
Ph.D. Thesis 

COLLOCATION ALGORITHMS AND ERROR ANALYSIS 

FOR 

APPROXIMATE SOLUTIONS 

OF 

ORDINARY DIFFERENTIAL EQUATIONS 

A.H. Ahmed 

NEWCASTLE UPON TY~:E 
U:{IVERSITY lIBR,~RY 

ACCESSION No. 

81-,.:··1(;9 

June 1981 

University of Newcastle upon Tyne 



ACKNOWLEDGEMENTS 

r should like to thank my supervisor. Dr. Kenneth Wright. 

whose advice and enthusiasm throughout was very much appreciated. 

I am also indebted to the typist. Anne Codling. who bravely 

tackled this difficult task. 

Throughout the period of research for this thesis the author 

was supported by the University of Khartoum. 



ABSTRACT 

This thesis is mainly concerned with an error analysis of 

numerical methods for two point boundary value problems. in particular 

for the method of collocation using polynomial and certain piecewise 

polynomial bases. 

As in previous work on strict error bounds an operator 

theoretical approach is taken. The setting for the theory and the 

principal results for later use are firstly considered. Then two types 

of 'a posteriori' error bounds are developed. These"bounds are made 

computable by relating the inverse of the approximating operator to the 

inverse of certain matrices formed in the actual application of the 

approximation method. 

The application of this theory to the numerical solution of 

linear two point boundary value problems is then considered. It is 

demonstrated how the differential equation can be split to fit into the 

setting required by the theory. It is also demonstrated how the global 

and the piecewise collocation method can be expressed in terms of a 

projection method applied to the operator equation. The conditions 

required by the theory are expressed in terms of continuity requirements 

on the coefficients of the differential equation and in terms of the 

distribution of the collocation points. In examining these bounds on 

a variety of problems. it is noticed that with some problems the 

conditions for applicability may not hold except for more points than one 

actually required to obtain a satisfactory solution. To improve the 

applicability. the theory is reconsidered with a different splitting 

of the differential equation. The method of collocation is expressed 

accordingly in terms of a new projection operator which is proved to 

have some nice properties in practice. This new approach is then compared 



with the original one and it is shown to be superior on various problems. 

By examining the inverse differential operator and the residual 

improved error bounds and estimates are shown to be obtainable. These 

estimates are tested in a large variety of examples and some graphs 

are presented to describe their behaviour in more detail. Finally 

these estimates are used to develop various adaptive mesh selection 

algorithms for solving two point boundary value problems. These 

strategies are tested and compared in several representative examples 

and some conclusions are drawn. 

The thesis concludes with a brief review of the work with an 

indication of possible improvements and extensions. 
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Chapter 0 

Introduction 

0.1 Aim 

An operator approximation theory is described in chapter 1 

in an attempt to unify and extend other work arising mainly from 

studies of approximate solutions to integral and differential 

equations. The theory is placed in a general setting so as to permit 

as wide range of application as possible. 
. 

We are primarily concerned with finding strict error bounds 

for the' approximate solution of linear two point boundary value problems 

in ordinary differential equations. These solutions will be the result of 

applying the method of collocation using polynomial and piecewise poly-

nomial bases. The theory developed in chapter 1, however has much 

wider application. 

Interesting error estimates arise as a by product of the work 

and are used in mesh selection algorithms for collocation codes 

for solving boundary value problems. 

0.2 Summary 

In sections (1.1 - 1.5) the theoretical background to the 

approximation method and the main results are presented. The theoretical 

results employed there are of a general nature and are derived primarily 

by Kantorovich & Akilov (1964) and Anselone (1971). Similar 

investigations have been pursued by Philips (1972), Coldrick (1972), 

Cruickshan' ~ (1974) and Gerrard (1979). The results are only based 

on certain operators being compact. 
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In section (1.6) two important convergence theorems which 

relate the inverse operator to the inverse of some matrices are 

presented. These theoremS are important for the suitability of the 

bounds derived at the end of the section for the approximate inverse 

operator and are extremely valuable in justifying certain error 

estimates for the approximate solutions. 

In chapter 2 a two point boundary value problem in ordinary 

differential equations is defined and expressed in the operator form required 

by the theory. In section (2.3) an approximate solution generated by 

the global collocation method is considered. It is shown using some 

results of Cruickshan k (1974) and Wright (1979) that all the conditions 

required by the theory are satisfied by the global collocation 

method. In a similar way the piecewise collocation method is considered 

in section (2.4) and the conditions of the theory are verified using 

certain results of Gerrard (1979). 

Having shown the theory is applicable section (2.5) proceed~ 

to develop concrete numerical bounds on various operators and from 

these show how it is possible to obtain computable bounds for the 

differential operator. In section (2.6) test problems are used to 

illustrate the techniques and it is noted that in some cases the 

number of points or partitions needed to find the bounds is larger than 

one would like. 

In chapter 3 that problem of applicability is considered. The 

differential equation is expressed in a parameteric operator equation. 

These parameters are constantsto be chosen to allow the maximum possible 

applicability. In section (3.1) it is shown that this new operator 

equation satisfies the conditions of the theory under certain 

restrictions on the parameters. The method of collocation defines 
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a new projection operator which is proved to tend in norm to the usual 

projection operator with both the polynomial and piecewise polynomial 

bases. All conditions of the theory are shown to be satisfied by 

both methods and numerical methods are developed to calculate the norm 

of these projections and bounds on all other operators. At the end 

the applicability is discussed and compared on'the test problems. 

In chapter 4 improved error bounds and estimates are developed. 

In section (4.2) the behaviour of the residual is studied and useful 

properties are obtained with both the global and piecewise method. 

In section (4.3) and (4.4) it is shown that by examining the inverse 

differential operator and the residual one can obtain closer bounds 

and estimates with less work. In the last sections these estimates 

are compared with the actual error on a large selection of problems 

and some graphs are presented. 

In chapter 5 various adaptive mesh selection algorithms based 

on the error analysis developed in this thesis are presented. These 

algorithms are tested and compared in a selection of badly behaved 

problems and some conclusions are drawn. 

In all the computation with global methodswe use zeros of 

Tchebyc hev polynomials as collocation points. Gauss points are 

compared with Tchebychev points for the piecewise case in chapter 4 

and accordingly are chosen for the collocation codes in chapter 5. 

These two sets of points are widely used in such collocation methods. 

for example Tchebychev zeros by Wright (1964) and Gauss points by 

De Boor (1973). 

All the calculations were performed in double precision 

arithmetic on IBM 360/370 computer. 
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Chapter 1 . 

Theory of approximation methods and bounds 

on certain inverse operator 

1.1 Introduction 

In this chapter we introduce the theoretical background for 

certain operator equation and their approximate solution. We will 

be interested on the main 'a posteriori' theorems based on the work 

of Kantorovich & Akilov (1964) and Anselone (1971). Similar work 

was covered by Phillips (1972). Coldi'ick (1972). Cruickshan r \ (1974) 

and Gerrard (1979). 

The theorems are placed in a general setting so as to permit 

several possible areas of application. In later chapters we will be 

concerned with collocation as a projection method for the approximation 

solution of boundary value problems. 

We now briefly define our problem and outline the general 

approach which we are going to follow in dealing with it. 

Let X. Y be normed linear spaces and let I 1:1 Ix' 11·1 Iy denote 

the norm in X and Y respectively. Let [X. Y] denotes the space 

of bounded linear operators mapping X +Y with the subordinate norm. 

We will be concerned with solving equations of the form 

Ox = y ; y e: Y, De: [X. yJ ( 1 .1 ) 

for x e: X. 

It is not always possible to solve (1.1) analytically and 

often a numerical method is used to approximate (1.1). e.g. 

.--o x y ; y e: Y JOe: [X. Y] (1 .2) 

solving forx e: X. This equation is usually set in a space of 

finite dimensions and corresponds to a finite set of linear algebraic 

equations. Now provided X c:x and 0 is invertable it follows that 
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x - ~ 

I (1.3) 

which is a strict error bound on the approximate solution. 'A 

. posteriori' bounds on \\ 0 -1\\ in terms of \\1'0'-1\\ may sometimes be 

computed and everything on the right hand side of the above inequality 

may be bounded once the approximate solution has been calculated. 

Bounds on \ \0-1 \ \ can be calculated by relating them to the 

norms of certain matrices formed in the actual application of the 

numerical method. The norms of these matrices will be shown to 

have some nice properties making this approach more suitable in 

practice. 

In the next section we introduce the general setting for the 

theory and put our problem in more specific form. In section (1.4) 

the main results for the projection method (Kantorovich & Akilov-type) 

are presented. The Anselone-type theory which will be called the 

extended projection method is introduced in section (1.5). Section 

(1.6) is dealing with the norm of the inverse of the approximate 

operator 0 and some related matrices. At the end (section (1.7)) 

all these results are summed up to describe different ways of 

-1 calculating computable bounds for the inverse operator 0 . 

1.2 Setting for the theory 

In all of the following theory we shall be concerned with 

operators 0 which may be split into two parts 

o = G - T 

-1 . [ ] where G is invertable, G E Y,X. In certain circumstances we 

may deduce that 0 is invertable. Note that equation (1.1) may 

now be written 
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(G - T) x = y (1.4) 

and (1.3) becomes 

Ilx-'Xllx.:s 

-1 

II ((;_T)-:-111 II (G-T)x - ylly '" (1.5) 

We may apply G to (1.4) giving 

(I -G- 1T) x =G-1y. 
X 

(1.6) 

-1 
or we may replace x by G u where u G x. giving 

(I - TG-1 )u = y # (1.7) 
y 

The identity operator \ E [x,X], denoted [X], and 1yE[Y]. 

Since 0 is invertable, error bounds of the form (1.5) may 

be recovered from (1.6) and (1.7). For example if it is known that 

G- 1 (1_TG-1 )-1 E [Y,XI then 

x-x = G- 1 (I - TG-1 )-1 (y - (G - nx) 

so that Ilx-xll . ~ IIG-1 11 III1y- TG-
1

)-111 II(y-(G~nx II (1.8) 
X I 

Similarly from (1.6) 

II x-xll
x 

~ II (~-G-1n-111 IIG-
1

11 II(G-:nx-yll y • (1.9) 

Because G is invertable there is a close relation between the space 

X. Y and it is often the case that error bounds derived independently 

from (1.6) and (1.7) turn out to be equivalent when suitable practical 

norms are used. For example if we define the norm in X by 

IlxliX = IIGxll y as in Kantorovich & Akilov, then 

and 
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which proves that bounds (1.8) and (1.9) are equaL. '~/'I': with this 

choice of norms. 

The theory to be developed in this chapter will deal directly 

with equation (1.4) working in the two spaces X.Y. The infinity norm 

is going to be used all through unless otherwise stated. Other work 

in this field deals with the more conventional setting of a single space 

and works with the problem in its transformed form (1.8) or (1.9). 

Obviously dealing with (1.8) or (1.9) means loss of accuracy before 

hand due to multiplication of norms. e.g. 

1.3 Relevant results in compact operators 

In Anselone (1971). it is generally assumed that the normed 

space Y is complete. The results developed here will required only 

certain operators being compact. The reason for introduction of the 

attribute compact is exhibited in the following theorems quoted from 

Coldrick (1972) which show that if an operator K is compact then I-K 

enjoys some of the pleasant theoretical properties: 

Theorem (1.1) (Coldrick (1972. page 12) 

If K is a compact operator on Y then the following three 

statements are equivalent: 

-1 
(i) (I-K) £ [yJ 



(ii) (I-K) y=O implies y 0, 

(iii) inf II (I-K)yll = M for some M>O , 
II y II =1 

This theorem is a standard result, and can be found, for 

example in Appendix 1 of Anselone (1971) • 

Theorem (1 .2) (Coldrick (1972, page 13) 

If K iSin'[yJ such that IIKII < 1 and EITHER 

(a) K is compact 

or (b) y is complete 

then 11(I-K)-1 11 < 
1 

1-11 K II 

This result is given by Anelsone (1971, proposition 1) 

when y iS4Banach space. 

The importance of these two theorems is that they play the 

role of propositions (1.1) and (1.2) of Anselone (1971) when Y is 

not a Banachsr~(e. 

We introduce next the background for the theory based on 

the work of torovich & Akilov (1964, page 541-601). 

1.4 The theory of projection method~ 

1.4.1 Introduction 

Let X , Y be subspaces of X and Y respectively with ~ a 
n n n 

linear projection Y -+ Y n' (The subscript n will have 

significance later, denoting the dimension of the subspace, but no 

restriction of dimensionality is made here). 

An approximate solution Xn € XnC:X is found by requiring 

that the projection ~ of equation (1.4) with x substituted for X 
n n 



shall be zero, that is 

¢ (Gx -Tx -y1 = 0 4 
n n n 

9 

(1.101 

It is assumed that ¢ G x = G x , i.e. G restricted to X establishes 
n n n n 

a bijection between X and Y = ¢ Y. Hence x satisfies n n n n 

(G-¢ T1 x = ¢nY • n n 
(1.11) 

An intuitive concept of the situation described is illustrated 

below,· 

,G-T : X -+ Y 

G - ¢ T ': X -+ Y n n n 

Note that G-¢ T is regarded as being restricted to domain X • 
n n 

We first state this result which is of 'a priori' nature. 

Theorem (1.3) 

Let Y be a subspace of normed linear space Y and let ~ 
n ~n 

be a ' linear projection mapping Y -+ Y n' Suppose that K Ii: [Y] 

is compact and (I-K)-1 E' [V]. Then HOn II (I-K)-1 11 II (I-¢n1KII < 1 , 

(I-¢ Kl- 1 exists in' [Y] and 
n 

II 
(I-¢ Kl-1 11.5 II (I-K)-1 11 

n 1-0 
n 

• 
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This theorem is a reformulation of Kantorovich & Akilov 

theory quoted from Coldrick [1972. page 14). Its importance .is it 

-1 
ensures that if 0 -+ 0 tth~n (I -<jl K) exists for sufficiently n n 

large n and its norm is uniformly bounded. This theorem can be 

extended as follows. 

Cor [1.1) under the conditions~ of the above theorem with 

K .; TG -1,[C; -<jlnTl-1 exists in [Y.X] and 

1 1 (G-<jl T)-111 ~ IIG- 1 11 IICI-K)-1 11 
n 1-0 ~ 

n 

Propfiit follows easily from the theorem since it is assumed, G-1 
E 

[Y. X] • 

1 .4.2 Projection method bounds 

Theorem C1.4~ with K[~ TG-1)being 

[I-<jl K-1) exists define om = II C¢ -I)KCI-<jl K)-1 
n n n r 

Then if om < 1. CG-Tf1 exists and 
n 

Proof:whenever (I-<jl K)-1 exists. let 
n 

-1 , m-1 -1 m 
H = G (I + K + •• K (I-<jl K) )K ) 

n 

be an approximate inverse of CG-T). 

(G-Tl H 

compact. whenever 

m =0,1.2 ••• 

m =0,1.2 •... 

Since (I-<jl K)-1 is bounded and (<jl -I)K,K
m 

n n 
am compact, by Anselone (1971. 

-1 m 
page 59)(<jl -I)K[I-<jl K) K is compact. n n 

-1 m -1 
[I+[<jl -I)K[I-<jl K) K) exists and 

n n 

By theorem [1.2) if om < 1. 
n 
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1 , 
II < 1-0m 

n 
Which implieS" ~ - T <lnd. 1- K ha.u-e. Yi<jht inu-erses. 

By theorem (1.1) since K is compact,CI-K)-1 is unique and 

hence CG-TJ-1 is unique, that is the intreY"s-es aYQ als-o le.~t iYllreY"se.!. 

Hence 

m-1 
< . l,: ... ~=o 

IIG-
1

111IK
i

ll+ IICG- ¢nTJ-\mll 

1 - om 
n 

The applicability of this theorem is guaranteed if om + 0, 
n 

C1.12) 

since the existence and boundness of the approximate inverses (I-¢ K)-1 
n 

and CG-~ TJ-1 for sufficient large n was ensured by theorem (1.3J. 
~n ' 

It was noted in the previous section that the approximate 

operator (G-¢nTJ-1 will be in· (Y,X] and (I-¢nKJ-1 in' (Y]. If we 

denote these inverses when restricted to the subspaces by (G-¢ T)-1 
n Yn 

and (I-¢ K)-1, 'then the following relations can be seen between them. 
n Yn 

(I-¢ KJ-1 = I + (I-¢ KJ-1 ¢ K 
n n Yn n 

(1.13J 

(G-¢ T)-1 -1 (G-¢ n-1 ¢ K G + , 
n n Yn n 

(1.14) 

which implies 

• 

Substituting these results in (1.12) we get 

m 
II (G-TJ-

1
11 51IG-111~=oIIKill + II (G-¢·nT)~~ II 1:~¢nKm+111 

1 - om 
n (1.15J 

i._ 
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ifO~~ 11(I-<p~rll.lIKJlII(1 + II(I-<PnK)~111 II<pnK1b<1. 
n 

In the next section we present a different type of projection 

method (the extended projection method) and derive similar bounds for 

-1 
the norm of the inverse operator (G-T) . 

t.5 The extended projection method 

This method is based on the theory of Anselone (1972) and 

developed by Cruickshanfk (1974). Cruickshanl,k in his thesis showed 

~ .• ~ how this method could yield improved error boun~s for approximate 

solution of boundary value problems obtained by global polynomial 

collocation methods. Here we follow that idea and develop similar 

-1 
bounds for the original operator (G-T) . But first we introduce 

the theoretical background of the method. 

1.5.1 Anselone-type theory 

In this section we give a brief introduction to Anselone 

theory and state relevant results. We are not going to assume 

completeness as in Anselone. The theory uses the weaker pointwise~~N)nj) 

Convergence but requires additional compactness conditions. 

Here the equation is of the form 

(I-L)u = y u. Y £ Y and L £ [y]. 

An approximate solution u £ Y to U is sought satisfying the equation 
n 

(i) 

( 11) 

(iii) 

(I-L)U = y with L £ [y] 
n n n 

The following conditions are used, 

With L. Ln £' [yJ (n = 1.2 ...... ) 

Ln -+ L t. e \ I L" u. - L I.l " ~ 0 'd u. ~ y. 

L is compact 

[L ] is collectively compact. 
n 



13 

The theoretical results due to Anselone (1971) may 

now be stated. 

Theorem (1.5) ('a priori') with conditions (i), (ii) and 

(iii) suppose (I -L) -1 exists and define IJ. = II (I -L) -1 II II (L -L) L II. 
n n n 

Then IJ. -+ 0 as n -+ a: and for IJ. < 1. (1-L )-1 exists in' (yJ with 
n n n 

Proof:Anselone theorem (1.11) with Anselone lemma (1) replaced by 

theorem (1.2). . 
Theorem (1.6) ('a posteriori') with conditions (i), (U) and (iii). 

whenver (I -L ) -1 exists define lm = II (I -L ) -1 II II (L -L) L mil (m integer 
n n n n 

> 1). 
-1 

Then. if for a particular value of n,(I-L) exists and 
n 

IJ.m < 1. (I-L) -1 exists and 
n 

II (I -L) -1 II 

Proof: 

1 - Zm 
n 

(Anelsone Theorem (1.12) with (Anselone 18mma (1) replaced by 

theorem (1.2). 

Nothing has so far been said concerning the uniform boundness 

-1 of the (I -Ln) • or the possibi Ii ty of convergence as n -+ cq, However 

having obtained by the above result that (1-L)-1 eXists,theorem 1.5 can 

now be applied to show that (1-L )-1 exists for all n sufficiently n 

large and that its norm is uniformly bounded. Further the properties 

-m of collectively compactness give IJ. -+ o. 
n 

These deductions ensure 

that the estimates from the above theorem are uniformly bounded with 

respect to n. 
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1 .5.2 Application to Anse1one-type theory (Cruickshan'.' k extension) 

We notice that Anselone-type theory is not immediately 

relevant to the usual projection method. since the right hand side 

of the approximate equation is y E X whereas in the projection method 

it is the projection of that term. Cruickshan"k (1974) working with 

equation (1.7) has suggested a variation analogous to the Nystrom 

extension for integral equations. That extension relates the two 

approximate methods and enables us to apply Anselone-type theory. 

Now we introduce that extension of Cruickshan~k modified for the original 

equation. 

Suppose the operator (G-¢ T) E [X .Y ] has a unique n n n 

inverse (G-¢ n-1 
E' [Y .X J. 

n n n 

Define for each n,wn E X by 

-1 -1 
W = G Y + G T x • 

n n 
(1.16) 

The solution x can be :ret a.ted. ·t6 
n 

VJ by using (1.11) and (1.16) 
n 

by 

Then 

-1 
(G ¢G)w =x 

n n n 

Define T : X + Y 
n 

T = T G- 1 ¢ G 
n n 

(G-T)W = (G-TG- 1¢ G)w 
n n n n 

= y + TG- 1 (G x -¢ y-¢ Tx ) 
n n n n 

. Thus by (1 .11 ) ( :3 -·T ) VIi 
n n 

y 

(1.17) 

• 

(1.18) 
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It is easy to express the inverse of (G-T J £ [X.Y] in 
n 

terms of the inverse projection operator (G-~TJ-1 as follows: 
n.. 

So that G- 1 + 

(G-T ) W = Y n n 

(G-T J (G-1y 
n 

(G-T J (G-1 
n 

(G-:T ) (G-1 
n 

-1 
+ G Tx J = y n 

+ G-1T (G-cp T)-1cp y) 
n n = y 

+ G-1T(G-CP T)-1cp )y = y 
n n • 

G- 1T(G-CP T)-1cp is a right inverse for (G-T J. 
n n n 

we can show that it is also a left inverse for (G-T ). hence 
n 

C1.Yld. dLso (I-KCP )-1 = I + K (I-CP K)y-1 cP 
n n n n 

1 .5.3. The extended projection method bounds 

Similarly 

(1.19) 

(1 .20 J 

We present now the following theorem which is a modification 

-1 
of theorem (1.6) to deal with (G-T)y+X • 

Theorem (1.7) with (i). (ii) and (iii) whenever (I-KCP )-1 exists d~fine 
n 

II· 
m -1 

Then if b. < 1. (G-T) exists and n 

m-1 
II(G-T)-1 11 .s; IIG-1 11 i: IIKili + II(G-T

n
)-1 11 IIKmll 

i=o 
m=1,2, •• 

Proof 

Let H M-I ( A..) -1 n'I = (I+K+ ••. -t K -+ I-K'fIn K be an approximate 

inverse of (I-K). 

(I - K) H = I + KCcjl - I) (I - K cjln J -1 Km 

Since (I-KA.. )-1 is bounded and (KA.. -K). Km are t 'fin 'fin - compac • 

by Anselone (1971. page 59) K(cjln - I) (I - K cjln)-1 Km,is compact. Hence 

by theorem (1.2) 
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Y and 

1 -1 
II (1+K(<j> -1)(1-~ <j> )- Km) II ;i 

n n 1 _ 6m 
1 

which \mf>Lies G-T c:1Yld I-I( hov-e Yight ·'nU""e:(~es. n 
But since K is compact,by theorem (1.1) (1-K)-1 is unique 

1 1 1 -1 m-1 and hence G- CI-K) - = G- H (I + K(<j>n -I) (I - K <j>n) K) 

and II (G-n-1 11 < IIG-1 11 l.m-t IIKill" lie G -T
n

)-1 11 IIKml1 
- ____ ;=0 .... -- ' ...... ~.-- , 

1 - 6
111 

n " (1 .21 ) 

The existence and uniform boundedness of (1-K<j> )-1 and (G -T )-1 
. n n 

follows from theorem C1.5) and collectively compactness gives 6m 
+ 0 

n 

as mentioned before. This will ensure the applicability and the 

convergence of these bounds. 

Finally. in order to apply bounds (1.15) and C1.21) we 

need to calculate bounds for the following quantities. (i) IIG- 1 1!) 

(ii)IIK(1-<j> 111.ciiiJII<j> Kmll. (iv) IICI-<j> )Kmll. (v) IICI-<j> K)y- 11 1. n n n n 
n 

(vi) Ilc1-K<j> )-11 1• Cvii) IICG-<j> Tl y-
1 11. (viii) II(G-T )-111. These n n n 
n 

bounds 'W.iLL be considered when applying the actual approximation method. 

However a general approach in bounding the norm of the approximating 

inverse operators is introduced in the next section. 

1.6 Bounds on the approximating inverses 

The idea here is to relate the approximate inverses on 

the finite dimensional spaces to some matrices formed in the actual 

application of the projection method. By putting these relations in 

operator form. we may express the norms of these approximate inverses 

in terms of the norms of these matrices. The suitability of this method 

depends on the behaviour of the norms of these matrices. Firstly. 
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we show how the equation in the X.Y subspaces can be related to 
n n 

the solution of a finite system of algebraic equations. 

n 
We use the vector space of dimension n. R • and we denote 

its identity by I (for any integer n > 0). The projection operator 
n 

~ will be taken for the purpose of illustrations to be the inter­n 

polation projection based on the n points' [t]~ l' We take as a 
J J= 

basis for Y = ~ Y. the functions [L ]~ 11where 
n n n. J= 

J 

fI 
Ln.(~i) = 0ji (assuming such functions exist), 

1" the sl!{u.a.L t~~ s~hsCY'jptl1 011 -{ W;.ll Of! omitted. 
( 

Then ~ y = Y E Y can be expressed as a linear combination of these n n n 

elements L 
nj 

n 
L: 
j=1 

y.L . 
J nJ , 

-1 
By definition the basis for X will be' ~* J~ 1,where L* ~L 

n n. J= In. nj 
J J 

j=1 •.••...• n and x £ X can be expressed by 
n n 

n i!' 
x L: X. L 

n j=1 J n. -J 

Define H E[Y.RnJ such that 
n 

(H u). = u(~.) for every u E Y. 
n ~ ~ 

(Note that the evaluation is restricted to the interpolation points 

which implies H ~ = H ). n'f'n n 

= sup II Hull = sup I u (C) I 
Ilull=1 n i ~ 

-
If we introduce a linear projection ~p : X + Xn based on p 

points' [5. JP then in a similar \oJay we define iP E' [X.RPJ by 
~ . 1 P 

~= 

(iP x). 
p ~ 

x (Si) for every x E X. 
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Then clearly ~p </lp = ~p and II~pll < 1. 

Note p = n + m for any integer m ~ O. 

We now recall equation (l.lll, 

(G-</l TJ x =.y 
. n n n 

--1 
</l x = x = (G-</l T) P n n Y n 

(~ x). =' [~ (G-</l TJy'-1y ]. 
P J P n nnJ 

_~ n 
[~(G-</l TJ y L: Y.L ]. 

p n n i=1 ~ n i J 
n 

= L: ~: ~ (G-<I> T)y-1 L J. 
. 1 ~ P n n~ J 
~= n ... 

Qn~J. = [~ (G-</l T)y-1 L ]. ~ 
... p n n ni J 

cp x = Q H Y P n n 
, 

(1.22) 

j.=1, ••. , p 

j=1, .•• ,p 

j=1, •.. ,p 

( 1 .23) 

where Q is the ~xn matrix with ijth element Q .. ' We can go in a 
n n~J 

similar way and define an nxn matrix W by 
n 

H u = WHy where the elements of Ware W .. = (H 
n n n n n~J n 

These matrices Wn and On can be interpreted in practice as 

the left i nverse- of ttw approximation matrix when the parameters 

defining the solution are taken as the values of u at the interpolation 
n 

points' ~j]j=1 or the values of x at the points ~jJ~=1 respectively. 
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1 .6.1 The behaviour of IIQ II and Ilw II n n 

It is observed in later chapters that I IQnl 1 and 1 IWnl 1 

converge to certain values. That behaviour for Ilw I I has been 
n 

observed previously by Cruickshank & Wright (1978) when they were 

considering comp'utable error bounds for polynomial collocation methods. 

Later in 1979 Wright considered a theoretical justification of that 

behaviour and proved that under certain conditions. in fact 1 IWnl 1 + 

I ICI-K)-11 I. Gerrard (1979). working with the piecewise collo~tion 

method. observed that II W II approach the same constant irrespect.ive n 

of the interpolation scheme used. He also proved that IIw II + n 

11CI-K)-11 lif certain other conditions were satisfied. 

In this section we are going to state this result in a 

general form and prove a similar result for IIQ I I. , n 

The following assumption on the projection ¢ are used. 
n 

For any compact operator L. 

lo.., ' [Up ] is collectively compact and Let> + L. 
n n 

b T ~ u,\,,\ £' [Rn.y] such that IIJ II =1. c., ~ heye is 0\"1 ext~Y1sioY1 ope-r(;L\O"< n 

¢ J H = ¢ and H J = I (tt1d:. 
n n n n n n n 

!..heorem (1.8) 

Let K be a compact operator satisfying conditions (a) 

and (b). Then if (c) IIHnO-Kl-1Jnll + IIO-K)-111. 

I -1 IIw II + IO-K) II as n + ex> n 
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The proof of this theorem was considered by Wright (1979) 

and by Gerrard (1979). 

Theorem (1.9) 

Let XCY and let K be a compact operator satisfying 

(a) and (b) and (d) II ill (G-n-1
J II + II (G-T)-111. Then p n 

II 0 II + II (G -T) -1 II as n + ~ 
n 

where p = n + rn for some integer m ~ o. 

£roof. The proof goes through two stages. 

(1) express 0 in some equivalent operator form 
n 

(2) show that Ilo'n ill (G _T)-1 J II ' 
p n 

Then the result follows from (c). Also we note that since 

x ~Y and the infinity norm is used in both X and Y by taking T = I 
)(+Y 

-1 
in the original equation G will be in' [yJ (a special form of K). This 

argument implies that all conditions satisfied by a general K are 

trivially satisiied by G -1. Th t . G -1 . t . r G -1,h ] . a ~s ~~ compac, ~ ~ ~s 
n 

11 d G
-1", co ectively compact an ~ 

n 
+ G-1 • 

(1 ) On can be expressed in the operator form 

o = ill (G -cp T) y-
1 

cP J # 

n p n n n 
n 

For, if we call (1.23) 

ill x = 0 H Y for every y E Y and x EX, 
P n n 

and (1.22) in its vector form, 

ill x = ill (G -cP T)y- 1cp Y for every y E Y and x E X pn n n 
n 

• 
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then 

Hence 

. M ul tiply from the right by J to get n 

ell (G - ¢ Tl y-
1

¢nJ n = Qn • 
p n n 

(2) 

* 

( 1 .24) 

We note here that Qn depends on the part~cular choice of 

I n unlike Qn> because ¢nJn is independent of the particular form of 

J • 
n 

* Q -Q = n n 

= 

= ell G -1 (I-¢ K)-1 [¢ (1-K)-(1-¢ K) ](I-K)-1 J 
p n n n n 

= 

= 
-1 -1 ell G . [I + . ( I -¢ K) ¢ K . 

p n n 

ell G -1 (¢ -I) (I + K(I-K) -1)J + 
P n n 

= 

+ Q H K(¢ -I)J + n H K(¢ -I)K(I-K)-1 J • n n n n "'Tl. n p n 
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Hence 

+ ,II Q n II II ~ p II II K (¢ n - I) J n II + ,II Q n II II H~ LI II K (¢ n - I) K II 

1;I(I-K)-111 IIJ II 
n 

since 

(i) IIK(¢ -I)J II, IIG-
1 

(¢ -I)J II -+ 0 by (b) n n n n . 

(ii) IIK(¢n-I)KII, IIG-1 (¢n-I)KII -+ 0 by (a) and Anselone (1.8) 

- (iii) II Q 111 is bounded as shown below. 
n 

(1 .24) = ~ G -1 (I-A, K)y-·1A, J gives Qn ~n ~n n 
p n 

= ~ G -1 [I + .¢ K(I-¢ K)-1J¢ J 
P n n y n n 

n 

= ~ G -1· [1 + K(I-¢ K)y-1¢ ]J 
P n n n n 

~ G -1 (I-K¢ )-1 J by (1.20) 
p n n 

which implies that II Q nil is uniformly bounded if II G -1 ¢n II and 

I I (I-K¢ )-11 I are uniformly bounded. The first condition follows 
n 

from the collective compactness of' [G -1 ¢ ] and the second one 
n 

follows from theorem (1.6). 

This theorem as well as theorem (1.8) is a strong evidence 

that Ilw I I or IIQ I I is a good choice for expressing the norm of 
n n 

the approximate inverse operator, for in the limit at least, it is 

/ independent of the form of approximation 0.-5 Lo 1'\ j as it~ C.o ncl. t t COilS 

o..l'e l)o..U s Fe. c\.. 
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1.6.2 Bounds for the approximate inverses in terms of Ilw I I and 
n 

In this section we derive bounds for the norms of the 

inverses (I -cP K) y-1, W - cp T) y-1, (I -KCP ) -1 and (G _ T )-1 approximate 
n n n n n n 

in terms of lion liar II wn:!'I· These forms of bounds are justified 

asymptotic; properties of I lo~11 and Ilw I I, mentioned 
n n 

by the nice 

at the end of the previous section, and their easy calculation in 

practice. 

Now define an extension 

properties: I l1jJp l I = 1, CPp1jJp~p = 

equation (1.24) 

operator 1jJ E: [RP, X ] P . 

cP and ~ 1jJ = I • 
P P P P 

~ (G-O Tl~1 cP J, 
p n n n n 

with the following 

If we recall 

and use '" J H = cP r/, tjJ ~ = cP and cP x 
~n n n n' Yp p P P P n x for every x f: X 

n n n' 
then we get 

and 

-1 
<PtjJ~(G-CPTly cpJH p p p n n n n n 

II(G -cpnT)~111 ~ IIcppll lIonll (1.25). 
n 

If Ilcp I I is increasing with n this bound may be unsatisfactory. 
p 

An alternative may be derived as follows 

(G-cp Tl-1 =G-1 (I-<p K)-1 
n y n Y 

n n 

but similar to ° ,W can be expressed as 
n n 

W 
n 

H (I-CP KJ y-
1CP J 

n n n n 
n 

(1 .26) 
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-1 -1 
Therefore (G - <l> T) y = G <l> J W H , and 

n n n n n n 

(1.27) 

In a similar way we deal with (I-<l>nK)~1 and (I-K<l>n)-1 and 

get 

< II (I-<l>nK)~111 ~ II¢nll Ilwnll ( 1 .29) 
n 

(1 .30) 

Since (1.29) contains the factor I I~nl I which may grow,an 

alternative bound which may be of betterasYmptotic behaviour is given 

by Cruickshan k and Wright (1978) 

< 1 + II K¢n II II Wn II 

1 - II (I-<p'n)KI1- , ifll JI-<!h)KII < 1. 

1 .7 Summary of bounds 

Finally we use the results obtained in the previous section 

and substitute, the bounds of II (G -<l>nT)~111, II (I-<l>nK)~111 in (1.15) 
n n 

Results (1) 

From (1.15) (the projection method), 

(1.31 ) 
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m 
1 - 0 n m=O,1, .•• 

0: = miJl1 (I-~n)KlI II~ 1(1 + 11'~n II II wnll II ~nKII • 

n ~ I (H n) ~IIIKm II (1 +( 1 + II K~ n II II Wn II ) II ~ n K II ) 

1-11 (I -<I> n ) K II 

if II C I -cjl ) K II < 1 • 
m 

NB. b: 'If.. Cl bOI.J1\a 0\'\ a.. ~'f'e.\)i()\)!.lj J..~~\.",c.J <0",\ 
Result (2) 

From C1.21) (the extended projection method) 

• 

• 

C 1 .32) 

1 - tl·m 
n 

C 1 .33) 

If b,m < 1, where 
n 

m=1,2, ••• 

b,m = IIK(cjln - I)Kmll+ I I KCcjln-I)K cjlnl'~nll IIKml1 
n 

(V. P:.. c... d 0.. bO\JY\~ on the. ~yeu;ou!~ Je\il'lt.d ~n~. 
The corresponding bounds derived by Cruickshan~ & Wright (1978) are: 

IICG-T)-1
11 

< IIG-1 11 ~ IIKil1 + 1 + 11K cjlnll Ilwnll I Icjln
Km

+
1 

I I 
i-O 

1 - r) mn 

(1. 34 ) 

If cfnn <1, where cfnn is the same aso~ with \~I-cjln)KII Ilxmll replaced by 

I ICI-cjln)Km+1 \ I;. and m-1. ,,' 

II(G-T)-111<IIG-
1

112: IIK:LII+ (1+IIKcjlnllllw 11)IIK
m

II/1-L\ (1.35) 
- i=O n mn 

if b, = (1 + II Kcjl II II w II) II K II II (I -cjl ) K
m 

II < 1. mn n n n 

We notice here that the conditions necessary for the application of 
results to Cl.32), (1.33) seems to be of no improvement over those required 
by (1.34) and (1.35). However if these conditions are satisfied we 
expect the bounds to give closer results than the corresponding ones 
in (1.34) and (1.35). This expectation will be tested in the next Chapter. 

:1 
t~ 

\i 

.! 
! 
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CHAPTER 2 

Application of theory to the methods of Collocation 

2.1. Introduction 

Chapter 1 has developed an abstract theory concerning 

bounds on the inverse operator using bounds on its approximating inverse. 

This Chapter is an illustration of this theory applied to approximate 

solution of linear differential boundary value problems obtai~d by a 

particular projection method - collocation. Projection methods for 

differential eqUations are discussed by de Boor (1966) and Lucas and 

Reddien (1973). Collocation methods in particular are discussed widely 

and references include Karp.ilovskaja (1963), Wright (1964), Vainikko 

(1965, 1966), Phillips (1969), Lucas & Reddien (1972), Russell& 

Shampine (1972). de Boor & Swartz (1973), Cruickshan k (1974), Russell 

(1977), McKeown (1977) and Gerrard (1979). In all of the early work on the 

collocation method. polynomials were tnken to be the basic functions. 

Following the investigation of piecewise polynomial interpolation, 

Collocation methods based on piecewise polynomials have been widely used. 

In this Chapter we will define the problem precisely, define 

the approximations that will be studied and verify the conditions of the 

theorems in the previous chapter At the end of the chapter we include 

a selection of numerical results for illustration. 

The theory could be applied to linear partial differential 

equations with no changes. However the derivation of certain constants 

required for strict bounds can be extremely lengthy and time consuming. 

Non-linear equations cannot be treated directly by the theory. but 
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bounds for each linear differential operator of an iterative sequence 

could be found and. hopefully. combined with further convergence results 

to produce a final bound. 

2.2. Form of problem 

We shall consider in this thesis problems of the form 

m-1 
, 

L xCS') ~m\s) + ~ (s) ( k) 
(s) yes) (2.1) P x 

k=o k 

where Pk (s) are continuous. over. say. (-1.1), x e: X and y e: Y 

subject to the linearly independent boundary conditions 

(2.2) 

where Ct ik • 8ik 
are constants. Y will be taken as the space 

of continuous functions C C -1.1 ) and X may be taken as a subspace of 

CCm} ~1.1} satisfying the boundary conditions (2.2). 

m We define the operator G by G = 0 and T by 

T = 

respect to s. 

m-1 
L: 
j=o 

where 0 denotes the differentiation with 

Thus the differential equation (2.1) plus the boundary 

conditions (2.2) is equivalent to the operator equation 

Gx Tx y • 

N .B. We note here that G can be chosen differently and that will be 
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considered in detail in the next chapter. 

(m) 
The only condition required now is that x (s) = yes) with 

the boundary conditions (2.2) should always have a solution. This 

corresponds to the requirement that the operator G in (1.4) must be 

invertable. which in turn equivalent to the existence of Green's 

function for this part of the operator. The operator K is defined from 

T and G by 

(Ku) (s) 

where 

K (s.t) 

1 
f II.: (s.t) u (t) dt 

-1 

m-1 
- L: 

J=O 
P. (s) 

J 
g(s.t) and where 

g(s.t) is the Green's function corresponding to the operator Gx = u 

with the given boundary conditions. The compactness of integral operators 

of the form K is proved for example by Kolmogorovand Fomin (957). 

We now state the conditions required.by the theorems in the 

previous chapter,on the proj~ction operator ¢ . 
n 

Theorem (l.t,..), requires 

The projection method, 

(a) liD - ¢) KJ II -+ 
n 

o as n -+ <Xl d= 1.2 .•• 

to ensure its applicability. For the applicability of the extended 

projection method, (Theorem 1.7),we use the weaker pointwise convergence. 

(b) K ¢n 

(c) . {K¢ } 
n 

-+ K. but require 

to be collectively compact. 

To prove the asymptotic properties of II Wn II and II ~ II, we 

require with (a). (b) and (e) 
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(d) IIK(</> - 1) J II + 0 as n + 00 

n n 

(e) II H (I n 
- K)-1 J 11+ n II (I _ K)-111 

(f) II <P (G _ T)-1 J II + II (G _ T)-1
11 n+m n 

2.3. The Global Collocation Method 

2.3.1. Introduction to the method 

Let Y be taken as the space of polynomials of degree n-1 and X n n 

as polynomials of degree n~-l satisfying the boundary condit'ons. The 

approximate solution x EX is sought by requiring it to satisfy the n n 

equation to be solved exactly at n distinct points . {~}~=1 

the co11oction points, i.e. 

(G - T) x ) (~.) = Y(~J') 
n J 

j=1,. _. ,n • 

called 

(2.3) 

An approximate equation of the form (1.11) is satisfied by 

the collocation solution xn' where </>n can be taken to be the projection 

mapping each continuous function to itS· interpolating polynomial of 

degree n-1 at the collocation points. For most of the results we need 

to assume these points are zeros of polynomial Q (t) orthogonal with respect 
n 

to p( t ) > m* > 0 for which 

..n: -J1 ( - P t) dt 
.1. 1 

and../\. ~ 
-1 -1 

1 
pIT) dt are bounded. 

In some cases the collocation points are further restricted 

to be zeros of Jacobi polynomials P~' S with -! ~ a ,S < 1 
2 • 

2.3.2. Satisfaction of the criteria for the application of the theory 

It is shown in Cruickshan k((1974), section 4.3) if the 

collocation points are chosen as zeros of orthogonal polynomials then, 
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Lemma (2.1) 

(i) K'+'---' 'l'n 

(iij {K ¢n } 

K 

is collectively compact. 

By this lemma we satisfy conditions (b~ and (c). For 

condition (a) we may require the boundedness of some higher derivatives of 

the coefficient of the differential equation as shown in the following 

lemma. 

Lemma (2.2) 

d 
II CI -¢ n ) K II -+ 0 as n -+ 00 provided the dth derivatives 

of the coefficients of the differential equation are bounded. where d li. 

a positive integer depends on the weight function p(t). 

Proof 
~ 

IICI-¢)KII n 

cI 
= sup II (I - ¢n) K y II .. 

II yll =1 

If Y E Y n n then 

(I - ¢ ) Kd Y 
n 

" II K y - Yn II .. 

It follows from Jackson I s theorem (Chen,ey (1966 p . 1 4 ',f) ) that 

J. d 
provided K y E C (-1.1). there is a polynomial y 

n such that 

Hence 

II J II (!)d K y - Yn ::., 
II Od Kd y II 

n (n-1) ••• (n-d+1) 

J 
II (I-¢)KII n n(n-l) ••• (n-d+1) 

• 

-+ 0 as n -+ 00 • 
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for the GLll~6~ value of d. The value of d which is necessary for 

the convergence depends on the bound of I I¢n l I which depends on the 

orthogonal polynomial used. For example if the weight function p(t)?m* 

where m* > 0 • it is shown in Natanson (1965. page 52) that 

II ¢n II < 0 (n) and therefore tak.ing d=2 will be sufficient. For 

Tchebychev and Legendre polynomials where II¢ I I ~ 0 (In n) and 
n 

II ¢n II~O ( In ) respectively. d = 1 is sufficient. 

It can be seen from the definition of K'- that t ~ Cd (-1.1 ) 

if the dth derivatives of the coefficients of the Differential equation 

are bounded. 

In the next section we show how the global collocation method 

can be put into the setting of theorem (1.R) and (1 .9) and satisfy the 

conditions required for their application. 

2.3.3. The behaviour of IIW I I and n 

Let ~ be a linear projection on X mapping each element n+m 

into its interpolating polynomial of degree n+~~1. constructed using 

n+m 
the points {s.}, 1 • 

1 1= 
It is required later that the distance between 

these points should tend to zero as n tends to 00. 

n+m \jl 
Define \jl e: (R • X) so that n+m :.. is a continuous linear n+m 

function, as follows 

(s - s.) x (s.) - (s - s.) x (s. 1) 
J-I J J J-

\jl xes) n+m- s. 
J 

s. 1 J-

xes n+m 
) 

where Sl < S2 < ••• <s n+m , 

s< s 
- 1 

s'1 <S<8 J- j 

j = 2 •••• ~ n+m 

s> s n+m 



and similarly 

J u(s) n-

n 
J e: (R , Y) by 

n 

(s -~ .) u (~ .) 
J-1 J 

~j 

u (~ ) 
n 

:32 

- (s - C) u (~j -1 ) C < s < ~j J J-1 -

C 1 J- j=2, ••• ,n 

s > ~n -

(Wright 1979) • 

Then if ~ e: (X, Rn+m) and H e: (Y, Rn) are defined as in n+m n 

section 0.5), we can state the following Lemma: 

Lemma (2.3) 

(i) ~ '1' = I n+m, (ji '1' ~ ¢ and II 'l'n+mll = 1 n+m n+m n+m n+m n+m n+m 

(1i) H J I et>n I n 
H = et>n and II Jnll 1 

n n n' n • 

Proof can easily be verified from the definitions . 
Lemma (2.4 ) 

(.i) I- I K (et> - I) J II -? 
n n 

o as n -? 00 

-1 
(ii) IIHn(I - K) I n I I -+ II CI - K) -1 11 

and(ii:iJll<I> (G - n-1 J II -+ IICG - n-1
11 • n+m n 
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Proof The first and second results 

are given by Wright (1979). For the proof of t~e ~irs£ one the 

collocation points are chosen to be zeros of Jacobi polynomial 

pa'S(t) with -~. <a,S. <~ 
'n --

We consider here the third re~ult. 

-1 -1 
1thenll<l> CG-f) J II<IICG-T) II. n+m n -

-1 -1 
Now it is sufficient to show that II <l>n+m CG-T) I n II 2 II (G-T) II • 

Consider a function y £ Y withl Iy I I = 1 suc~that 
o 0 

xo CG-T) -1 Yo satisfies II Xo II 2 II C G-T) -1 11 '- £. for small £ > o. 

S:uch a function must clearly exist from the definition of II (G - T) -1 11 • 

Let w <l> n+m 
-1 

CG - T) J H y 
n n 0 

. Now with the piecewise linear form of J 
n 

• 

J H y + y for any fixed y £ Y, 
n n 

for n sufficiently large 

Il w - <l> xl! < £. - n+m 0 

If the maximum distance between the' {s.} tends to zero as n + 00, then 
J 

II <l> n+m x II + II x II for any fixed x £ X. 

Hence for n sufficiently large 

I (II w II - II Xo II I < 2 £ 

and so Ilwl! ~ II(G-T)-1 11 - 3£ 

But Ilwll < 11<l> CG-T)-1 J II 
- n+m n 

< II <l> (G-T) -1 J II 
- n+m n. 
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Therefore 

< II ~ ( G - T) -1 J n \ \ + 3 E: 
n+m if n is sufficiently large. 

Now we can state the following theorem. 

Theorem (2.1) with the assumption that the collocation points are zeros 

of Jacobi polynomial p~.8(t) - ~ ~a.8 < ~ (i)llwnll -+ II (I-K) -1 11 and 

(ii) 110" -+ II (G-T)-1 11 where Wand On are defined by 
n n 

Proof 

WHy n n H u and 0 H Y 
n n n = <f? x. 

n+m 

By Lemma 2.1. 2.2. 2.3 and 2.4 we can verify all the 

conditions required by theorem (1.8) and (1.9). 

k 
If 0 denotes the kth differential 

k -1 
operator.o G can be 

k -1 1 -0 (k) ( ) 
defined by (0 G ) u (s) J g s.t 

-1 '0 sk u (t) dt k <m. 

k 
If the matrix ° denotes the inverse of the collocation 

n 

matrix-where the parameterndefining the solution are taken as the values of 

( k) 
x at any rn +m-k) points with the distance between them tends to zero 

as n tends to 00. then in a similar way we can prove the following 

corollary. 

Cor (2.1) with the assumption of the above theorem. if O~ is defined by 
(k) k 

~. k x 0 H y, n+m- n n 

k=0.1.2 .....• m-1 • 

. r 
'llie set Qt' points ~ Sj} on which H depends must be the collocation points 

which are restricted to being zeros of orthogonal polynomials, while the 

k' 
set of points [s.} on which Q depend do not have this restriction. This 

J 

is related to the theorem of convergence of collocation which states: 
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" The approximate solution with its derivatives up to m-1 

inclusive tends to the true solution uniformly as n + 00 while the 

highest derivative tends on the mean square norm with weight p( s) J'. 

Vo.inU<.Ko(IQ66") . 
2.4. The piecewise collocation method 

2.4.1. Introduction to the method 

Define the partitionTrn of (-1,1) by the points 

. {t } -1 =t <-t < ••• < t =1. \.Je use the space of Riemann 
i i=D, .. ,n - 0 l n 

integrable functions R.. (-1,1) for Y here to allow the use of pi~ewise 

polynomial approximation which may have discontinuities at the mesh 

points. The space X is taken as a subspace of R..m(-1,1) satisfying the 

boundary conditions. 

If·{~.} is a set of p distinct points on (-1,1), (including 
J 

possibly, the end points), then the collocation points will be defined in 

each interval (t. l' t. ) by 
~- ~ 

1 + ~j 
~ .. t. 1 + (t. - t. 1) i =1 , ... , n 
JI~ ~- 2 ~ ~- j=l, ... ,p .. 

Y is taken as the space of piecewise polynomials with np 

degree p in each subinterval (t. l' t.). 
~- ~ 

X will be the space of np 

piecewise polynomials of degree m+p in each subinterval (t. l' t.) and 
~- ~ 

satisfy the boundary conditions (2;2) and the continuity conditions 

X(k) (t. - 0) = x(k) (t.+o) k=o, ... m-1 
np ~ np ~ i=1, ... n 'if x E: X The piecewise np np 

collocation method requires the approximate solution x to satisfy the 
np 

equation at the np collocation points {~ji}' This is equivalent to 

the approximate equation (1.11) where ¢n is the projection p mapping 
np 

each function in R,to Lagrange interpolating polynomial of degree p 
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(t. 1,t.) at 
~- ~ 

on each subinterval the collocation points {t,; . . 1P i=1, .•. ,n 
J~ j=1 

i.e. (p y) (t) = np 

p 
l: y(t,;ji) 
j=1 

t e: (t. 1,t.), 
~- ~ . 

~=1, ... ]1 

where Cji is the unique polynomial such that Lji (t,;ki) = 8
kj 

for eac h i 1, ... , n. We note here that the norm of P is given by np 

the usual polynomial projection norm ¢ corresponding to interpolation 
p 

at the points' { t,; .}~ 1 and is independent of n. " 
J J= 

2.4.2. Satisfaction of the criteria for the application of the theory 

(i) 

Under the following restrictions: 

Each of the polynomial interpolation points t,;. is 
J 

interval 1. 1 -
J-

1, 1. - 1), where 
J 

j 1 
I. = l: J L. (t) dt j 1, ... p , 

J ~ 
i=1 -1 

I = 0 and 
0 

Li is the unique polynomial such that Li (t,;j) = 8 .. 
~J 

= max t. 
~ 

-+ 0 as n -+ <Xl 

i 

Gerrard (1979) in his thesis (page 51) shows that 

in the 

• 

-

J_
1

1 (p y) (t) dt 
np 

y (t) dt and hence proves 

(theorem 4.4 page 5~ that, 

Lemma (2.5) 

(i) K, K P e: (R) ( ii) KF\, i: c np 

(iii) K is compact (iv)'{KP np} is collectively compact 

(v) K Pnp -+ K (vi) 11(1 - P )KII -+ o. np 
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By this Lemma we satisfy condition (a). (b) and (c). 

2.4.3. The behaviour of I IWnl I 

where 

np 
Let Hnp £ (~. R ). J np £ (R

nP
• ~) be defined as follows '. 

(H u),. = uU': .. ) 
np J1. J1. 

j = 1 •...• p. i = 1.... • n • 

(J u .. ) (t) 
np J1. 

u .. = u(~ .. ) , 
J1. J1. 

Tij t i -1 + I j 

n 
l: 
u=1 

P 
l: 
j=1 

(t. - t. 1) 1. 1.-

2 __ { 1 
(t) 

o 

U j 1.' X (T •. 1. l .• ) (t) 1..J- 1..J 

and 

T .. 1 < t<T .. 1.,J- 1.J 

elsewhere 

Then from Gerrard (page 56,57) 

H P np np H , H J np np np P np , 

= II J II np 1 and II K (P - I) J II -+ 0 np np as n -+ 00. 

In a similar way let' { Sj} be any set of p+m distinct 

points in (-1,1) and define' {s ji} by 

t. 1 + 1.-

(1+s.) 
J 

2 
i 
j 

1" ..•• " n 
1, .... , p+m • 

Define the linear projection P ( ): X -+ X which n p+m n 

maps each function in X to its Lagrange interpolating polynomial of 

'{ }p+m degree p+m based on the p+m nodessj i j =1 on each subinterval 
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(t. 1 - t.) i.e. 
~- ~ i.=1 , .. " , n 

(p ( )xl (tl n p+m 

p+m 
= L: 

j =1 
x (s .. ) 

J~ 
L~. (t); 
J~ 

t s (t. 1,t.l, 
1- 1 

x x 
Where Lji is the unique polynomial such that Lji (ski) 0kj" 

Let et> ( 1 n p+m 

'n (p\ml 
be the evaluation operator in (X , R ) 

x (s ) defined by (et>n(p+m) x) ji = 
j i '-1 J - ,"". , p+m 

Then clearly I let> ( ) II n p+m 
1 and et> p. 

n ( p+m) n ( p+m ) 
= 'P. 

n (p+m 1 • 

n(p+m) 
Define t he extension operator 'l' e:~ ,. >C) (similar to J ) suc h 

n(p+m) np 

that the following conditions are satisfied. 

(i) et> n(p+m) 'l' n(p+m) 

(iii) 11'l' II 1 n(p+m) 

Lemma (2.6) Gerrard (1979, page 58) 

Let (I - K)-1 

I I (I - K) -1 II sup 

e: R.. then 

-1 II(I-K) yll. 

y e: C 

This lemma makes the proof of conditions (gl and (h) in 

~equiva1ent to that in C which has been considered by Lemma (2.4). 

Now we are in the position to state the following theorem. 
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Theorem (2.2) 

If (i) 1.1 - 1. < ~j < 1. -
J- J 

(ii) IITn" + a as n + 

then Ilwnpll + II (I _ K)-1" n 

II Qnp II + II (G - T)-111 as n 

where W is the npxnp matrix defined by np 

1 

00 , 
+001 

+ 00 I 

and Q is the n(p+m) x np matrix defined by np 

~ x n(p+m) • 

j = 1 ••••• P 

Proof: Verify the conditions of theorem (1.7) and (1.8) using the 

above results. 

Corollary (2.2) t~ith the assumptions of the above theorem 

I IQ~p I I + I 10
k 

G-
1 

(I - K)-1 I I • where Q~p is defined by 

<p. }k) = Q H y 
(n+m-k) p np np . 

2.5. Bounds on the inverse differential operator 

To use the results at the end of the previous chapter it is 

necessary to achieve a computable bound for each item occurring in the 

various expressions. On examination of these expressions it can be 

seen that the following are required: 

2.5.1. .Bounds for the constant term IIG-
1

11. IIKII. IlodKdl1 and IIG-1TII 

(i) = sup 
lIu II =1 

1 

max s J_~ g(s,t) u(t) dt I 

~ m~x J -1 I g (s. t) I dt = go 



(ii) II KII = 

(iii) II oK11 
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sup IIKul1 = sup maxi J1 K (s. t) u ( t ) dt 

Ilu II =1 II u II =1 
-1 

is 

< max 
1 

J -1 I K (s. t) I dt I< 
0 

s 

= sup 
II ull =1 

IloKu'll 

(OK) u(s) (oT) x (s) 

m-1 ~.) (.1) 
<:' (P'. x J + p x J + ) (s) 

j~O J j 

m-1 l.) 
= -0 ( L P. x J) (5) 

j=O J 

m-1 j 
L -P'.(s) J1 ~ g(s.t) u(t) dt 

J -1 ~sj j=O \J 

m-2 -,.j+1 
+ 1:: -P.(s) J1.0 g(s,t) 

J =0 J -1 osj+1 

th.e,", 

HDI\1I~~lpm_1 (5) I + k 

::Uft) dt + P
m

- 1 (s) u (5). "'ou. ~ 

which is bounded if {p'. (5)} are bounded. 
J 

Similarly Ilo2K211.:5 K2, where 

m-1 1 oj m-2 :oj+1 
K2 = max Lip" (s) I £1 1 ~ (s, t) I dt + J. ~O 12 P' (s) I J 

1 I 0 g (s. t) I dt 
S j=O j osJ j -1 5 

which is bounded if' {p'.'(s)} are bounded. 
J 

In a similar way we can derive bounds Kd for I lodKd l I which 

,.1 

II 

" ,I 

.;, 
>' 
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require bounds on the dth derivatives of the coefficients of the 

differential equation. 

-1 -1 1 m=1 ') 
Civ) IIG Til = sup IIG Txll = sup rnaxlJ1 gCs,t) L: P,Ct)~JCt) dtl 

Ilxll=1 Ilxll=ls - j=D J 

= KK .. 

For the simple second order case J 

J ~1 g C s, t) C P 1 (t) x' (t) + Po (t ) x (t ) ) dt = g ( s • t) .~ C t) x (t) 1~ 

- J~1 (g(s,t) P; (t) + ~~(s,t) ~ (t) ) x(t) dt + J~1g(s,t)Po(t)x(t) dt 

2.5.2. Bounds for the proj6~ted terms 

(A) The Global Case 

-1 1 
C G <P u) (s) = J g C s. t) ¢ u C t) dt t· n -1 n 

Using Cauchys inequality we have 

-1 2 J 1 2 1 
C (G <p

n
u ) (s)) . ~ p (t) (gCs,t)) dt - [1 p (t) C<Pnu(t)f dt 

2 
< Q 

2 
Q* max I gCs.t)1

2 
, 

s.t 



therefore 

Similarly 

m-1 
L: 
j=O 

42 

here g = max max 

1 
! 

-1 

s,t 

K 
maX 

I gCs,t) I .-

where K max 

" 

= max Ilds,t) I. s,t 

A simple bound can be gt:: IIG-
1

TII II~n+mll = KK II~n+mll ' 

where KK is the bound given for I IG-1TI I· Alternatively, we may use the 

same arguments used in boundinp'_ IIG-1TII,IIG-1¢nll and get for the simple 

second order case 

II G -1 T ¢ II < n+m - n n* max { Ip1 Cs)g(s,t)+P1(s) :~ (s,t)I+lpo(s)g(s,t)I}. 
s 

II (I - ¢ n) Kd II is essentially an interpolation error and 

can be bound EITHER using Jackson's theorem as in lemma (2.2) and get 

I 

1 
where v = I I I-¢ I I n n n Cn-1) ..... (n-d+1). 

OR using Peano Kernel theorem(Oavis (1971, page 70J)and get directly 

where P
dn 

are the Peano constants for interpolation. Unfortunately the 

computed Peano constants are not strict bounds as the processes of 

numerical integration and maximisation are not exact. Moreover these 

constants need to be computed for every n which is time consuming. For 

these reasons we prefer to use Jackson's theorem. 

We note also II (I -¢n) K ¢nll < J1nV n 110 K¢n ll and 

110 K ¢n II can be bounded for example by n n* K1rTld.X, Wne..,-e 

l<. \ m 0- 'J( = m 0..)< I P l~,) I II <Pn II / A -C1 + K 
'5 tn- j. /--
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d d d 
A bound Cd of 1\ <P K II can be II CI - <p ) K II + II K II .. n n 

(B) The piecewise case 

Since I [pnpll = II ppll is independent of n. bounds on 

II G -1 P II. II K P II and np np 

II K II II P np II and II G -1 T II II P n (p+m] II respec tively or may be similar 

to those derived for the global case. 

A bound Bd for I I (I - P ) Kd l I can similarly b} found by np 

Jackson's theorem 

B = 
d 

. {TIIITrnll }d II OdKd I I II CI-Pnp ) I I 
4 P(p-1) ..... (p-d+1) 

For II Pnp Kdll. its bound Cd can be either II Pnpll 

d 
+ 11K II· 

2.5.3. Formulation of bounds 

or 

-1 
Collecting these results together bounds on II (G - T) II 

may now be expressed in terms of computable quantities. 

Result 1 of section (1.6) gives. 

d 
< QP d = g l: 
- 0 . 0 

or II (G - T) -1 II· ~ WP d 

< 1. where 

~= 

d . 
l: K-
i=O 0 

i K + 
o 

, 

, 
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min (~Kod(1 +11¢n ll Ilwnllq, ~Kod(1+(1+K IIWnlbC1)if 81 <1) 

(1 - 8
1

) 

d=O,1,2 ... 

Result 2 gives 

II (G - T) -1 II 

where 6,d 
n 

d 
Ki Kd 

So QAd go 1: + gt lI°nli 0 0 
i=O ) 

1 - 6,d 
n 

For comparisons we present also bounds derived by Cruickshan.k 

and Wright (1978) and Gerrard (1979); From the projection method, 

or 

if <5 
dn 

< 1. <5 = min 
dn 

Ki + (1 + K II W
n li)Cd+1 

o , 

, 
1 - ~n 

(8d +1 CI+II¢n ll IIWnIlC1),8d+1(1+(1+Kllwnllc1Hf 81 
(1 - 8

1
) 

From the extended projection method, 

-1 d -1 d 
II (G-T) II,.;; AdJwhere Ad = go ( ~=o ~o + (1 + K II Wn II) Ko 

J 

1 -

if 6, < 
dn d = 1,2 .... 

We note that the bounds \.-JPd , QPd and QAd involve 8
1 

unlike P
d 

and Ad 
which involve 8. So the bounds QP and WP

d 
with d>o and ~Ad 

with d>1 are no~ considered further as tRey are not making use of th~ 
higher differentiability of the coefficients. 
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We note here bounds which use the norm of the projection 

operator may not 'be satisfactory for large n in - the glob~l case.· However 

they may still give better results with small value of r:,O-V\cL i.n ~h e tolLOw;"j 

thE:' bes.t. ct.t t~eSt.bo ... V\~ ... w'tLl be. usecl. 

2.6. Examples and Results 

In this section we present a selection of numerical examples 

illustrating how the ideas can be applied in practice and what sort of 

results can be obtained. We use zeros of Tchebychev polynomials as 

" collocation points and for piecewise case we work with two points only. 

2.6.1. Test problems 

For ease of comparison, we use the same four problems used 

by Cruickshan~k and Wright (1978) as basic test problems. Other problems 

have been considered, including higher order equations. 

Problem 1 

Problem 2 

Problem 3 

Problem 4 

problem. 

x I I + a (1 + t 2) X = y 

x" - a x 

x" 

x" + 

2a 
- (t+5)2 

2 a x' 
(t + 3) 

y 

x = y 

2 a x 
(t + 3)2 = Y 

)( (±1 ) O. 

x (±1 ) o .... 

x (±1 ) o ~ 

x (±1 ) o , 

The parameter a is included to vary the stiffness of the 

The calculation of K K , K , K , K
1

, KK, K2 is straight­max max 0 

forward and their values are given for the four problems in table (2.1). 
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TABLE (2.1) Problem Constants 

K K K K K K KI K 
Problem max max/. 01· 1/ 2/a2 a a a a a 

1 1 1 0.5 2 0.583 3 

2 0.5 0.5 0.5 1 0.5 0.5 

3 0.0625 0.0625 0.0625 0.15625 0.0366 0.018 

4 0.95 1 .25 1.25 2.25 0.3O~ 6.26 

The convergence of I Iw I land 110 I I is observed in table (2.2) n n 

and (2.3). When considering approximating I I (G-T)-1 1 I in a later chapter, 

the behaviour of IIOnl1 will be examined in more detail but the relevant 

points to be noted here are: 

(1 ) lion II < 1\ G -1 1\ Ilwnll for all n and for all examples. This 

can be seen EITHER from the operator definition of [.) 
n in (1.24 ) 

On = <I> (G-T) ~~ ¢n J <I> G -1 ¢ J W , giving n+m n n+m n n n 

II w \I . n 

OR from theorems (2.1) and (2.2) for sufficiently large n 

1\ w II· n 

(2 ) This inequality becomes more obvious when we increase the 

value of a as seen in table (2.4). It will be shown later that this 

inequalityismOr-e pyonou-Ylc.edif we consider higher order differential 
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TABLE (2.2) II wi I and 11011 values (global polynomials) 

Problem ct 0.5 1.0 2.0 100.0 
n Ilwnll lion II II wnll lion II Ilwnll lion II II Wn II lion II 

1 5 1.3258 0.6515 1.9318 0.9318 13.4358 6.2179 526.8720 4.2706 

10 1.3254 0.6402 1.9306 0.9156 13.4678 6.1361 31. 9845 0.1595 

15 1. 3258 0.6515 1. 9321 0.9321 13.5002 6.2501 19.9719 0.1273 

20 1.3257 0.6482 1.9318 0.9271 13.4935 6.2157 20.2048 0.1247 

25 1.3258 0.6515 1.9320 0.9321 13.5002 6.2501 21.9437 0.1345 

30 1. 3257 0.6500 1.9320 0.9297 13.4973 6.2338 23.2591\0.1361 

2 5 1.0144 0.4134 1.0234 0.3516 1.0346 0.2704 0.8169 0.0162 

10 1.0809 0.4067 1.1315 0.3464 1.1841 0.2665 1. 0489 0.0126 

15 1.1210 0.4134 1.2014 0.3519 1. 2956 0.2705 1. 07 58 0.0111 

20 1.1409 0.4114 1.2362 0.3503 1.3519 0.2693 1.1383 0.0106 

25 1.1542 0.4314 1.2954 0.3519 1.3894 0.2705 1.2387 0.0103 

30 1.1624 0.4125 1. 2738 0.3512 1.4129 0.2699 1.3292 0.0102 

3 5 1. 0025 0.4917 1.0048 0.4836 1.0088 0.4683 1.0475 0.1102 

10 1. 0090 0.4834 1.0177 0.4757 1.0339 0.4608 1.1567 0.1119 

15 1.0124 0.4918 1.0244 0.4837 1.0470 0.4683 1.3660 0.1121 

20 1.0144 0.4893 1.0283 0.4813 1.0546 0.4662 1.4831 0.1120 

25 1.0156 0.4917 1.0306 0.4836 1.0591 0.4683 1.5592 0.1119 

30 1.0164 0.4904 1.0321 0.4826 1.0621 0.4673 1.6114 0.1120 

4 5 1.4935 0.4815 2.0570 0.4563 3.3172 0.3967 32.1639 0.2927 

10 1.5393 0.4799 2.1727 0.4608 3.6498 0.4091 198.9996 0.2283 

15 1.5483 0.4815 2.1956 0.4582 3.7182 0.4109 132.0303 0.0400 

20 1. 5515 0.4826 2 .203B.., 0 .4606 3.7425 0.4109 
r- 148.5863 0.02188 

25 1. 5529 0.4815 2.2075 0.4610 3.7539 0.4106 163.8159 0.0198 

30 1.5537 0.4828 2.2096 0.4603 3 . 7 601 0.4102 173.4017 0.0198 
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TABLE (2.3) Ilwll as II QII values (piecewise) 

Problem 0( 0.5 1.0 2.0 100.0 

n II wnll II Qnll 11\.) .11 n I! Qnll II wnll II Qnll II wnll IIQnl1 
1 5 1.3244 0.6460 r.9242 0.9197 12.3286 5.6404 12.3415 0.0503 

10 1.3256 0.6486 1.9304 0.9268 13.2077 6.0791 88.8749 0.5567 

15 1.3257 0.6509 1.9312 0.9307 13.3679 6.1807 41.5038 0.2662 

20 1.3257 0.6508 1.9316 0.9307 13.4268 6.2071 29.0360 0.1851 

25 1.3257 0.6513 1. 9318 0.9316 13.4525 6.2251 25.536\ 0.1645 

30 1.3257 0.6512 1. 9319 0.9315 13.4675 6.2309 24.9923 0.1524 

.. 
2 5 1.1243 0.4117 1.2080 0.3509 1.3084 0.2701 0.8277 0.0100 

10 1.1653 0.4120 1. 2790 0.3509 1.4218 0.2698 1. 2500 0.0100 

15 1.1784 0.4132 1.3020 0.3518 1.4593 0.2704 1.4539 0.0100 

20 1. 1856 0.4131 1. 3146 0.3517 1. 4797 0.2703 1. 5709 0.0100 

25 1.1897 0.4133 1.3218 0.3519 1. 4914 0.2704 1.6466 0.0100 

30 1.1925 0.4133 1.3269 0.3518 1.4997 0.2704 1.6997 0.0100 

3 5 1.0129 0.4889 1. 0253 O. 4811 1. 0489 0.4661 1.4113 0.1119 

10 1. 0165 0.4898 1.0325 0.4817 1.0628 0.4664 1. 628 5 0.1083 

15 1. 0178 0.4914 1.0350 0.4834 1. OR77 0.4680 1.7111 0.1105 

20 1.0185 0.4912 1. 0363 0.4831 1. 0702 0.4677 1.7547 0.1091 

25 1. 0189 0.4916 1.0371 0.4836 1. 0717 0.4680 1.7813 0.1103 

30 1.0191 0.4915 1.0376 0.4834 1.0728 0.4680 1. 7992 0.1094 

4 5 1. 4835 0.4758 2.0370 0.4486 3. 990 0.4093 1.5049 0.0170 

10 1.5181 0.4829 2.1199 0.4607 3.5032 0.4103 7.7034 0.0182 

15 1.5302 0.4814 2.1500 0.4613 3.5867 0.4107 25.6737 0.01893 

20 1.5364 0.4826 2.1656 0.4609 3.6309 0.4108 75.7068 0.01932 

25 1.5402 0.4827 2.1751 0.4605 3.6583 0.4108 292.2509 0.0248 

30 1.5427 0.4823 2.1815 0.4610 3.6769 0.4109 995.6873 0.1197 



49 

TABLE (2.4) 

Problem 1 2 3 4 

a II Wn II lion \I II Wn II lion II II Wn II II Qn II II Wn II lion II 
0.0001 1.0001 0.4975 1.0000 0.4974 1.0000 0.4974 1.0001 0.4975 

0.1 1.0524 0.5218 1.0331 0.4776 1.0029 0.4958 1.1016 0.4952 

" 1 1.9318 0.9271 1.2362 0.3503 1.0283 0.4813 2.2038 0.4606 

2 13.4935 6.2157 1.3519 0.2693 1.0546 0.4662 3.7425 0.4109 

100 20.2048 0.1247 1.1383 0.0106 1.4831 0.1120 148.58ffi 0.2188 

1000 7.6801 0.0032 1.050 0.0019 1.1851 0.0153 226.8 0.03667 

10000 2.1528 0.0002 0.9587 0.0003 1.0525 0.0025 13.9584 0.0027 

n = 20 
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equations. 

These two points indicate that bounds using I IQnl I are 

expected to be superior to those using II Wn II • 

(3) Finally the relatively large values of I Iw I I n and IIQ \I n 

in problem 1. a = 2 occur because there the problem is nearly singular: 

the equation 

= y x (±1) ~O 

has an eigen value near A = 0.46. 

2.6.3. The Applicability 

Tables (2.S) and (2.5) give the smallest number of points or 

subintervals n. for which 6 .6 • 6 and 6 are less than unity and ln 2n ln 2n 

hence for which the bounds are applicable. We note that: 

(1 ) 

(2) 

(3) 

For many cases the number of points or partitions needed are 

much more than one would like. This problem will be dealt with in 

the nex~ two chapters. 

Bounds using second dSrivatives ar~ of better applicability 

than those using first derivatives only. It is shown in Gerrard 

(1979) in general the ap!3licability is better when higher derivatives 

are used. That is easily justified from the type of bounds derived 

With the global polynomials the extended projection method 

(6 • 6 ) gives better applicability than the projection method 
ln 2n 

(6 and 6 ). while with the piecewise case the projection method 
ln 2n 

is superior in most problems. This is due to the poor bound on 
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TABLE (2.5) Applicabili ty 

Global Polynomials (number of points required) 

Problem Oln:O ~ 

1 0.5 19 

1 82* 

2 >120* 

100 >120* 

2 0.5 7 

1 26 

2 104* 

100 >120* 

3 0.5 2 

1 2 

2 3 

100 >120* 

4 0.5 33 

1 >12Q* 

2 >120* 

100 >120* 

*assumes I Iw I I constant 
n 

02n Lhn :; c? n 

8 3 

22 36 

>120* >120* 
. 

>120* >120* 

3 2 

7 6 

20 61 

>120* >120* 

2 2 

2 2 

2 2 

>120* >120* 

12 13 

38 >120* 

>120* >120* 

>120* >120* 

62n 

3 

9 , 
95* 

>120* 

2 

2 

9 

>120* 

2 

2 

2 

>120* 

6 

24 

>120* 

>120* 
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TABLE (2.6) Applicability 

(Piecewise) (number of partitions required) 

Problem a 01 n= 

1 0.5 5 

1.0 13 

2.0 160* 

100.0 >200* 

2 0.5 2 

1.0 5 

2.0 14 

100.0 >200* 

3 0.5 2 

1.0 2 

2.0 2 

100.0 >200* 

4 0.5 7 

1.0 21 

2.0 125* 

100.0 >200* 

*assumes I Iw I I constant n 

b~ 02n 
'1. 

fl1n= D." 

3 2 

7 5 

30 155* 

>200* >200* 

2 2 

4 2 

6 12 

>200* >200* 

2 2 

2 2 

2 2 

>100* >200* 

4 4 

11 21 

34 200* 

>200* >200* 

fl2n 

2 

4 

, 27 

>200* 

2 

2 

5 

>200* 

2 

2 

2 

>200* 

3 

11 

53 

>200* 
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II (I -
-1 

¢n K)y I I with the global case. 
n 

(4) Generally it seems the piecewise collocation method is more 

readily applicable than the global one. 

-1 . 
2.6.4. Bounds on II (G - T) II 

-1 
We now examine the bounds on I I (G - T) I I using the formulae 

in section (2.5.3) with d = 

of the coefficients only. 

1,2 i.e. using first and second derivatives 

With each problem we use the SUit)ble values 

of a which allow early application of these bounds. 

Tables (2.7 - 2.10) give the results for the global 

collocation method. If we compare Pd, WPd , QPd , Ad,QAd 

these tables we may observe the following inequalities: 

presented in 

Problem (1) a = 0.5 Q A1 < A1 « P1 < WP1 < QP1 ,. 

a = 0.5,1 A2 < P 
2 

Problem (2) a = 0.= QA1 < A1 < P1 < QP1 < WP1 '0 

a 1 QA1 < A1 < P1 < QP1 
< \.JP

1
, 

a. 0.5,1,2 A2 < P2 
Problem (3) a = 0.5,1,2 QA1 < A1 < P1 < QP1 < WP1 

a. = 0.5,1.2 A2 < P2 
Problem (4) a 0.5 QA1 < A1 « QP1 < WP1 < P1 

o. 0.5 A2 < P2 
From these inequalities we notice: 

0) The extended projection method bounds (QA 1 A~2 ) are much more 

accurate than the projection method ones (QP 1, W~ , ~,2)' This is 

confirmed from the expressions for ~ ,2,QP
t

Al ,2' QA1 which give when 

B1 < 1, 

\,2 < P or 
1,2 QA 1 < QP 1 • 

• 
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(2) If we consider each method separately we observe that with 

the extended projection method in all problems 

For the usual projection method, in most cases 

OP 1 and WP 1 have no ,improvement over P 1" , 

In general if 

seen 

> 1 2 it can be 

(3) If we compare the bounds using the first derivatives with 

" those using second derivatives we observe that the latter are always 

better. That is obviously due to the bounds derived for " 

Tables (2.11~2.14) give similar results for the piecewise 

collocation method. All the problems have consistently satisfied the 

following inequality. 

QA 1 < OP 1.. < WP i < A 1 < P 1.' AI. < P1. 

That confirms (i) the superiority of the bounds using the 

i!latrix 0 (ii) the improvemE.nt of Pd by WPd which is expected by the 

theory. Like the global case bounds using second derivati~~ are better. 

Gerrard (1973) shows further that if we use higher derivatives then the 

projection method will be superior ',to the extended projection method. 

That is because the first uses I I (I - P )K
d

+
1 I I while the second uses np 

I I (I - P )Kdl I and better bounds for I I (I - P K)y-1 I I are available np np n 

with the piecewise method. 
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TABLE (2.7) Bounds on II (G - T) -1 II 

Problem (1) (Global) 

(i) Using first derivatives 

a n Pl WPl QPl Al QAl 

0.5 5 1.1587 b. ~ 4--16 

10 0.9585 0·1"+ 04 

15 0.9006 O-"f'-t-S·l 

20 5.6941 5.8610 6.9245 0.8734 " oo-nll 

25 2.8566 3.0241 3.6632- 0.8578 0 0 '12 ?>l . 

30 2.1175 2.2724 2.7965 0.8479 C-"'} 1"10 

1 5 

10 

15 

20 

25 

30 

(ii ) Using second derivatives 

a n P2 A2 

0.5 5 O. i' 646 

10 1. 2556 0.7037 

15 0.9623 0.6947 

20 0.8605 0.6923 

25 0.8163 0.6917 

30 0.7918 0.6917 , 

1 5 

10 2.2106 

15 201.6139 1.5651 

20 4.9507 1.424 

25 3.3429 1.3714 

30 2.8139 1.3478 
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TABLE (2.8) Bounds on II (G - T) -1
11 

Problem (2 ) (Global) 

(i) Using first derivatives 

a n Pi WPl QPi Ai Ai 
0.5 5 0.8356 0.8281 

10 2.5179 2.6470 2.4443 0.7846 0.7730 

15 1.4888 1. 6561 1. 5854 0.7625 0.7557 

20 1.2147 1.3820 1.3481 0.750\ 0.7467 

25 1.0867 1.2511 0.2432 0.7435 0.7425 

30 1.0119 1.1727 1.1798 0.7385 0.7395 

5 19.0553 17.9044 

10 2.7131 2.4740 

15 1. 9724 1.8082 

20 1.7099 1. 5744 

25 12.1448 11.0939 9.3647 1. 5763 ~1.4610 

30 5.2210 4.9283 4.2239 1.4934 1.3913 . 

(ii) Using second derivatives 

a n P:? A';. 
0.5 5 0.90n 0.6838 

10 0.7869 0.6782 

15 0.7440 0.6772 

20 0.7258 0.6769 

25 0.7158 0.6769 

30 0.7093 0.6768 

1 5 5.3775 1.2312 

10 1.7874 1.0899 

15 1.5987 1.0688 

20 1.5060 1.0625 

25 1.3922 1.0604 

30 1.3264 1.0593 

2 5 

10 8.8678 

15 10.7778 4.4.260 

20 6.4739 3.7576 

25 5.4617 3.5176 
30 5.0276 - '3 3.3987 

~, 
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TABLE (2.9) Bounds on \I (G - T) -1 II 

Problem (3) ( Global) 

(i) Using first derivatives 

ex n PI WPI QPI Al QAI 

0.5 5 0.6101 0.6584 0.6682 0.5179 0.5175 
10 0.5668 0.6100 0.6183 0.5174 0.5171 
15 0.5517 0.5880 0.6029 0.5172 0.5169 
20 0.5438 0.5765 0.5938 0.5171 0.5169 
25 0.5390 0.5692 0.5889 0.5717 0.5168 
30 0.5357 0.5644 0.5852 0.5176\ 0.5168 

1 5 0.7848 0.8723 0.8893 0.5407 0.5392 
10 0.6567 0.7394 0.7524 0.5389 0.5372 
15 0.6175 0.6874 0.7138 0.5380 .' 0.5366 
20 0.5981 0.6612 0.6923 0.5375 0.5363 
25 0.5896 0.6451 0.6809 0.5372 0.5361 
30 0.5787 0.6342 0.6725 0.5370 0.5366 

2 5 1.7790 1.880l 1.9040 0.6059 0.5994 
10 0.9625 1.1080 1.1174 0.5966 0.5892 
15 0.8139 0.9400 0.9789 0.5922 0.5858 
20 0.7508 0.8657 0.9147 0.5899 0.5840 
25 0.7156 0.8231 0.8814 0.5884 0.5830 
30 0.6930 0.7952 0.8586 0.5873 0.5824 

(iil Using second derivatives 

ex n P2 A2 

0.5 5 0.5185 0.5162 
10 0.5171 0.5162 
15 0.5168 0.5162 
20 0.5166 0.5161 
25 0.5165 0.5161 
30 0.5165 0.5161 

1 5 0.5445 0.5337 
10 0.5380 0.5335 
15 0.5364 0.5335 
20 0.5356 0.5335 
25 0.5352 " I 0.5335 
30 0.5349 0.5335 

2 5 0.6383 0.5747 
10 0.5967 0.5732 
15 0.5875 0.5729 
20 0.5835 0.5728 
25 0.5813 0.5727 
30 0.5798 ,> 0.5727 

i 
I 
; 

., 



58 

TABLE (2.10) Bounds on I I (G - T)-1 1 I 

Problem (4)(Global) 

(i) Using first derivatives 

n 

0.5 5 

10 

15 10.235$ 6.4816 

20 4.5575 2.9074 

25 3.3731 2.1638 

30 2.8578 1 .8431 

(ii ) Using second derivatives 

n P2 A2 a. 

0.5 5 

10 12.7048 2.0017 

15 3.4532 1 .6471 

20 2.7255 1 .5484 

25 2.3688 1 .5055 

30 2.1238 1 .4827 'J. 

' .. 
• 1 
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TABLE (2.11) Bounds on II (G - T) -1 II 

Problem (1) (Piecewise) 

(i) Using first derivatives 

CI. n PI WPI QPI Al QAI 

0.5 5 18.2766 8.1982 2.1942 1.5881 0.8271 

10 4.3168 1. 7 537 1.5698 1.4694 0.7656 

15 3.4491 1.3439 1.2146 1.4337 0.7473 

20 3.1357 1.1941 1.0838 1.416~ 0.7383 

25 2.9741 1.1162 1.01.63 1.4063 0.7331 

30 2.8756 1.0684 0.9747 1.3996 0.7296 

1 5 20.7728 11. 8663 

10 3.9562 2.2646 

15 17.8255 9.2949 7.8883 3.1136 1. 78 51 

20 8.5673 4.3670 3.7197 2.8139 1. 6132 

25 6.5362 3.2824 2.8045 2.6602 1. 5255 

30 5.6458 2.8055 2.4010 2.5667 1.4718 

(ii) Using second derivatives 

CI. n Pz Az 

0.5 5 2.2284 1.3873 

10 1.7784 1.3529 

15 1.7053 1.3467 

20 1.6770 1.3445 

25 1.6623 1.3436 

30 1.6533 1.3430 

1 5 3.6147 

10 4.5960 2.3382 

15 3.4460 2.1944 

20 3.1443 2.1482 

25 3.0096 2.1274 

30 2.9435 2.1163 
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~. 

r 
t 

TABLE (2.12) Bounds on I I (G - T) -1 II r 
j! 
f . 

Problem (2) (Piecewise) 

(i) Using first derivatives 

ct n PI WPI QPI Al QAl 

0.5 5 3.9812 1.5474 1. 2309 1. 4451 0.7203 
10 3.0165 1.1115 0.8957 1. 3998 0.6959 
15 2.7902 1.0068 0.8178 1. 38 51 0.6881 
20 2.6896 0.9598 0.7826 1.3779 0.6842 
25 2.6325 0.9329 0.7629 1.373~ 0.6819 
30 2.5958 0.9157 0.7500 1.3708 0.6804 

1 5 68.1637 32.6952 20.8309 2.9716 1. 4065 
10 5.6576 2.5781 1. 6503 2.3822 1.1131 
15 4.3324 1. 9316 1. 2465 2.2311 1. 0386 
20 3.8803 1.7099 1.1077 2.1625 1.0043 
25 3.6512 1. 5969 1. 0379 1.1230 0.9848 
30 3.5134 1.5288 0.9956 2.0975 0.9721 

2 5 
10 
15 48.9174 26.9986 12.0137 18.0123 6.6479 
20 13.2619 2.2533 3.2326 9.8920 3.6246 
25 9.2276 5.0168 2.2410 7.7752 2.838D 
30 5.5123 2.7383 1. 5375 5.2287 2.0418 

( ii) Using second derivatives 

ct n P2 A2 

0.5 5 1.7182 1.3443 
10 1.6517 1.3400 
15 1.6346 1. 3393 
20 1. 6269 1.3391 
25 1. 6625 1.3391 
30 1.6197 1.3390 

1 5 3.2325 2.0783 
10 2.7144 2.0045 
15 2.6139 1.9928 
20 2.5730 1.9895 
25 2.5507 1.9882 
30 2.5370 1.9877 

2 5 15.1116 
10 2.4460 

" 
6.1051 

15 5.1706 5.5103 
20 5.7899 5.3382 
25 5.6121 5.2648 
30 5.5123 _. 5.2287 
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I: ... 
" ,. 
f 
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TABLE (2.13) Bounds on II (G - T) II !~ ., 
I: 

Problem (3 ) (Piecewise) 
1: 

(i) Using first derivatives 

(). n PI WPI QPI Al QAl 

0.5 5 2.1566 0.5874 0.5735 1.0336 0.5166 
10 2.0994 0.5609 0.5504 1.0332 0.5164 
15 2.0810 0.5523 0.5430 1.0330 , 0.5163 
20 2.0719 0.5480 0.5393 1.0329 0.5163 
25 2.0665 0.5455 0.5371 1.0329 0.5162 
30 2.0629 0.5438 0.5356 1.0328' 0.5162 

1 5 2.3396 0.6865 0.6538 1.0725 0.5354 
10 2.2087 0.6267 0.6023 1.0704 0.5344 
15 2.1684 0.6080 0.5864 1. 06966 0.5440 
20 2.1487 0.5989 0.5786 1.0693 0.5338 
25 2.1371 0.5934 0.5740 1.0691 0.5337 
30 2.1294 0.5899 0.5709 1.0690 0.5337 

2 5 2.8152 0.9344 0.8462 1.1687 0.5806 
10 2.4632 0.7762 0.7127 1.1587 0.5806 
15 2.3650 0.7311 0.6756 1.1554 0. 5738 
20 2.3188 0.7097 0.6577 1.1537 0.5729 
25 2.2919 0.6973 0.6475 1.1527 0.5724 
30 2.2743 0.6891 0.6406 1.1521 0.5721 

(ii) Using second derivatives 

(). n P2 A2 

0.5 5 1.0658 1.0323 
10 1.0647 1.0323 
15 1.0644 1.0323 
20 1.0643 1.0323 
25 1.0642 1. 0323 
30 1.0641 1.0323 

,/' 

1 5 1.1389 1.0669 
10 1.1341 1.0668 
15 1.1328 1. 0668 . 
20 1.1322 1.0668 
25 1.1319 1.0668 
30 1. 1317 1.0668 

2 5 1.3104 1.1450 
10 1.2881 1.1439 
15 1.2826 1.1437 
20 1.2801 1.1437 
25 1.2787 1.1436 
30 1.2778 1.1436 
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(ii) Using second derivatives 

n P A a 2 2 

0.5 5 8.9983 3.4573 

10 3.8801 2.7253 

15 3.4789 2.6237 

20 3.3442 2.5904 

25 2.2790 2.5756 

30 3.2412 2.5678 

5 

10 

15 17.5602 19.3604 

20 12.2169 13.6171 

25 10.6674 11. 9800 

30 9.9884 11.2493 
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2.6.5. Conclusions 

The numerical results show that improved "a posteriori" 

bounds for the inverse differential operator can indeed be found if we 

consider the differential equation in the original operator form, 

(G - T) x = y. instead of the transformed one, 

(I K) x = y. 

The introduction of the matrix Qn which is shown to tend to the norm of 

" " the inverse differential operator is a ma~n factor of the closeness of 

these bounds. The improvement is more obvious with the piecewise 

collocation method than the global case. and within the global case it is 

more obvious with the extended projection than the projection method. This 

is clearly due to the involvement of the projection norm (which is not 

uniformly bounded) in the latter case. However in that case we have got 

WPd bounds which use Ilw I I instead of 11<p II n , n 

alternatives. 

Unfortunately these bounds do not make use of the 

higher differentiability of the coeffici"ents of the differential 

equation. and so do not obtain corresponding improvements in applicability 

in thoSe found by Cruickshan k & Wri~ht (1978) and Gerrard (1979). 

Still with all these bounds the applicability is a difficulty and an 

alternative approach is introduced in the next Chapter to deal with it; 

If strict bounds are not required useful estimates of II (G - T) -1 11 
are shown to be obtainable in Chapter 4. 
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CHAPTER THREE 

Principal part extension for better applicability 

3.1.1. Introduction 

We have seen that the major problem with the bounds 

produced in the previous chapter is that for many practical problems an 

inordinate amount of work is necessary to produce any strict bound at all. 

The aim of this chapter is to consider this problem in order to improve , 
applicability of these bounds. 

As indicated in Chapter 1. the theory can be appli~q to 

general equations of the form 

Ox = (G - T) x = y. where G is invertable. Clearly 

different choices of G may be treated. However there are some practical 

difficulties which would limit them. Firstly the inverse of G needs to 

be known explicitly. Secondly a procedure for calculating the 

projection norm or a bound on it needs to be available. Thirdly all the 

assumptions on section (2.2) should be satisfied. 

Perhaps the simplest .extension is to define the principle part 

of the differential operator G by 

Gx = x (m) +"\ X (m-1) + - - - - + "\ 
I\m-1 1\0 x • 

where the A's are some parameters to be chosen to give the highest possible 

applicability with reasonable amount of work. The inverse of this new G 

(will be called G*) is considered in (3.1.3.). 

In section (3.2) the global colla~ation method is considered 

with the new projection (¢n*)' A method of calculating 1 l¢n*1 I is given 

and it is proved that 1 I¢ *11 and II¢ 1 I are n n asymptotically the same ~ 

I:h. e. CO LL()(a..tlal\ Llo(.nts o..,..~ 1c."eL-ichcv ~eroS o..y.l.. tl ~s :A o..~LI.> .. ,_ .. \ t' ~Ou...~Lout ~I'~ I ...J .. 1\ ~. ~.. ..,,,d I"..Jrt I\~" 

&~c.t"on. 
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The conditions of the theory of Chapter 1. are all shown to be satisfied. 

Similar results are given for the piecewise collocation method in 

section (3.3). In (3.4) we consider the problem of choosing the Ai 

values. 

Experimental results are given for the simple second order 

case and G* is chosen in its simplest form. 

G*x = x" + Ax. x (±1) = O. 

" Tables for the bounds of IIG*-1 11 • II¢ *11 and II¢ *-1'1 

are presented for different values of A. 

to give simple calculation of II p;pl 1 . 

.n np 

Cubic splines are introduced 

At the end of the chapter experiments on the applicability 

with the test problems introduced in the previous chapter are compared 

and discussed. 

3.1.2. New splitting of the differential operator 

The differential equation 2-1 is now put in the new 

operat.o't" form 

where G*x = x (m) _ 

and T* x 

(G* - T*)x = y 

'ffl-1. 
1 
k=;O~ 

( k) 
x 

Ak ~ 0 for at least 
one value of k 

(3 -1) 

(3-2) 

In order to apply the theory in the previous chapters we 

need: 



(i) 

(ii ) 

(iii ) 
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To know the inverse of G* explicitly. 

G~X Y, where X is the subspace o~ the approximate solution 
n n n 

and Y n 
¢* Y for some bounded projection ¢* . n . n 

¢* G* x = G* x ~ X £ X . n n n n n 

i.e. 

Knowledge about this projection ¢ * so that II¢ *1 I or a bound on n n 

it can be calculated. 

(iv) Conditions of theorem 0-7)to b3 satisfied and a matrix similar to 

W call it W * can be defined such that 
n' n ' 

-1 
II (I - K*) II where K* 

-1 
T* G* ..• 

3.1.3. Study of the inverse of G* 

G*x u* (3.3) 
is a linear inhomogeneous differential 

equation with constant coefficients. The solution of this type of 

equation if it exists may be found analytically. The solution of 

this equation is equivalent to the existence of the inverse of G* which 

can be expressed by 

( G * -1 u * ) ( s ) 
1 

J 
-1 

g*(s,t) u*(t) dt 

where g*(s,t) is the Green's function of (3-3) with the boundary conditions 

given in (2.2). 

(k*u*) (s) 

The operator K* is defined in a similar way by 

1 
J 

-1 

o 
E (P(S)-A

k
) 

k=m-1 k 
g*(s,t) u*(t)dt 
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-1-
To study the behaviour of G* in more detail we consider 

the following simple second order example. 

G*x = x" + Ax = y x (± 1) o • 

If we solve this equation with the method of variation of 

constants (for example) we will reach the following solution for negative A. 

xes) 

+ 

" A [2+s) -4" s 
1 

f 
-1 

e 

3/I 
;:y: (e 

1 

;..y: 
s 

f 
-1 

- e 

-.0: 
e 

;.:;: 
e 

sinh A ( t - 1, Y (t) dt 

(s - t) ~ (s - t) 
- e 

Y (t) dt 
2 

• 

The correspunding Green's function can be defined by 

g*(s.t) = 

where w(s) 

t: ~w(s) sinh';'::;: (t - 1) + sinh A (s ~ t) 1 t. ~s 
1 

;:r 
w(s) sinh A 

I-r (2 + s) 

e 

e 

-As 
e 

-A. 
e 

(t - 1) t> s 
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T hen II G* -1 II < su p 
1 

J I g* (5 ,t) I dt 

5 
-1 

sup 1 
{w(s) {cosh (2A) - 1 } + 1 -

= 
5 

2 If: 
_ 1- . {1 _ 2(1 - e ) } 

- cos h A (5 + 1)} - I If: 3A 
e - e 

w.(s) sinh ~ (t - 1) + cosh II (5 - t) 

g * (S,t) 
5 t ~ 5 

where 

w'"(s) sinh I::f (t -1) 

A(2 + 5) -II 5 

w". ( 5 ) = (e + e) 
31X" 

1 (e 
-Ir 

e ) • 

Hence II 0 G*-l II < sup [~ I gs* (S,t) d t 

5 

1 
-4 A l2-s) As f'J: (25+1) 

= sup - . {1 +' {2 e e - e + e 

s ./X 

1I(2+s) -Pi s 3A -II -.,t.'f A: 
1 . 2(e - e ) 

- e - e } I(e - e )} = -' {1 + 
A 34: - yEA 

( e - e ) 

t > 5 

v0: (1-2s) 
+ e 

} 
• 

In a similar way for positive A the Green's function can be 

shown to be 



69 

1 sin IX"(s-1) sin ;y: (t+1) 
sin 21X" 

g*(s,t) 
1 sin ;y: (s+1) sinlX" (t -1 ) 

IX" sin 21X" 

which is singular for A k 1,2, ... 

Hence II G*-1 II 
1 

su p fig * ( s , t ) I d t 
s -1 

..... ~ 

t < s 

t > s 

= sup { I sinlX" (s-1) I 

s II sin 21I 
/ ISinlX" (t+1)ldt + ISinlX"(s+1)·lf~sI5inmt-1)ldt} 

-1 IX" sin 21X" 

s 
To evaluate f -1 1 sinlr(t+1) I dt we count the number of half 

periods of the function sinlX"(t+1) in the interval {-1, s} say n, 

and add 

h = integer part of 
(1 + s)1I , 

Then we multiply n by the area over a half period which 
IT 

II 2 
is f sin Ir (t+1) d t = IX" 

a 

s 
f I sin rA (t+1) idt 
-nIT 

- 1 ll1L s+ -II 

= sinlI t 
1 

= {1 -co sIX (s+1 )} 
II 

the area of the remaining fraction of period. This integration can be 

seen in the following diagram. 
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2 

= s. 

Similarly 
1 

J I sin II (t-1) I 
s 

dt 
2m 

Ir 
1 

{1 - coslr(1 -s)} + -

where m = integer part of 
(1 -S)II 
~7T~~ , the number of half periods o.f. the 

function Ir (t-1) in the interval (.s,1). 

That gives II G* -1 11 .: sup I sinl5:' (s-1) I {2n + 1 - cos Ir (s+1)} 
s Asin21I 

+ I sin II (s+1) I {2m +.1 - cos /5:'(1-s) } • 
A. sin 2/I 

We can show in a similar way 

110 G*-1 II <SU'P{icOS~(S-1) l{ 2m + 1 - cuslI (s+1)} 
s II sin 21I 

+ I coslA (s+1) I t2m + 1 - cos Ir (s-1)} , 
II sin 21I 

~ables (3.1) and (3.2) give the values of g* = max,g*(s,t), 
max s, t 

BG* -1 (the bound obtained for II G* -1 11 ) 'and BOG* -1 (the bound obtained for 

I IOG*-1 I I) respectively for different values of A.. We note that: 

(i) For small 11..1, the results for G* are exactly like the usual 



(ii) 
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operator G(gmax = II G-
1 -1 II = ~, 110 G II = 1 j which is what is 

expected by definition of G* when IAI small G* ~ G. When 

is very small we observe different results and B G* in table 1 seems 

to be diverging. These odd results were found to be due to 

rounding errors in their evaluation which involve division by A. 

In table (3.1 )Inegative A) , we observe: 

When IAI becomes larger g*max' B G*-2 and B 0 G*-1 become smaller, 

obviously due to the division by A or I'f. This is a fir~t 
indication for better applicability with this new operator when the 

chosen A is -ve, since 

-1 -1 -1 -1 
g* max ~gmax' B G* . < B G and B 0 G* < BOG \:j A • 

(iii) In table (3.2) (positive A) we observe: 

For A = 2.467401 and 9.869604 we observe very large values and that is 

because of singularity at the pOints~.:... and :IT. This is the main 

problemwithth:is operator i.e. to have singularity (G*-1 undefined). 

The only way to overcome this problem is to note the points of 

singularity and to avoid them beforehand. 

Away from singularity we observe for large A g* -+ max 

but B 0 G*-1 is not affected. This obviously follows from the 

expressions of these terms. 

1 

n: 

Unfortunately, the bounds here are not monotibally decreasing 

as above, but they oscillate with large limits near the eigenvalues. 

This behaviour should be t)tI...~eh into account when we consider the choice 

of A later. 
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Ex periment s on G'" 
i'; 

TABLE (3.1) (Negative )..) 

).. g"'max 
B G",-1 BOG'" -1 

-1 x 10-16 0.5 2.08 x 10
7 

1.07553 

-1 x 10-12 0.5 41.63335 1 .0004 

-1 x 10-7 
0.5 0.5 1 .0 

-0.0001 0.49998 0.49998 0.99997 

-0.01 0.49834 0.4979 0.9967 , 
-0.5 0.43053 0.41344 0.86106 

-1.0 0.3808 0.35195 0.7616 

-5.0 0.21856 0.15773 0.43711 

-10.0 0.15755 0.09155 0.3151 

-100 0.05 0.01 0.1 

TABLE (3.2) (Positive ).. ) 

).. '" g max 
B G*-1 B 0 G*-1 

1 x 10-16 0.5 0.5829 1 .0408 

1 x 10 
-12 

0.5 0.5 1 .0 

1 10-7 
x . 0.5 0.5 1 .0 

0.0001 0.5 0.5 1 .0 

0.01 0.5017 0.5021 1 ,0033 

0,5 0.6042 0.6307 1 .2084 

1 .0 0.7787 0.8508 1 .5574 

x 10
8 7 7 

2.467401 1 1 .2 x 10 1 .99 x 10 
7 7 7 

9.869604 2.5 x 10 3.4 x 10 1 .4 x 10 

100 0.10 92 0.1219 1 .5032 

10
4 0.0114 0.0136 1 .4487 

10
12 1.5 x 10 

-6 
1.9x1o 

-6 
1.9327 
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3.2. The Global Collocation and the new projection 

X is taken as before to be the space of polynomials of 
n 

degree n+m-1 satisfying the boundary conditions. We introduce y* to be n 

the space of polynomials generated by {G* '¥r} r=1.--.n where {'¥r} r=1.--,n 

is a basis of X . n 
Now if G*-1 is well defined, G* establishes a bijection 

between X and y* 
n n cP * y. n So that CP* G* x = G* x for all xn in Xn and n n n 

¢* defines a linear projection from Y to Y*. 
n n 

3.2.1. The projection norm 

In the usual analysis we show that the approximate solution 

satisfies cP (G - T) x = cP Y,where cP is the polynomial interpolation n n n n 

projection based on the n collocation points which are 

chosen th.'tbi:l..jho\.l.t t"'(S S-~c..tiol:\' to be zeros of·- Tc. '-'e 'oSlheU" , polynomial. 

With this new operator splitting G* -T* 

the subspaces G X , G* X will in general be different. 
n n However to 

analyse this new interpolation projection it is convenient to consider 

G* = G - TA, with corresponding projection 

some special form of T defined by TAX 

and 

I u* n CP* y n 

-1 
Kn = G* cP~ y, 

o ( . ) 
L: A. x ~ 
i=m-1 J. 

N.B. xn is not affected by the choice of splitting. 

CP* • n (T A is 

In this case 

(3.4) 

(3.5) 

Now we want to calculate the projection norm for CP* • 
n 



(~* y) (t) can be expressed as 
n 

n 
L: 
j=1 
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where £~ (t) are the generalized Lagrange interpolating coefficients. 
J 

then 

II ~~ II = sup 
t 

By definition 

n 
L: 
j=1 

£~ 
J 

I £j (t) I as usual. 

(~k ) o jk and may be expressed as 

£~ (t) = ~* J e. where e. is the jth unit vector and J 
J n -J -J 

is the extension operator defined in Chapter 2. 

Now returning to equation (3.4) we see that 

U* = ~* y. and so £~ (t) can be found by solving 
n n J 

G* x (j) = J ~j (3.6) 

by collocation using the points , {~j} j=1 ... ·.n-1. 

If the numerical solution of (3.6) is x(j)(t) then clearly 
n 

£~ (t) 
J 

= U* (j) Tt) 
n 

= G* x(j)(t) 
n 

This may well be the simplest way of calculating £~ (t) and hence 
J 

II~~"· 
For illustration if we define G* by 

G* x = X I I +. A x x(±1)=O J 

then we want to solve 
( .) 

G* x J = J e. 
-J 

j=1. . ...• n by collocation. 

(3.7) 

If we 

take Tchebychev polynomials . {T. (t)} ~ 1 
J. J.= 

as basis for the solution. 



( .) 
then x J (t) 

n 
= 

n 
L: 
i=1 
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; 
C~ T. (tJ. 
~ ~ 

n 
'{} as collocation points then the 

If we take ~j j=1 

collocation method gives the following algebraic equations 

Cj) 
A C = e. : 

-J " 

j - ,{cJ j 
~ - l' C2 • 

The solution for the C 

the collocation matrix 

( ') x J (t) = 
n 

j=1.---.n , 
cj

} T and A is n x n matrix corresponds to G*. n· 

will be simply the jth column of the inverse 

A. If a, , 
~J 

is the ijth element of A-1 
then 

n 
L: a T, (t) • and by (3.7) 
i=1 ij ~ 

n 

of 

$/, * (t) 
j 

( .) 
= G* x J (t) 

n 
= L: 

i=1 
a" (T!' (t) + A T.(t) ). 
~J ~ ~ 

That gives II¢~ II = 

• 

sup 
t 

n 
L: 
j =1 

n 
L: 
i=1 

a" (T!' (t) + A T.(t)) I. 
~J ~ ~ 

describes the behaviour of 1 I¢~I 1 for different 

values of A. The most striking feature is that for every value of A 

it looks as if II¢* 
n 

. ¢ II~o.The theory behind this behaviour' will n 

be considered in the next section. 

We also observe that the effect of singularity (for example 

A = 9.869604) is less than one would expect. This may be due to the 

approximations involved and the cancellations occurring in multiplying 

back by G* in (3.7). 

: I 
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TABLE (3. 3) II <P~ II 
(a) Negative A 

~ -1 x 10 
-5 

-0.5 -10 -50 0 

5 1. 98885 1. 97824 1.82248 1 .88896 1. 98885 

10 2.42883 2.42593 2.37461 2.21149 2.42883 

15 2.68671 2.68539 2.66094 2.57132 2.68671 

20 2.86977 2.86902 2.85486 2.79987 2\6977 

25 3.01179 3.01130 3.00210 2.96532 3.01179 

30 3.12784 3.12750 3.12104 3.09484 3.12784 

Table (3.4) 
(b) Positive A 

~ 1 x 10-5 0.5 9.869604 50 0 

5 1. 93885 1.9998 5.42223 1. 99848 1. 99885 

10 2.42883 2.43175 1.44 x 10 
3 

2.92604 2.42883 

15 2.68671 2.68805 2.71379 2.84581 2.68671 

20 2.86977 2.87053 .2.88501 2.95305 2.86977 

25 3.01179 3.07228 3.02157 3.06370 3.01179 

30 3.12784 3.12818 3.13465 3.16345 3.12784 
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3.2.2. Relation between ¢ and ¢* n n 

Recall equation (3.5) 

= G*-1. "'* xn 'l'n Y • 

In the usual analysis 

therefore G* -1 ¢* y (G - . -1 
= ¢n TA)Yn n 

Multiply on the left by G* to get 

¢* y = G* (G - ¢n 
-1 

¢n y TA)y n n 

Hence 
¢* G* (G - ¢ 

-1. 
¢n = TA)y n n n 

(G - TA) (G - <P -1 
= TA)y n n 

<Pn y • 

<Po 

(I - T G -1 ) G G-1 
(I - <P 

-1 -1 
TAG )y = )... n n 

- T G -1 ) -1 -1 
¢n (I (I - ¢n T)... G )Yn )... • 

The following identity may be called several times, 

-1 ¢ )-1 (I - <P T G -1 ) -1 
<Pn <Pn (I - T)... G n n A Yn 

for 

<Pn 

, 

-1 -1 
¢n (I + ¢ T)... 

-1 
(1 - ¢ 

1 -1 
(I - ¢n T)... G ) Y = G T)... G )Y)¢ n n n n n 

-1 -1 
¢n (I + - <P T 

-1 
<P ). = TAG (I G ) Y n A n n 

(3.8) 

(3.9) 

(3.10) 

But (1. 28) (I -
-1 <P )-1 (I + TA 

-1 
<Pn 

T G -1) -1) from T\, G = G (I , n )... Y 
n 

therefore (I - ¢ T G -1) -1 
¢n = ¢n (I - T G-1 ¢ )-1 

n )... Y )... n , 
n 

. , 
i 

I' , 
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Theorem 3.1 

114>~ II and II4>n II are ap:symptotically the same. 

4>* - 4> n n 
by (3.9) 

(I - TAG -1) 4> n (I - TAG -1 4> n ) -1 - <P n by (3.10) 

= <P (I - T G-1 4> )-1 - T G-1 
4>n (I-T AG-14>i\l)-1 - <P n A n A n 

= <P CI - T G-1 <P 1-1 - (I - TAG -14> n ) -1 + I - 4> n A n' . ·n 

(I - 4> ) (I -
-1 

4>n 
) -1 ) (I - TAG n 

(<P
n 

- I) eTA G-
1

4>n) (I - T
A

G-1 
4>n 

-1 = ) , 

-1 I By lemma (2.2) 11(4)n - I) TAGl/lI4>n I -+ 0 ~or- Tc.hebjvii.:e:.u ~e"()s,/u,cl 

from (l.~"O) II (I - TAG-
1 

4>n)-1 II is uniformly bounded. 

Therefore 11<p* - 4> I I -+ 0 n n 
q.e.d. 

Corollary 3.1 

If W denotes the W matrix of the operator G*.then n n , 

Proof 

From (3.9) and (3.10) 4>~ = (I - TAG-
1

) <Pn (I - T
A

G-1 4>n)-1 , 
therefore 

II 4>~ II 
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,From 

The significance of this theorem and corollary is that they 

ensure I I¢·fl will behave exactly like I I¢ I I for sufficiently large n n 

n and is not going to be very much worse for small n. 

3.2.3. The satisfaction of the conditions of Chapter 1 . 

Now it remains to show that the conditions required by the 

projection and the extended projection methods are satisfied. Also 

we introduce a new matrix W* ,which is the W matrix for this new operator n 

splitting,and we show that it has got indeed the s'ame 'asymptotic 

properties shown for W in the previous chapter. i.e. 
n 

II wI! n 
-+- II (I - K*)II K* T*G*-1. 

Lemma (3.1) K* is compact. 

The compactness of integral operators of the forms K* is 

given for example by Kolomogorov and Fomin (1957). 

Lemma (3.2) The sequence 

Proof 

K*¢* is uniformly bounded. n 

i 
, " 

ii 

I" 
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Therefore K* CP* 
n 

T*G-1 (I-T G-1 )-1 (I-T G-1 ) (I,j., T G-1 )-1 ,j., 
A A -~n A Yn ~n 

therefore 

Since 

Then 

But 

therefore 

Lemma (3.3) 

T*G -1 cP 
n 

T*G-1 CI - cP T G -1)-1 
n A Yn 

i.e. 

by (3.10) 

some form of KCP , 
n 

• 

IIT*G-
1

cp II is uniformly bounded by Lemma (2.1). n 

• 

is uniformly bounded by (3.11) , 

IIK*CP* " n is uniformly bounded • 

The sequence' {K *CP*} is collectively compact. n 

To prove K*CP* is collectively compact we require the 
n 

(3.12) 

set 'l<. * U = . {K *CP* y : n E N. Y E U} to be relatively compact. where 
n 

U is the unit ball and N is the set of positive integers. The result 

is achieved by means of the Arzela-Ascoli theorem. given for example 

by Kantorovich and Akilov (1964) by proving equicontinuity and uniform 

bounded!less of 'K *U. 

In Lemma (3.2) it was shown that K *CP* is uniform L'y n 

bounded and thus it remains to show that the equicontinuity condition is 

satisfied. With -1 <s < s < 1 and u E U (3.12) gives 
-1 -2 -
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-1 -1 -1 
U (I-¢ T, G ) ¢ y. Let K** = T* G have kernel n nAn 

K**(s.t). Then using Cauchy's inequality as in Cruickshanck (1974. 

page 103). 

First term clearly tends to zero as sl + s2 independently of y. 

Second term is uniformly bounded since 

f pet) U 2(t) dt 
n 

II~II ~ II w II n II ~ II f II-q~ Ill.s II J \\ $ 1_ 

Lemma (3.4) 

Proof 

K* ¢ * + K* as n + 00. 
n 

(K*~n* - K*) = (K*~n* + K*~n - K*~n - K*) • 

By lemma (2.1) 

i.e. II K * (¢ - I) U II + 0 n 
for every U E Y. Then 

L :::::i. 
~ 

since II ¢ - ¢ II + 0 
n n 

by theorem (3.1) and II K * II. II U II 
bounded. 

where 

are 

i i, 

II' 
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Lemma (3.5) 
J. 

I: I (I - <1>*) K* II + 0 as n + 00 provided that the 
n 

dth Qerivatives of the coefficients of the differential equation are 

bounded <.i. 

Proof 
J. J 

II (I - <1>~) K* II = II I - <1>~ K* + <1> n 
J. 
K* - <1> n 

J. 
K* I I 

cI. .l. 
~.II (I - <1>n) K * II + II K * II II <1>n - <1>~ II + 

since the first part tends to zero by lemma (2.2) and the second. part 

tends to zero by theorem (3.1). 

Lemma (3.1). (3.3) and (3.4) show that (1) K* is compact 

(2) K* <1>* + K* and (3) 
n 

K*<1>* is collectively compact which are all 

the conditions required by the extended projection method. Lemma (3.5) 

also ensures the applicability of the usual projection method. We show 

next that the result of theorem (1.8) can be in fact applied with this 

new splitting. 

Theorem (3.2) 

II W* II + II (I - K * ) -1 II as n + 00 

n 

Proof 

The proof goes as follows 

(1 ) We show (I K*) -1 (1 - T G-
1

) (I 
A 

(2 ) We show (I - <1>* K *) -1 ( = (I - T G -1 ) 
n n A 

and hence 

Then by theorem (2.1) and its corollary 

_ K)-1 

(1 - <1> K)-1 
n 
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+ E-1 I ~\ I 11 I H
n

0
i

G-
1 

(I-4>nK)-1ct>nJnl I - Ilo
i

G-
1

(I-K)-1 11 I 
i=o 

o as n + 00 # 

(1) By definition K * = T*1f-1 = T*G-1 (I-T G -1)-1 A # 

But T* = T - T A ' 

-1 -1 -1 
therefore K* (T - T A) G (I - TAG ) 

Hence 

-1 -1 -1 
= (K - TAG ) (I - TAG ) (3.13) 

(I - K *) -1 = (I - (K - TAG -1) (I - TAG -1 ))-1 

= (I K (I - TAG -1 ) -1 + T ~G -1 (I - TAG -1 ) -1 

-1 -1 -1 -1 -1 
= (I - K (I - TAG ) + (I - TAG) - I) 

= ( (I - K) (I - T G -1 ) -1 ) --1 
A 

= (I - T G -1) (I - K)-1 
A 

-1 
) 

( 2 ) We use ( 3 . 13 ) and (3. 9 ) 

(I - 4>~ K*)-1 4>~ = (I - 4>~ (K-T
A

G-
1

) (I-T
A

G-
1

)-1)-1 4>~ 

-1 -1 -1 1 1-1 
= (I - 4>~ (K(I-TAG ) - TAG (I-TAG-)-) 4>~ 

(I - 4>~(K(I-TAG-1)-1 - CI-T
A

G-1 )-1 + I) )-1 ¢~ 

= (I + 4>* (I - K) (I _ T G -1) -1 - 4>*)-1 <1>* n A n n 

= (I + 4>* (I - K) (I _ T G -1 ) -1 _ 4>*)-1 (I - T G -1 ) 
n A n A 

-1 -1 
(I - 4>n TAG )Yn 4>n 



. {CI-¢nT"G-1)Yn (I -

CI -

-1 ( 1-T " G -1 ) -1 =' {( I -¢ T" G ) v 
n On 

-1 
- ¢ =' {( I -cP n T " G + ¢ n n 

=' {( I -¢ K) 
n 

(1_T"G-1 )-1 

= (I - T G -1 ) 

" 

3.3. Piecewise Collocation 

K) 

+ ¢ n 
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+¢ n 
( 1-k) ( 1-T G -1 ) --1 

" 
CI - T G -1) -1 - ¢ } 

-1 

" n 

CI-T" G -1 ) (I -T G -1) -1 

" 

- ¢ n} 

¢n 

- ¢ n 

CI-K) 

¢)}-1 ¢ 
n n 

-1 
¢n 

" 
} -1 

. ¢n 

q.e.d. 

The space Xnp ' the collocation points . {~ .. } . 1 
JJ.: J.:= .---.n 

j=l.---.p 

and the projection p are defined exactly as in (2.4), 
nP The space 

y* is defined to be the space of piecewise polynomials generated by np 

G*'l' . J.: i 1.---,np where {'l' i} i=1. ---, np is a basis of X 
np 

",,-1 
Ifl:l 

exists then clearly G* will establish a bijection between X and y* . 
np np 

Let P* be a linear projection from Y to y* • then if np np np 

we follow the analysis in Section (3.2.1) we reach corresponding to 

(3.4) and (3.5)~. I U* = P* Y (3.14) 
~ np np 

-1 
X G* P* Y (3.15) np np 

The projection P* np is defined by 

np 
(P* y) (t) = L L*.(t) y(~) np 

i=1 
J.: i 

~. 

" 
, 



85 

where L~ is the unique polynomial such that L~ 
~ ~ 

(~) = 0 

are given by ~ 
(k-1)p+j 

~ 
jk 

j 
ij and' {~} . 

j=1·. ___ , np 
k=l,---,n 
j=l,---,p 

We note here that P* cannot be defined in each interval np 

( t. It .. ) separately 
~-1 ~ 

as is the case for P np T hat can be seen 

easily from equation (3.14) 
m-1 ( 

U* '\' , i) * = G x -+ t.. 1\. X =- P y np np ~ np np 
~ i=1 

x . 1 1 . But for the P 
~= , --m- " np 

where we have assumed continuity of 

projection 

Unp = G xnp = Pnp y and continuity of ~ x is not required. 

To calculate L*.(t) we solve, 
~ 

G* x (i) = J e. 
np -~ i=1,---,np' 

by the piecewise collocation method using the points ~ji 
i=1 , --- ,n 
j=1,---,p 

Then L*.(t) = U*(i) (t) 
~ np 

max 
t 

= G* x(i) (t). 
np 

np 
L 
i=1 

I L*.(t) I 
~ .. 

For illustration let G* be defined by 

G* x x" + A x x (±1) = 0 

We want to solve 

( .) 
G* x J = J e. np -J j=1, ---,np by piecewise collocation. 

If we take p=2 the cubic splines U., V. defined below are 
~ ~ 1 =1 , - - - , n 

suggested as a basis for the solution x np t. - t. 1 then 
J J-

• 

I, 

:! 



U (t) 
j 

V 
j 

C t) 

We notice that 
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2 
-Ct-t· 1 ) Ct-H3t. - t. 1)) 

J- J J-
in (t. 1 t.) , 

1 h3 J- • J 
2 j 

o elsewhere 

(t. - t) (t 2 '\\ - t. 1) 
(t. l' J J- in t i ) I 

h
2 J-

j 

- t) Ct -
2 

Ct
j t. 1) J+ 

in . (t .• t j+1 )) 2 
h . 1 J 

J+ 

o elsewhere 

U.(t. 1) = U.(t. 1) 
J J- J J+ 

V.(t. 1) = V.(t. 1) = 0 and V.Ct.-) = V.Ct.+) = 0 I 
J J- J J+ J J J J 

V' .(t. 1) 
J J-

o and V I • (t . - ) = V I • Ct. +) = 1 , 
J J J J 

which shows that U
i 

and Vi satisfy the boundary and the continuity 

conditions. 
U1 U2 U3 U4 U5 U6 

illustrates how the basis of the solution looks for n = 7.. 

I" 
1 



87 

. { } 2n If we arrange the U. and V. in the set IJ' such that 
1. 1. i i=1 

1J'2i+1 = \/. 
1. i=O. n-1 

1J'2i = U. 
1. i=1. • n-1 

and 1J'2n v , 
n then the basis functions for interpolation 

are defined by 

= i=1. • 2n 

If ~~. ~2j are the two collocation points in the jth interval 

( t. l' t.) 
J - J j =1 • .n 

,then the set of all collocation points 

i=1. .2n 
is given by 

~2i+1 ~1j 
r 

i=O. • 

~2i ~2,i i=1. • 

If L~ denotes the unique polynomial 
J 

L" (~i) = c5 ij then L~ can be expressed uniquely by 
j J 

2n ( .) 
L~ (t) L ex J <Pk (t) 

J k=1 
k 

To find L.(t) we solve for ex(j) 
J k 

i=1. .2n 
j=1. ___ , 2n 

The interpolation norm is given by 

2n -

II P* II_sup L L* /t) I • np - t 
j =1 

n-1 

n . 

such that 

j =1 • • 2n 

k=1. 
j =1. 

,2n 
.2n 

I' 

.\1 

',.: 
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We note that by definition of cJ>k(t) k=1 • ••• • 2n 

cJ>1 (~j) 
=f" 

I 0 j =1.2 

elsewhere . 
0 I 

for i = 2. 2n -1. 

= {" , 
0 j=2i-1. 2i. 2i+1. 2i+2 

cJ>i (~j) 
0 elsewhere 

and · t, 0 j= 2n. 2n-1 

cJ>2n (~ . ) 
J 0 elsewhere 

Whe're c is COVlstaY\t. 

which makes the matrix of the solution to have the special shape given 

in Fig. (3.2) # 

Table (3.5) gives the values of II P* II for different np 

values of A. We notice the same property observed for I 1cJ>*1 I. that is 
n 

IIp* II is tending to the same value. This here is 1.414213 which is the np 

value of I IPn21 I = I 1cJ>21 I when the collocation points are Tchebychev 

zeros. That indicates IIp* I I ·np + I IPnp 11= I lcJ>pl I which can be 

proved following exactly the arguments of theorems (3.1) and using 

Lemma (2.5) instead of Lemma (2.2). 

Theorem (3.3) 

II P* II np 
+ + 00. 

Corollary (3.2) 

If Wnp denotes the Wnp matrix of the operator G*,then 

IIp* I I can be bounded by np 



--.--~ 

58 

Fig. (3.2) The solution matrix (splines) 

Number of intervals 4 

Number of collocation points = 2 

~ non zero element 

o zero element 

I . 

This can be considered as a band matrix of order 8 and 2 sub-diagonals and 

2 super-diagonal elements in a typical row can be stored as:- (8x5) 

array • and can be solved for example by the NAG special 

procedures F¢1BMF and F¢4AVF. 
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TABLE (3.5) Ilp~pll p=2 

(a) Negative A 

~ -1 x 10 
-5 -0.5 -10 ;,.50 -500 

5 1.414213 1.412528 1.421329 1. 42334 7 1.858299 

10 1.414213 1.413833 1.419330 1.430870 1. 555555 

15 1.414213 1.414051 1.417218 1.426088 1.421426 

20 1.414213 1.414124 1.416134 1.422605 1.430752 

25 1.414213 1.414157 1. 415541 1.420364 1.4~364 

30 1.414213 1.414174 1.415181 1.418el87 1.431551 

(b) Positive A 

\¢ 1 x 10- 5 0.5 9.869602 50 500 

5 1.414213 1. 417604 4.800538 3.869048 3.168807 

10 1.414213 1.415125 4.798982 2.325582 65;11853 

15 1.414213 1.414629 4.833981 1. 859074 15.40038 

20 1.414213 1. 414450 4.920161 1.672735 8.694045 

25 1. 414213 1.414366 4.991944 1. 579949 10.13541 

30 1.414213 1. 414320 5.029934 1. 530478 19.23538 
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II (w II + II T , G -1 I I np 1\ 
11<p 11+ 1), p 

Proof. Follow corollary (3.1) with II<Ppll = IIPnp II· 

This theorem and corollory like the global case ensure 

that II P* II is not going to be much worse than II P II for any value np np 

of n. 

Lemma (3.6) 

Proof. 

The sequence {K*P*} is uniformly bounded. np 

The proof follows by the same arguments of Lemma (3.2) 

with Lemma (2.5). used instead of Lemma (2.1). 

Lerrma (3.7) 

Proof. 

The sequence' {K *p*} is collectively compact. np 

If we follow the proof of Lerrma (3.3) until we get 

1((K*p~p) y )(S1) -((K*P~p) Y)(S2) I = I (T*G-1Unf(~Mt*G~1UnJ(S2) I, 

Where U is the approximate solution of the highest derivative when the 
np 

differential operator G + Tf. is solved by the piecewise collocation method 

of section (2.4). 
-1 

Since T* G is some special form of K we use Cauc~ 

inequality' and uniform. boundedness of \ \Wnpl I as in Lemma (3.3) to show 

when 5 
2 

-+ 5 

I (T*G-1 

1 • 

U )(s) - CT*G-1 
np 1 

U ) (s ) 
np 2 

-+ 0 



Lenma (3.8) 

Proof 

K* P* np 
K* 
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as n + 00 , 

ollows by Theorem (3.3) and Lemma (2.5). v). 

arguments of the global case (Lemma 3.4). 

Lemma (3.9) 

II (I - P* ) K * II np o as n + 00 .. 

Proof 

.:0 Hows from Theorem (3.3) and Lemma (2.5). vi) 

arguments of Lemma (3.5). 

using the same 

using the same 

Now we have shown all the conditions required for the 

application of the projection and the extended projection methods are 

indeed satisfied by the piecewise collocation methods with this new 

splitting. 

Finally it remains to prove that the norm of the matrix 

W* which is the W matrix with the new sp1itting,teiids to the norm of (I-K*)-4 np' np 

as stated in the following theorem. 

Theorem (3.4) 

II W* II np 
+ II (I - K * ) -1 II ' 

Proof 

follow the same arguments of theorem (3.2) and use theorem (2.2) and 

its corollary instead of theorem (2.1) and its corollary. 

By this theorem we are in a position to apply the results 

of Chapter 1 to both the global and piecewise collocation method with this 
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new splitting. But before that we need to consider some practical ways 

of choosing the parameters Ai i=O. .m-1 . 

3.4. The choice of the parameters Ai 

The main question now is what are the values of these 

. '{' } m-1 
parameters Aii=O which ,1tA:Ji"l1 

we go back to section (1.6) we 

maximi~e'the applicability? If 

see that factors involved in the 

applicability conditions are I I¢~I I. Ilw* I I. I IK*I I and I lo\K*ml I· 

We have shown that I I¢*I I behaves almost like 
n • 

II¢ I land the effect of the parameters is very small except when G* is 
n 

nearly singular. In such exceptional cases the effect on K* will be 

even more and no improvement is expected. If we also note that 

110m K *m II < II OmK * II II K * m-1 II and 

IIwl! n 
~ II (I - K * ) -1 I! ~ 1 + II K * II + ... ,. + II K *m II II (I -K *) -1 II. 

it may be the easiest way to consider minimising 

II K* II ~sup 

s 

m-1 
r 
i=o 

. 1 

J I 
-1 

(i) 

a aT g*(s.t)1 dt .. 
s 

Here we have two independent parts inside the summation 

depending on the parametersi the coefficient part Ip,(s) - A.I 
1 1 

and 
1 

the Green's function part J 
-1 

minimised in infinity norm by 

a (i) 
g* (s,t)l· The first part is 

Ai =; {maxlpi(s)1 + minlpiCsJIL 
s s 

the best approximation of P. (s), 
1 

The second part is expected to behave 

in the same order as the norm of the inverse of the original operator G 

except when G* is nearly singular, The odd case now is when G* is nearly 

singular at the A's giving the best approximations of p. (s) • 
1 

Such cases 

can be overcome by testing different values of Ai in the region of Ai 
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until IIK*II takes its minimum value. 

3.5. Numerical Application 

3.5.1. Introduction. 

In our numerical application we will continue to work with 

the simple second order case 

x" (s) + pes) x' (s) + q(s) xes) = yes) , x8:11=0 

and G* is taking the simplest form. 

G* x = x" + Ax 1 

i.e. the parameter of x' is taken zero. Obviously if pes) F O,then the 

inclusion of that parameter will give better results. Generalization to 

higher order equations and more complicated G* is straightforward but a 

bit tedious. 

The test problems will be the same ones considered with 

the original method in the previous chapter. Problem 2 will be neglected 

because it is trivial with the above G*. 

To start with A will be taken as the one point best 

approximation of q(s). If no good improvement is achieved. it may 

be an indication that G* is nearly singular with that choice A (especially 

when pes) = 0). and hence I Ik*1 I is tested with other values near that A. 

Before we go into numerical results we derive bounds for 

IIK*II. II0K*II. 110
2

K*2 II and IIK*¢*II following a similar way 

to the original method. 
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3.5.2. Derivation of bounds for I IK*I I. 1 IOK*1 I and I !02K}! I. 

II K*<p*!I, IIK*p* 1111(1 - <P*)K*d ll and 11(1 - P* )K*d ll o np n· np· 

By definition 

1 
(K*IU*) (s) = f (-(q(s) - A) g*(s,t) - pes) dg*(S,t))' u*(t) dt 

-1 a!3 

1 
= [1 K*(s,t) u*(t) dt ; 

where k*(s.t) = -(q(s) -A) g*(s,t) - pes) dg* (S,t) • 
as 

(i) IIK*!! sup 
lIu*lI= 1 

sup 
s 

1 
f -1 K * (s, t) u * (t) dt ! 

1 1 

< su p I ( q ( s) - A) I fig * ( S,t) I d t + I p ( s) if I ;) g * ( s , t ) I d t 
s -1 -1) 's 

= K* o 

(11) To bound IloK*I! consider OK*U expressed in terms of x so that 

x" + AX = u * . Then 

OK*u '" = OT*x = -0 (px ' + (q-A)x) 

p'x' + AX 
, 

- x' q'x -px" - q -

-px '.' ApX APx 
, , 

AX 
, , - + - p x + - qx - q x 

- p Lx '.' + AX) + ( A p - q') X - (p' + q - A) x' '" 
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Returning to the variable ~* we have 
1 

COK*u*) (s) = -pes) u*(s*) - f_}(p' (s) + q(s) + q(s) -A) dg* (s.t) + 
as 

Therefore 

available. 

(q (s) - Ap(S) )g* (s.t)) u * (t) dt 

1 

II OK * II < sup Ip(s)I+lp' (s) +q(s)-Alfl dg*(S.t) I dt 
-1 as 

II OK* II 

s 

1 
+ Iq'(s) -Ap(s)lfl g*(s.t)1 dt 

-1 
K* 

1 
• 

" 

can be bounded by K* if bounds for p' and q' are 
1 

2 2 . 
( iii) Similarly for 110 K* II. conslder 

where v* = K * U* and put 

V*= G* w*=I.:l*" + A w· then 

2, { I o -PW* - (q-A) w*} 

-p(W*'" + AW*') - {2p' +(q-A)} (w*" + AW*) 

, J_ " }., '{ " " '} - \j-J" +2q -I\P W - q -21\p + (q-I\)A w* • 

C0 2K*) V* (S) = -pes) v*' (s) - {2p' (s) + (q(s) -A )}v *(s) 
1 

-{ p' (s) + 2q' lS) - Ap(S)} f dg*(S.t) V·(t) dt - {q" (s) -
-1 as 

1 

2AP' (s) + (q(s) -A)A} f g*(s.t) V*(t) dt 
-1 



Hence a bound 
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1 
+ {Ip" (s) + 2q'(s) - A p(s)111,'a g'" (S,t) I dt 

dS 

1 
+ Iq" (s) - 2A p'(s) + (q(s) -AlAI f Ig"'(slt)ldt}IIK"'I~ =K'" • 

-1 2 

K2 for Ilo
2

K",2 I I can be obtained if bounds ~r the 

second derivatives are available. 

(iv) K"'<p"'. 
n 

K*<P* n 

To bound K"'<P'" we may need to use (3.9) n 

(<P - I) T G-1 (I - <P T G -1 <P )-1 + <jl 
n A nAn <P n n 

• T G-1 ( I -<jl T G -1 <P )-1 K*(<P -I) + K* <P n A nAn <P n n 

=. K*(<P -1) T
A

G-1<p J H (I-<jl T
A

G-1<jl )-1<p J H 
n n n n n n n n n 

If W is the W matrix of the operator G*. then ,t 

IIK*<P*II n 

+K" <p 
n 

I IK*I I is bounded by K* and IIK*<P I lis bounded by K* n n* as it 
. 0 n max 

was shown in section (2.5.2). I I (I-<Pn )T AG-
1

1 I can be bounded using 

Jackson's theorem as in section (2.5.2). 

~: 
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II (I -<P )T, G -1 II 
11 1\ 

If , 

then 5I.n (n) 

;' n n 

for Tchebychev zeros. This implies that for a sufficiently ~rge n 

" K * <P *" '\, II K * <P II * 5I.n n) 2 -+- I I K * <P II. n n n n 

(v) For piecewise case II K*P* II np can be bounded by II K* II II P* II . np 

As shown above. <P* can be written as n 

<P* n 
(<P - I) T,G-1 

(I - <PnT G-1<p )-1 If, If, 
n 1\ A n' 'Yn + 'Yn • 

d 
and II (I - <P )K* II is bounded as before,(2.5.2). n 

3.5.3. Numerical results 

(1) The Constants 

Table (3.6) gives the values of K* • K*. K1*' K2* and max 0 

I 

their ratio over their corresponding values with the original splitting 

( 

!i 



K* K* K* K* 
max 0 1- 2 

Problem a A 8G* -1 8OG* -1 K* K* K* K* K Ko ~ K;-max 0 1 2 max 

1 0.5 0.75 0.7247 1.3577 0.1697 0.1812 0.3694 0.5373 0.3394 0.7248 0.3694 0.7164 

* 
2~0690 1 1.5 1.2988 2.2645 0.5661 0.6494 1.2876 6.2071 0.5661 1.2988 0.6438 

* * * 
2 3 2.4094 7.2154 1.8073 2.4094* 7.1925* 141.0485 0.9037 7..4094 1. 7981 11. 7542 

100 150 0.1792 2.1251 6.7139 8.0191 97.3315 10191. 23 0.0671 0.1604 0.4867 0.3397 

1000 1500 0.0352 1.4482 14.0512 15.8731 724.0929 38460.2 0.0014 0.0317 0.3620 0.0128 

3 0.5 -0.04514 0.4908 0.9852 0.0045 0.0045 0.01711 0.00035 0.1440 0.1440 0.219 0.0778 

1 -0.09028 0.4819 0.9790 0.0089 0.0088 0.0337 0.0014 0.1408 0.1408 0.2157 6.0778 

2 -0.18056 0.4650 0.9439 0.0174 0.0171 0.0656 0.0052 0.1369 0.1368 0.2099 0.0722 -

to 
100 -9.028 0.0998 0.3312 0.4036 0.2058 1.1505 1. 5655 0.0645 0.0329 0.0736 0.0087 to 

1000 -90.28 0.01107 0.1052 1.5859 0.2998 3.6546 18.2770 0.0254 0.0048 0.0234 0.0015 

4 0.5 -0.15625 0.4694 0.9510 0.4851 0.4755 0.8269 1.0702 0.7762 0.7608 0.7350 0.6838 

1 -0.3125 0.4422 0.9074 0.9657 0.9074 1.6238 4.1937 0.7726 0.7259 0.7217 0.6699 

2 -0.625 0.3962 0.8332 1. 9155 1.6665 3.1457 16.1507 0.8513 0.7407 0.6291 0.6450 

100 -31. 25 0.0318 0.1789 75.6156 17.8880 165.4939 29153.01 0.6049 0.1430 0.7356 0.4657 

1000 -312.5 0.0032 0.0751 499.9936 56.5685 1825.271 2897246~ 0.4000 0.0453 0.8112 0.4628 

Table (3.6) Value of the constants 
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(table (2.1)). If we look to these ratios we can easily observe 

(i) Some odd values in problem (1) (values with *) whemthe new 

splitting gives worse results. This is obviously due to the 

large values of BG*-1 and BOG*-1 at A = 1.5,3. The easiest 

practical way for avoiding these nearly singular cases is to 

consider other values<f A nearby and to choose the best of them, 

as shown later. 

" (ii) Huge reductions were achieved in problem 3. That is because (1) 

A is negative and hence BG* -1 and BOG* -1 are well behaved. (2) 

The function q does not vary very much and can be well approximated 

by a constant. (3) pes) = o. (p is not accounted for with this 

simple G*). 

(iii) For problem (4) all values are reduced but the reductions are not 

as in (2) since here p F O. Obviously if G* includes an 

approximation of p then similar reductions are expected. 

(iv) For most of the cases the reductions increase with a and the 

maximum reductions occur in K2 • 

(2) Ilwll 
n 

Table (3.7) gives the values of ! !W*!! for both global and n 

piecewise case. The values in each row are tending to a constant which 

confirms theorems (3.2) and (3.4). In comparing these values of II w*11 n 

with values of Ilw II in tables (2.2) and (2.3) we notice the following: 
n 

(i) For problem 1 < I Iw I I for every n and for every value of 
n 

a. From section (3.4) thatLS wit"ltwe expect for a = 0.5, 100 

where K was shown to be reduced. 



Table (3.7) IIW*lIvalues 
Problem a A n = 5 n = 10 n = 15 n = 20 n = 25 n = 30 (al 

Global 
1 0.5 0.75 1.0122 1.0671 1.100 1.1136 1.1248 1.1300 

1 1.5 1.3572 1.3402 1.3573 1.3543 1.3573 1.3565 

2 3.0 5".6781 5.4391 5.6996 5.6359 5.6996 5.6733 

100 150 112.6927 6.0762 7.3665 5.7066 7.7255 7.0296 

3 0.5 -0.04514 1.0042 1.0045 1.0045 1.0045 1.0045 1.0045 

1 -0.09078 1.0027 1.0094 1.0127 1. 0144 1.0155 1.0162 

2 -0.18056 1.0060 1.0181 1.0244 1.0278 1.0300 1.0313 

100 -90.78 1.2439 1.2402 1.2436 1.2450 1.2436 1.2462 

4 0.5 -0.15625 1.5017 1.5415 1.5492 1.5520 1.5533 1.5540 

1 -0.3125 2.0659 2.1750 2.1967 2.2043 2.2079 2.2099 ..... 
0 ..... 

2 -0.6250 3.3371 3.6551 3.7205 3.7439 3.7547 3.7607 

(bl 
100 -31.25 34.1241 200.3131 132.3251 148.7529 163.9271 173.4809 

Piece- 1 0.5 ~.75 1.0973 1.1324 1.1416 1.1475 1.1503 1.1526 
wise 1 1.5 1.3501 1.3558 1.3568 1.3572 1.3573 1.3574 

2 3.0 5.2240 5.5806 5.6477 5.6710 5.6816 5.6872 

100 150 3.2398 32.2530 13.3198 10.46120 8.9978 8.7398 

3 0.5 -0.04514 1.0045 1.0046 1.0046 1.0046 1.0046 1.0046 

1.0 -0.09078 1.0124 1.0161 1.0174 1.0181 1.0184 1.0187 

2.0 -0.18056 1.0240 1.0311 1.03360 1.0348 1.0356 1.0361 

100 -90.78 1.2517 1.2497 1.2489 ~2499 1.2502 1.2502 

4 0.5 -0.15625 1.4933 1.5230 1.5336 1.5389 1.5422 1.5444 

1 -0.3125 2.058 2.1308 2.1573 2.1711 2.1795 2.1852 

2 -0.625 3.3382 3.5278 :1 3.6032 3.6434 3.6683 3.6853 

100 -31.25 1.9127 8.1019 26.3493 76.9849 295.8121 1005.084 
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But for a = 1 and 2 where I IKI I is larger the only 

explanation may be due to the singularity at a = 2.19 which will 

affect the numerical calculation of 1 Iw I I more than I Iw*1 I. 
n n 

(ii) For problem (3) Ilwll < Ilw II as expected. n n 

(iii)For problem (4) although IIK*II <IIKII , is 

almost similar to I IWnl I or slightly larger.This is probably due 

to the domination of pes). (lp(s)I»/q(s)fJ ,we notice in\he 

piecewise case (b) that fora= 100,IIwil 
n IDOks as if it is 

diverging. but if we look to more values of I Iw~1 I we will notice 

that was just a matter of accident, for example I Iw401 I = 224.777 • 

. (3) The applicability 

Tables (3.8) ~ and b) give the number n required for the 

applicability for each of the methods in section (2.5.3) with this new 

splitting for global and piecewise methods respectively. In general 

we see how much the improvement achieved wit:l this new approach. If we 

go into detailed comparisons with TableE'(l.S)andC'l:,..6Jconcentrating on cases 

where the number required is more than one actually needs. we may notice 

1: *1 1: 1:* 1: Problem (1) : a = 0.5 U «·u1 Uz «.u2 

a = 1 
* * * * 

01 « 01 O2 < O2 6.1 «6.1 and 6.2 > 6.2 

a = 2 No improvement. This case and case 

6.2 with a = 1 are expected due to the bad 

results we have got for the constants there. 

These cases will be reconsidered. 



TABLE (3.8) 

Problem 

1 

3 

4 

* assuming 
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Applicability 

a 

0.5 

1 

2 

100 

0.5 

1 

2 

100 

0.5 

1 

2 

100 

"w* II n 

Ca) Global 

A o~ 

0.75 4 

1.5 35 

3 >120* 

150 >120* 

-0.04514 2 

-0.09028 2 

-0.18056 2 

-9.02778 22 

-0.15625 17 

-0.3125 97 * 

-0.6250 >120* 

-31. 25 >120* 

constant and II ¢* II -= n 

0; * * I:!. 1 I:!. 2 

4 2 2 

19 18 12 

>120* >120* ~20* 

>120* >120* >120* 

2 2 2 

2 2 2 

2 2 2 

10 4 3 

6 5 4 

22 65 16 

74 >120* 77 

>120* >120* >120* 

II ¢~II 
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TABLE (3.8) (cont'd) Applicability 

(b) Piec ewise 

o~ 0; * 
6~ Problem 61 

1 0.5 0.75 3 2 2 2 

1 1.5 11 10 7 
" 7 

2 3 >200* >200* >200* >200* 

100 150 >200* >200* >200* >200* 

3 0.5 -0.04514 2 2 2 2 

1 -0.09028 2 2 2 2 

2 -0.18056 2 2 2 2 

100 -9.02778 9 5 2 2 

..., 

4 0.5 -0.15625 5 4 2 2 

1 -0.3125 14 8 11 7 

2 -0.625 48 23 63 28 

100 -31. 25 >200* >200* >200* >200* 

* assuming II W* II cons"tant and II <1>* II 1.414 
n n 
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Problem (3) Huge improvements are acheived with a = 100 and a = 1000 

* o~ ~~ * Problem (4) a 0.5 01. « 01 « 02 , « ~1 , ~2 < ~2 

o~. 0; ~~ * a = 1 « 01. « 02, « ~1' 02 « 02 

* ~~. «~2 a 2 02 « 02 and 01 and ~1 are improved 

with the piecewise method but nothing appeared to 

happen with the global method. \ 

(4) The re-consideration of problem (1) 

Table (3.9) (a) gives the values of the constants for problem 

(1,a=2) with different values of A near 3 the best approximation of 

We look for a A with the smallest II KII . That appears to be 

A = 1. Unfortunately the other constants don't take their minimum 

there/but they are not that much worse. This situation suggests 

putting into consideration other values of A for testing. 

Tables (3.9)(b) &(c) describe the applicability for A = 0.5, 

0.75, 1, 1.25 and 1.5 with the global and piecewise methods respectively. 

We observe that with all these N s a good improvement has been achieved. 

Further we observe that the best applicability occurred with A= 1 where 

I IKI I is minimum which supports our method in dealing with the choice 

of the A's. 

Table (3.10) gives new results for a = 0.5, 1 with 

A = 0.3125 and 0.625 respectively. These A's are chosen in respect of 

the above results for case a = 2. We observe that better results are 

* obtained and the previous odd case (a = 1'~2 <~2) now is eliminated 

ro" 
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TABLE (3.9) 
Applicabili ty 

(Problem 1 ,ex 2) 

(a) The constants 

A BG* -1 BOG* -1 K*max K* Kt K~ 
0 

0.25 0.5580 1.0926 0.9567 0.9795 4.0973 12.2351 

0.5 0.6307 1.2085 0.9099 0.9608 4.2296 12.6509 

0.75 0.7247 1.3577 0.8604 0.9459 4.4126 13~480 

1 0.8508 1.5574 0.8085 0.9365 4.6722 14.4779 

1.25 1. 0288 1.8386 0.7575 0.9401 5.0562 16.4127 

1.5 1. 2988 2.2645 0.7402 0.96:7 5.6613 19.9100 

1. 7 5 1.7572 2.9863 0.7779 1. 0382 6.7193 27.1389 

2 2.706 4.4789 0.9258 1.2342 8.9578 46.6914 

2.25 5.8386 9.4009 1.5140 1. 9816 16.4517 152.4970 

2.5 39.0761 122.3044 15.2872 19.5380 183.4566 19146.00 

2.75 4.5240 13.8011 2.5872 3.3930 17.2482 378.7914 

(b) Applicability (Global) 
0* 6; * * 

A 01 61 62 

0.5 >120* 95* >120* 61 

0.75 >120* 92* >120* 55 

1 >120* 85* >120* 48 

1.25 >120* 85* >120* 49 

1.5 >120* 87* >120* 49 

(c) Applicability (Piecewise) 

6r 6; * * 
A 61 62 

0.5 130* 30 120* 26 

0.75 120* 29 105* 25 

1 110* 28 95* 24 

1.25 120* 28 105* 24 

1.5 135* 31 120* 26 
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App1.icability 

TABLE (3.10) (Problem 1, a. = 0.5,1) 

(a) The Constants 

c( A BG'" -1 BOG'" -1 K'" K'" K'" M max 0 1 

0.5 0.3125 0.5746 1.1191 0.1278 0.1347 0.7694 0.2251 

1 0.625 0.6745 1.2781 0.2822 0.3136 1.7573 1.4722 

(b) Applicability (Global) 

0.5 0.3125 8 3 2 2 

1 0.625 35 9 5 3 

(c) Applicability (Piecewise) 

.'" b.2 

0.5 0.3125 4 2 2 2 

1 0.625 9 5 2' 2' 

',' 
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CHAPTER FOUR 

Algorithms for Error Bounds and Estimates 

4.1. Introduction 

If we define the residual of any approximate solution xn 

of 
(G - T) x = y by 

(4.1) 
'\\ 

then the error e = x - x in x is related to r n n n n 

by 

then 

(G - T) en = r n' 

e n 
= (G - T) -1 r 

n 

or if 

(4.2) gives a straightforward bound on e , n 

(G - T) -1 exists, 

(4.2) 

(4.3) 

rn can be calculated by substituting xn in the differential 

equation and bounds on I I (G - T)-1 I I are available from the previous 

chapters. We will show in this chapter that by examining the inverse 

-1 operator (G - T) and the residual we can obtain closer bounds 

with less work. 

It is seen by experiments at a large variety of problems 

that I I Qnl I settles very early and gives a good estimation of the norm of 

the inverse differential operator (G - T)-1 This property is used 

to justify a simple estimate of the bound on x which is shown to be of 

high quality. 

It is also shown that by examining the inverse operator 

and the residual as before we can derive different error bound estimates 
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and error estimates which vary in their closeness according to the amount 

of work involved. 

The practical implementation of these ideas are discussed 

and tested on different examples for both the global and piecewise 

collocation method. 

4.2. The behaviour of the residual 

(a) Global case 

from (4 -1 ) the residual 

r = y - (G - T) x 
n n 

= y - (G - T - ¢ T + ¢nT) x n n 

y - (G - ¢ T)x + Tx -¢ Tx n n n n n 

= y - ¢ y + Tx 
n n 

¢ Tx n n 

= (I - ¢ ) (y + Tx ) 
n n 

(4.4) 

It can be seen from (4.4) that r is the remainder of 
n 

the interpolation of the function y + Tx n• This useful property of 

the residual will be used to obtain effectivG algorithms for error bounds 

and estimates. It will be shown also that it is essential for the 

efficiency and the reliability of these algorithms to have the residual 

well approximated by a polynomial. That can be shown to depend on the 

smoothness of the coefficients and the right hand side of the differential 

equation. For. let Rn = ¢N rn be a polynomial of degree N- 1. N > n 

which agrees with the residual at the collocation points and any other 

N - n distinct points. Then 

r n 
= ( I -¢ ) (I - ¢ ) (y + T x ) 

N n n . 

.r, 



;', 

IHl 

But by JacKson's theorem (Chen ey, p.147), if 

then there is a polynomial u of degree N - 1 such that 

Therefore II r -n Rn ll = II(I-¢N) 

= II cr -¢N) ( 

::lIcr - <l> J N 

(I 

od (y + Tx 
n 

-¢ ) (y + T x n n 

(I - ¢ ) U + cr n 

cr - <l> ) (y + T x n n 

III - <l>N II IIcr-<l> II < JdN - n 

If we write r = R + ~ then n n n 

+ II~ li-n 

II '. 
- u + u) II 

-¢ )(1 -¢ )(y+T~ -G) 
N n n 

- u) II " d 110 (y+Tx)ll· n 

No'-<J if:. t:he exbrQ. Po;nt9. are chos~n so ~hqt II I _ ¢N IJ bec.omes sm~lL 

tor l.,""~e n QY'\c:1 N e.j. i~ ~"e collocC\c\on PO\"t-S C\r-e ze<roo:. o~ Tn o.nol "h~ exl: ..... a. 

fo\V\ 't-s mQx.trnct o~ \l.n \:.'\;e.n provided the right hand side y and the 

coefficients of the differential equation' {p ~} are sufficient ly different­
~ 

iable r can be expressed as a polynomial R plus small quantity ~ if n n n 

n is sufficiently large. This polynomial Rn will be called . 0... principal 

part of the residual and ~n the modified residual. 

(b) Piecewise case 

In a similar way the residual for x can be expressed np 

i.e. a reminder of the 'piecewise interpolation of the function y + T x 
np 

d 
If we suppose that 0 (y + T x ) is continuous on the np 

ith interval (t. l' t.), then using JacKson's theorem as above there is 
~- ~ 

)11 
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a piecewise polynomial u i of degree k - 1 such that 

~4 (t.-t. 1)f sup Od(Y+TX Jet) 
1. 1.- np 

t. 'l"':-t<t. 
1.- 1. = Li . 

If R. =P
k 

r. is the polynomial which agrees with the 
1. 1. 

residual in ith partition,ri , at the collocation points and other (k-p) , 
points then as in the global case, 

r.(t) - R.(t) 
1. 1. 

(I-P
nK

) (I-P ) (y(t)+Tx (t) + u. (t) - u. [t)) np np 1. 1. 

If '¥i 

= (I - P
nk

) (I -

;s III - Pnkll 

P ) ( y ( t) + Tx ( t ) - u. (t) 
np np 1. 

II I -P np II Li • 

te: (t. 1,t.) 
1.- 1. 

This shows that the residual rnP can be expressed as a piecewise 

polynomial plus a remainder and that for sufficiently large n 

« IIR .11· i = 1 •.••• ,n. 
1. 

4.3. Improved error bounds using the polynomial approximation of the 

residual 

(A) Global Case 

If we recall (4.2). 

e = (G - T)-1 
n 

r n 



then by (4.5) 

e 
n 

= (G - T)-1 (R 
n 
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-1 1 
= (G - T) Rn + (G - T)- ~n 

R + (G - T) -1 If' 
n n 

= G-1 (I _ K)-1 

G -1 (I + (I - K)-1 K) Rn + (G - T)-1 If'n 

G -1 Rn + (G - T) -1 K Rn + (G - T)-1 If' II 

n 
(4.10) 

Now since Rn is a continuous function,by definitions of 

'" -1 
G and K 

1 
(G -1 Rn) (s) = f 

-1 
g(s,t) R (t) dt 

n 

and (K Rn) (s) 

That gives, 

m-1 
= L: Pk(s) 

k=O 

sup I (G-1 R) (s)1 
n 

s 

Therefore from (4.10) 

-1 II ~ II G Rn I + 

f1 . k 
g (s,t) R (t) dt • -1 n 

and 11K R II n 

(4.11) 

(4.12) 

(4.13) 

Since Rn is a polynomial and Green's function g(s.t) is a 

piecewise po1ynomia1,the integrals (4.11) and (4.12) can be found 

exactly. This bound (4.13) is expected to be very accurate since the 

-1 
principal part of the error IIG Rn l I is exact. The accuracy obviously 

depends on how much R is taking from the residual r which can be 
n n 

checked by the. size of I I If' II· n 

We note here also that because Rn isahigh1y oscillatory 

function and K is an integral operator, we expect many cancellations in the 

integration (4.12) which makes 11K .Rnl I much smaller than I Ir I I n 
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(assuming II'l'n ll is sufficiently small). That is guaranteed for n 

sufficiently large, depending on the smoothness of y and {p.} as shown 
J. 

in the previous section. Now having IIKRniiarid II'l'n ll relatively small 

compared with IIG-1Rnll in (4.13) justifies using a crude bound in 

II (G - T) -1 II . For example one could use a smaller n value for finding 

a bound on 
(R ). 

n 

-1 
II (G - T) II than the one being used for the calculation of r 

n 

(b) Piecewise case 

If we consider any subinterval (t. 1,t.)then the error 
J. - J. 

e. in that interval can be expressed as in (4.10) by 
l. 

where \G -1 R). and ~K RI. are defined here by 
J. J. 

n 
= E 

j =1 

(4.14) 

(4.15) 

or 

m-1 
( s) =-E 

k=O 

n 1 k 
Pk(Ht i - t i -1 ) s + ti + t i -1) ~=1 £1 gi/s,t)Ri(t) dt 

(4.16) 

and g .. (s,t) = g(Ht. - t. 1) s + t-l/ + t. l' Ht.-t. 1)t+t.+t. ). (4.17) 
l.J l"l-.. ~- l. l.- l. l.-1 

The integrals (4.15) and (4.16) can be found exactly and we get 

(4.18 ) 

For the same reasons mentioned for the global case I leil I 

can give a close bound for the error in the ith interval (t
i

_1 ,t i ) 

and for sufficiently large n I IKRil I and I I'l'il I 

to accept a crude bound on II (G - T) -1 11 • 

will be small enough 
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4.4. Error Estimates and Estimates of the bounds 

We have shown in Chapter 2 that I IQnl I + I I (G - T)-1 11 as 

n + 00 • We have also shown that the type of bounds derived for II (G _ T)-1 1 I 

involve matrix inversion and may not be applicable for small values of n. 

That is the main criticism of these bounds. One of the suggestions 

here is to takellQ lias an estimate for II(G - n-1 11. n This estimate 

clearly has no formal restriction on the value of n, but one would of 

course check that 
" Qn II 

really has settled down when using " them. 

4.4.1. Estimates using II Qn II only 

II (G - T) -1 II I Irnl I, then the above result 

justifies the following simple bound estimation. 

(4.19) 

If I IQ~I has already settled down when n = n* then it 

will be unreasonable to recalculate IIQn II with larger value of n. 

a cheaper estimate can be taken as 

• 

When I Ir I I is sufficiently small, n 

1[11 (G - n -1 II - II Q~ IIJ I II r n II will be very small (compared to the 

Hence 

(4.20) 

actual bound) which makes this estimate very close to the actual bound. 

Results show that this estimate is closer than the estimates given by 

Cruickshanck (1974) and McKeown (lS78). 

4.4.2. Estimates using approximation of the residual 

II en II ~ II G -1 Rn II + II (G - T) -1 II (II K Rn II + II '¥ nil 
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and take as an estimate 

e* 
1 

+ II'¥ II ) n (4.21) 

We note here that the calculation of '¥ involves r which 
n n 

requires the evaluation of the differential equation with the aDproximate 

• (jC.) , m 
solutlons (x~ 1 k=O 

• L \ (k) m 
substl tUU!d 'tor(x ) k=O' That means to have an 

accurate bound of I I'¥n l I may need to evaluate '¥ at a large 
n sample of 

" points which will be very expensive. However by the theory in section(4.2),we 

expect I I'¥n l I to be very small for sufficiently large n. That can be 

checked with a small selected number of points. If it is true one ~ay ne~lect 

and use the cheaper estimate 

e* 
2 

+ II Q* II n 11K R II n • (4.22) 

4.4.3. Estimates using the LU decomposition of the solution matrix 

Recall (4.10) 

e 
n 

G -1 + (G - TJ -1 K R 
Rn n + (G - T) -1 '¥ 

n 

Now since K R can be found exactly by (4.12) and it does n 

not vanish at the collocation points (unlike the residual) one can apply the LU 

decomposi tion of' the rolution matrix and 
r -1 
I- ;",d. (G - Tl K q . 

n 
Then the. 

following estimate can be obtained 

E 1 II G -1 Rn + (G - cjJ n T) -1 cjJ n K Rn II + II Q~ II II '¥ nil . 

(4.23) 

As above one may neglect and take as cheaper estimate 

1 -1 1\ G - R + (G - ¢ TlcjJ K R II . 
n n n n (4.24) 
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This estimate is very cheap to calculate since it doesn't 

require the calculation of I IQ*I I or I I~ I I· Later it will be shown n n 

that with many problems this estimate is very close to the actual error. 

4.4.4. Estimate using the principal part of the residual and the principal 

part of the equation only 

Finally one may assume further that (G - T)-1 K R is 
n 

sufficiently small compared with G-
1

R n and take IIG-
1

R II as a cheap 

n " 
simple estimate of the error. This estimate may not be reliable if the 

-1 • 
problem is nearly singular ( II (G - T) II very large), or it ha,s. got 

large coefficients, i.e. 11K R II> IIG-
1

R II . n n However apart from 

these exceptional cases this estimate is very close to the actual error 

as shown in results later. 

4.5. Numerical examples 

4.5.1. General comments on the computer program 

The program basically sets up and solves the linear 

algebraic sys~em for the collocation method producing the approximate 

solution x . n 

polynomials 

The base~ elements of the solution are chosen as Tchebychev 

IT
i

} or Legendre polynomials {p.} . 
~ 

The collocation points 

{~j} are chosen as Tchebychev or Legendre zeros depending on the base. 

A sequence of procedures are written to compute all the different 

quantities required. It is of practical interest to mention the following 

points. 

(1) The collocation matrix for the piecewise case (the solution matrix) 

takes the special-block form diagramm-ed in Fig. (4.1). This· 

Dlock matrix is solved by special library procedure. 
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(2) To calculate the matrix Q the LU decomposition of the solution 

(3) 

matrix A is used to compute its inverse. Then Q PA -1 where 

P is the evaluation matrix of the basis elements at the 

collocation points. In principle the evaluation of P could be 

at any arbitrary point s' {s J as shown in section (2.4.3) . The 
1. 

only reason for this choice is to make use of the elements 

, {T, (c J} or {p, (C J} already calculated in constructing A. 
1. J 1. J , 

In calculating Rn the choice of its number of coefficients N 

is arbitrary in principle. It could be n + 1. n+ 2. or larger. 

Since (n+1) maxima of r are known for the Tchebychev case it n 

is of practical convenience to take N ~ 2n and express R by 
n 

R 
n 

T 
n i=O 

Then using the orthogonality properties of Tchebychev series 

we can express the coefficients by 

For the 

and the 

2 
(n+1 ) 

Legrende 

Rn = Pn 

n 
L: " 
j=O 

case 

n 
L: , 
i=O 

coefficients 

2 
(n+1 ) 

r (cos (TIj )) cos(ijTI
1

) 
n n+1 n+ 

R is n 

a, 
1. 

~i} 

n 
L: 
j=O 

expressed by 

T, 
1. 

are expressed 

r (cos TIj ) 
n n+1 

P (cos TIj ) 
n n+1 

by 

cos( ijTI ). 
n+1 

Since the local maxima of Tchebychev and Legrende polynomials 

are asymptotically the same, (Szeg8 (1939) • theorem (6.21.2) ), 

TT' Pn (Cos ~1) will not be small and so the ai can be calculated 

accurately. 
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We note here that the tail coefficients of R could be taken 
n 

as a measure for the size of II'¥ II· n 
For example when these 

coefficients are sufficiently small it is an indication that II'¥ I I 
n 

is small and it may be neglected beforehand. We may also note that 

when these coefficients are sufficiently small they could be missed 

in calculating R and save some effort. 
n 

(4) If we assume that Green's function is not known explicitly t~n 

(s_t)m-1 
( 1) R (t) dt + a T (s) + a T (s)+ ... + am- 1Tm-1 (s) 
m-! n 0 0 1 1 

where the parameters a • a ••.... a 1 o 1 m- are found from the boundary 

conditions, 

m-1 m-1 
L: (G-1R )(k)(_1) + L: 8. (G- 1R )(k) (1) 

a ik n lk n Yi k=O k=O 
i=1.2 •..• m ~ 

s 
We note that J_

1 
(s-t) R (t) dt 
(m-1)! n is a multiple inteGral of ~ and 

could be expressed as a summation of Tchebychev series. using the 

properties of Tchebychev series, (FoX & Parker (1968)). 

If (G-1R ) (s) is known then (K R ) (s) is simply 
n n 

(K R ) (s) 
n 

m-1 
- L: 

k=O 

In a similar way for the piecewise case 

m-1 s (s-tT-
1 

(Ht.-.t· 1 ) ) J (m-1)l Ri(t) dt 
l l- -1 

and 

m-1 
L: 
j=O 

a .. T. (~(t.-t. 1) 
lJ J l l-

s + t.+t·
1

) 
l l -

+ 
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FIGURE (4.1) 

The matrix A with 3 partitions 

left boundary conditions 

p collocation points o 
continui y conditions 
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continu·~y conditions 

o 
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FIGURE (4.2) 

The matrix p with 3 partitions 

... 
p + m 

p 

0 
, 

1-
p+m 

p 

0 P + m 

" -

Typical element Pij 
T. (C) or= P . (~ .) • 

l J l J 
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FIGURE (4.3) 

The matrix GF with 3 partitions 

. ... 
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0 left boundary 
condi tion 

r--

I'--
continuit) condition 

continui y condition 

0 -

right boundary 
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We note here that in solving for the constants 
m-1 

{ a" J 
1J " 0 J= 

using continuity and boundary conditions we obtain 

a matrix FG taking the block form described in Fig. (4.3). 

i=i, .. " n 

To solve 

for these constants the special library procedure is used with no 

collocation points. 

4.5.2. The behaviour of I IOn I I 

Table (4.1 ) gives the values of II On II for the simple 

di fferential operators (i) x' y,x(-1) = 0 j (ii) x" = y, x (±1 ) = 0; 

(" "")(3) y ; x (±1 ) x' (-1 ) 0 and (" ) (4) x (±1 ) = x'(±1)= 111 x = = 1V X = Y O. , 

In each column 11o I I n 
is tending to a constant which in this special 

-1 
case equals II G II· That confirms lion II indeed tends to II (G - T) -1 II 

as proved previously. Table (4.3) considers the same problems for the 

piecewise case with two and four collocation points and shows that I I ° I I 
n 

is similarly tending to I IG-
1 

I I· 

As further illustration to the problems considered in 

Chapter 2, we consider the following problems which vary in order and 

smoothness. 

Problem (5) x" + it I x Y x (±1 ) = 0 

Problem (6) x'" + x" + sin (t) x y x (±1 ) - x ' ( -1 ) 0 

(iv) 200 x = Y x (±1 ) x ' (±1 ) 0 x ' + -Problem (7) 

Problem (8) 
(iv) t 

x + x'" + e x y x (±1 ) = x' (±1 ) 0 

The values of II Qnllof these problems are given in table 

(4.2) for the global case and in table (4.4) for the piecewise case. 
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TABLE (4.1) The behaviour of II Qn II (Global) 

m 
n 1 2 3 4 

1 1.7071 0.5000 0.1967 0.04167 

2 1.8660 0.4268 0.1732 0.0363 

3 1. 9239 0.5000 0.1957 0.04167 

4 1. 9511 0.4665 0.1983 0.0397 

5 1. 9659 0.5000 0.1916 0.0422 

7 1. 9808 0.5000 0.1924 0.4167, 

10 1. 9898 0.4915 0.1947 0.0406 

14 1. 9945 0.4952 0.1973 0.0410 

19 1. 9969 0.5000 0.1974 0.04167 

25 1. 9982 0.5000 0.1967 0.04167 

TABLE (4.2) The behaviour of II Qn II (Global) 

Problem 
n 5 6 7 8 

1 0.5000 0.1475 0.0045 0.0400 

3 0.5126 0.1649 0.0053 0.0389 

5 0.5473 0.1629 0.0052 0.0395 

8 0.5581 0.1641 0.0053 0.0387 

12 0.5621 0.1631 0.0053 0.0391 

17 0.5651 0.1637 0.0053 0.0391 

22 0.5651 0.1639 0.0053 0.0391 

27 0.5651 0.1640 0.0053 0.0391 
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TABLE (4.3) The behaviour of II Qn II (piecewise) 

m 1 2 3 4 

n 2 points 4 points 2 points 4 points 2 points 4 points 2points 4 points 

1 1.70711 1.92388 0.25000 0.42678 0.14226 0.20152 0.01042 0.03107 

2 1.85355 1. 96194 0.48928 0.49928 0.18698 0.19733 0.03990 0.04155 

4 1.92678 1. 98097 0.59732 0.49982 0.19448 0.19748 0.04122 0.04164 

5 1. 94142 1. 98478 0.49000 0.49707 0.19574 0.19750 0.0)002 0.04179 

10 1.97071 1.99239 0.49957 0.49997 0.19706 0:19752 0.04160 0.04166 

20 1. 98536 1.99619 0.49989 0.49999 0.19742 0.19753 0.04167 0.04167 

TABLE (4.4) The behaviour of II Qn II (piecewise) 

Pro- 5 6 7 8 
blem 

n 2 points 4 points 2 points 4 points 2 points 4 points 2 points 4 points 

1 0.30·37 0.5064 0.1245 0.1634 0.0034 0.0046 0.0138 0.0315 

2 0.5341 0.5661 0.1641 0.1637 0.0054 0.0053 0.0394 0.0392 

4 0.5602 0.5666 0.1583 0.1626 0.0053 0.0053 0.0394 0.0392 

c: 0.5588 ...J 0.5645 0.1645 0.1634 0.0052 0.0053 0.0387 0.0392 

10 0.5658 0.5668 0.1637 0.1640 0.0053 0.0053 0.0393 0.0393 

20 0.5666 0.5668 0.1640 0.1640 0.0053 0.0053 0.0392 0.0392 
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We notice from these results and by testing the behaviour of 1 lQ 11 n 

with other different problems that I IQnl I settles down very quickly and 

gives a sufficient approximation for II (G - T) -1 11 with very small 

values of n. In comparing the rate of convergence of II Qn ll with the 

residual II r nil and the last coefficient of the solution~1 en 1 • 

we observed. that of II Qnll was always higher especially when the 

right hand side is less smooth. That behaviour is expected since the 

" rate df convergence of the residual and the coefficients depend on the 

right hand side as well as the left hand side while I IQnl I depends on 

the left hand side only. 

This quick convergence of I IQ I I. even when the coeffic­n 
, 

ients on the left handside are not smooth as in problem 5. relative to r n 

supports the idea of taking II Q~II (n* small) as an estimate of 

and avoid the expensive calculation of IIQnl \ for larger 

values of n. 

4.5.3. Results for the global case 

1. The behaviour of the residual 

We mentioned in section (4.1) that the residual. 

rn = y - (G - T) xn 

x in the differential equation. 
n 

is calculated by substituting 

In (4.4.1(3)) we described how to 

calculate the principal part of the residual 

n-1 

Rn = T n 
L 
k=O 

• Then the modified residual 

~ is simply calculated by subtracting Rn from rn' 
n 

The behaviour of 

the residual which was mentioned to be like the remainder of the 

interpolation of the function (y + T xn ) is considered by examining the 
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values of I Irnl I and I I~nl I with different problems. 

In table (4.5) problem 1 is considered with the smooth 

right hand side y = 1. We observe that I l~nl I = 0 for all n> 4. That 

can be seen since y + T xn = 1 + (1 + t 2
) xn is a polynomial of degree 

n + 3 and R is a polynomial of degree 2n - 1. 
n 

In table (4.6) problem 1 is considered with the singular 

right hand side y = /I(t - O. 9 )1 • Here we notice the slow convergence of , 
is not much smaller than with the all 

given values of n. 

Problem 2 is considered first with y = cosh(1) in Table 

(4.7) and then with Y = t 2 + 
1 

.1 ' which is nearly singular at zero,in table 

(4.8) . The notable thing here is that in the second case when n becomes 

sufficiently large (n>ffi then rn starts to settle down and ll~nl I tends 

very quickly to zero. This behaviour is because y is an analytic function. 

In tables (4.9) and (4.10) the function y + T x is 
n 

smooth and I IRnl I gives a good approximation of the residual very early. 

In table (4.10) where Y is less smooth (has discontinuities in the third 

derivatives) we observe that the convergence is slower but quicker than 

that shown in tables(4.6) and (4.8). 

In table (4.12) problem 5 which has got a discontinuous 

coefficient on the left hand side is considered with smooth right hand 

side y = 1. We notice here that the residual is behaving better than 

that in table (4.6) which confirms that the right hand side is dominant 

in the residual behaviour. 

N.B. I Irnl I. I IRnl I, I IG-1Rnl I, 11K Rn l I and I I~nl I are evaluated using 

200 equally spaced points. 
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TABLE (4.5) The behaviour of the residual 

Problem 1 Y = 1 

n II roll lI'¥n ll II G-
1

R II n 11K R II n 

4 0.01086 0 0.0119 0.0119 

0.0030 0 7.5 x 
-5 10 -5 

6 10 9.4 x 

7 0.0004 0 5.3 x 10- 6 
7.4 x 10-6 

" 0.0002 0 3.8 x 10-6 3.8 x 
-6 

8 10 

-7 10-9 . 
10-9 

11 2.4 x 10 0 1.3 x 1.3 x 

-8 0 1.2 x 
-11 -11 

13 4.0 x 10 10 1.2 x 10 

-13 0 1.7 x 
-15 -15 

18 5.6 x 10 10 1.7 x 10 

-15 
0 23 2.3 x 10 0 0 

TABLE (4.6) 
Problem 1 y = lit - 0.91 

n lIr'n ll II '¥ nil II G -1 R II n 11K R II n 
4 0.1979 0.1539 0.03196 0.03145 

6 0.2958 0.1879 0.0057 0.0007 

7 0.2712 0.0919 0.0143 0.0174 

8 0.2267 0.1591 0.0039 0.0046 

11 0.1056 0.0984 0.004 0.0048 

13 0.1909 0.1212 0.0018 0.0022 

18 0.0835 0.0797 0.0018 0.0022 

23 0.1059 0.1004 0.0003 0.0004 
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TABLE (4.7) The behaviour of the residual 

Problem (2) y = cosh (1) 

n II rnll II'!' nIl II G-
1 R II n II K Rn II 

4 5.7 x 10 
-3 

0 5.7 x 10-4 
5.7 x 10 

-4 

-5 
0 1.3 x 10-6 1.3 x 10-6 

6 4.5 x 10 

-7 
0 

-9 -9 
7 3.9 x 10 4.92 x 10 4.92 x 10 

-7 
0 3.5 x 10- 9 3.5 x 

'-9 
8 2 x 10 10 

-12 0 7.3 x 10-15 
7.3 x 10-15 

11 2 x 10 

-15 0 13 3.9 x 10 0 0 

23 0 0 0 0 

TABLE (4.8) Problem (2 ) 1 
Y t2 + 0.1 

0 II r nIl II'!' nIl II G-
1R II n II K R II n 

4 5.289 1.21 0.926 0.926 

6 3.009 0.3873 0.296 0.296 

7 1.093 U.2015 0.1387 0.1387 

8 1.645 0.116 0.0947 0.0947 

11 0.3126 0.0175 0.0137 0.0137 

13 0.173 0.00517 0.0043 0.0043 

-4 -4 -4 
18 0.0738 2.2 x 10 4.2 x 10 4.2 x 10 

-3 1 x 10- 5 -5 -5 
23 7.7 x 10 1.77 x 10 1.77 x 10 
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TABLE (4.9) The behaviour of the residual 

Problem (3) y = 
1 

2(t + 5) 

n II r nil II '!' nil II G - 1Rnll II K Rn II 

-4 
5.6 x 10-8 10-6 10-7 

4 1.3 x 10 9.x 7.2 x 

-7 1.1 x 6 2.5 x 10 10-11 
5.8 x 10-8 

5.7 x 10-9 

7 3.2 x 10 
-7 

1.5x 10-13 
5.2 x 10 

-9 
4.6 x 10-10 

-8 _ 15 
10-10 

, 
10-11 8 4 x 10 2 x 10 5.4 x 4.2 x 

-11 
0 11 7.1 x 10 4.7 x 10-13 

4.2 x 10-14 

-13 
0 13 9.7 x 10 4.7 x 10-15 

4 x 10 -16 

18 0 0 0 0 

23 0 0 0 0 

TABLE (4.10) 
(3) Y -(t'+ 5i~ t + 2 t<O Problem 

(2-t) e t~ 0 

n 111" nil II'!' nil II G -1 R II II K Rn ll n 

4 0.0556 0.0224 0.007 0.00057 
-3 

5.3 x 10-4 -4 -5 6 7.4 x 10 5.5 x 10 4.4 x 10 

7 2 x 10 
-3 

3.4 x 10-4 2 x 10-4 
1.7 x 10 

-5 

-3 
1.9X 10-4 -4 10 -5 8 2.8 x 10 1.4 x 10 1.2 x 

-4 
7.1 x 10- 5 10-5 10-6 11 4.4 x 10 2.9 x 2.3 x 

-4 
4.1 x 10- 5 10- 5 10-6 13 2.6 x 10. 1.5x 1.2 x 

-4 
1.3 x 10- 5 10-6 10 -7 18 2.2 x 10 4.3 x 3.4 x 

-5 
6.6 x 10-6 10-6 -7 23 4.5 x 10 1.4 x 1.1 x 10 
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TABLE ( 4. 11 ) The behaviour of the residual 
-1 

Problem (4) y = t+3 

n 11 rn! I 11'1' nil II G-1Rnll II K Rn ll 

4 0.0243 4.2 x 10 
-5 

0.001 0.0026 

6 0·'OD135 8 x 10-8 
2.9 x 10-5 

1.2 x 10 
-4 

-4 
3.7 x 7 5.2 x 10 10-9 

4.5 x 10-6 
2.5 x lD- 5 

8 7.6 x 10-5 
1.5x 10-10 

8.4 x 10-7 
5.2 x 10-6 

11 8.2 x 10-7 1.5 x 10-15 
4.6 x 10-9 4.1 x 10-:8 

13 3.6 x 10-8 
0 1.5x 10-10 1.5x 10-9 

18 1.3 x 10 
-11 

0 2.7 x 10-14 
3.9 x 10-13 

23 0.7 x 10-15 
0 0 0 

TABLE (4.12) Problem (5) y = 1 

n \I r nil I I'l'nl I II G -1 Rn II II K Rn \I 

4 0.2175 0.0396 0.0352 0.0088 

6 0.1081 0.0209 0.0114 0.0026 

7 0.0497 0.0274 0.0068 0.002 

8 0.0757 0.0167 0.006 0.0014 

11 0.031 0.0167 0.0028 0.0007 

13 0.0262 0.0137 0.002 0.0005 

18 0.0319 0.0084 0.0011 0.0003 

23 0.0147 0.007 0.00064 0.00017 
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2. The behaviour of IIG-
1

Rn I I and II K R II n 

With the values of II rn l I the corresponding 

values of I IG-1Rn l I and 11K Rn l I are also given. In comparing 

IIG-1Rnll and 11K Rn ll with IIRnl1 observe thefollowing: 

(i) and 

when n is sufficiently large (depending on II K II J II K R II < II R II. n n 
-1 

(ii) When n becomes larger IIG Rn ll « IIRnl1 and 11K Rn ll «IIRnll 

because in such case we will have higher oscillation on Rand 
n 

hence more cancellations will occur in the evaluation of G-1R 
n 

and K R . 
n 

We also observe that have a 

similar rate of convergence. That can be seen by definition of G-1Rn 

and K R since the coefficients of the equation and Green's function and 
n 

its derivations are bounded. 

3. Estimates of the Erro r bound 

I 

The estimates derived in section (4.3) are 

(1 ) e II Q~ II II r nil Q 
* 

II G-1Rnll + II Q* II (II K R II + II '¥ II) (2) e 
1 n n n 

(3) e * II G -1 R II + II Q* II II K R II 2 n n n 

(4) E1 II G -1 Rn . + Ii (G - ¢ T) -1 ¢ K R II + 
n n n II Q~ II II If nil 

(5) II E211 II G - 1Rn + (G -¢ T) -1 ¢ K R II . 
n n n 

These estimates are compared with the actual error e in 
n 

tables (4.13) to (4.17). We note here that when the actual solution is 

unknown a solution with n = 40 is used in estimating en' I lenl land IIE21 I 

are evaluated usin~ 200 equally spaced points. 
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The error estimates 

TABLE (4.13) Problem 1 y = 1 

e e* _ e* 
E1 = II E211 II en 1\ n 

0 1 2 

4 0.1012 0.023 0.0173 0.0168 

-3 1.6x 10-4 -5 -5 
6 2.8 x 10 8.9 x 10 9.1 x 10 

-4 1.2 x 10-5 
5.9 x 

-6 -6' 
7 3.7 x 10 10 6 x 10 

-4 7.3 x 10-6 
4 x 10-6 -6 

8 1.8 x 10 4 x 10 

11 2.6 x 10-7 2.2 x 10-9 
1.1 x 10-9 

1.1 x 10 
-9 

10-8 2 x 10-11 
1 x 10-11 -11 

13 3.7 x 1 x 10 

18 5.2 x 10 
-13 3.1 x 10-15 

1.6 x 10- 15 2.4 x 10-15 

TABLE (4.14) Problem 1 y Ilft-0.9H 

n eO e* 
1 

e* 
~ E1 II E211 Ilenll 

4 0.1845 0.2047 0.0602 0.1965 0.0531 0.0177 

6 0.2782 0.18145 0.0122 0.1839 0.0088 0.0022 

7 0.2528 0.1162 0.0305 0.1094 0.0237 0.012 

8 0.2113 0.1525 0.0081 0.1549 0.0067 0.0005 

11 0.0984 0.0961 0.0082 0.0984 0.0067 0.00025 

13 0.1779 0.1150 0.0039 0.1159 0.0029 0.0007 

18 0.0778 0.0763 0.0039 0.0773 0.0030 7.78xlO 
-5 

23 0.0988 0.0943 0.00067 0.0940 0.0005 
-4 

1.3 x 10 
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The error estimates 

TABLE (4.15) Problem 2 
1 

Y t 2+ 0 •1 

n eO e* e* E1 II E211 II en II 1 2 
4 1.86 1.678 1.2422 1.125 0.707 0.606 

6 1.0557 0.536 0.3997 0.366 0.2297 0.212 

7 0.382 0.259 0.1881 0.174 0.103 0.0984 

'\ 
8 0.5789 0.1688 0.1280 0.1159 0.0751 0.0713 

11 0.1065 0.0246 0.0184 0.0124 0.0106 0.0101 

13 0.0609 7.6xlO-3 5.8xl0 
-3 

0.0042 0.0034 0.0032 

-4 -4 -4 -4 -4 
18 0.0260 6.45xl0 5.6xlO 4.6xl0 3.9xl0 3.8xlO 

-3 -5 -5 -5 -5 -5 
23 2.7xlO 2.72xlo 2.32xlO 1.98xl0 1.63xlO 1. 6x 10 

TABLE (4.16) Problem 3 y = J t 3 + sin t + 2 if t < 0 

l(2-t) e
t 

if t ~ 0 

n eO e* e* E1 II E211 II en II 1 2 

4 0.0269 0.0181 0.0073 0.0177 0.0069 0.0063 

-3 -4 -4 -4 -4 -4 
6 3.6xlO 8.2xlO 5.6xlO 7.9xl0 5.4xl0 4.9xlO 

-4 -4 -4 -4 -4 -4 
7 9.7xlO 3.7xlO ? .1x 10 3.6xl0 2 x 10 2 x 10 

-3 -4 -4 -4 -4 -4 
8 1. 3xl0 2.4xlo 1. 5x 10 2.3xl0 1.4xlO 1.3xl0 

-4 -5 -5 -5 -5 3 x 10- 5 
11 2.13xl0 5 x 10 1. 5x 10 5.9xl0 2.9xlO 

-4 -5 -5 -5 -5 -5 
13 1.26xlO 1. 75xl0 1.55xl0 1. 6xlO. 1.4xlO 1.5xlO 

-4 -5 -6 -5 -6 -6 
18 1.06xl0 1.o6xlO 4.6xlO 1 x 10 4.2xl0 3.9xlO 

-5 -6 -6 -6 -6 -6 
23 2.2xlO 4.6xlO 1.3xl0 3.7xl0 1.4xl0 1.5xlO 
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The error estimates 

TABLE (4.17) Problem 5 y = 1 

n eO e* 
1 

e* 
2 E1 II E211 II en II 

4 0.1232 0.0625 0.0401 0.0627 0.0403 0.0284 

6 0.0611 0.0244 0.0126 0.0244 0.0126 , 0.0086 

7 0.028 0.0234 0.0079 0.0228 0.0073 0.0099 

8 0.OLJ28 0.0162 0.0078 0.0161 0.0066 0.0044 

11 0.0175 0.0126 0.0032 0.0124 0.003 0.0041 

13 0.0148 0.0100 0.0023 0.0100 0.0022 0.003 

18 0.0181 0.0061 0.0013 0.0060 0.0012 0.0007 

28 0.0115 0.0037 0.0005 0.0037 0.0005 0.0002 
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(1) In table (4.13) (problem 1. y = 1) we observe 

(i) 

(ii) 

e* -
1 

e* 
2 and E1 = II E211. That is obvious because II\!' 11= 0 n 

as shown in Table (4.5). 

e* becomes closer to the actual error when n increases while 
1 

E1 gives very close results even with small value ,f n. 

This is justified since E1 in this case gives estimation of 

the error itself while e1 is an estimate of the bound which 

becomes closer to the actual error when becomes 

very small. 

(iii) e
Q 

is not as close as e1 but is not that far away. 

(iv) We note that at n = 13 E1 is exactly equal to lien II while 

for n = 18 becomes a bit different. This may be due to round 

off error. 

(2) In table (4.14) (problem 1. y = It(x=-O.9)1. we observe 

(i) e
Q 

is dominated by the residual and e1 and E1 are dominated 

by the modified residual II \!' n II which is like the residual 

in this case (refer to table (4.6)). 

(ii) e*2 and E2 are not that close but they are acceptable. 

These poor results are expected with this example since the 

residual is not suffiCiently small and R is not dominant. 
n 

However that is guaranteed when n is sufficiently large as 

shown in section (4.2) and then we expect these estimates to 

be much closer to the actual error. 

(3) Problems2.3 and 5 are considered with different right hand sides 

in tables (4.15). (4.16) and (4.17). We can see that when the 

residual becomes sufficiently small e
Q 

becomes closer to the actual 
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error while the estimates e2 and E becomes closer only when Rn gives 
2 

a good approximation of r . 
n 

(4) In comparing the amount of work it is very difficult to form firm 

conclusions, because many factors are involved. However in general 

one expects e1 and E1 to be the most expensive since they r~uire 

the evaluation of the residual or the modified residual. In 

comparing e2 with E2 , E2 is the cheapest since e2 still requires the 

evaluation of the coefficients of the differential equation in 

evaluating K R . n 

Finally these estimates werE compared with the estimates given by 

Cruickshanck (1974) and McKeown (1978) and we found that even eO is 

superior to them. However with more analysis these estimat~ might be 

improved even more. 

4.5.4. The piecewise case 

1. Numerical results 

Here we expect better results than for the global case 

when y + Tx is less smooth due to the superiority of piecewise 
n 

interpolation in such cases. That may be seen if we consider the less 

smooth case (problem 2, 
1 

Y = t2+ 0.1) and the smooth one (problem 4, 

1 
Y = t+3 ). In the first case we may notice that with the piecewise case 

(table 4.18) II~nl I takes relatively small values with small n compared 

with the global case (table 4.8), while in the second case I I~ I I ~ 0 
n 

more quickly with the global case (see table (4.11) and table (4.19) 1. 

If we consider the estimates in table (4.18) and (4.19) 

we see that they behave in general like the global case. We observe 

that eO gives close results when the residual is sufficiently small, 



The piecewise case 

TABLE (4.18) 
1 

Problem 2,y = V+0.1 

Interp. n partit II r nil 1I\lI nil II G -1 R II II K R II eO e* e* E1 II E21I II en II -lon n n 1 2 

3 1 0.1457 0.0011 0.0489 0.0489 0.0513 0.0665 0.0661 0.0336 0.0332 0.0479 

3 4 2 0.5221 0.0161 0.0244 0.0244 0.1836 (1.0387 0.0331 0.0242 0.0186 0.0197 
Tcheby. 

6 3 0.2209 0.0044 0.0047 0.0047 0.0777 0.0079 0.0064 0.0053 0.0038 0.0041 

points 8 4 0.1066 0.00092 0.00095 0.00095 0.0375 0.0016 0.0013 0.0011 0.00082 0.00087 

..... 
!AI 

TABLE (4.19) 1 ..., 
Problem 4, y =- (t+3) 

Interp. n partit II r nil I I \lin I I II G -1Rn II II KR II eO e* e* E1 
" E211 

II en II -lon n 1 2 

3 1 0.0082 8.7xlO 
-6 

0.00015 0.00074 0.0037 0.00039 o .f"Jn[l3!i 0·00017 o .nOO17 o .nonl7 

-6 -5 -4 -4 -4 -5 -5 -5 
3 Gauss 

4 1 0.0042 2.2xlO 5 . 2x 1 0 3 . 2>< 10 0.0019 1.9xl0 1.9xlo 5.8xlo 5.8xlo 5.5xlo 

points 6 1 0.0015 2.6xlO 
-7 -6 -5 

9 . 7x 10 8. 5x 10 
-4 -5 

6.9xlO 4.8xlO 
-5 -5 -5 -5 

4.8xlo 1.07xlo l.o7xlo l.o2xl0 

8 1 7xl0 
-4 

5.7xlO 
-8 -6 -5 

2.7xlo 3.2xlO 
-4 -5 

3.2xlO 1. 7xlO 
-5 -6 -6 -6 

1.7xlo 3.04xlo 3.o4xlo 2.9xl0 

,.# 
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while e2 and E2 become closer when the residual is well approximated by 

its principal part. It is also notable that E2 is the closest in most 

cases. 

We should note here that in the calculations of these estimates 

a lot of work is need~d with the piecewise case since Rn needs to be 

calculated at every partition. 

Problem 9 

For further investigation two more problems are examined. 

E x"(t) -(2 - t 2
) x (t) = -1) x(±1) o -4 

E = 10 

This problem is taken from Russell and Shampine (1972). The 

solution is symmetric about zero and it has a boundary layer of width 

1£ at 1. 

Problem 10 

x"(t) + 2yt x'(t) + 2y(t) = 0 x(O) = 0 x (1) = e-y 
y = 1 

This problem is taken from Russell and Christiansen (1976). 

The solution is e-yxi which is well behaved when y = 1. Large values 

of Y will be considered later. 

These problems are considered with both Tchebychev and Gauss 

points. We notice in table (4.20) (Problem 9) that the modified 

residual is very small relative to the residual which takes very large 

values. With small n(n=4) the estimates with both Tchebychev and Gauss 

points are very poor, but when n becomes larger these estimates start to 

settle down and E2 becomes very close to the actual error. The results 

for problem (10) which is a smooth one, are given in table (4.21). We 

observe there the estimates give very close results even with small values 



The ~iecewise case 
r 

10-4 x" -(2-e)x = -1 TABLE (4.20) 

Interpol. n ;Jartition IIrnll III!' n" II G -1 R II II K R II e
Q 

e* E1 II en II n n 1 

4 4 8262.89 15.34 18.36 209879.9 0.7154 36.5 4.64 0.5914 

3 
8 8 5395.14 2.3342 2.7420 29378.56 0.5023 5.47 0.9967 0.3276 

Tcheby- 16 16 2184.431 0.1980 0.2414 2706.16 0.2130 0.5053 0.15 0.0906 
chev 
points 32 32 569.9 0.0093 0.0256 271.48 0.0520 0.0503 0.0127 0.0134 

<1> ..... 3 4 4 8825.58 16.27 12.49 14517 . 5 0.7888 25.46 2.1457 0.2685 

Gauss 8 8 '6483.5 2.8202 2.16 23469.4 0.5922 4.307 0.5029 0.1607 

points 16 16 3054.53 0.2806 0.2270 2364.5 0.2831 0.44 0.0921 0.0512 

32 31 871.88 0.0144 0.0135 137.74 0.0792 0.0260 0.0091 0.0098 



r The piecewise case 

TABLE (4.21) x" + 2 t x' + 2 x 0 

3 points n partit II r nil II'l'n" II G -1 R II 11K R " eO e* e* e** e** II en!! -lon n n 1 2 1 2 

-6 -4 -4 -5 -5 -5 -5 
9.4xl0 Tcheby- 4 3 0.0022 0 8.56xl0 1.2x 10 3xl0 2.6xlO 2.6xlO 1. 05xlO 1.05x10 

chev 
-4 ",7 -6 -5 -6 -6 -7 -7-

8 5 3xlO 0 4.4x10 8.05xlO 4.2xlO 1. 56xlO 1. 56xl0 1.05x10 1.05xl0 5.2xlO 

-5 -8 -7 
16 11 3.13xlO 0 2.6x10 4.5xl0 

-6 -8 
4.37xlO 9. 9xl0 9.9x10 

-8 
3.5xlO 

-8 -8 
3.5x10 3xlO 

-8 

-6 -9 -8 
0 32 21 4.05xlO 0 1. 5xlO 2.9xl0 
j-

5.7xlO 
-7 

5.3xl0 
-9 

5.3xl0 
-9 

2.1xl0 
-9 

2.1xlO 
-9 

1.7xl0 
-

-6 -5 -4 -6 -6 -6 -6 -I 
Gauss 4 2 0.0043 0 2.7x10 5xl0 6xlO 7.7xlO 7.7xlO 2.8xlO 2.8x10 2.4xl0 

-4 -8 -6 _5 -7 -7 -8 -8 -/ 
8 4 5.3xlO 0 7.8x10 3.7xl0 7.5xlO 5.8xl0 5.8xl0 7.9xlO 7.9xlO 7.6xlO 

-5 
16 7 6.7xlO 0 2.4xlO 

-9 
2.1xl0 

-7 
9.3xlO 

-6 
3.1xl0 

-8 
3.1xlO 

-8 
2.3xlO 

-9 
2.3xl0 

-9 
2.3xlO 

-! 

14 
-6 

32 8.3xlO 0 7.4xl0 
-11 

1.4xlO 
-8 -6 -9 

1.16xl0 1. 9xlO 1.9xlO 
-9 

7.3xlO 
-11 -11 -

7.3xlO 7.2x10· 



141 

of n. 

In comparing Gauss points with Tchebychev ones we may notice 

that the error is smaller and the estimates are closer in the Gauss case. 

This superiority of Gauss points c.onfirms the result of 

Swartz (1973). 

De Boor and , 
Finally we may notice that with these examples as well as others 

when using the equally spaced partitions scheme, the maximum error always 

occurs in the same place. That suggests looking for a new dividing 

scheme which may use these estimates to make partitions with larger error 

having small sizes. That will be considered in the next Chapter. 
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2. Graphs for the residual, the estimates and the actual errors. 

For close comparisons some graphs are plotted for the residual, 

the estimates and the actual errors in a sample of subintervals and in the 

whole interval with both Tchebychev and Gauss points. 

The problems considered are problem (10) and the follo~ng problem. 

Problem (11) x" (t) + (3 cot (t) + 2 tan (t)x' (t) + 2 x (t) 

solution 

4 

This problem from Russell and Shampine (1972) and it has the 

1 

sin2 (t) 

In studying these graphs we may notice the following. 

FIRSTLY THE RESIDUAl 

(i) The choice of the collocation points is well reflected in the 

o 

behaviour of the residual since it is like the interpolation error 

of y + Tx , with the collocation points taken as interpolation 
n 

points. With Tchebychev points we observe the minimax ~roperty 

while the minimum over squares is observed with Gauss points. 

(ii) The residual gives a very close estimate to the error in the highest 

derivative of the solution. That is expected when 11K r I I is np 

sufficiently small which is often the case. 

(iii) We may also notice the discontinuity of the residual at the joining 

points. That is expected since we haven't assumed continuity 

on the highest derivative of the solution. 

SECONDLY THE ERROR 

(i) The error takes very small values at the end points of the partition 

with Gauss points. We will show that the error there exactly 



equals l(G - T) -1'1'). as follows. 
l 

Recall (4.14) 
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e. =(G -1 RJ. + ((G - T) -1 K Rl. + ((G - T) -1 '1'). 
l l l l 

At the end points the discontinuity of Green's function will be 

removed and (4.15) becomes 

(1 ) 
n 
l: 
j=1 

1 
J 

-1 
g .. (1,t) R.(t) dt. 

1J l 

But : polynomial and of degree 2p -m.--l and 

g(1,t) is a polynomial of degree < rr\ by Gaussian quadrature 

-1 
G R.(1) will become zero. 

l 
In a similar way it can be shown 

that (K R.) (s) defined in (4.16) is zero at 1. 
l 

the error at end points ~ \\ (G - T) -1\\ \\ '1' . II . 
l 

This makes 

This property is not observed with the Tchebychev case since the 

-' weight function there is (1 - t 2
)2 but we may notice that the error 

wstill smaller at the end points than in the middle of the sub-

range. That follows since the integral of a Tchebychev polynomial 

is of order 
1 
r 

at the middle points while is of order 

points(where r is the degree of the polynomial). 

at the end 

(ii) The estimates E2 and GR =(G-1R~ are very close to the actual error 

and are closer with Gauss points as expected. 
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Problem (10) The GR estimate 
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Fig (4.7} Problem (10) . The GR estimate 
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Fig. (4.8) Problem (0) The E1 estimate 
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Fig. (4.9) Problem (0) I The E2 estimate 
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Fig. ],4 .10) Problem (11) The residual 
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Fig. (4.11) Problem (10) The residual 
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Fig. (4.12) Problem (11) The GR estimate 
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Fig. (4.13) Problem (11) The GR estimate 
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Fig. (4.14) Problem (11) The E2 estimate 
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Fig. (4.15) Problem (11) The E2 estimate 
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CHAPTER FIVE 

Adaptive mesh selection algorithms for boundary value problems 

5.1. Introduction 

We have shown in the previous chapter that using some nice 

properties of the residual and the collocation matrix, close an~ simple 

error estimates could be developed. In this chapter we will examine the 

use of these ideas as selection criteria for adaptive mesh selection 

a Igorit hms. Despite the tremendous importance of adaptive procedure to 

general computer codes for solving boundary value problems viable methods 

using collocation have only recently been investigated. Algorithms, based 

on the local behaviour of the error shown in de Boor and Swartz (1973), 

have been theoretically investigated by de Boor (1973) and later in 1978, 

improved by Russell and Christiansen (1978). Their most effective 

algorithm is implemented in a computer code "COlSYS" for solving systems 

of boundary value problems (Ascher, Christiansen and Russell (1978) ). 

Now if we consider the boundary value problem (2.1), (2,2), 

solved by the method of piecewise collocation using p collocation pOints, 

then we want to efficiently determine a partition of (-1,1), 

'IT < • • . • • . •. < t = 1 
n 

such that n is small but if x (t) is computed using 'IT then the error np 

e (t) = x (t) - x (t) satisfies 
n np 

. < a desired tolerance TOl ( 5 .1 ) 

Our technique here will be as follows. Solve the problem 

with small n using the equally spaced scheme. Determine the partitions 

with maximum share in the error using some selection criterion. 
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Halve each of these partitions and resolve. stop when (5.1) is 

satisfied ( - TI is determined). With this technique it is possible to 

make use of matrices required in the previous stage. In the collocation 

code "COLSYS" a new partition which may be completely different from the 

previous one is determined in each stage. In such cases a fUl, construction 

of a solution matrix is required each time. Another criticism of that 

algorithm that with badly behaved problems it may need to solve the 

problem with large values of n several times before it takes the right 

direction. e.g. (Ascher, Christiansen and Russell 1978, example 1). 

In section (5.2) we will introduce the selection criteria 

that we want to use. These criteria will be tested and compared in 

section (5.3), on a variety of badly behaved problems using the simple 

adaptive procedure - select the subinterval with the largest effect and 

halve it. After selecting our preferences from among them efficiencies 

and improvements are considered more closely in section (5.4). 

5.2. Introduction to the algorithms 

The algorithms chosen for examination here can be divided into 

three groups according to their selection criterion. 

(1) Algorithm based on the first derivatives. 

This is a simple minded one included only for comparison. 

(2) Algorithms based on error estimations using the residual. 

These error estimations are 

(i) (GR) . = G-1R where G -1 R. is defined in (4.15). 
l l l 

(ii) E2 = G -1 R. + (G - <P 
T) -1 

<Pn K R. where K R. defined in (4.16) . 
l n l l 

and (iii) Algorithm based on error estimation using the collocation matrix 

Q . 
n 
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Using the simple adaptive proceudre, if we assume the sub-

interval to be halved is the j*th subinterval then j* is determined as 

follows: 

(1) Using the first derivative 

Algorithm (1) 

Firdthe maximum of the first derivative of the approximate -solution xnpin the ith partition. Then 

j* max (h. II x' . II ) 
~ np~ i 

where h. = the size of the 
1. 

ith partition and II x'np I ~iS the maximum approximate derivative in the ith 

partition. 

(2) Using the residual 

Algorithm (Zi) 

j* max 
i 

(GR) . 
~ 

We expect here the subinterval with maximum share in the error 

I Ie I I to be the subinterval with largest estimate GR. 
n 

Algorithm (Zii) 

j* max 
i 

We expect here that the subinterval with maximum estimate I IE; I I gives 

the maximum effect on the error II en II . 

Algorithm (Ziii) 

j* - max 
1. 

II r·11 1. 

Here the subinterval with maximum residual is expected to 

give the maximum share in the error. 
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(3) Using the 0 matrix 

If the elements of the matrix 0 are 

{q1'J'} , 1 1= , •••• ,np 

j=1, •... ,np, 

" let Q" denote the sub-block matrix of all elements in 0 
1J 

correspond to the jth partition in the ith partition, i.e. 

01, J' ::' { qkl} k=l', '+1 ' 1 1 , .•• 1+p-
l=j, j+1, ... j+p-1 

i 
j 

1 .I •••• .I n 
1 ...• • .1 n 

An estimate of the error in the ith partition may be taken as 

n 
L: 
j =1 

II r ,1\ 
J 

where II r ,II 
J 

is the 

maximum residual in the jth partition. Here instead of looking directly 

to the subinterval with maximum residual, we look firstly for the sub-

interval with maximum error, say the i*th partition. 

i* i 
maxi eO' 

Then we look for the partition wheye I:.he. residual gives the 

maximum share of that error i.e. look for j* wtlere 

j* max 
j 

II r,ll 
J 

These five algorithms are tested and compared on four test 

problems which range from mildly difficult to difficult ones in the next 

section. The piecewise collocation method with three points (Tchebychev 

and Gauss) are used. II x n p II " II r , I I ' ( GR), , 111 and II e II, n 1 

are evaluated using 200 equally spaced points. 
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5.3. Comparisons 

The algorithms are compared,in the size of reduction in the 

actual error en and the number of mesh points in the difficult range,using 

different values of n (the number of mesh points). The initial solution 

is found using 5 mesh points equally spaced. , 
Problem (12) 

8 2 
x" - 10 (2 -S ) x x (±1) o 

from Russell and Shampine (1978). This problem has a unique solution 

symmetric about zero and having a boundary layer of width ~ 10-4 at -1. 

The solution is 4 
-lO(1+s) 
e x (s) ~ 

1 
(2-S2) 

Lt 
-1O(1+s) 
e and 

is illustrated graphically in Fig. (5.1). 

We observe in Table (5.1) that: 

(i) Algorithm 2(i) is the slowest. That is expected since K is very 

large and in such case GR will not give a good estima~e of the error 

as noted earlier. 

(ii) Algorithm 2(iiJ is not as fast as others since it involves 

-1 
K R (G - ¢ T) ¢ which may not be reliable with small values of n n n 

n with this type of badly behaved problems. 

(iii) In comparing other algorithms we find that all have done almost the 

same work. 

Problem (13) 

x(O) 

x" + 300 s x I + 300 x o x(O) 1 x (1 ) 
-150 

e 

from Russell and Christiansen (1978). 

-150 2 The solution xes) = e s decreases rapidly from 

1, x' (0) = 0 to near zero for s > O. This behaviour is 

(' 
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The simple adaptive scheme 

TABLE (5.1) Problem 12 

Tchebychev points Gauss point 

Algorithm n number of e number of e 
mesh points n 

mesh points n 

(-1,-0.9) ( -1 , -0.9) 

1 5 0 0.81671 0 0.87444 

10 4 0.75970 4 0.87444 

15 6 0.64408 7 
, 

0.87445 
20 7 0.41869 7 0.28698 
25 9 0.02190 9 0.01266 
30 12 4.7xl0 

-4 
12 2.4xlO 

-4 

2(i) 5 0 0.81671 0 0.87444 

10 1 0.81671 2 0.87445 
15 4 0.67585 4 0.67585 
20 6 0.28698 7 0.28698 
25 8 0.14572 8 0.07570 
30 8 0.14572 8 0.07570 

2(iil 5 0 0.81671 0 0.87444 
10 2 0.81008 2 0.87445 
15 4 0.67585 4 0.67585 
20 6 0.28648 7 0.28698 
25 8 0.14572 8 0.07570 
30 9 0.02190 9 0.012660 

2 (iii 1 5 0 0.81671 0 0.87444 
10 0 0.81008 2 0.87445 
15 4 0.75970 4 0.67585 
20 7 0.41869 7 0.28698 
25 9 0.02190 9 0.01266 
30 12 -4 -4 4.7xlO 12 2 .4x 10 

3 5 0 0.81671 0 0.87444 
10 4 0.75970 4 0.87444 
15 6 0.64408 7 0.87445 
20 7 0.41869 7 0.28695 
25 9 0.02190 9 0.01266 
30 12 -4 -4 4.7xlO 12 2.4xlO 
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The simple adaJl~iv~_sch8me 

TABL.E (5.2) Problem 13 

Tchebychev points Gauss points 

Algorithm n number of number of 
mesh points mesh points e 
in(0.0.1 ) in (0,0.1 ) 

n 

1 5 0 0.29872 0 0.04697 

4 
-4 

10 0.00273 4 , 6.8xl0 
-4 

15 8 0.00280 8 6.8xl0 

20 12 0.00280 13 6.8xl0 
-4 

15 
-4 

25 0.00280 18 6.8xl0 

2(i) 5 0 0.29872 0 0.04697 

10 2 9.5xl0 
-4 

2 2 x 10-4 

15 4 4.8xlO 
-5 

5 6. 5x 10 
-6 

20 7 7.5xl0 
-6 

8 7.1xl0 
-7 

25 8 7 x 10- 6 
8 3.4xlO 

-7 

2 (ii) 5 0 0.29872 0 0.04697 

10 4 0.00376 5 0.00103 

15 9 0.00370 11 0.00103 

20 14 0.00370 15 0.00103 

25 19 0.00370 20 0.00103 

2(iii) 5 0 0.29872 0 0.04697 

10 3 1.9xl0 
-4 

3 
-5 

9.9xlO . 

15 5 9. 2x 10 
-5 

6 9 .3xlO 
-6 

20 8 1.03xlO 
-5 

8 7 .1x 10 
-7 

25 12 7 x 10- 6 
8 3.4x1O 

-7 

3 5 0 0.29872 0 0.04697 

10 2 9.5xl0 
-4 

2 2 x 10-4 

15 4 4.9xlO 
-5 

4 6.5xlO 
-6 

20 7 3.2x1O 
-5 

7 4.1x1O 
-6 

25 9 4.9xlO 
-6 

9 2. 6x 10 
-7 
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described graphically in Fig. (5.2). We observe in table (5.2): 

(i) Here algorithm (1) moves too many points into the region of 

difficulty and accuracy is lost assymptotically. 

(ii) Algorithm 2(ii) has failed due to the unreliable estimate 

Problem (14) 

x" + 106 s x' 

The solution is 

x (s) 

x (-1) -2 x (1 ) o. 

3 

cos (TIs) + erf ( ~ s) / 
12 

erf ( 
12 

Ascher, Christiansen and Russell (1978). 

The solution has a turning point at x = o. The transition 

-3 
layer is of width ~ 10 . A graph for the solution is given in Fig. 

(5.3). We observe with this problem 

(i) Algorithm (1) failed because the width of the transition layer where 

the derivative is expected to take its maximum is very small (10-
3

) 

and may be missed in the evaluation procedure. At the same time the 

derivative is of similar size around the boundary layer which makes the 

algorithm tend to divide the interval equally. 

(ii) The algorithms using the residual (2(i), 2(ii) and 2(iii) have 

failed because th~ residual in this example behaves very differently 

to the solution. If we look to Fig. (5.4) of the right hand side, 

cos (TIs) TIS sin (TIs), we observe that it behaves 

very badly towards the end and that explains why these algorithms 

keep on dividing the end subintervals leaving the middle ones where 
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The simple adaptive scheme 

TABLE (5.3) Problem 14 

Tchebychev points Gauss points 

Algorithm n number of number of 
mesh points e mesh points e 
in(-0.1.0.1) n 

in ( -0.1 .0.1 ) 
n 

1 5 0 0.96458 0 0.95495 
10 0 284.45 0 188.96 
15 2 141. 89 2 

, 
95.067 

20 2 71.185 2 48.054 
25 4 33.604 4 22.996 
30 4 33.143 4 22.774 
40 4 17.239 4 22.717 

2(i) 5 0 0.96458 0 0.95495 
10 0 0.96410 0 0.95496 
15 0 0.96410 0 0.95496 
20 0 0.96410 0 CJ.95496 
25 0 0.96410 0 'J.95496 
30 0 0.96410 0 0.95496 
40 0 0.96410 0 0.95496 

2(ii) 5 0 0.96458 0 0.95495 
10 0 0.96408 0 0.95496 
15 0 0.96398 0 0.95496 
20 0 0.96398 0 0.95496 
25 0 0.96398 0 0.95496 
30 0 0.96398 0 0.95496 
40 0 0.96398 0 0.95496 

2 (iii) 5 0 0.96458 0 0.95495 
10 0 0.96447 0 0.95496 
15 0 0.96435 0 0.95496 
20 0 0.96435 0 0.95496 
25 0 0.96435 0 0.95496 
30 0 0.96435 0 0.95496 
40 0 0.96435 0 0.95496 

3 5 0 0.96458 0 0.95495 
10 2 2fl1.48 2 188.96 
15 4 67.549 4 46.226 
20 6 28.333 4 46.284 
25 7 12.426 6 10.284 
30 12 0.0500_

4 6 10.209 
40 18 4.8xlO 6 10.123 
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the error takes its maximum. 

(iii) Algorithm (3) has done very well here, especially in the Tchebychev 

case. The error has been reduced from 281.48 with 10 mesh points 

(2 points in (-0.1, 0.1) to 4.8 10-4 with 40 mesh points ( 18 points 

in (-0.1. 0.1) . This algorithm has shown its capabilit" with this 

delicate example because it "ta1cesinto its account the effect of 

Green's function in the error (0 matrix) as well as the residual. 

(iv) We note that Tchebychev points here give better results. But one 

expects Gauss to do better with larger value of n, since its solution 

hasn't settled down yet. 

Problem 15 

2 
x" + x' + 

s 
x = 0 x (_1 ) 

31T 

From Russell and Christiansen (1978). 

o x (1 ) sin (1) 

Th 1 t ' , , (1) e so u 10n 1S Sln -
s which is oscillatory. A graph for 

the solution is given in Fig. (5.5). 

We observe in table (5.4) that 

(i) Algorithm 1 is the worst for the same reason as in problem (13). 

(ii) Algorithm 2(ii) has done better here since K is very small which 

-1 makes the unreliable term (G - ¢ T) ¢ K Rn negligible and 2(ii) 
n n 

becomes like 2(i). 

Finally we may summarise these results in the following way: 

(1) Algorithm (3) shows its superiority and capability with all examples. 

Its drawback may be that it involves the calculation of Q which is 
n 

very expensive. 

(2) Algorithm 2(iii) comes in the second position. It fails only when 

the right hand side of the equation is very badly behaved on a region 
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The simple adaptive scheme 

TABLE (5.4) Problem 15 

Tchebychev points Gauss points 

Algorithn n number of number of 
mesh points e mesh points e 

1 2 n 
(1 1) 

n 
in (3n' 3n ) ill 

3n' 3n 

1 5 0 2.1332 f] 2.5264 

10 4 0.0176 4 , 0.00323 

15 7 0.00146 7 
-t:; 

1.7xl0 -

20 8 -4 8 -4 8.4xlO 1.4xl0 

25 13 7.6xlO 
-4 

13 1. 4xl0 
-4 

2(i) 5 0 2.1332 0 2.5264 

10 4 0.01285 3 0.00166 
15 6 0.00167 6 1.4xln -4 

20 10 8.2xl0 
-4 

10 4.2xln 
-5 

25 12 1. 2xlO 
-4 

11 3 x 1O~6 

2(ii) 5 0 2.1332 0 2.5264 
10 4 0.01285 3 0.00166 
15 6 0.0167 6 1.4xl0 

-3 

20 10 8.2xl0 -4 
10 4.2xl0 

-5 

25 12 1.2xl0 -4 
11 3 x 10-6 

2(iii) 5 0 2.1332 0 2.5264 
10 5 0.01788 5 0.00323 
15 8 0.00560 8 1. 8xlO 

-4 

20 13 0.00:6 12 7 .1x 10 
-5 

25 16 -4 -6 3.9xl0 16 8.6xlO 

3 5 0 2.1332 0 2.5264 

10 4 0.01295 4 0.00323 
15 7 0.00167 5 1. 9xl0 

-4 

20 10 -4 -5 9.2xlO 9 7.1xlO 
25 12 1.2xl0 -4 

11 8.6xl0 -6 
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different from the region of difficulty of the solution as in problem 

(l4) . However it is cheap and simple. 

(3) Algorithm 2(i) may be recommended for problems with small K and 

(4 ) 

smooth right hand side. In such problems it will do well and will be 

superior over others due to its simplicity. 

The reliability of E2 depends on (G - ~ T)~ 
n n 

-I 

K R 
n 

giving a reliable 

estimate of (G - T) K R - which is not expected with these types of 

badly behaved problems - and on the right hand side beinz smooth. 

(5) Algorithm (1) sometimes moves too many points into the region of 

difficulty and the accuracy is lost assymptotically. However it 

often gives good initial approximation and may be improved using for 

example the above error estimates to overcome that problem. 

5.4. Improvements in the adaptive technique 

In the previous section we have examined our error 

estimat:ionswhen used on a selection criterion. In this section we will 

improve the efficiency of the adaptive technique in order to develop a 

competitive code for solving boundary value problem. 

It is shown for example in Russell and Christiansen (1978) 

when the number of collocation points p is greater than the order of the 

differential equation. m. then 

If for example. r. » r .• and we halve the ith interval d times 
1 J 

h· 
such that r i ~ r j then ci (2~ ) p 'V C j h~ That gives 

c hP 

d 'V round (log i j / p log 2) 
c.h~ 

J 1 

r. 
round (log (2 ) / p log 2) . 

r. 
J 
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This formula is basic to our new dividing scheme which can be 

described as follows: 

(i) Look for the subinterval with maximum effect, say the j*th one. 

(ii) Look for the subinterval with minimum effect, say the k*th one. 

(iii) Compare r j * and r~ and find d using the above technique. ~f d = 0 

then halve all subintervals. If d ~ 1 then look for the subinterval 

with maximum effect other than the j*th one, say the j**th one. 

(iv) Compare r,* and r,** and find d as above. 
J J 

If d = 0 then halve the 

j*th and j** subinterval. If d > 0 then halve the j*th subinterval 

d times going in the direction of the local maximum derivative. 

This scheme converges very quickly with well behaved problem 

and treats carefully difficult ones. It is examined using algorithm 3 

with the test problem (12-15). The results are given in tables (5.5) to 

(5.8) respectively. It can be seen that a lot of work has been saved 

without any loss of accuracy in comparison with the one division/step 

scheme. 

The timing is included in these tables to see the effect of 

using the solution matrix in the previous step. We can see for example, 

in table (5.5) that the time used for the solution with 5 mesh po~nts 

is 1773 while for the solution with 21 mesh points it is 1701, and 

similarly in the other table. 

error. 

We notice also that eO is not giving close estimates of the 

This is not unexpected~ since eO gives an estimate of the bound 

not the actual error as discussed earlier. However one cou Id use for 

error estimation E2 which is very close when the solution is well 

approximated. 
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Finally we conclude that the selection criterion based on 

error estimation using the Q matrix is very powerful and if the dividing 

scheme is improved further to increase the number of divisions/step an 

efficient competitive code for boundary value problems could be 

developed. , 
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The improved adaptive scheme 

TABLE (5.5) Problem 12 

step n e eQ number of mesh points Time for the n in sOlu,on 
( -1 • -0.9) (0.9.1 ) 

0 5 0.87444 0.91900 0 0 1773 

1 13 0.87444 0.91900 7 0 1038 

2 21 0.19675 0.75843 7 7 1701 

3 24 0.19675 0.75843 10 7 1934 

-4 
0.01626 4 27 9.9xlO 10 10 2182 

-4 
5 28 9.9xlO 0.01626 11 10 2286 

-4 
0.0047 6 29 2.4xlo 11 11 2357 

-4 
7 31 2.4xlo 0.0047 13 11 2510 

8 33 5.9xlo 
-5 

0.00197 13 13 2838 

35 
-5 

9 5.9xlO 0.00197 15 13 3013 
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The improved adaptive scheme 

TABLE (5.6) Problem 13 , 
step n e eO number of mesh points Time for the 

n in (0.0.1) solution 

0 5 0.04697 4.5146 0 1769 

1 7 0.00448 0.22408 1 541 

-4 0.08217 2 8 8.2xlO 2 621 

3 9 2 x 10-4 0.03405 2 703 

4 11 2 x 10-4 0.01629 2 1917 

13 
-5 0.0052 5 9.2xlo 4 Hl67 

-6 0.00194 6 15 6.5xlO 6 1525 



TABLE (5.n 

stejJ n 

0 5 

1 9 

2 11 

3 13 

4 15 

5 17 

6 19 

7 21 

8 23 

9 25 

10 27 

11 29 

12 31 

13 33 

14 35 

15 37 

16 39 

17 41 

1B 42 

19 43 
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The improved adaptive scheme 

e n 

0.30067 

153.54 

132.51 

71. 612 

50.054 

2B .397 

2B .356 

2B.317 

2B.29 

12.424 

3.224 

3.314 

0.41B3 

0.4374 

0.05 

0.00456 

0.00456 

0.00107 

0.00157 

4.Bx10 
-4 

Problem 14 

e* 
Q 

4001.0 

1. 13xlO 5 

447B9 

9942 

6966 

1959 

2026 

1911 

1761 

535.02 

42.314 

40.102 

2.1754 

2.3621 

0.2701 

0.02467 

0.02485 

0.010B 

0.010B 

0.0018 

-6 
6 = 10 

number of 
partitions 
in(-0.1,1) 

0 

3 

4 

5 

5 

6 

6 

6 

6 

7 

B 

9 

10 

11 

12 

14 

16 

17 

1B 

19 

Time for the 
solution , 

1790 

592 

720 

B52 

991 

1122 

1259 

1391 

1521 

1668 

1792 

1926 

2059 

3076 

3207 

3313 

3535 

3717 

3BOB 

3896 

\ 

\ 
I 

I 
i 



TABLE (5.8) 

step n 

1 5 

2 7 

3 9 

4 11 

5 13 

6 15 

7 17 

8 19 

9 21 

10 23 

11 25 
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Problem 15 

e e* number of 
n Q 

partitions 
1 2 

(31T'31T ) 

2.5264 63.308 0 

0.04608 1.6671 2 

0.00363 0.34389 3 

0.00164 0.1479 5 

1. 6xlO 
-4 

0.07911 5 

1. 4xlO 
-4 

0.05204 7 

6.7xl0 
-5 0.04002 7 

6.9xlO 
-5 0.02915 8 

7.1xlO 
-5 0.02028 9 

4.2xl0 
-5 0.01541 10 

5.8xlO 
-6 0.01123 11 

time for 
solution 

1840 

577 

745 

903 

1095 

1277 

1460 

1672 

1885 

2054 

2054 

\ 
1 
I. 

I 
I 
\ 

;\ 
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CHAPTER SIX Conclusions 

6.1. Summary 

The principal part of this thesis has been in developing 

algorithms for computing strict error bounds plus others in error estimates 

and mesh selection for the numerical solution by the methods of c\llocation 

of linear differential equations. In Chapter 1 the main 'a posteriori' 

theorems of Kantorovich and Akilov and of Anselone have been extended and 

-1 
direct bounds on the inverse operator (G - T) have been derived. The 

-1 
inverse approximating (G - ¢ T) has been related to the inverse of some n 

collocation matrices and readily practical formulae for the bounds have been 

presented. Despite the closeness of these bounds, unfortunately the 

conditions of applicability, which were the major problems with the previous 

analysis, have turned out to be Less. ~ati$fa.c.to"''1. 

As a by-product of this analysis the matrix Q arose in a similar 

way to W when dealing with ( I - K)-1. It was proved that II Q II +11 (G-T) -111 . 
n 

This convergence theorem, is of particular importance to the later 

discussion of error estimation, and it has justified the choice of I IQnl I 

for expressing the norm of the approximating inverse. 

To improve the applicability of the theory the principal part of 

the differential equation has been defined in terms of some parameters in 

Chapter 3. The conditions required by the theory have been expressed as before 

(G = Om) in terms of continuity requirements on the coefficients of the 

differential equation and in terms of the distribution of the collocation 

points with some restriction on the values of the parameters. Numerical 

exampLeS, were considered at the end of the chapter and considerable 

improvements in applicability have been achieved with a simple choice of 
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the parameters. 

It has been proved in chapter 3 that the norm of the projection 

operator ¢* and the usual interpolation projection ¢ are asymptotically 
n n 

the same. For small valuesof n I I¢*I I is notnmch worse than II¢ I I· n n 

This result may be used in further investigation with ¢~ as a pol,nomial 

interpolation projection. 

In Chapter 4 properties of the residual and the differential 

operator have been used to develop various algorithms for calculating 

bounds and estimates of the error. It has been shown if the problem is 

not nearly singular then I IQnl I gives a good estimate of the inverse 

differential operator. It has also been shown that when k is not too 

large and the right hand side y is sufficiently smooth, the residual can 

be well approximated by a polynomial. This result with the oscillatory 

behaviour of the residual have justified simple close estimates of the 

error. Although estimates using the Q matrix are not as close as these 

estimates, they tend to be more reliable with difficult problems. 

In Chapter 5 these estimates have been used in a mesh selection 

algorithm for solving boundary value problems. After examination on a 

variety of badly behaved problems, it has been shown that algorithm using 

the Q matrix is the most reliable. Improvements and efficiencies in the 

adaptive techniques are finally considered. 

6.2. Improvements and extensions 

6.2.1. The applicability 

(a) Theory 

We observe in table (2.1) that bounds calculated for the operator 

G-1Tare smaller than those of K ~ T G-1 and with further work could be 

much smaller. That happens because the coefficients are included in the 
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h f ' t Thl's l'S an l'ndl'cation that deltas defined integration in t e lrs case. 

in terms of G-1T may be much smaller and hence one would expect better 

applicability of bounds derived fur the inverse operator. 

(I x 
-1 

- G T) x 
-1 

G y. , 
This of course requires revision of the theory in the first 

chapter and search for suitable matrices similar (may be the same) to Wand Q 

which can be used in bounding the approximate inverses. 

(b) Applications 

The results given in Chapter 3 indicate that further improvements 

in applicability could be achieved ifall the parameters ~,}~-11 are 
l l= 

included and carefully chosen. One needs to examine the ontimal choice 

of the parameters as well as the application of the idea to higher 

order equations. 

6.2.2. Error bounds and estimation 

The error bounds and estimations described in Chapter 4 could be 

furtherly investigated with partial differential equations. Also 

examination on non-linear equations with the relevant modification needs to 

be considered. 

Finally the adaptive algorithm using the Q matrix in the 

selection criterion is very promising and with further research for 

efficiencies and improvements a competitive collocation code could be 

developed. 
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