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Abstract

With the expansion of computer networks, activities involving computer com-

munication are becoming more and more distributed. Such distribution can

include processing, control, data, network management, and security. Al-

though distribution can improve the reliability of a system by replicating

components, sometimes an increase in distribution can introduce some unde-

sirable faults. To reduce the risks of introducing, and to improve the chances

of removing and tolerating faults when distributing applications, it is impor-

tant that distributed systems are implemented in an organized way.

As in sequential programming, complexity in distributed, in particular

parallel, program development can be managed by providing appropriate

programming language constructs. Language constructs can help both by

supporting encapsulation so as to prevent unwanted interactions between

program components and by providing higher-level abstractions that reduce

programmer effort by allowing compilers to handle mundane, error-prone

aspects of parallel program implementation.

A language construct that supports encapsulation of interactions between

multiple parties (objects or processes) is referred in the literature as multi-

party interaction. In a multiparty interaction, several parties somehow "come

together" to produce an intermediate and temporary combined state, use this

state to execute some activity, and then leave the interaction and continue

their normal execution.

There has been a lot of work in the past years on multiparty interaction,

but most of it has been concerned with synchronisation, or handshaking,



between parties rather than the encapsulation of several activities executed

in parallel by the interaction participants. The programmer is therefore left

responsible for ensuring that the processes involved in a cooperative activity

do not interfere with, or suffer interference from, other processes not involved

in the activity.

Furthermore, none of this work has discussed the provision of features

that would facilitate the design of multiparty interactions that are expected

to cope with faults - whether in the environment that the computer system

has to deal with, in the operation of the underlying computer hardware or

software, or in the design of the processes that are involved in the interaction.

In this thesis the concept of multiparty interaction is integrated with

the concept of exception handling in concurrent activities. The final result

is a language in which the concept of multiparty interaction is extended

by providing it with a mechanism to handle concurrent exceptions. This

extended concept is called dependable multiparty interaction.

The features and requirements for multiparty interaction and exception

handling provided in a set of languages surveyed in this thesis, are integrated

to describe the new dependable multiparty interaction construct. Addition-

ally, object-oriented architectures for dependable multiparty interactions are

described, and a full implementation of one of the architectures is provided.

This implementation is then applied to a set of case studies. The case stud-

ies show how dependable multiparty interactions can be used to design and

implement a safety-critical system, a multiparty programming abstraction,

and a parallel computation model.
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Chapter 1

Introduction

Parallel programs are usually composed of diverse concurrent activities,

and communication and synchronisation patterns between these activities are

complex and not easily predictable. Thus, parallel programming is widely

regarded as difficult: [Foster 1996], for example, says that parallel program-

ming is "more difficult than sequential programming and perhaps more diffi-

cult than it needs to be". In addition to the normal programming concerns,

the programmer has to deal with the added complexity brought about by

multiple threads of controls: managing their creation and destruction and

controlling their interactions via synchronisation and communication.

Furthermore, with the proliferation of distributed systems, computer

communication activities are becoming more and more distributed. Such

distribution can include processing, control, data, network management, and

security [Neumann 1996]. Although distribution can improve the reliability

of a system by replicating components, sometimes an increase in distribution

can introduce some undesirable faults. To reduce the risks of introducing

1



2 1. Introduction

faults when distributing applications, and of coping with residual faults, it

is important that this distribution is implemented in an organised way.

As in sequential programming, complexity in distributed, in particular

parallel, program development can be managed by providing appropriate

programming language constructs. Language constructs can help both by

supporting encapsulation so as to prevent unwanted interactions between

program components and by providing higher-level abstractions that reduce

programmer effort by allowing compilers to handle mundane, error-prone

aspects of parallel program implementation [Foster 1996].

A mechanism that encloses multiple processes executing a set of ac-

tivities together is called a multiparty interaction [Joung & Smolka 1996]

[Forman & Nissen 1996] [Attie et al. 1993] [Evangelist et al. 1989]. In a mul-

tiparty interaction, several executing processes somehow "come together" to

produce an intermediate and temporary combined state, use this state to

execute some joint activity, and then leave the interaction and continue their

normal execution.

There has been a lot of work in the past years on multiparty interaction,

but most of it has been concerned with synchronisation, or handshaking, be-

tween parties rather than the enclosure of several programmed activities ex-

ecuted in parallel by the interaction participants. For example, specification

languages like CSP [Hoare 1985], LOTOS [Brinksa 1988], or programming

languages like Ada95 [ISO 1995], only deal with synchronisation between

processes. However, the programmer designing a set of processes that are

taking part in a cooperating activity is left with full responsibility for ensur-

ing that it is just these processes that are involved in the activity, and that
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they do not interfere with, or suffer interference from, other processes that

are not supposed to be involved.

Interference from processes that are not involved in an interaction can

lead to unexpected results, hence failure to deliver the requested service.

Furthermore, to keep track of all processes that have interfered with the par-

ticipants of an interaction is a very complex task. Usually, circumstances

which may prevent an operation from providing its service are called excep-

tions. These exceptions have to be handled with care, since the state of a

system can be inconsistent when their occurrence is detected [Cristian 1989J.

The treatment of exceptions has been studied for many years and mecha-

nisms for handling exceptions in sequential processes have been included in

several programming languages [Gosling et al. 1996] [ISO 1995] [Meyer 1992]

[Liskov & Snyder 1979J [Goldberg & Robson 1983J [Ullman 1994J. Although

there has been a lot of research in treating exceptions in sequential processes,

language mechanisms for handling concurrent exception in programming lan-

guages are as yet in their early stages.

This thesis will investigate the possibility of integrating concurrent ex-

ception handling to the multiparty interaction concept. The thesis will also

show how this extended multiparty interaction concept, i.e. multiparty inter-

action with concurrent exception handling, can be embedded in programming

languages and implemented in object-oriented languages. The extended mul-

tiparty interaction concept will be called dependable multiparty interaction

and will be able to cope with several concurrent exceptions being raised dur-

ing the multiparty interaction.
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This thesis is organized as follows.

Chapter 2. In this chapter the description, properties, basic mechanisms

and related work on the concept of multiparty interaction is presented.

A case study is introduced to show how multiparty interactions can

help in guaranteeing safety properties of a system.

Chapter 3. In this chapter exception handling is described. A description

of terms related to exception handling used by the research community

is presented. This chapter focuses on the way modern languages (using

Java and Ada as examples) deal with exceptions during the execution

of a program.

Chapter 4. The concept of dependable multiparty interaction is presented

in this chapter. A language that includes dependable multiparty in-

teraction is introduced. This new language is based on two existing

languages that have a multiparty interaction mechanism as a basic

construct. A formal semantics for the new multiparty interaction mech-

anism is presented using the Temporal Logic of Actions.

Chapter 5. This chapter first discusses the way a set of components that

compose a dependable multiparty interaction can be distributed. Sec-

ond, it presents a complete framework for implementing dependable

multiparty interactions in an object-oriented language.

Chapter 6. Full designs and implementations of several case studies are

presented in this chapter. All these case studies are implemented using

the dependable multiparty interaction concept introduced in Chapter
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4. The first case study is related to an industrial control system in

which safety and fault tolerance properties must be guaranteed. This

case study is a more complex version of the case study presented in

Chapter 2. The second case study describes how the dependable multi-

party interaction concept can be used to implement another multiparty

interaction abstraction. The third case study shows how dependable

multiparty interactions can help to introduce fault tolerance in a par-

allel computation model.

Appendices. A set of six appendices is provided at the end of this thesis.

They provide, respectively: a survey of multiparty interaction mecha-

nisms; a survey of exception handling in programming languages; the

syntax of the language introduced in Chapter 4; the TLA + operators

used in the formal specification of the language presented in Chapter 4;

and the complete Java code for the dining philosophers problem using

DMls.
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Chapter 2

Multiparty Interactions

This chapter surveys the state-of-the-art in multiparty interaction mech-

anisms. It focuses on the design choices to be made when creating a new

mechanism for dealing with interactions between several processes. Based on

these design choices several languages that use a multiparty interaction as

a basic mechanism have been developed [Hoare 1985] [Francez et al. 1986]

[Charlesworth 1987] [Brinksa 1988] [Back & Kurki-Suonio 1988] [ISO 1995]

[Jarvinen & Kurki-Suonio 1991] [Forman & Nissen 1996] [Petit pierre 1998].

A taxonomy for these languages is presented in Section 2.2. In Section 2.3

a complete example of how multiparty interactions can help in designing a

safety-critical system is presented.

2.1 Design Choices

In designing a language for multiparty interaction, one must make a trade-off

between the implementation efficiency of the language versus its expressive

7



8 2. Multiparty Interactions

power. There are several choices that can be made when designing a multi-

party interaction construct. For example, [Evangelist et al. 1989] describes

a set of properties for a multiparty interaction that serves as an interprocess

communication primitive. These properties are:

• Pre-synchronisation: in synchronous multiparty interaction constructs

the participants of an interaction must synchronise before the inter-

action commences, i.e., if one participant arrives, it has to wait until

all participants of the interaction have arrived. The main effect of this

property is to provide a consistent combined state before the interaction

starts.

• Split bodies: each participant in the interaction has its own set of com-

mands that is executed in parallel as part of the interaction. Multiparty

interactions that do not have split bodies, usually have just one block

of code that is executed by only one participant of the interaction - a

special case that will not be considered further here.

• Frozen initial state: the participants of the interaction view the com-

bined state as frozen in the beginning of the interaction, until the end

of the interaction, when all changes that were made take effect. From

the point of view of participants that are not involved in the interac-

tion, this property can be seen as an atomic change of state in the

system. Such a guarantee will avoid wrong information being accessed

by processes outside of the interaction.

Other features are included in certain language constructs, and are re-

lated to the way the multiparty interaction is activated or terminated. (See
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[Forman & Nissen 1996] [Back & Kurki-Suonio 1988].) These features are:

• Preconditions: some interaction mechanisms provide a guard to check

the preconditions to execute the interaction, hence the need for hav-

ing synchronisation upon entry. If the precondition is true, then the

interaction can commence, otherwise the interaction is not executed.

• Post-conditions: an assertion after the interaction has finished can be

used to check that a set of post-conditions has been satisfied by the

execution of the interaction.

Additionally, [Joung & Smolka 1996] presents a list of choices that can be

made in the design of language constructs for multiparty interaction. These

choices include the following:

• Biparty vs. multiparty interactions: as the name indicates, biparty

interactions involve only two participants, and multiparty interactions

are not so limited, and instead typically involve several participants.

• Fixed vs. variable interactions: in the former, the set of participants of

an interaction is fixed, i.e. they do not change every time the interaction

is executed. In the latter the participants are variable, i.e. participants

can be different each time the interaction is executed. (Fixed interac-

tions are referred to as "zeroth-order" and variable ones as "first-order"

interactions in [Joung & Smolka 1994].)

• Conjunctive vs. disjunctive parallelism: conjunctive parallelism allows

a set of interactions to be executed simultaneously as an atomic unit,
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while disjunctive parallelism chooses, non-deterministically, one inter-

action to be executed from a set of possible interactions .

• Synchronous vs asynchronous execution in the underlying system: III

synchronous systems every interaction has to execute one step of its

computation at a time, while in asynchronous systems there is no such

restriction.

2.2 Basic Mechanism Constructs

Based on the above set of choices, [Joung & Smolka 1996] presents a detailed

taxonomy of languages that have a multiparty interaction mechanism as a

basic construct. Of particular interest here is that they point out that the

expressive power of a language that has a multiparty interaction as a basic

mechanism is dependent on the way participants can enrole' in an interac-

tion. They identify four basic interaction constructs based on their support

of multipartiness and variable interactions: channels, ports, gates, and teams.

A Channel is a primitive for biparty communication. It is used as a com-

munication link between two processes. The communication actually

occurs only when both processes are ready to communicate. One exam-

pIe of channel usage is the input/output command in CSP [Hoare 1985].

The input command Pi?y of processes Pj, which inputs a value from

process Pi into variable y, is complementary to the output command

Pj!x of process Pi, which outputs the value of expression x to Pj. The

lIn [Forman & Nissen 1996] "enrole" is used to denote the assumption of roles by
processes.
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joint execution of these commands is equivalent to the assignment of x

to y (y ~ x).

A Port is also a primitive for interaction between two processes. It is a

mechanism for achieving variable interactions that define an activity

involving two "roles". In a port-based interaction, a process does not

know in advance with which process it is interacting. For example, in

the readers-writers problem, a port can be defined with two roles, one

for the readers and the other for the writers. Any reader process that

needs a new value from a writer can enrole into the reader's role, while

any writer ready to output the role can enrole into the writer's role.

One language that uses this kind of primitive is Ada, whose rendezvous

represents a port-based interaction involving two roles, one assumed by

a fixed callee and the other by callers.

A Gate is a multi-channel primitive that defines an interaction among a

fixed number of processes. LOTOS [Bolognesi & Brinksma 1987] is an

example of language that uses a gate as the way processes enrole in an

interaction.

A Team has the same properties as a port, with a fixed number of roles,

although the number of roles is not limited to two. A set of processes

can jointly establish an instance of the team by filling all the roles.

Examples of team primitives can be found in Multiway Rendezvous

[Charlesworth 1987] or in DisCo [Jarvinen & Kurki-Suonio 1991].
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Port Team

multipartiness Script, lP, DisCo
SR,Ada Raddle
MElJE, Box calculus Compact

1
variable 1 variableinteraction interaction

Channel I'" Gate

CSP, Multiparty CSP
multipartiness

Action Systems
Occam LOTOS, CSPS

Figure 2.1: A Taxonomy of Languages for Multiparty Interactions

Figure 2.1 shows a possible taxonomy of a number of languages for mul-

tiparty interactions''. The figure represents the expressive power of the lan-

guages, where the team-based languages have the most expressive power and

the channel-based languages have the least expressive power. This can be

concluded from the following observations. Port-based languages can de-

scribe channel-based systems by assigning a port Pij to each pair of processes

Pi and Pj such that only Pi and Pj have access to Pij and such that they

always execute the same role in that port. Similarly, since ports are the bi-

party equivalent of teams, team-based languages can also describe channel-

based systems. Similar reasoning regarding channels and ports shows that

2For further reading about the languages or algebraic models presented in Figure 2.1
refer to: CSP [Hoare 1985], Multiparty CSP [Joung & Smolka 1990], Occam [Hoare 1984],
SR [Andrews et al. 1988], Ada, MEIJE [Simone 1985], Box calculus [Best et al. 1992], Ac-
tion Systems [Back & Kurki-Suonio 1988], LOTOS [Bolognesi & Brinksma 1987], CSPS
[Roman & Day 1984], Script [Francez et al. 1986J, IP [Forman & Nissen 1996J, Compact
[Charlesworth 1987], Raddle [Forman 1986], and DisCo [Jarvinen & Kurki-Suonio 1991].
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team-based languages can describe gate-based systems. Given their greater

expressive power, we have therefore chosen team-based interaction languages

as the basis of the work we describe in this thesis.

2.3 An Example in DisCo

DisCo (Distributed Cooperation) is a specification language for reactive sys-

tems developed at Tampere University of Technology, Finland. DisCo is

based on the Action Systems approach [Back & Kurki-Suonio 1988], in which

a designer has to concentrate on the interactions between components rather

than on the components themselves. An action system consists of a set of

state variables and a set of actions. Each action is composed of a guard

and a body. A guard is a boolean expression involving state variables, and

the body is a set of commands to change the state of the variables. DisCo

extends Action Systems into the object-oriented paradigm.

DisCo is called a specification language because it has features that do

not allow direct implementation, or cannot be automatically implemented in

a distributed fashion. However, DisCo specifications are executable in the

sense that their simulation is possible with some interactive guidance from

the user [Jarvinen & Kurki-Suonio 1990].

A program specification in DisCo is composed of a set of two basic com-

ponents: objects and actions. Objects are instances of classes and are the

means of representing the global state of a system. Objects are called partic-

ipants in a DisCo action. Actions are the only units of execution in DisCo.

They enclose a sequence of state transformations, and are the only means
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by which the state of an object can change. Actions are executed nondeter-

ministically, and the execution of an action is atomic, meaning that once the

execution of an action has started, it cannot be interrupted or interfered by

other actions.

In this section we show how to apply DisCo to specify the basic elements

of a production cell case study that was developed at the Forschungszentrum

Informatik (FZI), Karlsruhe, Germany. This production cell case study in-

volves the control of a set of machines that are used in combination in order

to achieve a particular mechanical production process. The design of the

control system for this production cell concentrates simply on the problems

of how to ensure that the machines cooperate properly, i.e., do not interfere

with each each other.

2.3.1 Case Study - FZI Production Cell I

The Production Cell model used in this section was developed in the Fors-

chungszentrum Informatik (FZI), Karlsruhe, Germany, as a case study to

present a realistic industry-oriented problem in which safety requirements

playa significant role. It is not just a theoretical model; it is in fact based

on an actual industrial installation in a metal-processing plant in Karlsruhe

[Lewerentz & Lindner 1995].

The FZI Production Cell I model is composed of 6 devices (see Figure

2.2), 13 actuators, and 14 sensors. It processes metal plates in a press. Metal

plates are conveyed to an elevating rotary table by a feed belt. A two-armed

robot uses its first arm to take each plate as it arrives from the elevating
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Press

Figure 2.2: FZI Production Cell I

rotary table and place the plate in the press. The robot arm then withdraws

from the press, and the press forges the metal plate. After the plate has been

forged, the robot uses its second arm to take the forged metal plate out of

the press and put it on a deposit belt. Finally, a traveling crane picks the

metal plate up from the end of the deposit belt and takes it back to the feed

belt again, thus allowing the model to operate in a continuous cycle without

the need for an external operator.

Devices

• FEED BELT: its task consists of transporting metal plates to the ele-

vating rotary table. The belt is powered by an electrical motor, which

can be started up or stopped by a control program. A photo-electric

sensor is installed at the end of the belt; it indicates whether a plate

has entered or left the final part of the belt.
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• ELEVATING ROTARY TABLE: its task consists of rotating the plates by

about 45 degrees and lifting them to a level where they can be picked

up by the robot's first arm. The vertical movement is necessary because

the robot's arm and the feed belt are located at different levels, and

because the robot cannot perform vertical translations. Rotation of the

table is also required, because the arm's gripper cannot rotate and the

robot is therefore unable to place the metal plates into the press in a

straight position by itself.

• ROBOT: its task consists of picking up metal plates from the elevating

rotary table; loading and unloading the press with metal plates; and

placing the forged metal plates on the deposit belt. The robot possesses

two independent orthogonal arms. For technical reasons, the arms are

set at two different levels. Each arm can retract or extend horizontally.

However, both arms rotate together. Mobility on the horizontal plane

is necessary, since the elevating rotary table, press, and deposit belt are

all placed at different distances from the robot's turning centre. The

end of each of the robot's arms is fitted with an electromagnet that

allows the arm to pick up metal plates.

• PRESS: its task consists of forging metal plates. The press consists of

two platforms, with the lower platform being movable along a vertical

axis. The press operates by pressing the lower platform against the

upper one. Because the robot's arms are in different horizontal planes,

the press has three positions: i) in the middle position it is loaded by

the robot's first arm; ii) in the upper position the metal plate is forged;
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and iii) in the lower position the press is unloaded by the robot's second

arm .

• DEPOSIT BELT: its task consists of transporting the forged plates to

the traveling crane. A photo-electric sensor is installed at the end of

the belt; it reports when a metal plate reaches the end section of the

belt. The control program then has to stop the belt. The belt can

restart as soon as the traveling crane has picked up the metal plate .

• TRAVELING CRANE: its task consists of picking up metal plates from

the deposit belt, moving them to the feed belt and unloading them

there. It acts as a link between the two belts and thus makes it possible

for the model to function continuously without the need for an external

operator. The crane has an electromagnet as gripper which can perform

horizontal and vertical translations. Horizontal mobility serves to cover

the horizontal distance between the belts, while vertical mobility is

necessary because the belts are placed at different levels.

Requirements

The controlling software must be implemented according to the rules laid

down in the case study. In particular, it is important to guarantee that the

following requirements are met:

• safety: in order to ensure that the system operates safely at all times,

it is necessary to

- restrict machine mobility;
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- avoid machine collisions;

- avoid dropping plates outside safe areas, i.e. deposit belt, feed

belt, and press;

keep plates sufficiently distant from each other;

• liveness: every metal plate introduced into the system via the feed belt

must eventually be dropped by the crane on the feed belt again after

having been forged;

Requirements such as flexibility or efficiency can be taken into account

but must not violate the above requirements.

2.3.2 DisCo Objects in FZI Production Cell I

The state of a system in DisCo consists of a set of objects, which are instances

of classes. Objects are composed of attributes that can represent simple val-

ues, such as integers or boolean values, or sets of simple values. Objects'

attributes can also include finite state machines and references to other ob-

jects. Each object can contain as many groups of attributes as needed. An

object can also be composed of other objects, e.g. the Robot object has two

Arm objects (see Figure 2.3). An asterisk (*) in front of one element of a

finite state machine denotes the initial value from that state group. DisCo

objects do not have member functions (methods) as programming languages

like C++, Eiffel, or Java. Instead, all changes on object's state are performed

inside DisCo actions (see next section).

Figure 2.3 shows some of the DisCo class definitions for the FZI Produc-

tion Cell I case study. In the examples, when an object of the Table class is
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class Arm is
extension: real := 0.0;
state "magnet.off, magnet-on;

end;

class Robot is
arml, arm2: Arm;
angle: integer := 0;

end;

class Table is
angle: integer := 0;
state *Iower, upper;
state *free, loaded;

end;

Figure 2.3: DisCo Objects for FZI Production Cell I

created, its initial state is: angle=O, lower, and free, meaning that the table

is pointing towards the feed belt, it is in its lower position, and it is free

(not loaded). In summary, the table is ready to be loaded. The robot, on

the other hand, has two arms, each fully retracted and with their magnets

turned off, and an angle that is not indicating any device in particular.

2.3.3 DisCo Actions in FZI Production Cell I

Actions are the execution entities in DisCo. (Such actions are, as shown in

Figure 2.1, teams; more specifically they are multiparty interactions with a

fixed number of variable participants.) Each action has a guard, which is a

predicate, and a body. When the guard is true for a collection of potential

participants, the action is said to be enabled. Objects are the participants in a

DisCo action and assume a role in the action when the action is enabled. The
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body of an action consists of one sequential set of assignments and conditional

statements which can refer only to the participants and parameters of the

action.

In DisCo, there is no concept of process threads; actions are executed

when their guard (when condition) is true and the objects involved in the

action are not being used in another action. If two actions that use a same

object can be activated at the same time, then only one of them will be

executed (the choice is non-deterministic).

UnloadDepositBelt
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Figure 2.4: DisCo Actions in FZI Production Cell I

Before we give an example of actions in DisCo, let us consider how DisCo

actions could be used for controlling the interactions between devices in the

FZI Production Cell I case study. Figure 2.4 portrays the way in which we

have chosen to use DisCo actions so as to structure the controlling of a se-

quence of operations between devices. Each DisCo action encloses a set of

devices that must interact in a coordinated fashion to satisfy the require-
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ments of the case study. If two such DisCo actions are shown as overlapping,

this indicates that they must not be performed in parallel because they both

involve the same device. The semantics of DisCo will guarantee this. For

example, the LoadTable action cannot be executed in parallel with the Un-

loadTable action because both DisCo actions involve the table object, and

the table can participate in only one of them. Our controlling software for

FZI Production Cell I is thus composed of ten DisCo actions, as shown in

Figure 2.4.

action LoadTable by fb:FeedBelt; t:Table is
when fb.loaded /\ t.free do

-+ t.lower;
t.angle := 0;
-+ t.loaded;
-+ fb.free;

assert t.loaded /\ fb.free
end;

action UnloadTable by t:Table; r:Robot is
when t.loaded /\ r.arml.magneLoff do

r.angle := 50;
t.angle := 50;
-+ t.upper;
r.arml.extension := 0.5028;
-+ r.arml.magneLon;
-+ t.free;
r.arml.extension := 0.0;

assert t.free /\ r.arml.magneLon
end;

Figure 2.5: LoadTable and UnloadTable Actions in DisCo

Figure 2.5 shows how the LoadTable and UnloadTable would be described

in DisCo. It demonstrates how the table in FZI Production Cell I cyclicly

activates the loading and unloading of the table with metal plates. The
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loading of the table is an example of a multiparty interaction that is executed

by two parties: the feed belt and the table. The change of state value in an

object is represented by -+ new-state-value, e.g. -+ t.loaded means that the

table changes its state to the loaded state.

In DisCo, an action's precondition is specified via a guarded command,

which is executed before the action commences (when clause). DisCo also

allows a designer to specify assertions (assert clause) in the code of an action.

Assertions are checked in the place they occur. If an assertion is not true,

then the system is stopped. Action post-conditions can thus be specified by

placing an assertion at the end of the action code (see Figure 2.5).

2.4 Discussion

Although there has been a lot of research on multiparty interaction mech-

anisms, to the best of our knowledge none has considered the provision of

features that would facilitate the design of multiparty interactions that are

expected to cope with faults - whether in the environment that the com-

puter system has to deal with, in the operation of the underlying computer

hardware or software, or in the design of the processes that are involved in

the interaction.

In Appendix A, we present (the description of) several languages that

have a multiparty interaction as a basic construct. An example is given

to show how the multiparty interaction construct could be used in those

languages. Even though the example is very simple, we can draw several

conclusions from the use of the multiparty interaction mechanism in these
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languages. For example, while all the languages provide means of synchroni-

sation upon entry, only a few provide some kind of precondition in the mul-

tiparty interaction, e.g. Action Systems and DisCo. In addition, languages

that provide split bodies in the multiparty interaction, e.g. lP, provide a

better structuring mechanism than those that do not, e.g. Action Systems,

Ada, Multiway Rendezvous, and DisCo. In some languages, the multiparty

interaction mechanism does not provide split bodies, and the mechanism is

used only for synchronisation and communication, e.g. CSP, LOTOS and

SR. Split bodies in those languages can be simulated by using several of

their multiparty interaction mechanisms (see Appendix A).

The example that was presented in Section 2.3 and described using DisCo,

could have been implemented using any of the languages listed in Section 2.2.

DisCo was used because its action construct is a team, and as was mentioned

in Section 2.2, teams provide the greatest expressive power among the ba-

sic multiparty interaction constructs. Furthermore, multiparty interactions

in DisCo provide a way of testing pre and post-conditions. DisCo's major

weakness is the fact that its action construct does not allow split bodies

which could be used to describe the parallel activities that could be executed

in the system. Because performance was not a major requirement in the case

study, we decided to ignore this weakness of DisCo in the description of the

control system for the case study.

It should be noted that the team concept has largely been investigated

as a specification language construct, whereas the interest of this thesis is in

utilising a team not just within specifications but also for structuring and de-

signing actual programs. Moreover, to date programming languages usually
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provide only two-party synchronisation mechanisms, such as the rendezvous

in Ada.

Finally, it was only possible to describe the case study as presented in

this chapter because it does not include any kind of fault model. Note that

the case study does not mention anything about a possible break in one of

the devices or sensors. In an actual production cell these are situations that

will happen, possibly quite frequently.

In the next chapters, exception handling is discussed in detail, and a

new multiparty interaction mechanism that brings together several of the

issues presented in this section is described. This new mechanism will deal

with weaknesses such as the lack of a language that provides split bodies,

preconditions, multipartiness, post-conditions, synchronisation and the most

important, exception handling in the same mechanism.



Chapter 3

Exception Handling

It is very common for software developers to write programs under the

optimistic assumption that nothing will go wrong when the program is exe-

cuted. Unfortunately, there are many factors that can make this assumption

invalid. For example, an arithmetic expression that may cause a division by

zero; an array that is indexed with a value that exceeds the declared bounds;

the square root of a negative number; a request for memory allocation during

run-time that may exceed the amount of memory available; opening a file

that does not exist; and many more.

When any of such event happens the system will often fail in an unex-

pected way. This is not acceptable in current programming standards. To

improve reliability, it is important that such circumstances are detected and

treated appropriately. Conventional control structures, such as the if-then-

else command, are inadequate. For example, to check that an index of an

array is always valid, a programmer could explicitly test the value of the

index each time before using it, which is cumbersome and could often be

25
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forgotten or intentionally omitted. A better way would be to rely on the

underlying system to trap the situation where array indexes are outside the

array bounds. To cope with this kind of situation, several programming

languages provide features for handling such circumstances, i.e. exception

handling.

In this chapter, a review of definitions and the way exception handling is

performed by several languages and systems is presented.

3.1 Definitions

Exceptions are usually defined in several different ways. Usually, the def-

inition of exception is closely related to the definitions of error, fault and

failure. Several researchers use these terms in a mixed way. In [Laprie 1995]'

an attempt to give precise definitions for the various attributes of computing

systems dependability is made. The definition of error, fault and failure is

given as follows.

A system failure occurs when the delivered service deviates from

fulfilling the system function, the latter being what the system

is intended for. An error is that part of the system state

which is liable to lead to subsequent failure: an error affect-

ing the service is an indication that a failure occurs or has

occurred. The adjudged or hypothesized cause of an error is a

fault [Laprie 1995}.

The definition of exception varies considerably in the literature. Some of

the definitions of exceptions found in the literature are given below.
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1. of the conditions detected while attempting to perform some operation,

exception conditions are those brought to the attention of the operation's

invoker [Goodenough 1975];

2. the term exception is chosen because, unlike the term error, it does not

imply that anything is wrong [Liskov & Snyder 1979];

3. an exception denotes the occurrence of an error [Young 1982];

4. an exception does not represents an error condition, but some event

whose possibility requires versatility of action [Horowitz 1983];

5. exceptions are rare situations detected by a run-time system or by a

user program [Szalas & Szcepanska 1985];

6. an exception occurrence is a computational state that requires an ex-

traordinary computation. Exceptions are associated with classes of ex-

ception occurrences. An exception is raised if the corresponding excep-

tion occurrence has been reached [Knudsen 1987].

7. an exception is a situation where a computation does not proceed as

planned, perhaps because of an error [Cox & Gehani 1989];

8. exceptions are circumstances which might prevent a program from pro-

viding its specified service [Cristian 1989];

9. an exception is a situation leading to the impossibility of finishing a

computation [Dony 1990];
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10. the abnormal responses from a component are commonly referred to

as exceptional responses or exceptions, particularly in software systems

[Lee & Anderson 1990];

As shown above, the term exception is used in many different ways,

which makes it difficult to define exceptions accurately. We consider that

some of the above definition do not express what an exception is or are

very simplistic, e.g. the definition of exception in [Liskov & Snyder 1979],

[Szalas & Szcepanska 1985], and [Dony 1990] can lead to misunderstandings.

All the other definitions presented above are very similar. Throughout this

thesis we will used the definition of exception we consider the most precise,

i.e. an exception is a circumstance which might prevent a program from pro-

viding its specified service' [Crist ian 1989].

In the next sections, we will present a set of features provided in pro-

gramming languages to handle exceptions. The clear comprehension or ex-

ception handling mechanisms in programming languages depends on the un-

derstanding of the terminology of exception occurrence, exception declaration,

exception handler and signaling, raising, and catching exceptions. Before go-

ing further and starting to describe exception handling mechanisms in pro-

gramming languages, we present a brief definition for these terms based on

[Goodenough 1975], [Cristian 1982], and [Campbell & Randell 1986].

Exception occurrence. The invocation of a service in which the objective

of the service is not fulfilled. This implies that the determination of ex-

lIssues related to the time (when) this service is provided are not the concern of this
thesis.
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ception occurrences is dependent on what is considered as the objective

of a service.

Signalling an exception. The notification of an exception occurrence to

the invoker of the service.

Exception raising. The activation of an exception handler which is bound

to the exception. The functionality of exception handling mechanisms

in programming languages will be elaborated further in Section 3.4.2.

Exception handling. The handling of exceptions refers to the way a pro-

gram attempts to recover from a situation in which some invoked ser-

vices cannot achieve their objective, to a situation in which all invoked

operations can, in principle, achieve their objective. There are several

exception handling mechanisms in programming languages. In early

programming languages, handling of exceptions was done by checking

a returned error code signaled by a service (see Section 3.4.1). Re-

cent programming languages offer a more sophisticated mechanism for

exception handling (see Section 3.4.2).

Exception declaration. In some languages, exceptions can be declared in

an exception declaration using a predefined exception type. In an ex-

ception declaration, a new exception is declared and an identifier is

bound to this exception, so that the identifier denotes the exception

(see Section 3.4.2.1).

Exceptional termination. When the invocation of a service results in an

exception occurrence which is either handled in a handler bound to
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the service, or propagated to the service's invoker, the service is said to

terminate with an exception. Such a termination of the service can also

be referred to as an exceptional termination. If the handler bound to

the service handles the exception and can provide its specified service,

then the service terminates normally, i.e. as if the exception occurrence

had not happened.

We could summarise the above definitions as follows. Exceptions are

declared to denote a service that has not been achieved. If the service fails,

then an exception is raised. The service could still achieve its objective by

then executing some code designed to handle that exception. When the

service cannot fulfill its obligations, even after handling the exception, then

the service is said to terminate exceptionally and the invoker of the service

is signalled with an exception.

3.2 Requirements and Decisions

When developing a new exception handling mechanism in a language, a

designer has to take into consideration several sets of decisions and re-

quirements. Some of the requirements for an exception handling mech-

anism are application independent, while others do depend on the kind

of application. When developing and testing a program, for example, an

appropriate response to an error could be to stop execution of the pro-

gram and enter a debugger. In other situations this response would cer-

tainly be unacceptable. Several authors propose a set of requirements that

should be met by a general-purpose mechanism for the handling of excep-
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tions [Goodenough 1975] [Beek 1993] [Burns & Wellings 1996]. These re-

quirements are presented below.

i) The mechanism should facilitate the creation of robust programs.

ii) All exception occurrences which are detected should allow exception

handling to be executed.

iii) The mechanism should be easy to use and understand. It should consist

of a small number of elements that can be used independently of other

programming elements.

iv) There should be a clear separation of the code for normal service oper-

ation and the code for exception handling.

v) User programs should be able to handle exceptions detected in the user

program itself and those detected in the routines of the supporting

system in the same way.

vi) If an exception occurrence results in the termination of a call chain of

several levels, each level should be allowed to fulfill its own finaliza-

tion obligations (commands that are executed in order to bring the

component in which the exception occurred to a safe and consistent

state) .

vii) The mechanism should not incur in run-time overhead to the normal

execution of a program.

As stated by requirement (ii) above, common ways of handling excep-

tions, such as printing out an error message and then stopping the execution
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of the program, is unacceptable.

The structuring of complex programs is very important to improve the

reliability of systems. Requirement (vi) states that a programmer should be

able to use abstraction not only to facilitate the design of complex programs,

but also to program the exception handling operations.

Although the set of requirements presented above is important when cre-

ating a new exception handling mechanism, none of the requirements men-

tion anything about exception handling in concurrent processes. In a system

where several processes are being executed concurrently, an exception oc-

currence in one of the processes can cause serious consequences in the other

processes. Therefore, we believe that an important requirement for an excep-

tion handling mechanism is the provision of methods for handling concurrent

exceptions or to help in the enclosure of concurrent processes that may be

affected by an exception occurrence in a different process. (We return to

these subjects in Section 3.4.3)

In addition to the requirements presented above, the following list of

design issues for an exception handling mechanism will determine its se-

mantics, usability, and ease of implementation ([Ghezzi & Jazayeri 1998] and

[Sebesta 1989]):

a) Description of exceptions that can be handled;

b) The way those exceptions can be defined;

c) The units that can raise an exception;

d) The way the handlers are defined;
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e) Definition of the binding between an exception and its handler;

f) The continuation point for the control flow after an exception has been

handled;

The choices made with regard to these design issues differ from language

to language and are discussed in the next sections.

3.3 Termination vs. Resumption Model

An important aspect of exception handling is that of where control flow

should continue after an exception is handled. There are two possible solu-

tions, which correspond to different styles of handling exceptions: termina-

tion and resumption models. The resumption model implies that the han-

dler's code may cause control flow to return to the point where the exception

was raised, whereas the termination model does not allow that. Instead the

termination model implies that the unit in which the exception was raised

is terminated and a command that does not belong to the unit is executed

(in Section 3.4.2.4 this is discussed further). A few languages, e.g. PL/I, use

the resumption model, while more languages support the termination model,

e.g. Ada95, Java, C++. Some languages that use the termination model

consider the situation in which the resumption model may be used once the

handler is activated, for example the Eiffel retry instruction used inside a

rescue statement.

Although for many years the debate on termination versus resumption

gave no clear indication of which approach is superior, in recent years ter-
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mination has gained wider acceptance. Indeed, even the main proponents of

the resumption model have abandoned it in favour of the termination model

[Cristian 1989]. Practical experience with languages providing the resump-

tion model has shown that this model is more fault-prone [Horning 1979].

For example, its use can promote the unsafe programming practice of remov-

ing the symptom of an error without removing the cause; e.g. the exception

raised for an unacceptable value of an operand could be handled by arbitrar-

ily generating an acceptable value and then resuming the computation.

3.4 Approaches for Exception Handling

3.4.1 Using Return Values

The simplest way of exception handling is by passing special codes through

arguments or returned values of procedures. For example, this is the way

internal exceptions are handled in the Unix operating system. Although the

advantage of this method is that it is very simple to understand and requires

no special support, there are several drawbacks to this way of exception

handling. Using return values as exception codes means that the results of

all operations must be checked for the occurrence of exceptions. This may

result in the following several severe consequences:

i) The creation of robust programs becomes very difficult. The amount of

code needed just to check error return codes becomes enormous. A

single test can easily be forgotten. This will not interfere with normal

program execution and may thus remain unnoticed for a long time.
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Then when there is an exception occurrence, the failure to test for the

exception occurrence will cause the program to continue in an incorrect

state with possibly disastrous consequences.

ii) Many system operations do not return any exception code. Therefore,

no exception handling can be executed for those exception occurrences.

Consider, for example, arithmetic operations such as division. A simple

division command could result in a division by zero. It is unacceptable

that such an exception occurrence simply prints a message on the ter-

minal and stops the system, because this makes it impossible for the

user program to do any damage confinement and exception handling.

iii) The checking code for an exception occurrence will be mixed with the

code for normal program execution, leading to programs that are hard

to read and maintain.

As shown above, checking return values does not provide a way of han-

dling exceptions that satisfies the requirements presented in Section 3.2. In

order to support the handling of exceptions such that it conforms to those

requirements, some programming languages have therefore implemented ad-

vanced exception handling mechanisms in sequential processes.

3.4.2 Exception Handling in Sequential Processes

Advanced exception handling mechanisms in most programming languages

differ only in minor aspects, the underlying concepts being the same. This

section will focus on the common qualities of the mechanisms rather than on
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the differences. The examples given will use either the Ada95 [ISO 1995] or

the Java [Gosling et al. 1996] programming languages.

3.4.2.1 Exception Declaration

Exceptions can be declared (and created) in exception declarations. Fig-

ures 3.1 and 3.2 show how exception declaration is done in Java and Ada95

respectively. For instance, in Java all user-defined exceptions are declared

as classes that inherit from the Exception class. Exceptions are instances of

these new classes.

public class SensorException extends Exception {
public SensorExceptionO {};

}

SensorException exception = new Sensorfxceptionf ): II Java exception

Figure 3.1: Exception Declaration in Java

SensorException : exception; -- Ada95 exception

Figure 3.2: Exception Declaration in Ada95

3.4.2.2 Exception Raising

Programming languages provide a statement to raise an exception. In Java

and Ada95, this is done by means of the predefined throw and raise instruc-

tion respectively (see Figures 3.3 and 3.4).

When an exception is raised, it may be handled by an exception handling

code. If there is no exception handling code for that exception, then the
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throw exception; / / Java exception declared previously

Figure 3.3: Raising Exception in Java

raise SensorException; -- Ada95 exception being raised

Figure 3.4: Raising Exception in Ada95

exception is signalled to the invoker of the service where the exception was

raised.

3.4.2.3 Exception Handlers

An exception handler is bound to a syntactical unit and to an exception.

In this way associations or bindings between the handler and the unit, and

between the handler and the exception are created. In some programming

languages, a handler can be bound to multiple exceptions, or to an exception

that is a top-level exception to several exceptions. Also, several exception

handlers can be bound to the same unit. The kind of unit that exception han-

dlers can be bound to depends on the programming language used. Handlers

can usually be bound to procedure and function bodies. Some languages also

allow handlers to be bound to blocks of commands (other than procedure and

function bodies) and to modules or packages. The binding of a handler to a

unit and to an exception is usually static, which means that the association

between the handler and the unit and between the handler and the excep-

tion is determined at compile-time. In Ada95, handlers can be attached to

a block, a body of a subprogram, a package or a task. In Ada95, exception

handlers are specified by means of the reserved word exception followed by
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the declaration of one or more handlers at the end of a unit (see Figure 3.5).

In Java, exception handlers are attached to a block of statements by means

of the try/catch command (see Figure 3.6).

begin
-- ... statements
exception when Sensor Exception => -- handler for SensorException;

end;

Figure 3.5: Exception Handler in Ada95

/ / attaching an exception handler to a block of statements in Java
try {

/ / ... statements
} catch (SensorException se) {

/ / handler for SensorException
}

Figure 3.6: Exception Handler in Java

A unit is said to have a handler for a specific exception if a handler which

can catch the exception is bound to the unit. A handler can catch only

those exceptions that are bound to it. In Figure 3.6, the Java body has a

handler for the SensorException exception (the Ada95 block, in Figure 3.5,

has also a handler for the SensorException exception). Most programming

languages allow special handlers to be defined that can catch any exception,

or all exceptions for which no other handlers are defined. This is necessary

for the handling of "out of scope exceptions" or to allow the unit in which the

exception occurred to finish in a consistent state. Out of scope exceptions

are exceptions which are propagated out of the scope of their declaration. If
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this occurs, the only way to catch them is with an "any handler". In Java,

an any handler is declared by means of specifying Exception as the exception

of a handler (see Figure 3.7) and in Ada95 others is used for this purpose

(see Figure 3.8).

/ / attaching an exception handler to any exception in Java
try {

/ / ... statements
} catch (Exception e) {

/ / handler for any exception
}

Figure 3.7: Any Exception Handler in Java

begin
-- ... statements
exception when others => --handler for any exception;

end;

Figure 3.8: Any Exception Handler in Ada95

3.4.2.4 Handlers' Responses

When an exception is raised in a unit for which the unit has a handler, con-

trol will pass to the handler. There are six main different ways in which a

handler can end. They are all based on the termination or resumption model

presented in Section 3.3. Each has a different effect on the continuation of the

control flow. Four of them are associated with the exception caught. These

are referred to as the return, propagate, retry and resume response. The

fifth response would be to raise another exception. In the literature a sixth
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response is often given, namely the transfer response which can continue with

any statement in the unit associated with the handler. This functionality is

similar to that of the goto statement. Since goto programming is generally

acknowledged to be bad programming practice, the transfer response is con-

sidered as being undesirable. The functionality of the other five responses

are explained below.

The return response has a similar effect as the return statement, which

can be used to return from procedures or methods. The invocation of the

unit to which the handler is bound is terminated. The value returned by the

handler is used as the returned value of the terminated unit. In most systems,

this response is the default way of returning from an exception handler if no

explicit response is programmed in the handler.

The propagate response from a handler causes propagation of the excep-

tion to the invoker of the unit to which the handler is bound. For the invoker

of the unit it makes no difference whether an exception is propagated to it

directly by a unit which has no handlers for an exception, or whether the

exception is first handled by a handler and then propagated by means of the

propagate response from the handler.

The retry response first terminates the invocation of the unit associated

with the handler. The unit is then reinitialized and execution continues at

the start of the unit.

The resume response causes execution of the program to continue right

after the point where the exception was raised. The resumption response

assumes that the exception handler has corrected the error causing the ex-

ception in such a way that the program can be continued right after the point
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where the exception was raised. The resume response is not possible for all

exceptions. Whether or not a handler should be able to issue a resume re-

sponse is not only the responsibility of the handler, but also of the part of the

program where the exception was raised. For many exception occurrences

it is clear at the time of raising the exception that continuation after the

exception occurrence should never take place. Therefore, most programming

languages that allow the resume response have two ways of raising an excep-

tion. When an exception is raised in the normal way, the resume response

from a handler is not allowed. It is only allowed when an exception is raised

using a special raise primitive.

The fifth way to continue after execution of a handler is to raise another

exception in the handler. This exception is then propagated to the invoker of

the unit associated with the handler, just as if the exception was propagated

directly from the unit.

Ada95 supports the return, raise of a new exception and propagate re-

sponse. In Ada95, the propagate is done by calling the predefined raise

operation with no arguments. Java supports the return, propagate, and the

raise of a new exception. The propagate response is invoked in Java by re-

throwing the exception that was caught. Examples of the resume response

can be found in PL/I and Eiffel.

3.4.3 Exception Handling in Concurrent Processes

Exception handling in sequential programs is a well-known subject with sev-

eral languages providing mechanisms for handling exceptions. Exception
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handling in parallel programs is much more complex than in sequential pro-

grams. Exceptional termination in a process can have a strong impact on

other processes. For example, consider a set of processes that communi-

cate with each other via a rendezvous mechanism. A process may terminate

abruptly due to the presence of an exception. Processes that need to com-

municate with the process that was terminated, may be suspended for ever

because the terminated process will not be ready for communication any-

more.

The problem of dealing with concurrent exceptions has been addressed

in different systems [Digital 1986] and models [Campbell & Randell 1986]

[Issarny 1993]. For example, the VAXELN programming environment from

Digital [Digital 1986] provides means for a process to raise exceptions in

other processes. The raising of an exception in a different process is done

in an unstructured manner. A process can enable or disable this kind of

exceptions. Raising an exception in a process that has disabled this kind of

exception has no effect. The approach of allowing an exception in a process

to be raised in a different process outside a structured framework can have a

devastating effect on program modularity. This is especially the case when

the raising of exceptions in other processes cannot be restricted.

In [Campbell & Randell 1986], a model for dealing with concurrent excep-

tions explores the use of an exception tree. Exceptions that can be signalled

by a component of a parallel block C are organized in a tree structure. The

root of this tree contains the universal exception, i.e. the exception that

represents the whole exceptional domain of C. In their model, when more

than one exception is raised concurrently, a handler for an exception that
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is ancestor to all the ones that were raised is executed. In the worst case

scenario, a handler for the universal exception is executed. In [Issarny 1993],

a different model that relies on the definition of resolution functions within

classes is presented. In this model, a resolution function takes a sequence of

exceptions as input parameter and returns an exception.

Despite all this work, mechanisms for dealing with concurrent exceptions

in programming languages are still in their early stages. For example, in the

Ada95 [ISO 1995] rendezvous mechanism, if an exception is raised during

a rendezvous and not handled in the accept statement, that exception is

propagated to both tasks and must be handled in two places. However,

Ada95 does not provide any mechanism to handle concurrent exceptions.

3.5 Comparative Evaluation

In Appendix B, a survey is given of the different approaches used in a number

of programming languages to provide exception handling. Although a lot of

research has been done in recent years and terminology is becoming uniform,

there are still differences and there is no consensus on a standard mechanism

that languages should adopt. Furthermore, the way concurrent exceptions

have to be handled is not a major concern in the languages surveyed.

One of the major issues in defining an exception handling mechanism

in a programming language is the way programs should be structured to

handle the exceptional occurrences. In the languages surveyed, almost all

languages have similar approaches for the type of exceptions that can be

handled and how they can be defined. They all provide built-in and user-
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defined exceptions. One of the major differences is whether an exception

can carry information or not. In PL/I, an exception is a named signal that

does not allow any additional information to be carried with the exception

to the handler. Languages like Ada95, CLU, Java, C++ or ML allow data

to be carried along with the exception. C++, for example, allows any kind

of object to represent an exception.

Exception handlers in Java and C++ can be attached to any block of

commands. Eiffel allows exception handlers to be only attached to routines.

In CLU, an exception handler cannot be attached to the routine in which

the exception was raised. In ML exception raising and exception handlers

are attached to expressions or functions. In PL/I the binding between an

exception and an exception handler takes place when an ON condition is

encountered during the execution. The handler is valid then during the

execution of the block of commands in which the ON condition was declared,

until the termination of the block.

In the languages surveyed, none provides means for handling concurrent

exceptions. Some of the languages provide means for raising concurrent

exceptions but it is presumed that they can be handled inside the processes

(threads) in which they were raised. Ada95 provides a mechanism for raising

the same exception in two processes. This situation may happen during an

Ada95 rendezvous. If an exception is raised inside the rendezvous and is not

handled, then the exception is propagated to both caller and callee tasks.

Exception handling is getting more and more common in programming

languages, and it is currently accepted as an important mechanism to be pro-

vided in new languages. For example, Java takes the handling of exceptions
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very seriously and does not allow a program to be compiled unless exceptions

that may be raised in a command are caught. Despite this wide acceptance

of exception handling in "sequential" programs, the inclusion of exception

handling mechanisms for concurrent exceptions in programming languages

is still needed. The next chapter introduces the idea of handling concurrent

exceptions in a multiparty interaction mechanism, and then shows how this

could be embedded in a programming language.
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Chapter 4

Dependable MUltiparty

Interactions

In the previous chapters multiparty interactions and exception handling

were presented. As mentioned in Chapter 2, existing multiparty interaction

mechanisms do not provide features for dealing with possible faults that may

happen during the execution of the interaction. In some, the underlying

system that is executing those multiparty interactions will simply stop the

system in response to a fault. In DisCo, for instance, if an assertion inside

an action is false, then the run-time system is assumed to stop the whole

application. As explained in Chapter 3, this situation is unacceptable in

many situations.

In this chapter, both mechanisms are brought together, i.e. exception

handling is added to multiparty interactions. This new mechanism is called a

dependable multiparty interaction (DMI). Specifically, a DMI is a multiparty

interaction mechanism that provides facilities for:

47
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• HANDLING CONCURRENT EXCEPTIONS: when an exception occurs in

one of the bodies of a participant, and not dealt with by that partici-

pant, the exception must be propagated to all participants of the inter-

action [Campbell & Randell 1986] [Romanovsky et al. 1996]. A DMI

must also provide a way of dealing with exceptions that can be raised

by one or more participants. Finally, if several different exceptions are

raised concurrently, the DMI mechanism has to decide which exception

will be raised in all participants.

With respect to how the participants of a DMI will be involved in

the exception resolution and exception handling, there are two possi-

ble schemes [Randell et al. 1997] [Romanovsky 2000]: synchronous or

asynchronous. In synchronous schemes, each participant has to either

come to the action end or to raise an exception; it is only afterwards

that it is ready to participate in any kind of exception handling; this

means that the participant's execution cannot be pre-empted if another

participant raises an exception. In asynchronous schemes, participants

do not wait until they finish their execution or raise an exception to

participate in the exception handling; once an exception is raised in

any participant of the DMI, all other participants are interrupted and

handle the raised exceptions together. Although implementing syn-

chronous schemes is easier than asynchronous, because all participants

are ready to execute the exception handling, the synchronous scheme

can bring the undesirable risk of deadlock. Therefore in this thesis the

asynchronous scheme will be adopted.
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• ASSURING CONSISTENCY UPON EXIT: a participant can only leave the

interaction when all of them have finished their roles and the exter-

nal objects are in a consistent state. This property guarantees that

if something goes wrong in the activity executed by one of the par-

ticipants, then all participants have an opportunity to recover from

possible errors.

The key idea for handling exceptions is to build DMIs out of not neces-

sarily reliable multiparty interactions by chaining them together, where each

multiparty interaction in the chain is the exception handler for the previous

multiparty interaction in the chain. Figure 4.1 shows how a basic multiparty

interaction and exception handling multiparty interactions are chained to-

gether to form a composite multiparty interaction, in fact what we term a

DMI, by handling possible exceptions that are raised during the execution

of the DMI. As shown in the figure, the basic multiparty interaction can

terminate normally, raise exceptions that are handled by exception handling

multiparty interactions, or raise exceptions that are not handled in the DMI.

If the basic multiparty interaction terminates normally, the control flow is

passed to the callers of the DMI. If an exception is raised, then there are two

possible execution paths to be followed: i) if there is an exception handling

multiparty interaction to handle this exception, then it is activated by all

roles in the DMI; ii) if there is no exception handling multiparty interaction

to handle the raised exception, then this exception is signalled to the invokers

of the DMI. The whole set of basic multiparty interaction and the exception

handling multiparty interactions are represented as one entity, a composite
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multiparty interaction since they are isolated from the outside in order that,

for example, the raising of an exception is not seen by the enclosing context

of a DMI.
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Figure 4.1: Dependable Multiparty Interaction

The exceptions that are raised by the basic multiparty interaction or by

a handler, should be the same for all roles in the DMI. If several roles raise

different concurrent exceptions, the DMI mechanism activates a exception

resolution algorithm based on [Campbell & Randell 1986] to decide which

common exception will be raised and handled.

In view of our interest in dependability, and in particular fault tolerance,

we adopt the use of pre and post-conditions, which are checked at run-time.

Regarding the remaining alternatives listed in Chapter 2, we have made the

following design choices for DMIs:

i) Although the particular processes involved should be able to vary from
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one invocation of a DMI to the next, their number in a given DMI

should be fixed.

ii) The processes should synchronise their entry to and exit from the DMI.

iii) The DMI mechanism should ensure that as viewed from outside the

DMI, its system state should change atomically, though inside the DMI

intermediate internal states will be visible.

iv) The way the underlying system executes a DMI can be synchronous or

asynchronous.

The choice for allowing a varying set of processes to enrole into a DMI

is related to the expressive power of the language construct we intend to

provide. Recall from Section 2.2, that the basic construct that presents the

higher degree of expressiveness is a team. A DMI is a team, hence choice (i)

was made. Synchronisation upon entry and exit (choice (ii)) is crucial if we

want to have some kind of guard to be tested before the DMI commences, or

an assertion to be tested before the DMI terminates. For example, if partic-

ipants in a DMI are allowed to terminate without synchronising upon exit,

then the process of involving that participant in the handling of an excep-

tion raised by another participant of the DMI will be much more difficult.

[Davies 1978]discusses several issues related to termination of processes that

should not interfere with each other, e.g. issues related to error recovery

before a process has terminated, or error recovery after a process has termi-

nated the execution of an activity. Choice (iii) is related to the visibility of

shared data inside the DMI and outside of the DMI. The related "frozen ini-
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tial state" property discussed in [Evangelist et al. 1989J is used in relation to

the participants that are outside the DMI, i.e. they see the change of shared

data as being instantaneous when the DMI terminates. Our proposal differs

from [Evangelist et al. 1989] in relation to the visibility of shared data inside

the DMI. In our proposal, participants can exchange data inside the DMI,

while in [Evangelist et al. 1989] participants of a multiparty interaction view

shared data as "frozen" when the multiparty interaction commences.

In the next sections, a sub-set! of new language based on Interacting

Processes (IP) [Forman & Nissen 1996] and Distributed Cooperation (DisCo)

[Jarvinen & Kurki-Suonio 1991] is presented. This new language is a test

bed for implementing DMIs. It provides DMIs as a basic language construct.

Section 4.1 presents the sub-set of commands for the Dependable Interaction

Processes (DIP) language. Section 4.2 presents the formal basis of some of

the DIP commands, including the formal description of DMIs. The formal

semantics of the DIP commands will be presented in Temporal Logic of

Actions (TLA) [Lamport 1994].

4.1 Dependable Interacting Processes - DIP

Dependable Interacting Processes (DIP) is a language that allows a designer

to specify exception handling in multiparty interactions. DIP extends lan-

guages like DisCo and IP (Interacting Processes), where exceptions are not

considered in the specification of a system.

IThe main idea behind the introduction of this new language is to show how the DMI
concept can be embedded in a programming language, therefore simpler commands are
prefered to more sofisticated ones, e.g. commands to/from instead of a select command
for message passing.
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A program in DIP is composed of a set of objects 0 (instances of classes),

a set of teams T (instances of actions), and a set of players P (instances of

processes) .

• program = {O, T, P}

Each program in DIP has a global state that is represented by the set of

objects O. The objects that represent the global state of a DIP program are

called global objects; Oglobal. Changes to the global objects of a DIP program

can only be made inside a team belonging to the set of teams T. Players

in DIP are responsible for specifying the order in which the teams in Tare

executed, hence the order in which the state of a DIP program changes.

4.1.1 DIP Basics

This section presents the core commands and the basic data types of DIP.

The commands can be used inside a team or inside a player's main body. In

the following definitions we use [] to express optional items and italics to

represent something that is yet to be defined.

4.1.1.1 DIP Commands

A command in DIP can be one of the forms: assignment command, state

change, selection command, iteration command, role activation, message

passing, block of commands, exception handler, exception raising.

• Assignment command:

Syntax: variable:= expression
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In an assignment command, first the expression is evaluated and then

the computed value is stored into variable.

• State-change command:

Syntax: -> object-state [:: exception-list]

A state-change command changes the state of the object to the new

state represented by object-state. During the changing of state, the

state machine can raise exceptions specified in exception-list.

• Selection command:

Syntax: if ( expression) then command [else command]

A selection command executes the command after the word then only

when the computation of expression results in the true value. If the else

part is inserted in the selection command, then the command after else

is executed only when the evaluation of expression is false.

• Iteration command:

Syntax: loop [while ( expression )] [until ( expression )] do command

The iteration command expresses several possibilities of executing the

command it encloses. Firstly, if neither the while clause nor the until

clause is used, then the command will be executed forever. If the while

clause is used, first the expression is evaluated, and if the value of the

expression is true, then the enclosed command is executed. If the result

of the expression is false, then the enclosed command is not executed

and the iteration is terminated. If the until clause is used, then after

the enclosed command was executed the expression is evaluated and

if its value is true, the iteration terminates, otherwise the enclosed
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command may be executed again.

• Role activation:

Syntax: role-name@team-name with list-of-parameters

This command activates the role role-name in the team team-name. The

list-of-parameters is a list of objects separated by comma. Complete

explanation of roles and teams follows in the next sections.

• Message sending:

Syntax: variable to role-name [blocks]

The value stored in variable is sent to a role (roles have to be in the

same DMI). If the clause blocks is specified then the command blocks

the role until the receiver (role) has read the message.

• Message receiving:

Syntax: variable from role-name [blocks]

The value sent by a role is stored in variable. If roles have not sent a

message to the role that is trying to receive a message, then an empty

value is stored in the variable (this empty value can be tested using

a constant called empty). If the clause blocks is specified, then the

command blocks until a message arrives. The role that is receiving a

message can indicate which role it wants to receive a message from.

Messages are treated in the order "first-in, first-out".

• Requeueing message:

Syntax: requeue variable

The value in variable is stored in the queue of messages of the corre-
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sponding role.

• Block of commands:

Syntax: begin list-of-commands end

Syntax: list-of-commands :: command [; list-of-commands]

• Exception handler:

Syntax: try commend., on exception ( exception-lists, ) commends, ...

The commend; is executed. If an exception in exception-lists, is raised

in commsndu, then commends, is executed. If there is no handler for a

raised exception, then the exception is signalled to the invoker of the

try command. This command is similar to the one used in C++ and

Java.

• Exception raising:

Syntax: raise exception

This command represents the raising of an exception and is similar to

the one used in C++ or Java.

All the above commands are used inside roles in DIP teams, or inside

the main code of a player. Apart from the to/from commands, all the other

commands are based on commands that are used in several other languages,

e.g. exception handler and raising are based on Java; role activation is based

on IP; state-change command is based on DisCo; the assignment, iteration,

and selection command are similar to the ones used in several languages,

such as Eiffel, Java, DisCo, C++, ...
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4.1.1.2 DIP Data Types

In DIP, basic data types can be declared inside objects, teams, and players.

The data types used inside an object will compose part of the object's state.

For teams and players, basic data types are used to declare local variables,

which cannot be seen outside the scope they were declared. This prevents

two players or roles from seeing the same variable.

DIP provides the following basic data types: integer, float, char, string,

boolean, and list (elements of a list can be accessed via an index, e.g. 1[0]

gives the first element of the list I). Variables of these data types are declared

inside a class; at the beginning of the declaration of a process; or, at the

beginning of the declaration of a role.

4.1.2 DIP Objects

All operations that change the state of a program in DIP are realised inside

multiparty interactions (i.e. in DIP teams as explained later). Therefore

objects are only used for keeping the program state, or intermediate state

of teams or players, i.e. objects do not provide methods as in programming

languages like C++, Java or Eiffel. Objects in DIP are thus similar to objects

in DisCo.

Each object in DIP has its own state, that is part of the global state of

the program, and a set of assertions to check that the state of the object

does not violate some requirements specified by the designer of the object.

Assertions are checked at the moment an object is created and at the end of

the execution of the multiparty interaction. Because the state of an object



58 4. Dependable Multiparty Interactions

is modified only inside a multiparty interaction, during the execution of the

multiparty interaction, the object's assertions do not need to remain valid.

Each assertion is represented by a boolean expression. If the evaluation of

this boolean expression results in false, then the exception attached to the

assertion is raised into the multiparty interaction that used that object. If

the assertion is false at the time the object is created, and this object belongs

to the global state of the program, the program players do not start their

execution and the program is terminated abnormally.

Classes

Objects are instances of classes. A class is a template description that speci-

fies the state of a set of objects. The state is represented by a set of variables

and a set of state machines. Class definition in DIP has the format shown in

Figure 4.2.

class clsss.nsme is
stete.deiinition
sssertions.deiinition

end class

Figure 4.2: Class Declaration in DIP

Classes in DIP can be extended to form new classes. A special way of

extending classes is using inheritance. In DIP, we use inheritance as follows.

A new class N can inherit from any existing class. A class can inherit from

more than one existing class (this is called multiple inheritance [Meyer 1997]

[Ghezzi & Jazayeri 1998]). The state of an object from class N is composed of

the new state defined in N and the state defined in the classes N is inheriting
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from. Multiple inheritance is used in languages like Eiffel [Meyer 1992] and

C++ [Stroustrup 1994].

Multiple inheritance may bring a possibility of name clashes. Some of

the variables of the extended classes can have the same name but different or

unrelated semantics that are inherited from different classes. Any language

that has multiple inheritance must deal with this problem of name clashes

[Meyer 1997]. Three conventions are possible for solving this problem: i)

require the designer of a new class to remove any ambiguity, by explicitly

qualifying the variable with the inheriting class name (this convention is

adopted by C++ [Stroustrup 1994]); ii) choose a default interpretation, i.e.

the underlying language mechanisms select one of the variants (this approach

has been implemented in several Lisp-based languages); and, iii) rename the

conflicting names in the the inherited class (this is the approach adopted in

Eiffel [Meyer 1992]). In DIP, the name clashes are solved by qualifying class

variables, i.e. using approach (i). Whenever there is an ambiguity in the

access of a class variable, it must be resolved through qualifying the class

variable with the appropriate class name.

In the example in Figure 4.3, three classes are defined. Each class has its

own internal state. In the example, class C inherits from classes A and B.

Classes A and B have one variable that have the same name, variable s, lines

2 and 6 respectively. An instance of C, object obj in line 13, when using the

variable s will have to specify which s it is using, from class A or class B, see

line 15 and line 16.

Examples and thorough discussion about inheritance and multiple inher-

itance can be found in [Meyer 1997].
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1 class A is
2 integer s,a;
3 end class;
4
5 class B is
6 string s,b;
7 end class;
8
9 class C inherit A, B is
10 float b;
11 end class;
12
13 C obj;
14
15 obj.A:s = / / s from A
16 obj.B:s = // 5 from B
17 obj.b = / / redefined b
18 obj.a = / / a from A

Figure 4.3: Multiple Inheritance in DIP

4.1.3 DIP Teams

Teams are used to describe dependable multiparty interactions in DIP. A

team t in DIP is composed of a name, a main body b (called simply the

body from now on) and a set of handler teams H. The body of a team and

the handler teams are associated via the exceptions that can be raised inside

the body of the team .

• t = {nameteam, b, H}

An example of the team structure is in Figure 4.4.
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action nameteam is
body is

body b
exceptions e(el' e2)
end body
handler for e is
body

body of handler for exception e
end body
handler for ei is
body

body of handler for exception el
end body
handler for e2 is
body

body of handler for exception e2
end body

end action

Figure 4.4: Team Structure in DIP

4.1.3.1 Team Body

Each body b is composed of: i) a set of roles R; ii) a set of objects Oroles

that are manipulated by the roles, i.e. objects that are sent to the team as

role parameters; iii) a set of local objects Olocal that have the same semantics

as global objects with respect to the roles in R, i.e. roles can modify these

objects only inside another team; iv) a set of local teams LT (nested teams)

used to modify the local objects in Olocal2; v) a boolean expression, called

guard, that checks the preconditions of the team and must be true in order

for the roles of the team to start; vi) a boolean expression, called assertion,

that checks the post-conditions of the team and must be true in order for

the roles to finish normally; and a set of outcomes OUT it can produce, i.e.

20bjects in OroZes can also be modified by a team in LT
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a normal outcome or one exception which is signalled to the callers of the

team. The exceptions a team can signal are expressed as a list after the word

exceptions, see Figure 4.4. The list is structured as a tree, e.g. e( el ,~)

represents a tree in which e is the parent of el and e2. Local objects and

local (nested) actions are created when all roles become active and destroyed

when the roles become inactive again .

• b = {R, Oroles, Oloeal, LT, guard, assertion, OUT}

• Oteam = Oloeal U Oroles

• Oroles ~ Oglobal

The syntax of a team body is based on the syntax of IP teams, while the

semantics of the use of objects is similar to DisCo actions. Teams in DIP

differ from the IP teams in the sense that IP allows the static definition of

processes that belong to that team, while in DIP the only static computation

code allowed is the one inside the roles of the DIP team. The semantics of

objects that are sent to a DIP team are very similar to the way objects are

treated in DisCo actions, i.e. they can only be used in one team at a time.

For a better understanding, see the examples in DisCo and IP in Appendix

A.

4.1.3.2 Team Guard and Assertion

Guard is a boolean expression, a precondition, over the objects that are

carried to the team by the roles (Oroles). This boolean expression is tested

only when all roles become active in an execution of a team. The guard states
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a necessary condition, not sufficient, for the team to start. If the guard does

not hold, then an exceptional outcome is produced and it can be treated by

a handler. The guard can be empty, having the same effect as if it is always

true.

• The body of a team starts when all roles are active and the guard of

the body is true.

• If team tl and team t2 are active, then Otl n Ot2 = {}.

Assertion is a boolean expression, a post-condition, over the team's ob-

jects (Oteam). This expression must be true in order for the team to finish

normally. Similarly to the guard, if the assertion does not hold, then an

exceptional outcome is produced and it can be treated by a handler. The

assertion can be empty, having the same effect as if it is always true.

• The body of a team terminates normally when none of the roles of

the body fail and the assertion of the body is true.

In Figure 4.5, we show how a guard and an assertion can be inserted

in the body of a team. The guard-boolean-expression and assertion-boolean-

expression are expressions over the objects of the team, i.e. Oteam

Team guard and assertion have similar meaning to guard and assertions

in DisCo. There are some major differences though. First, an action in DisCo

is only activated if the guard is true, while in DIP the body of the team is

only activated if the guard is true. If the guard is not true in DIP, then

an exception can be raised and a handler for that exception will be tried.

Second, assertions in DisCo can be inserted anywhere inside an action, while
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action nameteam is
body is
guard guard-boolean-expression

assertion assertion-boolean-expression
end body

end action

Figure 4.5: Guard and Assertion Declaration in DIP

in DIP, the assertion is used only for testing post-conditions, hence it is

tested at the end of DIP team's execution. The third difference is that a DIP

assertion can raise an exception if it is false, and an exception handler may

be executed. In DisCo, if an assertion is false, then the system is assumed to

stop.

4.1.3.3 Team Outcomes

A team can produce two different kinds of outcomes (results): i) normal,

when all roles are activated, guard and assertion are satisfied; ii) exceptional

outcome, when guard or assertion are false; when a role fails to perform its

activity; or when an object being manipulated by a role has at least one of

its assertions signalling an exception.

4.1.3.4 Team Roles

Roles are the means for describing computation inside a team. Each role ri

has a name, a set of objects, Orolei' and a set of commands Crolei (commands

were explained in Section 4.1.1). The objects used by the role are a subset of

the objects of the team. Roles are passive entities but become active when
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players, or the roles in a containing team, activate them .

• o.s; ~o.s:

An example of roles in a team is shown in Figure 4.6.

action nameteam is
body is

role rl with objeclt is
commands for role rl

end role

role Tm. with objectm is
commands for role rm

end role
end body

end action

Figure 4.6: Roles Declaration in DIP

Roles in DIP, have a similar syntax to roles in IP teams, but their seman-

tics differ greatly. For example, in lP, roles do not have to start at the same

time, they are more like methods in object-oriented languages. Synchronisa-

tion can be achieved, in lP, by means of its interaction basic construct.

4.1.3.5 Team Handlers

Each team t can have an associated set of handlers hi. Each handler is

composed of a set of roles, a set of objects that are manipulated by the roles,

a guard, an assertion, a set of exceptional outcomes, and a set of exceptions

handled by this handler. A handler is activated when one of the exceptions
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it handles is raised in the body of a team or in another handler. Handlers

can be used for several purposes: to recover a team from an error situation;

to relax the guard of a team"; to relax the assertion of a team; to execute a

new diverse version of a team with different guard, roles, and assertion; and

so on. A handler has basically the same structure as the body of the team,

but is activated by an exception or set of exceptions Hi. OU1i is the set of

outcomes the handler hi can produce.

Connection. A team t is connected to a handler hi if there is an exceptional

outcome from t that is handled by hi. We express a connection by -t.

A handler hi is connected to a handler hj, hi -t hj, if an exceptional

outcome of hi is an exception handled by hj. A team t is also connected

to hj if there is a sequence of connections that leads t to hj, i.e. there

is a sequence t -t hi -t ...-t hk -t ...-t hj. If hi is connected to

hj, then hj cannot be connected to hi, i.e. the connections produce a

directed acyclic graph.

In Figure 4.7 we show an example that contains a team t and a set of

handlers that t is connected to. This set is expressed as Ct = {hI, h2, h3,

h4, h5, h6, h7}. The connection set for each of the handlers in Figure 4.7 is as

follows: Chl = {h4,h5,hd, Ch2 = {h5,h7}, Ch3 = {h2,h5,h6,h7}, Ch4 = {hd,

Ch5 = {h7}' Ch6 = {h2, h5, h7}, and Ch7 = n·
3E.g. imagine that a team needs two devices to execute an activity, but only one

is available (the other may be broken), the guard will not be true, but a handler more
complex than the body of the team can execute the same activity in a degraded mode.
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b

Figure 4.7: Connection between a Team and its Handlers

The set of roles R and the set of objects Orales in a handler hi are the

same as in the team t that is connected to hi. Each handler can be connected

to several other handlers. Guard and assertion in a handler can be different

from those in the team t. The set of exceptions that is handled by a handler

is a subset of the exceptional outcome of the body of the team or handlers

that are connected to it. If the commands of a handler role are the same as

in the team t, then these commands are assumed in the handler role and do

not need to be rewritten. The clause same after the declaration of a handler

role specifies this property.

The exceptional outcome of a team (aT) is composed of the union of the

outcomes of the body of the team b and the outcomes of all handlers that b

is connected to.

• ot = OUT U (Ui=lOU1i)

Concurrent exceptions raised in different roles are dealt with using the

model proposed by [Campbell & Randell 1986] and discussed in Section 3.4.3.
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When defining the exceptions the body of the team or one of its handlers

can signal, the designer has to provide a hierarchy of exceptions in the for-

mat of a tree, so in the case of more than one exception being raised at the

same time, the highest of the two will be handled, if there is a handler to

treat that exception. In the case of the exceptions being on the same level

of hierarchy, an immediately higher exception than the two will be handled.

Two handlers cannot handle the same exception. If there is no handler for

the raised exception, then it is signalled to the invokers of the team.

Actions

Teams are instances of actions. An action is a template description which

specifies properties and behaviour for a set of similar teams. Actions are the

way of defining the structure of a team presented in the previous section.

4.1.4 DIP Players

Players are the sequentially executing entities in a DIP program. They are

responsible for activating the roles in a team. Each player Pi is composed of

a name, a set of local objects Op;, and a set of commands Gp; .

• p = {PI, ... , Pt}, where l ~ 1

All players, in DIP, start their execution immediately after all global

objects and global teams are created. The players cannot change the state

of global objects, but can inform a team about what global objects will be
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used by a team when they activate a role in a team. Players activate a role

using the enrole command.

Processes

Players are instances of processes. A process is a template that contains the

sequence of commands to be executed by a player after the player has been

instantiated. A process has the format presented in Figure 4.8.

process name is
player local objects
body is
commands

end body
end process

Figure 4.8: Process Declaration in DIP

4.1.5 An Example in DIP

The dining philosophers problem was introduced [Dijkstra 1965] to show how

to achieve synchronisation when a process needs more than one resource

to execute an activity, e.g. one philosopher needs two forks to start an

eating activity. Note that in the original specification of the problem only

one process would start the operation. For our purpose, i.e. multiparty

interaction, we will consider forks as being processes rather then resources,

and an eating activity will only happen when the three-parties are ready to

execute it.
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action1

action2

pllilosopherl

~

action3

PhilOSOPi

actionO ""'"
~ philosophers

action4

Figure 4.9: Dining Philosophers Problem

Definition: Let us consider a set of 10 processes divided in two groups of

5 processes: forks and philosophers, where forks= {farko, ... , fork4}

and philosophers= {philosophero, ... , philosopher4}. These processes

will, during the execution of the system, execute joint activities, called

actions= {actiono, ... , actions } that will be composed of 2 fork com-

ponents and 1 philosopher component. Each component of actions is

a tuple in the format aciiotu= {forki, philosopher., forki+1}, where

o :::;i :::;4, and i + 1 is equivalent to (i + l)mod 5. Let us also consider

that each action; will need an external data called pastaDish in order to

execute the joint activity, and that such external data can be accessed

only by one action at a time. To better understanding of the problem

see Figure 4.9.
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Figure 4.12 shows how to instantiate forks, philosophers and actions in

DIP. In the figure, philosophers are created as elements of a list that has

indexes from 0 to 4. Upon instantiation the index of each element of the list

is passed as parameter of the process.

Philosopher philosopherji=D ..4](i);
Fork fork[i=O..4](i);

EatingAction action[5];

Figure 4.10: Instantiating processes and teams in DIP

In Figures 4.10 and 4.11, we represent in DIP the processes that will

execute the eating DMIs (named action). Each of these processes receives a

number upon instantiation that specifies its identity, e.g. Philosopher p{l};

creates a philosopher DIP object and the pn variable parameter is set to 1

to this philosopher object.

process Philosopher{pn:integer) is
body

loop
action[pn].Philosopher with pasta
/ / sleep ...

end;
end body

end process

Figure 4.11: Philosopher process in DIP

A fork process is also instatiated with a parameter that specifies which

eating DMI it will act as right or left fork. If the parameter rn is an even

number, then the fork process first executes the role on its right eating DMI,



72 4. Dependable Multiparty Interactions

playing as the right fork role.

process Fork{rn:integer) is
body

loop
if rn%2 == 0 then
begin / / action on the right first
action[( (rn+ 1)%5)+ l].RightFork
action [rn].LeftFork

end
else
begin action on the left first
action [rn].LeftFork
action[( (rn+ 1)%5)+ 1].RightFork

end;
end;

end body
end process

Figure 4.12: Fork process in DIP

Every action[i] is an instance of the team EatingAction with the follow-

ing roles: LeftFork, Philosopher and RightFork. This activity is executed in a

coordinated way by the three participant processes. Firstly, the Philosopher

and the LeftFork will synchronise their execution, and such synchronisation

will represent the philosopher grabbing the left fork. A similar synchroni-

sation will occur later representing the philosopher grabbing the right fork.

After those, both forks will synchronise their execution in order to access the

external data pastaDish. Such execution will consume part of the external

data. When the LeftFork and the RightFork have got the "pasta", i.e. part of

the external data, the three participants will synchronise their effort to "eat

the pasta", i.e. consume the data. See Figure 4.13 and 4.14.



4-1. Dependable Interacting Processes - DIP 73
Eating Action

leftFork _+-.- --.--__ .,.-__ --+__

~philosopher _-+--L.._-._--;.._-+- __ -+-~---_+___
J3~

'"
~ c3rightFork _+-__ __.__-.;..._...I...._ __ ...L.._ __ -+_~

PASTADISH_..-- _;VL...· s. ...._.~~
I-----------------------------~

Figure 4.13: Eating Action

action EatingAction is
body is
role RightFork

pasta from Philosopher / / grabbed by philosopher
ok from LeftFork
y = pasta. Get
y to Philosopher

end role;
role Philosopher with pastaDish:Pasta

pasta to LeftFork
pasta to RightFork
y from RightFork
x from LeftFork
/ / eat x + y

end role;
role LeftFork

pasta from Philosopher / / grabbed by philosopher
x = pasta. Get
true to LeftFork
x to Philosopher

end role;
end body;

end action;

Figure 4.14: Eating DMI in DIP
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4.2 Formal Semantics

A well-defined syntactic and semantic description of a language is essential

for helping good design and programming of a system. The syntax of a lan-

guage describes the correct form in which programs can be written while the

semantics expresses the meaning that is attached to the various syntactic

constructs. While syntax diagrams and Backus-Naur Form - BNF have be-

come standard tools for describing the syntax of a language, no such tools

have become widely accepted and standard for describing the semantics of

a language. Different formal approaches to semantics definition exist. For

example, in operational semantics the behaviour of an abstract processor is

used to describe the effects of each language construct; in axiomatic seman-

tics rules are provided to show the relevant state changes immediately after

the execution of a language construct; and denotational semantics programs

are defined in terms of mathematical functions which are used to derive prop-

erties of the original program. This thesis does not describe these methods

any further. Several authors report how to use these approaches for describ-

ing the semantics of programming languages [Tennent 1991] [Hennessy 1990]

[Ghezzi & Jazayeri 1998].

Concurrent systems are usually described in terms of their behaviour -

what they do in the course of an execution [Lamport 1999]. The Temporal

Logic formal model [Pnueli 1977] was introduced to describe such behaviour

of concurrent systems. A variation of Temporal Logic that makes it practical

to write a specification as a single formula was presented in [Lamport 1994].

This variation is called Temporal Logic of Actions - TLA. TLA provides the
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mathematical basis for describing properties of concurrent systems.

In Section 4.2.1, an introduction to TLA is presented. In Section 4.2.2,

the semantics of DIP is presented using TLA. The full syntax of DIP is

presented in Appendix C.

4.2.1 Temporal Logic of Actions

The Temporal Logic of Actions - TLA [Lamport 1994] is a formalism suitable

for describing state transition systems and properties of such systems using

the same notation.

TLA is a linear-time logic in which expressions are evaluated for non-

terminating sequences of states. Each sequence of states is called a behaviour.

A state is an assignment of values to variables. Variables that are used to

model properties are state functions, which have unique values in each state.

A state function is a non-boolean expression built from variables, constants,

and constant operators. Semantically, a state function assigns a value to

each state. An individual state change is called a step. A step that allows

variables to stay unchanged is called a stuttering step.

An action is a boolean expression containing primed and unprimed vari-

ables. Semantically, an action is true or false for a pair of states, with primed

variables referring to the second state. An action is said to be enabled in a

state s if and only if there exists some state t such that the pair of states

< s, t > satisfies that action.

Rather than presenting the full description of TLA, a simple program

in DIP is presented with its corresponding TLA formula. The process, in
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Figure 4.15, initialises a variable x with 0 and then keeps incrementing x by

1 forever.

process example is
integer x := 0;
body
loop

x:= x + 1;
end;

end body
end process

Figure 4.15: Simple Program in DIP

The TLA formula for the above DIP process is defined as follows":

I1 A 1\ (X = 0)
1\ 0 [x' = x + 1]x
1\ WFx(x' = x + 1)

A TLA formula is true or false on a behaviour. Formula I1, presented

above, is true on a behaviour in which the ith state assigns the value i-I to

x, for i= 1,2, .... In the above TLA formula, the conjunct (x = 0) specifies

that initially, x is equal to 0; the conjunct 0 [x' = x + 1] x specifies that

the value of x in the next state (x') is always (0) equal to its value in the

current state (x) plus 1. The subscript x specifies that stuttering steps are

allowed, i.e. steps where the value of x is left unchanged. The WFx(x' = x

+ 1) conjunct rules out behaviours in which x is incremented only a finite

number of times. It asserts that, if the action (x ' = x + 1) 1\ (x' t- x)

ever becomes enabled and remains enabled forever, then infinitely many (x '

4The symbol g, means equals by definition.
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= x + 1) 1\ (x ' i= x) steps occur. WF stands for Weak Fairness. In practice,

the specification of WF above implies that any step changes x.

Because TLA formulae can be as long as several pages (see [Lamport 1996]),

TLA+ was introduced to help in writing such large formulae. TLA+ is

a language for describing TLA formulae. Operators in TLA+ are classi-

fied as constant operators, action operators, and temporal operators. Ap-

pendix D shows the TLA+ operators. (For further reading about TLA see

[Lamport 1994] [Lamport 1999].)

In the next section the specification of some of the DIP commands is

presented in TLA+.

4.2.2 Properties of DIP

DIP basic commands do not differ from commands in "common" program-

ming languages. The semantics of these commands have already been thor-

oughly described elsewhere. Therefore their semantics is not described in

this section. Formal specification of commands such as assignment (:=), se-

lection (if then else), iteration (loop) can be found in [Hennessy 1990] or

[Tennent 1991].

In the following sections, we concentrate on formally describing the se-

mantics of commands that differ from commands in other languages. Section

4.2.2.1 presents the formal specification of the command to/from. Section

4.2 presents the formal specification of a dependable multiparty interaction

in DIP. TLA+ is used as the specification language to express the semantics

of these DIP commands.
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4.2.2.1 Commands to/from in TLA +

The communication between two processes, or roles, in DIP is done via the

message sending to and the message receiving from commands. The be-

haviour of these two commands depends on the clause blocks at the end of

the command. In order to specify these commands first we present the def-

inition of a channel [Lamport 1999], which will be used in the specification

of to/from.

val

Sender rdy Receiver

ok

Figure 4.16: Channel between a sender and a receiver

Figure 4.16 shows how a sender and a receiver are connected via a Chan-

nel interface. Data is sent on val, and the rdy and ack lines are used for

synchronisation. The sender must wait for an acknowledgement (an ack) for

one data item before it can send the next data item. The interface uses the

handshake protocol, described in the following example:

[
val = 0 ] [ val = 66] [ val = 66] [ val = 23]rdy = 0 Se~66) rdy = 1 ~ rdy = 1 Se~23) rdy = 0
ack = 0 ack = 0 ack = 1 ack = 1

Figure 4.17 shows the complete specification of Channel in TLA +. The

first step in defining a new module in TLA + is to give the module a name. The

second step is to specify which modules are used in this module, e.g. Channel
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MODULEChannel -----------~

EXTENDSNaturals
CONSTANTData
VARIABLESc
Typelnvariant ~ c E [val Data, rdy {O, 1}, ack {O, 1}]

Init ~ /\ Typelnvariant
/\ c. rdy = c. ack

ll.Send(msg) = /\ c. ok = c. ack
/\ c' = [val t--t msg, rdy t--t 1 - c. rdy, ack t--t c. ack]

Receive ll. /\ c.rdy#c.ack
/\ c ' = [val t--t c. val, rdy t--t rdy, ack t--t 1 - ack]

Next ll. (3 msg E Data : Send (msg) ) V Receive

Spec ~ Init /\ 0 [Next] c /\ WFc (Receive) /\ WFc (Send Imsg)

THEOREM Spec::::} 0 Type Invari ant

Figure 4.17: The Specification of a Channel

module EXTENDSthe Naturals module''. The constant Data is a parameter

of the specification and can assume any value. The state of a channel is

represented as a record with val, rdy, and ack fields. The type invariant

asserts that the value of c is an element of the set of all such records r in

which r. val is an element of the set Data and r. rdy and r. ack are elements

of the set [o.i}. This is defined by the following TLA + line:

5Arithmetic operators like + are not built into TLA+, but are themselves defined in
modules. The usual operators on natural numbers are defined in the Naturals module.
Their definitions are incorporated into the module Channel by the statement EXTENDS
Naturals
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Typelnvariant £ c E [val : Data, rdy : {O, 1}, ack : {O, 1}]

Initially, c can equal any element of the set of records r whose fields rdy

and ack have the same value, so the initial predicate is expressed as:

Ini t ~ /\ Typelnvariant
/\ c. rdy = c. ack

In the next-state action Next, a step of the protocol either sends a value

or receives a value. There are two separate actions: Send(msg) that describes

the sending of a Data msg; and Receive that describes the receiving of a

value. A Next step will either be a Send(msg) step or a Receive step, so it is

expressed as:

Next £ C3msgE Data : Send Cmsg) V Receive

The Send(msg) action asserts that the value of the channel c in the end

of the Send(msg) step, i.e. c', has val equals to msg, rdy changes its value (to

o or 1), and ack stays unchanged. The enabling condition of Send(msg) is

that the ack and rdy fields are equal, i.e the receiver is ready to accept the

next value from the sender, so the Send(msg) action can be expressed as:

6Send (msg) /\ c. ack = c. rdy
/\ c' = [val 1--+ msg, rdy 1--+ 1 - c. rdy, ack 1--+ c. ack]

The Receive step only takes place when the sender has sent the data,

i.e. rdy is different form ack. This step changes the value of ack leaving the

values of rdy and val unchanged. The Receive operation is expressed as:
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Receive ~ /\ c .rdy = c. ack
/\ c' = [val I-t c. val, rdy I-t rdy, ack I-t 1 - c .ack]

The next step is to specify the whole behaviour of a channel as one single

formula and not as a set of formulae. This formula is written with the

temporal-logic operator 0 (always). The formula DNext asserts that Next is

true for every step in the behaviour. The formula Init, without a 0, is an

assertion about the beginning of the behaviour. So, Init /\ 0 Next is true

of a behaviour if and only if the initial step satisfies Ini t and every step

satisfies DNext. To allow the channel to be part of a system the specification

of channel has to allow stuttering steps. In the channel specification above,

Spec has to allow steps that leave the channel c unchanged. The definition

of Spec that allows stuttering steps is therefore:

Spec ~ Ini t /\ 0 [Next] c

The above formula specifies what a channel system must not do, e.g.

the sender cannot change the state of the channel unless the receiver has

signalled this by changing the value of ack to 1; or the receiver cannot read

a value from the channel unless the sender has signalled it has changed the

value of val. These properties are called safety properties. The next step

then is to specify that something does happen, e.g. once the receiver is ready

to accept a value, a value will eventually be sent by the sender. This type

of property is called liveness property. In TLA + liveness properties can

be expressed by a conjunct of the form WFv(A), which asserts that if A ever
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becomes forever enabled, then an A step must eventually occur. So, the Spec

for the channel is expressed as:

Spec ~ Init A 0 [Next]c A WFc(Receive) A WFc(Send(msg))

The last item in the specification of the channel is a temporal formula

that is satisfied by every behaviour. This kind of formula is called a THEOREM.

In the channel specification, the theorem expresses that a channel c is a

record of the format [val: Data, rdy: {O,1}, ack: {O,1}] for any behaviour

satisfying Spec.

We will now use the channel specified above in order to describe the

semantics of the commands to/from. Figure 4.18 shows how two processes,

or roles, communicate with each other using the to/from command. The

sender uses a channel, called to, to send data to the receiver. This data is

stored until the receiver is ready to receive the data. The receiver then takes

the data via the from channel. Let us recall the functionality of the to/from

commands:

• to without the clause blocks: the data is read from channel to and is

stored in a queue.

• to with the clause blocks: the data is read from channel to, stored in

a queue, and the sender is blocked until the receiver is ready to read it

from channel from.

• from without the clause blocks: if the queue that is storing data from

channel to is empty, then empty data is read from channel from. If the
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queue is not empty, then an element is taken from the queue, written

on channel from, and read by the receiver .

• from with the clause blocks: the receiver only reads data from channel

from when there is data to be read from channel from.

to ToFrom from
Sender

Command
Receiver

Figure 4.18: to/from Command

Figure 4.19 shows the complete specification of the to/from commands

with and without the clause blocks.

The first step in specifying a new module in TLA+ is to give the module

a name: ToFromCommand. The next step is to declare which modules are going

to be used: EXTENDSNaturals, Sequences, Channel. The specification of the

module ToFromCommand continues by declaring the constant Message, which

represents the set of all messages that can be sent. There are five variables:

to, from, representing the channels, q which represents the queue of buffered

messages, msgsnd which indicates the number of messages that were sent by

the sender, msgrcv which indicates the number of messages received by the

receiver. The value of q is the sequence of messages that were sent by the

sender but were not yet received by the receiver.

The specification of the ToFromCommand module uses the definitions in

the Channel module to specify operations on the channels to and from. This
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,--------------------- MODULEToFromCommand ---------------------,

EXTENDSNaturals, Sequences, Channel
CONSTANTMessage
VARIABLES to, from, q, msgsnd, msgrcv
Chan (eh) ~ INSTANCEChannel WITH Data *- Message, c *- eh

Init ~ 1\ Chan(to)!Init 1\ Chan(from)!Init 1\ q=() 1\ msgsnd=msgrcv
TypeInvariant ~ 1\ Chan Ct o) !TypeInvariant

1\ Chan (from) !TypeInvariant
1\ q E Seq (Message)
1\ msgsnd,msgrcv E Naturals

Send(msg) ~ 1\ Chan(to)! Send(msg)
1\ msgsnd ' = msgsnd + 1
1\ UNCHANGED(from, q , msgrcv)

BlockSend ~ 1\ msgsnd = msgrcv
1\ UNCHANGED(to, from, q, msgrcv, msgsnd)

TFCRcv ~ 1\ Chan(to) !Receive
1\ q' = Append(q,to.val)
1\ UNCHANGED(from, msgrcv, msgsnd)

TFCSend ~ 1\ q -I 0
1\ Chan (from) !Send(Head(q))
1\ q' = Tail(q)
1\ UNCHANGED(to, msgrcv, msgsnd)

Recei ve Ll. 1\ IF (msgsnd > msgrcv) THEN
1\ Chan (from) !Receive
1\ msgrcv' = msgrcv + 1

ELSE from' = [val ~ c,rdy ~ from.rdy,ok ~ from.ok]
1\ UNCHANGED(to, q, msgsnd)

BlockRecei ve ~ 1\ msgsnd > msgrcv
1\ UNCHANGED(to, from, q, msgrcv, msgsnd)

Next ~ V :3 msg E Message : Send(msg) V BlockSend
V TFCRcv V TFCSend V Receive V BlockReceive

Spec ~ Init 1\ 0 [Next] (to ,from,q,msgsnd,msgrcv) 1\ WFfrom (Receive)

THEOREMSpec => 0 Type Invariant

Figure 4.19: TLA+ Specification of to/from
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requires two instances of that module. Instead of defining these two instances

separately, the following parametrised statement is used:

AChan(ch) = INSTANCEChannel WITHData ~ Message, c ~ eh

The above definition allows that for any symbol (J defined in module

Channel and any expression eh, Chan(ch)!a is defined to be equal formula (J

with Message replaced by Data and ch replaced by c. Then the Send(msg)

action on channel to could be written as Chan(to) !Send(msg).

The initial statement for ToFromCommandis a conjunction that initialises

both channels using the channels' Ini taction, q as an empty sequence of

messages, and the counters for messages sent (msgsnd) and received (msgrcv)

as having the same value. The Init predicate is defined as:

Init A
1\ Chan(to)!Init
1\ Chan(from)!Init
1\ q = ()
1\ msgsnd = msgrcv

The definition of the type invariant for the ToFromCommandmodule is ex-

pressed using the type invariant from the Channel module (for either chan-

nels), the type of q that is a set of finite sequences of messages, and the type

of msgsnd and msgrcv that are Natural numbers. The type invariant for the

ToFromCommandspecification is:

Type Invariant A
1\ Chan(to) !TypeInvariant
1\ Chan(from) !TypeInvariant
1\ q E Seq (Message)
1\ msgsnd,msgrcv E Naturals
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The Send(msg) step writes the message on the channel to in the conjunct

ChanCto) !Sendfmsg) , and increments the number of messages sent by 1. Sub-

sequently, the message is read from the channel and stored in the sequence q

by the action TFCRec. These two steps represent the command to without the

clause blocks. The blocks clause in the command to is represented by the

step BlockSend. This step is only taken when the number of messages sent is

equal to the number of messages received, i.e. the receiver has read the last

message sent by the sender. Therefore, the expression of the to command

with the clause blocks is the step Send(msg) followed by the step BlockSend.

The definition of the command to is defined as:

Send (msg) ~ 1\ Chan(to)!Send(msg)
1\ msgsnd' = msgsnd + 1
1\ UNCHANGED (from, q, msgrcv)

BlockSend ~ 1\ msgsnd = msgrcv
1\ UNCHANGED (to, from, q, msgrcv, msgsnd)

TFCRcv ~ 1\ Chan(to)!Receive
1\ q' = Append(q,to.val)
1\ UNCHANGED (from, msgrcv, msgsnd)

The definition of the command from without the clause blocks is repre-

sented by the Receive action. This action will put an empty (s) value on the

channel from if the number of messages sent is not greater than the number

of messages received, i.e. there is no message to be read in queue or in the

from channel. Otherwise, the receiver will read a message from the channel

from and increment the number of messages received by 1. This increment

may enable the step BlockSend, hence unblocking the sender. A message is

written on the channel from by the action TFCSend when the sequence q is not
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empty. If the command to is used with the clause blocks, then first the step

BlockReceive has to be taken followed by the step Receive. This sequence

will guarantee that there is a value to be read, otherwise the receiver will

be blocked until msgsnd > msgrcv. See the definition for the command from

below:

TFCSend ~ 1\ q =I- ()
1\ Chan(from) !Send Gleadf q)
1\ q' = Tai1(q)
1\ UNCHANGED(to, msgrcv, msgsnd)

Receive ~ 1\ IF (msgsnd > msgrcv) THEN
1\ Chan(from) !Receive
/\ msgrcv' = msgrcv + 1

ELSE from' = [val ~ c,rdy ~ from.rdy,ok ~ from.ok]
1\ UNCHANGED(to, q, msgsnd)

BlockReceive ~ 1\ msgsnd > msgrcv
1\ UNCHANGED(to, from, q, msgrcv, msgsnd)

A Next step of the ToFromCommandcan: i) write a message to channel to

in the Send(msg) action; or, ii) unblock the sender in the step BlockSend;

or, iii) read the message from the channel to and store it in the sequence q

in the TFCRcvaction; or, iv) write a message that is stored in sequence q to

channel from in TFCSend action; or, v) read a message from channel in the

Receive action; or vi) unblock the receiver in the BlockReceive action. The

Next step and the specification for the command to/from is defined as:

Next ~ V :3 msg E Message : Send(msg) V BlockSend
V TFCRcv V TFCSend V Receive V BlockRecei ve

The Spec for the to/from command is given by the following TLA+ for-

mula. The liveness property asserts that if there is a value in the channel
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from, then eventually this value will be read.

Spec A Init /\ 0 [Next] (to,from,q,msgsnd,msgrcv) /\ WFfrom(Receive)

4.2.2.2 DMI in TLA +

In the previous section, the semantics of one the basic commands of DIP was

formally specified using TLA +. In this section we will present the seman-

tics of a dependable multiparty interaction. A DIP action is the command

structure that represents a DMI.

Before we start formally describing the semantics of DMI in TLA +, con-

sider the following:

• a DMI is represented by a set of roles that are executed by players.

The players send objects to the roles;

• a player has to activate a role in DMI in order to execute the commands

inside a role;

• a DMI only starts when all roles of the DMI have been activated, and

the guard (boolean expression) at the beginning of the DMI is true;

• the DMI only finishes when all players have finished executing their

roles, and the assertion at the end of the DMI (boolean expression) is

true (if no exceptions were raised);

• roles can only access data that is sent to them when they are activated,

or data that is sent to them by other roles belonging to the same DMI

using the to/from command specified in Section 4.2.2.1;
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• exceptions can be raised during the execution of a DMI. If exceptions

are raised, then all roles that have not raised an exception are inter-

rupted, and an exception resolution algorithm is executed when all roles

have either raised an exception or have been interrupted.

• if there is a handler to deal with the exception that was decided upon

by the exception resolution algorithm, then this handler is activated by

all roles;

• if there is no handler to deal with the exception that was decided upon

by the exception resolution algorithm, then the exception is raised in

the callers of all roles;

• handlers have the same number of roles as the DMI to which they are

connected.

In order to formally specify the semantics of a DMI in TLA +, we will use

the following sets and predicates:

• Exceptions: the set of exceptions handled by the DMI;

• Commands: a set of commands;

• Objects: a set of objects;

• Roles: contains the roles of a DMI. Each element of this set is a record

with a field to represent the state of the role, a field to represent the

result of the role after the commands of this role have been executed,

a field to store those commands, and a field containing the set of objects

manipulated by the role;
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• Handlers: the set of handlers for the DMI;

• GuardExpression(e): a predicate representing the execution of the pre-

condition of the OM!. The parameter e contains the set of all tuples

<p , er, 0>, where p represents a player that is enroled to the role er,

and 0 is the set of objects sent to the role by the player;

• AssertionExpression(e): the same as GuardExpression(e) but for the

post-condition of the DMI;

• ExecuteCommands (e): execute the commands for the corresponding role;

• Resolve (enroled): execute the exception resolution algorithm for all

roles in the DM!. After this algorithm has been executed all roles will

produce the same exceptional result.

The initial condition for the DMI is that all roles are in a waiting state,

both guard and assert have the value FALSE,and the enroled and elements

sets are empty. The Ini t predicate is defined in TLA + as:

Init ~ /\ 'Vr E Roles : r. state = "vait"
/\ guard = FALSE
/\ assert = FALSE
/\ enroled = {}
/\ elements = {}

The type invariant specifies that the guard and assert are BOOLEANvari-

ables, the state of a role can can only have one of the values from the set

{"vait" J "ended" ,"started"}, and the result of a role can either have a value

from the set {"ok", "interrupted"} or from the set of possible exceptions in

Exceptions. The type invariant is defined as:
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TypeInvariant £ /\ guard, assert E BOOLEAN
/\ Vr E Roles r.state E {"wait","ended","started"}
/\ Vr E Roles: r.result E {"ok", "interrupted"} U Exceptions

For a player p to enrole in a role er with a set of objects 0, it has to execute

the action Enrole (p ,er, 0). This step is only enabled if role er belongs to

the set of Roles in the DMI and no other player has enroled to such a role.

This is expressed by the two first conjuncts of the following TLA + formula.

If this step is enabled, then the role er is added to the enroled set and the

tuple <p, r , 0> is added to the elements set. The Enrole (p, er, 0) action

is defined in TLA + as:

Enrole(p,er,o) ~ /\ 3rt E Roles: rt = er
/\ Vr2 E Enroled : r2 =I- er
/\ enroled' = enroled U {er}
/\ elements' = elements U {<p,er,o>}
/\ UNCHANGED(guard, assert)

The DMI only begins if all roles have a player enroled to and the precon-

dition is true. The testing of the guard with all players enroled is defined by

the following two TLA + conjunctions:

Guard
A

/\ Vr E Roles : r E enroled
/\ guard' = GuardExpression(elements)
/\ UNCHANGED(enroled, elements, assert)

Begin
A

/\ guard = TRUE
/\ Vr E Roles : r . state' = "started"
/\ UNCHANGED(enroled, elements, assert, guard)

The execution of all roles is defined in the action ExecuteRoles. This

step is only enabled if all roles have state = "started". If enabled, then the
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result of the execution of the set of commands of a role is stored in the field

result. The ExecuteRoles is defined in TLA + as:

ExecuteRoles ~ A 'Vr E Roles : r. state = "started"
A 'V<p,r,o> E elements: r.result' = ExecuteCommands(<p,r,o»
A UNCHANGED(enroled, elements, assert, guard)

When all roles have executed their commands without raising an excep-

tion, i.e. their state is equal to "ok", the post-condition expression can be

tested. The assert variable changes its value based on the execution of

the AssertionExpression(elements) action. The post-condition of a DMI is

defined as:

Assertion A A 'Vr E Roles : r .result = "ok"
A assert' = AssertionExpression(elements)
A UNCHANGED(enroled, elements, guard)

If no exceptions were raised, then the normal termination of a DMI is

defined in the NormalEnd action. The condition that enables this step is

assert = TRUE,i.e. the post-condition was passed. This step changes the

state of all roles to "wait", meaning that the roles are ready to be executed

again. The sets enroled and elements are emptied. The TLA + definition of

NormalEnd is:

NormalEnd A
A assert = TRUE
A 'Vr E Roles : r.state' - "wait"
A enroled' = ( )
A elements' = ( )
A assert' = FALSE
A guard' = FALSE
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r-r-r: MODULEDMI

EXTENDSNaturals, Sequences
VARIABLESenroled, elements, guard, assert

Init ~ 1\ Vr E Roles: r.state = "wait"
1\ guard = FALSE
1\ assert = FALSE
1\ enroled = {}
1\ elements = {}

TypeInvariant ~ 1\ guard, assert E BOOLEAN
1\ Vr E Roles: r.state E {"wait" ,"ended" ,"started"}
1\ Vr E Roles : r .result E {"ok", "interrupted"} U Exceptions

Cl.Enrole(p,er,o) = 1\ 3rl E Roles: rl = er
1\ Vr2 E enroled : r2 f:. er
1\ enroled' = enroled U {er}
1\ elements' = elements U {<p,er,o>}
1\ UNCHANGED(guard, assert)

Guard ~ 1\ Vr E Roles : r E enroled
1\ guard' = GuardExpression(elements)
1\ UNCHANGED(enroled, elements, assert)

Begin Cl. 1\ guard = TRUE
1\ Vr E Roles : r. state' = "started"
1\ UNCHANGED(enroled, elements, assert, guard)

Cl.ExecuteRoles = 1\ Vr E Roles : r.state = "started"
1\ V<p,r,o> E elements: r.result' = ExecuteCommands(<p,r,o»
1\ UNCHANGED(enroled, elements, assert, guard)
Vr E Roles: r.result = "ok"
assert' = AssertionExpression(elements)
UNCHANGED(enroled, elements, guard)
assert = TRUE
Vr E Roles r.state = "ended"
Vr E Roles: r.state' = "wait"
enroled' = ( )
elements' = ( )
assert' = FALSE
guard' = FALSE

Assertion
Cl.

1\
1\
1\

NormalEnd
Cl. 1\

1\
1\
1\
1\
1\
1\

Figure 4.20: TLA+ Specification of a DMI (part 1)
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Figure 4.20 shows the complete first part of the formal semantics of a

DMI. In the figure all conjunctions are related to the normal execution of

a DMI. In Figure 4.21, we define the formal semantics for the steps that

are taken in case of one or more exceptions being raised. An exception

can be raised during the execution of the set of commands of a role in the

ExecuteComrnands action.

The activation of a handler depends on the state of the roles. A handler

is only activated when all roles have the same value for their result, and

there exists a handler for the exception resolved by the resolution algorithm.

The activation of a handler is defined as:

ActivateHandler ~ 1\ Vrl,r2 E Roles : (r1.result = r2.result)
1\ 3h E Handlers: (3r E Roles: r.result E h.Exc)
1\ UNCHANGED(enroled, elements, assert, guard)

The resolution algorithm on the other hand, is activated once all roles

have raised an exception, i.e. their result belongs to the set Exceptions, or

have been interrupted. The state of all roles has to be different from "ok".

This action is defined as:

ExceptionResolution ~ 1\ Vr E Roles : r. resul t =I "ok"
1\ Resolve (enroled)
1\ UNCHANGED(enroled, elements, assert, guard)

When a role terminates by raising an exception, then all other roles have

to be interrupted, causing the exception resolution algorithm to he enabled.

The step that represents the interruption of roles is InterruptRoles. This
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InterruptRoles ~ /\ 3r1 E Roles r1.result E Exceptions
/\ 'Vr2 E Roles IF r2 .result ~ Exceptions

THENr2 .result' = "interrupted"
ELSE r2.result' = r2.result

/\ UNCHANGED(enroled, elements, assert, guard)

ExceptionResolution ~ /\ 'Vr E Roles: r.result i- "ok"
/\ Resolve (enro Led)
/\ UNCHANGED(enroled, elements, assert, guard)

ActivateHandler ~ /\ 'Vr1,r2 E Roles : (r1·result = r2.result)
/\ 3h E Handlers: (3r E Roles: r.result E h.Exc)
/\ UNCHANGED(enroled, elements, assert, guard)

~ uExceptionalEnd /\ vr1,r2 E Roles: r1.result = r2.result
/\ ~3h E Handlers: (3r E Roles: h.exception i- r.result)
/\ 'Vr E Roles r. state = "ended"
/\ 'Vr E Roles : r. state' = "vai t"
/\ enroled' = ( )
/\ elements' = ( )
/\ assert' = FALSE
/\ guard' = FALSE

Next ~ V :Jp E Players: (3er E Roles: (30 E Objects: Enrole(p,er,o»)
V Guard V Begin V ExecuteRoles V Assertion V End
V InterruptRoles V ActivateHandler

Spec ~ Init /\ 0 [Next] ( 1 d )enro e , elements, assert, guard

THEOREMSpec => 0TypeInvariant

Figure 4.21: TLA+ Specification of a DMI (part 2)

step is enabled when at least one of the roles has raised an exception. The

raising of an exception is represented in the value that the role's result as-

sumes. If the value belongs to the set of Exceptions, then the InterruptRoles
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action is enabled. The step will then set the state of all roles, which did not

raise an exception, to "interrupted". Even if a role has terminated it will

be interrupted when another role raises an exception. The InterruptRoles

actions is defined in TLA + as:

InterruptRoles ~ A :3rl E Roles rt.result E Exceptions
A Vr2 E Roles IF r2.result fj. Exceptions

THENr2.result' = "interrupted"
ELSEr2.result' = r2.result

A UNCHANGED(enroled, elements, assert, guard)

4.2.3 Discussion

The semantics described in Section 4.2.2.2 deal with the basic rules of a

DMI, i.e. pre and post-synchronisation, roles activation, exception handling,

and roles interruption. Furthermore, we showed, in Section 4.2.2.1, how

the semantics of two of the DIP commands could be expressed in TLA +.

Although we did not provide formal semantics to all DIP commands, the

specification for those two commands show how the semantics of other DIP

commands could be specified.

We did not attempt to describe formally the semantics of the execution of

the role's commands. The way external objects guarantee ACID properties

is also not described (a formal description of the ACID properties can be

found in [Lynch et al. 1994]). In [Schwier et al. 1997], for example, formal

description of enclosure properties for a mechanism similar to the DMI (CA

action [Xu et al. 1995]) is given in temporal logic.



Chapter 5

Implementation of DMIs

In the previous chapter, the DIP language, which supports dependable

multiparty interaction as a basic construct, was presented. Although one can

design, or implement, systems using just DIP, there are a lot of programming

languages that are available for designing and implementing computing sys-

tems. Those systems may contain several multiparty interactions during their

execution. Usually, those multiparty interactions are scattered throughout

the programming code of the system. In this chapter, we present several

different approaches for organizing multiparty interactions and implement-

ing DMIs in object-oriented languages. Section 5.1 presents different ways of

organizing objects in order to build DMIs. Section 5.2 presents a complete

framework implemented in Java, with a set of programming techniques, that

provides the necessary tools for constructing DMIs.

In Chapter 6, we show how the API that will be presented in this chapter

can be used in the implementation of a control system for an industrial

production cell. Appendix E shows a complete example of how to instantiate

97
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objects, and how to implement application code by extending the classes of

the API.

5.1 Object-Oriented Architectures for DMIs

DMIs can be implemented in a number of ways. In this section we discuss

alternative ways of providing a distributed implementation of OMIs in object-

oriented languages, based on that given in [Zorzo 1999]. First of all, the

various components that can be used to implement a OMI are described.

Basically, a OMI is composed of:

• Manager: one component for controlling all protocols inside a OM!,

such as: pre and post-synchronisation of processes that participate in

the OM!; test of pre and post-condition of the OM!; exception handling

between the processes; keeping control of internal and external data to

the OMI; etc.;

• Roles: several segments of application code, each of them being exe-

cuted by a process that participates in the OM!;

• External data: data that is external to the processes that are participat-

ing in the OM!. This kind of data might be accessed by other processes

that are not participating in the OM!. Hence a special access control

is required;

• Local data: data that is local to the DM!. Processes that are not par-

ticipating in the OMI do not have access to this data.
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In object-oriented languages, several possibilities for implementing roles

and managers can be devised, e.g. roles as separate objects or as member

functions of a manager object. Local and external data are represented as

objects. The way they are structured and used in a DMI is described in

Sections 5.1.1 and 5.1.2. Four possible architectures for implementing DMIs

in object-oriented languages are described in Sections 5.1.3, 5.1.4, 5.1.5, and

5.1.6.

5.1.1 External Data as Atomic Objects

External data can be represented by external objects in all architectures that

will be presented in the next sections. External objects are used in a DMI

to get access to the state of an application while the DMI is in progress.

Because these objects can be seen by other DMIs at the same time, they

are provided with some type of transactional semantics in order to avoid

wrong (temporary/incomplete) information being used before the DMI has

finished. One way of providing these objects with transactional semantics is

by using an existing object-oriented transactional system, for example, the

Arjuna system [Shrivastava et al. 1991]. A simple mechanism that provides

only mutual exclusion access to these objects could be provided, but this

could restrict the types of applications that could use the DMIs.

5.1.2 Local Data as Objects

Local data can be represented by local shared objects. These objects are used

by the roles in order to exchange information with each other. They are used
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only inside a DMI and their values are discarded after the DMI has finished.

The roles in a DMI may also use private local objects. These objects are not

used concurrently, so it is the responsibility of the role to take care of them.

5.1.3 A Manager-and-roles Object

The simplest way of organizing a DMI is to centralise everything in the

same object, except the external objects. Figure 5.1 shows an example

UML class diagram [Muller 1997] that represents this architecture. A DMI

is represented by an abstract class that has to be extended by a new class

(DMIExample in the figure). This new class has to implement at least the

public manager method, and some private methods, which represent the roles

of the DMI. The manager method is responsible for executing the protocols

of a DMI, e.g. synchronization of participants, and giving access to the

role methods (firstRole, second Role, and thirdRole in the figure) of the ex-

tended class. Lists of input and output parameters are sent to the DMI

via the manager method. The manager method is also informed about the

role a participant wants to execute. The protocols that the manager method

has to execute are implemented as protected methods in the DMI abstract

class. Shared local objects are represented as private objects of the new ex-

tended class, e.g. SharedLocalObject object in the figure. This private object

is used by all role methods for communication and cooperation. External

objects have to extend some class that implements transactional semantics.

Several external objects may be referenced (accessed) by a DMI. Implemen-

tations of similar approaches can be found in [Romanovsky & Zorzo 1999]
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and [Wellings & Burns 1996].

DMI Transactional

I- II internal objects ~ I - II internal objects ~
0..*

II# II some protected metho1

0..* + BeginO
+ Comrniu)
+ AbortO

~ L~

DMIExample ExtemalObject

- SharedLocalObject object I - II internal objects ~
+manager(String, List, List) + commitStateO

- firstRoleO + abortStateO

- secondRoleO

I ~- thirdRoleO II some other methods

Figure 5.1: A Manager-and-roles Object (UML)

5.1.4 A Manager Object and Role Objects

The architecture with one manager and several role objects is a natural way

of distributing DMls. It allows information to be processed in the loca-

tion where it is produced (in the roles) avoiding the overloading of a single

host. Figure 5.2 shows an example UML class diagram that represents this

architecture. The manager is represented by a class that contains the im-

plementation of all protocols of a DMI, e.g. synchronisation of participants.

The manager has references to all external and shared local objects in the

DMI. The manager also controls the roles of the DMI, i.e. access to a role

is through the manager using the execute method. When this method is

called, the participant has to inform the manager what the input and out-
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Figure 5.2: A Manager Object and Role Objects (UML)

put parameters are, and which role the participant is intending to execute.

Roles are represented in this architecture as abstract classes that have to be

extended by new classes that implement at least the protected method body.

This method contains the application code for the role. Roles can create or

reference shared local objects. External objects can also be referenced by

roles. As shown in the figure, a DMI is represented by the manager, roles,

and shared local objects classes. Implementations of similar approaches can

be found in [Mitchell et.al. 1998] and [Zorzo et al. 1999].
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5.1.5 Manager-and-role Objects

In this architecture, manager and role are implemented in the same object.

The DMI is composed of several of these manager-and-role objects. The

manager part in each object is responsible for maintaining contact with the

other manager parts of the other roles in order to execute the main function

of the DMIs, e.g. synchronisation, exception handling. Figure 5.3 shows an

example UML class diagram that represents this architecture.

~ creates
DMI~

0..' I
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ObjectExample SharedLoca/Object ManagerRole
refere noes ~ I - II internal objects ~I - II internal objects :J I - II internal objects :J I - /I internal objects ~ 0..' 0..'
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I Ilsome methods J # /Isome protected method~
+ execute(List, List) + CommitO
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I /Isome methods ~ ~
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I I I
FirstRole SecondRole ThirdRole ExternaJObject

I - /I inttmaJ objects :J I - II internal objects :J I - /I internal objects :J I - II internal objects :J
+ commitState()

- body(List, List) - body(List, List) - body(List, List) + abortState()

I II sorne other methods :J

Figure 5.3: Manager-and-role Objects (UML)

5.1.6 Manager Objects and Role Objects

A fourth way of distributing parts of a DMI is shown in Figure 5.4. In

this approach there are several managers and several roles. Each manager is

responsible for controlling the access to one role, and for executing protocols



104 5. Implementation of DMIs

together with all the others managers, e.g. the handling of possible exceptions

that may be raised during the execution of one, or more, roles of the DMI.

Each role is controlled by exactly one manager. The complete description

and implementation of this architecture is presented in Section 5.2 (a short

description can also be found in [Zorzo & Stroud 1999]).
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Figure 5.4: Manager Objects and Role Objects (UML)



5.2. A Complete Object-Oriented Framework for DMI 105

5.1.7 Discussion

A brief comparison of the four architectures presented above shows that: the

architecture in Section 5.1.3 is the simplest to implement, but may cause

the overloading of one host; the architecture in Section 5.1.4 leaves the pro-

cessing of application code to be executed on the node it is produced, but

has the inconvenience of having a single point of failure (the manager); the

architecture in Section 5.1.5 avoids the problem of the single point of failure

and the overloading of a single host, but does not allow the separation of ap-

plication code and the control of the interaction; the architecture in Section

5.1.6 may be the most difficult to implement but avoids all the problems the

other architectures have, i.e. single point failure, overloading of a single host,

and lack of separation of application code and interaction control. The next

section describes in detail a framework that implements the architecture in

Section 5.1.6.

5.2 A Complete Object-Oriented Framework

for DMI

Chapter 4 showed how multiparty interactions could be linked together to

implement DMIs. In this section a generic object-oriented framework for

implementing DMIs is described. This framework is composed of four types

of distributed objects (as described in Section 5.1): roles, managers, shared

local objects, and external objects. Each of the these objects can potentially

be distributed on a different host. Each DMI is represented by several sets
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of these remote objects: one set for the interaction when there is no failure,

i.e. basic interaction, and several sets for dealing with exceptions that may

be raised during the execution of the interaction (either during the basic

interaction or during an exception handling interaction).

DM!
<III leads

Role

0..1 Manager 0..1

0.*

I ~
~. §

I Exception r - - - ~ ~
0..* TIT 0..*

Transactional 0..* 0.. 1 0..*

<III references
f------j SharedLocaLObject

creates ~

Figure 5.5: Class Diagram (UML)

Figure 5.5 shows a reduced UML class diagram version of Figure 5.4

that represents our API. The figure shows that each role is associated with

only one manager, and each manager controls only one role. Managers are

associated with a special manager, which is called the leader manager. The

leader manager is the only manager that is associated with shared local

objects. Shared local objects are created by roles, which (eventually) export

them to the leader manager and thus make them accessible by the other roles.

External objects are associated with both managers and roles. Managers will

keep track of these objects for possible recovery, while the roles will use them.

As shown in the figure, there is no class to represent either a basic multiparty

interaction or a DMI in the framework. A DMI itself will be built using

a sequence of programming steps to glue the components of the framework
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when they are being instantiated (created). A multiparty interaction consists

of a set of managers linked together via a leader manager (represented by

the leads association). Multiparty interactions are connected together in

order to create a DMI via the activates association. A set of managers, in

a multiparty interaction, will activate the appropriate set of roles for dealing

with a raised exception. This new set of roles will be controlled by a different

set of managers.

To program a new DMI using the framework, the first step is to define a

new class that extends the Role class for each party in the interaction. The

extended Role class should redefine at least one method: the body method.

This method will contain the set of operations that will be executed by

the participant that activates the role. Upon creation each Role has to be

informed about the manager that will be managing this role. A manager that

'controls' a Role object is an instance of the Manager class. The Manager class

provides a basis for coordinating the participants in a multiparty interaction.

Separation of the manager from the roles allows the application code of the

role to be distributed to the host where the application is created. This

strategy will help in avoiding the overloading of one host with the control of

the DMI and the application code. Furthermore, in the case of the host of

the application role crashing, the manager can still run and recover, together

with the other managers, from this crash.

The managers of all roles will compose the controlling body of the in-

teraction. Each manager upon creation is informed of which manager will

act as the leader in the interaction. The leader is responsible for controlling

protocols for synchronisation between managers, for the exception resolution
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algorithm, and for keeping information about the shared local objects. Ev-

ery manager is a potential leader in the framework, avoiding a possible single

failure point, if the host of the leader crashes.

The framework described here is implemented using the Java language

and its RMI ORB to distribute the objects of a DMI. (Other mechanisms,

such as CORBA could have been used.)

5.2.1 Managers

The Manager class is the major class in our framework. Each role has to

be managed by a different manager object. When instantiating a Manager

object, the manager has to be informed of its name, the name of the inter-

action, the leader of the interaction (a manager without a leader is its own

leader), and a list of exceptions that will be treated by the manager. Each

exception in the list is associated with a role from an exception handling

interaction. This new role, which is controlled by a different manager, will

be called to treat that exception when it is raised in all roles of the interac-

tion. The list of exceptions attached to the managers is the link between the

multiparty interactions of a DMI. Exceptions that are raised in a multiparty

interactions whose managers do not treat exceptions are propagated to the

enclosing context. Figure 5.6 shows how to instantiate a set of managers for

an interaction.

Manager mgrl = new Manager( "mgrl-name", "DMI-name" ,ehl, null);
Manager mgr2 = new Manager("mgr2-name","DMI-name",eh2, mgrl);

Figure 5.6: Manager Objects Instantiation
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There are four ways of creating a manager object: creating a leader man-

ager object that handles exceptions; creating a leader manager object that

does not handle exceptions; creating a manager object that handles excep-

tions and is led by a leader; or, creating a manager object that does not

handle exceptions and is led by a leader. In Figure 5.6, two managers were

created for the same DMI with mgrl acting as the leader of the DMI and

mgr2 being led by mgrl). The ehl hashtable contains the list of exceptions

that are treated by mgrl and the roles that are activated in the case of one

of the exceptions that are in the list being raised. All hashtables of managers

from the same DMI must contain the same list of exceptions to be handled. If

the hashtables do not contain the same list of exceptions, then an exception

is raised at creation time.

Each manager is activated when an external thread calls its starting

method. This starting method creates a new internal thread, that will exe-

cute a the sequence of operations, shown in Figure 5.7, as the main execution

body of the manager. The thread that activated the manager, i.e. the exter-

nal thread, waits in the starting method until the internal thread has (been)

terminated, or until the DMI that encloses the DMI that the external thread

has just activated interrupts it due to an exception in one of the roles in the

enclosing DMI. If the external thread is interrupted by the enclosing DMI,

then it interrupts the internal thread and waits until the internal thread has

terminated. The internal thread can terminate with one of the following

results: an exception that was not dealt with inside the DMI; a normal ter-

mination, i.e. no exceptions were raised, or exceptions were raised inside the

DMI but were handled properly; or, interruption by the external thread. An
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internal thread can only be interrupted by the external thread if the DMI has

not started, i.e. the internal thread is still waiting for the other participants

of the OM! to synchronise at the entry point.

try {

synchronisefseginf]: / / synchronise upon entry
if (!roleManaged.preCondition(listOfParameters))

throw new PreConditionExceptionO;
roleManaged.bodyExecute(this,listOfParameters); / / execute the role
synchroniseEnd(); / / wait everyone to finish before checking post-conditions
if (!roleManaged.postCondition(listOfParameters))

throw new PostConditionExceptionO;
synchronisefindf ): / / really exit synchronously

} catch (Exception e) {
/ / exception resolution part, call exception resolution algorithm
/ / and activate role associated with the exception (if there is one)

}

Figure 5.7: Main Execution Code for a Manager Object

In Figure 5.7, the first activity the manager, i.e. the internal thread of

the manager, executes is to synchronise itself with all the other managers

in the interaction by calling the synchroniseBegin method. Once the leader

has informed this manager that all the managers have been synchronised,

the manager checks whether the role precondition is valid. The preCondition

method receives all the objects that will be passed to the role managed

by this manager as parameters. If the precondition is not satisfied, then

a PreConditionException is thrown. The role is executed by the manager

by calling the bodyExecute method of the role. After the role has finished

its execution, the manager synchronises with all the other managers before

testing its post-condition. If the post-condition is passed (accepted), then



5.2. A Complete Object-Oriented Framework for DMI 111

the manager synchronises with all the other managers and the interaction

is finished. This sequence of steps is executed if all the activities of all the

participants of an interaction finish without raising any exception. If an

exception is raised during the execution of a role, the manager will catch this

exception in the catch(Exception e} block. In this situation, the manager calls

an exception resolution algorithm, and after receiving the exception it has to

handle, the manager activates the role in the exception handling interaction

that deals with this exception. If there is no exception handling interaction

for the exception it has to handle, then this same exception is thrown by all

managers in the DMI to the callers of the roles.

5.2.2 Roles

After a new Manager object has been created, the programmer of the multi-

party interaction has to create a role object that will be controlled by that

manager. This role object has to be an instance of the new role class derived

from the Role class provided by the framework. Each new class derived from

Role contains the main code for one of the roles that compose the multiparty

interaction. Only objects whose type is derived from Role can belong to a

multiparty interaction. When deriving a new class from the Role class, the

programmer should implement at least one method: the body method, which

will contain the main application code of that role. This method does not

return any value. It receives a list of external objects as parameter (see Fig-

ure 5.8). If an exception is raised inside that role, then that exception can

be handled locally by the role if the exception does not affect other roles. If
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the raised exception has any effect on the other threads, it must be thrown

to the manager of that role which will notify the leader and interrupt all

roles in the DMI. After all roles were interrupted the leader resolves which

exception handling interaction will deal with that exception (or some com-

mon exception if more than one role raises an exception simultaneously, as

it will be explained in Section 5.2.4).

public class RoleName extends Role {

SharedObject so; / / shared object

public RoleName(Manager manager, String roleName) {
super (manager, roleName); / / set role with name and manager
so = new SharedObjectf): / / creates a shared object
manager.sharedObject(lsoName", so); / / export shared object

}

protected void body(Transactional listO) throws Exception {
/ / code for the body of the RoleName

}
}

Figure 5.8: Extending Role Class

Extensions of the Role class are also responsible for declaring the shared

local objects used for coordinating the roles within a particular interaction,

and for checking part of the pre and post-conditions of the interaction. After

the shared local objects have been created, the role must inform its manager

about those objects using the shared Object method. This will export the

shared local objects, making it possible for other roles in this interaction

to use them later. The pre and post-conditions of an interaction can be

checked in a distributed way; each role checks part of the conditions, or one

role could be delegated to check the whole pre and post-condition of the
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interaction. The delegation could be achieved by using shared local objects

between the roles. The methods in which the test of pre and post-conditions

are programmed are called: preCondition and postCondition. These methods

may be redefined in the new role class. Figure 5.8 shows the extension of

the Role class, and how shared local objects are created and exported by this

new role.

Roles are distributed objects in the framework and provide a user with

the following public methods: execute and body Execute. When the execute

method is called, the role passes control to its manager which will execute

the body Execute method of this role. The bodyExecute method takes the

manager descriptor as its parameter. This descriptor is checked against the

manager descriptor that the role was created with. This guarantees that only

the manager of this role can execute its main body (body method of the new

role class).

5.2.3 External, Local and Shared Objects

Two other classes are provided by the framework. The ExternalObject class

which implements an interface called Transactional. The Manager class ex-

pects objects from such a class to implement the Transactional interface.

The Transactional interface defines the following public methods: begin, com-

mit, and abort. The ExternalObject class provides a basic implementation

for the Transactional interface. Any new class extended from ExternalOb-

ject class is provided with this basic implementation of the Transactional

interface but must provide its own definitions of commitState and abort-
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State methods. The framework provides its own simple transactional system,

but this could easily be replaced by an existing one like the Arjuna system

[Shrivastava et al. 1991]. External objects are passed to the multiparty in-

teraction via input parameters when activating a role.

The SharedLocalObject class represents the objects used by roles (in or-

der) to exchange information with each other. These objects are used only

inside the interaction and their values are discarded after the interaction has

finished, either when the interaction terminates normally, or when an ex-

ception is raised by one of the roles. Figure 5.9 shows how a role can get

a reference to a shared local object that was exported by another role (see

Figure 5.8 for the exporting of a shared local object). In the body method of

the role, the manager of that role is asked about an object called "soName"

using the getSharedObject method. If the object exists then a reference to

that object is returned, otherwise a null is returned.

SharedObject so = (SharedObject) manager.getSharedObject("soName");

Figure 5.9: Getting Reference to Shared Objects

Shared local objects are remote objects in the framework, so there is

a chance that these objects can be accessed by adjacent interactions (e.g.

parent or sibling interactions). However, even though shared local objects can

be seen by other interactions, only threads that are executing the interaction

(or roles belonging to that interaction) should be able to access them. To

ensure these semantics, every time a thread starts to execute a role of a

DMI, the managers inform the shared local objects about the threads that are
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authorized to access them. It is possible to perform an internal check because

shared local objects are bound to particular "instances" of interactions at

object creation time.

The roles in a multiparty interaction may also use private local objects.

These objects are not used concurrently, so it is the responsibility of the role

to take care of them. If any kind of recovery is necessary they have to be

recovered by their owner. If the role that created local objects cannot recover

them, then an exception should be raised.

5.2.4 Exception Handling

By default, the Manager class provides a built-in exception resolution mecha-

nism based on [Romanovsky et al. 1996]. This mechanism works as follows.

When a role raises an exception, its corresponding manager is notified of that

exception. The manager then informs the leader which interrupts all roles

that have not raised an exception. After all roles have been interrupted or

have notified the leader manager of an exception (exceptions can be raised

concurrently), an exception resolution algorithm is executed by the leader.

This algorithm tries to find a common ancestor! exception from all raised ex-

ceptions. When such an exception is found, the leader informs all managers

about that exception and an exception handling interaction is activated (in

the same way a complete new set of managers and roles would be activated)

using the exception handlers list which the manager was initialized with. If

there is no interaction handler for that exception, a handler for a higher level

1A common exception of which all raised exceptions are subtypes. In the worst case
scenario, the common exception is Exception.



116 5. Implementation of DMIs

exception is tried until the top level exception is reached, i.e. Exception class.

If there is no handler even for Exception, then the exception is signalled to

the enclosing context.

In the event of one of the managers or one of the roles crashing, the

managers communicate with each other and decide to raise a CrashedMan-

agerException or a CrashedRoleException exception. If the manager that has

crashed was the leader, then a new leader may be chosen by the managers

that are still running. If a CrashedManagerException or a CrashedRoleExcep-

tion are raised, then these exceptions are signalled to the callers of the DMI.

If users of the framework want to provide their own algorithm for deciding

which exception is to be handled by all the roles, then the Manager class can

be extended and a method called exception Resolution must be provided. This

method must return an exception that is derived from the Exception class. A

list containing the exceptions that were raised by the roles is passed to the

new exception resolution method.

Managers can also be interrupted by an enclosing DMI. In such a situa-

tion, the manager informs the leader it has been interrupted by the enclosing

DMI and interrupts the thread that is executing the role. If none of the roles

of the nested DMI raises an exception, i.e. all of them are interrupted, then

an InterruptException is signalled and raised in the enclosing DMI.

5.3 Framework Performance

Figure 5.10 shows the costs of using the dependable multiparty interactions

in the implementation of a system. The figure shows the cost of an empty



5.3. Framework Performance 117

DMI and of a DMI where exceptions are raised by all roles of that interaction.

In the graph, these two executions of the framework are compared with a

simple multiway rendezvous'' mechanism. Even though the framework adds

an overhead to the application interaction, it benefits from the inclusion

of features that help the programmer to enclose failures and abstract the

interactions from the objects. Notice that an increase in the number of

participants does not cause the implosion of the framework, which scales in

the same way as a simple multiway rendezvous mechanism.

l000r=====~==~~~~~~-----'--~~~~~~E'mpty Interaction -r-' ..
Interaction with N Exceptions ---)(---

Rendezvous .. - .. - --
.---.- _ : , .;.. .'

Figure 5.10: DMls vs. Rendezvous

Furthermore, the overheads associated with using our framework are mea-

sured in microseconds whereas network and device overheads are measured in

milliseconds, so the cost of using our framework is negligible for distributed

applications such as the production cell described in Section 2.3.1. For ex-

ample, the overhead of our API for an interaction involving two parties is

2We created a new class that provides only one Java synchronized method which blocks
the first callers until it is called by the last caller (second caller for a 2-party rendezvous,
third caller for a 3-party rendezvous, ...).
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of around 1,100 microseconds (see Figure 5.11), while an interaction involv-

ing the robot's operations to unload the table, as described in Section 2.3.1,

would take around 6,700 milliseconds, therefore the overhead of our API over

the total time of the unloading of the table by the robot is less than 0.02

percent.
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Figure 5.11: Cost of DMIs up to Ten Participants

The times in Figures 5.10 and 5.11 were measured on a 200Mhz Pentium

PC running Linux and Java version 1.1.6. All participants were running in

the same Java Virtual Machine.



Chapter 6

Case Studies

In this chapter the DMI concept, language, and framework are used to

design and implement different systems and abstractions.

In Section 6.1, DMIs are used to design the control software for a pro-

duction cell case study. The design approach used is heavily influenced by

[Zorzo et al. 1999] (in which a control software for a production cell without

fault tolerance requirements was described). The description of the design

is given in the DIP language presented in Section 4.1. Full implementation

of the control software is presented using the framework described in Sec-

tion 5.2. (A short description of this implementation is also presented in

[Zorzo 1999].)

In Section 6.2, DMIs are used to implement a structuring abstraction

for cooperative and competitive concurrency. The way exception handling

in DMI is organized for implementing this structuring abstraction is also

presented in [Zorzo & Stroud 1999].

In Section 6.3, DMIs are used to implement a system that uses the

119
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GAMMA paradigm to describe parallel computation. The approach used for

implementing the GAMMA system is based on [Romanovsky & Zorzo 1999].

6.1 Case Study: FZI Production Cell II

The FZI Production Cell II case study [Lotzbeyer & Muhlfeld 1996] that is

used for the work discussed in this section is a major extension of the produc-

tion cell case study described in [Lewerentz & Lindner 1995] and presented

in Section 2.3.1. The FZI Production Cell II case study describes a produc-

tion cell composed of eight devices: two conveyor belts - a feed belt and a

deposit belt, an elevating rotary table, two presses, a rotary robot that has

two orthogonal arms, and two traffic lights. The state of devices is reflected

by sensors. Each device has a set of actuators that are used by a control

program to change their state. This new case study extends the previous

one by adding an extra press in the production cell and extra sensors used

for detecting faults in the production cell. The crane, which was used for

making FZI Production Cell I cyclic, is replaced in FZI Production Cell II

by two traffic lights. These traffic lights are used for permitting plates to be

introduced to or removed from the production cell.

Unlike the FZI Production Cell I, failures of devices and sensors in FZI

Production Cell II are of major concern. In particular, the cell is intended

to be used to provide continuous service even if one of the two presses is

out of order. The original, rather simplistic, production cell model assumes

no device or sensor failures occur. FZI Production Cell II exposes more

and richer issues related to failures and fault tolerance, and it is therefore a
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valuable case study for investigating and developing concurrent fault-tolerant

software. Because devices, sensors and actuators can fail, the required control

program is necessarily much more complex, hence more realistic, than one

for the original, non-fault-tolerant production cell.

deposit belt

traffic light2 robot

Dr,ss2
ar~

~ presslfeed belt

C3
system clock

rotary table

alarm signal

Figure 6.1: FZI Production Cell II

In FZI Production Cell II a complete production cycle of metal plates is

as follows: i) if the traffic light at the beginning of the feed belt is green, then

a metal plate can be added on the feed belt; ii) the feed belt conveys the

metal plate to the elevating rotary table; iii) the table rotates and elevates

to the position where the robot can grab the plate; iv) the first arm of the

robot grabs the plate and places it into a free press (press I or press2); v)

the chosen press forges the plate; vi) the second arm of the robot removes

the forged plate from the press and places it on the deposit belt; vii) if the

traffic light at the end of the deposit belt is green, then the plate is carried
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out of the production cell by the deposit belt. Figure 6.1 shows all devices

cited in this paragraph.

Furthermore, the FZI Production Cell II provides a global system clock

that gives the current time at any instant, and an alarm signal mechanism for

reporting component failures to the user of the production cell. The control

program for the FZI Production Cell II is required to switch on the alarm

signal whenever a failure is detected. The alarm signal can only be switched

off by the user, indicating that all faulty devices, sensors or actuators have

been repaired.

Requirements

The full specification of FZI Production Cell II calls for a controlling system

which satisfies the following requirements:

• Safety. Device collisions and the dropping of plates must be avoided.

Plates must keep a safe distance from each other. Device mobility must

be restricted appropriately.

• Liveness. Any metal plate added into the cell via the feed belt must

eventually leave the cell via the deposit belt and have been forged.

• Fault Tolerance. When a failure occurs, it should be detected and the

system should be stopped in a safe state if possible. After recovery

from the failure, the system should resume operation from this safe

state.

• Other requirements, such as flexibility and efficiency, may be taken
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into account as long as they do not conflict with the ones above.

Section 2.3 presented a set of DisCo actions that would enclose the in-

teractions between devices every time a metal plate was being passed from

one device to another. The way DisCo actions were specified in Section 2.3

suffices to guarantee the safety and liveness requirements of the FZI Produc-

tion Cell II case study. (A formal verification of the approach used in Section

2.3 is described in [Canver 1997].) However, using DisCo actions alone does

not suffice to describe this extended case study, because DisCo actions do

not provide any mechanism to deal with failures during the execution of an

action. In this chapter, DIP is applied to implement the control software for

FZI Production Cell II. DIP allows the specification of exceptional behaviour

in FZI Production Cell II, hence it is possible to specify how fault tolerance

requirements are achieved.

Failure Assumptions

Before describing the design and implementation of the control software for

the FZI Production Cell II, we list the failure assumptions as defined by the

creators of the case study:

• The system clock, two traffic lights, and the alarm signal mechanism

are fault-free and do not fail;

• Values of sensors, actuators and clocks are always transmitted correctly

without any loss or error;

• No failure can cause devices to exceed certain limiting positions, in the

worst case devices are stopped automatically;
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• All sensor failures are indicated by sensor values. Boolean sensors re-

turn a zero value, and enumeration type sensors return a specified value

that indicates a failure;

• All actuator failures will cause devices to stop;

• When the system starts all devices are off.

Failure Detection

In order to detect various failures of sensors and actuators as well as lost

plates, appropriate detection measures must be incorporated into the design

of the control program. Assertion statements can be used as a form of failure

detection measure. For example, after the control program has sent a control

command to the robot and asked the robot to drop a plate into the press,

the value of the sensor that reports a plate in the press must be checked by

an assertion statement. If the sensor returns 0, indicating that no plate is in

the press, then an appropriate exception must be raised.

There are several possibilities that could have caused this exception: i)

the plate may have been lost, ii) arm 1 of the robot cannot drop the plate,

and iii) the sensor of the press fails to report the blank that has been dropped

into the press. If an on-line diagnosis algorithm could identify this failure

as the sensor failure, exception handling and error recovery would be quite

straightforward, e.g. notify the user by switching on the alarm signal and

continue normal operations of the cell. However, most of the time distin-

guishing failures from each other at run-time is extremely difficult, if not

impossible. In most cases, if a failure occurs and thus an exception is raised,
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the cell will have to be stopped in a safe state.

Failures of sensors that report press (or belts) positions and failures of the

press actuator can be detected by assertion statements and identified unam-

biguously with the aid of stopwatches (these stopwatches are implemented

using the global clock provided by the FZI Production Cell II). Such failures

must be reported to the user through the alarm. Because the FZI Production

Cell II has two presses, normal operations can be maintained by using the

other press only.

A fault-tolerant program should have the ability of confining damages

and failures. For the production cycle of the cell, a device or sensor failure

should not affect normal operations of other devices. For example, when a

failure of the robot occurs and is handled by the control program, the deposit

belt should still deliver a forged plate, if there is one, to the plate consumer.

In the following, we will demonstrate how DMls can confine damages and

failures effectively, and minimize the impact of component failures on the

entire cell.

Design Decisions

The design for FZI Production Cell II addresses the safety, functionality, and

efficiency requirements by separating the design into two levels. The first level

deals with efficiency and flexibility issues, while the second level deals with

safety and fault tolerance issues. The first level is designed as an outermost

DMI formed by a set of device controller roles that determine the order in

which devices interactions are executed. The second level is designed as a set

of nested DMIs that controls the interactions between devices. These nested
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DMls are enclosed by the outermost DMI (see Figure 6.21). As the safety

and fault tolerance requirements are the most important in the system, they

are satisfied, as far as possible, at the level of nested DMls, while efficiency

requirements are met by the device controller roles in the outermost DMI.

However, some responsibility for exception handling has to be exercised at

the outermost DMI. The device controller roles communicate with each other

in order to schedule the execution of the nested DMls. (The scheduling of

nested DMls can be programmed in several ways.) The outermost DMI

encloses the entire FZI Production Cell II control program.

Production Cell DMI

1----------- --------

Table

Load I ------r-fCell I-

Producer

DepositBelt 1------------

Trafficl.ight

,
Initialisation '

Phase

FeedBelt

----------+-------1

Robot

Press

Consumer ----------+----------1 1------------

Figure 6.2: Outermost DMI

The priority is to provide a clear system design that is simple in structure

and meets the case study safety and fault tolerance requirements. The in-

tention is to structure all critical system activities out of nested DMIs. Nine

lOnly one press controller is shown in the figure.
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nested DMls were designed to control the interactions between devices for

the system. Each nested DMI controls one step of the plate processing and

typically involves passing a plate between two devices.

The main design decisions are as follows. To meet the safety and fault

tolerance requirements, the roles and boundaries of nested DMls were chosen

in such a way that neither plates nor devices could collide. Only one plate

can be in a nested DMI, a plate cannot be involved in more than one nested

DMI, and a device can participate in only one nested DMI at a given time.

All device movements are performed within nested DMls and the devices

involved in a nested DMI are switched off before leaving that nested DMI.

Thus, all devices are stationary when not under the control of a nested DMI.

An informal analysis of the safety requirements showed that using nested

DMls to design the system in this way would allow us to guarantee all re-

quirements concerned with concurrent activities within FZI Production Cell

II. The remaining requirements (limitations on the movements of individ-

ual devices) are not connected with system concurrency and are provided in

our design by "defensive" and self-checking programming inside nested DMls

(e.g. checking each nested DMI's pre and post-conditions).

For each of the nested DMls that encloses an interaction between devices,

there is a set of post-conditions that hold if the nested DMI has executed

without failure. The nested DMls for FZI Production Cell II can in fact

produce three different outcomes: normal, abort or exceptional.

A normal outcome is achieved if a nested DMI is able to satisfy its post-

conditions and thereby fulfill its obligations. An abort outcome occurs if a

nested DMI is unable to fulfill its obligations for some reason but is able
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to roll back the system state and undo any effects it might have had. The

roll back is done without compromising the safety requirements set by the

case study. All nested DMIs can produce an abort outcome, but some of

them can only have this outcome if they have not started to execute some

parts of the nested DMI, e.g. after the ForgePlate DMI has forged the plate,

roll back is not possible and an abort cannot be achieved. The last possible

outcome is a exceptional outcome. If an exceptional outcome is produced

by a nested DMI, the system state is represented by the exceptional post-

condition associated with the exceptional outcome produced. The execution

of the outermost DMI will depend on the outcome of the nested DMIs, e.g.

the outermost DMI will execute in a degraded mode when a press failure

exception is signalled during the execution of the nested OM! that involves

one of the presses (see Section 6.1.4 for exception handling in a nested DMI,

and Section 6.1.5 for exception handling in the outermost OM!).

Using DMIs not only guarantees the safety requirements but simplifies

the system design because DMIs are atomic and all internal OMI state is

hidden from the outside. In addition, using DMIs guarantees such conven-

tional features of concurrent programming as mutual exclusion: OMIs have

synchronous entries, so a OM! cannot start until all of its roles are ready,

and synchronous exit, which means that participants can leave the DMI only

when all roles have completed their execution (see Chapter 2 and 4).
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6.1.1 Device Controllers

Each device in FZI Production Cell II is controlled by a corresponding role

in the outermost DMI. This role is responsible for specifying the sequence of

nested DMls in which the device participates. For cyclic execution, a device

controller role has a straightforward structure with an endless loop, which

means that the controller role goes through a set of nested DMIs. See the

DIP example in Figure 6.3.

role TableController with table:Table is
Plate plate;
loop while (true)

table@LoadTable with table, plate;
table@UnloadTable with table, plate;

end loop
end role

Figure 6.3: The TableController Role

Figure 6.4 shows the set of nested DMIs, dotted boxes, in our design

superimposed on a drawing of FZI Production Cell II to indicate which de-

vices are involved in which nested DMIs. Two nested DMls whose dotted

boxes overlap cannot be executed concurrently because a device cannot be

involved in more than one nested DMI at once. For example, the LoadTable

DMI has the feed belt, the rotary table and the traffic light at the beginning

of the feed belt, as its roles, and the UnloadTable DMI has the table and the

robot as its roles. These two nested DMIs therefore cannot run concurrently.

Moreover, the design guarantees that the LoadTable DMI cannot start with

the next plate until the table is ready, which means that the previous plate

must have been picked from the table by the robot arm.
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Figure 6.4: The Set of Nested DMIs in FZI Production Cell II

The DMIs themselves are the building blocks that guarantee system

safety: their use prevents the building of a system in which plates and devices

can collide. For example, if one of the device controllers incorrectly orders

the sequence of nested DMIs in which a given device takes part, then the

system will deadlock in a safe state (all nested DMIs will have finished their

execution and no further nested DMIs will be activated, so the devices will

not move, hence the safe state). Moreover, if any nested DMI fails and the

controller roles do not provide proper recovery then the system stops. This

is because its participants will not be ready for the execution of that or of

the following nested DMIs, unless the controller performs some form of error

recovery.
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6.1.2 Sensors, Actuators and Plates

The approach used here for dealing with sensors and actuators basically re-

lies on the general ideas from [Wirth 1977], which proposes two alternative

methods of dealing with peripheral devices: synchronous and asynchronous.

When a device is served synchronously, each input/output operation is syn-

chronous and active waiting is hidden inside the operation. External software

operates with this device by using an interface provided by the synchronous

wrapper. With asynchronous wrapping, each device is represented as an

active role which operates with the device, executes active waiting and can

inform other roles about changes of the device state (this method was used in

[Zorzo et al. 1999]). These two methods are obviously complementary and,

generally speaking, each device may be manipulated synchronously at one

system level and asynchronously at another. In this thesis the synchronous

method is used.

After analysing FZI Production Cell II and the control system it was

decided to treat all actuators and sensors as external objects in the system.

The plates are also represented by external objects, which are shared by the

nested DMIs. They are passed as input/output parameters among the DMIs

(at the outermost DMI level).

There is a special role in the outermost DMI to monitor the state of

all the plates in FZI Production Cell II. This monitor role competes with

the nested DMIs to check the state of the plate objects using transactional

semantics. Thus, when a plate object is not being used by a nested DMI, the

monitor can access it by starting a transaction on that plate object (recall
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from that our framework provide a class called ExternalObject that provides

transactional semantics). If the plate is being used by a nested DMI, then

the monitor has to wait until the nested DMI is finished. The monitor cannot

see any intermediate state of the plate. For example, when an exception is

raised in a nested DMI, the monitor will not be able to see any change of

the plate state caused by forward or backward error recovery. On the other

hand, each execution of a nested DMI should also, in some sense, behave like

a transaction with respect to the plate object it accesses.

6.1.3 Nested DMIS in FZI Production Cell II

The nested DMIs that were designed for the FZI Production Cell II case study

typically have two basic roles, one that takes a plate as an input argument,

and another that takes a plate as an output argument. The device associated

with the role that has the plate as an input argument passes the plate to the

role that has the plate as an output argument. All nested DMIs will only be

activated if a set of preconditions is valid. The post-conditions are checked

dynamically using acceptance tests [Randell 1975].

In the design, every nested DMI is composed of a set of roles, and ma-

nipulates a set of internal and external objects. Note that synchronous entry

and exit, exception handling, recovery, consistency and atomicity of external

and local objects, and so on, are guaranteed by the DMI mechanism.

There are nine nested DMIs for managing the interactions between de-

vices: {LoadCell, LoadTable, UnloadTable, LoadPress, ForgePlate, Unloadf'ress'',

2Actually, there are two instances of LoadPress, ForgePlate, and UnloadPress, one for
each of the presses.
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LoadDepositBelt, TransportPlate, UnloadCell}. A brief description of each of

these nested DMls is presented below.

• LoadCell DMI:

roles ~ {producer, feedBelt, trafficLight}

functionality ~ in this DMI a plate is sent to the DMI through the pro-

ducer role as an input parameter; that plate is returned as an output

parameter of the feedBelt role, meaning that the producer has dropped

a plate onto the feed belt. (The producer role could of course be un-

dertaken by a human being or by any other subsystem, e.g. a previous

cell in the production line.) There is also a role for the traffic light at

the beginning of the feed belt. This role closes the traffic light after

the producer has dropped a plate onto the feed belt.

• LoadTable DMI:

roles - {table, feedBelt, trafficLight}

functionality - in this DMI a plate is sent to the DMI through the

feedBelt role and that plate is returned by the table role. This DMI

controls the movement of a plate along the feed belt until the plate

drops onto the table. After the plate has been dropped onto the table,

the trafficLight role opens the traffic light at the beginning of the feed

belt. (Full description of this DMI is shown in Section 6.1.4.)

• UnloadTable DMI:

roles - {table, robot}

functionality - in this DMI a plate is sent to the DMI through the table

role and that plate is returned by the robot role. This DMI controls
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all the device movements that are required in order for the first arm of

the robot to grab a plate from the table.

• LoadPress DMI:

roles - {press, robot}

functionality - in this DMI a plate is sent to the DMI through the robot

role and that plate is returned by the press role. This DMI controls the

first arm of the robot dropping a plate into a press.

• ForgePlate DMI:

roles - {press}

functionality - in this DMI a plate is sent to the DMI through the press

role and that plate is returned by the same press role. During this DMI,

a plate is forged by the press, and external information about the plate

is updated, e.g. the plate has been forged.

• UnloadPress DMI:

roles - {press, robot}

functionality - in this DMI a plate is sent to the DMI through the press

role and that plate is returned by the robot role. The UnloadPress DMI

controls the second arm of the robot grabbing a forged plate from the

press.

• LoadDepositBelt DMI:

roles - {robot, deposit Belt }

funcionality - in this DMI a plate is sent to the DMI through the

robot role and that plate is returned by the deposit Belt role. This DMI
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controls the second arm of the robot dropping a plate onto the deposit

belt .

• TransportPlate DMI:

roles - {depositBelt}

functionality - in this DMI a plate is sent to the DMI through the

depositBelt role and that plate is returned by the same depositBelt role.

This DMI controls the transporting of plates from the beginning of the

deposit belt to the end of the deposit belt, i.e. after the photo-electric

sensor .

• UnloadCell DMI:

roles - {depositBelt, trafficLight, consumer}

functionality - in this DMI a plate is sent to the DMI through the

depositBelt role and that plate is returned by the consumer role. The

UnloadCellDMI controls the consumer taking a plate from the deposit

belt. This consuming of a plate is only possible if the traffic light at

the end of the deposit belt is open.

6.1.4 The LoadTable DMI

In this section a complete description of one of the DMIs described in Section

6.1.3 is provided. The LoadTable DMI was chosen because it is an example

of 3-party DMI. We first present the DIP objects that are used in this DMI

(see Figure 6.15).

The traffic light in our design is represented as a state machine, which

can change from green to red and vice-versa. The initial state for the traffic
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class TrafficLight is
state *green. red;

end;

class Belt is
state *off. on; / / belt actuator
state "begin.off, begin.on: / / sensor at the beginning
state *end_off. end.on: / / sensor at the end

end;

class Table is
state pos.feedbelt. pos.beltzrobot, pos.robot, pos.out, pos.err ;
state *Iower. upper. none;
state "free, loaded;

end;
/ / "global" objects declaration

Belt feed Belt;
Table table;
T rafficLight trafficLightl;

Figure 6.5: DIP Objects for the LoadTable DMI

light is green, i.e. new plates can be inserted in the cell. The feed belt is a

Belt. A belt is represented by three state machines: one for the belt actuator;

one for the sensor at the beginning of the belt; and, one for the sensor at

the end of the belt. The initial state for the feed belt is off; no plate at the

beginning (begin.off'); and, no plate at the end of the feed belt (end.off). The

table is also represented by three state machines: one to represent the state

of the angle of the table; one to indicate if the table is at its lower or upper

position, or neither; and, one to indicate a plate on the table.

The main body of the LoadTable DMI is shown in Figure 6.6. In the figure,

the preconditions for this DMI are specified in the guard statement, i.e. the

table must be at its upper position (t.upper), the angle of the table must
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action LoadTable is
body is
guard t.upper /\ t.pos.robot /\ t.free /\ fb.off /\ fb.begin.on /\ fb.end.off /\ tl.red
role table with t:Table, plate:Plate

~t.lower :: TableVerticalStuck
~t.pos_feedbelt :: TableRotationStuck
true to feedbelt
plate from feedbelt blocks
-e-t.lcaded :: TablePlateSensor
~plate.ONTABLE

end role;
role feedbelt with fb:FeedBelt, plate:Plate

boolean tableready;
tableready from table blocks
~fb.on :: FeedBeltStuck
~fb.begin_off
~fb.end_on :: FeedBeltEndSensor
plate to table blocks
-sfb.end.off
~fb.off
true to trafficLight

end role;
role trafficLight with tl: TrafficLight

boolean feedbeltready;
feedbeltready from feedbelt blocks
~tl.green

end role;
assertion t.lower /\ t.pos.feedbelt /\ t.loaded /\ fb.off

/\ fb.begin.off /\ fb.end.off /\ tl.green
end body;

end action;

Figure 6.6: The LoadTable DMI

be indicating the position of unloading the table by the robot (t.pos.robot),

no plates must be on the table (t.free), the feed belt must be switched off

(fb.off), there must be a plate at the beginning of the feed belt (fb.begin.on),

and the traffic light must be red (tf.red). The execution of the LoadTable
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DMI is as follow. First the table is moved down, and then rotated to the

position in which it can be loaded. Once the table is in position, a message

is sent to the feedbelt role, so the feed belt can be switched on. When the

plate has passed the sensor at the end of the belt, the table role receives the

plate object from the feedbelt role. After that, the belt can be stopped, the

table role can update the state of the plate object, and the traffic Light role

can switch the traffic light to green. The post-conditions for this DMI are

specified in the assertion statement.

In order to update the state of the system to reflect the movement of a

plate from one device to another in the real world, it is necessary to simulate

this movement in the memory of the computer by passing a plate identifier

from one role to another. The command to/from is used to simulate this

movement in Figure 6.6.

In Figure 6.6, we also indicate the exceptions that may be raised while

the LoadTable DMI is being executed. As defined in Section 6.1, the traffic

light does not fail, so no exception is raised during the change of the traffic

light's state. The feed belt and table, on the other hand, can raise several

exceptions. For example, when the table is rotating, the actuator can fail,

hence an exception TableRotationStuck being raised. When an exception

is raised in a role, all roles must be interrupted and exception resolution

algorithm is started (see Chapter 4). After a common exception is decided

upon, a handler for that exception is started (if there is one).

Figure 6.7, for example, shows the exception handler for the situation in

which the sensor at the end of the feed belt fails. If the sensor cannot be

changed to the state on, then an exception is raised. The LoadTable DMI can
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handler for FeedBeltEndSensor is
role table with t.Table, plate:Plate

4plate from feed belt blocks
-st.loaded :: TablePlateSensor
4plate.ONTABLE

end role;
role feedbelt with fb:FeedBelt. plate:Plate

plate to table blocks
4fb.off
true to trafficLight
raise FeedBeltSensor; / / signal to outermost DMI

end role;
role traffic Light with tl: TrafficLight
boolean feedbeltready;
feedbeltready from feedbelt blocks
4tl.green

end role;
end handler;

Figure 6.7: Handler for FeedBeltEndSensor Exception

still finish its operation, i.e. the plate can still be loaded on the table, the

plate state can be updated, and the traffic light can be switched to green.

Notice that this handler will signal an exception to the outermost DMI, which

can then stop the system in a safe mode. Recall that an exception that has

been dealt with inside a team cannot be handled in the same team again,

hence the raise command with, for convenience, the same exception name

(see Chapter 4).

6.1.5 Controller Roles

The set of nested DMls presented previously executes various critical oper-

ations, e.g. passing a plate between devices. The activation of these nested

DMls and the order in which they execute is the responsibility of a set of
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device/sensor controller roles, described in this section, which belong to an

outermost DMI. The roles in this outer level DMI are activated by external

executing threads (DIP players) created immediately after the system begins

its execution.

The loading of plates in FZI Production Cell II, is performed by a special

controller, ProducerControlier. Its responsibility is to interact with the user

to put plates onto the feed belt one at a time. When the plate is ready for

loading into the feed belt, the producer controller enters the LoadCell DMI,

thereby blocking until the FeedBeltControlier indicates its readiness to accept

the plate by also entering the LoadCell DMI (see Figure 6.8).

role ProducerControlier is
Plate plate;
loop while (true)

plate from input blocks
producer@LoadCell with plate

end loop
end role

Figure 6.8: The ProducerControlier Role

After a plate has been deposited on the feed belt, FeedBeltControlier enters

the LoadTable DMI. At the end of the LoadTable DMI, the plate will have

been passed to the TableControlier and the FeedBeltControlier can wait for a

new plate to arrive, and so on (see Figure 6.9).

The order in which nested DMls are executed by the RobotControlier role

depends on the messages it receives from the other controller roles. The

RobotControlier role waits for a message to arrive and then decides which

nested DMI to execute depending on the state of the arms of the robot. Some-
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role FeedBeltControlier with feedbelt : FeedBelt is
Plate plate;
loop while(true)

feedbelt@LoadCell with feed belt, plate
feedbelt@LoadTable with feedbelt, plate

end loop
end role

Figure 6.9: The FeedBeltControlier Role

role RobotControlier with robot: Robot is
Plate platel, plate2; / / plates on arms of the robot
loop while(true)
begin
loop until message != empty
begin
message from TableControlier ;
if (message = empty) then message from DepositBeltControlier
if (message = empty) then message from PresslController
if (message = empty) then message from Press2Controller;

end
if ((message=PLATLON_TABLE) and robot.arrn l.mag.off)

robot@UnloadTable with robot, platel;
else if ((message=PLATE_FORGEDJN_PRESSl) and robot.arrnz.mag.off]

robot@UnloadPress! with robot, plate2;
else if ((message=PLATE_FORGED_lN_PRESS2) and robot.armz.mag.off)

robot@UnloadPress2 with robot, plate2;
else if ((message=DEPOSIT _BELT_FREE) and robot.arrnz.rnag.on)

robot@LoadDepositBelt with robot, plate2;
else if ((message=PRESSLFREE) and robot.arrn l.rnag.on)

robot@LoadPress! with robot, plate!;
else if ((message=PRESS2_FREE) and robot.arm.l.rnag.on)

robot@LoadPress2 with robot, plate!;
else requeue message;

end
end role

Figure 6.10: The RobotControlier Role
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times the RobotControlier role is not able to execute a nested DMI, e.g. if the

TableController role delivers messages to the RobotControlier role faster than

the PressControlier role, it is highly probable that two PLATE-ON_TABLE

messages arrive before a FORGED_PLATE-IN_PRESS (lor 2) message, so the

first arm of the robot will still be holding a plate and therefore the robot will

be unable to pick another plate up from the table. When such a situation

occurs, the RobotControlier stores the received message back into its to/from

command queue (see Figure 6.10).

FZI rcn Controller

Figure 6.11: Relationship between DMIs and Device Controllers Roles

Figure 6.11 shows a UML diagram that represents the relationship be-

tween nested DMIs and device controller roles. In the figure, the device

controller roles are represented as objects. The nested DMIs are represented

as UML notes. These notes are much more complex structures (Figure 6.14,
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in the next section, shows the complete structure for the LoadTable DMI).

Plates are passed between devices via the nested DMls. One device sends a

plate to the nested DMI, and the other device receives the plate in the nested

DMI. The messages the robot controller receives from the other devices is

also represented in the figure.

The outermost DMI, which encloses the controller roles presented in this

section, is also responsible for either stopping the system or if possible keeping

the system executing in a degraded mode, if one of the nested DMls signals

an exception. For example, when one of the presses fails. Figure 6.12 shows

how the PresslControlier role should be specified in a handler of the outermost

DMI if press1 fails. All the other roles would not change.

role Pressl Controller is
boolean ok := false;
loop while (true)

if not ok then ok from input blocks
press@LoadPressl with plate
press@ForgePlatel with plate
press@UnloadPressl with plate

end loop
end role

Figure 6.12: The PresslControlier Role when Pressl Fails

6.1.6 Java Implementation

In this section, the API presented in Section 5.2 is used to implement the

controlling software for FZI Production Cell II. The LoadTable DMI is used as

an example of a 3-party DMI. This section shows how to create the managers
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and roles for the LoadTable DMI; how a role can be activated by a Java thread;

and, how to extend the basic Role class to create a new role class.
_-------- ... _ --_

,
f, LoadTable

- - - --
s

Production Cell (Real World)

Figure 6.13: Structure of the FZI Production Cell II Implementation

First of all, Figure 6.13 shows how the system that controls FZI Produc-

tion Cell II is structured. As mentioned in Section 6.1.2, there is one object

for each of the devices in the production cell. These device objects are com-

posed of other devices and sensors, e.g. the table device is composed of four

sensors. The device objects are implemented as ExternalObjects. DMIs will

access these external objects in order to change the state of FZI Production

Cell II. For example, all interactions that are needed for the process of load-

ing the table by the feed belt is enclosed by LoadTable DMI showed in Figure

6.13 (dashed ellipse). The LoadTable DMI uses three external objects and

is composed of three role objects: TLightlRole, FeedBeltRole and TableRole.

These three roles act upon the devices in a coordinated way to load a metal

plate over the table. The execution of these activities will use a Shared-

LocalObject in order for the TableRole to inform the FeedBeltRole when the

table is ready to be loaded. The FeedBeltRole will only turn the feed belt
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on, for moving the plate from its beginning to the table, when the table is

in position. Figure 6.14 shows the UML object diagram for the LoadTable

DMI.

~
~

~
~

DMI

~----~

Figure 6.14: UML Object Diagram for the LoadTable DMI

Figure 6.15 shows how the manager and the role objects for the LoadTable

DMI are created. In the figure, in line (3), mTable is a manager called "Table"

for the "Load'Table" DMI, that has mTLightl as the leader (when a leader is

not specified, then that manager leads itself -line (1)). The eh, is a hashtable

object that contains the exceptions that are treated by the corresponding

manager. Each entry of the hashtable has an exception and a role that is

activated in the case of this exception being raised. After the managers are

created, the role objects have to be created. The creation of a role object for

the table is shown in line (6) in Figure 6.15. Each role object is created with

a name and a manager that controls this role.

Figure 6.16 shows how a new role class extends our basic Role class.
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{l}Manager mTLightl = new Manager(ITLightl",ILoadTablel,ehl};
(2}Manager mFeedBelt= new Manager(IFeedBelt",IILoadTablel,eh2,mTLightl);
(3)Manager mTable = new Manager(ITablel,ILoadTable",eh3,mTLightl);

(4 )Role tLightl
(5)Role feedBelt
(6)Role table

= new TLightlRole(mTLightl,IITLightlRolell);
= new FeedBeltRole(mFeedbelt,"FeedBeltRole");
= new Tablefcolefm Table.v Tablefcole"):

Figure 6.15: Objects Instantiation for the LoadTable DMI

public class TableRole extends Role {
Synchronous waitTable; / / shared object

public TableRole(Manager manager, String roleName) {
super (manager, roleName); / / set role with name and manager
waitTable = new Synchronousf ): / / creates a shared object
manager.shared'Objectfvwait'Table". waitTable);/ / export shared object

}

protected void body(Transactional listO) throws Exception {
Table table = (Table) list[O]; / / External Object
Channel channel;
try {
channel = (Channel) manager.getSharedObject(lchannel"};
table.rotate(POS_FEEDBELT}; / / Rotate to loading angle.
table.movelrownt): / / Move table down to the loading high.
waifTable.synchronizef]: / / Inform feedbelt that table is ready.
list[l] = channel.gett): / / Receive plate from feedbelt.
list[l].changeState(ONTABLE);

} catch (Exception e) { / / OOPS! Problems. Stop everything!
table.stop.hf ):
ta ble.stop.vl]:
throw e; / / Pass the exception to manager.
}

}
}

Figure 6.16: Full Implementation of the Table Role in LoadTable
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The new role class is responsible by redefining the body method and for

creating and exporting local shared objects that are used by other roles.

When an object of a role class is created, it has to be informed of the manager

object that will be responsible for controlling this role (see lines (4), (5)

and (6) in Figure 6.15). The code, in Figure 6.16, also shows the complete

implementation of the body of TableRolefor the LoadTableDMI. The code for

the other roles, i.e. FeedBeltRole and TLightlRole, in the LoadTable DMI are

implemented in a similar way. The Java code shown in Figure 6.16 represents

the DIP table role shown in Figure 6.6.

In Figure 6.17, we show how to activate the table role, declared in Figure

6.15, in the "Load'Table" DMI. Each role has a special method called execute

that passes the list of parameters (list) to the manager of that role. This is

the only public method provided by a role (see Section 5.2.2).

table.execute(list);/ / execute table role sending list of objects

Figure 6.17: Execution of the Table Role in LoadTable DMI

6.1.6.1 Exception Handling

Every time an exception that may affect the whole DMI is raised in a role,

that exception has to be thrown by that role (see catch block in Figure 6.16).

The manager of that role will catch this exception and will start the exception

handling process as explained in Section 5.2.4. Figure 6.18 shows a possible

scenario where two exceptions are raised during LoadTable DMI. Two roles,

FeedBeltRole and TableRole concurrently raise exceptions FeedBeltStuckEx-
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DMI - Normal Execution
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Figure 6.18: Dealing with Concurrent Exceptions

ception and TableAngleException respectively (step 1 in the figure). These

exceptions are caught by the role managers which inform the leader about

these exceptions (step 2). The leader then detects that TLightlRole is still

executing and interrupts the thread executing that role (step 3). An Inter-

ruptedException is therefore raised by the manager of TLightlRole informing

the leader that the role has been interrupted successfully (in this case the

manager of TLightlRole and the leader are the same) (step 4). The leader

then decides upon which exception has to be handled: exception FeedBelt-
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TableException in our example. Exception FeedBeltTableException is sent to

all managers of the DMI (step 5) which will activate the roles in an exception

handling interaction to deal with exception FeedBeltTableException (step 6).

A new set of managers and roles in the handler will execute in the same way

as if they belonged to a normal interaction.

We have based our implementation of exception handling for FZI Produc-

tion Cell II on the failure analysis and definition presented in [Xu et al. 1998]

and [Xu et al. 1999].

6.1.6.2 Controlling the FZI Production Cell II Simulator

The Java implementation of the FZI Production Cell II control software was

used to drive a simulator provided by the FZI. Figure 6.19 shows a screen

dump of the FZI Production Cell II simulator controlled by our implementa-

tion. Outlines of the nested DMIs are displayed over the simulator diagram.

During system execution these outlines are coloured in gradually to show the

progress of a DMI execution. In the figure, there are three DMIs that are

active and being executed: LoadTable, LoadPress2, and ForgePlatel. If an ex-

ception, or concurrent exceptions, are raised in a DMI, the colour within the

outline will change to indicate the dynamic process of exception handling.

Figure 6.20 shows a slightly modified version of the device and sensor

failure injection panel provided by the FZI. Using this panel, failures can be

easily injected into the FZI Production Cell II simulator. For example, a

rotary motor failure or a rotary sensor failure of the robot can be injected

by pressing the corresponding buttons in the panel. The original panel was

modified in order to permit the injection of concurrent failures: a pair of
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Figure 6.19: Driving the FZI Simulator

failures can be injected into the simulator if the failure mode selection is set

to "Double". In this mode, two different failure buttons have to be pressed

sequentially, but only the second failure will stimulate the actual injection of

the two concurrent failures. After one or more failures are injected into the

simulator, the error detection measures embedded in our control program

detect them promptly. One or more corresponding exceptions will thus be

raised.

During the testing phase and the demonstration of our implementation,

all injected device or sensor failures were caught successfully and handled

immediately by our control program. Even a previously unknown and inde-

terministic software bug in the FZI simulator was also detected by the testing

of the post-conditions of the DMls, and recovered from by the system.
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Figure 6.20: Failure Injection Panel

6.1.7 Discussion

The use of DMIs has helped us in extracting interactions between objects

from the objects. This facilitated the design and implementation of objects

for the FZI Production Cell II case study, in the sense that objects that

represent devices are only concerned with the basic operation of the devices.

For example, in designing and implementing the robot object we needed to

consider only the operations that the robot can perform, e.g. operations to

rotate the robot: left, right, and stop. Operations that are related to the

environment the robot is inserted in, are not designed/implemented in the

robot object, e.g. the unloading of the table, or the loading of the press by

the robot. Because these operations can vary depending on where the robot

is installed, they are left to be implemented in a separate place, making the

reuse of the robot object possible without modifications. DMIs suit this sort

of strategy very well, with the additional benefit of enclosing and recovering

possible failures that may happen during this kind of interaction.

In the design, clear system structuring is preferred to maximising the sys-
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tem performance by including more parallel DMIs. For example, a special

DMI could have been designed to move the table back to its original position

after a plate had been grabbed from the table by the robot, but instead this

is done inside the LoadTable DMI. Performance could be enhanced but at

the expense of simplicity, maintainability and perhaps safety. In addition,

performance issues were not investigated in any detail because the perfor-

mance essentially depends on data about the time required to execute each

operation, which is not provided as part of the case study. Without this data

it is not possible to choose the solution with the best performance. However,

in the design, as much parallelism was allowed as possible without sacrificing

safety. Hence, the design of our controller roles is rather more complex than

might otherwise be the case to allow flexible scheduling of DMIs. It is inter-

esting to note that if too many parallel DMIs were designed for the purpose

of enhancing performance, they would often end up waiting for each other,

and the performance would degrade as a result.

The main lessons learnt from designing and implementing the FZI Pro-

duction Cell II using DMIs are as follows. The use of DMIs has enabled us to

design a two-level system, one level for the scheduling of DMIs, and another

level for the enclosing of interactions inside DMIs. Using this approach, a

clear separation of functionality between levels was achieved. Complex con-

current behaviour was hidden inside DMIs and levels. Furthermore, imple-

menting fault tolerance for this case study, shows that using DMIs imposes

a very disciplined and unified way of providing fault tolerance through the

entire system.
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6.2 Case Study: CA Action Abstraction

The Coordinated Atomic (CA) action [Randell et al. 1997] [Xu et al. 1995]

concept is a unified approach to structuring complex concurrent activities and

supporting error recovery between multiple interacting objects in an object-

oriented system. This paradigm provides a conceptual framework for sup-

porting both cooperative and competitive concurrency and for achieving fault

tolerance. It does this by extending and integrating two complementary con-

cepts - conversations [Randell 1975]and transactions [Gray & Reuter 1993].

CA actions have properties of both conversations and transactions. Conver-

sations are used to control cooperative concurrency and to implement coordi-

nated error recovery whilst transactions are used to maintain the consistency

of shared resources in the presence of failures and of competitive concurrency.

6.2.1 Structuring CA actions with DMIs

CA actions are very similar to DMIs, but differ regarding how exceptions

are dealt with. Remember that any of the roles of a OMI may raise an

exception. If that exception cannot be dealt with locally by the role, then it

must be propagated to the other roles in the DM!. The CA action abstraction,

on the other hand, does not allow an exception to be dealt with locally;

if an exception is raised, the handling of that exception has to involve all

roles in the CA action. Since it is possible for several roles to raise an

exception at more or less the same time, a process of exception resolution

[Romanovsky et al. 1996]is necessary in order to agree on the exception to be

handled within the DM!. In the CA action abstraction, an agreed exception
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is propagated to all roles of the CA action, in which some form of exception

handling is invoked. In DMIs, a new multiparty interaction takes place to

handle that exception. Another major difference between DMIs and CA

actions, is the way that further exceptions are dealt with. In the CA action

abstraction, if it is not possible to achieve either a normal outcome, or an

agreed signal, using the exception handling, then the CA action should be

aborted and its effects should be undone. Otherwise, a failure exception will

be signalled to the external environment.
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Figure 6.21: CA Action as a DMI

Figure 6.21 shows how we can structure the CA action mechanism using

the DMIs proposed in this thesis. This figure is a more restrictive version
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of Figure 4.1 shown in Chapter 4. As mentioned in Chapter 4, the key idea

for handling concurrent exceptions is to build a DMI out of basic multiparty

interactions by chaining them together appropriately, so that each basic mul-

tiparty interaction in the chain is the exception handler for the previous basic

multiparty interaction in the chain. As we can see in Figure 6.21, CA actions

are implemented as a DMI (or DIP team) with the following structure: the

main body of the DMI performs the normal execution of the CA action; a

set of DMI handlers deal with the exceptions that may be raised during the

normal execution of the CA action; and a special handler that deals with the

rolling back process of the CA action.

The order in which the main body and the handlers shown in Figure 6.21

are executed is driven by the following CA action rules:

• i) Each role in a CA action may terminate normally or exceptionally

by signalling an exception to the enclosing CA action. The roles should

agree about the outcome of the action. However, a role may also signal

an abort exception or a failure exception to indicate that the action

should abort or fail (see (vii)). In the figure this rule is represented by

the normal outcome and agreed signal lines.

• ii) If the roles do not agree about the outcome, then the underlying CA

action support mechanism attempts to abort the action by undoing its

effects on external objects. This rule is represented in the figure by the

not agreed signal line from the normal execution interaction to the roll

back interaction.

• iii) If the abort is successful, then an abort exception is signalled to
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the enclosing CA action; otherwise, a failure exception is signalled. See

signal abort exception and signal failure exception lines in Figure 6.21.

• iv) If an exception is raised during the normal execution of a CA action,

then control is passed to the corresponding exception handler for each

role. If two or more exceptions are raised concurrently, then a process

of exception resolution must take place first.

• v) If an exception is raised during the execution of an exception handler,

then the underlying CA action support mechanism will attempt to

abort the action (see (iii)) or else signal a failure exception to the

enclosing action.

• vi) Once exception handling begins within a CA action, it is not pos-

sible to resume normal execution of the CA action but it is possible

for the exception handlers to terminate normally or exceptionally, de-

pending on the extent to which error recovery is successful. However,

all roles must still agree about the outcome (see (ii)).

• vii) A role may signal abort or failure at any time to indicate that

error recovery is not possible and the action must abort or fail. For

the purposes of determining the outcome, failure takes precedence over

abort which takes precedence over every other exception that can be

raised internally .

• viii) For a given action, exception handlers are provided only for excep-

tions that are raised internally within that action. Exceptions that are

signalled by an action are handled at the level of the enclosing action.
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Thus, an action cannot provide an exception handler for its own abort

or failure exceptions.

• ix) If an action terminates by signalling an exception to its enclosing

action, then this triggers the process of exception handling in that

action (see (v)).

6.2.2 Java Implementation

The semantics for handling exceptions presented in the previous section has

been applied to our API in order to build CA actions (no change to the

API has been made). In Figure 6.22, we show how three sets of managers

would be created and linked together to respect the CA action semantics.

The rollback roles controlled by the three first managers (mgrl-RB, mgr2-RB

and mgr3-RB) are responsible for bringing the external objects to the state

they had before the CA action had started. Note that there is no exception

handling list for roles of these managers. Any exception that is raised during

the rolling back interaction will be mapped to a failure exception and passed

to the enclosing context. The second set of managers (mgrl-El, mgr2-El

and mgr3-El) control the roles that will deal with exception El that may be

raised in the normal execution interaction of a CA action. If any exception

is raised during the interaction that deals with exception El, then the roll-

back interaction will be activated (rbl, rb2 and rb3 lists are passed to the

managers of the handling interaction for El, and these lists contain links

to the roles of the roll-back interaction). The third set of managers (mgrl,

mgr2 and mgr3) control the set of roles responsible for the normal execution
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of the CA action. If exception El is raised during the normal execution

interaction, then the exception handling interaction for El is activated. If

any other exception is raised during the normal execution interaction, then

the roll-back interaction is activated (the ell, e12 and e13 lists contain links

to the roles of the handling interaction for El, and the roles of the roll-back

interaction) .

/ / set of managers for the roll-back interaction
Manager mgrRBl = new Manager("mgrl-RB","CA", null, null);
Manager mgrRB2 = new Manager(lmgr2-RBI,ICA",null,mgrRB1);
Manager mgrRB3 = new Manager(lmgr3-RBI,ICA",null,mgrRB1);
/ / declaration of roles for the roll-back interaction
/ / and the rb l, rb2, rb3 hashtables

/ / set of managers to deal with El exception
Manager mgrEll = new Manager(lmgrl-Ell,ICA",rbl, null);
Manager mgrE12 = new Manager(lmgr2-Ell,ICA",rb2,mgrEll);
Manager mgrE13 = new Manager(lmgr3-Ell,ICA",rb3,mgrEll);
/ / declaration of roles for the handler interaction
/ / for El and the ell, e12, el3 hashtables

/ / set of managers for the normal execution
/ / of the OMI
Manager mgrl = new Manager(lmgrll,"CA",ell, null);
Manager mgr2 = new Manager(lmgr2",ICA",e12,mgrl);
Manager mgr3 = new Manager(lmgr3",ICA",e13,mgrl);

Figure 6.22: Manager Objects Instantiation for a CA Action

6.2.3 Discussion

The main idea of describing CA actions in terms of DMI, and implementing

them using the framework presented in Chapter 5, was to show how DMI can
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be used to implement different multiparty interaction abstractions. We have

chosen to implement the CA action mechanism using our approach because

it provides strong exception handling semantics for dealing with possible

failures that happen during the execution of an interaction. Multiparty in-

teraction mechanisms like actions in DisCo [Jarvinen & Kurki-Suonio 1991]

or teams in IP [Forman & Nissen 1996] do not consider exceptions in the

execution of an interaction, let alone any description of the semantics for

dealing with exception that can happen during the execution of an interac-

tion. Therefore, using our approach to implement such mechanisms would

have been a trivial task.

6.3 Case Study: GAMMA Computation

GAMMA is a model of parallel computation based on the idea of multiset

transformations. It behaves in a similar way to a chemical reaction upon a

collection of individual pieces of data [Banatre & Metayer 1993]. Each step

of a GAMMA computation involves selecting a set of values from the multiset

and then combining them in some way to produce a new set of values. A

distributed GAMMA model has also been proposed [DiMarzo & Guelfi 1998].

Its main novelties are distribution of multisets (each of them is presented as

a set of local multisets), and distribution of chemical reactions. For example,

the following GAMMA program performs the sum of a set of integers, i.e. it

is always true that for every pair x,y in the multiset, the pair is replaced by

x+y:

add: x •y ---+ x+y <¢:: true
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6.3.1 Design of a GAMMA System

To demonstrate how distributed GAMMA computations can be implemented

using DMls, a simple example is used in this section. In this example, num-

bers from distributed multisets are summed and the result is stored in a mul-

tiset. The distributed GAMMA system is composed of a set of participants

(located on different hosts), a scheduler (located on a separate computer)

and a set of DMIs, each of them called Gamma. (This approach has also

been used to demonstrate how CA actions could be used for implementing

GAMMA computation [Romanovsky & Zorzo 1999] [DiMarzo et al. 1999].)

The design has two levels. The first level is concerned with information ex-

change between computers (participants and a scheduler). This is the level

on which the execution of the Gamma DMIs is scheduled (or the DMIs are

glued together). At the second level of the design, each Gamma DMI performs

a single step of the GAMMA computation by coordinating the interactions

between roles and their access to external objects (multisets). On this level

numbers are passed between different local multisets, summed, and the result

is inserted into the multisets. As shown in Figure 6.23, each Gamma DMI

has three roles: two producers (each of which supplies a number from its

local multiset) and a consumer (which computes the sum of these numbers

and stores the result in its local multiset).

The participants in the Gamma DMIs correspond to the computing re-

sources available to perform the GAMMA computation. A participant starts

when it is loaded into a client computer and establishes a connection with the

scheduler. Each participant has a local multiset, i.e. a queue in which some
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Figure 6.23: The Gamma DMI

part of the global multiset is kept. Each participant informs the scheduler

when it receives a new number in its local multiset. The scheduler starts a

new Gamma DMI whenever there are at least two new numbers available in

local multisets. There can be as many Gamma DMls active concurrently as

there are pairs in all local multisets at a given time. Each participant creates

a new thread to execute a role in a Gamma DMI and in this way it is possible

for a participant to be involved in several Gamma DMls at the same time

without violating the atomicity property (for example, if there are several

numbers available in its local multiset). This allows a better parallelisation

of the GAMMA computation.

The table below shows the preconditions that must hold before the Gamma

DMI starts its execution. The same table also shows the post-conditions for

the normal outcome of the Gamma DMI (F, S, and C represent the local

multisets of the participants; and x and y numbers from the F and S local
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multisets, respectively).

preconditions post-conditions
F in FirstProducer F - {x} in FirstProducer

S in Second Producer S - {y} in SecondProducer
C in Consumer C + {x+y} in Consumer

Figure 6.24: The Gamma DMI Pre and Post-conditions

6.3.2 Fault Tolerance in the GAMMA System

The original GAMMA paradigm [Banatre & Metayer 1993] assumed that

there are no faults in the system. Fault tolerance requirements have been in-

cluded in the system in order to demonstrate how DMIs can be used increase

dependability and to make the system more realistic. The fault assumptions

for this case study are: i) the addition operation can fail; ii) reading num-

bers from the multisets can fail; and, iii) writing numbers to the multisets

can fail. Because these operations are executed only inside DMIs, the entire

system fault tolerance is provided within the DMI framework. In particular,

we assume that nodes and channels are reliable (i.e. their fault tolerance,

if required, is implemented transparently for our system by the underlying

support). For example, in our system, when the addition operation fails, a

predefined exception ReactionException is raised in the thread executing a

role in the DMI (see Figure 6.25).

After an exception ReactionException has been raised, the DMI support

mechanism interrupts all the roles in the DMI and calls the handler for this

exception (see Figure 6.25). Our design decision is to use forward error



6.3. Case Study: GAMMA Computation 163

FirstProducerqueue(-F)-t-[----"r--------------J+-...:::>~

: Read number

Recove

, , ,
SecondProducerqueue_:(:....:s),-+[---'..'_Re_ad_N_U_mbe_r W_ri_te_Nu_m_be_r:i----i-! -J+--:::>~

,Write Number

[ y V ] :>
Consumerqueue(C)

Figure 6.25: Forward Error Recovery in the Gamma DMI

recovery in the DMI in the following way: when the reaction fails, the con-

sumer keeps both numbers by inserting them into its local multiset whilst

the producers complete the DMI as if nothing has happened. Thus, if a fault

happens during the action execution, the consumer recovers the system, but

in this case there are two new numbers in the consumer's local multiset. We

use a special outcome of Gamma to inform the scheduler about these new

numbers. The table below shows the exceptional outcome post-conditions.

S - {y} in SecondProducer

exceptional post- conditions
F - {x} in FirstProducer

c + {x} + {y} in Consumer

Figure 6.26: The Gamma DMI Exceptional Post-conditions

Gamma DMIs are atomic with respect to faults in the chemical reaction:

the exception handlers guarantee "nothing" semantics for the global multiset

(although the local multisets are modified during this recovery).
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6.3.3 Discussion

The previous case studies dealt with designing a complex distributed con-

trol system (Section 6.1) and a multiparty interaction abstraction (Section

6.2). Their implementation showed that DMls could also be used for im-

plementing applications in such a way that maximum concurrency (paral-

lelism) could be provided together with guaranteeing consistency of system

state. Gamma computation is an example of such parallel computational

model. Similar models are used in several languages and formalisms. In

[Banatre & Metayer 1996], a number of languages and formalisms bearing

similarities with the Gamma computation are surveyed.

Based on the example presented in this section, one could implement any

of the models shown in [Banatre & Metayer 1996] using DMls, e.g. Unity,

Linda, Linear Objects. The same is valid for several extensions of the basic

version of Gamma (such as schedules and local linear logic - further discussion

about this topic can be found in [Banatre & Metayer 1996]). The common

requirements for all of those models are: achieving maximum parallelism of

basic operations, guaranteeing consistency of data accessed by these oper-

ations and atomicity of these operations. These are the type of properties

DMls provide.

In general, we would claim, based on these various case studies, that DMIs

is a concept that can be employed in many different applications in which

parts of systems can either compete for resources or cooperate to achieve

some joint purposes.
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6.4 Experience using DMls in the Case Stud-

•res

The experiments presented in this chapter demonstrate that DMIs can be

used as safe atomic building blocks for programming safety-critical systems

and other programming abstractions. The use of DMIs greatly facilitated

our ability to guarantee that our design and implementation satisfied the

safety and fault tolerance requirements of the FZI Production Cell II case

study. The resulting system has a clean design that was easy to understand

and validate. In fact, formal validation [Canver et al. 1998] of the design

approach used in this thesis has been performed for a virtually complete

implementation of the FZI Production Cell II using CA actions. This formal

validation showed that the design is correct and guarantees the liveness and

the safety requirements of the case study.

DMIs can be used as a general abstraction technique for structuring com-

plex concurrent systems. Although a design based on DMIs can decrease the

overall performance for some systems, we believe that the benefits gained

by a simple design, built using re-usable components, and providing system

fault tolerance in a disciplined way, etc. are more important for safety-critical

applications.

Conventional design approaches do not usually support the structuring

of concurrent system dynamic behaviour and do not have any features for

describing both component cooperation and competition in complex systems.

Systems built using DMIs have a very different design from systems built

without DMIs. Using conventional techniques, component cooperation is
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usually fiat and consists only of component synchronisation (e.g. message

passing). With our approach, cooperation can have several levels. See, for

example, the design of the control software for the FZI Production Cell II,

in which on one level we have the controllers cooperating to achieve better

performance, and on a second level, the devices cooperating to achieve safety

when passing plates. In each level, part of the fault tolerance requirements

were satisfied.

Compared with conventional methods, there are obviously additional

(mainly performance) overheads for using DMls: additional messages and

increased overall system synchronisation. It would be possible to design a

faster system by taking advantage of some low level knowledge of the applica-

tion and by breaking the information and concurrency encapsulation imposed

by DMIs. However, this would be at the cost of simplicity, maintainability

and safety.



Chapter 7

Conclusions

In this thesis, we have surveyed a set of languages that allow multiparty

interactions and exception handling as basic constructs. Despite all the work

in multiparty interactions and exception handling, none of the languages

surveyed provide the integration of both concepts in a single mechanism.

Therefore, the first major contribution of this thesis is the integration of

multiparty interaction and exception handling in such a single mechanism

called dependable multiparty interaction (DMI), and the embedding of this

mechanism in a programming language. Furthermore, none of the languages

surveyed provides a structured way of handling concurrent exceptions. The

mechanism proposed in this thesis thus provides a structured way of dealing

with concurrent exceptions when inside a multiparty interaction.

The second major contribution of this thesis relates to the way DMIs

can be implemented in object-oriented languages like C++, Java, or Eiffel.

Indeed, a complete object-oriented framework was implemented in Java.

Other small contributions, such as the application of the DMI concept to
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implement safety-critical systems, or different computation abstraction, are

included in this thesis.

7.1 Summary

In Chapter 2, a complete state-of-the-art survey about multiparty interac-

tions has been presented. It includes the main requirements and design

choices made in several languages that provide multiparty interaction mech-

anisms. A taxonomy based on the way participants can enroll in an in-

teraction. In addition, a safety-critical system is designed using one of the

languages that provide multiparty interactions.

Exception handling is fully discussed in Chapter 3. First some basic def-

initions are presented. The whole chapter is devoted to show how exception

handling is implemented in programming languages. Furthermore, the chap-

ter shows that concurrent exception handling is provided in different models,

but not in programming languages.

The concept of dependable multiparty interactions (DMIs) is introduced

in Chapter 4. The key idea to build DMIs, is to use unreliable multiparty

interactions and chain them together, so that each multiparty interaction in

the chain is the exception handler for the previous multiparty interaction

in the chain. Also important is the enclosing of the unreliable multiparty

interaction to protect them from being interfered with during their normal

execution or exception handling. A full language that has DMIs as a basic

construct is presented in the same chapter, i.e. Dependable Interaction Pro-

cesses (DIP). Formal semantics of part of this language is also provided using
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TLA+.

Although DIP can be used to design, or implement, a computer system,

there are a lot of object oriented languages that are used for designing and im-

plementing the same systems. Chapter 5 has presented different approaches

for implementing DMIs in an object-oriented language: Java. Even though

the framework presented imposes an overhead burden in the final system,

depending on the application, the burden will be negligible, e.g. for a pro-

duction cell case study it incur only 0.0164 percent of overhead for a 2-party

interaction.

The last chapter presented three case studies. DMIs were applied to im-

plement them. The first system is a safety-critical production cell, which

involves several devices and represent a real industrial installation. The sec-

ond and third case studies showed how DMIs can be used to implement

different computational abstractions.

7.2 Future Work

The research presented in this thesis is far from being complete. Actually, it

has opened the horizon to several research topics:

• DIP as a new language needs a compiler and a runtime system. Both

compilation and execution of DMIs have yet to be studied. Although

there has been some work on scheduling of multiparty interactions

[Joung & Smolka 1996] [Forman & Nissen 1996], further issues arise with

the introduction of exception handling in multiparty interactions.
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• The framework presented in this thesis uses a simple transaction sys-

tem. Studies on the use of a real transaction system have to be taken.

• Formal specification of the whole DIP language. At the end of the

chapter in which DIP was introduced, a formal semantics for DMIs was

presented. Although it provides a clear specification of major aspects

of DMIs in DIP, there is still some issues to be formally specified, such

as the interruption of nested DMIs.

• The case studies presented in the last chapter showed that DMIs can

be used to implement those systems. Once a compiler and runtime

system are ready for DIP, performance issues have to considered, so

all the case studies have to be tested using the compiler and runtime

system provided.



Appendix A

Multiparty Interaction

Mechanisms - A Comparison

using the Dining Philosophers

Problem

The dining philosophers problem was introduced [Dijkstra 1965] to show how

to achieve synchronisation 1 when a process needs more than one resource

to execute an activity, e.g., one philosopher needs two forks to start the

operation eating. Note that in the original specification of the problem only

one process would start the operation. For our purpose, i.e. multiparty

interaction, we will consider forks as being processes rather then resources,

1Although synchronisation is defined as "cause to occur at the same time; be simulta-
neous; coordinate, combine", "coordinate, combine" is considered wrong by several people
(The Concise Oxford Dictionary) and should be avoided, so we will not use it in that
sense.
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and an eating activity will only happen when the 3-parties are ready to

execute it.

'phllosopherle

action2

action1 ,,
,,,,

.. , ......... ,,, ..
forJci' " _

action3

PhilOSOPi

actionO •••••••••••••••.

~ philosophera

action4

Figure A.l: Dining Philosophers Problem

Definition: Let us consider a set of 10 processes divided in two groups of

5 processes: forks and philosophers, where forks= {forko, ... , fork4}

and philosophers= {philosophero, ... , philosopher4}. These processes

will, during the execution of the system, execute joint activities, called

actions= { actiono, ... , actions } that will be composed of 2 fork com-

ponents and 1 philosopher component. Each component of actions is

a tuple in the format aciioru=: { forki, philosopher., forki+l), where

o ~ i ~4, and i + 1 is equivalent to (i + l)mod 5. Let us also consider

that each action, will need an external data called pastaDish in order to

execute the joint activity, and that such external data can be accessed
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only by one action at a time. To better understanding of the problem

see Figure A.1.

Every action, will execute a generic activity called EatingAction = (left-

fork, philosopher, rightfork). This activity is executed in a coordinated/ way

by the three participant processes. Firstly, the philosopher and the leftfork

will synchronise their execution, and such synchronisation will represent the

philosopher grabbing the left fork. A similar synchronisation will occur later

representing the philosopher grabbing the right fork. After those, both forks

will synchronise their execution in order to access the external data pas-

taDish. Such execution will consume part of the external data. When the

leftfork and the rightfork have got the "pasta", i.e. part of the external data,

the three participants will synchronise their effort to "eat the pasta", i.e.

consume the data. See Figure A.2.

Eating Action

leftFork -+---.--------.--------r---+-~-

!!

philosopher -+-....L..----r----..;--+----I-'Q.,5-~ __ +-~-
Jj.:c

~e -~rightFork _+-__ ___..L__O_...;..-----'L__~-'----_+-~~

PASTAD~H __ ~ ~V V~· ~,__.. ~
I------------------------------

Figure A.2: Eating Action

In the next sections, parts of this case study will be used to show prop-

erties of the multiparty interaction mechanisms in several languages. An

2 The Concise Oxford Dictionary defines coordinate as "Bring (various parts, move-
ments, etc.) into a proper or required relation to ensure harmony or effective operation
etc.; work or act together effectively".
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implementation of this case study using the DIP language (Chapter 4) and

the framework presented in Chapter 5 is described in Appendix E.

A.I IP

Interacting Processes (IP) [Forman & Nissen 1996] is an (executable) speci-

fication language for the expression of distributed programs (IP is executable

if failure-free hardware and software system is assumed, since a failure can

negate the atomicity of lP's multiparty interaction). The main ideas of

IP come from other two languages, Script [Francez et al. 1986] and Raddle

[Forman 1986].

IP core language

A program in IP is a sequence of processes in the format of:

with n ~ 1 processes which have disjoint local states, i.e. they do not

share variables. Processes can share/interchange information through inter-

processes communication, which is achieved in IP via a multiparty interac-

tion.

~, 1 ::; i ::;n, also has a statement S, called body. S can be composed

of statements of the forms:

• Skip: has no effect on the state
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• Assignment: x := e, where x is local do Pi and e is an expression over

the local state of Pi'

• Interaction: a[v := e], where a is the interaction name, and a[v := e]

is an interaction part containing an optional parallel assignment. Pi is

a participant of the interaction a. All variables in v belong to the local

state of Pi, and e may involve variables not local to Pi, i.e. e can contain

any variable from any local state of any participant of interaction a.

The interaction a is enabled only when all of its participants have

arrived at a point where executing a is one of the possible continuations

(when Pi arrives in that point, it is said to ready a). When a local

interaction part is finished, the participant process can resume its local

thread of control, i.e. no synchronisation at the end of an interaction

is assumed.

• Sequential composition: 81; 82: first 81 is executed; when it terminates,

82 is executed.

• Nondeterministic selection [[]r=IBk&ak[ v:= e] --+ 8k]: where Bk&ak[v

:= e] is a guard. Bk is a boolean expression, called guarding pred-

icate, over the local state of participant Pi' The ak[ V := e] part is

called guarding interaction. 8k is any statement. The guard is en-

abled when the guarding predicate is passable, i.e. its evaluation is

true, and when the guarding interaction is enabled. During the exe-

cution of the guard, first all boolean expressions are evaluated, if one

of them is true then an interaction is a possible continuation. If an

enabled guard is passed then 8k is executed. If no guard is enabled,
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the execution is blocked until some guard is enabled. Note that m is

fixed and cannot be changed during execution.

• Nondeterministic interaction *[[]k=lBk&ak[ v := e) -+ Sk]: this is sim-

ilar to nondeterministic selection, but the whole statement is repeated

until none of the guards is passable.

Teams in IP

A program in IP is composed by a set of teams declaration. The execution of

a program starts by a single instantiation of a team followed by an execution

of the instantiated team. When declaring a team, the following items are

specified:

• A unique team name.

• Team parameters and their respective types.

• A prologue used as the initialisation section of the team.

• A body, composed by concurrent roles and processes. Processes are the

executing agents in a team, while roles are formal processes, to which

processes may enrole in order to activate their computations.

After instantiating a team, the statements in its prologue are executed,

and then all its processes start execution. We can compare an instantiation

of a team with an instantiation of an object, where a unique team instance

identifier is returned. A process is local to a team and no one can interfere in

its computation, unless they are participating in the same interaction. A role
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can be parameterised, and is composed of a statement, which is basically of

the core language. In order to activate a role, some role or process in another

team has to enrole in that role.

team EatingAction(value i:integer)::
[
role philosopher(value pasta}::

getForksi[si := 'e']&consume[ pastaDish := pasta Dish - 2 ]
~ giveforks.j]

II
role leftFork(result x}::

getforks.] ]&consume[ x := pasta ] ~ givef'orks, []

II
role rightFork(result y}::

getforks.] ]&consume[ x := pasta ] ~ givef'orks, []

PHIL :: [Po II ... II P4 II Fo II ... II F4J

action: array[k:O..4] of team designator := new EatingAction(k};

Pi :: Si := 't':
*[Si='t' ~ Si := 'h'

o
si='h'&philosopher(pasta}@action(i} ~ Si := 't'

]
Fi ::*[ leftFork@action(i}

o
rightFork@action(i+l)

The above IP code shows how the dining philosopher problem could be

implemented. In the example, forks are represented by processes Fi. The

state of the philosophers is represented by the variable Si. When the ith

philosopher Pi is hungry (Si = 'h') then it enroles in action, playing the role
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philosopher. In the team action, the philosopher will interact in a three-party

interaction getf'orks, (together with Fi and Fi+d. After that, the pasta dish

will be consumed in the three-party interaction consume. After the consume

interaction is finished, the three processes leave the action team, and the

state of the philosopher Pi becomes thinking again (Si = 't'). Atomicity in

the access to the pasta dish is not represented in the above example. (In the

example i+I = ((i+1) mod 5).)

A.2 Action Systems

Action Systems [Back & Kurki-Suonio 1988] provide a method to program

distributed systems. In Action Systems processes can interact through ac-

tions, called joint actions. All processes that are participating in a joint

action will be synchronised by a common handshake.

Basically, an action system consists of a collection of processes and a

collection of actions in the following format:

process p: var
Ya; stotement.:

action a by processesa:guarda ~ statement-s,

where Ya is the set of variables of process p, while statemeni.; assigns

initial values to these variables. The action statement indicates that a may

be executed jointly by the processes in the set processess, provided that

quard.; is satisfied and the processes are not participating in other action.

The program state is changed in accordance with statements, and it is called
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body of the action. The body of the action can only refer to local variables

of the processes participating in the action.

process Philosopher[i:O..4];
var hungry: boolean;

hungry := false;

process fork[i:O..4);

action Thinking[i:O ..4) by Philosopher[i]
...,Philosopher[i].hungry -+
/ / thinking
Philosopher[i].hungry := true;

action EatingAction[i:O ..4] by Philosopher[i],fork[i],fork[(i+l) mod 5],pasta
Philosopher[i]'hungry -+
/ / eating pasta dish
Philosopher[i).hungry := false;

The previous code shows an example of a set of actions and processes in

Action Systems. The dining philosophers case study in Action Systems is

composed of 5 philosophers, 5 forks, and two kinds of actions. First, a private

action Thinking[i] is executed by the philosopher[i] when the philosopher is not

hungry. The action execution consist of a non-specified thinking being done,

after which the philosopher becomes hungry. The second action EatingAction,

a joint action, will be executed when a philosopher is hungry, and both forks

are not being used in another action. At the end of EatingAction the state of

the philosophers becomes not hungry. An external data, e.g. the pasta dish

we want to represent in the interaction, has to be defined as a participant of

the action, thus guaranteeing that it will be used in only one action.
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A.3 Ada

In the rendezvous model of Ada one task, the server task, declares a set of ser-

vices that will be used by other tasks, the client tasks [Burns & Wellings 1995].

The server task does this by declaring one or more public entries in its task

specification. Each entry identifies the name of the service, the parameters

that are required with the request and the results that will be returned. The

client task issues an "entry call" on the server task by identifying both the

server task and the required entry. For the interaction to occur between the

server and the client, both tasks must have issued their respective requests

(this is the rendezvous). When the rendezvous takes place, any in or out

parameters are passed to the server task by the client. The server task then

executes the code inside the accept statement. When this statement finishes

both tasks proceed independently and concurrently.

task body Philosopher(P:0 ..4) is
chopLeft. chopRight : 0..4;

begin
chop Left := P; chopRight := (P+l) mod 5;
loop
/ / thinking
forks( chopLeft).PickUp;
forks( chopRight). PickU p;
/ / eating action
forks(chopLeft).PutDown;
forks( chopRight). Put Down ;

end loop;
end Philosopher;

In the above example, we do not create an action to represent the eating

action as discussed in the beginning of this appendix. Instead, we represent



A.4. CSP 181

task body fork is
begin
loop
accept PickUp;
accept PutDown;

end loop;
end fork;

forks: array (0..4) of fork;
philosophers: array (0..4) of Philosopher;

the eating action inside the body of the philosopher task. In the above code,

task fork represents a server while task Philosopher represents a client that

issues an entry call. A server, i.e. a fork, is ready to accept either a PickUp

or a PutDown entry. A philosopher tries to pick up both forks, representing

the synchronisation between the philosopher and the forks, before it starts

the eating action. We did not represent the pasta dish in the above example.

A.4 CSP
Communicating Sequential Processes (CSP) [Hoare 1985] is a distributed

language that relies on a channel mechanism for interaction between two

processes. The interaction is established via the execution of "complemen-

tary" pairs of input and output command. For example, the input command

P;?y of processes Pj, which inputs a value from process Pi into variable y,

is complementary to the output command Pj!x of process p;, which outputs

the value of expression x to Pj. The joint execution of these commands is

equivalent to the assignment of x to y (y +- x). The following code shows

how synchronisation between the processes of the dining philosopher problem
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could be implemented in esp.

PHIL =
*[ ... ~

/ / thinking
fork(i) lentert):
fork((i+l) mod 5)!enterO;
/ / eating action
fork(i)!leaveO;
fork((i+l) mod 5)!leaveO;

fork =
*[ phil(i)?enterO ~ phil(i)?leaveO
o
fork((i+l) mod 5)?enterO~ fork((i+l) mod 5)?leaveO

]

A.5 LOTOS

LOTOS - Language Of Temporal Ordering Specifications [Brinksa 1988] is

a specification language for distributed systems. It is based on an extended

version of Milner's calculus of communicating systems (eeS) and it is also

influenced by the related work on esp. In LOTOS, interprocess communi-

cation occurs by means of gates. When processes want to interact, each one

of them specifies the name of a gate and whatever information it wishes to

provide on the values to be established. Processes can participate in an in-

teraction only if, at the same time, they are ready for the interaction where

they specify the same gate and compatible types. The following code shows

how synchronisation between the processes of the dining philosphers problem

could be achieved before executing the eating action.



A.6. Multiway Rendezvous 183

process DiningPhilosophers : noexit :=
hide IO.Il.12.13.14.rO.rl.r2.r3.r4 in
P[IO.rO]-D-F[ll. rO]-D-P[ll.rl ]-D-F[12.rl ]-D-P[12. r2]-D-
F[13.r2]-D-P[13.r3]-D-F[14.r3]-D-P[14.r4]-D-F[IO.r4]

where
process P[left. right] : no exit :=

(* think *)
left; (* grab left *)
right; (* grab right *)
(* eat *)
right; (* release right *)
left; (* release left *)
P[left. right]

endproc (* Philosopher *)

process F[left. right] : noexit :=
left; (* grabbed by left philosopher *)
left; (* release by left philospher *)
F[left. right]

o
right; (* grabbed by right philosopher *)
right; (* released by right philospher *)
F[left. right]

endproc (* Fork *)

endproc (* Dining Philosophers *)

A.6 Multiway Rendezvous

The multiway rendezvous is a generalisation of the rendezvous in which more

that two processes may participate [Charlesworth 1987]. The central idea of

the multiway rendezvous is that a block of statements is executed when, and

only when, a specified number of processes reach a corresponding stage of

processing.

The previous code shows the compact construct for the dining philoso-

phers problem. The system is composed of 5 philosophers and 5 forks. Every
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declare
EATING: array (i:O..4) of compact is
acquire request P(i:O..4); C(i); C((i+l) mod 5);

... eating action
PHILOSOPHER: array (i:O..4) of process is
declare hungry: BOOLEAN;
begin
hungry := false;
loop
if hungry then

EATING[i].P(i);
hungry := false;

else
... thinking
hungry := true;

end loop;
end PHILOSOPHER;

fork: array (i: 0..4) of process is
begin

loop
if (i mod 2) = 0 then

EATING[i].C(i); EATING[(i+l) mod 5].C(i);
else

EATING[(i+l) mod 5].C(i); EATING[i].C(i);
end loop;

end;
begin
cobegin PHILOSOPHER(O) / / ... / / PHILOSOPHER(4)

/ / fork(O) / / ... / / fork(4)
coend;

end;

fork is ready to join into an interaction all the time. In order to avoid star-

vation or deadlock, [ork-, where i is an even number, enables interaction i

first, while [ork., where i is an odd number, enables interaction ((i+1) mod

5) first. The interaction will occur only when two forks are available and the

philosopher is hungry. An interaction is expressed in the compact construct
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and the participants of such interaction are specified in the acquire request

statement.

A.7 SR

The Synchronizing Resources (SR) language [Andrews et al. 1988] was de-

signed for programming distributed systems. Its programs are composed

of three kinds of components: resource specifications, resource bodies, and

globals. Resources are the main building blocks; they are the unit of abstrac-

tion and encapsulation. Globals contain declarations of constants and types

shared by resources.

Resources define operations and are implemented by one or more pro-

cesses that execute in the same address space. Processes interact by means

of operations; processes in the same resource may also share variables. A

resource has a specification and a body. The specification identifies other

components the resource uses and declares operations, constants, and types

exported by the resource. The body contains the processes that implement

the resource, declarations of objects shared by those processes, and initiali-

sation and finalisation code.

SR allows both conjunctive parallelism (IN operation llIl operation NI )

and disjunctive parallelism (CO concurrent-invocation II··· II··· OC). An

operation typically involves argument passing between the caller and the

callee, which can be by value, result, value/result, or reference. Care must

be taken when the same variable is passed twice within a CO statement by

reference. For example, suppose two operations both pass a reference to
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resource Philosopher
body Philosopher ( forkRight , forkLeft : cap fork)
process phil
do true ~
/ / think
send forkLeft.left()
send forkRight.right()
/ / eating action

od
end

end Philosopher

resource Fork
body Fork
process fork
do true ~
in leftO ~

/ / eating Action as left fork
o
right 0 ~
/ / eating Action as right fork

ni
od

end
end Fork

variable x to the corresponding callees, which in turn modify the content

of x. Then, the final outcome of the operations depends on their relative

execution speeds, since the actual value of x seen by the callee may be the

original value or the value as modified by the other callee.

A.8 sc++
Synchronous C++ (SC++) [Petitpierre 1998] is an extension to C++ that

provides it with features to develop concurrent applications within an object-
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oriented language. SC++ contains active objects that have their own thread

of control, and communicate with each other by means of synchronising

method calls.

active class Philosopher {
int i;
@PhilosopherO {
for (;;) {
/ / thinking
chop[i].getO;
chop[(i+l)%5].getO;
/ / eating action
chop[i]. putt):
chop[(i+l)%5].putO;

}
}

}

active class fork {
bool free = true;

public:
void getO { free = false; / / eating action }
void putO { free = true; }
@forkO {

for (;;) {
if free accept get;
else accept put;

}
}

}

In the previous example, we showed how to implement the philosophers

and forks processes of the dining philosophers problem. Processes are active

objects in SC++ and are defined as classes. SC++ uses a rendezvous mecha-

nism to attend the requests to its methods. The rendezvous is represented by

the command accept that is coded inside the objects main body (the main
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body of an active object is described using the class name and the prefix @

- see the previous code).

The eating action is described in three different places in the following

example. The philosopher class will host the code for the philosopher role

in the eating action, and each fork will host the code for the fork role in the

eating action.

A.9 Discussion

In this appendix, we have presented (the description of) several languages

that have a multiparty interaction as a basic construct. We have used the

dining philosphers problem to show how the multiparty interaction construct

could be used in these languages. Even though the example is very simple,

we can draw several conclusions from the use of the multiparty interaction

mechanism in these languages. For example, while all the languages provide

means of synchronisation upon entry, only a few provide some kind of pre-

condition in the multiparty interaction, e.g. Action Systems and DisCo. In

addition, languages that provide split bodies in the multiparty interaction,

e.g. lP, provide a better structuring mechanism than those that do not, e.g.

Action Systems, Ada, Multiway Rendezvous, and DisCo. In some languages,

the multiparty interaction mechanism does not provide split bodies, and the

mechanism is used only for synchronisation and communication, e.g. CSP,

LOTOS and SR. Split bodies in those languages can be simulated by using

several of their multiparty interaction mechanisms, e.g. Ada, SC++, SR,

LOTOS, and csr.
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Exception Handling - Survey

B.l Exception Handling in PL/I

PL/I was the first programming language had special constructs for exception

handling. PL/I allows the programmer to write exception handler for a list

of pre-defined exceptions, and also for user-defined exceptions.

Exception handlers are declared by ON statements. Handlers in PL/I

are divided in three types. The first type, which includes SUBSCRIP-

TRANGE, SIZE, and CHECK, are ignored unless an ON statement has

been set. The second type, which includes OVERFLOW, ZERODIVIDE,

and CONVERSION, are normally enabled but can be disabled by a NO

prefix, e.g NOOVERFlOW. The third type, which includes ENDFllE, UN-

DEFINEDFILE, and KEY, are always enabled and cannot be disabled.
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An ON statement have the following form:

ON ZERODIVIDE BEGIN;
statements

END;

ON OVERFLOW;

The statements represent the code of the exception handler. If program-

mers want to ignore an exception occurrence, they can include a statement

like the OVERFLOW above. In that case the exception handler is a null

statement, therefore the exception is ignored.

An exception is raised by the statement: SIGNAL CONDITION excep-

tion.nsme;

Exceptions in PL/I are bound to exception handlers dynamically. When

an ON statement is encountered during the execution, a new binding takes

place. This binding will remain valid until it is overridden by the execution

of another ON statement for the same exception, or until the block, in which

the ON statement was declared, terminates.

In PL/I the place in the program the flow of control continues after an

exception handler has completed its execution depends on the built-in excep-

tion handlers. For some exceptions, execution continues with the statement

that caused the exception; for other exceptions the program terminates. Han-

dlers written by programmers can continue wherever the programmer wants

to using a GOTO statement, but there is no mechanism that provides the

address of the statement that raised the exception.
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B.2 Exception Handling in CLU

In CLU, exceptions are associated with procedures. Only procedures can

raise exceptions and the handler is declared in the calling unit. A procedure

cannot handle the exceptions it raises.

Exception handlers can be bound to any statement in CLU. When bound

to a statement, they handle only exceptions raised by routines called by that

statement. Exception handlers in CLU are declared as:

statement
except

when exception.Iisti: stetementi

when exceptlon.Iist-: ststementi,
end

If the execution of a procedure call in statement raises an exception then

the control is transfered to the except clause. If the raised exception belongs

to exceptkm.listc; then the ststement, is executed. If the statement in which

the exception was raised does not have an handler for that exception, then

the exception is propagated to a larger static scope within the procedure. If

no handler is found, then the built-in exception failure is raised and control

returns to the caller.

Exceptions in CLU can be explicitly raised with the signal instruction. A

signal instruction can include optional parameters that can be used to pass

information to the exception handler.

When the execution of the handler is completed, control passes to the

statement that follows the one to which the handler is attached.
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B.3 Exception Handling in Ada

Ada provides a set of four predefined exceptions that can be raised by the

underlying system: Constraint-Error, e.g. an array subscript out of range, or

when there is a range error in a variable with a range description, division

by zero, etc.; Program.Error, e.g. a function is required to complete nor-

mally by executing a return statement that transmits a result back to the

caller; Storage.Error, e.g. run out of memory during the invocation of new;

or Tasking.Error.

Ada exception handlers are usually local to the code in which the excep-

tion can be raised. Because this provides them with the same referencing

environment, parameters for handlers arc not necessary and, in fact, are not

allowed.

An exception clause has the following format:

begin
statements

exception
when exception, => handler code

when exception; => handler code
when others => handler for any other exception that

is not exceptiotu, for ;=1 to n
end;

In the above example, a list of handlers is attached to the block. The list

is prefixed by the keyword exception and the handlers for each exception, is

prefixed by the keyword when. The keyword others indicates that this han-

dler is meant to handle exceptions that were not named locally, or exceptions

that were propagated to this block.
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User-defined exceptions are declared as:

exception.neme: exception;

An exception is raised by the underlying system, producing one of the ex-

ceptions listed above, or is a user-defined exception raised with the following

command:

raise exception.nsme;

If the block that raises the exception provides a handler for that exception,

then the control is transfered to the handler. The control continues as if the

block had terminated normally, i.e. the control continues after the end of

the block. If an exception is raised and the unit that raised the exception

does not provide a handler for that exception, then one of the following four

possibilities may happen:

i) if the unit that raised the exception is a block, then the termination of

the block propagates the exception in the enclosing unit;

ii) if the unit is a procedure, then the control returns to the caller of the

procedure and the exception is propagated at the point of the call;

iii) if the unit is a package, then the exception is propagated in the unit

that contains the package;

iv) if the unit is a task body, then the exception is not propagated and the

task terminates abnormally.
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B.4 Exception Handling in C++

In C++, exceptions are raised by the run-time environment, e.g. due to

a division by zero, or raised by the program. An exception is raised by a

throw instruction, which sends an object to the corresponding handler. A

handler is attached to a try block command. A try block is a group of C++

statements, normally enclosed in braces { }, which may cause an exception.

This grouping restricts exception handlers to exceptions generated within the

try block. The exception handler is declared in a catch block. A catch block

is a group of C++ statements that is used to handle a specific exception.

Catch blocks, or handlers, should be placed after each try block. A catch

block is specified by: the keyword catch; the type of exception that may be

thrown in the try block; and, a group of statements, enclosed in braces { },

whose purpose is to handle the exception. See example below:

class Overflow {
/ / ...

public:
Overflow{char,double,double};

};
void f{double x} {
/ / ...
throw Overflow(' +',x,1.23e123};

}
int mainO {

try {
f(6.6};
/ j. ..

} catch(Overflow& oo} {
/ / handle exceptions of type Overflow here

} catch / / ...
}
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In the above example, the function call in the try block passes control to

fO, which throws an exception of type Overflow. This exception is handled

by the catch block, which handles type Overflowexceptions.

In C++, exception handlers use the termination model. When an ex-

ception is generated, control is passed out of the function that threw the

exception, out of the try block that anticipated the exception, and into the

catch block whose exception declaration matches the exception thrown. The

catch block handles the exception. It either re-throws the exception or ends

normally. If a catch block ends normally, without a throw, the flowof control

passes over all subsequent catch blocks.

In C++, a function declaration can include an exception specification,

a list of exceptions that a function may directly or indirectly throw. The

following declaration indicates to the caller that the function Iunc.neme may

raise two types of exceptions, and that they are caught by a handler bound

to types ExceptionTypel or ExceptionType2:

void func_name(parameters) throw( Exception Type l, Exception Type2);

If programmers want to specify that no exception is generated by the

function func.nsme, they use the following command:

void func_name(parameters) throwO;
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B.5 Exception Handling in Java

Java exceptions are instances of classes. All objects that represent a Java

exception must be instance of a class that extends the class Throwable. The

Throwable class describes anything that can be thrown as an exception. There

are two general sub-classes of the Throwable class: Error and Exception. The

Error class represents compile-time and system errors. The Exception class

is the basic class that can be thrown from any of the standard Java library

class methods and from user-defined methods.

An example of how to define an exception in Java is given below:

Exception exception = new Exception();

A Java exception is raised using the throw instruction followed by the

exception object. The object, which was thrown, is then transfered to a cor-

responding exception handler. A handler may he attached to any segment

of code (a block) that needs to handle exceptional occurrences. In the next

example, the try block might execute some commands that may raise excep-

tions. If an exception is raised, e.g. the computation of an angle that does

not conform to some specification, the catch block corresponding to that

exception, e.g. catch (AngleException) is invoked. In the above example, if

an exception was raised and there was no handler specified for that excep-

tion, i.e. a catch block, then the block corresponding to Exception would be

invoked.

If programmers wanted that exception to be re-thrown, they could either

get rid of the block to handle Exception or define a catch block that re-throws
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class AngleException extends Exception {
public AngleExceptionO {}
public AngleException(String msg) {

super(msg);
}
}

try {
/ / any code that may raise AngleException or
/ / other Java exceptions
} catch (AngleException e) {
/ / handler code for AngleException
} ...
} catch (Exception e) {
/ / handler for any other exception that is not an Error
/ / and has not been caught by the previous catch blocks
}

the exception. For example the following code could have been inserted in

the previous example (before the block for Exception):

} catch (AnotherException e) {
throwe;

} ...

The masking of an exception, i.e. catching an exception and re-throwing

a different one can be done in the same way as re-throwing the caught ex-

ception. Consider the above example. If we want to catch AnotherException

and re-throw a different exception, we would have to change the throw com-

mand to something like: throw new Differentfxceptionf}. In this way the

previous object representing AnotherException will be garbage collected and
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a new object will be thrown.

Java also provides a finally clause to be attached as the last part of a

try command. The code in the finally clause is always executed; it does not

matter whether the commands in the try block have finished normally or

raised an exception.

When exceptions are raised inside a Java method, those exception have

to be declared in the interface of the method. Consider a method that can

raise the AngleException declared previously. If you have a method that may

raise that exception during the execution, then the interface of that method

has to be declared as:

visibility type method.nsme ( parameters ) throws AngleException {
/ / code for the routine

}

The rationale for specifying the exceptions in the method's interface is to

allow the programmers to know which exceptions are raised by the method, so

they can properly react in their code by catching the exception and handling

it, or catching the exception and mapping it to one of their throwable excep-

tions, or listing the exception in the declaration of their enclosing method

and allowing the exception to propagate.

B.6 Exception Handling in Eiffel

In Eiffel an exception is raised when an assertion is violated, or the underlying

system detects an anomalous behaviour, e.g. run out of memory space. When

an exception is raised the flow of control is passed to the rescue clause. Every
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routine in Eiffel has this clause for handling exceptions; it can be implicit or

explicit. An explicit rescue clause is written by the programmer, while the

implicit rescue clause is inherit from class ANY. The default rescue clause

does nothing. A rescue clause comes right at the end of a routine and has

the following format:

routine.neme is
statement
rescue

rescue.stetement
end

Information about the exception that was raised is provided by the EX-

CEPTION class in Eiffel. This class provides the follow features:

• signal codes that are set when a hardware or operating system exception

occurs;

• exception codes that are set when a program exception occurs;

• procedures catch.signal and raise.on .signal which enable the program-

mer to switch signals on and off; and the procedure raise which enables

the programmer to raise a user-defined exception;

• attributes, e.g. last.ecode - code of the last exception, which enables

the rescue clause to obtain information about the last exception.

The Eiffel exception handling mechanism provides two different approaches

for a program to continue its execution. They are usually referred as: orga-

nized panic and retrial (resumption). In the organized panic approach, the
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routine raising an exception fails, i.e. as an exception is raised, the routine

execution is terminated and the control is passed to the rescue clause. The

handler performs some type of recovery and then terminates signaling failure.

In the retrial approach a programmer can write a rescue clause to cause an

alternate part of the routine to be executed. This is achieved by the retry

clause that may appear in the rescue clause and causes the routine to be

re-executed. The following code exemplifies this case.

routine.nsme is
require

local
version.two: BOOLEAN

do
if not version.two then

versionl
else

version2
end

require

rescue
if not version.two then

version.two := true
retry

end
end

In the above example, routine.rume will first execute the versionl, since

the boolean variable version.two will he initialised to false (default value

for boolean variables). If versionl is not able to satisfy the post-condition

(require clause) or raises an exception, then an exception will be raised in

routine.nsme and the rescue clause will be invoked. The first time the rescue
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clause is executed, the version.two variable will be false and the commands

version.two := true and retry will be executed. The effect is to execute the do

clause of the routine again (without reinitialising local variables) and version2

will be executed. The exception that caused the rescue clause to be invoked

is considered suspended after the retry was executed. If no further exception

is raised inside routine.nsme, then the flow of control continues normally.

B.7 Exception Handling in ML

The ML exception mechanism has three parts: exceptions declarations, which

identify certain names as exception names and declare the type of data carried

by each exception; raise expressions, which raise an exception and pass data

to the handler; and handler declarations, which establish handlers for specific

expressions.

An ML exception declaration has the form:

exception name of type

Where name is the name of the exception and type is the type of the data

that is carried to an exception handler when this exception is raised. For

example, in the code below, the exception Neg does not carry data, but the

exception Signal must be raised with an integer parameter, which may be

used by the exception handler.

exception Neg;
exception Signal of int;
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An ML raise expression has the form

raise name params

An ML expression with handler declaration has the form:

exp handle exception, => exp,
···1 exceptioru, => exp-,

In the code above, the exp is first evaluated. If the expression raises

an exception that matches exceptioru, then the handler is invoked and the

corresponding exp, is evaluated. If there is no handler for a exception that

was raised in exp, then this exception is propagated to the caller of the

function where exp is declared.

exception Neg;

fun f(x) = if x <= 0
then raise Neg
else l/x;

( f(x) handle Neg => 0 ) / (f(x) handle Neg => 1)

In the code above, we present a small example of how to raise an exception

in a function, and how the same exception could be handled in two different

ways. After the exception has been handled the control continues after the

expression that raised the exception.
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B.8 Discussion

In the languages surveyed in this appendix, almost all languages have similar

approaches for the type of exceptions that can be handled and how they can

be defined. They all provide built-in and user-defined exceptions. One of

the major differences is whether an exception can carry information or not.

In PL/I, an exception is a named signal that does not allow any additional

information to be carried with the exception to the handler. Languages like

Ada95, CLU, Java, C++ or ML allow data to be carried along with the

exception. C++, for example, allows any kind of object to represent an

exception.

Exception handlers in Java and C++ can be attached to any block of

commands. Eiffel allows exception handlers to be only attached to routines.

In CLU, an exception handler cannot be attached to the routine in which

the exception was raised. In ML exception raising and exception handlers

are attached to expressions or functions. In PL/I the binding between an

exception and an exception handler takes place when an ON condition is

encountered during the execution. The handler is valid then during the

execution of the block of commands in which the ON condition was declared,

until the termination of the block.
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Appendix C

Syntax of DIP

In this appendix we present the syntax of DIP using Backus-Naur Form

- BNF. Names in between <> are non-terminals, names in bold font are

terminals (keywords), and c represents an empty transition.

<program> :: program <name> is
<class-definition>
<action-definition>
< process-defi nition >
< objects-declaration>
<teams-declaration>
<player-declaration>

end program

<class-definition> :: class <class-name> <inherit-part> is
<class-components>
<class-assertion>

end class; <class-definition>
le

<inherit-part> :: inherit <class-name>
le

205
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<class-components> :: <basicvar-declaration> <class-components>
I <objects-declaration> <class-components>
I state <list-of-names> ;
le

<class-assertion> :: assertion <boolean-expression> : <exception-name> ;
<class-assertion>
le

<basicvar-declaration> :: <basic-type> <var-name> ; <basicvar-declaration>
le

<objects-declaration> :: <class-name> <obj-narne> ; <objects-declaration>
le

<action-definition> :: action <action-name> is
< body-defi nition >
<handler-definition>
end action; <action-definition>

le
<body-definition> :: body is

<guard-definition>
< objects-declaration>
<teams-declaration>
< roles-defi nition >
< assertion-defi nition >
< exception-defin ition >

end body

<guard-definition> :: guard <boolean-expression> ; I e

<teams-declaration> :: <action-name> <team-name> ; <teams-declaration>
IE

<role-definition> :: role <role-name> same;
I role <role-name> <parameters> is

< objects-declaration>
< basicvar-declaration >
<command>

end role; <role-definition>
IE

<parameters> :: with <Iist-of-objects>
IE
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<assertion-definition> :: assertion <boolean-expression> I E:

<exception-definition> :: exceptions <exceptions-list> I E:

<exceptions-list> :: <exception-name>
I <exception-name> , <exceptions-list>
I <exception-name> ( <exceptions-list> )
I <exception-name> ( <exceptions-list> ) ,

<exceptions-list>

<handler-definition> :: handler for <exceptions-list> is
<guard-definition>
<objects-declaration>
<tea ms-declaration>
<roles-definition>
<assertion-defi nition >
<exception-definition>

end handler ;
<handler-definition> I E:

<process-definition> :: process <process-name> is
< basicvar-declaration >
<objects-declaration>
body is
<command>
end body

end process; <process-definition> I E:

<players-declaration> :: <process-name> <player-name> : <players-declaration>
IE:

<command> begin <list-commands> end
<assignment-command>
< iteration-com rnand>
<selection-comma nd>
<state-cha nge-com rnand >
< role-activation-com mand >
<message-sending-command>
<message-receiving-command>
< requeue-com rnand>
<exception-handling-command>
<exception-raising-command>
E:
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<list-commands> :: <command> ; <list-commands>
le

<assignment-command> :: <obj-name> := <expression>

<iteration-command> :: loop <while-clause> <until-clause> do <command>

<while-clause> :: while ( <boolean-expression> )
le

<until-clause> :: until ( <boolean-expression> )
le

<selection-command> :: if ( <boolean-expression> ) then <command>
< else-clause>

<else-clause> :: else <command>
IE

<state-change-command> :: - > <obj-name>.<state-name>

<role-activation-command> :: <role-name>G<team-name> <with-clause>

<with-clause> :: with <list-objects>
IE

<message-sending-command> :: <obj-name> to <role-name> <block-clause>

<block-clause> :: block I e

<message-receiving-command> :: <obj-name> from <role-name>
< block-cia use>

<requeue-command> :: requeue <obj-name>

<exception-handling-command> :: try <command>
on exception ( <exception-name> ) <command> <catch>

<catch> :: on exception ( <exception-name> ) <command> <catch>
le

<exception-raising-command> :: ralle <exception-name>

<basic-type> :: integer I float I char I Itrlng I boolean I lilt
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Operators of TLA+

These operators are explained in [Lamport 1994].

Predicate and Action Operators

p'
m,
(A)e
ENABLED A
UNCHANGED e
A . B

[p true in final state of step]
[A V (e'=e)]
[A /\ (e' #- e)]
[An A step is possible]
[e'=e]
[Composition of actions]

Temporal Operators

OF
OF
WFe(A)
SFe(A)
F__.G
3 x F
V'x:F

[F is always true]
[Eventually ....,0 ....,F]
[Weak fairness for action A, 0 0 ( A )e V 0 O....,ENABLEDA]
[Strong fairness for action A, 00 «A»e V 0 O....,ENABLEDA]
[Leads to: 0 (F =} OG)]
[Temporal existential quantification (hiding)]
[Temporal universal quantification]

Logic

V /\ ...., =} <=}
TRUE FALSE BOOLEAN
Vx:p 3x:p
CHOOSE x : p
CHOOSE xES : p

[the set {TRUE, FALSE}]
V xES : p 3 xES

[An x satisfying p]
[An xES satisfying p]

p
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Sets

= ::I E ~ U
{el' ... , en}
{x E S : p}
{e : xES }
SUBSET S
UNION S

n c
[Set consisting of elements ei]
[Set of elements x in S satisfying p]
[Set of elements e such that x in S]
[Set of subsets of S]
[Union of all elements of S]

Functions!
f[e]
DOMAIN f
[x E S t----+ e]
[S --+ T]

[Function application]
[Domain of function f]
[Function f such that f[x] = e for xES]
[Set of functions f with f[x] E T for xES]

Records
e.x
[xl t----+ el' , xn t----+ en]
[x1 : Sl' , xn : Sn]

[The x-component of record e]
[The record whose xi component is ei]
[Set of all records with xi component in Si]

Tuples
e[i]

(el'
Sl x

[Tbe ith component of tuple e]
[The n-tuple whose ith component is ei]
[The set of all n-tuples with ith component in Si]

Miscellaneous

"cl'" cn"IF p THEN el ELSE e2
CASE Pl --+ el D D Pn --+ en
CASE Pl --+ el D ... D Pn --+ en D e

[A literal string of n characters]
[Equals el if p true, else 82]
[Equals ei if Pi true]
(Equals 8i if Pi true,
or 8 if all Pi ar8 false]

LET dl ~ el'" do ~ en IN in 8 [e in the context of the definitions]

/\ Pl [the conjunction Pl /\ .../\ Pn] V Pl [the conjunction Pl V ... VPn]

/\ Pn

IOnly functions with one argument is described: TLA + "lifO allows functions with
multiple arguments
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The Dining Philosopher System

Using DMIs

In this appendix, we list the code for one complete system implemented using

the DMIs framework presented in Chapter 5.

Each philosopher i in the system creates manager and role objects as

shown in Figure E.!. The manager object for the philosopher will act as the

leader of the corresponding eating DMI.

Manager pmgr[i] = new Manager(" philM" +i," eating" +i);
Role phil[i] = new Philosopher(" Philosopher" +i,pmgr[i]);

Figure E.1: Instantiation of Philosopher role objects in the framework

Each fork j in the system creates manager and role objects as shown in

Figure E.2 (one fork role to the DMI with philosopher j, and one fork role

to the DMI with philosopher (j + 1)%5). Notice that each manager for the

forks are created with the corresponding philosopher manager object, which
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acts as the leader of the eating DMI.

Manager rmgrLD] = new Manager("forkL" +j," eating" +j, pmgr[j));
Role forkLm = new LeftFork(" LeftFork" +j,rmgrL[j]);

Manager rmgrR[j] = new
Manager("forkR" +(U+l)%5)," eating" +(U+l)%5), pmgr[U+l)%5]);

Role forkR[j] = new RightFork(" RightFork" +(U+l)%5),rmgrR[j));

Figure E.2: Instantiation of Fork role objects in the framework

In Figures E.3 and EA, we represent in DIP the processes that will ex-

ecute the eating DMIs (action). Each of these processes receives a number

upon instantiation that specifies its number, e.g. Philosopher p(l); creates

a philosopher DIP object and the pn variable parameter is set to 1 to this

philosopher object.

process Philosopher(pn:integer) is
body

loop
action[pn]'Philosopher with pasta
/ / sleep ...

end;
end body

end process

Figure E.3: Philosopher process in DIP

A fork process also is instatiated with a parameter that specifies what

eating DMI it will act as right or left fork. If the parameter rn is an even

number, then the fork process first execute the role on its right eating DMI,

playing as the right fork role.
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process Fork(rn:integer) is
body

loop
if rn%2 == 0 then
begin / / action on the right first
action [(rn+1)%5]. RightFork
action [rn]. Left Fork

end
else
begin action on the left first
action [rn]. LeftFork
action[( rn+ 1)%5]. RightFork

end;
end;

end body
end process

Figure EA: Fork process in DIP

The following Java code shows the implementation of the roles for the

DMIs in the dining philosopher problem described in Appendix A. These

role objects were instantiated in the code shown in Figures E.1 and E.2.
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1********************* ••*.*.* ••*••*.*•••••• ***••*.*••*•••• ****** •
• Class: LeftFork

*1
package phil.eating;

import classes .•;
import drip.*;

public class LeftFork extends Role {
Synchronous getFood;
lu
• Constructor.

·1
public LeftFork(String n, Manager mgr,

super (mgr, leader, n);
getFood = new Synchronous();
mgr. sharedObject (I'getFood", getFood);

Manager leader) {
II initialise role
II shared local object
II export object

}

public void body(Object list[]) throws Exception {

Synchronous grabLeft
Synchronous eatFood

• mgr.getSharedObject(lgrabLeft");= mgr.getSharedObject(leatFood");

II inform the philosopher that LeftFork is
II ready
grabLeft.synchronize();

II when the RightFork is ready. then
II get the food
getFood.synchronize();

II get food

II synchronize with RightFork and Philosopher
II so the Philosopher can eat the food
eatFood.synchronize();

II Philosopher is eating the food
}

}
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1****************************************************************
* Class: RightFork

*1
package phil.eating;

import classes.*;
import drip.*;

public class RightFork extends Role {
1**
* Constructor.

*1
public RightFork(String n, Manager mgr, Manager leader) {

super (mgr, leader, n); II initialise role
}

public void body(Object list[]) throws Exception {

Synchronous grabRight = mgr.getSharedObject(lIgrabRightll);
Synchronous eatFood = mgr.getSharedObject(lIeatFoodll);
Synchronous getFood = mgr.getSharedObject(lIgetFoodll);

II inform the philosopher that RightFork is
II ready
grabRight.synchronize();

II when the LeftFork is ready, then
II get the food
getFood.synchronize();

II get food

II synchronize with LeftFork and Philosopher
II so the Philosopher can eat the food
eatFood.synchronize();

II Philosopher is eating the food
}

}
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1****************************************************************
* Class: Philosopher

*1
package phil.eating;
import dip.*;
import classes.*;

public class Philosopher extends Role {
Synchronous grabLeft;
Synchronous grabRight;
Synchronous eatFood;
1**
* Constructor.

*1
public Philosopher(String n, Manager

super (mgr, leader, n);
grabLeft = new Synchronous();
grabRight = new Synchronous();
eatFood = new Synchronous(3);
mgr. sharedObject ("grabLeft" , grabLeft);
mgr.sharedObject("grabRight", grabRight);
mgr.sharedObject("eatFood" , eatFood);

mgr, Manager leader) {
II initialise role
II create share local object~

II export objects

}

public void body(Object list[]) throws Exception {

II synchronize with the left fork, representing
II the grabbing of the fork by the philosopher
grabLeft.synchronize();

II synchronize with the right fork, representing
II the grabbing of the fork by the philosopher
grabRight.synchronize();

II synchronize with both forks to eat
eatFood.synchronize();

II eating
Thread.currentThread().sleep(3000);

}
}
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