on the user's interface, even 

though that interface then provides access to remote data and pro&ram 

files. Users (and their existing programs)'~hich do not exploit the 

enhancement are completely unaffected by it (particularly, exist~ng' 

filenames retain their validity). Secondly, the enhancement is imple­

mented without modification to the standard UNIX software, i.e. the 

operating system kernel and various utility programs. 1his is achieved 

by the Newcastle Connection software which implements the enhancement 

being inserted as a separate layer between the kernel and the user (and 

utility) programs. To user programs the Connection layer impersonates 

the kernel, providing the same system call interface. 10 the kernel it 

impersonates the user programs, using the standard interface provid~d by 

the kernel. 'Ihe principal func tion of the. Connec tion is to trap any 

system call relating to a file in a remote system and to implemEnt the 

necessary inter-system communications required to service the call. 

(Other system calls are passed straight down to the.kernel.) 

5.3. BASlX 

BASIX [Ie] is a computer programming language ("BASed on the unIX 

system command language") rather than a decentrali sed computing sys tem. 

It is mentioned briefly here as it is the first working implementation 

of a RCF model. Also its implementation is based on exploiting the 

similarities between RCF and UNIX. Although developed as a separate 

project, by Isabel Gouveia Lima and David ~rundy, there has been design 

.work by members of the Computer Architecture Group, myself and Ihilip 

Treleaven, and by a member of the Vn!x Un! ted team. Lindsay }j.ushall. 
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The language follows closely the concepts of the ReF operational 

model developed in Chapter Four, but at the conventional prog ramming 

language level. An object is either a unit of program structure (8 

"block" , procedure, expression, etc.) or a unit of data struc ture (e.g. 

an array). ~n object's compdnents (e.g. local variables, nested data) 

can be addressed by name or position. lhe execution model is that of a 

tree of processes (activities) each executing an object, with communica­

tion of results from subordinates to superiors. lhe language provides a 

fairly conventional syntax for expressions, FOR loops etc. lhe s~ntax 

for specifying relationships between concurrent processes (data commurd­

cation and synchronisation patterns) is largely based on the syn tax of 

the UNIX shell system command language. 

The BASIX implementation is an interpreter ~hich runs on the L~ll 

operating system. .1he UNIX filestore struc ture and processes are used 

to implement the object structure and concurrency (for reasons of imple­

mentation expediency rather than efficiencyl). 'lhe main benefi ts found 

in the use of the language are the ease of organising concurrency and 

information structures. 

5.4. RlMMS 

lhe Reduced Instruc tion Set Mul t1-Microprocessor System (RHJ}15l34]) 

is a parallel computer, supporting a mul ti-thread control flow model, 

which has been influenced by some of the ReF concepts. lts design 

attempts to ,apply the reduced instruction set design ph1losophy[64] to a 

parallel computer. lhe overall design of RIMMS has been worked on as a 

joint venture by members of the Computer Architecture Group, including 
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myself, with detailed design and implementation being done by lewis Foti 

and L. Wang. 

RIMMS has two, well separated, levels of machine organisation. lhe 

lower level is that of an individual computing element and the higher 

level is that of the parallel computer obtained by connecting a number 

(upto 255) of those computing elements together by a slotted ring type 

communications system. The higher level provides three primitives, 

LOAD, STORE and EXEC, for communication between its component computing 

elements. LOAD and STORE (corresponding to the RCF copy ,and replace 

primitives) allow a process (activity) in one computing elcm~nt to 

access memory locations in a different computing element. EXEC supports 

the migration of a process to a different computing element. lhese 

primitives are implemented using messages between computing elements ot 

the form -

type (LOAD, STORE or EXEC) : destination (16-bit) operand (1~-bit) 

The destination field is an address identifying the location being 

accessed by a LOAD or STORE, or the next instruc tion of the process 

migrating by an EXEC. At this, parallel computer, level an address has 

the form /element/word identifying a particular word within a rarticular 

computing element. lhe operand is the return address for a LOAD, the 

value for a STORE, or the migrating process's state for an EXEC. 

,An individual computing element consists of a 16-bit microcomputer 

with 256· words of local memory. Each computing elcm~nt Can support a , 

number of concurrent processes. lhe instruction set, based on the 

reduced instruction set philosophy, has less than t~enty different 
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instructions and only two . addressing modes.· 'lhere are two context 

registers, Data and Code, and the two forms of address are /D/d or /C/d 

where d is a displacement relative to one of those registers. 'lhe dis-

placement is an 8-bit quantity sufficient to address the memory of one 

computing element, whereas the context registers are 16-bit quantities 

sufficient to address the entire system's memory. If the actual addre&s 

used to LOAD an· instruction operand or STORE its result is in a dif-

ferent computing element than that in which the instruction is being 

executed then a LOAD or STORE operation of the higher level machine is 

automatically invoked. Ihe Data register, which can be explicitly set, 

identifies the process's current workspace. (The workspaces of dif-

ferent processes are not necessarily disjoint.) The Code register is the 

process's program counter, identifying its current instruction. (lhis 

register is principally used to access literal values embedded in the 

code) • 'Ihe Code register is automatically incremented 8S the proce.ss 

moves sequentially through its code and can be explicitly set by a 

branch instruction. In either case, if the new Code register v&lue 

points outside the computing element, then the EXEC primitive of the 

higher level machine is automatically invoked to migrste the process to 

the computing element containing its next instruction. 'lhe only process 

state infomation that needs to be communicated to the ne\>.' computing 

element is the Data register value. 

'There are two major features of the RlMMS design worth emphasising. 

Firstly it implements the notion of process migration between computing 
.. 

elements, and in order to do so efficiently the amount of procE:ss state 

is kept to a minimum. Secondly the design is intended to minimise the 

impac t of the higher level, roul ti- computing element organi sa tion on the 
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programming interface provided by an individual computing element. lhp. 

design thus illustrates a possible approach to transparently extending 

an existing micro-computer design to a multi-microcomputer system. In 

this respect there is some similarity with the transparency of L~l~ 

United. From within a computing element the only,visible effect ot com­

bining several computing elements in the higher level organisation 1s 

that the address space is extended. 'lhere are no explicit mechanisms 

for programming interactions between computing elements. Instead such 

interactions are implicitly invoked by the program fragment in one com­

puting element generating an address in a different computing element. 

The only effect on the design of a computing element is that such remote 

addresses must be trapped and mapped into corresponding communication 

messages. lhe implementation of this additional functionality in each 

computing element (corresponding to the l-.e~'cast1e Connection software 

used to implement UNIX Uni ted) is entirely separable from the inlplemen­

tat10n of the rest of the design. 

Currently there is a software simulator for Rl}ili5, produced mainly 

to evaluate the machine's programmability. Ihe main success is the 

transparency of computing element communication and the minimisation of 

process state. lhe main shortcomings are the limited number of address­

ing modes and a restriction of literals and addt'ess modifiers to f)-bit 

quantities. Work has now started on a hardware design. 

that in the future RIMMS will be extended to include more 

It is expected 

of the con-

cepts of the ReF architecture, such as allol.o;ing instruction operands to 

be variable length byte sequences. 
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5.5. R.M. 

The concept of recursive computer architecture originally c.E.me from 

Wayne rJilner's Recursive Machine (R.M.) deslgn[55,65]. lhe kCF archi­

tecture and LEGO implementation are in some ~ays very similar to the 

R.M. ~Tork and in some ways very differen t. 'lhe R.H. operational model 

provides the same hierarchic structure of delimited objects, represented 

as a sequence of (, ), 0 and 1 symbols. lhere is a similar form ot con­

textual addressing with an address being a sequence of selectors inter­

preted incrementally •. lhere are however a number of significant differ-­

ences in the addressing schemes. Firstly there is a form of absolute 

addressing where the starting context of the address can be specified as 

the outermost object of the entire object structure. (The provision of 

such addressing compromises the possibiH ty of an un-premeditated join­

ing together of existing systems, as can occur in for eX6mple Lhll). 

Secondly there is a much more sophisticated set of addressing selectors, 

including facUities for selecting a component object by specifying its 

content rather than its position. lhirdly thetOe is nothing correspond­

ing to the ReF's base-relative form of addressing, all addresses being 

relative to their point of use. 

The major difference between R.M. and RCF is tbe Dlodel of progt<lm 

execution. lhe R.M. model[65], deriving from ~ork on object-oriented 

computation[60J, is a particular form of parallel control flow and docs 

not directly support other models. An instruction can use an addless to 

send a message (itself an object) to the addressed object. ~uch a m~s­

sage -is a forked flow of control. lhe arrival of the message at the 

destination object calise the creation of a process or II BC tivity". lhe 
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message is typically a structure of instructions ~hjch are executed by 

the new activity. lhis execution is in the context of the destination 

object so that addresses in the message are relative to that object and 

the message can cause modifications in the neighbourhood of its destina­

tion. Simple examples of the types of messages are -

(1) (insert 20) 

created. 

- A new component of the destination object is 

(ii) (copy /self to /address-of-X) - A copy of the destination object 

(identified by the selector /self) is sent as a message to X. 'lhe 

copied object, say a procedure definition, is then executed in the 

context of X, thus achieving a procedure call using the components 

of X as parameters. 

If there are two messages for one destination object then there 

will be some sequence to their arrival, and the activity associated ",i th 

the second message to arrive is delayed until that associated with the 

first message has finished. lhis mutual exclusion is the one process 

synchronisation mechanism provided. 

In effect, as in the RCF model, an activity c~m crec"itc another 

activity which is positioned at an addressed object and sent a Ulessage 

for execution. '!he fundamental dHference between the t\o.O modele. is in 

the activity structure. In the RCF model the created activity c~\n be 6 

subordinate of the creating activity and there can be further direct 

communication between them, particularly the return of a result. 'lhe 

R.M. model is essentially a subset of the ReF model in which a created 

activity is necessarily independent and so no further direct comoamica-
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tion is possible beyond the original message. If subsequent communic~­

tion is required, as in example (ii) above, the created Dctivity must 

send a message to an object in the neighbourhood of the creating 

ac tivity. This requires that the original message contain the return 

address, /address-of-X, of its originator relative to the context of its 

destination. Hotvever it is not clear that there is a robust general 

scheme for constructing such return addresses within a dynamically 

changing object structure. 

The R.M. implementation accommodates a tree structure of nested 

computing elements, as in Figure 37. 'lhe basic memory organisa tion is 

similar to that of the LEGO implementation with the expansion and con­

traction of the object structure being accommodated by DE« Ditmory ele­

ments and by the movement of objects bet~een adjacent computing ele­

ments. As an additional mechanism for handling variable length objects, 

a shift register can overflow to a RAM associated with its computing 

element, which in turn can overflow to higher levels of storDge hierar­

chy, such as discs, associated with higher level computing elements. A 

primitive computing element can contain several activities at objects in 

its memory. lhe execution cycle is to search the memory for an 

activity, execute that activi ty to completion and then search again. 

The communication system supports messages from an activity to a desti­

nation object. The sequence of selectors forming the address is inter­

preted incrementally by communications units on the route from the 

source to the destination. Each communication \mit (of a non-I-r1ru1tivE. 

computing element) is itself actually a primitive computing el~ment. 

A11communications un! ts keep a record of the absolute address of the 

start and end of the object structure contained in its computing 
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the memory, thus avoiding some of the searching which occurs 1n Ll('O. 

The communications units also perform an additional load balancing iunc-

tion, determining in conjunction with the neighbouring computing element 

whether objects should .be shifted between them. 

5.6. Discussion 

The LEGO computer, UNIX United networking system, Rn1N~ computer 

and R.M. computer provide examples of various different approaches to 

the implementation of recursive systems. The most significant issue is 

the mapping of logical objects to physical storage structure. lhe basic 

choice is between a static storage structure with permanent objects 

allocated to particular units of physical memory; or a dynamic storage 

structure with objects being freely created and deleted and shifting 

between memory units as the object structure changes. RlllM~ impl~ments 

the extreme of completely static storage, whereas L~GO and ~.M. im~le-

ment the other extreme of completely dynamic storage. Ih~ t~11 Lnited 

filestore is intermediate between these u .. o. At the level 01 a dilec-

tory representing a UNIX system there is a static storage structure. 

Although directory objects at this level can be created and deleted, 

that is not part of normal operations. Within a Ltd}, systt:m component 

directories and files can be created, deleted. expanded and contracted, 

as a result of which there will be changes in the allocation of logical 

objects to physical storage. (For example, contracting and then £:xpand-
", 

ing a file may cause a change in which actual disc blocks contain the 

'-
file.) Dynamic storage is more flexible but requires a more sophisti-

cated address interpretation mechanism and also a storage allocbtion 
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scheme which needs to be decentralised if (as in LE~O and A.M.) the 

dynamically allocated storage includes more than one computing clement. 

Generally dynamic storage is likely to be inappropriate at the computer 

network level, being either impractical due to the inter-node communica­

tion required for storage "allocation, or unacceptable due to the 

resources at different nodes being owned by different users. (with the 

recursive machine organisation there is no absolute distinction bet~een 

a "parallel computer" and a "computer network" and in this context 

perhaps the distinction between dynamic and static storage structure 

provides the best definition of the "parallel computer" level of recur­

sive machine organisation.) 

For a system with dynamic storage structure there is the question 

of how physical storage is organised to implement the,changing object 

structure. Here there is a strong distinction bet~een serial access 

techniques, such as wi th the DEQs used in LEGO and h.N. (or, in a more 

conventional context, magqetic tapes), and direc t access tecllnique s, 

such as with discs used for the t~lX filestore. In tlle former, ttle 

structure of the physical storage devices directly supports tllc inser­

tionand deletion of objects and the structure of informAtion is encoded 

direc tly in the information, as delimiter ,symbols. lhese characteris-

tics are very amenable to localised processing and impose no limit on 

object size. Direct access techniques involve add! tiona1 mecLanisms, 

beyond those implicit in the physical storage medium, for allOCating and 

structuring the storage medium. Supporting a structure of variable 

length objects would typically require lists of free space, pointers to 

an object's components and the system functions to maintain tt.at Cldd1-

tional information. lhese characteristics lead to more centr61ised 
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processing. However, given these additional mechanisms, the addressing 

of information is easier than with serial access techniques. Intermedi-

ate bett-.'een these two is the "index sequential ll technique, as used in 

R.M., with supplementary information to aid addressing of information 

stored in sequential access devices. 

A basically sequential storage technique is the more appropriate it 

a computer is to support the manipulation of variable length, arbi-

trarily long, objects at the level of individual data items (e.g. 

integers), particularly as the "bit" components of those objects do not 

generally need to be directly addressable. However at the levd v.here 

larger objects are being stored and operated on (such as "files" being 

moved between "directoriesll
) it would be more appropriate to use direct 

access techniques t-.1. th which such operations can be more efficiently 

achieved by manipulating pointers. 

The second major issue is the implementation of activities 

(processes) and their migration, particularly organising the delivery of 

messages to "moving targets ll
• In all four of LEC,O, LNIX United, ~lNW.) 

and R.M. there are multiple activities and the processing element sup-

porting an activity is that associated t.lith the stor&gE~ unH in which is 

stored the object being executed by the activi ty. Ihis minimises the 

communications overhead of instruction access ("hlch is predictably very 

frequent) at the possible expense of data access (~lich is not easily 

predictable). Ihree levels of, increasingly more autonomous, processing 

resource "allocation can be identified. Ihe highest level is that where 

there is a static storage structure which gives the user implicj t con-

trol over which computing element will support an activity. F"or eX6m-
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pIe, in UNIX United, this can be deliberately controlled by copying a 

program file into the directory tree of a particular LNIX system and 

executing that copy. (This would be done either to exploit particular 

processing characteristics of that system, or minimise the amount of 

inter-system communication n~eded for the program's file accesses.) 

The intermediate level is where there is a dynamic storage struc-

ture involving several computing elements. ~t this level there is 

automatic processing resource allocation which is an integral part of 

storage allocation. lhe influence of processing load on storage alloca-

tion may be very large (as in LEGO where creation of ncw activities cun 

cause considerable shifting of objects) or minimal (as in R.M. where the 

only influence is that activi ty state information USCl:i some general 

storage capacity and so creation of activities might require some shift-

ing of objects to provide the space). 

lhe lowest level j s that internal to a primi tive computing ell'ment 

where processing resource allocation is an autonomous system function. 

Apart form the degenerate case of a single activity per computing e1£-

ment, as in LEGO, there is the basic cho:lce of \o.Ihether (as in It\lx) a 

processing element is time-multiplexed between activities in the comput-

ing element. lhe alternative (as in both RIMHS and k.M.) is to allocate 

a processing element exclusively to one of the activities until it lias 

terminated, m:lgrated or become (temporarily) unable to continue (fo r 

example jn RIMMS, waiting for the response from a remote operand LOAD). 

'The inclusion of mul tiplexing will depend on the g rain of concurrc'ncy , 

and degree of physical parallelism. Multiplexin8 is desirable tt.hHC, as 

in UNIX, activities may be lIihole programs interE,cting ".ith diffcn.:nt 

- $'.' 
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users and running on the same physical processor. however· multiplexing 

is not so necessary, and the additional complE'xity of impl()mentation 

unlikely to be effective, where, as in R.M., each user program will be a 

separate object with exclusive use of mllny process:lng clements for the 

support of its activities and many activi ties will be very short-livEd, 

for example created just to insert one data item into a structure. 

The migration of an activity from one computing elc~ent to another 

requires the transmission of activity state data. In the case of LECO, 

RIMMS and R.M. activity migration is a basic part of a des:!.gn which 

therefore attempts to minimise the amount of dsta that has to be 

transmitted. 'Ihis data is principally the id€ntificlltion of the 

activity's destination and information about its connectivay with other 

activities and thus the rest of the obj~ct structure. lhere may also be 

some internal state information. In LEeO the destination identification 

is a single selector. 'Ihc connectivity informc;tion is its o\\n activity 

identifier and that of its superior (to allow the ernhsion and rr.ception 

of messages to and from its subordinates and superior) clOd the content 

of the single-symbol buffers used for those messages. In li.HL\15 the des.­

tination identification j s the Code reg:! stcr and the conn£:oc tiv Hy Infol·­

mation is the single Data register. In R.M. the deHinatioll is identi­

fied by a sequcnce of selectors \vhlch contrac ts 4JS the ~ct1vi ty moves 

towards its destlnatiqn. ihere is no djrect connectivity to other 

activ:!tles or objects. Any objects, other than the destination, .hich 

the activity needs to ac.cecs "-'ill be ineludrd :in, or addlesr.ed by I the 

message sent'with the migrating activity. lhi~ message, the 8ctlvity's 

internal state, can be of any length. 
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The original UNIX design did not anticipate the process migration 

which occurs in UNIX United and quite. a large amount of data has to be 

transmitted. As in R.H. the destination is identified by a sequence of 

selectors which contracts as the process moves towards its destination. 

Connectivity information is tohat associated with the process's olJen 

files. lhere can be quite a large number of these and this information 

constitutes most of the transmitted data. 

,The. question of communication between activities only arises in 

LEGO and UNIX United where there is a persistent structure of act:lovities 

(processes). These two system illustrate two general approaches to 

implementing communication between migrating activities. In LEGO the 

communication is achieved by the broadcasting of messages. A message is 

not physically addressed to a particular destination computing element. 

Instead it is logically addressed to a particular destination activity 

specified by an activity identifier, unique within the computer. lhe 

system relies on the computing element containing the destination 

ac tivity being the only one to recognise the logical address Dnd thus 

accept the message. In UNIX United remote communicDtion :Is achieved by 

the forwarding of messages. lhe path from the source (user process) to 

destination (a system process supporting remote file access) uses a 

chain of forwarding agents (system processes), one in each ~~lX s>st~m 

on the path. lhus at each stage of its transmission a message: is pllysi­

cally addressed to a specific L'NIX system - the one containing the n(:xt 

forwarding agent in the chain. lhe forwarding system is more appropri­

ate at the'computer network level since migration is relatively infr~­

quent- and so once the forwarding chain has been estabU shed it will lsst 

for some time. Also, at that level, the chain ~ill typjcally involve 
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only a few stages, and in any case it ~ould not be practicable to use 

system-wide 'unique process identifiers. In contrast, at the level 01 a 

parallel computer like LEGO, migration is very frequent Bnd B chain of 

forwarding agents would involve a large number of stages. At the higher 

level of mul Uple LEGO computers there is effectively a fon-'arding sys­

tem, for the same reasons as in a network organisation. I:.ach CJ.t.O "gate­

way" computing 'element acts as a forwarding agent for messages between 

an activity in its computer and an activity in another computer. 

lhe concepts of the ReF model and recursive machine organisation 

provide a general framework for decentralised systems at all levels. 

However, as the above discussion illustrates, there are different 

characteristics at different levels which motivate different implementa­

tions of those concepts. lhe principal distinctions are at the level 

separating a (possibly mul ti-level) "computer net~ork" from const! tuent 

(possibly mul ti-level) "parallel computers" and at the level of an indi­

vidual computing element. Above the parallel computer level there would 

be a static storage structure implemented using direct access t.ech­

niques. !he concurrency and communication that needs to be supported is 

that of long-lived user processes wi th relatively infrequent cOlllmllnic&­

tion within a structure which is fairly stable, both logically in terms 

of connection between processes and "open files", and physically in 

terms of process residency in particular net~'ork nodes. Also at this 

level the connectivity of a process (the number of open files and subor­

dinate processes) is likely to be relatively high. 

At the lower levels there would be a dynamic storage structure 

employing serial access techniques. 1he concurrency and communication 
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that needs to be supported is that of concurrent activities execllting 

individual instructions and accessing individual data items,. ~ith rela-

tively frequent communication within a rapidly changing but simple 

structure (e.g an ac tivi ty having two subord inates for its instruc tion's 

operands). 'Ihe lowest, single computing element, level is typified by B. 

separation of storage and processing resources, as in conventional com-

puters. 'Ihis separation principally effects the allocation of process­

ing resource which at this level is not tied to storage allocation. 

Also of course messages between activities in the same computing element 

can be transmi tted v:fa the computing element's local memory rather than 

requiring physical communication between dHferent computing elemt·nts. 

This might effect the processor allocation strategy. For cxampl~ it 

might be appropriate for allocation of processing Iesources among a 

sub-tree of activities in the same computing element to be based on a 

pre-order traversal of the sub-tree - a processing element would be 

allocated to a subordinate activity as soon as it is created and re-

allocated to the superior activity when the subordinate terminDtes. 

This corresponds to conventional expression evaluation and would allow a 

simple stack to be used for the communications along the arcs of tIle 

activity sub-tree. 

Given these various issues a major area of further research 1s the 

possible development of a general approach to recursive systems imple­

mentation which accommodates the different characteristics at different 

levels, wi th minimum compromise to the uni ty of the general concepts. 
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6. CONCLUSIONS 

6.1. Summary and Discussion 

lhis thesis has investigated various general-purpose decentra1ised 

architectures providing highly concurrent program execution. lhe prin­

cipal motivations for developing such architectures are the utilisation 

of concurrency to improve performance, the support of novel implicitly 

concurrent programming languages, and the exploitation of \lLSl tecl.no1-

ogy. The architectures covered were the control flow, data flow and 

reduc tion classes of· archi tec tures surveyed in Chapter 'lwo and the L(;F 

and ReF architectures developed in Chapters 'lhree and Four. In ead, 

case the basic concepts of the architecture were described in terms of 

an operational model of program representation and execution follOwed by 

a discussion of the way in which various forms of program organisation 

are supported and the way in which machine resources are organised. 

The novel data flow and reduction architectures have oferational 

models which are radically different from the control flow medel. In 

dat~ flow an instruction is executed \I'hen its inputs are available and 

in reduction an instruction is executed when its outputs arc needed. 

Both these models are implicitly concurrent whereas in concurrent forms 

of control flow the .initiation and synchronisation of concurrency is 

under explicit program control. 

The main result of the analysis of the various architf.ctures in 

Chapter 'I~ .... o was a c1assiHcation of their underlying control flnd data 

mechanisms and anunderstaud1ng of the consequences of an architecture 
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adopting a particular set of mechanisms. lhe control m~chanjsms id~nti-

tied were sequential, parallel and recursive. lhe m~in benefi t of the 

sequential control mechanism is in providing the proglammer with com-

plete operational control and 1n the execution of programs with little 

inherent concurrency_ 'Ihe main benefit of the parallel control mechan-

ism is in the parallel execution of highly concurrent programs. lhe 

main benefit of the recursive control mechanism is for the more 50~his-

ticated program structures of applicative programming languages and in 

conserving machine resources by only executing what is actually needed 

to produce the required result. Ihe two principal data mechanisms iden-

tified were by-value which is at an advantage in manipulating simple 

data items, and by-reference which is at an advantage in manil'ulating 

data structures. 

mlereas all the architectures surveyed in Chapter 'Iwo are based on 

a particular pair of control and data mechanisms, the architectures 

developed in subsequent Chapters incorporate combinations ot those 

mechanisms, allowing the control flow, data flow and reduction models to 

be used as different styles for programming a single computer so that 

each can be used where its particular advantages are needEd. lv«m if 

eventually data flow or reduction were to completely replace control 

flow as the dominant model for general-purpose progranunine, it ",ould 

nonetheless be important for some time that a general-purpose computer 

continue to support existing languages and programs based on the control 

flow model. 

Chapter Three described the combination of control flow and data 

flow in a single architec ture, the DCF. Farallel control flow, rot her 
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than sequential control" flow, was used since parallel control flow and 

data flow architectures are very similar. Both Lave a parall~l control 

mechanism using tokens for instruction activation and are particularly 

suited to implementation on a packet communication machine orgonisation. 

In the DCF architecture. concepts from parallel control flow and data 

flow are very directly combined. Ihe parallel control mechanism Ubes 

tokens to control instruction execution, each token being eitlter a con­

trol token, as in parallel control flow, or a data token, as in data 

flow. An instruction's operand may either be provided by a token (the 

by-value data mechanism of data flow), or referenced from the instruc­

tion, as in control flow. Ihe packet communication machine organisation 

has processors, a matching store (as in data flow) Bnd a separate 

addressable memory (as in control flow). Apart from the inclusion of 

both control flow and data flow concepts, an important feature of the 

DCF architecture is that it allows "non-atomic" procedures which start 

executing as soon as any inputs are available. Ihis gives greater con­

currency than the "atomic" procedures provided in proposed data flo,", 

architectures. 

In the architectures covered in (.hapters lwo and Ihree the f'Iinci­

pal emphasis is on organising concurrent instructiol1 execution within a 

single program and supporting that concurrency on a single computer with 

some multi-processor machine organisation. Generally only the princi­

ples of instruction execution and machine organisation are different 

from those in conventional architecture, with the other von ~eumann 

principles of storage structure, addressing and instruction representa­

tion remaining unchanged. In contrast the \f.'ork covered in (.hapter Four 

was based on systematically generalising each of the von ~,t;:\.'inon 
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principles to a corresponding recursive principle. Ihese recurshe 

principles were formulated to provide a coherent frame~ork for meeting 

the general requirements. of future general-purpose complJting systems, 

particularly using VLSl technology. Wi th VLSl technology it is both 

possible and desirable to include greater processing po~er with memory 

and this should be used to support in hardware a more powerful storage 

structure, closer to the logical structure of the information being 

stored. Address spaces should be arbitrarily extensible and support 

locality by allowing addresses between structurally close entitie& to be 

relatively short. Program representation and execution should more 

closely reflect logical program struc tures and support modularity. lhere 

should be a flexible operational model accommodating a wide variety of 

programming languages and styles. The need for centralised functions J 

such as global resource management, should be avoided, and global com-

munication minimised. The development· of sophisticated VLSl de&ign 

technology will enable increasingly diverse special-purpose sub-systems 

to be implemented in hardware and these should be easily incorpoIE. ted in 

the overall general-purpose computing system. Lifferent levels of both 

hardware and software in computing systems should be unified - for Exam­

ple by adopting the same machine organisation principles both for com­

ponents on a chip and for computers in a network; and the snme stoI6ge 

and addressing models both for program variables and for operating sys­

tem files. 

Ihe most significant characteristic of computing systems is 

i~creasing complexity. Ihere are strong arguments that hierarchic 

structuring is the only way to cope with complexlty[66) and this is 

borne out by the (increasing) predominance of hierarchic structure in 
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all aspects of computing systems. lhe important concept embodied in b 

coherent "recursive" structure (as opposed to a hierarchy of heterogene­

ous levels) is that there is a general scheme for constructing any l~vel 

in the hierarchy from the lower level. Wi th the recursive archi tec ture 

principles this concept is applied throughout the architecture. 

Although hierarchy does not adequately reflect actual structures (for 

example a two-dimensional matrix has to be represented, inadequately, as 

a vector of vectors) it is possibly the richest general structure of 

sufficient simplicity to be directly supported in hard~are. 

Chapter Four presented a computer architecture, the ReF architec­

ture, based on and intended to illustrate the broad recursive principles 

but with the emphasis, as in previous Chapters, being on program 

representation Bnd execution, and particularly on the combination of 

control flow, data flow and reduction styles of program organisation. 

The ReF operational model provides a general framework which can support 

the specific mechanisms of the other models (such as the self-modifying 

instructions of reduc tion, the "unknown" arguments and data tokens of 

data flow) without incorporating them as an essential part of the model. 

This approach to the synthesis of other models is very different to, and 

more successful than, that taken in the reF architecture. lhe essen­

tials of the ReF model are the execution structure of a tree of communi­

cating activities which model both processes for program execution and 

registers (or "file descriptors") for data access; the concept that an 

instruction's arguments are program fragments to be executed rather than 

data to be manipulated; the ability to access an instruction bnd Bny of 

its components as an addressable memory cell. 
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Of the various principles of recursive structuring the most funda­

mental are the nested objects of the storage strue ture and 'nested com­

puting elements of the machine organisation. lhe dynamic recursive 

storage structure naturally leads to variable length contextual 

addresses and a recursive form of program representation and execution, 

just as the conventional storage structure naturally leads to conv~n­

tional addressing, program representation and execution. lhe recursive 

storage structure could be implemented on a non-recursive machine organ-

isation (as occurs within a UNIX system). Conversely a recursive 

machine organisation could be used to support the conventional storage 

structure, addressing and operational model (as, to 3n extent, occurs in 

some computer network and parallel computer organisations). 

Chapter Five considered a number of computing system designs \t.hich 

incorporate some of the recursive architecture principles. lhe princi­

pal design discussed ~as that of the LEGO computer ~hich incorporates 

all the recursive principle6 and supports the full RtF model. Lf the 

other systems t the UNIX United computer o('l\t.lorking system and the k.N. 

(Recursive Machine) computer architectuH' are the most relt:!v~nt to this 

discussion since their development was 111l"scly independe.:nt of tl',e k(.F 

work. lhe UNIX United system provides nn example of the applicllbllity 

of the recursive architecture prinCiples to computer net\t.ork organisa­

tion. It also illustrates a very differ~nt, more conventional approach 

to their realisation than the approach adopted in the LE('O design. lhe 

R.M. work provides an example of a comput~r design, other than LE~O, for 

which principles of recursive struc turing "('re adopted from the outse t. 

The principal differences between tht' t~o is that R.H. has a more 

sophisticated imp! emen ta tion ( particul:nly in allowing 6cv~ral 
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activities per computing element, providing more powerful addressing 

selectors and incorporating indexes into the object structure) ~hereas 

LEGO has a more general operational model which provides for a recursive 

program execution structure. 

The various systems covered in Chapter Five were used to illustrate 

a general discussion of a number of implementation issues arising in 

(recursively structured) decentralised computing systems. 1he most ftm­

damental aspect of" an implementation is the relationship between logical 

and physical structure, i.e. the relationship of objects, activities and 

logical communication channels to memories, processors and physic&l con­

nections. 'lhese relationships are principally determined by the scheme 

used for allocating logical objects to computing elements' physical 

memory since activities within an object are allocated to processors in 

the same computing element, and this allocation in turn determines the 

communication structure. (Other resource allocation considerations such 

as the mul tiplexing of a computing element's processor beu.een the 

~ctivities that it is supporting are of less significance.) 'lhe main 

distinction identified was that between static allocation ~h<;:re a logi­

cal object is synonymous with a particular computing el~ment, and 

dynamic allocation where objects can move bet~een computing elements 

under control of some di stributed resource allocation scheme. 111e 

former is appropriate for special-purpose computing elements and com­

puter networks where the allocation of objects is generally fixed or 

needs to be under expl1ci t user control. However the latter is more 

appropriate "for the internal organisation of a computer ~here the struc­

tureof program and data objects" changes fairly rapidly as proglams exe­

cute. 
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Three motivations ,,:ere Identified for tIle development of novel 

general-purpose computer archt tec tures, nam~ly the D€'cd to improve {ler­

formance by the use of concurrency, the need to support the increased 

expressive power claimed for applicative langu~ges, and the need to 

exploit VLS] technology. Ihe RCF architecture and its initial lEGO 

imple~entation provide the physical parallelism, asynchronous communica­

tions and decentralised control of resources needed to implement con-

currency. They also support the programming struc tllres Bnd mechanisms 

needed to exploit and control that concurrency. however, as for other 

novel highly parallel architectures, it is not clear at this early stage 

of development the exact extent to "-'hich performance bCN~fits ,,-1.11 ulti­

mately be gained from the potential for concurrency. Ihe major benefits 

claimed for applicative languages are unbounded data structures, higher 

order functions and the general lazy evaluation on which these are 

based, all of which have been included in the RCF progrom organisation. 

111e recllrsive machine organisallon Dno liCO inlplementation meet the Illain 

design requirements for VLSI, namely the need for locali~ed and asyn­

chronous communications and for highly repetitive d(;dgns '-hleh ClIn be 

easily scaled down and replicated as the level of integration increases. 

6.2.' Current and Future Rcsccl1.cb 

Ibere are a number of directions for further investigation of thE. 

ReF architecture and the recursive principles on \>.hich it is based. 

Firstly there is the imple.mentation of the I,3rticu18r llW design 

described 1n Charter Five and Appendix A. 'lhe (tSl) circuit layout 01 

the single chip computing element for this iUlplc-!IlE'ntatlon is currently 

being cesigned. lhat ,",erk, bt2ing carried out by or-other member 01 the 
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Computer Architecture Group at Newcastle University, is partly motiv~t~d 

by the need of the Group to gain experience in the realities of 

integrated circuit design. 

There are a number of possible developments of the R(;F 'architecture 

in the areas of storage structure and addressing, program representation 

and execution, machine organisation and implementation •. A realistic 

machine would have to at least include selectors such as "nth component" 

at the machine code level. It may also be found desirable for the 

addressing scheme to recognise, within the normal object hierarchy, a 

sparser hierarchy of particularly significant objects such a ,,· 
~ . one 

user's programs and data; one program; one program block. lhis could be 

achieved by using special delimiters, e.g. l ... ], for such objects and 

including a lout[ selector to identify the lowest containing object ~ith 

those delimiters. Thus an address could select relative to the context 

of such an object regardless of its own depth of nesting lvithin tLe 

object. The inclusion of some form of content addressing would also be 

worth investigating. 

In the operational model there is an important difference bet~~en 

the execution of instructions transmitted between activities and tbe 

execution of instructions in the program string. 1n the formEr case 

• instructions are discarded as they are executed whereas in the latter 

case the instruc tions can form an iterative algorithm'. If the modt:l 

could be extended to allow a general program fragment to be transmitted 

for execution it would then, for example, accommodate variable instruc-

t10n sets with the program fragment being an interpreter, and completely 

general addressing with the program fragment being a pattern motchin8 
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algorithm. In addition to programming languages based on control flow" 

data flow and reduction, there are two other classes of languages which 

a future general-purpose architecture may need to support, n8mely 

object-oriented languages such as Smalltalk[60] and logic longuages such 

as PROLOG[67]. It will be 'necessary to investigate the suitability of 

the ReF model for these languages. 

For the machine organisation the most 'important areas are the 

fuller development of a multi-level organisation emplo}ing different 

implementation techniques at different levels; the incltlsion of 

special-purpose computing elements; and the inclusion of computing ele-

ments with differing memory/processor ratios (ronging from the 

equ:fvalen t of backing store wi th a very high ratio to cache with a rela-

tively low ratio). 'Ihe outstanding research issue is the development ot 

a general resource allocation scheme for the dynamic mapping of a cl~ng-

ing hierarchy of objects onto a fixed (heterogeneous) hierarchy of 

machine resources. Such a scheme would need to be highly d€ccntr~lised, 

specialisable to accommodate and utilise effectively the differing 

characteristics at dHferent levels of recursive machine organisation, 

and able to manage the movement of objects between computing elements 

with differing memory/processor ratios in response to the changing dis-

tribution of activities within a program structure. 

There needs to be considerable experimental investigation into the 

programm:fng of the ReF architecture and the combined use of control 

flow, data flow and reduction models in the same program. 'lhe I<.Cf' 

architecture incorporates the concepts underlying conventional l£nguas~s 

and novel applicative languages used to program data flow and reduction 
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machines. 'Ihus one line of investigation is to consider in detail the 

generation of ReF machine code from one or more such languages. A 

promising starting point for investigating the combination of various 

models would be to implement a common procedure call interface, based on 

the ReF model, for interfacing between (independently compiled) pro­

cedures programmed in, for example, existing control flow and applica­

tive languages, with the other language features implemented .in their 

standard ways. 

The ReF architecture as discussed in this thesis and its proposed 

initial LSI implementation are principally concerned with applying the 

recursive architecture principles to the design and programming of a 

single multi-processor computer. 'Ihe complementary approach is to 

investigate the application of the ReF concepts to a net~ork of conven­

tional single processor computers. An experimental netwoIk implementa­

tion of the ReF architecture, obtained by programming each computer in & 

network to emulate the ReF model, would also be a useful simulation of a 

single multi-processor RCF computer. Compared with an actual hard~are 

implementation, such a "network" implementation would be quick to 

develop and very flexible, whereas compared with a normal simulation it 

would be a relatively realistic implementation supporting several simul­

taneous users and allowing investigation of genuine concurrency in ~ro­

gram execution and g~nuine communications characteristics. 'Ihe close 

sim:f1ar:ities between the ReF architecture and the uNIX United system 

suggest that the latter could be initially used as the basis for a net. 

work RCF implementation. 

It is intended that the next stage in the developmf:nt of the ideas 
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covered by tliis thesis \vi11 be two implementation exercises. lhe first 

of these will be to implement a full ReF syst~m on 8 net~ork of conven­

tional computers to provide a framework for investigating the program­

ming and resource management issues, and for possible developments of 

the ReF model. 'Ihe second -will be further I,-;ork on LSI and VL~l imple­

mentation of computing elements based on the RCF model. 
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Appendix A - A Machine Code for the LhGO Coaputer 

lhis Appendix describes a machine code designed for the initial 

LEGOimplementation of the RCF architecture discussed in ~ection 5.1. 

First there is a general description of the machine as seen by the 

machine code programmer, followed by a detailed description of the 

machine code. lhis is presented by defining a symbolic assemtler code 

using a. BNF syntax notati,on in which braces { •• '.} indicate zero or more 

repetitions of the enclosed material. Where motivation of the machine 

code facilities seems necessary, notes in [ ••• ] brackets are included to 

relate those facilities to the programming constructs discussed in 

Chapter Four. Boldface is used for terminal symbols of the syntax. 

A.I - Machine Model 

<program> ::= ( { <object> } ) 
<object> ::= <primitive object> I ( { <object> } ) 

<program string> ::= ( { <item> } ) 
<item> ::= <symbol> I <activity> 
<symbol> ::= <delimiter> I <primitive object> 
<delimiter> ::c ( I ) 

<primitive object> ::c <data item> I <instruction> ; 
<instruction> ::= <access> I <addressing> , <operation> 

<creation> I <exception> 
<activity> ::= I 

The two major elements of the machine are the s}~bols representing 

the program and the activities executing it. lhe program :Is structured 

as a hierarchy of objects comprising primitive objects (instructions and 

data) and, matching pairs of delimiter symbols for the start ( and end ) 
", 

of compound 6bjects. As the program is executed it is modified and its 

-
current state is the <program string>, a sequence of itents ""blch 

includes the symbols of the program representation. (turing a 
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modification of the program string, e.g. the insertion of an object, 

there may be a temporary delimiter imbalance in the string and thus the 

<program string) does not always conform strictly to the (program) syn­

tax.) 

Each activity has-a current position in the program and is modeled 

as being itself an item in the string together with the symbols of the 

program. There are communications connections between activities alloi>J­

ing an activity to transmit objects to and receive objects from con­

nected activities. These connections support tree structures of activi­

ties with each activity capable of being connected to a superior 

activity (identified as RO) and a number (6) of subordinate activities 

(identified as Rl, R2 etc.). 

An activity is executing symbols from some instruction source, 

either the program string or the objects transmitted from a connected 

activity. [Messages such as "copy", "take" and" execute" sent from a 

superior activity to a subordinate activity are instructions executed by 

the subordinate activity as a result of its instruction source beine the 

connection to its superior activity ("execute" switches the instruction 

source to be the program string); the effect of the "e\'al" operatol', 

executed by an activity P, is achieved by P's instruction source being 

the connection to the subordinate activity which is evaluating the 

operand .] 

Normally execution is sequential, with the activity's position mov­

ing past e~ch item in the string as it is executed, or successive items 

being-executed as they are received from the connected activity. lhe 

following Sections describe the effects of executing the different types 
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of items from the instruction source, namely delimiter symbols, primi-

tive data items and various types of instructions. Ihe different types 

of instructions are: Access instructions which operate on the program 

string as a data structure, reading objects from the string to be 

transmitted to a connected activity and modifying the string ,,;-1 th 

objects received from a connected activity; Addressing instructions 

which move the position of the activity within the string and also may 

suspend the activity and switch its instruction source; Operation 

instructions which perform for example arithmetic operations on objects 

received from connected activities and transmit the result to connected 

activities; Creation instructions which generate parallelism ty creating 

new activities; Exception instructions for handling various exception 

conditions. 

When an activity's instruction source is the program string the 

next item may be another activity rather than a symbol of the progrbm. 

Generally two activHies accessing the string (i.e.· wi th the string as 

instruction source or executing an access instruction) will follo~ each 

other through the string with the activity on the left waiting for the 

other to progress. However the activity on the right, PR, must be 

passed by that on its left, PL, if the further progress of FR is depen-

dent on an event that could possibly never occur (that is, if it has 

been suspended Bnd thus is dependent on another activity to modify the 

string, or is dependent on B connected activity sending it an object, 
I 

for example when its instruction source is a connected activity). 
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A.2 - Delimiters 

An activity has a current object of execution in the string. If 

the instruction source is the program string Bnd the next item i~ the 

closing delimiter of the current object then the activity and its subor-

dinates terminate. 1n all other cases a delimiter is ignored and execu-

tion continues with the next item from the instruction source. 

The current object is established as being the object to the right 

of the activity when (i) the activity is first created, (ii) the 

instruction source is switched from being the connection with its supe-

rior to be the program string, (iii) the activity executes the first 

non-addressing instruction after a series of addressing instructions one 

of ~nich moved the activity outside the previous current object. 

A.3 - Data Items 

Data i terns have two roles. Firstly a data item may be the next 

i tern to be executed from the instruc tion source in \-;hich Cllse the 

activity retains its current pOSition in the program strJng and its 

instruction source is switched to be the connection to the superior 

activity [from which typically an access instruction, e.g. to 'Icopy" the 

data item, will then be received]. 

Secondly data items form the operands of operators which are 
, 

described, together with the syntax of data items, in A.6. 

, , 
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A.4 - Access lns~ructions 

<access> ::= <action> <act> 
<action> ::= copy I rep! I take insert 
< ac t> :: = RO I IU I R2 ••• R6 I • 

An access instruct_ion generally specifies some action on a target 

object in the program string and a connected activity (RO, Rl etc.) to 

which that object is transmitted or from which a new object for the 

string is received. lhe target object is the object to the right of the 

activity's position (to the right of the access instruction itself if it 

is executed from the string). A copy transmits a copy of the target 

object. A replace replaces the target object with the new object. A 

take is a destructive copy, transmitting the target object and aeleting 

it from the string. An insert inserts the new object in the string to 

the immediate left of the next syml-ol to the right of the activity. A 

., indicating a "null activity", can be specified instead of an actual 

activity. An object transmitted to • is just discarded. An object 

received from. is always the empty object (). lhus, for example, take. 

just deletes the target object and repl. replaces it with (). Gn com-

pletion of any access instruction the activity is positioned to the 

immediate right of the target or new object in the strj.ng. 

An action (replace or take) which deletes an existing object ~111 

proceed a symbol at a time, deleting each symbol in turn. lhere may be 

another activity positioned within the object being deleted and the 

deletion will generally wait at that point until the other activity 

moves. However, in circumstances mentioned in A.I, it may be necessary 

-
for the deleting activity to pass the other activity and in doing so 

that activity is terminated. 
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[In the example used in Section 4.1.4 to discuss the general l-,(;F' 

model it was necessary for the replace action to be acknowle'dged. In 

the LEGO implementation this acknowledgement is implicit in the communi-

cations flow control mechanism. However alternative implementations 

might not have that implicit acknowledgement. Explicit Acknowledgement 

can be programmed when required. lhe replace instruction, followed by 

the new object, is generally sent from an activity P to a subordinate Q 

positioned at the object to.be replaced. After sending the new object, 

P can use routing operations (see A.6) to send instructions to ~ which 

cause Q to send the required acknowledgement to P.] 

~5 - Addressing Instructions 

<addressing> ::= <selector> <switch> I <selector> ? <switch> I 
I<selector> <switch> I I<selector> ? <switch> 

<selector> :: out I start I (- I I I in I -) I end I esc I $ <act> 
<switch> ::= Ie I I<act> I I 

An addressing instruction includes a selector which specifies a new 

position for the activity and a switch to possibly change its in&truc-

tion source. The selectors out ••• escape are those defined in Figure 

25 of Section 4.1, and are relative to the position of the activity 

(following the addressing instruction itself if that is executed from 

the program string). For selectors $RO ••• $R6 the new position Is to 

the immediate right of the specified activity. If a subordinate 

activity En is specified but does not exist then the En subordinate of 

the superior is used, and if it does not exist then that of its supe-

rior, etc.. [A $Rn will form the first selector of a base-relative 

addre~s, used for example in addressing procedure parameters, and is 

defined such that in the sub-tree of activities executing the procedure, 
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all activities can address parameters relative to the position of a par­

ticular subordinate of the sub-tree's root activity.] 

The switch in an addressing instruction may specify that following 

the execution of the instruction the instruction source is to become the 

program string at the new position (Ie); the instruction source is to 

become the connection to a specified activity (/Rn) (if the null 

activity is specified, I., then the activity terminates); or that there 

be no change (I). [In a normal address where the addressed object is 

executed, the last selector would have a Ie suffix; In a quoted address 

. where the addressed object is not to be executed, the last selector 

would have a IRO suffix switching control to the superior, as occurs 

when executing a data item.] 

The selector may be suffixed by a ? specifying that the activity be 

suspended at its new position. lhe suspended activity will be reac­

tivated \then another activity performs a replace or take action on thE. 

object at the new position or an insert action to insert a new object at 

that position. [The "unknown argument", "(1)", would be represented as 

( out?l; ).1 

The selector may be prefixed by a I in which case the rest of the 

instruction is not executed llnd the instruction (if it is in the program 

string) is modified by the I being removed. [~his provides the exclu­

sion argument, n(excl)", which in machine code is (lout?!;).] 
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A.6 - Operations 

<operation) ::= <typed op.> I <compare op.> I <special op.> 

<typed op.> ::= <int op.> I <bool op.> I <bit op.> 
<int op.> ::c + I - I 0-
<bool op.> :: = & I I I .... I .. 
< bi top. > :: &:: ' & I ' I I ''''1 I 'A 

<compare op.> ::= ~ A= 
<special op.> ::= if == 

> I >- I < I <-
:- I <act> , <act> ::- <act> 

<data item> ::= <value> I <error> 
<value> ::= <int> I <bool> I '<bit> I u<char> 
<int> ::= ••• -2 I -1 10 I 1 I 2 ••• 
< boo 1) :: c T I F 
< hi t> :: = 1 , 0 
<char> ::= <any ASCII character> 
<error> :: II: # 

<obj> ::= <instruction> I <value> I ( { <obj> } ) 
<any> ::= <object> 

An operation instruction processes operand objects to produce a 

result object as defined by its operator. Each operand is received from 

a specific subordinate activity (usually there is one operand from R2 

and one from &3). The result is transmitted to subordinate RI. If 

there is no RI subordinate then the result will be sent to the superior 

RO in response to any object from the superior. If there is no superior 

either then the result is just discarded. Figure Al shows all the 

operators and the types of valid operands and results produced, these 

types being spec:1fied by the syntax for <data item>, <obj> and <an}>. 

lhe typed operators are straightforward, each having as its operands and 

results primitive objects of the same type (integer, boolean or bit). 

lhe other operators may involve compound objects and the special error 

o~ject. An error object is produced as the result of applying an opera-

tor to an operand of the wrong type (e.g. mUltiplying two characters or 

an integer and an error object). In defining the type of valid operands 
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there is a distinction between a general object, <any>, and an object, 

<obj>, restricted to exclude error objects. 

oper-
ator o~erands result meaning 

r----""\ 'R2 R3 R4 <act>" 
, , , 

integer 
+ <jnt> <int> <int> add 

<int> <int> <int> subtract 
0- <int> <int> unary minus 

boolean 
& <boo1> <boo1> <boo1> and 
I <bool> <boo1> <boo1> or 
"'1 <boo1> < boo 1> <bool> nor 

<boo1> <boo1> not 

ill 
'& <bit> <bit> <bit> and 
, I <bit> <bit> <bit> or 
''''1 <bit> <bit> <bit> nor , ... <bit> <bit> <bit> not 

comEare 
= <obj> <obj> <booD. equal 
... = <obj> <obj> <booD not equal 
> <obj> <obj> <booD greater 
)= <obj) <obj) <booD greater or equal 
< <obj) <obj) <booD less 
<= <obj> <obj> <oooD less or equal 

sEecial 
if <any> <any> <bool> conditional 
== <any> <any> <booD equivalent 
:= <any) <any) identity 
: := <any> <any> routing 

Figure Al - 'l'be Operators 

A compare operator treats its operands as t~o strings of symbols 
" 

(j.e. delimiters, instructions and data items) ~hich are compared in 

pairs from left to right. lhe strings are equal i.f all pairs of 
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corresponding symbols are equal, otherwise the result is the result of 

comparing the leftmost unequal pair according to the following ordering 

) (lowest); '0; '1; F; Tj integers in numeric order; characters in 

standard order; instructions in arbitrary order; (. [The position of 

the delimiters in this ordering gives the effect of recursively compar-

ing compound objects, for example -

«lie "V lie» < ({ffe "v lie) tlj} < «lie "V "e) ("j "i I'm» ] 

The conditional operator (if) has three operands and the result is 

the first (12) or second (RJ) depending on whether the third (R4) is 

True or False. The equivalence operator (=-) tests the operands for 

equality and allows an object to be tested for error. For the identity 

operator (:-) there is a single operand which is transmitted unchanged 

as the result. For the routing operator (::-) the result is its single 

operand from a specified source activity and copies are transmitted to 

two specified destination activities. If the null activity. is speci-

fied as the source then () is used as the operand object. If a destina-

tion activity is non-existent or is specified as • then its copy is just 

discarded. 

The routing operator is used in conjunction with access ins truc-

tions to replicate objects and to organise any communication that may be 

needed in addition to the simple operand/result communication pattern of 

the other operations. As an example the following sequence of instruc-

!Jons synchronise the executing activity P with its Rl subordinate, Q -

il i2 i3 
~ ~ ~ 
c.opy Rl; .,IlO : :-.; .,. ::-=R.l; 

The first, copy, instruction transmits to Q the following instruction, 
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f2. When Q has finished executing the previous instruction from P it 

will execute the 12 which specifies that Q transmit to its superior, P, 

the empty object (). The next instruction executed by P, 13, requires 

an object from its Rl subordinate, Q, and thus synchronises those two 

activities. When P receives that object, (), it is just discarded. 

A.7 - Act1vity Creation 

<creation) ::= sub <act) I 
source <act) 
par 

A sub instruction, such as sub RD, creates a new subordinate 

activity (En) to the the immediate left of the creating activity. Ihe 

new activity is connected to the creating activity as its superior and 

that is its initial instruction source. Ihe new activity itself has no 

subordinates. A source instruction is the same except that the new 

subordinate activity is to the right of its superior, the instruction 

source for the ~reated activity is implicitly switched to be the program 

string, and the instruction source for the creating activity is im{-li-

citly switched to be the connection with the created activity. 

A parallel instruction creates a new independent activity "hich 

has the same current object as the creating activity, the same l'osition 

as the creating activity (following the par instruction if that is exe-

cuted from the program string) and with the program string as its 

instruction source. The creating activity then eXeclltes an implicit ->1 
addressing . instruction so that the next object it executes is that fol,.-, . 
lowing the first object executed by the created activity. 



- 230 -

A.B - Exception Dandling 

<exception> : : = ok I err I skip I sk1.p <ac t> 

Associated with an activity is an error status which indicates 

whether an error has.occurred. This is cleared by an ok instruction, 

set by an err instruction and is also set by the occurrence of some of 

the exception conditions described below. A skip instruction tests the 

error status of the activity itself or a specified activity and exe­

cutes an implicit ->1 addressing instruction if the status is clear 

(that is, the activity skips over the following object which would con­

tain code to deal with exceptions). 

The exception conditions that can occur are -

(i) Invalid instruction source - If the instruction source is s~itched 

to be the connection to a non-existent activity or a connected 

activity terminates· while the connection to it.is thc inStruction 

source, then the activity terminates. 

(ii) Invalid selectors - A selector in an addrcssing instruction exe­

cuted by an activity P is invalid if: it is an in/ selector and the 

next symbol to P's right is a primitive object or a ); it is a . ->/ 

(or <-I) selector and the next symbol to P's right (or left) 1s a ) 

(or (); it is an outl or escape/ selector and P's enclosing object 

is the outermost object, the total program; it is a $Rn selector 

where Rn does not exist or the null activity, ., is specified. lhe 

error status is set and the effect on P's position is that of a 

"null" selector, II, (except in the case of an invalid out or 

escape! selector which will act as a start or end selector). 
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(iii)Invalid access instructions - An access instruction is invalid if 

the activity to which the target object is to be transmitted, or 

the activity from which the new object is to be received, does not 

exist, or (except in the case of insert) the next symbol to the 

right of the activity is a ). lhe error status is set and where 

appropriate the error object is transmitted as the target object'. 

(iv) Invalid operation - An operation instruction is invalid if one of 

the operand objects is of the wrong type or the activity from which 

it should be received does not exist. Ihe error status is set and 

the error object is transmitted as the result. 

(v) Invalid creation - A sub Rn or source in instruction is inv~lid if 

the specified subordinate already exists or the null activity, ., 

is specified for RD. Ihe error indicator is set but otherwise the 

instruction has no effect. 

A.9 - An Exaaple 

In order to illustrate the relationship between the machine code 

described here and the programming constructs used in Chapter Fout' , Fig­

ure A2 shows the machine code equivalent to some of those constructs. 

The example program fragment used (a) is part of that in Figure 3S. Ihe 

motivation for this example and its general operation was discussed in 

Section 5.].7. 1he machine code instruction sequence corresponding to 

each construct in (a) is shown in (b) which contains comm~,nts explaining 

the detailed'operation of that machine code. 
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example 
P Q R 5 

"( I iter- ( I c2 c3 (?) ) ( I := 6 lout ) I IE )" 
c: D: r: 

(!) machine ~ 

program 
construct machine code 

"iter"- [An iterative operator on stream operands - P sets up sub­
ordinates at operands and result and repeatedly takes 
operand values and inserts result values] 

(Set up] 
1 ( sub R2j [creates R2 subordinate ~ with r as instr. source] 
2 copy R2j [Q is sent the following object to execute) 
3 esc/e; [address of C, specifying execution (Ie») 
4 sub R3j copy R3; ( esc/j ->/ej ) [as 1-3, for R,on t) 
5 sub Rlj copy Rlj ( esc/j ->/j ->/e; ) [similarly S,r] 

7 
8 
9 

10 

11 

(Repeated operations] 
( copy R2j take ROj [Q is sent instr. to 'take object to F) 

copy R3j take ROj [as 7, causing R to return its result] 
copy RI; insert ROj [as 7- S inserts next object sent] 
-j [P performs subtraction on objects from Q and R, send­

ing result for insertion by ~] 
out/j ) ) [return and repeat from last ( ] 

II : ... " - [A normal (not iterative) operator] 
12 (sub R2; copy R2; (esc/;->/e; copy RO; I.;) :-;) 

13 

14 

15 

16 
17 
Ie 

"(1)" 

"E" 

[as 1,2,7,10 but -
using copy instead of take with termination 
of subordinate activity; single operand for 
identity operation, := (instead of subtraction); 
no result activity, R3, thus result to iL) 

->/e; [skip over single argum~nt, the folo~ing 6 ) 

( out?l; ) [suspends activity activity to a~ait operands] 

[A compound address executed by S] 
(source RSj [A sub. activity 1 is created to execute rest 

of this object] 
copy ROj [following object sent to l's superior, S1 
(esc/; ->1; ••• <-Ie;) [selectors corresponding to /1] 
I.j) [terminate I] 

Figure A2 - lfachine code for part of cxSJIple in Figure 39 
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