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ABSTRACT

This thesis is mainly concerned with an error analysis of
numerical methods for two point boundary value problems, in parficular
for the method of collocation using polynomial and certain piecewise
polynomial bases.

As in previous work on strict error bounds an operator
theoretical approach is taken. The setting for the theory and the
principal results for later use are firstly considered. Then two types
of 'a posteriori' error bounds are developed. These’ bounds are made
computable by relating the inverse of the approximating operator to the
inverse of certain matrices formed in the actual application of the
approximation method.

The application of this theory to the numericel solution of
linear two point boundary value problems is then considered. 1t is
demonstrated how the differential equation can be split to fit into the
setting required by the theory. It is also demonstrated how the global
and the piecewise collocation method can be expressed in terms of a
projection method applied to the Dpérator equation. The conditions
required by the theory are expressed in terms of continuity requirements
on the coefficients of the differential equation and in terms of tﬁe
distribution of the collocation points. In examining these bounds on
a variety of problems, it is noticed that with some problems the
conditions for applicability may not hold except for more points than one
actually required to obtain a satisfactory solution. To improve the
applicability, the theory is reconsidered with a different splitting
of the differential eguation. The method of collocation is expressed
accordingly in terms of a new projection operator which is proved to

have some nice properties in practice. This new approach is then compared



with the original one énd it is shown to be superior on variéus problems.
By examining the inverse differential operator and the residual
improved error bounds and estimates are shown teo be obtainable. These
estimates are tested in a large variety of examples and some graphs
are presented to describe their behaviour in more detail. Finally
these estimates are used to develop various adaptive mesh selection
algorithms for solVing two point boundary value problems. These
strategies are tested and compared in several representative examples
and some conclusions are drawn.
The thesis concludes with a brief review of “the work with an

indication of possible improvements and extensions.
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Chapter O

Introduction

6.1 Aim
An operator approximation theory is described in chapter 1
in an attempt to unify and extend other work arising mainly from
studies of approximate solutions to integral and differential
equations. The theory is placed in a general setfing sc as to permit
as wide ‘range of application as possible.
We are primarily concerned with finding strict error bounds
for the approximate solution of linear two point boundary value problems
in ordinary differential equations. These solutions will be the result of
.applying the method of collocation using polynomial and piecewise poly-
nomial bases. The theory developed in chapter 1, however has much
wider application.
Interesting error estimates arise as a by product of the work

and are used in . mesh selection algorithms for collocation codes

for solving boundary value problems.

0.2 Summary

In sections (1.1 - 1.5) the theoretical background to the
approximation method and the main results are presented. The theoretical
results employed there are of a general nature and are derived primarily
by Kantorovich & Akilov {1964) and Anselone (1971). Similar
investigations have been pursued by Philips (1972), Coldrick (1872),
Cruickshan « (1974) and Gerrard (1878). The results are only based

on certain operators being compact.



In sectioﬁ {1.8) two important convergence theorems which
relate the inverse operator to the inverse of some matrices are
presented. These theoremsare important for the suitability of the
bounds derived at the end of the section for the approximate inverse
operator and are extremely valuable in justifying certain error
estimates for the approximate solutions.

In chapter 2 a two point boundary value problem in ordinary
differential equations is defined and expressed in the operator form required
by the theory. In section (2.3) an approximate solution generated by
the global collocation method is considered. It is.shown using some
results of Cruickshan k (1874) and Wright (1878) that all the conditions
required by the theory are satisfied by the global bollocation

-method. In a similar way the piecewise collocation method 1s considered
in section (2.4) and the conditions of the theory are verified using
certain results of Gerrard (1878).

Having shown the theory is applicable section (2.5) proceeds
to develop concrete numerical bounds on various operators and from
these show how it is possible to obtain computable bounds for the
differential operator. In section (2.6) test problems are used to
illustrate the techniques and it is noted that in some cases the
number of points or partitions needed to find the bounds is larger than
one would like.

In chapter 3 that problem of applicability is considered. The
differential equation is expressed in a parameteric operator equation.
These parameters are constantsto be chosen to allow the maximum possible
applicability. In section (3.1) it is shown that this new operator
equation satisfies the conditions of the theory under certain

restrictions on the parameters. The method of collocation defines



a new projection éperator which is proved to tend in norm to the usual
projection operator with both the polynomial and piecewise polynomial
bases. All conditions of the theory are shown to be satisfied by

both methods and numerical methods are developed to calculate the nofm
of these projections and bounds on all other operators. At the end
the applicability is discussed and compared on'the test problems.

In chapter 4 improved error bounds and estimates are developed.
In section (4.2) the behaviour of the residual is studied and useful
properties are obtained with both the global and piecewise method.

In section (4.3) and (4.4) it is shown that by exaéining the inverse
differential operator and the residual one can obtain closer bounds
and estimates with less work. In the last sections these estimates

- are compared with the actual error on a large selection of problems
and some graphs are presented.

In chapter 5 various adaptive mesh selection algorithms based
on the error analysis developed in this thesis are presented. These
algorithms are tested and compared in a selection of badly behaved
problems and some conclusions are drawn.

In all the computation with global methodswe use zeros of

Tchebychev polynomials as collocation points. Gauss points are
compared with Tchebychev points for the piecewise case in chapter 4
and accordingly are chosen for the collocation codes in chapter 5.
These two sets of points are widely used in such collocation methods,
for example Tchebychev zeros by Wright (1984) and Gauss points by
De Boor (1973).

All the calculations were performed in double precision

arithmetic on IBM 360/370 computer.



Chapter 1

Theory of approximation methods and bounds

on certain inverse operator

1.1 Introduction

In this chapter we introduce the theoretical background for
certain operator equation and their approximate solution. We will
be interested on the main 'a posteriori'’ theorems based on the work
of Kantorovich & Akilov (1364) and Anselone (1971). Similar work
was covered by Phillips (1872), Coldrick (1872), Cruickshan'x (1974)
and Gerrard (1978). .

The theorems are placed in a general setting so as to permit
several possible areas of application. 1In later chapters we will be
- concerned with collocation as a projection method for the approximation
solution of boundary value problems.

We now briefly define our problem and outline the general

approach which we are going to follow in dealing with it.

IX’ Il.]]Y denote

Let X, Y be normed linear spaces and let |
the norm in X and Y respectively. Let [X, Y] denctes the space
of bounded linear operators mapping X - Y with the subordinate norm.
We will be concerned with solving equations of the form

Dx =y 35 yeVYyDe [X,Y] (1.1)

for x € X.

It is not always possible to solve (1.1) analytically and
often a numerical method is used to approximate (1.1), e.g.

~

=V;veY,De [KY] (1.2)

xQ

~
D

solving for X € X. This equation is usually set in a space of

finite dimensions and corresponds to a finite set of linear algebraic

equations. Now provided X CX and D is invertable it follows that



x -%=0"'x-%)=0"ty - 0%

S I T T )

which is a strict error bound on the approximate solution. 'A
'posteriori’ bounds on lID-1l| in terms of Im5_1|| may sometimes be
computed and everything on the right hand side of the above inequality
may be bounded once the approximate solution has been calculated.

Bounds on ||5_1|[ can be calculated by relating them to the
norms of certain matrices formed in the actual application of the
numerical method. The norms of these matrices will be shown to
have some nice properties making this approach more suitable in -
practice.

In the next section we introduce the general setting for the
theory and put our problem in more specific form. In section (1.3)
the main results for the projection method (Kantorovich & Akilov-type)
afe presented. The Anselone-type theory which will be called the
extended projection method is introduced in section (1.5). Section
(1.8) is dealing with the norm of the inverse of the approximate

operator D and some related matrices. At the end (section (1.7 ))

all these results are summed up to describe different ways of

1

calculating computable bounds for the inverse operator O

1.2 Setting for the theory

In all of the following theory we shall be concerned with
operators D which may be split into two parts
D=G-T
where G is invertable, 6’1 e [Y,X]. 1In certain circumstances we
may deduce that D is invertable. Note that equation (1.1) may

now be written



(G-T x=y (1.4)
and (1.3) becomes

IES%s e ] e-n% - yll, 1.5
We may apply 6—1 to (1.4) giving

(IX-G'1TJ x =6y, (1.8)

or we may replace x by G_1u where u = G x, giving

(IY -6 Yy =y, (1.7)

The identity operator I, € [x,x], denoted [X], and IYé[Y].
Since D is invertable, error bounds of the form (1.5) may
be recovered from (1.8) and (1.7). For example if it is known that

g lir-16H 7" ¢ v, xT then

=671 1 -6 H Ty - (6-D%

so that ||x~§|&; <|1e7 M 1z, 6 N | y-6-TR || (1.8)
T [

Similarly from (1.6)

- -1, -1 ~
x5t < 1= ] e ] Tle-Dx-yll, = (1.9

Because G is invertable there is a close relation between the space
X, Y and it is often the case that error bounds derived independently
from (1.8} and (1.7) turn out to be eguivalent when suitable practical

norms are used. For example if we define the norm in X by

]IXHX = llGxI[Y as in Kantorovich & Akilov, then
-1y -1
|16 {]= sup e “wll, = [lvll, =1
[lyl]=1 X Y
and
15,7 S
(1 -6 'T) = su (I -G 'T
16, 1= see L s oo

sup a1
[[xf] =1 1B 8Dl



- sup lIGIXG_q—GG_1TG_1J_1le|Y
[1ex| ] =1
Y
- _1 - -
= sup |lex,-16™h) ylly = Ha-1s7h7],
[yll=1

which proves that bounds (1.8) and (1.8) are equal . v/ with this
choice of norms.

The theory to be developed in this chapter will deal directly
with equation (1.4) working in the twd spaces X,Y.The infinity norm
is going to be used all through unless otherwise stated. Other work
in this field deals with the more conventional setting of a single space
and works with the problem in its transformed form (1.8) or (1.8).

Obviously dealing with (1.8) or (1.8) means loss of accuracy before

hand due to multiplication of norms, e.g.

- - -1,-1
Hee-n T < e ez, -e7h 7

*

1.3 Relevant results in compact operators

In Anselone (1871}, it is.generally assumed that the normed
space Y is complete. The results developed here will required only
certain operators being compact. The reason for introduction of the
attribute compact is exhibited in the following theorems quoted from
Coldrick (1972) which show that if an operator K is compact then I-K
enjoys some of the pleasant theoretical properties!

Theorem (1.1) (Coldrick (1872, page 12)

If K is a compact operator on Y then the following three

statements are equivalent:

(1) (1-) T e [v]



(ii) (I-K) y=0 implies y = O,

(iii) in | [](I-K)y|| = M for some M>0 .
|yl ]=1 :

This theorem is a standard result, and can be found, for

example in Appendix 1 of Anselone (1371).

Theorem (1.2) (Ccldrick (1872, page 13)

If K is in [Y] such that ||K|| <1 and EITHER

(a) K is compact

or (b) Y is complete .

then TIESSIUTEE: qt%TKT|

This result is given by Anelsone (1971, proposition 1)

when Y isaBanach space.

The importance of these two theorems is that they play the
role of propositions (1.1) and (1.2) of Anselone (1971) when Y is
not a BanachsF&(e,

We introduce next the ba;kground for the theory based on

the work of torovich & Akilov (1864, page 541-801).

1.4 The theory of projection methode

1.4.1 Introduction

Let Xn, Yn be subspaces of X and Y respectively with ¢n a
linear projection Y = Yn' (The subscript n will have
significance later, denoting the dimension of the subspace, but no
restriction of dimensionality is made here).
An approximate solution xn € X CX is found by requiring

that the projection ¢n of equation (1.4) with X0 substituted for x



shall be zero, that is

- - = (0 o [']-10]
¢n(Gxn ™ y)

It is assumed that ¢n G X = G X i.e. G restricted to Xn establishes

a bijection between Xn and Y_ = ¢nY. Hence X satisfies

(6-0. T3 x = &Y (1.11)

An intuitive concept of the. situation described is illustrated

below,

G-T : X > Y

G'q)nT::X" Y [

Note that G—¢nT is regarded as being restricted to domain Xn.

We first state this result which is of 'a priori' nature.

Theorem (1.3)

Let Y_be a subspace of normed linear space Y and let ¢n
be a . " linear projection mapping Y—* Y . Suppose that K g[Y]

-1 . -1
is compact and (I-K) Te [v]l. Then 1f5n = |]-k) | |l(I-¢n]K|| <1,

(I-¢ K]-’l exists in [Y] and
n

-1
- (I-K) .
g M) g KL

e 1-8
n
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This theorem is a reformulation of Kantorovich & Akilov
theory quoted from’ColdriCK (1972, page 14).. Its importance is it
ensures that if Gn -+ Osthen {I-qan)-/I exists for sufficiently
large n and its norm is uniformly bounded. This theorem can be
extended as follows.

Cor (1.1) under the conditions of thevabove theorem with

K =167 ,(5 -q;nT)'1 exists in [Y,X] and

-6, < s ] -k
n 1-8

Proofiit follows easily from the theorem since it is assumed - 5_1 £

v, x].

1.4.2 Projection method bounds

Thearem (1.4) with K(= TG_m]being compact, whenever

- m ) -
(I-¢ K ') exists define 8 = ||(¢n-IJK(I—¢pK] T,
Then if 6: <1, [G-ﬂ‘1 exists and
-1 - 1 -1
Heen ™ sz 1T KM ] s Hie-g n TR
i=o -
(1-6))
m =0,1,2...
Proof :whenever [I-¢nKJ_1 exists, let
TN I R SR (I-¢nKT1)KmJ m =01,2,...

be an approximate inverse of (G-T).

(6-TIH = T+ (o, ~ T K (T -8 K1 K

- m
Since (I-¢ K) ! 1s bounded and (¢ -TIK,K" are compact,by Anselone (1971,

-1 . m. .
page 59)(¢H-I]K[I-¢HK] K is compact. By theorem (1.2) if &" <1,
n

(I+[¢n-IJK[I-¢nK]—1Km]-1 exists and



11

1 2
1-6"
n

Which implies G—T and I- Kk have vight inverses.

1

||z +(¢anJK(I—¢nK)' K™ ] <

By theorem (1.1) since K 1is compact,(I—K)_1 is unique and

hence (G-T]-1 is unigue . that iS the inrerges ave also th mvevses.

Hence (G-T]_1 = H(I +(¢n-I] K (T - ¢nK)-1Km)_1

1ee-T | < R 7c-8T)

m-1
-1 i _ -1,m
S fug HET TR [e-0, 0| o
9 - 48"
- n
The applicability of this theorem is guaranteed if 6: -+ 0,
ll

since the existence and boundness of the approximate inverses (I-¢nK)—
and (G-¢ T)—1 for sufficient large n was ensured by theorem (1.3).
n :

It was noted in the previous section that the approximate

operator (G-¢n71'1 will be in [Y,X] and (I-¢nKJ'1 in" Y], If we
denote these inverses when restricted to the subspaces by (G-¢nT]-1
. n
and [I-¢nK);17 then the following relations can be seen between them.
n
-1 / -1
(1-¢ K}~ =T+ (I-¢K) ¢ K - (1.13)
n
-1 _ &1 -1
(G-, TV =G + (G-¢nTJY ¢ K 2 (1.14)
n
which implies
-1 ) -1
HiesAS N IIFR I ¢nK1Ynll RN
-1 -1 -5
|le-o. T 11 s 1le T +] 1 ¢n|1Yn|| Ho kI,
Substituting these results in (1.12) we get
-1 -1 m i -1 . m+1
ee=n L s IleT T KT -+ JICE TN I 1o K]
i=0 n
1 -8"
n

(1.15)
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. " ) |
15 60 ¢ | cr-okllIKI (1 + [lez-o k31T okl < 1.
n

In the next section we present a different type of projection
method (the extended projection method) and derive similar bounds for .

-1
the norm of the inverse operator (G-T) .

1.5 The extended projection method

This method is based on the theory of Anselone (1872) and
developed by Cruickshanck (1874). Cruickshan.k in his thesis showed
<t how this method could yield improved error bounds for approximate
solution of boundary value problems obtained by global polynomial
collocation methods. Here we follow that idea and develop similar
bounds for the original operator [G-T]_1. But first we introduce

the theoretical background of the method.

1.5.1 Anselone-type theory

In this section we give a brief introduction to Anselone
theory and state relevant results. We are not going to assume
completeness as in Anselone. The theory uses the weaker pointwisestnmj)
convergence but requires additional compactness conditions.

Here the equation is of the form

(I-LJu=y u, yeYandlLe [Y]
An approximate solution un € Y to u is sought satisfying the equation
(I-L Ju, = with L e vyl .
The following conditions are used.
with L, Loe Y] (n= 12,0000
(1) Ln'*L"-e Nipu-Lull—0oyuey.
(ii) L is compact

(1i1) ‘[Ln] is collectively compact .
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The theoretical results due to Anselone (1871) may
now be stated .

Theorem (1.5) ('a priori') with conditions (i), (ii) and

(iii) suppose [I-L]~1 exists and define An = II[I-L)—1II [|(Ln-L]Ln|[.

Then An -+ 0 as n »+ «and for An <1, (I—LnJ_1 exists in [Y] with

-1

ot Hau™
1 - A
n

-1
[lez-L 3

Proof:Anselone theorem (1.41) with Anselone lemma (1) replaced by
theorem (1.2).

Theorem (1.6) ('a posteriori') with conditions (i), (ii) and (iii),

whenver [I-Ln]—’I exists define E: = |I(I—Ln]-1|| ||(Ln-L]Lm|| (m integer

> 1). Then, if for a particular value of n;(I-Ln]—1 exists and

A: <1, (I-L]—,l exists and
-1 —1 \
ezt <1t el S U e e T |[Lm||.
q - A"
n
Proof :

(Anelsone Theorem (1.12) with (Anselone lemma (1) replaced by
theorem (1.2).

Nothing has so far been said concerning the uniform boundness
of the [I-Ln)-1, or the possibility of convergence as n - = However
having obtained by the above result that (I-L)—1 exists,theorem 1.5 can
now be applied to show that [I—Ln]_1 exists for all n sufficiently
large and that its norm is uniformly bounded. Further the properties
of collectively compactness give Z: - O. These deductions ensure
that the estimates from the above theorem are uniformly bounded with

respect to n.
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1.5.2 Application to Anselone-type theory (Cruickshan:k extension)

We notice that Anselone-type theory i; not immediately
relevant to the usual projection method, since the right hand side
of the approximate equation is v € X whereas in the projection method
it is the projection of that term. Cruickshan™k (1874) working with
equation (1.7) has suggested a variation analogous to the Nystrom
extension for integral equations. That extension relates the two
approximate methods and enables us to apply Anselone-type theory.
Now we introduce that extension of Cruickshanwk modified for the original
equation.

Suppose the operator [G-¢nT) € [Xn,Yn] has a unique

1

inverse [G_¢nT]~ e'[Yn,Xn]-

Define for each n,wn € X by

1

1y +6 T X (1.18)

w =G_
n

The solution x_ can be related to - . Wn by using (1.11) and (1.18)
(6 ¢8lw = x (1.17)

Define Tn t X > Y

by T =T6 ' ¢ G .
n n

-1
Then [G-Tn)Wn (G-TG ¢nG)wn

-1
y + TG (G X ¢ny ¢nTxn) .

“Thus by (1.11) (G--‘Tnlwn =y (1.18)
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It is easy to express the inverse of (G—Tn) e [X,Y] in

terms of the inverse projection operator [G-?{)-1 as follows:

(G-TH]ME =y

-1 -1 _
(G-Tn] (G 'y +6 Txn] =y

-1 -1 -1 _
(G_Tn] (G + G T (G ¢nT] ¢ny] =Yy

-1 -1 _ -1 _
[Gan) (G + G TI(G ¢nT] ¢n]y =y .

1

1., G—1T[G‘¢nT]- ¢n is a right inverse for (G-Tn]. Similarly

So that G

we can show that it is also a left inverse for (G-TnJ. hence

-1 -1 e -1
(6-T) =G +G T(G ¢nTJYn o (1.19)
-1 ) -1
and also (I-K¢ ) ~ =TI+ K (I-¢ Ky o (1.20)

n

1.5.3. The extended projection method bounds

We present now the following theorem which is a modification

-1
of theorem (1.8) to deal with (G-T)Y+X .

Theorem (1.7) with (1), (ii) and (iii) whenever (I_K¢n]-1 exists dé&fine

_.'I m . -
A: = |‘K(¢n-I] (I-K ¢n] K" [|. Then if A: <1, (G-T) 1 exists and
m=1 .
-1 -1 -
Hee-n ™ s 1T e TR« (lee-T 7] k™))
i=o n
1_Am m—1,2,..
Proof "

- =1 m
Let H = (I+K+..oy K g(I—K¢n) K be an approximate

inverse of (I-KJ. ,
(I-K H=7T+K( -1I)(T-«K ¢n)'1 L
_1 .
Since [I-K¢n] is bounded and (K¢n“K]» K" are compact,

by Anselone (1971, page 59) K(¢_ - I) (I - K ¢n]-1 K" is compact. Hence

by theorem (1.2)

N
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1]_1 m, -

(I+ K(d)h*I)(I—K q>nJ' K™) 1 gxists in Y and

1
. . 1 ) A:
Which Ymplies G-T and I-K have vight inyerses.

But since K is compactyby theorem (1.1) (I-K)-1 is unigue

- - - -1 -1
and hence G 1 (I-K) ' = 6 H (I « K¢ -T) (I - K¢ ) K

- -1
|1 Takeo_-1y (1€ o) W™ s

-1 TR -1 m
and [[(6-T) “[| <[[6 "[| = [j* [+ [{Ca-T 3 [ [KT]]
1=« e R e @
1 _ AI”
"

(1.21)
The existence and uniform boundedness of [I-K¢n}_1 and (G -Tn]—
follows from theorem (1.5) and collectively compactness gives A: >0
as mentioned before. This will ensure the applicability and the
convergence of these bounds.
Finally, in order to apply bounds (1.15) and {1.21) we

need to calculate bounds for the following guantities. (i) IIG—1|!,

tiin|K(I-¢nﬂ|,(iiiﬂ|¢nKm| . ) [ fez-9 KT

-1
, (V) ]I(I-¢nK)Yn|[,
i) |]ez-ko )7, vin) [[e-0 DML tvisny [[ee-T 3L These
n
bounds Willbe considered when applying the actual approximation method.

However a general approach in bounding the norm of the approximating

inverse operators is introduced in the next section.

1.6 Bounds on the approximating inverses

The idea here is to relate the approximate inverses on
the finite dimensional spaces to some matrices formed in the actual
application of the projection method. By putting these relations in
operator form, we may express the norms of these approximate inverses
in terms of the norms of these matrices. The suitability of this method

depends on the behaviour of the norms of these matrices. Firstly,

1

o e e m g - we
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we show how the eqﬁation in the Xn’Yn subspaces can be related to
the solution of a finite system of algebraic equations.

We use the vector space of dimenéion n, Rn, and we denote
its identity by In (for any integer n > o). The projection operator
¢n will be taken for the purpose of illustrations to be the inter-
polation projection based on the n points’[é}]g=1. We take as a

basis for Y_ = ¢ Y, the functions [L 1" 4where
n n nj J=1

Ln (5 ) = Gji (assuming such functions exist]\

In the seia.a.L the sﬂmr.,xn on { wiil be omitted .
Then ¢ny =Y, € Y can be expressed as a linear comblnatlon of these

elements Ln ’

n
=z gL,
'n Tl i

-

. - * .
By definition the basis for X_ will be [L* ]? .where L = GL ,
n nj J=17 nj nj

J=1,evee.., N and x € Xn can be expressed by
¥
%X, L

=1 J nj .

X
n
. ™MD

Define Hné[Y,Rn] such that

(HnuJ:.L = U(Ei] for every u € Y.
(Note that the evaluation is restricted to the interpclation points
whi . . - i
hich implies Hn¢n HnJ
R 1] = sup  |]H Il = sue Jugp ] =
[Tul]=1
If we introduce a linear projection ép : X > Xn based on p

points’ [S 1P then in a similar way we define @p e X,RP] by
i=1

{(®d x). = x (S.) for every x € X.
pd 1
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' d & = d [{® || <1.
Then clearly o ¢p Qp and || pll

Note p = n + m for any integer m > 0.
We now recasll equation (1.11),

[G-q)nT]xn‘yn

. - teeg 11T
¢ x = xn = (G ¢nT]Y yn

- p n
: -1
® .= 19 (G-¢_T) . 1.22
(0 x) 5 = [0 (6-¢ Ynyn]J (1.22)
| )

: AR

o e P

n i=1 i

n K 1

=z V. [ (G- T), L 1. i=1,.ep
g=1 5 P Yy
n

=I V,0., 3=1s..ep
joq 1 i

: -1

= & (G-¢ T .
where Qnij [ p( 9, ]Yn Lni]j
® = (1.23)
Then @px Qany 'y
where Q@ is the pxn matrix with i1jth element Qnij' We can go in a
n

similar way and define an nxn matrix wn by

Hu=WHYy where the elements of W_are W ,, = (H
n nn n nij n

-1
(I-¢nK]Yn Lni)j .

These matrices wn and Qn can be interpreted in practice as
the left inverse-of the approximation matrix when the parameters
defining the sclution are taken as the values of u at the interpolation

n
points'[gj]j=1 or the values of x at the pcz:‘mts'[Sj]g’:,l respectively.



1.8.1 The behaviour of lanll and IIWnll

It is observed in later chapters that ||in| and llwnll
converge to certain values. That behaviour for [lwnl| has been
observed previously by Cruickshan:-k & Wright (1878) when they were
considering comﬁﬁtable error bounds for polynomial collocation methods.
Later in 1979 Wright considered a theoretical justification of that
behaviour and proved that under certain conditions, in fact ||wn|| >

[1¢x-k)""||. Gerrard (1879), working with the piecewise collodation
method, observed that ||wn|| approach the same constant irrespective
of the interpolation scheme used. He also proved that Ilwnll >

[1(I-K)—1|]4if certain other conditions were satisfied.

In this section we are going to state this result in a
general form and prove a similar result for j]inl.

The following assumption on the projection ¢n are used,

For any compact operator L,

@ '[L¢n] is collectively compact and L¢n -+ L.

I N o ~
®> T heve is av extension spevator 30" € [R',Y] sueh that 3 1] =1,
¢ JH = ¢ endH I =1 and
SRR INCIES SRS | gy

Theorem (1.8)
\“

Let K be a compact operator satisfying conditions (a)

1

and (b). Then if () ||H (T-K373 || = ||cz-k37"|[,

||wn[| > ||[I-K]~1[| as n >
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The proof of this theorem was considered by Wright (1979)

and by Gerrard (1979).

Theorem (1.9)
Let XEY and let K be a compact operator satisfying

1

(a) and (b) and (@) || @ (6-T)7'3 || - Ie-1 7], Then

o 1l > 116-D7"] asn»> =

where p = n + m for some integer m > o.
Proof. The proof goes through two stages.
(1) express Qn in some equivalent operator form

Y3 il

(2 show that |[q_ - @p(G-TJ'
Then the result follows from (c). Also we note that since

X €Y and the infinity norm is used in both X and Y by taking T = %(+Y

in the original equation 61 will be in [Y] (2 special form of K). This

argument implies that all conditions satisfied by a general K are

1

trivially satistied byl3_ . That is G - is compact, _G —1¢n] is

collectively compact and G—1¢n ﬁ-qu.

1)y : Qn can be expressed in the operator form

-1
Qn = @p (G ¢nT)Yn¢an .
For, if we call (1.23)

= f
@p X Oany or every v € Y and x € X,

and (1.22) in its vector form,

_ _ -1
@p X = @n(G ¢nT)Yn¢ny for every vy € Y and x € X o
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Hence

21

-1 _
@p(G-—¢nT]Y ¢ny = QHy foreveryyey .

n

-1 _
@p(s-—¢nT]Yn¢n =OH o

"Multiply from the right by In to get

(2)

_1 _
0, (8- 8,10y 03 = 4y

1

I~ He =D 11 = Il .

*

A

(1.24)

We note here that Qn depends on the partjcular choice of

-1 U
05 (1-¢.K) ™6, 3-8 67 (I-K) g

1

~Are - _ _ -1
¢ps U;-¢nKJ ¢, - (I-K) ]Jn

-1 -1 I e
@ps [I—¢nKJ [¢n(1 K)-(I ¢nK]](I K) VA

-1 v
N

l]

-1 ) -1 , _ -
@pe [T+ (I ¢nKJ ¢ K ](¢n I)(I-K) I

1

_1 -
- K I_
0 8 (9, "D(I + K(I-KITHI +

-1 -1 _ o1
@pG [I-¢nK) ¢an¢n I)(I+K(I-K) ]Jn

-1 -1, -1
6 (o "D+ 06 (¢,-TIKII-K) 3

-1 -1 _ oy
+.®53 (I-¢ K )¢anHnK(¢n I)(I+K(I-K) bn

-1 -1 a1
96 (¢~ *+ &8 (6 “DIKII-K) 3

- -y
* QH KO T, + G Ko DRI,

J_unlike Qn’ because ¢an is independent of the particular form of
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_ Hence

* -1 i -1 -1
o -a It < (e Il 1k (o~ 13 [ +lle 11 1 E¢U-IJKII ez=x3 ] 111

a1 el ko -133_ ||+ Jlagl] [IH M [IKee -1k ]|
(ISSSAIRIEA]

l]Qﬁ Q;]] +~ o, since

W ||kee_-13 |1, T (¢ ~133 || » 0 by (b)

h

(113 |kee, -1K| [, |18 7" (6 ~DK|| > o by (@) and Anselone (1.8)

(1ii) ||QJ|1 is bounded as shown below.

| -1 -1
(1.24) gives Qn @pG (I-¢nK)Y ¢an
n

H

-1 _ -1
@pe (1 + 9 K(I ¢nKJY ]¢an
n

-4 B -1
¢pG [1 + K(z ¢nK)Yn¢n]Jn

-1 -1,
@pG (I K¢n3 Jn by (1.20)

-1 e 1]
Ho 1< Il "o |1 T1T-ke ) ]

which implies that ||Qn|[ is uniformly bounded if HG“1 ¢n|| and
|I[I—K¢n]-1|| are uniformly bounded. The first condition follows
from the collective  compactness of'[G-dl¢n] and the second one
follows from theorem (1.8)¢

This theorem as well as theorem (1.8) is & strong evidence
that ]Iwnll or ||Qn|l is a good choice for expressing the norm of
the approximate inverse operator, for in the limit at least, it is
, independent of the form of approximationgs Long as its cond(teons

anre so_\.isl(i.&&.
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1.6.2 Bounds for the approximate inverses in terms of ||wn|l and

He |l

In this section we derive bounds for the norms of the

1 1

- ...1 —'] -
approximate inverses (I—¢nK]Y , LG-¢nT]Y , (I-K¢n] and [G-—Tn)

n
in terms of ||0n|| or ||wni|. These forms of bounds are justified

by the nice asymptotic: properties of ||Qﬁl| and ||wn||, mentioned
at the end of the previous section, and their easy calculation in
Practice. Y

Now define an extension operator wpé[Rp, X] with the following
pProperties : llwpll =1, ¢pwp¢p = ¢p and ¢pwp = Ip. If we recall
equation (1.24)

-1
Qn = @p(G-'QnT]Yn ¢an.

and = s ¢ = and X =
use ¢nJA4n 9, qbwp 0 ¢p n ¢p , = %, for every xnsxrj,

then we get
<I>(G-d>T)_1¢JH =[G—¢T)'1=¢w0 H
%% n Y, ‘nmnn nY o Yp'pnn’
and
-1
e -y T <Tlop Il o 1l 250,
If |[¢p|] is increasing with n this bound may be unsatisfactory.

An alternative may be derived as follows

I DY
(G-—cpnTJYn G (I ¢nK)Yn
-1 -1
=G 4 I H (I-6.K) ¢ I H,

but similar to Q» W, can be expressed as

-1
Wn = Hn(I-¢nK]Yn¢an (1.26)
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-
Therefore (G-—¢nT]Y =G ¢anWan, and
n

|1rs-¢nTJ;:|1 <Us e 1 I 1T (1.27)

a1, o -1
If we, recal1(1.18) [G-Tn] =G + G T(G-—¢nT)Y ¢n and use the

n

1

- -1 -1
idea of (1.25) we get II[G -Tn) _ || <|lG T¢n|| ||Qn|] + ]G 1.01.28)

| -1 -1
Tn a similar way we deal with (I—¢nK]Y and [I-K¢n) and

get -\
||t1—¢nKJ;1IL <o M Tw L (1.29)
n

-1
and |lez-ke 3711 <+ [Ike LI Hw L (1.30)

Since (1.29) contains the factor ||¢n|| which may grow,an
alternative bound which may be of betterasWn?totic behaviour is given

by Cruickshan k and Wright (1878)

TP TRTORE
H(I q)nK]YnIl - 1 - II(I-d)‘-n]K‘i ) 1‘FH[I‘¢n)KH <1.

1.7 Summary of bounds

Finally we use the results obtained in the previous section

and substitute, the bounds of ||(G -¢nT);1||, lI[I'¢nKJ;1|l in (1.15)
n n

')

and the bounds of ||(G -Tn)-1||, ||(I—K¢n1’ | in (1.21) and get:

Results (1)

From (1.15) (the projection method),

s -0 < 1s T - oIl a1 ™ i1

i

1 -8 (1.31)
n
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e 1o -0 5 BT s ™ o 1 Tl Lo ™M1
1- 8]
if 6: <1 where ' - m=0,1,...

ESS S ICRRINI AT
§" = min :

Um-%m] ISR I I IR IRIIENALE

1-||(z-¢_IK]]
(1.32)
if ||a-9k|| <.
m
NB. E): a a bound on o previovsly A:%_g,\g) %“K\
Result (2)
From (1.21) (the extended projection methoq]
- g Mmoo ; -1 o
Hee -0~ <l ™ e = s et Heg KT .
. 1=0
1 - a0 (1.33)
n
m=1,2,..4
‘I¥ Am < 1, where
n
= |1keo, - DK+ ke DK oI 1] KM

N.R. An (s o boundon the previcusly )eQind o .
The corresponding bounds derived by Cruickshank & Wright (18978} are:

lI[G‘T]— | < |lG‘ [ Z l‘K |+ 1+ K ¢n‘| llwn|‘ o Km+1|‘ (1.34)
=0 1 - || -e K|
1 —rSmn
If § <1, where cSm is the same as(S: with |{1-6 JK|| |}1K™|| replaced by
[z, 0™ s ‘
II(G D7 < IIG " ZD IESIERERITNL ||W DKM 710 (1.35)
if A = (1« |[ko || [1W D) HKH H(I 0 KM <1,

mn

We notice here that the conditions necessary for the application of
results to (1.32), (1.33) seems to be of no improvement over those required
by (1.34) and (1.35). However if these conditions are satisfied we
expect the bounds to give closer results than the corresponding ones

in (1.34) and (1.35). This expectation will be tested in the next Chapter.



CHAPTER 2

Application of theory to the methods of Collocation

2.1. Introduction

Chapter 1 has developed an abstract theory concerning
bounds on the inverse operator using bounds on its approximating inverse.
This Chapter is an illustration of this theory applied to approximate
solution of linear differential boundary value problems obtainﬁd by a
particular projection method - collocation. Projection methods for
differential equations are discussed by de Boor (1966) and Lucas and
Reddien (1973). Collocation methods in particular are discussed widely
and references include Karpilovskaja (1963), Wright (1964), Vainikko
(1985, 1966), Phillips (1969), Lucas & Reddien (1972), Russell®
Shampine (1972), de Boor & Swartz (1973), Cruickshan k (1874), Russell
(1877), McKeown (1977) and Gerrard (1879). In all of the early work on the
tollocation method, polynomials were taken to be the basic functions.
Following the investigation of piecewise polynomial interpolation,
Collocation methods based on piecewise polynomials have been widely used.

In this Chapter we will define the problem precisely, define
the approximations that will be studied and verify the conditions of the
theorems in the previous chapter . At the end of the chapter we include
8 selection of numerical results for illustration.

The theory could be applied to linear partial differential
Bquations with no changes. However the derivation of certain constants
Tequired for strict bounds can be extremely lengthy and time consuming.

Non-linear equations cannot be treated directly by the theory, but
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bounds for each linear differential operator of an iterative sequence
could be found and, hopefully, combined with further convergence results

to produce a final bound.

2.2. Form of problem

We shall consider in this thesis problems of the form

§ 3
m m (K
L xgz x (s) + X p (s) x {(s) = y(s) (2.1)

k=0 k

.

where pk[s) are continuous, over, say, (-1,1), xe¢ X and y € Y 3

subject to the linearly independent boundary conditions

m-1
b '{OL.K x L) (-1) + B, « LK) (1)°}=0 (2.2)
k =0 i ik
where aik’ Bik are constants. Y will be taken as the space
of continuous functions C (-1,1) and X may be taken as a subspace of

C(m} 1,1} satisfying the boundary conditions (2.2).

We define the operator G by G = o™ and T by

m-1 .
T= -1 P. D3 where D denotes the differentiation with
j:

o J
respect to s.
Thus the differential equation (2.1) plus the boundary

conditions (2.2) is equivalent to the operator equation

Gx - Tx = Ve

N .B. We note here that G can be chosen differently and that will be
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considered in detail in the next Chapter.'

The only condition reguired now is that émks] = y(s) with
the boundary conditions (2.2) should always have a solution. This
corresponds to the requirement that the operator G in (1.4) must be
invertable, which in turn eguivalent to the existence of Green’s
function for this part of the operator. The operator K is defined from

T and G by

(Ku) (s) = S K (s,t) u (t) dt
-1
where .
m-1 >3
K (s,t) = - L_ P,(s) — gls,t) and where
J=0 J BSJ

g(s,t) is the Green's function corresponding to the operator Gx = u
with the given boundary conditions. The compactness of integral operators
of the form K is proved for example by Koimogorovand Fomin (1857).

We now state the conditions required,by the theorems in the
previous chapteryon the projection operator ¢n' The projection method,
Theorem(l.&4)grequires

(@) ||(x -9 Kdtl > oasn + o d=1,2...
to ensure its applicability. For the applicability of the extended
projection method, (Theorem 1.7),we use the weaker pointwise convergence,
{b) K ¢n -+ K, but reguire
(e) { K¢n} to be collectively compact.
To prove the asymptotic properties of [Iwn|| and [|Qn||, we

require with (a), (b) and (c)



(d) [IK(¢n -1 3, I~ o asn > o

- -1
e |IH -k f> [ha -l

-1 -1
(f) |l®n+m(r3 -1 3l [ -1y

2.3. The Global Collocation Methed

2.3.1. Introduction to the method

Let Yn be taken as the space of polynomials of degree n-1 and X
as polynomials of degree n+m-1 satisfying the boundary condit¥ons. The
approximate solution anXn is sought by requiring It to satisfy the

equation to be solved exactly at n distinct points '{ij}g=1 called

the colloction points, i.e.

{ (6-T) xn] (Sj] = y(Ej) J=1,«.. L0 . (2.3)

An approximate eguation of the form (1,11) is satisfied by
the collocation solution xn, where ¢n can be taken to be the projection
mapping each continuous function to it4§: interpolating polynomiasl of
degree n-1 at the collocation points. For most of the results we need
to assume these points are zeros of polynomial Qn[t] orthogonal with respect

to olt) > m* > o for which

1

T
"Q}‘f1 pl(t) dt and‘fﬂj oTE)

-1 -1

dt are bounded.

In some cases the collocation points are further restricted

o,
to be zeros of Jacobi polynomials Pn B

with-}<a ,B < 1}

2.3.2. Satisfaction of the criteria for the application of the theory

It is shown in Cruickshan k((18974), section 4.3) if the

collocation points are chosen as zeros of orthogonal polynomials then,
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Lemma (2.1)
(1) Ko — K

(ii) { K ¢, } is collectively compact.

By this lemma we satisfy conditions (bJ and (c). For
condition (a) we may reguire the boundedness of some higher derivatives of
the coefficient of the differential equation as shown in the following
lemma.

)

Lemma (2.2)
J L]

I (1 -¢nJK|| > 0 as n - <« provided the dth derivatives

of the coefficients of the differential equation are bounded, where d &

a positive integer depends on the weight function p(t).

Proof
] d
[l - o K[ =sup || x-o)Kyll.
[yll=1
If Y, € Yn then
d d
(r - ¢n] K'y = (I - ¢n) {(K'y + Yo T yn)
’ d
= (I - ¢nJ Ky - yn) ’
d | 4
then || (1 - ¢ 3K yll<(x - o3| || Ky -y |,

It follows from Jackson's theorem (Chen.ey (1866 p.14%)) that

4
provided K y € Cd {(-1,1), there is a polynomial Y such that

d 4
1k md || D Ky ||
1Ky - yn|l < &) n(n-13..-(n-d+1) *
ad
J ad 11T =06 || []o7K]|
Hence |l - ¢n] K| < (5 + pasn-—> o,

n{n-13} « =« (n-d+1)
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for the suillable yalue of d. | The value of d which is necessary for
the convergence depends on the bound of ||¢n|| which depends on the
orthogonal polynomial used. For example if the weight function p(t)>m*
where m* > o , it is shown in Natanson (1865, page 52) that

||¢n|| < 0(n) and therefore teking d=2 will be sufficient. For
Tchebychev and Legendre polynomials where li¢n|| ~ 0 (In n) and
||q7||”0[¢7;) respectively, d = 1 is sufficient.

It can be seen from the definition of KLthat K&y\(»: Cd[-’l,’l)
if the dth derivatives of the'coefficients of the differential equation
are bounded.

In the next section we show how the global collocation method
can be put into the setting of theorem (1.8) and (1.8) and satisfy the

conditions required for their application.

2.3.3. The behaviour of ||Wn|| and |!Qn||

Let 6n+m be a linear projection on X mapping each element

into its interpolating polynomial of degree n+m~1, constructed using

the points {si}gtT . It is required later that the distance between

these points should tend to zerc as n tends to «.

n+m

Define Wn e (R, X) so that¥ , X is & continuous linear

+m

functiony as follows

-
x(s1) s.ss

(s - sj]'x [sj] - (s - sj] X (Sj—1] S5 g <5~<sj

\Pn_’_mX_[S] = { N _ s J = 2,000, DM

h| j=1




and similarly J_ € (R",Y) by

- ) - (s - E, .
J uls) =< (e £ utey) - (o - &) ey, Ejql s L&y
n— : :
U 32,000 50
LU (in) s Z_ gn
A
if &1 < &2 < E3---< B
(Wright 1879) .

n
Then if @ . € (X, R''™) and H_ ¢ (Y, R") are defined as in

section (1.6), we can state the following Lemma:

Lemma (2.3)

(1) ¢ y = I , 90 y ® =

and Yy
n+m ~n+m n+m n+m “n+m nEm H n

n+m +m| |
ii = H = = 1

(A1) H 9 =T, ¢ J H = ¢ and ||3]] .

Proof can easily be verified from the definitions ,

Lemma (2.4)

4y f‘_K(¢n -1 Jn|l >0 asnp » ©
_1 _1
[ii)IIHn(I -k I [z -k ||
- -1
and(iiﬂ|[®n+m -1 3 o= Jlwe-1 ] .

n



Proof ' The first and second results
are given by Wright (1978). For the proof of the first ocne the

collocation points are chosen to be zeros of Jacobi polynomial

QB . : . .
P B(t] with - 3 <a,B <3} We consider here the third result.

[N

1

' - -1
since 18,1 = Hall = 1thenlle , (e-13 " 3 f1<llGe-1) [,

Now it is sufficient to show that ||c1>n+m(G-TJ'1Jn||_> II(G—TJ'1 .

Consider a function y € Y with[|y || =1 suctthat
X, = -1 y, satisfies ||x0||_3 ||[G-T]_1| ‘- g, for small € > o,
Such a function must clearly exist from the definition of || (G - T]—1|| .
et w = 0. (G-T) IHy
" Now with the piecewise linear form of Jn
Jn Hn y + y for any fixed y € VY,
for n sufficiently large
Hw - o, x|l <e,
If the maximum distance between.the'-gj} tends to zero as n » », then
[J6 x || = || x|| for any fixed x € X.

n+m

Hence for n sufficiently large

| dbw ]l - flxg Il I<2e

and so [lol| 2 [[6-D |- B

..’I _/I
st ol s [le, D™ 3 1 HH I Tyl < e, en 7]

+
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Therefore

H(G-T]—1|| < || ¢n+m (G—TJ—1 I, || + 3¢ if n is sufficiently large.

Now we can state the following theorem.

Theorem (2.1) with the assumption that the collocation points are zeros

,B

of Jacobi polynomial P: () - 3 <a,B < 3 (i]‘|wn|[ > II(I—K1-1|I and

(11) {lo || - II(G—TJ'1|| where W and Q_ are defined by

wn Hy v = Hn U and Qn Hn y = & x. A
n+m

By Lemma 2.1, 2.2, 2.3 and 2.4 we can verify all the
conditions required by theorem (1.8) and (1.9)-
If DK denotes the kth differential operator,DKG—1 can be

(K]
. K -1 A ¥ VM gls,t)
defined by (D" G ) u (s) = f-1457§:—_~—_ u(t) dt k <m.

If the matrix Qh denotes the inverse of the collocation
matrix-where the parametersdefining the solution are taken as the values of
x K)ot any (n+m-k) points With the distance between them tends to zero
as n tends to <, then in a similar way we can prove the following
corollary.

Cor {2.1) with the assumption of the above theorem, if QE is defined by
. (k)

k
am-k < - Oy Hp Voo

then llﬂ:ll > |lo% et - Sl K= 0,1,20000., m-1,

; € . .
The set o' points {g.} on which W depends must be the collocation points
B , . ,
which are restricted to being zeros of orthogonal polynomials, while the
set of points {sj} on whiéh Qk depend do not have this restriction. This

is related to the theorem of convergence of collocation which states:
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" The approximate solution with its derivatives up to m-1
inclusive tends to the true solution uniformly as n =+ « while the

highest derivative tends on the mean square norm with weight p(s)e,

Veainikko (1966) .

2.4. The piecewise collocation method

2.4.1. Introduction to the method

Define the partitionT, of (-1,7) by the points
‘ {ti}i=0,..,n 71=t0<”?1 .. <t =1. e use the space of Riemann
integrablefunctions R (-1,1) for Y here to allow the useof piﬁpewise
polynomial approximation which may have discontinuities at the mesh
points. The space k is taken as a subspace of RT(-1,1] satisfying the
boundary conditions.

I { Ej} is a set of p distinct points on (-1,1), (including
possibly, the end points), then the collocation points will be defined in

each interval (ti_ ti) by

1+ £,
£ = t, , v+ —d (£ -t )
Jd i-1 2 i i1

1’

an is taken as the space of piecewise polynomials with

degree p in each subinterval (ti R ti]. an will be the space of

-1

piecewise polynomials of degree m+p in each subinterval [ti ’ ti) and

-1

satisfy the boundary conditions (2.2) and the continuity conditions

(K}

U 20y = U (¢ w0)
i np i

np

collocation method requires the approximate solution xnp to satisfy the

k=0, ...m-1 .

i=1,...n v Xnp € an. The piecewise
equation at the np collocation points { Eji}. This is equivalent to ‘
the approximate equation (1.11) where ¢n is the projection'PnD mapping

each function in R,to Lagrange interpolating polynomial of degree p
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on each subinterval (ti_1,ti) at the collocation points { §J,1p 1=1,..un

SEREY

y[Eji) L., (£ t e [ti

ji ’ti)’

p
i.e. (P yl () = I -
np j= ! i=1,...0

j=1

where Eji is the unigue polynomial such that Lji [Eki] = §

kJ
for each 1 = 1, ..., n. We note here that the norm of F;D is given by
the usual polynomial projection norm ¢p corresponding to interpolation

at the points { gj}§=1 and is independent of n. )

2.4,2. Satisfaction of the criteria for the application of the theory

Under the following restrictions:
(1) Each of the polynomial interpolation points gj is in the
interval ( Ij—1 -1, I, = 1), where

J

3 1
I.= I S L)  dt  j=1,...p,
I i -

I =20 and
a]

Li is the unique polynomial such that Li (Ej]

(11} Ith|| =max | t, - i, | + 0o as n + o,
i

Gerrard (1879) in his thesis (page 51) shows that

1

1
(Pnp y) (¢) dt > S,y (t) dt and hence proves

-1
(theorem 4.4 page 53) that,

f

Lemma (2.5)

(1) K, KP o € (R} (i) KRe& ¢
(iii) K is compact (iv) " {K Pnp} is collectively compact
(v) KB = K (vi) || (1 - Pnp)Kll > o.
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By this Lemma we satisfy condition (a), (b) and (c).

2.4.3. The behaviour of llwnll and ||Qn[|
np np . :
Let an e (R, R ), an € (R, R) be defined as follows..
= . i = 1,...,0, i = yeve ’
(an u)ji u[Ejl) k| p, 1=1 n
n p
= u
(J uji] (t) Z_ Z- ji X (Ti,j—1’Ti,j) (),
u=1 j=1
A
where u. . =u[£,.] °
Ji Ji ?
g5 % tyeq * Iyl - ) and
2
&1 T, _ < t<T,,
x(T ,3-1° Ti’j] (t) = . i,3-1 ij
elsewhere

np Pnp np’ np an Inp’ Pnp Inp an Pnp,

[ IH -

=1 and ||K(Pnp - 1) anll +0 asn >

MIRERTE]

In a similar way let { sj} be any set of p+m distinct
points in (-1,1) and define {Sji} by

(1+s,)
S.. = t, + J

(t, - t. ) i=1
i i-1 X

. 1- 0 t. et : .
Define the linear projection Pn(p+m] X -~ xn which

maps each function in X to its Lagrange interpolating polynomial of

degree p+m based on the p+m nodes'{%j_l?:T on each subinterval
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(t, . - t.) i.e.
i=1,... ,Nn

- p+m X
(P n(p+m]XJ (t) = §=1 * {Sji] Lji (£) 5
te [ti-1’ti)’

X - . X _
where Lji is the unigue polynomial such that Lji[ski] = 6kj'

_ :”[p\P)
Let @ be the evaluation operator in X ,R 1)
n{p+m)
defined by (@ x) .. = x (s )
y n(p+m) Jl ji j:l,... ’p+m °
T =1 = - . i
hen clearly IIq>n(p+m]” and Qn(p+m]Pn[p+m) n(p+m)
n{p+m) .
Define the extension operatorV¥ e®, . X)(similar to J ) such
n(p+m) np
that the following conditions are satisfied.
(1) Qn[p+m) Wn(p+m] ) I“(P+w611) Pn(p+m3 wﬂ(p+m] ¢n(p+m) - Ph(p+m]
(iid = .
ii) llwn(p+m]‘l .
Lemma (2.6) Gerrard (1878, page 58)
Let (I - K)-’| £ R then
-1 -1
[l -x || = sup J](XT-x)"yl]l|,

y €C

This lemma makes the proof of conditions (g) and (h) in

R. equivalent to that in C which has been considered by Lemma (2.4).

Now we are in the position to state the following theorem.



39

Theorem (2.2)

If (1) I, -1 < &y <I, - J=1,...,p
(ii) ||Tn|| > 0 asn-> © 9
then il > Hiz-0] n +w2s
el - 6 - D Mlasn +e,

where wnp is the npxnp matrix defined by

an u = wnp an y

and an is the n(p+m) x np matrix defined by

Qn[p+m) X F an : an y oo

Proof: Verify the conditions of theorem (1.7) and (1.8) using the
above results.

Corollary (2.2) With the assumptions of the above theorem

k k .1 ey ko .
||an || » |Ip" 6 (I-K) “|| , where @ is defined by
Ky .
%n+m*KJp X an an yo-

2.5. Bounds on the inverse differential operator

To use the results at the end of the previous chapter it is
necessary to achieve a computable bound for each item occurring in the
various expressions. On examination of these expressions it can be
seen that the following are required:

2.5.1. Bounds for the constant term llG_TII, Hikl], ||Dde|| and ||G_1T||

- -1
(1) |6 1|| = STT |16 "ul] = sup max | f_: gls,t) u(t) dt |

§xﬂ§x f_1 | gls,t) | dt = g,
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(11)  ||K|| = sup [Ikul] = sup  max| [} K (s,£) u () at
Hull=1 Hull=1 s

< max f11lK(s,t) | dt = k|

8
(11i)  [|oK|] = sup | |okul |
| Tul]=1
m=-1 )
(DK) ule) = (OT) x (8) = -D ( T P, x3) (s)
j=0 |
A
m-1 . . m-1 J
= - , A
g e I @ e e IR BLs:E) ye) o
J= J J .j=0 J 35
m-2 g+ ' :
1 gls,t) | : .
+ §=D _PJ(S) _[1 —;S_J—‘*'T_ u(t] dat + Pm_,I[S] u (S)' {\fOUJ Lf_

13937 (5,1

m-1 ] m-2
o ) 1 ng[s,t]
SR mex[ gl R s | =E R e e nlese] s 22

Bs
then

)\DK”$!§X|Pm_1[s)[+ K = K, which is bounded if {P3 (s)J} are bounded.

Similarly ||02K2|[ < K,» where

m-1 J m-2 G+
K, = max I |P"[s)|[1l-§—%-(s,t]|dt + .25 |2 P'(sllfl(Qbs
s 3=0 j s J j

E (s,t)]dt

2

-3
£ (s,0)|at « P (s)e2R: ()] |[K][+]P_

j+
|P.[s)![1(b -
J 353

RO RN

m
+ X _
j=0
which is bounded if’{Py(s)} are bounded.

d
In a similar way we can derive bounds Kd for |lDdK || which



41

require bounds on the dth derivatives of the coefficients of the

differential equation.

: -1 -1 1 m=1
(iv) |]6 'T|] = sup ||G Tx|| = sup maxl[1 gls,t)

Pj[t)£j¥t) dt|
[1x] =1 x| [=1s j=0

= KK

For the simple second order case ,

/1 g(s,t) (P, LE) X' (E)+PL(E)x(£2)dE = gls,t) B) x(t) 1 3

_ 1 ’ -b g 1
f*1 (gls,t) R (t) +.5¥4s,t) R (£) ) x(t) dt + f_qg(s.t)PO(t]x(t) dt

-1 _ -1 _ 1 ’ fﬁg
[l 'T|| = sup |G TXII—s:p (L, el t0p (£) + 22

(s,t) P, (t)] dt
1
x| 1=1

e 4y late,t) p_()]at).

2.5.2. Bounds for the projected terms

{A) The Global Case

-1 -1
16 ¢ |} = sup  ||6 "¢ ul]
" [ u] | =1 "

(60w () = J]

1 gls,t) ¢nU[t) dt .

Using Cauchys ineguality we have

-1 2 1 2.
(6 ¢ ulls) ) < J'ETEb[g(s,t)]dt [, pe) (¢nu(t)ﬁ dt

2 2
< 9 o max | g(s,t)|? ,
s,t
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therefore

I|G_1¢n|{ < g =*Q g ., hereg . = max lg(s,t)] -

s,t
Similarly [|k¢ [| <K = @* @ R where Ko = pax |k(s,t)].
-1
For [l 'To_, Il
-1 ‘ m~1 1 ;
(G 7o ,Jx(s) = I /g (s,t) pj(t] D ¢ up* () dt.
J=0 -1
A
-1 ! .
A simple bound can be g, = He 11} [|¢n+m|l = KK Il¢n+mll s

where KK is the bound given for I|G_1T[| - Alternatively, we may use the
same arguments used in bounding I[G_qTII,{IG_1¢n|| and get for the simple

second order case

IIG_1T ¢n+m|l < Qo m:x {lpa (s)gls,t)+p, (s) g%-(s,t]|+|po(s]g[s.t)|}.
[I[I - ¢n] Kd ‘[ is essentially an interpolation error and

can be bound EITHER using Jackson's theorem as in lemma (2.2) and get

d .d
[

[Tz - ¢ Kd|| < B, =1 D- K

d dn vn Il

1

. - d
where V_ = III‘¢n|| and Jdn = (7] nn-1J)e+ee. (N-d+1) s

OR using Peano Kernel theorem(Davis (1971, page 70))and get directly

d 4 d
-0« < py [ 07 k7]

where Pdn are the Peano constants for interpolation. Unfortunately tﬁe
computed Peano constants are not strict bounds as the processes of
numerical integration and maximisation are not exact. Moreover these
constants need to be computed for every n which is time consuming. For

these reasons we prefer to use Jackscn's theorem.
We note also || (I -¢n)l< ¢n|| <31V | |o |<¢n|| and
HD K ¢n|| can be bounded for example by Q O* qua.x, where

Kimox = waax I PO Ig, ”/,.o. &+ K
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A bound C, of ‘l¢an||can be ||(I - ¢n) Kdll | Kdllc

d

(B) The piecewise case

Since [[Pnp|l = ||Pp|!is independent of n, bounds on
-1 , -1 Ty
sl Hlkp Il ana HeT e ] may be 11671 [1R I
%] ] Ianpll ‘and ||5'1T1| I!Pn[p+m]‘|respectively or may be similar
to those derived for the global case.
A bound B, for [1cz - Pnp] Kd|| can similarly SS found by
Jackson's theorem
. d d d
Bd - E '{TWIWn|| } | |D7K | lI[I'Pnp]I
4 Plp-1)..... (p-d+1)  °
For ||P Kdll its bound C, can be either ||[P_ || IleII
np ) d np or

IS NS TR

2.5.3. Formulation of bounds

Collecting these results together bounds onl|| (G - T)—1||
may now be expressed in terms of computable guantities.

Result 1 of section (1.B) gives,

d .
-1 1
H(G"T] H < QPd = By i:[] KD * Hq)n.,,mH HQnH Cd+1
?
T
n
...1 d —
or [t -7 || Wy =g, T K +g Wl c,,,
i=0
?
T

if & . < 1, where
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d . d d a .
Gn = min [51K~O (1 +[[¢n|! llwnllcg, qu (1+(1+K llwnlhc1}1f By <1]

1 - B,)

d=0,1,2...

Result 2 gives

-1 d i d

[te-m || <oy =g, I K o+gt ][0 ] K]
i=0 J
d
1‘An -\
10 09 <1
n

d d e

where A = (1+ K ||Wn||) Ko ByoK, = qaox Klﬂuzx d=1,2...

w

For comparisons we present also bounds derived by Cruickshan .k

and Wright (1978) and Gerrard (1878); From the projection method,

d . — 1}
16 -1 || spyunerer, =g (I K+ (e KW ey,
1-8,
)
1 - 8§,
dn
4 1
or Py = 8o T Ko+ Mot W ] Cyy?
i=0 ,
1 -
%n
ife, < 1. 8, =min (B, (I+||¢ || Ilwn]|C1],Bd+1[’l+[’l+fllwn|lcqlif B,
1 - B1] ‘
From the extended projection method,
» d-1 | _ d
(G- || < Ay where Ay = g_ ( ?:g @b + (1 + K I]Wnlh Ko )
2
1 -
Adn
if A < 1. = K
* dn Adn (1« K Ilwnll] Ko Bd d=1,2....

We note that the bounds WP_, QPd and QAd involve B, unlike P, and A
which involve B_. So the bounds QP and WPd with d>o and BAg
with d>1 are no% considered further as tHey are not making use of the
higher differentiability of the coefficients.

d
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We note here bounds which use the norm of the projection
operator méy not ‘be satisfactory for large n in the global case.” However

they may still give better results with small value of Nend in the following
The begt & these boonds will be osed.
2.6, Examples and Results

In this section we present a selection of numerical examples
Illustrating how the ideas can be applied in practice and what sort of
- results can be obtained. We use zeros of Tchebychev polynomials as
collocation points and for piecewiselcase we work with two points only.

Y

2.6.1. Test problems

For ease of comparison, we use the same four problems used
by Cruickshan.k and Wright (1878) as basic test problems. Other problems
- have been considered, including higher order eguations.

‘Problem 1

x'" o+ (1 + t?) x = y x(£1) = 0,
Problem 2

X' -ax =y x(1) = 0 «
Problem 3

L] 20’ -—

X (7572 v x(#1) = 0 ,
Problem 4

'3 2 u X' - 2 a x — -

X't T k32 Yy x(F) =0,

The parameter o is included to vary the stiffness of the
problem.

The caelculation of K K , K » K, K,, KK, K
ma o] 1

x max is straight-

2

forward and their values are given for the four problems in table (2.1).
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TABLE (2.1) Problem Constants

Problem K Knax K max,, KO/d KL& K K/a Kz/az
Q o
1 1 1 0.5 2 0.583 3
2 0.5 0.5 0.5 1 0.5 0.5
3 0.0625 0.0625 0.0825 0.15825 0.0366 0.018
4 0.95 1.25 1.25 2.25 0.308) 6.26

2.6.2. ||W_|]| end [f0_|]

The convergence of ||wn]|and !IQnII is observed in table (2.2)
: -1

and (2.3). When considering approximating || (6-T) || in a later chapter,
the behaviour of ||QJ| will be examined in more detail but the relevant

points to be noted here are !

(1) ||Qn|| < IIG-1|| llwnll for all n and for all examples. This

can be seen EITHER from the operator definition of Dn in (1.24)

=1 ' -
0, = ®n+m [G-T)Yﬂ ¢n Jn = ¢n+m G ¢n Jn wn, giving

-

OR from theorems (2.1) and (2.2} for sufficiently large n

-1
Ha Il < He "o 11 []w

n

ot~ 1len™ < e Ha=o® )~ s [l

(2) This inequality becomes more obvious when we increase the
value of o as seen in table (2.4). It will be shown later that this

inequalitnyﬂ%Drefﬂwnouncelif we consider higher order differential



TABLE (2.2) ||W|| and |[Q[]va1ués (global polynomials)

Problem

d
n

5
10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

[ T L I Iy =

[ I = N T S =

T T IV I S
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0.5 1.0 2.0 100.0
Hw L Tha T Hw EE e LTI He I L et
.3258 0.6515 1.9318 0.9318 13.4358 6,2179 526.8720 4.2706
.3254 0.6402 1.8306 0.9156 13.4678 6.1361 31.8845 0.1585
.3258 0.6515 1.8321 0.8321 13.5002 6.2501 18.89718 0.1273
.3257 D.6482 1.9318 0.9271 13.4835 6.2157 20.2048 0.1247
.3258 0.6515 1.8320 0.8321 13.5002 6.2501 21.8437 0.1345
.3257 0.8500 1.8320 0.9287 13.4873 £.2338 23.2598,0.1361
.0144 0.4134 1.0234 0.3518 1.0348 0.2;04 D0.8169 0.0162
.0809 0.4067 1.1315 0.3464 1.1841 0.2685 1.0488 0.0126
.1210 0.4134 1.2014 0.3519 1.2856 0.2705 1.0758 D.0111
.1409 0.4114 1.2362 0.3503 1.3519 0.2683 1.1383 0.01086
.1542 0.4314 1.2954 0.3518 1.3884 0.2705 1.2387 0.0103
.1624 0.4125 1.2738 0.3512 1.4129 0.2699 1.3292 0.0102
.0025 0.4917 1.0048 0.4836 11,0088 0.4683 1.0475 0.1102
.0080 0.4834 1.0177 0.4757 1.0338 0.4808 1.1567 0.1118
.0124 0.4918 1.0244 0.4837 1.0470 0.4683 1.3660 0.1121
.0144 0.4893 1.0283 D.4813 1.0546 0.4662 1.4831 0.1120
.0156 0.4917 1.0306 0.4836 1.0581 0.4683 1.5582 0.1119
.0164 0.4904 1.0321 0.4826 1.0621 0.4673 1.6114 0.1120
.4935 0.4815 2.0570 0.4563 3.3172 (0.3867 32.1639 0.2927
.5393 0.4799 2.1727 0.4B608 3.6498 0.4091 198.9996 0.2283
. 5483 0.4815 2.1956 0.4582 3.7182 0.4108 132.0303 0.0400
.5515 0.4826 2.2038.0.4606 3.742§w0.4109 148.5863 0.02188
.5529 D.4815 2.2075 0.4610 3.7538 0.4106 163.8159 0.0198
.5537 0.4628 2.2086 0.4603 3.7601 0.4102 173.4017 0.0198



TABLE (2.3)

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

[ R ™ e L T )

T T

48

[IW]| as ||0]] velues (piecewise)
0.5 1.0 2.0
L 11 1T HE Tt TraH Tw 1
3244 0.6460 ¥.9242 0.9197 12.3286
3256 0.6486 1.9304 0.9268 13.2077
3257 0.6509 1.9312 0.8307 13.3679
3257 0.6508 1.9316 0.9307 13.4266
3257 0.6513 1.9316 0.9316 13.4525
3257 0.6512 1.9319 0.9315 13.4675
.1243 0.4117 1.2080 0.3509 1.3084
.1653 0.4120 1.2790 0.3509 1.4218
.1784 0.4132 1.3020 0.3518 1.4593
.1856 0.4131 1.3146 0.3517 1.4797
.1897 0.4133 1.3218 0.3518 1.48914
.1825 0.4133 1.3269 0.3518 1.4997
.0128 0.4889 1.0253 0.4811 1.0489
.0165 0.4898 1.0325 0.4817 1.0628
.0178 0.4914 1.0350 0.4834 1.0677
.0185 0.4912 1.0363 0.4831 1.0702
.0189 0.4916 1.0371 0.4836 1.0717
.0191 0.4915 1.0376 0.4834 1.0728
.4835 0.4758 2.0370 0.4486 3. 990
.5181 0.4829 2.1189 0.4607 3.5032
.5302 0.4814 2.1500 0.4613 3.5867
.5364 0.4826 2.1656 0.4608 3.6309
.5402 0.4827 2.1751 0.4605 3.6583
.5427 0.4823 2.1815 0.4610 3.6768

I

o o o o o o 0O 0O o 0o o o o OO O g oM wum

o o o o o o

. 6404
.0791
.1807
.2071
.2251
.2309

.2701
.2698
.2704
.2703
2704
.2704

.4661
.4664
.4880
.4677
.4680
.4680

.4083
.4103
.4107
.4108
.4108
.4108

12
88

29

T |

[ e

75
292

100.0
ICRIRIENT

.3415
.8749
41.

5038

.0360
25,
24.

536
8823

.8277
.2500
.4539
.5709
.B4686
.6987

.4113
.6285
7111
7547
.7813
.7892

. 5048
. 7034
25.

8737

.70868
.2508
985,

6873

0.0508
0.5567
0.2862
0.1851
0.1645
0.1524

0.0100
0.0100
0.0100
0.0100
0.0100
0.0100

0.11189
0.1083
0.1105
0.1081
0.1103
0.1084

0.0170
0.0182
0.01883
0.01832
0.0248
0.1197




TABLE (

Problem
[0}
0.0001

100

1000

10000

2.4)

[ Tw 1
1.0001

1.0524

1.9318

13.4935

20.2048

7.6801

2.1528

1

w1

9!
0.4975

0.5218

0.9271

6.2157

0.1247

0.0032

0.0002

and ||Q]|

2

]|
1.0000

1.0331

1.23862

1.35189

1.1383

1.050

0.9587

48

e 1]
0.4974

0.4776
0.3503
0.28683
0.0106
0.0018

0.0003

against a

3

IERIRICAT
1.0000 0.4974

1.0029 0.4858

1.0283 0.4813

1.0546 0.4B62

1.4831 0.1120

1.1851 0.0153

1.0525 0.0025

4

Hw L Te 1
1.0001 0.4975

1.1016 0.4852
2.2038 0.4606
3.7425 0.4108
148.5863 0.2188
226.8 0.03687

13.9584 0.0027
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eguations.

These two points indicate that bounds using l]Qn|| are

expected to be superior to those using ||wn|l.

(33

Finally the relatively large values of [|W || and []9@ }]

in problem 1, o = 2 occur because there the problem is nearly singular:

the equation

A" o+ (1 +t2) x =y x(#1) =x0

has an eigen value near A = 0.486. ®

2.6.3. The Applicability

subintervals n, for which Gln,é

Tables (2.5) and (2.5) give the smallest number of points or

» A _and A are less than unity and
2N 1n 2N

hence for which the bounds are applicable. We note that ¢

(1}

(2)

(3]

For many cases the number of points or partitions needed are
much more than one would like. This problem will be dealt with in
the next two chapters.

Bounds using second derivatives are of better applicability
than those using first derivatives only. It is shown in Gerrard
(1979} in general the applicability is better when higher derivatives
are used. That is easily justified from the type of bounds derived
for || (I - ¢.) Kdllin (2.5.2).

With the global polynomials the extended projection method
(Aln’ Azn) gives better applicability than the projection method
(6§ and § }, while with the piecewise case the projection method

1 2
n n
is superior in most problems. This is due to the poor bound on
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TABLE (2.5) Applicability

Global Polynomials (number of points required)

Problem a Sy 8,% San Mn= By DAan
1 0.5 19 8 3 3
1 82* 22 36 g
2 >120* >120* >120* Vg
100 >120* >120* >120* >120*
2 0.5 7 3 2 2
1 26 7 5 2
2 104* 20 51 g
100 >120* >120* >120* >120*
3 0.5 2 2 2 2
1 2 2 2 2
2 3 2 2 2
100 >120* >120* >120* >120*
4 0.5 33 12 13 5
1 >120* 38 >120* 24
2 >120* >120* >120* >120*
100 >120* >120* >120* >120*

*assumes ||wn|| constant



TABLE (2.8) Applicability

52

{Piecewise) (number of partitions required)

Problem a S1p7 5
1 0.5 5
1.0 13
2.0 160*
100.0 >200*
2 0.5 2
1.0 5
2.0 14
100.0 >200*
3 0.5 2
1.0 2
2.0 2
100.0 >200*
4 0.5 7
1.0 21
2.0 125*
100.0 >200*

*assumes |lwn|| constant

>200*

>100*

11

34

>200*

Aip= Bn
2
5
155

>200*

12

>200*

>200*

21
200*

>200*

27

>200*

>200*

>200*

11
53

>200*
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(T - ¢n K];1 || with the global case.
n
(4) Generally it seems the piecewise collocation method is more

readily applicable than the global one.

2.6.4. Bounds on II(G - TJ_1||

We now examine the bounds on II(G - T]_1[| using the formulae
in section (2.5.3) with d = 1,2 i.e. using first and second derivatives
of the coefficients only. With each problem wé use the suitable values
of o which allow early applicafion agf these bounds.

Tables (2.7 - 2.10) give the results for the global
.collocation method. If we compare Pd’ WPd, QPd, Ad’QAd presented in
these tables we may observe the following inegualities:

Problem (1) o = 0.5 OA < A <P < WP1 < P, p

o = 0.5,1 Ay <P, -

2
—~ [
Problem (2) o = 0.5 QA, < Ay < Py <QP, < WP,
o =1 QA’I < A’l < P,] < QP1 < WP‘I'
= 0.5,1,2 Ay < Py ‘
Problem (3) o = 0.5,1,2 QA1 < Ay < Py < QP < WP,
= 0.5,1.2 A2 < P2
Problem (4) o = 0.5 A, < Ay << QR < WP, < Py
o = 0.5 A2 < P2

From these inequalities we notice’

(1) The extended projection method bounds (QA1A12‘]are much more
accurate than the projection method ones (QPq, Wﬁ , %,2)' This is
confirmed from the expressions for ?,2’Q91A1,2' QA‘ which give when
B1 <1,

< < .
A2 L W 0y :
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(2) If we consider each method separately we observe that with
the extended projection method in all problems .

For the usual projection method, in most cases !

QP1 and WP1 have no .improvement over P

-, K

1

: . In general if ||K]| > it can be

-

seen that WP, < F

1 1°

(3) If we compare the bounds using the first derivatives with
those using second derivatives we observe that the latter are always
better. That is obviously due to the bounds derived for

d
[z - ¢ 3.

Tables (2.1122.14) give similar results for the piecewise
collocation method. All the problems have consistently satisfied the
following inequality.

Ay < P
QA1< QPL <WR1< A1< Pi’ 2

That confirms (i) the superiority of the bounds using the
matrix @ (ii) the improvement of Pd by WPd which is expected by the
theory. Like the global case bounds using second derivativses are better.
Gerrard (1873} shows further that if we use higher derivatives then the
projection method will be superior ' 4 the extended projection method.

d+1

That is because the first uses ||(I - Pnp)K || while the second uses

H - Pnp)Kd|| and better bounds for ||(I - Pnp K]_lI are available

YnH

with the piecewise method.
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TABLE (2.7) Bounds on || (G - T)—ql!

Problem (1) (Globall

(i) 'Using first derivatives

o

c.

5

n

5
10
15
20
25
30

5
10
15
20
25
30

5
2
2

P1

.83841
.8566
.1175

(ii) Using second derivatives

o
0.

5

n

5
10
15
20
25
30

5
19
15
20
25
30

o O o o

201

P2

.25586
.8623
.8B605
.8163
.7918

.6138
.8507

3.3428

.8139

WPy

5.8810
3.0241
2.2724

WPy

6.9245
3.6632
2.7885

O O o o o o

e e e N

.1587
.9585
.9006
.8734\
.8578
.8479

A2

.7/ 8486
.7037
.6947
.6923
.6917
.6917

.2108
.5651
.424

.3714
.3478

QA1
0-8L16
0.-3304
0-74.5%
0-33173
032132
0-3}1'30



TABLE (2.8) Bounds on |[(6- T3 1|

0.

C.

Problem (2) (Global)
(i) Using first derivatives
a n P1 WPy
5 5
10 2.5178 2.8470 2
15 1.4888 1.6561 1
20 1.2147 1.3820 1
25 1.0867 1.2511 0
30 1.0118 1.1727 1
5
10
15
20
25 12,1448 11.0838 S
30 5.2210 4.,9283 4
(ii) Using second derivatives
a n Py
5 5 0.8022
10 0.78869
15 0.7440
20 0.7258
25 0.7158
30 0.7083
5 5.3775
10 1.7874
15 1.5987
20 1.5060
25 1.3922
30 1.3264
5
10
15 10.7778
20 6.4738
25 5.4617
30 5.0276

QP

.4443
.5854
.3481
.2432
.1798

.3647
.2238

0O 0o o o o o

= = P = N

~ = = ~ = = 0O O 0O o O O

A

.8358
.7848
.7825
.750%
.7435
7385
19.
7131
.9724
.7089
.5763
.4934

0553

Az

.6838
.6782
6772
.6789
.6768
.6768
.2312
.0899
.0688
.0625
.0604
.0533

.8678
4260
.75786

.51786
.3887

A1
0.8281

0.7730
0.7557
07467
0.7425
~ 0.7385
17.9044
2.4740
1.8082
1.5744
1.4610
1.3913
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TABLE (2.8) Bounds on || (6 - T) ]|

Problem (3) (Global)

(i) Using first derivatives

o n P WPy QP2 A1 QA

0.5 5 0.6101 0.6584 0.6682 0.5178 0.5175
10 0.5668 0.6100 0.6183 0.5174 0.5171
15 0.5517 0.5880 0.6029 0.5172 0.5168
20 0.5438 0.5765 0.5938 0.5171 0.5169
25 0.5390 0.5682 0.5888 0.5717 0.51868
30 0.5357 0.5644 0.5852 0.5170N 0.5188

1 5 0.7848 0.8723 0.8893 0.5407 0.5392
10 0.6567 0.7334 0.7524 0.5389 0.5372
15 0.6175 0.6874 0.7138 0.5380 .. 0.5386
20 0.53981 0.6612 0.6923 0.5375 0.5363
25 0.5896 0.6451 0.6809 0.5372 0.5361
30 0.5787 0.6342 0.6725 0.5370 0.5366

2 5 1.7780 1.8801 1.9040 0.6059 0.5994
10 0.9625 1.1080 1.1174 0.5966 0.5892
15 0.8139 0.9400 0.9789 0.5922 0.5858
20 0.7508 0.8657 0.9147 0.5898 0.5840
25 0.7156 0.8231 0.8814 0.5884 0.5830
30 0.6930 0.7952 0.8586 0.5873 0.5824

(ii) Using second derivatives

a n P2 A2

0.5 5 0.5185 : 0.5162
10 0.5171 0.51862
15 0.5168 : ' g.5162
20 0.5166 ! ne . 0.5161
25 0.5165 0.5161
30 0.5165 B 0.5161

1 5 0.5445 . ) 0.5337
10 0.5380 ) 8 0.5335
15 0.5364 ' . E 0.5335
20 0.5356 L A 0.5335
25 0.5352 et 0.5335
30 0.5348 o ' 0.5335

2 5 0.8383 oo : . 0.5747
10 0.5967 - 0.5732
15 0.5875 - o 0.5728
20 0.5835 0.5728 -
25 0.5813 e 0.5727
30 0.5798 (e T 0.5727



TABLE (2.10)

Problem (4)(Globall)

58

Bounds on || (G - T)-1l|

(i) Using first derivatives

o n

0.5 5

10
15
20
25

30

P

(ii) Using second derivatives

10

15

20

25

30

P2

12.7048
3.4532
2.7255
2.3688

2.1238

WP,

GP1

A1
10.235%
4,5575
3,373
2.8578
Az
2.0017
1.6471
1.,5484
1.5055

1.4827

QA1

6.4816

2.8074

2.1638

1.8431
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TABLE (2.11) Bounds on || (6 - T3]

Problem (1)} (Piecewise)

(i) Using first derivatives

a n P1 WPy OP1 A1 QA1
0.5 5 18.2766 8.1982 2.1942 1.5881 0.8271
10 4.,3168 1,7537 1.5688 1.4694 0.7656
15 3.4481 1.3439 1.2146 1.4337 0.7473
20 3.1357 1.1941 1.0838 1.4185 0.7383
25 2.9741 1.1162 1.0183 1.4083 0.7331
30 2.8756 1.0684 0.9747 1.3996 0.7236
1 5 20.7728 11.88663
10 3.95862 2.2648
15 17 .8255 8.2849 7.8883 3.1138 1.7851
20 8.5673 4.3670 3.7197 2.8138 1.6132
25 6.5362 3.2824 2.8045 2.8602 1.5255
30 5.68458 2.8055 2.4010 2.5667 1.4718

(ii) Using second derivatives

o n P2 ) Ao
0.5 5 2.2284 : 1.3873
10 1.7784 ’ : : 1.3529
15 1.7053 1.3487
20 1.6770 1.3445
25 1.6623 1.3436
30 1.6533 . 1.3430
1 5 3.6147
10 4 ,5860 2.3382
15 3.4460 2.1944
20 3.1443 2.1482 ?
25 3.0086 2.1274
30 2.9435 2.11863




TABLE (2.12)

80

Bounds on [l(G-T)—1[[

Problem (2) (Piecewise)

(i) Using first derivatives

n P1
0.5 5 3.9812
10 3.0165
15 2.7902
20 2.6886
25 2.6325
30 2.5958
1 5 68.1637
10 5.86576
15 4,3324
20 3.8803
25 3.6512
30 3.5134
2 5
10
15 48.9174
20 13.2618
25 9.2276
30 5.5123
(ii) Using second derivatives
o n P2
0.5 5 1.7182
10 1.6517
15 1.6346
20 1.6269
25 1.6625
30 1.6197
1 5 3.2325
10 2.7144
15 2.8139
20 2.5730
25 2.5507
30 2.5370
2 5
10 2.4460
15 5,17086
20 5.7898
25 5.6121
30 5.5123

WP1
1.5474 1,
1.1115 0.
1.0068 a.
0.9588 0.
0.9329 0.
0.9157 0.
32.6952 20.
2.5781 1.
1.9316 1,
1.7099 1.
1.53869 1.
1.5288 0.
26.9986 12.
2.2533 3.
5.0168 2.
2.7383 1.

QP

2308
8957
8178
7826
7629
7500
8309
6503
2485
1077
0378
89956

0137
2328
2410
5375

1.
1.
.3851
.3778
.373
3708
.9716
.3822
2311
.18625
.1230
.0975

[

NEENNNNRFE PP

N o ®

U oOLF FHEFEEFENNRPRBP

Al

4451
3998

.0123
.8820
.7752
.2287

A2

.3443
.3400
.3393
.3391
.3381
.3380
.0783
.0045
.9928
.9885
.9882
.9877
.1116
.1051
.5103
.3382
.2648
.2287

QAL

0.7203
0.6958
D.66881
0.6842
0.68189
0.6804
1.4065
1.1131
1.0388
1.0043
0.95848
0.9721

8.6479
3.8246

2.8380
2.0418




TABLE (2.13)

Bounds on || (G - T)—1||

(i) Using first derivatives

(ii) Using second derivatives

0.

a
0.

o

5

5

n

5
10
15
20
25
30

5
10
15
20
25
30

5
10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

n

[P T T S T R i = o o o)

P2

.0658
.0847
.0644
.0643
.0642
.0641
.1388
.1341
.1328
.1322
.1318
.1317
.3104
.2881
.2826
.2801
.2787
.2778

Problem (3) (Piecewise)

Pi WP, QP1
2.1566 0.5874 0.5735
2.0994 0.5609 0.5504
2.0810 0.5523 0.5430
2.0719 0.5480 0.5383
2.0665 0.5455 0.5371
2.0628 0.5438 N.5356
2.3396 0.6885 0.6538
2.2087 0.6267 0.6023
2.1684 0.6080 0.5864
2.1487 0.5989 0.5786
2.1371 0.5934 0.5740
2.1294 0.5889 0.57089
2.8152 0.9344 0.8462
2.4632 0.77862 0.7127
2.3650 0.7311 0.6756
2.3188 0.7097 0.6577
2.2819 0.6873 0.B475
2.2743 0.6891 0.6406

A1

1.0336
1.0332
1.0330
1.03289
1.0329
1.0328Y
1.0725
1.0704

1.06966

1.0683
1.0681
1.0680
1.1687
1.1587
1,1554
1.1537
1,1527
1.1521

A2

1.0323
1.0323
1.0323
1.0323
1.0323
1.0323
1.0688
1.0668
1.0668 .
1.0868
1.0668
1.0668
1.1450
1.1438
1.1437
1.1437
1.1436
1.1436

0OO0OO0O00O000OD0O0O0D00O0O0O0DO0O0O0O

.5186
.5164
.5183
. 5163
.5162
.5162
.5354
. 5344
.5440
.5338
. 5337
. 5337
.5806
.5808
. 5738
.5729
.5724
.5721
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TABLE (2.14) Bounds on || (G - T3 1|

Problem (4) (Piecewise)

(i) Using first derivatives

o n P WPy QP Ay DAL
0.5 5 5.3685 2.3359
10 9.4302 4.7493 3.0980 3.58\ 1.3053
15 5. 8685 2.8014 1.8020 3.1231 1.1348
20 4.9590 2.4157 1.5922 2.9348 1.0652
25 4,5317 2.1813 1.4484 2.8323 1.0271
30 4,2858 1.0620 1.3648 2.7678 1.0031

(11) 'Using second derivatives

o n P2 A2

0.5 5 8.83983 3.4573
10 3.8801 o : . 2.7253 T
15 3.4788 : . 2.6237
20 3.3442 . 2.5804
25 2.2790 2.5756 T
30 3.2412 . 2.5678

1 5
10
15 . 17.5602 19.3604
20 12.2168 S 13.6171
25 10.6674 ) f 11.9800

30 9.9884 > E 11,2493
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2.6.5. Conclusions

The numerical results show that improved "aposteriori”
bounds for the inverse differential operator can indeed be found if we

consider the differential equation in the origindl operator form,

(G -T) x = vy, instead of the transformed oney
(I -K) x = y.
The introduction of the matrix Qn which is shown to tend to the norm of
the inverse differential operator is a main factor éf the cdloseness of
these bounds. The improvement is more obvious with the piecewise
collocation method than the global case, and within the global case it is
more obvious with the extended projection than the projection method. This
is clearly due to the inveclvement of the projection norm (which is not
uniformly bounded} in the latter case. However in that case we have got
WP, bounds which use IIG_1¢n|| [{w || instead of [{o || ||@_|]|. as
n''s n n''y
alternatives.
Unfortunately these bounds do ndt make use of the
higher differentiability of the coefficients of the differential
eguation, and so do not obtain corresponding improvements in applicability
in those found by Cruickshan k & Wright (1878) and Gerrard (1979).
Still with all these bounds the applicability is a difficulty and an
alternative approach is introduced in the next Chapter to deal with it.
If strict bounds are not required useful estimates of ||(G - T]—1]|

.are shown to be aobtainable in Chapter 4.
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CHAPTER THREE

Principal part extension for better applicability ;

3.1.1. Introduction

We have seen that the major problem with the bounds
produced in the previous chapter is that for many practical problems an
inordinate amount of work is necessary to produce any strict bound at all.
The aim of this chapter is to consider this problem in order to improve
applicabilify of these bounds. 3

As indicated in Chapter 1, the theory can be applied to

general equations of the form

Dx = (G -T)x = y, where G is invertable. Clearly
different choices of G may be treated. However there are some practical
difficulties which would limit them. Firstly the inverse of G needs to
be known explicitly. Secondly a procedure for calculating the
projectioH norm Or a bound on 1t needs to be available. Thirdly all the
assumptions on sebtion (2.2) should be satisfied.

Perhaps the simplest extension is to define the principle part
of the differential operator G by

(m) Y x(m-1)

Gx = x m-1

+ - - - -+ A X,
[®]

where the A's are some parameters to be chosen to give the highest possible
applicability with reasonable amount of work, The inverse of this new G
(will be called G*) is considered in (3.1.3.).

In section (3.2) the global collecation method is considered
with the new projection (¢n*]. A method of calculating ||¢n*|l is given
and it is proved that ||¢n*|| and |[¢n|| are asymptotically the same i

£ - . X
he collocatian potals are Tr.kekjchcua_eros ond this U assommed T\woujhout this

section,
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The conditions of the theory of Chapter 1, are all shown to be satisfied.

Similar results are given for the piecewise  collocation method in
section (3.3). In (3.4) we consider the problem of choosing the Xi
values.

Experimental results are given for the simple second order

case and G* is chosen in its simplest form,

G*x = x" + X, x (#1) = Q.

A

Tables for the bounds of ||G* ||, 1o *I| and ||¢n*p-|'|

are presented for different values of A. Cubic splines are introduced
to give simple calculation of [{P;bll.

At the end of the chapter experiments on the applicability
with the test problems introduced in the previous chapter are compared

and discussed.

3.1.2. New splitting of the differential operator

The differential equation 2-1 is now put in the new

operat..or form (G* - T*)x =y
m-1 (k 3-1
where G*x = x[m] - 3 XK X ) ( )
k=1 O"
XK + 0 for at least
one value of k
m-1
and T*x =- I (Pk - XK] X[K] . (3-2)
k= 0.

In order to apply the theory in the previous chapters we

need:
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(i) To know the inverse of G* explicitly.
(ii) G*Xn = Yn’ where Xn is the.subspace of the approximate solution
and Yn = ¢; Y for some bounded projection ¢; . i.e.
¢; G* Xn = G* X Y X € Xn'
C(4i4) Knowledge about this projection ¢n* so that |!¢n*|[ or a bound on
it can be calculated.

{iv) Conditions of theorem (1-7)to e gsatisfied and & matrix similar to

wn, call it wn*, can be defined such that \

..1 -
| - I1¢1 - ¥ || where k* = T* g+ 1.

[ {w,*

3.1.3. Study of the inverse of G*
G*x = u* (3.3)
is a linear inhomogeneous differential

equation with constant coefficients. The solution of this type of
equation if it exists may be - = found analytically. The solution of
this equation is equivalent to the existence of the inverse of G* which
can be expressed by 1

-1

(G* " u*) (s) = [ g*(s,t) u*(t) dt
-1

where g*(s,t) is the Green’s function of (3-3) with the boundary conditions

given 1in (2.2). The operator k* is defined in a similar way by
1 G 5 ()
(k*u*) (s) = [ I (Pls)-A) k) g*(s,t) u*(t)dt.

-1 k=m-1 K 9 s




To study the behaviour of [3*_4r in more detail we consider

the following simple second order example,

G*x

If we solve this equation with the method of variation of

constants (for example) we will reach the following solution for negative A,

“h (2+#8) VA s

e

(£t -1y (t) dt

¥r -F~X
£ (e

S

The correspunding Green's function can be defined by

/l

X

1

oy

A (s - t)

\-w(s) sinh ¥ (t - 1) + sinh /& (s = t)]t. <s

w(s) sinh ¥A

(2 + s)

34N
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_ 1
Then IIG*1 || < sup s | g* (s,t) | dt
. -
e L {wls) feosh (24 -1} +1 -
T s A )
2\
: 20 - 2 )
- cosh ‘AX[S+1)}=%{1-5 3/% ‘ 3
e - e

-

1) + cosh ¥ (s - t)

wt(s) sinh X (t
[«

gs*[s’t) N t <s
w*(s) sinh A (t - 1)
- t > s
h VA2 + 8] - s  3A -
WheTe — #(s) = (e re) /(e - e) .
| *-1 f1 *
Hence || D G || < sup _,|| g (s,t) | dt
s
1 -AX 0 AN 12-8) s AR (28+1) X (1-28)
= sup — {1+ {2e - e - e + e + g
s  HA
A(2+8) -A s 3 A . 2;? ‘f]
- e -e} /e -el}=— {1+ " —=""1}
vay 3A -V .
(e -e)

In a similar way for positive A the Green's function can be

shown to be
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F .
4—-—-—————- sin YA(s-1) sin YA (t+1)
YA sin 2/X . t <s
g*(s,t) =
L sin VA (s+1) sin/X (t-1) t>s
YA sin 2V/X -
k22
which is singular for A = 7 kK =1,2,.
-1 1 \
Hence |] 6* ' || = sup /| g*(s,t) | d t A
s -1
s .
s -1 ] 5 : — .
- sup {Is:m/x (s ]I ;- |51n/f (t+1)]dt + |sin/,x[s+1) lf:lslsiﬁ-w/)\(t-’llldt}
s /X sin VA 1

YA sin 2VX

s
To evaluate f_1|sin/>T(t+1]|dt we count the number of half

periods of the function sin/A(t+1) in the interval {-1,s} say n,

H = integer part of M——+TTS)—————/-X ’

- Then we multiply n by the area over a half period which

/X 2
is J sin VA (¢+1) d t =~
0
541 -
s
and add S| sin VA (t+1)]dt = sin/A t = L {1-cosvAl(s+1)}
-nm 5\
23

the area of the remaining fraction of period. This intégration can be

seen in the following diagram .
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/I
2
Similarly J |sin /X (t-1)] dt = & L {1 - cos/A(1-8)}
s YA /X 3
1-s)V/N
where m = integer part of (——1;12— » the number of half periods of the

function VA (t-1) in the interval (s,1).

That gives ||G*-1H < sup Is—iﬂ—@-ﬁ'——-ﬂ | an + 1 - cos VX (s+1)}
5 Aein2/x

sin /A (s+1)
A sin VA

‘ {2m +1 - gos /A1-8) } .,

We can show in a similar way

.cos/A(s-1) |{2

o e+ ) < o]
VX sin 2VA

- cos/A (s+1)}

cosVA (s+1) I I

— m+ 1 -cos /A (s-1)}
YX sin 2V

Fables (3. 1] and (3.2) give the values of g x= max,g*(s,t),
s,t
-1
BG* {the bound obtained for IIG* ||] -and BDG* - (the bound obtained for

HDB*- ||) respectively for different values of A. We note that:

(1)  For small ||, the results for G* are exactly like the usual
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operator G[gmax =l|G_1 l|= 5, !ID 8—1 || = 1) which is what is
expected by definition of G* when [A| small G* » G.  When - |}
is very small we observe different results and B G* in table 1 seems
to be diverging. These odd results were found to be due to
rounding errors in their evaluation which involve division by A.

(ii) In table (3.1){negative A) , we observe:

2

-1
and B D G* become smaller,

* *
When |A| becomes larger g max’ B C

obviously due to the division by A or vX. This is a first
indication for better applicability with this new operator when the
chosen Ais -ve, since

..’:l _1 -
* < ’ * N
g* . <g..BG* <BG andBDG* <BDG VYA

(iii) In table (3.2) (positive A) we observe:

For A = 2.467401 and 3.8638604 we observe very large values and that is

because of singularity at the points-g; and m. This is the main -
problem with this operator i.e. to have singularity [G*_1 undefined}.
The only way to overcome this problem is to note the points of
singularity and to avoid them beforehand.
Away from singularity we observe for large A g* .
-max ‘/7\-
but BD G* | is not affected. This obviously follows from the

expressions of these terms.

Unfortunately, the bounds here are not monotically decreasing

as above, but they oscillate with large limits near the eigenvalues.
This behaviour should be fakeninto account when we consider the choice

of A later.
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Experiments on G*

TABLE (3.1) (Negative A)

A g o B Gt BD G
1 x 10718 0.5 2.08 x 10° 1.07553
1 x 10712 0.5 41.63335 1.0004
1 x 107 0.5 0.5 1.0
-0.0001 0.49998 0.49998 0.99897
-0.01 0.49834 0.4979 0.9967 o
-0.5 0.43053 ' 0.41344 0.86106
1.0 0.3808 0.35195 0.7616
-5.0 0.21856 0.15773 0.43711
-10.0 0.15755 0.09155 ' 0.3151
-100 0.05 0.01 0.1

TABLE (3.2) (Positive A)

A AR B g+ BD Gt
1 x 1018 0.5 0.5829 1.0408
1 x 10 12 0.5 0.5 1.0
1 % 107 0.5 0.5 1.0
0.0001 0.5 0.5 1.0
0.0 0.5017 0.5021 1.0033
0.5 0.6042 0.6307 1.2084
1.0 . 0.7787 0.8508 1.5574
2.467401 1 x 10° 1.2 x 10 1.99 x 107
9.869604 2.5 x 10’ 3.4 x 107 1.4 x 10
100 0.1092 0.1219 1.5032
10* 0.0114 0.0136 1.4487
10'2 1.5x10° 1.8 x 107 1.9327
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3.2. The Global Collocation and the new projection

Xn is taken as before to be the space of polynomials of
degree n+m-1 satisfying the boundary conditions. We introduce Y; to be

. . * § .
the space of polynomials generated by {G* ¥_} r=1,--.n where {Wr}'r=1,——,n

-1
is a basis of Xn. Now if G* is well defined, G* establishes a bijection
* = dy* * o = A% ; :
between Xn and Yn ¢n Y. So that ¢nAG X G X for all X, in Xn and

¢; defines a linear projection from Y to Y;.

A

3.2.1. The projection norm .

In the usual analysis we show that the approximate solution
satisfies ¢n[G -T) X = ¢n J, where ¢n is the polynomial interpolation
projection based on the n collocation points "&j}nj=1 which are
chosen thysaghoat this Sectioh: to be zeros o£~ﬂﬁ:kekﬁkA\eq‘, polynomial.

With this new operator splitting G* -T*
the subspaces G Xn’ G* Xn will in general be different. However to

analyse this new interpolation projection it is convenient to consider

G* = G - Tk’ with corresponding projection ¢;. (Tk is
0 .
some special form of T defined by TAX = z k4 x[lj . In this case
i=m-1 -
(I -0 T 5_1) U = ¢ is equivalent t
1 n o' n = % y is equivalen a]
* = * :
I Un ¢n y (3.4)
and x =6 gy (3.5)
n n-* )

N.B. Xn is not affected by the choice of splitting.

Now we want to calculate the projection norm for ¢; .

ceecmcamamaa.
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(¢; y) (t) can be expressed as

*
Zj (t) vy (Ej)

(IR N |

where 23 (t) are the generalized Lagrange interpolating coefficients,
then

n
H ® || = sup ? | 2* (t) | as usual.

By definition 13 (EK] = ij and may be expressed as

23 (t) = ¢; J Ej where Ej is the jth unit vector and J
is the extension operator defined in Chapter 2.
Now returning to equation (3.4) we see that
Uﬁ = ¢; y, and so 23 (t) can be found by solving

G* x(j) = J &y (3.8) )

by collocation using the points '{gj} 3=1,--,n=1.
(3

If the numerical solution of (3.8) is x (t) then clearly

. e G . (3
lj () = U n (t) G* X (t). (3.7)

This may well be the simplest way of calculating 23 (t) and hence
s
For illustration if we define G* by
G* x = x"" + AX x(£1) =0 3
then we want to solve
G* x = J e, J=1, «¢e.u, N by collocation. If we

~ n
take Tchebychev polynomials {Ti (t)} 5 =1 as basis for the solution,
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N

then x
n

n .
If we take'{gj}j=1 as collocation points then the

collocation method gives the following algebraic equations

(3)
AC o-oe
J j=1:--_.!n
3 lT \
E? = ’.tg, Cg, -—--, Ci} and Ais n x n matrix corresponds to G*.

°

The solution for the C will be simply the jth column of the inverse of

the collocation matrix A. If Egj is the ijth element of A_1 then

(3) -
X (t) = §=1 aij Ti (t) , and by (3.7)
(3) "
2* (t) G* x (t) = z a ., (T () + A T,08) ).
n . ij i i
i=1
n n
That gives [[o* || = sup 2 | L ayy (T¢ (£ + A T ()] .
t J=1 i=1
[ 3
Tables (3_3£ﬂj describes the behaviowr of ||¢;|| for different

values of A. The most striking feature is that for every value of A
it looks as if ||¢;»_ - ’4¢n|L—ro.The theory behind this behaviour will
be considered in the next section.

We also observe that the effect of singularity (for example
A = 9.869604) is less than one would expect. This may be due to the
approximations involved and the cancellations occurring in multiplying

back by G* in (3.7].



TABLE (3.3) ||o*]]

X

10
15
20
25

30

Table (3.4)

RN

n
5
10
15
20.
25

30

“1x 10°°

1.98885
2.42883
2.66671
2.86977
3.01178

3.12784

1x 107°

1.93885
2.42883
2.68671
2.86877
3.01179

3.12784

(a)

-0.5

1.97824
2.42583
2.68538
2.86902
3.01130

3.12750

(b)

1.9998

2.43175
2.68805
2.87053
3.07228

3.12818

76

Negative A

-10

1.82248
2.37481
2.66094
2.8548686
3.00210

3.12104

Positive A

9.869604
5.42223
1.44 x 103
2.71379
.2,88501
3.02157

3.13465

-50

1.68886
2.21148
2.57132
2.79987
2.96532

3.09484

50
1.99848
2.82604
2.8458]
2.95305
3.06370

3.1B345

1.98885
2.42883
2.68671
2?58977
3.01179

3.12784

1.88885
2.42883
2.68671
2.88977
3.01178

3.12784
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3.2.2. Relation between ¢n and ¢;

Recall equation (3.5)

_1_
= % *
XA G ¢n vy .

In the usual analysis
_1.

Xn T (G - ¢n TX]Yn ¢n y s
| 1 1 3
therefore « 1 - o -
G ¢n y (G ¢n TA)Yn ¢n Y. .
Multiply on the left by G* to get
_ - -1
¢; y = G* (G ¢n TK]Yn ¢n y o,
Hence .« - N _ -1
¢n = G* (G ¢n TA)Yn ¢n
-1
= (6 -T,) (G - Ty) .
_ _ -1 -1 -1.-1
= (I TA G )JGG (1 - ¢n Tx G )Yn ¢n
- I-T, 6 (T-6 T 5'11_1 ¢
= A n Yn n . (3.9)
The following identity may be called several times,
-1 -1 _ -1.,=1
¢ (1 - Ty G ¢nl = (I ¢n T, G )Yn ¢n , (3.10)
for
-1, -1 ) -1 -1,71
(I -9, Tx G JYn ¢n = (I + ¢n T, 6 (I - ¢n Ty G )Y£ ¢n
=6 (I+7T.6 (I-6 T -1, )
n A n >\G )Yn cbn ’
But from (1.28) (I - T 6 60 " =(I+T.6 ' (I-6 1.6 "
A n A n A Yn !
-1 1 -1

Y ¢ ¢, (T -7y G ¢ ,

-1
therefore (I - ¢n TA G )
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Theorem 3.1

l|¢;|| and ||¢n|l are avsymptetically the same.
Proof 1
..1 - - .
¢; - ¢n = (I - TA G ) (I - ¢n TA G 1)Y ¢n - ¢n by (3.9)
n
S (I-T. 66 (I-T.6 16" -0 by  (3.10)
A n A n n Y *
) ) -1 -1 -1 T
¢n (1 Ty G ¢n) Ty G d>n (1 T>\G d”ﬁ) ¢n
~ -1 -1 -4, -1
=9, (T -T6 63 - (I-T6 ¢ +1I-9
S (I-6)(I-(I-T.6 611
n A n
_ -1 -1 -1
=@, - DM 6 ¢ (1T-T,6 ¢ ’
- -1, -1
or Homs 11 <11 o, - myefye, 1111 a -7 1|

-1
By lemma (2.2) ||[¢n - I) TKG!’”¢n|l + 0 for Tchebycheu zeros, and

-1 -1
from (1.30 || (I - T,6  ¢_) || is uniformly bounded.

Therefore ||¢; - ¢n|| + 0 g.e.d.

Corollary 3.1

If Wh denotes the Wn matrix of the operator G*,then

* -1 w -1
enll < o1+l 8 o 1D A1 11 1] 7,67 [[+1)
Proof
. . _ -1 _ -1 -1
From (3.9) and (3.10) ¢n = (I TAB ) ¢n (I TAG ¢n) ’
therefore

-1 - _
[1extl <dle 1y 870 |1 [ - 767607 ]
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-1 -1 — -1
-From (1.30) [-T,6 ¢ ) ] <fW [ lTE e ]+ 1), (3.11)

-1 - -1
Therefore || ot o<l ¢nl| +| ] 756 ¢, ) [llwnll lITAG ¢ I+ 1.

The significance of this theorem and corollary is that they
ensure ||¢;1| will behave exactly like ||¢n]| for sufficiently large

n and is not going to be very much worse for small n.

A

3.2.3. The satisfaction of the conditions of Chapter 1 .

Now it remains to show that the conditions required by the
projection and the extended projection methods are satisfied. Also
we introduce a new matrix W; swWhich is the W matrix for this new operator
"~ splitting,and we show that it has got indeed the same -asymptotic

properties shown for wn in the previous chapter. i.e.

hwfl = Hla - knl] ke = e

Lemma (3.,1) K* is compact.

Proof

The compactness of integral operators of the forms K* is
given for example by Kolomogorov and Fomin (1957).

Lemma (3.2) The seguence K*¢; is uniformly bounded.

Proof ke =Tro* = T* G (I - Ty 8_1]—1.
(3-g]giV$ d)* = (I - T G—1] [I _ ¢ T G_1]_1 ¢ )
n A n A v n
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-1 -1.-1 -1 -1, 71
* vk = * - - ¢
Therefore K ¢n T*G (I TAG ) (1 TAG } (I ¢nTAG )Yn ¢n
-1 1.1
= T* -
T*G (1 ¢n TAG )Yn ¢n (3.12)
-1 -1
- ( - v .
T*C ¢n (I TXG ¢n] by (3.10)
therefore -1 -1 -1
k= o=l b <l 6 o |l || (xT-16 ¢ ] .
- -1
Since T*G 1d)n = TG ¢n| i.e. some form of K¢ »
T=T* n Y
Then ||T*G-1¢n || is uniformly bounded by Lemma (2.1).
-1 -1 . .
But || (1 - T,6 ¢ [ is uniformly bounded by (3.11) »
therefore
|| K+ o |l is uniformly bounded .
Lemma (3.3)
The sequence '{K*¢;} is collectively compact.
Proof

To prove K*¢; is.collectively compact we reguire the
set K* U = {K*¢; y:neN, YEU} to be relatively compact, where
U is the unit ball and N is the set of positive integers. The result
is achieved by means of the Arzela-Ascoli theorem, given for example
by Kantorovich and Akilov (1864} by proving equicontinuity and uniform
boundedness of K*U.

In Lemma (3.2) it was shown that K*¢; is uniform Ly
bounded and thus it remains to show that the eguicontinuity condition is

satisfied. With -1 <? ig <1 and u e U (3.12) gives
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* *—l *—l
| (K*0_*y) (s)) - (K*O_*y) (s,)}= [(T*6 U} (s;) - (T*G "UJ (s,)

,» where

1.-1 -

- 1
U (I-¢n Tk G 7] ¢n y. Let K** = T* G have kernel

n

K**[s,t); Then using Cauchy's ihequality as in Cruickshanck (1974,

page 103),
* * 1 * % 175 2 %
[(k* 9 *y) (s)) - (K*_* y) (s,)]. < { /] {K** (), (s,,t)}" gt}

A

Orf o) u %) at 1R,
-1 n

1
po(t)

First term clearly tends to zero as 81 T8, independently of vy.

Second term is uniformly bounded since

2 - 2 —
Joplt)u Te)dt = I w LU (€01 < [{u I, W, where
gn = wn y and
Myl < U Tyl ¢ 1 Tas vyw g g
Lemma (3.4) '

K* ¢ _* »~ K* as n =+ o,
n
Proof  (k*¢ * - k*) = (X*6_* + K*q - K* - K*).
By lemma (2.1)

K* ¢ > K

n
i.e. ||K*[¢n -Dull + o for every U € Y. Then
Hied xu — zxu] s [1etn = Ul « FRelT [Hop -0 [T [1ll > o
since ll¢n - ¢n|| -+ 0 ‘by theorem (3.1) and [‘K*Il, ||UI| are

bounded.
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Lemma (3.5)
d
[l(I - ¢;) K* Ii > 0 as n > © provided that the

dth derivatives of the coefficients of the differential equation are

bounded w = - T N -
Proof
T e 4, Y
[1ex - ¢z) ke [] =[] T -op Ko+ o K -0 K= ]
d d
<lba-oy ke b=k ey - o || > e

since the first part tends to zero by lemma (2.2) and the second.part
tends to zero by theorem (3.1).

Lemma (3.1), (3.3) and (3.4) show that - (1) K* is compact
(2) K* ¢; + K* and (3) K*¢* is collectively compact which are all
the conditions required by the extended projection method. Lemma (3.5)
also ensures the applicability of the usual projection method. We show
next that the result of theorem (1.8) can be in fact applied with this
new splitting.

Theorem (3.2)

llW; - I}z - K*J_1 I| asn » = .,
Proof '%
The proof goes as follows

-1

(1] MWeshow (I - K*) = = (I - Tke'11 (1 -K7

(2) We show (I

b* et e st a-e 0 e
n n A n n

| y .
HO(T-T)8 3 (T -0 K ¢ 3

and hence W*
n

Then by theorem (2.1) and its corollary
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(2)
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-1 ' -1 3
e - - ks <] e ase o 1) - TTa-a ]
e T g it a0 Te 1] - (inte T o T
i=o
> o as n - o o N\
By definition K* = T*g“1 = T*G—1(I-TKG_1J_1.

ButT* = T - T}\ ?’

-1 -1.-1
therefore K* = (T - TAJ G (1 - TAG )
-1 -1.-1
= (K-T,6 ) (I-Ty6 ) . (3.13) |
-1 -1 —
Hence (1 -k*) =(I-(K-T6 JI(I-T,6 )
) ) ) -1.-1 -1 ) “1.-1
= (I-KII-Ty6 ) +T6 (I-T,6 ) )
= (I -K(I- sz'q)_1 + (I - TkG—1]—1 -7
=((T - K) (I - T>\G”1)'1)"1
-1 -1
= (I-T,6 ) (I-K
We use (3.13) and (3.8)
1. ok e o I D D B
(I - ¢* K*) ox = (I-¢7 (K-Ty6 ) (I-T,6 ) ) ¢*
-1
) " ot 1
= (I ¢n (K(I 7,6 ) T,6 (I T\6 ) ) ¢n
. T DO R B -1
= (I - ¢r(K(I-T,6 ) (I-T,6 )~ + 1)) ¢r
o ) ) -1.-1 oy
= (I + ¢n (1 K) (1 TAG ) - ¢n] ¢;
I+ (I-K (I-T6 N e (1-1.6
n A n A
-1 -1
(I - ¢n T,6 ]Yn ¢n

1

)
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- e ey - Te h  aeaete ™ (-6 1,6 "o (1)

Yn
. -1 - - -
1-1,6 07 - a-neh a 4.1, 0 91 o

Yn_ n

-1 _ -1.-1 -1
+ (I ¢nTAG JYn ¢n (I-K) [I-TAG )

™ -

1
)Y (I-T,

'{t1—¢nsz'
n

S -1
- (I - ¢n Ty6 ) ¢n}} ¢n

1 =11 =11
)Yn (I-Ty6 ) +¢n (I-k) (I-T,6 ') - ¢n} o

61 1o A

n n

{(I-¢nTAG

-1

’ _1 _ _ —1
{[I—¢nTxG + o ¢n K} (I ‘TAG )

, -1.-1 o -1, -1
{t1-6 1) (I-T)6 3 "+ ¢ (I-Ty6 ) (I-T,6 ) - ¢} .9

1

- -1
(I-T,6 ) (I-6¢ K ¢

3.3. Piecewise Collocation

The space an, the collocation points '{Ejﬁ' i=1,---,n
J=1,---,p

and the projection Prp 27© defined exactly as in (2.4). The space
1

Y;p is defined to be the space of piecewise polynomials generated by

‘ . . . -1
%* ; .
G*Y, 4 . 1, -==,np where {Wi} i=1,---,np IS 8 basis of xnp. ¢ &

exists then clearly G* will establish a bijection between an and Y; .
* linear jecti f Y * i
Let Pnp be a linear proj ion from np to an, then if

we follow the analysis in Section (3.2.1) we reach corresponding to

(3.4) and [3.5]3 1 U*np = P;p y (3.14)
S
= * * 3I L
np G Pnp y (3.15)

The projection P;p is defined by

np
* t) = L*. (t) (&)
(Pnp y)} (t) §=1 i y ?



1]
are given by & = k=1,---,n T
(k=1)p+J jk j=1,---,p .

where L; is the unigue polynomial such thet LE (§) =6,, and '{%} )
J 3=ty

sNp

We note here that P;p cannot be defined in each interval

t tiﬁ’ tiJ separately as is the case for Pnp' That can be seen
. : m-1 :
easily from equation (3.14) u*» =Gx_ =+ % AL x(l) = P*
np np 521 i“np np
. bl =
where we have assumed continuity of L 121, —-m-1" But for the Pnp
N A
projection :
= = 1 1 o 3 s -
Unp G xnp Pnp y and continuity of G x is not required.
To caleculate L*i[tl we solve,
o+ x(l] -3 . '
np =i i=1,---,np »

by the piecewise collocation method using the points Eji

i=1:_—-:n .
¥1,---.p
(1) (1)
* = * = *
Then L i(t) Unp (t) G Xop (t).
np
| |P* 1] = mex L | L= ey ]
np £ i=1 1
For illustration let G* be defined by
G* x = x" + A X x(#1) =0 ,
We want to solve
o x(jJ = 3 e, ) by piecewise collocation.
np —=J =1, ---,np
If we take p=2 the cubic splines Ui' Vi 121, ---.n defined below are

'suggested as a basis for the solution xnp' If hj = t, - tj_1 then
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“te-t, 0% (633t - b, ) N
T in (b, t
U ! h =13 !
j(t) = j i
< (t-t. % (£-1 (3t.-t. .))  4n (t., t. )
3#1 SRR T T R M
3
15hj’l"\ 2
o elsewhere ,
.
~
2
t. - t) (t —t, 1 A
- o 5= in lE, 4. ),
- ) 3= 1
V oty = h
J J
‘ (b, - t) (£ - £, 32
| J+1 . ,
—_2—__' in (t.: t, ])',
h NI A
31
o elsewhere ,
e

We notice that

n

(t, L) = U, (t, = - t =
UJ( 31 j J+1) 0 and Uj[tj ) Uj( j+) 1,
', t. ] = U'.[t.] =0 d '. - =U'. =
J J[ 31 R and U J[tj )| J(tj"') 0,
t. ‘ = .[t. ]v= R N = =
Vj[ 3-1) VJ 41 0 and VJ(tJ ) Vj[tj+] 0,

! . )=V,.[t. ]= d '_ =)= '- =
AMES 5 0 and V' j(8=)= V7 (E4) = 1

which shows that Ui and Vi satisfy the boundary and the continuity /

conditions.

uz u3 U4

Fig. (3.1) illustrates how the basis of the solution looks for n =7,

(/Jwg/ll/z./i
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If we arrange thevUi and V; in the set {y} 2n such that

i 1i=1

Yose0 = V4 i=0, __ n-1

Yoy T Y i=1, _, n-1
and WZn = Vn’ then the basis functions for interpolation
'{¢i}2n are defined by

i=1 L\
= * .
o3 = B ¥y i=1, __,2n .

If qu, £2j are the two collocation points in the jth interval

. s ' t . L3
(tj_1 ‘% ) #=1.___n g then the set of all collocation points
5 =1, .2n is given by

If L3 denotes the unigue polynomial such that

*
L. (E.) =% .. then * can be expressed uniguely b
5 (850 =84 : pre quely by
2n (3)
%*
Lj (t) Z- oL ¢K (t) 5=1, , 2 .
k=1 ---
To find L,(t) we solve for a(j]
J k k=1, .2n
J=11 s 2N
s * =
using L 3 (Eil Gij 121, 7n
J=1,___,2n .
The interpolation norm is given by
2n°
p* sup 7
= L*.(t)
I Prol (=0 2 ey |
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We note that by definition of ¢k(t] k=1 ,2n

Ci‘O j=1,2

o elsewhere ;

c # o j=2i-1, 2i, 2i+1, 2i+2
¢, (£,) =
1 J o elsewhere
and
c# o 3= 2n, 2n-1 A
¢2n (gj) =

o elsewhere

Wheve ¢ is constant.

which makes the matrix of the solution to have the special shape given

in Fig. (3.2).

Table (3.5) gives the values of ]IP;D|I for different
values of A. We notice the same property observed for ||¢;||, that is
IIP;DII is tending to the same value. This here is 1.414213 which is the
value of ||Pn2|[ = [|¢2|| when the collocation points are Tchebychev
zeros. That indicates [[P;pll - IIPnp [|= ||¢p|| which can be
proved following exactly the arguments of theorems (3.1) and using
Lemma (2.5) instead of Lemma (2.2].

Theorem (3.3)

Hee 1 > Hell = ol asn  » .

Corollary (3.2)

If Whp denctes the wnp matrix of the operator G*ythen

[|P* can be bounded by

Wl
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Fig. (3.2) The solution matrix (splines)

Number of intervals = 4

Number of collocation points = 2

A
o X X X x o o o
o ) S | X X 0O o o
o] o] o X % X X o
o o o X X X X o
o o o o o % X X
o o o o o X X X

LS non zero element

O zero element

This can be considered as a band matrix of order 8 and 2 sub-diagonals and
2 super-diagonal elements in a typical row can be stored as:- (8x5)

- array . » and can be solved for example by the NAG special

procedures F$1BMF and FQ4AVF.



TABLE (3.5) [Ip;pll

N

5

10
15
20
25

30

10
15
20
25

30

-1x 1077
1.414213
1.414213
1.414213
1.414213
1.414213

1.414213

1x 10
1.414213

1.414213
1.414213
1.414213
1.414213

1.414213

5

1

1

1

1

1

1

1,

1

1

p=2

(a) Negative A

-0.5

.412528
.413833
.414051
.414124
.414157

414174

-10
.421329

.419330

.417218
.416134
.41554]1

.415181

(b) Positive A

0.5

.417604
.415125

.4146289

414450

.414366

.414320

9
4

4

.868602
.800538

.798982
.833881
.820161
.981844

.028834

-50

.423347
.430870
.426088
422605
.420364

.418887

50

.869048

.325582

.858074

.672735

.579849

.530478

1

1.

1 L]

1.

1.

1

3

-500

.858288

555555
421428
430752

438364

.431551

500

.168807

65.11853

15.40038

8

.584045

10.13541

19.23538
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o 1+ 11mys™ 11 Hegll 1Tl < 1T 11 Tl .

I

Proof. Follow corollary (3.1) with |[¢p|| = ||Pnp

This theorem and corollory like the global case ensure
that || P* || is not going to be much worse than||PnD]| for any value
np

of n.

Lemma (3.6)
The sequence'{K*P;p} is uniformly bounded.
The proof follows by the same arguments of Lemma (3.2)

with Lemma (2.5), used instead of Lemma (2.1).

Lemma (3.7)
The sequence'{K*P;p} is collectively compact.

Proof.

If we follow the proof of Lemma (3.3) until we get

‘ -1 -1
k(K*P;p) y)s ) -((K*Pr ) y)(sz)| = | (T*G Ung(sl}{?*G- Ung(s2) 1,

where Unp is the approximate solution of the highest derivative when the

differential operator G + TA is solved by the piecewise collocation method

1
of section (2.4).. Since T* G is some special form of K we use Cauchy .

inequalityand uniform boundedness of ][ng]] as in Lemma (3.3) to show

1 1

|6 U (s - (T*G SNSICI I

when s +s
2
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Lemma (3.8)

K* p* > K* as n > o . |
np

Proof i
ollows by Theorem (3.3) and Lemma (2.5), v), using the same

arguments of the global case (Lemma 3.4). |

Lemma (3.8)
|1z - P;p) K* || > o0 as n > -

Proof °

‘0llows from Theorem (3.3) and Lemma (2.5), vi) wusing the same

arguments of Lemma (3.5].

Now we have shown all the conditions required for the i
application of the projection and the extended projection methods are
indeed satisfied by the piecewise collocation methods with this new
splitting.

Finally it remains to prove that the norm of the matrix
w;p, which is the wnp matrix with the new splitting,ténds to the norm of (I*K*fﬂé

as stated in the following theorem.

Theorem (3.4)

-1
NI I NG SR SO |

np

Proof
follow the same afguments of theorem (3.2} and use theorem (2.2) and
its corollary instead of theorem (2.1) and its corollary.
By this theorem we are in a position to apply the results

of Chapter 1 to both the global and piecewise collocation method with this
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new splitting. But before that we need to consider some practical ways

of choosing the parameters Ai i=0, 1"

3.4, The choice of the parameters ki

The main guestion now is what are the values of these

parameters "{fxi}z;g which ,@ll maximize the applicability? If

we go back to section (1.8) we see that factors involved in the
applicability conditions are ||¢;||, [lws |1, |Ik*}| and ||D§K*m[|.
We have shown that |{¢;|| behaves almost like
‘|¢n|land the effect of the parameters is very small except when'é* is
nearly singular. In such exceptional cases the effect on K* will be

even more and no improvement is expected. If we also note that

-1
™ k™ < el T

and
-1“

R ITaITa. 1™ 1k

sl = [Hex = ke

may be the easiest way to consider minimising
m-1 1 a(l)
k][] < sup Iolp () - S| B ettt ot .

s i=o -1 as1

Here we have two independent parts inside the summation

depending on the parameters; the coefficient part lpi[s] - kil and

1 a(iJ
| 4 g* (S,tll- The first part is

the Breen's function part [ 1
s

-1
minimised in infinity norm by Ar = %Iﬁnax|pi(s]l + min]pi[sll},
s

i
5
the best approximation of Pi(s). The second part is expected to behave
in the same order as the norm of the inverse of the original operator G
except when G* is nearly singular. The odd case now is when G* is nearly

singular at the A's giving the best approximations of pi[s]. Such cases

can be overcome by testing different values of Xi in the region of Xi

|

|2
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until ||K*|| tekes its minimum value.

3.5. Numerical Application .

3.5.1. Introduction.

In our numerical application we will continue to work with
the simple second order case

x" (8) + p(s) x'(s) + qgls) x(s)} = y(s) 3 x £1) =0

and G* is taking the simplest form, - 3

G* x = x" + A s )
i.e. the parameter of x' is taken zero. Obviously if p(s) # Oythen the
inclusion of that parameter will give better results. Generalization to

- higher order equations and more complicated G* is straightforward but a
bit tedious.

The test problems will be the same ones considered with
the original method in the previous chapter. Problem 2 will be neglected
because it is trivial with the above G*.

To start with A will be taken as the one point best
approximation of g(s). If no good improvement is achieved, it may
be an indication that G* is nearly singular with that choice A (especially
when p(s) = 0), and hence ||k*|| is tested with other values near that A.
Before we go into numerical results we derive bounds for
Hk=<]1, |lok*|]. [|D2K‘*2 | and |[K*¢*|] following & similar way

to the original method.
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3.5.2. Derivation of bounds for ||k*||, ||DK*|| and ||D2K},H,

* A4 % x D% * *d * d
[k*oxl], 1K Pnpll [l (T - 62K '” and |} (I - Pe IK? .

By definition

1
(K*g*) (s) = S (-(als) - A) g*(s,t) - pl(s) 3g*(s,t)): u*(t) dt
R e
L A
= J, K*(s,t) u*(t) dt ,
where k*(s,t) = -(g(s) -A) g*(s,t) - p(s) 3g* (s,t) .
3s
1
(1) J|k*]| = sup sup | S, K*(s,t) ur(t) dt |
[Tu]]=1 s
! 1
< sup | (als) = M| S| go(s,8)] ot +| )l ]2g* (s, )] dt
s - -1%s
= K*
D 4
(ii) To bound [[DK*II consider DK*U expressed in terms of x so that

X" + Ax = u*. Then

DK*u* = DT*x = -D(px' + (g-A)x)

—px - p'x F AT - g x' - g'x

= -px™ - Apx + APX - p'X| + x| - gx' - a'x

cp (x™ + Ax) + (Ap - g’ ) x - (p'+g-A) x' .
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Returning to the variable u* we have
1
(DK*u*) (s) = -p(s) u*(s*]) - f1((p'[s] + q(s) + gls) -A) 3g* (s,t) =+
B 9s

(g (s) - Ap(s)lg* (s,t)) y*(t) dt

1
[|ok*]] < sup [pls)|+]|p (s) +q(s)-A|S]| 3g*(s,t) | dt

S -1 9ds
A
1
+ ]q'(s) - Ap(s)| S| g*(s,t)] dt = k*
_.1 /I
Therefore ||DK*|| can be bounded by K* if bounds for p' and gq' are
1
available.
v 2,2 . '

(1ii) Similarly for ||D°K ||, consider

DZK*Z usx = DZK*V* where V* = K* u*and put

V¥ G* Wr=W*” + A W* then

2. ‘
DZK*ﬂt DZT*W* =D -pw* - (g-A) w*}

—p(W*”' 4 }\w*!] _ {2[3’ +(CI">\]} [W*n + >\W*]

Dpre2q -ApHE g -2Ap ¢ (gAY we

(DZK*] v* (s} = -pls] v+’ (5) - {2p’ {s) + (qls) -2 )} *(3)
1

-{p’(s) +2q (s) - Ap(s)} {] dg*ls,t) Ve(t) dt - {g” (s) -
-1 9s
1

2ap’ (s) + (gls) -AJA} {] g*(s,t) V*(t) dt .
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2,.2 ;
[10%k*“|] < max {]pCs)| ||oK*|] + |2p'(s) + q(s) - A] ||K*|
1
+ {[p" (8) + 2g'(s) - A p(s)| [ }23g* (s,t) | dt
ds
1

+ [g” () - 23 p'(s) + (q(s) -MIA| S |g*(s,t)|dt}|[K*|f} =k* »
, -1 2

2,.2
Hence a bound KE for ||D K* || can be obtained if bounds fgr the

second derivatives are available.

(iv) K*¢; . To bound K*¢; we may need to use (3.9} .
or  _ _ -1 _ -1 -1
n (I-T, G ) (1 ¢n TX G ¢n] ¢n
C (175 ¢ 0T -6 T - -
A n oA n'A I- ¢nTXG ¢n) ¢n
i i 1 -1, -1
= (¢n 1) TXG (I ¢n TXG ¢n)¢n " ¢n )
K*¢p* = K*( ‘ -I)T 8_1 (I-¢ T g - *
o* = K* (6, A C N

-1 -1 -1
K*(d>n -D TAG ¢anHn (I—¢nTXG ¢n] ¢anHn K ¢n

)

If Wy is the W matrix of the operator  G*, then

[k*ox|] < Lk*[] [](6,-T) SCIRIERTREATE ko Il .

||k*|| is bounded by K* and ||K*¢_||is bounded by K*  Q Q* as it
. R n max . :
was shown in section (2.5.2). ll(I_¢n]TXG—1|| can be bounded using

Jackson's theorem as in section (2.5.2). ' N e

- - e . 3
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-1 -1
Haeprs™ 11 < @Al 1o |l 1o 7,67 /
'(ﬂ !
If . / for the simple case,TAG-l AG_1,
-1 T 2
then  [Jaase ne ]l <FY Caello DI v g
O n’

for Tchebychev zeros. This implies that for a sufficiently l@rge n

in nj2 *

. ko |1.

[Tk*or ] ~f K=o |] A

(v) For piecewise case ||K*P;p|| can be bounded by ||K*[||!P;p||.

iy [l - en kY]

As shown above, ¢% can be written as

* - -1 _ -1 -1
op = (6, - DI TE  (I-0T6 ¢ ¢ +o
oy vad ool 1o -1, -1, .d d
(I-¢n) K*= = (I ¢n)TKG (I ¢nTAG ¢n) ¢n K*= o+ (I_¢n)K ,
d i T d ]
[ Fer-on3k* 1 1 cx-0 37,87 1] Ho I T1Wn] | [1k=] + 1] tz-¢ k=) ,

and || (I - ¢n]K*d|| is bounded as before,(2.5.2).

-
-

3.5.3. Numerical results

(1) The Constants

. %* 7 * * *
Table (3.8) gives the values of K max Ko’ K1, K2 and

their ratio over their corresponding values with the original splitting



Problem

100

1000

100

1000

100

1000

0.75

1.5

3

150

1500

-0.0454

-0.09028

-0.18056

-9.028

-90.28

-0.15825

-0.3125

-0.625

~31.25

-312.5

B+

0.7247

1.2988

2.4094

0.1792

0.0352

0.4908

0.4819

0.4650

0.0998

0.01107

0.4694

0.4422

0.3962

0.0318

0.0032

BoG* !

1.3577

2.2645

7.2154

2.1251

1.4482

0.9852

0.87890

0.9439

0.3312

0.1052

0.9510

0.9074

0.8332

0.1789

0.0751

Table (3.6)

K *
max
0.1687
0.5661
1.8073
6.7139
14.0512
0.0045
0.0088
0.0174
0.4036
1.5859
0.4851
0.9657
1.9155

75.6156

499.9836

Value

K *
o
0.1812
0.6494
2.4094*
8.0191
15.8731
0.0045
0.0088
0.0171
0.2058
0.2998
0.4755
0.8074
1.66865

17 .8880

56.5685

K*1
0.3694
1.2878
7.1925*

97 .3315
724 .09829
0.01711
0.0337
0.0656
1.1505
3.6546
0.8269

1.6238

3.1457

165.4938

1825.271

of the constants

K*2
0.5373
6.2071

141.0485
10191.23
38460.2
0.00035
0.0014
0.0052
1.5855
18.2770
1.0702
4.,1937
16.1507

29153.01

K*
max

Kmax

0.3394
0.5661
0.9037
0.0671
0.0014
0.1440
0.1408
D0.1368
0.0645
0.0254
0.77862
0.7726

0.8513

0.6049

2897246_, 0.4000

KO

0.7248

*
1.2988

*
2.4094
0.1604
0.0317
0.1440
0.1408
0.1368
0.0329
0.0048
0.7808
0.7258
0.7407

0.1430

0.0453

Ky
0.3694
0.6438
1.7981
0.4867
0.3620
0.219
0.2157
0.2099
0.0736
0.0234
0.7350
0.7217
0.6291

0.7356

0.8112

2
Ky
0.7164
270690
*

11.7542
0.3397
0.0128
0.0778

6.0778

0.0722-

0.0087

0.0015

0.6838

0.6699

0.6450

0.4657

0.4628

66
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(table (2.1)). If we look to these ratios we can easily observe

(i) Some odd values in problem (1) (values with *) where the new
splitting gives worse results. This is obviously due to the
large values of BG*_1 and BDG*_1 at A = 1.5,3. The easiest
practical way for avoiding these nearly singular cases is to
consider other valuesd A nearby and to choose the best of them,
as shown later. \

(ii) Huge reductions were achieved in problem 3. That is because (1)
A is negative and hence BG*_1 and BDG*‘1 are well behaved. (2)
The function g does not vary very much and can be well approximated
by a constant. (3) p(s) = 0. (p is not accounted for with this
simple G*J.

(iii) For problem (4) all values are reduced but the reductions are not
as in (2) since here p # O. Obviously if G* includes an
approximation of p then similar reductions are expected.

{iv) For most of the cases the reductions increase with a and the

max imum reductions occur in K2.

(2 *
) (el

Table (3.7) gives the values of ||w;{| for both global and
piecewise case. The values in each row are tending to a constant waich
confirms theorems (3.2) and (3.4). In comparing these values of |lw;|l
with values of ||wnll in tables (2.2) and (2.3) we notice the following:
(i)  For problem 1 ||W3|| < ||wn|| for every n and for every value of

a. From section (3.4) thatis whatwe expect for o = 0.5, 100

where K was shown to be reduced.



(a)
Global

(b)
Piece-
wise

Problem

1

Table (3.7)

A

0.75
1.5
3.0
150
-0.04514
-0.08078
-0.18056
-90.7/8
~-0.15625
-0.3125
-0.6250
-31.25
@.75
1.5
3.0
150
-0.04514
-0.08078
-0.18056
-90.78
-0.15625
-0.3125
-0.625
-31.25

n=2>5
1.0122
1.3572
5.6781
112.6927
1.0042
1.0027
1.00860
1.2439
1.5017
2.0659
3.3371
34.1241
1.0978
1.3501
5.2240
3.2398
1.0045
1.0124
i.0240
1.2517
1.4933
2.058
3.3382
1.9127

HwHlvalues
n = 10
1.0671
1.3402
5.4391
6.0762
1.00645
1.0094
1.0181
1.2402
1.5415
2.1750
3.6551
200.3131
1.1324
1.3558
5.5806
32.2530
1.0046
1.0161
1.0311
1.2497
1.5230
2.1308
3.5278n

6.1019

n =15
1.100

1.3573
5.69396
7 .3665
1.0045
1.0127
1.0244
1.2436
1.5492
2.1967
3.7205

132.3251

1.1416
1.3568
5.6477

13.3198

1.0046
1.0174
1.03360
1.2489
1.5336
2.1573
3.6032

26.3493

n = 20
1.1136
1.3543
5.6359
5.7066
1.0045
1.0144
1.0278
1.2450
1.5520
2.2043
3.7439
148.7529
1.1475
1.3572
5.6710
10.46120
1.0046
1.0181
1.0348
i42499
1.5388
2.1711
3.6434

76.3849

n =25
1.1248
1.3573
5.6996
7.7255
1.0045
1.0155
1.0300
1.2438
1.5533
2.2079
3.7547
163.9271
1.1503
1.3573
5.6816
8.9978
1.0046
1.0184
1.0356
1.2502
1.5422

2.1785
3.6683

295.8121

n = 30
1.1300
1.3565
5.6733
7.0296
1.0045
1.0162
1.0313
1.2462
1.5540
2.2099
3.7607
173.4809
1.1526
1.3574
5.6872
8.7398
1.0046
1.0187
1.0361
1.2502
1.5444

2.1852
3.6853

1005.084
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But for o =1 and -2 where IIK][ is larger the only
explanation may be due to the singularity at o = 2.19 which will
affect the numerical calculation of ||wn|| more than ]Iw;[[,

(ii) For problem (3) IIW;‘I < Ilwnll as expected.

(iii)For problem (4) although ||K*|| <]|K]| , llW;ll is
almost similar to ||wn]| or slightly larger.This is probably due
to the domination of p(s), (|p(s)|>>[q(s)) ,we notice inwkhe

- piecewise case (b) that fora= 100,||W*|] 1lwboks as if it is
diverging, but if we look to more values of ]]w;|| we will notice

that was just a matter of accident, for example lleD][ = 224.777.

- (3) The applicability

Tables (3.8) & and b) give the number n required for the
applicability for each of the methods in section (2.5.3) with this new
splitting for global and piecewise methods respectively. In general
we see how much the improvemeni achieved with this new approach. If we
go into detailed comparisons with Tablea@ﬁpanda+6boncentrating On cases
where the number required is more than one actually needs, we may notice

* % %
Problem (1) : o = 0.5 O 1 <8 8§ <«<8 A <p; and Ay <A,

a =1 6 << 6, 6;<52 A: << A1 and A;>A2
o =2  No improvement. This case and case
A, with o = 1 are expected due to the bad
results we have got for the constants there.

These cases will be reconsidered.



TABLE (3.8) ‘Applicability

Problem o

1 0.5

100

100

100

*  assuming Ilwgll constant and ||¢;]]:: [16*] |
n

8.75

1.5

150

-0.04514
-0.08028
-0.18056

-9.02778

-0.15625
-0.3125
-0.6250

-31.25
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{a) Global
%*
S,
4
35

>120*

>120*

22

17
g7*
>120*

>120*

19

>120*

>120*

10

22

74

>120*

»
Ay

18
>120*

>120*

85
>120*

>120*

12

*} 20

>120*

16
77

>120*



TABLE (3.8) (cont'd)

Problem o

100

100

100

* assuming ||w;||

104

Applicability

0.75

150

-0.04514

-0.08028

-0.18056

-9.02778

-0.15625

~0.3125

-0.625

-31.25

(b) Piecewise

83

11
>200*

>200*

14

48

>200*

constant and]|¢;[l =

10

>200*

>200*

23

>200*

1.414

I s
2 2
7 7
A
>200* >200*
>200* >200*
2 2
2 2
2 2
2 2
2 2
11 7
63 28
>200* >200*
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H

Problem (3) : Huge improvements are acheived with o 100 and o = 1000

* *
Problem (4) : o = 0.5 61..<<81,8; <<8y, A <<hy , by <By

* * * X
a=1 & <«<&, 62 <8, A <<, 82 << §2

*
2 8, <<§; and Ay << A, . 8§ and Ay are improved

Q
1]

with the piecewise method but nothing appeared to

happen with the global method. \

.

(4} The re-consideration of problem (1)

Table (3.9) (a) gives the values of the constants for problem
' (1,0=2) with different values of X near 3 the best approximation of

201+t2), We look for a A with the smallest ||K[|. That appears to be
A= 1. Unfortunately the other constants don't take their minimum
there,but they are not that much worse. This situation suggests
putting into consideration other vaiues of A for testing.

Tables (3.9)(b) &(c) describe the applicability for X = 0.5,
0.75, 1, 1.25 and 1.5 with the global and piecewise methods respectively.
We observe that with 2ll these X¥s a good improvement has been achieved.
Further we observe that the best applicability occurred with A= 1 where
||k|| is minimum which supports our method in dealing with the choice
of the A's.

Table (3.10) gives new results for a = 0.5, 1 with‘
A = 0.3125 and 0.625 respectively. These A's are chosen in respect of
the above results for case o = 2. We observe that better results are

*
obtained and the previous odd case (o = 1,A2 <A;) now is eliminated



TABLE (3.8)

(a) The constants

A
0.25

0.5
0.75

.25
.5
.75

.25
.5
.75

N N N N = = =

(bl

(c)

1086

Applicability

(Problem 1,0 = 2)

/l

BG* ? BDG* K*max
0.5580 1.0926 0.9567
0.6307 1.2085 0.8089
0.7247 1.3577 0.8604
0.8508 1.5574 0.8085
1.0288 1.83886 D.7575
1.2988 2.2645 0.7402
1.7572 2.9863 0.7779
2.7086 4.4788 0.8258
5.8386 9.5009 1.5140

39.0761 122.3044 15,2872
4.5240 13.8011 2.5872
Applicability (Global)

A 83 83
0.5 >120* g5*
0.75 >120* 92*
1 >120* 85*
1.25 >120* 85o*
1.5 >120* 87*

Applicability (Piecewise)

A 81 83
0.5 130* 30
0.75 120* 29
1 110* 28
1.25 120* 28
1.5 135* 31

—t
w ©o =~ = = 0O 0 0O O o o

K*

.9785
. 9608
.9459
.9385
.9401
L9657
.0382
.2342
.9816
.5380
.3930

Ay
>120*
>120*
>120*
>120*
>120*

N
120*
105*

g5*
105*
120*

o ®©® o uvou; b Db

183
17

K3

.0873
.2298B
L4126
.6722
.0562
.B613
.7193
.8578
.4517
.4566
.2482

51
55
48
43
48

26
25
24
24
28

K3
12.2351
12.6508
13qe480
14.4779
16.4127
18.8100
27.1388
46.6914

152.4870
18146.00
378.7914
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Applicability
TABLE (3.10) (Problem 1, o = 0.5, 1)
(a) The Constants
o( A BG* BOG* | K* K* K* X
max (o] 1 f

0.5  0.3125 0.5746  1.1191  0.1278  0.1347  0.7694  0.2251

1 0.625 0.6745 1.2781 0.2822 0.3138 1.7573 1.4722
A
(b) Applicability (Global) .
a A 81 83 At A
0.5 0.3125 8 3 5 5
1 0.625 35 g 5 3

(c) Applicability (Piecewise)

0.5 0.3125 4 2 5 )

1 0.625 g 5 5 o
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CHAPTER FOUR

Algorithms for Error Bounds and Estimates

4,1. Introduction

If we define the residual of any approximate soclution x

of
(6 -T) x =y by
r =y-1(6-T)x (4.1)
n n .
A
then the error e = x - X in x_ is related to r
n n n n
by _ » -
(6 - T) e, = Tpr or if (G -T) exists,
-G-7 " -
then e, = n (4.2)

(4.2) gives a straightforward bound on CH

1 x - x I = Ilell <l

[]rnl . (4.3)

r, can be celculated by substituting Xn in the differential
equation and bounds on II(G - T)—qll are available from the previous
chapters. We will show in this chapter that by examining the inverse
operator (G - T]—/| and the residual we can obtain closer bounds
with less work.

It is seen by experiments at a large variety of problems
that [|0n|| settles very early and gives a good estimation of the norm of
the inverse differential Operator (G - T)_1 . This property is used
to justify a simple estimate of the bound on x which is shown to be of
high quality.

It is also shown that by examining the inverse operator

and the residual as before we can derive different error bound estimates



and error estimates which vary in their closeness according to the amount
of work involved.

The practical implementation of these ideas are discussed
and tested on different examples for both the global and piecewise
collocation method.

4.2. The behaviour of the residual

(a) Global case

from (4-1) the residual A
ro=y - (G -T X .
=y -(6-T- ¢nT + ¢nT] X

=y - (G d)nT)xn *Tx b Txn

=y -6,y T, m 6 Tx

(I-¢) (y+TxJ . (4.4)

It can be seen from (4.4) that r. is the remainder of
the interpolation of the function y + Txn. This useful property of
the residual will be used to obtain effective algorithms for error bounds
and estimates. It will be shown also that it is essential for the
efficiency and the reliability of these algorithms to have the residual
well approximated by a polynomial. That can be shown to depend on the
smoothness of the coefficients and the right hand side of the differential
equation. For, let Rn = ¢N ¢ be a polynomial of degree N - 1, N > n
which agrees with the residual at the collocation points and any other

N - n distinct points. Then

ro-Ro=(D-o )y = (T ) (T -0 (y+ T x).




110

d
But by Jackson's theorem (Chen ey, p.147), if (y + T xn] e C (-1,1)

then there is a polynomial U of degree N - 1 such that

~ d :
ey + Tx ) -G <35 11 oo ty+7x 3] o

u

Therefore ||rn - R IJx -0 ) (T %) (y~+T X, - d+ al]]

=[x -9 € (T-¢)0~ (I 0 (T -6 ) (y*Tx -] Il

[CT - ¢ (T -6 ty+Tx -3

d
< HT-ogll T - o 1 3, He™ v+ <]

If we write rn = Rn + Wn then

e dl o< JRID + 0 dle il -

Now iF the extra Points are chosen so that I| I g, i bccgmeé small
For large n and N &9, if the collocation powks are zevos of T, and the exl:r-q.
Pownks maximg of V,n then provided the right hand side y and the
coefficients of the differential equation'{Pi} are sufficiently different-

iable rcan be expressed as a polynomial Rn plus small quantity Wn if
n is sufficiently large. This polynomial Rn will be called . 4 principel

part of the residual and Wn the modified residual.

{b) 'Piecewise case

In a similar way the residual for xnp can be expressed

= - T )
as rnp (1 Pnp] (y + an

i.e. a reminder of the piecewise interpolation of the function y + T xnp'

d
If we suppose that D° (y + T xnpl is continuous on the

ith interval [ti—1’ ti], then using Jackson’s theorem as above there is
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a piecewise polynomial vy of degree k - 1 such that

il d
[ytt) + T xnp(tJ - Ui(tlll < Jg Z—(ti-ti_1)9 sup  D° (y+Tx ) (t)

t, ot<t,
i-1 i = Li .

If Ri ='PK ry is the polynomial which agrees with the
residual in ith partition,ri, at the collocation points and cther (k-p)

points then as in the global case,

°

ri(t) - Ri(t) = [I-PnK] (I-Pnp] [y(t]+Txnp[t] +ug () - g (e))
te (t,_,,t.)
i-1771

S (T - P (T- P Ly(E) ¢ Tx () - U (8) )

Hri _Ri Il = HI - PnKH HI -Pnpll Li .
If Wi = r; - Ri then
el s lIRglT = eyl lwnere 1yl < 1.

This shows that the residual r p can be expressed as a piecewise

polynomial plus a remainder and that for sufficiently large n

|lwil| << llRill. i = 1,0.0,0.

4.3. Improved error bounds using the polynomial approximation of the

residual
(A) Global Case
If we recall (4.2,

e = (G- TJ_’l T
n



112

then by (4.5])

= _ -1 Y = - -1 -1
e, = (G T R+ ¥W=(E-T R +(E-T) Y
ela-nt rRs-mTy
n n
-1 -1 -1
=6 (L+ (I-K) KR +(G-T) ¥,
g 'R+ G- KR +e-T ¥ . (4.10)
n n n *
Now since Rn is a continuous function, by definitions of
6”7 and K
_1 ’l
(6 R (s) = S _, els,t) R (£) dt (4.11)
m=-1 1k
and (KR (s) = I P (s) S, g (s,t) R_(t) dt. (4.12)
n k=0 ! n
That gives,
-1 -1
e "R = s:pl(G R) (s)] and ||K R[] = S:D| (K R) ()]
Therefore from (4.10)
-1 -1
e |1 < [le Rli = Hle =T L kRl [y [] 4.28)

Since Rn is a polynomial and Green's function g(s,t) is a
piecewise polynomials,the integrals (4.11) and (4.12) can be found
exactly. This bound (4.13) is expected to be very accurate since the
principal part of the error |IG_1Rn|| is exact. The accuracy obviously
depends on how much Rn is taking from the residual T, which can be
checked by the. size of | [¥ []-

We note here also that because Rn isahighly oscillatory
function and K is an integral operator, we expect many cancellations in the

integration (4.12) which makes ]IK‘Rnll much smaller than ]lrnll
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{(assuming IIWHII is sufficiently small). That is guaranteed for n
sufficiently large, depending on the smoothness of y and {pi} as shown
in the previous section.  Now having llKRn||and ||wn|| relatively small

-1 . : ‘s .
compared with ||c Rnll in (4.13) justifies using a crude bound in

|| - TJ—1|]. For example one could use a smaller n value for finding
-1
a bound on ||(G - T) ||than the one being used for the calculation of r_ or
(R ). "
n

(b) Piecewise case

)

If we consider any subinterval (ti_q,ti]then the error
e, in that interval can be expressed as in (4.10) by

/l

-1 - -
e, =67 RL +(6 -7 KRL (6 - T Yy, (4.14)

where\G_1R£ and K Ré are defined here by
n

_ 4
(G 1R€; (81 = I S, gy (s,0) Ry (1) dt (4.15)
3=
m-1 n 1 K
. 1t - t
(K Ry (s) i=0 Pt~ b, st vt ) 3;:1 Ly gy4(s,tIR, (8] dt

(4.18)

= 1 - 1 _
and gij(SJtJ - g[z[ti ti-’l] s + t'..K + ti_,ll Z[ti ti—1 )t+ti+ti—’|] e (4.17)
The integrals (4.15) and (4.1B]) can be found exactly and we get

-1 -1
eyl < TR« Il =m0 dixr I+l v D o 4.8

For the same reasons mentioned for the global case ||eiH
can give a close bound for the error in the ith interval (ti-1’ti)
and for sufficiently large n IlKRiIi and IIWiII will be small enough

-1
to accept acrude bound on || (G - T) '}].
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4.4, Error Estimates and Estimates of the bounds

We have  shown in Chapter 2 that |]g || » || (G - T)-1I| as
n - o , We have also shown that the type of bounds derived for ||[G - T)_1ll
involve matrix inversion and may not be applicable for small values of n.
That is the main criticism of these bounds. One of the suggestions
here is to takelIinlas an estimate for |l(G - T)_qll. This estimate
clearly has no formal restriction on the value of n, but one would of
course check that ||Qn|| really has settled down when using them.

4.4,1, Estimates using Ilanll only

-1
]|en|[ < |l -1 ] Ilrnll, then the above result
justifies the following simple bound estimation.
el v eg = 1ol Tl= (4.19)

~

If llQJ' has already settled down when n = n* then it
will be unreasonable to recalculate Ilinl with larger value of n. Hence

a cheaper estimate can be taken as

eg = ol [z 1 . (4.20)

When ||rn|l is sufficiently small,
l[]|(G - T]_1|| - ||Q;|l]| lirn" will be very small (compared to the
actual bound) which makes this estimate very close to the actual bound.
Results show that this estimate is closer than the estimates given by
Cruickshanck (1874) and McKeown (1978).

4.4.,2, Estimates using approximation of the residual

One may recalt(4.13)

-1 -1
He I = 16 Roll < [HG =D L dlkr []+ [lv |1
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and take as an estimate
-1
er = [le Rl + [forll (Ixr T = |l¥ [l . (4.21)

We note here that the calculation of Wn involves r_ which

requires the evaluation of the differential equation with the approximate

solutions (;E’] :=O substituhﬁ.&w(xtk]lizo. That means to have an
accurate bound of ||Wn|| may need to evaluate Wn at a large sample of

points which will be very expensive.However by the theory in section(4.2),we
expect IIWn[! to be very small for sufficiently large n. That can be
checked with a small selected number of points. If it is true one may nerlect

IIWHII and use the cheaper estimate

-1
R L NI R T TR T (4.22

4.4.3, Estimates using the LU decomposition of the solution matrix

Recall (4.10)

_1 ..'] -
e =6 R +6G-D KR +G-1"y
n n n
Now since K Rn can be found exactly by (4.12) and it does
not vanish at the collocation points (unlike the residual) one can apply the LU

decomposition of the solution matrix and find. (G - T]_1 K Qn' Then the

following estimate can be obtained

fm
i

-1 -1
167 Ry + 6 -0, o kR [+l [0xl] []v ]
(4.23)

As above one may neglect Ipyn |‘ and take as cheaper estimate

-1 -1
HE2|l = e Rn (G -9, 1o, K Rnll . (4.24)
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This estimate is very cheap to calculate since it doesn't
require the calculation of ||Q;l| or i‘?nlf. Later it will be shown

that with many problems this estimate is very close to the actual error.

4,4.,4, Estimate using the principal part of the residual and the principal

part of the eguation only

?inally one may assume further that (G - T]_1 K Rn is
sufficiently small compared with G—IIRn and take ||G—1Rn|[ as a cheap
simple estimate of the error. This ‘estimate may notvbe reliable if the
problem is nearly singular ( ||(G - T)-1|| very laréé), or it has got
large coefficients, i.e. llK Rnll > [IG—anll . However apart from
these exceptional cases this estimate is very close to the actual error

~as shown in results later.

4,5, Numerical examples

4.5,1, General comments bn the computer program

The program basically sets up and solves the linear
algebraic syscem for the collocation method producing the approximate
solution xn. The basesg elements of the soclution are chosen as Tchebychev
polynomials {Ti} or Legendre polynomials {Pi}. The collocation points

{Ej} are chosen as Tchebychev or Legendre zercs depending on the base.
A sequence of procedures are written to compute all the different
quantities required. ’ It is of practical interest to mention the following
points. .
(1) The collocation matrix for the piecewise case (the solution matrix)

takes the specisl-block form disgrammed in Fig. (4.1). This

Block matrix is solved by special library procedure.




(2]

(3)
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To calculate the matrix @ the LU decomposition of the solution
matrix A is used to compute its inverse. Then @ = PA_1 where
P is the evaluation matrix of the basis elements at the

collocation points. In principle the evaluation of P could be

at any arbitrary points'{Sg'as shown in section (2.4.3). . The

only reason for this choice is to make use of the elements

"0.(ED} or {pi[Ej]} already calculated in constructing A.
1]

In calculating Rn the choice of its number of coefficients N
is arbitrary in principle. It could be n + 1, n+ 2, or larger.
Since (n+1) maxima of r, are known for the Tchebychev case it

is of practical convenience to take N * 2n and express R, by

R =T 1 a, T,
T eg

Then using the orthogonality properties of Tchebychev series

we can express the coefficients by

n 3 s .
= 2 " mJ ijm
3 T ey ; Tn (cos [n+1)) COS(n+'l .
Jj=0
iFor the Legrende case Rn is expressed by
n
R =P r' a, T,
n n 120 i i
and the coefficients '%i} are expressed by
. T3
2 n rn(cos n+1] 131
a = - [ +1] z 1Tj CDS[ HT']).
3 n 4=0 P _(cos =)
n n+1

Since the local maxima of Tchebychev and Legrende polynomials
are asymptotically the same , (Szegd (1938) , theorem (6.21.2) J,
P, (Cos g&ﬁ) will not be small and so the aj can be calculated

accurately.




(4]
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We note here that . the tail coefficients of Rn could be taken

as a measure for the size of ||Wn||. For example when these
coefficients are sufficiently small it is an indication that IIWHII
is small and it may be neglected beforehand. We may also note that
when these coefficients are sufficiently small they could be missed
in calculating Rn and save some effort.

If we assume that Green's function is not known explicitly th%P

-1 s (s-t)™
(G R (s =S, CEBY R (E)dt+ a T (s) + alT1[S]+"'+

where the parameters a,’ al,.....am_,l are found from the boundary

conditions,
m-1 _ m-1 _
I o, (G EREIE I, B, (6 R (-
k=0 k=0
i=1,2,..,m
S (s-t)

We note that [J_ ICEDE Rn(t] dt  is a multiple integral of R and

1

could be expressed as a summation of TchebycheQ series, using the
properties of Tchebychev series, (Fox & Parker (1888)].

If [G—1Rn] (s) is known then (K Rn] (s) is simply

m-1
-1
KRr) () = -3 pis) 6 RIM (),
n K n
k=0
In a similar way for the piecewise case
s -1
-1 e (s-t)
(6 Ry) (s) = (3t =, ;) ) f_1 CEB) R, (t) dt +
m-1
1 -
§=D 85 Tj (2[ti ti—1) s+t ¥ ti-1)

and

%=1 Tm-1

(s)
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FIGURE (4.1)

The matrix A with 3 paftitions

left boundary conditiong

p collocation points A

continuitly conditions

p collocation points

Continuqky conditions

p collocation poing

right boundary conditio

g
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FIGURE (4.2)

The matrix p with 3 partitions
—— p+rm
p
——
P

Typical element Pij = Ti[EjJ or=Pi(£jJ,




N A s

FIGURE (4.3)

\

left boundary
Condition

\
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The matrix GF with 3 partitions

continuity

condition

continuity

y condition

right boundary
conditions
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nt S, (k)
~ l — .
(K R)l (S) = - i=0 PK (2(tl t1'1] g + tl + tl—,]] (G R)i’ (S].

Wwe note here that in solving for the constants { aij}m—1 i-1 "
j=0 2 " oay

using continuity and boundary conditions we obtain
a matrix FG taking the block form described in Fig. (4.3). To solve
for these constants the special library procedure is used with no

collocation points.

h

4.5.2. The behaviour of [[Q ||

Table (4.1) gives the values of ||Qn|| for the simple

differential operators (1) x' = v, x(=1) =0 § (ii) x" = v, x(#1) = 0
(111530 = yux(#1) . x' (1) = 0 and (WX = y x(#1)= x' (21)= 0.

In each column ||Qn|[ is tending to @ constant which in this special
case equals ||G—1||. That confirms !IQn|| indeed tends to ||(3 - T]—1[|

as proved previously. Table (4.3) considers the same problems for the
piecewise case with two and four collocation points and shows that H inl

-1
is similarly tending to |[G ||.

As further illustration to the problems considered in
Chapter 2, we consider the following problems which vary in order and

smoothness.

Problem (5) x" + it x =y x (#1) = 0

Problem (8) x"+ x" + sin (t) x =y x(#1)} = x'(-1) =0
Problem (7) x(iVJ+ 200 x =y x(+1) = x'(#1) = 0
Problem (8) V) L S sy x(H) = xt(#1) = O

The values of []QnHoFthese problems are given in table

(4.2) for the global case and in table (4.4) for the piecewise case.
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TABLE (4.1) The behaviour of IlQn|| (Global)
n 1 2 3
1 1.7071 0.5000 0.1967
2 | 1.8660 0.4268 0.1732
3 1.9239 0.5000 0.1857
4 1.8511 0.4665 0.1983
5 1.96589 0.5000 0.1916
7 1.9808 0.5000 0.1924
10 1.9898 0.4915 0.1847
14 1.9945 0.4952 0.1973
19 1.9989 0.5000 0.1974
25 1.9982 0.5000 0.1987
TABLE (4.2) The behaviour of ||Q || (Global)
Problem
n 5 6 7
1 0. 5000 0.1475 0.0045
3 0.5126 0.1649 0.0053
5 0.5473 0.1629 0.0052
8 0.5581 0.1641 0.0053
12 0.5621 0.1631 0.0053
17 0.5651 0.1637 0.0053
22 0.5651 0.1839 0.0053
27 Q.5851 Of184D 0.0053

0

8]

0

0

0

.04167

.0383

.04167

.0387

.0422
.418%*
.04086
.0410

.04167

.04167

.0400
.0388
.0385
.0387
.0381
.0381
.03391

.0391
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TABLE (4.3) The behaviour of []Qn|| (piecewise)

m 1 2 3 4

n 2 points 4 points 2 points 4 points 2 points 4 points 2points 4 points

1 1.70711 1.92388 0.25000 0.42678 0.14226 0.20152 0.01042 0.03107
2 1.85355 1.96194 0.48928 0.439928 0.18698 0.19733 0.03990 0.04155
4 1.92678 1.98097 0.59732 0.48982 0.19448 0.19748 0.04122 0.04164
5 1.94142 1.98478 0.49000 0.48707 0.19574 0.19750 o.o}boz 0.04179

10 1.97071 1.99239 0.49957 0.49997 0.18706 0r19752 0.04160 0.04166

20 1.98536 1.996189 0.49889 0.48899 0.18742 0.19753 0.04167 0.04167

TABLE (4.4} The behaviour of IIinl(piecewise)

Pro-
blem

n 2 points 4 points 2 points 4 points 2 points 4 points 2 points 4 points
1 0.3037 0.5064 0.1245 0.1634 0.0034 0.0046 0.0138 N.0315
2 0.5341 0.5661 0.1641 D0.1637 0.0054 0.0053 0.0394 0.0382

4 0.5802 D.5666 0.1583 0.1626 0.0053 0.0053 0.0394 0.0392

(@)

0.5588 0.5645 0.1645 0.1634 0.0052 0.0053 0.0387 0.0392
10 0.5658 0.5668 0.1837  0.1640  0.0033 0.0053 0.0393 0.0393

20 0.5666 0.5668 0.1840 0.1640 0.0053 0.0053 0.0392 0.0392
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We notice from these results and by testing the behaviour of ]IQn]]
with other different problems that i!inl settles down very quickly and
gives a sufficient approximation for ]](G - T]—1]| with very small
values of n. In comparing the rate of convergence of ]]Qni] with the
residual HrnH and the last coefficient of the solution,] c, |
we observed, that of I\Qn|| was always higher especially when the
right hand side is less smooth. That behaviour is expected since the
rate of convergence of the residual and the coefficients depend on the
right hand side as well as the left hand side while i‘Qn]I depends on
the left hand side only. :

This quick convergence of \lQn|l, even when the coeffic-
ients on the 1eft handside are not smooth as in problem 5, relative to r

n

supports the idea of taking !lQ;ll {n* small) as an estimate of
o - T]_1l| and avoid the expensive calculation of \\Qn|‘ for Iarger'

values of n.

4,5,3, Results for the global case

1. The behaviour of the residual

We mentioned in section (4.1) that the residual,

r =y - (G - T) X is calculated by substituting
X, in the differential equation.  In (4.4.1(3)) we described how to

calculate the principal part of the residual

n-1
Ry = Tn §=O 8 TK e Then the modified residual
Wn is simply calculated by subtracting Rrl from r_ . The behaviour of

the residual which was mentioned to be like the remainder of the

interpolation of the function (y + T xn) is considered by examining the
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values of llrn|| and llwnll with different problems.

Tn table (4.5) problem 1 is considered with the smooth

right hand side y = 1. We observe that [[¥ [| = 0 for all n> 4. That
can be seen since y + T x =1+ (1+ t?) x 1s a polynomial of degree
n + 3 and Rn is a polynomial of degree 2n - 1.

In table (4.8) problem 1 is considered with the singular
right hand side y = ﬂFEfTUT§ﬂ. Here we notice the slow convergence of
'Ilrnll and that lanll is not much smaller than ‘lrnll with the all
given values of n. *

Problem 2 is considered first with y = cosh(1) in Table
(4.7) and then with y = Er;le » which is nearly singular at zeroyin table
(4.8). The notable thing here is that in the second case when n becomes
lsufficiently large (n>8 then r_ starts to settle down and I|Wn|| tends
very guickly to zero. This behaviour is because y is an analytic function.

In tables (4.8} and (4.10) the function y + T x, is
smooth and ||Rn|| gives a good approximation of the residual very early.
In table (4.10) where y is less smooth (has discontinuities in the third
derivatives) we observe that the convergence is slower but quicker than
that shown in tables(4.8) and (4.8).

Tn table (4.12) problem 5 which has got a discontinuous
coefficient on the left hand side is considered with smooth right hand
side y = 1.  We notice here that the residual is behaving better than

that in table (4.8) which confirms that the right hand side is dominant

in the residual behaviour.

N.B. ||rn||, IIRnll, ||G”1Rn||, DK Rnll and ||¥_|| are evaluated using

200 equally spaced points.



TABLE (4.5)

3

11
13
18

23

TABLE (4.8)

11
13
18

23

[EN]

0.01086
0.0030
0. 0004
0.0002
2.4 x 107
4.0 x 107

5.6 x 10

-15
2.3 x 10

e |
0.1978
0.2958
0.2712
0.2267
0.1056
0.1809
0.0835

0.1058
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The behaviour of the residual

13

Problem 1 vy =1
IER T AN
0 0.0119
0 7.5 x 107"
0 5.3 x 1070
0 3.8 x 10°°
0 1.3 x 1077
0 1.2 x 1071
0 1.7 x 10 %°
0 0
Problem 1 y = Vﬁ?fffi?ﬂ
e 1 s 'R ||
0.1533  0.03196
0.1879  0.0057
0.0919  0.0143
0.1581  ©.0039
0.0984  0.004
0.1212  0.0018
0.0797  0.0018
0.1004  0.0003

k= 1]
0.03145
0.0007
0.0174
0.0046
0.0048

0.0022

- 0.0022

0.0004



TABLE (4.7)

TABLE

juu

11
13

23

(4.8)

11
13
18

23

IENl
5,288
3.009
1.083
1.645
0.3126
0.173
0.0738

-3
7.7 x 10

Problem {2}
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y = cosh (1)

The behaviour of the residual

e ] 6™ r_||
0 5.7 x 10
0 1.3 x 1078
0 4.92 x 10°°
0 3.5 x 10 °
0 7.3 x 10 2°
0 0
0 0
Problem (2) vy = S
2+ 0.1
e 1l e ||
1.21 0.926
0.3873 0.296
0.2015 0.1387
0.116 0.0947
0.0175 0.0137
0.00517 0.0043
2.2x 10" 4.2 x 107"
1x10°  1.77 x 10°°

NISUSSY

-4
5.7 x 10
1.3 x 10°°

4.92 x 1070
Vg

3.5 x 10

7.3 x 10 %°

0

0

0.926

0.0947
0.0137
0.0043
4.2 x 1077

1.77 x 10



TABLE (4.9)

3

11

13
18

23

TABLE (4.10)

11

13

18
23

The behaviour of the residual
1
Problem (3) y = 7t <E)
1ENl Al 1167R ]
n n ’ n
1.3 x 107 5.8 x 10 9.x 107"
2.5 x 107 1.1 x 10 5.8 x 10 °
-7 - -
3.2 x 10 1.5 x 10°* 5.2 x 10 °
- _15 )
4 x 10 8 2 x 10 5.4 x 10 10
_11 -
7.1 x 10 0 4.7 x 10733
- 3 - -
9.7 x 107> 4.7 x 10 %
0 0
0 0 0
t%+ sint + 2 t<gQ
Problem (3) y =
ot
(2-t)e t> 0
-1
e ] N 167'%, ||
0.0556 0.0224 0.007
_3 - -
7.4 x 10 5.3 x 10 4 5.5 x 10 4
-3 -4 -4
2 x 10 3.4 x 10 2 x 10
_3 - -
2.8 x 10 1.9 x 104 1.4 x 107°
..4 - -
4.4 x 10 7.1 x 10 5 2.9 x 10 >
2.6 x 107 4.1 x 10°° 1.5 x 10°°
2 x 107 1.3 x 10 ° 4.3 x 1078
4.5 x 10°° 5.6 x 10 ° 1.4 x 109

128

K R,

7.2 x

5.7 X

I

10°

10



TABLE (4.11)

11

13

18

23

TABLE (4.12)

11

13

18

23
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The behaviour of the residual

Problem (4} vy =

t+3

[z, IEAT N
n n
0.0243 4.2 x 107° 0.001
0.00135 8 x 1072 2.9 x 107°
5.2 x 107 3.7 x 10°° 4.5 x 10°°
7.6x 1000 1.5x 109 8.4 x 107
8.2 x 107  1.5x 10%° 4.5 x 10°°
3.6 x 1070 0 1.5 x 10710
1.3 x 1071 0 2.7 x 10714
0.7 x 10 %° 0 0
Problem (5) y = 1

el [y, ] 6™ &I

0.2175 0.0396 0.0352

0.1081 0.0209 0.0114

0.0497 0.0274 0.0068

0.0757 0.0167 0.008

0.031 0.0167 0.0028

0.0262 0.0137 0.002

0.0319 0.0084 0.0011

0.0147 0.007 0.00064

K R I

0.0088
0.00z26
0.002

0.0014
0.0007
0.0005
0.0003

0.00017
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2. The behaviour of IIG—1Rn || and | |k Rnll
with the values of || rn|| and IIWn[[ the corresponding
values of IIG_1Rn|| and l[K Rnll are also given. In comparing
IIG_1Rn|| and |[K Rn|| with IIRnll observe thefollowing:
{i) with all values of n even small ones ||G~1Rn|! < ||Rnlﬁ and
when n is sufficiently large (depending on ||K|]) ||K Rn|| < [IRn||.
(11)  When n becomes larger ||67 R || << [|R || and |[KR || <<[[R ||

because in such case we will have higher oscillation on Rn and

hence more cancellations will occur in the evaluation of G—an

and K R_.
n
-1
We also observe that G Rn and K Rn have a
similar rate of convergence. That can be seen by definition of G_an

and K Rn since the coefficients of the equation and Green's function and

its derivations are bounded.

3. Estimates of the Errcr bound

The estimates derived in section (4.3) are

(w ©g = Hatl Tzl
20 ¢, = [I6TR I+ ol dlk R +l¥, |1
@ ey = leTR I+ ezl kR[]
S I [ R R R RS W IR S T
sIEll = IR, + (60T o KR ||

These estimates are compared with the actual error e, in
tables (4.13) to (4.17). We note here that when the actual solution is

unknown a solution with n = 40 is used in estimating e, ||en||and fIEZlI

are evaluated using 200 equally spaced points.



TABLE (4.13)

11

13

18

TABLE

11

13

18

23

e

Q
0.1012

2.8 x
3.7 x

1.8 x

(4.14)

0
0.1845
0.2782
0.2528
0.2113
0.0884
0.1778

0.0778

0.0988
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The error estimates

Problem 1 y =1
=% e, =1E, 1]
0.023 0.0173
1072 1.6 x 107 8.3 x 10 °
107% 1.2 x 10°° 5.9 x 10 °
1074 7.3 x 10°° 4 x 107°
1077 2.2 x 107° 1.1 x 1077
1078 2 x 10t 1 x 101!
1074 3.1 x 1071° 1.5 x 101
Problem 1 y = /i(t-0.901
ex e} E, HE I
0.2047  0.0602  0.1365  0.0531
0.18145 0.0122  0.1838  0.0088
0.1162  0.0305  0.1084  0.0237
0.1525  0.0081  0.1543  0.0067
0.0961  0.0082  0.0884  0.0087
0.1150  0.0038  0.1159  0.00289
0.0763  0.0038  0.0773  0.0030
0.0343  0.00067 0.0940  0.0005

e ||
0.0168

9.1 x 10°°
6 x 10

4 x 10

1.1 x 10

1 x 10

2.4 x 10

eI
0.0177
0.0022
0.012
0.0005
0.00025
0.0007
7.78x10 "

-4
1.3 x 10



TABLE (4.15)

11

13

18

23

TABLE

11

13

18

23

e

Q
1.86

1.0557
0.382

0.5788
0.1065
0.0609
0.0260

-3
2.7x10

(4.186)

e
A
0.0269
3.6x10 °

-4
9.7x10

-3
1.3x10

2.13x10""
1.26x10 "

1.06x10

-5
2.2x10
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The error estimates

Problem 2 vy

1

T {£70.1

h e} E, el eIl
1.678 1.2422 1.125 0.707 0.606
0.536 0.3997 0.366 0.2297 0.212
0.259 0.1881 0.174 0.103 0.0984
0.1688  0.1280 0.1159 0.0751 0.0713
0.0246  0.0184 0.0124 0.0106 0.0101
7.6x10-3 5.8x10 - 0.0042 0.0034 0.0032
6.45¢10 " 5.6x1077  4.6x10 ¢ 3.9x10 " 3.8x10 "
2.72x10°° 2.32x10° 1.98x10 "  1.63x10° 1.6x10 "

Problem 3 =J't3+ sin t + 2 ift <0
|-ty &F if t >0

o e; ., el eyl
0.0181  0.0073 0.0177 0.0069 0.0063
8.2x10°7 s.ex107t 7.ex107t s.ax10™t 4.ox10”t
3.7x10° % 2.1x107t suex10™ 2x 1070 2x 1077
2.ax10°t 1.sx107% 2.3x107% 1.axi0™t 1.3x107f
5x 100 1.5x10 0 5.3x107°  2.9x10°° 3 x 1070
1.75x10 > 1.55x10 ° 1.6x10.°  1.4x10°°  1.5x10 >
1.06x10°° 4.6x10 0 1 x 107> 4.2x107°  3.9x10°°
4.5x10° 1.3x10 © 3.7x107°  1.4x107%  1.5x107°



TABLE (4.17)

11

13

18

28

0.1232
0.0611
0.028

0.0428
0.0175

0.0148

0.0181

0.0115

0.
0.
0.
0.
.D.
0.
0.

0.

The error estimates

Problem 5 y 1

° % &
0625 0.0401 0.0827
0244 0.0126 0.0244
0234 0.0078 0.0228
0162 0.0078 0.0161
0126 0.0032 0.0124
0lo0 0.0023 0.0100
0061 0.0013 0.0060
0037 0.00065 0.0037

10
0.0403
0.0126
0.0073
0.0066
0.003

0.0022
0.0012

0.0005

e |
0.0284
3 0.0086
0.0099
0.0044
0.0041
0.003
0.0007

0.0002



(1)

(2]

(3)
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In table (4.13) (problem 1, yv = 1) we observe

(i) e; = ea and E1 EIIEZII- That is obvious because I]Wnllz 0
as shown in Table (4.5).

(i1) 8; becomes closer to the actual error when n increases while
E,l gives very close results even with small value Wf n.

This is justified since E1 in this case gives estimation of

the error itself while e; is an estimate of the bound which

becomes closer to the actual error when K Rn becomes

very small.

(1ii) e, is not as close as e* but is not that far away.

Q 1
(iv) We note that at n = 13 E, is exactly equal to ||en‘| while
for n = 18 becomes a bit different. This may be due to round

off error.
In table (4.14) (problem 1, vy = (x=-0.9)l, we observe
(i) EQ is dominated by the residual and e; and E1 are dominated

by the modified residual IIWHII which is like the residual
in this case (refer to table (4.8)).

(ii) 9*2 and E, are not that close but they are acceptable.
These poor results are expected with this example since the
residual is not sufficiently small and Rn is not dominant.
However that is guaranteed when n is sufficiently large as
shown in section (4.2) and then we expect these estimates to
be much closer to the actual error.

Problems2,3 and 5 are considered with different right hand sides

in tables (4.15), (4.186) and (4.17). We can see that when the

residual becomes sufficiently small BQ becomes closer to the actual
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error while the estimates eE and E2 becomes closer only when Rn gives
a good approximation of .

(4) In comparing the amount .of work it is very difficult to form fimm
conclusions, because many factors are involved. However in general

1

the evaluation of the residual or the modified residual. In

one expects e and E,I to be the most expensive since they reﬁuire

comparing 85 with E2, E2 is the cheapest since eE still requires the
evaluation of the coefficients of the differential equation in
evaluating K Rn-

Finally these estimates were compared with the estimates given by
Cruickshanck (1874} and McKeown (1978) and we found that even eQ is

superior to them. However with more analysis these estimates might be

improved even more.

4.5.4. The piecewise case

1. Numerical results

Here we expect better results than for the global case

when y + Txn is less smooth due to the superiority of piecewise

interpolation in such cases. That may be seen if we consider the less
1
smooth case (problem 2, vy = EY:_ETW] and the smooth one (problem 4,
y = E%g-]. In the first case we may notice that with the piecewise dase

(table 4.18) IIWni| takes relatively small values with small n compared
with the global case (table 4.8), while in the second case ||Wn|| - 0
more quickly with the giobal case (see table (4.11) and table (4.19)),
If we consider the estimates in table (4.18) and (4.19)
we see that they behave in general like the global case. We observe

that e, gives close results when the residual is sufficiently small 4

Q



TABLE (4.18)

Interp. n pagE%E
3 1
3 4 2
Tcheby.
6 3
points BA 4
TABLE (4.189)
Interp. n paggég
3 1
3 Gauss 4 L
points 6 1
8 1

Problem 2,y = 50T
-1
e e 1sTR TR e
0.1457 0.0011 0.0489  0.0489 0.0513
0.5221 0.0161 0.0244 0.0244 0.1836
0.2209 0.0044 0.0047  0.0047 0.0777
0.1066 0©.00082 0.00085 0.00085 0.0375
Problem 4 co ot
TODIEM %a Y =7 T373)
-1
e dl el HeTR I e ] e
0.0082 B.7x10°° 0.00015 0.00074 0.0037
0.0042 2.2x10°° s5.2x10°° 3.2x10°% 0.0019
0.0015 2.6x10°° 9.7x10°° 8.5x10 "
7x10°Y 5.7x107% 2.7x107% 3.2x107° 3.2x107

The piecewise case

1

*

€
0.0665
0.0387
0.0079

0.0016

0.00039

-4
1.9x10

6.9x10 4.8x10"°

1.7x10

5

g 5 llgll eyl

0.0661 0.0336 0.0332 0.0479

0.0331 0.0242 0.0186 0.0197

0.0064 0.0053 0.0038 0.0041

0.0013 0.0011 0.00082 0.00087

°3 e (1B (el

0.nn3g  0.00017 000017 0.0nN17
1.9x10 % 5.8x10°> 5.8x10 > 5.5x10 "
4.8x10 > 1.07x10°1.07x107° 1.02x10°°
1.7x10 > 3.04x10 0 3.04x10 ° 2.9x10 "

LEL
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while eE and E2 become closer when the residual is well approximated by
its principal part. It is also notable that E2 is the closest in most
cases.

wWe should note here that in the calculations of these estimates
a lot of work is needed with the piecewise case since Rn needs to be
calculated at every partition. W

For further investigation two more problems are examined.

Problem 8

e x"(t) -(2 - £2) x (£) = -1, x(¢1) = O e=10"

This problem is taken from Russell and Shampine (1972). The
solution is symmetric about zero and it has a boundary layer of width
Ve at 1.
Problem 10

x"(t) + 2yt x'(t} + 2y(t) =0 ;, x(0) =0 x(1) = e ¥y =1

This prqplem is taken from Russell and Christiansen (1976j.
The solution is e-Yx’2 which is well behaved when Yy = 1. Large values
of vy will be Considefed later.

These problems are considered with both Tchebychev and Gauss
points. We notice in table (4.20) (Problem 9) that the modified
residual is very small relative to the residual which takes very large
values. Wwith small n(n=4) the estimates with both Tchebychev and Gauss
points aré very poor, but when n becomes larger these estimates start to
settle down and E2 becomes very close to the actual error. The results

for problem (10) which is a smooth one, are given in table (4.21). We

observe there the estimates give very close results even with small values
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The piecewise case

TABLE (4.20) 10 x" -(2-t%)x = -1
Interpol.  n  partition  [[r || [[¥ || IIG“anll KR I eq e; E, e I
4 4 8262.89  15.34 18.36 209879.9 0.7154 36.5 4.64 0.5914
3 8 8 5395.14  2.3342 2.7420 29378.56 0.5023 5.47 0.9967 0.3276
Tcheby- 16 16 2184.431 (.1980 0.2414 2706.16 0.2130 0.5053 0.15 0.0806
ngﬁts 32 32 569.9 0.0093 0.0256 271.48 0.0520 0.0503 0.0127 0.0134
3 4 4 8825.58 16.27 12.49 14517.5 0.7888 25.46 2.1457 0.2685
Gauss 8 8 '6483.5 2.8202 2.16  23469.4 0.5922 4.307 0.5029 0.1607
points 16 16 3054.53  0.2806 0.2270 2364.5 0.2831 0.44 0.0921 0.0512

32 32 871.88 0.0144 0.0135 137.74 0.0782 0.0260 0.0081 0.0088
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TABLE (4.21)

3 points

Tcheby-
chev

Gauss

n

4

16

32

18

32

periis

11

21

14

rf

x” + 2t x'" + 2 x

The piecewise case

= 1]

0.0022

E!xl[l_4

3.13x10

4.05x10

0.0043
5.3x10 "
6.7x10

8.3x10 0

5

6

0
He™R Il IIkR Il e
n n Q
8.56x10°° 1.2x10°%  3x10”?
frd - _5
4.4x10 7 8.05x10 6 4.2x10
2.6x10°°  4.5¢10”
1.5x10"Y  2.9x107%  5.7x107
_ _5 —
Z.7x10 6 5x10 6x10 4
8 -6 -5
7.8x10 3.7x10 7.5x10

2.4x10"%  2.1x1077  9.3x10°°

11

7.4x10 1.4x10"°

1.16x10 °

*
&

-5
2.6x10

1.56x10 0

5.3x10

7.7x10
5.8x10

3.1x10

-9
1.9%x10

- -8
4.37x10"" 9.9x10

9

6

7

8

B*

2

2.6x10 "

5
1.56x10

-8
9.9x10

5.3x10 "

7.7x10 0

5.8x10

-8
3.1x10

-8
1.9x10

o**

/l

1.05x10 >

1.05x10
3.5x10

2.1x10

2.8x10

8

9

6

7.9x10 "0

2.3x10 "

7.3x10

11

e**

2
1.05x10°

1.05x10 "
-8
3.5x10

2.1x10 0

-6
2.8x10

-8
7.9x10

-9
2.3x10

-11
7.3x10

[te Il
9.4x10

5.2x10
-8
3x10

1.7x10

2.4x10
-

7 .6x10

2.3x10°

7.2x10°
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of n.

In comparing Gauss points with Tchebychev ones we may notice
that the error is smaller and the estimates are closer in the Gauss case.
This superiority of Gauss points confirms the result of De Boor and
Swartz (1973). | 3

Finally we may notice thet with these examples as well as others
when using the equally spaced partitions scheme, the maximum error always
pccurs in the same place. That suggests looking for a new dividing
scheme which may use these estimates to make partitions with larger error

having small sizes. That will be considered in the next Chapter.



2. Graphs for the residual, the estimates and the actual errors.

For close comparisons some graphs are plotted for the residual,
the estimates and the actual errors in a sample of subintervals and in the
whole interval with both Tchebychev and Gauss points.

The problems considered are praoblem (10) and the Folloﬂﬁng problem.
Problem (11} x" (£) + (3 cot (t) + 2 tan (t))x' (t) + 2 x (£) = O
x(30°) = 4 x (80°%) = 4/3
This problem from Russell and Shampine (1972) and it has the

1
solution _—

sin?(t)
In studying these graphs we may notice the following.

FIRSTLY THE RESIDUAL

(i) The choice of the collocation points is well reflected in the
behaviour of the residual since it is like the interpolation error
of y + Tx_, with the collocation points taken as interpolation
points. With Tchebychev points we observe the minimax fproperty
while the minimum over squares is observed with Gauss points.

(ii) The residual gives a very close estimate to the error in the highest
derivative of the solution. That is expected when ||K rnp|| is
sufficiently small which is often the case.

(iii) We may also notice the discontinuity of the residual at the joining
points. That is expected since we haven't assumed continuity
on the highest derivative of the solution.

SECONDLY THE ERROR

(i) The error takes very small values at the end points of the partition

with Gauss points. We will show that the error there exactly
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-1
equals((G -T) %é as follows.

Recall (4.14)

1 1

_.1 - —
e, =(6 R} +(6 -7« Rl +{c - y) -

At the end points the discontinuity of Green's function will be

3

removed and (4.15) becomes

n 1
((3'1Rg.L 1) = I i g.. (1,t) Ri(t) dt
j:

1
But ¢ R,(t) is a. : polynomial and of degree 2p-m-1 and
g(1,t) is a polyncmial of degree. < m by Gaussian quadratu}é
G—1Ri[1) will become zero. In a similar way it can be shown
that (K Ri] (s) defined in (4.16) is zero at 1. This makes
the error at end points <||(G - T]—1|| IAIE
This property is not observed with the Tchebychev case since the
weight function there is (1 - tzf% but we may notice that the error
isstill smaller at the end points than in the middle of the sub-
range. That follows since the integral of a Tchebychev polynomial
is of order %- at the middle points while is of order %7 at the end
points(where r is the degree of the polynomial).
(ii) The estimates E2 and GR =(G-1R% are very close to the actual error

and are closer with Gauss points as expected.
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Fig. (4.4)  problem (10)  The residual
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Fig. (4.8) Problem (10) The GR estimate
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Fig. (4.8) . Problem (10] The E1 estimate
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Fig. (4.9) Problem (10), The E2 estimate
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Fig. (4.11) Problem (10) The residual
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Fig. (4.12) . Problem (11} The GR estimate
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Fig. (4.14) Problem (11) The E2 estimate
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CHAPTER FIVE

Adaptive mesh selection algorithms for boundary value problems

5.1. Introduction

We have shown in the previous chapter that using some nice
properties of the residual and the collocation matrix, close an% simple
error estimates could be developed. In this chapter we will examine the
use of these ideas as selection criteria for adaptive mesh selection
algorithms. Despite the tremendous importance of adaptive procedure to
general computer codes for solving boundary value problems viable methods
using collocation have only recently been investigated. Algorithms,based
on the local behaviour of the error shown in de Boor and Swartz (1873),
have been theoretically investigated by de Boor (1973) and later in 1978,
improved by Russell and Christiansen (1978). Their most effective
algorithm is implemented in a computer code "COLSYS" for solving systems
of boundary value problems (Ascher, Christiansen and Russell (19783} ).

Now if we consider the boundary value problem (2.1), (2,2],
solved by the method of piecewise collocation using p collocation points,

then we want to efficiently determine a partition of (-1,11,

such that n is small but if xnp[t) is computed using m then the error

e (t) = x (t) - x_ (t) satisfies
n np

||en|[ T < a desired tolerance TOL (5.1)
Our technique here will be as follows. Solve the problem
with small n using the equally spaced scheme. Determine the partitions

with maximum share in the error llen|| using some selection criterion.
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Halve each of these partitions and resolve. Stop when (5.1) 1is
satisfied ( £ ™ 1is determined]). With this technique it is possible to
make use of matrices required in the previous stage. In the collocation

code "COLSYS" a new partition which may be completely different from the
previous one is determined in each stage. In such cases a Ful* construction
of a solution matrix is required each time. Another criticism of that
algorithm that with badly behaved problems it may need to solve the

problem with large values of n several times before it takes the right
direction. ©-8- (Ascher, Christiansen and Russell 13878, example 1].

In section (5.2) we will introduce the selection criteria
that we want to use. These criteri®@ will be tested and compared in
section (5.3), on a variety of badly behaved problems using the simple
adaptive procedure - select the subinterval with the largest effect and
halve it. After selecting our preferences from among them efficiencies

and improvements are considered more closely in section (5.4).

5.2. Introduction to the algorithms

The algorithms chosen for examination here can be divided into
three groups accaording to their selection criterion.
{1) Algorithm based on the first derivatives.
This is a simpleé minded one included only for comparison.
(2} Algorithms based on error estimations using the residual.
These error estimaﬁions are

_1 -
(i) (GR]i = G Ri where G 1Ri is defined in (4.15).

-1 -1
id E, = 6 R, + - J i i . .
(ii) 5 5 (G ¢n T) ¢n K Ri where K Ri defined in (4.16)
and (iii) Algorithm based on errcr estimation using the collocation matrix

Q

n'
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Using the simple adaptive proceudre, if we assume the sub-
interval to be halved 1s the j*th subinterval then j* is determined as

follows:

(1)  Using the first derivative

Algorithm (1) . ’ 3

Fird the maximum of the first derivative of the approximate
. R

solution Xppin the ith partition. Then

P

j* = max (h |{x' _||) where h, = the size of the
i i npi i

ith partition and lenp Ikis the maximum approximate derivative in the ith

partition.

(2) Using the residual

Algorithm (2i)

i* = max [BR]i
i

We expect here the subinterval with maximum share in the error
[Ienll to be the subinterval with largest estimate GR.

Algorithm (2ii)

o= omax [|ES|
i 2
We expect bere that the subinterval with maximum estimate ||E;'|[ gives
the maximum effect on the error |[en|]_

Algorithm (2iii)

<% =
i max [, ]|
Here the subinterval with maximum residual is expected to

give the maximum share in the error.
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(3) Using the § matrix

If the elements of the matrix @ are

{
‘qij} i=1,....,np

J=1,eeua,np

3

let Qij denote the sub-block matrix of all elements in @

correspond to the jth partition in the ith partition, i.e.

Q, . E‘{qkl}

ij k=i, 1*1,...i+p-1 1=1,c000,n

l=j1 j+1u---j+p'1 j=’|.....,n
An estimate of the error in the ith partition may be taken as

n
e = I . Q. . r, where r. is the
9 :, oy i eyl eyl
maximum residual in the Jjth partition. Here instead of looking directly
to the subinterval with maximum residual, we look firstly for the sub-
interval with maximum error, say the i*th partition.
cx o i
i max , eQ'
Then we look for the partition wheve the residual gives the
maximum share of that error i.e. look for j* where
= om
J §>< a1l RENIEE
These five algorithms are tested and compared on four test
problems which range from mildly difficult to difficult ocnes in the next
section. The piecewiée collocation method with three points (Tchebychev

and Gauss) are used. llxmp"i’ i|ri|| » (GR),» ||E;|| and l‘enl‘i

are evaluated using 200 equally spaced points.
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5.3. Comparisons

The algorithms are compared,in the size of reduction in the
actual error e, and the number of mesh points in the difficult range,using
different values of n (the number of mesh points]). The initial solution
is found using 5 mesh points equally spaced. N

Problem (12)

x" - 108 [2—82) X = —108 x (#1) = 0O
from Russell and Shampine (1878). This problem has a unigque solution
symmetric about zero and having a boundary layer of width 2_10_4 at -1.
The solution is 4 R

x (s) 2 [5437] - glOtirer GI0Ue) and

is illustrated graphically in Fig. (5.1).

We observe in Table (5.1) that:
(1} Algorithm  2(i) is the slowest. That is expected since K is very

large and in such case GR will not give a good estimate of the error

as noted earlier.

(ii) Algorithm 2(ii) is not as fast as others since it involveé
(G - ¢nT]—1¢n K R, which may not be reliable with small values of
n with this type of badly behaved problems.

(iii) In comparing other algorithms we find that all have done almost the

same work.

Problem (13)

<" + 300 sx' +300x = O x(0) =1 x(1) = e 1°0

from Russell and Christiansen (1378).

) - -150 ¢?
The solution x(s) ~ e s decreases rapidly from

x(0) =1, x'(0) = 0 to near zero for s > 0. This behaviour is



161
Fig. (5.1) The SOlHtiOlj, Prblem 12
Q.9 ¢

Q.8

-y

0.7

ﬂ-" r

0.3 3

0.2

.1 '.
2 2 X Ag__pri t 1 WJ* 2
~7.9 0.8 0.6 0.4 5.2 2.0 0.2 0.4 0.5 0.8

Fig. (5.2) The solution, prnb'em 13 -




TABLE (5.1)

Algorithm

2(1)

2(ii)

2(1ii)

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

The simple adaptive scheme

Problem 12
Tchebychev points Gauss point
number of e number of e
mesh points n mesh points n
(-1,-0.9) (-1, -0.9)
0 0.81671 a 0.87444
4 0.75870 4 0.87444
6 0.64408 7 W 0.87445
7 0.41869 7 0.28698
9 0.02180 9 0.01266
12 4.7x10”" 12 2.4x10
0 0.81671 0 0.87444
1 0.81671 2 0.87445
4 0.687585 4 0.67585
6 0.28698 .7 0.28698
8 0.14572 8 0.07570
8 0.14572 8 0.07570
0 0.81671 0 0.87444
2 0.81008 2 0.87445
4 0.67585 4 0.87585
6 0.28648 7 0.28698
8 0.14572 8 0.07570
9 0.02130 9 0.01266
0 0.81671 - 0 0.87444
0 0.81008 2 0.87445
4 0.75870 4 0.67585
7 0.41869 7 0.28688
9 0.02130 9 0.01266
12 a.7x10”" 12 2.4x10
0 0.81671 0 0.87444
4 0.75870 4 0.87444
6 0.64408 7 0.87445
7 0.41868 7 0.28685
9 0.02180 9 0.01266

12 4.7x10” % 12 2.4x10

4

0

4

4



TABLE (5.2)

Algorithm

2(1)

2(4ii)

2(iii)

10
15
20
25

10
15
20
25

10
15
20
25

10
15
20
25

10
15
20
25
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The simple adaptive scheme

Problem 13

Tchebychev points

number of
mesh points
in{0,0.1)

o N DN O

o

o N DN N O

0.29872
0.00275
0.00280
0.00280
0.00280

0.29672
3.5x10

0.29872
0.00376
0.00370
0.00370
0.00370

0.29872
1.9x10
3.2x10°
1.03x10°

7 x 10°°

4
5
5

0.29672

Gauss points

number of
mesh points
in (0,0.1)

@ O u»;m N O

11
15

o O o W O

o NN O

0.04697
5.8x10
6.8x10 "
-4
6.8x10
-4
6.8x10

4

0.04697
2 x 10
-5
6.5x10
7.1x10"7
3.4x10"

4

0.04697
0.00103
0.00103
0.00103
0.00103

0.04697
9.9x10
-6
9.3x10
-7
7.1x10
3.4x10 "

0.04697
-4
2 x 10
6.5x10 °
-B
4.1x10
2.6x10"7



described graphically in Fig. (5.2). We observe in table (5.2):

(i) Here algorithm (1) moves too many points into the region of
difficulty and accuracy is lost assymptotically.
(ii) Algorithm 2(ii) has failed due to the unreliable estimate
-1
(G -9¢.T) ¢ KR. 3
Problem (14)
" B [ = — 2 _ 6 .
x" + 10 s x' = ™ cos (ms) 10°ms sin  (ms).
x (-1) = -2 x(1) = O.
The solution is
> 3
x (s) = cos (ws) + erf ( 10 s) / erf ( E::).
V2 V2

Ascher, Christiansen and Russell (1378]).

The solution has a turning point at x = O. The transition

-3
layer is of width 2_10 . A graph for the solution is given in Fig.

{5.3). We observe with this problem

(1)

(ii)

Algorithm (1) failed because the width of the transition layer where
the derivative is expected to take its maximum is very small (10_3]
and may be missed in the evaluation procedure. At the same time the
derivative is of similar size around the boundary layer which makes the
algorithm tend to divide the interval equally.
The algorithms using the residual (2(i), 2(ii) and 2(iii) have
failed because the residual in this example behaves very differently
to the solution. If we look to Fig. (5.4) of the right hand side,
y = - w?  cos (ms) - 108 ms sin (ws), we observe that it behaves

very badly towards the end and that explains why these algorithms

keep on dividing the end subintervals leaving the middle ones where



Fig.(5.3)
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The solution, probhlem 14
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The simple adaptive scheme

TABLE (5.3) Problem 14
Tchebychev points Gauss points
Algorithm n number of number of
mesh points e mesh points e
in(-0.1,0.1) : in(-0.1,0.1) n
1 5 8] 0.36458 o 0.95485
10 8] 284.45 0 188.96
15 2 141.89 2 Y 95.067
20 2 71.185 2 48.054
25 4 33.604 4 22.996
30 4 33.143 4 22.774
40 4 17.238 4 22.717
2(1) 5 0 0.96458 0 0.95485
10 0 0.96410 0 0.95486
15 0 0.86410 0 0.95496
20 0 0.96410 0 0.95496
25 0 0.86410 0 7.854986
30 0 0.96410 0 0.95496
40 8] 0.96410 0 0.954396
2(1ii) 5 0 0.96458 0 0.95485
10 0 0.96408 0 0.95436
15 O 0.96338 0 0.85436
20 0 0.86398 0 0.85496
25 0 0.96338 8] 0.95496
30 8] 0.96338 ] 0.95436
40 8] 0.963938 0 0.954836
2(4i1i) 5 0 0.96458 8] 0.85485
10 0 0.96447 0 0.95496
15 0 0.9B435 0 0.95436
20 8] 0.96435 0 0.85486
25 8] 0.96435 0 0.854396
30 0 0.86435 0 0.95496
40 0 0.96435 0 0.954396
3 5 0 0.36458 8] 0.95495
10 2 281.48 2 188.96
15 4 67.548 4 46.226
20 6 28.333 4 46.284
25 7 12.426 6 10.284
30 12 0.0500_ 8 10.209
40 18 4.8x10 6 10.123
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the error takes its maximum.
(iii) Algorithm (3) has done very well here, especially in the Tchebychev
case. The error has been reduced from 281.48 with 10 mesh points
(2 points in (-0.1, 0.7) to 4.8 10—4 with 40 mesh points { 18 points
in (-0.1, 0.1) . This algorithm has shown its capabilit% with this
delicate example because it 4akesinto its account the effect of
Green's function in the error (0 matrix) as well as the residual.
(iv) We note that Tchebychev points here give better results. But one

expects Gauss to do better with larger value of n, since its solution

hasn't settled down yet.
Problem 15

w2 o, 1 .
X" o+ = X + v X = 0 X (55') = 0 x{1) = sin (1)

From Russell and Christiansen (1378).

. . . 1
The solution is sin ( E-] which is oscillatory. A graph for

the solution is given in Fig. (5.5).
We obéerve in table (5.4) that
(i) Algorithm 1 is the worst for the same reason as in problem (13).
(ii) Algorithm 2(ii) has done better here since K is very small which
makes the unreliable term (G - ¢nT]—1¢n K R, negligible and 2(ii)
becomes like 2(i]}.
Finally we may summarise these results in the following way:
(1) Algorithm (3) shows its superiority and capability with all examples.

Its drawback may be that it involves the calculation of Qn which is

very expensive.
(2) Algorithm 2(iii) comes in the second position. It fails only when

the right hand side of the equation is very badly behaved on a region
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The solution, praoblem 15




TABLE (5.4)

Algorithm

2(1)

2(i1)

2(iii)

n

10
15
20
25

10
15
20
25

10
15
20
25

10
15
20
25

10
15
20
25

The simple adaptive scheme
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Problem 15

Tchebychev points

number of

mesh points

in (——l

0
4
7
8

13

10
12

10
12

13
16

10
12

2

37’ 37

)

2.1332
0.0176
0.00146
8.4x10
7.6x10

2.1332

0.01295
0.00167
9.2x10°
1.2x10

2.1332
0.01295
0.01867
9.2x10
1.2x10°

2.1332
0.01789
0.00560
0.00:3
3.9x10°

2.1332

0.01255
0.00167
3.2x10°
1.2x10°

4
4

4
4

4
4

4

4
a

Gauss points

number of

mesh points

in (g%a
N
4
7
g
13

10
11

10
11

= O u b O

1
§ﬁ']

2.5264
0.00323

1.7x10"°
1.4x107"
1.4x107"

2.5264

0.001686
1.4x10°

4,2x10"

4
5

3 1070

2.5264
0.00166
1.4x10
4.2x10°
3 x 10

3
5
B

2.5264

0.00323
1.9x10°
7.1x10
8.6x10

4
5
6

2.5264
0.00323
1.9x10"
7.1x107°
-6
8.6x10



(3)

(4)

(5)
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different from the region of difficulty of the solution as in problem
(14). However it is cheap and simple.

Algorithm 2(i) may be recommended for problems with small K and

smooth right hand side. In such problems it will do well and will be

superior over others due to its simplicity.

3

The reliability of E2 depends on (G - ¢nT]¢n K Rn giving a reliable
estimate of (G - Tf'K R - which 1s not expected with these types of
badly behaved problems - and on the right hand side being smooth.
Algorithm (1) sometimes moves too many points into the region of
difficulty and the accuracy is lost assymptotically. However it

often gives good initial approximation and may be improved using for

example the above error estimates to overcome that problem.

5.4. Improvements in the adaptive technigue
In the previous section we have examined our error
estimatioms when used on a selection criterion. In this section we will

improve the efficiency of the adaptive technique in order to develop a

competitive code for solving boundary value problem.

It is shown for example in Russell and Christiansen (1978)

when the number of collocation points p is greater than the order of the

differential equation, m, then

P

[le e[~ ¢, no o+ athP 1y
1 1 1

If for example,‘ri >> rj. and we halve the ith interval d times
ha

such thatr, “vr, then c. (—i-]p NooC, h? . That gives
i =3 i ,d - 33
Ci h?
d ~ round (log —J p log 2)
c,h?
ji

r,
= round (log (;i-] / p log 2).
\j w



171

This formula is basic to our new dividing scheme which can be
described as follows:

(i) Look for the subinterval with maximum effect, say the j*th one.

(ii)} Look for the subinterval with minimum effect, say the k*th one.

(iii) Compare rj* and T and find d using the above technigue. RJIf d = O
then halve all subintervals. Ifd 21 then look for the subinterval
with maximum effect other than the j*th one, say the j**th one.

(iv) Compare rj* and rj** and find d as above. If d = 0 then halve the
j*th and j** subinterval. If d > 0 then halve the j*th subinterval
d times going in the direction of the local maximum derivative.

This scheme converges very gquickly with well behaved problem
and treats carefully difficult ones. It is examined using algorithm 3
with the test problem (12-15]. The results are given in tables (5.5) to
(5.8) respectively. It can be seen that a lot of work has been saved
without any loss of accuracy in comparison with the one division/step
scheme.

The timing is included in these tables to see the effect of
using the solution matrix in the previous step. We can see for example,
in table (5.5) that the time used for the solution with 5 mesh points
is 1773 while for the solution with 21 mesh points it is 1701, and
similarly in the other table.

We notice also that eQ is not giving close estimates of the
error. This is not unéxpeoted; since BQ gives an estimate of the bound
not the actual error as discussed earlier. However one could use for
error estimation E_ which is very close when the solution is well

2

approximated.
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Finally we conclude that the selection criterion based on
error estimation using the Q matrix is very powerful and if the dividing
scheme is improved further to increase the number of divisions/step an
efficient competitive code for boundary value problems could be

developed. \



TABLE (5.5)

step

n

13

21

24

27

28

29

31

33

35

0.87444
0.87444
0.19675
D.19675

g.9x10

g9.9x10” 4

2.4x10"%

2.4x10"%

5.9x10 >

5.9x10 >
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The improved adaptive scheme

Problem 12
eO number ofimesh points
in
{(-1,-0.9) {(0.9,1)
0.91900 0 0
0.813900 7 0
0.75843 7 7
0.75843 10 7
0.01626 10 10
0.01628 11 10
0.0047 11 11
0.0047 13 11
0.00197 13 13
0.00197 15 13

Time for the

solut%on
1773
1038
1701
1334
2182
2286
2357
2510
2838

3013
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The improved adaptive scheme

TABLE (5.6) Problem 13
ste n e e number of mesh points Time for the
P n q in (0, 0.1) solution
0 5 0.04697 4.,5146 0 1768
1 2 0.00448  0.22408 1 541
- 2 621
2 8 8.2x10 0.08217
- 703
3 g 2x 10 0.03405 2
4 1917
4 11 2 x 10 0.01629 2 ‘
5 13 g.2x10"°  0.0052 4 1067

5 15 6.5¢10°° 0.00194 6 1525



TABLE (5.7)
step n
0 5
1 9
2 11
3 13
4 15
5 17
B 18
7 21
8 23
q 25
10 27
11 29
12 31
13 33
14 35
15 37
16 39
17 41
18 42
19 43

0
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The improved adaptive scheme

. 30067

153.54

132.51

71.612

50.054

28.397

28.356

28.317

28.29

12.424

3.

3.

0

0

0

0

C.

0.

0

4

.8x10

224

314

.4183

.4374

.05

. 00456

00456

00107

.00157

4

Problem 14

4001.0
1.13x105
44789
9942
5966
1858
2026
1311
1761
535.02
42.314
40.102
2.1754
2.3621
0.2701
0.024687
0.02485
0.0108
0.0108

0.0018

-6

6 = 10

number of

partitions

in(-0.1,1)
0

3

10
11
12
14
16
17
18

19

Time for the
solution

3

1780
592
720
852
991

1122

1258

1391

1521

1668

1792

1826

2059

3076

3207

3313

3535

3717

3808

3886



TABLE (5.8)

step n
1 5

2 7

3 g9

4 11
5 13
B 15
7 17
8 18
9 21
10 23
11 .25
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The improved adaptive scheme

2.5264

0.04608

0.00383

0.00164

1.6x10"

-4
1.4x10

6.7x10

6.9x10°

7.1x10°

4.2x10°

5.8x10

5

5

5

5

B

Problem 15
85 number of
partitions
(L, 2
37’ 3m
63.308 0
1.6671 2
0.34389 3
0.1479 5
0.07911 5
0.05204 7
0.04002 7
0.02915 8
0.02028 g
0.01541 10
0.01123 11

time for
solution

1840

577

745

903

1085

1277

1460

1672

1885

2054

2054
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CHAPTER SIX Conclusions
6.1. Summary

The principal part of this thesis has been in developing
algorithms for computing strict error bounds plus others in error estimates
and mesh selection for the numerical solution by the methods of c§lliocation
of linear differential equatiaons. In Chapter 1 the main 'e posteriori’
theorems of Kantorovich and Akilov and of Anselone have been extended and
direct bounds on the inverse operator (G - T]—1 have been derived. The
inverse approximating (G - ¢nT]-1 has been related to the inverse of some
collocation matrices and readily practical formulae for the bounds have been
presented. Despite the Closenesskof these_bounds, unfortunately the
conditions of applicability, which were the major problems with the previous

analysis, have turned out to be Less. satisfactovy.

As a by-product of this analysis the matrix § arose in a similar
way to W when dealing with ( I - K]-q. It was proved that llQn||+||(G—T)—1||.
This convergence theorem, is of particular importance to the later
discussion of error estimation, and it has justified the choice of ||Q ||
for expressing the norm of the approximating inverse.

To improve the applicability of the theory the principal part of
the differential equation has been defined in terms of some parameters in
Chapter 3. The conditions required by the theory have been expressed as before
(6 = 8™ in terms of continuity requirements on the coefficients of the
differential equation and in terms of the distribution of the collocation
points with some restriction on the values of the parameters. Numerical

exampl€s. . were considered at the end of the chapter and considerable

improvements in applicability have been achieved with a simple choice of
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the parameters.

It has been proved in chapter 3 that the norm of the projection
operator ¢*n and the usual interpolation projection ¢n are asymptotically
the same. For small valuesof n ||¢;[l is not yuen worse than [|¢n||.
This result may be used in further investigation with ¢; as a polynomial
interpolation projection.

In Chapter 4 properties of the residual and the differential
operator have been used to develop various algorithms for calculating
bounds and estimates of the error. It has been shown if the problem is
not nearly singular then IIQn|| gives a good estimate of the inverse
differential operator. It has also been shown that when k is not too
large and the right hand side y is sufficiently smooth, the residual can
be well approximated by a polynomial. This result with the oscillatory
behaviour of the residual have justified simple close estimates of the
error. Although estimates using the Q matrix are not as close as these
estimates, they tend to be more reliable with difficult problems.

In Chapter 5 these estimates have been used in a mesh selection
algorithm for sclving boundary value problems. After examination on a
variety of badly behaved problems, it has been shown that‘élgorithm using
the § matrix is the most reliable. Improvements and efficiencies in the
adaptive techniques are finally considered.

6.2. Improvements and extensions

6.2.1. The applicability

(a) Theory
We observe in table (2.1) that bounds calculated for the operator
G—1Tare smaller than those of K = T G_1 and with further work could be

much smaller. That happens because the coefficients are included in the




integration in the first case. This is an indication that deltas defined
in terms of G—1T may be much smaller and hence one would expect better

applicability of bounds derived fr the inverse operator,

g -1
(IX G Tl x = G Yo

3

This "of course reguires revision of the theory in the first

chapter and search for suitable matrices similar (may be the same) to W and Q

which can be used in bounding the approximate inverses.

(b) Applications

The results given in Chapter 3 indicate that further improvements

in applicability could be achieved ifall the parameters @ }m—1 are
i7i=1

included and carefully chosen. One needs to examine the cntimal choice

of the parameters as well as the application of the idea to  hicher

order equations.

6.2.2. Error bounds and estimation

The error bounds and estimations described in Chapter 4 could be
furtherly investigated with partial differential equations. Also

examination on non-linear equations with the relevant modification needs to

be considered.

Finally the adaptive algorithm using the Q matrix in the

selection criterion is very promising and with further research for
efficiencies and improvements a competitive collocation code could be

developed.

o e e R 1 B &
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