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modification of the program string, e.g. the insertion of an object,
there may be a temporary delimiter imbalance in the string and thus the
{program string> does not always conform strictly to the <program> syn-

tax.)

Each activify has-a current position in the program and is modeled
as béing. itself an item in the string together with the symbols of the
prograﬁ. There are communications connections between activifies allow-
ing an activity to transmit objects to and recelve objects from con-
nected acfivities. These connections support tree structures of activi-
ties Qith each aptivity capable of being connected to a superior
| activity (identified as RO) and a number (6) of subordinate activities

(identified as R1l, R2 etc.).

An activity is executing symbols from éome instruction source,
either the program string or the objects transmitted from a connected
activity. |[Messages such as "copy", "take" and " execute" sent from a
superior activity to a subordinate actiQity are instructions executed by
the subordinate activity as a result of its instruction source being the
connection to 1ts supefior activity ("execute" switches the instruction
source to be the program string); the effect of' the "eval" operator,
executed by an activity P, is achieved by‘P's instructién source being

the connection to the subordinate activity which 1is evaluating the

operand.]

Normally execution is sequential, with the activity’s position mov-
ing past each item in the string as it is executed, or successive items
being” executed as they are received from the connected activity. The

following Sections describe the effects of executing the different types
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of items from the instruction source, namely deiimiter symbols, primi-
tive data items and various types of instructions. The different types
~of instructions are: Access iﬁ;tructions which operate on the program
striné as a data structure, reading objects from the string to be
transmitted to a conne;ted activity and modifying the string with

objects received from a connected activity; Addressing instructions
which move the position of the activity within the string and also may
suspend the activity and switch its 1nstr;ction source; Operation
instructions which perform for example arithmetic operations on objects
received from connected activities énd transmit the result to connected
activities; Creation instructions which generate parallelism Ly creating

new activities; Exception instructions for handling various exception

conditions.

When an activity’s instruction source is the program string the
next item may be anothér activity rather than a symbol of the program.
Generally two activities aécessing the string (i.e. with the string as
instrpction source or executing an access instruction) will follow each
ofher through the string with the activity on the left waiting ‘for the
other to progress. However the activity on the right, PR, must be
passed by that on its left, PL, 1f the furthér progress of PR is depen-
dent on &an event that could possibly never occur (that is, if it hés
been suspended and thus is dependent on another activity to modify the
string, or is dependent on a connected activity sending it an object,

for example when its instruction source is a connected sctivity).

\\
AN
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A.2 - Delimiters

An activity has a current object of execution in the string-. 1f
the instruction source is the program string and the next item is the
closing delimiter of the current object then the activity and its subor=-

dinates terminate. 1In all other cases a delimiter is ignored and execu-

tion continues with the next item from the instruction source.

The current object'is established as being the objéct to the right
of the activity when (i) the activity 1is first created, (ii) the
instruction source is switched from being the connection with its supe-
rior to be the program string, (iii) the activity executes the first
non-addtessing instruction after a series of addressing instructions one

of wvhich moved the activity outside the previous current object.

A.3 - Pata Items

Data items have two roles. Firstly a data iteé may be the next
item to be executed from the instruction source in which case the
activity retains its current position in the program string and its
instruction source 1is switchéd to be the connection to the superior
activity [from which typically an access instruction, e.g. to "copy" tbe

data item, will then be received].

Secondly data items form the operands of operators which are

descfibed, together with the syntax of data items, in 4.6,

.
N
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A.4 — Access Instructions

Caccessd 1:= <actiond <actd
<action)> ::= copy | repl | take | imsert
<actd t:=RO | Rl | R2 ... R6 | .

An access Instruction generally specifies some action on a target
object in the program string ana a connected activity (RO, Rl etc.) to
which that object is transmitted or from which a new object for the
string is received. The target object is the object to the right of the
activity’s position (to the right of the access inst;uction itself if it
is executed from the string). A copy transmits a copy of the target
object. A replace replaces the target object with the new object. A
take 1s a destructive copy, transmitting the target object and deleting
it from the string. An insert inserts the new object in the string to
the immediate left of the next symtol to the right of the activity. A
ey Indicating a "nullfactivity", can be specified instead of an actual
activity. An object transmitted to < is just discarded. An object
received from . is always the empty object (). Thus, for example, take.
just deletes the target object and repl. replaces it with (). On com-
pletion of any access instruction the activity is positioned to the

immediate right of the target or new object in the string.

An action (replace or take) which deletes an existing object uiil
proceed a symbol at a time, deleting each symbol iﬁ turn. There may be
another activity positioned within the object being deleted and the
deletion will generally wait at that point until the other activity
moves . HowéQer, in circumstances mentioned in A.]l, it may be necessary
for the deleting activity to pass the otﬁer activity and in doing so

that activity is terminated.
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[In the example used in Section 4.l.4 to discuss the general KkCF
model it was mnecessary for the replace action to be acknowlédged. In
the LEGO implementation this acknowledgement is implicit in the communi-
catio#s flow control mechanism. However alternative implementations
might not have that implicit acknowledgement. Explicit Acknowledgeﬁent
can be programmed when required. The replace instruction, followed by
the new object, is generally sent from an activi;y P to a subordinate Q
positioned at the object to.be replaéed. After sending the new object,
P can use routing opefations (see A.6) to send instructions to G which

cause Q to send the required acknowledgement to P.]
A.5 - Addressing Imstructions

<addressing)> ::= <sé1ectbr> <switchd> | <selectord> ? <switchd |
I<selectord> <switchd> | I<selectord> ? <switch>

- <selector> :: out | start | <~ | / | in | ~> | end | esc | § <act>

<switch> ::= [fe | [<actd> | /

An addressing instruction includes a selector which specifies a new
position for the activity and a switch to possibly change its instruc=—
tion source. The selectors out ... escape are those defined in Figure
25 of ECection 4.1, and are relative to the position of the activity
(following the addressing instruction itself if that is executed from
the program string). For selectors $RO ... $R6 the new positién is to
the immediate right of the specified activity. 1f a subordinate

'activity En 1is specifiéd but does not exist then the BRan subordinate of
the superior is used, and if it does not exist then that of 1its supe-
rior, etd..\ [A $Rn will form the first selector of a base-relative

address, used for example in addressing procedure parameters, and is

defined such that in the sub-tree of activities executing the procedure,
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all activities can address parameters relative to the position of a par-

ticular subordinate of the sub-tree’s root activity.]

The switch in an addressing instruction may specify that following
the execution of the instruction the instruction source is to become the
prbgram string at the new position (/e); the instruction source 1is to
become the connection to a specified activity (/Rm) (if the null
activity is specified, /., then the activity terminates); or that there
be no change (/). [In a normal address where the addressed object is
executed, the last selector would have a /e suffixj In a quoted address
"where the addressed object 1s not to be executed, the last selector
would have a /RO suffix switching control to the superior, as occurs

when executing a data item.]

The selector may be suffixed by a ? specifying that the activity be
suspended at its new position. The suspended activity will be reac-
tivated when another activity performs a replace or take action on the
object at the new position or an imsert action to insert a new object at

that position. [The "unknown argument", "(?)", would be represented as

( out?/; ).]

The selector may be prefixed by a ! in which case the rest of the
instruction is not executed and the instruction (if it is in the progrém
string) is modified by the ! being removed. [This provides the exclu-

sion argument, "(excl)", which in machine code is (lout?/;).]
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A.6 — Operations

<operation> ::= <typed op.> | <compare op.> | <special op.>
<typed op.> ::= <int op.> | <bool op.> | <bit op.>

<int op.> =+ | = | O~

<bool ope> z:=& | 1| ~1 | =

<bit op.> ::= ‘& | ‘1| ~1 |

{compare 0Op.> ::= = | *= | >I>=| < | <=
<special op.Y ::= 1f | == | 3= l act> , <act) ::= <act>

<data item> ::= <value> | <error>

<value> ::= <int> | <bool> | “<bit> | "<char>

<int> TIE e -2 I _l '0 ' 1 ' 2 ce s

<bool> ::=T | F

<bit> ::=11]0

<{char> ::= <any ASCII character>

<error> ::= #

<obj> ::= <instructiond> | <valued | ( { <obi> } )

<any> ::= <objectd>

An operation instruction processes operand objects to produce a

result object as defined by its operator. Each operand is received from
~ a specific subordinate activity (usually there is one operand from R2
and one from R3). The result is transmitted to subordinate Rl. 1f
there is no R]l subordinate then the result will be sent to the superior
RO in response to any object from the superior. 1f there is no superior
either then the result is just discarded. Figure Al shows all the
operators and the types of valid operands and results produced, these
types being specified by the syntax for <data item>, <obj> and <any§.
The typed operators are straightforward, each having as its operands and
results primitive objects of the same type (integer, boolean or bit).
The other operators may involve compound objects and the special error
object. An error object is produced as the result of applying an opera-

tor to an operand of the wrong type (e.g. multiplying two characters or

an integer and an error object). In defining the type of valid operands
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there is a distinction between a general object, <any>, and an object,

<obj>, restricted to exclude error objects.

oper=-
ator operands result " meaning
T R2 R3 R4 <actd> A 1
integer
+ dnt> <int> - <Lint> add
- <int> <int> <int> subtract
0- <intd> <int> unary minus
boolean : .
& <bool> <bool> <bool> and
! <bool> <tool> <bool> cr
“1 <bool> <bool> <kool> nmor
- <tool> , <bool> not
bit :
‘& <bit> <bitd <bit> and
‘1 <bitd> <btitd> <bit> or
! <bitd> <bit> . <bit> nor
e <bit> <bitd <bit> not
compare :
= <obj> <obj> <bool)> . equal
f= <obj> <obj> <bool> not equal
> <obj> <obj> <bool> greater
>= <obj> <obj> , <tool> greater or equal
< <obj> <obj> <bool> 1less
<= <obj> <obi> <tool> less or equal
special
if <any> <any> <bool> ' conditional
== <any> <any> <tool> equivalent
= <any> <any> identity
= ' <any> <any> routing
Figure Al - The Operators

A compafe operator treats its operands as two strings of symbols
(i.e. delimiters, instructions and data items) which are compared in

pairs from left to right. The strings are equal 1if all pairs of
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corfesponding symbtols are.equal, otherwise thé result is the result of
comparing the leftmoét'unequal palr according to the following ordering
- ) (lowest); ‘O; ’‘1; F; T; integers in numeric order; characters in
standérd order;vinstructions in arbitrary order; (. [The position of
the delimiters in thig_ordering gives the_effect of recursively compar-

ing compound objects, for. example -

(("e "v "e)) < (("e ™v "e) "j) < ((Me ™v "e) ("j “i m)) ]

The conditional operator (if) has three operands and the result is
the first (R2) or second (R3) defending on whether the third (R4) is
True or False. The equivalence opefator (==) tests the operands for
gquality and allows an object to be tested for error. For the identity
operator (:=) there is a single operand which is transmitted unchanged
as the result. For the routing operator (::=) the result is its single
operand from a specified source activity and copies are transmitted to
two specified destination activities. If the null activity . is speci-
fied as the source then () is'used as the operand object. 1f a destina-

tion activity Is non-existent or is specified as . then its copy is just

discarded.

The routing operator is used in conjunction with access instruc~
tions to replicate objects and to organise any communication that may be
needed in addition to the simple operand/result communication pattern of
the other operations. As an example the following sequence of instruc-
tions synchronise the executing activity P with its Rl subordinate, Q -

.11 . 12 i3
A

I_;Aﬁ L LY L A a N
copy Rl <,RO ::=,; <, ::=RIl;

The first, copy, instruction transmits to Q the following instruction,
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42. When Q has finished executing the previéus instruction from P it
will execute the i2 which specifigs that Q transmit to its superior, F,
the empty object (). The next instruction executed by P, 13, requires
an object from its Rl subordinate, Q, and thus synchronises those two

activities. When P receives that object, (), it is just discarded.
‘A.7 — Activity Creation

<{creationd> ::= sub <act)> |
source <act)> |

par
A sub instruction, such as sub Rm, creates a new subordinate
_activity (Bn) to the the immediate left of the creating activity. 1lhe
new activity is connected to the creating activity as its supcrior and
that 1s its initial instruction source. The new activity itself has no
subordinates. A source instruction is the same except that the new
subordinate activity 1s to the right of its superior, the iInstruction
source for the created activity is implicitly switcﬁed to be the program
string, and the instruction source for‘thé creating activity is impli-

citly switched to be the connection with the created activity.

‘A parallel instruction creates a new independent activity which
has the same current object as the creating activity, the same position
as the creating activity (following the par instruction if that is exe~
cuted from the program string) and with the program string as its
instruction source. The creating activity then executes an implicit =>/
addressing ~{nstruction so that the next object it executes is that fol-

lowing the first object executed by the created activity.
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A.8 -~ Exception Bandling
<exceptiond::= ok | err | skip | skip <act

Associated with an activity is an error status which indicates
whether an error hgg_occurred.‘ This is cleared by an ok instruction,
set by an err instruction and is also set by the occurrence of some of
the exception conditions described telow. A skip instruction tests the

error status of the activity itself or a specified activity and exe-
cutes an implicit =>/ addressing instruction if the status is clear
(that is, the activity skips over the following object which would con-

tain code to deal with exceptions).
The exception conditions that can occur are -

(1) Invalid instruction source .- If the instruction source is switched
to be the connection to a non-existent activity or a connected
activity terminates while the connection to it is the instruction

source, then the activity terminates.

(i1) InQalid selectors - A selector in an addressing instruction exe-
cuted by an activity P is invalid if: it is an in/ gelector and the
next symbol to P’s right is a primitive object or a ); it is a ' =>/
(or <-/) selector and the next symbol to P’s right (or left) is a.)
(or (); it is an out/ or escape/ selector and P’s enclosing object
is the outermost object, the total program; it is a $Ran selector
where Rn does not exist or the null activity, ., is specified. 1lhe
error  status is set and the effect on P’s position is that of a

"null" selector, //, (except in the case of an invalid out or

escape/ selector which will act as a start or end selector).
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(iii1)Invalid access instructions - An access iﬁstruction is invalid if
the activify. to which the target object is to be transhitted, or
the activity frog which the new object is to be received, does not
éxist, or (except in the case of insert) the next symbol to the
;ight of the activity is a ).” The error status is set and' wheré

appropriate the error object is transmitted as the target object.

(iv) Invalid operation - An operation instruction is invalid if one of
A the operand objects is of the wrong type or the activity from which
it should be received does not exist. 1The error status is set and

the error object is transmitted as the result.

(v) 1Invalid creation — A sub Bn or source Ra instruction is invelid if
the specified subordinate already exists or the null activity, .,
is specified for Rn. The error indicator is set but otherwise Athe

instruction has no effect.

A.9 - An Example

In order to illustrate the relationship between the machine lcode
described here and the programming constructs used in Chapter Four, Fig-
ure A2 shows the machine code equivalent to some of those constructs.
The example program fragment used (a) is part of that in Figure 39. 1he
motivation for this example and its general operation was discussed in
Section 5.1.7. The machine code instruction sequence corresponding to
each;consFruct in (2) is shown in (b) which contains comments explaining

the detailed- operation of that machine code.
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(2) example ,
P Q R .
l'( I iter- ( I c2 c3 (?) ) ( I = 6 /out ) 1 /E v)"
| ¢ D: ’ r:
(b) machine code ' . .

program o
construct , machine code

"jter"- [An iterative operator on stream operands — P sets up sub-
ordinates at operands and result and repeatedly takes
operand values and inserts result values]

[Set up]

( sub R2; [creates R2 subordinate G with F as instr. source]
copy R2; [Q is sent the following object to execute]

" escfe; [address of C, specifying execution (/e)]
sub R3; copy R3; ( esc/; ->/e; ) [as 1-3, for R,on L]
sub R1; copy Rl; ( esc/; =>/; ~>/e; ) lsimilarly S,r]

LW N

[Repeated operations] o
( copy R2; take RO; [CG is sent instr. to take object to F]
copy R3; take RO; [as 7, causing R to return its result]
copy Rl; insert RO; [as 7- S inserts next object sent]
~; [P performs subtraction on objects from § and R, send-
ing result for insertiom by §&]
11 out/; ) ) [return and repeat from last ( ]

OOV~

":=" -~ [A normal (not iterative) operator]
12 (sub R2; copy R2; (esc/; =>/e; copy RO; [e3) 3=3)
[as 1,2,7,10 tut -
using copy instead of take with termination
of subordinate activity; single operand for
identity operation, := (instead of subtraction);
, no result activity, R3, thus result to kU]
13 ~>/e; [skip over single argument, the folowing 6 ]

14 "(?7)" ( out?/; ) [suspends activity activity to await operands]

B A [A compound address executed by S]
15 (source R5; [A sub. activity 1 is created to execute rest
of this object]
16 copy RO; [following object sent to T’s superior, §]
17 (esc/; =>/; « » « <=/e;) [selectors corresponding to /E]
18 /+;) [terminate T)

Figure A2 -~ Machine code for part of example in Figure 3$

A
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