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Abstract

The provision of system-wide heap storage has a number of advantages.

However, when the technique is applied to distributed systems

automatically recovering inaccessible variables becomes a serious problem.

This thesis presents a survey of such garbage collection techniques but

finds that no existing algorithm is entirely suitable. A new, general

purpose algorithm is developed and presented which allows individual

systems to garbage collect largely independently. The effects of these

garbage collections are combined, using recursively structured control

mechanisms, to achieve garbage collection of the entire heap with the

minimum of overheads. Experimental results show that new algorithm

recovers most inaccessible variables more quickly than a straightforward

garbage collection, giving an improved memory utilisation.
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Introduction

1. Introduction

1.1 Stacks, Pools and Heap Storage

Implementations of modern high level programming languages provide the

programmer with a variety of automatic storage management facilities.

Essentially these provide mechanisms for allocating new variables and for

recovering the space occupied by unused variables. They are designed to

hide low level details, such as memory address allocation, in order to

make programs easier to write and maintain and to enhance portability.

Three types of storage management facility can be distinguished; stacks,

pools and heap stores. They each have different properties, illustrated in

figure 1.1 a, which make them suitable for different tasks. The stack is

widely used to allocate space for variables III block structured languages

since allocation and deallocation are extremely efficient. Pools and heaps

are often provided as a means of generating variables which have longer

lifetimes than that of the scope of a program's identifiers.

Using a stack, variables may only be deallocated in the reverse order to

which they were allocated, which corresponds directly to the scoping of

identifiers in a block structured language. However, it is not possible,

using stack storage, to create a variable and refer to this after exit from

the scope in which it was created, which is desirable when manipulating

linked data structures, such as linked lists and trees.

Variables allocated III a pool or heap store can have lifetimes longer than

the scope of the program's identifiers. Thus variables can be referenced

after the program exits from the scope III which they were created. For

example, a procedure could allocate a new variable in the heap and link

this into an existing list. The new variable would remain allocated when

the procedure exits because its lifetime extends beyond the scope of the
procedure's body.
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Fig1.1 a: Stacks, Pools and Heaps

Heap storage and pools can be distinguished by the way III which storage

is recovered. Variables in pools are deallocated explicitly by the program.

For example, in Pascal the procedure dispose is used to deallocate the

variable referred to by a pointer variable. In contrast, recovering variables

in heap stores is performed automatically, either by the language's run

time support system, the operating system or by the hardware.
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Explicit deallocation is potentially more efficient than automatic

deallocation, in terms of CPU time and memory utilisation. However the

problem with explicit deallocation of variables is that the variable may

still be referenced elsewhere. Subsequent use of this reference would lead to

serious, and difficult to trace, errors as the released storage may since

have been reused to allocate new variables. This is known as the dangling

reference pro blem.

The burden of keeping track of references in a pool is therefore placed on

the programmer. However, with all but the simplest linked data structures,

this burden becomes intolerable. Programs are extremely difficult to debug

if mistakes are made.

The use of tombstones Il.cmat 7S] would prevent the use of dangling

references if they are formed. This involves marking the variable in such a

way that all accesses can distinguish between an allocated variable and a

deallocated one. However, this is really just deferring the problem, since it

is just as difficult to remove the tombstones safely as it is the variables.

Heap storage is distinguished from pools in that no explicit deallocation

mechanism is provided. A program may allocate a new variable at any

time and references to it may be copied, distributed and stored in complex

linked data structures. However the program or programmer does not have

to keep track of these references in order to detect when the variable is

no longer of any use. Deallocation of the variable IS performed

automatically, using a technique called garbage collection, which is

described in the next section. The garbage collector will recover a variable

only if it can determine that the variable will never be accessed in the

future.
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Heaps and pools occur in programming languages under a variety of

guises, as shown by the examples in figure 1.1 b. The use of the heap in

Algol68 is quite explicit, whereas in Simula it is used when processes are

created and in LISP heap storage is used to store lists. In Pascal and

Ada explicit pools are provided. Object oriented systems use either heap

storage or pools [GorlenB71 and special purpose heap stores are found in

applicative systems [Clarkeet .&1.B01.

PROC add = ( REF LIST I, INT d ) VOID:
BEGIN

I := HEAP LIST: = ( I, d )
END

f [ x ] = [ atom [ x ] ~ x , T ~ cons [ f [car [x] ] ; f [cdr Ix l l ] ]

el ement. ford;
act.ivit.y person( age); int.eger age;
begin .... end;
ford : = new person ( 4-2 );

Fig1.1 b: A heap is used explicitly in Algol68, used to implement

lists in LISP and to create processes in Simula.

Heap storage is usually provided by a programming language's run time

support environment, however there are some computer architectures which

provide heap storage at a much lower level. Capability computers, which

provide general purpose computing, and LISP engines both offer heap

storage at the instruction set level, often with microcoded heap

management routines.

4
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1.2 Garbage Collection

Garbage collection is the means whereby variables that are no longer

needed are recovered, so that the memory they occupy can be reused for

the allocation of new variables. A variable is only recovered if no program

can, at any time in the future, access it. In this way the dangling

reference problem found with pools is avoided. The technique was first

described by [McCarthyS0], but the term "garbage collection" does not

appear until [Schorr&WaiteS7].

The only way a general purpose garbage collector can decide that a

variable will never again be accessed is by determining that no reference

to it remains accessible to any program. The assumption here is that

references to variables can be distinguished from other data and cannot be

spontaneously created. That is, a new reference can only be made by

creating a new variable or copying an existing reference.

A problem with relying on garbage collection to recover unwanted

variables is that references to them may inadvertently be kept accessible.

Errors of this form are quite difficult to track down and can cause a

severe degradation in memory utilisation.

A typical example, illustrated in figure 1.2, is an implementation of a

stack of references which uses an array. Popping an item from the stack

is implemented by decrementing a stack pointer. Unfortunately this does

not remove the reference from the array, and so the unstacked variable

remains accessible even when it is no longer wanted. A better

implementation would of course simply clear the word on the stack as it

is popped.

5
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reference accessible
but not required

D

Fig1.2: Care is needed to ensure that unwanted references

are made inaccessible, because garbage collection

only recovers inaccessible variables.

There are many techniques for locating inaccessible variables, the so called

garbage. There are the usual space versus time tradeoffs between the

different techniques, but they also differ in the way they function. Some

require that normal processing is suspended while the garbage collection is

performed, while others allow it to continue. Some algorithms inherently

compact the free storage while others leave the recovered storage in place,

scattered about memory.

Regardless of the garbage collection technique employed, it is necessary to

identify references to variables' and distinguish them from scalar data. This

can be complex, involving searches of symbol tables generated by

compilers, as in the case of Algol68, or be given simply by the state of

a single bit, as in LISP.

6
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When support for garbage collection is built into the hardware, as in

capability computers and LISP engines, the distinction between references

and scalar data is maintained by the hardware. This may be done tagging

individual words within a variable with an extra bit which indicates

whether the word currently holds a reference or a scalar value. This

technique is used in the Flex capability computer [Foster.t .&1.821 and in

LISP engines, such as the Symbolics [Moon8SL An alternative is to tag

the whole variable. Thus variables may either hold only references or only

scalar data. This technique has been employed in many systems, such as

the Plessey PP250 [England7S1 and Cambridge CAP computer

[Needham&Walker77L An alternative, used In later versions of Intel's

iAPX432 [Tyner81l and the HIP processor [Menu.t.&1.871, is to divide

variables into two parts, one that contains only references and one that

contains only scalar data.

There are essentially two ways of finding inaccessible variables, the

scanning technique [McCarthy60 1 and the reference counting technique

[Collins601. There are many variants of these two approaches, and they

are often used in conjunction or combination with each other. Scanning

garbage collectors work by finding all accessible variables and then

deducing that all other variables are inaccessible. This is done using a

recursive scan through the accessible heap structure. The reference counting

technique maintains a count of the number of references that refer to each

variable. If the reference count of a variable drops to zero, the variable is

known to be inaccessible garbage.

However, garbage collection is only one part of a heap's storage

management system. Storage management not only covers allocation and

recovery of variables, but addresses compaction of free store, imposing

budgets on the use of memory resources and perhaps the optimisation of

paged memory usage. These topics cannot be considered in isolation, for

example allocation is much simpler if the free memory is contiguous but

compaction is then more of a problem.

7
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80 the effectiveness of a garbage collector cannot be measured simply in

terms of the memory bandwidth required to perform garbage collection.

Many other factors need to be taken into account, such as its effect on

the normal operation of the computer and the performance of variable

allocation. In particular some extremely memory efficient garbage collectors

are useless in certain applications because of the disruption they cause to

normal processing.

1.3 The Advantages of a System-Wide Heap

In most computer systems, each program has its own address space.

Variables allocated by one program cannot be referenced by another. If a

reference to a variable of one program is somehow passed to another,

perhaps by a message passing system, it changes its meaning as it will

then be interpreted in the wrong context.

As discussed earlier, the advantage of using heap storage rather than
stack storage, is that variables have lifetimes longer than that of the
scope m which they were created. However m almost all systems the
lifetime of a variable does not extend beyond the lifetime of the program
which created it.

If a system provides a single system-wide heap store, which is shared by

all programs, there are considerable gains to be made. The single address

space allows programs to be composed into systems in a uniform way.

This makes them easier to implement and maintain, as has been

demonstrated with the Flex capability computer, [StanleyBSa] and

[StanleyBSb], and is proposed under the persistent storage approach,

[Atkinson&MorrisonBSl and [Morrison.t..l.B?l. This is due to a number of

factors.

8
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First, and perhaps most important, is that variables can be allocated

whose lifetime is that of the system, rather than that of the program

that created them. In this way a program can construct complex

structures and return them as results, without having to resort to

intermediate files on backing store, which is the case in most systems. For

example the interface between the front and back ends of a compiler is

usually a file on disc. If a system-wide heap store is available, the front

end can construct a tree structure as an intermediate result and pass this

on to the back end.

In this way the distinction between programs and procedures becomes

blurred. Programs can take parameters and return results using the heap,

in exactly the same way as procedures. It is easier to construct and

maintain large systems in this uniform procedural way than to use many

independent programs interacting through files or channels for flat scalar

messages. Interfaces between modules can be expressed in terms of complex

data structures, rather than flat files. Programs can be incorporated in

others, just like procedures can be reused in high level languages, giving

greater software reuse.

Secondly, programs executing in parallel can communicate through the heap

store, sharing variables and passing structured values rather than just

scalar data, as is the case with simple message passing systems. In

systems which allow limited amounts of shared store between programs,

the programmer must decide where to allocate variables, according to

whether they are to be shared or not. Often this decision cannot be made

until run time, so more data than' is necessary is made shared. Also the

memory may be mapped into different places in the address spaces of the

programs, which makes it difficult to pass references (addresses) between

the programs.

9
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Thirdly, sharing the heap store gives better utilisation of the computers

memory. If each program has its own heap, it is necessary to allocate to

each of them enough memory to satisfy their peak demand. By sharing

the heap, the amount of memory that needs to be allocated is the

maximum required at anyone time, which may constitute it considerable

saving.

Also, the flexible communication between sub-systems which is achieved by

using a system-wide heap is an essential part of the technique of object

oriented programming [Bhaskar831. An object is an abstract representation

of some data. It is defined purely in terms of the behaviour of the

operations that act upon it. This ensures the user of an object cannot

rely on some particular implementation detail which the implementor later

changes.

However, the use of a system-wide heap is not without its problems. In

particular garbage collection must involve all programs in the system.

Thus if one program requires large amounts of garbage collection,

programs that need relatively little are penalised. Also, if one program

Consumes a large amount of the shared heap, either deliberately or

accidentally, it may cause others to fail because their store requirements

cannot be satisfied.

10
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1.4 System-Wide Heap Stores in Distributed Systems

The idea of a system-wide heap can be extended to distributed systems.

Here the heap is shared by all the programs in the whole system. Thus a

reference to a variable created on one computer can be passed to another

computer and yet still remain valid. However, it may not be possible to

use the reference to access the variable directly. This would depend on the

system's semantics of remote variables. The reference may always of course

be passed back to the originating computer, perhaps as a parameter to a

remote procedure call [White761, where it can be used to access the

variable.

The advantage of providing a system-wide heap in distributed systems is

that they can be constructed in a uniform way, using procedural interfaces

with structured parameters and results. Existing systems are more readily

combined and new systems can be designed, implemented and tested

independently of the configuration of the system.

As the review III chapter two reveals, some garbage collection strategies

do not guarantee to recover all inaccessible variables. When the heap is

contained within one program this may not present a serious problem,

since all variables created by the program are immediately recovered when

it terminates. However it is most important in distributed systems where

the heap is spread across many nodes of a network, because the lifetime

of the garbage is that of the node containing it. If the garbage collector

was not effective, the heap would slowly but surely fill up with

inaccessible variables, until the nodes containing the garbage were
restarted.

11
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By extending the system-wide heap store across a distributed system, the

problems of garbage collection become considerable. Using conventional

techniques the time required to garbage collect a distributed system will

be many times that needed for individual systems. This is because of

relatively large communication delays, even though garbage collection can

be processed in parallel by each individual system.

If normal processing must be suspended while garbage collection takes

place, extremely large pauses in execution will occur, which is unlikely to

be acceptable to any application. Even if normal processing can proceed in

parallel with garbage collection, the number of new variables generated

between garbage collections will be proportionally greater. This means

systems will have to provide much larger memories for the heap store in

order to satisfy demands for new variables while the garbage is being

recovered. Such poor utilisation of memory would make distributed heaps

far too expensive, probably outweighing the advantages they offer.

1.5 Contribution of the Thesis

This thesis tackles the major problem of providing garbage collection in

distributed systems with system-wide, single address space heap stores. The

scale of distributed systems is such that, using conventional garbage

collection algorithms, either unacceptably long pauses in execution would

Occur, or poor utilisation of memory would make the systems excessively

expensive.

The main contribution of the thesis is to show how the traditional

technique of divide and conquer can be used to limit the time required for

garbage collection. This is achieved by recursively structuring the

distributed heap. However the thesis shows how the recursion can be

eliminated, providing a practical approach to garbage collection of large

distributed systems. The algorithm presented is shown to exhibit the

essential properties of safety, effectiveness and timeliness.

12
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In spite of the recursive structure of the heap, a single address space is

presented to the users. The internal structure is relevant only to the

administration of the heap store. However, choice of this structure is most

important, since, as it will be shown, the efficiency of the garbage

collection depends greatly on the locality of references within the recursive

structure.

The recursive structuring principle is an effective way of combining existing

systems together. The distributed heap store, because of its single address

space, allows programs in the different systems to communicate and share

data without the need for extensive rewriting. An important claim of this

thesis is that garbage collection of such large distributed heaps can be

performed effectively. The overhead imposed on the individual systems is

minimal and is in relation to their involvement in the distributed data

structures.

Using the new garbage collection algorithm that is developed in this

thesis, systems with different individual approaches to garbage collection

can be combined. This is particularly important since most systems are

made to optimise the performance of a particular environment, such as

LISP. This thesis investigates the various techniques for garbage collection

and shows how these can be incorporated into a recursively structured

system.

Another important contribution made by the thesis is to extend recursive

structuring into the heap store held within single computers. Logical

partitions within a heap can be used to control the amount of memory

allocated by a program, and can be used to limit the effects of one

program's garbage collection on another.

13
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The thesis also addresses the problem of operation in a faulty

environment, which is essential when considering distributed systems. The

most difficult problem arises when communication with other nodes is lost.

This is because it is often impossible to distinguish between temporary

partitioning of the network and the crashing of some nodes., If nodes crash

it can be assumed that all references they contained have been destroyed,

whereas partitioning may mend and references once more become usable. It

is shown that relatively straightforward techniques can be applied to solve

these problems.

The thesis therefore

development of systems

This is of particular

makes significant contributions to the practical

with distributed, single address space heap stores.

relevance with regards the implementation of
distributed capability systems. In addition, it is planned to use the
algorithm to garbage collect logical and physical areas of store In the
SMITE multiprocessor capability computer, [Harro1d&Wiseman88 ] and
[ Wiseman&Fi e1d-Ri chards88 ] , and the SMITE structured backing store
[Wiseman88] .

1.6 Organisation of the Thesis

Chapter two presents a survey of existing garbage collection techniques

found in the literature. This covers the two broad styles of garbage

collection, namely reference counting and scanning. A critique is presented

which compares the suitability of each algorithm against the essential

requirements of garbage collection in a single address space distributed

heap store. While most of these algorithms are intended for use in single

processor systems, some have been developed for use In distributed

systems. Unfortunately these are found to suffer from drawbacks which

mean they are not entirely suitable for general purpose' distributed heaps.

14
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In chapter three, the recursively structured heap is described in detail and

a recursive garbage collection algorithm is presented. This is then refined

to a parallel recursive algorithm. This algorithm is still recursive but

performs garbage collection by launching parallel processes to work on

inner levels of the heap. Next the recursion is elimina ted to yield a

non-recursive parallel algorithm and the effects of parallel computations are

considered. This shows how the normal computation must interact with the

garbage collector to ensure the heap is correctly managed. Finally a

formal specification of the garbage collector is given. Part of this IS

refined to code to illustrate the techniques that can be applied to produce

an implementation which is proven correct.

The practical implementation of the algorithm is considered In chapter

four. Several methods are explored which correspond to various distributed

system architectures. The chapter considers the practical problems arising

from the distributed environment, including termination detection and fault

tolerance.

An analysis of the algorithm's performance is made in chapter five.

Equations are developed which show the worst case and typical memory

utilisation achieved when using the new algorithm. These are used to

compare it against a simple straightforward garbage collection of the

entire heap. The results of measurements taken of a real system are

presented to give an indication of the typical values of the parameters

involved in the equations.

The thesis concludes by summarising the new algorithm and discussing its

applicability to real systems. The limitations of the algorithm are also

discussed, and avenues for future work are explored.

15



Garbage Collection Techniques

2. Garbage Collection Techniques

2.1 Requirements

Many garbage collection algorithms are reported in the literature and they

fall broadly into two styles, Reference Counting and Scanning. A

comprehensive review of garbage collection algorithms is presented by

[Cohen811. This chapter presents an alternative review, of these algorithms

and of more recent work, which evaluates their suitability for use in

garbage collecting a single address space, distributed heap store. First,

however, some criteria for selecting an algorithm must be developed.

2.1.1 Essential Criteria for Garbage Collectors of Distributed Heaps

An algorithm that recovers variables which are still accessible is clearly

unacceptable, as is one which corrupts the accessible data structure in the

heap store. However it is acceptable for physical storage to be compacted.

That is variables may be moved as long as all accessible references to

them are updated to reflect their new location. These requirements can be

summarised as the following criterion of safety:

Cl: The actions of the garbage collector leave the logical

structure accessible to programs unchanged.

16
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The garbage collector must be able to recover garbage regardless of the

actions of the programs using the heap store. Even a pathological program

must not prevent garbage from eventually being recovered, because this

could affect all programs using the heap. The complexity of the structure

in the heap store may affect the amount of workspace required by the

algorithm. It must be possible to establish a bound on the size of this, to

ensure that it can never be exhausted, so that garbage can always be

recovered. This leads to the second criterion, effectiveness:

C2: The garbage collector must recover any inaccessible

variable III bounded time and with bounded

workspace.

Some algorithms are tailored to particular applications, such as a heap for

LISP programs. However a distributed heap is likely to be used by a wide

variety of applications written III a variety of styles, using various

programming languages. The garbage collector must therefore be somewhat

general purpose in nature. In particular it should allow for variables of

varying sizes, unlike the fixed sized variables of LISP, that are capable of

containing mixtures of both reference and scalar data. Also it must cater

for programs that create cyclic structures in an arbitrary fashion, unlike

functional languages which produce cyclic structures only in very particular

ways. Thus the criterion of generality is:

C3: The garbage collector must cater for applications

which require that the variables in the heap store

are of arbitrary size, may contain both reference and

scalar data and any assignment to a reference may

form a cyclic structure of arbitrary complexity.

17
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Garbage collectors which cause lengthy pauses in execution, because they

can only operate while no normal processing occurs, are not acceptable for

distributed heap stores. Such garbage collectors are acceptable for some

applications, such as single user workstations where the pauses only cause

an occasional minor disturbance to human input. However a distributed

heap is likely to be very large which, coupled with communication delays,

will cause the pauses to be unacceptably long.

It must be accepted that all garbage collectors cause some disturbance to

the execution of programs. However it is desirable that the pauses III

execution caused by these interactions should be small, so that the

response time of a system is acceptable. Further, the length of the pauses

should be bounded so that some real time response can be guaranteed. A

garbage collector for a distributed heap must therefore be suitably

unobtrusive:

C4: The time taken executing critical sections between

the garbage collector and normal processing must be

bounded and small.

The first two criteria are generalisations of the correctness criteria given

for the algorithm of [Dijkstraet.&l. 781. These state that the garbage

collector must recover all inaccessible variables, and no others. The last

two criteria state that, to be of use in a distributed system, the garbage

collector must be general purpose and not interfere with the system's

normal computation.

18
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2.1.2 Method of Comparison

All the algorithms surveyed satisfy the first essential criterion, that is

they do not alter the logical structure in the heap. Most satisfy the

second criterion, in that they use bounded time and workspace. However a

few cannot guarantee to collect all garbage in bounded time and for

others, while the workspace required is bounded, an excessive amount is

needed.

Different algorithms that do satisfy all the essential requirements will

represent a tradeoff between several factors. Unfortunately the precise

relationship will be application dependent. However, since the system is

intended to be general purpose, the aim should be to achieve reasonable

results across a range of typical applications. This is possible if traits

which are exhibited by programs in general are exploited.

The tradeoffs will be between features such as real time response, size of

workspace required by the garbage collector, synchronisation overheads, cost

of any special purpose hardware and memory utilisation. The latter is a

particularly important measure. It is given by the minimum amount of

store In a heap required to ensure that an application can run

continuously without exhausting the available free store. This depends on

the rate at which inaccessible variables can be recovered by the garbage

collector. The more rapid the recovery for a given amount of overhead,

the smaller the required memory and hence the cheaper the system.

Conversely it can be thought of as a measure of the 'size' of the largest

program that can be run without pauses on a given system.

19
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A garbage collector for a distributed heap should exhibit additional

properties not required for heaps in single computers. It should be tolerant

of the communications failures which will inevitably arise and cope with

node crashes which destroy part of the heap and with network

partitioning. Also the distributed environment is likely to bring together a

variety of systems which provide their own local garbage collectors. These

may be optimised for particular environments, such as LISP, and the

distributed garbage collector should allow these to be integrated into the

distributed system. In particular, the provision of distributed garbage

collection should not unduly interfere with the internal workings of these

systems and should allow them to continue benefitting from their

specialised garbage collectors as much as possible.

2.2 Reference Counting Algorithms

The reference count method, first introduced by [Collins60], attempts to

detect when a variable becomes inaccessible. For each variable, a count is

maintained of the number of references to it that are stored in the heap.

If the count ever drops to zero, then the variable has become inaccessible

and so its storage can be freed. This is shown in figure 2.2a.

1
root ..

0~Dun 3

gar o·~·~·~······

Fig2.2a: The number of references to each variable is recorded.

If this drops to zero the variable can be recovered.
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Before the storage can be used again for allocating new variables, it must

be scanned for references to other variables. This is so that the reference

counts of the variables they refer to can be decremented, which may

recursively cause further variables to be freed. This searching can either be

done when the variable is first released or when it is reused' and may be

associated clearing the space to zero.

The count must be maintained when references are created and destroyed.

When a variable is created, a reference to it is returned to the creator,

therefore the reference count is initially set to one. Further references are

created simply by copying, so it is necessary to check all memory writes

to see if the data being written is a reference. If so, it is necessary to

increment the reference count of the variable referred to by the data.

A reference is destroyed if it is overwritten, in which case the reference

count of the variable that it refers to must be decremented. If references

can be stored anywhere III any variable, it is necessary to check whether

a location contains a reference before writing to it. Note that the

incrementing must occur before the decrementing to ensure that a variable

is not prematurely recovered if the last reference to it is overwritten with
itself.

Reference counting does not detect all inaccessible variables. This is

because a variable can become inaccessible by the destruction of a

reference which is not the last reference to the variable. The simplest

example is where a variable contains a reference to itself and is referred

to by one other reference stored in an accessible variable. If the latter

variable is destroyed, then the variable's reference count decreases from

two to one. The variable is therefore not freed even though it has become

inaccessible. This is III general true for an arbitrarily complex cyclic

structure, as in the example shown in figure 2.2b.
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root---I~~2D

~.-.-.-.-.-. --------.-----------

i nac c es-si-bT.--------------------------

Fig2.2b: Variables which form an inaccessible cyclic structure

are not recovered because their reference counts do

not drop to zero.

2.2.1 Recovering Inaccessible Cyclic Structures

The inability to detect inaccessible cyclic structures is the greatest

disadvantage of reference counting. This is especially so when the main

memory of a computer is organised as a heap, because it is quite possible

that large cyclic structures will be created. For example, the data

structures of the scheduler will contain references to all the processes in

the computer. These processes will have references to the synchronisation

primitives supplied by the scheduler, which themselves contain references to

the scheduler data structures, thus forming a cyclic structure. The

structure will become inaccessible if, for example, two processes deadlock

by claiming semaphores which only the other references.

The problem of inaccessible cyclic structures can be overcome, either by

detecting when a circularity is produced and then not incrementing the

reference count, or by ignoring the problem and using another technique to

recover them.
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The latter solution is proposed by [Deutsch&Bobro~76] and

[Christopher84 J. In these hybrid schemes, reference counting is used to

recover garbage, except for inaccessible cyclic structures, until there is no

free storage left. Then a scanning technique, see section 2.3, is used to

recover any inaccessible cyclic structures. A hybrid scheme is also used III

the Cedar programming environment [S~inehartet.&1.86J. Here programs are

designed to explicitly break cycles if they can determine that the data

structures are no longer needed in order to improve efficiency.

The former solution was proposed by [Weizenbaum62] and [Weizenbaum63]

though, as pointed out by [McBeth63 1, detecting when a circular structure

is formed involves a search of potentially the entire memory. There are

special cases where it is known when circularities are produced, such as

the use of the V-combinator in combinator based systems [Turner79J.

Systems which take advantage of this are described in [Friedman&Wise791,

[Hushes85], [Bro~nbridse84] and [Bro~nbridse85 J. However, these are not

applicable to general purpose heap stores, and a study by [Watson86]

concludes that these techniques are very complex and in practice cause the

garbage collector and computation to interact closely.

Another method is proposed by [Bobro~812lJ. In this, all the variables of a

circular structure are treated as a . single group for deallocation purposes.

A reference count to the group as a whole is maintained, but no counts

within a group are kept. This scheme is not particularly suitable for a

general heap store as memory usage is not divided into convenient groups

and cyclic structures can be quite large.

A radical solution to the problem of recovermg cyclic structures IS

proposed by [Dennis74 J. Here a programming language is described which

has been developed to have clean semantics and to specifically avoid the

use of cycles in its implementation. The obvious drawback of this approach

is that is does not cater for standard programming languages.

23



Garbage Collection Techniques

2.2.2 Recursively Releasing Storage

The procedure for freeing a variable is recursive, since a freed variable

may contain references to other variables which consequently become free.

Freed variables must therefore be searched for references, so the reference

counts of the variables they refer to can be decremented. The search may

either be done when the variable is first freed or it may be deferred until

the storage occupied by the variable is reused.

With the former approach, variables are searched for further references

when they are first freed and a stack of some sort is required to control

the recursion. Since the number of variables freed recursively is potentially

all the variables In the memory, the size of the stack must be the same

as the maximum number of variables that can be allocated, to handle the

worse case.

The size of stack required for this is such that using a separate memory

for it is prohibitively expensive. The use of a transaction file on disc, as

in [Deutsch&8obrow761, or a virtual memory system would be possible, but

would be slow. The stack could be limited to some affordable size as long

as stack overflow can be handled and does not happen very often. Finding

variables that require scanmng, but are not on the stack because of

overflow, involves visiting all the variables in memory to find those with a

reference count of zero.

A means of avoiding the pauses in computation that can occur while

reference counts are recursively decremented is proposed by lSohie t .&1.851.

The LISP oriented architecture they describe uses a separate processor

which is dedicated to recursively decrementing the reference counts.
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The use of a separate stack can be avoided altogether by utilizing the

storage of the variables themselves [Schorr&Waite671. This is illustrated in

figure 2.2c. If a variable is no longer referenced it is scanned for

references. If one is found, the variable it refers to has its reference count

decremented. If the count of this variable falls to zero, scanning of the

first variable is suspended and the new variable is scanned. The location

occupied by the reference is used as the link in the chain of variables

that have not been completely scanned. When scanning of a variable is

completed, the next variable is removed from this chain and the scanning

of it continues.

stack--~de
search_~CrP

1

stack---.~P D
e ~1

search······....···~0

1: The search begins ""ith the freed
variable. A reference is found and
the variable' s reference count is
decremented to zero.

2: The position of the search is
remembered on the stack and the
ne""ly freed variable is searched.

D search
e

stack.~P D
e ....~D 0

search'··········
estack.'" 0

3: When another reference is found, .i: The stack is urn-round ""hen the
and the variable' s reference search reaches the end of the
count is decremented to zero, the variable.
search position is stacked again.

Fig2.2c: Freed variables can be recursively searched

for references by using the storage occupied

by the references as a stack.
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The location forming the link is, of course, the place that was scanned

last. This scheme requires that the end of the variable can be identified,

as there is unlikely to be any room to store how much more scanning is

required. Alternatively, if the start of a variable is distinguishable, the

scans can progress backwards.

The alternative approach of delaying the search of a freed variable until

the storage it occupies is reused, obviates the need for the stack

[Weizenbaum63L When a new variable is allocated, its store is cleared to

zero (say), and at this point any references it contained will be

decremented by the usual reference overwriting mechanism.

By deferring the scanning, inaccessible variables with non-zero reference

counts will exist in the heap. Such variables are obviously not available

for allocating new variables. This is a potential problem for systems with

arbitrary size variables. The free list may not contain a fragment large

enough to allocate the new variable, although the store occupied by

inaccessible variables which are yet to be recovered could satisfy the

request. Thus allocation could be delayed while the free list is cleared in

an attempt to recover more store. Hence the technique is most suitable

for systems with fixed size variables.

2.2.3 Storing the Reference Count

An obvious requirement for a reference counting system is that a reference

count for each variable must be stored somewhere. The reference count

field of a variable must be large enough to hold the maximum value that

its reference count will ever reach. The worst case occurs when the

memory is full of references to the variable. Catering for this possibility is

potentially very wasteful of memory, since most variables are referred to

by very few references. Two schemes ha ve been proposed by

Weutsch&8obrow761 to reduce this overhead.
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In the first scheme, the reference count field is made much smaller than

the maximum required. Whenever the count reaches its maximum it is

assumed to be 'infinite' and is never subsequently incremented or

decremented. The count can therefore never reach zero so the variable will

never be freed. The scanning garbage collector which is used to release

inaccessible cyclic structures also releases inaccessible variables which have

an infinite reference count. It is hoped that most variables are referenced

very few times, so that reference counts becoming infinite is a rare event.

The second scheme is based upon the assumption that the vast majority

of reference counts are one. A hash table is used to record the reference

count of all variables whose reference count is greater than one. If a

variable is not in the hash table then a count of one is implied. However,

the problem of hash table space overflow, which is not addressed, makes

this approach unattractive for a computer with a heap as its main

memory system and for distributed systems.

[Wise&F ri edman 77] propose the use of a single bit as a reference count.

This indicates whether the count is one or greater than one. In addition,

a simple cache memory is used to record some of those variables whose

reference count is two. This is on the assumption that most variables

have a count of one, but that they often increase to two temporarily,

during reference manipulation operations. An analysis of LISP programs by

[Clark&Green78] supports this view. Wise and Friedman suggest using the

mark bit, required for the scanning garbage collector, as the reference

count field. It is necessary to clear all the bits before scanning, but the

reference count is easily restored afterwards.
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A method for recomputing reference counts during scanning garbage

collection is proposed by [Wise791. This would be used to correct those

reference counts which have stuck at the maximum, but where the variable

is actually referenced by fewer references. In this method the number of

references is computed for each variable at a time, so only one access is

made to each variable's reference count field. This contrasts with the more

obvious technique of incrementing the reference counts of variables

whenever a reference is found during scanning, which requires many

increments to be performed for each reference count.

2.2.4 Accessing the Reference Count Field

During normal processing many references are created and destroyed, which

means many increment and decrement operations are performed on the

reference counts. Weutsch&Bobrow761 propose postponing all increment and

decrement actions by storing them In a transaction file. These are then

processed by the system some time later, during a slack period.

The number of transactions stored In the file is reduced by ommiting

those caused by moving references to or from the computation's local

workspace. Empirical studies of LISP systems [Clark&Green77 1 have shown

that the vast majority of reference copying takes place in the local

workspace. Hence a considerable saving is made. The references held in the

local workspace are counted with a simple scan when the transaction file

is processed. Using these techniques Weutsch&Schiffman841 found that 85%

of reference counting operations were. eliminated. Improvements suggested

by [Suzuki&Terada841 eliminate further operations by not considering

references pushed temporarily onto the stack.

Further techniques for reducing the number of increments and decrements

are given by [Barth 771, but these are compile time optimizations meant

for language run-time systems.
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[Wise85] suggests building a special memory interface which contains a

processing element dedicated to maintaining reference counts. In this way

the overheads of incrementing and decrementing the counts, and of

recursively freeing variables, is absorbed by processmg in parallel with

normal computation. The proposed hardware also performs a scanning

garbage collection, when necessary, to recover inaccessible cyclic structures

and recompute the reference counts.

If reference counting is used in a distributed system, care must be taken

to ensure that decrements and increments are not made out of order. As

IS explained in detail in section 4.6, any outstanding requests to increment

the reference count must be considered before deallocating a variable.

While this can be overcome by ensuring the requests are delivered in the

same order that they are sent [Nori791, by using a two way

synchronisation protocol or timestamps [Liskov&Ladin861, the overheads

imposed can cancel out the benefits of using reference counting
[Watson&Watson871.

The solution offered by [Snyder79] does not free a variable as soon as its

count reaches zero. Instead a list of such variables is maintained and

occasionally the whole machine is stopped and all outstanding increment

and decrement requests are processed. Then the list is consulted and any

variable with a zero reference count is recovered. Unfortunately this does

not work well in a distributed system because of the difficulty, and

undesirability, of stopping the whole system and of detecting when all

reference count transactions have been. processed.
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~
The Weighted Reference Count scheme is a more elegant solution to the

pro blem and is descri bed by [Watson&WatsonB71.In this scheme reference

count weights are associated with the references as well as the reference

counts on the variables. The system maintains the invariant that the sum

of the weights of all the references to a variable equals the reference

count of the variable. The technique IS shown in figure 2.2d. When a

variable is allocated, both its reference count and the value in the initial

reference are set at maximum. Whenever a reference is copied, its weight

IS split between the original reference and the copy. Whenever a reference

is destroyed the count of the variable is decrease by the value of the

weight. In this way the reference count field of a variable is never

incremented, and so there is no possibility that the count could reach zero

before the variable becomes inaccessible.

0..........._--1=6

/0, 4
16 ~

8
16

0, 8
16 ~

8
1: Whena variable is first allocated

it is given the same !-leight as the
ne!-lreference.

2: When a reference is copied its
!-leight is split.

/ /o 40
8 4
3: Whena reference is destroyed its

!-leight is subtracted from the
vari able •s !-leight .

o
e

4: Whenthe variable' s !-leight drops
to zero it can be recovered.

Fig2.2d: With the Weighted Reference Count scheme a

variable's count is never incremented and so it is

suitable for use III a distributed system.
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The scheme suffers from two drawbacks. Firstly space must be found in

the references to store the weights. Secondly some special action must be

taken when references with a weight of one are copied. Watson and

Watson offer a data compression technique to alleviate the first problem,

and suggest fitting a hidden indirection through a new variable to solve

the second problem.

2.2.5 Reading Before All Writes

The requirement to read a location before writing to it, III order that the

overwriting of references can be detected, is likely to be a serious

handicap to performance. This read can, of course, be avoided if it is

known that no reference could possibly be stored in that location, though

in general this is not so.

This problem is much less serious if scalar and reference data cannot be

freely mixed in the same variable. In this case the read check need only

be performed when a reference is written to memory. Also, computers with

this partitioned type of heap store tend to manipulate references less often

than those with the general type.

2.3 Scanning Algorithms

If each allocated variable has a mark bit, and initially all these are clear,

then by tracing all the accessible variables and setting their mark bit, it

is possible to discover all inaccessible variables. This method, first

proposed by [McCarthy60], is recursive.
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2.3.1 Simple Scanning

McCarthy's algorithm uses a separate stack to control the recursion.

However, to cater for the worst case, the stack would have to be

impractically large. A more practical proposal is made by [Hanson??]

which suggests the use of a spare location per variable. This is used to

link together the variables which have yet to be scanned. The HIP

processor, [Menueto.l.B?] and [Sanchezeto.l.B7l, uses a microprogrammed

version of this algorithm.

A further variation of McCarthy's garbage collector is given by

[Baecker?21. This is intended for use In virtual memory systems and has

one mark bit per page as well as one per variable. A single recursive

scan is made to determine which pages contain accessible variables. Pages

that contain only inaccessible variables are then freed along with their

page table entry. The advantage of this system is that compaction is

unnecessary, but the disadvantage is that pages are not freed until they

are completely inaccessible.

To cater for the worst case the stack must have one word per allocated

variable. However, it is found in practice that this amount is rarely

required [KurokawaBll. Methods to reduce the amount of space are

proposed by [KurokawaBl] but if stack overflow does occur no garbage can

be recovered and the system must presumably halt.
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2.3.2 Reference Reversal

A method which does not require an

[Schorr&Waite67] and more formally by

auxiliary stack is given by

[Broy&Pepper82]. The algorithm

scans a variable looking for references to variables which have not been

marked. When one is found the position of the reference is remembered on

a list, using the location itself as the link. Scanning then continues in the

new variable. When scanning a variable is completed, the list is popped to

find the location of the reference which led to the variable. The

reference's value is restored and scanning then continues at the location

after the reference. This is the same principle as that used with reference

counting to recursively release variables, described in section 2.2.2.

When the algorithm returns to continue scanning a variable, it must be

able to determine how much more scanning is required before the variable

is completely scanned. Since Schorr and Waite are dealing with LISP

structures they only require a single bit per node to indicate which word

has been scanned; the reversed references actually refer to the start of the

node. Extending this to a system with variables of arbitrary size is more

difficult.

One possible method is to distinguish the start of a variable. This is

possible if the variable's size is stored in the first word and it is tagged

in a special way. By scanning the variables from the end towards the

start, the end of the scan is given simply by detecting the start of the

variable.
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Schorr and Waite's algorithm IS a technique for marking accessible

variables. However, if the step which restores the reversed references is

omitted then the algorithm can rearrange the memory so that the first

word of each accessible variable contains the head of a list of all the

references to the variable. The list is contained in the locations of the

references themselves and ends with the original contents of the first word

of the variable, probably its size field. This structure can then be used to

update the references ready for compaction, as discussed in section 2.5.3.

2.3.3 Non Recursive Scanning

The stack required to control the scanning operation can be avoided

altogether. This is achieved by making repeated scans of the memory to

find accessible references to unmarked variables. This is the method

adopted by [Dijkstraet.&1.78L Two bits per variable are required, one for

marking whether a variable is accessible, the other for marking whether it

has been scanned or not. In Dijkstra's algorithm the three states are

described as white, grey and black. However, this thesis will use the more

meaningful names not found, found and scanned

Figure 2.3a gives an example of a scan. Initially, all variables are marked

as not found Those which are directly accessible from the roots are then

marked found and the scanning begins. A variable which is marked found

is located and is searched for references. If any reference refers to a

variable which is marked not found, the variable is marked found Once a

variable has been searched it is marked scanned
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not found

~
~ot found

root ----1~...L::::Jnot found

not found

Initially all variables are marked as not found,

then all directly accessible variables are marked

found.

not found

~TI
IVfound

---I~ ...L::::Jscanned

found

~TI
~canned

---I~ ...L::::J -
scanned

scanned

~TI
~canned

----1~...L::::J -
scanned

Next, found variables are located, III any order,

and searched for references. If the reference refers

to a not found variable, that variable is marked

as found After a variable has been searched, it is

marked scanned

Fig2.3a: Scanning is' controlled by marks

This method is less efficient than reference reversal, because repeated visits

to each variable in memory are required to find accessible unscanned

variables, that is those marked found The advantage, however is that the

memory remains usable whilst scanning is in progress. For this reason it

is suitable for incremental garbage collection.
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Special requirements are placed on the computation to ensure that

conditions for the correct operaton of the incremental garbage collector are

maintained. All operations which move a reference must ensure that,

during the scan, no scanned variables contain references to not found

variables.

A variation of this algorithm, requiring just one bit per variable for

marking, is presented by [Ben-Ari84]. However a severe performance

penalty is incurred because variables marked as accessible are repeatedly

scanned for references to variables marked as inaccessible.

To reduce synchronisation requirements when allocating new variables,

Dijkstra's algorithm also scans the free list. Allocating a new variable is

expressed simply as moving two references, which ensures the correct

marking condition is maintained. However this technique is only possible if

varia bles are of a fixed size.

The algorithm described by [Kuns&Sons77] IS similar to Dijkstra's but

variables are in one of four states, rather than three, and the free list is

not scanned. The extra state introduced by Kung and Song is new. When

variables are first allocated they are marked new. This allows variables to

be created without synchronising with the garbage collector and without

scanning the free list. This is most useful in systems which have variables

of various sizes, where the free list is not simply a list of variables but a

list of free store.
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2.3.4 Two Memory Copying

Garbage collection of a memory can be achieved easily if a spare memory

is available. All accessible variables are copied from the memory into the

spare, where they are placed compactly. This leaves one area of free

storage from which variables can easily be allocated. The roles of the two

memories are then reversed, the first becomes the spare whilst the second

becomes active.

The copying process IS recursive In nature and, since the memory is also

compacted, it is necessary to update all references that are copied. The

copying algorithm proposed by [Hansen69] is explicitly recursive and hence

will require a stack to control the recursion.

Hansen's algorithm makes two intertwined passes across the memory. First

all the references in a variable are found and the algorithm is applied

recursively to the variables to which they refer. This gives the new

location of those variables. The references are then updated and the

updated variable is copied to its new location. Two bits are used to mark

the variables. One indicates that the variable has been found and is being

updated. When a variable has been moved, its new address is stored in

the old copy and the second mark bit is set. A fixup table is used to

cope with circularities.

A similar algorithm for LISP is given by [Fenichel&Yochelson691. Whilst

their algorithm is recursive, they. suggest that the [Schorr&Waite67]

reference reversal method could be applied. This is where the space

occupied by the references themselves is used to control the recursion, thus

eliminating the need for a separate stack.
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Another scheme is given by [Cheney70J. The references themselves are

used to control the recursion, though III a much simpler fashion than

Schorr and Waite's reference reversal. A version that does use Schorr and

Waite's algorithm for reference reversal is given by [Rein901d73J. Some

improvements to this are suggested in [Clark76J.

In Cheney's algorithm, two index variables, next and scan, which refer into

the spare memory, are used. next indicates where the next variable to be

copied is to be placed, scan indicates the progress of a single scan of the

copied variables. Initially both are set to zero, then any variables known

to be accessible are copied, with next being suitably incremented. The

variables are copied without modification so any references refer back into

the active memory. The sequence of diagrams shown in figure 2.3b

illustrates Cheney's algorithm.
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,.- old space
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\ j,.---- new space \
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scan & next

Initi ally both scan and next point to the start of the spare memory.

cb
t
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scan next

Variables which are directly accessible from the root are copied into the
new space, leaving behind a forwarding address.
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The new space is searched for references, using scan to control the
search. If the referenced variable is still in the old space, it is copied
into the new space and the reference is updated.

root

C 111,11111

~+ t t
scan & next

If the referenced variable has already moved to the new space, the
reference is updated using the forwarding address. Whenscan reaches
next, garbage collection has finished.

Figure 2.3b: Cheney's Algorithm
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The scan now commences a search for references. When one is found -the

variable referred to is copied to next, if it has not already been copied.

When a variable is copied a "forwarding address" is placed in the variable

so that if further references to it are found they can readily be updated.

The reference is then updated to refer to the new location of the variable

and scan is advanced. The scan finishes when scan reaches next.

As well as needing an extra bit In each reference to indicate which

memory is referred to, it must be possible to tell whether a variable has

been moved or not. This can easily be achieved in systems with varying

sizes of variables by using an extra bit stored with the variable's size

field. Systems with fixed size variables, such as LISP, tend to have

various flag bits stored in the variable, so it should not be too difficult

to accomodate the 'moved' bit.

[Baker781 proposes using a two-memory copying garbage collector for

real-time systems. Cheney's algorithm is used, since, unlike reference

reversal techniques, the memory remains In a useable state whilst copying

is in progress. Whenever a variable in the active memory is accessed a

check is made to see whether the variable has moved to the spare

memory. If so, the reference is updated and the access is made to the

spare memory instead.

An interesting variation is proposed by [Unsar841. This exploits the

observation that many variables tend to be comparatively long lived. If a

variable survives more than a certain number of garbage collection cycles,

it is moved to another area which contains long lived variables.

Inaccessible variables In this area are periodically reclaimed using a

marking algorithm.
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The copying garbage collector incorporated In the X2 object oriented

virtual machine [Sandberg88] uses Cheney's algorithm rather than Baker's

incremental algorithm because the pauses that occur are small enough to

be acceptable. However in the LISP system described by [Moon84] an

incremental version is used because the virtual memory is large and the

pauses would be unacceptable.

Copying garbage collection algorithms are like scanning garbage collectors

combined with compaction. The scan is controlled using a queue of

variables which need to be scanned. This queue comprises the variables

that have been copied into the new space but have yet to be scanned.

The advantage of the copying collector is that no extra workspace is

needed to implement this queue. The mark bit, which is usually explicit In

the scanning algorithms, is replaced by an extra address bit which

indicates which memory the variable is in.

2.3.5 Multiple Area Copying

Baker's algorithm is further developed by [Lieberman&Hel--litt83J. They

propose dividing the memory up into many areas, instead of just two,

which are kept in order of creation. References within an area and from a

younger to an older area are implemented normally. However, each area

has an indirection table through which all references from older areas into

the area must pass.
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Fig2.3c: References to variables in younger areas pass through an

indirection table. When an area is garbage collected, all

younger areas must be scanned for references.

Garbage collection is started by copying the accessible variables in a area

to a spare area, as in Baker's algorithm. However, to be sure that no

references into the area remain, it is necessary to scan all younger areas

looking for references to that area. Also, variables that are referenced

through the indirection table are presumed to be accessible and are copied.

Only when the scanning is completed can the storage occupied by the area

be recovered and reused.

The example shown in figure 2.3c illustrates how references to variables In

younger areas pass through an indirection table. If the youngest area is

garbage collected, the variable 'a' will be recovered. If the second

youngest area is garbage collected, variables in the youngest area will be

scanned to find any references refering to variables in the second area.

The variable 'c' will be recovered and a search of the youngest indirection

table suffices to remove the entry for the reference to 'b'. Note that the

variable 'b' will be recovered by a subsequent garbage collection of the

youngest area.



Garbage Collection Techniques
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Lieberman and Hewitt have observed that if a variable has been accessible

for a long time, it is likely that it is relatively permanent and will

continue to be accessible. Therefore the older areas tend to contain

relatively permanent data and little garbage whilst the younger areas

contain more garbage. It is therefore beneficial to garbage collect the

younger areas more often. This is quicker than for the older ones since

much less scanning is required. Therefore the rate of garbage collection of

the areas can be varied according to their age to tune the performance of

the garbage collector.

Cyclic structures can be created which cross area boundaries. If these

become inaccessible then the simple algorithm fails to recover the storage.

However, by copying an area and all those younger than it at the same

time, it is possible to recover any inaccessible structures which cross area

boundaries but are wholly contained in the copied areas. If a cyclic

structure passes through the oldest and youngest areas then it is necessary

to copy the entire active memory in order to recover its storage.

Lieberman and Hewitt assume that most references go from younger to

older areas, and that cyclic structures are rare. This is true of LISP

programs, for which the algorithm is intended, because the use of

overwriting operations like rplaca is rare. However in general purpose

computers overwriting is more common. For example, references from older

to younger areas will occur when arrays of references are updated and

items are added to queues. Therefore the assumption may not be valid in

general.
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2.3.6 Infrequent Garbage Collection

An interesting variation on the copying method of garbage collection is

suggested by [WhiteS8L This is to perform garbage collection very

infrequently, say once a year, and in the meantime rely on a vast virtual

memory system to supply new space. When space really does get low a

large physical memory is used as a spare memory, into which the virtual

memory is copied. White suggests this large memory could be hired from

a garbage collection contractor, just for the duration of the garbage

collection.

Whilst this approach seems attractive, especially with the advent of large

density write-once laser discs, it is not clear that such a large virtual

memory can be made sufficiently fast, in view of the sizes of page tables,

or that it will be cost effective. In a distributed system, performing the

annual garbage collection will be a sizeable task, involving the copying of

incredible amounts of data, which does not appear very practical.

2.4 Multi-processor Garbage Collection

This section describes a wide variety of multi-processor garbage collectors.

First to be considered are closely coupled systems, in which the processors

share a common memory. In some of these systems processors are

dedicated either to computation or to garbage collection, whereas in others

the processors divide their efforts between the two tasks. Secondly, loosely

coupled systems, those which have .no shared memory, are discussed. Here

each processor performs list processing on part of the distributed heap,

and makes some contribution to the garbage collection of the whole heap.
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2.4.1 Closely Coupled Multi-Processors

The use of two processors, one for list processing the other for garbage

collection, was first suggested by [Steele 75] as a way of avoiding the

pause in list processing experienced when using most garbage collectors.

The processors are very closely coupled, having shared access to the

memory containing the heap.

In Steele's system, the garbage collection processor operates continually. It

scans the memory marking accessible variables, using a stack to control

recursion, and then returns any newly freed variables to a free list. The

system is intended to run LISP in a virtual memory environment and so

compaction is also performed, to reduce the size of the working set.

An analysis of a two-processor system, based on Steele's algorithm, is

provided by [Wadler761. Conditions are given which ensure that the free

list is never exhausted thus allowing the list processor to run

uninterrupted. Wadler concludes that incremental garbage collection requires

twice as much processing power as those which require the computation to

suspend. Similar analysis is provided by [MUller761.

A two-processor garbage collector was taken by [Dijkstra.t. ...i ,78] as an

example in proving the correctness of a multiprocess program. Steele's

original proposal used many semaphores to synchronize the two processors.

Dijkstra attempts to limit the amount of synchronization required, thus

keeping the list processor's overhead to a mmimum. The algorithm is

extended by [Lamport76] to allow more than one list processor and more

than one garbage collector processor. A correctness proof for this is also

given.

The results of a study of Steele's and Lamport's algorithms are presented

in [Newmanet. ...1.82] and [Newman.t. ...1.831. Some improvements to both are

suggested which give significant speed increases.
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An algorithm similar to Dijkstra's is used to recover garbage in the

Cambridge CAP computer's filing system [Birrell&Needham78L Most

garbage is recovered by a reference counting technique. However, to

recover inaccessible cyclic structures a separate process runs III the

background which gradually scans the directory structure.

The Hydra multi-processor system [Wulfet.a1.74J originally used a reference

counting garbage collector. [Almes80J describes how Dijkstra's algorithm

was adapted for use in Hydra's multi-processor environment to avoid the

overheads of reference counting long lived variables.

Another application of the algorithm is found in the iMAX operating

system of Intel's iAPX432 microprocessor [Pollacket.a1.82L Several, quite

separate, heaps may be created, each garbage collected by a background

process. In this microprocessor the scanning is performed by software, but

the housekeeping operations, required to ensure correct incremental

operation, are implemented in hardware.

Another two-processor garbage collector is described by [Kung&Song77L

This avoids the use of critical sections by relying on the mutual exclusion

inherent in accessing the memory. A special queue is also used to hold

references to all the variables that have yet to be scanned.

Another multiprocessor garbage collection system is described by

[Halstead85 J. This is for the Concert Lisp multiprocessor. Garbage

collection is achieved using many Baker-style copying garbage collectors all

working in one address space. The disadvantage to this algorithm is that

all the garbage collectors must synchronise on swapping areas, which

significantly reduces memory utilisation.
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The chaining algorithm of [Newman&Woodward8Z] allows marking to be

performed by several markers in parallel without the overhead of a stack

and with minimal synchronisation overheads, and only one mark bit per

node. However, the original form of this algorithm is very inefficient for

cyclic structures and under certain circumstances does not terminate. An

improved version is presented in [Newmanet .&1.8?] which employs the use

of a small stack to overcome these difficulties. [Hudak&Keller8Z] propose a

similar scheme which, like Dijkstra's algorithm, uses two mark bits per

node. It is designed for an applicative system and many tasks can be

spawned to mark the heap in parallel.

The performance of closely coupled multi-processor garbage collectors tends

to be degraded by the overheads of synchronising and communicating

between the garbage collector and computation, and by contention for the

shared memory. An interesting two processor garbage collection system

which is much less prone to these problems is described by

[Ram&Pate1851. This exploits a paged virtual memory environment and

contention only occurs for the pages on disc. Each processor has its own

private primary memory, but access to the secondary memory is shared

through a special purpose disc controller.

2.4.2 Loosely Coupled Multi-Processors

The garbage collector of the computer system described by [Bishop??]

divides the heap into many areas. Each area is garbage collected using

Baker's algorithm, though unlike Lieberman and Hewitt's algorithm it is

performed quite independently on individual areas. Although the algorithm

was described in terms of a single memory, it readily extends to a loosely

coupled system [Ali84].
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For each area two lists are maintained, one of all references that leave

an area and one of all references that enter a area, as shown in figure

2.4a. Therefore each inter area reference is on two lists. Variables that

are referenced from the incoming list are taken to be accessible. Along

with those directly accessible from the roots of the heap, they form the

starting point of a local garbage collection. If the local collection finds

that a reference to a variable in another area is accessible, it marks the

entry in the outgoing list. Once the local garbage collection has finished,

any outgoing entry which has not been marked is removed from the

outgoing list. In addition a message is sent to the area containing the

corresponding incoming entry, informing it that the entry is no longer

required.

Fig2.4a: In Bishop's system inter-area references pass through an

outgoing and an incoming indirection ta ble. Each area is

garbage collected independently, but inaccessible cyclic structures

cannot be reclaimed directly.
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Bishop's garbage collector also moves variables between areas, III an

attempt to improve locality of reference. This is mainly intended to

Improve paging performance in a paged virtual memory, by reducing the

program's working set, but also has the effect of moving inaccessible cyclic

structures which span areas into just one area. Until this happens the

garbage collector cannot recover the inaccessible store, because variables

referenced from the incoming list are always assumed to be accessible.

This is not a satisfactory solution to the problem of recovering large

inaccessible cyclic structures in a distributed system since users will usually

want to keep control of the location of their variables. This is for

efficiency reasons and because the semantics of remote and local variables

may be be different. For example a computer may insist that instructions

can only be taken from variables held locally. If the garbage collector

moves such a variable in an attempt to localise cyclic structures, it will

either cause the program to fail or thrash if the variable is moved back

again by the computation.

Inter area references refer to variables through two indirections, the

outgoing entry and the incoming entry. The entries are created when a

reference is copied from a variable in one area to a variable in another

area. This imposes a significant· overhead on copying references between

areas.

When a reference is copied between variables in the same area, no extra

overhead is imposed. Also, if copies of an inter-area reference are made,

then they will use the same link entry, again incurring no overhead.

However if a reference to a variable in one area is copied between two

other areas it is not possible to tell, without searching the lists, whether

an entry already exists for that reference in the outgoing list. Either time

must be spent searching the lists or a new entry must be allocated

regardless of any duplication.
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Maintaining the incoming and outgoing lists is therefore a significant

overhead, either III time or space. In a distributed system, however,

references are copied between computers relatively infrequently and the

overhead is tolerable. The Flex computer system uses a hash table, instead

of the simple linked lists, with fast microcoded searching to reduce the

overhead. However, if the technique is used within a closely coupled

system, the overheads may become significant in relation to the traffic in

references.

To avoid the need for storing and maintaining list entries for references

from rapidly changing areas, such as the temporary store of a process, to

relatively more stable areas, such as the operating system, Bishop proposes

the Cable. If an area A is Cabled to area B, then references in A can

refer directly to variables in B. A consequence of this is that when area

B is garbage collected, area A must be as well. However the garbage

collection of area A can still occur independently of area B.

The problem with cables is that it is difficult to decide when to use them

and that if they are used indiscriminately garbage collection can no longer

be performed independently on each area.

The system proposed by [Vestal8?] also divides the heap into areas,

though reference counting is used to recover inaccessible acyclic structures.

To handle cyclic structures, including those which span area boundaries,

Vestal gives the following algorithm, which is illustrated by the example

shown in figure 2.4b.
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A set of potentially inaccessible variables is maintained. Initially this is

empty, but a variable which is likely to be garbage is chosen, using

suitable heuristics, and is added to the set. Each variable added to the

set is searched for references. The variables referred to have their

reference counts decremented and those which are not directly accessible

are themselves added to the set. This phase of the algorithm terminates

when all the variables have been scanned.
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Fig2.4b: Vestal's algorithm can be used to determine whether

some variables are part of inaccessible cyclic structures.
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The second phase removes variables from the set if they do not have a

zero reference count. Each variable removed is searched for references. The

varia bles referred to have their reference counts incremented. This phase

finishes either when the set is empty or contains only variables whose

reference count is zero. These variables are now known to be inaccessible

and are recovered.

The drawback to this approach is that it cannot guarantee to recover any

garbage, so does not really satisfy the second essential criteria of

effectiveness. There is also the problem of finding a suitable heuristic for

choosing the first inaccessible variable. Vestal suggests this could be based

on the times of creation and last use, but these are expensive parameters,

in time and space, to maintain for each variable.

Another algorithm proposed by [Vesta18?] uses scanning rather than

reference counting. The heap is divided into areas, each of which is

garbage collected independently. Variables referred to by other areas are

assumed to be accessible. To recover these variables Vestal suggests a

scheme similar to Bishop's. Variables which are only referenced from other

areas are moved to one of those areas. If an inaccessible structure is

moved so that it occupies just one area, it will then be recovered by the

scanning algorithm. However, unlike Bishop's original algorithm, Vestal's

version does not physically move variables. Instead the areas are formed

from a logical grouping of variables.
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The heap is garbage collected using a separate scanning collector for each

area. Three states are used, not found, found and scanned, in a similar

way to Dijkstra's incremental, non-recursive scanning algorithm. For each

variable, a record is kept of its state In the garbage collection all the

areas which may reference it, In addition to the area it resides In. An

additional state is introduced which indicates that a variable is actually

unreachable from an area. This is used to distinguish between a variable

being identified as not referenced by an area and its state being set to

not wanted ready for another garbage collection. Thus the recovery phase

changes scanned variables to not wanted and not wanted variables to

unreachable.

If a variable is unreachable from all areas which may reference it, it is

inaccessible and can be recovered. However if it is not wanted by an

area, its state may have just been reset ready for another scan, and so it

cannot be recovered.

The scan of an area searches all variables which reside In the area and

are marked found in the area's scan. It does not search variables in any

other area. Therefore at the end of the scan, variables that reside in

other areas may be marked found in the area's scan.

Once the scan of an area has finished, a variable which resides in the

area and is marked unreachable or not found in the area's scan, but is

marked other than unreachable in some other area's scan, is moved to

that area. In doing so the variable is searched for references. Any

variables it references which are marked unreachable or not found In the

new area's scan are changed to found Also if they are not found In the

old area's scan they are changed to unreachable. These actions are

necessary to ensure that the invariants of the garbage collections of the

two areas involved are preserved. Once all such variables have been

moved, any variables that remain In the area and are marked unreachable

or not found in the area's scan are inaccessible and can be recovered.
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Vestal's scanning algorithm, in common with Bishop's, cannot guarantee to

recover inaccessible cyclic structures. This is because it is possible, though

quite unlikely, that cyclic garbage will be moved round a ring of areas,

each area attempting to localise the garbage by passing it on to the

next. Vestal does suggest possible ways of reducing the probability of such

an event occuring, but these effectively cause the garbage collections to

synchronise, which nullifies the benefits of independent garbage collection of

areas.

The store overheads of Vestal's algorithm are not inconsequential. Each

variable requires an array of marks, one for each area, though if there

are a large number of areas, the store requirement can be reduced by

using a technique for handling sparse arrays, such as a hash table.

2.5 Compaction and Storage Allocation

2.5.1 Compaction

Once the inaccessible variables have been found, the storage they occupy

can be returned to the free store where it can be used to allocate new

variables. There are, broadly speaking, two types of organisation for the

free store, where there is only one free block and where there is more

than one.

Storage allocation from free store which consists of just one free block is

easy. The variable is allocated from the start of the block and the block

is made smaller. Garbage collection is required when the size of the free

block is less than that of the variable requested. Returning inaccessible

variables to such a free store is more difficult, since they are dispersed

between the accessible variables. It is necessary to compact the accessible

storage to one end of store, leaving one free block at the other end, as

shown in figure 2.5a.
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Fig2.5a: Compaction moves accessible variables together to

create larger free areas. All references must be updated

to refer to the variables' new positions.

A free store which consists of many free blocks can be constructed in

several ways, the simplest being a linked list. Inaccessible variables are

returned to the free store by adding them to one end of the list, though

a study presented in [Harrold86] suggests it is better to add to the front

of the list. To allocate a new variable, the list is searched for a free

block which can accomodate it. It is then allocated from this block with

any remaining free space staying on the free list. If no free block is large

enough then garbage collection is necessary. However this may not result

in a block which is large enough being found. The free store may actually

contain enough memory, but be. fragmented into many smaller pieces. In

this case it is necessary to compact the memory to produce larger free

blocks so that the allocation request can succeed.

A study by [Harrold86] shows the advantage of combining adjacent free

blocks into one, and suggests an effective way this can be achieved using

the tag bits which normally distinguish between scalar and reference data

in a tagged capability computer.
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Compaction is not required for systems which have a fixed variable size,

such as LISP. However, it is sometimes used anyway to reduce

fragmentation in virtual memory systems. This is because fragmentation

effectively wastes part of the program's working set, causing more page

faults to occur [Fenichel& Yochelson691.

Storage compaction involves moving some variables and updating all the

references to those variables to reflect their new location. This may be

done as a final pass of compacting garbage collection or may be a

separate affair. Compaction is inherent In the copying style garbage

collectors described in section 2.3.4.

2.5.2 Indirection Tables

The use of an indirection table to implement references greatly eases the

problems of compaction. The table contains the addresses of all the

variables in memory, whilst each reference contains the index, within the

table, of the entry for the variable it points to. Whenever the variable

referred to by a reference is to be accessed, the entry for that variable

must be read from the indirection table to discover the variable's address.

If a variable is moved as the result of compaction then by altering the

address In the indirection table, all references to the variable are

simultaneously updated. It is not necessary to find all the references to

the variable and update them individually. The disadvantages of the

indirection table approach are that. space must be found for the table and

that going through the indirection table to reach a variable takes time.

The latter problem, however, can be greatly reduced by using a simple

cache memory or special mapping hardware [Tyner811. .
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-If the maximum number of variables are allocated then the indirection

table would be one third the size of memory. This is assuming a one

word size field, one word indirection table entries and one data word per

variable. Preallocating a table of this size is too wasteful of memory to

be considered viable. Choosing a smaller size is a compromise between

wasting memory and having enough entries available for peak demands.

Dynamically altering the space occupied by the table is possible, though it

becomes necessary to be able to compact the table space as well as the

memory space. However, this is much simpler since the entries are all the

same size.

The use of indirection tables has not been given very much consideration

is past literature. This is because previous work has centred on LISP

systems, In which the variable size is always two. The use of an

indirection table would therefore impose a serious overhead in time and

space.

Indirection has been used in some capability computers, such as the

CAP computer and the Plessey PP250. Notably the Intel

uses a two level indirection table to avoid the problem of

Cambridge

iAPX432

preallocating enough table space.

2.5.3 Reference Updating

In a heap where references contain the address of the variable directly,

rather than through an indirection table, it is necessary to find and

update all references when a variable is moved. An algorithm for

compacting such a heap was first given by [Haddon&J..Jaite67]. While the

accessible variables are moved, a table is constructed which gives the new

location of each set of consecutive accessible variables. When all the

variables have been moved a linear scan is made of the accessible storage.

Any references are found and updated using the table.
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Haddon and Waite show that no extra storage IS required for the table,

because it can always fit in the available free space. However, as

compaction proceeds it becomes necessary to relocate the table.

Improvements to this algorithm are proposed by [Fitch&Norman781 which

speed up the accesses to the relocation table. [Berry&Sorkin781 show how

the algorithm can be modified to give improved performance when the

variables are allocated and discarded in a stack like fashion, as is usual

for procedure activation records.

[Wesbreit721 gives an algorithm which updates all the references before

moving any variables. The free variable located before a consecutive set of

accessible variables is used to hold their new address. To update a

reference it is necessary to find the first free variable preceding the

variable referred to, since this gives the new address. This is accomplished

by searching from the start of store until the free variable is found,

though this search can be speeded up by constructing a directory.

The use of an extra address field in each reference is suggested by

lZave 751. This field is used to link together all references, sorted in order

of the address of the variable they point to. The references are then

updated in one pass by following this list. The store is then compacted.

The method of using reversed reference chains, which link all references to

a variable together, to facilitate compaction was first suggested by

[Fisher711. Fisher's algorithm however, only works for systems in which

the references all run in the same direction. [Morris78 1 gives a more

general scheme. This uses two separate passes, one forwards and one

backwards, in order to process both forward and backward references. A

similar algorithm, which makes two forward passes, is given by

[Jonkers791. [Martin82 1 gives a faster version of Fisher's algorithm.

The algorithms of Haddon and Waite, Morris and Jonkers are compared III

[Cohen&Nicolau831 using results obtained from a PDPIO.
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The compacting garbage collector proposed by [Tharelli76] also uses

reversed references. However an extra word per variable is used to control

the recursive scanning. The algorithm used III the Flex computer,

[Foster. t. & 1.79], avoids the use of this extra word. This is done by

adding all references, except the first, to the reversed list after the first

reference. By ensuring that the first reference on the reversed list is the

first that was found, it can be used to control the recursive scan, as

originally proposed by Schorr and Waite. The references are updated in a

separate pass, before a final pass compacts the variables. This makes the

restrictions imposed by Fisher's algorithm unnecessary.

2.5.4 Storage Allocation

The allocation of new variables from a free store consisting of one free

block is straightforward. However with multiple free blocks there are

several possible allocation strategies. The free blocks are chained together

on a linked list or in a tree structure so that they can be searched.

In the first fit strategy, the list is searched and the variable is placed in

the first block found which is large enough to contain it. For the best fit

strategy, the variable is placed in the smallest block which is large

enough to contain the variable.

The cyclic placement strategy is similar to first fit, except that the search

continues in a round robin fashion" rather than starting at the beginning

each time a variable is allocated.
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The different schemes are a compromise between the time taken to place

an inaccessible variable in the free store, the time taken to allocate a

new variable and the storage utilisation gained. Which scheme is best will

depend on the pattern of storage usage in the computer. Many authors

have modelled or simulated the various solutions: [Knuth731,

[Campbe1l71l, [Pflug84 1, [Page84 1, [Coffmanet.&1.85 1, [Baker.t .&1.851 and

[Harrold86 1.

2.5.5 The buddy System

The buddy system was first proposed by [Knowlton651 as a fast method of

allocating new variables of varying sizes, with minimum overheads for

deallocation. A buddy system is initialised with its free store in one

contiguous piece having a size which is some power of two. A separate

free list is maintained for each possible size of fragment, which are

restricted to powers of two.

To allocate a variable, its size is first rounded up to the nearest power

of two. The extra space used by rounding request sizes is known as

internal fragmentation [Rande1l691. Next, an element is taken from the

appropriate free list and is used to allocate the variable. However, if this

list is empty an element of twice the size is taken and split into two.

One half is used to allocate the variable and the other is put onto the

appropriate free list. In fact, if the list of larger fragments is also empty,

lists of still larger fragments are examined until a piece of free store is

found. This is divided up until the. allocation can be satisfied, with unused

pieces going back onto the various free lists. This is illustrated in figure

2.5b.
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Figure2.5b: To allocate a block of size one, when only a

block of size four is available, the free block is

divided into two. One half is placed on the size

two free list and the other is divided further. One

half is placed on the size one free list and the

other is used to allocate the new variable.

When a variable is deallocated, a check is made to see whether its

"buddy", that is the other half of the store fragment from which it was

created, is already free. This is done by searching the appropriate free

list. If the buddy is found III the list, it is removed and joined to the

newly released variable to form the original store fragment from which

they were created. This process is repeated until the buddy is found to be

still III use, in which case the' free store fragment containing the newly

released variable is added to the appropriate free list. Note that the

address of a buddy is easily determined by inverting the address bit

corresponding to the fragment's size, because the sizes are all a power of

two. Figure 2.5c shows an example, of releasing a variable.
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Figure2.5c: When the variable of size one is released, it is

combined with its buddy which is already free. The

resulting fragment's buddy is also free, and so these

are combined.

Allocation and deallocation In the buddy system is relatively fast, but

unfortunately it offers poor memory utilisation. This is because of both

internal fragmentation and external fragmentation, which occurs when

adjacent fragments are free but cannot be combined because they are not

buddies.

Many variations have since been proposed, but anaylsis by

[Peterson&Norman771 and [Purdom&Stisler701 shows them all to be fast,

but with poor memory utilisation. [Rande1l691 reports evidence that

rounding variable sizes up in an attempt to reduce fragmentation, as is

necessary In the buddy system, actually reduces memory utilisation.

[Pase&Hasins861 and [Kaufman84 1 offer ways of tailoring the buddy system

to particular patterns of use, in an attempt to improve performance.

[Challab&Roberts871 show how detailed designs for various forms of the

buddy system can be derived from more abstract algorithms.
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2.6 Summary

The survey just presented has covered the two broad styles of garbage

collection, namely reference counting and scanning, as well as briefly

considering techniques for compaction and storage allocation.

Reference counting [Collins60J can be made reasonably efficient [Wise8SJ,

although [Unsar84 J reports that reference counting in Berkeley Smalltalk

consumes 15% of CPU time m managing reference counts, with an

additional 5% taken in recursively freeing variables. It can be extended to

work m a distributed environment [Watson&Watson8?J. However, the

technique suffers from the serious disadvantage that inaccessible cyclic

structures cannot easily be recovered.

There are two kinds of scanning garbage collector. The marking collectors,

typified by [Dijkstra.t.al.?8 J, attach flags to each variable which mark its

state in a scan that finds all accessible variables. This scanning can be

made reasona bly efficient [Harrold86 J. The copying collectors, nota bly

[Baker?8J, copy accessible variables into a free area, leaving behind any

inaccessible variables. This technique inherently compacts the accessible

storage, but this is inappropriate in a distributed system. Both varieties of

scanning collector are able to recover inaccessible cyclic structures.

Some garbage collectors have been specifically designed for use in

distributed systems. [Bishop?? J applies a copying garbage collector

independently to each computer .m the system. Garbage collection of

inter-computer references is handled using reference counts, and so

inaccessible cyclic structures which are not within one computer cannot be

recovered. Another algorithm, due to [Vesta18? J, offers a partial solution

to this problem, but it cannot guarantee to recover the inaccessible cyclic

structures.
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Collins60 • •
Deutsch&Bobrow?6 • • • •
Hushes85 • • •
Brownbri dse84-&85 • • •
Wise85 • • • • •
Watson&Watson8? • • •
McCarthy60 • • •
Schorr&Wai te6? • •
Dijkstraet .&1.?8 • • • •
Cheney?0 • •
Baker?8 • • •
lieberman&Hewi t t83 • • •
SteeIe?5 • • • •
Bishop?? • • •
Vestal8?1 • • •
Vestal8?2 • • •

Fig2.6: Features of Garbage Collection Schemes

Figure 2.6 gives a table showing; the main features of the more important

garbage collection schemes given III the literature. All but two are

incremental, in that garbage collector can suspend its activity and allow

the computation to proceed. These two use reference reversal techniques

and so the heap is in an inconsistent state while they are running.

Reference counting schemes cannot recover inaccessible cyclic structures,

unless they use another technique as a fallback method, or only consider

special cases. Marking and copying collectors are able to recover cycles,

except III those algorithms designed for a distributed heap. Some marking

collectors have been designed so that computation and garbage collection

can proceed in parallel on different processors.

65



Garbage Collection Techniques

2.7 Conclusions

This survey of the literature has examined many garbage collection

algorithms, covering the two broad styles of reference counting and

scanning. Many algorithms have been tailored III some way to particular

systems or programming styles, III particular LISP, which makes them

inappropriate for use in general purpose systems. Other algorithms, such as

the simple scanning and copying garbage collectors, are not suitable for

use in distributed systems, because they do not scale up very well.

The most serious shortcoming of the reference

inability to recover storage from inaccessible

possible, in a general purpose system, to

counting algorithms is their

cyclic structures. It is not

detect when these cyclic

structures are created, so some technique must be employed to recover

them. Applying reference counting to groups of variables is not very

effective, because the cyclic structures can be quite large, and maintaining

the groups places an unacceptable burden on the programmer, in much the

same way as explicit deallocation in pools. These problems notwithstanding,

maintaining the reference counts causes excessive memory accesses, which is

likely to degrade system performance.

The scanning style of garbage collector can be made reasonably efficient,

by using reference reversal to control the recursive scan and to update

addresses for compaction. However this technique causes pauses III

execution which are just tolerable in single user workstations, such as Flex

[Fosteret .&1.821, but would be totally unacceptable when scaled up to a

large distributed system.
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Some scanning algorithms are incremental, in that the pauses are very

short, but these take longer to complete a garbage collection. [Bishop??]

and [VestalS?] ha ve proposed using scanning gar bage collectors as the

basis for garbage collectors which would be suitable in distributed systems.

These divide the heap into areas which are garbage collected

independently, however they do not guarantee to recover inaccessible cyclic

structures which span area boundaries.

The conclusion to be drawn from this survey is, therefore, that none of

the surveyed algorithms is entirely suitable for the garbage collection of a

general purpose, distributed heap store. The problem lies with the

requirement for generality, given by C3 in section 2.1, in particular the

ability to recover inaccessible cyclic structures.

However, with many of the algorithms described, a large effort has been

expended on optimising them for particular applications. It would be most

advantageous if the garbage collector of a distributed system allows

individual computers to use the algorithm most suited to them to manage

their part of the distributed heap. In this way the requirement for

generality can be satisfied, yet at the same time advantage can be made

of a special purpose garbage collector where it is appropriate.

Although no algorithm In the literature meets all the requirements, the

proposals using independent areas appear the most appropria teo The

problem is that the areas are garbage collected independently and

inter-area references are handled by moving variables between areas. This

thesis offers an alternative solution which uses a scanning garbage collector

to manage inter-area references. Non recursive scanning is most appropriate

for this, since the lengthy pauses produced by reference reversal are

unacceptable and copying is inappropriate as compaction is not required.
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Such a technique can hopefully be applied independently of the garbage

collectors used by the computers in the distributed system. This allows the

use of specialised algorithms where appropriate. In particular the algorithm

itself may be used to garbage collect one of the component systems, if

this were a smaller distributed system within the whole. This leads to the

idea of a recursively structured heap, which is described in the next

chapter.
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3. Garbage Collection in a Recursively Structured Heap

This chapter presents the idea of a recursively structured heap store and

develops an incremental garbage collector for it. The aim is achieve a

better utilisation of memory, by recovering some inaccessible variables

without garbage collecting the entire heap.

3.1 The Recursively Structured Heap

The heap is divided into areas which are garbage collected In parallel.

The areas may themselves be divided further into more areas In a

recursive fashion or may be garbage collected using any standard

technique, either incremental or sequential. The use of areas does not

restrict the locations in which references may be stored, so the user's view

of the heap is the same regardless of its structure.

The structure of the heap may need to be carefully chosen to optimize

garbage collection. For example, if the areas are chosen such that complex

objects in the heap are contained within one area, inaccessible variables

will be recovered more quickly than if they crossed area boundaries.

However, the structure of the heap does not affect the garbage collection

algorithm, only its efficiency and administration.

For the new algorithm, the heap, which may be large and distributed, IS

partitioned into disjoint logical areas. Each of these areas may in turn be

divided into more areas, In a recursive fashion. Areas which are not

sub-divided are called leaf areas, those which are are called internal areas.

The entire heap is itself considered to be an area, called the heap area.

An example of this structure is shown in Figure 3.la: The heap area and

each internal area are divided into one or more areas called offspring

areas. Each leaf and internal area is an offspring of an area called its

parent area.

69



The Recursively Structured Heap

......................... ...... .
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Fig3.1 a Each variable, shown D, and each root, shown I belong to

one leaf area. Areas are gathered together to form higher

level areas and ultimately one area encompasses the entire

heap.

The accessible structure in the heap is defined by the roots. These are a

set of references to variables in the heap. They reside outside of the heap,

for example III the registers of a processor. Each root location is

considered, for garbage collection purposes, to be part of one of the

system's leaf areas. However, not all leaf areas need contain any roots.
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There are three kinds of references which concern an internal area, as

illustrated in figure 3.1 b:

Incoming references are

the area which refer

offspring areas.

those that are stored outside

to a variable m one of its

Outgoing references are those that are stored inside

one of the offspring areas which refer to a variable

outside the area.

Internal references are those which are stored m one

offspring area but refer to a variable in another

offspring area.

The case where a variable and a reference to it are stored in the same

offspring area does not concern the area, because it is handled as an

internal reference of some lower leveL

Fig3.1 b Incoming References emmana te from outside an area,

Outgoing References refer to a variable stored outside

the area and Internal References are between different

offspring areas.
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To enable an area to be garbage collected, it is only necessary to

maintain information about its incoming and internal references, though

optimisations are possible which use information about outgoing references

as well. In practice this information is likely to be stored in some form

of indirection table. If more than one incoming or internal reference refer

to the same variable, they may use the same indirection entry. However

this is just an implementation detail, considered more fully in chapter four.

The parallel-recursive garbage collection algorithm will now be developed as

a senes of informal refinements, starting with a recursive sequential

algorithm. This will be refined into a parallel version which is controlled

recursively and finally into a completely parallel algorithm. For clarity,

details of the interaction between the garbage collector and the programs

using the heap are omitted. To operate incrementally, it is necessary for

the programs to perform some housekeeping operations, which are described

in section 3.5.

3.2 The Recursive Algorithm

An area which is not a leaf may be garbage collected as follows. First

the area is informed by its parent's garbage collector of the incoming

references which will, along with any root references residing in the area,

form the starting points of the garbage collection tracing phase. These are

references that the parent knows are accessible or may yet prove to be

accessible.

The garbage collector of an area traces through the portion of the heap

contained within the area by recursively applying the garbage collector to

the area's offspring. The parent's garbage collector. is informed of any

outgoing references which are found to be accessible. Eventually, when the

tracing has been completed, the state information for incoming or internal

references that are no longer required can be discarded.
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~
To control the tracing phase of the garbage collection, the incoming and

internal references are marked with a flag. This takes the values

not found, found and scanned. Initially references are marked as

not found When a reference is first found to be accessible by the tracing

phase, its mark is changed to found Once all the references III the

varia ble referred to by a found reference have been followed, the

reference is mar ked as scanned

The recursive algorithm, for internal areas, is shown in figure 3.2a, using

an algorithmic pseudo-language, described in Appendix B, along the lines of

Pidgin Algol [Ahoet.a1.7'f1. The garbage collection procedure takes three

parameters. wanted is the set of references from which it must commence

the tracing. accessible is a procedure used to notify the parent of any

outgoing references that are found to be accessible from these. keep is the

set of references which may still be needed by the parent. The area must

keep these, and any variables and references accessible from them. However

the parent must not be informed of any outgoing references which are

found to be accessible only from the keep set.
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garbage_collect = .>..(wanted, keep: Set Ref,
access ibl e : Ref -> Vo id).

refs = { r : Ref I internal ( r ) or incoming( r ) }
mark = .>..r:Ref. IF r. mark = not found THEN r. mark : = found FI ;
trace = .>..f : Ref -> Void.

WHILE first time round OR3 r E refs I r. mark = found
DOFOREACHoffspr ing a

DO w = {r : refs I r refers to variable in a
AND r. mark = found} ;

k = { r : refs I r refers to variable in a AND r et: w };
FORALL r IN w DO r. mark : = scanned OD;
garbage collect( w, k, f )

OD
OD;

{ in it ia I ise }
FORALL r IN refs DO r. mark : = not_found OD;
FORALL r IN wanted DO mark ( r ) OD;
{ trace def inite Iy wanted references }
trace ( xr : Ref. IF internal (r ) THEN mark (r )

ELSE access ibl e (r ) FI );
{ i nit ia I ise }
FORALL p IN keep DO mar k ( p ) OD;
{ trace references which must be kept}
trace( xr : Ref. IF internal ( r ) THEN mark ( r ) FI );
{ recover}
FORALL r IN refs
DO IF r. mark = not_found THEN recover space of ( r ) FI OD

Fig3.2a: The Sirriple Recursive Algorithm
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...-
To illustrate how the garbage collector operates, consider the simple

arrangement shown III figure 3.2b. This and subsequent figures are an

example of how a garbage collection progresses. The garbage collector first

marks all incoming and internal references as not found. Then those

incoming references in the set wanted are mar ked as found. These form

the starting point of the trace for references which are definitely

accessible. In the example wanted is empty, because this is the outermost

area.

Fig3.2b The heap is divided into two areas. Initially all

inter-area references are marked not_found. Variables a,

band c are inaccessible.

The trace is effected by garbage collecting each offspring III turn. This

continues as long as any found references still remain, though each

offspring must be garbage collected at least once in order to account for

the root references they might contain.
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When an offspring is garbage collected the set w is formed. This

comprises of found references which refer to variables residing in the

offspring. The set k is formed from the remaining references which refer to

variables residing in that offspring. The references in w will form the

starting points of the trace of definitely wanted references, and k is the

set of references which the offspring must keep in case they are later

prove to be accessible. The references in ware all changed to scanned, to

indicate that the trace will have passed through them, and the offspring is

then garbage collected.

If the offspring discovers any outgoing references that are accessible from

the set w, it informs the parent. The parent marks the reference if it is

internal, otherwise it calls its accessible parameter to inform its parent

that an outgoing reference has been found to be accessible from its

wanted set.

Now consider the garbage collection of AREA 1 in figure 3.2b. The set of

wanted references is empty and the set of references which must be kept

is {RI,R3}. The variable b is not accessible from the roots or from the

wanted and keep sets and so is recovered. The variable a is accessible

from the keep set. It is kept, although it is In fact inaccessible, because

the garbage collector has to assume that it may yet prove to be

accessible. The reference R2 is found to be reachable from the area's

roots. Therefore the parent is notified and its mark is changed to found.
Figure 3.2c shows the position after AREA 1 has been garbage collected.

76



The Recursively Structured Heap

Next AREA2 is garbage collected. The set of wanted references is {R2}

and R2 is changed from found to scanned to indicate that the trace will

have passed through it. The set of references which are to be kept is

empty. The variable c is not accessible and is recovered, but the reference

R3 is found to be reachable from the wanted set. Therefore the parent is

notified and its mark is changed to found. Note that, although no

references now exist to the variable a, the area is unaware of this and it

still maintains state information for the inter-area reference. An

optimisation involving reference counts is discussed in section 4.6 which

allows this to be recovered earlier. Figure 3.2d shows the resulting state.

Fig3.2c After garbage collecting AREA 1, the variable b has

been recovered and R2 is marked as found.
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Now AREA I is garbage collected again. The wanted set is {R3} and the

keep set is {RI}. The mark for reference R3 is changed from found to

scanned. The variable a is still kept, because the garbage collector still

has to assume that it may yet prove to be accessible. Once this garbage

collection has finished, no more found references exist so the first tracing

phase has completed. Figure 3.2e shows the position after this has occured.

111111111111I11111111111I11111111

Fig3.2d After garbage collecting AREA 2, the variable c has

been recovered, R2 is marked as scanned and R3 has

been found.
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Fig3.2e After garbage collecting AREA 1 for the second time

R3 has been scanned. The first tracing phase has been

completed, because there are no references marked

found.

Once no found references remain a second trace phase begins, but first

those references in the set keep are marked. This trace is similar to the

first, In that the offspring informs the area of which of its outgoing
references are reachable. The area marks the reference if it is internal,
but if it is outgoing its parent is not informed. This is because the
reference is only accessible from the keep set, which the parent is not
interested in.

The second trace phase finishes once no found references remain. Any

references which are marked as scanned must be kept, but any marked

not found are now known to be unreachable from either the wanted set or

the keep set, and so they can be recovered. The final recovery phase

completes the garbage collection of the area, but does not actually recover

the inaccessible variables. This happens next time tlie offspring areas are

garbage collected, because the recovered references which were keeping the

variable alive no longer exist.

79



The Recursively Structured Heap

,
The second trace of the example garbage collection does nothing because

the keep set is empty. Therefore the garbage collector proceeds directly to

the recovery phase. This notices that RI is marked not found and discards

information about it, as shown in figure 3.2f. Note, however, that the

variable a is not recovered. This will happen at the start of the next

garbage collection cycle because RI will no longer be in the keep set.

Fig3.2f Finally the information about reference RI is discarded

as it is found to be inaccessible. However the variable

a is not recovered until the next time AREA 1 is

gar bage collected.

The example has shown that those inaccessible variables which have not

been referenced from other areas, like band c, are recovered quickly.

However those which have been externally referenced, like a, take longer

to be recovered. The assumption is that most garbage is local and the

benefits of recovering this quickly outweighs the disadvantage of keeping

global garbage for longer. This is investigated in chapter five.

Note that the abstract algorithm shown in figure. 3.2a has a separate

initialization phase which sets the marks of all references to not found and

then marks those in the start set. In a practical implementation, this

would be combined with. the previous recovery phase.
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3.3 Garbage Collection in Parallel

The simple recursive algorithm In figure 3.2a does not perform any of the

garbage collection in parallel. This can easily be achieved by performing

the garbage collection of the offspring areas in parallel with each other,

as shown in figure 3.3a.

The procedure parallel takes a procedure as a parameter and delivers a

similar procedure as a result. The difference is that the new procedure

causes the original one to be executed as a new parallel process and then

returns. The procedure rendezvous causes the calling process to suspend

until all the other parallel processes have terminated.

trace = A f : Ref ->Vo id .
WHILE first time round OR3 r E refs I r. mark = found
DOFOREACHoffspr i ng a

DO W = {r: refs I r refers to variable ina
AND r. mark = found} ;

k = {r: refs I r refers to variable in a AND r $ w l :
FORALL r IN W DO r. mark : = scanned OD;
parallel ( garbage collect) ( W, k , f )

OD;
rendezvous

OD
Fig3.3a: Performing the Tracing In Parallel

Greater parallelism can be achieved by continuously garbage collecting each

offspring area, and not performing a rendezvous until the tracing is

complete. This makes the trace's termination condition more difficult.

Instead of just waiting until no found references exist, it is necessary to

also ensure that each offspring area has finished locating all internal and

outgoing references which are accessible from the scanned references. For

this an extra boolean array is used to record whether the offspring IS still

tracing. This is shown in figure3.3b with the array called ready.
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trace = ).. f : Ref ->Vo id .
gc = ).. i : Int .

WHILE 3 r E refs I r. mark = found ORNOT ALL ready
DO w = { r : refs I r refers to var iabl e in offspr i ng

AND r.mark = Found L. :
k = { r : refs I r refers to var iabl e in offspr ing

AND r ~ w };
FORALL r IN w
DO ready [ i ] : = FALSE; r. mark : = scanned ODi
garbage_collect( w, k , f );
ready [ i ] : = TRUE

OD;
FORALL r IN ready DO r : = FALSE OD;
FOR i TO number of offspr ing DO parallel ( gc ) ( ) ODi
rendezvous

Fig3.3b: Continuous Parallel Tracing.

3.4 The Parallel Algorithm

The algorithm described so far is recursive. It shows how to garbage

collect an area by garbage collecting its offspring areas. However the

drawback of this algorithm is that if one offspring area takes a long time

over tracing, other offspring areas are prevented from recovering any

garbage. This is because, by the nature of the recursion, control of the

garbage collection is invested in the higher level areas. What is needed is

for areas to garbage collect as and when they find it necessary. The

effects of these garbage collections must then be combined to produce the

overall effect of garbage collecting the parent.
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This can be achieved by constructing the address space recursively, but

then launching parallel garbage collectors at the leaf areas. These would

each garbage collect a leaf area, but they would run at their own rate.

Additional processes are not required for internal areas since these are

garbage collected by combining the effects of the garbage collection of

their offspring.

The abstract form of this, the final parallel-recursive algorithm, is shown

in figures 3.4a and 3.4b. The first gives an outline of a garbage collector

for a leaf area. This takes two procedures as parameters. get_wanted is

used to obtain, from the parent area, the set of references which are

definitely wanted. These form the start of the trace for accessible store.

In addition a procedure is supplied which is called for each outgoing

reference found during the scan. get _keep is used to obtain the set of

references which must be kept in case they prove to be wanted later.

These form the start of a second trace, for storage that must be kept

although it may not be accessible. The parent must not be informed of

any outgoing references that are found during this scan, because these may

later be shown to be inaccessible.
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make_Ieaf _garbage_co II ector =
x ( get_wanted

get_keep
garbage_call ect = x ( ).

FOREVER
DO

()->(Set Ref,Ref->Void),
( )-c-Set, Ref ) .

( wanted, f ) = get_wanted ( ) ;
trace from wanted, ca II ing f for any

outgo ing references discovered;
keep = get_keep ( ) ;
trace from keep;
recover inaccess ibl e store

OD;
parallel ( garbage_collect) ()

Fig3.4a: The Parallel-Recursive Garbage Collector for Leaf Areas.

The garbage collector for the leaf area is created and launched as a

parallel process. The procedure which created it returns, allowing the other

garbage collectors to be set up. The process first traces from the wanted

set, calling found for any outgoing references that it locates. Next it

traces from the keep set to determine all variables that must be kept In

case they are still accessible. Finally any inaccessible storage is recovered

and the garbage collection starts again. This continuous garbage collection

proceeds at the appropriate rate for the amount of garbage generated in

the leaf area, independently of the other areas.

The tracing phases of the leaf area's garbage collector may be

implemented with either an incremental or a sequential algorithm. This

allows systems to be constructed using components with differing styles of

garbage collection. It is, however, necessary to make a small change to

the garbage collection algorithms to enable them to scan in two phases

and to notify the parent area of the discovery of accessible outgoing

references during the first phase.
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The garbage collector for an internal area is shown in figure 3.4b. A

procedure is created for each of the offspring areas. This is responsible for

coordinating the garbage collection of the offspring area with the garbage

collection of the whole area. It is not, however, a separate process.

Communication with the offspring garbage collector is controlled as a

coroutine. That is two independent contexts are kept alive, very similar to

processes except that only one runs at a time. Control is passed from one

coroutine to another by calling special procedures. Data passed as the

parameter of the call appears as the result of an earlier call in the other

coroutine.
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internal_garbage_collector =
A( set....Hanted: ()-)(Set Ref ,Ref -) Void),

set_keep : () - )Set Ref ) .
scan1done := array of bools all false, one for each offspring;
scanZdone : = array of bools all false, one for each offspring;
recover _done: = array of bocl.s • all false, one for each offspring;
FOR r : Ref DO r ,mark : = not_found OD;
accessible : Ptr -) Void ; {a procedure vari able}

make_collector = Ai: Int .
A( trace: (Set Ref ,Ref-)Void) -) Void, keep : ( Set Ref) -) Void ).

mark = A r : Ref . IF r .mark = not found THEN r ,mark : = found FI;
foundJef = A r: Ref. IF internal (p) THENmark (r ) ELSE accessible (r) FI;
found_jnternal = A r : Ref . IF internal to i ( r ) THENmark ( r ) FI;
refs = { r : Ref I r points into offspring i

ANDinternal to i ( r ) OR incoming ( r ) }
FOREVERDO{ trace store that' s definitely wanted}

scan2done [ i ] : = FALSE;
IF no other sibling has done so
THEN (wanted, acc ) = get_wanted ( ) ; accessible : = acc r

FORALL r IN wanted DOmark ( r ) ODFI;
WHILE 3 r E refs I r ,mark = found ORNOTALL scanldone
DO w = {r : refs I r vrnark = found}

FORALLr IN w
DO scanldone[ i ] := FALSE; r ,mark: = scanned OD;
trace( w, found_ref );
keep ( { r : refs I r Et w } );
scanldone[ i ] : = TRUE

OD;
{ trace store that may be wanted }
recover _done [ i ] := FALSE;
IF no other sibling has done so
THENFORALLr IN get_keeps () 00 mark ( r ) ODFI;
WHILE 3 r E refs I r ,mark = found ORNOTALL scan2done
DO k = { r E refs I r v mark = found}

FORALLr IN k
DOscan2done [ i ] := FALSE; r .mark : = scanned OD;
trace ( k, found_internal );
keep ( { r E refs I r Et k } );
scan2done [ i ] : = TRUE

00;
scanldone [ i ] : = FALSE;
{ recover}
FORALL r IN refs
DO IF r ,mark = not_found THENrecover space of ( r )

ELSE r .mark : = not found FI OD;
recover_done [ i ] : = TRUE; -
{ wait for siblings to catch up }
WHILENOTALL recover _done
DO trace ( refs, found internal ); keep ( {} ) OD

OD; -
FOR each offspring i
DO coroutine ( make_collectod i ),

either make_leaf _garbage_collector
or internal_garbage_collector as appropriate

OD

Fig3.4b: The Parallel-Recursive Garbage Collector for Internal Areas.
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The procedure make_collector constructs a collector procedure for offspring

i. This collector procedure takes two procedures as parameters, similar to

the leaf area garbage collector already described. In fact its structure is

similar as welL It first traces the store that is definitely wanted, calling

found for any outgoing references that it discovers. Then it traces store

that must be kept III case it later proves to be accessible. Finally it

recovers inaccessible store and starts a new cycle.

The internal area's garbage collector differs from the leaf area III that the

store is being traced by the garbage collectors of the area's offspring.

Also these traces occur in paralleL It is the coordination of these parallel

threads that make the algorithm more complex. In particular, the threads

must cooperate to ensure that the get_wanted and get _keep procedures are

called only once for each cycle. Also, the threads must 'pause' after

recovering inaccessible storage to ensure that all threads have completed

the recovery.

3.5 Parallel Computations

The description just given III section 3.4 does not show how the algorithm

operates incrementally. This is achieved with short critical sections, hence

the pauses in execution of programs using the heap is very smalL
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If programs were allowed to manipulate the heap without synchronising

with the garbage collector, it would be possible for the garbage collector

to recover a variable even though there is still an accessible reference to

it. This would occur when the computation copies a reference, which has

not been found, into a variable which has already been scanned for

references. If the computation then overwrites all copies of the reference

which are stored in unscanned variables, the garbage collector will fail to

find the reference. It will therefore assume the variable is garbage and

recover the store it occupies. However a valid reference to it still

remains, in the variable which had already been scanned, and so the heap

is dangerously inconsistent.

To prevent this happening, the computation must cooperate with the

garbage collector when references are copied. A sufficient condition is that

no reference to a variable marked not found can be stored in a found

variable, a scanned variable or a root. This can be met by checking the

state of the variable whenever a reference is copied. If it is not found,
the computation would mark it found before storing the reference.

This condition can be relaxed slightly if the computation can determine

which found variable is currently being scanned by the garbage collector.

A reference to a not found variable may be stored in a found variable, as

long as it is not the one being searched. This is because the garbage

collector will find the reference when it eventually searches the found
variable.

When the computation proceeds In parallel with the garbage collection, the

value given to a new variable's flag must be carefully considered. The

obvious possibilities are found and scanned.
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Setting the flag of new variables to found would mean that the garbage

collector's termination condition may never be satisfied. This is because

the computation may produce new found variables as fast as the garbage

collector could search them.

The alternative, to mark new variables as scanned, creates problems during

the recovery phase. Suppose a new variable is allocated and a reference to

another variable is stored in it. If the recovery phase has already passed

the new variable, it will leave it marked scanned but may reset the other

variable's mark to not found ready for the next garbage collection cycle.

This leaves a scanned variable containing a reference to a not found

variable, which may cause the latter variable to be erroneously recovered.

The algorithm given by [Oijkstraet.&l. 78 J avoids this problem by scanning

the free list. This not only wastes time, but is inappropriate for systems

with variables of varying sizes. However, it must be noted that the goal

of the algorithm is to produce a system with the absolute minimum

interaction between computation and garbage collector, which it achieves.

An alternative, suggested by [Kun9&Son977J, is to introduce a further state

to the marks of variables, called new. Newly allocated variables are

marked as new. The garbage collector treats this mark in a similar way

to found during the first pass of the scanning phase. This accounts for

any variables allocated during the previous recovery phase. Subsequently,

new variables are treated in the same way as scanned variables. This is

because they need not be searched, as they cannot contain any references

to not found variables.
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~
A third technique is possible if the computation and garbage collector are

allowed to interact more closely. This is quite reasonable if they are

implemented as coroutines III one processor. If the computation can

determine which phase the garbage collector is Ill, it can mark new

variables as found or scanned depending on whether the garbage collector

is recovering or scanning.

Thus it is possible for the critical sections between computation and

garbage collector to be very small. In particular, testing and updating a

variable's flag must be performed as a critical section, as shown in figure

3.5.

Computation
copy reference to A

Garbase Collector

A is not found so ...
search found variable 8

find reference to not found A
mark A as found

search found variable A
mark A as scanned

... mark A as found

Fig3.5: Here is an example of the problems that can arise if the

computation and the garbage collector do not use critical

sections to manipulate a variable's flags.
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3.6 An Example Garbage Collection

This section presents an example, to illustrate how the garbage collection

of a recursively structured heap proceeds using the new algorithm. Consider

the organisation shown in figure 3.6a. Here the heap area is split into

two internal areas, labelled INTERNAL 1 and INTERNAL 2. INTERNAL

1 is in turn divided into two leaf areas, LEAF 1 and LEAF 2, and

INTERN AL 2 is divided into LEAF 3 and LEAF 4. The system contains

five variables, V1 to V5, of which all but V5 are accessible from a

reference stored in the root, which is considered to be part of leaf area

l.

Fig3.6a: Example Areas and References.
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"There are four references, identified by the names RI through R4. However

each time these pass through a level of the heap's recursive structure,

some state information is attached to them. This state information is

represented in the diagram by SI through S6. Each area maintains the

state of all its incoming and internal references, but not for outgoing

ones. Hence R2, which is outgoing for INTERNAL 1, internal for HEAP

and incoming for INTERNAL 2, has two states, SI in the HEAP area

and S4 in INTERNAL 2.

The following diagrams and tables illustrate the progress of the example

garbage collection. Initially all references are marked as not found. The

heap area's garbage collector performs its first tracing phase by waiting

for its two offspring to garbage collect.
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INTERNAL 1
wanted = {}
keep = {}

The garbage collector for internal

1 performs its first tracing phase

by waiting for its two offspring

to garbage collect.

LEAF 1
wanted = {}
keep = {}
accessible: = {Ri}

LEAF 2
wanted = {}
keep = {Rl}
accessible: = {}

INTERNAL Z
wanted = {}
keep = {RZ,R4}

The garbage collector for internal

2 performs its first tracing phase

by waiting for its two offspring

to garbage collect.

LEAF 3
wanted = {RZ}
keep = {}
accessi ble : = {R3}

LEAF 4
wanted = {R4}
keep = {R3}
accessible: = {}

The garbage collector for internal The garbage collector for internal

1 performs its second tracing 2 performs its second tracing

phase by waiting for its two phase by waiting for its two

offspring to garbage collect. offspring to garbage collect.

LEAF 1
wanted = {}
keep = {}
accessi ble : = {R1}

LEAF 2
wanted = {Rl}
keep = {}
accessible: = {RZ}

LEAF 3
wanted = {}
keep = {RZ}
accessible: = {}

LEAF 4
wanted = {R3}
keep = {R4}
accessible: = {}
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The heap area's two offspring, internal 1 and internal 2, have now both

finished garbage collection, because they have no references marked found.

Their marks are changed from scanned to not found ready for the next

garbage collection cycle.

The heap's first tracing phase has now completed. Next the heap garbage

collector performs its second tracing phase, again by waiting for its two

offspring to garbage collect.
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INTERNAL 1
wanted = {}
keep = {}

INTERNAL Z
wanted = {RZ}
keep = {R4}

LEAF 1
wanted = {}
keep = {}
accessible: = {Ri}

LEAF 2
wanted = {}
keep = {Ri}
accessible: = {}

LEAF 3 LEAF i

wanted = {RZ} .!-lanted = {R4}
keep = {} keep = {R3}
accessible: = {R3} accessible: = {}

LEAF 1
wanted = {}
keep = {}
accessi ble : = {R i}

LEAF 2
wanted = {R i}
keep = {}
accessible: = {}

LEAF 3
wanted = {}
keep = {RZ}
accessible: = {R3}

LEAF i

wanted = {R3}
keep = {R4}
accessible: = {}
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,
The two internal areas have now finished tracing because they have no

references marked not found. Since the heap area has no references marked

not found, it too has finished. The recovery phase of the heap area now

recovers the space occupied by any inaccessible references. Note that any

inaccessible variables will not be recovered until the offspring are garbage

collected again.

In this example the garbage collector for the heap area changes reference

R2 from scanned to not found ready for the next garbage collection cycle.

The reference R4 is marked not found, and so is recovered.

The heap area will again garbage collect by waiting for the garbage

collection of the two internal areas. The internal areas will in turn

garbage collect by waiting for the leaf areas to garbage collect.

The next diagram shows the sta·te of affairs after the internal areas have

garbage collected. This time R4 is marked not found, because the heap

area did not ask for it to be kept. Therefore the internal area can

discard the information about it.
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When leaf area four next garbage collects, it will not be told to keep V5

by its parent because R4 has now been completely discarded. It will

therefore discover that V5 is inaccessible and the storage will be

recovered.

Thus the variable V5 which was inaccessible at the start has eventually

been recovered. Each leaf area has been garbage collected many times and

this contributed to the scanning of the internal areas, which in turn

effected the scanning of the whole heap.
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-In a more realistic example, the leaf areas would contain inaccessible

variables which have never been externally referenced. These would be

quickly recovered by the independent garbage collection of the leaves. It is

hoped that the relative speed with which this local garbage is recovered

outweighs the disadvantage of the extra time taken to recover the global

garbage. This is analysed in chapter five.

3.7 Rigorous Development

This section outlines the steps required to develop the code for a garbage

collector by refining its specification. Part of the garbage collector is

formally specified and a small fragment of this is refined into code to

serve as an example. Even this modest exercise is quite lengthy, which

shows that full specification and rigourous development to the

implementation language, possibly microprogram, will require considerable

effort.

3.7.1 The Need for Rigour

The correct operation of a heap management system is of paramount

importance, whether it be part of a particular language's run time system

or providing a system-wide .heap store III a distributed system. An

erroneous garbage collector will cause programs to fail III unpredictable

ways or may cause protection violations which would compromise the

information held in the system.
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In the first instance it may be difficult to ascertain that it is the garbage

collector which is at fault, rather than the program using the heap.

However, even when the culprit has been identified, mistakes are virtually

impossible to rectify using traditional debugging techniques. This is because

of the volume of information involved and the difficultly in reproducing

apparently random effects. These factors suggest that development of a

garbage collector would benefit from the rigorous approach to program

development [Jones80], [Gries81] and [Backhouse861.

Each proponent of this approach offers slightly different methods, but

essentially the idea is that verifying that the implementation meets its

specification should proceed hand in hand with the construction of the

program. The method is described as rigourous because the proofs are

precise and accurate, just like standard mathematical proofs. A formal

proof, in the sense that every step is given in meticulous detail, could be

produced by machine [Craisen8S], but the cost of producing it may

outweigh the increase in confidence about the program's correctness.

One area which is still in the research stage is the treatment of

parallelism [Milner80] and [Hoare8Sl. However, it is likely that, in many

practical implementations, a single processor will switch between garbage

collection and normal computation. This switch will only be allowed to

occur at certain well defined points, which means the interaction can be

described in terms of coroutines. Therefore, it is not necessary to employ

the full power of parallel processes to specify or implement the algorithm.

The informal correctness proofs given by [Dijkstraet.&l. 78], [Kuns&Sons77]

and [Lamport 76] are for similar incremental garbage collectors. However

these programs have not been developed along with -their proof, rather the

program was written and then proved correct. While this is quite valid, it

is more difficult to achieve.

99



The Recursively Structured Heap

The code for the garbage collector must, therefore, be developed along

with its proof of correctness. The proof need not be completely formal,

but can contain elements of common sense, as is usual with mathematics.

3.7.2 The Specification

To illustrate how the rigorous development would proceed, a garbage

collector for a leaf area will be specified and refined. The specification will

be written in the language Z [Hayes871. This is based on elementary set

theory and provides a means of structuring specifications in an incremental

style. A glossary of the symbols used is given in Appendix A.

The specification starts by introducing two sets which represent references

and varia bles.

[Ref,Varl
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Some identifiers are now declared which, with suitable predicates, form a

description of the heap.

incom ins - internal: Ref >++ Var
outgoing: f Ref
contains: Var 8 Ref
roots: f Ref
vars : f Var

outgoing n dome incoming) = {}
outgoing n dome internal) = {}
ran ( incom ins ) U ran ( internal ) U dom ( conta ins ) !;; vars
roots U ran( contains) !;; dome internal) U outgoing

Two partial injective functions, incoming and internal, map

references to variables. Note that the same reference may be in

the domains of both functions. Some references are outgoing, that

is they refer to variables in other areas, and not to variables in

this area. The roots may contain references to variables in other

areas or to those in this area, given by vars.

The schema COLLECT defines which variables are to be recovered, given

a set of references which are known to be wanted and a set which must

be kept in case they later prove to be accessible. It also defines those

references which are found to be accessible from the roots or wanted

references.
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COLLECT ~
~anted, keep, accessible'
recover' : f Var

f Ref

~anted U keep ~ dome incoming
accessible' = outgoing n ~
recover' = vars \ (incoming U internal)[ ~ uk)

~here
~ ~ internal; contains )* [ roots U ~anted )
k ~ ( internal ; conta ins )* [ keep )

Those references which are wanted and those that must be kept

are all incoming references. Those references that can be found by

following internal references from the roots and wanted references

are given by w. Similarly k gives those reachable from the

incoming references which must be kept. The outgoing references

which are definitely wanted are given by the set a.ccessible'.

Varia ble are recovered if they are not referred to by wanted or

kept references.

This completes the specification of the leaf area's garbage collector,

however some further definitions are required for the refinement. The

generic function _rnap_ maps a set of values of some type X and a value

of another type Y to a function from X to Y. This resulting function

maps all values in the set to the single value.

[X, Yl ================1
(_ map ): ( f X x Y ) -+ ( X -+ Y )

1:;1 X : f X; y : Y X '¢ {}

• dome x map y = x
1\ ran( x map y = {y}

1:;1 x f X; y Y x = {}
• x map y = {}
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The specification is to be refined to a scanning garbage collector, which

uses marks to control the scan. Therefore a set of marks is introduced to

represent these. Three identifiers are declared to represent the three

different kinds of mark which will be used.

[Mark]
not_found, found, scanned : Mark

~{ not_found, found, scanned} = 3

The predicate ensures that the three types of mark are all distinct.

Other types of mark may exist in the set, but these are not used.

3.7.3 The Refinement to Code

The specification of the leaf area's garbage collector will now be refined

to a language, based on Dijkstra's guarded commands [Oijkstra7S],whose
variables are sets and functions which correspond to the types in Z.

Further refinement would be necessary to derive code expressed using the

control and data structures found in the target language. In particular this

would involve data refinement, such as refining sets into lists. These steps

are omitted but would proceed in a similar fashion to those presented.

The specification, given by COLLECT, can can be refined to a two step

process which first identifies the wanted variables and then those that

must be kept in case they later prove to be accessible.

COLLECT ~ COLLECT1 COLLECTZ

This refinement can only be made if the following proof obligations can be

satisfied.
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1. pre COLLECT r pre COLLECT1
2. pre COLLECT A COLLECT1 r (pre COLLECTZ)'
3. pre COLLECT A COLLECT1 A COLLECTZ' r COLLECT[_"/_']

The first states that COLLECT1 is applicable whenever COLLECT is

applicable, the second ensures that COLLECT2 can be applied in all states

that result from applying COLLECT1 and the third states that the result

of applying COLLECT1 and then COLLECT2 satisfies the specification of

COLLECT. The proofs of these, and all other propositions made in this

section, are relatively straightforward and are given in Appendix D.

The following specifications are proposed for COLLECT1 and COLLECT2:

COLLECT1 ~
keep, keep', wanted, accessible', foundin' IP Ref

wanted ~ dome incoming )keep = keep'
accessible' = outgoing n w
foundin' = w \ outgoing

where
w :9: ( internal ; conta ins )* ( roots U wanted )

COLLECTZ ~ ~
keep, foundin, accessible, accessible'recover' : IP Var IP Ref

keep ~ dome incoming)
accessible' = accessible

recover' = vars \ (incomihg U internal)[ foundin uk)
where

k :9: ( internal ; conta ins )* [ keep )

The specification of the first sequent, COLLECT1, can be further refined

into an initialising step and a scanning phase, using marks to control the

scan.

COLLECT1 ~ INIT1 SCANl
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The proof obligations that must be satisfied are similar to those of the

previous step.

4. pre COLLECT1 ~ pre INIT1
5. pre COLLECT1 A INIT1 ~ (pre SCAN1)'
6. pre COLLECT1 A INIT1 A SCAN1' ~ COLLECT1[_"/_'1

The following specifications are taken for the two steps:

INIT1 ~
marks, marks' : Ref -++ Mark
~anted, accessible', keep, keep' IP Ref

keep' = keep
dam ( marks ) = dam ( internal )
marks' = ( dome marks ) map not_found )

~ ( (roots\outgoing U ~anted) map found)
accessible' = roots n outgoing

SCAN1 ~
marks, marks' : Ref -++ Mark
accessible, accessible', keep, keep', foundin' IP Ref

accessible' = accessible U (refs n outgoing)
marks' = marks ~ (refs\outgoing map scanned)

~here
refs ~ marks-1

; ( internal ; conta ins )111 0: {found} ]I

keep' = keep
ran( marks ) ~ { not_found, found}
ran ( marks' ) ~ { not_found, scanned }
dome marks ) = dome internal )
dome marks' ) = dome marks )
dome marks' ~ {scanned} ) =' foundin'
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The scanmng phase can now be refined into a initialised loop construct.

The initialising step establishes an invariant condition, which relates the

state of the variables before the execution of the constuct to their state

after each iteration. The simplest form of the construct is used. This has

only one guard and so effectively eliminates the non-determinism.

SCANl !; INV do GUARD ~ BODY ad

Total correctness of this refinement is assured by satifying the following

propositions:

7. pre SCANl ..pre ( INV 1\ .., GUARD' )
8. pre SCANl 1\ INV 1\ .., GUARD' ..SCANl
9. pre SCANl 1\ INV 1\ GUARD' .. (pre BODY)'
10. pre SCANl 1\ INV 1\ GUARD' 1\ BODY' .. INV[_"/_'J

1\ bound(marks" )<bound(marks' )
11. pre SCANl 1\ INV 1\ GUARD' ..bound( marks' ) ~ 0

The first states that there is a state In which the loop will terminate.
That is the invariant holds but the guard does not. The second ensures
that the specification of SCAN1 is satisfied after the loop has terminated
and the third that the loop body must be valid in all states In which it

may be applied. Termination is ensured by the fourth proposition, which

states that there is a measure that decreases for each iteration. The last

proposition states that the measure is applicable in all required states.
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The following schemas specify the parts of the loop construct:

INV ~
marks. marks' : Ref .....Mark
accessible. accessible'. keep. keep' : f Ref

accessible' = accessible Urn outgoing
where

r ~ marks-1;(marks,-1({scanned})~internal;contains)*({found})

marks,-1[{not_found}) n marks,-1;internal;contains[{scanned})={}
marks-1({found}) n marks,-1({not_found}) = {}
dome marks' ) = dome marks )
keep' = keep

GUARD ~

marks Ref .....Mark

3 next : Ref • marks( next ) = found

BODY ~
marks. marks' : Ref .....Mark
accessible. accessible'. keep. keep' f Ref

keep' = keep
3 next : Ref I marks( next ) = found •

marks' = marks
• ( (marks-1({not found}) n

contains[{internal(next)})) map found)
• {next~scanned}

accessible' = accessible
U (contains[{internal(next)}) n outgoing)

bound : ( Ref .....Mark) -+ N'

~ m Ref .....Mark • bound( m ) = ** m ~ {scanned}

Figure 3.7 a shows the refinement steps which have been presented in this

section. Further refinement would produce code for the initialisation step

and the second phase of garbage collection.
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INITl
INUCOLLECTl ;
;

COLLECT ; SCANl DO
GUARD -> BODYCOLLECT2 OD

Fig3. 7a: Part of the specification for a leaf area's garbage

collector is refined to a guarded command language

program.

Figure 3.7b shows the guarded command program which is the final result

of the refinement of COLLECTI.

INTI1;
do

3 next : Ref • marks( next ) = found
~

choose next : Ref I marks( next ) = found
marks := marks. { next ~ scanned };
do

3 r : Ref r e contains( next ) • marks( r ) = not_found

od
choose r : Ref Ire contains(next) A marks( r ) = not_found

marks := marks. { r ~ found}
od;
COLLECT2

Fig3.7b: The guarded command language program resulting from

further refinement .of the inner loop.
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The complete garbage collector would be developed in much the same way

as this example portion. However In this example only the control

structures were refined. In practice it will be necessary to refine the data

structures used as well. For example, in the garbage collector of an

internal area, the actions of the get_wanted and get_keep functions must

be refined into information held in tables. These would be refined into

centralised or distributed indirection tables as appropriate.

It will also be necessary to specify the interaction between elements of the

distributed system, In particular the distributed termination protocols

described in section 4.4. For this the language Z does not seem

appropriate, and it may be that the complete garbage collector will be

specified using some Z and some CSP [Hoare85].

3.8 Summary

This section has suggested that recursively structuring a heap into separate

areas, which are garbage collected largely independently, will give a better

utilisation of memory than simply garbage collecting the heap as' a whole.

Those areas which are divided into more areas are garbage collected by

combining the effects of garbage collecting these offspring areas, rather

than performing a separate'" global scan" such as that described by

[Ali&Haridi85J. The structuring does not alter the user's view of the heap,

but should allow some inaccessible variables to be recovered more quickly

compared with the use of an unstructured heap.

The garbage collection algorithm proposed for use with the recursively

structured heap is of the marking variety. It was presented initially as a

recursive algorithm and this was informally refined to a more practical

algorithm In which parallel processes independently garbage collect the leaf

areas. These processes coordinate their actions, using structures which are

recusively created, to garbage collect the higher level areas.
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The garbage collection processes and the computation processes using the

heap must cooperate to prevent accessible variables being marked

inaccessible and to ensure that each garbage collection cycle completes.

This would add some synchorisation overhead to a system where

computation and garbage collection are executed on separate processors.

However in a single processor implementation their interaction would be

controlled like coroutines, with no extra overhead.

In view

collector,

of the importance of the

it is suggested that the

correct operation of the garbage

code should be derived from the

specification using rigorous program development techniques. To illustrate

this a part of the garbage collector for leaf areas was specified, using Z,

and refined into a guarded command language program. From this the

refinement step to executable code is relatively straightforward. This small

exercise in rigorous development has shown that such production of a

complete garbage collector is possible, though it will require considerable

effort.

The important difference between the new algorithm and other distributed

garbage collectors is that it guarantees to recover all inaccesible variables,

without needing to move them between areas. In addition the heap is

recursively structured, whereas other distributed garbage collectors only

work for two level heaps. Also, unlike other distributed scanning garbage

collectors, the scan is effected by combining the results of the lower level

scans rather than with an extra scanning activity.
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4. Practical Implementation

This chapter discusses the practical implementation of the garbage collector

described, in abstract form, in chapter three.

4.1 Indirection Tables

A number of practical problems arise when it comes to implement the

garbage collector described in chapter three.

First, within one computer of a distributed system, references are likely to

be small, occupying one or perhaps two words. However references to

variables stored in other computers are likely to be much larger, because

they must include the network address of the computer as well as the

variable's address within it. It would be inefficient to make all references

large enough to accomodate inter-computer references, because the majority

will refer to variables In the same computer. However, it would be

convenient if all references were the same size, as this would allow

software to manipulate them easily.

Secondly, storage would be wasted if global garbage collection information

were reserved for all variables, since the majority of them will only be

referenced locally.

Thirdly, each computer's local garbage collection is relatively autonomous,

and so is any store compaction that takes place. However, if a variable

which is referenced from outside the computer is compacted, all references

to it In the distributed system as a whole must be updated. This could

involve an extremely large search.
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Each of these problems can be solved by using indirection tables. An

indirection table for variables referenced by other computers would contain

the variable's local address and its global garbage collection information.

This solves the last two problems. An additional indirection table for

outgoing references solves the first problem. This would contain the

network address and local address of the referenced variable.

A further advantage of an outgoing indirection table is that the garbage

collector's network traffic can be reduced. If a computer has many

references to a variable in another computer, the garbage collector will

send a mark message for each of the references. If all the references use

the same outgoing entry to refer to the variable, a flag on the entry

could indicate that the mark message has already been sent. Thus only

one message would be sent per variable rather than one per reference. The

flags would be reset during the garbage collector's recovery phase.

A further possibility is that one incoming indirection table entry can be

referred to by outgoing entries in many different computers. Not only does

this save space in the incoming indirection tables, but leads to the

reference counting optimisation described in section 4.6, although this does

lead to complications with network partitioning, as discussed in section 4.7.

4.2 Compressing the State Information

If a central indirection table holds information about several levels of

inter-area references, it is possible to compact the state information

considerably. Each inter-area reference may pass through several levels of

area, and state information is required at each level. However, it can be

seen from the algorithm that if a reference is wanted at a high level, it

is treated as wanted at all lower levels.
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It is sufficient to record only the level of the highest level reference

referring to a variable, along with the highest level at which it becomes

found or scanned. The central indirection table need therefore only contain

one entry per variable, at the expense of two extra fields to record the

level of reference and the level at which it is found or scanned. Not only

is this likely to save space, but it should also speed up addressing

varia bles using high level references. Instead of several indirections, through

each level's indirection table, only one indirection is taken regardless of

the level of the reference.

level )9not found ~

level 3
fa u nd I-------i ~----- Referenced atlevel t ~Found at ~

level 31--->"<------t~level 2not found

DD
Fig4.2: State information for the garbage

collection of several levels ....

..... can be compacted.

The use of logical areas, described in section 4.5, is an important example

of garbage collection with centralised control and benefits from using the

compression technique.
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4.3 Centralised vs. Distributed Control

If control of the garbage collection of an area is centralised in one

computer, the state information for all internal and incoming references

can be held in one central indirection table. In its simplest form the table

is an array. For each reference the table records its state in the garbage

collection, that is whether it is not found, found, scanned or new, and

some addressing information. This comprises the address of the offspring

containing the variable referred to, and some site dependent address, which

may be a further index into an indirection table or an actual physical

address.

Fig 4.3a An indirection table held centrally allows garbage

collection to be controlled easily but can become a

bottleneck.

A gateway connecting two networks, each of which is garbage collected as

an independent area, is a suitable place for a centralised controller. All

reference information must pass through the gateway, so garbage collection

information is easily maintained. In such a configuration, extra processes

run in the gateway to handle the higher level garbage collections, but

only as controllers, they do not themselves perform any scanning. If,

however, the networks are connected by more than one gateway, the

gateways must cooperate and the benefits of centralised control are lost.
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The offspring garbage collectors communicate with the centralised controller

to establish the wanted and keep sets for the scans. These may be

obtained piecemeal. Each time the offspring requests an additional piece a

simple scan can be used to find more members of the set. When the

offspring find accessible outgoing references, they inform the centralised

controller, which marks the reference accordingly.

With control of the garbage collection centralised, it is relatively

straightforward to detect termination of the scanning phases, using much

the same technique as given in the abstract algorithm of chapter 3.

However, the problem with this approach is that the centralised controller

becomes a bottleneck in the system.

For a loosely coupled network in which each computer is a separate

garbage collection area, control of the garbage collection needs to be

distributed amongst all of the computers, to avoid the bottleneck of a

centralised controller. Each computer must record information about the

references which it holds for variables In other computers, and about

variables it holds which are referenced by other computers.

D

Fig4.3b An indirection table distributed amongst the computers

in the system speeds access, but synchronisation is more

difficult.
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To do this each computer contains part of the indirection table of the

system. The entry for a variable which is remotely referenced is held in

the computer which contains the variable. Within each computer, the

indirection tables for each level may be compressed using the technique

described in section 4.2.

With the reference information distributed amongst the sites interested in

it, it is easily and speedily accessed with no centralised controller causing

a bottleneck. However there is a problem in determining when a garbage

collection scan has completed, since the required information is distributed.

This is dealt with in the next section.

4.4 Distributed Termination Detection

The general problem of distributed termination detection is as follows.

Each computer, or node, in the system is independently evaluating part of

some computation. In the course of its computation, a computer may send

a computation message to another, causing the receiver to perform more

work. However, when a computer has completed its task, it cannot send

any computation messages. Hence the computation exhibits a stability

property, in that once all parts of the computation are completed, it does

not start up again. The problem is for the computers to detect when the

computation as a whole has finished.

In the scanning phase of a distributed garbage collection, each garbage

collector has finished its work .when it has no more found variables that

require scanning. While it is scanning, the garbage collector may discover

a reference to a variable in another area. It will send a mark message to

that area's garbage collector, which may cause it to continue its scanning.

Once there are no more found variables in the area, no mark messages

may be sent and the scanning has finished. This is the state the garbage

collectors must detect, however it is sufficient for only one of them to

detect it, because it is then able to notify all the others by broadcasting.
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A solution to the problem of distributed termination detection is offered

by [Francez801. 0 ne node is distinguished from the others as the

controller, which is the node that detects termination: It sits at the root

of a spanning tree which covers each node in the distributed system. For

the termination detection algorithm, nodes only communicate with the node

that is their parent in the spanning tree and with their children.

The algorithm starts with the controller sending a wave of 'test' messages

down the tree. On receipt of such a message, an internal node that has

not completed its part of the distributed computation replies immediately

with a 'busy' message. If a node has completed its computation it

propagates the 'test' message to all its children and waits for replies from

them. While it is waiting it freezes, that is it refuses to take part in the

distributed computation. If any other node attempts to communicate with

it, that node must wait. Leaf nodes which have completed their

computation return an 'idle' message.

Once a frozen node has received replies from all its children it returns

either a busy message, if any of the replies are busy messages, or an idle

message, if all the replies are idle messages. Eventually the controller

receives a 'busy' or an 'idle' message. If an 'idle' message is received, the

controller can conclude that : the distributed computation has completed.

However, if a 'busy' message is received the controller must propagate a

wave of 'unfreeze' messages down the tree to allow the frozen nodes to

continue.

The problem with this algorithm is that the distributed computation is

frozen while termination detection takes place. In the case of distributed

garbage collection this could introduce pauses in execution, which, it has

been argued, are highly undesirable.
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-
An improved algorithm IS offered by [Francez&Rodeh821. [Topor84]

develops the same algorithm, but in a rigorous way. This algorithm

achieves termination detection without freezing the distributed computation.

The algorithm starts by propagating a wave of 'idle' messages up the

tree. Leaf nodes send an 'idle' message to their parent when they become

idle. An internal node propagates the 'idle' message when it has received

messages from all its children and is itself idle. When a node sends the

'idle' message, it sets a flag, 'remained_idle', to true. If an idle node

receives a computation message that causes it to start computing again,

the remained_idle flag is set to false.

Once the controller receives a 'idle' message, and is itself idle, it knows

that all the 'remained_idle' flags have been set. It now propagates a wave

of 'test' messages down the tree. Once this wave reaches the leaves,

another wave of messages is returned which reports on the state of the

'remained_idle' flags. In fact this wave is combined with the first wave. It

returns either a 'busy' or 'idle' message depending on the state of the

'remained_idle' flags and sets the flags back to true.

A similar solution is proposed by [Oijkstraet .&1 .83], though this arranges

the nodes in a ring. This arrangement effectively dispenses with the wave

of 'test' messages by propagating one message around the ring. The

controller waits until it is idle and then sends an 'idle' message around

the ring. On receipt of the message, a node propagates either a 'busy' or

an 'idle' message depending on the value of its 'remained_idle' flag and

whether it is itself still busy .. The flag is reset when the message is

propagated. When the controller receives an 'idle' message it can conclude

that the distributed computation has completed.
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With the nodes communicating via a spanmng tree, at best 2(n-L)

messages are required to detect termination, while the ring algorithm gives

a best case of n messages. However with the rmg arrangement,

termination detection could take longer to complete because messages are

not sent in parallel. Using a spanning tree at worst 2( n-l ) messages are

needed to detect that the computation has not yet completed, while with

a ring n are always required. If may therefore prove better to use a

spanning tree if termination detection usually fails.

A possible compromise would be to span the nodes with a lattice like

structure, where the top and bottom are both the controller. This allows

messages to be propagated in parallel, gIvmg the advantages of the

spanning tree algorithm while avoiding the wave of test messages it

requires.

The algorithms just described allow a single controller to detect

termination. However, for the distributed garbage collector it would be

desira ble if any of the nodes can detect termination of the scans. This

would make each system identical which would avoid configuration

problems. One possible way of achieving this is if each node has 'n' flags,

and 'n' termination algorithms proceed in parallel, each controlled by a

different node. However this causes many more messages to be sent across

the network.

The number of messages can be reduced if a node which is trying to

detect termination communicates with a busy node. The node may now

cease trying to detect termination because it can rely on the busy node

doing this when it becomes idle. This is essentially the aim of algorithms

described by [Rana831 and [Aroraet. ...1.871. The former requires the use of

synchronised clocks, which are expensive to maintain, but the latter

presents a simpler solution.
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4.5 Logical Areas

The parallel-recursive algorithm which is presented by this thesis has been

developed for garbage collecting distributed heap stores. However, it may

also be used within a single physical memory, where the store is divided

into logical areas. Here, each variable is assigned to one logical area,

though may be physically allocated anywhere in the store. References may

be stored freely in any variable, thus the user perceives no difference

between intra-area and inter-area references.

Such a system with logical areas may be used to provide a limited degree

of isolation between the users of a shared heap. If the users are each

given a different logical area in which to allocate their variables, garbage

collection is largely performed on a per user basis. The time used garbage

collecting a logical area can then be taken from the owning user's cpu

time budget. In this way users who produce large amounts of garbage, and

consequently require a larger percentage of garbage collector activity,

cannot deprive other users of cpu time.

Similarly, each logical area could be given a physical store budget. When

new variables are allocated, the budget is decreased and when the garbage

collector recovers inaccessible variables it is increased. The user is

prevented from allocating a variable if it would cause the budget to

expire. In this way, one user of the shared heap cannot allocate all the

available store, to the detriment of other users.

This ability to control the usage of the shared heap is most important III

multi-user systems. It is also relevant III systems where availability of

service is of concern. By allocating different sub-systems to different logical

areas, it is possible to contain the damaging effects of errant programs

which consume store and, indirectly through excessive garbage collection,

cpu time.
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The use of logical areas to control the activities of users is to be used III

the SMITE capability computer, both in its main heap store and capability

based, write once backing store [Wiseman88]. The computer is being

developed for computer security applications, and logical areas are required

to provide protection from denial of service threats.

The use of logical areas within one computer's memory is another example

garbage collection with centralised control. Here all the information about

references between areas is resident in one place, making distributed

termination detection unnecessary.

4.6 Reference Counting

Indirection tables were introduced in section 4.1 as a solution to a number

of problems. However their use presents the opportunity to optimise the

garbage collection by using reference counting.

Each entry in an incoming indirection table would record the number of

times it is referenced by an outgoing entry. When an outgoing entry is no

longer required, the count of the incoming entry it refers to is

decremented. If a reference count reaches zero then the incoming entry is

no longer required and may be recovered.

In systems where the majority of garbage is not cyclic, reference counting

should prove to be a worthwhile optimization.
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references to the variable, so its
outgoing indirection table entry is
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1- If the decrement overtakes the
increment, the reference count will
drop to zero and incomingindirection
table entry will be removed, leaving
the reference in A dangling.

Fig4.6: Problems can arise when references are moved between computers.

In a distributed environment care must be taken to ensure that

undelivered requests to increment a count are taken into consideration

before recovering any entries. Problems arise if messages sent across the

network are reordered or when references are moved to other computers,

as shown in figure 4.6.

122



Practical Implementation

These problems can be overcome by using the weighted reference count

mechanism proposed by [Watson&Watson87]. This is where each reference

contains a weight and the variable contains a count which is the sum of

the weights. When a reference is copied, its weight is split between itself

and its copy. In this way a variable's reference count need never be

incremented.

This scheme is ideal for the proposed reference count optimisation because

the weights are held in the outgoing indirection table entries, and so their

size is not a burden.

The method proposed by Watson and Watson for handling the case when

a reference with a weight of one is copied, presents some difficulty. Their

solution is to introduce an extra level of indirection when this occurs. A

new variable is created which contains the reference to be copied. Then

references to this variable are copied instead.

A more appropriate solution to this problem is to abandon reference

counting for that particular incoming indirection entry and rely on the

scanning garbage collector to recover it. This is achieved by setting the

weights of the original outgoing entry and the copy to zero. The reference

count in the incoming entry· is now greater than the sum of the weights

in the outgoing entries, and so it will never drop to zero. Note that,

whenever an outgoing entry with a weight of zero is discarded, there is

no need to send a decrement message.
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4.7 Fault Tolerance

Any algorithm designed for use in a distributed system must consider the

effects of failures. Communications within distributed systems cannot be

considered completely reliable. Messages may be corrupted or lost

completely, they may be delayed, delivered out of order or delivered more

than once. Individual computers within distributed systems may crash,

losing the contents of their memory, or may be temporarily isola ted from

others due to network failures. A taxonomy of such faults is given by

[Ezhi lchel van&Shrivastava85 ] .

4.7.1 Message Loss and Corruption

It is assumed that corruption of messages can be detected by adding

suitable checksums and redundancy. Corrupt messages can then be

discarded and treated in the same way as lost messages. However, other

forms of failure can still be encountered.

Such communications failures affect both the distributed garbage collection

and distributed computation that uses the heap. However, only the

problems of the former are considered here. Communication between the

garbage collectors takes place at three different times: sending a marking

message, detecting termination of the scan of an area and updating

reference counts, if they are used.

Marking messages, sent when ,a garbage collector discovers an outgoing

reference is accessible, may not be delivered. If no further action is taken,

the variable may erroneously be identified as garbage. However, if the

marking message is sent more than once, no problem arises. The first

message causes the variable to be marked as wanted, so subsequent

messages have no effect.
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Therefore, to avoid the problem of message loss, a simple retry scheme is

sufficient. The recipient of a marking message acknowleges it by returning

a special ack message. If the sender fails to receive an ack before some

timeout period expires, it sends the mark message again. Note that loss of

the ack message causes no problem, because the ma-rk message may be

received more than once without ill effect. One possibility is that the

timeout period could be up until the end of the scan, which would allow

plenty of scope for blocking together multiple ack messages.

If a marking message is delayed for a long time, it may arrive during the

next scan phase. If the information it carries can be validly interpreted in

the context of the current scan phase, the mark can proceed. At worst

this will cause some inaccessible variable to be marked as wanted.

However, if the information does not make sense, the message can be

safely ignored. The only danger is if the information is interpreted in an

invalid way, for example marking a variable which no longer exists. This

must be avoided, because the space used by the marks of the old variable

may now be used as part of the contents of a new variable. The recipient

garbage collector must ensure that the marking messages it receives are

applicable to the current context. Hopefully this is simply a matter of

checking that the indirection table index is in range, however it may be

necessary to include large sequence numbers III all mark messages,

indicating which scan they form part of.

If communication faults affect the termination detection algorithm, the

garbage collection scan may never be terminated or may even terminate

early causing accessible variables to be discarded. Termination detection is

achieved by passing tokens around the nodes. These will need to be

repeatedly sent until a positive acknowlegement of their arrival is obtained.

However, they must be delivered exactly once to avoid the problem of

premature termination detection. The "orphan killing" technique of

[Panzieri&Shrivastava851 can be employed to ensure this.
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Messages which decrement the reference counts for inter-area references

also suffer from the various forms of failure. However, reference counting

is only suggested as a performance improvement to the main scanning

algorithm. Therefore, if a reference count is actually too high no problem

is caused. This happens naturally with cyclic structures' and when, with the

weighted reference count scheme, the weights in the outgoing indirection

table entries drops to one.

Decrement messages must not be delivered more than once, however it is

safe for them to be completely lost. If the distributed system can

guarantee that messages are never duplicated, it is sufficient to simply

send the decrement message once and assume it arrived safely. However, if

message duplication is possible, steps must be taken to ensure that

duplicate messages are ignored.

Perhaps the simplest solution to the problem of duplicate decrement

messages is to sequence number all decrement messages which travel from

one computer to another. This would allow duplicate messages to be

discarded, though it may also discard some out of order messages.

4.7.2 Network Partitioning and Computer Crashes

A further problem of distributed communication is distinguishing between

network partitioning, where failures in communications equipment prevents

one part of the distributed system communicating with the other, from

crashes of individual computers. In the former case, variables still survive

and may become accessed in future if the network mends. In the latter

case the variables are destroyed, and hence any variables they refer to on

other machines may become garbage.
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If a computer cannot communicate with another, it cannot find out which

of the variables that have been referenced by that computer are still

required. It could keep all these variables, and any accessible from them,

in case communcations are reestablished and the other computer still has

references to the them, or it could assume that the' other computer has

crashed and therefore has no references to the variables.

In either case it is necessary to ascertain which variables may be

referenced by the other computer. This is either to preserve them in case

the connection is re-established or to discard them if the other computer

is assumed to have crashed. In order to do this, a one to one

correspondence between outgoing and incoming indirection entries must be

preserved. This unfortunately has a nugatory effect on the reference

counting optimisation described in section 4.6.

When a computer holding externally referenced variables crashes, the

variables are lost. However the references held in the other computers

must not be left dangling. This can be achieved by recording the time at

which a computer is initialised. This time is made a part of all references

to variables stored in the computer. When an external reference is used a

check is made to see if the time in the reference is the same as the

time that the system was initialised. If not the system must have crashed

and so the reference is invalidated.

A technique that uses this kind of approach is described III

[Mancini&5hrivastava871. Here a fault tolerant reference counting garbage

collector for a distributed system is integrated into an orphan detection

and killing system for remote procedure calls.
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4.8 Weak References

Some systems have two forms of reference, weak and strong. They behave

in exactly the same way with regards to addressing variables, but only

strong references protect a variable from garbage collection. If a variable

is only referenced by weak references, all the references can be changed to

nil and the storage occupied by the variable recovered.

4.8.1 Applications for Weak References

Weak references are used in some LISP systems [Lieberman&Hewitt831 and

in the Flex capability computer [Fosteret.a1.791. They can be used to

maintain information about an object for as long as it is required, without

causing the object to be permanently accessible. Figure 4.8a gives an

example. Here a table IS maintained recording information about various

objects; three are shown. Object, is accessible by some strong references,

and so the weak reference, shown as a dashed line, remains. However

object, is not referenced by an accessible strong reference. Therefore the

weak references can all be turned to nil and the object can be recovered.

When the table is scanned, the pointer to object , will be found to be nil,

and so the information can be discarded by removing it from the table.
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BEFORE AFTER

Fig4.8a: Weak references do not protect an object from

garbage collection. When all the accessible

references to a variable are weak, they turn to

nil and the object is recovered.

In the Flex distributed system [Foster&CurrieB6J, weak references are used

to maintain information about inter-computer references. A similar scheme

is used by [VestalS? J. A list of outgoing references is maintained for

garbage collection purposes. To detect when the entry for an outgoing

reference is no longer required, the list elements refer to the variable that

represents the remote object with a weak reference. The users refer to

this variable, probably with strong references, rather than the list element.
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Fig4.8b: The list of outgoing references uses shaky references

to allow them to be garbage collected. The remote

address may be stored In the variable which is the

local representation of the remote object or In the

list element.

The remote address of the object may be stored in either the list

elements or the variable which the users refer to, as shown in figure 4.8b.

In the former case the address is available after the object is no longer

referenced, and so can be used, for example, to decrement a remote

reference count. In the latter case the address is not available, but the

address is available without extra indirection.
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Weak references may also be used to remove redundant processes. These

arise from eager evaluation in applicative systems [MoorB2L The process

refers to a variable in which it will place its result, as shown in figure

4.8c. The process' client also refers to this variable, but only for as long

as the result is relevant. The computer's scheduling queue uses weak

references to refer to processes, so it does not keep them alive. A strong

reference to the process must be kept in the result variable. This keeps

the process alive, but only for as long as the result variable remains

alive. If the result of a process becomes irrelevant the user discards all

references to the result variable, therefore it and the process become

garbage. The scheduler will notice a nil reference in its scheduling list,

which it will remove.

Scheduler
Queue

\ process/F------~.._O_b_je_c_t_;...:I.....;.:::~".':.tl:_R_e_Su_l_t_jl"

Fig4.8c: The scheduler refers to processes with weak references

so a process is garbage collected away if it is no

longer relevant.

Special purpose garbage collectors for eliminating redundant processes have

been proposed by [Baker&He"'litt771, [Grit&Pase81l and [Hudak&Keller82L

These all involve making processes a special case during garbage collection.

However it is unclear whether they achieve superior performance over a

system using weak references.
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4.8.2 Garbage Collection of Weak References

Before describing how weak references are treated during garbage

collection, it is worth noting that their introduction violates the first

essential criterion given in section 2.1.1. This is because the garbage

collector can legitimately alter the shape of the accessible structure, by

changing weak references to nil when no strong reference to the variable

is accessible. Thus the safety criterion has to be relaxed slightly.

The garbage collector must be able to determine when a variable is

referred to only by weak references. To this end, the state flag of each

variable is allowed to take the value weakly found, III addition to

not found, found, scanned and (perhaps) new.

When the garbage collector finds a weak reference, while searching a found

variable for references, it examines the state of the variable it refers to.

If the variable is marked as not found, this is changed to weakly found,

otherwise it remains unchanged. When the search finds a strong reference

to a not found or a weakly found variable, it marks the variable as

found. This is summarised in figure 4.8d.

On finding chanse to Weak Reference Strong Reference
not found weakly found found
weakly found weakly found found
found found found
scanned scanned scanned
new new new

Figure 4.8d: Effect on finding a reference to a variable.
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At the start

marked either

of the garbage collector's

not found, weakly found

recovery phase, variables are

or scanned Those marked

not found are inaccessible and are recovered. Those marked scanned are

probably accessible and are kept, with their mark being changed back to

not found ready for the next garbage collection cycle. Those marked

weakly found are only referenced by weak references.

The garbage collector must change all references to the weakly found

variables to nil. However, to avoid an extensive search for them, a

tombstone [Lomet7S1 is erected on the site of the variable. This can be

done by flagging either the variable itself or its indirection table entry to

indicate that the variable has become garbage. At this point it may be

possible to recover some or all of the storage of the variable.

Whenever a weak reference is used by the computation, a check must be

made to ensure that the variable it refers to has not become garbage and

been replaced by a tombstone. If it has, the reference is immediately

changed to nil and the access is denied. If the variable is still alive, the

computation will mark it to indicate that it is still accessible.

While the garbage collector is searching accessible variables for references,

it checks any weak references it finds to see if they refer to tombstones.

If so the weak reference is replaced by nil. Once the scan phase has been

completed, all weak references to tombstones will have been replaced by

nil. Therefore the existing tombstones are no longer needed and can be

recovered by the recovery phase.

Thus the basic scanning garbage collector is readily extended to cater for

weak references. The garbage collector described. in chapter 3 is similarly

extended, allowing weak references to be used in a uniform way throughout

a distributed system.
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4.9 Summary

This chapter has considered the practical implementation of the garbage

collector proposed in chapter 3. The use of indirection tables for

inter-computer references is proposed as this has a number of advantages.

In particular it is possible to compact an area independently of all others.

A technique has been given for compressing the information in a hierarchy

of indirection tables, if these are held centrally. This not only saves space

but speeds accesses to external variables.

It has been shown that garbage collection may be controlled either

centrally or in a distributed fashion. With the latter there is the problem

of reaching consensus, in a distributed environment, about the completion

of each phase of garbage collecton. However, some techniques give in the

literature have been examined and discovered to be entirely suitable.

Some consideration has been given to extending the idea of a recursively

structured heap to the memory of an individual computer. This could be

used to independently garbage collect areas used by separate users. Thus

those users who create most garbage have to spend more time garbage

collecting their own area, without affecting users who create little garbage.

The use of reference counting as an optimisation has also been considered.

This allows externally referenced inaccessible variables, which are not part

of a cyclic structure, to be recovered more quickly. The use of indirection

tables for collecting together outgoing references is suggested as a way of

greatly reducing the reference count traffic. It is proposed that the

weighted reference count scheme be used to overcome problems of

maintaining the reference counts in a distributed environment.
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The fault tolerant aspects of the garbage collector have been addressed.

The most serious problem is III resolving whether an incommunicative

computer in the system has crashed or the network has partitioned, since

different actions are required in each case.

A further aspect considered in this chapter, is the use of weak references.

A number of uses for these are described, including removing redundant

processes, and a simple extension to the garbage collection algorithm has

been given to cater for them.

135



Analysis & Comparisons

5. Performance Analysis & Comparisons

This chapter presents an analysis of the performance of the new

incremental garbage collector for a recursively structured heap. First a

simplified model is developed which shows the importance of a measure

called remoteness In determining the memory utilisa tion that can be

achieved. Secondly, experimental results are presented which suggest that

the use of a structured heap and the new algorithm does give improved

utilisation of memory over the use of an unstructured heap and a simple

garbage collector.

To study the behaviour of the recursively structured heap and its garbage

collector, two experimental systems were constructed. One creates logical

areas within the heap memory of a capability computer and the other uses

a simple distributed heap store. Both systems allow the execution of real

programs to be measured.

5.1 Analysis of Steady State Behaviour

This analysis considers just one level of recursion In the structuring of the

heap. An intuitive inductive argument could be made to assess the

algorithm's performance in' the general case. It is assumed that the heap

is in a steady state and the division into areas is such that each behaves

identically.

With the system in a steady: state the rate at which garbage is generated

equals the rate at which new variables are allocated. That is the total

size of all the variables that become garbage per second equals the total

size of all new variables allocated per second. Under these conditions the

total size of all accessible variables remains constant.
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Now consider the mmimum size of store required to run the computation

without exhausting the free store. Clearly this must be large enough to

hold all the accessible variables and any inaccessible variables which have

not been recovered. The maximum of this value occurs just before a

garbage collection cycle is completed when the variables identified as

garbage are recovered. At this point the store contains the accessible

variables, the inaccessible variables that are about to be recovered and the

garbage that has been generated during the cycle but which has not yet

been identified as inaccessible.

The store allocated In the heap therefore gradually rises during a garbage

collection cycle and abruptly falls as garbage is recovered at the end. This

gives rise to the saw tooth graph shown in figure 5.1a. Note that the

size of the garbage recovered is the same as the size of the garbage

generated during a garbage collection cycle because the heap is assumed

to be in a steady state.

new garbage being created

allocat.ed
st.ore

old garbage being recovered

accessible variables

t.ime

Fig5.1 a Allocated store comprises accessible variables,

garbage which is being recovered and garbage

which is being generated.
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Marking garbage collectors do not, of course, recover all the, garbage

instantly at the end of a garbage collection cycle. This is because they

must search for those variables which are to be recovered and add them

to the free list. However it will be assumed that the recovery is instant

to simplify the analysis. This is a reasonable approximation given the

other assumptions made about the steady state of the heap.

The effect of considering recovery time would be to slightly reduce the

expression for the memory requirement. This is because some space

becomes available for allocating new variables before the end of the cycle,

though the cycles would take slightly longer because recovery time would

ha ve to be considered.

The heap is divided into areas and it is assumed that the time spent

garbage collecting is divided equally amongst the areas. Each area is a

fraction of the size of the whole heap, and therefore takes a fraction of

the time to garbage collect. However it only receives a fraction of the

cpu time available for garbage collection. The effect is that garbage

collection of all the areas takes approximately the same time as a simple

garbage collection of the whole heap.

Unfortunately, the recursively structured garbage collector causes variables

that might be referenced by another area, but which are III fact

inaccessible, to be scanned and kept. Not only does this decrease the

memory utilisation by keeping inaccessible variables for longer than need

be, it also wastes some garbage collection time by performing unnecessary

scanning. This means it takes longer for the garbage collection of all the

areas to complete, which in turn gives the computation more time to

generate garbage.
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The time required for the recursively structured garbage collector to

perform a complete garbage collection of the whole heap depends on the

arrangement of inter-area references. If there are none, the global garbage

collection takes just one cycle of local garbage collections. However if

inter-area references are present, it is not the quantity that determines

how many cycles are required for a complete scan. This is actually

governed by how the inter-area references thread their way through the

areas, in particular a measure called remoteness.

An accessible variable's remoteness is defined as follows. This is a measure

of how far a variable is from a directly accessible variable, ie. one

referenced by a root. A path exists from one variable to another if it can

be reached by following references, starting with one stored III the

variable. The length of a path is the number of inter-area references that

it follows. A variable which can be reached from a directly accessible

variable on a path of length zero, has a remoteness of zero. That is all

variables III an area which can be reached from the roots without

following an inter-area pointer have a remoteness of zero. In general the

remoteness of an accessible variable is the minimum of the lengths of all

the paths to it from all directly accessible variables. The minimum value

is important, rather than the maximum, because the garbage collector will

find an accessible variable first by following the shortest path.

The remoteness of the entire heap is defined to be the maximum of the

remoteness of all accessible variables contained III it. Figure 5.1 b gives an

example heap and shows the' remoteness of the accessible variables.
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Fig5.1 b An accessible variable's remoteness indicates how

far it is from a root. The remoteness of the

accessible variables is shown.

If a heap contains an accessible variable of remoteness R, at worst R+1

local garbage collections are required to propagate the wanted mark from

the roots to the variable and to scan the variable for more references.

Each of the extra delays is caused by the scan in one area finding a

reference on the path and marking the variable it refers to, after that

variable has been scanned in the other area. The variable is scanned early

because it is known that it might be accessible and all variables it refers

to must be identified so 'they are not recovered by the local garbage

collection. At the end of the local scan the variable will remain mar ked

as wanted by the global garbage collection, so the next local garbage

collection cycle will scan it and propagate the wanted mark to the next

variable on the path to the remote variable.

The series of diagrams III figure 5.1c show how marks are propagated

along a path to a variable with a remoteness, value of two. The worst

case is shown which takes three local garbage collections to complete.
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The worst case time for a complete global garbage collection of a heap

divided into areas depends on the remoteness of the variables, not on the

number of areas or number of inter-area references. This is assuming that

the time taken to mark inter-area references is small compared to the

time needed for a local garbage collection. The time taken to scan the

whole heap is therefore that needed to complete R+l local garbage

collections, where R is the remoteness of the heap.
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Initially inter-area references on the path are marked as not wanted.

.................. . .
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The first cycle finds the reference from A to B and marks it wanted .
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The second cycle finds the reference from B to C and

marks it wanted. This means the reference from A to

B has now been scanned.

lJ~nt.cI. ~~~~~~~~~~b~~~~~~~
!!!!!!lolllli
::::::::::::::~:::~nnl~~n~n~~lll........................................
::::::::::::::::::::........................................

The final cycle determines that C is at the end of the

path, so the reference from B to C has now been scanned

and the global garbage collection scan has finished .

..............
H1HHtlHH
nnO:::::::::1.... ...... .... .... ...... ...... ...... ..
iiiiiiiiiiiz....................................................................................

sc~nn.cI.

Fig5.1 c Three local garbage collection cycles are' required to

completely scan a variable of remoteness 2.
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Global garbage is not recovered immediately after the scan is completed.

The recovery is performed by the next local garbage collection's recovery

phase. At the end of this the amount of store allocated is at its lowest.

It comprises the accessible variables, the local garbage generated during

the last local garbage collection cycle, the global garbage generated during

the last global cycle and the global garbage generated during the last

local cycle. This is shown in figure 5.1 d.

"'~f---T-!3generated---I~~ ....~I-----tidenti fi ed ~ :_..: ~
recovered

Fig5.1 d Global garbage generated during R+1 local garbage

collection cycles is identified during the next R+1 cycles

and recovered at' the end of the next local cycle.

The amount of store allocated rises during a local garbage collection

cycle. It falls back when the local garbage is recovered, but not all the

way. This is because some global garbage has been generated which is not

recovered. Eventually the global garbage collection completes and the next

local garbage collection recovers the inaccessible variables. This gives rise

to the saw tooth within a saw tooth graph of figure 5.1 e.
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Fig5.le When the effects of local and global garbage

collections are considered together, allocated store

appears like a saw tooth within a saw tooth.

The amount of global garbage generated in each global cycle depends on

the time it takes to perform the local garbage collections. Successive local

cycles take a little longer as more global garbage is kept, III case it later

proves to be accessible, which must be scanned. To simplify the analysis,

it will be assumed that the amount of global garbage is relatively small

compared to local garbage and so all local cycles effectively take the

same time.

When the heap is in a steady state, the garbage which is recovered by a

local garbage collection and garbage which is recovered by a global

garbage collection are generated at fixed rates. Their sum is equal to the

rate at which new variables are created. Let rL and rG be the rates at

which local and global garbage is generated, and 8 be the rate at which

the accessible store is scanned. These all have units of words/time.
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The maximum amount of memory allocated at any time occurs at the end

of the scan of the first local cycle of a global cycle. The store contains

the accessible variables, the local and global garbage generated during the

local scan, the local and global garbage that is about to be recovered and

the global garbage generated during the previous cycle.

max mem - a + 2 t rL + t ra + 2 (R+1) t ra

a + 2 t rL + (2R+3) t ra

Each local garbage collection cycle must scan the accessible variables and

any global garbage which is being kept in case it proves to be accessible.

An average value for the number of scans can be used to obtain an

approximate value for the time taken for each cycle.

s t - a + (R+1) t ra
2

t - 2 a
2 s - (R+1) ra

Using this expression for t an equation for the maximum memory

requirement is obtained III terms of the remoteness of the heap, size of

accessible variables, scan rate and garbage generation rates.

max mem - 2 s a + 4 rL a + 3 R a ra + 5 a ra
2 s - (R+1) ra

At any time only the memory containing accessible variables is usefully

employed. Memory utilisation' is therefore given by the ratio of the size of

accessible variables to the total amount of available memory.

util - a
max mem

2 s - (R+1) ra
2 s + 4 rL + 3 R ra + 5 ra
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In particular the utilisation expected with a heap of remotenes-s one is

given by:

uti!
R=1

s - ra
s + 2 rL + 4 ra

In section 5.3.2 this formula is used, along with results gained from

measuring the garbage collection of a real distributed heap, to plot

memory utilisation against the percentage of cpu time devoted to garbage

collection.

5.2 Investigating Logical Areas within a Capability Computer

This experiment investigates the behaviour of the recursively structured

heap using logical areas constructured within the heap memory of a

capability computer. Tests were carried out using programs written for the

occasion because existing applications have not been written to exploit

logical areas.

5.2.1 The Experimental System

This experimental system was built into the Flex capability computer

[Foster.t .&1.821. This is a micro coded instruction set, which runs on an

ICL/Three Rivers Perq II workstation, that includes a very fast main

store compacting garbage collector. References contain physical store

addresses directly and variables are of varying sizes, with the first word

containing the variable's size and type. References are distinguished from

scalar data by tagging. Fle~'s garbage collector is not incremental as it

uses the reference reversal technique which was described in section 2.3.2.

The experimental system assigns each variable III the heap memory to a

logical area. Processes are then launched to act as the garbage collectors

for each logical area and extra tables are maintained to record the state

of each variable in the garbage collection. The technique described in

section 4.2 was used to compress the state information.
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Fortunately, four bits are spare in the word used to record the -variable's

size. Extra micro code was written to use these bits to record the logical

area to which each variable is assigned. Logical area zero is used to

indicate the roots of the heap, which for the purposes of the experiments

are all the variables of the operating system and user environment.

It was not possible to modify the microcode to provide a true incremental

garbage collector since memory accessing and reference manipulation occurs

throughout the Flex microcode and this would effectively involve re-writing

all the microcode. Instead the experimental system frequently (20ms)

interrupts normal execution and inspects the state of memory to discover

what has changed. Microcode assistance was provided to bypass the

protection provided by the capability system and to speed up the searches.

Despite this the tests run very slowly because of the complexity of the

searching.

The garbage collector was written in Algol68, a source listing is provided

in Appendix D. When it runs it spends some time working for each

logical area. By varying these times it is possible to simulate the effects

of garbage collectors working at different rates. Statistics recorded by the

tests are stored on disc for later analysis.

5.2.2 Counting Words Test

In this test, an editable file is brought into main memory from backing

store and is split up into words. A linked list of all the different words

in the file is constructed, with a frequency count recording the number of

times each word is mentioned in the text.

To compare the effectiveness of splitting the heap into logical areas, the

test was run in two configurations. In the first the program used one area

of the heap for all its work. In the second two areas were used, one for

handling the linked list and one for all other work.
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Several runs using each configuration were made using the same- editable

file as input. The results are plotted in figure 5.2a. It can be seen that

each run for a given configuration follows the same basic pattern, though

with some variation. These variations are caused by randomness in the

scheduling of the garbage collector and computation processes.

5
t
o
r
e

two areas

Time

Fig5.2a The results of several runs of the count words test.

In figure 5.2b the results of only one run from each configuration are

shown. Here the saw tooth- shaped graph is clearly visible, and the result

for two areas shows the saw tooth within a saw tooth.
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Fig5.2b The results of two runs of the count words test,

showing that better memory utilisation is acheived

by splitting the heap into two areas.

Initially the store allocated by the two area configuration rises more

rapidly than for the single area case. This is because a relatively large

number of global references are produced to start with, since many new

words are encountered. These take longer to scan when using two areas

and so the amount of store allocated is higher. However once a more

steady state has been reached, the use of two areas clearly requires less

memory. The graphs also show the average store allocated. From this it

can be seen that using two areas gives a significant reduction in the

amount of store required to run the programs.

5.2.3 Traffic Routing Test

In this test a simulation of traffic passing through a network is examined.

Various groups of nodes of the network can be assigned to different

logical areas, allowing the effects of area allocation to be studied. Also,

the logical areas may be structured in a number of ways so that the

effects of recursive structuring can be studied.
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The first study made using this program investigates the effects of

remoteness. Unfortuna tely it is not possible to measure this value precisely,

because this would require a recursive scan of the entire heap to be

performed many times. However the number of local garbage collection

cycles required to complete a global garbage collection cycle can be taken

as a good approximation. This is because, in the worst case, R+1 local

cycles are required to perform the scan of a global area of remoteness R.

max alloc store
(~ords)

33000 o

o

o o o
o a

B

11 averase ~local cycles/slobal cycles
(~hich is an approximation of remoteness)

21

Fig5.2c: As remoteness increases, so does the amount of store

required for a program to execute without interruption.

However, the effect is not very significant.

The results are shown in figure 5.2c. The high average value for the

number of local cycles per global is because many local garbage collections

are invoked with little effect. This is because the triggering of garbage

collection in the experimental system cannot be finely controlled.
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The results generally confirm the prediction that, as remoteness' increases

so does the mimmum amount of store required to execute a program.

However the effect is not very pronounced. This is as predicted by the

analysis of section 5.1, because the amount of global garbage produced is

small compared to the amount of local garbage.

The second study shows that it can even more beneficial to structure the

heap into three levels, rather than just two. The histogram in figure 5.2d

show the results of using one, two or three levels with three different sets

of routing data. This experiment divided the heap into three areas, but

structured them into two or three levels. In the latter case, the heap was

divided into two areas, one of which was divided into a further two areas,

giving a total of three leaf areas.

3000

max store
allocated
(words)

1 Z 3 1 Z 3 1 Z 3
number of levels

runl runZ run3
Fig5.2d: The effects of dividing the heap into more levels.

The leaf area garbage collectors were allocated different amounts of cpu

time III each case, but this was adjusted by experiment to ensure that the

amount of scanning performed III total was equivalent in each

configuration. The histogram shows the results of three runs, using different

routing data, and gives a comparison between using one level, which is

effectively garbage collecting the entire heap as a whole, two levels and

three levels of structuring.
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The results confirm that the use of a recursively structured- heap is

beneficial, however they also show that it is not necessarily better to use

more structuring. Dividing an area into more areas is only worthwhile if

the amount of garbage which can only be recovered by global garbage

collection is small compared to that which is recovered by the independent

local garbage collections.

The third study usmg the traffic routing program investigates the benefit

of allocating more CPU time to the garbage collection of areas which

generate the most local garbage. Four area assignments were chosen, each

structuring the heap into three logical areas arranged into two levels. For

each assignment the test was run three times. In each run a different

area was favoured with extra CPU time for garbage collection. The

histogram in figure 5.2e shows that the store requirement for the program

is least when the area the produces the most local garbage is given the

most time. Conversely when the area with the least local garbage is given

the most time, the store requirement is at its highest.

max store allocated
•'.'hen are' f:8IT:1 work done in area

n a given ~(variables allocated)extra time

area 1 2 3 1 2 3 1 2 3 1 2 3

test1 test2 test3 test4

Fig5.2e: With the heap structured into two levels, the maximum

store allocated is least when the area that allocates the
-.

most store is given extra CPU time for garbage collection.
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More runs, usmg further assignments which structure the three logical

areas into three levels, examine the effects of structuring the heap into

more than two levels. The results, shown m figure 5.2f, are less

conclusive. Only two of the results suggest that the amount of store

required to execute a program is least when the area which allocates the

most store is given the most CPU time for garbage collection.

III max store allocated
when area siven
extra time

mm work done in area
Will (variables allocated)

area 1 2 3 1 2 3 1 2 3 1 2 3
testl test2 test3 test4

Fig5.2f: With the heap structured into three levels, it IS unclear

whether it is best to allocate most time to garbage

collecting the area that allocates the most store.

These unexpected results, in particular the fourth test run, arise because

the heap is structured asymetrically. That is the heap is divided into two

areas, the second being leaf area three and the first of which is itself

divided into leaf areas one a'nd two. In these circumstances the effects of

retaining inaccessible variables while global garbage collection completes,

dominates the effect of recovering some garbage more quickly with the

local garbage collection.
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5.3 Experimenting with Garbage Collection in a Distributed
Capability System

The experiments described in the previous section used specially written

example programs to investigate properties of the recursively structured

heap and its garbage collector. In this section results are presented which

are derived from measurements taken of real applications using a real

distributed heap.

5.3.1 The Experimental System

The Perq II implementation of Flex allows computers to communicate

across an Ethernet using a remote procedure protocol. The remote

procedures are first class objects, In that they can be passed as

parameters and returned in the results of remote calls. In general, remote

objects of any type can be constructed [F oster&Currie861. The garbage

collector provided for the system does not need to cater for cyclic

structures, because these cannot be formed.

The second experimental system allows the relative amounts of local and

global garbage, generated by programs using the distributed heap, to be

measured. This was achieved by inserting statistics gathering software In

the remote capabilities' garbage collector, and in the interrupt software

that triggers the microcoded main store garbage collection.

Each computer holds a list of variables which are remotely referenced by

other computers. The remote level garbage collector works by each

computer periodically polling those computers which have referenced

variables it holds. These reply indicating whether the variable is still

required or not. If they are no longer required the entry is removed from

the list. Inaccessible variables are recovered by a later local garbage

collection. A computer removes entries from its list by using weak

references, as described in section 4.8.1.
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The software written for these experiments was relatively simple. The

amount of store recovered by local garbage collection was recorded by

modifying the interrupt software (written in Algol68) which is invoked

when store is exhausted. The amount of store recovered when global

garbage was recovered was measured by performing a local garbage

collection before and after the inaccessible global references were destroyed.

Some of the experiments carried out involved moving editable files from

one computer to another. These are structured files which can contain text

and references to other editable files, though cyclic structures cannot be

formed. One computer, A, can fetch an editable file from computer B.

This is done by calling a remote procedure on B, supplying a procedure

which stores editable files on A's disc as a remote procedure parameter.

The parameter is used by B to push the requested file, and any editable

files referenced by it, onto A.

The result of each push is a remote reference to the editable file on the

disc of the remote computer. Thus if A fetches a highly structured file

from B, many editable files will be created in A and remotely referenced

by B. However, the amount of store kept accessible by the remote

reference is small because the editable files are on disc and not in main

memory.
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5.3.2 Remote Garbage Collection Results

The most complex editable file on the Flex system contains the system's

documentation. This is structured into many sub files, which explain

different parts of the system. These are divided into more sub files for

individual topics. Copying the documentation from one computer to another

requires each sub file to be copied separately, which yields a remote

reference to the sub file on the destination computer's disc. Once the

reference has been incorporated into the enclosing file, the variable it

refers to becomes inaccessible. The experimental system allows the amount

of this globally generated garbage to be measured.

The results, given by the histograms in figure 5.3a, show that the amount

of global garbage is negligible compared to the locally produced garbage.

Of the garbage generated in the destination computer, only 0.6% was

generated globally, while in the source this was only 0.03%. This is

because the global references to the sub files only refer to variables which

hold references to the files on disc, which are very small compared to the

size of the files.

The source computer generated over five times more garbage than the

destination computer. This i{3 because it prepares its data for transmission

by concatenating sequences, using the heap to create a new variable for

the resulting sequence. The destination computer does not do this and so

it uses much less store.
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4M ~ local garbage
~ global garbage
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words
recovered
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1M

source destination
Fig5.3a: The amount of garbage produced globally is negligible

compared to that produced locally.

Various programs were devised in an attempt to find an example which

produced more than one percent global garbage. Unfortunately none was

found. This is because inter-computer references refer either to objects on

disc, which occupy very little space, or first class procedures. Procedures

can keep large non-local environments accessible, but calling them creates

a relatively large amount of garbage locally, which in all but the most

contrived examples swamps the globally produced garbage.

Using the results 0btained from these tests, some typical values for

utilisation can be obtained. It was found that no more than one percent

of garbage is not recovered until the completion of a global garbage

collection cycle. Garbage is generated at a rate of no more than 10K

words/ sec. The storage which is accessible while the programs run is

typically around 520K words.

Based on these results, figure 5.3b shows the expected memory utilisation

plotted against the percentage of cpu time dedicated to garbage collection.

This is assuming that the computation accesses memory at a rate of

5MHz.
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Fig5.3b: Memory utilisation predicted by experimental results

These results suggest that devoting around one percent of cpu time to

garbage collection would yield a memory utilisation of about 70%. Note

that other factors will, in practice, affect memory utilisation, in particular

fragmentation due to allocating variables of various sizes [Rande1l691.

5.4 Summary

The simple analysis of the new garbage collector's performance suggests

that the measure of a heap's remoteness is an important factor in

determining the shape of' a recursively structured heap. Minimising

remoteness allows garbage collection of an internal area to proceed more

quickly, which gives better memory utilisation. However, achieving this in

practice may prove to be difficult but, since the amount of global garbage

is likely to be negligible compared to that produced locally, this will

hopefully not prove to be a serious problem.

The experiments which have been performed confirm the prediction, but

show its effect to be relatively small. This is because the amount of

garbage which can be recovered by local garbage collections greatly

exceeds that which can only be recovered by the global garbage collector.
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With independent garbage collection of separate areas of the heap, it is

possible to devote more cpu time to garbage collecting some areas than

to others. Experimental results show this can be beneficial. If a distributed

heap is garbage collected as a whole, all computers must take part, even

if they contain little garbage. By allowing independent garbage collections,

those computers with less garbage are able to spend less time garbage

collecting than those with more garbage. This allows each computer to

utilise its cpu to the best advantage.

One problem highlighted by the experiments is that it is difficult to adjust

the rate of garbage collection to the need for garbage collection. This is

because the amount of garbage can only be determined by performing

garbage collection. If little garbage is to be found, the cpu time spent

searching for it may be better spent on the computation, whereas if too

little time is spent searching the computation may exhaust the free list.

An advantage of the new algorithm is that recovering some of the

inaccessible variables can be done relatively quickly. Therefore, if the free

list is exhausted, the pause In execution of the computation will be

shorter than if the heap were garbage collected as a whole.

159



Conclusions

6. Conclusions

This thesis has argued that it is beneficial to provide distributed systems

with a heap store offering a single address space to all software in the

system. A major obstacle to achieving this goal is the provision of

adequate garbage collection. A survey of the literature found that no

existing algorithm is entirely suitable for use in a distributed heap.

Consequently a new algorithm has been developed and presented as a

solution to the major problems found in other algorithms.

6.1 The Parallel Recursive Algorithm

The new garbage collection algorithm is a development of the incremental

scanning garbage collector described by [OJ jkstrae t. ..1. 78], [Kung&Song77]

and others. The technique of divide and conquer is applied in an attempt

to improve the memory utilisation of the heap. The heap is divided into a

number of areas, each of which is independently garbage collected. The

new algorithm shows how the effects of these independent garbage

collections can be combined together to achieve garbage collection of the

heap as a whole.

The new algorithm allows each area of the heap to be further divided

into more areas. Thus the heap is recursively structured. The variables

allocated in the heap are grouped together to form the lowest level areas.

These are themselves grouped together into higher level areas, and so on

until ultimately the highest level area corresponding to the whole heap is

formed. The garbage collection of the areas at the lowest level of the

recursively structured heap are performed In parallel. This gives the

parallel recursive algorithm its name. It is important to note that the

algorithm is not recursive, but the structure of the heap is.
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The recursive structure imposed upon the heap serves only to control

garbage collection. The heap appears as one uniform address space to its

users regardless of the structure of the areas. However in a distributed

system, it is likely that areas will correspond to physical resources. For

example the memories of the individual computers III a distributed system

may correspond to the lowest level areas. Computers grouped together on

a local network would form the next level and finally groups of local

networks would form the whole heap.

The garbage collecton of one area using the parallel recursive algorithm

requires the use of marks on all references which pass through the area.

These indicate the state of the reference in the garbage collection of the

area. A reference may be 'not wanted', 'wanted', 'scanned' or 'new'.

Initially all references are marked as 'not wanted'. A scan is made to find

out which references are accessible. After this all references marked 'not

wanted' are inaccessible and those which are accessible are marked

'scanned' or 'new'.

The garbage collector of an area does not itself perform the scan. This is

done by the garbage collectors of the lower level areas each scanning

their own part of the heap. The scan in made is two passes. The first

starts from those references' which are known to be wanted, the second

starts from those references which may be wanted. Any references which

pass through the area that are found to be accessible in the first pass

are then known to be wanted.

Once all accessible references have been traced, those which remain marked

'not wanted' are discarded. When the next cycle of garbage collection

occurs, the lower levels will not be informed of. these references, so any

inaccessible variables they referred to will be recovered.
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6.2 Applica.bility

It has been shown that the parallel recursive garbage collection algorithm

is applicable to a wide range of distributed system configurations. In

particular it enables the individual computers in the system to perform

garbage collection at their own rates and using a variety of algorithms,

without significantly extra overheads.

The lowest level areas in the

collection using any suitable

recursive structure may perform garbage

technique. In particular, if the area

corresponds to the memory of a specialised processor, such as a LISP

engine, it may use a specialised garbage collector which is optimised for

its main use. Some changes will be required to allow the garbage collector

to contribute to the higher level garbage collections, but these are

relatively straightforward.

The individual systems may employ one of the incremental copying or

scanning garbage collectors, a compacting garbage collector that uses

pointer reversal, which is fast but causes pauses m execution, or no

garbage collector at all. The latter case is suitable for systems which do

not generate much garbage in the distributed heap and do not live very

long. When they are switched off the variables and inter-area references

they contain are immediately destroyed. Thus a distributed system can

contain a mixture of time sharing systems, workstations and network

servers, each with their own method of garbage collection suitable for

their own needs.
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The new algorithm is able to recover inaccessible cyclic structures which

cross area boundaries. Here it has an advantage over methods based on

reference counting which fail to do this. However it has been suggested

that reference counting would usefully augment the parallel recursive

algorithm, allowing non cyclic garbage to be recovered faster. The ability

to recover cyclic garbage is most important for general purpose distributed

systems, because otherwise erroneous or malicious software can cause large

amounts of the heap to become permanently inaccessible.

To garbage collect a higher level area, the efforts of the lower level

collectors are coordinated. This does not involve any computational effort

or extra scanning. This coordination may be performed by the lower level

garbage collector processes directly or by them communicating with an

additional, special purpose process.

The different methods of coordination correspond to the different ways the

parallel recursive garbage collection algorithm would be implemented in

practical systems. Where no centralised control exists, such as on a local

network of computers, the independent garbage collectors cooperate to

control the overall garbage collection. If there is centralised control, for

example when a gateway handles all traffic between two networks, the

independent garbage collectors would communicate with a coordination

process running in the gateway.

The algorithm is therefore applicable to a variety of physical network

configurations. In addition the algorithm may be applied to individual

systems, applying the recursive structuring to individual processors of a

multi-processor system or to logical areas within the heap of a time

sharing system. The use of logical areas allows some degree of control to

be imposed upon the users of a shared heap. If each user works in a

different logical area, the effects of one user on the others are minimised.

In particular each user may be garbage collected independently, with cpu

time for garbage collection being shared fairly.
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6.3 Limitations

The new algorithm's applicability is limited by its need for extra state

information to be held for inter-area references and the requirement that

the lowest level garbage collectors be modified slightly.

The need to store extra state information is not a serious problem.

Techniques for significantly compressing the data have been presented. With

each variable that is referenced from outside its area must be stored the

level of the highest area which references it, the level of the highest area

in which the variable is known to be wanted and its state in that level's

garbage collection. In all, this is likely to occupy less than one word.

The state information will need to be held in a table or list. This is not

a significant overhead if indirection tables are necessary anyway, for

example to allow the compaction of variables.

A further problem is that the algorithm requires some modification to the

garbage collectors at the lowest level of the area structure. This is to

arrange that they perform their tracing in two steps. While this is not

difficult, it presents logistic problems when incorporating existing computers

into a distributed system.

A computer's garbage collector is usually built into the lowest levels of

the system, while networking software appears at a higher level. Therefore

incorporating a computer into a distributed system may involve major

changes, not just a modification of the networking software. In particular,

if the garbage collector is microcoded or uses specialised hardware, it may

be impossible to modify.
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6.4 Future Research

This thesis has presented the results of research into the provision of a

garbage collector for distributed systems. However a number of areas have

been left largely unexplored.

In particular only a very informal attempt to show the correctness of the

algorithm has been made. The complexity of the algorithm is such that its

correctness is not entirely obvious. Garbage collection is performed by

communicating sequential processes runmng in parallel and these have

complex interactions.

A formal specification of the algorithm and a rigourous proof of the

correctness of the refinements to implementation is an important piece of

future research. A relatively large effort is required for this, due to the

parallel nature of the problem.

By its nature, an incorrect garbage collector is very difficult to put right.

The data structure it operates on is vast and is effectively constructed

randomly by the users of the heap. A failure is likely to pass undetected

for some considera ble time; perhaps surfacing only when a dangling

reference is followed. In such an environment it will be impossible to

repeat particular failures with certainty. Testing is therefore no way to

produce a correct garbage collector. Rigorous development and proof of

correctness is the only way to. proceed.

165



Conclusions

.~

A deeper analysis of the new algorithm is required to assess methods for

selecting the most appropriate structure for the recursive heap. Developing

an appropriate statistical model is a difficult task, because the parameters

involve properties of the accessible structure m the heap, such as

remoteness, as well as patterns of usage like locality of reference. Better

modelling would lead to a deeper understanding of the way in which the

algorithm functions.

A trial implementation of the algorithm is required to

effectiveness in practice. Comparisons would have to be

alternative algorithms, which means a significant amount

show its

made with

of coding is

required to produce several versions of the garbage collector.

Other implementations are required to demonstrate the use of the

algorithm within a computer system, working on logical areas of memory,

and for garbage collecting backing store which is organised as a heap.

Efficient implementation is essential for use with logical areas, because the

inter-area references are likely to be manipulated far more often than

inter-computer references. An implementation for garbage collecting a

backing store has its own particular problems. Marking references on disc

may seriously degrade disc performance and may endanger the data stored

there.

One final topic for further research is an investigation of the special

requirements for applicative processing on massively parallel machines. The

store of such computers is organised as a heap, but the usage is very

constrained. In particular, cyclic structures occur in predictable ways.
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Appendix A: The Z Notation

In the following , x is an identifier, T is a type, P and Q are predicates,
S is a set and R is a relation.

LH5 ~ RH5
x : T
-,p

P 1\ Q
p v Q
P .....Q
1;;1 x T P • Q
3 x : T p • Q
X E 5
51 !;;; 52
{}

{Xi' X2' .... ,
IP 5
51 n 52
51 U 52
51 \ 52
**5
T1 4+ T2
T1 -+ T2
dom R
ran R
Ri ; R2
R-1
{a...b, c...d,
Rk
RIlE
R+
R(5)
5 <J R
5 ~ R
5 I> R
5 ~ R
Ri ED R2

LH5 is syntactically equivalent to RH5
declare x as type T
not P
P and Q
P or Q
P implies Q
for all x of type T, P implies Q
there exists an x of type T such that P and Q
x is an element of set 5
set 51 is included in set 52
the empty set

xn}the set containing Xi' X2' .... , xn
powerset: the set of all subsets of 5
set intersection
set union
set difference
size of finite set
the set of relations from T1 to T2
the set of total functions from T1 to T2
the domain of a relation R
the range of a relation R
forward.relational composition
inverse of a relation R

} the relation mapping a to b, c to d,
the relation R composed with itself k times
reflexive transitive closure of relation R
non-reflexive transitive closure
relational image of set 5 through relation R
domain restriction of relation R to set 5
domain subtraction
range restriction
range subtraction
overriding: ~ (dom R2 ~ Ri) U R2
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The schema notation is a way of grouping together some variable

declarations and a predicate that relates them.

EG ---,

x : 5
f:S .... S

This schema is called EG. It declares a variable x

which is drawn from the set S and a function f, from

S to S. The predicate states that x and f must be

such that f maps x to itself.f( x ) = x

A schema may be included in the declarations of another, in which case

the declarations of the two schemas are merged together and the

predica tes are conjoined.

OP ~ Identifiers may be decorated. By convention a

dashed variable indicates the state of a

variable after an operation. Thus III the

schema OP f' is the function resulting from

changing f.

f, f' : 5 .... 5
x, y 5

f' = f • { x ~ y }

184



Algorithmic Notation

Appendix B: Algorithmic Nota.tion

The algorithmic pseudocode used in Chapter 3 follows in the style of

Pidgin Algol [Ahoet.al. 74] and includes sets, first class procedures and

parallelism in a somewhat carefree manner. This appendix describes the

more obscure features by example.

refs {r Ref I internal( r ) or incoming( r ) }

refs is the set of Ref whose

elememts are either internal or

incoming.

FORALL r IN refs DO r.mark not_found OD

for each member of the set refs, set

its mark field to not_found.

WHILE :3 r E refs I r.mark found DO ... OD

perform the loop while the set refs

contains an element whose mark field

is found

mark - A r :Ref. IF r. mark = not_found THEN r. mark : = found FI

mark is a procedure which takes a

Ref and sets its mark field to found

if it was not_found.
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Algorithmic Notation

parallel( garbage_collect ) ( w, k, f )

crea te a parallel process and run the

procedure garbage collect In it with

parameters w, k and f.

rendezvous

wait until all processes launched so

far have finished.

coroutine( a, b )

given a:(X->Void)->Void and b:(Void->X)->Void this

calls procedures a and b as coroutines with

procedures pa and pb as parameters. Initially b runs

and a is suspended at the beginning. When b calls pb

it suspends and a continues. When a calls pa with

value x b continues with the value x as the result of

its call of pb.
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Appendix C: Proofs of Refinement

The specifications given In section 3.7.2 are repeated here for convenience.

Then proofs that the propositions arising from the refinement are theorems

are offered.
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Proofs of Refinement

[Ref.Var]

incoming. internal: Ref >++ Var
outgoing: f Ref
contains: Var 9 Ref
roots: f Ref
vars : f Var

outgoing n dome incoming) = {}
outgoing n dome internal) = {}
ran ( incom ing ) U ran ( internal ) U dome conta ins ) r; vars
roots U ran ( conta ins ) r; dom ( internal ) U outgo ins

[X.Y]==========================~
map ):

l:;j X : f X; v : Y X ;II! {}

• dome x map y = x
1\ ran ( x map y = {y}

l:;j x f X; v Y x = {}
• x map y = {}

[Mark]
not_found. found. scanned : Mark

~{ not_found. found. scanned} = 3

COLLECT ~
wanted. keep. accessible'
recover' : f Var f Ref

wanted U keep r; dome incoming
accessible' = outgoing n w
recover' = vars \ (incoming U internal)( w uk)

where
w e ( internal
k e ( internal

contains )* ( roots U wanted)
contains )* ( keep)
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Proofs of Refinement

COLLECT1 ~
keep. keep'. ~anted. accessible'. found in' IP Ref

~anted ~ dome incoming
keep = keep'

accessible' = outgoing n ~
foundin' = ~ \ outgoing

~here
~ ~ ( internal ; conta ins )* ( roots U ~anted )

COLLECT2 ~
keep. foundin. accessible. accessible'
recover' : IPVar

IP Ref

keep ~ dome incoming)
accessible' = accessible

recover' = vars \ (incoming U internal)( foundin uk)
~here

k ~ ( internal ; conta ins )* ( keep )

INIT1 ~
marks. marks' : Ref -t+ Mark
~anted. accessible'. keep. keep' IP Ref

keep' = keep
dam ( marks ) = dam ( internal )
marks' = ( dome marks ) map not_found )

$ ( (roots\outgoing U ~anted) map found)
accessible' = roots n outgoing

SCAN1 ~
marks. marks' : Ref -t+ Mark
accessible. accessible'. keep. keep'. foundin' IP Ref

accessible' = accessible U (refs n outgoing)
marks' = marks $ (refs\outgoing map scanned)

~here
refs ~ marks-1; ( internal ; conta ins )* ( {found} )

keep' = keep
ran( marks ) ~ { not_found. found}
ran ( marks' ) ~ { not_found. scanned}
dam ( marks ) = dam ( internal )
dam ( marks' ) = dam ( marks )
dome marks' ~ {scanned} ) = foundin'

189



Proofs of Refinement

INV ~
marks, marks' : Ref -++ Mark
accessible, accessible', keep, keep' : P Ref

accessible' = accessible Urn outgoing
where

r ~ marks-1i(marks,-1[{scanned}}~internalicontains)*[{found}]

marks,-1[{not_found}} n marks,-1iinternalicontains[{scanned}}={}
marks-1[{found}} n marks,-1[{not found}} = {}
dome marks' ) = dome marks) _
keep' = keep

GUARD ~
marks Ref -++ Mark

3 next : Ref • marks( next ) = found

BODY ~
marks, marks' : Ref -++ Mark
accessible, accessible', keep, keep' P Ref

keep' = keep
3 next : Ref I marks( next ) = found •

marks' = marks
• ( (marks-1[{not found}) n

contains[{internal(next)}}) map found)
• {next~scanned}

accessible' = accessible
U (contains[{internal(next)}) n outgoing)

bound : ( Ref -++ Mark) -+ N

t:J m : Ref -++ Mark • bouridt m ) = ** m ~ {scanned}
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Proof of Proposition 1. pre COLLECT I- pre COLLECTl

pre COLLECT a

pre COLLECT1 a

wanted. keep : P Ref

wanted U keep ~ dome incoming
3 recover' : P Var;

accessible' P Ref
•

accessible' = outgoing n w
recover' = vars \ (incoming U internal)[ w uk)

where
internal
internal

contains )* [ roots U wanted)
contains )* [ keep)

wanted. keep : P Ref

wanted ~ dome incoming
3 found in' : P Var;

keep'. accessible' P Ref
• keep' = keep

accessible' = outgoing n w
foundin' = w \ outgoing

where
w a internal; contains )* [ roots U wanted)

The existential qualifier III the hypothesis is a tautology because the sets

keep', recover' and accessible' can always be constructed from the given

sets. Therefore the hypothesis about wanted is simply that it is a subset

of dom( incoming). The conclusion therefore follows, since the existential

qualifiers are always true, and hence proposition 1 is a theorem.
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P roofs of Refinement

--Proof of Proposition 2. pre COLLECT 1\ COLLECTl I- (pre COLLECT2)'

pre COLLECT 1\ COLLECTl ~

~anted, keep, keep', accessible', found in' IPRef

~anted U keep ~ dome incoming
3 recover' : IPVar;

accessible' : IPRef
• accessible' = outgoing n ~

recover' = vars \ (incoming U internal)[ ~ uk]
~here

internal
internal

contains )* [ roots U ~anted ]
contains )* [ keep]

keep' = keep
~anted ~ dome incoming

accessible' = outgoing n ~
foundin' = ~ \ outgoing

~here
~ ~ ( internal ; conta ins )* [ roots U ~anted ]

The existential quantifier can be simplified.

~anted, keep, keep', accessible', foundin' IPRef

~anted U keep ~ dome incoming
keep' = keep

accessible' = outgoing n ~
foundin' = ~ \ outgoing

~here
~ ~ ( internal ; conta ins *) [roots U ~anted ]

Since the conclusion is not concerned with keep _and accessible' these can

be discarded.
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wanted, keep', foundin' IPRef

wanted U keep' ~ dome incoming )
foundin'= ((internalicontains)* ( rootsuwanted ) ) \ outgoing

(pre COLLECTZ)' ~

keep', foundin', accessible' IP Ref

keep' ~ dome incoming)
3 accessible" : IP Ref

recover' : IP Var
•

accessible' = accessible"
recover' = vars \ (incoming U internal)( foundin' uk]

where
k ~ ( internal i conta ins )* ( keep' )

There will always be a suitable set accessible" and since we can always

find a suitable set keep' there will always be corresponding sets k and

recover' given found'. Hence the conclusion is always true.
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Proof of Proposition 3. pre COLLECT"COLLECT 1"COLLECTZ' I- COLLECn _' , / _' ]

~anted, keep, accessible', foundin', keep'
accessible" : P Ref
recover" : P Var

P Ref

~anted U keep ~ dome incoming
3 recover' : P Vari

accessible' : P Ref
• accessible' = outgoing n ~

recover' = vars \ (incoming U internal)( ~ uk]
~here

internal
internal

contains )* ( roots U ~anted ]
contains )* ( keep]

~anted ~ dome incoming )
keep' ~ dome incoming )
keep' = keep
accessible" = accessible'

accessible' = outgoing n ~
foundin' = ~ \ outgoing
recover" = vars \ (incoming U internal)( foundin' uk]

~here

k e
internal
internal

contains )* ( roots U ~anted ]
canta ins )* ( keep' ]

This is simplified by discarding the quantifier and the unused variables

keep' and accessible'.
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IPRefwanted, keep, foundin', accessible"
recover" : Var

wanted U keep ~ dome incoming
accessible" = outgoing n w
recover" = vars \ (incoming U internal)[ foundin' uk]
foundin' = w \ outgoing

where
internal
internal

contains )* [ roots U wanted]
contains )* [ keep)

Since the domains of incoming and internal are disjoint from the set

outgoing, foundin' can be replaced by w in the definition of recover'. This

leads directly to the conclusion. Hence the proposition is a theorem.

COLLECT[_' ,/_' ] --,
wanted, keep, accessible"
recover" : IPVar

IPRef

wanted U keep ~ dome incoming
accessible" = outgoing n w
recover" = vars \ (incoming U internal)[ w uk]

where
internal
internal

contains )* [ roots U wanted)
contains )* [ keep]

Proof of Proposilion ~ pre COLLECT! ~ pre INIT!

pre COLLECT! :s:

wanted, keep': IPRef

wanted ~ dome incoming
3 foundin' : IP Vari

keep', accessible' IP Ref
• keep' = keep

accessible' = outgoing n w
foundin' = w \ outgoing

where
w :s: ( internal i conta ins )* [ roots U wanted ]
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pre INITl a

marks Ref - Markwanted, keep P Ref

dom ( marks ) = dom ( internal
:3 marks' : Ref - Markaccessible', keep' : f Ref
• keep' = keep

marks' = ( dome marks ) map not_found )
• ( (roots\outgoing U wanted) map found)

accessible' = roots n outgoing

The existential quantifiers in both the hypothesis and the conclusion are

both tautologies because suitable sets foundin', accessible' and keep' and

the function marks' can always be found. Therefore the proposition is a

theorem because marks is not constrained by the hypothesis.

Proof of Proposition 5. pre COLLECTl 1\ INITl I- (pre SCAN1)'

pre COLLECTl 1\ INITl a

marks, marks' : Ref _ Mark
wanted, accessible', keep, keep' P Ref

wanted ~ dome incoming
:3 foundin' : P Var;

keep', accessible' P Ref
• keep' = keep

accessible' = outgoing n w
foundin' = w \ outgoing

where
w a ( internal ; conta ins )* I[ roots U wanted ]

keep' = keep
dome marks ) = dome internal )
marks' = ( dome marks ) map not_found )

• ( (roots\outgoing U wanted) map found)
accessible' = roots n outgoing

Simplify the quantifier and the redundant variable accessible'.
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(pre SCAN1)' ~

marks, marks' : Ref -t+ Mark
~anted, keep, keep' : P Ref

~anted ~ dome incoming
keep' = keep
dam ( marks ) = dam ( internal
marks' = ( dome marks ) map not_found )

~ ( (roots\outgoing U ~anted) map found)

marks' : Ref -t+ Mark
accessible', keep' : P Ref

ran( marks'
dome marks'

) ~ { not_found, found}
) = dam ( internal )

3 accessible", keep", foundin" : P Ref
marks" : Ref -t+ Mark

• accessible" = accessible' U (refs n outgoing)
marks" = marks' ~ (refs\outgoing map scanned)

~here
refs ~ marks,·1; ( internal ; conta ins )* 0: {found} ]

keep" = keep'
ran ( marks"
dome marks"

~ { not_found, scanned}
= dome marks' )

dome marks" ~ {scanned} ) = foundin"

Simplify the quantification of keep", foundin" and accessible" and the

unconstrained accessible'.
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It follows

marks' : Ref -++ Mark
keep' : IP Ref

ran ( marks' )!; { not found. found }
dome marks' ) = dome internal )

3 marks" : Ref -++ Mark
•

marks" = marks' $ (refs\outgoing map scanned)
I-Ihere

refs ~ marks' -1; ( internal ; conta i ns )* [ {found} ]

ran ( marks" )!;;; { not_found. scanned }
dome marks" ) = dome marks' )

from the hypothesis the range of marks'that is

{not_found,found} and that the domain of marks' is the domain of internal

and incoming. Therefore the domain of marks" is equal to that of marks'

and the set refs includes all those marked found. Hence the range of

marks" is Cnot.ifound.scanned+ and the proposition is a theorem.
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-Proof of Proposition 6. pre COLLECTl 1\ INITl 1\ SCAN1' I- COLLECTl [_' ,/_' ]

pre COLLECTl 1\ INITl 1\ SCAN1' ~

marks, marks', marks" : Ref -++ Mark
wanted, accessible', accessible" : P Ref
keep, keep', keep", foundin" : f Ref

wanted ~ dome incoming
3 foundin' : f Var;

keep', accessible' f Ref
• keep' = keep

accessible' = outgoing n w
foundin' = w \ outgoing

where
w ~ ( internal ; conta ins )* I[ roots U wanted ]

keep' = keep
dom ( marks ) = dom ( internal )
marks' = ( dome marks ) map not_found )

_ ( (roots\outgoing U wanted) map found
accessible' = roots n outgoing

accessible" = accessible' U (refs n outgoing)
marks" = marks' _ (refs\outgoing map scanned)

where
refs ~ marks' -1; ( internal ; conta ins )* I[ {found} ]

keep" = keep'
ran (
ran(
dome
dome

marks'
marks' ,
marks'
marks' ,

) ~ { not_found, found}
) ~ { not_found, scanned}

) = dome internal )
) = do m ( mar ks ' )

dome marks" ~ {scanned} ) = foundin"

Simplify the quantifier and the redundant variables accessible' and keep'.
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marks, marks', marks" : Ref -++ Mark
wanted, keep, keep", foundin", accessible" IPRef

wanted ~ dome incoming
keep" = keep
dome marks ) = dome internal )
marks' = ( dome marks ) map not_found )

• ( (roots\outgoing U wanted) map found
accessible" = (roots n outgoing)

U (refs n outgoing)
marks" = marks' • (refs\outgoing map scanned)

where
refs:!!:marks' -1; ( internal ; conta ins )111 ( {found} ]

ran ( marks' )!; { not found, found }
ran ( marks" ) ~ { not_found, scanned}
dom ( marks' ) = dom ( internal )
dom ( marks" ) = dom ( marks' )
dome marks" ~ {scanned} ) = foundin"

Note that marks' only maps roots \outgoingUwanted to found and so can

be replaced in the definition of refs. The definition of foundin" can be

simplified because only refs\ outgoing is mapped to scanned by marks".

Also the definition of marks and marks" can be seen to satisfy their

constraints and can be discarded since they are not required.

wanted, accessible", foundin", keep, keep" IP Ref

wanted ~ dome incoming
keep" = keep

accessible" = (roots U refs) n outgoing
foundin" = refs\outgoing

where
refs :!!:( internal ; conta ins )111 ( roots\outgo ing

U wanted ]

Those roots which are outgoing are not included in refs. However roots is

included explicitly .with refs when it is used III the definition of

accessible". Therefore the definition of refs can be simplified.
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~anted, accessible", foundin", keep, keep" IP Ref

~anted ~ dome incoming
keep" = keep

accessible" = ~ n outgoing
foundin" = ~ \ outgoing

~here
~ a ( internal ; conta ins )111 I[ roots U ~anted ])

COLLECT1[_" I_'] a

~anted, accessible", foundin", keep, keep" IP Ref

~anted ~ dome incoming
keep" = keep

accessible" = outgoing n ~foundin" = ~ \ outgoing
~here

~ a ( internal ; conta ins )111 I[ roots U ~anted ]I

The proposition is a theorem because the hypothesis directly gives the

conclusion.
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Proof of Proposition 7. pre SCANl I- pr e t INV 1\ ., GUARD' )

pre SCANl a

marks : Ref -++ Mark
accessible, keep: f Ref

ran( marks ) ~ { not found, found}
dam ( marks ) = dam ( internal )
3 accessible', keep', foundin'

marks' : Ref -++ Mark
f Ref

• accessible' = accessible U (refs n outgoing)
marks' = marks e (refs\outgoing map scanned)

I-Ihere
refs a marks-1; ( internal ; conta ins )* [ {found} ]

keep' = keep
ran( marks'
dome marks'

~ { not_found, scanned}
= dome marks )

dome marks' ~ {scanned} ) = foundin'

The quantifications of found', keep' and accessible' can be simplified.

marks : Ref -++ Mark
accessible, keep: f Ref

ran( marks ) ~ { not_found, found}
dome marks ) = dome internal
3 marks' : Ref -++ Mark
• marks' = marks e (refs\outgoing map scanned)

I-Ihere
refs a marks-1; ( internal ; conta ins )* [ {found} ]

ran( marks'
dome marks'

) ~ { not_found, scanned}
) = dome marks )
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pre ( INV 1\ ., GUARD' ) a

marks Ref -++ Mark
accessible. keep: P Ref

3
marks' : Ref -++ Mark
accessible'. keep' : P Ref

• accessible' = accessible Urn outgoing
where

r a marks-1i(marks,-1[{scanned}]~internalicontains)*[{found}]

marks,-1[{not_found})
n marks,-1iinternalicontains[{scanned}] = {}

marks-1[{found}) n marks,-1[{not found}) = {}
dome marks' ) = dome marks) -
keep' = keep
~ next: Ref. marks'( next ) ~ found

The quantifications of keep' and accessible' can be simplified.

marks : Ref -++ Mark
accessible. keep: P Ref

3
marks' : Ref -++ Mark

•
marks'-1[{not~found})

n marks,-1iinternalicontains[{scanned}) = {}
marks-1[{found}) n marks,-1[{not found}) = {}
dome marks' ) = dome marks) -
~ next: Ref. marks'( next ) ~ found

From the hypothesis, there exists a marks' with the correct domain and

range and which differs from marks only in that it maps some elements

to scanned, so nothing marked found becomes not_found. Also this has the

property that only those variables reachable from found variables become

marked scanned. Therefore a set of marks do exist which satisfy the

conclusion given the hypothesis.
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Proof of Proposition 8. pre SCAN1 A INV A ' GUARD' ~ SCAN1

pre SCAN1 A INV A ' GUARD' ~

marks, marks' : Ref -++ Mark
accessible, accessible', keep, keep' IPRef·

ran( marks ) ~ { not_found, found}
dam ( marks ) = dam ( internal )
3 marks" : Ref -++ Mark

accessible", keep", foundin" : IPRef
• accessible" = accessible U (refs n outgoing)

marks" = marks. (refs\outgoing map scanned)
where

refs ~ marks-1; ( internal ; conta ins )111 I[ {found} ]
keep" = keep
ran ( marks" ) ~ { not found, scanned}
dome marks" ) = dome marks )
dome marks' ~ {scanned} = found in' ,

accessible' = accessible Urn outgoing
where

r ~ marks-1;(marks,-11[{scanned}]~internal;contains)lIIl[{found}]

marks,-11[{not_found}] n marks,-1;internal;containsl[{scanned}]={}
marks-11[{found}] n marks,-11[{not found}] = {}
dome marks' ) = dome marks) -
keep' = keep
~ next: Ref. marks'( next) ¢ found

Simplify the quantification of keep", foundin" and accessible" and replace

the universal quantifier by an predicate on the range of marks'. The

quantification of marks" can be simplified because the overriding of marks

introduces no new elements' to the domain and removes found from the

range, replacing it by scanned.
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marks, marks' : Ref -++ Mark
accessible, accessible', keep, keep' : ~ Ref

accessible' = accessible Urn outgoing
where

r ~ marks-1;{marks,-1[{scanned}]~internal;contains)*[{found}]

marks,-1[{not_found}] n marks,-1;internal;contains[{scanned}]={}
marks-1[{found}] n marks,-1[{not_found}] = {}
keep' = keep
ran{ marks ) ~ { not_found, found}
ran ( marks' ) ~ { not found, scanned }
dam ( marks ) = dam ( internal )
dome marks' ) = dome marks )

The definition of r restricts the domain of internal to those variables

which are finally marked scanned. That is any marked not_found are

ignored. However those initially marked found must finally be scanned and

any contained III variables which are finally scanned must themselves

finally be scanned. Therefore the restriction of internal's domain is

unncessary.

marks, marks' : Ref -.!+ Mark
accessible, accessible', keep, keep' : ~ Ref

accessible' = accessible Urn outgoing
where

r ~ marks-1; ( internal rcont a ins )* [ {found} ]

marks' -1[{not_found}) n- marks' -1;internal; conta ins [{scanned} ]={}
marks-1[{found}] n marks,-1[{not_found}] = {}
keep' = keep

marks
marks'
marks
marks'

) ~ { not_found, found}
) ~ { not found, scanned}

) = dome internal )
) = dome marks )

ran {
ran {
dome
dome
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In this form the hypothesis can be seen to satisfy the definition of

accessible' in the conclusion and a suitable set found' can always be

found. The definition of marks' satisfies the constraints of the hypothesis

because its domain is that of marks and its range does not include found.

SCAN1 ~
marks, marks' : Ref -++ Mark
accessible, accessible', keep, keep', foundin' IPRef

accessible' = accessible U (refs n outgoing)
marks' = marks ~ (refs\outgoing map scanned)

where
refs a marks-1; ( internal ; conta ins )* ( {found} 11

keep' = keep
ran( marks ) ~ { not found, found}
ran ( marks' )!; { not found, scanned }
dom ( marks ) = dam ( internal )
dome marks' ) = dome marks )
dome marks' ~ {scanned} ) = found in'
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Proof of Propos it ion 9. pre SCANl " INV " GUARD' I- (pre BODY~)'

pre SCANl " INV " GUARD' ~

marks, marks' : Ref -++ Mark
accessible, accessible', keep, keep' IPRef·

ran( marks ) ~ { not found, found}
dome marks ) = dome internal )
3 marks" : Ref -++ Mark

accessible", keep", foundin" : IPRef
• accessible" = accessible U (refs n outgoing)

marks" = marks $ (refs\outgoing map scanned)
where

refs ~ marks-1; ( internal ; conta ins )111 I[ {found} ]
keep" = keep
ran ( marks"
dam ( marks"

) ~ { not_found, scanned}
) = dome marks )

dome marks' ~ {scanned} = found in' ,
accessible' = accessible Urn outgoing

where
r ~ marks-1;(marks'-11[{scanned}]~internal;contains)lIIl[{found}]

marks,-11[{not_found}] n marks,-1;internal;containsl[{scanned}]={}
marks-11[{found}] n marks,-11[{not found}] = {}
dome marks' ) = dome marks) -
keep' = keep
3 next: Ref. marks'( next) = found
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(pre BODY)' a

marks' : Ref -++ Mark
accessible', keep' : f Ref

3 marks" : Ref -++ Markaccessible", keep" : f Ref
next : Ref
marks'( next) = found

• keep" = keep'
marks" = marks'

E9 C C marks' -1 Hnot found}] n
contains[{internalCnext)}]) map found)

E9 {next~scanned}
accessible" = accessible'U Ccontains[{internalCnext)}] n outgoing)

A suitable keep" can always be chosen, as can accessible" and marks"

and it follows from the hypothesis that there exists a suitable next.
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Proof of Proposition 10.
pre SCANl A INV A GUARD' A BODY' r INV[ "I 'J

A bound(marks" )<bound(marks' )

pre SCANl A INV A GUARD' A BODY' a

marks, marks', marks" : Ref - Mark
accessible, accessible', accessible"
keep, keep', keep" : f Ref

f Ref

ran( marks
dome marks

~ { not_found, found}
= dom( internal )

3 marks" : Ref - Markaccessible", keep", foundin" : f Ref
• accessible" = accessible U (refs n outgoing)

marks" = marks _ (refs\outgoing map scanned)
where

refs a marks-1;( internal ; conta ins )* [ {found} )
keep" = keep
ran( marks"
dome marks"

~ { not_found, scanned}
= dome marks )

dome marks' ~ {scanned} = found in',
accessible' = accessible Urn outgoing

where
r a marks-1;(marks'-1[{scanned})~internal;contains)*[{found}]

marks,-1[{not_found}) n marks,-1;internal;contains[{scanned}]={}
marks-1[{found}) n marks,-1[{not found}) = {}
dome marks' ) = dome marks) -
keep' = keep
3 next Ref. marks'( next) = found
keep" = keep'
3 next Ref I marks'( next = found.

marks" = marks'_ {next~scanned}
_ ( (marks'-1[{not found}] n

contains({internal(next)}]) map found)
accessible" = accessible'

U (contains({internal(next)}) n outgoing)

Discard keep' which is redundant and simplify the quantifications of

marks", accessible", keep" and foundin".
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marks, marks', marks" : Ref -++ Mark
accessible, accessible', accessible"
keep, keep" f Ref

f Ref

ran( marks ) ~ { not found, found}
dome marks ) = dome internal )

accessible' = accessible Urn outgoing
where

r a marks-1i(marks'-1({scanned}]~internalicontains)*({found}]

marks,-1({not_found}] n marks,-1iinternalicontains({scanned}]={}
marks-1({found}] n marks,-1({not found}] = {}
dom ( marks' ) = dom ( marks) -
keep" = keep
3 next: Ref I marks'( next) = found •

marks" = marks'
E9 ( (marks' -1Hnot found}] n

contains({internal(next)}]) map found)
E9 {next ...scanned}

accessible" = accessible'
U (contains({internal(next)}] n outgoing)

INV[_" /_'] /\boundt mar ks ' )<bound(marks' a

marks, marks" : Ref -++ Mark
accessible, accessible", keep, keep" : f Ref

accessible" = accessible Urn outgoing
where

r a marks-1i(marks"-1({scanned}]~internalicontains)*({found}]

marks,,-1({not_found}] n marks,,-1iinternalicontains({scanned}]={}
marks-1({found}] n marks,,-1({not found}] = {}
dome marks" ) = dome marks) -
keep" = keep
bound(marks" )<bound(marks'

From the hypothesis it can be seen that marks' maps next to found and

marks" maps next to scanned. Therefore the measure decreases. A suitable

value for keep" can always be found.
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The hypothesis implies that the domain of marks" is the same' as marks',

because the functional overrides do not introduce new elements. Also no

elements are changed to not_found and hence nothing initially marked

found becomes marked not_found.

Since the contents of next which are marked not_found become marked

found, and next becomes marked as scanned, no elements are introduced to

marks' which cause a scanned variable to refer to a not_found variable.

From the hypothesis accessible" is accessible' with the addition of

references contained in the variable referred to by next. Since next is

finally marked as scanned these will be included by the definition given III

the conclusion, hence the proposition is a theorem.
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Proof of Proposition 11. pre SCAN1 A INV A GUARD' ~ bound(marks' ~ 0

pre SCAN1 A INV A GUARD' ~

marks, marks' : Ref -+t Mark
accessible, accessible', keep, keep' IPRef·

ran( marks ) ~ { not found, found}
dom ( marks ) = dom ( internal )
3 marks" : Ref -+t Mark

accessible", keep", foundin" : IPRef
• accessible" = accessible U (refs n outgoing)

marks" = marks $ (refs\outgoing map scanned)
where

refs ~ marks-1i ( internal i conta ins )* I[{found} ]
keep" = keep
ran ( marks"
dome marks"

~ { not_found, scanned}
= dome marks )

dome marks' ~ {scanned} ) = foundin"
accessible" = accessible Urn outgoing

where
r ~ marks-1i(marks,-11[{scanned}]~internalicontains)*I[{found}]

marks,-11[{not_found}] n marks,-1iinternalicontainsl[{scanned}]={}
marks-11[{found}] n marks,-11[{notfound}] = {}
dome marks' ) = dome marks) -
keep' = keep
3 next: Ref. marks'( next) = found

Since there exists a next which marks' maps to found, the cardinality of

marks' with scanned removed from the range must be at least one. Hence

the bound is positive.

212



Source Listings

Appendix D: Source Listings

D.l Logical Area Experiment - Algol Source

This, and the other Algol68 programs given In this appendix, is written in

the Flex dialect. This allows program modules to be imported by including

capabilities for them after the program's name. These appear as boxes

with names in them. The implementation is otherwise as Algo168-RS except

that the scope rules are relaxed, allowing values to be passed out of

scope without ill effect. Thus first-class procedures are available. Basic

machine instructions are used by declaring Algol operators using BIOP

with a number related to the opcode.

Note that the programs use Dijkstra's naming convention of white, grey

and black for not found, found and scanned respectively.

s_coll:

fail : Modulei
endof :Modulei
vm_rnodes_m :Module!
pb_to_d : Module!
con cat : Module!
intchars :Module!
maxmin_m :Module!
am i_rne :Modulel

screen :Module!
vfont_mJ
font table :Module!
set_mJ

Iwarn ins_m :Modulel

kernel_modes :Module
kernel_ops :Module

213



Source Listings

MODE PAIR = STRUCT( INT a, b ),TRIPLE = STRUCT( INT a, b, c )i

OP INT INT
OP INT) INT
OP (INT INT
OP ( PAIR ) INT
OP ( INT ) INT
OP INT) INT
OP PAIR) PAIR
{

SElECTAREA = BIOP 1268i
ClEARAREAS = BIOP 1269i
GETAREA = BIOP 1270i
OFFSET = BlOP 1277i
ClEARAREA = BIOP 1278i
AFTER = BlOP 1279i
ClEAROFFSET = BIOP 1295i

SELECT AREA area ~ 0CLEAR AREAS 0 ~ 0GETAREA ptr ~ areaOFFSET (ptr,int) ~ wordCLEAR AREA ptr ~ 0AFTER ptr ~ ptr
}

{ 2508 }
{ 2518 }
{ 2528 }
{"2618 }
{ 2628 }
{ 2638 }
{ 3038 }

{ change current area }
{ set area number of all blocks to zero}
{ fetch area of given block}
{ turn an integer address into a ptr }
{ set area number to zero }
{ ptr to next block after ptr }

{ record:
1: number of blocks, ~words
2: area, amount of scanning
3: level
4: level
5: level
6:7:

10:
11 :
12:
13:
14:

- store allocated
- no more greys
- init done
- scan done
- recover done
- computation complete
- amount recovered

speed, delay_time
- process finished
- amount of local recovered
- total count stats
- blocks still allocated at

area, ~blocks, ~words
number of areas, map,
pid
number of blocks
area, level, scanned_count
area, num alloc blocks

}

INT scavenge = BlOP 1204ilNT get_link = BlOP 1202i

MODE RUC = REF UECTOR [] CHARiMODE RUI = REF UECTOR [l INTiMODE RUB = REF UECTOR [l BOOliMODE MAP = REF UECTOR [] REF UECTOR [] INTiMODE GC = PROC( MAP, RUI, INT, PROC INT ) INTi
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{ The following operators are essentially machine instructions.U handlesexceptions. FAIL raises them. ISPTR distinguishes between pointers andscalars and REFINT turns a pointer and an offset into a reference. STYPEand SSI2E give the size and type of a block. SETD ensures that informationabout exceptions is kept for debugging. FIRM converts shaky (weak) pointersintofirm (strong) ones. ASSC gives asciicode of a character. SETSLOT setsthe process slot time. LOCK applied to a procedure ensures that whencalled it executes into a privileged state and is uninterruptable. PUNapplied to ref ints splits the reference into a pointer and an offset.SETLINK sets the procedure return link for the current process. SYSretrieves words from the machine's system block. where pointers to theinterrupt routines are kept. SREAK takes a procedure apart. givingpointersto its code and non local data (its highly privileged!). MAKE is theopposite. UNPACK takes a pointer and returns the contents of the block itrefers to. RETURN exits the current procedure. }

OP INT ) UNION( INT. ERRORPAIR ) U = SlOP 1004;
OP ( ERRORPAIR ) INT FAIL = SlOP lZ73;OP ( INT ) SOOL ISPTR = SlOP 118Z;OP ( 1NL INT ) REF INT REFINT = SlOP 1001;OP ( INT ) INT STYPE = SlOP 1183;OP ( INT ) INT SSI2E = SlOP 1184;OP ( INT ) INT SETD = SlOP 1194;OP ( INT ) INT FIRM = SlOP 1181;OP ( INT ) lNT ASSC = SlOP lZ10;
OP INT UOID SETSLOT = SlOP 1316;
ope PROC UOlD ) PROC UOlD LOCK = SlOP lZ59;ope PROC(UECTOR[]CHAR)UOID PROC(UECTOR[]CHAR)UOlD LOCK = SlOP lZ59;ope PROC lNT ) PROC INT LOCK = SlOP lZ59;ope PROC(PROC INT)INT ) PROC(PROC lNT)lNT LOCK = SlOP lZ59;ope PROC(PROC UOlD)INT ) PROC(PROC UOlD)INT LOCK = SlOP lZ59;ope PROC(lNT)UOID ) PROC(lNT)UOID LOCK = SlOP lZ59;ope PROC(INT)INT ) PROC(INT)lNT LOCK = SlOP lZ59;ope PROC(INT.INT)UOID ) PROC(INT.INT)UOID LOCK = SlOP lZ59;ope PROC(INT.INT)SOOL ) PROC(INT.INT)SOOL LOCK = SlOP lZ59;ope PROC(INT.INT)INT ) PROC(INT.INT)lNT LOCK = SlOP lZ59;ope PROC(INT.INT.INT)UOID' ) PROC(lNT.INT.INT)UOID LOCK = SlOP lZ59;ope PROC(INT.INT.INT)INT ) PROC(INT.INT.lNT)INT LOCK = SlOP lZ59;

ope GC ) GC LOCK = SlOP lZ59;OP(PROC(INT.REF UECTOR[]RUS)SOOL)PROC(INT.REF UECTOR[]RUS)SOOL
LOCK = SlOP lZ59;ope PROC(UECTOR[]lNT)UDID ) PROC(UECTOR[]INT)UOlD LOCK = SlOP lZ59;ope PROC(INT.REF INT.lNT)INi ) PROC(INT.REF lNT.INT)INT
LOCK = SlOP lZ59;

OP REF INT ) STRUCT Z lNT PUN = SlOP 1001;OP INT ) UOID SETLINK = SlOP 1303;OP INT ) REF PROC UOID SYS = SlOP 1317;
OP ( PROC UOID ) PAIR SREAK = SlOP 1339;OP ( PROC UOID. PAIR ) INT MAKE = SlOP llZ40;OP ( INT. PAIR) INT MAKE = SlOP llZ40;OP ( PROC UOID ) PROC INT PUN = SlOP 1001;OP ( INT ) PAIR UNPACK = SlOP 1154;OP ( INT ) lNT RETURN = SlOP 1168;
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INT non_local; {badge to ensure compiler creates lockable code}
PROC x_gc = ( MAP map, RUI speed, INT slice_time, PROC INT prog ) INT:
BEGIN

non local;
{ slice time is in milliseconds}
INT slice_slots = (slice_time+15) % 16, {16msec = 1/60sec }

slice_delay = ( slice_slots * 16 - slice_time) * 62;
{ 62*16 = 992 }

{perform health checks, computer max level}
INT max level := 0;INT n =-UPB map; {this is the number of areas}
IF n /= UPB speed
THEN fail( "different number of speeds to areas" FI;
IF n > 15 THEN fail( "Too many areas" ) FI;
FOR i TO n
DO IF UPB map[ ] /= n

THENfail( "map not square"
FI;
FOR j TO n
DO IF map[ i ][ j ] > max_level

THENmax_level := map[ i ][ j ]
FIODOD;

scavenge;
CLEAR AREAS 0;
sELECTAREA 15;
UECTOR [ 500 ] INT stats;
s t at s I 1 ] := 0;
INT n_stats := 1;
{{ 10: number of areas, map, speed, delay_time }}
stats[ n_stats +:= 1 ] := 2 + n * n + n + 1;
atats l n_stats +:= 1 l := 10;
stats[ n_stats +:= 1 ] := n;
FORALL rna IN map
DO FORALL m IN rnaDO

{force garbage collection}
{ensure all marks are clear}
{stuff in area 15 ignored}
{array to store stats}

stats[ n_stats +:= 1 := mODOD;
FORALL s IN speed
DO stats[ n_stats +:= 1 ] := s
OD;stats[ n_stats +:= 1 ] := slice_time;
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UFONT vf = find_font( 2, 1); {srab suitable font}
REF [,] BOOl scr = screen[ 18:18+22-1 , 6:2UPB screen - 3 ];

PROC x_messase = ( UECTOR [] CHAR m )UOIO:
BEGIN

{primitive uninterruptable code for displayins messase}
scr SET3 scr;
INT x := 1;
FORAll c IN m
DO

INT i = ABS c - first char OF vf + 1;
INT from = (offsets OF vf) [ i ],

wid = (widths OF vf) [ i ],
to = from + wid - 1;

scr[ , x:x+wid-1 ] SET (bits OF vf)[ , from
x +:= wid

to ];
OD

END;
PROC( UECTOR [] CHAR) UOIO messase = lOCK x_messase;

BOOl runnins := TRUE; {flass to tell us when to stop}
INT keep_collectins := 1;
INT pid := 0;

PROC x_record = ( UECTOR [] INT d ) UOIO:
BEGIN

{place some INTs into the stats buffer}
INT save := pid;
pid := 0;
REF UECTOR [] CHAR str := HEAP UECTOR [0] CHAR;
FORAll i IN d
DO

str := str + irrtchar s I i ) + .."
OD;
messase( "Record: ,,"+str );
IF n_stats + UPB d + 1 > UPB stats
THEN

{buffer full - move it to disc}
stats[ 1 ] := pb_to_d( stats I n_stats]);
n stats := 1FI; _

stats I n_stats +:= 1 .]:= UPB d;
stats[ n_stats + 1 n_stats +:= UPB d ] := d;
pid := save

END;
PROC( UECTOR [] INT ) UOIO record = lOCK x_record;

217



Source Listings

{characters used for states and "colours"}CHAR init = "I", scan = "S", recover = "R",
white = "W", grey = "G", black = "B";

{count number of greys in each area}HEAP UECTOR [ n ] INT greys; {all zero}
{readiness of each area at each level}HEAP UECTOR [ n ] REF UECTOR [] BOOL ready;FORALL r IN readyDO r := HEAP UECTOR [ max_level] BOOL { all FALSE}OD;
{state of garbage collection of a level}HEAP UECTOR [ max_level ] CHAR state;FORALL s IN state DO s := init OD;
{"indirection table" held as five separate arrays}REF UECTOR [] INT table := HEAP UECTOR [0] INT;REF UECTOR [] CHAR xcolour := HEAP UECTOR [0] CHAR;REF UECTOR [] INT xlevel := HEAP UECTOR [0] INT;REF UECTOR [] CHAR colour := HEAP UECTOR [0] CHAR;REF UECTOR [] INT xreflevel := HEAP UECTOR [0] INT;

PROC x_find = ( INT ptr ) INT:BEGIN{ find ptr in table - return table index}
non_local;INT ind := 0;IF ptr /= 0THENBITS a = BIN ABSC ptr AND 16r7ffff;FOR i TO UPB table WHILE ind = 0DO IF a = (BIN ABSC table[ i ] AND 16r7ffff)THEN

ind :=FIODFI;
indEND;OP ( INT ) INT FIND = LOCK x_find;

PROC x_size_up = INT:BEGIN
{ count up number of bytes allocated in table}INT sz := 0;FORALL p IN tableDO

sz +:= BSI2E pOD;
sz % 4END;PROC INT size_up = LOCK x_size_up;

218



Source Listings

PROC x_ready = ( INT area, level ) BOOl:
BEGIN

{see if all levels of an area are ready}BOOl ok := TRUE;FOR i TO UPB ready WHILE okDO
okOD;

okEND;OP ( INT,

:= map[ area ][ i ] > level OREl ready[ ][ level ]

INT )BOOl READY = lOCK x_readYi

PROC(INT,INT)UOID scan_done;
PROC x_scan_done = ( INT area, lower_level) UOID:BEGIN

{area has finished garbage collecting at level
so work out new state}BOOl ok;INT level = lower_level + 1;IF state[ level] = initTHEN

{finished initialising}
ready[ area] [ level] := TRUE;IF area READY levelTHEN

{everyone finished initialisins - change to scan}
record(( 3, level ));FOR i TO UPB readyDO IF map [ area ][ i ] <= levelTHEN

ready[ ][ level := FALSEFIOD;
state[ level := scanFIFI;
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IF state[ level ] = scan
THEN{finished scanning}

ok := TRUE;
FOR i TO UPS table WHILE ok
DO ok := (xcolour[ i ] /= grey) OR (xlevel[
OD;
IF ok
THEN{nothing left to scan}

ready[ area] [ level ] := TRUE;
IF area READY level
THEN

{everyone else ready too}
FOR i TO UPS ready
DO

] < level)

IF map[ area ][ i ] <= level
THEN

ready[ i ][ level := FALSE
FI

OD;
record(( 4. level ));
{change to recovery state}
state[ level] := recover;
IF level < max_level
THEN

{report that scan finished to higher level}
scan_donee area. level )

FI
FI

FI

ELIF state[ level ] = recover
THEN

{completed recovery phase}
ready[ area] [ level] := TRUE;
IF area READY level
THEN

{everyone else ready too}
FOR i TO UPS ready
DO

IF map [ area ][ i ] <= level
THEN

ready[ i ][ level := FALSE
FIOD;

record(( 5. level ));
IF level = max levelTHEN -

IF NOT running
THEN

{test has completed but keep going a
keep_collecting := ( keep_collecting bit}- 1 ) MAX (3

FI
FI;
{change to initialisation
state[ level] := init

phase}
FI

FI
END;scan_done := LOCK x_scan_done;
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PROC x_external_shade = ( INT index, ptr_Ievel, shade_level )UOID:
BEGIN{ shade external ptr (level ptr_Ievel) with shade_level mark}

non local;IF shade_level >= ptr_Ievel
THENINT xlev = xlevel [ index ];

IF xlev < shade levelOREL ( xlev = shade_level ANDTH xcolour[ index] = white)
THENxcolcur I index ] := grey;xlevel[ index] := shade_level
FIFIEND;PROC ( INT, INT, INT ) UOID external_shade = LOCK x_external_shade;

PROC x_update_table = ( INT u, area) UOID:
BEGIN{area has completed recovery, now compress the

indirection table and reset colours}INT count := e, sz := e, local_count := e;
{table is copied and compacted into new store}HEAP UECTOR [ u ] INT new_table;HEAP UECTOR [ u ] CHAR new_colour;HEAP UECTOR [ u ] CHAR new_xcolour;HEAP UECTOR [ u ] INT new_xlevel;HEAP UECTOR [ u ] INT new_xreflevel;FOR i TO UPB tableDO INT ptr = table[ i ];INT a = GETAREA ptr;IF colour[ i ] = whiteANDTH a = areaTHEN{block not found - 'recover' it}CLEARAREA ptr;INT btype = BTYPE ptr;INT bsize = BSI2E ptr;IF btype /= 3 ANDTH btype /= 11THEN .

{clear any pointers it contains}
FOR off TO bsize % 4DO IF ISPTR OFFSET PAIR( ptr, offTHENCLEAROFFSET PAIR( ptr, off)

FIODFI;

221



Source Listings

IF xreflevel[ i ] = 0 THEN local_count +:= 1 FI;
sz +:= bsizeELSE{copy entry but change it to white}
new table[ count +:= 1 ] := table[ ];
new=colour[ count] := IF a = areaTHEN

whiteELSE
co lour I i ]FI;

new xcolour[ count] := xcolour[ i ];
new-xlevel [ count ] := xlevel [ i ];
new=xreflevel[ count] := xreflevel[ iFIDD;INT recov = UPB table - u;

record(( 7, area, recov, sz % 4 ));
record(( 12, local_count ));
{remember the copies of the table}
table := new_table;
colour := new_colour;
xcolour := new_xcolour;
xlevel := new xlevel;
xreflevel := new_xreflevelEND;PRoC(INT,INT)UoIO update_table = LOCK x_update_table;

PRoC x_expand_table = UoIO:BEGIN{process has suspended so scan memory for new blocks}
non local;BooL more := TRUE;INT count, ptr;REF UECToR [] INT new_table;REF UECToR [] CHAR new colour;REF UECToR [] CHAR new-xcolour;REF UECToR [] INT new xlevel;REF UECToR [] INT new=xreflevel;
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WHILE more
DO more := FALSE;

count := 0;
{start at the beginning if no pointers in indirection table
otherwise start at last pointer since they are ordered}

ptr := IF UPS table = 0 THEN 0 ELSE table[ UPS table] FI;
{first just count them}
WHILE

ptr := AFTER ptr;
ptr /= 0DO
INT a = GETAREA ptr;
IF a /= 0 ANOTH a < 14 THEN count +:= 1 FIDD;

IF count /= 0
THEN

{there are some new ones so expand table}
INT old_max = UPS table;
INT u = UPS table + count;
new_table := HEAP UECToR [ u ] INT;
new_colour := HEAP UECToR [ u ] CHAR;
new xcolour := HEAP UECToR [ u ] CHAR;
new=Xlevel := HEAP UECToR [ u ] INTi
new_xreflevel := HEAP UECToR [ u ] INT;
new table[ : UPS table] := table;
new=colour[ : UPS table] := colour;
new_xcolour[ : UPS table] := xcolour;
new_xlevel[ : UPS table] := xleveli
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count := UPS table;
{search again}
ptr := IF UPS table = 0 THEN 0 ELSE table[ UPS table] FliWHILE

ptr := AFTER ptr;
ptr /= 0DO INT a = GETAREA ptr;IF a /= 0 ANDTH a < 14THEN

{ignore those in area 0 these are roots
14 - these are "dead"
15 - these are tables etc}

count +:= 1;IF count <= UPS new_tableTHEN
{new blocks are black}
new_table[ count] := FIRM ptr;
new colour[ count] := black;
new-xcolour[ count] := white;
new-xlevel[ count] := 0;
new-xreflevel[ count] := 0ELSE -
{some more have arrived since we last counted}
more := TRUE

FI
FIOD;

IF count < u THEN 1%0 {serious problem if we get here} FI;
table := new table;
colour := new_colour;
xcolour := new_xcolour;
xlevel := new_xlevel;
xreflevel := new_xreflevelFIODEND;PRoC UoID expand_table = LOCK x_expand_table;
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PROC x fix black block = ( INT index) UOID:BEGIN _ _ _
{ ptr to black block - shade intra-area pointers}
non_local;INT ptr = table l index ];INT type = BTYPE ptr;If type /= 3 ANDTH type /= 11
THENINT size = ( BSI2E ptr ) % 4;INT from = GETAREA ptr;fOR i TO sizeDO INT v = OffSET PAIR( ptr, );If ISPTR vTHENINT a = GETAREA v;If a = fromTHENINT ind = fIND v;If ind /= 0 ANDTH colour[ ind ] = whiteTHEN{ white pointer has been stored in black block}greys[ a ] +:= 1;

colour I ind ] := greyfIfIFIODFIEND;PROC ( INT ) UOID fix_black_block = LOCK x_fix_black_block;

225



Source Listings

PRoC x_fix_xref = ( INT index) UoID:
BEGIN

{check block for inter-area pointers}
non_local;INT ptr = table [ index ];INT type = BTYPE ptr;If type /= 3 ANDTH type /= 11 {ignore non-pointer blocks}THENINT size = ( BSI2E ptr ) % 4;INT from = GETAREA ptr;fOR i TO sizeDO INT v = OffSET PAIR( ptr, i );If ISPTR vTHEN

{block contains pointer}INT a = GETAREA v;If a /= 0 ANDTH a < 14 ANDTH a /= fromTHEN
{pointer is between areas}INT ind = fIND v;INT level = map[ a ][ from ];If ind /= 0 ANDTH level> xreflevel[ ind ]THEN

{record level of inter-area reference}
xreflevel [ ind ] := levelfIf1f1ODf1END;PRoC( 1NT ) UoID fix_xref = LOCK x_fix_xref;
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PROC x_fix_xblack_block = ( INT index) UOID:BEGIN{ ptr to externally black block - shade inter-area pointers}
non_local;INT ptr = table [ index ];INT type = BTYPE ptr;IF type /= 3 ANDTH type /= 11 {i9nore non-pointer blocks}
THENINT size = ( BSI2E ptr ) % 4iINT from = GETAREA ptriFOR i TO sizeDO INT v = OFFSET PAIR( ptr. i )iIF ISPTR vTHEN

{block contains a pointer}INT a = GETAREA v;IF a /= 0 ANDTH a < 14 ANDTH a /= fromTHENINT index = FIND ViINT lev = map[ from ][ a ];IF index /= 0ANDTH ( xcolour[ index] = whiteOREL xlevel[ index] < levANDTH state[ lev ] /= recoverTHEN{ xwhite ptr has been stored in xblack block}
xleveH index ] := lev i
xcolour[ index] := 9reyFIFIFIODFIEND;PROC ( INT ) UOID fix_xblack_block = LOCK x_fix_xblack_blocki
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PROC x_fix_root_block = ( INT ptr ) UOID:BEGIN
{ ptr to root block - shade pointers to non-root blocks}non localiINT-type = BTYPE ptriIF type /= 3 ANDTH type /= 11THEN

INT size = ( BSI2E ptr ) % 4iFOR i TO sizeDO
INT v = OFFSET PAIR( ptr, )iIF ISPTR vTHEN

INT a = GETAREA ViIF a /= 0 ANDTH a < 14THEN
INT index = FIND vi
IF index /= 0 ANDTH colour[ index] = whiteTHEN

{ white pointer has been stored in root block}greys[ a ] +:= 1i
coloud index ] := greyFIFIFIODFIENDi

PROC ( INT ) UOID fix_root_block = LOCK x_fix_root_blocki
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PROC fix marks = UOID:BEGIN _
{process suspended - now scan memory to fix up marks}
non local;INT-ptr := 0;
INT i := 0;
IF UPB table /= 0
THEN

WHILE
ptr := AFTER ptr;
ptr /= 0

DO
INT a = GETAREA ptr;
IF a = 0 OREL a = 15
THEN

SKIP {ignore tables and roots blocks}
ELIF a = 14-
THEN

fix_root_block( ptr ) {treat dead blocks as roots}
ELSE

i := (i+l) FIND ptr;
IF i /= 0
THENf ix_xref ( i );

IF colour[ i ] = black
THENfix_black_block( i )
FI;
IF xcolour[ i ] = black
THEN

f ix_xblack_block ( i )
FI

FI
FI

OD
FI

END;

PROC x_shade_starts = ( INT area, level ) UOID:
BEGIN

{set lowest level colour according to other colours}non_local;
IF stater level ] = recover
ANDTH NOT ready[ area ][ level]THEN

{ Clear unwanted external marks }
FOR i TO UPB tableDO

IF xreflevel [ i ] = level
ANDTH GET AREA table[ i ] = area
THEN

IF xlevel [ i ] < level
THEN

xreflevel [ i ] := 0
FI;
xcolour[ i ] := white;
xleveH i ] := 0

FI
OD

FI;
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FOR i TO UPS tableDO IF GETAREA table[ i ] = areaTHEN
{for each pointerIF xco lour I i ] =ANDTH xlevel[THENIF colour[THEN

colour[ i ] := grey;
greys[ area] +:= 1

in this area - set the colour}
black= level
= wh i te

FIELIF xcolour[ = greyANDTH xlevel[ = levelTHENIF colour[ = whiteTHEN
colour[ i ] := grey;
greys[ area] +:= 1FI;

xcolour[ i ] := black;
ready[ area] [ level] := FALSEELIF xcolour[ i ] = whiteANDTH xreflevel[ i ] = level + 1THENIF colour[ i ] = whiteTHEN

colour[ i ] := grey;
greys[ area] +:= 1FIFIFIODEND;PRoC( INT,INT ) UoID shade_starts = LOCK x_shade_starts;
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PROC x recov area = ( INT area ) UOID:BEGIN - -
{recover blocks which are still white}
non local;INT-count := 0;
FOR i TO UPB table
DO IF colour[ i ] = whiteANDTH GETAREA table[ i ] = area

THENcount +:= 1
FIOD;IF count /= 0THENupdate_table( UPB table - count, area

ELSE{ none recovered - just reset marks}FOR i TO UPB table
DO IF GETAREA table[ i ] = area

THENIF colour[ i ] /= black THEN 1%0 FI;colour[ i ] := white
FIODFI;scavenge; SELECTAREA 15END;PROC( INT ) UOID recov_area = LOCK x_recov_area;
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PRoC x init area = ( INT area) UoID:BEGIN _ _
{initialisation phase}
non localiINT-ptr := 0i
WHILEptr := AFTER ptri

ptr /= 0
DO

INT ptr_a = GETAREA ptri
IF ptr_a = 0
THEN

{found a root pointer}
INT type = BTYPE ptri
IF type /= 3 ANDTH type /= 11
THEN

INT size = ( BSI2E ptr ) % 4i
{search block for pointers}
FOR i TO size
DO

INT v = OFFSET PAIR ( ptr . )i
IF ISPTR v
THEN

INT va = GETAREA Vi
IF va = area
THEN

{root contains pointer to block in my area}
INT index = FIND Vi
IF index /= 0 ANDTH colour[ index] = white
THEN

{ white ptr has been stored in root block}
greys[ va ] +:= 1i
co lour I index ] := grey

FI
FI

FI
DD

FI
FI

DD
ENDi
PRoC(INT)UoID init_area = LOCK x_init_areai

PRoC UoID release_processor, old_timeri
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PRoC x_scan_srey_block = ( INT area, level, ptr ) INT:
BEGIN{ Shade ptrs found in block}

non local;INT-type = BTYPE ptr;IF type /= 3 ANOTH type /= 11
THEN{search block for pointers}INT size = ( BSI2E ptr ) % 4;FOR i TO sizeDO INT v = OFFSET PAIR( ptr, );IF ISPTR vTHEN

INT a = GETAREA ViIF a /= 0 ANDTH a < 14THEN{found pointer}INT index = FIND v;IF index /= 0THENIF a = areaTHEN{ Ptr to Same Area }IF colour[ index = whiteTHEN
co Lour I index] := grey;greys[ area] +:= 1FIELSEINT ptr_level = map[ area ][ a ]iexternal_shade( index, ptr_level, level)FIFIFIFIOD;

sizeELSEe
FIEND;

PRoC( INT,INT,INT ) INT scan_grey_block = LOCK x_scan_grey_blocki
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PROC x_scan_sreys = ( INT level, REF INT count, INT area ") INT:
BEGIN

{ Scan srey blocks }
non local;INT-num := 0, next := 1, loops := 0;
{ scan from next, no more than count looks}
WHILE sreys[ area ] > 0
DO loops +:= 1;

IF next> UPB colour THEN next := 1 FI;
IF colour[ next] = srey
ANDTH ( GETAREA table[ next ] ) = area
THEN

{ Scan Grey Block }
count -:= scan_srey_block( area, level, table[ next] );
loops := 13;
num +:= 1;
colour[ next] := black;
sreys[ area] -:= 1FI;

IF count <= 13
THEN

{done enoush for now - so relinquish processor}
release_processor;
loops := 0;
count := speed[ areaFI;

IF loops> UPB table THEN 1%0 FI;next +:= 1
OD;
num {number of srey blocks scanned }

END;
PROC(INT,REF INT,INT)INT scan_sreys = LOCK x_scan_sreys;
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PROC x_scav = ( INT area ) INT:
BEGIN

{the garbage collector for an area}
non_local;INT count := speed[ area ];
INT scans;UECTOR [ max_level ] INT scan_counts;fORAll s IN scan counts DO s := 0 OD;BOOl collecting ~= TRUE;WHILE collectingDO

{keep on going}
collecting := keep_collecting /= 0;If UPB table /= 0 THEN init area( area) fI;
scans := 0; -
{perform each level of scan in turn}fOR level fROM max_level BY -1 TO 1
DO

shade starts( area, level );INT s-= scan_greys( level, count, area );
scan_counts[ level] +:= s;
scans +:= SOD;

record(( Z, area, scans ));
If max level > 1THEN -

scan donee area, 1 )ELSE -
{single level system - check we're still going}If NOT runningTHEN

keep_collecting := ( keep_collecting - 1 ) MAX 0fIfI;
recov_area( area );
release_processorOD;

fOR 1 TO max_levelDO
record(( 13, area, 1, scan_counts[ 1 ] ))OD;

eEND;

PROC(INT)INT scav = lOCK x_scav;ERRORPAIR failure;BOOl failed := fALSE;
{here is modified versions of the scheduler}
SElECTAREA 14;HEAP UECTOR [ n+l
SELECT AREA 15;

INT link;

INT cont link := 0;INT num_dead := 0;
{ pid 1 is prog, pids Z ..n+l are gcs }
INT num_slots := 0;
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BOOl do_fixup := TRUE;
PROC x run next = UOIO:BEGIN - -

INT p := pid, skips := 0;
pid := 0;SETlINK cont_link; {in case of break in }
WHILEIF ( p +:= 1 ) > UPB link THEN p := 1 FI;

IF p = 2THENIF do_fixupTHEN
expand_table;
scavense; SElECTAREA 15;
fix_marksFI;

do_fixup := runnins;
record(( 1, UPB table, size_up ))FI;

link[ p ] = 0
IF (skips +:= 1) > UPB linkTHEN

fail( "loopins" )

DO

FIDD;
skips := 0;

"xxx" + "yyy"; {interruptable operation}IF p = 1THENSETSlOT slice slots; { 1 + 16 msec }num slots +:=-1;
TO slice_delay DO SKIP ODELSESETSlOT 200FI;

INT 1 = link[ pid .- p ];
l ink l pid ] := 0;SETLINK 1END;

PROC UOIO run_next = lOCK x_run_next;

PROC x_release_processor = UOIO:BEGIN
"xxx" + "yyy"; {interruptable}
link[ pid ] := set_link;
run_next

END;
release_processor := lOCK x_release_processor;
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old timer := (SYS 17);
PAIR old = BREAK old_timer;
PAIR ref_cp = UNPACK b OF old;
INT pslot = 20;
PROC x_return = INT ret ) UOIO:
BEGINnon_local;

INT link = set_link;
SETLINK ret;
RETURN link

END;PROC ( INT ) UOIO return = LOCK x_return;

{ non locals of timer is ref cp }

INT old link := 0;
INT suspend_link;
PROC x_get_suspend_Iink = INT:
BEGIN

non_local;
return( set_link )i
{* suspend *}
DO link[ pid ] := old_link;

old link := 0;
run-next {will 'return' next time process is suspended}OD; -

e
END;
PROC INT set_suspend_Iink = LOCK x_get_suspend_Iink;
suspend_link := set_suspend_Iink;
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PROC BOOL me = am__ me;
PROC x timer = UOID:BEGIN -

{ cp must be first non local}REF REF P pI;IF cp ISNT ( REF P(NIL))
THENIF meTHEN

owntime OF cp +:= pslot;
unexpired OF cp := pslot;IF pid = 1THEN

old_link := set_link;
link OF cp := suspend_linkELSE
link OF cp := set_linkFI;REF USER u = u OF cp;

sp OF cp := SHAKE ( tq OF u := tq OF u APPEND cp);
unexpired OF u -:= pslot;SETLINK 0;
cp := NIL;SETSLOT 1000ELSE
owntime OF cp +:= pslot-unexpired;
unexpired OF cp := pslot;
link OF cp := set_link;REF USER u = u OF cp;
sp OF cp := SHAKE ( tq OF u := tq OF u APPEND cp);
unexpired OF u -:= pslot - unexpired;SETLINK 0;
cp := NIL;SETSLOT 1000FIELSESETSLOT 1000FIEND;PROC call timer = INT:.BEGIN -

x_t imer;eEND;
U call_timer; { make sure its code is loaded

- actual call will fail}PROC UOID timer = LOCK x_timer;

PAIR new = BREAK timer;
b OF new MAKE ref_cp; { fill in proper ref cp }
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PROC x launch = ( PROC UOID p ) INT:BEGIN -
non local;INT-return := get_link;
PROC x call = INT:BEGIN -

INT start := get_link;SETLINK return;startEND;PROC INT call = LOCK x_call;
SETLINK 0;call;
p;link[ pid ] := 0;IF (num_dead +:= 1) = UPB linkTHENSETL1NK cont_linkELSErun_nextF1;eEND;PROC( PROC U01D ) 1NT launch = LOCK x_launch;

{create process shells for each of the garbage collectors}FOR i TO nDO PROC proc = U01D:BEGINSETD 0;SELECTAREA 15;CASE U scav( i ) IN( INT ok )
(
record( ( 11, i+1 ));
message( "GC" + intchars(

) ,
( ERRORPAIR ep )
(

) + " finished!" )

record(( 12, i+l ));
IF NOT fa iledTHENmessage( "GC" + intchars( ) + " failed" );failure := ep;failed := TRUE;keep_collecting := 0;running := FALSEELSEmessage( "Now GC" + intchars( ) + " has failed" )FI

)
ESACEND;link[ + 1 ] .- launch( LOCK proc )

OD;
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{shell for the prosram to be tested}
SELECT AREA 14iREF INT pros_result = HEAP INTiSELECT AREA lSi
PRoC call_pros = UoID:BEGINSETD 0iSELECTAREA 14iCASE U pros IN( INT i )

(
record( ( 11, 1 )) i
pros_result :=

) ,
( ERRoRPAIR ep )
(

record( ( 12, 1 )) i
IF NOT failed THEN failed := TRUEi failure := ep FIikeep_collect ins := 0

)
ESACirecord( 6 )iINT aliFOR a TO nDO al := 0iFOR i TO UPB tableDO IF GETAREA table[ = aTHENal +:= 1FIoDirecord ( ( 14, a, a1 ) )
oDirecord(( 42, num slots ))ikeep_collect ins ~= 0irunnins := FALSEENDi
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link[ 1 ] := launch( LOCK call_pros );
PROC x start off = INT:BEGIN - -

non_local;
cant_link := set_link;
pid := 0; {first one to run will be ~1 }
run next;o -

END;
PROC INT start_off = LOCK x_start_off;
(SYS 17) := timer;
U start_off; {discard any exceptions}
(SYS 17) := old timer;
record(( 43, num slots ));
messase( "Construct Stats" );
INT ptr_stats := pb_to_d( stats[ n_stats]);
IF failed THEN FAIL failure FI;
ptr_stats {return disc pointer to the stats}

END;
GC s_collector = LOCK x_sc
KEEP s_collector
FINISH
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D.2 Display Statistics Program - Algol Source

The garbage collector for the experimental system for studying logical

areas within a capability computer records statistics on backing store as a

vector of integers. The program shown in this section interprets this data

structure and produces a human readable version. Other programs, not

shown, extract particular information and produce the graphs and

histograms used in the main text.

stats_to_ed:
line mode m :Modulel
out_maker _m :Modulel
intchars :Modulel
oneline :Modulel
fail :Modu lei
d_to_b :Modulel
concat :Modu lei
OP ( INT ) INTOP ( STRUCT 3 INT ) REF UECTOR [] INT
PROC stats_to_ed = ( INT dp ) INT: { Edfile }
BEGINOUTTEXT outtext = out_maker( 60 );

PROC(LINE)UOID out = out OF outtext; {appends lines to output}

BSI2E = BIOP 1181;PUN = BIOP 1001;

PROC val = ( INT num, INT wid) LINE:BEGINLINE str = HEAP UECTOR[ wid] CHAR;FORALL c IN str DO c := " " OD;LINE n = intchars( num );str[ wid - UPB n + 1:] := n;strEND;

INT num allocs := 1, before allocs := 1;_ { dont forget initial slot}INT local_count := 0;
PROC output = ( INT dp ) UOID:
BEGININT p = d_to_b( dp );

REF UECTOR [] INT data = PUN STRUCT 3 INT( (BSI2E p)%1, p, 0 );IF data[ 1 ] /= 0 THEN output( data[ 1 j ) FI;INT i := z;
WHILE i <= UPB data
DO
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INT sz = data[ i ]i
i +:= 1i
INT next = sz + ii
INT type = data[ i ]i
i +:= 1i
IF type = 1
THEN

INT nb = data] i l r i +:= 1i
INT nw = data] i l r i +:= 1i
num allocs +:= 1i
outT "Allocated" + intchars( nb ) + " blocks"

+ intchars( nw ) + " words"ELIF type = 2
THEN

INT area = data[ i ]i i +:= 1i
INT scans = data] i ]i i +:= 1i
out( "Area" + intchars( area) + " scan complete. " +

intchars( scans) + " 9reys scanned." )
ELIF type = 3
THEN

INT level = datal i ]i i +:= 1i
out( "Level" + intchars( level) + " init done" )

ELIF type = 4
THEN

INT level = data l i ]i i +:= 1i
out( "Level" + intchars( level) + " scan done" )ELIF type = 5

THEN
INT level = elata] i ]i i +:= 1i
out( "Level" + intchars( level) + " recover done" )ELIF type = 6

THEN
out( oneline« "------" )) )i
out( oneline« "Computation Complete" )) );
out( oneline« "------" )) );
before allocs := num_allocsELIF type-= 7

THEN
INT area = data [ i ]; i +:= 1;
INT nb = datal ]; i +:= 1;
INT nw = data [ i ]i i +:= 1 i
out( "Area" + intchars( area +" recovered"

+ intchars( nb ) + " blocks"
+ intchars( nw ) + " words" )
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ELIF type = 10
THEN{{ 10: number of areas, map, speed, delay_time }}

INT n = data [ i ]; i +: = 1;
cut I intcharsI n ) + " areas." );
REF UECTOR [] CHAR str;
FOR m TO nDO str := "Area" + intchars( m ) + ": ";

FOR j TO nDO INT I = data [ i ]; i +: = 1;
str := str + intchars( I ) +OD;

out( strOD;
FOR a TO nDO

" "

INT sp = data[ i ]; i + : = 1;
out( "Speed of area" + intchars( a )

+ " is " + intchars( sp ) )OD;
INT deI = data[ i ]; i + : = 1;
out( "Slice time is " + intchars( del) );
out( oneline((" ")))

ELIF type = 11
THEN{ 11: pid }

INT pid = dataf ]; i +:= 1;
out( "Process" + intchars( pid ) + " finished" )

ELIF type = 12
THEN{ 12: amount }

INT num = data l i ]; i +:= 1;
out ( intchar s t num ) + " locally" );
local_count +:= num

ELIF type = 13
THEN

{ 13: area, level, total grey scan count}
INT area = data] i ]; i +:= 1;
INT level = data l i ]; i +:= 1;
INT count = data] i ]; i +:= 1;
out( "Area" + intchars( area) + " level"

+ intchars( level)
+ " scanned" + intchars( count) + " greys."

ELIF type = 14
THEN

{ 14: area, num blocks alloc }
INT area = data[ i ]; i + : = 1;
INT alloc = data] i ]; i +:= 1;
out( "Area" + intchars( area) + " has"

+ intchars( alloc )
+ " blocks still allocated" )
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ELSE
REF UECTOR [] CHAR str := HEAP UECTOR [0] CHAR;
FOR ind FROM i TO + sz - Z
DO

str := str + " " + int chars I dat a] ind ] )
OD;
out( "Unknown record: " + intehars( type) + str );
i +:= sz - 1

FI;
IF i /= next THEN fail( "Format Error" ) FI

OD
END;

output( dp );
out ( onel ine (( intehars ( before alloes ),

" slots used. Then ",
intehars( num alloes - before_alloes )," more." - )) );

out( oneline(( "End." )) );
( end OF outtext ) ( 80) {return pointer to output on disc}

END
KEEP stats_to_ed
FINISH
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D.3 Sample Statistics Output

This is a sample of the output produced by the statistics printing

program. It is the complete statistics, in human readable form, produced

by running the count words test on a file consisting of "hello this is a

test". Note that initially no found (grey) variables are scanned because

newly allocated variables are set to scanned (black).

2 areas.
Area 1: 1 2
Area 2: 2 1
Speed of area 1 is 50
Speed of area 2 is 50
Slice time is 16
Allocated 34 blocks 464
Area 1 scan complete. 0
Area 2 scan complete. 0
Leve12 init done
Allocated 42 blocks 607
Area 2 scan complete. 0
Allocated 70 blocks 870
Area 2 scan complete. 0
Process 1 finished

words
greys scanned.greys scanned.
wordsgreys scanned.
words
greys scanned.

Computation Complete
Area 1 has 70 blocks still allocated
Area 2 has 0 blocks still allocated
Unknown record: 42 4
Allocated 105 blocks 1240 words
Area 1 scan complete. 13 greys scanned.
Level 2 scan done
Area 1 recovered 21 blocks 314 words
21 locally
Area 2 scan complete. 0 greys scanned.
Allocated 84 blocks 926 words
Area 2 level 1 scanned 0 greys.
Area 2 level 2 scanned 0 greys.
Process 3 finished
Allocated 84 blocks 926 words
Allocated 84 blocks 926 words
Allocated 84 blocks 926 words
Allocated 84 blocks 926 words
Area 1 scan complete. 32 greys scanned.
Level 2 recover done
Area 1 recovered 52 blocks 635 words
52 locally
Allocated 32 blocks 291 words
Area 1 level 1 scanned 0 greys.
Area 1 level 2 scanned 45 greys.
Process 2 finished
Unknown record: 43 4
4 slots used. Then 7 more.
End.
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D.4 Count Words Test - Algol Source

count_words:
concat :Modulel
line mode m :Modulel
make_camp_in :Modulel
warning_m :Modulel
OP
OP

INT INT
INT INT

SETAREA = BIOP 1268;
SETD = BIOP 1194;

OP ( RES) UNION( STRUCT( RES r ), STRUCT 2 INT )
OP (STRUCT 2 INT) INT FAIL = BIOP 1273; U = BIOP 1004;

PROC count_words = ( INT second_area, file) PROC INT:BEGIN{ count the words in the file - keep a linked list of }{ frequency counts in another area}

PROC words = INT:BEGIN
SETAREA 1;
MODE WORD = REF UECTOR [] CHAR,NODE = STRUCT( REF NODE next, WORD word, INT count );REF NODE end = NIL;REF NODE head := end;
PROC RES reader = reader OF make_comp_input( file );lINE 1 := HEAP UECTOR [0] CHAR;INT next := 1;BOOl done := FALSE;
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PROC next word = WORD:BEGIN -
WHILE next > UPB 1ANDTH NOT done
DO CASE U reader IN( STRUCT( RES r ) r )

(
CASE r OF r IN( LINE line)
(

1 := line;next := 1;WHILE next <= UPBANDTH l[ next] =DO
1
" "

next +:= 1
OD

)
OUT SKIPESAC

)
OUT done := TRUEESACOD;

IF doneTHENHEAP UECTOR [0] CHARELSEINT start = next;INT i := next + 1;WHILE i <= UPB 1ANDTH 1[ ] /= " "DO
i +:= 1OD;

next := i;
WHILE next <= UPB 1ANDTH l[ next] = " "DO next +:= 1OD;II start : i-1FIEND;
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PROC find = ( WORD w. REF REF NODE head) BOOl:BEGINREF NODE p := head;BOOl found := FALSE;WHILE ( p ISNT end )ANDTH NOT found
DO IF w = word OF pTHENfound := TRUE;count OF p +:= 1ELSE

p := next OF pFIOD;
foundEND;

REF UECTOR [] CHAR word;WHILEword := next word;UPB word > 0-
DO SETAREA second area;IF NOT find( word. headTHENhead := HEAP NODE:= head, word, 1 )FI;SETAREA 1OD;
eEND;

words
END
KEEP count_wordsFINISH
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D.5 Count Words Test - Test Input

Here is the sample text used as input to the count words test. It is a

fragment of the on-line tutorial information for Flex.

Simple editing operations

This section is to introduce you to typing new text and making
simple alterations to it. It concerns text which is organised in
individual lines rather than English text. English text is organised
in paragraphs. The editor does handle paragraphs, but they are
slightly more complex and will be described later.
Read the next paragraph through before doing a double edit.
If you press the Double Edit key (Acc on the Perq keyboard, towards
the top left) you will get two windows. Make sure that the puck is
inside the window before pressing Double Edit. The upper or
left-hand one will contain the sub-text that you are already
editing, and the paper may have been moved to keep the cursor in the
new smaller window. The lower or right-hand one will contain a clean
sheet of paper. You can move from one window to another by using the
puck. If, while the cursor is in one window, you press the select
button on the puck and try to move it out of the window while
holding it down, then the paper will move behind the window in the
usual way. But if you move the puck into the other window before
pressing the select button, the cursor will follow into the other
window. Leave the cursor on the asterisk below, and now press Double
Edit.

*

You can return from the double edit back to normal editing by
typing CTRL OOPS while the cursor is in the top half. Move
between the two windows, type a bit in the lower one, and go back to
single edit. What you type in the lower half is discarded.

The keys in the right hand key-pad and some of the keys around the
edge of the keyboard, are used to perform editing functions. You may
have some way of re-labelling these keys, or you may have a printed
diagram of them. If not, the next page contains an annotated
diagram. You can move onto the next page by pressing the Next Page
key (9 on the keypad) and back again by pressing the Previous Page
key (8 on the keypad).

The key labelled south-west (called "oops" on the Perq keyboard) is
another cursor movement key. It moves down a li ne and to the left
end. Back-space removes the character before the cursor and steps
back one place.

You cannot alter this file: if you try to there will be no effect but
a beep from the sound generator. So to try the keys which are
described below you will have to use Double Edit.
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Remember which keys are used for Delete Character, Delete El;ment,
Duplicate, Insert Blank, Insert Remembered Uertical and InsertBelow.

Delete Character removes the character on which the cursor is
restin9· Delete Element will remove the line in which the cursor
lies. Insert Blank Line will put a new blank line"in. Insert Below
puts in a blank line below the line the cursor is on and moves the
cursor down on to it in a position immediately below the first
character of the current line. This is useful for typin9 at thebottom of the paper.

Since you cannot alter this text, in order to do experiments you
will have to do a double edit and use the lower window. Go into the
second window, type some lines and use the editin9 keys describedabove.

If you type more characters than will fit onto the line you will
hear a beep, and the character is not inserted. There is no
automatic roll-over to the next line, since it is assumed that
because this is text in which the layout is important, you will
want to make the necessary adjustments. There is roll-over if you
are typin9 para9raphs, since this is appropriate for En9lish text.There are facilities to be described later which will help in
reor9anisin9 a non-para9raph line if you find it will not fit in.

When you deleted a line the left hand end of the very top line of
the screen changed. It tells you the number of elements which are
bein9 remembered. When you delete somethin9 it is remembered
(last-in, first-out). The Insert Remembered Uertical key puts back
the top remembered element (the last one deleted) where the cursor
is. So if you accidentally deleted somethin9 and you want to get it
back, this is how you can do it. It is also useful for movin9 a line
or lines from one place to another. If you delete some lines, move
the cursor somewhere else and put them back, you have done a simple
cut-and-paste operation. The Duplicate key puts items into the
remembered elements without deletin9 them. You can use this to copy
sections from one place td another. Experiment with these keys in
the second window. You can also use the Duplicate key to copy lines
from the first window into the second. You can't use Delete for this
purpose, because that would mean alterin9 the tutorial, which has
been prevented, but in ordinary situations where alteration is notprohibited you could use this key.

Double Edit is mainly used to consult information while keepin9
si9ht of somethin9, or to transfer information from one text to
another while keepin9 si9ht of both source and destination, or for
providin9 a work space so that we can try somethin9 out without
spoilin9 the appearance of the main text. The last purpose is what
we shall mostly use it for in the tutorial, because the tutorial
text is protected a9ainst changes, but don't forget the other uses.

If you don't want the screen to be split in two with a horizontal line
when you press Double Edit, you can control it with the puck. Point
the puck just above the window in which the cursor lies and press
Double edit. The window is split with a vertical line at the point
near the puck. Similarly if you point just to the left of the current
window. If you split it in the wron9 place you can immediately undo itby usin9 CTRL OOPS.
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Resume
You have
1) Typed characters
2) Deleted characters
3) Deleted lines
4) Recovered lines after accidental deletion
5) Moved a group of lines from one place to another
6) Copied lines from one place to another
7) Inserted a blank line to type on
8) Inserted a blank line below the current one
9) Done a double edit
10) Moved text between windows
When you type CTRL OOPS in the upper or left-hand window you will go
back to single edit.

The next page is the diagram of the keyboard. The page after that
is a continuation of the tutorial.
To read the next page, press the Next Page key (9 on the keypad).

252



Source Listings

n.6 Routing Test - Algol Source

rout ins:
maxmin m :Modulel
make comp in :Modulel
con cat :Modulel
oneline :Modulel
intchars :Modulel
warn ins.,m :Modulel
roll m :Modulel
oP ( INT ) INT SETAREA = BIoP 1268;
MODE RUC = REF UECToR [] CHAR,RUI = REF UECToR [] INT,

MSG = STRUCT( RUC text, RUI route, return, Bool ack ),NODE = STRUCT( REF NODE next, other, REF MSG mss ),SITE = STRUCT( REF NODE in, out );

REF NODE nil = NIL;
PRoC number = ( RUC line, REF INT p ) INT:BEGININT res := 0;

WHILE p <= UPB line ANDTH liner p ] /= " "DO
res := res * 10 + ABS liner p ] - ABS "0";
p +:= 1OD;

resEND;

oP + = ( REF UECToR [] INT a, b ) REF UECToR [] INT:BEGIN
HEAP UECToR [ UPB a + UPB b ] INT new;new[ : UPB a ] := a;new [ UPB a + 1 : ] := b;newEND;

PRoC append = ( REF NODE node, REF REF NODE head ) UoID:BEGIN
REF REF NODE p := head;WHILE p ISNT nilDO p := next OF pOD;
REF REF NoDE( p ) .- nodeEND;

253



Source Listings

PROC remove = ( REF NODE node, REF REF NODE head ) UOID:BEGINREF REF NODE p := head;WHILE other OF p ISNT nodeDO p := next OF pOD;REF REF NODE( p := next OF pEND;

PROC route = ( INT edfile, UECTOR [] INT area) PROC INT:BEGIN
UECTOR [ UPB area] SITE site;FORALL s IN site DO s := ( nil, nil) OD;
INT num_msss := 0;INT next_site := 0;
PROC transfer = ( REF MSG m ) UOID:BEGINreturn OF m := (HEAP UECTOR [1] INT := (route OF m)[ 1

+ return OF m;INT n = UPB route OF m - 1;route OF m := HEAP UECTOR [ n ] INT := (route OF m)[ 2END;

PROC enter_messase = ( MSG mss ) UOID:BEGINHEAP MSG m := mss;INT from = (return OF m)[ 1 ],first = (route OF m)[ 1 ];HEAP NODE in := ( nil, nil, m );HEAP NODE out := ( nil, nil, m );other OF in := out;other OF out := in;append( in, in OF s i te l first] );append( out, out OF site[ from] );
roLl I oneline(( text OF m, " from ", intchars I from )," to ", intchars I first) )));warn ins( onel ine(( text OF m, " from ", intchars ( from )," to ", intchars( first) )))END;
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PROC move_message = UOID:
BEGIN

FOR s TO UPB site WHILE SETAREA area[ s ]i TRUE
DO

REF NODE p := in OF site[ s ]i
r oLl I onelineCC "Site ", irrt.chars I s ), "." )) )i
WHILE p ISNT nil
DO roll( oneline((" from ",

int chars t (return OF mS9 OF p ) [ 1 ] i.
": ", text OF mS9 OF p )) ) i

warnin9( oneline((" from ",
intchars( (return OF mS9 OF p )[ 1 ] ),
": ", text OF mS9 OF p )) ) i

p := next OF p
ODi
r o Ll I " .... " )i
warnin9(" "

ODi

WHILE
next site +:= 1i
IF next_site> UPB area THEN next_site := 1 FIi
in OF site[ next_site IS nil

DO
SKIP

ODi

SETAREA area[ next_site ]i

REF MSG mS9 = mS9 OF in OF site[ next site ]i
INT from = (return OF mS9)[ 1 ]i
remcve l in OF s i te l next site L out OF s i te I from] )i
in OF site[ next_site ] ~= next OF in OF site[ next_site ]i

SETAREA area[ (route OF mS9)[ 1 ] ]i

IF UPB route OF mS9 = 1
THEN

IF ack OF mS9
THEN

ro11( onel ine CC text OF mS9, " acked" )) )i
warnin9( oneline(( text OF mS9, " acked" )) )i
num_mS9S -:= 1

ELSE
roll( oneline(( text OF mS9, " arrived" )) )i
warnin9( oneline(( text OF mS9, " arrived" )) )i
RUI r = route OF mS9i
route OF mS9 := return OF mS9i
return OF mS9 := ri
ack OF mS9 := TRUEi
enter_message( mS9 )

FI
ELSE

transfer( mS9 )i
enter_message( mS9

FI
ENDi
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PROC RES next = reader OF make_comp_input( edfile )i

PROC sim = INT:BEGINBOOl running := TRUEiINT delay := 0, piWHILE runningDO TO delay WHILE num_msgs > 0DO move_messageOOiCASE next IN( RUC line)
(

{ each line is either a delay number orsome text (ending with ":") andsome numbers separated byspaces (eg. "hello:1 2 3") or "end" }IF "0" <= liner 1 ] ANOTH liner 1 ] <= "9"THENdelay := number( line, p := 1 )ElIF line = "end"THENrunning := FALSE

ELSE
p : = 1iWHILE liner p ] /= ":"DO

p +:= 1
OOiRUC text = HEAP UECTOR [ p ] CHAR := liner p];INT first = number( line, p +:= 1 );
SETAREA areal first ];
REF UECTOR [] INT route := HEAP UECTOR[1]INT := first;WHILE p <= UPB lineDO route := route +(HEAP UECTOR [1] INT

:= number( line, p +:= 1 ))DD;MSG msg := (text, route, HEAP UECTOR [0] INT, FALSE);transfer( msg );enter_message( msg );num_msgs +: = 1;delay := 1 .
FI

)
ESACDD;

eENOisimEND
KEEP routeFINISH
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D.7 Distributed Capability System Experiment - Algol Source

This is the source text of the statistics gathering software inserted into

the mechanism that triggers local garbage collection and into the remote

capability garbage collector.

stats:
remote_mode :Modulel
beep_m :Modulel
warning_m :Modulel
concat :Modu lei
intchars :Modulel
onel ine :Modu lei
REF UECTOR [] INT st := HEAP UECTOR [1000] INT;INT p := 0;BOOL overflow := FALSE;BOOL enabled := FALSE;INT initial_time := 0;
INT panic = UPB st - 10;
{ Record: Type (Local/Global).Number Remote Caps deleted.wanted store + global recovered + local recoveredwanted store + global recoveredwanted storestart timeend time·
}

MODE STATS = PROC( REF REMOTE. REF UECTOR [] INT.REF UECTOR [] INT )UOID;MODE BUFF = REF UECTOR [] INT;MODE PAIR = STRUCT( INT i.j );
OP STATS ) STATS LOCK = BIOP 1259;OP PROC(INT)UOID ) PROC(INT)UOID LOCK = BIOP 1259;OP PROC UOID ) PROC UOID LOCK = BIOP 1259;OP PROC INT ) PROC INT LOCK = BIOP 1259;OP PROC PROC BUFF ) PROC PROC BUFF LOCK = BIOP 1259;OP PROC(REF BUFF)UOID ) PROC(REF BUFF)UOID LOCK = BIOP 1259;
OP INT ) INT GEN = BIOP 1173;OP INT ) INT ADDRESS = BIOP 1210;OP INT ) REF PROC INT REFSYS = BrOp 1317;OP INT ) REF INT SBI = BIOP 1317;OP PAIR ) INT EXITFAIL = BIOP 1169;OP INT ) UOID SETSLOT = BIOP 1316;

INT scavenge = BIOP 1204;STRUCT 5 INT dumpu = BIOP 5206;INT resetu = BIOP 1207;INT unexpired = BIOP 1036;INT time_now = BIOP 1035;
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PROC l_slobals = REF REMOTE r,REF UECTOR [] INT before, after) UOID:
BEGINIF enabledTHENINT start = time_now;INT local = scavense;FORALL b IN before DO b := 0 OD;INT slobal = scavense;INT wanted = ABS( ( BIN ADDRESS GEN 0 ) AND 16r7ffff );

IF p > panic THEN overflow := TRUE; p := 0 FI;
st[ P +.- 1 .- 1;.-st[ p +.- 1 .- UPB before - UPB after;.-st[ p +.- 1 := wanted + local + slobal;.-st[ p +:= 1 := wanted + local;st[ p +.- 1 .- wanted;.-st[ p +.- 1 start - initial time;.- .-st[ P +.- 1 time_now - initTa1_time;.- .-beep

FIEND;

STATS siebels = LOCK l_slobals;PROC INT s;
PROC l_start_local = INT:
BEGIN

s := REFSYS 4;scavense;PROC l_new_sc = INT:
BEGINSTRUCT 5 INT du = dumpu;

INT start = time now;INT slottimeleft-= unexpired;SETSLOT 10000;(SBI 1):=0;

INT recovered = scavense;INT wanted = ABS( ( BIN ADDRESS GEN 0 ) AND 16r7ffff );
IF p > panic THEN overflow := TRUE; p .- 0 FI;
st[ p +.- 1 ] := 2;.-st[ p +.- 1 ] := 0;.-st[ p +.- 1 ] := wanted'+ recovered;.-st[ p +.- 1 ] := wanted + recovered;.-st[ p +.- 1 ] := wanted;.-st[ p +.- 1 ] := start - initial_time;.-st[ p +.- 1 ] := time_now - initial_t ime;.-
SETSLOT unexpired;IF recovered <= SBI 2 THEN resetu; EXITFAIL PAIR (-1,-1) FI;resetuEND;(REFSYS 4) := LOCK l_new_sc;(SBI 2) := -1;(REFSYS 4); {load code block}

eEND;
PROC INT stert_lecel = LOCK l_start_Iocal;
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PROC l_stop_recording = UOID:
BEGINenabled := FALSE;(REFSYS 4) : = 9END;PROC UOID stop_recordins = LOCK l_stop_recording;

PROC l_start_recording = PROC REF UECTOR [] INT:
BEGINinitial_time := time_now;

PROC l_get_stats = ( REF REF UECTOR [] INT buffer) UOID:BEGINbuffer := buffed : p ] := st I : p ];
p := 0END;PROC( REF REF UECTOR [] INT ) UOID get_stats = LOCK l_set_stats;

HEAP UECTOR [0] INT no_ints;
PROC record = REF UECTOR [] INT:
BEGINIF p /= 0THENREF UECTOR [] INT buffer := HEAP UECTOR [ UPB st ] INT;get_stats( buffer );

bufferELSEno_intsFIEND;enabled := TRUE;
p := 0;start_local;recordEND;

PROC PROC REF UECTOR [] INT stert_recordins = LOCK l_start_recording
KEEP globals, start_recording, stop_recordingFINISH
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