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Appendix A - A Machine Code for the LhGO Coaputer 

lhis Appendix describes a machine code designed for the initial 

LEGOimplementation of the RCF architecture discussed in 5.1. 

First there is a general description of the machine as seen by the 

machine code programmer, followed by a detailed description of the 

machine code. lhis is presented by defining a symbolic assemtler code 

using a. BNF syntax notati,on in which braces { •• '.} indicate zero or more 

repetitions of the enclosed material. Where motivation of the machine 

code facilities seems necessary, notes in [ ••• ] brackets are included to 

relate those facilities to the programming constructs discussed in 

Chapter Four. Boldface is used for terminal symbols of the syntax. 

A.I - Machine Model 

<program> ::= ( { <object> } ) 
<object> ::= <primitive object> I ( { <object> } ) 

<program string> ::= ( { <item> } ) 
<item> ::= <symbol> I <activity> 
<symbol> ::= <delimiter> I <primitive object> 
<delimiter> ::c ( I ) 

<primitive object> ::c <data item> I <instruction> ; 
<instruction> ::= <access> I <addressing> , <operation> 

<creation> I <exception> 
<activity> ::= I 

The two major elements of the machine are the representing 

the program and the activities executing it. lhe program :Is structured 

as a hierarchy of objects comprising primitive objects (instructions and 

data) and, matching pairs of delimiter symbols for the start ( and end ) 
", 

of compound 6bjects. As the program is executed it is modified and its 

-
current state is the <program string>, a sequence of itents ""blch 

includes the symbols of the program representation. (turing a 



- 220 -

modification of the program string, e.g. the insertion of an object, 

there may be a temporary delimiter imbalance in the string and thus the 

<program string) does not always conform strictly to the (program) syn­

tax.) 

Each activity has-a current position in the program and is modeled 

as being itself an item in the string together with the symbols of the 

program. There are communications connections between activities alloi>J­

ing an activity to transmit objects to and receive objects from con­

nected activities. These connections support tree structures of activi­

ties with each activity capable of being connected to a superior 

activity (identified as RO) and a number (6) of subordinate activities 

(identified as Rl, R2 etc.). 

An activity is executing symbols from some instruction source, 

either the program string or the objects transmitted from a connected 

activity. [Messages such as "copy", "take" and" execute" sent from a 

superior activity to a subordinate activity are instructions executed by 

the subordinate activity as a result of its instruction source beine the 

connection to its superior activity ("execute" switches the instruction 

source to be the program string); the effect of the "e\'al" operatol', 

executed by an activity P, is achieved by P's instruction source being 

the connection to the subordinate activity which is evaluating the 

operand .] 

Normally execution is sequential, with the activity's position mov­

ing past e~ch item in the string as it is executed, or successive items 

being-executed as they are received from the connected activity. lhe 

following Sections describe the effects of executing the different types 
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of items from the instruction source, namely delimiter symbols, primi-

tive data items and various types of instructions. Ihe different types 

of instructions are: Access instructions which operate on the program 

string as a data structure, reading objects from the string to be 

transmitted to a connected activity and modifying the string ,,;-1 th 

objects received from a connected activity; Addressing instructions 

which move the position of the activity within the string and also may 

suspend the activity and switch its instruction source; Operation 

instructions which perform for example arithmetic operations on objects 

received from connected activities and transmit the result to connected 

activities; Creation instructions which generate parallelism ty creating 

new activities; Exception instructions for handling various exception 

conditions. 

When an activity's instruction source is the program string the 

next item may be another activity rather than a symbol of the progrbm. 

Generally two activHies accessing the string (i.e.· wi th the string as 

instruction source or executing an access instruction) will follo~ each 

other through the string with the activity on the left waiting for the 

other to progress. However the activity on the right, PR, must be 

passed by that on its left, PL, if the further progress of FR is depen-

dent on an event that could possibly never occur (that is, if it has 

been suspended Bnd thus is dependent on another activity to modify the 

string, or is dependent on B connected activity sending it an object, 
I 

for example when its instruction source is a connected activity). 
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A.2 - Delimiters 

An activity has a current object of execution in the string. If 

the instruction source is the program string Bnd the next item i~ the 

closing delimiter of the current object then the activity and its subor-

dinates terminate. 1n all other cases a delimiter is ignored and execu-

tion continues with the next item from the instruction source. 

The current object is established as being the object to the right 

of the activity when (i) the activity is first created, (ii) the 

instruction source is switched from being the connection with its supe-

rior to be the program string, (iii) the activity executes the first 

non-addressing instruction after a series of addressing instructions one 

of ~nich moved the activity outside the previous current object. 

A.3 - Data Items 

Data i terns have two roles. Firstly a data item may be the next 

i tern to be executed from the instruc tion source in \-;hich Cllse the 

activity retains its current pOSition in the program strJng and its 

instruction source is switched to be the connection to the superior 

activity [from which typically an access instruction, e.g. to 'Icopy" the 

data item, will then be received]. 

Secondly data items form the operands of operators which are 
, 

described, together with the syntax of data items, in A.6. 

, , 
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A.4 - Access lns~ructions 

<access> ::= <action> <act> 
<action> ::= copy I rep! I take insert 
< ac t> :: = RO I IU I R2 ••• R6 I • 

An access instruct_ion generally specifies some action on a target 

object in the program string and a connected activity (RO, Rl etc.) to 

which that object is transmitted or from which a new object for the 

string is received. lhe target object is the object to the right of the 

activity's position (to the right of the access instruction itself if it 

is executed from the string). A copy transmits a copy of the target 

object. A replace replaces the target object with the new object. A 

take is a destructive copy, transmitting the target object and aeleting 

it from the string. An insert inserts the new object in the string to 

the immediate left of the next syml-ol to the right of the activity. A 

., indicating a "null activity", can be specified instead of an actual 

activity. An object transmitted to • is just discarded. An object 

received from. is always the empty object (). lhus, for example, take. 

just deletes the target object and repl. replaces it with (). Gn com-

pletion of any access instruction the activity is positioned to the 

immediate right of the target or new object in the strj.ng. 

An action (replace or take) which deletes an existing object ~111 

proceed a symbol at a time, deleting each symbol in turn. lhere may be 

another activity positioned within the object being deleted and the 

deletion will generally wait at that point until the other activity 

moves. However, in circumstances mentioned in A.I, it may be necessary 

-
for the deleting activity to pass the other activity and in doing so 

that activity is terminated. 
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[In the example used in Section 4.1.4 to discuss the general l-,(;F' 

model it was necessary for the replace action to be acknowle'dged. In 

the LEGO implementation this acknowledgement is implicit in the communi-

cations flow control mechanism. However alternative implementations 

might not have that implicit acknowledgement. Explicit Acknowledgement 

can be programmed when required. lhe replace instruction, followed by 

the new object, is generally sent from an activity P to a subordinate Q 

positioned at the object to.be replaced. After sending the new object, 

P can use routing operations (see A.6) to send instructions to ~ which 

cause Q to send the required acknowledgement to P.] 

~5 - Addressing Instructions 

<addressing> ::= <selector> <switch> I <selector> ? <switch> I 
I<selector> <switch> I I<selector> ? <switch> 

<selector> :: out I start I (- I I I in I -) I end I esc I $ <act> 
<switch> ::= Ie I I<act> I I 

An addressing instruction includes a selector which specifies a new 

position for the activity and a switch to possibly change its in&truc-

tion source. The selectors out ••• escape are those defined in Figure 

25 of Section 4.1, and are relative to the position of the activity 

(following the addressing instruction itself if that is executed from 

the program string). For selectors $RO ••• $R6 the new position Is to 

the immediate right of the specified activity. If a subordinate 

activity En is specified but does not exist then the En subordinate of 

the superior is used, and if it does not exist then that of its supe-

rior, etc.. [A $Rn will form the first selector of a base-relative 

addre~s, used for example in addressing procedure parameters, and is 

defined such that in the sub-tree of activities executing the procedure, 
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all activities can address parameters relative to the position of a par­

ticular subordinate of the sub-tree's root activity.] 

The switch in an addressing instruction may specify that following 

the execution of the instruction the instruction source is to become the 

program string at the new position (Ie); the instruction source is to 

become the connection to a specified activity (/Rn) (if the null 

activity is specified, I., then the activity terminates); or that there 

be no change (I). [In a normal address where the addressed object is 

executed, the last selector would have a Ie suffix; In a quoted address 

. where the addressed object is not to be executed, the last selector 

would have a IRO suffix switching control to the superior, as occurs 

when executing a data item.] 

The selector may be suffixed by a ? specifying that the activity be 

suspended at its new position. lhe suspended activity will be reac­

tivated \then another activity performs a replace or take action on thE. 

object at the new position or an insert action to insert a new object at 

that position. [The "unknown argument", "(1)", would be represented as 

( out?l; ).1 

The selector may be prefixed by a I in which case the rest of the 

instruction is not executed llnd the instruction (if it is in the program 

string) is modified by the I being removed. [~his provides the exclu­

sion argument, n(excl)", which in machine code is (lout?!;).] 
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A.6 - Operations 

<operation) ::= <typed op.> I <compare op.> I <special op.> 

<typed op.> ::= <int op.> I <bool op.> I <bit op.> 
<int op.> ::c + I - I 0-
<bool op.> :: = & I I I .... I .. 
< bi top. > :: &:: ' & I ' I I ''''1 I 'A 

<compare op.> ::= ~ A= 
<special op.> ::= if == 

> I >- I < I <-
:- I <act> , <act> ::- <act> 

<data item> ::= <value> I <error> 
<value> ::= <int> I <bool> I '<bit> I u<char> 
<int> ::= ••• -2 I -1 10 I 1 I 2 ••• 
< boo 1) :: c T I F 
< hi t> :: = 1 , 0 
<char> ::= <any ASCII character> 
<error> :: II: # 

<obj> ::= <instruction> I <value> I ( { <obj> } ) 
<any> ::= <object> 

An operation instruction processes operand objects to produce a 

result object as defined by its operator. Each operand is received from 

a specific subordinate activity (usually there is one operand from R2 

and one from &3). The result is transmitted to subordinate RI. If 

there is no RI subordinate then the result will be sent to the superior 

RO in response to any object from the superior. If there is no superior 

either then the result is just discarded. Figure Al shows all the 

operators and the types of valid operands and results produced, these 

types being spec:1fied by the syntax for <data item>, <obj> and <an}>. 

lhe typed operators are straightforward, each having as its operands and 

results primitive objects of the same type (integer, boolean or bit). 

lhe other operators may involve compound objects and the special error 

o~ject. An error object is produced as the result of applying an opera-

tor to an operand of the wrong type (e.g. mUltiplying two characters or 

an integer and an error object). In defining the type of valid operands 
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there is a distinction between a general object, <any>, and an object, 

<obj>, restricted to exclude error objects. 

oper-
ator o~erands result meaning 

r----""\ 'R2 R3 R4 <act>" 
, , , 

integer 
+ <jnt> <int> <int> add 

<int> <int> <int> subtract 
0- <int> <int> unary minus 

boolean 
& <boo1> <boo1> <boo1> and 
I <bool> <boo1> <boo1> or 
"'1 <boo1> < boo 1> <bool> nor 

<boo1> <boo1> not 

ill 
'& <bit> <bit> <bit> and 
, I <bit> <bit> <bit> or 
''''1 <bit> <bit> <bit> nor , ... <bit> <bit> <bit> not 

comEare 
= <obj> <obj> <booD. equal 
... = <obj> <obj> <booD not equal 
> <obj> <obj> <booD greater 
)= <obj) <obj) <booD greater or equal 
< <obj) <obj) <booD less 
<= <obj> <obj> <oooD less or equal 

sEecial 
if <any> <any> <bool> conditional 
== <any> <any> <booD equivalent 
:= <any) <any) identity 
: := <any> <any> routing 

Figure Al - 'l'be Operators 

A compare operator treats its operands as t~o strings of symbols 
" 

(j.e. delimiters, instructions and data items) ~hich are compared in 

pairs from left to right. lhe strings are equal i.f all pairs of 
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corresponding symbols are equal, otherwise the result is the result of 

comparing the leftmost unequal pair according to the following ordering 

) (lowest); '0; '1; F; Tj integers in numeric order; characters in 

standard order; instructions in arbitrary order; (. [The position of 

the delimiters in this ordering gives the effect of recursively compar-

ing compound objects, for example -

«lie "V lie» < ({ffe "v lie) tlj} < «lie "V "e) ("j "i I'm» ] 

The conditional operator (if) has three operands and the result is 

the first (12) or second (RJ) depending on whether the third (R4) is 

True or False. The equivalence operator (=-) tests the operands for 

equality and allows an object to be tested for error. For the identity 

operator (:-) there is a single operand which is transmitted unchanged 

as the result. For the routing operator (::-) the result is its single 

operand from a specified source activity and copies are transmitted to 

two specified destination activities. If the null activity. is speci-

fied as the source then () is used as the operand object. If a destina-

tion activity is non-existent or is specified as • then its copy is just 

discarded. 

The routing operator is used in conjunction with access ins truc-

tions to replicate objects and to organise any communication that may be 

needed in addition to the simple operand/result communication pattern of 

the other operations. As an example the following sequence of instruc-

!Jons synchronise the executing activity P with its Rl subordinate, Q -

il i2 i3 
~ ~ ~ 
c.opy Rl; .,IlO : :-.; .,. ::-=R.l; 

The first, copy, instruction transmits to Q the following instruction, 
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f2. When Q has finished executing the previous instruction from P it 

will execute the 12 which specifies that Q transmit to its superior, P, 

the empty object (). The next instruction executed by P, 13, requires 

an object from its Rl subordinate, Q, and thus synchronises those two 

activities. When P receives that object, (), it is just discarded. 

A.7 - Act1vity Creation 

<creation) ::= sub <act) I 
source <act) 
par 

A sub instruction, such as sub RD, creates a new subordinate 

activity (En) to the the immediate left of the creating activity. Ihe 

new activity is connected to the creating activity as its superior and 

that is its initial instruction source. Ihe new activity itself has no 

subordinates. A source instruction is the same except that the new 

subordinate activity is to the right of its superior, the instruction 

source for the ~reated activity is implicitly switched to be the program 

string, and the instruction source for the creating activity is im{-li-

citly switched to be the connection with the created activity. 

A parallel instruction creates a new independent activity "hich 

has the same current object as the creating activity, the same l'osition 

as the creating activity (following the par instruction if that is exe-

cuted from the program string) and with the program string as its 

instruction source. The creating activity then eXeclltes an implicit ->1 
addressing . instruction so that the next object it executes is that fol,.-, . 
lowing the first object executed by the created activity. 
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A.B - Exception Dandling 

<exception> : : = ok I err I skip I sk1.p <ac t> 

Associated with an activity is an error status which indicates 

whether an error has.occurred. This is cleared by an ok instruction, 

set by an err instruction and is also set by the occurrence of some of 

the exception conditions described below. A skip instruction tests the 

error status of the activity itself or a specified activity and exe­

cutes an implicit ->1 addressing instruction if the status is clear 

(that is, the activity skips over the following object which would con­

tain code to deal with exceptions). 

The exception conditions that can occur are -

(i) Invalid instruction source - If the instruction source is s~itched 

to be the connection to a non-existent activity or a connected 

activity terminates· while the connection to it.is thc inStruction 

source, then the activity terminates. 

(ii) Invalid selectors - A selector in an addrcssing instruction exe­

cuted by an activity P is invalid if: it is an in/ selector and the 

next symbol to P's right is a primitive object or a ); it is a . ->/ 

(or <-I) selector and the next symbol to P's right (or left) 1s a ) 

(or (); it is an outl or escape/ selector and P's enclosing object 

is the outermost object, the total program; it is a $Rn selector 

where Rn does not exist or the null activity, ., is specified. lhe 

error status is set and the effect on P's position is that of a 

"null" selector, II, (except in the case of an invalid out or 

escape! selector which will act as a start or end selector). 
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(iii)Invalid access instructions - An access instruction is invalid if 

the activity to which the target object is to be transmitted, or 

the activity from which the new object is to be received, does not 

exist, or (except in the case of insert) the next symbol to the 

right of the activity is a ). lhe error status is set and where 

appropriate the error object is transmitted as the target object'. 

(iv) Invalid operation - An operation instruction is invalid if one of 

the operand objects is of the wrong type or the activity from which 

it should be received does not exist. Ihe error status is set and 

the error object is transmitted as the result. 

(v) Invalid creation - A sub Rn or source in instruction is inv~lid if 

the specified subordinate already exists or the null activity, ., 

is specified for RD. Ihe error indicator is set but otherwise the 

instruction has no effect. 

A.9 - An Exaaple 

In order to illustrate the relationship between the machine code 

described here and the programming constructs used in Chapter Fout' , Fig­

ure A2 shows the machine code equivalent to some of those constructs. 

The example program fragment used (a) is part of that in Figure 3S. Ihe 

motivation for this example and its general operation was discussed in 

Section 5.].7. 1he machine code instruction sequence corresponding to 

each construct in (a) is shown in (b) which contains comm~,nts explaining 

the detailed'operation of that machine code. 
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example 
P Q R 5 

"( I iter- ( I c2 c3 (?) ) ( I := 6 lout ) I IE )" 
c: D: r: 

(!) machine ~ 

program 
construct machine code 

"iter"- [An iterative operator on stream operands - P sets up sub­
ordinates at operands and result and repeatedly takes 
operand values and inserts result values] 

(Set up] 
1 ( sub R2j [creates R2 subordinate ~ with r as instr. source] 
2 copy R2j [Q is sent the following object to execute) 
3 esc/e; [address of C, specifying execution (Ie») 
4 sub R3j copy R3; ( esc/j ->/ej ) [as 1-3, for R,on t) 
5 sub Rlj copy Rlj ( esc/j ->/j ->/e; ) [similarly S,r] 

7 
8 
9 

10 

11 

(Repeated operations] 
( copy R2j take ROj [Q is sent instr. to 'take object to F) 

copy R3j take ROj [as 7, causing R to return its result] 
copy RI; insert ROj [as 7- S inserts next object sent] 
-j [P performs subtraction on objects from Q and R, send­

ing result for insertion by ~] 
out/j ) ) [return and repeat from last ( ] 

II : ... " - [A normal (not iterative) operator] 
12 (sub R2; copy R2; (esc/;->/e; copy RO; I.;) :-;) 

13 

14 

15 

16 
17 
Ie 

"(1)" 

"E" 

[as 1,2,7,10 but -
using copy instead of take with termination 
of subordinate activity; single operand for 
identity operation, := (instead of subtraction); 
no result activity, R3, thus result to iL) 

->/e; [skip over single argum~nt, the folo~ing 6 ) 

( out?l; ) [suspends activity activity to a~ait operands] 

[A compound address executed by S] 
(source RSj [A sub. activity 1 is created to execute rest 

of this object] 
copy ROj [following object sent to l's superior, S1 
(esc/; ->1; ••• <-Ie;) [selectors corresponding to /1] 
I.j) [terminate I] 

Figure A2 - lfachine code for part of cxSJIple in Figure 39 
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