NEWCAZILE UrOH TYHE
UNIVERSTY L122nTY

ACCESSION No.

83-10990
_ LOCATION
GEXRERAL TURFOSE LECERTRALISED COMPUTER ARCBITECTURY lhestS
L2z

Richard r. Hopkins

Computing Laboratory, University of Newcastle upon lyne

th.D. Thesis ’ ICE3

. ABSTRACT

This thesis is concerned with decentralised highly concurrent
computer architecturce which may eventually provide alternatives to
the centralised sequential architectures of conventional general-
purpose computers, There is currently considerable research into
such alternatives, for which the principal motivations are the use
of concurrency to improve performance, the support of various
novel, very high level programming languages, and the exploitation
of very large scale circuit integration (VLS1). 1lhe different pro-
posed alternative architectures are surveyed and analysed, and
architectures synthesising their underlying concepts are proposed.

The thesis consists of three main parts. The first part is an
analysis and survey of proposed general-purpose decentralised
architectures. Three c¢lasses of architectures are identified,
namely control flow, data flow and reduction. 7The analysis shcws
that each class has particular, complementary, strengths and
weaknesses,

The second and third parts cover the development of two archi-
tectures which combine the different concepts underlying control
flow, data flow and reduction in order to overcome the individual
weaknesses in each. Thus the second part presents a "data/control
flow" architectuvre which is a synthesis of data flow and control
flow. Therc is an experimental implementation of this architecture
in which a number of standard microcomputers cooperate in the exe-
cution of a program.

In contrast the third part presents a "recursive control flow"
(RCF) architecture which is a synthesis of control flow, data tlow
and reduction. 7This architecture is based on a set of general
principles of recursive structuring which are intended to provide a
commen basis for decentralised system orgenisation at various
architectural levels, ranging from VLSI design to geographically
distributed networks. The RCF work is thus not only an investiga-
tion into the possibility of incorporating control flow, date flow
and reduction concepts in a single parallel computer but also an
initial investigation of the application of the recursive structur-
ing principles. 1lhese two aspects of the work are closely related
in that recursive structuring facilitates the modulerity which is
required for the synthesis of control flow, data flew and reduction
into a coherent overall system. .

An implementation of the ECF architecture, using a numter of
identical microcomputers, is proposed. . The dectailed design of a
special-purpose LSI microcomputer chip for this implementation is
currently being produced.

(1)

, ACKLGWLEDGEMERTS -

I gratefully acknowledge the diligence and interest taken in this
research by my colleagues in the Computer Architecture Kkesearch Group,
principally Philip Ireleaven and Paul Rautenbach, and my thesis supervi-
sor Eriasn Randell. Particularly 1 thank Fhilip Ireleaven and Erian kan-
dell for having patiently read various drafts of this thesis and having
made some improvement in my ability to write.

This research would have been impossible but for financial support
from the Science and Engineering Research Council of Creat Eritain both
for myself as a research student and research &ssociate, and for the
computing facilities that 1 have used.

(i1)

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

CONUEKTS

CINTRODUCTICH. w o = v = = » » 2 c = » » o » 1

«]l Background. ¢« « 4 o ¢ s o ¢ o o v o o o 1
'2 Thesis Cutline. o« o« o o o o ¢ o o o o 5

AFALYSIS AND SURVEYe = o o = = = =« = = = = =5

Operational ModelSe « v = v« » o w = 2 » = = 9
{l Control Flow. e & o o ® & ® & * @ o & olC

_.2 Data FlOW. e . & & o & o @ 9 o o [}] L] . 13

¢3 ReductioOne + o o « o o o o o o o o o o 14
04 DiSCUSSiono'o e e« e e ® ® ® & & s o @ .19

Program Organisation. « = = » s » = = » » 24
o]l Data StTXuCtuTeSe « o« » o o o o o o o o 24
«2 Conditionals. « ¢« o ¢ ¢ o ¢ o o o o » &
«3 Procedures and Iteration. « o « ¢ o o o
o4 Non-Peterminacye o o o o o o o o o o @

Lo N
D =~ T

Kachine Organisation and Implementations. .43
o1 Classificatione o o« « o o o o o o o o 43
e2 Control F1OWe o o « o o o o o o o o o &bl
e3 Data FIlOWe o « o o o o« s « o o o o o o 4t
W4 Reduction. o o o o o o o s o s o o o o 5

I‘:Vﬂlvatil)ﬂ. » W @ & ® W W B® W W W T W B W -53

o] Expressive FOWETe o o o o o o s o o o o593
.2 Concurrency and Ferformance. « « « « « 54
«3 Exploiting VLSI. ¢ & v ¢ ¢ ¢ o o « o« o 35
o4 Generality. o o o o o o o o o 5 o o o o56

CCMEINIEG DATA FLOW AND CONIROL FLOW. « « 5%
Cperational Modele o« « o o« o« v » o« » » » » €0
Progrom Organisation. o « = = o o = » » v 05
.1 Data Structures. « « « o s ¢ o s « o o €5
.2 Conditionals. a o e & o e 8 o e o o @ .65
«3 Iteration and ProceduresS. « « o o« o o of7
o4 Non-Determinacye o o o o o » o o ¢ o o /1

Machire Orpanisation acd Implementation. . 73

Suzary and Liscussione. « o« = = = o = » « 270

(1i1)

4.2

4.3

4.4

5.1

trinnatan

bW

GENERALISING CONTROL FLOW. = o o » = » v » 79

operational Model- * ® W ® W ® W ®» W s ®w e 80

.1
o2
.3
o4

°3.

.6

Storage Organisatione o ¢ o o o » o o +&EC
Addressinge « o o o o o o o 0 0 o 0 o W82
Program Kepresentation. . « « « « « « o866
Program ExecutioN. « « « o« o o o » o o &S
Further ExampleS. o o o o o o o o o o 54
DiscusSion + « o o o o o o o o ¢ « o ¢ 95

Progrem Organisatione o« = o » v v = = » » 102

.1
o2

3
A
«3
.6
o7
3

[33

Notation. o o« v o o o o ¢ o o o &« o « 1062
Including Control Flow, Pata Flow

and Reduction. « « o o « « #1609
LCata StructureSe o« « o o s o » » « o« o116
Conditionals. v o « o o o o o o ¢ o o« 11§
Iteration. o o o o o o o o ¢ o o s o 120
ProcedureSe o« o o o o o o o s o o o o 122
Higher Order ProcedureS. « « « « « o o126
Non-Determinacy. « o o o o o o o ¢ o #131
Piscussion. « « « o o o« o o o o ¢ o« o 133

Machine Organisatione « = « « = =« = = «» = 135

.1
o2
.3

oh

Geveral Structures « o o o o o « o o 136
Special-Purpose Computing Elements. . 142
Extensibilitye o o o o o o o ¢ o o o o144
LocalitYe o o o o o o o o o o o o o o 146

Summary and Discussion. o « o« « v v = = » 145

.1
o2

Combining Models. « « o o o o o o o o 45
Recursive Structuringe « o o o o o .o 152

RECURSIVE SYSTI¥S IMPLEMENTATIONS. « « « <157

IhemcomSignl-..-.t'-O.--.-158

.1
o2
e3

.4
.5
.6
o7

MEMOYYoe ¢ o o o o ¢ o o o
Processing. o« « o« o o o o
Activity Migration and .

Resource Allocation., . « « 163
Communications. « o o o « o o o o o« o 1€7
Control ElementSe « « o s o o o « « » 171
Multi-level Organisation. « « « o o « 173
Discussione « o o o o o o o « o o o « 175

. . . e = 160
. + e o = 161

nASlX‘ . » L4 - L - » - - - - - - - - » - .191 .

RIEE‘!SQ - L J - - - L] - - - - - - - - - - -« .192

R.l;!. . - - - A J L - - - - - - - - - - - L] .196

KDiSCUSSiOD- ® © o 8- ® % e ® " © ® e B w®]99

(iv)

L; 6 CONCLUSIO};S. - - - '@ - L] - - - » - » - - '207

] Summary and Piscussion. « « « o ¢ o o« 2207
2 Current and Future Rescarch. 214

Machine' Model. o e & o e o e e s e & o @ 0219
Delimiters. o o« « o o o ¢ o o o o o o o o 222
Duata JtemMSe o o o o o o o o o ¢ o o » o o 222
Access InstructionS. o o o o o o o o o o o243
Addressing InstructionS. o« « o o o o o o o224
OperationsS. o o « o o o o ¢ ¢ o o « o o o« 22C
Activity Creationl. o « o o o o o o o o o o225
Exception Handling. « o« ¢ o o ¢ o o o o o 230
An FXampPlee « o « o o o o o o o o o o o o 231

> bk
WD SWN —

(v)

DN SN

s
— O

—
o

20
21
22
23
24

25
2¢
27
2¢€
26
30
31
32
33
34
35
36

a2
-

K
3¢
40

Al
A2

Sk et fd o et e et
DNV W

INDEX IO FIGURES

. CRAFTFR 2
Conventional Control FloWe « o o o o o
Multi-thread Control FlowWe « « o o o o«
Parallel Control Flowe o« o = o o o o @
Data FlOWe o o o o ¢ ¢ o o s o o o o o
String Reduction. o+ o o ¢ o o o o o o &
Graph Reduction. « ¢ o o ¢ ¢ o o ¢ o o
Control and Pata MechanismSe ¢« o« o« o »
Unbounded Lata Structures. . .
Two Forms of Conditional in Lata Flow.:
Procedures and lteration in Lata Flow.
Procedures in String Reduction. « « o+

Higher Order Procedures in Reduction. « « « « « & &
Non-determinacy in Lata FloWe o« o« o o ¢ ¢ ¢ o o o @

Machine Organisations. « « « « o ¢ = &
Some Novel ArchitectureS. « ¢« o« o o » o

Packet Circulation for Multi~thread Control Elow. .

Packet Circulation for Tata Flowe « o o

L

Expression Manipulation for String Reduction. « . .

Pointer Reversal for Implementing Graph Keduction.

CBAPTER 3
Datz/Control FloWe « « o o « o o o o @
Conditionals in ECFe o ¢ ¢ o o ¢ o o o
Procedures in DCF. ¢ o o o o o o o o @
Non-Determinacy in ECFs o v ¢ o o o o o«

DCF Machine Organisation and Implementation. . . .

CHAPIER 4

Addressing felectors in RCF. & 4 ¢ « o ¢ o ¢ o o @
Program Representation in KCF., o« « o ¢ o o o o

Program Execution in RCFe 4 ¢ ¢ o o o o

An RCF Instruction which Cperates on Streams. . .

An RCF Instruction with Programmed Cperator and Arguments.

Different Organisations for Expression Evaluation in KRCF.

Unbounded Lata Structures in KCF, « +
Three Forms of Conditional in RCF. . .

*

Iteration Using FIFO Gucues Iin RCFe o o ¢ ¢ ¢ o o o o o o

Procedures in RCFe ¢ v ¢ o ¢ o o o o «
Higher Order Procedures in RCF. « « « &

Non“determi‘nacy jn RCF. e o o o o o e s o e, & ¢ & & s @

Recursive Machine Crganisaticn. o o o o o o o o o o o o o

CHAPIER 5
LEGO]mplementation. e e o © o+ e s o o

Execution of lterative Lata Flow in RCF. . .

UNIX and UNIX United Filestore Structure.

" APPERDIX A

The Operatorsl * L] L] L] L] L] L] L] L] L] L L] . L4 * . L] . . Ll . L
fachine Code for part of Example in Figure

(vi)

2(

“vJe

page

. 10
. 11
. 1z
. 13

.17
. 1t

Y
| \CR)
NN e

L J
LDH LN
O S B I I PN

. o ®
S S S
AVl a2l X

. 52

.1« IRTRCDUCTION
1.l Eackground

Conventional von Neumann architectures can be characterised bty a

number of "von Neumann principles":
1. linesr organisation of fixed size memory cells
2. omne level address space, where each address is globally unique

3. low level machine code in which instructions are elementary opera-

tions performed on elementary operands
4, sequential, centralised control of execution

5. centralised machine organisation of a single computer incorporating

processor, communications and memory

Although these principles have for over 30 years provided an adequate
basis for generai—purpose computers, there has recently been much
interest in possible alternative general-purpose architectures. There
are currently at least 20 research groups working on experimental, non-
von Neumann architectures in which one or more of the above principles

are modified.

There are three main, related, motivations for this interest in
novei architectures. Firstly there is the continuing demand for
ipcreased computing power, particularly in spplications such as weather
forecasting and wind tunnel simulation. The techknologies available (and

ultimately the natural laws of physics) limit the possible performence

-2 -

attainablg for a single processor, and thus thé ability of convention-
ally organised high-speed computers to meet these demands[l]. The util-
isation of a 1large number of processors cooperating on a single task
offers the potential of overcoming the technological performance iimita—

tions,

Secondly there is the interest in new classes of very high level
programming languages, particularly functional or applicative
1anguages[2,3]; and 1logic langusges[4], which are claimed to have
greater expressi?e power than conventional languages and are intended to
provide easier means of producing relisble programs. Whereas existing
sequential assignment-based languages are well matched to the von Neu-
mann architecture, these new classes of language are based on radically
different principles, and implementations on conveﬁtional architectures
tend to be relatively inefficient. An essential characteristic of
these languages 1s that a program does not specify a sequence in which
statements are to be executed and this naturally leadsk te highly con-

current implementations.

Thirdly there is the need to exploit very large scalé integration
(VLSI) in the design of general-purposé computers. There are a number
of considerations in VLSI design which make it desirable to find an
alternative to conventional architectures([5,6]., In particular there is
the need to implement stgrage and processing functions close together on
the same chip in order to minimise communications. These considerations
lead to architectures such as [7] in which a large powerful computer is
constructed from a wmultiplicity of simple single~chip microcomputers

each incorporating a general-purpose processor and local memory.

-3 -

Research projects motivated by one or more of the above considera-
tions have resulted in‘ a number of experimental speciai~purpose and
general-purpose architectures which are able to utilise many processors
operating concurrently on a single task under decentralised control. In
the specialfpurpose decentralised architectures the hardwarel organisa-
tion is closely matched to the concurrency structure of a particular
class of tasks, as for example in Systolic Arrays{8]. The concern of
this thesis however is with general-purpose decentralised architectures
which can be programmed to perform effectively, and exploit implicit

concurrency in, a large range of tasks.

Three élasses of general-purpose computer architectures can be
identified as control flow, data flow and reduction. These classes
differ fundamentally in their operational models, that is in the way
instruction execution ié initiated and the way data is communicated
between instructions. In control flow the execution of an instruction
is triggered by the flow of control through the-program, and data is
communicated between instructions by being stored in shared memory
cells, (Conventional von Neumann architectures have a single flow of
control whereas control flow architectures providing concurrency’ have
multiple flows of control.) In data flow the execution of an instruction
is triggered by the availability of the input data that it uses and whén
executed an instruction stores its result directly into those instruc~
tions which use that result., In reduction the execution of an instruc-
tion 1s triggered by the requirement for the output data which it gen-
erates and when executed an instruction is replaced by (is reduced to)
its result, The single most important characteristic of the novel data

flow and reduction models is that they are implicitly concurrent. If

-4 -

several data flow instructions have all their inputs available then they
can ali be executed concurrently. If one reduction instruction requires
the outputs from several other instructions then those instructions can
be executed concurrently. In contrast, the concurrency provided by mul-

tiple flows of éontrol_is explicitly controlled by the programmer.

Parallel computers form one of two major fields of decentralised
computing systems research, the other being thét of geographically dis-
tributed computer networks. There . is some degree of relationship
between these two fields. The design of individual computers may be
affected by the likelihood of their being connected into »computer net-
works., Similar functions may be found in both types of decentralised
system, for example to organiée the cooperation between concurrently
executing Aprogram units, and the decentralised allocation of system
resources. There is the possibility of the same microcomputer being
used as one of the processors for a general-purpose parallei computer,
as the main processor of a node in a local area nethork, or as a com~
ponent of an embedded system such as an on-board flight control system.
This latter class of system could be considered as either a special-
purpose parallel computer or a small-scale computer network. Thus the
distinction between parallel‘computer architecture and computer network
architecture is becoming more a matter of degree than fundamentél
difference. These considerations have contributed towards developments
such as the "building sized computer" of [9], the Intel 432{10] and
transputers{ll], In terms of the three!classes of architectures identi-
fied above, these developments are all based on the counventional control
flow model (rather than one of the novel, implicitly concurrent models)

and carry forward most of the von Neuman principles.

l.2. Thesis Outline

The principal work reported here consists of an analysis of control
flow, data flow and reduction computers and the synthesis of their
underlying concepts,.together with the application of princiéles of
tgcursive structuring, in the design of general-purposc decentralised
computer architectures. The application of recursive structuring 'prin~
ciples‘in the context of geographically distributed computer networks is
als§ considered. This researﬁh constitu&es a majér part of the work of
the Computer Architecture Research Group at the University of Newcastle
upon Tyne. Much of the work covered by this thesis, together with
related work of other members of the grouf, has been previoﬁsly reported

elsewhere[12-18].

The first part of the thesis, Chapter Two, is an analysis and sur-
vey - of existing control flow, data flow and reduction architectures.
The basis for this analysis is the classification Ifirst developed by
Treleaven and myself in [14] and subsequently éxpandedbby ourselves and
Brownbridge in a broad survey of data flow and reduction ;omputers[]é].
This Chapter repeats and further develops those parts of [16] to which I
made a major contribution, It covers for each class of architecture the
operational concepts on which it is based, the ways in which machiﬁe
code programs are organised, and the ways in which machine resources are
organised, Th¢ analysis shows that a fundamental characteristic qf an
architecture, largely determining 1its particular strengths and
weaknesses, is the choice of mechanisms provided for‘propagating control
and data through a program. The strengths and weaknesses of control

flow, data flow and reduction are largely complementary which suggests

_ 6 -

experimenting with combinations of the concepts and mechanisms found

"separately in each.

All the novel conmputer architectures discussed in this Thesis, data
flow and reduction covered in Chapter 1 and the experimental architec-
tures developed subseqﬁently, provide for computing machines that aré
Universal, in the Turing Machine sense. Thus the only ultimate criteria
for their evaluation 1s their "efficiency" in terms of hardware cost,
program executioﬁ performance, and production costs of software to pro—
vide an effective user interface and to organise the effective exploita-
tion of machine resources. Quantitative evaluation of an architecture
in those terms requires extensive experimentation on "realistic" imple-
mentations. However at the time of writing, development of novel data
flow and reduction architectﬁres.has only progressed to the 'point of
"demonstration" rather than realistic implementations. Thus they can as
yet only be evaluated in qualitative terms of particular conceptual
strengths and weaknesses which may be expected to affect their quantita=
tive characteristics. These comments apply even more to - the highly
experimental architectures covered in the subsequent Chéﬁters which
build on the concepts of data flow and reduction and are in an even ear-.

lier stage of development,

The second part of the thesis, Chapter Three, presents an experi-
mental architecture which is a synthesis of data flow and (coﬁcurrept)
control flow{13,15]. The original idea of such a synthesis was first
suggested. by Treleaven and developed into this architecture principally
by Raptenbach and myself. This Chapter is a summary of the full report

on the architecture[l2] covering its operational model, program.organi‘

-7 -
sation and machine organisation. Implementations of the architecture,
based on several cooperating microcomputers, were subsequently developed

by other members of the Computer Architecture Group and are reported on

in detail elsewhere[19,20].

The third part, Chapters Four and Five and Appendix A, presents a
second experimental architecture, the recursive control flow architec—
ture, which is a synthesis of control flow, data flow and reduction
obtained by generalising the conventional von Neuman arcﬁitecture. This
generalisétion is based on the use of recursive decentralised struc-
tures, and involves the replacement of all the von Neuman principles by

corresponding “recursive principles":
1. hilerarchy of variable length memory cells

2. contextual address space, where an address 1is a variable length

sequence of selectors like a telephone number

3. recursive machine language in which instructions may contain ele-

mentary'or complex operations or operands
4, parallel, decentralised control of execution

5. network of computing elements with each element incorporating
processor-communications-memory and a group of computing elements

being functionally equivalent to a single computer

Chapter Four covers the architecture’s operational model, its program
organisation and machine organisation. Also, towards the end of Chapter

Four there is a discussion of the applicability of the recursive control

flow operation model and machine organisation in the context of

-8 -

geographically distriﬁuted networks. Chapter Five covers a propdsed
hardware implementation of the recursive control flow architecture usihg
large numbers of a special-purpose LSI chip. Appendix A defines a
machine code instruction set for this implementation. Chapter Five also
covers a number of other computing system implementations which incor-
porate similar recursive structuring concepts, including both a

general-purpose parallel computer and a computer network system.

The material contained in these two Chapters and the Appendix - is
original to this thesis and has not been published elsewhere, although
it is based on outline ideas proposed by Treleaven and myself in [17].
The proposed implementation is now being developed by another member of
the Computer Architecture Group in order to produce a detailed chip

design.

Chapter 6 presents the main conclusions of the thesis. ‘ It is
claimed that the recursive control flow architecture enables the dif-
ferent styles of control flow, data flow and reduction programs to be
easily combined, so that each can be used where appropriate., Also that
the architecture in general provides a promising basis for future
general-purpose decentralised VLSI computing systems, and warrants
further development. Further work to be done and possible lines of

future development are then identified.

2. ANALYSIS AND SURVEY

This Chapter covers fecent research into general-purpose decentral-
ised architectures, particularly in the areasbof data flow and reduc~
tion. Currently there are many research groups working in these areas,
a number of whom have produced experimental machine designs{[16]. The
purpose of this Chapter is to identify the concepts and relationships
within these areas of research and to discuss the advantages and disad-
vantages of different approaches. The Chapter starts by introducing the
operational models wunderlying control flow, data flow and reduction
architectures, then discusses ways in which the architectures are pro-
grammed and implemented, and_finally evaluates their main advantages and

disadvantages.

2.1. Operational Models

Control flow, data flow and reduction architectures are each based
on different concepts of the way programs are represented and executed
and the way control and data are passed from one part of a program to
another. 1In order to illustrate and compare these basic concepts I will
discuss the representation and execution of an example program fragment,
the statement a:= (b¥l) * (b~c), in terms of simple operational models
for each class of architecture. For the operational models an abstract
machine code representation will be used in which an instruction is a
sequence of arguments delimited by brackets. For example the (b+l)
might be represented as the machine code instructicon (+ b 1 tl) with
four arguments, the last of which, tl, identifies the destination of the

result. At a particular point in the executioa of a machine code

- 10 -

program there will be (cne or more) active instructions to be exécuted.
For example in a conventional architecture the instruction pointed to by
the program counterbis the single active instruction. 1In diséussing the
operational models, the progress of execution through a program will te
indicated by marking a currenfly active instruétion with a], referred
to as an "activity". For example (}J+ b 1 tl1) means that the + operator
is about to be executed and the activity, J, can be thought of as

representing an actual processor to execute that operator.

2.1.1. Control Flow

Figure 1 shows a conventional control flow representation for the
example a:= (b+1) * (b-c). There is a sequence of instructions, 11, 12
and i3, and some shared memory cells, b, ¢, tl etc., for passing data
between instructions., Each instruction (e.g. 11) consists of aun opera-
tor (+), input arguments each of which may be a literal (1) or a refer-
ence (b) to a memory cell, and a reference (tl) té the memory cell for
the result. The feferences to memory cells are also shown as solid

arcs .

T T L S >
11: 12: 13:
e b}v*y'bc t2) (*?tZ si)
v/{ \
(4) (2) (5) «) «)
b: c: tl: tl: a:

Figure 1 ~ Conventional Control'Flow

N

There is a single activity, }, shown at 12, which passes from one

- 11 -

instruction to the next along the thread of centrol shown by dotted
arcs. To execute an instruction, addressed operands are Jloaded from
memory, the result is cqmput;d as defined by the operator, the result is
stored back in memory, and the activity then implicitly passes on to the

next instruction in sequence.

There are also forms of con;rol flow which provide concurrent pro-
gram execution. In the "multi-thread" form of control flow, conven—
tional control flow is augmented by special control operators for creat-
ing and synchronising multiple threads of control, such as the FORK and
JOI¥ shown in Figure 2, After the execution of the FORK there are two
activities, omne at its implicit successor, i1, and one at the addressed
instruction, 12. Instructions 31 and 12 thus execute concurrently.
Eoth activities will then reach the JOIN instruction, either via the
explicit GOTO following 11, or és the implicit successor of 1i2. The
JOIN synéhronises the two activities and then execution continues with
its implicit successor, the multiply instruction. Apart from the inclu-
sion of such special control operators multi-thread control flow is

similar to conventional control flow.

. o e W T e

~ ” -~

e > N
) . o e - —— - .//*o —————— '&ou-———-}o——'-"-"}*
il: i2: i3:

oo {FORK 12) (} + b WC twow* £l t2 @)eoo
‘I" ¥ \? Y
' (lx (2) 5) () ()
b: c: . tls t2: a:

~

Figure 2 - Mnlti-thread Control Flow

-12 -

Another form of concurrent control flow, shown in Figure 3, is
"parallel" control flow in which instruction execution is controlled by

explicit control signals or control tokens, rather than there being

implicitly sequential' threads of control. All instructions can poten-—
‘tially execute in parallel, but each instruction requires some number of
control tokens from other instructions before it can actually.execute.
In Figure 3 each ? in an instruction is a control argument representing
~the requirement 'for a control token. When an instruction has executed
it transmits control tokens to successor instructions identified by its
final reference arguments (the flow of control tokens is represented by
dotted arcs). A ieference for a control token, such as 13/2 in 12,
.specifies a particular argument position, 2, in a particular instruc-
tion, i3. This form of control flow is 1ogically equivalent to multi-
thread control flow, with multiple successoré (as in i4) corresponding
to a FOEX, and multip1e>control arguments (as in i13) corresponding to a

JOIN.

14:
(oo 11/ 12{1)

-
-

— -
p— |
—

¥ 4
(1 27+Db1tl i3/1) (} 2 -bc t213/2)
il: ! \ ; 12: //,f/’f
{ f”"—
(I‘g ‘f* tl t2 a «o.)
i3: o\ N

. Figure 3 - Parallel Control Flow

- 13 -

-2e1.2. Data Flow

Data flow architectures provide highly concurrent program execution
without the programmer needing to organise the concurrency explicitly.
;Ihis is achieved by basing execution on the availability of data so that
concurrency is dmplicit -~ any dinstruction can execute 1if all its

- operands have been produced.

i4: i5: .
(...i1/1 12/1) (ooe i2/2)

4 2

(} +?113/1) (I - 71 13/2)

* * ? ? v
13:]
10

(a) machine code representation (b) graphical representation

Figure 4 - Data Flow

Figure 4 shows a data flow program for the same example, using in
(a) a machine code representation and in (t) a more usual graphical
representation (data flow programs are often referred to as data fléu
graphs, with the instructions being referred to as nodes). An instruc-
tion (e.g. 11) consists of an operator (+), input arguments each of
which may be a literal (1) or an unknown (?), and output arguments each
of which is a reference (13/1). An output reference identifies a desti-
nation instruction (4i3) and.a partigular unknown argument position (1).

(These references specify the flow of data through the program which is

also shown by solid arcs.)

.

All instructions are notionally active and can potentially execute
in parallel, execution belng constrained by the availability of data.
When an instruction (e.g. 14) has executed it transmits its résult (the
value of b, i.e. 4) aé data tokéns to the other instructions using that
result. (Data tokens are shown as black dots flowing down the arcs.) A
data token overwrites an unknown in the destination instruction, thereby
making its value available to that instruction. When all of an
instrucfion’s operands are available, i.e when all unknowns have been
replaced by results, it can execute, computing its result which is then
transmitted to further instfuctions. (In terms of the graphical
representation, an instruction executes when a data token is present on

each of its input arcs and places its result on all its output arcs.)

2.1.3. Reduction

In data flow and concurrent forms of control flow, the major diver=
gence from conventional control flow is in providing for concurrent pro-
gram execution., These architectures retain the conventional form of
progrém representation in which a program is a collection of fixed size
instructions whoéé arguments are primitive operators and operands. In
contrast, the principal concern in reduction architectures is the direct
support of very high level applicative programming, which motivates a
different form of program representation. In reduction an "instruction"
is an expression comprising a function or primitive operator and its
afguments. Each argument mnay be a simple operand or a nested expres=

sion. A program is a set of named expressions ecach defining a value.

-15 -
For example the program fragment -
a= (btl) * (b-c) vhcre b=7-3, c = 2

gives é definition for a using subsidiary definitions for b and c.
Unlike a named variable of control flow, a named definition has a fixed
value (possibly determined by parameters). Thus a reference such as b,
its defining expression, 7-3, and its value, 4, are all mathematically
equivalent and can be freely interchanged without affecting the result
of the program. The interchangeability of a reference and the refer-—
enced expréssion is an important property known as ‘'referential tran-
sparency". This property is claimed tb facilitate both informal under-
standing of a program and its formal manipulation in for example program

verification,

In executing a reduction program instructions are progressively
evaluated and replaced by their results until the program has been
‘reduced to its siﬁplest form. Reduétion architectufes differ both 1in
the order in which instructions are selected for evaluation and in the
way in which instructions are represented and manipulated. The order of
evaluation 1s not explicitly controlled by the programmer but is deter-
mined by an implicit “computation rule". There are a number of possible
computation rules[21], the main differences being between "innermost"
and "outermost" rules. An innermost computation rule only selects
inst;uctions with literal (fully evaluated) cperands (initially the
instruction defining b in this example). The evaluation of these
fnstructions will result in other instructions being selected. An
outerﬁost computation rule starts with the instruction for the required

result (the multiplication in this example) and 1is recursively applied

- 16 -

to evaluate the required operands. Every computation rule produces .the
same result for a program, if the program terminates with that rule.
However there are programs whiéh terminate with an outermost computation
rulebbut not with an innermost rule, and subsequently I will concentrate

on reduction architectures using outermost computation.

There are two forms of expression representation and manipulation
found in reduction architectures, referred to as string reduction and
graph reduction. In string reduction, as illustrated in Figure 5(i), an
expression 1is represented as a string of symbols comprising operators,
operands and references to other definitions, with structure represented
by delimiter symbols (and). As the expression is evaluated the refer-
enced definitions are copied into the string. In graph reduction, as
illustrated in Figure 6(1), the components of an expression are always
separate definitions, referenced by the expression. Referenced defini-
tiéns arec executed in place rather than being copied into the referenc-

ing expression.

%igure 5 shows some stages in the execution of a string reduction
program. At (i)‘ the evaluation of a is required, indicated by an
activity at its outermost instruction, the multiplication. The evalua-
tion of an instruction, such as the multiplication, demands the evalua-
tion of its operands, indicated in (ii) by activities at their opera=-
tors, and then suspends until their evaluation is complete. Where an
oberand is a reference to a separate definition, such as the references
b and ¢ in (ii), a copy of the definition is taken, replacing the refer-
eﬁce,_and its evaluation is then demanded (iii). Where an instruction

has purely liteval operands, as in the first subtraction in (iii), it is

-17 -

executed and replaced by its result so that the result is stored
directly as a literal into the instruction using it (iv). When all an
instruction’s operands have become literals it is re-enabled and exe-

cuted as shown in (iv) - (vii).

b: c:
' (-7 3;\ 2)
(1) a: 7& \\
(F* (+b1) (-be))
(i1) d* t+p1) (-8)
B # - \'"—31‘—\\
r—" —A
(4ii * - 1 - -73)2
iii) (1 d+d-731 G-34) 2))
- %;
iv) (r * (& +3:), - (}@; 7.3)2))
£ Ve
d=* 5 G-42))
(E) _}W—_‘,
(vi) a* 5 2)
¥
(vif) ‘i';
Figure 5 - String Reduction

Figure 6 shows some stages in the execution of a graph reduction
program. At (i) the evaluation of a is required, indicated by én
activity at its operator. The evaluation of an instruction demsnds the
evalgation of 1instructions referenced by its input arguments, and‘then
suspends. In (ii) such demands for evaluation have thus propagated
throughout. £he program. Each activity at an instruction represents a
denand for its result and the dotted arc represents the source of that

demand which has to be re-enabled when the demanded instruction has been

- 18 -

evaluated. A demanded instruction with pufely literal operands, such as
b in (ii), isvexecgted and replaced by its result so that the instruc-
tions, tl and t2, refereﬁcing it then reference the actual values for
their operands (iii). Those insfructions are re-enabled, their operands
loaded, and the instructions replaced with the results, as shown in
(iv). Any instructions which are no longer referenced, such as b and ¢
in (iv) are deleted. 1In (v) the evaluation of a is complete, and all

~intermediate results in that evaluation have been deleted.

(1) (1)
bi(-73) cx(2)) bi(i - 7 3) c:(§2)
-~ Ve

~
7 7
e &
2:(-

tl:(+ b 1) t b ¢) }%}{ tl:(} + b 1) t2€?} - b)

N .
~ ”~
\ N g

a:(} * tl t2) J L a:(} * tl t2)
b:(114) c:(32))
ad > ’
’ See L’ t1:(15) t2:(12)
tl:({k+ b 1) t2:’(\1}.—- b ¢) L})- AN /7 -}?-a:(lo)
\\ : //' N\ }‘/
Sa e’ a:i(} * tl t2)
ai(l * tl t2)) |
(1i1) (1v) v

Figure 6 — Graph Reduction

AThese examples have illustrated concurrent evaluation of reduction
programs, the concurrency being achieved by simultaneously demanding
both operandé of an operator. However reduction programs can just as
well be executed without concurrency in which case the second operand is

not demanded until the first has been evaluated.

- 19 -

2.1.4. Discussion

- Each of the various operational models presented in this Section
has particular advantages and disadvantages which are largely a result
of the particular mechanisms used for organising the flows of data and

control through a program[l14]. A data mechanism defines how an argument

can be accessed by a number of instructions and three such mechanisns

can be identified:

1 Ezfliteral (in all mddels) - an argument’s value is known at com-

pile time and is included in each accessing instructicn

2 by-value (in data flow and string reduction) = an argument is
evaluated at run~time when a separate copy of its value is stored

in each accessing instruction

3 by-reference (in control flow and graph reduction) — an argument is
evaluated at run-time and its value is shared by each accessing

instruction having a reference to it

A control mechanism defines how one instruction causes the execution of

other instructions, and again three mechanisms can be identified:

1 sequential (in conventional and multi-thread control flow) =~ a
thread of control signals an instruction to execute and passes from

one instruction to its implicit successor

2 parallel (in data flow and parallel control flow) - control signals
the availability of (centrol or data) arguments with an instructien

being executed when all its arguments are available

- 20 -

3 recursive (in reduction) - control signals the need for arguments
with an instruction being executed when a result it generates is

required by an invoking instruction

- The relationship of these mechanisms to the operational models 1is

summarised in Figure 7.

Data Mechanisms

by-value (& -literal)|by-reference (& -literal)

conventional control flow

sequential multi-thread control flow
Control

parallel data flow parallel control flow
Mechanisms

recursive |string reduction graph reduction

Figure 7 - Control and Data Mechanisms

All models have the by-literal mechanism in some form since otherwise
all constant data would haQe to be provided as run-time input. Each
model also has one or other of the by-value and by-reference data
mechanisms. The advantage of by-value compared with by-reference is
that the data is directly available in the instruction using it and thus
the extra step of loading data from a separate memory is avoided. The
corresponding disadvantage is tﬁat there is a separate copy of a valﬁe

(or its definition) for every instruction using it.

Each model has just one of the sequential, parallel and recursive
control mechanisms. The sequential and parallel control mechanisms are
in a sense opposites in that the former is best suited for programs that

are mainly sequential whereas the latter is best suited for programs

- 2] -

that are highly concurrent. For sequential execution the "implicit suc-
cessor" of the sequential control mechanism is more efficient than the
explicit propagation of tokens required by the parallel control mechan-
ism. Conversely, using separate instructions, such as FORK and JOIN,
for organising concurrency is relatively inefficient when there is con-

currency at the level of individual instructions.

The_recursive control mechanism is not primarily concerned with
concurrent execution. The major benefit of the recursive control
mechanism is that instruction execution is only initiated when actually
néeded thus conserving machine resources and to some extent freeing the

programmer from that consideration.

The particular comﬁination of by-reference data mechanism and
recursive control mechanism found in graph reduction allows it to sup-
port "Lazy Evaluation"[22,23] in which only the mininum necessary compu-~
tation is actually performed. In both string and graph reduction the

"recursive cohtrol mechanism means that a computation is not performed
unless 1ts result is actualiy needed. In string reduction the by-value
data mechanism means that a shared definition is evaluated more than
once, as in the multiple evaluation of (= 7 3) in Figure 5 (iii)-(v).
In graph reduction however the by-reference data mechanism allows such.a
shared definition to be evaluated only once, as in Figure 6(ii)-(iii).
The operations discussed so far, such as addition, are "strict" which
means that the result always depends on the value of all operands. For
a program'wigh only strict operations all instructions will always need
to be executed and thus there is no real advantage to the recursive con-

trol mechanism and lazy evaluation. However these are at an advantage

- 22 -

in handling non-strict operations for which one or other of the operands
will not be needed in a particular case. The most common example of

non-strictness 1is in conditional instructions, to be discussed in the

~ next Section.

An important difference between control flow, data flow and reduc—-
.tion is the extent to which an instruction interacts with other instruc-
tions during its execution. In the case of data flow, an instruction
receives all its inputs before it starts executing, processes them com-
pletely and then outputs its results. This form of execution is
referred to as Matomic" since t§ the external environment execution
appears‘as a single indiviéible operation. In control flow and reduc-
tion execution 1s non-atomic due to memory accesses in the former and

acceptance of results demanded from other instructions in the %atter.

The non-atomicity in control flow generally has undesirable conse-
quences., For example consider a program which contains the three
instructions - il: a:=1, i2: a:=2, 13: a:=a-a — and has a progfam deéign
consﬁraint that the content of location a should always be non-negative.
Each instruction individually preserves that property, but in executing
them concurrently there is a possible ordering of the five separate
accesses to a which would result in a having a final value of =1 (the
storing of 2 in a by 12 occurring between the two loads from a by 13).
Such undesirable consequences cannot however occur with reduction since
changing a 1location’s content only changes the representation of its
fixed value, rather than changing its value. Furthermore, non-atomic
eiecu;ion can be beneficial in increasing concurrency and allowing the

termination of programs that would not terminate with atomic exccution.

- 23 -

To illustrate the potential benefits of non—-atomic execﬁtion con~
sider a 1logical OB operator in for example C = A OR B. If, say, the
value True were received first for B, fhen the value True could be pro-
duced for C before the value for A had been éalculated. This would
result in additioﬁal concurrency between the evaluation of A and those
parts' of the program which depend on C. Also it might be ?ossible for
Athe program to produce its final result despite non—tefmination of the
evaluation of A. The differences Eetween atomic and non-atomic execu~
tion are important not only in individual instructions but also in
groupings ‘of instructions as functions and procedures, as will be dis-

cussed in the next Section.

- 24 -

2.2. Program Organisatiocn

The term program organisation is here being used to cover fhe way
programming requirements are supported by -an architeéture's machine
code. This Section discusses how coﬁtrol flow, data flow and reduction
afchitectures support data structures, conditionals, procedures,.itera—

tion, and non-determinacy.

2.2.1, Data Structures

Most general-purpose architectures allow the representation and
manipulation of data structures, In control flow this is generally
achieved by allowing explicit program control over storage allocation
and the ability to apply ordinary arithmetic operators to addresses.
Components of a structure can be stored in contiguous memory cells with
the whole structure represented by a reference to the first componeat
and any other component accessed by for example adding a displacement to
that reference. In data flow and reduction ‘architectures howevef
storage allocation is not under explicit program control and special

facilities are provided to support data structures,

In a data flow architecture supporting data structures (not all do
so) there are special operators for structure manipulation, éuch as the
append and sulect operators of Id[24] which respectively extend a data
structure with a new component and select a specific component from
within a data structure. The result of an append operator is a slightly
modified copy of the input data structure and this result is communi-

cated as a single (large) data token to those instructions (selects or

further sappends) which use it., - T

A reduction architecture typically provides the CONS, CAR and CDR
operators of LISP[25] which‘respectively form two (simple or structured)
values into a two-component structure and select one or other of the
compoﬁents from such a structure. In string and graph reduction archi-
tectures data structures are represented in diffe?ent ways, correspond-
ing to the different ways expression structures are represented. In
string reduction a data structure is represented as a string of data
items with structure being represented by delimiter;, as in for exam-—
ple ((All, Al12), (A21, A22)). An operator such as CDR® ("second com-

ponent") operates on whole data structures -

eee CDR ((All, Al2), (A21, A22)) ...

->> [X X (AZI, AZZ) eve

In graph reduction a data structure is represented using references to

its components and an operator such as CDR manipulates references -

All Al2 A21 A22

Ny N
) 4
\A / |

(cpz A) =>> (A2)

The by-reference dafa mechanism of control flow and graph reduction
means that a data structure can be efficiently communicated and manipu-—
lated using {eferences whereas the by-value data mechanism of data flow
and string reduction means that, at least in principle, the whole data

structure has to be copied and manipulated. In practice some data flow

- 926 -

architectures wuse control flow concepts to support data structures’with
‘structures being stored in separate memory and references being passed

as tdkens[26].

A par;icular benefit of graph reduction is that (in conjunction
with lazy evéluation) it can support unbounded data strucfures. .These
are data structures for which theré is no explicit specification of
actual or maximum size, The data structure is defined in terms of a
notionally infinite number of components and is incrementally generated
‘as components are actually needed 1n the computation. Consider for
example a data structufe Primes, defined as a (probably infinite) list
~ of the prime numbers -

Primes = P (2) :

where P (x) = CONS (x, P (Next (x)))

where Next (p) = (...)

This definition uses a recursive function P (recursive funétions will be
discussed 1in more detail later). This functién has a prime as its
parametér, x,.and notionally retﬁrns a list of all primes including and
following that parameter, This is achieved by CONStructing a list with
x as the first component and the remainder of the components being the
sub-list returned by the recursive call P (Next (x)). In this call of P
the Next (x) returns,'as the call’s parameter, the next prime after #.
The list .is actually incrementally generated as its components are
accessed, as shown in Figure 8. In (b) is showa two stages in‘the par-
tial generation of the Primes structure, namely that before (bl) and

after (b2) the evaluation of an accéssing expression shown in (a).

_‘27.-

(al) (b1)
2 3
(* 10 (CAR (CDR (CDR Primes)))) car ar
- \g / cdr cdr
(a2) l/gg(Primes ——3» ¢ ——>P(next(3))
(* 10 (CAR (CIR of)))
(a3))};4
. (* 10 (CAR o/)(
VOIS W S0~
deman
(ah) (b2) \
. -2 '3 5 ,
(* 10) ar MNar Acar
_.._Y._l .
. : : ‘ cdr cdr cdr
(a3) :k(- PrimeS—3= ¢ — ———%&P(next(S))
50 '
(a) Accessing Expression V(E) Data Structure

Figure 8 - Unbounded Data Structures

The expression in (al) accesses a particular pfime by selecting the
appropriate no&e in the Primes structure using CDR and CAR operétors.
The initial stages of evaluation ((al) - (53)) select existing nodes of
the structure in (bl) and so do not require any further generation of
that structure. From stage (a3), further evaluation of the expression
requires the actual value of CAR(P(Fext(3))). Thus the evaluation
of the expreﬁsion P (Wext(3)) is demanded. in order for the first com-—
pdnen; (CAR) of its data structure result to be accessed. As shown in

(b2) the execution of that data structure expression will cause it to be

- 28 -

replaced by a node for which the cér arc points to 5 and the cdr afc.
points to the next recursive call. The required operand, 5, 1is now
available and is used in the original expression ((a4) - (a5)) without
requiring further‘generation of primes., The same technique could be
uséd in 'st;ing reduction, but the lack of lazy evaluation would mean
that every time a particular prime was needed, all the primes up to that

point would have to be re-generated.

2.2.2. Conditionals

Every general—-purpose architecture provides some form of condi-
tional instruction to select between alternatives. In a control flow
architecture there will be a conditional branch instruction vhich has
two alternative successor instructions. When executed it selects one or
other of the alternatives thus, so to speak, switching an incomimgA flow

of control onto one of two output paths.

In data flow architectures there are two possible forms of condi—
tionals - one with conditional selection of values to be used and the
other with conditional selection of instructions té be. executed. Both
are shown in in Figure 9 using as an example z = — (if c then a else b)
where a, b and ¢ are computed from i by progrem fragments A, B and C.
The first form (value selection) uses an instruction with a conditional
operator, referred to as a "switch-in" instruction. This is illustrated
in Figure 9(i) with the switch-in represented as a hexagonal node. Like
all pure data flow instructions, the switch~in executes when ali its
iAPUtS (a, b and c) are available. It then outputs for use by Z either

the a or the b depending on whether ¢ is True or False,

-'29 -

B UN

c*’//’//// c‘?/;*//”
A NN RN R TR

(eue ...) (...B...

f

;f

(1) switch-in (ii) switch-out

Figure 9 ~ Two Forms of Conditional ih Data Flow

The sccond (instruction selection) form of data flow conditional,
illustrated in Figure 9(ii), uses a "switch-out" instruction which con~
‘trols the flow of data through the program. Here tﬁe hexagonal node 1s
a switch-out instruction which switches the i input onto one or other of
its output arcs, depending on the value of the ¢ input. The instruction
causes either A or B to be activated and thus determines whether Z
receives a or b, In (ii), taking ¢ as True, B is not executed even
though 1its only input, i, is available. This departure from pure dafa
availability is to avoid unnecessary computation and is essential 1f
recursion 1s to be supported. (If this example were part of a recur~
sion, with ¢ the termination condition and B the recursive call, then
the pure data availability of (i) would result in non-termination which

is avoided in (ii).)

- 30 -

In redvction there is a single conditional construct, namely a con-
ditional operator which selects between alternative values and also, due
to the recursive control mechanism, selects between alternative instruc~
tions. A conditional operator, 31f, will be part of a conditional
instruction such as (if C then A else B). 1his 1is executed by first
. demanding the evaluation of .C and then, depending on the result ¢,
demanding the evaluation of either A or B and replacing the whole

expression with that result, either a or b.

An important conéideration in the organisation of conditionals is
the extent to which unnecessary computation may be performed. This can
be i1llustrated by considering the following two alternative conditional
structures for computing & value ¥ ~

*ww A LA); o= (eeow B [X R]);

(a) am= (
r:= (if cl then a else b) * (if c2 then a else d);

and -~

(b) r:= (if cl then (vun A voe) €1se (ees B wes)) * (4f c2
then (eee A «es) else d);

In both control flow and data flow either of these structures is possi-
ble. (In \data flow, (a) is conditional value selection as in Figure
9(i) and (bs is conditional instruction selection as in Figure 9(ii).)
If ¢l and ¢2 a;e both True then, using structure (a), B would ﬁe
unnecessarily evaluated, whereas using structure (b) A would be executed
twice. Thus for either choice of structure there is the possibility of
unnecessary computation being performed. In string reduction the copy-
ing of definitions means that B might be executed twice. Craph reauc-
tion,_using lazy evaluvation, is the only model {or which unnecessary

conputation can always be avoided for this type of example.

- 31 -

2.2.3. Procedures and Iteraticn

Anvessential requirement for any generai—purpose computer is to
allow one program. fragment (e.g. procedure) to be executed many times
using different sets of data values (e.g. parameters) each time. The
term ‘'environment" will be used for the data values and other informa-
" tion which are different for different executions of the same , program
fragment., There afe two ways of obtaining such multiple execution in
coﬁventional control flow, namely procedure calls and iterations. (The
term procedure will be used to cover both procedures with side effects
and functions which return their results.) With (recursive) procedure
calls several nested environments for the éame procedure will coexist.
Consequently there must be mechanisms for keeping the environments
separate and allowing a single referéncé in the shared procedure code to
identify data within different environments. This is achieved by using
a‘ stack to store envirénment information (parameters, local variables
and return links) and indirect addressing via a register thch refer-
ences the current enviromment within the stack. In iteration each exe~
cution Qf the repeated code is completely finished before the next exe-
cution starts. Consequently the successive environments can share
storage and there is no need for any special storage and addressing

techniques.

.Data flow aréhitectures can also support both procedures and itera-
tion (although not all do so). With procedures (even without recursioun)
there may be<several‘concurrent executions of the same procedure. The
envipénment for each execution consists of data tokens for the parame-

ters, internal partial results (corresponding to local variables in

- 32 -

control flow) and the return links. Whereas in control flow tﬁe by~
reference data mechanism allows data for each enviromment to be stored
in a séparate area'of MEMOry ;ccessed via a reference, this is not pos-
sible wifh the by-value data mechanism. Instead a scheme of labelling
tokens is used to separate environments. Each active environment has a
distinct‘identifier which is used to label all tokens associéted with
that environment. An‘individual_instruction in the procedure pay exe-
cute many times in different enviromments. Each execution takes a set
of input tokens with the same environment idenfifier and uses that iden-

tifier to label its output tokens.

Figure lC(i) shows the operation of this scheme using as an.example
the procedure F in the following definition for factorial (nhiéh is

somevhat vnusual as it will also be used to illustrate iteration) -

Factorial (n) = F (n,1)

F (n, m) = if p=1 then u else F{ n~1, n*m)

The inputs to the procedure gra#h are the parameters =m and m and the
return“link X. These inputs are tokens labelled with an environment
identifier (the Q in e.g. Q:n). The B represents the graph to compute
4the‘ partial results n’ and m’ as parsmeters for the mext call. (1f the
termination condition n=1 holds then B will instead pass m as the finél
result ‘f to the RETURN instruction - the actual construction of B is
shéwn in (i1).) The tokens output from B are labelled with the same
environment identifier, Q, as the input tokens from which they are pro-
duced. The.CALL instruction allccates an environment identifier 'R to
label a new set of input tokens for the nested procedure call and sends

those tokens back to the top of the graph, Eventually the nested call

- 33 -

produces é result token Q:res which becomes the output Q:f of the CALL.
instruction. The RETUBN instruction requires two inputs, £ which is the
result value and T which indicates the CALL instruction to which the
‘result token ié sent and the environment identifier with which i; is
labelled. - There are actually three tokens shown which are available to
this instruction, the Q:f and Q:r for this call and the P:x’ from some
other call (such as an outer level of this re;ursion). The effect Qf
the labelling scheme is to enable the' correct pairing of the tokeas
available to a particular instruction — in this case Q:f being paired

with the Q:r rather than with the P:r’ which would have arrived earlier.

[m e o e o .B.:.r,..-.$9m_.éQ;_m__,éQ:r
’ .
:r ~~~~~ Rimg e em ~—==x
!
:l ;""R":D‘@ ““““““““ 3
n n r
Iy
1k
i .
ll ' HBH
;:: [n#1] | [n=1]
{ .
!ll n’:= n-1
;:| m’ :=n*m fi=m
{
!
:': Q:n’g ;Q:m’ -
S oy " "
r~;f:= F(n’ m") SYNCH
A Q:t 6f
}
| P:r’
!)
1 RETURN]
1 i
! L }Q:res Y
- (1) recursion (1i) iteration

Figure 10 -~ Procedures and Iteration in Data Flow

- 34 -

Like an individual instruction, a data flew procedure 1is atonic,
ALl its parameters must be produced before it starts executing and 1if it
has more than one result all of them must be produced before aﬁy can be
used. This can restrict fhe potential concurrency in a data flow graph.
In this example the evaluation of n’ does not depend on the value of the
second parameter, m, and so in principle the procedure could start exe-
cuting with jﬁst its first parameter, m, evaluating n’ concurrently with
“the evaluation 6f the second parameter, m, by the caller.

There afe two general approaches to supporting bitetation in data
flow. The simpler is that illustragéd in Figure 10(ii) for the Fac-—
torial eiample. The body B of the iteration 1is the saﬁe as in the
equlvalent procedure, Il is a comparison instruction, testing for the
termination condition and controlling two switches. If Il gives False
then the switches send =n and m to the subtréction and multiplication
instrﬁctions which calculate n’ and m° as the next values for the itera-
tion. Alternatively if Il gives True then the s&itches send m out as
the final value f and discard n (indicated by a |). Each iteration com-
pletely terminatES‘before the next one starts, this being achieved by a
synchroniser instruction (SYHCH) Vhich requires both m’ and m’ as inputs
but performs no computation on them, just passing them back for the next
iteration. If thé synchronisation were omitted then the subtraction
instruction might generate successive values of n faster than the multi-

plication instruction could consume them‘and without additional mechan-

isms there is no way to pair the m with the correct n.

In the alternative scheme for supporting iteration the synchronisa-

tion 1is omitted and there 1is some additional mechanism to order the

- 35 -

tokens on an arc. In Irvine Dataflow[24] this ordering is achieved by
labelling every token with a sequence number (similar to the environment
identifier used for proceduréé. This is incremented at the end of each
iteration. In the DDM1 data flow architgcture[27] the orderihg is
obtained by associating a first-in-first-out queue or "stream" of tokens

with each input of an instruction.

Whereas in control flow and data flow the basic operational models
have to be extended to accommodate procedures this is not the case for
reducticn, which is based on funcfion applications (corresponding to
procedure calls). Figure 11 shows a stfing reduction sequence for cal-

culating the factorial of 3 using the same definition for F as above.

F(n,m) = if n=1 then m else F(n~1,n*m)
(1) ... F(3,1) ..
(41) ... (if 3=1 ﬁhen 1 else F(3-1,3*%1)) ...
(111) ... F(3-1,3%1) ...
(1v) ... (1f (3-1)=1 then 3*1 else F((3-1)-1,(3-1)*(3*1))) ...
(v) +es F((3-1)-1,(3-1)*(3%1)) ...

(¥i) ee. (if ((3=1)-1)=1 then (3~1)*(3*1)
else F(((3-1)-1)-1, ((3-1)=1)*((3=1)*(3*1))) ...

(wil) «o. ((3-1)%(3%1)) ..,

viil)... 2%3 ...

~~

(AX) ees 6 wes

Figure 11 - Procedures in String Feduction

The initial call in (1) is the instruction F(3,1) which is as usual exe-

cuted by replacing the reference F by a copy of the referenced

- 36 -

definition, and in doing so formal parameters are replaced by actual
parameters giving (ii). The conditional is evaluated and replaced by
the selected alternative (iii) which is another call with different
parameters giving (iv). This process continues until the final result

is produced in (ix).

Any iteration can easily be traﬁsformed into an eduivalent recur-—
sive procedure. Thus it is not necessary to support a separate itera=-
tion mechanism in addition to that for recursion, and‘reduction does noﬁ
do so. .In control flow and data flow; iteration is where possible used
in preference to an equivalent recursion in order to avoid . passing the
final result back up through all the levels of recursion (compare Figure
10(15 and 10(ii)). .However with the reduction model this advantage is
avtomatically obtained in the execution of those procedures (known as
"tail recursive') which are directly equivalent to iteration. This 1s
illustrated in Figure 11 where the result (ix) calculated when the
recursion terminates (vii) has been returned directiy to that part of

the program from which the original call was made in (i).

An important aspect of the reduction model is its ability to sup-
port "higher order functions" (procedures), that is procedures which
have procedures rather than data values as parameters and/or results.
This 1s illustrated in Figure 12 for a higher order procedure Bindl(g)
which has procedures as its parameter and result., In (v) there 1is a
call of Bindl for which the parameter is a two-parameter procedure G
(just the addition operator), and the result is the one-parameter pro-—
cédure H. In the definition of Bindl (iv) H is obtained by binding the

first parameter of G to a particular value (Pl), leaving G’s second

- 37 -

‘parameter free as H’s only parameter. When procedure H is called in
(vi) with parameter P2 the effect (viii) is as though procedure G had

been called with parameters Pl and P2,

€)) Pl = 10
(i) P2 = 20
(111) G(pl,p2) = (+)
(iy) Bindl(g) = (g (P1))
v) - H(p2) = Bindl(G)
(vi) (& (22))
(vii) =>> ((Bind1(G)) (P2))
(yiii) ' =>> ((G (P1)) (P2))
(ix) =>> (((+) (P1)) (P2))
(%) «>> (410 (P2))
(xi) =>> 30
Figure 12 - Higher Order Frocedures in Reduction

The "trick" to this technique is that ail procedures and operators
Vhave at most one argument, Thus fhe expression {P1) + (P2) must be
represented, as shown in (ix), as (((+) (P1)) (P2)). The operator + has
one argument, Pl with value 10, and returns as its result (x) the opera-
tor +10. This operator has one argument, P2 with value 20 and adds iO

to that argument to produce the result 30 (xi).

The significance of higher order procedures lies in their ability
to encapsulate a general pattern of program execution in a procedure
(function) definition which need only be programmed once. This is

illustrated 1in the example below where a procedure Incgen is used to

- 38 -

encapsulate the general pattern of incremental data structure geuneration

used in Figure 8,

Iﬁcgen'(generator, initialvalue.) =

- CoNS (initialvalue,
Incgen (generator, gemerator (initialvalue)))

P (init) = Incgen (Next, init)
FHext (val) = (eees)

Primes =P (2)

2.2.4. HNoo-Determinacy
.

Any‘concurrent program is nqn—deterministic at least in the (opera-
tional) sense that the exéct ordér of events in its execution is not
pre~determined. I will use the term "non-determinate" in the more lim-
ited (functional) sense of the final output of a program (or part of a
program) being not uniquely definedvby just the program and the inputs
it 1is processing. Although non-determinacy is uéually an undesirable
characteristic éf a program there are situations in which the use of a
non-determinate program is necessary. The most common example is in the
management of access to shared resources, such as files, &ithin a
multi-processing operating system. To eﬁsure the integrity of the
shared resource the non-determinacy must be controlled, typically Sy
grouping a number of related individual accesses by one process into one

"transaction" for which the process has exclusive use of the resource.

To support non-determinate programming some primitive mechanisus
for allowing and controlling non-determinacy must be provided. In con-

current control flow non-determinacy is implicit in the basic opera-

-39 -

tional model where two concurrent instruction executions can simultane-
_ously update the same memory cell with different values. There is usu-
~ally some additional explicit mechanism, such as a "test and set"

instruction, for controlling that non-determinacy.

In the data flow model there is a similar potential for implicit
non-determinacy in that two {instruction executions could emit tokens
wifh different values for the same input of another instruction, with
the result of the program depending on which arrived first. ' However the
data flow code generated by a compiler is always constructed so as to
avoid such implicit non~determinacy. For example in Figure 10(ii) the
synchroniser instruction is included to prevent non-determinacy in the
execution of the multiply instruction; in Figure 9(ii) the switch-out
instruction ensures that only one of A and B sends a token to the single

input of Z, even though both could do so.

Tﬁere is only one data flow architecture[24] which provides expli-
cit non-determinacy. This architecture uses the technique of a
"resource manager' to control non-determinate access to a sharable
resource, as shown in Figure 13. The resource manager R4 is a form of
procedure which has two inputs, the resource R (e.g. a file) and a com-
plete transaction (p, gq, ~r or s) to be processad. The result of one
call is a modified version of the resource, R’, which is fed back as
input to the next call. ‘The arcs carry sequences or ‘streams' of tokens
and each token is labelled with a "stream number", 1, 2, 3 etc. These
numbers serve the same role as the environment identifiers in the pro-
cedure céll example, ensuring that the resource manager itself is deter-

minate. The non-determinacy and its control are combined in the expli-

- 4D -

cit MERGE operator which merges its two input streams into one output
stream. On each execution it takes a token from either input, ignoring
the input stream numbers, and outputs it labelled with the next output

stream number.

User B

2:s liq i:p 2:t

Figure 13 — Ron-determinacy in Data Flow

In reduction the only form of update is to replace an expression
with the result of evaluating it. This cannot lead to non-determinacy,
as can the iess constrained form of update found in control flow. If
non~determinacy is required it must be introduced with some special
operator. Non-determinate operators that have been proposed are the
"AMBiguity operator'[28], and more recentlvaKONS[29]. An example of an

expression using AMD is
r=((A) AMB (B))

The result of the whole expression is the result of evaluating one or
other of its operands, (A) or (B). Operationally, demanding the value
of r causes both (A) and (B) to be demanded and computed concurrently.
When one coﬁputation, say (A), has terminated its result a replaces the
whole definition. The other computaﬁion is then no longer needed and

thus forcibly terminated., AMB can be used to program a merge procedure

_ 4 -

which then forms the basis for resource management in the same style as
in Figure 13. Although necessary for resource management, the incluéion
of non-determinacy destroys some of the desirable properties o¢f deter-
minate reduction programs, such as referential transparency. For exsm—
ple the definition x = r-r wohld give x the value zero for any value of

r, but replacing the reference ¥ by the defining expression above

gives
x = ((A) AMB (D)) ~ ((A) AMB (B))

In this expression the two distinct AMB operators may gilve different
results and thus a non-zero x,. ‘

There are uses for non~determinacy other than in the resource
manager type of application. An example is when there are two algo-
rithms (A) and (B) for computing a value r and one or other may be very
inefficient or fail to terminate for particular cases which are diffi-
cult or impossible to predict. The expression r = ((A) AMB (B)) will
elways terminate with a result for r if either algorithm terminates.
Furthermore (assuming machine resources are divided fairly between (A)
and (B)) its execution time in a particular case will be proportiomnal to
that for the more efficient of the two algorithms for that particular
case, In this example concurrency in evaluation of r’s operands is
essential to the logic of the program. (The use of concurrency in this
way 1s explored at some length in [3C].) However for other examples of
potential concurrency, such as in r = ((A) * (B)), the logic of the pro-
grem 1s not dependent on there being actual concurrent execution. Foz

reduction architectures which do not support operators such as AME the

exploitation of potential concurrency 1is entirely an implementation

- 42 -

issue. As discussed in the next Section, some reduction implementations

. do exploit concurrency and some do not,

2.3. Machine Organisation and Implementations

The term machine organisation is being used to cover 'fhe way a
machine’s resources are configured and allocated, This Section starts
by identifying the different classes of machine organisations used fér
control flow, data flow and'feduction,»and then outlines some particular

implemenfations.

2.3.1. Classification

,'Threé classes of machine ofganisation can be identified which are
referred to .here as the centralised, packet communication, and expres-—
sion manipulation brganisations. These organisations, illustrated in
Figure 14, are principally distinguished by the organisation of

communication(C) between processor(P) and memory(H) resources.

Centralised - This organisation consists of one or several processors
and one or several memory units with a central communication system pro—

viding each processor with direct access to all memory. In this organi-
sation a program (or part of a program) being executed1by one processor
has one active instruction, the execution of which typically requires

several communications with the global memory.

Packet Communication - . This organisation consists of a circular

instruction execution pipeline of separate resources in which processors
and memories are interspersed with "pools of work" through which they
communicate.’ Parallelism can be obtained by having a number of identi-
cal resources between successive pools as shown; or by replicating and

connecting the circular pipelines. In this organisation an executing

- 44 -

Pll Pj Plk
* o » .--"Cj Cj (il(-'-—v L v &
| |
Mi M3 Mk
) (vector)
)
Pi .
Mm... ,C1\
P c | | Mi
M1 : :
APk ‘ Pj
4 [
er 1 Ci,
Pp Mk M3
——1p] | . ,
c - - : . :
. - (tree)
(b) 'packet communication (c) expression manipulation
. Figure 14 - Machine Organisations

program consists of a large number of independent self-contained items
or work packets (e.g. individﬁal instructions and tokens) which split
and merge and move into different work poois for different stages of
processing. The operation cycle for a resource is to take a packet from
an input pool, process it in.isolation from other resources, and produce

a modified packet in an output pool.

Expression Manipulation - This organisation coﬁsists of a large number

of resources, referred to as "computing elements”, each being a complete

microcomputer with local processor and memory and a capability for

- 45 -

communicating with a small number of other computing elements. The cou-
munications capabilities are used to connect the computing elements into
‘some regular structure such as a vector or tree. In this organisation
an executing program consists of one large program structure ("expres-
.sion") with 1ogica11y related parts of the prograﬁ being allocated to
physically related computing elements. Some components of this struc-—
ture are active whilst some are inactive. Fach computing element exam-
ines its part of the overall program structure looking for active items
to execute. Executing an item will involve communications with the
other items that it references. Programs generally exhibit considerable
"locality of reference" which means tha{ references tend to be between
items closely relatéd in the logical structure. Consequently most com—
munications are internal to one computing elemeat or bétween close

neighbours,

A méjor motivation for the novel packet communication and expres-—
slon manipulation organisations is to alleviate thé communication prob-
lems that arise in a centralised organisation as the number of proces-
sors increases. In a centralised organisation the performance of a pro-
cessor is dependent on the transit time of a memory access through the
'gloBal communication system (including in "transit time" any queueing
for access to the communications system). In the ‘packet communication
organisation however (provided there is sufficient concurrency) perfor-
mance is not dependent on the transit time of a packet through the com-
munication system but only on the total communication bandwidth being
sufficient to match the total throughput of the processors. Whereas the
transi; delay must ecventually increase as system size and load

increases, there are communication systems organisations{31] where the

- 46 -

bandwidth per processor remains substantially constant as the system is
extended to accommodate more processors and memories. In the expression
manipulation organisation locality of reference is relied on to overcome

the global communication problem.

Mﬁdern computer designs often incorporate adaptations to their
basically centraliéed (single-proceésor) machine organisation which to
_ an extent overcome the similar processor-memory communication problems
that arise from increasing processor power. These adaptations are the
pipelining of instruction execution, producing a similar effect to that
of a packet communication organisation, gnd the introduction of memory
caches, to exploit locality as in an expfession manipulation organisa--
tion. The approach of pipélining conventional architectures (introduc-—
ing some parallelism) is restricted however by the limited number of
pipeline stages that can be intrqduced and the need to support a
strictly sequential coperational model. A multi-processor machine organ-
isation incorporating a local cache with each processor would in effect

be a form of expression manipulation organisation.

Most of the machine organisations described above are at least
being investigated for the implementation of each different class of
architecture, as shown in Figure 15, The rest of this Section discusses

some of these proposed implementations.

- 47 -

concurrent reduction

control dats string graph
flow " flow

Centralised CM* GMD SKIM

Packet Circulation GCF MIT, MAN Alice

Expression Manip. RIMMS DDM ' SRM AMPS

CM* - Modular Multiprocessor[32]

GCF -~ Generalised Control Flow[33]

RIMMS - Reduced Instruction Set Multiprocessor System[34]

MIT - MIT Data flow computer[35]

MAN ~ Manchester Dataflow Computer[36]

DDM - Utah Data Driven Machine[27]

GMD -~ GMD Reduction Machine[37]

SRM -~ Newcastle String Reduction Machine[38]

SKIM - Cambridge S-K~I Reduction Mach{ne[39]

Alice - The Alice Reduction Machine[40] ~

AMPS =~ Applicative Multi-processing System[41]

Figure 15 - Some Kovel Architectures

2.3.2. Control Flow

For control flow implementations the main issue is the way in which
global memory access‘ is provided., In the centralised and expression
manipulation organisations an instruction being executed will send load
and store messages to the appropriate memory units and walt for the
replies before continuing. A more novel approach is that taken by a
packet circulation organisation such as the Generalised Control Flow
architecture where the instruction goes to the data rather than vice-
versa. In this architecture there is a single pool of work accessible
to all resources which takes the form of a slotted communication ring
circulating each slot‘past every resource as shown in Figure 16. A slot

may contain a work packet, such as an instruction requiring an operand

- 48 -

to be loaded from Qemory. A resource that can service a work packet,
sﬁch'as the memory unit contaiﬁing an instfuction's operand, removes it
frbm the ring as it passes, leaving that slot empty. When the service
has been performed the modified packet, such as an instruction with is
loaded input operand, is placed: back on the ring iﬁ a passing empty
slot. The modifiéd packet is then picked ﬁp by another resource, such

as a processor to compute 1ts result.

Figuré 16 - Packet Circulation for
Molti-thread Control Flow

2.3.3. Data Flow

A data flow implementation requires a scheme for handling the
activation of concurrent iunstructions by data tokens. There are two
éuch schemes[42] namely "token storage" in which a token 1s stored
directly into an instruction and "token matching" in which tokens are
kept separately until a complete set of tokens for one instruction exe-

cution have been matched together.
Examples of the token storage scheme include the MIT computer whose

packet circulation organisation is shown in Figure 17(a). 1In this

- 49 -

Processors . Processors
Pl ., . _Pp Pl ... Pp
ontrol
: \tokens
executable) ’ executable
instructions . instructions
data : data
tokensy tokens\/
Instruction Instruction Z Matching
Stores Stores token Stores
Ml « o« o+ Mm Ml . . « Mi sets Mi ooo Mm
(a) with token storage (b) with token matching

Figure 17 — Packet Circulation for Data Flow

organisation each path between the proceséors and the instruction store
nemories is a foutihg network which delivers packets to thei; destina-
‘tionsland aléo acts as a work pool temporarily storing packets. A data
¢
token packetbemitted by a processor arrives at an instruction store and
its valﬁe is stored directly in the appropriate argument position of its:
déstination instruction. If it is the la;t token for that instruction a
copy of the instruction with those argument values is sent as an execut-
able vinstruction ‘packet to the processors. This token storage scheme
-does not support the simultaneous existence of tokens for separate
instances of an instruction since one could overwrite the other in the
instruction store. Thus recursion is not supported and iteration
requires some synchronisation scheme such as is shown in Figure 10(ii).
In the MIT data flow model the synchronisation required for iteration is
achieved bj\ a '"control téken“ being always ihplicitly sent from the

receiver of a data token to its producing instruction indicating when it

is safe for another instance of the token to be produced.

- 50 ~

Examples of data flow computers with token matching include the
Manchester machine whose packet circulation organisation is shown in
Figure 17(b). ﬁere tﬁere is a matching store, separate from the
instruction store, which collects together into a token set those tokens
for a particular execution of an instruction. When a complete set has
been collected it is sent as a token set packet tolan instruction store
where it is combined with a copy of the instruction and sent to the pro-—
cessors for execution. For the token matching scheme the.environment
identifiers of Figures 10(1) can be used for (recursive) procedures.
.There may simultaneously be séveral partiaily complete token sets for
the same destination instruction which are distinguished in the matching

store by their different environment identifiers.

2.3.4. Reduction
: '

Whereas supporting concurrency is the major motivation for the
novel control flow and data flow architectures, that-is not the case for
reduction architeétures. In‘three of the dimplementations included in
Figure 15 (Alice, SRM and AMPS) there is concurrent instructicn execu-
tion, and in two (SKIM and GMD) there is not. 1In either éase the prin-
cipal issues are organising the recursive control structure and the
storage management needed for a program which expands and contracts as
it 1s executed. In for example ﬁhe centralised organisation of the GhL
string reduction machine there is a single point of execution in the
program and stacks are used to deal with both issues. 1he whole program
is a parenthééised expression which is initially stored on one stack.
The piocessor repeatedly traverses this expression by copying it from

one stack to another replacing any executable expression by its result

- 51 -

. in the proéess. For simple expressions, such as (* (+ 4 1) (-~ 4 2)),
the effect is that the processor traverses to the right until a) is
encountered; - then to the left until an operator 1s encountered which is

executed; then to the right etec.

The Newcastlé st:{ng‘reduction machine wbrks in a similar‘ ﬁay buf
with many processors and many connected stacks. This has an expression
manipulation organisation wi;h a vector of processors as shown in Figure
18. The expression being executed is stored in a sequence of double-
ended queue (DEQ) memories. Each processor has access to one end of
each of two DEQs which to a processor appear as stacks, allowing it to‘

traverse part of the program expression.

Figure 18 - Expressiou Manipulation for Stripg Reduction

In graph reduction pointers are used to allow sharing of results in
an executing program and storage management requires periodic garbage
collection of unreferenced parts of the program. To orgaﬁise the recur-
sive control strucﬁure - there must be a return pointer from a demanded
instruction to each inst?uction demanding it, as was shown in Figure 6.
If the operands of an instruction are evaluated in sequence then there
will be a'sigple chain of these return pointers which can be stored on a
separate stack as in conventional procedure caliing. This is the scheme

used in the SKIM reduction machine (which is based oa the interesting

- 52 -

“concept of "combinators as machine code"[43]). If however the oﬁerands
of an instruction are evaluated concurrently then the return pointers
will form a more general graph structure which can be implemented using
the "pointer reversal" scheme shown in Figure 19. Here propagating
demand from 11 to iZ»and i3 adds to those instructioms return pointers
and replaces the original pointers with unknowns. This part of the pro-
gram now has the form of a data flow graph and can be executed in the
éame way. This is the scheme used for AMPS 1ﬂ which "demand tokens"
carrying ‘return pointers flow up the progrém graph and data tokens car-

rying computed values flow back down.

12:(+ 4 1) 13:(- &4 2) 125(+ 4 1 11/1) 13:(- 4 2 11/2)
T

il1:(* 12 13 a) il:(* 7 7 a)

Figure 19 - Pointer Reversal for Implementing Graph Reduction

- 53 -

2.4. Evalvation

In the introduction three motivations were given for the develop-
ment of nbvel general-purpose architectures, namely supporting languages
with incréased expressiyg power, increased performance throughk con-
currency and suitability for VLSI implementation. This Section
discusses the extent to which corncurrent control flow, data flow and
reduction architectures aprear able tolsatisfy eéch of these particular
motivations. It then considers the range of applications which these
architectures can effectively support and thus the extent to which they

can be considered general-purpose.

2.4.1. Expressive Powexr

The expressive power of a programming language is largely coucerned.
with how much organisational detail has to be explicitly specified in
the program. A benefit of the novel data flow and reduction architec-
tures 1is that they directly support more expressive applicative
languages by automatically handling some of the operational details.
Control flow architectures are based on a low level operatiomnal model in»
which the programmer has to organise all the details of program execu-
tion - sequencing instructions to ensure that values are computed tefore
being used, allocating storage for intermediate results, and explicitly
manipulating, and even performing arithlmetic on, references. Lxtending
Sequeﬁtial ;ontrol flov to concurrent control flow generally compounds
ragher than‘*simplifies these protlems with the programmer often having

to deal with complex synchronisation requirements.

- 54 -

Data flow and reduction provide higher level models in which the
prqgrammer is not explicitly concerned with sequencing and storage allo-
 cation. Sequencing is implicitly controlled by the availability or need
for values and storage is automatically allocated and releaéed as values
are ﬁreated and used, Reduction is more powerful than data flow since
computation is only performed when absolutely needed and so the program—
mer is not concerned with avoiding the initiatiop of unnecessary compu-
tation. This is particularly important in recursion where unnecessary
coﬁfutation could lead to‘non-termination. Also, (graph) reduction sup-
ports the use of unbounded data structures and higher order functioms
used in very high level applicative programming languages. It 1is
ciaimed by preoponents of such languages that the use of these techniques
often leads to a simplification of program structure, compared with what
would be required in a conventional language, and that they thus provide

an easier means for producing reliable programs.

Greater power of course requires more sophistiéated implementation
fof its efficient realisation. In a control flow implementation the
major complex component is the processor for instruction executiﬁn. " In
a data flow implementation there is additiomnally the mechanism for token
matching and in some cases sophisticated storage for data structures.
In a reduction implementation there are also the mechanisms for pré-

pagating demand and for garbage collection.,

2.4.2. Concurrency and Performance

N

Exploitation of very high levels of concurrency requires a simple

scheme for activating and synchronising instructions and this 1s best

- 55 «

frovided by data flow. In concurrent forms of control flow the communi-
cation of control is separate from the.communication of data and is a
“considerable overhead when the grain of concurrency is at the 1level of
individual instructions. In reduction there is the overhead and delay
of propagating demand through the program. Although this ensures that
only the necessary computation is performed it reduces the concurrency
and better performance ﬁight be obtained for a large number of proces-
sors by 1initiating possibly unneeded computation as can happen in data

flow.

Data flow’s aétivation by data évailability gives highly concurreant
programs, although in some architectures pure data availability is abah-
doned. There are two particular potential difficulties in the perfor-
mance of data flow architectures. Firstly a large amount of token
storage may be required because the producer of a value generates
separate copies for gll its users. Secondly there is the fact that
individual instructions and procedures are atomic, and may depend on the
availability of data which {is not actually needed. This means that
resources that could otherwise be usefully employed may be wasted on
computing that data, and that spare resources may be unused because com-
putations that could use them are delayed awaiting the availability of

that data.
2.4.3. Exploiting VLSI
One of the most important considerations in VLSI design is to

minimise communication both between chips and between different areas of

the same chip. This requires close association of processing and

- 56 -

;torage functions (which is made possible in VLSI by the use of the same
technology for storage and processing elements). An expression manipu-
lation organisation, with each computing element being a.single chip or
even an area within a chip, is the only machine organisation which
attempts to satisfy these requireﬁents. As is shown in Figure 15, all
classes of architecture can be implemented using the expression manipu~
lation organisation. The success of such an implementation is dependent
on programs exhibiting locality of reference. In data flow and string
reduction there 1is very strong locality at least within a procedure
since the only more global communication ié for parameters and results
at the start and end of the procedure. In control flow any instruction
can in principle reference any item of memory but in fact most referenc—
ing is local to a procedure and this is particularly true when modern
design methodologies such as data abstraction[44,45] are used. For
graph reduction with lazy evaluation the actual execution tends to have
a very convoluted structure iﬁ which there may be very little locality
of reference. This is because the évaluation of one expression may
cause the evaluation of another expression anywhere in the program

structure,

2.4.4, Gencrality

Control flow architectures are recognised as being very general-
purpose. Evidence for this is that they have been successfully employed
in a very large range of applications, and for implementatious of all
classes of \programming languages including applicative languages which
requife emulation of the reduction operation model. Their generality is

largely due to the low level of the operational model which in giving

- 57 -

-explicit control to the programmer/compiler allows any required
behaviour to be produced. This is particularly important in real time
applications where sequencing and timing may be crucial.. Data flow is
probably the least general-purpose. Most data flow architectures do not
provide the mechanisms for controlled non-determinécy needed in operat-
ing systems applications and there are some data flow architectures
which do not even support arrays or recufsion. It 1is imposéible to
effectively emulate such features if they are not directly supported, or
to emulate a diffeient operaﬁional model, as can quite easily be done 1ﬁ
control flow., The advocates of applicative programming see reduction
architectures as truly general-purpose and there have been successful
experiments 1in producing applicative file systems[46], graphics sys-
tems[47] and compilers and interpreters{48]- (although not yet applica-
tive process control systems which have been identified by a pioneer of
applicative programming[49] as typifying the last remaining application
area in which the adequAcy of applicative programming is in doubt). The
main difficulty is in the acceptability of applicati&e languages which
are radically different to curreantly popular languages. Also the inclu-
sion of non-determinate operators, necessary for operating system appli-

cations, is still somewhat questionable.

In summary, the main benefit of control flow is its lack of res-
triction and its operational nature which make it very general-purpose;
the corresponding weakness is the need to exercise careful operational
control which can be extremely difficult in programming a complex highly
concurrent algorithm. The benefit of data flow is that it is simple and
highly concurrent offering potentially high performance in suitable

applications; its principal weakness is that it 1s mnot very general-

- 58 -

:Pprpose;. having difficulties with more sophisticated control and data
‘sfructures. Thebmain benefits of reduction are in its expressive power
and the main disadvantages are that the applicative style of programming
is not‘theAmost natural or efficient in maﬁy cases. Compared with con-
trol flow, data flow is primarily an improvement in perfor@ance, réduc—
tion is an improvement in expressive power.and both are less genefal—

purpose.

- 59 -

3. COMBINING DATA FLOW AND CONTROL FLOW

As shown in the last Chapter control flow and data flow architec—
tures have complementary advantages and disadvantages. This Chapter
describes the combinatiqn of control flow and data flow concepts in an
experimental highly pargllel architecture referred to as the
Data/Control Flow (DCF) architecture. The DCF is based on an opera-
tional model which includes the (parallel) control flow and data flow
modéls as subsets and so allows compilers to generate control flow or
data flow style machine code. Thus the architecture supports both con-
ventional programming languages used to program control flow machines,
and the class of simple applicative languages, known as "single assign-
ment languages"[50,51], which are used to program data flow machines.
It would also be possiblé for these two styles to be usefully mixed.
For example a compileflfor a conventional language might generate data
flow style code for eyaluating expressions (which have an applicative
structure) and control flow style code for the other elements of the

program.

This Chapter follows the same structure as Chapter Two. First the
basic concepts of the DCF operational model are covered. This is fol-
lowed by a discussion of program organisation. Finally the
architecture’s machine organisation and two implementations are dis-
cussed. The DCF architecture is described at greater length in [12] and

details of the two implementations are given in [19] and [20].

N

- 60 ~

J.1. Operétional Model

The complementary advantages and disadvantages of control flow and
data flow are largely a result of the particular control and data
mechanisms found in their operational models. Parallel control flow aud
data flow both have a parallel control mechaﬁism, the difference being
that in the former instruction activation is by control tokens whereas
~ in the latter it is by data tokens. Control tokens give the programmer
‘explicit control over instruction activation whereas data tokeans provide
implicit 'activation by data availability. The DCF model has a parallel
control mechanism which is a synthesis of these two schemes. Instruc-
tion activation 1is controlled by generalised tokens, each token either

carrying data for the activated instruction (a data token) or carrying

"oull" (a control token).

The cbntrol flow and data flow operational models each provi@e two
of the three data méchanisms: by-reference and by-literal for control
flow; by-value and by-literal for data flow. The DCF model includes all
three mechanisms allowing data to be embedded in the instruction (by-
literal), communicated as a data token (by~value), or communicated via a
shared memory. cell (by-reference). In control flow a memory cell can
contain not only basic values but also references to instructions and
other memory célls. In ICF there is the same generality in the kinds of

data that can be stored in memory and carried by tokens,

Figure 20(a) shows é representation of DCF wmachine code for the
example as= (bll) #* (b-c) and (b) shows an abbreviated representation

similar to that used for data flow graphs (a control token is shown as

- 61 -

¥#). This machine code repreéentation combines elements from the paral-
lel control flow and data flow representations used for the same example

in Figures 3 and 4(a).

i4: i5:

(«.. 11/0 12/0) (oo 12/2) - [:::] coe
,/ \\\ = \\\ :
K/r# . | \‘{ _ 2 b:(4) ity \‘il\ 2¢
(F 27 +b113/1) ({*? - b ? 13/2)

il 12:

(1 * 717 16/4 a)
|

i3: a:() i
{ Ly
| |
\ 4 Y
(a) machine code representation (b) abbreviated.
representation

Figure 20 - Data/Control Flow

Each instruction coesists of a sequence of arguments., The types of
arguments are operators, literals, uﬁknowns (represented by ?s, each
specifying the requirement for some input - a control token or data
token), memory references (for accessing operands and storing results),
and instruction references (for communicating tokens to other instruc-
tions). First will be (zero or more) control arguments (?s) each speci-
fying the requirement for a control token as in control flow. Next
comes the operator (e;g. +) which is followed by input arguments. An
input argument may be a literal (e.g. 1), an unknown (2) specifying the
requirementkaor a data token as in data flow, or a memory reference

(e.g. b) as in control flow, Finally there are output arguments each of

which references either a memory cell to be updated with the

- 62 -

41nstruction's result (e.g. a in i3) or the destination for a token (e.g.
13/1 1in il for a data token carrying the result, or 16/4 in i3 for a

control token indicating that the result has been stored).

All instructions are notionally active and can potentially execute
in parallel, execution being constrained by the arrival of tokens. The
instruction execution cycle combines the control flow and data flow

cycles, comprising the following stages.

(i) activation (as in parallel control flow and data flow) = the
instruction is activated when tokens for all ? arguments have

arrived

(i1) memory load (as in control flow) - any required data residing in

memory is retrieved using memory cell references

(i11) operator execution (as in all models) - result data is computed

from operand data as defined by the operator
L]

(iv) memory update (as in control flow) - data is stored into menory

cells identified by memory cell references

(v) token emission (as in paréllel control flow and data flow) - out-
put (control and data) tokens are emitted to argument posi-
tions in other instructions identified by dinstruction refer-
ences and these tokens then contribute to the activaticn stage

of those instructions.

Iq this execution cycle any information used (i.e. a data item, a memory
cell reference or an instruction reference) in a particular stage may be

provided as an embedded literal in the instruction itself cr dynamically

- 63 -

: brovi&ed at any preceding stage (as a data token received at stage (i),
'loaded from memory at stage (ii), computed as the operator’s result at
vstage (iii)). This allows considerable flexibility in the low level
organisation of programs and gives orthogonality betweén operators and

data access.,

A data item output by an instruction, as the value for a déta token
or memory cell wupdate, may be not only its operator’s result but also
any of its input data. This allows the possibility of low level optimi-
sation of the program graph. For éxample in a graph foer ((b — c) + b) -
the subtraction instruction could emit two tokens to . the addition
instruction, one providing its own result and the other passing on the
- value of b. This would mean that in the interval between the execution
of the instruction generating b and the execution of the subtraction
there is only one copy of b. (In contrast, in pure data flow there
would be two copies, each occupying machine storage resources, one copy

for use by the addition awd one copy for use by the subtraction.)

The essential point however is the flexibility of combining the
control flow and data flow modelé at the level of individual instruc-
tions. For instance 1l uses control flow for input and data flow for
output whereas i3 uses data flow for input and control flow for output.
In this particular example the data flow model is used for communicating
an expression’s partial results (which are only used once), whereas the
control flow style is used for manipulating and controiling access to
shafed data such as b and a. However in the DCF model there is no par-
ticulér constraint on the way instructions use the data tokens, memory

cells and control tokens which support the instruction level combination

- 64 -

of control flow and data flow. The combination of control flow and data
flow at higher levels of program organisation is discussed in the next

Section.

- 65 -

3.2. Program Organisation .

This Section discusses how the forms of program organisation dis- -

cussed for data flow and control flow architectures in Chapter Two are

combined in the DCF architecture.,

3.2.1. Data Structures

In the DCF architecture data structures are manipulated in ﬁhe same
way as in control flow architectures, namely by communicating references
and performing arithmetic on them. Howevef/a reference representing a
data structure can be passed as a data token giving the effect of com-
municating the whole data structure as a single token, as in data flow
architectures. In pértiéular, the availability of the structure can

activate the instructions that manipulate it.

3.2.2. Conditionals

In the DCF architecture the various forms of conditional found in
control flow and data flow architectures are supported by a single con-
ditional switch operator. Figure 21 shows three instructions which use
the switch operator (represented as Y) to produce the effect of (a) the
switéh-in instruction of data flow which selects its output value from
two alternative inputg; (b) the switch-out instruction of data flow
which switches a data token to one of two alternative instructioms; (c)
the conditio?al branch instruction of control flow which switches a flow

of control (control token) to one of two alternative instructions.

- 66...

1:'. .. St I R

(a) Switch-in (b) Switch-out (¢) Conditional branch

Figure 21 - Conditionals in DCF

The switch operator, Y, has three operands and one result. . The
first operand - is a boolean which selects one of the other two operands
as the result. Each instruction has four inputs. One of the inputs 1is
the boolean (True or False) contfolling the switch. Each of the other'
inputs is either a data to¥en carrying a value (6 or 7), a data token
barrying an instruction reference (X/1 or J/1 identifying the first
argument position of instruction I or J), or a control token
(representéd as a #). Each instruction has one output token represented
as "destination:value" (with # as the value for a contfol token). In
the token emission stage of instruction execution this output token is
constructed from the instruction’s inputs and the operator’s result.
The different effects of the switch operator in these three instructions
depeﬁd on whether its result is used as the value for the instruction’s
output (in (a)) or as its destination (in (b) and (é)). These examples
particularly illustrate the orthogonality between operator and data

access, The same switch operator could also be used in instructions to

- 67 -

store a conditionally‘selected value in memory cell or store a value in

a conditionally selected memory cell,

3.2.3. TIteration and Procedures

The DCF architecture supports both 1iterations and procedures.,
" Iteration 1is possible using either the scheme used in control flow or
that used in data flow. As in control flow memory cells can be reused
for successivé ite:atidné and an instruction, such as the conditional
br;nch of Figure 21(;), can transfer control back to the start .of the
iterative code. In the data flow scheme for iteration, which was 1llus-—
trated in Figure iO(ii), data tokens are synchfonised at the end of each
iteration and fed back to the start., This scheme requires a "syn-
chroniser" instruction which would be a normal DCF instruction with a
NOoP operator (just outputing its inputs, rather than producing a new
result), The two schemes can also be combined with some data items
~being communicated to the next iteration via memory'cells and somé being

passed as data tokens,

The support of procedures dependé on the separation of coexisting
environments accessed by shared code. In the DCF¥ architecture an
environment can consist of both information stored in memory cells (as
in control flow) and tokené (as in data flow). Each active environment
has a distinct identifier which provides both a token label (as used in
data - flow procedures) and a reference to a local memory area for the
environment (as wused in control flow procedures). An individual

instruction in a procedure may execute many times in different environ-

ments, Each execution takes a setb of input tokens with the same

- 68 -

énvironment 1dentifier; -all memory addresses in the instruction for
loading and storing data are.relative to the reference provided by that

identifier; and all output tokens are labeled with that identifier.

In a datq.flow architecture procedure callland return are provided
aé single instructiéns (as iliustrated in Figure 10(i)). The DCF archi-
tecture frovides mbre'primitive instructions for manipulating environ-—
ments which can be used to construct‘procedufe calls and returns. These
primitives include: KewE which creates a new environment, allocating its
local memory area and generating the unique enviromment identifier;
Kill(E) which terminates the specified environment, deallocating its
local memory area and deleting any remaining tokens; SetE(E) which
passes ipformation to a specified enviromment - instead of the environ-
ment identifier of its input tokens being used to identify the environ-
ment of its outputs (tokens and memory updates) implicitly, the explicit

operand value (E) is used so that those outputs go to that environment.

Figure 22 illustrates the general structure of fhe way thesé primi-
tives can be used for procedures. The procedure F has two parameters,
pl and p2 calculatéd by program fragments Pl and P2, and two results, rl
and. r2 calculated by program fragments Fl and F2. The procedure call
consists of five separate instructions: N, Al, A2, Cl, C2. Instruction
N creates the new environment for the called procedure and‘passes its
identifier, E’, to the other instructions in the call. The creation of
the new environment by N is activated by a control token from program
fragment PO which determines whether or not the procedure call is actu-

ally made (e.g. depending on the termination condition in a recursion).

The instructions Cl and C2 pass the parameters, pl and p2, into the new

- 69 -

environment. Parameter pl 1is communicated‘ by data tokens, whereas
parameter p2 is comﬁunicated via memory cells, ml and m2, with associ-
ated control tokens. The instructions Al and ‘A2 pass into the new
envirqnment_the information needed for thevtwo results to be returned to
the calling environment. The required information 1s the calling
environment’s idenfifier E ard references to the instructions X1 and X2

in the calling environment.

(eee PLeae) (ade BO oud) (eee P2 eur)

mll(pZ)

3 A2:[SETK]

E,X2

Al:

Called Environment
. (EY)
(ce e Fl LI])

#

———— - PR P

R1:) N
AN RO:| K111]

m3:(r2)

Figure 22 - Prccedures in DCF

The procedure return consists of three separate instructions: EQ;

Rl and R2. Instructions Rl and R2 pass the results back to the calling

environment and RQ terminates the called enviromment when both results
have been returned. For rl all communication uses data tokens, whereas

for r2 both data token and memory cell communication is used.

In this example some of the pafameters and results are communicated
as data tokens (as in data.flow procedures) and some are communicated
via memory cells (as in control flow). The ability to combine control
flow and "data flowvat this procédure level is a direct consequence of
" the combination of control flow and data flow provided by the basic
operation model at the level of the individual (SETE) instructions used

to communicate the parameters and results.

The procedure structure used here has separate instructions for
communicating each parameter and each result, so that the procedure 1is
non-atomic. Non—atémic procedures generally provide greater possibili-
ties for concufrency. In this example instructions in Fi which calcu~-
late result rl, and then X1 which uses rl, are concurrent with instrue-
tions in P2 which calculate the parameter p2 (nof itself used in the
calculation of rl). Non-atomic procedures also tend to lead to a
clearer struétufing of programs in that the grouping together of
1nstructibns into procedures can be determined purely by the logical
structure of the program without being influenced by the need to exploit
potential concurrency. In order to exploit the potential concurrency
petween X1 and P2 using atomic procedures, such as are provided in data
flow, it would be necessary to split F into two procedures, one contain-

ing the instructions of Fl and the other containing those of F2.

A Sete instruction, as any other instruction, can have a number of

inputs and outputs. All outputs would be labelled with the specified

- 7] ~

en§ironment identifier. Thus the primiti?es provided in LCF could UbLe
used to construct étomic procedures. Fror the example in Figure 2Z this
would te achieved by combining all the input Sete instructions (i.e. Al,
Cl1, CZ and A2) into a single Sete instruction having E’, pl, and p2 as
inputs. Similérly the gutput instructions (Rl and Kk2) would beb com-
bined. With an atomic procedure structure there is the disadvantage of
a possible loss of potential concurrency. The benefit isA that the
reduced level of concurrency can be organised with fewer instructions
and with fewer tokens (one E’ token instead of four, one contrel téken

for instruction RO instead of two).

3.2.4. DNon-Determinacy .

In the DCF operational model there are two potgntial sources of
non~-determinacy, namely simultaneous updates of memory cells (as in con-
trol flow) and the simultaneous emission of two tokens for the same des-
tination (as 4n data flow). The synchronisation of normal instruction
activation can be used to control non-determinacy. 1lhis is illustrated
in Figure 23 using the same resource manager structure as was used for

data flow in Figure 13,

There are two concurrent users A and B of a resource which they
access by sending '"transaction'" data tokens (p, q) to the resource
manager. The resource masnager is a critical region which can only pro-
cess one transaction at a time and is prote;ted by P and V instructions
as in standerd control flow techniques using semaphores. (These - two
instructions are here shown with NCOF operators althougl any operator

could be used in such instructions). 1he two inputs needed for the

-72 -

. "User A" "User B" .

l
il

r—o-'—._..__'\. /' .
. v # .

! P:| NooP -

I

! q

!

i

' 'x nn

[cr}ticgl region Resource

! W Manager"

| Yo~

]

!

1

Figure 23 -~ llon-Determinacy in JXF

activation of P are a control input provided by a "semaphgre" control
token which signals that the critical region is free; and a data input
provided by one of the transaction data tokens which are sent, possibly
simultaneously, by userst and B. In the activat%on stage of executing
iastruction P there would be an arbitrary choice of one of the available
data tokens to wmatch with the control token, the other data token
remaining until it could be matched with another semaphore token. The
operator of instruction P is a NOOP and the instruction just outputs its
data input, thus releasing the transaction into the critical region.
When all the critical processing (updating the resource) has been com=
pleted instruction V is activated. This again is a RKOOP to free‘.the
critical region by providing a control token for another activation of P

and thus release another transaction into the critical region.

- 73 -

3.3. Machine Organisation and Implementation

There were two experimental DCF implementations, carried out as
separate dissertation projects by M;Sc. students. Both implementations,
one in software[20] and one in ﬁardware[lQ], are based on the design
shown in Figure 24. This design has a packet communication organisation
with token matching, similar to the data flow machine organisation shown
in Fiéure 17(b). The successive stages of the instruction execution
cycle are split into separate machine resources which form a circular
execution pipeline. Packets of information flow around the pipeline,
each packet representing an intermediate state in the execution of an

instruction or a communication from one instruction to another.

FIFO_ __ _ _ PROCESSING UNIT -
e
| <executable Pt {executed :
t instructiond| | instruction> '
4 >+—t—{¥xecution} >s{Distribution] I
L e — I T S U I
: (]
- IF FIFO
e 1 r = = r-T T
| [LSupdate)} |<token%/ |
| |Data) I [P, PN
| | Store '
] | P == r——-1--3
l)\ | <token | | I
| Instruction|| L setd | Matching
<activated Store| | TN I | |store |
| instructiond i | | | |
| U 4 L s b e e e -
MEMORY UNIT 'IF MATCHING UNIT

Figure 24 - DCF flachipe Organisation and Implesmentatica

The Matching Store receives tokens and collects them into token

sets., Each token set contains tokens for the same destination

- 74 -

ih;truction and is sent to the Instruction Store when the set 1is com—.
plete, VThere the tokens combine with the destination inétructiqn to
form an activated instruction. Memory cell references are then de-
referenced by loading data from the Data Store to produce an executable
instruction which is sent for execution. The operator is executgd to
give an executed instruction which specifies some memory updates and

oﬁtput tokens for distribution to the Data Store and Matching Store.

The main components of the design are organised into three fune-
tional units., The Matching Unit implements the Matching Store. The
Memory Unit implements the Instruction and Data Stores as a single
address space (so that the machine can compile its own programs). The
?rocessing Unit implements operator execution and output distribution.
These Units communicate by sending packets which are temporarily stored
in separate first-in-first-out (FIFO) queues between the Units. The
design could be easily extended for gfeater parallelism by including
several Processing Units,

L]
In the hardware implementation each of the three functional units

is a separate M6800-based microcomputer. The purpose of this implemen—
tation was as an exercisé in building a novel multi-processor computer
from "off the shelf” components., In the software implementation each
functional unit is a process in a SIMULA program. The purpose of this
implementation was both as a machine code interpreter to experiment with
programming the DCF architecture and as a machine simulator to determine
performance characteristics. Results of experiments performed using the
s{mulgtor are reported in [20]}. The main conclusion that can be drawn

is that the performance of the Matching Unit is the limiting factor in

- 75 -

the design. On average each instruction execution generates two tokens
and for each token it receives the Matching Unit has to search its
Matching Store to find aﬁy previoﬁsly received tokens with which the
newly-received token can match. To Dbalance the design it would be
neceésary forktoken matching to take half the time taken by operator
execution., This wouldﬂ£e difficult‘to achieve using conventional memory
organisation for the Matching Store and it would probably be necessary

to use a special-purpose associative memory or have several Matching

Units per Processing Unit.

- 76 =

3.4. Summary and Discussion

The DCF architecture combines elements from control flow and data
flow architectures. It includes both their sepérate data mechanisms
(i.e. by-reference and by-value) and has their common parallel control
mechanism and packet circulation machine organisation. The DCF opera-
" tional model includes as subsets the operational models of control flow
apd data flow and integrates their various forms of program organisation
so that both control and data flow styles of machine code can be easily

combined.

Compariné the DCF architecture with the more conventional sequen-
tial and multi~thread forms of control flow architectures, the major
difference is in the parallel control mechanism and by-value data
mechanism, These mechanisms, supported by the packet circulation
machine organisation, facilitate the execution of highly concurrent pro-
grams. Comparing the DCF architecture with data flow architectures, the
real difference is in the more primitive level of machine code interface
that it provides. As in the DCF architecture, data flow architectures
can include separate memory accessed by ‘“reference tokens" (for data
structures), "control tokens" (both the acknowledge tokens in the MIT
data flow machine and the outputs of switch-out conditional instructions
act 1like control tokens), environment manipulation (for procedures) and
non-determinate instruction activation (for resource managers). In data
flow such features are incorporated into higher level constructs, for
egample CALL and MERGR instructions. ‘In contrast, they are provided as
primitive features 1in the DCF architecture. The more primitive inter-—

face of course puts a somewhat greater burden on the

- 77 -

programmer/compiler, but gives a more flexible general-purpose architec~
ture. This flexibility is illustrated by the ability to have both
atomic and non-atomic procedures and the ability to use a control token

for any synchronisation requirement.

The main deficiency of the DCF is that although it includeé all
three of the data mechanisms it only includes one of the control mechan-
isms. The absence of the sequential COﬁtrolbmechanism means that there
woﬁld be poor performance for a ﬁurely sequential program since a con-
. trol token would have to circulate completeiy around the machine between
each instruction’ execution. The absence of the recursive control
mechanism means of course that the DCF still has the disadvantages dis—-
cussed in Chapter Two of data flow and control flow compared with réduc~

tion.

There are two particular weaknesses in this combination of control
flow and data .flow concepts., Both of these concern the way addressable
memory has been incorporated. Firstly there is a potential implementa-
tion problem in supporting 'the conventional view of memory which
requires that an instruction’s memory updates are completed before its
suécessor instructions are activated. In the actual implementation this
view 1s easily supported because both memory updates and instruction
activations go to the same single Memory Unit and the former can be
given priority. However there might be a serious difficﬁlty in a more

distributed implementation.

Secondly there are the differences between "instructions" and
"data". Both an instruction argument and a memory cell act as a con-

tainer into which an instruction caa store a value. However these two

- 78 -

tyﬁes of containers have very different properties: an instruction argu-
ment can contain ei£her an unknown or an actual value (as a literal)
whereas a memory cell can only contain a value; a mémory cell can be
updated_whereés an instruction argument cannot (an attempt to overwrite
>a literal with a data token resqlts in an error); the arguments of an
instruction form a structﬁre with each component being identified by a
two-part instruction/argument reference, whereas memory cells are
. unstructured. Essentially thére are two separate, by-value and by~
réferenée, data mechanisms, with their respéctive characteristics inher-
ited from data flow and control flow. In its data mechanism the DCF
architecture 1s thus only a combination of control flow and data flow,
whereas in its control mechanism it is a genuine synthesis. The control
mechanism provides a single integrated notion of activation by a com-
plete set of tokens which includes, as special cases, activation by just
control .tokens (as in control flow) and activation by just data tokens

(as in data floW).

4. GENERALISING CONTROL FLOW

Having described in the previous Chapter an architecture, the DCF,
which supports both control flow and data flow, this Chapter describes
an architecture, referred to as the Recursive Control Flow (RCF) archi-
tecture, which supports all three of control flo&, data flow and reduc-~
tion. Whereas the basis of the DCF was a direct combination of specific
concepts from parallel control flow and data flow, the RCF ié based on a
set of general principles, the "recursiQe principles" mentioned in the
introduction, which have been proposed[l17] as thé appropriate basis for
future general-purpose decentralised computing systems uéing VLSI tech-
nology. These principles of recursive architecture are a generalisa-
tion, based on the use of recursion, of the von Neumann principles
underlying conventional computing systems. The von Neumann principles
not only form the basis for conventional general-purpose compﬁters and
languages used to program them, but also govern much of the design of
computer networks since their components are‘von Neumann computers. The
recursive architec£ure principies are here developed principally in the
context of highly parallel computers. They are however also relevant in
the context of geographically distributed computer networks[5Z] and that
aspect 1s explored towards the end of the Chapter. The concept of
recursive architecture came originally from the early work of Glush-
kov[53] and subsequent work of Barton[54] and Wilner[55] whilst its
realisation in the RCF architecture is based on the investigations of

control flow, data flow and reduction covered in Chapter Two.

This Chapter follows the came general structure as the preceding

Chapters, starting with the RCF operational model, followad by a

- 80 -

discussion of program organisation and finally govering machipe organi-
sation, A proﬁosed implementation of the architecture is covered in
some detail in the subsequent Chapter, together with a comparative dis-
cussion of of several other decentralised computing systems (including a
computer networking system) wﬁich incorporate similar recursive princi-

ples.

There are two major aspects to the RCF architecture. The firgt is
the geﬁeral principies of recursive structure. Sections One and Three
concentrate on these principles and their realisation in, respectively,
the RCF operational model and the machine organisation supporting it.
- The secbnd aspect is the combinétion of control flow, data flow and
reduction in a single architecture. Section 2 concentrates on'this‘
aspect, covering the various forms of program organisation discussed for

control flow, data flow and reduction in Chapter Two.

4.1. Operational Model

The conventional, control ¥low, operational model is based on the
von Neumann principles for the organisation of storage, addressing and
program representation and execution. This Section discusses the alter-

native recursive principles and their realisation in the RCF operational

model,
4.1.1. Storage Organisation
A conventional architecture provides static, linear storage struc-

tures of fixed size units, such as words of main memory or blocks of

backing store. The elementary actions on such a structure are to copy,

- 81 ~

replace or execute the contents of a single storage unit such as a
memory cell containing a simple data item or machiﬁe code instruction.
A recursive architecture provides a dynamic storage structure supporting
a single hierarchy of variable length units, referred to as "objects",
simiiar to the hierarchy of a block structured program or operating sys—
tem filestore. Each object is either a primitive object, such as an
integer or instruction, or recursively a compound object comprising a
sequence of component objects. The elementary actions supported for
such a structure ére to copy an object, replace an object, insert a new
component into an object, delete a component from an object, or execute

an object.

In the RCF architecfure the hierarchic object structure is
represented as a string of symbols comprising data symbols for
representing primitive objécts and structuring symbols (and) for del-
imiting objects. For example, with integers as data symbols, a 3X3 nul-

tiplication table might be represented as -

((123)((246)(369))

At the machine code level the data symbols are just 0 and 1 and each
integer in this table would actually be represented as a delimited

sequence of 1ls and 0Os, such as -

¢ ¢ (1) (10) (11)) ¢ (10) (100) (110)) ((11) (110) (1001)))

- 82 -

4.1.2. Addressing

A conventional architecture uses absﬁlgte addressing vithin a one
‘level address space, an address being for example the ordinal number of
a word in main memory. A recursive architecture uses contextual
addressing within a hierarchic address space, an addréss.being similar
to a filename in the filestore of an operating system such as UNIX[56]
or an international telephone number. This contextual addressing is
based on a set c¢f selectors which can be applied in the context of one
object to select avrelated object. For example a selector /2, meaning
"second component", applied in the context of the object (3 6 9) would
select the object 6. An address is a sequence of such selectors, with
" each selector being applied in the context selected by the preceding
selector. Thus an address, such as /6/3/2 meaning "2nd component of 3rd
component of 6th component", specifies a path from an initial context to
a particular object. (In this Chapter a / will be used at the start of
all addresses and individual selectors, in ofder to distinguish an
addressbfrom the object it addrasses and to delimit the component selec-—

tors of an address.)

In the RCF architecture, where the object structure is represented
by a string of symbols, a selector identifies a position in the string
between two symbols, selecting both the existing object to the immediate
right of that position and a space where a new object could be inserted.
The selectors are illustrated in Figure 25(a) with each selector,
/<~ ("prior"), [-> ("next") etc., being shown as labeling the position
ir the string which it would identify relative to the position labeled C

(which 1is itself identified by the null selector, /). Excluding the

- 83 -

/start arnd [escape selectors, these are a minimum set of primitives from

which an address for any relative position in the structure can be con—

structed. The various non-primitive selectors that will be used are

also defined in Figure 25(b) as sequences of the primitive selectors.

(2) Simple positional selectors
: “prioxr" 4 "next"
[out /<~ -+ [in /=> /end
.oo) ((oo-) LY (o.o) ((ooo).o.(oao)) (ooo) so e (o-c)) (oco
: C: :
/start / /esc
' Ynull" Yescape"
(b) Derived Selectors
“nth next" "nth prior" '"nth component”
+1 = /-> -1 = /K~ 1 = /in /start = fout/in
12 = [->/-> -2 = [<=[/<~ 2 = [in/->
+3 = [=>/->/-> =3 = [{~/K-/<~ 3 = [in/->/-> /esc = [out/->
L}
Figure 25 — Addressing Selectors in RCF
There are two forms of addresses, '"self-relative" and "base-
relative, The former is just a sequence of selectors, such as

[fout/->/->. This would itself be an object in the string, with the

individual selectors as its component objects, ((/out) (/->) (/->)).

The initial context for such an address is the position in the string at

which the address itself starts. Thus using the multiplication table

the

above as an example data structure B, the self-relative address for

object 4, from within a program fragment C adjacent to that structure

- 84 -

wdould be as in -

(...)((123)(246)(369))(-../00!:/(-/2/2...)
A. _BI c.
In base-relative addressing a previously selected position in the
string is used as the initial context or "base" for a sequence of selec-

tors -

-

(eeed((1 23)(2 4 6)(369)) eec set$ /out/(- cee §/2/2 vad)

A: B: C:

The § in the base-relative address $/2/2 identifies the base position,
B, previously selected by the set$ fout/->. The remaining selectors
/2/2 are relative to that base, identifying thte same object & as before.
This form of addressing corresponds to the use of "working directories"
and "root directories" in the UNIX file naming éystem, the use of
"currencies" in the data manipulation language of a network data base
model [57]? and, in conventional.machine code, addressing relative to a

base address stored in a register.

Compared with ponventional storage and addressing there are a
number of benefits in a dynamic recursive storage structure and contex-
tual addressing such as are provided by the RCF architecture. There is
direct support for the representation of commonly used storage struc-—
tures (such as iists, stacks and queues) and the required addressing
(e.g.. '"next", "first compénent" and "end") and manipulation (e.g.

“"insert") of their components. There is no architectural 1limit on a

- 85 -

machine’s address _space, as would be imposed by a fixed address size.
The total address space of a machine is contained in one ‘(outermost)
object and for example the machine’s address space can be extended by
the insertion of a new object at the end of that outermost object. Also
the address spaces of several machines can in principle be combined
(thus extending each) by embedding each of their outérmostﬂ objects as
components within a 15rger containing object., Such address space exten=
sions do not affect the validity of previously used addresses and the

resulting address space is completely homogeneous.

Contextual addressing does however have two particular potential
drawbacks. Firstly, the representation and interpretation of an address
is relatively inefficient if the address comprises a long sequence of
selectors., (References will however tend to be between cbjects which
are relatively cloée in the structure and thus most addresses can be
expected to.be fairly short.) Secondly there is not necgssarily a fixed
correspondence between an address and the object which it will select
when used. In the situation shown above the self-relative address
[out/<~/2/2 selects the object 4: However that address would identify a
different object if say an additional component were inserted between B
and C or if the address were used in the context of A rather than C.
This can clearly cause problems, particularly when one part of the pro-
gram needs to communicate an address for use in another part of Fhe pro-

gram.

The secgnd form of addressing, usiﬁg a pre-selected base as the
initial context, alleviates both of these problems. Once a base has

been set to a particular positidn it directly identifies that position

- 86 —

and can be used ‘many times " without the need to re-specify and re-
interpref the full selector sequence. Also 1t continues to idéntify
that same position regardless of where it is used or of changes to the
object structure. (A base in the object structure is analogous to a
: bookmark in a loose-leaf folder - it identifies a position between two
objects (leaves) and rétains significance as objects in its vicinity are
inserted and removed, but is no longer usable if the surrounding object

(whole folder) is destroyed;)

In subsequent examples "absolute addresses" will be used, such as

the absolute address /B to select the & from two different contexts in =

Ceee /B/2/2 000) ((123)(C246)((369)) (eee /B/2/2...)
A: B: C:

This is just a notational convenience and the /B in these addresses is

intended to represent the appropriate sequence of selectors (/out/->

from within A, or fout/<~ from within C).

4.1.3. Program Representation

The operational model of a conventional architecture is embodied in
a low level machine language in which instructions are elementary opera-
tions performed on elemenﬁary operands. A recursive architecture pro=
vides a recursive machine language supporting nested program structures,
such as is found in the string reduction model. In such a language an
instruction has an "oberation object", which may be a simple operator or
say a procedure, operating on "operand objects", which may be simple

data items or complex structures.

- 87 -

. The operatioﬁal model of the RCF architecture is a2 generélisation
.6f the conventional sequential control flow model which includes the
control flow, data flow and reduction models as subsets. In this nodel
é program is structured into executable objects, instructions and argu-~

ments, as for example in the structure -

executable object

Instrl Instr2 Instr3l Instr32 Instr@
-\ A, A ,____* \ Js‘

' Bp in in ouE'bp in out }bp in out op in ‘op in in out

(Ala Alb Alc Ald A2a A2b A2c (A3la A31b A3lc A32a A32b) Aka A4L Adc AAd)

The executable object contains a (sub-structured) sequence of instruc—
tions (Instrs), each. of which comprises a sequeﬁce of arguments (4s),
themselves executable objects. Execution of such a object, invoked by
some instruction in the program, would normally proceed sequentially
from instruction Instrl through to instruction Instr4 and then ter-
minate. In a subordinate object such as (Imstr3l Imstr32) the con-
tained.instructions are executed in sequence. Of fhe arguments forming
an Instruction such as Instr{, the first is the operation (op) which
determines the interpretation of the following argumenté. The operation
1s followed by input arguments (ins) providing its operands. These
arguments are subordinate executable objects, e.g. expressions, which
are recursively invoked 1in parallel by the operation and return the
operands. The simplestiform of operand is a data item such as an
integer which when invoked returns itself. Following the input argu-
ments are the output arguments (outs) specifying where the results of

the operation are to be stored. For an instruction at the end of its

containing object an output argument may be absent, as for dinstruction

- 88 -

Instr32, in which case the result is returned to the invoking instruc-
tion. (An executable object may comprise a number of such return
instructions and will thus in the general casé return a sequence of
re;ults rather than a single result). An address may be given Ain an
'argument position, in which base the addressed object is used as though

it occurred as the actual argument.
Figure 26 shows a representation of the example from Chapter Two -
a = (btl) * (b~c) where b=7-3, c=2

The object A comprises two instructions, il and i2, which are executed
in sequenée. The instruction i1, = 7 3 /B, computes the value 4 and
stores it at B for use by subsequent instructions, as in the conven-

tional control flow model. Instruction 12, * (i3) /14, is structured as
in a reduction model: it has no output argument so that its 'result is
returned to whatever operation invoked A; its operands are provided by
recursively invoked instructions 13 and i4. The first of these, i3, 1is
embedded directly as an actual argument -whereas the other, i4, is
invoked via its address /I4., Both i3 and 14 have the address of B as an
input argument to access the value computed by 11, and have no output

arguments so that they return their results to i2.

A: _ B: C: 14:
(-73/B *(+/Bl1)/14)Y,.,..0 2 (-/B/C)
. S
— i3 ———
S S ~ ” 14
12

Figure 26 — Program Representation in RCF

- 89 -~

. | This example has>illustrated the combined use of concepfs from cbn-
trol flow and reduction styles 6f program representation. The Section
on Frogran Organisatidn will consider in more detail the way in which
RCF programs- can be organised as in control fiow, data flow and reduc—
tion. In addition to the general concepts of program representation
presented here, this will.’require the provision of specific types of
primitive arguments, such as the ? (Munknown") arguments used in data

flow and parallel control flow.

4.1.4. Program Execution

The conventional operationalvmodel has a seéuential control mechan-
ism with a single locus of control or "activity" proceeding serially
through the program. The interface between an operator and its argu-
ments reflects the basic processof/memory interface of load and store
operations on single memory cells. A recursive program representation
requires some form of recursive control mechanisﬁ such as that of the
reduction models presented in Chapter Two. In a reduction model there
is a tree of concurrent activities each evaluating some part of the pro-
gram structure and returning its result to tﬁe activity which invoked
it. The basic operator/argument interface is the demand for an argument

to execute and the return of the result produced by its execution.

The RCF model incorborates the sequential, parallel and vrecursive
cohtrol mechanisms. An exeéutaﬁle object (generally cowprising a
sequence of instructions) is executed by an activity which moves sequen-
tially through the instructions executing each operaticn in turn. There

may be several independent activities executing instruction sequences in

- 90 -

parallel. The exeéution of an operation by an activity will involve
subordinate activities which recursively execute the objects forming the
operation’s arguﬁents. To éccommodate various operatién/argument inter—
facés, such as demanding and returning operand values, the model incor-
porates general communication of "message'" objects between superior and
subordinate activities as they cooperate in the concurrent execution of

a program structure.

This model of execution is illustrated in more detail in Figure 27
which shows successive stages in the execution of the example in Figure
26. The position of activities in the program string are, as previ-
‘ously, 1indicated by } symbols. To iilustrate the progress of execution
this Figure also shows the tree structured relationships between supe~
rior and subordinate activities (ideﬁtified as P, Q, R, etc.) and the
messagés comﬁunicated between them. These messages are primitive
objects representing integers or specifying particular actions to be
performed at the destination. For example in (v) tﬁe replace-with mes—
sage followed by the message &, sent to tﬁe activity §, causes th§

object 4 to replace the object 0 ,at which 8 is positioned.

Execution of an operator consists of the following five steps,
exemplified by activity P executing (in (i) = (vi)) the = operator of
the control flow style instruction — 7 3 /B, and the same activity then
executing (in (vii) -I(xi)) the * operator of the succeeding reduction

style instruction * (+ /B 1) /14,

1. As shown in (ii) and (viii) two subordinate activities, Q and K,
are positioned at the input arguments and a subordinate activity,

S, is positioned at the output argument (if there is one).

@w (vi1)

- 1] o 12
P P, A]
(}- 7 3 /B *,../14)... 0O oo 1% (+ /E 1) /14) ‘
: , B: . « 4 2 (- /L /C)
E: C: 1l4:
(11) \1|> B | (tit)
execfgié;\}exec . : exeq//\\\fxec
P @ R S
, (- §7 I3 1/B *.../14)... G ...I* {(+ /B 1) }/14)
. “B: ees b 2 (- /B /C)
B: C: 14:
(111) P (1x)
/4‘\ . /‘ﬁt{ .
copy/ JFOPY .
- | - l\
P Q R [="===="-=\S P
- 17 13 /B *,../14).. IO oo 1% (1+ I/E 11) /_14)
B:
(iv) p , (%)
}%%;\\\\\\\\\\\\\\\
P Q R S
(- 17 ¥3 /B *.../14)... }O
B:
Ny P
P ' (ooo
4
P QR 0°s
(}- 17 13 /B *.../14)...]0O
E:
]
Cmm wme weed
- R I* .../T4)... 4 «* (+ /B 1) /14)
I VO A E: (\(.-_./...-.)-...ﬁ\
e e 2 (-/B/C)
B: C: 14:

Figure 27 ~ Program Lxecution in RCF

2.

3.

- 97 -

These spbordinaté activities are sent execute messages to initiate
the execution of those arguments. There are three main types of
arguments that may be executed.

2(a). In the case of an address, such as the /B executed by S
((ii) = (4i1)) or the [I4 executed by R ((viii) - (ix)); fhe exe-—
cuting activity is re-positioned at the addressed object. It con-
tinues. executing there as though that object were the actual argu-
ment,

2(b).4 In the case of a data item, such as the 7 executed by Q
((i1) - (4i1)) or the 0 executed by S ((iii) - (iv)), no further
evaluation is possible, The'executing activity just remains posi~
tioned at that object until a message is received specifying some
action on it, such as copy (iii) or replace-with (v).

2(c). In the case of a subordinate instruction, such as the

(+ /B 1) executed by Q ((viii) = (x)), the same steps are recur-—

sively applied in the execution of its operator, creating in (ix) .

the activities S8 and T as subordinates of Q. The complete tree
structure of activities which is created by this recursive execu-

tion, and the positioning’ of those activities by the various

- addresses, is shown in (x). The operators Being executed by P, Q

and R are shown at the nodes of the activity tree. The activity
tree structure corresponds to the infix structure ((B¥l) * (B-C))

of the expression being evaluated.

After P has initiated the (concurrent) execution of the input argu-

ments By subordinate activities, Q and R, their results are
accessed by sending copy messages ((iii) and (ix)). Where the

input argument is a data item, a copy of that item is returned

the

- 93 -

((i11) ~ (iv)). Where an argument is a subordinate instructionm;
(+ /B1) or (- /B /C), the result, S or 2, of that instruction is

returned . ((ix) - (x)).

The returned values are then used to compute a result which is han-
dled in one‘éf two ways depending on whether an output argument was
used. If there was an output argument then, as in (v) = (vi), the
result, &, is sent with a replace-~with message to the activity, S,
which executed that argument, causing the result ﬁo replace tﬁe
object at which that activity is positioned. A subsequent instruc-—
tion may need to access the new value'of the replaced object (in
this example 12 does so0). Jlo ensure correctness in suvch a cir-
cumstance P will not continue wuntil the replace-with has taken
effect, as indicatéd by an acknowledgement message from § (the
empty object () is here used, arbitrarily, for the acknowlédge-
ment) . If there was mno output argument then, as-in (z), the
result, 10, is retu;ned.‘ In (x) is shown the complete flow of
returned values up the tree of activities recursively created by

the execution of the nested instructions.
[

Finally subordinate activities terminate and P moves past the
operator’s arguments to execute the next operator in sequence (vi)

or terminate if it is at the end of the sequence (xi).

In this model the organisation of an activity, P, is analogous to

organisation of a conventional processor. Tlhe activity’s position

in the program string corresponds to a processor’s instruction counter.

The

other activities with which it can communicate correspond to regis-

ters each of which makes available a value or a location in addressatle

- 94 -

storage. In thié example the only activity "registers" used were those
for an operator’s operands (e.g. P’s subordinates Q and R) and for the
result (P‘s S subordinate or superior). The actual machine code
(defined in Appendix A) provides for a larger number of subordinate
activities which éct as "general-purpose registers'". Apart from access-
ing operands, a subordinate activity, $, can be used as.the base for an
address such as the $/2/2 discussed earlier, with the remainder of thé
address being relative to the activity’s position. In fact all address-
ing is relative- to the position of an activiﬁy, the usual form of
address, e.g. fout/<{~/2/2, being relative to the initial position (the

address itself) of the activity executing the address.

4.1.5. PFurther Examples

The concepts of program representation and execution in the RCF
model were introduced abové by an example based on the concepts of con-
trol flow and reduction introduced in Chapter Two. -In that example an
instruction’s operation object is a conventional operator; each argument
is (the address of) a simple data item or an instruction returning a

’
simple data item; the communications between activities consist of
storage access requests copy and replace-with (supporting load and store
of the conventional operator/argument interface), execute requests (sup-
porting demands of reduction’s operator/argument interface), and simple
data items returned in response to those requests. More generally, an
operation or argument is a program fragment which organises the creation
of subordinate activities, the sending of messages to subordinate and

superior activities and the processing of messages received from them.

A message communicated to an activity can be any structured or primitive

- 95 -

object, including a data item, a selector fo re—-position the activity
and a specification of 6ne ‘of the elementary actions on aﬁ object,
namely: execute, replace-with, copy (these three have been 1llustrated
in Figure 27), iassert (followed by aniobject which 1is inserted at the
activity’s position), and take (which is a destructive copy, deleting
the object). The use of the , model for different possible
operator/argument interfaces will be discussed using two examples shown
in Figures 28 and 29. The first of these uses the storage actions take
and ipsert applied to streams of values as an alternative pair to copy
and replace applied to simple memory cells. The second illustrates the

use of actions other than the elementary ones directly supported by the

architecture.

An alternative to the use of addressable memory cells for communi-
cating data is the use of addressable strcams of values. Whereas for a
memory cell the data’s producer replaces the value of the cell and the
consumer copies the latest value, for a stream tﬁe producer inserts a
value at the end of the stream and the consumer takes the first unused

value from the front of the stream.
]

The example shown in Figure 28 illustrates the use of streams as
operands and result of an addition instruction, il. The addresses,
JA/in, [B/in and /C/in/end, used in this instruction identify the first
elements of the operand étreams A and B and the end of the result stream
C. The state of the streams prior to the execution of the instruction’s
operator by\ activity P is shown in (1). The operator streamt behaves
exact%y as the usual addition operator + except that instead of using

copy and replace-with to access arguments, take is used for inputs and

.- 96 -

insert is used for output. Subordinate activities Q, Rand S for the
input and output arguments are created énd positioned by the addresses
as shown in (ii). 1In (ii) is also shown all the communication between P
and its - subordinates, namely take messages to access operands, the
returned values 3 and»ﬁ, and an insert message with ;he result 9 of the
addition. (An insert does notvgenerally require the acknowledgement
used for replace-with in Figure 27(v).) In (iii) the first elements of
the operand streams have been deleted by the take actions of Q and R,

and the 9 has been inserted at the end of the result stream.

(1)
P ’)
Istream+ /A/in /B/in /C/in/end ... (2 6) (345) (68 10)
A\ ~ 4 c: °~ B: Az
i1 |
(i1) take
///// takes > \\\\?
« insertsa - 3 6
[—inserts \
“ NN \Q
}stream+ /A/in /B/in /C/in/end ... (2 6 1) (}3 4 5) (}6 8 10)
N\ AN C:]‘ P Al
N Nttt 4 /
\‘ ------------------------------------- _/I
(4ii) e e aa .
/” b
stream+” /A/in /B/in /C/in/end }... (26 9) (4 5) (810)
, C: B: Al

Figure 28 ~ An RCF Instruction which Operates on Streams

In the organisatioﬁ of concurrent systems communication via
streéms, as in 11 of Figure 28, and communication by updating shared
memory, as in 11 of Figure 27, can be considered as counplementary
mechanisms of equal importance. The UNIX operating system[56] supports

both as primitives, in the form of files and ‘"pipes", and there are

- 97 -

programming languages [58,5%,1€] 4in which both have equal status. 1In
the next Section there will be particular examples of the use of the
general concept of "stream operands" in the organisation of iteration

and resource management.

The second example, in Figure 29, illustrates the possibility of

instructions with complex operators and operands.

(i)P 0 type , instance .
J(ave) /A /A /B .+ & o ((set)(eee)) ((set) (1 753 ¢&6€))
- g g B: A
il

(ii) (Hcll "0" llUll "N" IIOI")

TN \6

//?—L”—“\ AN

(... cee) /A /A /B . I((set)(...)) (Covofouclees) (1 753¢¢))

*\ ‘u----_z’ SAT P
\\ M mcm e e - e e e e <%
e . - - ——— .- -
(1ii)
P .
(ave) /A /A /B I «. .5 ((set) (1'753686))
...... A B: A:

Figure 29 — An RCF Instruction with Prograzmed Cperator and Arguwents

The instruction il has two dinput arguments and an output argument.
Rather than being an elementary type of data jtem, such as an integer,
an operand object, A, is of a program defined type, namely a set of
numters (set) for which the defined access actions include sum (return-
ing the sum qf all memters), count (returning the numbter of memters) end
réplaqe—with (which as usual replaces the whole object with a specified

value). Rather than being an elementary operator, such as +, the opera-

- 98 -

ticn O 1is a program defined operator ave which takes set operands,
dividing the sum.of the first operand by the count of the second so that
if the two operands are the same set (as in this example) the result is

its average.

In (i) activity P is abbut to execute the operator of tﬁe instruc—
tion 11. This operator is a program fragment comprising instructions to
achieve the effects shown in (ii). As for an elementary operator,
subordinate activities Q aﬁd R are creatéd to execute the operands and
are sent messages specifying actions on them. Here the messages are
compéund objects,‘with characters ®8", "U" etc. as components, specify-
ing the actions sum and count, rather than primitive objecté specifying
the elementary copy or take actions used previouély. The first com=
ponent of the object A fepresents the A’s type, set, as a program frag-
ment, executed by accessing activities Q and R. This type object
comprises instructions to recognise messages such as the éharacter
string. ("s" "U" "M"), and implement the specified actions. (The seéond
component of A contains the data specific'to this particular instance of
the set type, namely the actual set members, manipulated by the "type"
program fragment.) The value, 30, r;turned by Q is divided by the value,
6, returned by R to produce the result, 5. As for a standard operator,
this result is sent to the subordinate activity S with a replace-wiﬁh
message which is acknowledged by a () message. The set program fragment
executed by S responds to this message by replacing the whole of 1its

containing object with the 5, as shown in (iii).

~

The program structuring approach used in this example is similar to

that used in "object-oriented" programming[60]. This approack is

- 99 -

intended to support modularity and flexibility in the construction of
ﬁ;ograms from mofe or less independently conceived program fragments.
The basis for this épproach is that the code for performing actions such
as count on a data structure is included as part of the data structure,
rather than being part of the program fragment using the data structure;
and that.there is a common framéWork for interactions between all opera-
tors and operaﬁds, whether elementary or program-defined. Examples of
the resulting modularity and flexibility are that the program containing
* 0 can be used without modification on instanceé of any data types (e.g.
lists and matrices) which support the requiréd actions; changes in the
implementation of the set data type (e.g. the count and sum being main-
tained as members are inserted, rathef than calculated on each éccess)
can be implemented by changes iocal to the "type" program fragment; an
instance of the set type supporting the standard replace-with action

could be used as the result destination of even an elementary operator.

4,1.6, Discussicen

In all aspects of the RCF model, as in any recursive system, there
is a general framework which embodies the essential concepts of the sys-—
tem and a set of relatively'arbitrary primitives which are a basis for
constructing more complex structures within that framework. The esseﬁ-
tial concept of storage is the grouping together of an arbitrary number
of (primitive or compound) objects as a compound cbject. The essential
concept of addressing is a sequence of selectors each being relative to
the position identified by its predecessors in the sequence, or, for the
first'salector, relative to the pre-established position of en activity

in the object structure (either the activity executing the address and

100

thus the position of the address itself, or a distinct '"base" activity).
For progranm fepresentation the essential conéept is an "instruction"
‘being the application of a (primitive or compound) operation to (primi-
tive ovr compound) arguments. For program execution the essential con-
éept is the execution of objects by dynamically created trées of con-

current activities with communication along the arcs of a tree.

" For stdrage and addressing a fairly minimal set of primitives have
been adopted which although inadequate for a practical System are suffi-
cient to illustrate the concepts of recursive storage and contextual
addressing (and to initially investigate the.utility and implementation
of those concepts). The storage structure primitives aré the delimiters
(and) for constructing sequences of objects and the primitive objects
such as integers, ultimately represented as delimited sequences of Os
and 1s. The addressing primitives are selectors identifying simple
positional relationships (such as "prior") between objects. For program
representation and execution a similarly minimal set of primitives would
be: (i) the elementary actions of copy, take, replace-with, imsert and
execute applied to an object; (ii) simple facilities for the creation of
subordinate activities and communichtion between related activities;
(1i1) data operations on communicated values, just NOR on uninterpreted
bit-strings being sufficient; (iv) the composition of these primitivés
by sequential execution., Programming in the general style of Figure 29
requires that primitive machine operations such as creating and communi-
catihg with subordinate activities be directly available at the machine
code intetféce. The garlier examples were discussed in terms of
slightly higher level constructs, such as the opevators +3.* and

streamt, which use those primitive machine operations in a standard way

- 101 -

of sufficient gceneral wuse to be provided as elementary operators in a
machine code instruction set. The following Section describes a com—
plete set of such machine code constructs for the representation of pro-
grams organised in the parficular styles of éontrol flow, data flow and

- reduction.

=~ 102 -

4.2. Program Organisation

One of the main purposes of tﬁe RCF architecture is to allow pro-
grams to be organised in the styles of control flow, data flow and
reduction programs. This Section discussés the way in which the ﬁasic
control flow, data flow and reduction models are supported and then, as
in previous Chapters, discusses data structurés, conditionals, pro4
cedures, etc. First however it is necessary to describe the (machine-
code level) programming constructs used in thié Section, elaborating thé
basic concepts of program representation and execution introduced in the

last Section.

4.,2.1. RNotation

Structures -

(Instrl Instr2 (Instr3l Iastr32) Iastrh)

In executing a structured object 1its components are executed in
sequence., Execution terminates at the final). Internal delimiters
(such as those containing Instr3l anq Instr32) are ignored and in par-
Eicular the empty object () acts as a NOOP. Termination at the end of a
structured object is a default that can be overriden by, for example,
addresses which explicitly transfer control. This default requires a
difference between transferring control within the object being executed
and transferring control to a different object. Whilst the activity

remains within its current object, reaching the end of that object will

- 103 -

terminate the activity -

object
((ees) (cee /esc/-> eee) (o) (Lod) (L02))
AT TTT TS ‘s 2"" —————— K
start of execution i v o termination

If however an address takes the activity outside of its current object
~then it is the end of the addressed object which causes termination of

the activity -

new
old object object
r i 2y f"J‘A_\
((.o.) (ese IeSC/-> see) (ooo) (oo‘) (--o))
';7‘-""'"\\‘ P ---)
start of execution re-start termination
Data manipulation operators -
(1) ees Operator input ...'output ceee

(11) (... operator input ...)

(iii1) ee.. streamoperator input ... output e..

The operator defines the number of input arguments (usually two) and
output arguments (usually one), all of which are objects executed con-
currently by subordinate activities. In the usual case (i) the operatbr
uses the objects returned by the activities executipg the input argu-
ments or copies the objects identified by them, producing a result which
replaces the object identified by the execution of the output argument.
Execution then continues following the last argument used. In the case
of an instfdction with no output argument, a "return instruction" (ii),
the result is instead returned to the superior éctivity. For a sﬁream

operator (iii), as in the streamt of Figure 28, take and imsert are used

- 164 -

3

instead of copy and.replace. The data manipuiation operators that will
be"used in this Section are: subtraction»(—), addition (+4), multiélica~
tion'(*),‘identity (=) for wﬁich the resul; is just the value §£ the
single operand, comparison (=) for which the result is True if the two
;perands are identical and False otherwise, and conditional (if) which
has three operands, the result being the second operand if the first

operand is True, and the third operand is the first operand is Ialse.‘

‘ Data items -

integer

boolean

The executing activity stops at the data item, identifying it for subse- '
quent use by the superior activity. 1f there is no superior activity
then the activity executing the data item just terminates. The . (stop)
represents an arbitrary data item included only for its eifect of stop-

ping the executing aétivity.

Addressing -
(1) /sel/sel/.../sel
(ii) 5/sel/sel.../sel

(iii) set$ argument

As discussed earlier, a sequence of selectors (/sels) forming an address .
acts as a branch Instruction, re-positioning the executing activity at
the éddresseq object. An address is either "self-relative" (i), 1i.e.
relative to its own position in the program, or “base~relative" (ii),

i.e. relative to a previously selected base position. 1he § prefix in a

- 105 -

base-relative addre;s is a form of selector which identifies the context
.for the remainder of the address as being tﬁe position of a subordinates
activity 6f the partiéular activity executing the address. (For the
purposes of this Section only one base, identified by $,.is needed, how-
ever in the machine code there may be several subordinates providing
different basés'identified as §1, $2 etc.) The éets operator (iii) 1is
used to select the base position for the second form of address. It has
a single argument (an address) which positions a subordinate activity at

an object for use as a base in subsequent addresses.

Concurrency control -

(1) eee par Obl par 0b2 par ...

(11) eee (2 eee) oee

(111) eee (eXCl aee) eoe

The parallel operator par (i) éupports the parallel control mechanism in
which program fragments are executed independently. An independent
activity is created and positioned at the following object, Obl, whilst
the original activity continues at the object following that. If (as in
(1), pars are used to separate the program fragment components Obl, 0b2
etc., of a structure then thosd components are all executed in paral-
lel). There are two constructs for synchronising concurrent activities.
The first (ii) is an "unknown", represented as a ?, similar to that
used in the data floﬁ model. An unknown within an object, say Ob,
causes the executing activity to be suspended to the immediate left of
Ob. It rema{ns suspended until it is no longer adjacent to Ob, 1l.e.
until Ob is deleted or replaced, or a new object is inserted before it.

Execution then continues normally with the object following the deleted

- 106 -

object, or with ;he _replacement or inserted object., Thé second con-
struct (i1i1i) is an "exclusion" argument, excl, which prevents simultane-
ous execution of an object by more than bne_éctivity. When first exe-
cuted the excl turns into a ?. Thus the first activity to attempt to
execute an object containing a excl will succeed, but subseqﬁent activi-

ties will be suspended by the ? resulting from the first execution.

Evaluation control -

(1) /sel/sel ... [sel"
(i1) ‘"object
(111) eee /sel/seleval/sel eee

(iv) eval operand

The default is that an argument 1s executed and similarly that the
object finally identified by the last selector in an address argument is
itself executed (although the objects 1dentified by preceding selectors
in the address are not executed). These defaults can be overridden as
indicated by the use of (underlined) quote (") and eval constructs. An
address with a quote suffix for its last select;r (1) (which will be
referred to as a quoted address) indicates that the finally addressed
object 1s to be treated as thotgh it were a data item - the activity
executing the address is just positioned at the addressed object rather
than ‘executing, it. Similarly an object with & quote prefix (ii)
(referred to as a quoted object) is itself treated és a data item rather
than being executed. The inhibition of evaluation produced by the use
of quotes is complemented by an evaluate construct, eval, which forces
extra evaluation. This can be included as a suffix to a selector withiq

an address(iii). The object, say Ob, identified by the selector

- 107 -~

sequence up to.that point will be itself executed by that activity, say
P, which is executing tﬂe address. Typically ©Cb will itself be an
address to re-position P and that new position becomes the context for
the next selector in the original address. The eval comstruct can also
be used as an operator (iv). The single input argument is executed by a
subordinate activity to produce the actual operand in the normal way.
That operand (e.g. a computed address) 1is then itself executed, just as

though it were in the place of the eval operator.

Structures, operators, data items and addressing have been dis—
cussed at some length in the preceding Section. However the newly
 introduced constructs for controlling concurrency and evaluation require
some discussion before their uses are illustrated in the remainder of

this Section.

The unknown and exclusion arguments for controlling concurrency
each support a particular synchronisétion structure in which one
activity delays the execution of its program fragment until another
activity completes the execution of its program fragment. In thg case
of the exclusion argument the two agtivities are executing the same pro-
. gram fragment - this is the synchronisation structure used with the
sequential control mechanism (typically with multiple processes execut-
ing a shared program). In the case of the unknown argument the two
activities are executing different program fragments (e.g. two data flow
instructions) - this 1s the synchronisation structure used with the
parallel congrol mechanism. The third synchronisation structure is the
impligit synchronisation of an operator waiting for the return of an

operand. In this case the two activities are executing nested progran

- = 108 -

fragments = this is the synchronisation structure used with the recur-

sive control mechanism.

The.gvaluation control constructs (! and eval) support the impor-
tant requirement that an executable program fragment can also be treated
as data, as for example in editing a program, and vice-versa, as for
: éxample in executing the data produced bty a compiler. 1In a control flow
architecture the content of a memory cell is treated as data if used as
an- opérand for an instruction, but is executed if that memory cell is
encountered in the flow of control. Most data flow architectures main-
tain a strict separation between the program (graph) and the data
(tokens), and consequently most data flow machines cannot be wused to
compile or edit their own programs. In reduction everything is normally
executed and there are special operators such &s the GQUOIE and EVAL
operators of 'LISP[z5] for explicitly inhibiting and forcing execution.
For the RCF architecture the only essential is that there be the ability
to control precisely execution of addressed objecté using the eval suf-
fix to force execution and the " suffix to prevent execution. (A normal
address without selector suffixes, [sl/s2/s3, 1s equivalent to
/s1"/s82"/s3eval, 1.e. the final addressed object is executed tut inter-
mediate objects selected are no;.) The other two constructs, the eval
operatof and a " prefixing an object, correspond to the EVAL and QUGfE
operators of reduction and are included for their convenience. 1lhe
effegt of using a quoted object could be achieved ty wusing the quoted
address of the object ~ for example executing ('Ob) bas the same effect
as executing\((/esq:) Ob), i.e. the executing activity is just posi-

tioned at Cb. The effect of the eval operator cculd be achieved by

storing the operand returned by its argument and transferring control to

- 109 -
that operand (as is done in control flow).

4.2.2. Including Control Flow, Data Flow and Reduction

.Figure 30 shows six diffetent organisations for the example expres-
sion a = (b+l)*(b-c) 'tﬁe first five being organised as in one of the
specific models covered in Chapter Two. The cénventional control flow
program (i) has essentially the same representation as in the standard
\control flow model (originally illustrated in Figure 1) and requires no
further explanation, other than to observe that quoted addresses are

used in order to reflect conventional semantics.

In parallel control flow and data flow (as originally illustrated
iﬁ Figures 3 and 4) all instructions are.executed concurrently and com-
municate by passing tokens. In (ii) and (iii) parallel operators (par)
are used as separators between objects to create the required con-
currency and the execution of each object is explici;ly terminated by a
final .. The need for a "token" is represented by an unknown,.(?), to
suspend execution until the .token arrives, In (ii) each unknown
represents the neéd for a "control token". Such unknowns precede the
insfruction's main operator, thus completely suspending execution of the
rest of the object. Each control token is communicated by an instrﬁc-
tion such as 1 which replaces a specific (?) in another object by a ()
(i.e. a NOOP) to remove one synchronisation constraint on the execution
of that object. For this instruction, := "() /X, the output argument is
the address qf the unknown; the single input argument is a quoted object.
g0 that the actual operand is that object, (); the operator is the iden-

tity operator, :=, so that the result with which the addressed object is

- 110 -

(1) Conventional Control Flow
‘ c: tl: t2: a:

b: c:
2 5 O O

GE /BT L EL) (= /BT et [e2) (% /el Je2" [a") .. b

(ii) Parallel Control Flow

()"control token"
—'——

- we e s w wm o gy

r : .
par ((2) + /b1 /tl (:= ") /X .)) par ((?) - /b [c (:= ") /¥ .))]

definition

i par () (2) * /el ez a ...
X: Y
(iii) Data Flow
“"data token'" 5
. ¢
par (+ (?) 1 /i3/2 .) par (- (2) (?) /13/3 .) par (* (2) (?) ...
' , i3:)
A
(iv) String Reduction
/ \ O\
(* ("+ (:= /b" [out" /out) 1 /out" /out)
A b Y g
: . A .
(= (:= /b" Jout" /out) (:= /c" /out" /out) /out" /out) -1;2opy of

fout" Jout) . . .
« o2 (=7 3 /out" /out)
c: b\ 'Y i

(v) Graph Reduction

(*(+ /b1l /out" Jout) (= /b /c [out" /out) /Jout" fout) . . .
~ . — -

A\
execute ¢« o« « 2 (excl =7 3 /out" /out)
definition c: b \"a J
B

(vi) Combined Control Flow, Data Flow and Reduction

1 12 13
[4 N Il N 7 N
par (+ /b 1 /[i3/+1 .) (- /b [Je [i3/+42 * (2) () /&') «..
A A A

\\\\\ __,.— /

...—z;*(excl -7 3 /out" /out) 2

a: b - / C3-
B

Figure 30 -~ Different Organisations for Expression Evaluation in RCF

- 111 -

replacéd isvjust thg operand. In (1iii) each unknown represents the need
‘for a "data token" and forms a particular argument of an instruction,
thus suspending execu;ion of just that argument. Each data token is an
instruction’s result stored at the apprbpriate argument position in the

instruction using that result.

In s;riﬁg and graph reduction (as originally illustrated in Figures
5 and 6) an instruction is an expression which replaces itself with its
result, That result is then executed (in general the result may blLe a
further expression which again replaces itself with its result).b In
(iv) end (v) reduction expressions are represented by objects of the
form (oéerator operand operand fout" fout). This includes two single-
selector, fout, addresses which address the object itself. The first
such address is the output argument for the operator, causing the result
to replace the whole object (this must be a quoted address to spécify
the c¢bject 1itself rather than cause its execution). The second such
address is a simple branch instruction causing execution to continue

with the result.

String and graph reduction treat referenced definitions such as B
in different ways. In string reduction a copy of the definition
replaces the reference and is then executed., 1lhis form of self-
replacing 1eference 1is represented in (iv) by an explicit instruction
(== /b" /out" /fout). (This instruction has the form of reduction
expression with an identity operator for which the input argument is the
quoted address of the referenced object, B, so that the operand 1s B
itself rather than the result of executing it.) In graph reduction the

referenced definition is executed in place and so a simplé address, /b,

- 112 -

is uséd to referencg it in (v). Graph reduction is able to support lazy
evaluation where a shared expression is only evaiuated once; In (v)
lazy evaluation of B is achieved by preceding its operator with an
"exclusion argument, excl, to prevent multiple execution. The first
activity to execute B will change the 352l to a 7 and continue executing
the operator. Any subsequent activities will encounter the ? and thus
be suspended at B until it is eventually replaced by the result of the

operator.

A ﬁossible combination of these different organisations is used in
(vi). The independent instructions il and 12 are eiecuted in parallel
as a result of the initial par operator. In contrast, 12 and 13 (which
is dependent on 12’s result) are executed sequentially. The shared
sub-expression, B, is organised for lazy evaluation as in graph reduc-
tion. Both‘il and 12 store their results directly into the input argu-
ments of 13 which is the only user of those results. The argumentlin i3
fof the. result of 11 is an unknown to synchronise those two instruc-—
tions. - In contrast, the argument for the result of 12 is just the empty

object, acting as a place~holder, since synchronisation is unnecessary.

The RCF model is based on the cpnventioﬁal control flow model with
implicit sequentiai execution and explicit transfers of control, and the
ability to address and manipulate any storage location explicitly. The
inclusion of data flow and reduction depends on two generalisations of
the conventional model. Firstly there is the generality of information
strﬁcture anq addressing, This allows an instruction to address another
instruction’s input argument as a storage location for its result, as

required for data flow. It also allows a large object such as a struc-

- 113 -

" ture of nested expressions to be directly replaced with its result, as
required fof reduction, Secondly there is the generalisation of includ-
ing execute as well as load and store for access to arguments, and the
convention of wusing the more ‘flexible execute for initial access to
arguments. Consequently control over the interpretation of an argument
resides in the argument rather than the operator using it, allowing an
argument to be not only a literal or address, as required for control
flow, but alternatively a subordinate instruction, as required fér
reduction, or a synchronisation primitive, as required for data flow.
The approach of synthesising control flow, data flow and reduction as
subsets of a mofe general model allows considerable flexibility in the
way these three are combined, as illustrated in (vi) above. This
approach also gives orthogonality between the various elements of pro-
gram representation, as illustrated by all the above examples using the
same multiply operator which is independent of the way its 6perands are
organised. An alternative approach to combining these three models of,
say, providing three different classes of instructions, would limit this
flexibility and orthogonality and lead to a gencrally more complex

architecture.

It is worth reflecting on the cHoice of control flow as the basis
for a generalisation synthesising control flow, data flow and reduction.
The advantage of control flow for this purpose is its low-level opera-
tional wmodel and the separation between control and data which allow
max imum choice in how a program is organiéed. Data flow and reduction
are higher'level wodels incorporating particular assumptions of program
~organisation, particularly that control of instruction activation is

tied to the availability of input data or the need for output data. The

- 114 -~

dafa flow notion of activation by data availability can be generalised
to include the flow of control, (as was done in thg DCF architecture) by
including "control tokens" as '"null" data items. It is however diffi-
cult to see how to generalise the data flow model to conveniently
include activation by‘qéed, or to conveniéntly generalise the latter to

include activation by the flow of control or data availability.

The motivation for including control flow, data flow and reduction
within a more general model is to obtain the particular advantages of
each, which were identified in Chapter ITwo. Each model in itself pro-
vides particular program organisation benefits, specifically in its par-
ticular way of controlling instruction activation. In some cir-
cumstances the explicit activation of instructions provided by centrol
flow is an advantage, whereas in other circumstances the implicit
activation of instructions by the availability of data, as in data flow,
or by the need for data, as in reduction, is an advantage. The dif-
ferent organisations used in Figure 30 allow these different activation
mechanisms to be used and thus the advantages of each to be obtained
where needed. Also for graph reduction there are particular advantages
of being able to use higher order functions and unbounded data struc-—
tures as program organisation consttucts. The use of these constructs

within the RCF model will be discussed later in this Section.

.

Apart from program organisational advantages each model has partic—
ular advantages concerning the performance of particular types of pro-
grams on computers implementing the model. The RCF architecture, and
its %mplementation discussed in the next Chapter, is principally aimed

at exploiting concurrency. Thus it would not be very effective for a

- 115 -

program predominagtly Eased on the conventional sequential control flow
model; However, the basic sequential control mechanism of an a;tivity
moving. from one instruction to its immediate successor is the basis of
.the architecture and the use'of short control flow sequences of instruc—
tions is an effédtiye way to program the architecture. The data flow
and reduction models are implicitly concurrent and thus more suitable
for the overall organisation of programs for the RCF architeéture.

Although the main motivation for the reduction model 1is 1its program
organisational advantages, there are some performance advantages. Prin-
cipally there is the advantage of lazy evaluation in graph reduction
which prevents processing resourﬁes being used on unnecessary computa-
tion. The graph reduction form of program organisation used in Figure
30(v) achieves this effect. For a shared expression object of the form
(excl op (eeeheee) (eeeBaes) fout" fout) there ﬁay be several activities
positioned at the object, However only one of those will actually
evaluate the shared egpression, which might be very large. The princi-
pal motivation for the data flow model is the exploitation of con-
currency for improved performance. The execution of a data flow style

program 1is discussed in some detail in the next Chapter on Implementa-

tion.

The examples in Figure 30 have illustrated the use of the various
programming constructs, introduced at the start of this Section, for the
organisation of control flow, data flow and reduction programs at the
small scale of expressions on simple data items. The remainder of this
Section illustrates their use in the larger scale organisation of pro-

grams.,

- 116 -

4.2.3. Data Structures

One of the important principles of recursive architecture 1is that
an operand can equally be a simple data item or a data structure such as
an array. The representation of data structures must ensure that the
execution of a datg structure operand is compatible with the execution
| of a simple data item, that is the exgcuting activity must be positioned

at the data object. This is illustrated in the following example where
two operands, the first of which is a data structure, are compared for
equality by the = operator -

: a: ‘

(1 = 1 (Jout" 1 2 3) {7)

P Q R

Within the data structure a, the first component acts as type informa-
tion declaring a to be a compound data item. This "type" is the quoted
address of a itself, that is the fout selector quoted to prevent re-
execution of a. When activity Q executes this quotéd address it will be
positioned at a which will thus be used in its entirety by the operator.
(It 1is important that, as a result of contextual addressing, all data
structures can have the same fout" first component, and thus there is
.correct comparison of structures without this detail of structure

representation being incorporated into comparison operators.)

A data structure using this representation can be communicated
between instructions in any way that a simple data item can. As in con-
trol flow.anq graph reduction, a data structure, or its components, can
be addressed by the instructions sharing it. As in data flow, a data

structure can be passed as a 'data token" replacing a (?) as an

AL

- 117 -

instruction’s argument. As in string reduction, a data structure gen-
erated as a result can replace the instruction generating it as the

operand for a containing instruction.

An important charactéfispic of graph reduction is that it allows
the ﬁse éf‘ unbounded (notionally infinite) data structures which are
incrementally éenerated as the components are needed. Figure 3] shows a
possible RCF representation of such a data structure, L, and an access-

ing expression, E.

"1 3 5 (gen))
E: X

(6 3I(/Leval/2eval/->eval
R

/->eval/ . e))

Figure 31 - Unbounded Data Structures in BCF

L is a partially generated list of the fibonacci nuﬁbers with the infin-
ite tail of the 1list represented by a program fragment gemn. (n each
execution of gen it will insert to its left the sum of the preceding two
numbers and position the executing activity at that newly inserted
object. The expression E contains as its second operand (executed Lty
activity R) the address of an as yet un-generated element of the list.
This address is a sequence of selectors to identify first L itself, then
its second component (the first genuine element of the list), then the
next component etc. Each of these selectors has the eval suffix so that
the object which it identifies is executed by R before the next selector
is apélied. If the object is an actual data item (or data structure),

‘as in the first few cases, then the effect i1s the same as if a normal

- 118 -

selector had been wused (rather than an eval selector). That . is,

activity R will just be positioned at the object. If however the object

»

is the gen program fragment then it will .be executed by R witﬁ ‘the
result that the hext component of the list is generated. R is posi~
tioned at that new component where it will either apply the next selec-
tor in the address (thus generating the next component) or be used by'

its superior to access that component.

This scheme generalises to any level of nested lists. For example
if L wére a liét of thé rows in Pascal's.triangle then gen would not
insert the actual data structure representing a row, Instead it would
insert an object to incrementally generate the elements of the row on
demand. The inserted object would have the form (/out" subgen) where
subgen Implements the.algorithm for generating the next element in a row
from the othef elements of the triangle. The address of, say, the 2nd

element of the fourth row would be -

'/Léval/2eva1/—)aval/-)eva1/->eval/2eva1/->eva1
A/ \. - J\ ~ w,
“triangle - 4th row 2nd element

Execution of this address causes gencration of only those elements of
]

the triangle needed to compute the addressed element.

4.,2.4, Conditionals

In the RCF architecture the conditional operator can be wused to
support various forms of conditionals including those discussed in
Chaptér Two. This operator if has three operands all of which are

evaluated concurrently. Its result is the second or third operand

4

- 119 -

depending on whether fhe first operand is True or False. Figure 32
‘shows three uses of this operator for the different control
flow, data flow and reduction organisations of the conditional
structure x:= if ¢ then ra else rb_where ra and fb are the result values

of program fragments (eeelees) and (eeeBees).

/.""“".' """""""""""""" =~
’... (eval (if ¢ :/a :jb)) ooo”(oooA--o) o-.EtcooBo.o) X
N ,o7at b:
e @ m e BE e - .- 4

(1) Alternative Addresses

rb

/TN

oo (oo.Bo.-) LAY (.o-Aoo-) ee e (if c (?) (?) sse) eee

(ii) Alternative values

eer Cif ¢ "C(ieeAisd) "(oeeBess) Jout" Jout) ...

(111) Alternative Expressions

Figure 32 - Three Forms of Conditional in RCF

In (i) the contrecl flow organisation is used. This illustrates the typ-—
ical- use of the eval operatof to force executicn, in conjunction with
the inhibition of execution by 's. Here the conditional operatér uses
quoted objects ("/a and "/b) as its input arguménts. Consequently the
objects themselves (addresses fa and /b) are the actual operands and the
result is one or other of those addresses. This address result is the
operand of an eval operator, causing that conditionally selected address
to be execﬁﬁed- The complete instruction thus has the effect of a con-
trol flow conditional branch instruction to execute either (eesAees) OF

(eeeBeco)e In (41) the data flow organisation 4is used. Here the

- 120 -

coﬁditional returns one of two alternative values, ra or rb, which are
provided as "data tokens" from instructions in (eeelAeece) and (eeeBeees),
giving the effect of data flow "switch in" instruction. In (iii) the -
reducfion organisation is used. Here the conditional returns one of two
alterhati?e expressions, (eesAees) OT (.;.B...), which replaces the éom—
plete instruction, as in reduction. As in (i) the expressions forming
the operands of the conditional operator are quoted objects so that the

actual expressions are used rather than the results of evaluating them.

4.2,5. Iteration

Iterative execution is obtained by a fout single-selector address
being executed at the end of any repeated object. For a control flow
style iteration a whole sequential structure of instructiouns is repeated
and thereAwould be a conditional branch instruction (as in Figure 32(i))
controlling the iteration. For examplé DO S1; S2; S3 UNTIL done might

be represented as -

Jout | Jescape
Y indaatededadiadaadodhd “\ et e b D "
4 \\ /' \\
¥ v &
e o« o ((S1) (S2) (S3) eval (if done "/esc "/out)) e o o
‘? e ' / ?
‘REPEAT conditiondl branch CONTINUE

Here the /out positions the executing activity at REPEAT whereas the
[/escape positions it at CONTINUE. For a data flow style iteration each

instruction is separately repeated by terminating it with a /out -

e o . gér (operator operand operand result fout) par . « .

- 121 -~

One way of organising data flow iteration discussed in Ch;pter Two
is that d1in which an operator’s arguments are streams of tokens, as in
the DDM1 data flow architecture[27]. Figure 33 chows this technique,
~using as an example e:= (at+b)-6 which 1is reﬁeatedly e#ecuted for

sequences of values al, a2, a3, etc., and bl, b2, b3, etc.

A: B:
ees (stream+\LE a5 a6 a7 (7)) (BS5 b6 b7 (?)) /C /Jout) ee.

il:
4{= al4+b4}
3{= a3+b3}

ees { stream- (¢l ¢2 (2)) (:=V6 Y /E Jout) ...
12: C: D:

Figure 33 — Iteration Using FIFO Queuves in RCF

There are two instructions, il and 12, 1lnstruction i1 repeatedly per-
. forms additions to produce resﬁlts for repeated subtractions performed
by instruction 12. Each input argument of instruction il is a stream of
operand values terminated by an unknown. 7The subordinate activity exe-
cuting an input argument will either. provide the first item in the
operand stream, e.g. a3, as the oferand or (if the stream is empty) le
suspended by the terminating (?) until an item is inserted. The opera-
tor streamt is a stream operator, as previously used in Figure 2&, with
the input arguments being accessed by destructive take rather than copy
operations, and the result being inserted st the position identified Ly
the result argument rather than replacing the object there. Thus on
each execution of 11 a pair of operand values is taken from its operand
sfreams and the result is added to the end of 12’s operand stream.

Instruction 12 has the same structure except that one operand is an

- 122 -

embedded literal, 6, for which there is an instruction, (:= 6), to

return that value on each execution.

In reduction there is no special organisation for iteration, this

being achieved entirely by recursive procedures.

4.2.6. Procedures

Procedures can be of two different types in the RCF architecture.
Thése are a replicated procedure where the procedure definition is
copled by each call and executed in the context of the call, and a re-
entrant p;ocedure where the procedure definition is executed in place by
possibly several independent concurrent calls. Procedures using data
flow and reduction style instructions, which are modified during execu-
tion, would need to be copied, whereas those using control flow style
instructions, which are re-entrant, need not be. For both replicated
and re-entrant procedures it is generally necessary to support both
"dynamic binding'" where the procedure definition contéins addresses
relative to the context of the call (e.g. for accessing parameters) and
"static binding' where the definition contains addresses relative to the
context of the definition (e.g. for calling other procedures or modify-

\
ing “own variables'"),

Figure 34 1llustrates the two types of procedure for the same exam-
ple, a call on procedure F. This call has the same effect as a -+ opera-
tor (which»the called procedure uses). In both cases the procedure call
instruction consists of an operation object, the call, followed by
parameter arguments pl, p2 and p3. As for a simple + operator, the pl

and p2 arguments are executed to provide the operands, the p3 argument

- 123 -

is executed to identify the position at which the result is storéd, and
. execution continues at S, immediately after those arguments.b The call
itsélf is constructed as an apply operator which is used as though it
were an elementary operator with the ﬁrocedure address /F as its single

6perand.

(a) Replicated Procedure

¢

r~

call
apply
P’ ~ S:
(1(:= /esc [out" /fout) /F) pl p2 p3 ...

cee 2&4 Jout/out/+1 /Jout/out/+2 /out/out/+3 /out/out/fﬁ)

copy. Tocedure definition
(11)

Pr ! < S:
¢ 1C + <9ut/out/+1 [fout/out/+2 /[out/out/+3 [out/out/+4) /F;ﬂpl..p3 .o

(b) Re-entrant Procedure

(1)
, call .
apply
X ! ° _ S:
(1C set$ /X") /F) pl p2 p3 ...
P
eee (+ $/41 /42 /43 /44)
F ~ amend
(t procedure definition
1)
X: S:
1 € (sers /X") (F Zﬂpl P2 p3 ...
$ L)
N e O No/+l §/42 $/+3 §/+h)
| IS M '

Figure 34 - Procedures in RCF

- 124 -

for the replicgted procedure (a) the apply instruction replaces
itself with and then executes.a copy of the addressed procedure, as in
string reduction. The procedure definition is a quoted object as other-
wise it would be executed where it is rather than being copied to the
call for execution there. The effect of an activity P executing the
call (i) is shown in (ii). The replicated procedure is executed in the
context of the call, Consequentl&b normal addressing, such as the
Jout/out/+l to access parameter pl, gives dynamic binding. To support
static binding (not actually needed in this case) the procedure address
is retained in (ii) as an extra parameter yhich the procedure code could
use for addressing objects in the context of its definition (as will be

illustrated in the following discussion of higher-order procedures).

For the re-entrant procedure (b) the activity P executing the call
(1) 1is re-positioned at “the procedure definition and executes it in
place (ii). Thus normal addresses in the procedure definition give
static binding. The dynamic binding needed ﬁo accéss the parametersfis
provided by the base-relative addresses such as $/+1 which address
parameters relative to.the position of the activity §. This activity is
‘a subordinate of activity P, set up as a result of P executing the apply
instruction. That instruction’s operator is set$ and its oéerand is the
quoted address of the cail, X, The acti;ity $ is positioned at the
addressed object to provide the necessary context for subsequent
addressing from within the called procedure., Thus in this case the
apply has a function similar to tha£ of an instruction to load the
return address onto the stack in a conventional call sequence. Af ter

executing the apply, P executes the address /F re—positionihg it at the

procedure definition. In general the procedure will be a nested program

- 125 ~

structure executed by a 'sub—tree of activities with P as its root.
Nested objects in such a structure would need to address the procedure’s
parameters, Thus an activity executing one of those cbjects needs to
inherit P’s § activity to provide the required context for parameter
addresses. (In the :machine code - this inheritance is achieved by a
default mechanism - if when an activity executes a $/... form of
address 1t does not itself have a $§ subordinate then that of its supe-

rior is used, or that of its superior’s superior etc.)

The replicated procedure mechanism is simpler than the re-entrant
procedure mechanism in that it does not require the relatively sophisti-
cated base-relative type of addressing. The form of procedure call in
(a) for a replicated procedure is self-modifying in a way that prevents
it from being used in a program that is intended to be re—entrant. It
is in fact possible to construct a call instruction for a replicated
procedure which can be part of a re-entrant program fragment. This
would be achieved by a change to the apply instrucﬁion in (a) to insert
the procedure copy at the end of the call object, rather than overwrit-
ing the apply instruction., Thus if there are several concurrent execu=

tions of the call then there would be multiple copies of the definition

CE&J
r ~ S: F:
((ee.apply...) /F (copyl) eee (copyn)) p1 p2p3 ¢ o« « "(e o o)

These copies are all hidden within the call object and have no effect on
the surrounding program structure. For example the correct interpreta-
tion of a parameter address within a copy is not affected by the unknown

number of other copies.

- 126 ~

Similarly, a proéédure executed in place as in (b) could contain
self—modifying instructions, which would require that the procedufe
definition insert and execute a copy of itself, adjacent to itself.
Thus whethef or mnot procedures are copied to thg context of the call
does not necessarily depend on wheﬁher self-modifying or re-entrant
’instructions are used but can be determined by other criteria. For
example if data accesses (to parameters) in fhe context of the call
predominate over accesses (to 'own variablés") in the context of the
definition then it would be appropriate to copy the procedure to the

calling context.

4.2.7. Higher-Order Procedures

One of the major featufes of (graph) reduction is 4its ability to
éupport higher-order procedures (functions). The principal tenefit of
these is that for a multi-parameter procedure, e.g. H(pl, p2, p3), suc-
cessive parameter expressions, Pl - P3, can be bound to the procedure
definition at different points, giving a progression of more particular-

ised procedures -

H(pl, p2, p3) = some function of three parameters

G(p2, p3) = B(P1) .
F(p3) = G(r2)
E() = F(p3) = ((8 (P1)) (F2)) (P3))

Figure 35 illustrates the way this procedure structure might be
represented in RCF. It also shows a call, X, of the final, parameterless,
procedure E. The base procedure H is an expression involving all three

parameters., Each of the intermediate procedures G, F and E, contains

- 127 -
¢

three components. The first components form a chain of addresses which
leads to H and is used in executing the actual call, X. T1he second com~
ponent is the particular parameter which that intermediate procedure
provides for H. Each such parameter, e.g. pl in‘G,'is the ad&ress of
tbé actual parameter.expreséibn, P1, which will generally use &and be
used by other expressions in the neighbourhood ot G. lﬁe third com-
pbnent is the (quoted) address of the next more general procedure.

These addresses form a chain which is used by H in a2ccessing parameters.

H:
H(pl, p2, p3) = "(+(*(+ pl p2)(~ p3 pl)) 2)
.r\
G, pl: Fl:
G(p2, p3) = (N/H /Pl /B) ... (eel)
}i--
F: p2: F2:
F(p3) = (‘\c /P2 /6") v v v (eee)
l}?.::,.-—'?.‘\-..--- -"--".._x,
[TR)
E:%, p3: \ P3:
EQ) = (N/F /P3N/E") o o v (aee)
4--—1.—_ ______ »‘
l‘:.-@_:’..-.--- ‘
apply . B ,
) —A— N, fl: f2: K
((:= [esc out" out)~ /E /E")/
. e e mmmeemeen AT K

l 4

C (+(*(+ 71 p2)(- ?3 pl)) 2) /E JE")

X: X_ £1: .fZ:/'l

[

I e L0
']

: |...../fggya1/3eva1/2}'J

|-~~~ /f2eval/3eval/3eval/2

- Figure 35 ~ Bigher Order Frocedures in KCF

The call, X, is very similar to the call used for a replicated pro-

- 12¢8 -

cedure in Figure 34(a). It comprises the same apply instruction which
- when executed replaces itself with the procedure object identified by
the execution of the following érgument, namely the address /E. 1lhe
activity executing /E will execute the_addrgssed object, E, and thus its
first qompoﬁeﬁt, ‘namgly the address JF of F. Similarly the first com-
ponents of F, and then G, are then executed.. lhus the activity follows
the chain of addresses back to B, and so it is a copy of that procedure

which replaces the apply instruction in X and is executed there.

. As for each intermediate procedure, the last component of X is an
address used by B to access i1ts parameters. The address p2 for the

second paramecter P2, executed from within the copy of H, is -
/£2eval [3eval/2

The first part of the address identifies £2, the address of E, which 1is
‘executed (as 2 result of the eval suffix), thus identifying E. 1lhe
second part identifies E’s third component, the address of F, which is
also executed, thus identifying F. The final part identifies F’s second
component, the address of the desired parameter, which is the final des-
tination of the complete address. The activity executing the original
address is thus positioned to execute the address, within G, of the
parameter and thus executes the parameter‘in place. 71hat parameter i1l
be a graph reduction type of expression, replacing itself with and then
returning its result, The addresses for the other two parameters are

similar, each having a different numter of /3eval parts depending on the

distance aldng the addressing chain of the required parezmeter.

This representation uses two address chains, running through the

- 126 -

first and third comporents of the intermediaté procedures. 1lhe first
chain, used in the call, is structured in such a way that it 1is always
implicitly followed to its end. 1Thus the program fragment forming the
call, X, is independent of the length of the chain. For example X, and
intermediate procedures F and G, would be unaffected if, say, H were
replaced with a further intermediate call of another function with oﬁe
more parameter. However, the chain for accessing parameters is con-
structed in such a way that a parameter address in H can go as far along
the chain as is necessary to access the particular parameter required.
Thus the program fragment forming H is dependent on the length of the
chain, necessarily so since that Jlength is the number of parameters
expected by the procedure. The representation used for these chains
also illustfates the use»of the eval selector suffix for achieving quite

sophisticated addressing structures. As used here, an eval selector

corresponds to an indirect address where the add?essed object is itself
an address. This RCF notion of indirect Addressing is actually more
powerful = than that 1in conventional architectures since the addressed
object is executed and thus can be not only an actual address but also a
prbgram fragment to achieve the effect of an address. For example the
object F could have been a (lazily evaluated) proceaure call, say
Bind1(G) where Bindl(g) = g(P2). When first executed as a result of a
call such as X, this call would replace itself with the required struc-

ture.

Ihe above scheme for procedures achieves most of the benefits of
greph reduction for this type of exsmple. Specifically, different
parameter expressions can be bound to the procedure at different points

in the program structure, and there can be lazy evaluation of those

- 130 -

'exprgséions. For example if P2 had been previously ‘evaluated by some
other construct in the neighbourhocod of F, then that expression would
have been replaced by its result, and thus not evaluated agéin by the
Eall, X. The main shof;coming of this scheme for the RCF model, com-
paréd with one based on a purely graph reduction model[43}, is the com~
plete copying of the proce&ure H into the call X. One effect of this
copying is that there may be multiple evaluation that would be .avoided
in a pure graph reduction model, One of the expressions within H,
namely (+ pl p2), does not usé the last parameter, P3. If there were -
se&eral intermediate procedures, El and E2, at the level of E, that par-
ticular expression would be a constant in those procedures. In pure
graph reduction, there would only be one evaluation of that constant,
say by a call of E2, and the resulting value would be used by calls cof
'El. In the RCF scheme used for this example, the copying of H means

that both calls of El and E2 would cause evaluation of that coastant.

Avoilding such ﬁultiple evaluation requires that all procedures be
executed in place, as occurs in graph reduction. The use of higher—
order procedures results in programs comprising very geheral procedureé
which are very frequently used. Although this is beneficial from the
programming viewpoint, access to a frequently used procedure definition
is a potential system bottleneck, particdiarly if each access 1s a com~-
plete execution of the definition in place rather than just the copying
of the definition for execution elsewhere. For this reason execution in
placé is ;ecognised by researchers in the graph reduction field[6l] as
being a possible major disadvantage of the pure graph reduction model
for a'decentralised computer architecture. For the RCF model to support

execution in place with higher-order procedure structures a greater

- 131 -

.sophistication in the base-relative addressing scheme would be required
to handle the more convoluted addressing structures. In view of the
potential access problem and the fact that the benefit of avoiding mul-
tiple evaluation 1is 1likely to be a minor effect, the incorporation of

such additional sophistication is unlikely to be worthwhile.

4.2.8. Non-determinacy

In the RCF architecture there is the potential for non-determinacy
in that two concurrently executing instructions can simultancously
modify the same object. -There are two schemes for controlling non-
determinacy' which correspond to the techniques used in control flow and
data flow. These are illustrated in Figure 36 for two different ways of
organising a resource manager. In (a) the resource manager is a control
flow style procedure executed re-entrantly by the activities, Pl and P2,
which use the resource. The resource manager (i) contaies a critical
region protected by an exélusion argument, (excl). This acts in a simi-
~ lar way to the "test and set" instruction often used to implement criti-
cal regions in ‘conventional architectures, When executed Dby one
activity, P1, it becomes a (?) which prevents a subsequent activity, P2,
entering the critical regioh (ii). On exit from the critical region
(i1i) dinstruction S is executed to set the (?) back to (excl) and thﬁs

allow another activity to enter the region.

L)

'In (b) the resource manager is a continuously executing object
which on each execution takes one transaction from the transaction
stream, in the same way as each execution of the addition operator in

Figure 33 takes one token from its token stream. Each user of the

- 132 -

(1)
Resource Manager
r - A ™~
P2 T: S: :
(eee. T I (excl) oo eoe (1= "(excl) /T) oos)
. Pl L ~ /
critical region
(i)
P2 ;
(coe I (?) eee i eee (= _'_'_(_G__)EE!.) /T) see)
Pl :
(111)
(excl)

P2 74 ‘\\

(eoe I (excl) ... eee (3

Yexel) /T) I .e.)

Pl
(a) Using a Critical Region
(1)
Resource Transaction ‘ User
Manager Stream Code
’ v A Pz pe v

(« « o« fout) ((T6) (T7) (T8) () ; e o« « 1 1 (stream:= Tn /R S

R Pl

(1i)
"" P2

(o o/out) ((T7) (T8) (T9) (?)) . « + (stream:=Tn /R) } 1

Pl
(T6) (Tl& /

(b) Using Transaction Streams

Figure 36 - Non-determinacy in RCF

resource (activity Pl or P2, both executing re-entrant "user code") com-
municates with the resource manager by inserting a transaction, Ta, at
the énd of the transaction stream. This stream implicitly orders inputs
inserted from concurrent sources into a single sequence and thus acts

like the merge operator used in a data flow resource manager.

- 133 -

4.2.9, Discussion

The.examples in this Section have attempted to 1illustrate two
aspects of the RCF model. ’Firstly that it incorporates the basic models
of'conffol flow, data flow and redﬁction for simple expression evalua- - -
tion and allows those models to be combined even within a single
"instruction". Secondly that the RCF model can be used effectively for
the representation of the program organisation constructs used to pro-
gram architectures based oﬁ those other models. Of particular relevance
to control flow programs is the use of repeated sequences of simple
instructions and the use of re-entrant procedures. Of particular
relevance to dafa flow programs is the use of stream operands for itera-
tion and the ability to éommunicate whole data structures as single
"data tokens"., Of - particular relevance to reduction is the use of
unbounded data structures and higher order procedures. The examéles at
this higher level of program organisation did not illustrate any general
combination of models as was illustrated fér the lower level of simple
expression organisation. Nevertheless it is hoped that the examples
demonstrate that the RCF model would accommodate a programming language
synthesising control flow, data flow and reduction éonstructs at all
levels of program organisation. The actual‘achievement of such a syn-

thesis would be a question of language and compiler design.

The set of program representation constructs used in this Section
were principally developed for simple control flow, data flow and reduc-
tion instrucfions, as illustrated in Figure 30. These constructs are
however of quite general utility in program organisation, as illustrated

in the other examples discussed, Delimiter symbols (and) are used for

- 134 -

representing all levels of program and data structure, including expres-
sions, arrays, loops and procedures. The explicit structure allows par-
ticular standard selector sequences to be used for particular addressing
needs such as for access to procedure parameters and for loop repeti-
tion.' One sét of operafors, such as +, are used in all instructions,
whether control flow, d;ta flow or reduction, in which single operands
are accesged. A complementary set‘of operators, such as streamt, are
used for all instructions in which operands are sequences of values.,
Normal addresses [sel/.../sel are used for all situations iﬁ which the
addressed object is‘to be executed, such‘as for a control flow branch,
for invoking a subordinate reduction expression, or for invoking a pro-
cedure. Quotea addresses, /sel/.../seli; are used for all situations in
which the addressed object is not executed, such as for the result loca-
tion of an instruction, fof a procedure definition to be copied, or for
manipﬁlating addresses as in conditionals. An unknown argument, ?, is
used for all situations in which execution is dependent on the arrival
of information, such as for the operand of a data flow instruction or at
the end of .a stream. An exclusion afgument,b excl, is used for all
situations in which multiple execution is to be avoided, as for lazy

evaluation in reduction and critical regions in control flow.

- 135 -

4.3. Machine Organisation and Iﬁplementation

The fifst Section of this Chapter discussed recursive structuring
for storage organisation, addressing, and program representation and
execution in the RCF operatidnal model. The recursive ﬁodel provides a
general framework for constructing program structures from a (relatively
arbitrary) set of "primitive" constructs. This Section starts. by
describing a-similar general framework for the recursive organisation of
" machine resources in a decentralised computing system, and discusing the
relationship between that recursive machine organisation and the RCf'
model that it supports. Three particular aspects are then discussed,
namely the wéy in which the machine organisation and model accommodate
special-purpose machine components within a general-purpose system, and

their extensibility and locality properties.

There are two‘ broad types of decentralised computing systems,
namely parallel .computer architectures and geogréphically distributed
computer networks. Previous Chapters (and previous Sections of this
Chapier) have been concerned solely with parallel computers, which is
the main\theme of the thesis., However the recursive machine organisa-
tion, and the concepts of the operational model it supports, are of
relevance to computer networks and both typés of decentralised systems
are discussed here. Implementations of the recursive machine organisa-
tion, in both parallel computers and computer networks, will be dis-

cussed in.the next Chapter.

-~

-136-

4.3.1. General Structure ' : e

A conventional computer archi;ecture has a centralised machine
organisation' comprising one computing element with a single processing
unit connected fo a single ﬁéﬁory. A recursive architecturé, as 1llus-
trated in Figure 37(a), has a recursive machiné organisation comprising
a structure of nested computing elements (CEs) and local communication
(and .control) systems (CSs). In the general case a computing element,
such as CEQ, functions asl a complete general-purpose computer with
memory, processing and communication capabilities and consists recur-
sively of subordinate computing elements, CEl -~ CE3, which provide its
memory and processing capabilities and use its communication capability
to cooperate in the concurrent execution of programs. The ;S component
may incorporate some relatively centralised control functions concerned
with, for example "strategic" allocation of its subordinate computing
elements’ resources. This recursive structure will terminate in "primi-
tive computing elements' such as CEl and CE21 which do not continue the

general structure of subordinate computing elements but have separate

processor (PE) and memory (ME) elements.

This machine organisation accommodates heterogeneous components, as
for CEO where one component, CEl, is a primitive computing element and
another, CE2, is a structure of computing elements, For a coherent sys-—
tem comprising heterogeneous components it is important that there be a
common inte;face between components, The principal characteristic of a

~

recursive machine organisation is that all computing elements at all

levels in the structure support the same external interface. For the

RCF architecture the common interface embodies the essential concepts of

- 137 -

(a) physical organisation of machine resources

"CEQ
CEl CE3
CS
AN A/
PE2 ME PE3 ME PE4 ME
(b) logical/physical mapping
CEl CEZ2 CE3
-(! I (,=~c1321===\ CE20memmg peaCE23w== | [)
A: A2: B: : C:
(({(ooc)*(o-oo ((-o-)({(.oo LY I /C ono) (0-0)(.00))) A(.’.))
\ / » ,I
/
1/
"Copy “'\ /
i \\‘.\ I'
*.'
h|

Figure 37 - Recursive Machine Organisation

the RCF model, namely nested variable 1length objects, contextual
addresses and communication of messages within a dynamically created
’

tree of concurrent activities.

In order to illustrate how the logical RCF model {s supported by
the physical machine organisation, Figure 37(b) shows an example of the
- former’s object, address, and activity structure with a possible mapping

onto the latter’s computing element structure {(the object structure is

- 138 -

not meant to be a particularly meaningful example). The computing ele-
ﬁent CEQ contains the object 0, and its subordinate computing elements,
CEl, CE2 and CE3, are each supporting one of that object’s components A,
B and C. | At this 1level there' is a strict (static) correspondence
between logical objects and ﬁhysical coﬁputing elements. However, as in
the case of object B and computing element CE2, there need not be such a
strict correspondence Between the in;ernal logical and physical struc-
tures. In this case each subordinate computing element will contain a
relatively arbitrary (changing) sub-structure of the object, for example
'CE21 containing the entire first component of B and part of its second
component, A primitive computing element will geunerally incorporate
some internal memory management mechanism to support a changing struc-
tufe of variable length objects. Similarly, a higher level computing
element, sucﬁ as CE2, may incorporate mechanisms for redistributing the
object structure between its subordinates as different parts of the

structure expand and contract.

The processing capability of a computing element will support
activities positioned at the objects contained by the computing element.
For example computing element CEOWis supporting the tree of activities
comprising activity P and its subordinates Q, R and §, with processor
PE2 supporting activity P, PE3 supporting activity Q and PEl supporting
both R and S. A primitive computing element will provide some (machine
code) interface for contextual addressing, and creation of and communi-
cation between activities, Generally. it will incorporate some
multi-progragming mechanism for sharing the capacity of 1its processing
elemeﬁt between the activities it is supporting. (A processing element

could possibly comprise a pool of processors = a primitive computing

- 139 -

element is not typified by there being a single processor, but rather by
there being an internal separation of processing and memory resources
such that it cannot be considered to récursively consist of subordinate
compufing elements.) Above the primitive computing element level, allo-
cation of processing load to processing resources is, at least conceptu-
ally, integraﬁed with the memory management mechanisms since an activity
is allocated to the . same computing element as the object which it is

executing.

The communications capabilities together provide a multi-level com-
munication system for transmission of messages between activities in
different computing elements (as when activity P sends the copy message
to activity &), and the migration of activities between computing ele-
ments (as occurs when activity Q executes the address /C). Ldgically,
the copy message from P to S is transmitted along a direct channel from'
CE21, supporting P, tb CEl, supporting S. This logical channel, shown
byv a dotted arc in Figure 37(a), passes through the communication sys-—
tems of CE2 and CEQ, each of which provides a 1local logical channel
("virtual circuit") supporting a segment of the complete channel; Typi-
cally each communication system would have a pool of local channels mul-
tiplexed on _its physical communications medium. Each local channel
would have an identifier unique to that system which would be wused to
label a message traveling through that system in order to identify its
logical channel and thus destination. (For example, wusing a "logical
port" of the destination computing element to identify a channel, the
copy mességé traveling within CE2’s system might be labeled
CEZ/o;tportZO, causing it to be switched out to CEO’s system in which

its label would be, say, CEl/inportl0.)

- 140 -

It is the migration of an activity, a terminal point of a complete
channel,'which causes the allocation and deallocation of local channels,
and establishes each connection 5etween a pair of 1local channels in
neighbouring systems which form adjacent segments of the same complete
channel. The migration of Q; as a result of executing the address /C,
requires a message from CE22 to CE3, carrying any state information that
is associated with thé activity (for example, information Aeeded tb
implement the communication of messages between that activity and its
related activities). For this type of message the destination is iden-

‘tified by the sequence of selectors forming the address, actually
Jesc/esc/esc., These selectors, identifying first position i, then J,
then C, ére interpreted incrementally by the successive computing .ele-
ments on the path. The first selector, interpreted by CE22, causes Q to
migrate to CE23 where the remainder of the seiectors are interpreted and
cause the further migration of Q to CE3 which contains the addressed
object, C. Whe; Q migrates to CE3 the channel connecting it to its
superior, P, is extended into CEQ’s communication system. This exten-
sion requires the allocation of a local channel identifier there, which

would be deallocated when Q terminates or, say, migrates back within

CE2.

Although the concepts of recursive arcﬁitecture have here been
developed in the context of highly parallel computer architecture, they
are equally relevant in the context of geographically distributed com-
puter networks. Interpreting Figure 37 in that context, computing ele-
ment CEO wouid correspond to a local area network with 1its subordinate
coﬁpuéing elements, CEl, CE2 and CE3, being the indi;idual computers at

the network nodes, and the objects A, B and C being their filestores.

- 141 -

The connections between activities such as between P and R and between P
and S, model the multiple logical communication channels (ports) in an
inter-node communication protocol. These connections would at this
level be typically used for the transfer of files between nodes, as
would result from the copy message sent to.activity R positioned at
"file'" A2. The migration of an activity to execute an object in a dif-
ferent node, such as when Q migrates to CE3, correspénds to "remote exe-
cution". A subordinate activity exécuting in a different node than its
superior corresponds to the concept of a 'remote agent" used in the

,structuring of programs for geographicélly distributed systems.

In tﬁe implementation of various decentralised systems covered by
the general recursive architecture there will be a variety of design
choices reflecting, for example, differences between communication sys=
tems for occésionai movement of large files between distant computers
and those for frequent movement of small data items within a computer.
There are a number of specific implementaticn issués which will be dis-~
cussed in the next Chapter, particularly: the allocation of 1logical
objects to physical computing elements; the memory managemept and
address interpretation mechanism needed to support a dynamjcally chang-
ing structure of variable length objects; and mechanisms for organising
communication between activities which can migrate between' computing
elements. First however some particular aspects of the general machiné
organisation will be discussed, namely the way in which it can accommo-
date special purpose computing elements and its extensibility and local-

ity propertiés.

- 142 ~

4.3.2. Special-Purpose Computing Elements

"The recursive machine qrganisation and .the RCF model which it sup-
ports - aré intended to accﬁmmodate special-purpose computing elements in
much the same way as the memdry organisation and operational model of
conventional architectures support "special-purpose" memory cells for
memor y-mapped I/O{ and the filestore organisation and system call inter-
face of the UNIX operating system{56] accommodates for example line
_ printers as special-purpose files. Incorporating such special-purpose
entities iﬁto a general model requires that they must recognise the gen¥
éral interface, even though they may support it in a limited or special-
ised way. For example, a line printer, represented in the UNIX file-
-store as a file, supports standard file "write" operations and recog-
nises but rejects standard file "read" operations. As an example of a
special-purpose computing element, CE3 might be a hardware implementa-
tion of the square root function. The functionality of this computing
element is modeled as an objecﬁ, C, in the information structure so that
it can be integrated within the general RCF model, In this case there
is a strict correspondence between logical object and physical computing
element so that the address_of /C, [esc/esc/esc from within X, is in
effect the address of the corresponding computing element. That addrecs
would be part of a procedure call X (as in Figure 34(b)) to be executed
by Q. When Q executes the address it aill be positioned at and ‘'exe~
cute" the "object" C, in fact invoking the square root operation pro-
-vided by CE3. Provided that the same interface for accessing parame-
ters, - etc., is supported, the program fragment. X is unaffected by

whether the function of object C is implemented as a special-purpose

- 143 -

computing element or a normal procedure definition which can be executed

by any general-purpose computing element.

The minimum capébility requifed of any.computing element supporting
- an iject structure S is to recognise the arrival at S of an activity
which has migrated froﬁ another computing element (to execute S or with
the remainder of a partially interpreted address intended to position
the actiQity within‘s); and the arrival of messages, such as the primi-
tive execute, replace~with etc. messages, for an activity thus posi-
tioned in S. However a computing element can have a limited or special-
ised response to the arrival of éctivities and messages for them. In
the case of the square root function, CE3 would allow the execution. of
its object €, but would signal an exception in response, say, to an
attempt to select a component of C or replace it with a different

object.,

The notion of special-purpose computing elements is also relevant
in the context of networks as they often include specialised "server"
nodes., For example if computing element CE3 were a "print server", its
corresponding objéct C would effectively be a print queue, supporting
say the insert primitive for adding objects to the queue for printing,
but rejecting any other attempted access. It would also be possible for
the operational modellof a special-purpose computing element to be a
particular subset of the RCF model., For example CE3 could be a "data
flow server" with internally a data flow architecture optimised for and
limited to the execution of data flow style programs. Such a computing
element would accept the insertion of program fragments, as components

oi its object C, for subsequent remote execution. It would need to ver-

- 144 -

ify that a program fragment to be inserted used only the appropriate RCF
subset (for example, verifying that it conformed to the structure used
in Figure 30(iii) which is directly eduivalent to that for a .data flow
computer, as 1in Figure 4)., Thus a potential benefit of synthesising
other models within the RCF model is that ii allows a program fragment
organised according to one of the other models to be executed either by
a general-pﬁrposg computing element or by a computing element special~

ised for that model,. Also>it allows the specialised computing element.

to be easily integrated into the overall architecture.

It would in fact be possible for the machine organisation to con-
sist entirely of special-purpose computing elements, for example a net-
work of control flow, data flow and reduction systems with each system
being a computing element with either control flow, data flow or reduc-
tion computers as its subordinates. In such an organisation the combi-
nation of the diffe;ent models supported by the full RCF model would not
occur at the level of individual instructions (ag occurs in Figure
30(vi)). The combinatidn would instead occur at a higher level of pro-
gram organisation such as procedure calls between program modules writ-
ten in languages based on different operational models and independently

compiled for execution on different classes of computing elements.

4.3.3. Extensibility
[
A majorvmotivation for a recursive structure is 1its potential
extensibility. This is relevant in'contexts of both geographically dis-
tributed networks and parallel computers, and particularly in the con-

text of exploiting VLSI technology. Important extensibility charac-

= 145 ~

teristics of the recursive architecture are (i) the common interface fdr
all computing elements at all levels which means that a primitive com-
puting element and aﬁy structure of‘computing elements are functionaily
equivalent and thus logically interchangeable; and (ii).the_ability of
the hierarchic object structure and contextual addressing to accommodate
unlimited address space éxpansion. These characteristics allow major
system extensions. and re-configurations to be accommodated without
correspondingly major re-design. - In the context of computer networks
such changes include$ increasing the level of distribution by replacing
a single computing element (e.g. multi-user computer) with a network of
computing eléments (e.g. personal computers and file servers); integrat-
ing previously independent computing elements (separate computers) as
subordinates (nodes) in a new higher level computing element (network).
In such changes it is possible to retain the original object (filestore)

structures and the validity of previously used addresses (filenames).

Relevant extensions in the context of (VLSI) computer architecture
are: to increase the processing power and storage capacity for a com—
puter design by connecting a number of the computers together as comput=
ing elements within a 1larger computer of the same overall design; té
accommodate the increasing amount of 1logic circuitry which can be
integrated on a single chip as a result of continuing technological
advances in miniaturisation of semi-conductor logic devices. In a more
conventional, single processor, approach to computer architecture an
increase in the logic circuitry available for a single "microcomputer”
chip would \be typically exploited by, for example, increasing the
sophiétication of the instruction set, This would entail major

re~design of the chip itself and re-design or re-programming of the

- 146 -

hardware or software systems in which it 1is used. Wigh a recursiQe
architecture the design of a computing element as, say, a single chip
can be scaled down to a fraction of a chip and replicated to give a
' - multi-processor singie chip computing element which is functionally
equivalent (both in terms of instruction set supported and comgunica—
tions inferface), but more powerful in storage capacity and processing
péwer. Such a scaling down might entail some low-level re-design in
that differeﬁt design parameters vary in different ways as a function of
the scale of the design, but the overall computing element organisation.

and its external interface would be stable.

4.3.4. Locality

An important consideration in decentralised systems, principally
'affecting resource allocation, 1is the need to support and exploit the
locality properties of programs. Programs tend to be organised as logi-
cal hierarchies of '"modules" such as procedures comprising instructions
and local variables; sets of related procedures and the shared data
structure on which they operate; and further groupings of such modules
“into higher level modules, Locality ié the property that, at any level
in the hierarchy, 1local references and interactions between logically
"close" elements within the same module at that level will tend to be of
greater frequency than global references and interactions between logi-
cally "distant" elements within different modules. The recursive archi-
tecture allpws this logical hierarchy to be explicitly represented with
each module geing an object in the storage structure. The contextual

addressing scheme, with variable-length addresses, means that the rela-

tively frequent addresses between logically close elements will be

- 147 -

relatively short. The hierarchic communication structure of the machine
organisation means that, in so far ‘as logically close objects can be
allocated to physically close c;hputing elements (as occurs to a large
gxtent in Figure 37), global communication will be minimised with local
communication resources pr&viding the necessary communication bandwidth

for local interactions., -

In computér architectures intended to utilise VLSI technology the
ﬁeed to localise communications will be an increasingly dominant factor.
At the chip level this is because, witﬁ increasihg miniaturisation, the
costs 1in term bf delay, power consumption and chip area associated with
off-chip "global" communication increase dramatically relative to the
costs associated with local processing and communication within a chip.
Localising communication will also become an important factor in the
internal organisation of a chip. Increasing miniaturisation of circuits
on a chip produces corresponding increases in the time taken for "glo-
bal" communicagion of data across a chip, relative to the time-scale of
data processing by the iogic circuitry. Eventually the discrepancy
between system-wide communication and processing time-scales will mean
that organising a complete chip as a single synchronous system becomes
ineffective[62]. Thus it will become necessary for even a single chjp

to be organised as a decentralised system of asynchronous components, as

provided for by the recursive machine organisation.

In summary, a general form of recursive architecture and machine
organisation would provide a common model of extensible system organisa-
tion for heterogeneous decentralised systems, spanning both geographi-

cally distributed computer networks and multi-processor computers,

- 148 -

incorporating general;purpose and/or special-purpose‘computing elements, -
Ail computing elements at all levels would recognise a common interface
and general-purpose operational model which mighé howeyer be implemented
in a limited or specialised way by a special-purpose computing element.
The next Chapteriwill describe a simple implementation of the recursive
architecture in the form of a parallel computer comprising identical
general purpose components and will discuss some other recursive systems

implementations, including a network of conventional computers.

- 149 -

4.4. Summary and Discussion

There are two related aspeéts to the RCF architecture covered by
this Chapter, firstly the synthesis of control flow, data flow and
reduction and gecond1y~the general principles of recursive structure on
which that synthesis is based. Section Two dealt principally witﬁ the
ways in which control flow, data flow and reduction styles of program
organisation are represented and executed in the RCF model whilst Sec—
tions One and Three dealﬁ principally with the recursive principles and

their application in the RCF operational model and machine organisation.

4.45.1. Combining Models"

The initial motivation for the RCF architecture was to combine con-
trol flow, data flow and reduction program styles, in order to obtain
the particular advantages of each, as discussed in Chapter Two. They
can be combined by different arguments of an instruction being organised
according to different models (which requires a programming language and
compiler based on the RCF model). More modestly, they can be combined
by a procedure organised according to one model calling a (separately
complled) procedure organised according to a different model, whi;h
might be supported by a different computing element specialised for that
model. This ability to combine models is largely a consequence of the
modularity and flexibility of the recursive architecture and the RCF
operational model. Most important is that an operator’s arguments are
executed so éhat the organisation of an argument is largely independent
of tﬁe particular operator and the ofganisation of other arguments in

the same 1Instruction. This approach requires that programming

- 150 ~

primitives such as unknowns, addresses and literals be defined in terms
of their effect when executed as independent arguments of an dinstruc-
tion, rather than in terms of the complete instruction. For example in
the data flow model the unknown arguments in an instruction are used to
indicate the nﬁmber of data tokens required as operands for the instruc-
tion as a whole to ﬁe ;ctivated, whereas in the RCF model an unknown is
an instruction to suspend the activity executing it. Tlhus the overall
organisation of an instructioh is independent of whether it countains any
unknown arguments and an unknown argument can be combined with say a

reduction expression argument in the same instruction.

The principal constructs identified for the representation of con~

trol flow, data flow and reduction program fragments are:

(1) an object containing instructions executed in sequence, providing

the implicit sequentiality of conventional control flow

(ii) the parallel operator (Ear) which initiates the independent exe-
- cution of its operand , explicitly providing the form of con-

currency found in parallel control flow and data flow

(1ii) the wunknown (?) and exclusion (excl) arguments explicitly
representing the synchronisations used in parallel control flpw
(?s indicating the requirement for control tokens), data flow (?s
indicating the requirement for data tokens) and reduction’s lazy
evaluation (excl preventing multiple simultaneous executions of

an object)

AN

(iv) - a data item which identifies (or returns) itselt, providing the

literals found in all models

- 151 ~

(v) two kinds of address selectors, namely /seleval céusing the
selected object to be itself executed, as in reduction, and /sel"

just identifying the selected object, as in control flow

Although these constructs were principally motivated by the need to
explicitly represent control flow, data flow and reduction style
instructions, they were shown to be of general utility in the organisa-

tion of programs.

Also important in the representation of redﬁction and data.flow is
the generality and flexiBility of the storage, addressing and exécutidn
structures. The storage and addressing structure allows an
instruction’s operand to be a nested program étructure as required for
reduétion, and allows a result argument to address an operand within
another 1instruction as required for data f£flow, or to address the
instruction itself as required for reduction. The execution structure
of multiple trees of activities includes, as limiting cases, the single
activity of control flow, the multiple independernt activitieé of data

flow, and the single activity tree of reduction.

An important consideration in control flow, data flow and reduc-
tion, discussed in Chapter Two, 1is their different control and da;a
mechanisms. The RCF architecture has a sequential control mechanism in
thé sequential execution of an object’s component instructions, a recur-
sivg céntrol mechanism in the recursive evaluation of an operator’s
operands, and a parallel control mechanism in the independent execution
of an operan& of the special parallel operator. The architecture incor-
poratés what is basically a by-reference data mechanism with an

operator’s operands and results being accessed from and stored into

- 152 -

explicitly addressed locations. However the storage and addressing
structure allow any operand (even an array) to be adjacent to the opera-
‘tor, as in the by-literal mechanism, and a result to be stored directly

into another instruction as in the by-value data mechanism.

4.4.2. Recursive Structuring

The sccond aépect of the RCF architecture is as one possible reali-
safion of the recursive architecture principles for the organisation of
decentralised systems., A :ecursiﬁely structured system provides a gen-
eral recursive framework which embodies the essential principles of the
system and a relatively arbitrary set of primitive constructs. The
recursive structuring principles identified in Sections One and Three

are:
(1) a recursive storage structure of nested variable length objects

(i1) a contextual addressing scheme in which an address is a - sequence
oﬁ selectors with the first selector being relative to the pre-
established position of an activity and each subsequent selector
being relative to the position identified by its predecessor in

the sequence

(1ii) a recursive form of program representation with an instruction
consisting of (operation, input and output) argument objects any

of which may be a nested structure of instructiouns

~

(iv) the recursive execution of objects by dynamically created trees
of concurrent activities with communication along the arcs of a

tree

- 153 -

(v).~ a recursive machine organisation of nested computing elements
connected by local communication systems with all computing ele-

. ments at all levels supporting the same basic interface for the
addressing of objects 1t contains, the migration of activities
between computing elements and the communication of objects

between activities in different computing elements.

In order to investigate the application of these principles, a particu-
lar set of primitives were identified for the RCF architecture and 1its
implementation. These primitives included, for example, sequence delim-

iters, simple positional selectors, and copy and take actiouns.

The most iﬁportanF benefits of the recursive principles are the
modularity and flexiﬁility of the resulting architecture, and its local-
ity and extensibility properties. Within the framework of the essentlal
concepts sﬁmﬁarised gbove, there 1s a considerable degree of logical
independence between different entities in the recursive structure. In
the object and addressing structure, each object O provides a local
address space 1n which a selector s (such as "first component" or 'mext
component") is independent of the possibly changing address spaces con-—
taining O and internal to 0’s components, and independent of the other
selectors in the address of which s is a parg. The general framework of
a particular operation/argument message interface, such as "execute and
copy" for input arguments and "execute and replace" for output argu-
ments, can accommodate interaction; between a variety of types of opera-
tion énd ‘argument objects. These include primitive operators and data
igems, procedures and ﬁarameters, program defined operators and data

types (where operation and argument objects may be complex program

- 154 -

structures) and even '"objects" which correspond to special-purpose com-
puting elements. Such different types of objects may be freely combined
in a progrém,'even in a single instruction, and the implementation of a
particular object may éhange without affecting the program structure
using it. In the recursive méchine organisation, a computing element is
concerned purely with the communication between its component computing
elements, but not with their internal organisation. Thus there 1is a
1ogica1A independence between component computing elements any of which
may be priﬁitive or struétured and general-purpose or specilal-purpose;
and a physical independence in that communications within a particular‘
component are supported entirely by its local communications system. To
the extent that programs exhibit locality of reference and logically
"close" objects are allocated to physically close computing elements,
there will be a minimisation of glqbal communicaﬁion, which is perhaps
the single most important design goal for a decentralised system imple-
mentation whether at the level of asynchronous components within a sin-

gle chip or at the level of a geographically distributed network.

The two kinds of extensibility that were discussed were 'outward"
extension of connecting together previously separate computing systems
into a network, or comnnecting together replications of the same computer
design to give a more powerful design; and "inward" extension of replac-
ing a single computing element with a sub-tree of .computing elecments,
The recursive system structure ensures that such extensious can take
place withoqt encountering address space limitations or requiring major
re-design o; re-programming. Most importantly the extended computing
system has an homogeneous address space, existing addresses retain their

validity, and there is the same mechanisms for communicating between

-155—
different parts of the program structure.

The.main emphaslis in this Chapter has been on the applicatioh of
the recursive vstructuring principlés to concurrent computer archit¢c~
ture. Those principles eﬁphasise the relationship between éntities
(objects, selectors, 'instructions, aétivities and computing elements)
rather than the characteristiqs of the entities themselves. As a conse-
quence of this abétraction the general principles can be applied at all
levels of computing systems organisation. For example an object can
represenf any level of information structﬁre from an integer to a file
or group of files. The same addressing scheme and accessing operations
can be applied to selecting and manipulating an integer.in an array, or
a file in a directory. The communication between concurrent activities
can model all communicaﬁion within a computing system frbm the communi-

.cation of a simple data item as an operator’s operand to the communica-
tion of large data structures between concurrent processes executing in
different computers. The recursive machine organisation can be applied
at any level of implementation from that of a VLSI computer to that of a
geographically distributed system. At the former level computing ele-
ments would be'single chips or even parts of chips and a special-purpose
computing element would provide for example floating point operations.
At the network level computing elements would be separate computers and
a spécial—purpose element would be for example a print server. The
essential difference between the different levels of computing systems
organisatioq lies in the degree of complexity of what are viewed as the

" primitive engities (size and sub-structure of objects, sophistication of

addressing selectors, "power" of instructions and the logical activities

and physical processors needed to execute them)., As will be discussed

156

more fully in'the next Chapter, these differences motivate corresponding
implementation differences at different levels of recursive systems
organisation. Despite such differenées, the RCF architecture can pro-
vide a cbmmon programmingrmodel which allows multiple computing elements
within a computer and multiplé computers in a network to be programmed
to cooperate in program execution in the same way, and facilitates
changes in system organisation such as increasing geographic distribu-

tion or increasing integration of components onto a single chip.

- 157 -~

5. PRECURSIVE SYSTEMS IMPLEMENTATIONS

This Chapter covers a number of computing system implementations
thch, An varyirng degrees, incorﬁorate the principles of recursive
structuring discussed In - the preceding Chapter. The first system
described, referred to as IEQO, is a parallel computer designed as part
of this thesis work specifically to shpport the RCF model. The remain;
ing four systems are: a computer mnetworking extension to the UNIX
‘6perating system (UNIX United); a reduced instruction sgt parallel con-
puter (RIMMS); a recursive computer architecture (R.M.); and &n inter-
preter for a programming language based on the KCF operational model
.(BAS]X). These are more or less independently concelved systens
included here to illustrate possible alternative realisations of the
recursive architecture concepts and as a basis for discussing various

implementation issues,

The UNIX United system is an illustration of ‘the application of
recursive structuring concepts in the context of conventional computer
networks., RIMMS is closely related to the KCF work, representing an
intermediate stage bcetween conventionzl computer architectures and the
full generality of the RCF srchitecture, achieved by minimal extensions‘
to a conventional microcomputer design. The k.M. architecture is the
one example, other than .the RCF architecture, of principles of recursive
structuring being used throughout a parallel computer design - the prin-
cipal difference between the two is in their models of pregram execu-
tion. EAS1X'is a concurrent programming language rather than a parallel
computer or computer networking design. It is included only becauvse it

is directly based on, and constitutes the first completed implementstion

- 156 -~

of, a recursive control flow model. Finally a number of general design
issues in the implementation of a recursive machine organisation are
discussed in the context of the UNIX United, RIMMS, K.M. and LEGO

designs.

5.1. The LEGO Design

The LEGO recursive computer design is based on the ggneral recur=—
sive machine orgénisa&ion of Figure 37. 1t comprises a basic parallel
computer design which can be extended to allow connection into higher
levels of recursive machine organisation. The basic design, illustrated
in Figure 38(a), 1is for a parallel computer comprising many (upto & few
hundred) identical general~purpose computing elements (CEl - CEm) con-
pected into a ring. In addition there is a control element (Ck0) rper-
forming special functions such as initialisation and external communica-
tion. Each element is intended to be implemented as a single LS1 chip.
The detailed design of these chips 1is currenfly being produced by
another member of the Computer Architecture Croup. 1lhe components of a
computing element are a memory element (M), processing element (P) and
communications unit (C). Each of these is connected to the correspond=
ing components in the two adjacent computing elements. 1lhe control ele-
ment CEOQ is principally concerned with communication functions and does
not have any general. processing or memory element. The following
description of a computing element’s functional organisation (Figure
38(b)) represents the starting point for the the detailed design and
chip layout.WOrk. Square brackets [...] are used to indicate estimated

information about the detailed design.

- 156 -

(c) multi-computer organisation

VO S D g

®es s one
esoesscs v ee

.-Proce
= e E O i Dreesccscccccscns
OO = &2t XN

oe 0 B 490 400 B lC
[I I R -

es svee

O D 3 i Dot ol X

M

!

_L

(a2) computer organisation

| 1
- i i A~
: &0 . ~ T o
A sLo—s—= =
& @ &
Q w 1= ~
=] Y] o o
L2 8 9 - 2
oA gl o= o
S B g
Lo N ~
F=—o] o=z
S o - | R | ~
I M“Ilvtllnwiqmw %rr%ullp‘llM rw
0@ o ~ A

<=
RG

(=

[

(016117}
TE(

=> (=

]

R2ZIIR3] R4 LIRS

=> <=

=>
RO} {R]

E:

DEQ

(b) computing element organisation

LR

Figure 38 = LEGO Implemeutation

- 160 -

S5elale: Memory

The total memory of the computer supports a hierarchic structure of
variable-length objects, the program string, represented as a sequence
of "quats". Each quat is one of the four symbols — (and) structure
symbols for delimiting objects énd 1 and O bit symbels for encoding
primitive objects (such as integers and machine code instructions). 1lhe
memory-memory connections between adjacent computing eleﬁents allow
movemént of the string around the ring as different parts of the total
object structure expand and contract due to insertions and deletions.
For example, in Figure 38(a), if new components were being inserted in
object D and components were being (independently) deleted from F then
;here would be a general anti-clockwise shifting of the intervening sec-
tion bf‘ the string. This shifting maintains the total sequencing of
symbols whilst moving free storage capacity to the area where it is

needed .

An individual computing element’s memory, as shown in Figure 3&(b),
is physicaily organised as two double ended queues (DEGs), one on each
side of the processing element. These provide variable length storage
[for uvp to 106 symbols] which accommodate local string expansion and
contraction and the shifting of the string between adjacent computiﬁg
elements. Fach DEQ provides the processing element with a stack inter—
face (push and pop operations) which allows insertion of symbols into
the string (push), deletion of symbols from the string (pop) and shift-
ing of the éfring in either direction (pop and push on opposite sides).
Fach DEQ of one computing element is connected to the complementary LEG

of the adjacent computing element. This connection is used to shift

- 1€l -

symbols from one DEQ to the other in order to balance the numler of sym-

bols held by each.

5.1.2. Processing

Each processing elemen; can support (be occupied by) one activity,
exécuting instructions contained in its associated memory element. 1lhe
activity’s position in the string, indicated by the } in Figure 3&(b) is
between - the two symbols at the internal ends of the two memory DEGs.
Fach activity can have a superior activity (identified as RQ) and up to
six subordinate activities (identified as Rl ... R6). An activity can
either be executing the program stfing, or executing messages, such a
copy instruction sent from its superior. 7he same machine code instruc—
tions are used in both cases. For example the I->> addressing selector
is a machine code instruction which can be executed as an address argu-
ment In the program string. Alternatively an activity executing an
operator argument can send that selector iﬁstruction as part of a mes-
sage to be executed by a subordinate activity, in oxder to position the
subordinate at one of the operand arguments. 1The instruction set pro-
vides: data operations such as arithmetic functions on integers (of any
length), 1logical functions on booleans and comparison and conditional
selection functions on arbitrary objects; the addressing selectors /<;,
/->, [in, [out, [esc, [start, [end, and $Rn (identifying a particular
related activity as the base for base-relative addressing); creation ot
subordinate activities; communication between activities; copy, take,
replace, josert and execute actions on objects (of any length); and the

? and excl synchronisation primitives. 4n instruction is a variable

length object [4 ~ 12 btits]. A full instruction set 1is described in

- 162 -
Appendix A.

A vacant processing eleﬁent, i.e. one not currently occupied by an
activity, 'will shift symEols from one of its DEQs to the other in order
.to balance ﬁhe‘number qf symbols held by eéch. A DEG does the same with
respect to its neighboﬁr in the ad jacent computing element and thus (for
resource allocation reasons discussed telow) the string will tend to
spread evenly over the total memory between successive occupiea process-

ing elements.

Figure 3€(b) outlines the functional organisation within a process-
ing element. The processing element has external access to two of the
symbols stored in the associated memory element, and to single-symltol
input and output buffers (RO - R6) for communication with the associated
reléted activities. The enviromnment [50 bits] accessible to the central
proceésing unit (CPO) includes that memory and communications data, and
some registers internal to the processing element. The CFU functions as
a finite state méchine (implemented as one of more FLAs) which on each
cycle generates a new environment state dependent on the previous
environment. [Typically 15 tits of environment is relevant to the set
of transitions for executing a particular instruction.] As an illustra=-
tion of the possible function of this design, consider the execution of
a + data operation. This is performed bit-serially with its operands
being received from R2 and R3 and its result being transmitted to Rl.
The principal state transition is to set new bit values for the Rl out-
put buffer .and an internal carry register, as determined by the values
oé the R2 and R3 input buffers, and replace the used R2 and R3 input

values with "empty" markers. 1I1f however an input buffer is still empty

- 163 -

or an output buffer still full from a previous cycle then '"no-change"
transitions will occur until the communications system has

filled/emptied the buffers.

Ihe.processing element’s internal registers include: the current
instruction (IR); the current instruction source (CIS) indicating
whether the next instruction is to be taken from tﬂe program string or &
particﬁlar Ro buffer (in either case -‘the instruction is loaded into the
instruction register a symbol at a time); some supplementary state
(SSR), such as the carry bit; and an up/down counter (U/D). 1lhis latter
is used to count matching brackets when compound objects are being pro-
cessed. For example executing a [-> selector involves moving symbols
from one DEQ to the other, counting ﬁp and down the level of nesting as

{ end) symbols are encountered, until the count réturns to zero. [A
counter of 10 bits, allowing upto 1024 levels of object mnesting, is

probably sufficient for ahy size machine].

5.1.3. Activity Migration and Resource Allocation

There are two types of activity migration, local and remote. - local
migration 1s the migration of an activity from its current computing
element to an immediately adjacent computing element, As described dn
detail below, this occurs in order to provide an activity with access to
information (symbols of the program string), or to some hardware
resource (storage 6r processing capacity) which is not immediately
available"in\the activity’s current computing element. 1lhe migration is

“egotgated using the connections between adjacent processing elements,

If, say, the activity is migrating to the right then the sequence of

- 164 ~

symbols occupying the right DEQ of the original computing elcment and
‘ ghe left DEQ of the new computing element are shifted, by the new com-
‘puting element, to its right DEQ. This ensures ;hat when the activity
~has migrated it will retain the same logical position in the information
structure. Thus the two DEQs separating the two computing elements are
emptied before the migration actually occurs, 1lhe actual migration is
achieved by activity state information [8 bytes] being sent as a message
from the old incarnation of the activity to the new incarnation. (The
organisation of the message communication system is such that during the
transmission of this message the new incarnation can safely migrate

again if necessary,)
There are four possible causes of local migration to consider -

(1) To provide access to the string - An activity 1is popping symtols
from the DEQ to its right or left, and the LEQs between itself and
the ne#t activity in that direction become empty. The activity
migrates through the iﬁtervening processing elements until it is
édjacent to that other activity and then swaps position with it.
This type of migration occurs in traversing the program string (as
a result of sequentially executing instructions, performing copy,

take and replace actions, and executing addressing selectors).

(i1) To provide access to storage - An activity is pushing symbols onto
the DEQ, to its right ér left, and all the DEQs between itseli &nd
the next activity in that direction become full. In this case the
rightmost of the two activities is forced to migrate to the pro-
cessing element to its right. 1This produces a pair of empty DEGs

between the two activities and so allows the symbol pushing to

- 165 -

continue. This type of migration can occur in traversing the

exlsting string cor inserting a new object.

(ii1) To provide access to processing elements - An activity is always
created by another activity, at the same position in the string,
and at creation fBe new or original activity is fprced to migrate
to the processiﬁg element to the right (since only one activity can‘

océupy the original processing element).

(iv) Propagated'migration -~ An activity P is forced to migrate to the
right (és in (ii) or (iii)) to obtain resources (for itself or pos-
sibly in (ii) for the activity to its 1eff> and the required
resources are ndt immediately available. Eefore P can migrate the
destination processing element must be vacant and the intervening
DEQs empty. If there is an activity Q occupying the required pro-
cessing elemenf then the original migration of P is propagated to G
- Q is forced to migrate to its right, possibly torcing further
propagated migratibn. Once Q has migrated P’s migration. can be
completed. (Emptying of the two DLEGs can also cause further
activity migration, as in (11), since 1t will involve pushing sym-

bols onto the DEQ to the right).

The local migrétion mechanism thus provides a simple scheme for tﬁe
decentralised allocation of processing and memory resources uhich
ensures that local resource requirements are always satisfied if there
are sufficlent free resources anywhere in the machine. 7lhis scheme
relies on the circuler connection of computing elements which means that‘
a free resource can always be considered as being to the right of the

particular computing element needing it.

- 166 -

Anlimportant aspect of the resource allocation scheme is that the
program string expands and contracts not only in response to insertion
and deletion of objects but also in response to the creation and termi-
nation of activities within them. For example consider the expression
(* (eeeheee) (eweBess)). The machine code program for this expression
might initially be in one comruting element’s memory. 1The activity exe-
| cuting the multiply wiil create subordinate activities to execute the
(eeshse.) and (ee.Bees). These activities must migrate to the next two
lcomputing elements and in doing éo they, so fo speak, sweep the two
objects in front of them. 7Thus the {eeeleee) and (eeeBees) are shifted
to two different computing elements where they are executed con-
currently. Generally, an executing progrem fragment will expandrover
sufficient computing elements to provide the necessary processing
resource;, and will subsequently contract again when it no longer needs
those resources but énofher e#panding part of the program structure
does. As mentioned above, the operation of vacant computing elements is
such that the program string will tend to spread evenly over a numlber of
adjacent vacant computing elements. lThus 1f there are spare memory
resources in the neighbourhood of an inactive program fragment (i.e. one
containing no activities) the program fragment will expand over those

resources in anticipation of the expansion-that will be needed if it

does become active.

‘ihe other, remote, type of migration is initiated by execution of a
S$Rn type of selector supporting base-relative addressing. 1lhis selector
positions aﬁ“activity directly at another acfivity which may be anywhere
in ;he program string. Remote migratioh is negotiated by a message to

the specified destination activity (Rm) using the general communications

- 167 ~

systém, rather than by wusing the direct connections between adjacent
processing elements which are provided to facilitate local migration.
On receipt of this message, the destination activity’s computing element A
initiates a new incarnation of the migrating activity in the adjacent
brocessingb element (gs in case (iii) above) and then the state of the
migrating activity is transmitted ffom the old incarnation to the new

incarnation just as occurs in local migration.

5.1.4. Communications

The communications units together provide a communications system
for the transmission of messages between related activities in possibly
non—-ad jacent computing elements. This conmunication system functions as
two slotted rings rotating in opposite directions (LR, left ring, énd
RR, right ring). Each symbol of a message is transmitted as a separate
packet 1in a passing empty slot of one of the rings, and is acknowledged
when it has been accepted By the destination proceésing element. lhe
acknowledgement provides simple flow control - the destination has only
a8 single-symbol buffer, and so a further symbol cannot be sent until the
buffer has been emptied. One reason for using only single symtol
buffering is that when an activity migrates from one computing clement
to another, any message symbols that had been received by the old coﬁ—
puting element, but not yet processed, must be transferred to the new
computing element, Single buffering for such unprocessed symbols
reduées the amount of information to be transferred and simplifies the
migration mechanism. If a buffer contains a symbcl of a message then

there cannot be another symbol packet in transit and thus the buffer

contents of a migrating activity can be sent to its new incarnation by

- 168 -

the normal message pacssing mechanism with no danger of packets arriving
there out of sequence. Also, as will be discussed later, programs can
easily be organised to use the variable length object structure for

efficient, unbounded, buffering.

Associated with each output buffer is a routing flag (=> or <=) to
determine which of the two rotating rings is to be used for transmitting
symbol packets from that buffer. (An acknowledge packet 1s always
transmitted in the reverse direction from that in which wés received the
symbol packet being acknowledged.) This routing flag is an estimate of
which direction provides ihe shorter path to the destination. 1lhe comn-~
munication channel between two activities is established when one (the
superior) executes an instruction to create the other as its Rm subordi-
nate. The two activities will be initially in adjacent computing ele-
ments and the creating instruction specifies whether the subordinate is
created to the right or left of its superior. 7lhat information deter-—
mines the initial setting of the RO flag in the subordinate and the Rn
- flag in the superior. Subsequent migration of the activities csan result
in a routing flag indicating the "wrong" directions, i.e. the direction
in which packets have to travel more than half way round the ring. Cne
scheme for correcting the routing information is to divide the ring into
a number of sectors and to provide in an acknowledge packet a count bi
the number of sector boundsries which that packet has crossed during its
transmission. The receipt of an acknowledge packet with a sector count
exceéding‘ half the total number of sectors indicates that the packet
which it acknowledges was (probsbly) transmitted in the wrong direction.
This “causes the routing flag of the appropriate output buffer to be

inverted so that the next symbol packet will be sent in the '"correct"

- 16S -

direction. This scheme requires that a number of computing elements
(evenly spaced around the ring) are "sector boundary" elements. The
communication unit of such an element will increment the sector count of

any acknowledge packét passing through it,

There arevtwo circumstances in which the routing information should
be corrected. Firs;ly two related activities may cross. lor example
activity R2 inifially.to the right of its superior executes a /<{— selec-
tor which re-positions it to the left of its superior. Secondly the two
activities may migrate further apart until they are separated by mote
than half the total number of computing elements. lhe formér clr-
cumsténce, of activities crossing, is likely to be the more frequént,
and also the more important to detect since the two activities will typ-—
ically be very close in the "correct" direction, and thus very distant
in the "wroné" direction. Three sectors is sufficient to &always deal
with this circumstance and is a particularly appropriate choice since
the same amount of information (2 bits) is neecded for the secter count
in an acknowledge packet as is needed for the symbol carried by a symtol
packet. Also the neéd for a "sector bhoundary" element to increment a
2-bit sector count in a passing acknowledge packet is unlikely to be a
.limiting factor on the packet transmission rate. Yor the other ciir-
cumstance, two related activities migrating very far apart, the likeli-
hood of correct detection by this scheme depends on the number of sec-
tors. With only three sectors, the worst case is that a packet may
traverse two-thirds of the ring in the "wrong" direction, rather than
one-third 5ﬁ‘the "correct" direction. The expected lccality properties
of programs suggest that this circumstance will be relatively rere.

" Thus the additional complexity of increasing the number of sectors in

- 170 ~

order to better handle this circumstance would be unlikely to be effec~

tive.

The addressing of messages in the communicatiop system is in terms
of ;logiéél activities rather than physical computing elements since an
activity may at any time migrate from one computing element to another.
For a message from an activity to a subordinate, the destination is
identified as A/n where n specifies the particular subordinate and A 1is
an activity identifier, unique witﬁin the éomputer. For a message from .
a subordinate to a superior, the destination is identified as A/0. An
activity identifier, A, thus identifies a (bi—difectional) logical chan-
nel carrying all communications between that activity and its subordi-
nates. (Those, leaf, activities that do not currently have subordinates

do not need identifiers.)

The computer maintains a decentralised pool of activity idenﬁif-
iers, the number of identifiers being equal to the total number of com-
puting elements in the computer. (The number of activities mneeding
identifiers is naturally bounded by the number of computing elements,
although generally is much smaller). Each activity identifjer is either
‘allocated to a particular activity, in wﬁich case it is part ot the
state of that activity, or it is free in which case it 1s held in an
identifier store within the communications unit of some computing ele-
ment. Each identifier store can hold one such free activity identifier.
When an activity needs to be allocated an identifier (i.e. when it first
creates a su?ordinate) it places an "allocate" message on one of the
rbtat}ng rings. 7That message will be serviced by the first encountered

communications unit with a non-empty identifier store. The didentifier

- 171 -

is taken from that store and sent to the requesting activity, leaving
the store empty. Whén the activity terminates, it releases its activity
identifier by emitting a simiiar de-allocate message carrying the freed
activify,identifier. This message is serviced by a communication unit
with .an empty identifier store into which is stored the freed identif-

jer. \

‘Ihere are similar mofivations for this scheme for the allocation of
acﬁivity identifiers (logical communication channels) and the scheme for
the allocation of processing and memory resources. Loth resource allo-
cation schemes are fully decentralised. Resource requirements will gen-
érally be satisfied from locally available resources. lLowever a
requirement will if necessary be satisfied by an available resource any-

where in the machine.

5.1.5. Control Elemént

The principal function of the control element, CEO, is to interface
the ring of computing elements to its external enviroﬁmént. The exter-
nal environment may be a higher level of recursive machine organisation
with the computing element ring functioning as one component of a
multi-level LEGO machine. The role of the CEQ element in such an organ-
isation is discussed ih_the next Section. Alternatively, as 1s the case
~for Figure 38(8), the computing element ring may function as a complete
LEGO machine. In this case the external environment would be a user
terminal or_gduring development) a conventional host computer. The CEC
eiemgpt of a complete LEGO machine has three functioms. Firstly there

is the machine’s initialisation, Initialisation includes establishing a

- 172 -

different "activity identifier" in the frec activity identifier store ot
each computing element’s communications unit, and establishing particu-
lar. compufing elements as ‘"sector boundafies". lhese initialisation
functions could be implemented by constructing each computing element
slightly differently. However (for at least manufacturing yield rea-
sons) it is preferable to make all computing elements identical and
establish these minor differences by messages transmitted from CEO to
other elements during an initialisation sequence., . lThe initialisation
sequence would also need to establish a 'null" initial program state

“with all processing elements vacant and memory DEQs empty.

The éecond, principal, function of CEQ0 is interaction with the
external system. The basis for this interaction is a "monitor" activity
which is created as the final stage of initialisation. (It would be
initially created in a particular computing element, say CEl, but could
subsequently migrate as can any other activity.) The monitor activity
behaves as the subordinate of a conceptual "user"iactivity residing in
the external system. The monitor activity has its superior activity as
. instruction source and will respond to messages received from its supe-
rior in the same way as does any other activity. The communication unit
of CEO will inject into, and extract from, the communications system
messages between the monitor and the user activities, in the same way és
does the communication unit of any computing element. The messages gen—
erated for the monitor by the external system would be standard machine
code instructions and other objects (as described in Appendix A). Tlypi-
cally therekhould be messages to: insert a program object into the

object structure; create an independent activity to execute that program

object; create subordinate activities to read different parts of the

- 173 -

program structure in order to monitor the execution progress of the pro-
gram and retrieve results being generated for output; possibly insert,
and create activities to execute, new "diagnostic" program fragments;

finally, delete the entire program object.

The third function of the CEO element would be monitoring the
behaviour of the computerlitself (rather than the program it is execut-
ing). For example, it could collect and provide the external system
wi;h information about message traffic. Also it would be possible to
incorporate in the computing elgﬁent design facilities to allow CRG to

determine, for example, how many computing elements were vacant at a

particular poinf in time.

5.1.6. Multi-level organisation

Figure 38(c) shows part of a multi-computer organisation comprising
a ring of computers each having the internal organisation of Figure
38(a). This extension Involves changing the role of the CLO control
element in each computer’s local ring, but requires no changes to the
design of other elements or their interconnections. 1The multi-computer
organisation 1s exacgly the same as that within an individual computer.
Externally each computer, through its CEO, functions exactly as one of
its computing elements, with memory, processor and communication connec-
tions for the shifting of objects, migration of activities and transmis-
sion of messages. The CEOQ elements of adjacent computers connect the
memory and pfocessing elements of one computer’s low order computing
eiemgpt to those of the adjacent computer’s high order computing ele-

ment. The effect is exactly as 1f all the computing elements of all the

- 174 -

computers were connected in one large ring,.wifh CEQO elements forming a
higher level communication system by which a message from, say, CEm in
COMPUTER]1 to CEl in CGMPUTERB; by-passes COHPUTE32'S local communica-~
tions system. logically, migration of activities and shifting of pro-
- gram string over compﬁter boundaries is exactly the same as within &
computer, although there may be physical differenées such as élowe;
transmission and different transmission progocols (in which case the
function of a CEO elements would include interfacing between internal

and external transmission).

A CEO element has principally a communications function similar to
that gf a gateway node connecting differgnt computer networks. It must
recbgnise-whether a message received from an adjacent computer is des-
tined for a computing element within its.computer, and 1f so switch it
into the local communications system. Similarly it must when appropri-
ate switch messages from the locél system onto the more global system.
Within a local communications system, a message’s déstination is identi-
‘fied by a locally unique activity identifier. Within the more global
communications system there must be a different set of unique activity
1dentifiers for identifying messages between superior and subordinate
activities in different computers. (Locality considerations suggest
that 1in the majority of cases an activity and 1ts subordinates will ail
be in the same computer, and so the number of more global activity jden-
tifigrs required is much less than the total number of local activity
identifiers in all computers.) In switching a message from one communi-
cation levél to the other the CEO also performs the mapping between

local and global activity identifiers. Thus a CE0 must maintain &

(two-way) identifier mapping table which 1is updated as activities

- 175 -

migrate in and out of the associated computér. Within the multi-
computer organisation there will be a control computer, COM}UlERO (not
shown), serving the same role as the CEO control element within a single
compuigr. That is, either connecting into a yet higher level of recur-
sive machine organisétién or interfacing to an external user system.
This general scheme clearly extends to higher lévels of machine organi-~

sation in the same way., -

5.1.7. Discussion

The principal motivation for the LEGO design was to obtain a rea-
sonably simple machine supporting the full conceptual sophistication of
the RCF model and ggneral recursive machine organisation. 1lhe machine
instruction set provides all the basic mechanisms for the various forms
of program representation and execution discussed in the 1last Chapter,
In contrast, both the other major recursive systems implementations to
be discussed in the following Sections, the UNIX United networking sys—
tem and the R.M. computer architeéture, support models somewhat less
general than RCF (although the UNIX United and KCF model are remarkably

close) .

Three major aspects of the general recursive machine organisation
were discussed in the preceding Chapter, nsmely extensibility, locality
and special-purpose computing elements., The LEGO design is fully exten-
slble to any level of recursive machine organigation and the resulting
ﬁulti-]evel\?esign provides a hierarchic communication system supporting
pfogr?m locality. Even within a single level design with a large numter

of computing elements, the two counter-rotating communications rings

- 176 -

p?ovide some degree of locality. lﬁe executioné of, say, two (adjacent)
programs by two‘non-overlapping sub-trees of activities will proceed
largely independently, with no communications interferencé. (The only
interaction between two‘such disjoint computations is beneficial in that
they effectively shar§ a common pool of processing and memory resources
around their‘mutual béundary.) The LEGO design cannot however support
special-purpose computing elements in the way Qiscussed for the general
" recursive machine organisation, since that would require a particular
object to be permanently resident in a particular special-purpose com-~
puting element. Such a reéuirement would compromise the LEGO resource
allocation scheme which depends on objects being'able to freely shift

around the ring of computing elements.

There are some particular aspects of the LEGO design which allow a
computing element to be reasonably simple, considering its generality.
Firstly, there is the small emount of external informatioﬁ directly
accessible to a processing element., This information consists of the
two symbols on eithgr side of the activity in the program string, and
one symbol each of messages to and from a few (typically three) related
activities, Consequently the CPU has a simple cycle for the serial pro-
cessing of data. An important aspect of this design is that the most
basic level of a CPU cycle accommodates the asynchronous communicatién
of information between computing elements, an essential element of the
RCF.model. At this level the main problem of the IEGO design is 1likely
to be a processing/communication imbalance. The un-tuffered communica-
tion of siné]e—symbol packets via off~chip connections, is unlikely to
keep ~pace with the CPU processing of, purely on-chip, information.

There would be a closer balance for a VLSl realisation (much more in

- 177 -

»keeping with the general design philosophy) whefe each chip couvld con-
tain a number of computing elements with a significant proportion of the
communications being via much faster, on-chip, communication paths.
Such én implementation would use .the multi-level design of Figure 3¢&(c)
with each CIMPUTER being a single chip, and a CEO element providing the
only off-chip connections (which are the same as those for a single com-
puting element LSI chip). 1t might also be desirable to provide multi-
ple buffering.ahd to use multi-symbol packets vtransmitted in parallgl
(achieving a better balance between addressing information aﬁd useful
data)., Such a widening of the communication path would be more viable
for a VLSl implementation than for ;n LS1 implementationbsince in the
latter the computing element design is constrained by off-chip band@idth

limitations.

A second, related, aspect is the choice in the IEGO design of pro-
viding quite' low 1level instructions, closely corresponding to basic
machine operations, and the direct implementation of the general modél
without any optimisations. These aspects of the design can result in
sigpificant program representation and execution inefficiences. laking,
as an extreme example, the expression (< 2 3) which compares two sim=
ple constants. The operator would require a number of machine code
instructiéns to createv subordinate activities, position them at tﬁe
operands, iqstruct them to execute thbse operands and finally to perform
the actual (bit-serial) comparison of the returned results. The chOice
of providing such primitive machine code instructions, rather than say
implementiné‘ each operatof as a single machine code instruction, is
partly to keep the computing element design simple and partly to facili-

tate experimentation with different operator types (such as streamt) and

- 178 -
other constructs at the program organisation level.

The execution of (€2 3) involves the full mechanisms for creat-
ing, and allocating computing élements ‘to, subordinate concurrent
activities. The advantage of this approacﬁ is that the same instruc-
tions and megﬁ;nisms "deal with, say, (€ (eecheve) (eveBaes)) where
(ev-A...) 2nd (...B...) are complex program fragments returning large
nested data structures. However for a realistic implementation it might
well be necessary to complicate the design by incorporating some optimi-
sations. .For example, it may be deéirable to provide special instruc-
tions for the common cases where an operator’s operands are values or

addresses short enough to be loaded into CPU registers and processed in

a more conventional way.

Addressing is based on a very primitive (almost minimal) set of
selectors which can give very inefficient program representation. For
example selecting the 2.1s! component of an object will réquire twenty
/~> selectors. For a realistic implementation it would be necessary to
include the fuller set of selectors given in Figure 25. lhe DEQ
memories provide a simple hardware mechanism for storing and accessing
Qariable length objects. One consequence of this implementation,
reflected in the machine code definition, is that when an activity
accesses, e.g. copies, an object, it is necessarily re-positioned at the
following object. This is convenient when serially accessing adjscent
objects, but inconvenient when repeatedly accessing the same object.
The main Congequence of the DEQ memory implementation is that interpret-
Ing an address to position past an object requires a scan of the whole

sub-structure of the object (different parts of this scan may be per-

- 175 -

formed in sequehce by different computing elements). 4n approach to
alleviating'this problem (adopted in the R.M. implementation io be dis~
cussed later) is for a computing element of incorporate an index to the

structure of its part of'the program string. One simple indexing scheme

is the following -

MEMCRY
relative level | left index right index
index o @
string —_— (010) (evee)) (aee)) ((ees)
| (R A { |
"absolute" —| 7 7 76 6 56 6
level

The left (right) index records the difference of program string nesting
level between the position at the memory’s left (right) boundary and the
least nested position in the memorf. As, say, a [/-> selector scans an
object, say' 03, a count 1is maintained of the current nesting level
within OB. 1If, when the scan reaches this memory, the count is greater
than the 1left index then the.end of OB is not conéained in this memory
and the scan can immediately continue at the next memory (with the count
being decremented by the value in the left index and incremented by the
value in the right index). A simple algorithm for maintaining these
indexes involves incrementing and decrementing them as delimiter symbols
are shifted across the memory’s boundaries. (This algorithm can result
in the "safe" error of the indexes both being too high by the same
amount, sometimes causing an unnecessary scan which can be used to

correct them.)

AN

The circular connection of computing elements and the choice of at

most omne activity per computing element results in simple, totally

- 160 -

decentralised, Schgmes for tﬁe integrated allocation of processing and
memory resources to activities and program string, and for the alloca-
tion of 'logical channels (activity identifiers) for communication
between activities, The restriction to a single activity per computing
element; and the form gf.memory organisation, can lead to excessive
migration of activities and shifting of program string, particularly in
view of the frequent creatioﬁ of subordinate activities implied by the
direct implementation of the genéral RCF model for even simple instruc-
tions. This can clearly lead to poor performance, particularly for con-
ventionally organised programs which do not exploit any of the machine’s

concurrency and communications potential.

Performance is not a major motivation for this design and the
design choices discussed above were principally motivated by the result-
ing simplicity of the initial implementation. Lowever it is worth dis-
cussing the machine’s behaviour for a style of program better suited to
its capabilities than is the conventional style. ferformance will be
best' for program fragments in which a particular pattern of activities
is maintained for a reasonable length of time. Figure 39 shows an exam-
ple program fragment with this characteristic. 1his progrem fragment is

a development of the data flow style of iteration using stream cperands,

shown in Figure 33 of Chapter Four, and is represented using the nota-

tion developed there.

"The operator of 11, itert+ is similar to the streamt of Figure 33.
The exeCﬁtin activity P positions subordinstes, Q and R, at the start
of its "stream" operands (the value sequences al, a2, a3 , etc., and bl,

b2, b3, etc.), and subordinate activity S at the end of its stream

- 181 ~

result. For-this 1535 type of opefator the executing activity P then
repeatedly performs take (destructive read) actipné on the objects at
which Q and R are positioned and adds the returned values, am and bn, to
produce a result e¢n., This result is sent to S as part of an imsert

action to append that result to the end of 12’s operand stream.

I

other instructions
a8 9

3 il: A: ~ B:
ceopar (Hitert (J a6 a7 1(2)) (fb6b7E8Y (D)) /C) ..

- —— Re = ==/
W _—=w

cs” 1

Figure 39 - Execution of Iterative Data Flow in RCF

Instruction 12 has the same structure as il except that the second
operand is an embedded literal, implemented as the object (:= 6 /fout).

This has the normal (as opposed to stream or iter) type of operator, i=,

to return its single operand 6. It is followed by an fout address to
re-position the executing activity outside the object which it then re-
executes, thus returning a stream of constant values to its invoker. An
operator such as iter+ in this representation is actually a sequence of
primitivé‘ machine code instructions to achieve the'described behaviour.
(Actggl machine code for this example is given in Appendix A as ap

illustration of the instruction set defined there.)

- 182 -

Instructions 11 and 12 would .be pért of an iterated gioup of
instructions, separated by par operators so that they are all executed
- in parallel. On the first execution of the group, the par operators
create activities at all the group’s comporents (such as 11 and 12)
which 1n turn create‘_subordiﬁate activities at their operands and
results. This creation of activities will cause the whole group to
expand over sufficient computing elements to provide a processor for
each activity (causing contraction in other, no longer active, pgrts of
the program). The iteration actually occurs at the instruction argument
level (rather than at the instruction level, as in Figure 33, or the
instruction group level, as in conventional control flow). Each
activity repeats a small sequence of machine operations, remaining
essentially at the same position in the object structure. 1lhe initial
iteration in effect sets up a logical, data flow, net connecting the
computer’s processing elements. As indicated by directed arcs in Figure
39, the flows of data pass through the communications system (solid
arcs) implementing the connections between activities, and through the
memory system (dotted arcs) implementing the stream operands. 1lhese
streams and the DEQ memories supporting them act as buffers in the data
flow paths, accommodating differences 1in execution rates between the
different instructions., After the net has been established, there will
generally be no shifting of the string or migration of activities
between computing elements, The exception is in the case where a
discrepancy in processing rates results in an operand stream expanding
beyond the cgpacity of one computing element’s memory and thus causes

the shifting of the string to provide the necessary local space.

- 1€3 -

The data flow §tyle communication of values from 11 to 12 is
achieved by tﬁe value’s generator P and its consumer P’ being indepen-
dent activities which communicate via mémory. This, as 1n data flow
architectures, allows maximum concurrency but may consume considerable
resources (in this case the storage for the operand streams). In the
case of the second operand of 12, the values are generated by an
activity R’ created as a subordinate of the consumef,‘P’. These operand
values are returned directly on the (unbuffered) communications path
from the generator to the consumer, In this case, flow control in the
commurications system means that the execution of the generator is in
effect driven by demands from the consumer. As in reduction, this
results in effeétively less concurrency, but .conserves nachine
resources. In this case if instruction D were represented iﬁ the same
‘way as instruction i1, with 12’s second operand being a stream, it could
quite rapidly, and uselessly, f11l up a large amount of storage with 6s.
Thus the demand driven execution conserves storage resourc?s. Lowever
the choice of one activity per computing element, with K’ permanéntly
occupying a processing element, means that the possible conservation of
processing resources is not in fact exploited as it might be in a jmple-

mentation which shared processing elements between activities.

The IEGO design discussed in this Section was developed specifi-
cally to obtain a complete realisation of the KCF model and principles
of recursive machine organisation. The following Sectioms cover four
computing systems which, in verying degrees, incorporate concepts simi-
ler to those in the recursive control flow model, recursive machine
orgsnisation and LECO machine design. 1lhe similarities and differences

between the LEGO design and these other systems illustrate a number of

- 184 -

general impleméntation issues which are discussed at the end of this

Chapter.

- 1€5 -

5.2. URIX United

Ihe Newcastle Connection[§3] is a software subsystem, developed at
Newcastle Univefsity, which can be added to each of a set of physically
inter-connected UNIX systems (compﬁtefs running the UN1X[5€) operating
System) so as to construct a distributed system, referred to as thkb
United. The resulting UNIX United system is functionally indistinguish-
able, at both the Qser’s system command language ("shell") interface and
program’s system.call interface, from onerf the UN1X systems from.uhich
it 1s constructed. Thus it meets a principal criterion for a recur-
sively structured system. Although in no way directly part of this
thesis work, UNIX United and UNIX itself exemplify many of the ccncepts
discussed in this Chapter. The system 1is discussed here bLecause it
.illustrétes one end of the possible range of recursively structﬁred com—
puting systems and if provides a particularly familiar context for the
discussion of implementation issues. Also, close analogles that can be
drawn between (often ihdependently arrived at) concepts and mechanisms
in RCF and UNIX provide some evidence of their value. 7The UMNX United
system, being an extension to the existing UNIX operating systen, Has
been implemented quite rapidly and en initial version is currently

available commercially.,

Viewing UNIX and UNIX United as an illustration of the recursive
arch;tecture concepts, the recursive storage structure and contextual
addressing is that provided bty the UNIX filestore a?d the file mneming
scheme, thé\ operational model i1s that embodied in the UN1X shell and
systeé call interfaces, and a primitive computing element is a single

UNIX system.'

- 186 -

The filestore provides three levels of "objects": single, fixed-
length bytes as primitive objects; files as compound objects each
comprising a vafiable length sequence of by@es; diréctories providing =&
.hierarchy 6f higher level compound objects each comprising a variable
number of files and directories. (UNIX does provide the facility for
one file to be linked into several difectories, thus departing from a
pure tree structure; However this feature will be ignored here as it is
uéed relatively infrequently, causes some difficulty in UNlX United, and
is not very genefal in that above the file level there must be a strict

tree structure of directories.)

A file or directory (a filestore node) is specified by an identif-
ier comprising a sequence of context-relative selectors, in the same way
as an objec; is addressed in the RCF model. The principal type of
selector is a name, e.g. brian, identifying a particular node within a
directory (this corresponds to a /n KCF selector identifying a particu-
lar component by its position). 7There are no "gloﬁal" names, each name
beiné relative to and unique within a particular directory. 1lhe file-
store tree structure 1s usually represented as in Figgre 40, where the
nodes represent files or directories and are labelled by tﬁeir names
within' parent directory. The other selector which can be used is the
parent selector, .., which corresponds exactly to the fout selector of
RCF. A complete node identifier, of the form C/sel/sel/..., corresponds
to the base-relative form of addressing in RCF. 71he starting context C
of the identifier is one of two previously identified directories,
namely the ﬁéer's "root directory" or "current working directory". At
;be file 1level there 1s a discontinuity in theA addressing scheme,

with the addressing of bytes within a file being totaliy;Hifterent from

- 187 -

the addressing of directories and files. Each byte is addressed by its
absolute position in the file (corresponding exactly to a /m kCF sclec-
tor) or relative to the current position in the file (corresponding

exactly to a /4m or /-n RCF selectors).

Figure 40A— UNIX and UNIX United Filestore Structure

UNIX United provides a generalisation of the UNIX filestore struc-
fure. Each individual UNIX system has its own tree of directories. 1lhe
root node of the tree is logically an object containing that system’s
complete filestore (in Figufe 40 the directories groﬁpl and group2 could
be roots of separate UNIX systems). There can then be a higher level
directory (or more generally a superstructure of directories) which con-
tains those individual root directories as its components. 1lhe comfplete
UNIX United filestore structure thus forms one tree with a homcgeneous
contextual addressing scheme which is the same as that within an indivi-
dual UNIX system. In fact any directory node in the tree, such &s joln
in Figure 40, can be the root of a separate UN1X system. MNode identifi-
cation 1is \Ehe same regardless of whether UN1X system boundaries are
crossed. In Figure 40 the complete tree might be contained in one UMIX

system, or groupl and group2 might be separate UNIX systems. In either

- 188 -

case, richard's.file] could be identified from the context of brian as

/ee/e/group2/richard/filel.

Ihere are significant similarities between the KCF model of program
execution and the model presented by the UNIX shell and system call
interface. UNIX_provides a tree structure of user processes; each- of
which is executing a program file (object) from the filestore structure.
Associated with a process are a number of file descriptors, each giving
read (RCF copy) and write (RCF replace) access to the byte at a current
position in a file. A file descriptor is dynamically created by an GFEN
command specifying a file identifier of the form discussed above. 1In
UNIX United an OPEN executed in oﬁe machine can identify a file in a
different machine, in which case read and write accesses are implemented
by messages between the two systems, The tree of - UN1X wuser procésses
corresponds closely a tree of RCF activities. A file descriptor
corresponds closely to an RCF activity which is a leaf of the activity
tree, used by its superior to access as data the 6bject at which it is

positioned.,

A UNIX process can create subordinate processes by FOBRK commands.
The subordinate is initially at the same position as its superior, exe-
cuting at the same point in (a new copy of) the same prégram file. 1lhe
subordinate process will then typically execute an EXEC command, moving
itself to execute a different program file. 1The destination file is
specified by a file identifier of thé form discussed above. In the case
of UNIX United the identified file can be in a different UNIX system,
impligitly causing the process to migrate to that system. A subordinate

process initially inherits the same connectivity with the filestore as

- 186 -

its superior, that 1s it is given copies of all its superior’s file
descriptors. This connectivity can subsequently be changed by closing
files and opening different files. These mechanisms in UN1X are very
similar to those in the LEGO implementation of the RCF model. 1In LEGO a
éubordinate activityr‘is initially positioned adjacent ﬁo its creating
activity and typically then executes an address to re-position itself at
the actual object to be executed (which may cause it to migrate to a
different computing element). When an activity dis first created it
effectively inherits. the addressing contexts provided by the other
. subordinates of its superior (as required to support procedure calls

discussed at the end of Section 4.2.6).

One significant difference between UNIX and KRCF is that in the
former there is no ﬁotion of a process being able to address relative to
its own position in the filestore structure (e.g. relative to the direc-
tory from which was selected the program file it is executing). 1lhis
results in a problem with, for example, a library pfograp which uses a
siﬁling program or data file in the same "library" directory. S&uch a
libfary program must contain an identifier for that sibling file, but in
UNIX 'there is no addressing context which can be robustly used for such
an identifier. The omission of "program relative" addressing, which
would easily solve this difficulty, is perhaps a result of the conven-
tional view that main memory in which a program is executed is very dis-
tinct from the filestore memory from which the program is loaded for
executionY (In contrast, RCF at least conceptually uses the same memory

space for both object execution and "permanent" object storage.)

UNIX implements its variable length "object" structure and multiple

- 150 -

process moael 'using standard operating systems ;echniques. lhe byte
sequence comprising a file is stored in a number of (arbitrarily posi-
tioned) disc blocks which are dynamically gl;ocated and released as the
file expands and contracts. A directory (itse1£ implemented as a file)
contains a 1list ofﬁ_its component files and pointers to the physical
blocks in which they are stored. The additional mechanisms provided by
UNIX United are those'.for handling remote file execution and access,
resulting from an EXEC or OPEN cal; with a file identifier that goes
.outside the current UNIX system. Both cases correspond to activity
migration in RCF and involve the migration of a process (the user pro-
cess or a system, file access, process) essentially as was described for
the general recursive machine 6rganisation in Chapter Four,. 1ﬁe migrat-
ing process 1is éﬁbodied in a message by which the process state is
transmitted to its destination. 7The destination is specified by the
file identifier used in the system call to name the remote file. 1lhis
identifier is incrementally interpreted as the process migrates through
the . UNIX systems on the path to the destination., As the process
migrates a logical connection between its source and destination is
established which 1s used for subsequent direct communication. (Each
segment of the complete logical connection is implemented by a system
"forwarding" process in the UNIX system through which it passes.) For a
user process the state that has to be transmitted (of the order of 200
bytes) is principally that providing its connectivity to other parts of

the filestore structure, that is its file descriptor information.

The UNIX United system is 'transparent" in two important respects.
Firstly it exhibits the extensibility properties of recursive systems

discussed previously. Enhancing a UNIX system to be a component of a

- 1¢1 -

larger UNIX United .system Bas no effect on the user’s interia;e, even
though that interfacé then provides access to remote data and program -
files., Users (and their existing programs) which do not exploit the
~enhancement are completely_ unaffected by it (particularly, existing-
filenames retain the%; validity). Secondly, the enhancement is imple-
mented without modification to the standard UNIX software, 1i.e. the
operating system kernel énd various utility programs. 1This is achieved
by the Newcastle Connection software which impleménts the enhancement
being inserted as a separate layer between the kernel and the user (and
utility) programs. To user programs the Connection layer impersonates
the kernel, providing the same system call interface. %T0 the kernel it
impersonates the user programs, using the standard interface provided by
the kernel. The principal function of the.Connection is to trap any
system call relating to a file in a remote system and to implement the
necesséry inter-system communications required to service the call.,

(Other system calls are passed straight down to the kernel.)

5.3. BASIX

BASIX [18] is a compufer programming language ("BASed on the unIX
system command language") rather than a decentralised computing systcm.,
It is mentioned briefly here as it is the first working implementation
of a RCF model, Also its implementation is based on exploiting the
similarities Between KCF and UNIX. Although developed las a separate
projéct, ‘by Isabel Gouveia Lima and David Mundy; there has been design
work by meﬁfers of the Computer Architecture Group, myself and Fhilig

Treleaven, and by a member of the Unix United team, Lindsay Marshall.

- 192 -

The language follows closely the concepté of the KCF operational
model developed in Chapter Four, but at the conventional programming
lahguagg level. An object is either a unit of program structure (a
"block", procedure, expression, etc.) or a-uni; of data structure (é.g.
an array). &n objectf§Acompdnents (e.g. local variables, nestéd data)
can be addressed by name or position. The execution mocdel is that of a
tree of processes (activities) each executing an object, with communica-
tion of resﬁlts from subordinates to superiors. 7The language provides a
fairly conventional syntax for expressions, FOR léops etc. 1lhe syntax
for specifying relationships between concurrent processes (data communi~-
cation and synchronisation patterns) is largely based on the syntax of

the UNIX shell system command language.

The BASIX implementation is an interpreter which runs on the UN1X
operating system. ‘The UNIX filestore structure and processes are used
to implement the object structure and concurrency (for reasons of imple-
mentation expediency rather.than efficiency!). The main benefits found
in the use of the language are the ease of organising concurrency and

information structures.

5.4. RIMMS

The Reduced Instruction Set Multi-Microprocessor System (RIMMS|34])
is a parallel computér, supporting a multi~thread control flow model,
which has been influenced by some of the RCF concepts., lts design
attempts to\gpply the reduced instruction set design philosophy[64] to a
paral}el conputer. The overall design of RIMMS has been worked on as a

joint venture by members of the Computer Architecture Croup, including

- 193 -

myself, with detailed'design'énd implementation being done by lewis Foti

and L. Wang.

RIMMS has two, well separated, levels of machine organisation. 1he
lower level is that of an individual computing element and the higher
level is that of the parallel computer obtained by comnecting a number
(upto 255) of'those computing elements togefher by a slotted ring type
communications system. The higher 1level provides three primitives,
LOAD, STORE and EXEC, for communication between its component computing
elements, LbAD and STORE (corresponding to the RCF copy and replace
primitives) allow a froéess (activity) in one computing element to
access memory locations in a different computing element. EXEC supports
the migration of a process to a different computing element. These
primitives are Implemented using messages between computing elements ot

the form -
type (LOAD, STORE or EXEC) : destination (16-bit) ; operamd (l6-bit)

The destination field is an address identifying the 1location being
accessed by a LOAD or STORE, or the next instruction of the process
migrating by an EXEC., At this, parallel computer, level an address has
the form /element/word identifying a particular word within a particular
computing element. The operand is the return address for a LOUAD, tle

valve for a STORE, or the migrating process’s state for an EXEC.

»An individual computing element consists of a l6-tit microcomputer
with 256 words of local memory. Each computing elcment can support a
numbef of concurrent processes, lhe instruction set, based on the

reduced instruction set philosophy, has less than tuenty different

- 194 -

instructions and only'two -addressing modes. lhere are two context
fegiste?s, Data and Code, and.the two forms of address are /D/d or fC/d
‘where d_is a displacement relative to one of those'registers. lhe dis-~
‘placement is an 8-bit quantity sufficiént to address the m;mory of one
computing element, whgfeas the context registers are. l6-bit quantities
sufficient to address the entire system’s memory. 1f the actual address
used to IDAD an instruction operand or STIORE its result is in a dif-
ferent éomputing element than that in which the Instruction is being
ekecuted then a LOAb or STORE operation of the higher level machine is
automatically invoked. The Data register, which can be explicitly set,
identifies the process’s Eurrent workspace. (The workspaces of dif-
ferent processes are not necessarily disjoint.) The Code register is the
process’s program counter, identifying its current instruction. (This
register 1is principally wused to access literal values embedded in the
code). The Code register is automatically incremented &s the rprocess
moves sequentially through its code and can be e#plicitly set by a
branch instruction. in either case, if the new Code register value
points outside the computing element, then the EXEC primitive of the
higher lével machine is automatically invoked to migrste the process to
the computing element containing its next instruction. 1The only process
s;ate information that needs to be communicated to the new computing

element is the Data register value.

There are two major features of the KIMMS design worth emphasising.
Firstly it implements the notion of process migration between computing
elements, and in order to do so efficiently the amount of process state

is kept to a minimum. Secondly the design is intended to minimise the

jmpact of the higher level, multi- computing element orgaunisation on the

- 185 -

programming interface providéd by an individual computing element. 1lhe
design thus illustrates a possible approach to transparently extending
an existing micrOfcomputer design to a multi-microcomputer system. In
this respect there is somevsimilarity with the transparency of UNIX
United. From within a computing element the only.visible effect of com-
Sining éeveral computing elemenfs in the higher 1level organisation is
that the address. space is extended. ‘lhere are no explicit mechanisms
for programming interagtions between computing elements. Instead such
interactions are implicitly invoked by the program fragment in one com-
puting element generating an address.in a different computing element.
The only effect on the design of a computing element is that such remote
addresses must be trépped apd mapped Into corresponding communication
messages. The implementation»of this additional functionality in each
computing element (corresponding to the MNewcastle Connection software

used to implement UNIX United) is entirely separable from the implemen-

tation of the rest of the design.

qurently there 1s a software simulator for RIMMS, produced mainly
to evaluatel the machine’s programmability. The main success is the
transparency of computing element communication snd the minimisation of
process state. The main shortcomings are the limited number of address-
ing modes and a restriction of literals and address modifiers to §&-bit
quantities. Work has now started on a hardware design. 1t is expected
that in the future RIMMS will be extended to include more of the con-

cepts of the RCF architecture, such as allowing instruction operands to

be variablellength byte sequences.

- 166 -

5.5. R.M.

The concept of reéursive computer architecture originally came from
Wayne Wilrer’s EKecursive Machine (R.M.)idesign[55,65]. The KCF archi-
tecture and LEGO implementation are in some ways very &imilar to the
R.M. work and in some weys very different. 7The K.M. operational model
provides the same hierarchic structure of delimited objects, représented
as a sequence of {,), 0 and 1 symbols. There is a similar form of con-
textual addressing with an address being a sequence of selectors inter-
preted incrementally. There are however a number of significent differ-~
ences in the addressing schemes. Fifstly there is a form of absolute
addressing where the starting context of the address can be specitied as
the outermost object of the entire object structure. (The provision of
Such‘ addressing compromises the possibility of an un-premeditated join-
ing together of existing systems, as can occur in {or example LN;X).
Secondly there is a much more sophisticated set of addressing selectors,
including facilities for selecting a component object by specifying ‘1ts
content rather than its position. 7Thirdly there is nothing correspond-
ing to the RCF’s base-relative form of addressing, all addresses being

relative to their point of use.

The major difference between R.M. and KCF is the model of program
execution. The R.M. model[65]}, deriving from work on object-oriented
computation[60], is a particular form of parallel control flow and does
not directly support other models. An instruction can use an address to
send a message (itself an object) to the addressed object. Such a mes~
sage "is & forked flow of control. 1The arrival of tﬁe message &t the

destination object cause the creation of a process or “activity". The
P

- 197 -

message is typicall& a str;céure of instructiqns which are executed by
the new activity. 7This execution is in the context of the destination
object so tha; addresses in the‘message are relative to that objéct and
the message can ﬁause modifications in the neighbourhood of its destina-

tion. Simple examples of the types of messages are -

\

(i) (dnsert 20) - A new component of the destination object is

created.

(11) (copy /self to /address-of-X) - A copy of the destination object
(identified by the selector [self) is sent as a messagé to X. 1lhe
copied object, say a procédure definition, is then executed in the
context of X, thus achieviﬁg a procedure call using the components

‘'0of X as parameters,

If there are two messages for one destination object then there
will be some sequence to their arrival, and the activity assoclated with
the second message to arrive is delayed until that associated with the
first message has finished. 7This mutual exclusion is the one process

synchronisation mechanism provided.

In effect, as in the RCF model, an asctivity can create anotler
activity which is positioned at an addressed object and sent a message
for execution. The fundamental difference betwcen the two models is in
the activity structure; In the RCF model the created activity csn be &
subordinate of the creating activity and there can be further direct
communicatio? between them, particularly the return of a result. 1lhe

R.M, ?odel is essentially a subset of the RCF model in which a created

activity 1is necessarily independent and so no further direct communica-

- 198 -

tion is possible beyohd the ofiginal message. 1f subsequent communica~
tion is required, as in example (ii) above, the created activity must
“send a message to an object in the neighbourhood of the creating
activity. This requires that the original message contain the return
address, Iaddress—of—xt‘of its originator relative to the context of its
destinatidn. However it 1is not clear that there is a robust general
scheme for constructing such return addresses within» a dynamically

changing object structure.

Y

The R.M. implementation accommodates a tree structure of mnested
computing elements; as in Figure 37. 1The basic memory organisation is
éimilar to that of the LEGO imrlementation with the expansion and con-
traction of the object structure being accommodated by LEG memory ele-
ments and by the movement of objects between adjacent computing ele-
ments. As an additional mechanism for handling vsrisble length objects,
a shift register can overflow to a RAM associated with its computing
element, which in turn can overflow to higher levels of storage hierar-
chy, such as discs, associated with higher level computing elements. A
primitive computing element can contain several activities at objects in
its memory. The execution cycle is to search the mecmory for an
activity, execute that activity to completion and then search again.
The communication system supports messages from an activity to a desti-
nation object. The sequence of selectors forming the address is inter-
preted incrementally by communications wunits on the route from vthé
sourée to the destination. EFach communication unit (of a noun~primitive
computing element) is itself actually a primitive computing element.
All communications units keep a record of the absolute address of the

start and end of the object structure contained in its computing

- 199 -

elemept’s memory . Ihis inforﬁation'provides a structure of indexes inte
- the memory, thus avoiding‘somé of the searching which occurs in LLEGU.
The commﬁnications units also perform an additional load balancing func-
tion, determining in conjunction with the neighbouring computing element

whether objects should be shifted between them.

S5.6. Discussioh

The'Lﬁco.computer, UNIX Unifed networking system; RIMMS computer
and R.M. computer provide examples of various different approaches to
the implementation of recursive systems. 7The most significant issue is
the mapping of logical objects td physical storage structure. 1lhe basic
choice is between a static storage . structure with rpermanent objects
allocated to particular units of physical memory; 6r a dynanic storage
structure with objects being freely created and deleted &nd shifting
between memory units és the object structure changes. RIMMS implements
the extreme of completely static storage, whereas LEGO and K.M. dmple~
ment thé other extremé of completely dynamic storage. The UNIX United
filestore is intermediate between these twé. At the level of a direc~
tory representing a UNIX system there is a static storage structure.
Although directory_objects at this level can be created and deleted,
that 1is not part of normal operations. Within a UN1X system component
directories and files can be created, deleted, expanded and contracted,
asv a result of which there will be changes in the allocation of logical
objects to physical storage. (For example, contracting and then expaund-
ing a filé\ may cause a change in which actual disc blocks contain the
file;5 Dynamic storage is more flexible but requires a more sophisti-

cated address interpretation mechanism and also a storage allocation

- 200 ~

scheme which needs to be decentralised if (as in LEGO and Kk.M.) the
dynamically allocated storage includes more than one computing element,
Generally dynamic storage is likely to be inappropriate at the computer
nétwork level, being either impractical due to the inter-node communica-
tion required for storage ‘allocation, or unacceptable due to the
resources at different nodes being-o&ned by different users. (With the
recursive machine organisation there is no absolute distinction between
a '"parallel computer" and a "“computer network" an@ in this context
perhaps the distinction between dynamic and static storage structure
providés the best definition of the "parallel computer" level of recur-

sive machine organisation.)

For a system with dynamic storage structure there is the question
of how physical storage is organised to implement the\changing object
structure. Here there is a strong distincfion between serial access
techniques, such as with the DEQs used in LEGO and k.M. (or, in a more
conventional context, magnetic tapes), and direct. access techniques,
such as with discs used for the UNIX filestore. 1In the former, the
structure of the.physical storage devices directly supports the inser-
tion and deletion of objects and the structure of information is encoded
directly in the information, as delimiter symbols. These characteris-
tics are very amenable to localised processing and impose no limit on
object size. Direct access techniques involve additional mechanisms,
beyond those implicit in the physical storage medium, for ellocating &nd
structuring the storage medium, Supporting a structure of varisble
length objétts would typically require lists of free space, pointers to
an object’s components and the system functions to maintain that addi-

tional information. These characteristics lead to more centralised

- 2C1 -

processing. However, given thése additional mechanisms, the addressing
6f inforﬁation is easier than with serial access techniques. Intermedi-
ate between these two is the "index sequential" techﬁidue, as used in
R.M.,‘ with supplementaryA inforﬁation to aid addressing of information

stored in sequential access devices.

A basiéally sequentialbstorage technique is the more appropriate if
a computer is to support the manipulation of varisble length, arbi-
trarily long, objects at the 1level of individual data items (e.g.
integers), particularly as the "bit" components of those objects do not
génerally need to be directly addressable. However at the 1level where
larger objects are being stored and operated on (such as "files" being
moved between "directories") it would be more appropriate to use direct
access techniques with which such operations cah be more efficiently

achieved by manipulating pointers.

The sgcond major issue is the implementation of activities
(proceéses) and their migration; particularly prganising the delivery of
messages to "moving targets", 1In all four of LEGO, LNIX United, KIMMS
snd R.M. there are multiple activities and the processing element sup-
porting an activity ie that associated with the storsge unit in which is
stored the object being executed by the activity. This minimises the
communications overhead of instruction access (which is predictably very
frequent) at the poséible expense of dsta access (which is not easily
predictable). Three levels of, increasingly more autoncmous, processing
resource ‘allocation can be identified. 7he highest level is that where

N

there is a static storage structure which gives the user implicit con-

i

trol over which computing element will support an activity. For exam-

- 202 -

ple, in UNIX United, this can be deliberately controlled by copying a
program file into the directory tree of a particular UN1X system and
executing that copy. (This would be done either to exploit particular
processing characteristics of that system, or minimise the amount of

inter-system communication needed for the program’s file accesses,)

The intermediéte level is where there is a dynamic storage struc-
ture involving several computing elements, At this level there is
automatic processing resource allocation which is an integral part of
storage allocation. The influence of processing load on storage alloca-
tion may be very large (as in LEGO where creationAof new activities can
cause considerable shifting of objects) or minimali(as in K.M. where thte
only influence is that activity state information uses some general
storage capacity and so creation of activities might require some shift-~

ing of objects to provide the space).

The lowest level is that internal to a primitive computing element
where processing resource allocation is an autonomous system function.
Apart form the degenerate case of a single activity per computing ele-
ment, as in LEGO, there is the basic choice of whether (as in LN1X) a
processing element is time-multiplexed betwecn activities in the comput-
ing element. The alternative (as in both RIMMS and K.M.) is to allocate
a processing element exclusively to one of the activities until it has
terminated, migrated dr become (temporarily) unable to continue (for
example in RIMMS, waiting for the response from a remote operand LOAD).
The inclusi?n of multiplexing will depend on the grain of concurrency

and d?gree of physical parallelism., Multiplexing is desirable where, as

in UNIX, activities may be whole programs interacting with different

- 7203 -

~users and running on the same physical processor. however. multiplexing
is not so ‘mecessary, and the additional complexity of implementation
unlikely.to be effective, where, as in R.M., each user program will be a
separate -object with exclusive use of many processing clements for the
support of its activities and many activities will be very short-lived,

for exemple created just to insert one data item into e structure.

The migration of an activity from one computing element to another
requires the transmission of activity state daia. In the case of LECO,
RIMMS and R.M. activity migration is a basic part of a design which
therefore attempts to minimise the amount of dsta that bas to be
trensmitted. This data is principally the identification of the
activity’s destination and information about its connectivity with other
activities and thus the rest of the cbject structure. 1lhere may also be
some internal state information. In LECO the destination identification
is é single selector. ‘Ihe connectivity information is its own a&activity
identifier and that of its superior (to ellow the emission and reception
of messages to and from its subordinates and superior) and the content
of the single-symbol buffers used for those messages. 1ln KIMMS the des-
tination identification is the Code register and the comnectivity infor~
mation is the single Data register. 1In K.M. the destination is identi-
fied by a sequence of selectors which contrzcts as the eactivity moves
towvards 1its destination. There is no direct connectivity to other
activities or objects. Any objecte, other than the destination, which
the ‘actiYity needs to. accecs will be included in, or addressed by, the
message sent with the migrating activity. 7his message, the activity’s

internal state, can be of any length,

- 204 -

The original UNIX design did not anticipate the process migration
which occurs in UNIX United and quite a large amount of data has to be
transmitted, As in R.M. the destination is identified by a sequence of
selectors which contracts as theiprocess moves towards its destination.
~ Comnectivity informatiqn is that associated with the process’s open'
files. There can be quite a large number of these and this information

constitutes most of the transmitted data.

,Jhe question of communication between activities only arises in
IEGO and UNIX United where there is a persistent st?ucture of activities
(procésses). These two system iilustrate two general approaches to
implementing communication between migrating activities., 1n LECO the
communication is achieved by the broadcasting of messages. A message is
not physically addressed to & particular destination computing element.
Instead it is logically addressed to a particular destination activity
specified by an activity identifier, unique within the computer. Tthe
system relies on the computing element containing the destination
activity being the only one to recognise the logicel address and thus
accept the message. In UNIX United remote communication is achieved by
the fo;warding of messages, The path from the source (user process) to
destination (a system process supporting reméte file access) uses a
chain of forwarding egents (system processes), one in each UNIX system
on the path., Thus at each stage of its transmission a message is physi-
cally addressed to a specific LNIX system - the one containing the next
forw;rding agent in the chain. The forwarding system is more afppropri-
ate at thé‘computer network level since migration is relatively infre-
quent and so once the forwarding chain has been established it will last

for some time. Also, at that level, the chain will typically involve

- 205 -

‘only a few stages, and in any case it would not be practicable to use
éystem-wide "unique process identifiers., 1In contrast, at the level of a
parallelvcomputet like LEGO, migration is very frequent and 8 ctain of

: forwarding agents wouid involve a large number of stages. At the higher
level of multiple LEGQ_qomputers there is effectively a forwarding sys-
tem, for the same reasons as in a network organisation. FEach CLO "gate-

way" computing element acts as a forwgrding agent for messages between

an activity in its computer and an activity in another computer.

The concepts of the RCF model and recursive machine organisation
.provide a general framework for decentralised systems at all levels.
However, as the above discussion 1llustrates, .there are different
characteristics at different levels which motivate different implementa-
tioﬁs of those concepﬁs. The principal distinctions are at the level
separating a (poésibly multi-level) "computer network" from constituent
(possibly multi-level) "ﬁarallel computers" and at the level of an indi-
vidual computing element. Above the parallel computer level there would
be a static storage structure implemented using direct access tech-
niques. The concurrency and communjcation that needs to be supported is
that of long-lived user processes with relatively infrequent communica-
tion within a structure which is fairly stable, both logically in terms
of connection between processes and "open files", and physically in
terms of process residency in particular network nodes. Also at this
level the comnectivity of a process (the number of open files and subor-

dinate prqcesses) is likely to be relatively high,

™~
AN

At the lower levels there would be a dynamic storage structure

i

employing serial access techniques. 1lhe concurrency and communication

- 206 -

that needs to be supported is that of concurrent activities executing
individual instructions and accessing individual data items, with rela-
tively frequent communication wifhin a rapldly changing but simple
strucfure- (e.g an activity having two subordinates for its instruction’s
operands) . The lowest, single computing element, level is typified by a
separation of storage and processing resources, as in conventional com-
puters. T1his separatién principally effects the allocation of process=
ing resource which at this 1level is not tied to storage allocation.
Also of course messages between activities in the same computing element
can be transmitted via the computing element’s local memory rather than
requiring physical communication between different computing elements.
This might effect the processor allocation strategy. For example it
might be appropriate for allocation of processing resources among a
sub-tree of activities in the same computing element to be based on a
pre-order traversal of the sub~tree - a processing element would be
allocated to a subordinate activity as soon as it is created and re-
allocated to the superior activity when the subordinate terminates.
Tﬁis corresponds to conventional expression evaluation and would allow a
simple stack to be used for the communications along the arcs of the

activity sub-tree.

Given these various issues a major areca of further research is the
possible development of a general approach to recursive systems imple-
mentation which accommodates the different characteristics at different

levels, with minimum compromise to the unity of the general concepts.

N

- 207 -

6. CONCLUSIOKS
6.1. Summary and Discussion

This thesis has investigated various general-purpose decentralised
architectures providing highly concurrent progrem execution. The prin-
cipal motivations for developing such architectures are the utilisation
of . concurrency to improve berformance, the support of novel implicitly
concurrent programming languages, and the exploitation of VLS1 teclnol-
ogY. The architectures covered were the control flow, data flow and
reduction classes of architectures surveyed in Chapter lwo and the LCF
and RCF architectures developed in Chapters Three and Four. Iln each
case the basic concepts of the architecture were described in terms of
an operational model of program representation and ecxecution followed by
a discussion of the way iﬁ which various forms of program crganisation

are supported and the way in which machine resources are organised.

The novel data flow and reduction architectures have operational
models which are radically different from the control flow mcdel. In
data flow an Instruction is executed when its inputs are available and
in reduction an iInstruction 1s executed when its outputs are needed.
Both these models are implicitly concurrent whereas in concurrent forms
of control flow the initiation and synchronisation of concurrency is

under explicit program control.

The main result of the analysis of the various architectures in

~

Chapter Two was a classification of their underlying control and data

mechanisms and an . understauding of the consequences of an architecture

- 208 -~

a&opting a particular set of mechanisms. 7he control me;hanisms identi—
fied were sequentiél, pérallel and recursive., The main benefit of the
. sequential control mechanism is in providing the programmer with com-
plete'operational control and in the execution of programs with 1little
) inherenf concurrency. Ilhe main benefit of the parallel control mechan-
ism is in the parallel execution of highly concurrent programs. lhe
main bénefit of the recursive control mechanism is for the more sophis-
ticated program structures of applicative programming languages and in
conserving machine resources by only executing what is actually needed
to produce the required result. The two principal data mechanisms iden-
tified were by-value which is at an advantage in manipulating simple

data items, and by-reference which i1s at an advantage in manipulating

data structures.

Whereas all the architectures surveyed in Chapter Two are based on
a particular pair ‘of confrol and data mechanisms, the architectures
developed in subsequent Chapters incorporate combinations ot those
mechénisms, allowing the control flow, data flow and reduction models to
be used as different styles for programming a single computer so that
each can be used where its particular advantages are needed. FEven if
eventually data flow or reduction were to completely replace control
flow as the dominant model for general-purpose programming, it would
nonetheless be important for some time that a general-purpose computer
continue to support existing languages and programs based on the control

flow‘model.

™~

Chapter Three described the combination of control flow and data
-

flow in a single architecture, the DCF. Farallel control flow, rather

- 209 -

than sequential contrél'flow,.ﬁas used since parallel control flo& and
. déta flow architectures are very similar. Both Lhave a parallel control
mechanism using tokens for instruction activation and are particularly
suited to implementation on a packet communication machine organisation.
In the DCF architecture concepts from parallel control flow and data
flow are very directly combined. The parallel control mechanism uses
tokens to control instruction execution, each token being either a con-
trol token, as in parallel control flow, or a data token, as in data
flow. 4n instruction’s operand may either be provided by a token (the
by-value. data mechanism of data flow), or referenced from thé instruc-
tion, as in control flow. The packet communication machine organisation
has processors, a matching store (as in' data flow) and & separate
addressable memdry (as in control flow). Apart from the inclusion of
both control flow and data flow concepts, an important feature of the
DCF architecture is that it allows "non-atomic" procedures which start
executing as soon as anf inputs are available. 1his gives greater con-
currency than the "atomic" procedures provided in proposed data flow

architectures.

In the architectures covered in Chapters Iwo and lhree the princi-
pal emphasis is on organising concurrent instruction execution within a
single program and supporting that concurrency on a single computer with
some multi-processor machine organisation. Generally only the princi-
ples of instruction execution and machine organisation are different
from those in conventional architecture, with the other von Meumann
principles of storage structure, addressing and instruction representa-
tion remaining unchanged. In contrast the work covered in Chapter Four

was based on systematically generalising each of the von Dleuman

- 210 -

princiﬁles to a corresponding recursive principle. These recu?sive'
principles were formulated to provide a coherent framework for meeting
the generél requirements. of future general-purpose computing systems,
partiéularly using VLSI technology. With VLSI technology it is both
possible and desirable to includé greater processing power with memory
and this should be used to support in hardware a more powerful storage
structure, closér to the 1logical structure of the information being
stored. Address spaces should be arbitrarily ;xtensible and support
locality by aliowing addresses between structurally close entities to be
relatively short, Prograﬁ representation and execution should more
closely reflect logical program structures and suppért modularity. lhere
should be a flexible operational model accommodating a wide variety of
progrémming languages and styles. The need for centralised functions,
such as global resource management, should be avoided, and global com=
munication minimised. The development - of sophisticated VLS1 design
technology will enable increasingly diverse special-purpose sub-systems
to bé implemented in hardware and these should be easily incorporsted in
the overall general-purpose computing system. Lifferent levels ot both
hardware and software in computing systems should be unified - for exam=—
ple by adopting the same machine organisation principles both for com-
ponents on a chip‘and for computers in a network; and the same storsge
and addressing models both for program variables and for operating sys-

tem files.

The most significant characteristic of computing systems 1is
ipcreasing ‘complexity. There are strong arguments that hierarchic
structuring Is the only way to cope with complexity[66] and this is

borne out by the (increasing) predominance of hierarchic structure in

- 211 -

ailvaspects of computing systems. The important concépt embodied in &
coherent "recursivé" structure (as opposed to a hierarchy of heterogene-
ous levels) is that there is a general scheme for constructing any level
in fhe hierérchy from the lower level.. With the recursive‘architecture
principles this concept 1is applied throughout the architecture.
Although hierarchy does not adequately reflect actual structures (for
example a two-dimensional matrix has to be represented, inadequately, as
a vector of vectors) it.is possibly the richest general structure of

sufficient siﬁplicity to be directly supported in hardware.

Chapter Fqur presented a computer architecture, the RCF architec-
ture, based on and intended to illust:ate the broad recursive principles
but with the emphasis, as in previous C(hapters, being on program
representation and execution, and particularly on the combination of
control flow, data flow and reduction styles .of program organisation.
The RCF operational model provides a generai framework which can support
the specific mechanisms of the other models (such as the self-modifying
instructions of reduction, the "unknown" arguments and data tokens of
data flow) without incorporating them as an essential part of the model.
This approach to the synthesis of other models is very different to, and
more successful than, that taken in the ICF architecture. lhe essen-
tials of the RCF model are the execution structure of a trec of communi-
cating activities which model both processes for program execution and
registers (or '"file descriptors") for data access; the concept that an
instruction’s arguments are program fragments to be executed rather than
data to be manipulated; the ability to access an instruction and any of

its components as an addressable memory cell,

- 212 -

of the various principles of recursive structuring the most funda-
mental are the nésted objects of the storage structure and nested com-
puting elements of the machine orgenisation. lThe dyneamic recursive
storage structure naturally leads to variable 1length contextual
.addresses and a recﬁrsive form of program representation and execution,
just as the. convenéional storage structure naturally leads to conven-—
tional addressing, program representatioh and execution. 1he recursive
storage structure could be impleﬁented on a non-recursive machine organ—-
isation (as occurs within a UNIX system) ., Conversely a recursive
machine organisation could be used to support the conventional stbrage

structure, addressing and operational modcl (as, to an extent, occurs in

some computer network and parallel computer organisations).

Chapter Five considered a number of computing system designs which
incorporate some of the recursive architecture principles. 1he princi-
pal design discussed was that of the LECO computer which incorporates
all the recursiye principles and supports the full KCF model. C(f the
other systems, the UNIX United computer nctworking system and the K.M,
(Recursive Machine) computer architecture are the most relevant to this
discussion since théir development was largely independent of the KCF
work., The UNI1X United system provides an example of the applicability
of the recursive architecture principles to computer network organisa-
tion. Jt also illustrates a very different, more conventional approach
to their realisation than the approach adopted in the LEGO design. 1he
R.M. work provides an example of a computer design, other than LECO, for
which prinéiples of recursive structuring were adopted frem the outset.
The principal differences between the two 4s that R.M. has a more

sophisticated impleméntation (particularly in allowing several

- 213 -

activities per computing element, providing more powerful addressing
selectors and incorporating indexes into the object structure) whereas
LEGO has a more general operational model which provides for a recursive

program execution structure.

The various systems covered in Chapter Five were used to illustrate
a general discussion of a number of implementation issues arising in
(recursively structured) decentralised comfuting systems. lhe most fun-—
damental aspect of an implementation is the relstionship between logical
and physical structure, i.e. the relationship of objects, activities and
logical communication channels to memories, processors and physicsal con-
nections. lhese relationships are principally determined by the scheme
used for allocating logical objects to computing elements’ physical
memory since activities within an object are allocated to processors in
the same computing element, and this allocation in turn determines the
communication structure. .(Other resource allocation considerations such
as the multiplexing of a computing element’s processor betuween the
éctiQities that it is supporting are of less significance.) lhe main
distinction identified was that between static allocation where a logi-
cal object is synonymous with a particular computing element, and
dynamic allocation where objects can move between computing elements
under control of some distributed resource allocation schenme. The
former 1s appropriate for special-purpose computing elements and com-
puter networks where the allocation of objects 1s generally fixed or
need; to‘ be under explicit user control. However the latter is more
appropriaté\for the internal organisation of a computer where the struc-
'ture,of program and data objects changes fairly rapidly as programs exe-

cute.

- 214 -

Th;ee notivations were identified for the development of novel
general-purpose computer architectures, namely the need to improve per-
formance by the use of concurrency, the need to support the increased
expressive power claimed for applicative languages, and the need to
exploit VLSI] ﬁechnology. ihe KCF architecture and 1its .initial 1ECO
implementation provide'the physical parallelism, asynchronous communica=
ticns a2nd decentralised control of resources needed to implement con~
currency. They also support the programming structures end mechanisms
needed to e#ploit and control that concurrenéy. However, as for other
novel highly parallel architectures, it is not clear at this early stage
of development the exact extent to which performance berefits will ulti-
mately be gained from the potential for concurrency. The major benétits
claimed for applicative languages are unbounded data structures, higher .
order functions and the general lazy evaluation on which these are
based, all of which have been included in the RCF program organisation.
The recursive machine organisation and IEGO implementation meet the main
design requirements for VLSI, namely the need for localised and asyn=-
chronous communications and for highly repetitive dcsigné which can bte

easily scaled down and replicated as the level of integration increases.

6.2. Current and Future Research

There are a number_of directions for further investigation of the
RCF architecture and the recursive principles on which it is based.
Firstly there is the implementation of the particular LEGO design
described- in Chapter Five and Appendix A. 1he (LS1) circuit lsyout ot
the single chip computing element for this iwplementation is currently

being designed. That work, being carried out by arnother member of the

- 215 -

Computer Architecture Group at Newcastle University, is partly motivated
by the need of the Group to gain experience in the realities of

integrated circuit design.

Tﬁere are a number of possible developments of the RCF'architecture
in the areas of storage strﬁcture and addressing, program reﬁresentation
and.execution; machine organisation and implementation, A realistic
machine would have to at least include selectors such as 'nth component"
at the machine code level. It may also be found desirable for the
addressing scheme to recognise, within the normal object hierarchy, a
sparser hierarchy of particularly significant objects such as: one
user’s programs and data; one program; one program block. 1lhis could Le
achieved by using special delimiters, e.g. [...], for such objects and
including a [fout| selector to identify the lowest containing object with
those delimiters. Thus an address could select relative to the context
of such an object regardless of its own depth of nesting within tle
object. The inclusion of some form of contenﬁ addressing would also be

worth investigating.

In the operational model there is an important difference between
the execution of instructions transmitted between activities and the
execution of instructions in the program string. In the former case
instructions are discarded as they are executed whereas in the latter
case the instructions can form an iterative algorithm. 1f the model
could be extended to allow a general program fragment to be transmitted
for execution it would then, for example, accommodate variable instruc-

tion sets with the program fragment being an interpreter, and completely

general addressing with the program fragment being & pattern matching

- 216 -

algorithm. 1In addition to programming languages based'on control flow,.
data flow and reduction, there are two other classes of languages which
a future general-purpose architecture may need to support, namely
~object-oriented languages such as Smalltalk[60] and logic languages such
‘as PROLOG[67]. It will be mnecessary to investigate the suitability of

the RCF model for these languages.

For the ma;hine organisation the most '‘important areas are the
fuller development of a ﬁulti-level organisation employing different
implementation techniques at different 1levels; the inclusion of
special-purpose compdting elements; and the inclusion of computing ele-
ments with differing memory/processor ratios (ranging from the
equivalent of backing store with a very high ratio to cache with a rela-
tively low ratio). ihe outstanding research issue is the development of
a general resource allocation scheme for the dynamic mapping of a chang-
ing hierarchy of objects onto & fixed (heterogeneous) hierarchy ot
machine resources. Such a scheme would need to be highly decentralised,
specialisable to accommodate and utilise effectively the differing
characteristics at different levéls of recursive machine organisation,
and able to manage the movement of objects befween computing elements
with differing memory/processor ratios in response to the changing dis-

tribution of activities within a program structure.

There needs to be donsiderable experimental investigation into the
programming of the RCF architecture and the combined use of control

flow, data {10w and reduction models in the same program. ‘1lhe KCF

N

architecture incorporates the concepts underlying conventional lenguages

and novel applicative languages used to program data flow and reduction

- 217 -

machines. Thus one line of investigation is to consider in detail the
generation of RCF machine code from one 6r more such languages. A
promisiﬁgv starting point for investigating the combination of various.
" models would be to implemept a common proceduré'call intérface, based on

the RCF model, for jnterfacing between (independently compiled) pro-
" cedures programmed in, for example,bexigting control fiow and applica-

tive languages, with the other language features implemented .in their

standard ways.

The RCF architecture as discussed in this thesis and its proposed
initial 1S1 implementation are principally ﬁoncerned with applying the
recursive architecfure'principles to thé design and programming of a
single multi-processor computer. The complementary approsch 1is to
‘investigate the application of the RCF concepts to a network of coﬁven—
tional single processor computers. An experimental network implementa-
tion of the RCF architectﬁre, obtained by programming each computer in &
network to emulate the RCF model, would also be a useful simulation of a
single multi-processor RCF computer. Compared with an actusl hardware
implémentation, such a "network" implementation would be quick to
develop and very flexible, whereas compared with a normal simulation it
would be a relatively realistic implementation supporting several simul-
taneous users and allowing investigation of genuine concurrency in pro-
gram execution and genuine communications characteristics. The close
similarities between the RCF architecture and thé UNIX United system

suggest that the latter could be initially used as the basis for a nets

work RCF imﬁlementation.

1t is intended that the next stage in the development of the ideas

- 218 -

covered by this thesis will be two implementation exercises. The first
of thesé will be to impiement a full RCF system on a network of conven-
tional computers Eo rrovide a framework for investigating the program-
ning and resource management issues, and for possible develo;meﬁts of

the RCF model. The second will be further work on LS1 and VLS1 imple-

-mentation of computing elements based on the RCF model.

- 219 -~
Appendix A ~ A Machine Code for the LEGO Computer

This Appendix describes a machine code deéigned for the initial.
1LEGO ‘implementation of the RCF architecture discussed in Section 5.1.
First there is é general description of the machinel as seen by the
ﬁachihe code programmer, followed by a detailed description of the
machine code. 7This is presented by defining a symbolic assemtler code
using a ENF syﬁtax notation in which braces {...} indicate zero or more
repetitions of the enclosed material. Where motivation of the machine
code facilities seems necessary, notes in [...] trackets are included to
relate those facilities to the programming constructs discussed in

Chapter Four. Boldface is used for terminal symbols of the syntax.

A.1 - Machine Model
<{program) ::= ({ <object> })
<objectd> ::= <primitive objectd> | ({ <object> })
<{program string> ::= ({ <item)> })
{item) ::= <symbol)> | <activity)
<{symbol> ::= <delimiterd> | <primitive object>
<delimiter) ::= (|)
<primitive object> ::= <data itemd | <instructiond ;
<{instructiond ::= <access> | <addressing> | <operation> |

<{creation}> | <exception>

Cactivityd ::= §

The two major elements of the machine are the symbtols representing
the program and the activities executing it. The program is structured
as a hierarchy of objects comprising primitive objects (instructions and
data) and matching pairs of delimiter symbols for the start (snd end)
of compound ijects. As the program is executed it is modified aud its

current state is the {program stringd>, a sequence of items which

1nc1udes the symbols of the program representation. (Luring a

- 220 -

modification of the program string, e.g. the insertion of an object,
there may be a temporary delimiter imbalance in the string and thus the
{program string> does not always conform strictly to the <program> syn-

tax.)

Each activify has-a current position in the program and is modeled
as béing. itself an item in the string together with the symbols of the
prograﬁ. There are communications connections between activifies allow-
ing an activity to transmit objects to and recelve objects from con-
nected acfivities. These connections support tree structures of activi-
ties Qith each aptivity capable of being connected to a superior
| activity (identified as RO) and a number (6) of subordinate activities

(identified as R1l, R2 etc.).

An activity is executing symbols from éome instruction source,
either the program string or the objects transmitted from a connected
activity. |[Messages such as "copy", "take" and " execute" sent from a
superior activity to a subordinate actiQity are instructions executed by
the subordinate activity as a result of its instruction source being the
connection to 1ts supefior activity ("execute" switches the instruction
source to be the program string); the effect of' the "eval" operator,
executed by an activity P, is achieved by‘P's instructién source being

the connection to the subordinate activity which 1is evaluating the

operand.]

Normally execution is sequential, with the activity’s position mov-
ing past each item in the string as it is executed, or successive items
being” executed as they are received from the connected activity. The

following Sections describe the effects of executing the different types

- 221 -

of items from the instruction source, namely deiimiter symbols, primi-
tive data items and various types of instructions. The different types
~of instructions are: Access iﬁ;tructions which operate on the program
striné as a data structure, reading objects from the string to be
transmitted to a conne;ted activity and modifying the string with

objects received from a connected activity; Addressing instructions
which move the position of the activity within the string and also may
suspend the activity and switch its 1nstr;ction source; Operation
instructions which perform for example arithmetic operations on objects
received from connected activities énd transmit the result to connected
activities; Creation instructions which generate parallelism Ly creating

new activities; Exception instructions for handling various exception

conditions.

When an activity’s instruction source is the program string the
next item may be anothér activity rather than a symbol of the program.
Generally two activities aécessing the string (i.e. with the string as
instrpction source or executing an access instruction) will follow each
ofher through the string with the activity on the left waiting ‘for the
other to progress. However the activity on the right, PR, must be
passed by that on its left, PL, 1f the furthér progress of PR is depen-
dent on &an event that could possibly never occur (that is, if it hés
been suspended and thus is dependent on another activity to modify the
string, or is dependent on a connected activity sending it an object,

for example when its instruction source is a connected sctivity).

\\
AN

- 222 -

A.2 - Delimiters

An activity has a current object of execution in the string-. 1f
the instruction source is the program string and the next item is the
closing delimiter of the current object then the activity and its subor=-

dinates terminate. 1In all other cases a delimiter is ignored and execu-

tion continues with the next item from the instruction source.

The current object'is established as being the objéct to the right
of the activity when (i) the activity 1is first created, (ii) the
instruction source is switched from being the connection with its supe-
rior to be the program string, (iii) the activity executes the first
non-addtessing instruction after a series of addressing instructions one

of wvhich moved the activity outside the previous current object.

A.3 - Pata Items

Data items have two roles. Firstly a data iteé may be the next
item to be executed from the instruction source in which case the
activity retains its current position in the program string and its
instruction source 1is switchéd to be the connection to the superior
activity [from which typically an access instruction, e.g. to "copy" tbe

data item, will then be received].

Secondly data items form the operands of operators which are

descfibed, together with the syntax of data items, in 4.6,

.
N

=223 -
A.4 — Access Instructions

Caccessd 1:= <actiond <actd
<action)> ::= copy | repl | take | imsert
<actd t:=RO | Rl | R2 ... R6 | .

An access Instruction generally specifies some action on a target
object in the program string ana a connected activity (RO, Rl etc.) to
which that object is transmitted or from which a new object for the
string is received. The target object is the object to the right of the
activity’s position (to the right of the access inst;uction itself if it
is executed from the string). A copy transmits a copy of the target
object. A replace replaces the target object with the new object. A
take 1s a destructive copy, transmitting the target object and deleting
it from the string. An insert inserts the new object in the string to
the immediate left of the next symtol to the right of the activity. A
ey Indicating a "nullfactivity", can be specified instead of an actual
activity. An object transmitted to < is just discarded. An object
received from . is always the empty object (). Thus, for example, take.
just deletes the target object and repl. replaces it with (). On com-
pletion of any access instruction the activity is positioned to the

immediate right of the target or new object in the string.

An action (replace or take) which deletes an existing object uiil
proceed a symbol at a time, deleting each symbol iﬁ turn. There may be
another activity positioned within the object being deleted and the
deletion will generally wait at that point until the other activity
moves . HowéQer, in circumstances mentioned in A.]l, it may be necessary
for the deleting activity to pass the otﬁer activity and in doing so

that activity is terminated.

- 224 -

[In the example used in Section 4.l.4 to discuss the general KkCF
model it was mnecessary for the replace action to be acknowlédged. In
the LEGO implementation this acknowledgement is implicit in the communi-
catio#s flow control mechanism. However alternative implementations
might not have that implicit acknowledgement. Explicit Acknowledgeﬁent
can be programmed when required. The replace instruction, followed by
the new object, is generally sent from an activi;y P to a subordinate Q
positioned at the object to.be replaéed. After sending the new object,
P can use routing opefations (see A.6) to send instructions to G which

cause Q to send the required acknowledgement to P.]
A.5 - Addressing Imstructions

<addressing)> ::= <sé1ectbr> <switchd> | <selectord> ? <switchd |
I<selectord> <switchd> | I<selectord> ? <switch>

- <selector> :: out | start | <~ | / | in | ~> | end | esc | § <act>

<switch> ::= [fe | [<actd> | /

An addressing instruction includes a selector which specifies a new
position for the activity and a switch to possibly change its instruc=—
tion source. The selectors out ... escape are those defined in Figure
25 of ECection 4.1, and are relative to the position of the activity
(following the addressing instruction itself if that is executed from
the program string). For selectors $RO ... $R6 the new positién is to
the immediate right of the specified activity. 1f a subordinate

'activity En 1is specifiéd but does not exist then the BRan subordinate of
the superior is used, and if it does not exist then that of 1its supe-
rior, etd..\ [A $Rn will form the first selector of a base-relative

address, used for example in addressing procedure parameters, and is

defined such that in the sub-tree of activities executing the procedure,

- 225 -

all activities can address parameters relative to the position of a par-

ticular subordinate of the sub-tree’s root activity.]

The switch in an addressing instruction may specify that following
the execution of the instruction the instruction source is to become the
prbgram string at the new position (/e); the instruction source 1is to
become the connection to a specified activity (/Rm) (if the null
activity is specified, /., then the activity terminates); or that there
be no change (/). [In a normal address where the addressed object is
executed, the last selector would have a /e suffixj In a quoted address
"where the addressed object 1s not to be executed, the last selector
would have a /RO suffix switching control to the superior, as occurs

when executing a data item.]

The selector may be suffixed by a ? specifying that the activity be
suspended at its new position. The suspended activity will be reac-
tivated when another activity performs a replace or take action on the
object at the new position or an imsert action to insert a new object at

that position. [The "unknown argument", "(?)", would be represented as

(out?/;).]

The selector may be prefixed by a ! in which case the rest of the
instruction is not executed and the instruction (if it is in the progrém
string) is modified by the ! being removed. [This provides the exclu-

sion argument, "(excl)", which in machine code is (lout?/;).]

- 226 -~

A.6 — Operations

<operation> ::= <typed op.> | <compare op.> | <special op.>
<typed op.> ::= <int op.> | <bool op.> | <bit op.>

<int op.> =+ | = | O~

<bool ope> z:=& | 1| ~1 | =

<bit op.> ::= ‘& | ‘1| ~1 |

{compare 0Op.> ::= = | *= | >I>=| < | <=
<special op.Y ::= 1f | == | 3= l act> , <act) ::= <act>

<data item> ::= <value> | <error>

<value> ::= <int> | <bool> | “<bit> | "<char>

<int> TIE e -2 I _l '0 ' 1 ' 2 ce s

<bool> ::=T | F

<bit> ::=11]0

<{char> ::= <any ASCII character>

<error> ::= #

<obj> ::= <instructiond> | <valued | ({ <obi> })

<any> ::= <objectd>

An operation instruction processes operand objects to produce a

result object as defined by its operator. Each operand is received from
~ a specific subordinate activity (usually there is one operand from R2
and one from R3). The result is transmitted to subordinate Rl. 1f
there is no R]l subordinate then the result will be sent to the superior
RO in response to any object from the superior. 1f there is no superior
either then the result is just discarded. Figure Al shows all the
operators and the types of valid operands and results produced, these
types being specified by the syntax for <data item>, <obj> and <any§.
The typed operators are straightforward, each having as its operands and
results primitive objects of the same type (integer, boolean or bit).
The other operators may involve compound objects and the special error
object. An error object is produced as the result of applying an opera-

tor to an operand of the wrong type (e.g. multiplying two characters or

an integer and an error object). In defining the type of valid operands

- 227 -

there is a distinction between a general object, <any>, and an object,

<obj>, restricted to exclude error objects.

oper=-
ator operands result " meaning
T R2 R3 R4 <actd> A 1
integer
+ dnt> <int> - <Lint> add
- <int> <int> <int> subtract
0- <intd> <int> unary minus
boolean : .
& <bool> <bool> <bool> and
! <bool> <tool> <bool> cr
“1 <bool> <bool> <kool> nmor
- <tool> , <bool> not
bit :
‘& <bit> <bitd <bit> and
‘1 <bitd> <btitd> <bit> or
! <bitd> <bit> . <bit> nor
e <bit> <bitd <bit> not
compare :
= <obj> <obj> <bool)> . equal
f= <obj> <obj> <bool> not equal
> <obj> <obj> <bool> greater
>= <obj> <obj> , <tool> greater or equal
< <obj> <obj> <bool> 1less
<= <obj> <obi> <tool> less or equal
special
if <any> <any> <bool> ' conditional
== <any> <any> <tool> equivalent
= <any> <any> identity
= ' <any> <any> routing
Figure Al - The Operators

A compafe operator treats its operands as two strings of symbols
(i.e. delimiters, instructions and data items) which are compared in

pairs from left to right. The strings are equal 1if all pairs of

- 228 -~

corfesponding symbtols are.equal, otherwise thé result is the result of
comparing the leftmoét'unequal palr according to the following ordering
-) (lowest); ‘O; ’‘1; F; T; integers in numeric order; characters in
standérd order;vinstructions in arbitrary order; (. [The position of
the delimiters in thig_ordering gives the_effect of recursively compar-

ing compound objects, for. example -

(("e "v "e)) < (("e ™v "e) "j) < ((Me ™v "e) ("j “i m))]

The conditional operator (if) has three operands and the result is
the first (R2) or second (R3) defending on whether the third (R4) is
True or False. The equivalence opefator (==) tests the operands for
gquality and allows an object to be tested for error. For the identity
operator (:=) there is a single operand which is transmitted unchanged
as the result. For the routing operator (::=) the result is its single
operand from a specified source activity and copies are transmitted to
two specified destination activities. If the null activity . is speci-
fied as the source then () is'used as the operand object. 1f a destina-

tion activity Is non-existent or is specified as . then its copy is just

discarded.

The routing operator is used in conjunction with access instruc~
tions to replicate objects and to organise any communication that may be
needed in addition to the simple operand/result communication pattern of
the other operations. As an example the following sequence of instruc-
tions synchronise the executing activity P with its Rl subordinate, Q -

.11 . 12 i3
A

I_;Aﬁ L LY L A a N
copy Rl <,RO ::=,; <, ::=RIl;

The first, copy, instruction transmits to Q the following instruction,

- 229 -~

42. When Q has finished executing the previéus instruction from P it
will execute the i2 which specifigs that Q transmit to its superior, F,
the empty object (). The next instruction executed by P, 13, requires
an object from its Rl subordinate, Q, and thus synchronises those two

activities. When P receives that object, (), it is just discarded.
‘A.7 — Activity Creation

<{creationd> ::= sub <act)> |
source <act)> |

par
A sub instruction, such as sub Rm, creates a new subordinate
_activity (Bn) to the the immediate left of the creating activity. 1lhe
new activity is connected to the creating activity as its supcrior and
that 1s its initial instruction source. The new activity itself has no
subordinates. A source instruction is the same except that the new
subordinate activity 1s to the right of its superior, the iInstruction
source for the created activity is implicitly switcﬁed to be the program
string, and the instruction source for‘thé creating activity is impli-

citly switched to be the connection with the created activity.

‘A parallel instruction creates a new independent activity which
has the same current object as the creating activity, the same position
as the creating activity (following the par instruction if that is exe~
cuted from the program string) and with the program string as its
instruction source. The creating activity then executes an implicit =>/
addressing ~{nstruction so that the next object it executes is that fol-

lowing the first object executed by the created activity.

- 230 -
A.8 -~ Exception Bandling
<exceptiond::= ok | err | skip | skip <act

Associated with an activity is an error status which indicates
whether an error hgg_occurred.‘ This is cleared by an ok instruction,
set by an err instruction and is also set by the occurrence of some of
the exception conditions described telow. A skip instruction tests the

error status of the activity itself or a specified activity and exe-
cutes an implicit =>/ addressing instruction if the status is clear
(that is, the activity skips over the following object which would con-

tain code to deal with exceptions).
The exception conditions that can occur are -

(1) Invalid instruction source .- If the instruction source is switched
to be the connection to a non-existent activity or a connected
activity terminates while the connection to it is the instruction

source, then the activity terminates.

(i1) InQalid selectors - A selector in an addressing instruction exe-
cuted by an activity P is invalid if: it is an in/ gelector and the
next symbol to P’s right is a primitive object or a); it is a ' =>/
(or <-/) selector and the next symbol to P’s right (or left) is a.)
(or (); it is an out/ or escape/ selector and P’s enclosing object
is the outermost object, the total program; it is a $Ran selector
where Rn does not exist or the null activity, ., is specified. 1lhe
error status is set and the effect on P’s position is that of a

"null" selector, //, (except in the case of an invalid out or

escape/ selector which will act as a start or end selector).

- 231 -

(iii1)Invalid access instructions - An access iﬁstruction is invalid if
the activify. to which the target object is to be transhitted, or
the activity frog which the new object is to be received, does not
éxist, or (except in the case of insert) the next symbol to the
;ight of the activity is a).” The error status is set and' wheré

appropriate the error object is transmitted as the target object.

(iv) Invalid operation - An operation instruction is invalid if one of
A the operand objects is of the wrong type or the activity from which
it should be received does not exist. 1The error status is set and

the error object is transmitted as the result.

(v) 1Invalid creation — A sub Bn or source Ra instruction is invelid if
the specified subordinate already exists or the null activity, .,
is specified for Rn. The error indicator is set but otherwise Athe

instruction has no effect.

A.9 - An Example

In order to illustrate the relationship between the machine lcode
described here and the programming constructs used in Chapter Four, Fig-
ure A2 shows the machine code equivalent to some of those constructs.
The example program fragment used (a) is part of that in Figure 39. 1he
motivation for this example and its general operation was discussed in
Section 5.1.7. The machine code instruction sequence corresponding to
each;consFruct in (2) is shown in (b) which contains comments explaining

the detailed- operation of that machine code.

- 232 -

(2) example ,
P Q R .
l'(I iter- (I c2 c3 (?)) (I = 6 /out) 1 /E v)"
| ¢ D: ’ r:
(b) machine code ' . .

program o
construct , machine code

"jter"- [An iterative operator on stream operands — P sets up sub-
ordinates at operands and result and repeatedly takes
operand values and inserts result values]

[Set up]

(sub R2; [creates R2 subordinate G with F as instr. source]
copy R2; [Q is sent the following object to execute]

" escfe; [address of C, specifying execution (/e)]
sub R3; copy R3; (esc/; ->/e;) [as 1-3, for R,on L]
sub R1; copy Rl; (esc/; =>/; ~>/e;) lsimilarly S,r]

LW N

[Repeated operations] o
(copy R2; take RO; [CG is sent instr. to take object to F]
copy R3; take RO; [as 7, causing R to return its result]
copy Rl; insert RO; [as 7- S inserts next object sent]
~; [P performs subtraction on objects from § and R, send-
ing result for insertiom by §&]
11 out/;)) [return and repeat from last (]

OOV~

":=" -~ [A normal (not iterative) operator]
12 (sub R2; copy R2; (esc/; =>/e; copy RO; [e3) 3=3)
[as 1,2,7,10 tut -
using copy instead of take with termination
of subordinate activity; single operand for
identity operation, := (instead of subtraction);
, no result activity, R3, thus result to kU]
13 ~>/e; [skip over single argument, the folowing 6]

14 "(?7)" (out?/;) [suspends activity activity to await operands]

B A [A compound address executed by S]
15 (source R5; [A sub. activity 1 is created to execute rest
of this object]
16 copy RO; [following object sent to T’s superior, §]
17 (esc/; =>/; « » « <=/e;) [selectors corresponding to /E]
18 /+;) [terminate T)

Figure A2 -~ Machine code for part of example in Figure 3$

A

- 233 -

References

1.

2-'

3.

4,

5.

6.

7.

9.

10.

11.

12,

13.

14,

P.C. Treleaven, "Exploiting Program Concurrency in Computing Sys~—
tems," 1EEE Computer, pp.42-50. (January 1979).

J. Darlington, P. Eenderson, and [L.A. Turner (eds.), Functional
Programming and its Applications, Cambridge University Fress
(1982).

J. Backus, "Can Programming be Liberated from the wvon Neumann
Style? A Functional Style and Its Algebra of Frograms," Comm. ACM
Vol. 21(8), pp.€613-641. (August 1578). .

R. Kowalski, Logic for Problem Solving, Elsevier-North-Holland
(1979). . '

D.A. Patterson and C.H. Sequin, "Design Considerations for Single
Chip Computers of the Future," IEEE Transactions on Computers Vol.
C-29(2) (February 15&G).

C.H. Sequin, "Single Chip Computers, The New VLSl Building Elocks,"
CALTECH Conf. on VLSI, pp.435-445 (January 1979).

A.M. Despain and D.A, Fatterson, "X~tree: A TIree Structured Mhul-
tiprocessor Computer Architecture," Proc. Fifth. Int. Symp. Com-
puter Architecture, pp.l44-151 (1678).

H.T. Kung, L.J. Guibas, and C.D. Thompson, "Direct VLSl Implementa-
tion of Combinatorial Algorithms," Proc. Conf. on VLSI: Architec-
ture, Design, Fabrication, California Institute of 1lechnology,
pp.505-525 (1579). :

E.D. Lazowska et. al., "The Architecture of the Eden System,"
Technical Report €1-04-01, University of Washington (April 1S&1).

Elliot Crganick, A Frogrammer’s view of the INIEL 432 b5ystem,
McGRAW-HILL, ’

1. Barron, "The Transputer," pp. 343-357 in The Microprocessor and
its Applications, ed. D. Aspinall, Cambridge University Fress
(1578). ‘

R.P. Hopkins et. al., "A Computer Supporting Data Flow, Control
Flow and Updatable Memory," Technical Report 144, Computing
Laboratory, University of Newcastle upon lyne (September 1%7%).

"R.P. Hopkins, "A Data Flow Computer with Addressable Memory," Proc.

Data ' Driven and Demand Driven Languages and Machines workshop,
Tolouse ‘France (1579).

P.C. Treleaven and R.E. Hopkins, "Decentralised Computation,” Froc.
Eighth Int. Symp. Computer Architecture (May 1¢81).

. - 234 -

15. P.C. Treleaven, R.P. Hopkins, and P. Rautenbach, "Combtining Lata
Flow and Control Flow Computation," Computer Journal Vol. 25(2),
pPpP.279-290 (198€2).)

16, P.C. Treleaven, D.R. Brownbridge, and R.F. kopkins, "Data ULriven
and Tlemand Driven Computer. Architecture," Computing Surveys Vol.
14(1) (March 16£2).

17. P.C. Ireleaven and R.P. Hopkins, "A Recursive Computer Architecture
for VLS1," Proc. Ninth Int. Symp. Computer Architecture, pp.22%-23%6
(1982). '

18. 1. Gouveia Lima, R.P. Hopkins, L. Marshall, D. Mundy, and EFE.C.
Treleaven, '"Decentralised Control Flow - BAsed on unlX," Proc. S1G-
PLAN §3 Symp. on Programming Language issues in Software Systems,
SIGPFLAN Notices Vol. 18(6) (June 16§3).

1. T.L. Wat, "The Implementation of a JUMEC Computer on Three MN6&GOU
Microcomputer Systems,”" M.Sc. Dissertation, Computing Laboratory,
University of Newcastle upon TIyne (1%79). :

20. D.R. Brownbridge, "A Simulator for Concurrent Architectures," M.Sc.
Dissertation, Computing Laboratory, University of MNewcastle upon
Tyne (1979).

21, 2. Maona, Mathematical Theory of Computation, McGraw hill (1574).

22.,. D.P., Friedman and D.S. Wise, "CONS should not evaluate 1ts argu-
ments," pp. 95-103 in Automata, Languages and Frogramming, ed. 5.
Michaelson and R. Milner, Edinburgh University Fress, Edinburgh
(1576). ’

23. P. hEenderson and J. Morris, "A Lazy Evaluator;"b Proc. 3rd. ACM
Symp. on the Principles of Programming Languvages, pp.%5-1G3 (1576).

24, Arvind et. al., "The 1d Report: An Asynchronous Frogramming
Language and Computing Machine," Technical Keport 114, CLepartment
of Information and Computer Science, University of (alifornia,
Irvine (May 1$78).

25. J. McCarthy et. al., The LISP 1.5 Programmers Manual, Camtridge,
Mass., (1962).

26. W.B. Ackerman , "A Structure Processing Facility for Lata Flow Com-—
puters," Computation Structures Group Memo 165, MI1T1 Laboratory tor
Computer Science.

27. A.L. Davis, "The Architecture and System Method of LIMl: A hecur-
sively Structured Data Driven Machine," Proc. Fifth lnt. Symp. Com-
puter Architecture, pp.210-215. (April 1%78).

2. J. McCarthy, "A Basis for a Mathematical Theory of Computing, PP
33-70 1in Computer Programming and Formal Systems, ed. P. Braffort
and D. Hirschberg, North-Holland (1%63).

26.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

- 235 -

D.P. Friedman and D.S. Wise, "An Indeterminate Constructor for
Applicative Programming," Conf. Record of 7th Annual ACM Symp. on
the Principles of Programming Languages, Las Vegas (January 16L0).

W.A. Kornfield, "Combinatorially Implosive Algorithms," Comm, ACM
Vol. 25(10) (October 1982), :

J.H. Patel, "Processor-Memory Interconnection for Multiprocessors,"
Proc. Sixth Int. Symp. Computer Architecture, pp.16&-177 (April
1879). T

R.J. Swan, S.H. Fuller, and L.P. Siewiorek, "CM*: A Modular Mul-
tiprocessor," Proc. Nat. Comp. Conf., pp.637-644 (June 1977).

P.C. Treleaven et. al., "The Design of highly Concurrent Computing
Systems," Technical Report 126, Computing Laboratory, University
of Newcastle upon Tyne (1578). .

L. Foti, D. English, R.P. Hopkins, D. Kinnement, P.C. Tlreleaven,
and L. Wang, '"Design of a Reduced Instruction Set Multi-
Microprocessor System — RIMMS," Internal Report, Computing labora-
tory, University of Newcastle upon Tyne (February 15&3).

J.B. Dennis and D.P. Misunas, "A Freliminary Architecture for a
basic Data Flow Processor," Proc. Second Int,., Symp. Computer Archi=-
tecture, pp.126~132. (1975).

1. Watson and J. Gurd, "A Frototype Data Flow Computer with Tloken
Labeling," Proc. Nat. Comp. Conf. Vol., 48 , pp.623~-6z86. (1579).

W.E. Kluge and H. Schlutter, "An Architecture for the DLirect Execu-
tion of Reduction Llanguages," Proc. Int. Workshop on hLigh level
Language Computer Architecture, Fort Lauderdale, Fla., pp.l74-18&0,
University of Maryland and Cffice ot Naval Research (May 1%&0).

P.C. Treleaven and G.F. Mole, "A Multi-Processor Reduction Machine
for User-I-fined Reduction Languages," Proc. Seventh Int. Symp.
Computer Architecture, pp.121-129 (May 19%&0).

J.W. Clark et. al., "SKIM - The § K I Reduction Machine," L1SP-£0
(1¢80).

J. Darlington and M. Reeves, "A Reduction Machine for Parallel
Evaluation of Applicative Languages," Proc. Conf. on Functional

Programming and Computer Architecture, MIT (Oct. 1S€1).

‘R.M. Keller et. al., "A Loosely-coupled Applicative Multi-

processing system," AFIPS Conf. Proc. Vol. 48, pp.£61-670. (157¢€).

J.B. Dennis, "The Varieties of Data Flow Computers," Proc. First
Int.) Conf. on Distributed Computing Systems, pp.436-435. (Cctober
1879).

43.

44,

45.

46.

47.

52.

53.

54.

55.
56.
57.
5€.

5S.

- 236 -

D.A. Turmer, "A DMNew Implementation Technique for Applicative
Languages," Software Practice and Experience Vol. S, pp.31-4¢,
(1679).

B.H. Liskov, "A Design Methodology for reliable Software Systems,"
AFIFS Conf. Proc. Vol. 41, pp.191-199 (1872).

B.H. Liskov et. al., "CLU Reference Manual," Computer Science NMemo
161, MIT (July 197€).

D.P. Friedman and D.S. Wise, "Aspects of Applicative Frogramming
for File Systems," Proc. ACM Conf. on lLanguage Design for keliable
Software, SIGPLAN notices Vol. 12(3), pp.41-45 (March 1977).

M.R. Mclauchlan, "A Purely Functional VLS1 Layout Language," lnter-
nal Report FMM S0, Computing Laboratory, University o£ Mewcastle
upon Tyne (Sept. 1980) .

P. Henderson, Functional Programming Applications and Implementa-
tion, Prentice Hall International (198CG). ‘ '

L.S. Wise, Private Communication.

D.D. Chamberlin, "The Single Assignment Approach to Parallel Pro-
cessing.,”" Proc. Nat. Comp. Conf. Vol. 39 , pp.263-26S. (1%71).

L.G. Tesler and H.J. Enea, "A Language Design for Concurrent
Processes.," Proc. Nat. Comp. Conf. Vol. 32 , pp.403-406. (196¢&).

B. Randell, "The Structuring of Distributed Computing Systems,"
Technical Report 181, Computing Laboratory, University of Newcas-
tle upon Tyne (1583).

V.M. Glushkov et. al., "Recursive Machines and Computing Technol-
ogy," Proc. IFIP Congress, pp.65-70 (1574).

R.M, Barton, UK Patent Specification] 503 321-325.

W. Wilper, "Recursive Machines," Internal Report, Xerox Falo Alto
Research Centre (1980G).

D.M. Ritchie and K. Thompson, "The UN1X Time-Sharing System," Comm.
ACM Vol. 17(7), pp.365-275 (July 1$74).

The Conference on Pata System Languages (CCDASYL) DB1G report,

October. 1569,

A. Boare, "Communicating Sequential Processes," Comm. A(M Vol.
21(8), pp.€6€-677 (August 78).

?.CM§§ and R. Taylor, "CCCAM," 1983 Conf. on Parallel Processing
1¢8

60.

€1,

€2.

63.
€4,

€5.
€6.

67.

D. Ingelle, "The Smelltalk-76 Progrsmming System Lesign and Imple-
mentation," Proc. S1GFLAN Conf. on the Frinciples of Frogramming
Languagee, pp.9-15. (1978).

D.A. Turner, Frivate Communication.

C.L. Seitz, "ECystem Timing," in Introduction to VLS1 Systems, cd.
C. Mead and L. Conway, Addison kesley (19¢GC).

P.R. Brownbridge, L.F. Marshal, and B. Randell, "lhe Newcastle Con-
nection or UNIXes of the Worid Unite," Software Fractice and
Expericnce Vol. 12 (1562). :

D.A. Patterson and C.kL. Sequin, "RISC 1: A Reduced Instruction Set
VLSl Computer," Proc., Eighth Int. Symp. Computer Architecture,
pp.443-457 (1581).

W. Wilner, "Instruction Execution," Internal Report, Xerox Falo
Alto Research Centre (1¢81). :

H. Simon, "The Architecture of Complexity," Proc. American Fhilo-

~ sophical Society Vol. 106(6) (1%62).

M. vanEmden and R. Kowalski, "Semantics of Frolog as a Frogramming ‘
Language," Journ. ACM Vol. 7(3), pp.733-742 (1976).

	348164_001
	348164_002
	348164_003
	348164_004
	348164_005
	348164_006
	348164_007
	348164_008
	348164_009
	348164_010
	348164_011
	348164_012
	348164_013
	348164_014
	348164_015
	348164_016
	348164_017
	348164_018
	348164_019
	348164_020
	348164_021
	348164_022
	348164_023
	348164_024
	348164_025
	348164_026
	348164_027
	348164_028
	348164_029
	348164_030
	348164_031
	348164_032
	348164_033
	348164_034
	348164_035
	348164_036
	348164_037
	348164_038
	348164_039
	348164_040
	348164_041
	348164_042
	348164_043
	348164_044
	348164_045
	348164_046
	348164_047
	348164_048
	348164_049
	348164_050
	348164_051
	348164_052
	348164_053
	348164_054
	348164_055
	348164_056
	348164_057
	348164_058
	348164_059
	348164_060
	348164_061
	348164_062
	348164_063
	348164_064
	348164_065
	348164_066
	348164_067
	348164_068
	348164_069
	348164_070
	348164_071
	348164_072
	348164_073
	348164_074
	348164_075
	348164_076
	348164_077
	348164_078
	348164_079
	348164_080
	348164_081
	348164_082
	348164_083
	348164_084
	348164_085
	348164_086
	348164_087
	348164_088
	348164_089
	348164_090
	348164_091
	348164_092
	348164_093
	348164_094
	348164_095
	348164_096
	348164_097
	348164_098
	348164_099
	348164_100
	348164_101
	348164_102
	348164_103
	348164_104
	348164_105
	348164_106
	348164_107
	348164_108
	348164_109
	348164_110
	348164_111
	348164_112
	348164_113
	348164_114
	348164_115
	348164_116
	348164_117
	348164_118
	348164_119
	348164_120
	348164_121
	348164_122
	348164_123
	348164_124
	348164_125
	348164_126
	348164_127
	348164_128
	348164_129
	348164_130
	348164_131
	348164_132
	348164_133
	348164_134
	348164_135
	348164_136
	348164_137
	348164_138
	348164_139
	348164_140
	348164_141
	348164_142
	348164_143
	348164_144
	348164_145
	348164_146
	348164_147
	348164_148
	348164_149
	348164_150
	348164_151
	348164_152
	348164_153
	348164_154
	348164_155
	348164_156
	348164_157
	348164_158
	348164_159
	348164_160
	348164_161
	348164_162
	348164_163
	348164_164
	348164_165
	348164_166
	348164_167
	348164_168
	348164_169
	348164_170
	348164_171
	348164_172
	348164_173
	348164_174
	348164_175
	348164_176
	348164_177
	348164_178
	348164_179
	348164_180
	348164_181
	348164_182
	348164_183
	348164_184
	348164_185
	348164_186
	348164_187
	348164_188
	348164_189
	348164_190
	348164_191
	348164_192
	348164_193
	348164_194
	348164_195
	348164_196
	348164_197
	348164_198
	348164_199
	348164_200
	348164_201
	348164_202
	348164_203
	348164_204
	348164_205
	348164_206
	348164_207
	348164_208
	348164_209
	348164_210
	348164_211
	348164_212
	348164_213
	348164_214
	348164_215
	348164_216
	348164_217
	348164_218
	348164_219
	348164_220
	348164_221
	348164_222
	348164_223
	348164_224
	348164_225
	348164_226
	348164_227
	348164_228
	348164_229
	348164_230
	348164_231
	348164_232
	348164_233
	348164_234
	348164_235
	348164_236
	348164_237
	348164_238
	348164_239
	348164_240
	348164_241
	348164_242
	348164_243
	348164_244

